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Editorial on the Research Topic

Wearable robotics in the rehabilitation continuum of care: assessment,

treatment, and home assistance

Global population aging is posing long-term challenges to societal welfare and
sustainability. The prevalence of age-associated chronic diseases is causing a growing
demand for physical and cognitive rehabilitation. Healthcare providers are faced with the
challenge of guaranteeing a continuum of care after hospital discharge, and the management
and delivery of outpatient and home rehabilitation has become critical (Gonzaga et al., 2023).

Wearable robotics can support people affected by neurological conditions in recovering
their motor functions by aiding therapists in providing customized, task-specific
rehabilitation training, or by augmenting human movement capabilities in activities of
daily living (ADLs). The number of commercially available wearable robotics is rising
across different application domains, predominantly in the healthcare and industry sectors.
Nevertheless, several open challenges remain regarding actuation, sensing, and control,
which limit the wide adoption of these devices outside the controlled laboratory environment
(Babič et al., 2021).

Exoskeletons made of physically compliant structures, usually referred to as
soft exoskeletons or exosuits, are promising for their capability to assist users
with mild to moderate impairments while maintaining a lightweight and compact
structure. Maldonado-Mejía et al. presented a fabric-based hand exoskeleton with
pneumatic actuation (ExHand), designed for assisting grasping tasks in ADLs. The
capability of the device to maintain stable contact with different objects was verified
on 10 participants without any hand impairments. Di Natali et al. developed a
modular lower-limb exosuit for walking assistance (XoSoft). The exosuit uses soft
pneumatic quasi-passive actuators, which can modulate the forces generated by the
deformation of an elastic tendon via a variable stiffness textile-based clutch. This
approach mimics the behavior of the human muscle and tendons and allows the
injection of positive energy into the gait cycle without requiring powerful actuators.
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Over the last few years, hybrid neuroprostheses combining
low-power robotic actuation with functional electrical stimulation
(FES) have also been proposed. Such hybrid systems provide
biomimetic assistance by distributing the power resources between
the user’s muscles and the robotic actuator. A recent review
paper analyzed the efficacy of hybrid neuroprostheses employed
in randomized controlled trials for upper-limb impairment after
stroke, showing their positive effects in the recovery of upper-
limb motor function (Höhler et al., 2023). Still, most of the
current hybrid devices use both actuation types to address separate
functions for each (e.g., distal or proximal joint actuation).
Dunkelberger et al. presented a controller based on model
predictive control for a hybrid upper-limb powered exoskeleton
to assist individuals with spinal cord injuries. The controller
was designed to provide an optimal distribution of power at
the same joint, favoring FES over robotic actuation to assist in
tracking movements.

Physical training, either via FES or via robotic devices,
can also be combined with cognitive training by means of
serious games based on virtual or augmented reality. Such
hybrid combinations are suggested to increase patients’
engagement, motivation, and adherence to the treatment.
Höhler et al. recruited 18 patients after stroke in a randomized
crossover trial to investigate the feasibility and benefits of
combining serious games with contralaterally electromyography-
triggered FES. The results of this study also provide valuable
insight into the potential translation of such systems to the
home environment.

To ensure a continuum of care from hospital to home
rehabilitation, it is paramount to develop devices that are intuitive,
portable, and easy to use. These devices should be designed in a way
that allows them to be worn and used without the supervision of
the therapist, gathering at the same time quantitative measures to
monitor the progress of the therapy. Bressi et al. investigated the
use of a robotic end-effector type device (iCONE, Heaxel, Italy)
for the home-based rehabilitation of chronic stroke patients. The
study encourages the exploration of possible correlations between
the clinical evaluation scales and the metrics obtained via the robot
sensors, with the inclusion of a larger pool of participants. Urrutia
et al. investigated the correlation between the scores of theModified
Ashwort Scale and the measurements obtained with the Amadeo

R©

(Tyromotion, Austria) finger-hand rehabilitation device for the
assessment of joint spasticity. Making a reliable and standardized
robotic assessment of joint spasticity is still an open challenge due
to the need to capture an intricate interaction of neurophysiological
mechanisms (Pilla et al., 2020).

Longitudinal assessment protocols merging clinical evaluations
with the quantitative measurement of physiological and
biomechanical parameters are crucial for achieving more efficient
and cost-effective rehabilitation programs. Such assessments would
be extremely valuable for the stratification of patients into groups
with similar characteristics to identify the most appropriate and
customized treatment plan for each individual. Tesfazgi et al.
analyzed the sources of uncertainty in the estimation of the
human arm impedance using upper-limb wearable robotics. These
uncertainties arise from the physical human–robot interaction,
and their identification plays a pivotal role in the reliable and

automated estimation of the user’s neuromechanical state. This,
in turn, can open new possibilities for true customization of
rehabilitation treatments. Das et al. proposed a method for
the online classification of compensatory movement strategies
based on kinematic information. The automatic detection of
compensatory motion could be exploited to inform the patient
about the correct execution of the task, e.g., during home training
without the therapist’s supervision. In addition, such information
could be used to adjust the assistance profiles of robotic devices
to enforce the proper movement kinematics. Finally, Wu et al.
demonstrated the benefits of closed-loop cueing training for people
with Parkinson’s disease. This strategy can provide patients with
adaptive, optimized cues to improve their gait performance by
learning a personalized model of the user’s responsiveness to
the cues.

Overall, the articles in this Research Topic provide different
insights for the further development of wearable technologies
across the rehabilitation continuum of care. These insights
revolve around three main pillars: the need for customization
of the rehabilitation treatment, the importance of an objective
quantification and characterization of the patient’s conditions, and
the value of smart mechatronic designs to guarantee the seamless
and intuitive use of wearable robotics. Further advancements in
each of these three pillars will be paramount to ultimately enable
the translation of wearable robotics into our daily lives.
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Upper limb home-based robotic
rehabilitation in chronic stroke
patients: A pilot study

Federica Bressi1, Benedetta Campagnola1, Laura Cricenti1*,

Fabio Santacaterina1, Sandra Miccinilli1, Giovanni Di Pino2,

Francesca Fiori2, Marco D’Alonzo2, Vincenzo Di Lazzaro3,

Lorenzo Ricci3, Fioravante Capone3, Alessandra Pacilli4,

Silvia Sterzi1 and Marco Bravi1

1Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University of Rome, Rome, Italy,
2Research Unit of Neurology, Neurophysiology and Neurobiology and Biomedical Robotics and

Biomicrosystems, Campus Bio-Medico University of Rome, Rome, Italy, 3Unit of Neurology,

Neurophysiology and Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome,

Rome, Italy, 4Heaxel, Milan, Italy

Introduction: Robotic therapy allow to propose sessions of controlled and

identical exercises, customizing settings, and characteristics on the individual

patient. The e�ectiveness of robotic assisted therapy is still under study and the use

of robots in clinical practice is still limited. Moreover, the possibility of treatment

at home allows to reduce the economic costs and time to be borne by the

patient and the caregiver and is a valid tool during periods of pandemic such as

covid. The aim of this study is to assess whether a robotic home-based treatment

rehabilitation using the iCONE robotic device has e�ects on a stroke population,

despite the chronic condition of patients involved and the absence of a therapist

next to the patient while performing the exercises.

Materials and methods: All patients underwent an initial (T0) and final (T1)

assessment with the iCONE robotic device and clinical scales. After T0 evaluation,

the robot was delivered to the patient’s home for 10 days of at-home treatment

(5 days a week for 2 weeks).

Results: Comparison between T0 and T1 evaluations revealed some significant

improvements in robot-evaluated indices such as Independence and Size for the

Circle Drawing exercise and Movement Duration for Point-to-Point exercise, but

also in the MAS of the elbow. From the analysis of the acceptability questionnaire,

a general appreciation of the robot emerged: patients spontaneously asked for the

addition of further sessions and to continue therapy.

Discussion: Telerehabilitation of patients su�ering from a chronic stroke is an area

that is still little explored. Fromour experience, this is one of the first studies to carry

out a telerehabilitation with these characteristics. The use of robots can become a

method to reduce the rehabilitation health costs, to ensure continuity of care, and

to arrive in more distant places or where the availability of resources is limited.

Conclusion: From the data obtained, this rehabilitation seems to be promising

for this population. Moreover, promoting the recovery of the upper limb,

iCONE can improve patient’s quality of life. It would be interesting to conduct

RCT studies to compare a conventional treatment in structure with a robotic

telematics treatment.

KEYWORDS

home-based, stroke, robotic device, upper limb, rehabilitation, technologies
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Introduction

Stroke is the second leading cause of death and a major cause
of disability worldwide. Currently it is estimated that every year
about 33 million people suffer a stroke, but this incidence is
expected to increase due to the progressive aging of the population
(Wang et al., 2016; Soriano et al., 2017; Katan and Luft, 2018).
Typically, 1 year after stroke 65% of these patients remain severely
impaired and the degree of disability is correlated with the severity
of stroke (McConnell et al., 2017); this translates into an increase
in assistance for carrying out the activities of daily living (ADL).
Motor impairment is the most common consequence of stroke,
which can be regarded as loss or limitation of function in muscle
control or movement in an arm and a leg on one side of the body
(Pollock et al., 2014). Upper limb weakness is a common condition,
affecting about the 85% of survivors. Therefore, one of the main
aims of rehabilitation is to improve upper limb functions.

Evidence in the literature underlined how motor training can
positively influence the recovery by enhancing brain plasticity after
stroke, especially, when a multisensory rehabilitation is proposed
(Poli et al., 2013) and when repetitive and task-oriented exercises,
with a high number of repetitions, are delivered. This type of
rehabilitation requires great commitment for both patients and
physiotherapists, resulting in high costs for the health care system
(Jenkins and Merzenich, 1987; Masiero and Carraro, 2008; Poli
et al., 2013). Robotic devices can help overcome these obstacles
indeed, the use of these devices has been proposed since the
90s to help therapists increase the intensity of sessions, provide
multisensory stimulation, and reduce costs (Poli et al., 2013;
McConnell et al., 2017). Furthermore, robotic devices allow to
propose sessions of controlled and identical exercises, tailored
on the characteristics of the individual patient (Li et al., 2022).
Moreover, through the use of screens and visual feedback, robotic
devices provide sensory input, encouraging learning thanks to
the increased involvement given by the interactivity of the
technological device (Maciejasz et al., 2014).

The effectiveness of robotic assisted therapy is still under study
and the use of robots in clinical practice is still limited. One of the
reasons may be related to the logistics of using these devices. In
fact, the patients for whom the use of the robot is indicated are
generally severely disabled, requiring the assistance of a caregiver to
get to visits and therapeutic sessions (Li et al., 2022). The solution
to this problem could be the use of robotic devices for home
rehabilitation: most of the recent robotic rehabilitation devices are
designed and built to be transported to the patient’s home, so that
the patient can perform the exercises several times a day. Home
treatments can also be provided using devices such as smartphones
and tablets or through the use of webcams. A recent review reported
that in motor recovery after stroke, telerehabilitation appears to
have similar results to clinical rehabilitation. According to this
review, both for sub-acute and chronic patients, technological
rehabilitation programs should be integrated into conventional
therapy (Maciejasz et al., 2014). These results are also supported by
a recent Cochrane review by Laver et al., in which 22 Randomized
Controlled Trials were analyzed, for a total of 1,937 patients. This
review shows that there is no difference in daily life activities
between people who at discharge have received telerehabilitation
and those who have received regular care (Laver et al., 2020).

However, the few studies in the literature show conflicting results,
so the aim of this pilot study is to evaluate the effectiveness of a
robotic home treatment rehabilitation on patients suffering from
chronic stroke. This study also allows to analyze another important
aspect: the effectiveness of robotic therapy in the absence of a
physiotherapist alongside the patient. In addition, an acceptability
questionnaire was administered to assess patients and caregivers’
satisfaction of the robot and whether robotic therapy increases the
workload of the caregiver. In fact, although the commitment related
to the transport of the patient to the rehabilitation site is eliminated,
the involvement of the caregiver cannot be eliminated, but the
workload can be reduced by ensuring the maximum flexibility of
the therapy.

Materials and methods

Study design

The present study is a monocentric pilot study on the use
of the iCONE robotic device (Heaxel srl, Milan, Italy) for home
rehabilitation of patients with chronic stroke outcome approved by
the ethics committee of the Fondazione Policlinico Universitario
Campus Bio-Medico (protocol number 29/19).

This study aims to assess whether a robotic home-based
treatment rehabilitation delivered by the use of the iCONE robotic
device for two consecutive weeks has effects on this population,
despite the chronic condition of patients involved and the absence
of a therapist next to the patient while performing the exercises.
Two evaluations were provided in order to assess the effectiveness
of treatment: before the start of treatment and at the end of
treatment. The evaluations included the administration of clinical
scales by medical staff and physiotherapists and the execution of
exercises provided by the robot. The exercises administered for the
evaluation with the robot were the same for all patients and for
both evaluations.

Participants

The study involved patients recruited in the period between
March 2021 and April 2022 by the Complex Operative Unit
(COU) of Physical Medicine and Rehabilitation, the COU of
Neurology, and the Research Unit of Neurology, Neurophysiology
and Neurobiology and Biomedical Robotics and Biomicrosystems
of the Campus Bio-Medico University Hospital Foundation of
Rome. Enrolled patients underwent clinical examination before the
initial assessment.

Inclusion criteria for this study included patients aged between
18 and 80 years, with chronic stroke outcome (stroke onset at least
6 months before treatment) and residual upper limb deficiency
evaluated with anUpper Limb Fugl-Meyer Assessment≥3. Patients
also had to be able to understand the indications given by the
therapist and the ability to sign the informed consent. Moreover,
no patients who had criteria contrary to the conditions required by
the use of the robot were recruited. These criteria were: a positive
history of epilepsy, presence of severe cognitive deficits and/or
psychiatric disorders, severe flaccidity of the upper limb, lack of
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FIGURE 1

Timeline.

balance of the trunk in sitting position, and orthopedic pathologies
of the upper limb that made it difficult to use the robot.

General intervention description

After recruitment, patients underwent an initial assessment
(T0) through a series of clinical scales to assess the degree of
cognitive and functional disability of the patient, autonomy inADL,
motor skills, and the degree of spasticity. In particular, the NIHSS,
the Barthel Index, the Modified Ranking Scale, the Fugl-Meyer
Assessment for the upper limb, and the Modified Ashworth Scale
were administered. The detailed description of the scales is given
below. Patients were then subjected to a motor and performance
assessment using the robotic device iCONE, in order to evaluate
parameters such as coordination and muscle synergy, precision,
fluidity of movement, strength.

The home-rehabilitation included 10 sessions of exercises
performed with the iCONE device with the supervision of a
caregiver previously trained by the engineering team on robot
management. At the end of the 2 weeks of home treatment a second
evaluation (T1) was repeated in the same way as the T0. Figure 1
shows the timeline of the study.

The exercises proposed in the evaluation do not coincide with
those proposed in the exercises at home. This prevents the results
obtained in the T1 assessment from being affected by the exercise
training component.

The iCONE robotic device

iCONE (Heaxel, Milan, Italy) is a medical device for robot-
assisted neurorehabilitation of the upper limb (Figure 2). It consists
of a metal structure connected to a handle that allows the
movement on the transverse plane of the upper limb and a
monitor that shows the exercise to be carried out. The handle
is interchangeable to adapt to the patient’s grip. It requires the
movement both of shoulder and elbow, while the hand is not
involved and is anchored to the handle. The robot comes with a

FIGURE 2

The iCONE robotic device.

table adjustable in height to adapt to the most comfortable seat of
the patient.

At the moment of taking charge of the patient, the robot
provides to create a user card in which the date of the event,
the type, and the injured side can be recorded. iCONE has the
authorization for use in both healthcare facilities and in non-
hospital environment. For this reason, it can be used at the patient’s
home favoring the possibility of telerehabilitation.

The robot allows the administration of protocols based on
the intensive repetition of therapeutic exercises and integrates a
computer that indicate on the display the specific points that
must be reached in the movement, requiring shoulder and elbow
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coordination to perform tasks of reaching. The use of the screen
also provides visual feedback for the patient.

The iCONE robotic device can perform two types of session:
the evaluative session and the therapy session. The evaluative
session involves performing six standard exercises and provides
a complete report extrapolating quantitative indicators from the
planned exercises. These indicators are shown both numerically
and graphically and when a new evaluation is made, the data
of the previous evaluations are reported alongside the new ones,
facilitating comparison. For each indicator, or index, a description
is given to define what it refers to. Moreover, the expected trend
is reported.

The six exercises proposed for the evaluation and the respective
indices are described below:

- Circle drawings: it requires to draw a total of twenty
circles divided into four series of five repetitions for
different directions: the circles must be drawn clockwise and
counterclockwise, starting from the left and then from the
right, so that there will be five circles from left to right passing
from the top and five circles passing from the bottom, and
five circles from right to left from the top and five from the
bottom. The therapist gives the start and the stop for each
circle. The robot is in a transparent mode, which means that
it provides neither assistance nor resistance to the patient
during the execution of the task. It provides two indexes:
independence and size.

◦ Independence: it is the ratio of the minor axis to the main
axis of the ellipse that adapts to the circles drawn by the
patient. An increase is expected as therapy progresses (a
perfect circle would have a ratio of 1.00). Higher values
indicate better coordination and synergistic control of the
elbow and shoulder.

◦ Size: it is the total area of the ellipse that best suits the circles
drawn by the patient. An increase is expected as the therapy
proceeds. Indicates improvements in the Range of Motion
(ROM) of the paretic limb.

- Point-to-point: it consists in the classic round of the clock in
which the patient must reach the eight targets arranged along
the perimeter of a circle starting each time from the center.
The exercise includes five clock turns. During the exercise the
robot is in transparent mode. It provides seven indexes: init
time, mean speed, movement duration, path error, reach error,
smoothness, and peak speed.

◦ Init time: it indicates the time needed to start the
movement independently. It is expected to decrease as
therapy progresses. It is an indicator of the ability of
planning movement.

◦ Mean speed: Average speed of the end-effector in the
execution of the point-pointmovements. The average speed
is expected to increase as therapy progresses.

◦ Movement duration: Average time needed to perform a
point-to-point movement. It is a measure of temporal
efficiency. It decreases as therapy progresses.

◦ Path error: Average distance of each point in the patient’s
trajectory from the theoretical path. It measures the
accuracy of the entire reaching movement. Decreases as
therapy progresses (ideally zero).

◦ Reach error: Indicates how close the patient is to the target,
on average. It is a precision measurement. Lower result
indicates better performance. A radar graph shows the
value of the indicator along each direction of movement.

◦ Smoothness (speed shape): Ratio between average and
maximum speed during point-to-point movements. It is an
indicator of fluidity and ease of execution of the movement:
the higher the value, the easier it is for the patient to
complete the movement. It increases with the progress
of therapy.

◦ Peak speed: Peak speed value of the patient. Indicates ease
of movement. Increases as therapy progresses.

- Playback static: requires the patient to hold the handle of the
robot in the center, while the robot moves toward the eight
targets. This exercise provides one index: hold deviation.

◦ Hold deviation: It represents the average deviation from
the center during the Playback Static exercise. A patient
with a flaccid limb may show a star-shaped movement. The
indicator tends to shrink as therapy proceeds.

- Round dynamic: it is the opposite of the previous exercise.
Requires that the patient brings the robot’s end-effector to the
eight targets, while the robot applies a resistance to the center.
It provides the index displacement.

◦ Displacement: Average distance covered against resistance
from the central target during Round Dynamic exercise.
The value increases with the progress of therapy.

- Shoulder horizontal abduction: the straps on the forearm are
loosened and only the hand remains in contact to the end-
effector. The patient is positioned with the elbow extended
and the shoulder at 90◦. The handle of the robot freezes in the
middle of the screen and the patient is asked for a 5 s shoulder
abduction. The exercise is repeated five times. It provides one
index: shoulder horizontal abduction.

◦ Shoulder horizontal abduction:Maximum variation of force
exerted by the patient during the 5 s of the five repetitions,
while trying to remove the end-effector from its sagittal
plane. It increases in the course of therapy.

- Shoulder horizontal adduction: the conditions are
the same as the previous exercise, but the movement
required is an abduction. It provides one index: shoulder
horizontal adduction.

◦ Shoulder horizontal adduction:Maximum variation of force
exerted by the patient during the 5 s of the five repetitions,
while trying to bring the end-effector to its sagittal plane.
Increases in the course of therapy.
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FIGURE 3

Evaluation exercises: circle drawing, point to point e horizontal abduction/adduction.

FIGURE 4

Example of trajectories and indices of two exercises.

Figure 3 shows the screen shown to the patient in the exercises
Circle drawing, Point-to-point e Horizontal Abduction/Adduction,
while Figure 4 shows the trajectories and two examples of indices
for the exercises proposed in the evaluation.

While exercises for evaluation are standard, for therapy several
parameters can be set. In particular, the width and stiffness of the
haptic tunnel, the level of assistance and resistance, the number
of repetitions for exercise, the accuracy of the target, the scenery
can be changed. In addition, it can be customized the waiting
time for the start of the movement before the robot activates to
help the patient and the maximum assigned time to complete the
movement before the robot passes to the next target. There are three
modes of interaction to adapt to each degree of disability of the
patient: assistive, resistive, or adaptive. The assistive mode requires
the robot to help the patient perform tasks and allows a different
degree of assistance to be set according to the patient’s conditions.
The resistive mode allows to set up a resistance training for patients
who have achieved a good degree of movement control and who
need muscle reinforcement. The adaptive mode requires the robot
to help the patient only when the movement can’t be completed.

This study has adopted the assistive modality in order to adapt to
all the levels of impairment.

An important feature of this device is the ability to follow the
patient remotely by the cloud. In fact, therapy progress and session
execution data are constantly updated and stored in the cloud, so
that the therapist can monitor and change the training sessions at
any time by remotely accessing the device delivered to the patient
thanks to the wi-fi connection. For this purpose, in case the patient
was not provided with wi-fi, a router was provided with the device.

Intervention

All patients included in the study carried out an initial (T0)
and final (T1) assessment administered at the CESA (Health
Center of the Elderly) of Campus Bio-Medico University Polyclinic
Foundation of Rome.

The two evaluations included the administration of the
following clinical scales: National Institute of Health Stroke
Scale (NIHSS), Modified Rankin Scale (MRS), and Barthel
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Index (BI) submitted by neurologists; Fugl-Meyer Assessment for
upper extremity (FMA-UE) and Modified Ashworth Scale (MAS)
administered by physiotherapists.

In this study, NIHSS, MRS, and BI were administered with
the aim to frame the degree of disability and severity of the
included patients.

The NIHSS is used to measure stroke severity. It is composed
of 15 items that investigate level of consciousness, eye movements,
integrity of visual fields, facial movements, arm and leg muscle
strength, sensation, coordination, language, speech, and neglect.
For each domain, a score ranging from 0 to 2, 0 to 3, or 0 to 4 can
be recorded. The total score ranging from 0 to 42 is calculated as
the sum of individual item scores. The higher the score, the more
severe the stroke (Kwah and Diong, 2014).

The MRS was developed to measure the disability or
dependence in the daily activities of people with stroke outcomes
or other neurological disorders (Haggag and Hodgson, 2022). It is
composed of a single item ranging from 0 to 6, where 0 means no
symptoms, 1 no significant disability, 2 slight disability, 3 moderate
disability, 4 moderately severe disability, 5 severe disability, and 6
refer to death (Broderick et al., 2017).

The BI measures 10 basic aspects of activity related to self-care
and mobility. It investigates 10 items (feeding, grooming, bowel
and bladder management, toilet use, dressing, bathing, transfer,
mobility, and stairs) with a score ranging from 0 to 10 or 0 to
15. The normal score for this scale is 100 points and lower scores
indicate greater dependency (Kasner, 2006).

The FMA-UE has different domains: it evaluates the motor
aspects, the sensitivity, the passive ROM and the pain. The Motor
function has a maximum score of 66 points. The evaluation
investigates voluntary movement, speed, coordination, and reflex
activity. For each item a score ranging from 0 to 2 can be assigned
depending on the ability to perform and complete the task: 0 =

cannot be performed, 1 = partially performed, 2 = performed
completely. The total score allows to classify the motor impairment
as severe (<32 points), moderate (between 32 and 47), or mild
(>47 points) (Barbosa et al., 2019; Rech et al., 2020). Sensitivity
is evaluated both as light touch and proprioception and it has a
maximum score of 12. Passive ROM and joint pain are evaluated
for all districts. The passive ROM has a maximum score of 24, the
pain has a maximum score of 12. As for the motor function, for
these domains the scores for each item ranges from 0 to 2.

MAS is used to evaluate passive movement resistance. This
scale allows to obtain an indirect assessment of spasticity. The
score ranges from 0 (no tonus increase) to 4 (stiffness). Patients are
evaluated in a lying position, and they are asked to remain relaxed
during the test (Maciejasz et al., 2014; Rech et al., 2020).

In addition, patients also performed an evaluation session
with the robot consisting of a series of six exercises as described
previously. The exercises provided by the robot for evaluation are
standardized to always be the same for all patients. At the end of
the evaluation, the robot provides a report with numerical indexes
comparable between the two evaluation times and graphs with the
trajectories followed by the patient during the exercises.

At the final evaluation, an acceptability questionnaire was
administered consisting of a question for the patient about the
difficulty of using the robot and the possibility to integrate it in the
daily activities, and one for the caregiver to assess how much the

required workload in patient care has increased. It was also required
to quantify this feature giving a score ranging from 0 to 10. The
acceptability questionnaire is available in the Italian version and in
an English translation in the Supplementary material.

After initial evaluation, the robot was delivered to the patient’s
home. The rehabilitation protocol provided 10 days of at-home
treatment (5 days a week for 2 weeks).

The robot allows to plan therapies with customizable sessions.
Each session consisted in point to point reaching exercises for a
total of 1,024 reaching movements. For each session we adapted the
number of consecutive repetitions, depending on the patient’s need
to make breaks with greater or lesser frequency.

For this protocol, a typical session was as follows: four exercises
of 16 repetitions and six exercises of 160 repetitions according to
the following scheme: 16-160-160-16-160-160-16-160-160-16.

For patients with increased motor impairment, it was necessary
to further divide the session, to allow the patient to intersperse
the exercises with more frequent breaks. For these patients each
of the exercises of 160 repetitions was divided into five exercises
of 32. This distinction was based on the difficulties reported by the
individual patient. In the first days of therapy the physiotherapist
assessed the need to divide the session.

The total number of repetitions for each session to be
performed throughout the day was fixed at 1,024 movements for
each patient.

Despite the customization of the rehabilitation, some patients
had difficulty to complete all the required tasks, while others
exceeded in the sessions for which it was necessary to add some
more to complete the 10 days of therapy.

During the home treatment the patients were followed
exclusively by a caregiver (usually a family member of the patient)
designated by the therapist at the initial evaluation or by the
engineer at the time of delivery of the robot at home. The caregiver
did not have an active role in the therapy, but his presence is
required for the use of the robot and his purpose is to intervene
in case of need or adverse events.

It is not possible to establish the overall commitment of the
treatment as this varies greatly from patient to patient: for some
patients it took an hour a day to complete all the exercises, while
others took up to 3 h.

Physiotherapist had the ability to follow the patient remotely
via cloud, so that it was possible to add a new session wherever
the patient exceeded daily therapy or reduce the number of tasks
per exercises if the patient required more breaks. When many
incomplete exercises appeared or abnormalities were found, the
therapist contacted the patient by phone to make sure the therapy
was adequate.

Data analysis

Normality assumptions were tested by means of the Shapiro-
Wilk test (p > 0.05) and data were then analyzed with the
appropriate statistical test. Technical failure caused a lack of data
in some conditions, in fact, in some cases the robot has not
recorded the full values of the indices, especially when patients
made incomplete movements or were not able to complete the
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assessment exercise. Thus, data were analyzed with generalized
linear mixed models (GLMM) and, when necessary, scaled with
a (min–max) + 1 normalization to obtain positive numbers > 1.
This has made it possible to carry out a more complete analysis,
since unlike other methods, the GLMM allow to analyze the data
albeit partial, avoiding data loss. Moreover, for the same reason
also allows to use data of the drop out patient. We chose the most
appropriate family and link function as the model with the lowest
Akaike information criterion (AIC).

FIGURE 5

Participants flow diagram.

All the reported results were corrected, when appropriate, with
Holm correction for multiple comparisons. Statistical significance
was set at p-values < 0.05.

Results

All the patients recruited were evaluated and considered
suitable for treatment as regards the eligibility criteria. A total of
14 patients were included in the treatment. Figure 5 shows the flow
diagram of patient recruitment.

The patients recruited were all adults, with an average age
of 59.29 years (between 32 and 79 years) suffering from chronic,
ischemic or hemorrhagic stroke (respectively, 11 vs. 3 cases). They
had residual upper limb disabilities due to a first ever stroke and the
minimum time away from the cerebrovascular event was at least
6 months from the start of the study. They were predominantly
women (8F/6M) and the affected side was equally distinct among
the participants: seven patients had a right hemisphere injury and
seven had a left hemisphere injury.

Data regarding demographic information of the included
patients are reported in Table 1.

During the study a voluntary drop-out was recorded related to
problems of the patient’s family (patient 5): it was not possible for
family members to bring the patient to the T1 evaluation. Then, of
the 14 patients recruited, 13 completed all evaluations.

Data obtained from the NHISS, BI, and MRS were reported to
describe the clinical status of the sample analyzed. Table 1 shows
the values recorded for each patient and the average and standard
deviation for the total of the patients.

Table 2 show the results obtained in the Fugl-Meyer Assessment
divided for the different domain and the Ashworth scale evaluation

TABLE 1 Characteristics of the patients.

Participants
(no. 14)

Age Sex Type of
stroke

A�ected limb Time from stroke
(months)

NIHSS BI MRS

Patient 1 73 M I L 177.97 2 75 3

Patient 2 55 F I L 188.39 4 75 4

Patient 3 64 M H R 32.49 2 75 3

Patient 4 52 M H L 113.97 4 80 2

Patient 5∗ 59 M I R 28.98 8 85 2

Patient 6 32 F I R 192.00 3 95 1

Patient 7 69 M I R 6.74 5 61 3

Patient 8 78 F I L 8.25 3 90 1

Patient 9 46 F I R 22.21 3 98 1

Patient 10 63 F I R 6.12 7 85 3

Patient 11 58 F I L 701.04 3 95 1

Patient 12 79 F I L 14.06 10 30 4

Patient 13 53 M H R 343.46 6 89 3

Patient 14 49 F I L 37.72 2 90 2

Mean± sd 59.29± 13.0 6M/8F 11I/3E 7L/7R 133.8± 192.1 4.43± 2.47 80.21± 17.63 2.36± 1.08

M, male; F, female; I, ischemic; H, hemorrhagic; NIHSS, National Institutes of Health Stroke Scale; BI, Barthel Index; MRS, Modified Ranking Scale.
∗Patient 5 dropped out after treatment.
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for shoulder, elbow, and wrist districts. Data were analyzed with
GLMM method. Average and standard deviation are reported for
each data for both T0 and T1. Moreover, statistical significance is
reported for the comparison between T0 and T1.

The comparison of the results obtained in the FMA-UE
between T0 and T1 highlights a substantial stability at T1 for all the
domains analyzed, with a slight but not significant improvement in
motor function.

The MAS for the elbow district reported a statistically
significant result in the comparison between T0 and T1.

In the analysis of robot indices data were analyzed with GLMM
and, when necessary, scaled with a (min–max) + 1 normalization
to obtain positive numbers > 1. We chose the most appropriate
family and link function as the model with the lowest AIC. Table 3
summarize mean, standard deviation, and p-values related to the
comparison between the two times T0 and T1 for all the variables.

TABLE 2 FMA-UE and MAS comparison between T0 and T1.

T0 T1 p-value

(mean ± sd) (mean ± sd)

FMA motor function 33.21± 14.87 35.69± 15.92 0.882

FMA sensibility 10.36± 2.71 10.92± 2.25 0.952

FMA passive ROM 18.71± 3.07 18.92± 3.09 0.985

FMA pain 21.21± 2.78 21.69± 2.69 0.296

MAS shoulder 1.07± 0.73 0.92± 0.95 0.113

MAS elbow 1.86± 0.95 1.46± 1.2 0.017∗

MAS wrist 1.36± 0.93 1.46± 1.13 0.955

FMA, Fugl-Meyer Assessment; MAS, Modified Ashworth Scale.

The ∗ symbol indicates values that reach statistical significance.

TABLE 3 Comparison between T0 and T1 for iCONE indices.

Index T0 T1 p-value

(mean ± sd) (mean ± sd)

Independence 0.59± 0.39 0.76± 0.25 0.040∗

Size 0.04± 0.03 0.05± 0.02 0.019∗

Init time 0.14± 0.23 0.12± 0.28 0.916

Mean speed 0.07± 0.03 0.08± 0.05 0.073

Movement duration 3.53± 1.46 2.66± 1.52 0.002∗∗

Path error 13.02± 5.17 11.12± 4.49 0.218

Reach error 20.46± 14.81 18.72± 17.59 0.993

Smoothness 0.54± 0.09 0.57± 0.12 0.514

Peak speed 0.12± 0.04 0.14± 0.07 0.168

Hold deviation 26.78± 21.1 24.97± 16.89 0.448

Displacement 58.65± 22.71 64.07± 15.59 0.068

Shoulder horizontal
abduction

20.84± 9.36 23.24± 5.89 0.273

Shoulder horizontal
adduction

21.72± 12.12 23.9± 6.5 0.444

The ∗ and ∗∗ symbols indicate values that reach statistical significance. A single asterisk for

p-values ≤ 0.05; two asterisks for p-values ≤ 0.01.

As reported in Table 3, statistically significant results have been
recorded for three indices: Independence significantly increased
between T0 and T1 (p= 0.040), Size significantly increased between
T0 and T1 (p = 0.019), and Movement Duration significantly
decreased between T0 and T1 (p = 0.002). The distribution of the
variables at the two evaluations are shown in Figure 6.

Figure 6 shows box and whisker plot of MAS for the elbow
district, Independence, Size, and Movement Duration represented
in A, B, C, D, respectively. The thick horizontal gray line within the
boxplot represents the median value. Asterisks indicate significant
differences (∗p < 0.05, ∗∗p < 0.01).

Two variables have achieved interesting results although not
statistically significant: Mean Speed (p = 0.073) and Displacement
(p= 0.068). Both variables are increased between T0 and T1.

From the results obtained in the acceptability questionnaire, all
the patient (100%) stated that the treatment proposed at home was
compatible with daily life activities. The average score given to the
liking of the robot was 9.23 points on a scale from 0 to 10. Ten
caregivers (76.92%) reported that their care load did not increase
during the home-based treatment, with a score of 0 on a scale from
0 to 10, while three of them (23.08%) reported that their workload
increased with an average score of 7.3.

No adverse events were recorded during the evaluations or the
home-based treatment.

Discussion

The purpose of the present study was to assess whether a
rehabilitation treatment delivered at home using a robotic device
could have a positive effect on patients with chronic stroke
outcome, even when the therapist is not next to the patient while
performing the exercises. The results obtained from our study
seem to support the hypothesis of the usefulness of this type
of rehabilitation.

The significant data obtained in the Independence, Size, and
Movement Duration relate to the synergy of movement, the ROM,
and the duration of movement, indicating an improvement of
the patient in performing wider movements, with better control,
greater fluidity, and shorter time. This could result in improved
functionality of the paretic limb, which has been reported by many
of the patients, even if it has not been found in the clinical scales
administered. This result is in line with the results obtained in the
evaluation with MAS. In fact, the significant decrease in tone at the
elbow of the examined limb may have contributed to the greater
fluidity of the movement, indicating that this device is suitable for
use in these patients, avoiding causing an increase in spasticity.

The two indices Mean Speed and Displacement reached very
interesting even if not significant values. These variables refer,
respectively, to the speed and to the distance covered against
resistance in the execution of the reaching movement. The increase
of these two parameters could be a next step in the improvement
of the movement management, as it provides for a good control by
the patient even during the application of a force.

Moreover, the results obtained in the robotic evaluation cannot
be linked to the learning in the use of the device by the patient, in
fact the exercises proposed in the treatment are different to those
proposed in the evaluation. Consequently, it was not possible to
find a clear response and support to our results, although these
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FIGURE 6

Graphs related to significant data.

seem favorable not only for the outcomes obtained by patients, but
also for the management of therapy.

As reported by Chen et al. in their systematic review, the
results obtained from home treatment with these devices are
very discordant. Several studies reported that patients treated
with robotic devices can achieve improvements comparable to
those treated with conventional therapies. Alongside these studies,
however, there are numerous studies that report no statistically
significant results in the same comparison (Chen et al., 2019).

Although the robotic indices reported several significant data,
the scales of evaluation of the functionality did not show major
changes, in particular the FMA-UE. This could be explained by a
higher sensitivity of indices compared to clinical scales that require
greater variation to record changes in scores.

For the duration of treatment, as already mentioned, it was not
possible to make a direct comparison with studies involving the use
of the same robot, so it was compared with robots having similar
structure and the same degrees of freedom, for example the MIT-
Manus device (Massachusetts Institute of Technology, Cambridge,
MA, USA). The analyzed studies took into consideration the
treatment in structure and not at home. This analysis showed that
treatment times vary from 4 to 6 weeks for this type of devices,
with a frequency of 5 days a week (Volpe et al., 2000, 2008; Ang
et al., 2014; Sale et al., 2014). Therefore, it would be interesting to
increase the treatment period to assess whether this produces an
improvement in the results or an abandonment of the therapy.

According to the questionnaires administered at T1, patients
were satisfied with robotic therapy, showing that the device was
found to be well-tolerated by the patients. Therefore, caregivers
reported that their workload is not increased during the home-
based treatment, not affecting the organization of daily activities.

The purpose of post-stroke rehabilitation is to promote
the recovery of lost functions to allow the patient to achieve
independence and reintegration into social life. To date there are
no studies in the literature carried out with this robotic device and
there are still few studies about the use of robots at the patient’s
home. Even if they are not yet widespread, robotic systems offering
home rehabilitation for patients with neurological diseases are
becoming increasingly known and accepted (Guillén-Climent et al.,
2021). Robotic devices for the therapy of the upper limb enabled to

operate at the patient’s home present several advantages. In fact,
patients can perform the established therapy at any time of the day,
without the need to reach a rehabilitation facility with consequent
less impact on the caregiver’s load. Moreover, the costs relative
to the attainment of the structure and the times of employment
demanded to the caregiver are significantly reduced.

An important factor in favor of home robotic therapy is the
possibility of providing high-dose rehabilitation therapy even to
those patients with chronic outcomes, for whom the journey within
hospital facilities has ended. This type of rehabilitation at home
could therefore represent a valid alternative to the management of
chronic diseases, guaranteeing this category of patients an adequate
treatment to maintain longer the autonomy achieved in the acute
phase. Moreover, the interactivity of telerehabilitation and the
possibility of modulating the intensity of treatment are useful to
adapt the therapy to the progress of the patient (Cramer et al., 2019)
and possibility to vary the proposed games and actions enable these
devices to always being stimulating (Nijenhuis et al., 2015). The
proposal of exercises in the form of play, can increase the patient’s
involvement and consequently his adherence to therapy (Popović
et al., 2014; Rodríguez-De-Pablo et al., 2016).

Home robotic rehabilitation also has disadvantages: using
robotic devices at home concerns the need for ample space for
placement. This can be a problem for subjects living in apartments
with little spaces. In addition, in some cases robots produce forces
that can affect the safety of the treatment (Chen et al., 2019). For
this reason, the iCONE provides the presence of a caregiver during
treatment trained to stop the robot in the event of problems or risks
to the patient.

Therefore, it could be interesting for the future to introduce in
the proposals of the robotic devices also functional activities and
exercises aimed at the recovery of common activities in everyday
life (Poli et al., 2013; World Health Organization, 2022).

Limitations and future implications

The limitations that we have found in the conduct of this study
are linked to a poor sensitivity of the scales administered, which
have not allowed to make a more specific comparison with the
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indices obtained by the robot. It would be interesting to introduce
a more complete evaluation of the fluidity and precision of the
movement together with a functional evaluation of the upper limb
in daily life activities. In fact, the evaluation of the ADL was carried
out only with the administration of the BI, which is not specific
enough to assess the impairment related to the functionality of
the arm.

A second limitation concerns the low number of patients
included and the absence of randomization. It would be interesting
to evaluate the difference between a group that carries out the
treatment in a facility with the possibility for the physiotherapist
to intervene in the correction of the task, and the summation of the
same therapy at home, with the assistance of the caregiver.

A third limit concerns the treatment time, which is shorter than
the robotic home rehabilitation studies found in the literature. This
time in fact varies between 6 and 12 weeks, while our study has
provided a treatment time of only 2 weeks.

Finally, it was not possible to find in the literature a
questionnaire validated in Italian that would consider items related
to the use of the robot at home and that would evaluate both
patients’ and caregivers’ acceptability. The questionnaire adopted in
this study is not sufficiently structured to detect all the problematics
that may occur during rehabilitation at home but was intended to
assess in a simple and fast way the degree of acceptability of the
patient and the caregiver toward the robot at home. It would be
interesting to include a more structured questionnaire with more
specific questions about the robot and compatibility in home use to
assess whether there is a category of patients more suitable for this
type of treatment.

In the future it would be interesting to include an economic
feasibility study, considering the aspects related to the transport of
the device, the need for internet connection, and aspects related to
patient insurance at home.

Conclusions

The presented study assessed the feasibility and the
effectiveness of a home robotic rehabilitation program. Despite
the small sample recruited, it was possible to record interesting
and significant results, which support the use of robotic devices at
home for the treatment of patients suffering from chronic stroke,
even long after the acute event. These results are promising for
this type of rehabilitation, so it would be interesting to continue
the study on a larger sample, providing a longer therapy time and
inserting a control group. The study presented is in fact a pilot
study, without control group, so the results obtained should be
considered as preliminary data and should be confirmed with
better structured studies, such as Randomized Controlled Trials.
It would also be useful to re-evaluate the patient to follow-up, to

see if the results obtained are kept even at time from the use of
the robot.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed
and approved by Campus Bio-Medico Ethical Committee. The
patients/participants provided their written informed consent to
participate in this study.

Author contributions

LC, BC, FS, FF, MD’A, LR, and AP: data collection. FB,
BC, LC, and MB: handwritten. GD, SM, VD, FC, and SS:
revision. All authors contributed to the article and approved the
submitted version.

Conflict of interest

AP was employed by Heaxel, the company that supplied the
robot, and was involved in the management of the robot at home,
so she had direct contact with patients.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.2023.
1130770/full#supplementary-material

References

Ang, K. K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y.,
Kuah, C. W. K., et al. (2014). A randomized controlled trial of EEG-
based motor imagery brain-computer interface robotic rehabilitation
for stroke. Clin. EEG Neurosci. 46, 310–320. doi: 10.1177/15500594145
22229

Barbosa, N. E., Forero, S. M., Galeano, C. P., Hernández, E. D., Landinez,
N. S., Sunnerhagen, K. S., et al. (2019). Translation and cultural validation
of clinical observational scales - the Fugl-Meyer assessment for post stroke
sensorimotor function in Colombian Spanish. Disabil. Rehabil. 41, 2317–2323.
doi: 10.1080/09638288.2018.1464604

Frontiers inNeurorobotics 10 frontiersin.org16

https://doi.org/10.3389/fnbot.2023.1130770
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1130770/full#supplementary-material
https://doi.org/10.1177/1550059414522229
https://doi.org/10.1080/09638288.2018.1464604
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Bressi et al. 10.3389/fnbot.2023.1130770

Broderick, J. P., Adeoye, O., and Elm, J. (2017). Evolution of the modified
rankin scale and its use in future stroke trials. Stroke 48, 2007–2012.
doi: 10.1161/STROKEAHA.117.017866

Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., and Cramer, S. C. (2019).
Home-based technologies for stroke rehabilitation: a systematic review. Int. J. Med.
Inform. 123, 11–22. doi: 10.1016/J.IJMEDINF.2018.12.001

Cramer, S. C., Dodakian, L., Le, V., See, J., Augsburger, R., McKenzie, A.,
et al. (2019). Efficacy of home-based telerehabilitation vs in-clinic therapy for
adults after stroke: a randomized clinical trial. JAMA Neurol. 76, 1079–1087.
doi: 10.1001/JAMANEUROL.2019.1604

Guillén-Climent, S., Garzo, A., Muñoz-Alcaraz, M. N., Casado-Adam, P., Arcas-
Ruiz-Ruano, J., Mejías-Ruiz, M., et al. (2021). A usability study in patients with stroke
using MERLIN, a robotic system based on serious games for upper limb rehabilitation
in the home setting. J. Neuroeng. Rehabil. 18, 41. doi: 10.1186/S12984-021-00837-Z

Haggag, H., and Hodgson, C. (2022). Clinimetrics: Modified Rankin Scale (mRS). J.
Physiother. 68, 281. doi: 10.1016/J.JPHYS.2022.05.017

Jenkins, W. M., and Merzenich, M. M. (1987). Reorganization of neocortical
representations after brain injury: a neurophysiological model of the bases of recovery
from stroke. Prog. Brain Res. 71, 249–266. doi: 10.1016/s0079-6123(08)61829-4

Kasner, S. E. (2006). Clinical interpretation and use of stroke scales. Lancet Neurol.
5, 603–612. doi: 10.1016/S1474-4422(06)70495-1

Katan, M., and Luft, A. (2018). Global burden of stroke. Semin. Neurol. 38, 208–211.
doi: 10.1055/S-0038-1649503

Kwah, L. K., and Diong, J. (2014). National Institutes of Health Stroke Scale
(NIHSS). J. Physiother. 60, 61. doi: 10.1016/J.JPHYS.2013.12.012

Laver, K. E., Adey-Wakeling, Z., Crotty, M., Lannin, N. A., George, S., and
Sherrington, C. (2020). Telerehabilitation services for stroke. Cochrane Database Syst.
Rev. 1, CD010255. doi: 10.1002/14651858.CD010255.PUB3

Li, L., Fu, Q., Tyson, S., Preston, N., andWeightman, A. (2022). A scoping review of
design requirements for a home-based upper limb rehabilitation robot for stroke. Top.
Stroke Rehabil. 29, 449–463. doi: 10.1080/10749357.2021.1943797/FORMAT/EPUB

Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., and Leonhardt, S.
(2014). A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil.
11, 3. doi: 10.1186/1743-0003-11-3

Masiero, S., and Carraro, E. (2008). Upper limb movements and cerebral
plasticity in post-stroke rehabilitation. Aging Clin. Exp. Res. 20, 103–108.
doi: 10.1007/BF03324755

McConnell, A. C., Moioli, R. C., Brasil, F. L., Vallejo, M., Corne, D. W., Vargas, P.
A., et al. (2017). Robotic devices and brain-machine interfaces for hand rehabilitation
post-stroke. J. Rehabil. Med. 49, 449–460. doi: 10.2340/16501977-2229

Nijenhuis, S. M., Prange, G. B., Amirabdollahian, F., Sale, P., Infarinato, F., Nasr,
N., et al. (2015). Feasibility study into self-administered training at home using an arm

and hand device with motivational gaming environment in chronic stroke. J. Neuroeng.
Rehabil. 12, 89. doi: 10.1186/S12984-015-0080-Y

Poli, P., Morone, G., Rosati, G., and Masiero, S. (2013). Robotic technologies and
rehabilitation: new tools for stroke patients’ therapy. Biomed Res. Int. 2013, 153872.
doi: 10.1155/2013/153872

Pollock, A., Baer, G., Campbell, P., Choo, P. L., Forster, A., Morris, J.,
et al. (2014). Physical rehabilitation approaches for the recovery of function
and mobility following stroke. Cochrane Database Syst. Rev. 2014, CD001920.
doi: 10.1002/14651858.CD001920.PUB3
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People with Parkinson’s (PwP) experience gait impairments that can be improved

through cue training, where visual, auditory, or haptic cues are provided to guide

the walker’s cadence or step length. There are two types of cueing strategies:

open and closed-loop. Closed-loop cueing may be more e�ective in addressing

habituation and cue dependency, but has to date been rarely validated with PwP.

In this study, we adapt a human-in-the-loop framework to conduct preliminary

analysis with four PwP. The closed-loop framework learns an individualized

model of the walker’s responsiveness to cues and generates an optimized cue

based on the model. In this feasibility study, we determine whether participants

in early stages of Parkinson’s can respond to the novel cueing framework,

and compare the performance of the framework to two alternative cueing

strategies (fixed/proportional approaches) in changing the participant’s cadence

to two target cadences (speed up/slow down). The preliminary results show

that the selection of the target cadence has an impact on the participant’s gait

performance.With the appropriate target, the framework and the fixed approaches

perform similarly in slowing the participants’ cadence. However, the proposed

framework demonstrates better e�ciency, explainability, and robustness across

participants. Participants also have the highest retention rate in the absence of

cues with the proposed framework. Finally, there is no clear benefit of using the

proportional approach.

KEYWORDS

continuum care, wearable robotics, rehabilitation robotics, human-in-the-loop,

Parkinson’s disease

1. Introduction

Parkinson’s Disease (PD) is a progressive neurological disorder that causes a decline in
motor capabilities. In advanced stages of PD, a key symptom known as Freezing of Gait
(FoG) impairs people’s ability to initiate, sustain, and control gait patterns, which reduces
their quality of life (Sweeney et al., 2019). Cueing training can be helpful in improving
gait performance, where people can use visual, auditory, or haptic cues to guide them on
where/when to step (Ginis et al., 2018; Sweeney et al., 2019), thereby reducing the frequency
of freezing and improving the temporal and spatial gait parameters such as speed, step length,
and cadence (Nieuwboer et al., 2007).

Two types of cueing strategies have been identified: open or closed-loop (Muthukrishnan
et al., 2019). The open loop strategy provides cues in a fixed manner that do not change
regardless of the person’s response. The fixed nature of the cue can be the constancy (e.g.,
visual cues at fixed distance, auditory/haptic cues at fixed pace) or its presence (i.e., always
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on). The effectiveness of open-loop strategy has been validated
extensively in a variety of settings with PwP [e.g., home (Nieuwboer
et al., 2007)/clinic (McCandless et al., 2016), short/long term
(Lirani-Silva et al., 2019)], showing that open-loop strategies can
be effective in improving gait parameters in PwP. However, key
weaknesses of open-loop cueing include cue-dependency, where
participants start to rely on cues, or habituation, where cues become
less salient (and therefore less effective) as participants get used to
the cues (Ginis et al., 2018).

Compared to open-loop, closed-loop strategies adjust cues
based on the participant’s real-time performance, which may
address cue-dependency and habituation, and potentially provide
greater gait and postural improvement (Mancini et al., 2018).
Closed-loop cueing requires the participant’s gait performance to
be quantified, which can be measured using smartphones and/or
wearable devices (e.g., Ginis et al., 2016; Chomiak et al., 2019).With
the gait-monitoring capabilities, cues can be provided on-demand,
only when symptoms of freezing occur (Ginis et al., 2016), or can be

synchronized to each step (Mancini et al., 2018). However, many of

these methods focus on the events leading up to the cue provision.
There is a lack of adaptation to change the feedback based on the

user’s response. One example of cue adaptation is Zhang et al.

(2020), where the speed of the cues is adjusted using a proportional-
integral controller to minimize the difference between the user’s

walking speed and target speed. Our previous work proposed a

human-in-the-loop (HIL) optimization strategy that models the
participant’s real-time response to cues (Wu et al., 2021). Recently,
Zhang et al. (2022) developed a framework that can first estimate
the user’s maximum walking speed online, then uses reinforcement
learning and fuzzy logic to adapt an intermediate, guiding speed
to help the participant reach their maximum speed. While all
the aforementioned adaptation strategies have been effective in
changing healthy participants’ gait performance, they have not yet
been validated with PwP or other representative groups (Mancini
et al., 2018).

We adapt the HIL framework and the study methodology

originally evaluated with healthy participants in Wu et al. (2021)
in this case study with PwP. In the HIL framework, a model of the

person’s response to cues is learned online using a Gaussian Process
(GP). The GP model is then used in an optimization function

to generate cues to improve gait performance. Compared to our

previous work, this work evaluates adaptive cue generation for
PwP and provides an analysis of the cue-selection mechanism. The

study utilizes auditory cues due to the low development complexity

(i.e., only needing a speaker, compared to visual/haptics cues that
require other hardware). However, the framework generalizes to

other cueing modalities. As a feasibility study, it is also important

to determine whether PwP in the early stages of the disease can
respond to cues.

Compared to the work by Zhang et al. (2022), the HIL
framework can provide insights into the person’s response to cues
by explicitly modeling the response using GPs. The optimization
framework guarantees that the selected cue is optimal and
personalized given the person-specific cue response model. Finally,
the HIL framework may allow for more practical clinical use, as the
therapist would only need to select a target cadence, rather than
defining the fuzzy rules that are needed for Zhang et al. (2022). The

target selection being grounded in clinical metrics and the ability
for person-specific adaptation are also the advantage of the HIL
framework over the PI controller approach in Zhang et al. (2020),
as the controller gains do not have meaningful clinical associations
and lack the ability to adapt to the user’s real-time condition.

2. Materials and methods

2.1. Summary of proposed framework

The HIL framework consists of three subcomponents:
estimating gait parameters online, learning the individualized
cue-response model, and providing cues using an optimization
function. The framework block diagram is presented in Figure 1A.
An Inertial Measurement Unit (IMU) sensor is used to capture
cadence as the main gait performance metric. Cadence in Hertz
(Hz) is estimated using the canonical dynamical system (CDS)
proposed by Petrič et al. (2011).

To learn the individualized cue-response model, a Gaussian
Process (GP) is used to learn the relationship between the current
cadence as a function of the past cadence and past cue frequency as
shown in Equation (1).

X =
[

ω̂k−1, ck−1

]

, for k ∈ (0, 1, ...,K − 1)

Y =
[

ω̂j

]

, for j ∈ (1, 2, ...,K)

Y = f (X)+ β , (1)

where f (X) ∼ GP(m(X), cov(X,X′))

X andY are the input-output data pairs of the GP, with a total of
K number of pairs. ω̂k is the CDS estimate at the current sampling
index k, which happens every four strides roughly at heel strike. Y
consists of (ω̂j, j ∈ [1, 2, ...,K]) is a vector of current cadence as the
GP output data up to the current index k. X consists of a vector
of past cadences (ω̂k−1) and past cues (ck−1) up to index k − 1,
which are the GP input data. The GP has a mean function,m(X), a
covariance, cov(X,X’), and a constant basis β and is trained online
and used to predict how the participant would respond to a given
cue using Equation (2). This approach is inspired by previous works
implementing the HIL framework for exoskeletons (e.g., Kim et al.,
2017; Zhang et al., 2017).

Finally, a cost function is minimized to provide feedback
as shown in Equation (3) and subject to the constraints in
Equation (4).

ω̂k+1(ω̂k, ck) = f (ω̂k, ck)+ β (2)

J(ω̂k, ck) = (ωtarget − ω̂k+1(ω̂k, ck))
2

ck = argmin
ck

J(ω̂k, ck), subject to (3)

max(−20%ωk,−35%ωbaseline) ≤ ck ≤ min(+20%ωk,+35%ωbaseline)
(4)

Where J is the cost function that minimizes the squared
difference between the target cadence and the predicted cadence to
provide feedback, ck. The cost function is subject to the constraints
in Eq 4, with bounds of ±20% of the current cadence and the
ceiling/floor at ±35% of the person’s baseline cadence (ωbaseline).
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FIGURE 1

(A) HIL framework block diagram and the cueing strategies tested in the experiment. (B–D) Shows data from participants during the experiment. The

x-axis shows the time in seconds and the y-axis is the frequency. (B) Corresponds to P1, (C) for P2, (D) for P3, (E) for P4. For each participant, the left

column shows the UP conditions, and the right column are the DOWN conditions. The first row shows the fixed conditions, the second row the

proportional conditions, and the third row are the adaptive conditions. The goal of the cueing approach is to bring the person’s cadence (black line)

into the blue-shaded acceptable region. The pink line shows the participant’s baseline cadence. The dots show the frequency of the cues when they

are played. The target cadence is listed at the top for each participant.

The constraints for the cost function were reduced compared to our
work in Wu et al. (2021). The constraint prevents the cues from
changing to the theoretical maximum/minimum in one iteration

to prevent participants from needing to change their gait rapidly
which may increase tripping risks. At runtime, the optimizer relies
on the GP having learned the cue-response model, which requires
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training samples. A random exploration is initiated at the start of
the experiment for each participant to collect samples until the
gradient can be estimated, which leads to two-phase behavior that
we called the exploration and the converged phases. The GP is
trained continuously regardless of the phase, but we analyze the
performance of the framework with respect to these two phases,
where the exploration is the first 70 seconds of the experiment,
and the converged phase is as the GP prediction error becomes
sufficiently low as shown in Figure 3J.

2.2. Experimental conditions

2.2.1. Cueing strategies
The experiment compares three different cueing strategies:

fixed, proportional, and adaptive. The fixed cue condition provides
cues with frequency at the target cadence, representing the current
state-of-the-art open-loop cueing strategy. In the proportional
condition, cue frequency proportional to the error between
the current cadence and the target cadence is provided. The
proportional condition represents a one-size-fits-all closed-loop
cueing strategy as a constant error gain is used for all participants.
The error gain was set to 0.5, as determined empirically in Wu
et al. (2021). Finally, the adaptive cue provides cues using the HIL
framework described in Section , which allows personalized cues to
be provided. A summary of the cueing strategies can be found in
Figure 1A.

2.2.2. Target cadence selection
As the PD participants of the current study do not experience

gait impairment, the goal is to alter their baseline walking to a new
cadence. This is similar to the usage of cues during FoG, where cues
are used to guide the patient to a non-freezing pace. Two target
cadences (i.e., UP/DOWN speed conditions) are set based on each
participant’s baseline cadence, ωbaseline. In this study, the targets
are ±15%ωbaseline for the first two participants. We observe during
the experiment that both participants were unable to respond to
the +15% conditions and lower the targets to ±10%ωbaseline for
the next two participants. The targets have been used in previous
studies (e.g., Arias and Cudeiro, 2008; Hoppe et al., 2020). To
account for natural variation in the walking and the gait estimation
error, the target cadence constraint is relaxed to an acceptable
boundary during implementation. Thismeans cues would only play
if the participant’s cadence falls out of the boundary. The bounds
are±10%ωtarget for the first two participants with±15%ωbaseline as
the target. The next two participants have the ±10%ωbaseline as the
targets with the bounds of ±5%ωtarget . The acceptable boundary
tightens for the later two participants to avoid the overlap with
the baseline cadence. The change in acceptable boundary range
enforces a minimum of 5% cadence change for all participants.
The acceptable boundary check occurs every 4 strides, during
which 8 beats are provided, to allow time for the participant to
converge to the new cadence. The combination of targets and
cueing approaches result in a total of 6 experimental conditions.

2.3. Participants

Four participants with PD were recruited by a clinician at the
Movement Disorder Clinic, Kingston Center. Participants needed
to have Hoehn and Yahr score1 of less than or equal to two
regardless of medication state to participate and have no hearing
impairments/allergies to adhesives. The criterion excludes those
who experience gait impairment based on the clinician’s assessment
(i.e., freezing of gait, tremor in the lower legs, may be at risk of falls)
in this feasibility study. All participants were tested during their
subjective medication-ON state (if they are on medication). The
study (ID 22556) was approved by the Monash University Human
Research Ethics Committee.

2.4. Protocol

Participants watched an introductory video at the start of the
experiment. Participants provided consent once they had a chance
to have their questions addressed. Different from the previous
study, the IMU sensor was fixed onto what participants self-
reported as the more disease-affected leg. A familiarization session
was provided where participants practiced syncing to 88 beats
per minute. Instructions were given to sync each step to a beat.
Afterwards, participants were told walk at their comfortable and
natural pace for 7 minutes to measure ωbaseline. Participants filled
in a demographic survey after the baseline measurement. The 6
experiment conditions were then provided in random order and
blinded from the participants. During the experiment, cues were
played based on the condition described in Section for the first
6 min (as per the standard 6-min Walk Test). No cues were
played in the last minute of the condition to examine retention.
Participants were instructed to sync their walking to cues to the
best of their ability, but were not explicitly told to maintain the
new cadence in the absence of beats. The researcher walked a
few steps behind the participant throughout the experiment to
provide support if needed. Participants were given breaks while
they filled in a survey between experiments, which included filling
in a NASA Task Load Index (TLX) and if/how the participants
thought their gait changed during each experiment. The break was
extended on demand to avoid fatigue. Once participants completed
all experiment conditions, an exit interview was conducted to fill
in a system usability scale (SUS) and gather information on the
participant’s qualitative experience, followed by a debrief session.
The debrief explained the conditions of the experiment and the
participants also had a chance to review their data in relation to
the goal and the experimental conditions. The study took 1.5 hours
to complete.

1 Hoehn and Yahr score (HY) is a clinical scale that is used to classify

the motor function of Parkinson’s Disease. The scale rating goes from 1

to 5 and the progression in the HY score corresponds to more severe

motor impairment (Bhidayasiri and Tarsy, 2012). Functionally, HY ≤ 2 means

participants can perform their daily routine independently or with minimal

assistance.
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FIGURE 2

(A) Mean percent change from baseline for each participant. For P1&P2 (shown in yellow), ωtarget is 15%. ωtarget is 10% for P3&P4 (in blue). The left

panel shows the UP conditions and the right are the DOWN conditions. Data with similar values may be overlapping (e.g., P2&P3 in E-Exp, Up). (B)

Percent on time during the first 6 min of the experiment. (C) Cadence variability computed using the coe�cient of variation during the first 6 min of

the experiment. (D) Cadence variability during the retention phase (last minute of the experiment). (E) Decay rate computed by fitting an exponential

function to the data from the last provided cue (see orange lines in Figures 1B–D). (F) Task Load Index for the participants.

2.5. Materials

The same setup in Wu et al. (2021) was used and summarized
below. The motion data was recorded using an IMU sensor from
the WaveTrack Inertial System at 285 Hz (Cometa Systems, Milan,
IT) and streamed wirelessly into a custom C# program. The C#
program ran on a laptop (Windows 10, i7 core with noGPU), which
controlled the timing of the auditory cues played from a speaker
(Phillips BT50A). The program also interfaced with MATLAB,
where the Statistics and Machine Learning and Optimization

Toolboxes were used for theHIL framework. The GPwas initialized
with X = [0,0], Y = [0] for each participant.

2.6. Analysis

No statistical analysis was conducted due to the small sample
size. The analysis will focus on reporting the individual raw
data and metrics, combined with the participant’s subjective
ratings.
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3. Results

3.1. Demographics

Four participants enrolled in the study (2M/2F; age 70 ± 5;
height 165.25 ± 12.1; weight 64.25 ± 16.31; years since diagnosis
3.5 ± 1.5). The participants’ self-reported lower body symptoms
are as follows, with the number of participants who reported in
brackets: stiffness (1), slowed movement (2), trouble balancing
(2), and dyskinesia (1). One participant does not experience any
symptoms and others indicated that these symptoms rarely occur.
All participants exercise 3+ times a week, with the most common
exercise being walking (4), strength/resistance training (2), and
stretching/balance training (2). No participant had prior experience
with strategy training (i.e., visual cueing, audio cueing, haptic
feedback, vibration therapy).

3.2. Cueing strategies comparison

3.2.1. Mean percent change from baseline
The mean percent change from the baseline (δ̄BL) is shown in

Figure 2A. This metric is an indicator of whether the approach is
able to sustainably influence the person’s cadence. We hypothesize
that a positive percent change from baseline will be observed in
the UP conditions and a negative percent change for the DOWN
conditions. For instance, the δ̄BL for P1&P2 (in yellow) would be
close to +0.15 in the right panel and –0.15 in the left panel in
Figure 2A. The comparison focuses on the converged adaptive cue
after the model has been learned in the exploration phase.

In the UP conditions, P1’s cadence does not reach +0.15
regardless of the cueing approach. The behavior can also be seen in
the raw data, where the participant’s cadence (black line) is always
below the baseline cadence (pink line) for the UP conditions (left
column) in Figure 2B. For the DOWN conditions, while the target
of –0.15 was not reached for all approaches, the adaptive-DOWN
condition showed the largest mean percent change from the target
as seen in Figure 2A.

The cadence for P2 is similar to the baseline across all UP
conditions (Figure 2A), even during the exploration phase of the
adaptive condition where a series of random cues is provided.
This is illustrated in Figure 1C, where the random cues are seen
within the first 50 s of the adaptive approach (last row), but
the participant’s cadence tracks the baseline (i.e., the black line
oscillates around the pink line). The largest change is seen around
350 s in the Fixed-UP condition in Figure 1C. The cadence dropped
because it was the first condition and the participant paused
walking when the cue stopped playing for the first time. The most
significant change in δ̄BL is in the adaptive-down condition, where
P2 responded best to the slower cue provided in the adaptive
condition compared to the fixed/proportional approach.

For P3&P4, the target is set to ±10%, meaning the blue shapes
in Figure 2A should ideally be close to +0.1/–0.1 for the right/left
panel. The target was lowered for P3&P4 after observing that the
first two participants were unable to reach the fast target. The
adaptive approach for P3&P4 in both UP/DOWN conditions is
comparable to the state-of-the-art fixed approach in terms of δ̄BL.

In the UP condition, the converged adaptive approach achieves
the highest mean percent change from baseline for P3 and P4,
especially for P3 as the participant had the highest δ̄BL among all
conditions and all participants.

3.2.2. Percent on
The percent on metric examines the percentage of time the

cue is provided in the first 6 min of the study, which is shown
in Figure 2B. The metric is a measure of cue efficiency. The
participant’s cadence did not converge to the cues despite the
constant presence of cues in the UP conditions for P1&2. For P3&4,
the adaptive-UP condition requires the least percent on time to
keep participants at the target boundary.

In the DOWNconditions, the converged adaptive condition (F-
Cvg in Figure 2B) shows good performance across all participants.
Despite the fixed-DOWN (Figure 2B) condition having the lowest
percent on time among the three, it is ineffective for P2. The
proportional cue has a similar percent on time between the
UP/DOWN conditions for P3&4, but is drastically different
between the UP/DOWN conditions for P1&2 (i.e., always on for
UP, relatively low for DOWN).

3.2.3. Gait variability
The coefficient of variation of the participant’s cadence is

computed for the first 6 min of the experiment (Figure 2C) and
during the retention phase from the last cue to the end (Figure 2D),
following the definition in Lo et al. (2017). The variability is the
highest during the adaptive condition exploration phase when
cues with the largest variance are provided (see Figures 1B–E).
The proportional approach has the lowest variability, as cues of
similar frequencies are provided. In the fixed/converged-adaptive
approaches, the variability is similar in the UP conditions, but
the adaptive DOWN has a higher variability. This might be
due to the adaptive approach undergoing a second exploration,
which happened in both P3&4. P1’s variability s also high in the
adaptive down condition as the participant’s cadence experience
sharp changes (sudden dip in cadence when cues are provided, see
Figure 1B).

During the retention phase when no cue was played, the
cadence variability is generally low except for P3 in Fixed UP, P2
in Fixed UP, and P1 in Fixed DOWN. P3 had the highest variability
as the participant’s cadence varied from the UP target to a value
lower than the baseline. P2 had a high variability in Fixed UP
due to the participant stopping/starting as described in Section .
While a manual offset is applied to skip the pause/start, the data
should be considered an outlier. P1 in Adaptive DOWN also had
high variability due to the larger variance around t=350s. Overall,
the variability is higher when cues are played, as participants
actively change their cadence to match the cue. The variability is
immediately decreased when there is no cue.

3.2.4. Decay rate
An exponential function of the form of y = αe−ηx + γ is fitted

to the cadence data from the last provided cue to the end of the
experiment to examine the rate at which participants settle to a
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FIGURE 3

A case study using data from P3 adaptive-DOWN condition in Figure 1C. (A) Cadence over time in the experiment. (B) The GP prediction error, which

is calculated at every 4 strides. (C) Shows the final 3D cue response model, where the X axis is ωk , Y axis is ck and the Z axis is ωk+1. Samples are

plotted in blue circles. ωtarget is plotted as the yellow horizontal plane. (D–F) Shows the cost function at the start, middle, and end of the experiment.

The middle part is selected to explain the second exploration phase. The cost function is plotted over the absolute maximum and minimum cue

range (dotted purple line), where the active cost function defined by Equation (4) is plotted as solid blue. The initial guess provided to the optimizer is

plotted as a yellow circle, and the final provided cue is an orange square. (D) Shows the cost function at the start. (E) Shows the selection of cues

given the poor representation and poor optimizer’s initial guess. (G) Shows the final shape of the cost function, which has a minimum that is close to

ωtarget. (G–I) Shows the GP mean and variance at start/middle/end. (J) The average GP prediction error for all participants. The exploration phase (i.e.,

first 70 seconds) is shaded in pink. The prediction error and variance decrease significantly during exploration.

cadence in the absence of cue. The absolute value of the decay rate,
η, is presented in Figure 2E. The function is plotted in orange in
Figures 1B–E. Participants can settle back to their baseline cadence
(e.g., P3, Proportional UP in Figure 1D), a faster cadence (e.g., P4,
Adaptive UP in Figure 1E), or a slower cadence (e.g., P1, Adaptive

UP in Figure 1B). A higher value would indicate a faster settlement.
A low value indicates a minimal change from the baseline or from
a new cadence.

Overall, the decay rates for the fixed and proportional
approaches in UP have a higher variance compared to the adaptive
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condition. The results can be attributed to participants not being
responsive to cues (e.g., P1&P2) or the fast pace being hard for
participants to maintain (as the cadence for P3&4 both drop
significantly once the cue is removed). There is no clear difference
between the cueing approaches in the UP conditions. In the down
condition, the adaptive approach on average has the lowest decay
rate, as well as the lowest variance. Since participants are all able to
slow down, the result suggests that participants are able to better
maintain the new DOWN target using the adaptive approach. The
proportional approach in the DOWN condition again had the
largest variance and the fastest average decay rate.

3.3. Adaptive framework cue-selection
mechanism: Strengths and limitations

The mechanism of the adaptive framework is discussed in
this section with illustrations shown in Figure 3, considering the
Adaptive-DOWN condition for P3, shown in Figure 3A. The
condition is interesting as the framework undergoes 2 exploration
periods (once at the start and once at t≈260s).

The initial exploration phase lowers the prediction error as
seen in Figure 3B, until reaching t≈260s, k≈60 in B. GP undergoes
another exploration period until the prediction error settles again.
In the analysis, we visualize the cost function at each ωk at k =

5, 60, 94 (index for start/second exploration/end) (Figures 3D–F)
and the corresponding GP realization (Figures 3G–I).

At the start, the GP posterior mean prediction starts off flat
across the range of cues as shown in Figure 3G. During this phase,
the constraints defined in Equation (4) are in effect, causing cues at
the maximum/minimum to be provided, as shown in Figure 3D.

Between 0 and 250 s in Figure 3A, cues with frequency of <1
Hz are provided. Through repeated sampling, GP captures the
participant’s response and the prediction variance also decreases
significantly between Figures 3G, H in the <1 Hz region. This
prediction variance remains large for cues>1 Hz due to the lack
of samples. This demonstrates a limitation of the random initial
exploration technique as it does not adequately cover the state
space, which results in a poor model in regions where there are
insufficient samples. The large uncertainty and the optimizer’s
initial guess leads to the second exploration phase, where the upper
range of the cue is explored, resulting in a cue at the upper bound
to be provided.

The GP visualization toward the end of the session is plotted in
Figure 3I. Once the GP model has low variance across the range of
cues, the cost function minimum approaches ωtarget = 0.9 as seen
in Figure 3F, since the participant is generally responsive to cues
(i.e., able to walk at the pace of the cue). However, the participant
does not synchronize exactly to the cue, so a cue slightly below the
target is more effective. Similarly for the UP condition, the adaptive
framework provides cues at a much higher pace than the fixed
approach. In general, the minimum of the cost function represents
the participant’s best performance in relation to the target given
that the GP has been adequately explored. The continuous learning
ability of the adaptive framework may provide a mechanism to
handle habituation as the framework can alter the cues based on the
current user model. In addition, the explicit modeling of the user’s

response to cues through GP may provide clinicians with insights
about changes in the user’s motor capability and users with better
transparency and explainability. The final cue-response surface of
P3 is plotted in Figure 3C.

3.4. Subjective rating and responses

The Task Load Index (TLX) is administered after each
condition and the result is plotted in Figure 2F. Overall, P1&2 rated
the mental workload for the experiment to be lower compared to
P3&4. The UP and DOWN conditions have similar TLX scores
(UP: 17.83 ± 1.4, DOWN: 15 ± 1.75). The adaptive condition
has the lowest mean in the UP condition despite P3&4 both
experiencing two phases of rapid cue changes. The result is not
due to practice effect. As stated by a participant in the post-
study interview, cue synchronization ‘’[becomes] like a game.”
In each post-condition survey, participants are asked whether
their walking changed compared to normal (in the form of
yes/no). Out of the 24 total experimental conditions across the
4 participants, there are 9 reports (37.5%) for no change in
walking (2 Fixed-UP, 1 Fixed-DOWN, 4 Proportional-UP/DOWN,
2 Adaptive-UP). All participants answered “no” in at least one
condition. All participants felt their gait changed in adaptive-
DOWN (i.e., answered “yes”). PD participants reported no change
at a much higher rate compared to the previous study with healthy
participants (19/150 = 12.7% reported no change; the target is
±20%). In the post-study interview, P1&2 both mentioned that
they thought their natural cadence matched the UP targets, which
was surprising given that these two participants failed to increase
their cadence in response to any cue strategy. The overall cue-
provision system scored an average of 78.75 ± 13.77 out of 100 on
the system usability scale using the calculation detailed in Brooke
(1996). Most participants found the system easy to use, would
like to use the system frequently if they need it in the future but
emphasize on the need for help during initial setup.

4. Discussion

In this experiment, we first evaluate whether participants can
respond to the cue, especially when cues are not fixed. The results
show that all three cueing approaches are able to influence the
participants’ cadences in the DOWN conditions. Specifically, the
adaptive approach performs similarly to the benchmark fixed
approach in slowing the cadence. The benefit of the adaptive
approach is the efficiency and robustness across participants,
meaning it does not cue the participants as frequently in the
converged phase and works equally well across participants as
seen by the low variance in the data. In addition, the adaptive
approach in the DOWN cases has the best retention given by the
lowest decay rate. The better retention could be attributed to the
adaptive condition providing slower cues compared to the other
two strategies, combined with the target being feasible to maintain.
Clinically, the impaired ability to regulate step length could be the
fundamental challenge in PD, which is compensated by the increase
in cadence (Morris et al., 1994). In Morris et al. (1994), the authors
observed improvement in stride length in the −10%ωtarget speed
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FIGURE 4

The cost function/GP visualization sets for P1&2 for UP, following the format in Figures 3D–J. For P1, (A) shows the visualization at the start of the

study, (B) shows the visualization at the end of the study. For P2, (C) shows the visualization at the start and (D) at the end.

condition. While later studies have also shown other metronome
settings to be effective (e.g., Willems et al., 2006; Arias and Cudeiro,
2008 tested ranges from −70% to +120%), the implication of the
current study is that by successfully modulating the participant’s
cadence, the step length may be improved. Another clinical aspect
examined is the cadence variability. While cues generally increase
variability (typically associated with the increased risk of falls Lo
et al., 2017), the variability is an intended study effect as participants
need to actively change their pace. In addition, the variability
decreases immediately in the absence of cues, which demonstrates
the short-lasting effect in a single-session study.

As mentioned by Zhang et al. (2022), the target speed selection
during gait rehabilitation is still an open research question.
In our experiment, the performance of the cueing approaches
was impacted by the selection of the initial target, as seen
especially in the UP +15%ωbaseline case for P1&2, where all three
cueing strategies were unsuccessful in influencing the participants’
cadences. When participants are not responsive to cues, the benefit
of the adaptive approach is allowing a better understanding of the
participant’s response landscape. Overall, there is no clear benefit of
the proportional approach based on the metrics of the study.

The GP model combined with the cost function results in the
optimal selection of cue given the constraint in Equation (4). This
is illustrated in Figure 4, where the provided cue (marked in red
x) is the minimum within the constraint boundaries. However, the
boundaries represent a trade-off between safety and convergence.
By limiting the change in cue amplitude, participants do not need
to rapidly change their cadence, which reduces the risk of tripping.
However, the boundary prevents the global minimum from being
selected (as illustrated by the dashed lines in Figure 4). Since P1&2
did not change their cadence during the experiment, the adaptive
approach is therefore stuck within the boundary in Eq. 4. The
convergence of the GP as indicated by the variance is also not as
drastic as in Figure 3I for P3. Overall, in addition to the reliance
on the GP model, the adaptive framework performance may also
be influenced by the optimizer’s initial guess (as seen in Figure 3E),
and the boundary constraint.

The experiment task (i.e., walking and syncing to the beats) may
have been challenging due to dual-task interference and impaired
beat perception, particularly for P1&2. Parkinson’s disease disrupts
the basal ganglia (BG) function in the brain, which is involved in
both motor and other cognitive functions. Particularly, BG is used
to carry out automatic, learned movements such as walking (Wu
et al., 2015). In therapy, cueing can be used to bring attention to
the walking task and therefore bypass the automatic control for
walking. However, when walking while listening to the beats, the
attention may be split between walking and keeping track of the
beats, which may result in decreased performance for both tasks
(i.e., dual-task interference). In addition, Schwartze et al. (2011)
has shown that BG damages can lead to poor beat perception.
PD participants also experience difficulty in acquiring new motor
skills (i.e., sync walking to beats) (Rochester et al., 2010; Wu
et al., 2015) and therefore participants may need more time to
execute the new skills (Ghai et al., 2018), which may explain
why P1&2 were unable to match the UP targets compared to the
DOWN targets.

Potential confounding variables include fatigue and learning
effect. Multiple participants requested a longer break as the
experiment progressed, potentially indicating fatigue. Despite these
factors, no trend is found when ordering the main metrics of
the study by the experimental order, meaning the participant’s
performance did not get better or worse over time. This finding is
consistent with our previous study with healthy participants. The
major limitations of this study are the small sample size and the
lack of an age-matched control group, which we plan to address in
the follow-up study. In addition, further research will need to be
conducted to bridge the perception gap potentially with different
cueing modalities.
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Hybrid FES-exoskeleton control:
Using MPC to distribute actuation
for elbow and wrist movements
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Introduction: Individuals who have su�ered a cervical spinal cord injury prioritize

the recovery of upper limb function for completing activities of daily living. Hybrid

FES-exoskeleton systems have the potential to assist this population by providing a

portable, powered, and wearable device; however, realization of this combination

of technologies has been challenging. In particular, it has been di�cult to show

generalizability across motions, and to define optimal distribution of actuation,

given the complex nature of the combined dynamic system.

Methods: In this paper, we present a hybrid controller using a model

predictive control (MPC) formulation that combines the actuation of both an

exoskeleton and an FES system. The MPC cost function is designed to distribute

actuation on a single degree of freedom to favor FES control e�ort, reducing

exoskeleton power consumption, while ensuring smooth movements along

di�erent trajectories. Our controller was tested with nine able-bodied participants

using FES surface stimulation paired with an upper limb powered exoskeleton.

The hybrid controller was compared to an exoskeleton alone controller, and

we measured trajectory error and torque while moving the participant through

two elbow flexion/extension trajectories, and separately through two wrist

flexion/extension trajectories.

Results: The MPC-based hybrid controller showed a reduction in sum of squared

torques by an average of 48.7 and 57.9% on the elbow flexion/extension and

wrist flexion/extension joints respectively, with only small di�erences in tracking

accuracy compared to the exoskeleton alone.

Discussion: To realize practical implementation of hybrid FES-exoskeleton

systems, the control strategy requires translation to multi-DOF movements,

achieving more consistent improvement across participants, and balancing

control to more fully leverage the muscles’ capabilities.

KEYWORDS

model predictive control (MPC), hybrid control (HC), functional electrical stimulation

(FES), movement assistance, upper limb exoskeleton

1. Introduction

There are ∼291,000 people in the United States living with spinal cord injuries, and
the majority of these are cervical level injuries, resulting in tetraplegia (NSCISC, 2019).
Injuries at such a high level of the spinal cord create severe arm and hand disabilities,
resulting in an inability to complete Activities of Daily Living (ADLs). As a result, 71% of
individuals with tetraplegia currently require assistance with ADLs (Collinger et al., 2013).
Given this, it is not surprising that restoration of arm and hand function is a top priority
among people with tetraplegia due to cervical spinal cord injuries (SCI) (Anderson, 2004).
With scarce rehabilitation and assistive technology options, these individuals are largely
dependent on full-time caregivers for feeding, grooming, and many other activities of daily
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living. Regaining the ability to perform these tasks independently
will reduce requirements on caregivers and increase opportunities
for individuals to return to social participation in their
communities, both of which are highly correlated to quality
of life (Dijkers, 1997).

Recovery of arm and hand function through rehabilitation can
be achieved for individuals with some residual muscle capability
(Dietz et al., 2002; Beekhuizen and Field-Fote, 2005), and there
are promising results that show that the same intensive robotic
rehabilitation that has been successful for inducing plasticity and
recovery following stroke (Reinkensmeyer et al., 2000; Charles
et al., 2005; Lum et al., 2012; Blank et al., 2014) can be effective
for SCI (Kadivar et al., 2012; Fitle et al., 2015; Francisco et al.,
2017; Frullo et al., 2017; Yozbatiran and Francisco, 2019). For those
without residual motor capability, however, or for those for whom
rehabilitation interventions have not been able to restore functional
movement, assistive technologies are a more viable option for
replacing lost function. Such approaches incorporate mechanical
devices that are attached to the limb and have the capability to
move the limb or hand, or approaches that electrically stimulate the
existing muscles, causing muscle contraction and inducing motion
of the upper limb.

Functional electrical stimulation (FES) is a promising assistive
technology to restore arm and hand function. By activating a
person’s own paralyzed muscles via surface electrodes placed on
the skin or surgically implanted electrodes, limb movements can
be generated. This approach requires very low energy consumption
and exhibits high embodiment by the person; however, FES
cannot produce sufficient torques to enable whole-arm reaching
movements in people with tetraplegia, as many muscles are
unresponsive to FES (Peckham et al., 1976; Mulcahey et al., 1999).
Further, general multi-jointmotions are notoriously hard to control
with FES even with the most advanced systems (Ajiboye et al.,
2017), often resulting in fine-tuned feed-forward implementations
due to the physiological delays in muscle response to applied
stimulation, and difficulty in accurately modeling the response
to muscle activation. Augmenting FES with an assistive robot
offers additional torque to support whole arm reaching while
also offering improved movement accuracy, but this comes at the
expense of increased bulkiness and decreased wearability of the
combined FES-robotic system. An optimal combination of FES
and an assistive robot would maximize the contribution of FES to
minimize size and power requirements of the robot (Dunkelberger
et al., 2020).

This combination of FES with robotic devices is starting to
gain traction, and is termed hybrid FES-robot (or FES-exoskeleton)
control. A conceptual representation of using FES with a robot
is shown in Figure 1, where both robotic and FES action can
complement each other to assist in the completion of activities of
daily living. Many of the early approaches to bring this concept
to reality did not truly combine and coordinate the actuation
strategies for upper limb movements (Dunkelberger et al., 2020).
Instead, each of the actuation types was used to achieve separate
functions. For example, robotic devices have been used to lock
degrees of freedom (Klauer et al., 2014; Ambrosini et al., 2017) or as
gravity compensation (Cannella et al., 2016) enabling the muscles
to relax and preventing fatigue. Other works have used robotic
support devices to actuate one set of degrees of freedom, while FES

FIGURE 1

An example future application of hybrid systems is shown for a

reach and grasp task. The incorporation of both FES and a robot

allows for a large portion of the movement to be provided by FES,

and the robot can provide small amounts of power to provide

minimal movement corrections. With the robot alone, all power for

the movement must be provided by the robot.

is used to actuate another set (Varoto et al., 2008; Schulz et al.,
2011; Ajiboye et al., 2017). Typically the robot controls motions
that need precision or require larger torques and forces to support,
such as elbow flexion and extension, while FES is used for coarse
movements, such as grasping. For upper limbmotions with coupled
degrees of freedom, such as shoulder, elbow, and wrist movements,
these existing control strategies pit FES against a robot-imposed
locked-joint, gravity, or single-joint motion constraint, essentially
wasting the free actuation from FES and transferring it to the
robot. Recently, single-joint hybrid systems that do share actuation
on the same joint have been explored, but research has been
limited, testing only in the elbow flexion extension joint with
biceps electrodes in a minimum jerk trajectory (Wolf et al., 2017;
Burchielli et al., 2022), or in simulation (Bardi et al., 2021).

In lower limb applications, more advanced hybrid control
algorithms have been explored, largely enabled by the repetitive
nature of gait motions (Bulea et al., 2014; del Ama et al., 2014;
Ha et al., 2016). These lower limb hybrid systems often use a
version of iterative learning control that takes advantage of the
repetitive movements to fine-tune control over several cycles. Some
recent research has begun to use model predictive control (MPC)
algorithms, which can be more readily adapted to non-cyclic
movements in the lower limbs (Kirsch et al., 2018; Bao et al., 2021),
and which are more similar to the non-cyclic movements required
of upper-limb movements. Results from these studies using MPC
have shown the ability to follow a step reference trajectory and
hold a position, and the algorithms should generalize to arbitrary
trajectories.

A truly shared approach for hybrid FES and robotic control
of upper limb reaching movements is needed to combine these
techniques in a manner that achieves generalized upper limb
movement assistance in an optimal manner. In this paper, we

Frontiers inNeurorobotics 02 frontiersin.org30

https://doi.org/10.3389/fnbot.2023.1127783
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Dunkelberger et al. 10.3389/fnbot.2023.1127783

present a model-based control approach to hybrid FES-exoskeleton
control. Recent works have demonstrated the first steps toward
this vision. Wolf and Schearer (2022) demonstrated the use of
model-based algorithms to power FES in combination with gravity
compensation from a robot. Our group has also demonstrated
shared control of elbow flexion and extension movements with
FES and exoskeleton assistance acting in coordination to follow
a desired trajectory (Dunkelberger et al., 2022b). In that work,
we showed that a model-based controller for our upper limb
exoskeleton, which has knowledge of the expected contributions
of FES, requires significantly less robot torque than a standard
PD control algorithm, with minimal loss in trajectory following
accuracy. Here, we expand our initial demonstration along a
number of fronts. First, we present anMPC algorithm that removes
the integral term used previously and incorporates an additional
proportional-integral-derivative (PID) controller acting in parallel,
resulting in improved performance in both trajectory following and
reduction in torque requirements from the exoskeleton compared
to our initial controller. We incorporate a sophisticated model of
the user’s arm dynamics that accurately captures behavior across
the exoskeleton workspace. We experimentally demonstrate the
performance of the hybrid FES-exoskeleton controller in able-
bodied participants completing two trajectories for two degrees-
of-freedom of the exoskeleton (elbow flexion-extension and wrist
flexion-extension), and we compare the performance of the hybrid
controller to an exoskeleton-alone case, as illustrated in Figure 1.
Finally, we examine longitudinal performance of the hybrid FES-
exoskeleton control for a subset of participants to determine how
performance changes 1 week after the initial experiment trials.

2. Materials and methods

2.1. Participants

Nine able-bodied participants (four female, avg age 22.9)
participated in a single session of the experiment after providing
informed consent. Three of the nine participants, who had
experience with FES prior to the initial experimental session,
also completed a second session of testing using the same
protocol at least 1 week after their first experimental session.
The study was approved by the institutional review boards at
Rice University (IRB #FY2017-461) and Cleveland State University
(IRB #30213-SCH-HS).

2.2. Procedure

The goal of this study is to develop a new hybrid controller
that distributes actuation between an exoskeleton system and an
FES system. The goal of such a controller is that it can reduce the
power requirements in comparison to an exoskeleton alone system,
which can lead to more portable devices in the future that can
assist individuals with SCI in completing general activities of daily
living. To test the effectiveness, the developed hybrid controller is
used to provide movements on two different degrees of freedom
(DOF), elbow flexion/extension, and wrist flexion/extension. To
understand how this compares to available exoskeleton systems, the

resulting torque and position profiles for the hybrid controller are
compared with an exoskeleton-alone controller in following two
different trajectories.

2.3. Materials

The hybrid FES-exoskeleton system is comprised of two main
subsystems that provide actuation. The first subsystem, which
provides FES, is a transdermic electrical stimulation system (Trier
et al., 2001) which provides eight output channels of bipolar
stimulation. In this study, two channels are used for the elbow
flexion/extension joint, and two channels are used for the wrist
flexion/extension joint. To provide varying levels of output using
the FES subsystem, the amplitude and frequencies are kept at a
constant value for each channel, and the pulsewidth is varied.

The second subsystem is the robot, the MAHI Open
Exoskeleton (Dunkelberger et al., 2022a). This robot provides
four DOFs of movement support, namely elbow flexion/extension,
forearm pronation/supination, wrist flexion/extension, and wrist
radial/ulnar deviation, and each of these joints line up with
the equivalent anatomical degree of freedom of a person using
the exoskeleton. These will also be referred to by joint number
throughout this paper, which are joints 1–4, respectively. The
exoskeleton has an adjustable counterweight to account for varying
arm masses, an adjustable slider to account for varying forearm
lengths, and an adjustable shoulder abduction angle to keep the
participant comfortable. The counterweight and forearm slider
parameters are adjusted for each subject at the beginning of the
experiment, and locked for the experiment duration. This shoulder
abduction angle was kept at a value of 30◦ for all participants.

2.4. Methods

The study consists of several model characterization steps
related to each of the subsystems, followed by experimental testing
of the hybrid controller which makes use of these characterizations.
First, the electrodes are placed in appropriate locations, and
comfortable ranges of stimulation are found. Recruitment curves
are characterized for each set of electrodes to define the relationship
between commanded pulse width and muscle activation level.
Gaussian process regression models are created to characterize
torque output for each electrode based on the orientation of
the upper-limb. The mass properties of the participant’s arm are
then characterized so that a combined dynamic model can be
created for the arm-exoskeleton subsystem. The hybrid controller
is created using the characterizations of each of the components.
These characterization steps are more completely described in
Sections 2.4.1–2.4.5. The hybrid controller is then compared
against an exoskeleton alone controller in a scenario of following
two trajectories for each DOF.

In this study, the elbow flexion/extension and wrist
flexion/extension DOFs are tested independently. Each of the
experimental steps is performed with the elbow flexion/extension
joint and corresponding electrodes, followed by the wrist
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flexion/extension joint with corresponding electrodes. The
explanations that follow apply to both DOFs.

2.4.1. FES electrode placement
The experimental protocol began by placing the electrodes on

the participants. Each of the electrode pairs were placed and tested
one at a time. A set of electrodes was placed as agonist/antagonist
pairs for each of the active degrees of freedom. This means for
the elbow flexion/extension joint, one set of electrodes was placed
to target elbow flexion, and another set was placed to target
elbow extension using two inch square electrodes. For the wrist
flexion/extension joint, one set of electrodes was placed to target
wrist flexion, and another set of electrodes was placed to target wrist
extension using one inch round electrodes. Electrode placement
locations for each of these movements were chosen based on pilot
testing based on which locations could reliably provide the desired
movement. These general chosen locations are shown in Figure 2.

For the elbow flexion electrode placement, a reference electrode
was placed, and a Compex motor point pen was used to find a
specific point that generates biceps contraction, and the second
electrode was placed there. For the remaining electrodes, the pair
of electrodes were placed in a nominal location, and the pulse
width was increased slowly. The resulting movement with the
participant’s arm on a table was observed, and the electrodes
were adjusted if the desired movement was not produced. The
electrodes were then wrapped with medical bandage to ensure that
the electrodes stayed in the original location.

2.4.2. Threshold identification
Once the electrodes have been placed, the minimum and

maximum pulsewidth values that will be used for each participant
need to be identified. The robot and arm were moved to a neutral
configuration, and held there using independent PD controllers
on all joints. For each electrode placed, the minimum value that
produced a change in torque output in the PD controller is
considered the minimum pulse width value, pwmin. The discomfort
threshold is then found by increasing the pulsewidth until the
participant verbally indicates their maximum value which is still
comfortable. The maximum pulsewidth value used throughout
the experiment, pwmax, is taken as a slight reduction from the
discomfort threshold. A ramp from the pwmin to pwmax is then used
to verify that the participant remains comfortable throughout the
range, and that the pwmin is just below the threshold of providing
torque output.

2.4.3. Recruitment curve characterization
With the thresholds defined, a mathematical representation

between the pulsewidth range and muscle activation is found,
defined as a recruitment curve. Previous research has shown that
functional electrical stimulation produces a muscle recruitment
curve in the form of a sigmoid (Durfee and MacLean, 1989).
To characterize this recruitment curve, the robot is again moved
to a neutral configuration, and held there using independent
PD controllers on each joint. Each of the electrodes sequentially

performs four impulses at pwmax, followed by four linear ramps
between pwmin and pwmax, as shown in Figure 3.

The ramp deconvolutionmethod is used (Durfee andMacLean,
1989) with the input of pulsewidth values and the corresponding
torques generated from the stimulation to generate smooth curves
to be characterized. The sigmoid is then fitted using Equation 3
with free parameters of c1 and c2, where pw∗ and pw∗

max are defined
as pulsewidths normalized so that a pw∗ value of 0, corresponds a
pwmin as defined in Equations 1, 2.

pw∗ = pw− pwmin (1)

pw∗
max = pwmax − pwmin (2)

α∗ =
c1

1+ e−c2(pw∗−
pw∗max

2 )
−

c1

1+ e
c2pwmax

2

(3)

α =
α∗

c1
(4)

This equation results in a sigmoid with a minimum value of 0
and amaximum value of c1. The term c2 is related to the slope of the
function as it crosses the midpoint. To turn this characterization
into the standard definition of a recruitment curve which varies
from 0 to 1, α∗ is divided by c1 to arrive at an equation for
activation, α.

2.4.4. Gaussian process regression model creation
The last component needed to mathematically represent the

FES subsystem is a representation of the torque output based
on the arm joint configuration of the participant. A Gaussian
Process Regression (GPR) model is used to characterize this
relationship torque when each of the FES electrode pairs is at a
maximum activation as a function of the arm configuration. In
this case, the black-box representation of the GPR models also
implicitly capture some of the complex muscle dynamics. For
each of the degrees of freedom, eight evenly spaced positions
are taken between the minimum and maximum values that
each joint will see throughout the experiment. At each of
these positions, PD controllers on each of the individual robot
DOFs are used to keep the robot at the desired position. The
exoskeleton torque required to hold the pose when no muscles
are stimulated is recorded as τpassive. One electrode is increased
to its maximum activation, and the exoskeleton torque required
to hold that pose is recorded as τhold. We consider the difference
between the two values as the torque produced by the electrode
τrecord.

τrecord = τhold − τpassive (5)

The position tested and τrecord at that position are
saved as training data for the tested electrode. This is
repeated for the other electrode active for the current
DOF, and at each of the other positions, three times in a
randomized order. The collected training points are then
used to generate a GPR model for each electrode using
Matlab’s fitrgp function. An example of trained GPR
models for elbow flexion/extension torque output resulting
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FIGURE 2

(A) A participant with their arm in the robot in the experimental setup, with the axes of rotation for the active joints indicated by orange and red

arrows for the elbow flexion/extension and wrist flexion/extension joints respectively. (B) Placement of each of the four sets of electrodes. Electrodes

were placed over the biceps for elbow flexion over the triceps for elbow extension. Electrodes were placed on the flexor carpi ulnaris for wrist

flexion, and extensor carpi radialis longis and extensor carpi ulnaris muscles for wrist extension.

FIGURE 3

(Left) Profiles of commanded pulsewidths, and resulting torque outputs due to stimulation from the wrist extension electrode in the recruitment

curve characterization process. (Right) Resulting characterized recruitment curve in the form of a sigmoid based on the ramp deconvolved data.

from the elbow flexion and elbow extension electrodes for
a single subject is shown in Figure 4. This results in the
following equation

τfes = P(q)α (6)

where P(q) ∈ R
1×2 and where column i is an individual GPR

model that provides an estimated output torque when electrode set
i is at maximum stimulation, and the robot is at position q. Recall
that this is implemented for each joint separately, so there is one
P(q) that corresponds to the elbow flexion/extension joint and uses
the elbow flexion/extension position as an input, and one P(q) that
corresponds to the wrist flexion/extension joint and used the wrist
flexion/extension position as an input.

2.4.5. Arm model characterization
An accuratemodel of the dynamic system is needed for effective

MPC implementation. Previous work has developed a model of the
exoskeleton without an arm (Dunkelberger et al., 2022a). In this
study, an optimization problem was solved to find an estimate of
dynamic properties for the arm to be used with the exoskeleton
dynamic model, including masses, moments of inertia, and friction
components.

To add theese dynamic properties of the arm to the dynamic
model of the exoskeleton, each joint in the arm was assumed to be
a rigid body rigidly connected to the corresponding joint on the
exoskeleton. With this assumption, the mass of each arm joint can
be added to the mass of the robot joint, and the inertia of each arm
joint can be combined with the inertia of each robot joint using
the parallel axis theorem. While this study mainly focuses on the
impact on the elbow flexion/extension and wrist flexion/extension
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FIGURE 4

Fitted GPR models are shown along with data points used to fit the model for the elbow flexion/extension joint for the elbow flexion and elbow

extension electrode.

joints, this arm characterization process utilizes all four joints of the
exoskeleton to create a full dynamic model as shown in Equation 7,
which can then be reduced to the single-joint components for the
controller.

τ = M(q)q̈+ V(q, q̇)+ G(q)+ Ff(q̇) (7)

In Equation 7, τ ∈ R
4×1 is a vector consisting of the

torques at each joint. M ∈ R
4×4 is known as the mass matrix

and consists of different combinations of the mass and inertial
terms of each joint. V ∈ R

4×1 is the vector of centrifugal and
Coriolis terms. G ∈ R

4×1 is the gravity vector and gives the
affects of gravity on each joint, and Ff ∈ R

4×1 gives friction
on each joint. q is a vector of all joint positions, q̇ is a vector
of all joint velocities, and q̈ is a vector of all joint accelerations.
M, V, G, and Ff were calculated using the same methods as
previous work (Dunkelberger et al., 2022a), but with the combined
arm and robot properties serving as lumped parameters in the
formulation.

Equation 7 can be used to characterize the unknown arm
mass properties that appear in the equation, given experimentally
recorded values for τ , q, and q̇. To collect these data for
characterization, the user’s arm was placed inside the robot and
secured. A chirp signal was used as a position reference for
the wrist radial/ulnar deviation joint while the other three joints
were commanded to remain stationary using independent PD
controllers. This process was then repeated for each more proximal
joint. The torque required to complete the motions and the
resulting joint positions and velocities were recorded. The recorded

velocities were filtered, and a finite difference derivative was
calculated to approximate the accelerations. With these values,
the difference between the left side and right side of Equation 7,
recorded and calculated torques respectively, could be found given
a guess of mass properties. The difference between these two values
at every time step is the error in the dynamic model, and this
error was used as the optimization criteria to estimate the mass
properties of the arm when combined with the mass properties
of the exoskeleton found in previous work (Dunkelberger et al.,
2022a).

To keep the number of optimization variables small, the
problem was solved one joint at a time, starting with the most
distal joint, wrist radial/ulnar deviation. This joint was the first
to be optimized because for any given joint, only the more distal
joints impact the current mass property analysis. Each more
proximal joint was then optimized in order, ending with the
elbow flexion/extension joint. At each joint, the inertia about
the axis of rotation and the distances to the center of mass in
the other two axes were optimization variables. When running
the optimization on any joint except wrist radial/ulnar deviation,
the next distal joint’s distance to the center of mass along the
distal joint’s axis of rotation was also included as an optimization
variable. This was added because this value does not appear in
the calculations for the joint moving, but does impact the more
proximal joints. Lastly, two optimization variables were added
to each joint corresponding to the joint kinetic and viscous
friction, which were considered to be added to the coefficients
previously characterized for the exoskeleton by itself. A constant
mass was assumed for each joint because the mass only appears
multiplied by the distance to the center of mass terms. The
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TABLE 1 Holding position of inactive joints throughout testing.

Active joint qhold_1 qhold_2 qhold_3 qhold_4

Elbow F/E N/A 0◦ 0◦ 0◦

Wrist F/E –30◦ –30◦ N/A 0◦

formulation of this optimization problem can be seen in Equations
8, 9.

argmin
pd

ed =

M
∑

t=1

(τcalc_d_t − τmeas_d_t)
2 (8)

pd =

{

[

Iczz_d, rcx_d, rcy_d, rcx_d+1, Fk_d, Bd
]

if 1 ≤ d ≤ 3
[

Iczz_d, rcx_d, rcy_d, Fk_d, Bd,
]

if d = 4
(9)

In these equations, pd represents the vector of parameters for a
given joint, d. A d of 1 represents the elbow flexion/extension joint
and d = 4 being the wrist radial ulnar/deviation joint, ed refers to
the torque error between the calculated torque, τcalc, and measured
torque, τmeas, t represents a given time step up toM total time steps,
Iczz is the moment of inertia about the axis of rotation taken about
the center of mass, and rcx, rcy, and rcz represent the distance from
the axis of rotation to the center of mass in the x, y, and z directions
respectively.

The optimization problem was solved using fmincon in
Matlab, with initial guesses of zero for all optimization variables.
The optimal properties found using this method were combined
into the lumped arm and robot system used in the remainder of
this study.

2.5. Hybrid controller design

We first present the full four-DOF dynamics for the FES-
exoskeleton hybrid system, which we will then reduce to the single-
DOF dynamics for the control formulation. This is similar to the
dynamics of the robot and arm system in Equation 7, but the inputs
to the system arise from both the exoskeleton and the FES system,
so we separate the torque term into the two components.

τfes + τexo = M(q)q̈+ V(q, q̇)+ G(q)+ Ff(q̇) (10)

In this equation, τexo ∈ R
4×1 and τfes ∈ R

4×1 are torques
supplied along each of the robot joints due to robot torque outputs,
and torques provided by FES respectively.

As in the previous sections, the control problem will be
described once, but the equations presented apply to either the
elbow flexion/extension or the wrist flexion/extension DOF. To
limit the full dynamics in Equation 10 to analyze a single DOF with
the rest of the joints remaining stationary, all inactive joints can be
constrained such that qj = qhold_j, q̇j = 0, q̈j = 0 for all joints j
that are inactive. Here, qhold_j is the holding position of joint jwhen
it is inactive, as shown in Table 1. This results with the following
equation to describe the dynamics of a single DOF system, either in
the elbow flexion/extension or wrist flexion/extension case.

P(q)α + τexo_mpc = mq̈+ g sin(q− qeq)+ ff (q̇) (11)

For the DOF of interest, m represents the estimated lumped
inertia, g represents the gravitational effects, ff represents the
friction effects, and qeq represents the natural resting position of the
combined arm-robot system for the DOF of interest. In Equation
11, and throughout the remainder of the paper, all variables that
appear in equations are referring to a single DOF, and the values
of these variables are different in the elbow flexion/extension DOF
and the wrist flexion/extension DOF, but the symbolic expressions
apply to both DOFs. For example, when this equation is applied
to the elbow flexion/extension joint, q, q̇, and q̈ are the position,
velocity, and acceleration of the robot elbow flexion/extension
joint, and α is the vector [α1,α2]T , which are the activation levels of
the electrodes placed to induce elbow flexion, and elbow extension.

To develop our control problem, we define the following
quantities as the system state, x, system output, y, and and control
input, u, where C is the output matrix describing the variables we
can observe.

x = [q, q̇]T (12)

C = I2 (13)

y = Cx (14)

u = [τexo_mpc,α1,α2]
T (15)

To use standard analysis techniques, we would like to have
our dynamics in the form of ẋ = f (x, u), which by definition
is the vector [q̇, q̈]T . By solving Equation 11 for q̈ as follows,
we can obtain an explicit definition for the representation of
f (x, u).

q̈ =
1

m
(P(q)α + τexo_mpc − g sin(q− qeq)− ff (q̇)) (16)

To implement real time control, it is beneficial to use
a linearized form of the dynamics to reduce computation
time. We can then convert the dynamics to a linearized form
by calculating the Jacobian of the dynamics about time k

with respect to the input and output. The following gives a
estimate for the dynamic equations at time i, linearized at
time k.

Ak =
∂f

∂x

∣

∣

∣

∣

x=xk ,u=uk

(17)

Bk =
∂f

∂u

∣

∣

∣

∣

x=xk ,u=uk

(18)

˙̄xi = Akxi+Bkui + ẋ|x=xk ,u=uk (19)

These linearized dynamics are then used in the MPC
formulation. The cost function is as follows, where
i represents a discrete point in time in the standard
MPC formulation.

Ji = (ri − ȳi)
TQ(ri − ȳi)+ 1uTi R1ui + uTi Rmui (20)

The matricesQ ∈ R
2×2, R ∈ R

3×3, and Rm ∈ R
3×3 are positive

diagonal matrices used to weight predicted trajectory error, control
input rate of change, and control input magnitude respectively.
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In this equation, the control input rate of change at timestep i is
defined as1ui = ui−ui−1. Initial values for these gains were chosen
based on pilot studies that provided desired behavior as described
below.

Q =

[

Qpos 0
0 Qvel

]

(21)

R =







Rexo 0 0
0 Rfes 0
0 0 Rfes






(22)

Rm =







Rm_exo 0 0
0 Rm_fes 0
0 0 Rm_fes






(23)

The general ideology behind the choice of gains in the hybrid
controller is as follows. The gains for Q represent the importance
for the controller to follow the desired trajectory, with higher gains
indicating better tracking, but less stable behavior if there are model
errors. The gains for Rm are chosen so that Rm_exo ≫ Rm_fes, which
is the main method by which the hybrid control strategy reduces
exoskeleton torque compared to a strategy which only uses an
exoskeleton. Additionally, these gains are chosen such that (ȳi −
ri)TQ(ȳi−ri)≫uTi Rmui, so that trajectory accuracy is not sacrificed
to allow for overall torque reduction. The gains for R are chosen so
that Rfes ≫ Rexo so that the FES system, which has significant delay,
remains stable by mainly responding with low-frequency changes
in torque while the exoskeleton does mostly quick corrective
actions. This combination of chosen gains for R and Rm are
intended to have the general effect of the FES subsystem providing
low frequency, high amplitude torque, allowing it to provide a bulk
of the power requirement, yet maintain smooth motions despite
the time delay. The exoskeleton subsystem provides high frequency,
low amplitude torque, which provides necessary quick corrections
without requiring too much power consumption. As a reminder,
separate controllers are used for the elbow flexion/extension joint
and for the wrist flexion/extension joint, and the gains for each of
the two joints are created independently.

Because the Rfes and Rm_fes gains place costs on activation levels
rather than FES torque outputs, in some cases, it was necessary to
adjust these values for each participant upon initial testing with the
hybrid controller to account for variations in torque productions
for the same activation level. To account for this, when the hybrid
controller was first tested in the experiment, these gains were
increased by a factor of two from the original values if there was
oscillatory behavior, or decreased by a factor of two if activation
levels were lower than expected.

The final cost function used in the MPC implementation is as
follows.

argmin
u(·)

Jtot =

N
∑

i=1

Jk+i (24)

subject to ȳk+i+1 = ȳk+i + ˙̄xk+iTs,

0 ≤ αe ≤ 1, e = {1, 2}

In Equation 24, k represents the current point in time, and
future discretized timesteps at time k + i are Ts seconds apart,
for N time steps. The dynamics at these future time points
are approximated using Euler integration as shown by the fist
constraint on the optimization problem, with the bars representing
that these are estimated values. The second constraint restricts
the activation level, α, of each electrode, e, to fall between 0 and
1. An additional constraint could be implemented to limit the
maximum allowable exoskeleton torque; however, in this study,
the torque required from the exoskeleton always remained below
the maximum allowable torque, which meant that this constraint
did not need to be implemented. The result of the optimization
is u(·) which represents the optimal control inputs over the time
prediction horizon, uk+1, uk+2, ..., uk+N .

This MPC formulation is created in C++ using the nonlinear
optimization framework CasADi (Andersson et al., 2019). The
solver for the dynamic problem is compiled into a dll file which
can be loaded at runtime and interfaced with the Interior Point
Solver, IPOPT (Wächter and Biegler, 2006), to solve the MPC
problem. This MPC problem is solved as fast as possible in a
separate thread, and each time a solution is found, the solution
of the minimization, u(·), is sent to the main thread, where those
successive control solutions are used until the next solution is
found. From u, τexo_mpc is used directly, and α1 and α2 are
converted to pulsewidth commands to send to the stimulator using
Equation 4 which describes the recruitment curve.

To tune the gains for the MPC algorithm, Q and R were first
tuned to achieve smooth movements and low tracking error, with
Rm values kept at 0. Following this, the Rm gains were chosen
to achieve meaningful reduction in the exoskeleton torque, while
maintaining similar tracking accuracy. As Rm gains were tuned, Q
and R were further adjusted as necessary.

To account for model error in the MPC formulation, a PID
controller using only exoskeleton torque is implemented in parallel
as shown in Figure 5. This has the effect of allowing the MPC
portion to control most of the action, while still providing a high
accuracy on the resulting trajectory tracking. The torque provided
by the PID controller is defined as τexo_fb, and the gains for this
controller were chosen in pilot testing to achieve between 1 and
1.5◦ RMS tracking error. In the tuning of this controller, the
gains were slowly increased, and tuned only after fully tuning
the MPC system independently, so that the controller dynamics
achieved from the MPC algorithm were the driving component.
This additional controller does not change the output applied by the
FES subsystem, but the torque applied to the exoskeleton becomes

τexo_tot = τexo_mpc + τexo_fb (25)

To test the effectiveness of the hybrid controller design, it is
compared against a purely exoskeleton controller, defined as the
exoskeleton alone control case. In this test case, the same general
structure is used with the MPC controller paired with a PID
controller, but Equation 15 becomes

u = [τexo] (26)

which results in R and Rm being single values rather than matrices.
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FIGURE 5

Hybrid FES-exoskeleton control block diagram, showing how the di�erent components of the hybrid controller work together to provide torque

commands to the robot and pulse width commands to the stimulator given a desired input trajectory.

2.6. Experimental validation

After a participant completed each of the model
characterization steps and the MPC problem was generated,
the experimental validation was conducted. Participants were
assisted in completing two different trajectories in two different
conditions, using the hybrid controller that combined the FES
and exoskeleton action, and using the exoskeleton alone. The first
trajectory is referred to as the cup trajectory, and it is based on
a study that tracked healthy individuals’ joint-level movements
to move a cup to various target locations with differing grasps
(Valevicius et al., 2019). The movement profile for each of the
joints was taken independently and spaced so that it spanned
a useful and comfortable trajectory space for the exoskeleton
used in this study which was 30◦ flexed to 90◦ flexed from full
extension for elbow flexion/extension and 15◦ extended to 45◦

flexed for wrist flexion/extension. The cup trajectory is useful to
observe how the hybrid controller behaves when following natural
motions that would be expected under normal use. The second
trajectory is referred to as the sinusoidal trajectory, and it is an
artificially created trajectory that is the summation of multiple
sinusoidal waves at different amplitudes and frequencies. This
trajectory was created to test the controllers’ ability to generalize
to different movements. The trajectories are relatively similar in
terms of difficulty for the elbow flexion/extension joint, but the
wrist flexion/extension joint movement is significantly easier in
the cup trajectory than the sinusoidal trajectory. Both trajectories
take 42.4 s to complete, which is four times the time it took an
average able-bodied individual to complete the cup trajectory in
Valevicius et al. (2019). A four times reduction was chosen because
the original trajectory moved through the workspace very quickly,
and this reduction empirically felt an appropriate length to safely
perform movements with a human in the robot. Visualizations of
these trajectories are shown in the results in Figures 8, 9.

Each DOF was tested for ten trials on the cup trajectory, split
evenly between hybrid controller and exoskeleton alone controller,
and 10 trials on the sinusoidal trajectory, also split evenly between
hybrid controller and exoskeleton alone controller. While each
DOF was being tested, all other DOFs were kept at their qhold
values as shown in Table 1 using independent PD controllers
on those joints. Collection of the experimental data began by
running four elbow flexion/extension trials, consisting of one of
each possible combination of trajectory and controller type. This

was followed by four wrist flexion/extension trials, again consisting
of each possible combination of trajectory and controller. This
sequence was repeated until all 40 total trials had been collected.
Throughout each of the trials, position of the active DOF, total
exoskeleton torque commanded, and activation levels of electrodes
were collected at a rate of 1 kHz using a Quanser Q8-USB data
acquisition device.

Three of the nine participants repeated the entire protocol
(including characterization steps) at least 1 week after they
completed the first set of data collection. These data were collected
to provide insight into whether results remain similar between
sessions within the same participant, rather than only comparing
between participants.

2.7. Data analysis

The primary objective of these experiments is to understand the
extent to which exoskeleton power consumption can be reduced
in a hybrid system compared to a exoskeleton alone system. We
compare power consumption by taking the sum of the squared
total exoskeleton torque throughout the trajectory for each of the
conditions tested as shown in Equation 27, averaged across each of
the five trials with that set of conditions. This value is labeled as
τss_exo for the exoskeleton alone control condition, and τss_hybrid for
the hybrid control condition. Because participants have different
arm sizes, and require the robot to be in different configurations,
it is expected that participants will require different amounts of
sum of squared torque from the system to move through the
cup and sinusoidal trajectories. To normalize the data to compare
across subjects, the reduction in sum of squared torque in the
hybrid control case compared to the exoskeleton alone control case
is shown by Equation 28. This allows us to analyze the varying
power consumption both between exoskeleton alone and hybrid
controllers, as well as how the relative controller performance
translates between two different trajectories.

τss =

N
∑

i=1

τ 2exo_tot (27)

%Imp = 100(1−
τss_exo − τss_hybrid

τss_exo
) (28)
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In Equation 27, N is the number of data points collected. With
this representation, a value of %Imp = 0 would represent equal
amounts of torque being used in both control cases, which would
indicate no improvement, a value of %Imp > 0 would indicate a
reduction in power consumption using the hybrid controller with
a value of %Imp = 100 indicating no exoskeleton power was
consumed, and a value of %Imp < 0 would indicate that the hybrid
controller required more exoskeleton power than the exoskeleton
alone case. A paired t-test was performed to understand whether
there was a statistically significant difference between in the sum
of squared torque in the exoskeleton alone control case, and in the
hybrid control case for each of the trajectories.

The secondary objective of these experiments is to understand
how the tracking accuracy compares when using the two options
for controllers. The RMS tracking error is calculated as

erms =

∑N
i=1

√

(yi − ri)2

N
(29)

A paired t-test was performed to understand whether there was
a statistically significant difference between the RMS errors in the
exoskeleton alone control case, and in the hybrid control case for
each of the trajectories.

One subject was unable to get any detectable torque output
from one of the electrodes on the wrist flexion/extension DOF,
and therefore, did not complete data collection for that DOF.
Because of this, there are nine sets of data analyzed for the elbow
flexion/extension results, and eight sets of data analyzed for the
wrist flexion/extension results.

3. Results

A summary of the sum of squared torque reduction findings
is presented in Figure 6 as boxplots with individual subject data
overlaid on top. These results show a mean sum of squared torque
reduction of 48.8 and 48.6% for the cup and sinusoidal trajectories
respectively for the elbow flexion/extension joint when comparing
the hybrid controller to the exoskeleton alone controller. These
values for individual participants spanned from 11.8 to 71.6%
for the cup trajectory, and from 8.8 to 77.2% for the sinusoidal

trajectory, with the lowest data point being an outlier. A mean
sum of squared torque reduction of 59.3 and 56.5% was shown
for the cup and sinusoidal trajectories respectively for the wrist
flexion/extension joint when comparing the hybrid controller
to the exoskeleton alone controller. These values for individual
participants spanned from 33.4 to 82.9% for the cup trajectory,
and from 39.3 to 79.0% for the sinusoidal trajectory. The statistical
tests showed that the sum of squared torques were significantly
lower in the hybrid control case compared to the exoskeleton alone
control case in both DOFs and in both trajectories, with p-values
being < 0.01 in both trajectories for the elbow flexion/extension
joint, and p-values being < 0.001 in both trajectories for the wrist
flexion/extension joint.

A summary of the trajectory tracking accuracy findings is
presented in Figure 7 as box plots with individual subject data
overlaid on top. For the elbow flexion/extension joint, mean
RMS errors in the cup trajectory were 1.04 and 1.24◦ for the

exoskeleton alone and hybrid controllers respectively. RMS errors
in the sinusoidal trajectory were 1.10 and 1.26◦ for the exoskeleton
alone and hybrid controllers respectively. These results indicate
that there is a mean increase of 0.18◦ in RMS error when using
the hybrid controller compared to using the exo alone controller
in the elbow flexion/extension joint. This difference was shown to
be statistically significant in the paired t-test, with p-values for each
of the trajectories < 0.01.

For the wrist flexion/extension joint, RMS errors in the cup

trajectory were 1.21 and 1.12◦ for the exoskeleton alone and
hybrid controllers respectively. RMS errors in the sinusoidal

trajectory were 1.53 and 1.48◦ for the exoskeleton alone and hybrid
controllers respectively. These results indicate that there is a mean
decrease of 0.07◦ in RMS error when using the hybrid controller
compared to using the exoskeleton alone controller in the wrist
flexion/extension joint. This difference was again shown to be
statistically significant in the paired t-test, with p-values for each
of the trajectories again remaining < 0.01.

Figures 8, 9 show time series representations of torque profiles
for the best performing subject (represented by the △ symbol in
Figures 6, 7) and movement profiles averaged across all subjects. In
the representative plots of torque profiles, the exoskeleton torque
used during the hybrid trials exhibits a smaller magnitude than
the exoskeleton torque used during exoskeleton alone trials. This
result shows that the hybrid controller is able to replace a significant
amount of the torque requirement from the exoskeleton with FES
torque. The plots for movement profiles demonstrate howwell each
of the controllers are able to track the trajectory. In all combinations
of trajectories and DOFs, the trajectories almost entirely overlap
each other, showing similar accuracy regardless of controller.

The reduction in maximum torque for the torque profile
averaged across participants profiles across participants is also
analyzed, for the hybrid controller compared to the exoskeleton
alone controller. For this metric, it is interesting to observe both the
change in maximum and minimum values, as many cable-driven
systems would likely require one actuator for each agonist and
antagonist pair. In the elbow flexion/extension DOF, the maximum
torque was reduced by 44.2 and 43.7% in the cup and sinusoidal

trajectories respectively, and the minimum torque for the mean
profile was reduced by 31 and 27.1% for the cup and sinusoidal

trajectories respectively. In the wrist flexion/extension DOF, the
maximum torque was reduced by 67.1 and 65.3% in the cup and
sinusoidal trajectories respectively, and the minimum torque for
the mean profile was reduced by 36.9 and 36.6% for the cup and
sinusoidal trajectories respectively.

4. Discussion

There is a need for devices to provide assistance in completing
activities of daily living for individuals with SCI. For this
population, return of upper-limb function is among their top
priorities (Anderson, 2004). Both FES and exoskeletons provide
some framework to assist with movement, but each of these
technologies has fundamental limitations preventing meaningful
assistance for the upper-limbs in activities of daily living. FES is
unable to provide accurate and repeatable movements by itself,
and using feedback control causes instability due to the inherent
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FIGURE 6

Sum of squared torque reduction results are shown for all subjects for each trajectory for the elbow flexion/extension DOF (left) and wrist

flexion/extension DOF (right). The overlaid scatterplot shows individual subject results, with the same symbol representing a single subject across

figures. Points in green show the repeated data collection for the first three subjects, but repeated data collection does not contribute to boxplot

presentation. The purple “∗” above the plots represents a that there was a statistically significant di�erence in the sum of squared torque between the

hybrid and exoskeleton alone control cases.

FIGURE 7

RMS error results are shown for all subjects for each trajectory and each controller type for the elbow flexion/extension DOF (left) and wrist

flexion/extension DOF (right). The overlaid scatterplot shows individual subject results, with the same symbol representing a single subject across

figures. Points in green show the repeated data collection for the first three subjects. The purple “∗” above the plots represents a that there was a

statistically significant di�erence in the RMS errors between the two control types.

time delays in muscle response to stimulation. Exoskeletons
are able to provide accurate and repeatable movements, but
require bulky systems and large amounts of power to support
upper-limb movements against gravity. In this paper, we have

proposed a hybrid FES-exoskeleton controller that combines the
two technologies, with the goal of reducing power consumption
compared to a robot alone, and providing accurate movement,
similar to that of an exoskeleton alone. This controller uses the
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FIGURE 8

Elbow flexion/extension joint exoskeleton torque profile for a single subject (top), and movement profiles averaged across subjects (bottom) are

shown for the two di�erent trajectories, cup (left) and sinusoidal (right). In the plots, the blue line represents data for the exoskeleton alone

controller, and the yellow line represents data for the hybrid controller.

FIGURE 9

Wrist flexion/extension joint exoskeleton torque profile from a single subject (top), and movement profiles averaged across subjects (bottom) are

shown for the two di�erent trajectories, cup (left) and sinusoidal (right). In the plots, the blue line represents data for the exoskeleton alone

controller, and the yellow line represents data for the hybrid controller.

Frontiers inNeurorobotics 12 frontiersin.org40

https://doi.org/10.3389/fnbot.2023.1127783
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Dunkelberger et al. 10.3389/fnbot.2023.1127783

model predictive control cost function to leverage the strengths of
each of the subsystems, while minimizing the weaknesses of each.

4.1. Torque reduction

An average reduction of 48.7 and 57.9% of sum of squared
torque was found on the elbow flexion/extension and wrist
flexion/extension DOFs respectively with the use of the hybrid
controller compared to the exoskeleton alone controller. These
results in the EFE joint are an improvement over the 32.1%
reduction found in our previous implementation using only the cup
trajectory (Dunkelberger et al., 2022b). This improvement shows
that the inclusion of the feedback controller instead of using an
integral term, and the incorporation of a more sophisticated arm
model, resulted in greater benefits in this hybrid control scheme,
while even extending to more generalized trajectory cases. This
shows promise for meaningful power consumption reduction for a
hybrid system when comparing to an exoskeleton alone controller.
Practically, this could mean that a portable hybrid system could
be powered for roughly twice as long as an equivalent exoskeleton
alone system, given the same battery capacity. In the future, this
could lead to more portability and longevity in hybrid assistive
devices for impaired populations.

It is worth noting that while the participants are able-bodied
and can move their arm through the desired trajectories without
assistance, we should not expect to see a torque reduction of 100%.
With FES we often cannot achieve the full capabilities of the user’s
muscles, and in this study, many of the participants were not able
to produce the maximum required torque solely through FES, even
at maximum activation. Additionally, FES is known to not provide
accurate or repeatable movements by itself, so at a minimum, the
exoskeleton needs to provide corrective torques to account for these
inaccuracies.

The average reduction in minimum and maximum torques
shows potential for actuator sizes to be reduced while still achieving
the same resultantmotion, which would result in less bulky assistive
robotic systems. In the future, this could be more directly tested by
artificially limiting the maximum torque of the exoskeleton joints
to observe how the FES can make up for the lack of torque.

4.2. Accuracy

FES systems by themselves do not provide reliable repeatability
when trying to perform generalized movements. The goal of
hybrid FES and exoskeleton systems is to achieve trajectory-
following accuracies significantly better than FES systems by
themselves, ideally approaching accuracies that are achievable using
exoskeleton-alone systems. In the elbow flexion/extension joint,
the hybrid algorithm had on average 0.20 and 0.16◦ more RMS
tracking error on the cup and sinusoidal trajectories, respectively,
when comparing the hybrid controller to the exoskeleton alone
controller. While this was a decrease in accuracy, this still resulted
in a very similar motion over the trajectory, as shown in Figure 8.
To put this in perspective, for a forearm length of 30 cm, the
RMS error in positioning the wrist, given the error in angular

tracking, is∼1mm. For the wrist flexion/extension joint, the hybrid
controller had on average 0.09 and 0.05◦ less RMS tracking error
on the cup and sinusoidal trajectories, respectively. Again, while
there is a small decrease in accuracy, the resultant trajectories are
very similar, as shown in Figure 9. These results demonstrate that
the hybrid controller is able to achieve similar tracking accuracies
to the exoskeleton alone controller in both of the individual
DOFs.

It is worth noting the difference in tracking accuracy between
the cup and sinusoidal trajectories on the wrist flexion/extension
joint. Recall that the cup trajectory requires significantly less
movement, with an average velocity of 7.3 ◦/s compared to the
sinusoidal trajectory with an average velocity of 14.3 ◦/s. The
difference in difficulty between the trajectories is likely the cause for
more tracking error in the sinusoidal trajectory. Still, we see that the
general relationship of the hybrid controller having a 0.06◦ RMSE
improvement is similar to the 0.09 degree RMSE improvement on
the cup trajectory.

A benefit of the proposed control architecture is that the
feedback controller portion can be adjusted independently of
the model predictive control portion. This means that if a
specific movement needs high-precision, the gains of the feedback
controller can be modified in a straightforward manner to increase
accuracy, although it would result in an increase in exoskeleton
torque usage. Additionally, while this study focused on the
challenging task of tracking time-varying trajectories, it would
also be an interesting translation to modify the implementation to
achieve desired setpoint positions, where FES could be used for a
majority of the movement generation when it is far from the target,
and the exoskeleton could be used to fine-tune the position when it
is close to the desired setpoint.

4.3. Generalization across tasks

Many of the previous applications using FES for assistance
provide the stimulation using a pre-programmed profile for a
specific movement. An important feature of the proposed hybrid
controller is that it does not rely on knowing the desired trajectory
before use, and works with any given input trajectory. By testing
two different trajectories, we were able to observe how the
different outcome metrics varied in different movements. Tracking
performance across several tasks has been reported by a few studies
that use both FES and exoskeletons (Rohm et al., 2013; Memberg
et al., 2014; Ajiboye et al., 2017), but none of these studies use a
controller to distribute actuation between the two systems on the
same joint.

The sum of squared torque reduction was similar between the
two trajectories for both the elbow flexion/extension DOF and the
wrist flexion/extension DOF. Along with the means and ranges
being the same, the general spacing of the participants within the
range of results remained the same between the two trajectories.
This means that the benefits in power reduction did generalize
well to these different trajectories, and that users could expect
similar results on trajectories that require similar motions. It is
especially interesting that a similar level of sum of squared torque
reduction was found on the two different trajectories for the wrist
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FIGURE 10

The maximum absolute values of the GPR predictions throughout the workspace for all participants are shown for each electrode, and for each DOF.

This represents how di�erent participants are able to achieve di�erent levels of torque from FES when the participant is receiving maximum

stimulation. The symbols here correspond to the same symbols from Figures 6, 7.

flexion/extension joint, especially because one of the trajectories
was significantly more challenging than the other.

While the elbow flexion/extension DOF saw similar tracking
accuracies in the two different trajectories when comparing
the two controllers, the wrist flexion/extension DOF did see a
difference in trajectory tracking accuracy on the two different
trajectories. Despite this, the relationship between the exoskeleton-
alone tracking accuracy and the hybrid tracking accuracy remained
similar in all cases, with the elbow flexion/extension DOF showing
average increase of 19.2 and 14.5% in RMS error on the cup and
sinusoidal trajectories respectively, and the wrist flexion/extension
DOF showing average reduction of 7.4 and 3.3% on the cup and
sinusoidal trajectories respectively.

While not implemented in this paper, another benefit of this
proposed controller is the ability to intuitively adjust controller
behavior to generalize to different objectives of movement. If a
specific task requires high precision in a movement, the gains
of the Q matrix or feedback could be increased to favor more
accurate movement at a cost of more torque. If there is an onset
of fatigue, the weights of the Rm matrix can be adjusted to prefer
more exoskeleton torque, and allow the muscles to recover.

4.4. Consistency across participants

While the results between trajectories were consistent within
participants, there is a significant distribution of results between
participants, especially for the sum of squared torque reduction
observed for the hybrid controller compared to the exoskeleton
alone controller. Even though all results showed improvement,
except for the single participant who could not achieve an FES
response in one of the wrist flexion/extension electrodes, some
participants had significantly better results than others. There are
many factors that can impact the effectiveness of FES, including
electrode placement, size of muscles, body fat levels, and fatigue,

many of which are not modifiable. These variations in ability to
produce torques due to FES can be visualized across participants
in Figure 10, where the maximum absolute value that the GPR
model predicts that each participant can produce throughout the
workspace is shown. We can see that there are wide variations in
the predicted amount of FES torque production. As an example,
one participant cannot producemore than about 0.25 Nm of torque
throughout the entire workspace with either the elbow flexion or
elbow extension electrodes, but two other participants can produce
more than 3 Nm in both of these cases. With these differences
in mind, it is clear that some participants would never be able to
achieve high reductions in power consumption with this hybrid
control approach. To increase consistency between participants, it
would be interesting to test with implanted FES systems, which are
more reliable and targeted, and to model fatigue, which can help
modify the controller in real-time to account for it.

When observing the results of the three participants who
performed the same protocol twice separated by at least a
week, we see that the results remained similar between the
two time points. The difference between sessions in sum of
squared torque reduction when comparing the hybrid controller
to the exoskeleton alone controller remained within 17% across
participants for the elbow flexion/extension DOF, and below
10% for the wrist flexion/extension DOF. The difference between
sessions in RMS tracking error for the hybrid controller compared
to the exoskeleton alone controller remained below 7% across
participants for the elbow flexion/extension DOF, and below
12% on the wrist flexion/extension DOF. It is encouraging that
even though it is difficult to generalize across participants, these
preliminary repeatability results seem to indicate that results
hold steady within users if the same implementation procedure
is followed during each use. It is important to note here
that the participants repeated the entire protocol, and it is
expected that the model that the FES production will change
(especially when using surface electrodes), meaning that the model

Frontiers inNeurorobotics 14 frontiersin.org42

https://doi.org/10.3389/fnbot.2023.1127783
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Dunkelberger et al. 10.3389/fnbot.2023.1127783

will necessarily have to be tuned for each use, even for the
same participant.

One factor of this controller implementation that does not
generalize across participants is that it relies on the relative
weighting between exoskeleton torque inputs and FES activation
levels. While the exoskeleton torque outputs are relatively
consistent across participants, the activation levels do not map
directly to torque outputs, because each participant produces a
different amount of torque, given an activation level. In this case,
the Rfes and Rm_fes parameters as defined in Equations 22, 23 must
be scaled for each participant, based on the torque outputs expected
from the GPR models. However, once the parameters are scaled
once they should only need to be modified if electrodes need to be
moved, or if fatigue occurs.

One participant had a particularly weak response to the
FES, with a very low response from the elbow flexion/extension
electrodes, and no response from the wrist flexion/extension
electrodes. This difference compared to the remainder of
participants shows the importance in characterizing each
individual’s FES behavior to understand the potential effectiveness
of using the proposed hybrid controller.

4.5. Future work

An area of interest in observing the behavior of hybrid
systems would be to identify how maximum torque allowed by
the exoskeleton changes the resulting behavior in terms of torque
output and tracking error. We observed the maximum torque used
by the exoskeleton in this study, but it was not limited in any
particular way to influence controller behavior. We should expect
the controllers to behave differently if the maximum torques are
limited at the start, as the future-looking MPC controller is able to
predict a torque limit onset and proactively compensate for it.

Modeling of fatigue is another area of interest when using FES,
and has received much attention in the FES research community.
While this study aimed to keep the stimulation time to a minimum
to reduce the effects of fatigue, there were likely at least some effects
of fatigue present in results. Modeling and compensating for fatigue
would be a meaningful addition to the hybrid controller to see
improved performance.

The overall results from this study show promise for power
reduction while maintaining high accuracy when performing
movements with a single-DOF through the implementation of the
hybrid FES-exoskeleton controller. Importantly, these algorithms
should translate to a multi-DOF use case with only small
modifications. To realize truly shared control for generalized
upper-limb movements, these algorithms should be tested in
multi-DOF circumstances to understand potential benefits and
complications in this scenario.

5. Conclusion

In this paper, we presented a model-based control approach to
hybrid FES-exoskeleton control. We experimentally demonstrated
the benefits of using this model-based controller to distribute robot
and FES contributions to control elbow and wrist movements with

a hybrid FES-exoskeleton system. This control strategy reduced
exoskeleton torque for the hybrid system with similar tracking
accuracy compared to using the exoskeleton alone. To realize
practical implementation of hybrid FES-exoskeleton systems, the
control strategy requires translation to multi-DoF movements,
achieving more consistent improvement across participants, and
balancing control to more fully leverage the muscles’ capabilities.
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Quasi-passive lower limbs
exosuit: an in-depth assessment
of fatigue, kinematic and
muscular patterns while
comparing assistive strategies on
an expert subject’s gait analysis
Christian Di Natali*, Jesus Ortiz and Darwin G. Caldwell

Laboratory XoLab, Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT),
Genova, Italy

Wearable robots are becoming a valuable solution that helps injured, and elderly

people regain mobility and improve clinical outcomes by speeding up the

rehabilitation process. The XoSoft exosuit identified several benefits, including

improvement of assistance, usability, and acceptance with a soft, modular,

bio-mimetic, and quasi-passive exoskeleton. This study compares two assistive

configurations: (i) a bilateral hip flexion (HA, hips-assistance) and (ii) a bilateral hip

flexion combined with ankle plantarflexion (HAA, hips-ankles-assistance) with the

main goal of evaluating compensatory actions and synergetic effects generated

by the human- exoskeleton interaction. A complete description of this complex

interaction scenario with this actuated exosuit is evaluated during a treadmill

walking task, using several indices to quantify the human-robot interaction in

terms of muscular activation and fatigue, metabolic expenditure, and kinematic

motion patterns. Evidence shows that the HAA biomimetic controller is synergetic

with the musculature and performs better concerning the other control strategy.

The experimentation demonstrated a metabolic expenditure reduction of 8% of

Metabolic Equivalent of Task (MET), effective assistance of the muscular activation

of 12.5%, a decrease of the muscular fatigue of 0.6% of the mean frequency, and

a significant reduction of the compensatory actions, as discussed in this work.

Compensatory effects are present in both assistive configurations, but the HAA

modality provides a 47% reduction of compensatory effects when considering

muscle activation.

KEYWORDS

exoskeleton, soft robot applications, assistive device, wearable robots: exoskeletons
and exosuits, human-robot interaction, biologically inspired robotics, biological control
systems
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1. Introduction

The world’s elderly population is expected to increase
significantly by 2,050 (estimated to rise to almost 22% of the
worldwide population), reaching about 2 billion and doubling the
proportion from 2002 (World Health Organization [WHO]., 2015).
Against such a background, a major concern that is attracting
growing attention concerning the quality of elderly life is the link
with physical activities (Dunn et al., 1998). Indeed, when physical
activity is reduced, there is a strong correlation with psychosocial
problems such as social isolation, unhappiness, or depression. At
the same time, a lack of physical activities leads to further muscle
degeneration in the lower limbs, with elderly persons potentially
falling into a negative cycle of depression, skeletal muscle decline
and further decreases in physical activity (Rejeski and Mihalko,
2001).

Mobility is a key component of health throughout all phases
of the lifespan, and it is vital to ensuring that older adults can
maintain independent functioning and autonomy (Richardson
et al., 2015). Mobility limitations, defined as difficulty walking
a one-quarter mile or climbing one fight of stairs, are reported
by 30–40% of adults aged 65 years and older (Shumway-Cook
et al., 2005). Because of these walking difficulties caused by age-
related skeletal muscle decline of the lower limbs, many elderly
persons partake in fewer and shorter physical activities than young
people (Rosenbloom, 1988). One of the main causes of muscle
degeneration is that many older adults do not engage in regular
walking activities (Colley et al., 2011). Relatively slow gait speed
is always detected in the elderly. This is an adaptive response to
conserve energy (Alexander et al., 2010). As peak aerobic capacity
(VO2 peak) declines with increasing age (Waters et al., 1983), the
energetic requirements of walking at a given speed increase relative
to VO2 peak, such that normal walking becomes more intense.
Indeed, evidence suggests that energy requirements during walking
play a central role in the development of mobility limitation in older
adults (Fiser et al., 2010; Schrack et al., 2010).

It is critical to remain active and mobile to slow down
the degrading of overall physical health and cognitive functions
(Volkers et al., 2012). Indeed many elderly people, due to
neuromotor deficits, make use of assistive devices such as canes,
walkers, and orthoses to enable walking at home (Jutai et al., 2007).
However, many of these devices substitute or complement the
functional loss but do not encourage the activation or rehabilitation
of the legs. Robotic research is actively trying to address some of the
most pertinent problems of an aging society.

Wearable robots may be a solution that helps elderly people to
regain their mobility. Recent years have seen the development of
powered exoskeletons designed to restore walking in individuals
who are unable to walk (Dollar and Herr, 2008; Goldfarb et al.,
2013)). The main characteristic of these exoskeletons is the rigid
structure that can support their weight and provide high levels
of assistance to the wearer. While these devices are actively being
studied as an alternative to wheelchairs for paralyzed people, they
are too complex and expensive for users with a low to moderate
degree of impairment (Ortiz et al., 2021). For the individuals who
need some, but less, assistance, a new generation of exoskeletons
based on soft technologies is in development, which has excellent
promise in terms of usability and performance. They specifically

target users that retain some degree of mobility, and consequently,
the exoskeleton only provides partial assistance/support. This
is well suited to current soft technologies. For example, the
Harvard soft exosuit (Awad et al., 2017), or MyoSuit (Haufe et al.,
2019), share common elements, such as cable-driven actuation,
although they use different approaches in their implementation.
The presented trend underlines the need in several applications
and target users, where wearability and acceptability become critical
features to drive the shift from heavy rigid exoskeletons to light,
soft wearable devices. In the XoSoft project, we introduced Quasi-
Passive Actuations (QPA) to create a biomimetic device. These
QPAs are composed of a Textile-Based Clutch (TBC) (Sadeghi
et al., 2019) together with an Elastic Tendon (ET) that forms the
passive mechanical element, which is connected in series. From an
assessment point of view, the analysis of a passive device is more
complex because of the continuous energy exchange between the
user and the ETs.

Most of the scientific efforts are focused on conducting
kinematic, dynamic and metabolic assessments (Wehner et al.,
2013; Shamaei et al., 2014; Di Natali et al., 2019; Zhou et al., 2020),
rather than carrying out analysis on the muscle activity (Van Dijk
et al., 2011). Inconclusive answers are reported in this (Van Dijk
et al., 2011), mainly because of the complexity of the experimental
protocol that has been carried out, e.g., multiple subjects, high
variability in gender, age and physical characteristics, and the effects
of the learning curve in the use of new technological devices. That
protocol also has to cope with the high sensitivity and variability
of the measurement equipment used (surface EMG for muscular
activation measurement). This technology deserves a more accurate
analysis to underpin the effective and potential results that this
equipment could bring. Thus, a systematic comparative analysis of
similar technology (i.e., passive or quasi-passive actuated exosuit)
is relevant to better understanding what happens at the muscular
level.

2. Background and motivation

The rationale behind the assistive approach is based on
the typical muscular pattern during walking. During walking,
the main muscles activated are the gluteus, gastrocnemius and
rectus femoris, acting during stance, push-off and swing phases,
respectively, (Winter, 2009). Typical gait assistive strategies
proposed in rehabilitation exoskeletons that aim to reduce fatigue
during walking, support alternatively hip flexion (Jin et al., 2016),
hip extension (Asbeck et al., 2015), or ankle plantarflexion (Collins
et al., 2015). Hybrid approaches (Asbeck et al., 2013; Ding
et al., 2014) also report good effectiveness in reducing muscular
activation or metabolic consumption between 5 and 15%.

During normal walking, as shown in Figure 1B, power is
expended by the body primarily at the transitions of support
from one leg to the other. This power is mainly provided
by the hip (represented in blue) and ankle (represented in
green) (Winter, 2009). During stance, the gastrocnemius contracts
isometrically, stretching the Achilles tendon due to the body’s
natural motion falling forward. Subsequently, these muscles
contract concentrically, and the Achilles tendon recoils, giving
a large positive power burst from 40 to 60% of the gait cycle
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FIGURE 1

(A) Cyclical gait representation, (B) averages of mechanical power measured at the hips, knees and ankles normalized for the subject weight (Winter,
2009). (C) Shows the averages of muscular activation of the rectus femoris (RF), vastus lateralis (VL), and gastrocnemius medialis (GM). Each
subject’s mean EMG was normalized to 100% prior to averaging (Winter, 2009).
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to propel the body upward and forward (shown in Figure 1C
with the activation of the gastrocnemius medialis). The muscles
at the front of the thigh (such as the rectus femoris, shown in
Figure 1C) provide a smaller power burst at the hip and a period
of power absorption during the transition between legs. The power
absorption occurs from 35 to 50% of the gait cycle. The power
burst occurs from 50 to 75% of the gait cycle, providing energy to
help swing the leg. It is reported (DeVita and Hortobagyi, 2000;
McGibbon, 2003) that elderly persons if compared with young
persons, are characterized by reduced power generation at the ankle
plantar flexors compensated by more power at the hip flexors to
guarantee step length. By assisting the hip flexors, the burden on
the hip joint would be reduced, and the lower limbs would be lifted
sufficiently high that ground clearance of the feet is achieved, and
tripping could be prevented (Sposito et al., 2018; Di Natali et al.,
2019).

Important aspects, which are also correlated to passive
exoskeletons performance (Rahman et al., 2006), are evaluating the
effects on gait for the kinematic patterns and muscular activity.
Before receiving assistive forces, passive exoskeletons require the
user to input energy into the system to elongate the elastic
elements. The storing of potential energy causes an increase in
muscle activity (Fanti et al., 2022). Moreover, it could also generate
changes in motion patterns. Thus, evaluating these changes is
critical to understanding the actual efficacy of this complex human-
exoskeleton interaction.

In addition, by investigating how the musculature of a healthy
subject responds to the assistive and resistive cycles provided by
the QPA-based exosuit (Di Natali et al., 2020), we aim to define
the technology’s potential for improving mobility and enabling
personalized, effective rehabilitation. Consequently, the system
acts also as continuous muscle training (Di Natali et al., 2021),
which is, in turn, a secondary benefit of the system to help
regain mobility by improving gait and postural patterns (Di Natali
et al., 2019). Ultimately, considering the complexity of the human
musculoskeletal system and the assistance provided, compensatory
and synergetic effects on the musculature were studied.

3. Objectives and hypotheses

The primary objective of this foundational study is to assess
the effective reduction in walking energy consumption and hence
quantify the energy exchanges in healthy individuals by using the
XoSoft exosuit technology employing QPAs. Moreover, changes in
the motion patterns are not evitable. Thus, a synergetic analysis
of kinematic and muscular patterns is critical to understand the
overall effectiveness of the interaction with the exosuit. Two
different assistive modalities have been assessed: (i) bilateral
hip flexion (HF) assistance; and (ii) bilateral HF assistance and
bilateral ankle plantarflexion (APF) assistance. These two assistance
strategies are those most commonly adopted in literature to reduce
the energy burden during walking with active exosuits (Asbeck
et al., 2013; Ding et al., 2014; Jin et al., 2016; Awad et al., 2017;
Haufe et al., 2019). The hypothesis of this study is a comprehensive
evaluation of human-exoskeleton interaction focusing on several
different indexes that provide positive and negative effects on
the system energy exchange and motion patterns during walking

activities, which is particularly important for elderly people. The
target evaluation will focus on assessing an effective reduction
in metabolic expenditure, a decrease in muscular fatigue, and
a minimal change of kinematic patterns while reducing muscle
activation.

This study is conducted on a single healthy subject with several
hours of experience using a quasi-passive exosuit. Exoskeletons
perform differently as a function of experience, fitting, particular
motion patterns and many other aspects necessary for optimization
to improve cross-subject effectiveness (Zhang et al., 2017).
Therefore, a personalized assistive approach must be considered a
standard approach. Moreover, a generalization of the effectiveness
over a small number of subjects in a single testing run is always
difficult to be reliable (Van Dijk et al., 2011). This aspect is essential,
particularly when considering the effects of the learning curve on
the user’s motion style and neuro-motor coordination, particularly
when considering changes in the walking pattern and due to the
mutual adaptation in which robot and human effectively cooperate
and exchange forces (Moreno et al., 2009; Afzal et al., 2020).

Moreover, this work (Theurel and Desbrosses, 2019) underlines
the need for more evidence on the impact of assistive forces on
neuromuscular coordination and joint kinematics. Therefore, this
study has performed long walking tests on an expert exoskeleton
wearer and repeated them over multiple days. We aim to measure
the effectiveness of the wearer’s interaction with the exosuit without
bias due to the bad fitting and learning curve effects. In addition,
multiple test repetitions will be essential to apply statistical analysis
to the gathered data while investigating the exoskeleton interaction
at the muscle activity level over several gaits (Galle et al., 2017).

This work’s main contribution lays on the hypothesis that the
assistance targeted on the hip flexion and ankle assistance would
promote a more comprehensive and bio-inspired propulsive force
from the muscles activated during walking and, simultaneously,
reduce the energetic burden associated with locomotion. This
aspect is not obvious, particularly when considering passive (or
quasi-passive) exoskeletons interacting with such a complex as
the human system. In principle, The XoSoft exosuit generates
forces on the body during both storing (elastic elongation) and
releasing phases, thus mimicking the behavior of muscles and
tendons. These forces generate assistance during the realigning
phase. The elastic tendon has already accumulated potential energy
and releases it to the user.

In contrast, the storing phase is characterized by storing
energy from the elastic tendon the user provides. This
phenomenon of the wearer’s interaction with a passive actuated
exoskeleton is fundamental when considering the overall
exchange of forces and energy balance. Moreover, this study
also impacts the understanding the fundamental interaction with
passive exoskeletons.

4. Materials and methods

4.1. XoSoft platform

The XoSoft EU project developed a user-centered design-
based exosuit. This soft, modular, bio-mimetic and quasi-passive
exoskeleton assists users such as the elderly, and post-stroke and
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TABLE 1 Characteristics of the et used in experimental trials.

ET for specific joint Stiffness (N/mm) ET length (mm) Force at 50% of ET elongation (N)

Hip flexion (HF) 1.6 50 40

Ankle plantarflexion (APF) 2.5 20 25

partial spinal cord injury subjects with low to moderate mobility
impairments (Di Natali et al., 2019). The XoSoft-Gamma prototype
demonstrated in Di Natali et al. (2020), features reconfigurable and
modular soft pneumatic QPAs to deliver bilateral gait assistance
for hip and knee flexion and extension and ankle plantar
and dorsiflexion. QPAs relying on variable stiffness mechanical
elements, the TBC (Sadeghi et al., 2019), are used to modulate
the forces generated by the passive elements employed to store the
mechanical energy.

The XoSoft exosuit was designed to support the user at the hips
and ankles in this work. The ETs characteristics and possible control
strategies are extensively presented in Di Natali et al. (2020). The
ETs selected for this study are reported in Table 1. The exosuit is
designed to assist power absorption through controlled modulation
of the extension of the passive element. The exosuit is actuated
for both hip flexion (HF) and ankle plantarflexion (APF) actuation
from 5 to 65% of the gait cycle (the timing of both control strategies
are shown in Figure 1A, with the hip flexion presented in red, and
the ankle plantarflexion in green).

The wearer, thus, before receiving assistance, has to exert a force
to elongate the ETs in an energy-storing phase. Subsequently, the
exosuit returns this stored energy to the wearer in the releasing
phase (see Figures 2B, C). If the system efficiency were ideal at the
end of the cycle, the physical energy balance would be the same.
Still, previous works demonstrated that control strategies could
modify this balance toward a surplus value of assistance (Di Natali
et al., 2019, 2020, 2021).

Figure 2A shows the subject wearing the XoSoft exosuit
configured with the assistive modules, i.e., QPA hip flexion and
QPA ankle plantarflexion to assist at the hip and ankle, respectively.
The effective elongation and the torque generated by each actuator
are a function of the corresponding articulation angle shown in
Figures 2B, C. Walking is a cyclical motion characterized by
oscillating trends of the lower limbs. This determines the gait cycle
portions to be exploited for the elongation of the ET (storing
phase) and the subsequent releasing phase (the effective assistance).
We hypothesized that the extraction and storage of mechanical
energy during stance would have less impact than its release during
the swing, thus shifting the energy balance toward a net assistive
condition. The specific HA (hips assistance) strategy engages the
QPA between 5 and 65% of the gait cycle, where the elastic energy
is accumulated during the stance and then returned during the
swing. The HAA (Hips-ankles-assistance) strategy also assists the
gastrocnemius between 5 and 65% of the gait cycle to propel the
body upward.

Similarly, the QPA requires a storing phase before releasing
assistance to the target ankle. During stance, the QPA ankle
plantarflexion is engaged. Consequently, the ET stretches thanks
to the body’s motion “falling” forward. Subsequently, when the
person starts pushing, and the ankle angle reaches its minimum,
the user actively contracts the calf muscles. The ET contracts to its
original length, releasing the stored mechanical energy and aiding

the propulsion of the body upward. Figures 2B, C show the concept
underpinning both the storing and releasing phases of the HA and
HAA strategies as functions of the corresponding joints.

4.2. Design of the study

The experimentation focused on evaluating, during treadmill
walking, the effects of the QPA-based exosuit on healthy gait
mechanics and energetics. The assessment of the reduction in
walking energy requirements was evaluated in three experimental
configurations (i) the baseline (NOE), (ii) the HA and (iii) the
HAA configurations.

This study aims to meticulously detail the effects of using
a QPA-based exosuit on muscle patterns, muscle synergy, and
compensatory effects. Experimentation is conducted on a single
healthy subject with experience in using XoSoft to reduce
subject-specific performance variability, which was involved in
completing each test repetition with and without the exoskeleton
worn. The test is repeated five times on different days applying
for the following order between the three conditions: NOE,
HA, and HAA. Moreover, the test was performed five times
on different days to reduce set-up variability due to exosuit
wearing and sensor placement. In addition, we imposed a
rest period of 20 min between each repetition, during which
the subject recovered, and the investigators controlled the
equipment. Single-subject experimentation is critical, particularly
when measuring errors introduced by intra-subject variability and
subject-specific performance variability. The main objective is to
analyze muscular and kinematic pattern changes and compensatory
effects while reducing any possible risk of affecting measurements
due to the errors introduced by the experimental protocol,
e.g., multiple measurements, donning-doffing wearable devices,
dynamic movements, and sweating.

A 5-day testing protocol was used to evaluate the effects of
the two different exosuit assistive configurations (HA and HAA).
During any single testing day, the three different walking tests
were performed for 10 min on a treadmill at a natural self-
selected walking speed of 3 km/h (0.83 m/s), taking approximately
600 steps for each leg. Data were recorded for the monitored
muscles, namely: Rectus Femoris (RF), Vastus Medialis (VM),
Tibialis Anterior (TA), and Gastrocnemius Lateralis (GL). Apart
from the gluteus, these four selected muscles are the most relevant
for gait analysis. The gluteus was not selected due to possible
interference with the exosuit. The Biceps Femoris or the hamstrings
are also relevant in the walking pattern. In this work, the hamstrings
were not monitored since the main assistive effects of the exosuit of
the hips motion would mainly exert on the hip flexors. Moreover,
our previous work (Fanti et al., 2022) reports results on a similar
exosuit assistive configuration on the semimembranosus, which
is responsible of hip extension. To apply a statistical approach,
right and left muscle activations were averaged for each stride,
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FIGURE 2

(A) Experimental subject wearing the exosuit. Hip flexion (HF) and ankle plantar flection (APF) are shown together with the textile-based clutch (TBC)
and the elastic tendon (ET). Store and release phases on the (B) HF (hip angle), and (C) APF (ankle angle). The human subject gave permission for the
use of their image.

determining the overall behavior for each studied configuration
and analyzed muscles. Each test modality was compared against the
specific daily baseline (NOE) to minimize the day-to-day variability
of the participant.

4.3. Experimental protocol

This work aims to evaluate if specific assistive exosuit control
profiles reduce metabolic energy and muscle fatigue during
walking at a fixed rate. Biomechanics and energetic considerations
are reported during treadmill walking on three experimental
conditions: (i) the reference condition without the exoskeleton
being worn (NOE), (ii) the hip flexion assistance study referred to
as HA, and (iii) the hip flexion and ankle plantarflexion assistance
study referred to as HAA. Two primary outcomes were assessed:

the activity of four muscles (RF, VM, TA, and GL), and the energy
cost of walking, defined as mass normalized oxygen consumption
(ml O2/kg). From a kinematic point of view, maximum extension
and flexion are evaluated, along with the range of motion (RoM) of
the hip, knee, and ankle. All trends are plotted within each gait cycle
and are expressed as a percentage of the stride period. 0% refers to
the heel strike, and 100% to the next consecutive heel strike. All
results are reported by combining right and left signals over a 10-
min walking test, repeated five times for each test scenario, thus
averaging approximately three thousand strides. Muscle activations
were normalized over the Maximal Voluntary Exertions (MVE)
computed as the 95th percentile of the baseline distribution of the
four EMG measurements taken during normal walking at 3 km/h.
This approach prevents the false selection of maximum muscle
activations due to erroneous EMG spikes. The muscle activations
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vary from 0 to 1 of MVE (where 1 corresponds to 100% of MVE of
each muscle during walking) in all four measured muscles.

The experiment was approved by the Ethical Committee
of Liguria (protocol reference number: CER Liguria 001/2019)
and complied with the Helsinki Declaration. A healthy adult
participated in the study (male, age 35 years, height 1.70 m,
weight 70 kg). After fully explaining the experimental procedure,
the subject signed a consent form before participating. We
recorded the participant’s fully-body kinematics, lower limb surface
electromyography (EMG) and metabolic expenditure during the
test. An Xsens wearable motion tracking system was used to
record full-body kinematics (MTw Awinda 3D Wireless Motion
Tracker, Xsens Technologies B.V. Enschede, Netherlands) at a
sampling rate of 100 Hz. An 8-channel Wi-Fi transmission surface
electromyography (FreeEMG 300 System, BTS, Milan, Italy) was
used to acquire the surface myoelectric signals (sEMG) at a
sampling rate of 1,000 Hz. K5 metabolic wearable technology (K5
COSMED Srl, Roma, ITALIA) was used to measure the metabolic
expenditure. After skin preparation, bipolar Ag/AgCl surface
electrodes (diameter 2 cm) prepared with electro-conductive
gel were placed over the muscle belly of RF, VM, TA, and
GL in the direction of the muscle fibers (distance of 2 cm
between the center of the electrodes) according to the European
recommendation for surface electromyography (Hermens et al.,
2000) and the atlas of muscle innervation zones (Barbero et al.,
2012). The baseline muscle activity and energy expenditure
were recorded without the exoskeleton. Each repetition was
conducted on a treadmill, with the speed set to the participant’s
natural and self-selected overground walking speed (approximately
3 km/h).

4.4. Data analysis

Data were processed using MATLAB software (MATLAB
2020, MathWorks, Natick, MA, USA). The raw EMG signals
were band-pass filtered using a zero-lag third-order Butterworth
filter (20−450 Hz), rectified, and low-pass filtered with a zero-
lag fourth-order Butterworth filter (10 Hz). The time scale
was normalized by interpolating individual gait cycles over
1,200 points. Then, the EMG signal from each muscle was
normalized to the MVE value across all trials. The MVE is
recorded at the start of each experimental day when the muscles
were fresh and then used as the maximal values across the
successive measurements. The Results section reports the trends
of each muscle activation against the baseline (NOE), particularly
highlighting the resistive and assistive phases of the gait (Di Natali
et al., 2020). The resistive phase is when the muscle activity
is higher than the baseline, while the assistive phase is when
muscle activity is lower than the baseline. The specific assistive
strategy (HA and HAA) can strongly affect the oscillation of
the muscle activity about the baseline value. The Results section
extensively studies and reports the phases of resistance and
assistance.

The root means square (RMS), and the Mean Frequency
(MF) of the power spectrum of the EMG signals were calculated
to investigate the effect of the exosuit on muscle fatigue. For
each stride, the RMS was computed over specific intervals of

the gait cycle for each muscle, according to the following
formula:

RMS =

√√√√ 1
N

N∑
i=1

EMG2
i

Where EMGi is the value of the ith sample of the envelope of each
muscle and N is the number of samples of each interval. For each
muscle and each stride, the MF was computed as the ratio between
the spectral moments of order 1 and 0 (Ament et al., 1993; Dimitrov
et al., 2006):

MF =

∫ t2
t1 fPSD(f )δf∫ t2
t1 PSD(f )δf

Where t1 and t2 are the initial and final instants of each stride,
PSD(f) is the power spectrum density of the EMG signal, and f
is the frequency.

The estimation of the metabolic cost is based on an indirect
measurement of the oxygen consumption and respiratory quotient
as presented in Goedecke et al. (2000); Jin et al. (2016). The
mathematical equation used to derive the metabolic energy
expenditure (EE) expressed in watts [W], is a function of oxygen
consumption (VO2) and the respiratory exchange ratio (RER) as in:

EE = c1VO2(c2RER+c3)

Where the conversion factors are: c1 = 69.7, c2 = 1.2341, and
c3 = 3.8124, the respiratory exchange ratio (RER = VCO2/VO2), as
reported in Jansson (1982), is the ratio between the CO2 produced
and the O2 used during metabolism.

Joint angles were calculated based on the standards defined
by the International Society of Biomechanics (Grood and Suntay,
1983). All kinematic data were plotted from 0 to 100% of the gait
cycle, where 0 and 100% are the consecutive touches of the same
heel. The measurements of each lower leg joint angle were averaged
over each right and left gait segmentation to estimate and display
averaged trends.

Both kinematic, muscular, and exoskeleton data are fully
synchronized with a common triggering signal. As previously
mentioned, the data is then segmented, and the analysis is
represented over the gait cycle. The objective is to evaluate the
averaged behavior of muscles and joint angles over multiple test
days. The reason for multiple testing days is not to propose a
longitudinal test but to enlarge the data set without impacting
the user’s fatigue due to longer trials. A multiple testing days
approach will also provide a big data set that, averaging each signal
over the gait cycle, will allow achieving mean behaviors of the
target signals over the gait cycle. Thus, sudden errors and irregular
motions would be smoothed down while similar motions would be
emphasized. The statistical analysis was performed for the MF and
the estimation of the metabolic cost data using SPSS 20.0 software
(IBM). P-values < 0.05 were considered statistically significant. We
used the Shapiro–Wilk test (Ghasemi and Zahediasl, 2012) to verify
that the data was from a normal distribution. Then we applied a
parametric paired t-test to detect any significant differences. For
the muscle and kinematic representation, a descriptive statistical
analysis was applied to evaluate the average behavior and variations
(STD) over the 6,000 strides (600 strides for leg for each of the
5 days of test) for each assistive modality (NOE, HA, and HAA).
The bold line in the muscles and kinematic trend plots represents
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FIGURE 3

Comparison of Baseline vs. Hips-assistance (HA) and
Hips-Ankles-assistance (HAA) modalities of the metabolic
consumption trends of all 5-day tests. Numerical results are
normalized on the subject mass.

the averaged behavior of muscle activities and joint angles. At the
same time, the shaded region covers about 68% of the variation of
the data around the mean values.

5. Results

5.1. Metabolic energy consumption
results

In this section, both assistive strategies (HA and HAA) are
assessed against baselines and compared regarding metabolic
expenditure variation. Figure 3 reports the energy cost associated
with 10 min of walking for the three configurations. The
average metabolic expenditure normalized for the subject’s weight
of normal walking measured over five tests using the NOE
configuration is 3.02 ± 0.62 W/kg, (2.6 Metabolic Equivalent of
Task - MET). Where 1 MET is equal to 1.162 W/kg. For the HA
configuration, the metabolic expenditure is 2.88 W/kg (2.5 MET),
while the HAA configuration reports consumption of 2.79 W/kg
(2.4 MET). Table 2 shows the relative reduction and p-value of the
t-test.

5.2. Muscle fatigue analysis results
averaged over 5 days: HA and HAA
comparison

This analysis shows the main change in the EMG signal in
the frequency domain with a spectrum translation toward lower
frequencies (Cifrek et al., 2009). Thus, if the specific MF of a
single muscle decreases during the test, the user perceives increased
fatigue in that muscle. The MF is calculated as shown in the
Data analysis section for each stride (18,160 strides in total if
considering the right and left leg of the NOE, HA, and HAA
configurations). Subsequently, each trend is normalized using the

initial value of the baseline. Figure 4 shows the normalized MF
of each muscle as the difference between the initial and final
stride. The baseline of the MF for all four muscles, measured
without the exosuit (NOE), shows negative values, underlining
the presence of a certain degree of muscular fatigue that occurs
during the task. The MF trend decreases linearly in all muscles
and configurations as the number of strides increases. A linear
envelope is used to average the whole trend for each MF. The
barplot of Figure 4 represents the decrease in the MF over the
entire walking test, thus indicating muscular fatigue. The same
approach has been taken for exoskeleton configurations and all
four measured muscles shown in Figures 4A-D. Focusing on the
baseline, the MF of the RF during the walking test decreases by
6.9% on average, corresponding to 5.4 Hz at an initial value of
78.8 Hz. The VM starts at 73.4 Hz and decreases by 6.4 Hz.
Thus, the mean decrement in 10 min of walking is 8.7%. The
TA starts from 77.8 Hz and decreases by 1.7 Hz, thus the mean
reduction during the test is 2.2%. Finally, the GL starts from
85.5 Hz and decreases by 1.0 Hz, giving a mean reduction of
1.2%.

We hypothesize that using an exosuit would lead to a smaller
decrease in the MF, which indicates of reduced fatigue. This should
occur even though the user has to carry the extra weight of
the device. For the HA, the results show an increased negative
trend of MF for all four evaluated muscles. The RF decrease
is 6.6 Hz, which is 8.4% of the initial baseline value. The VM
decrease is 9.5 Hz, which is 13.0% of the initial baseline value.
The TA decrease is 2.1 Hz, which is 2.7% of the initial baseline
value. Finally, the GL decrease is 1.9 Hz, which is 2.3% of the
initial baseline value.

For the HAA, the results show an effective reduction of the
negative trend of the MF for three of the four muscles under
evaluation. The RF decrease is 5.7 Hz, which is 7.2% of the initial
baseline value. The VL decrease is 5.3 Hz, which is 7.2% of the initial
baseline value. The TA decrease is 1.3 Hz, which is 1.6% of the initial
baseline value. Finally, the GL decrease is 0.4 Hz, which is 0.4% of
the initial baseline value.

The average of the relative difference in MF across all four
muscles of the HA configuration presented in Table 3, shows an
increment of the relative difference of the muscle fatigue of 1.8%.
The HAA configuration shows a reduction in fatigue of 0.6%, which
is also measured as the average of the relative difference of MF for
the HAA.

5.3. HA and HAA assistance strategies
comparison on the kinematic analysis

5.3.1. HA: hips-assistance kinematic analysis
In this section, the HA strategy is assessed against the baseline.

The participant produced a physiological range of motions for
each of the three lower limb joints (hips, knees, and ankles) while
walking on the treadmill at 3 km/h (0.83 m/s). The RoM for the
ankle varied from −22◦ to 9◦ ± 15◦ (Figure 5A). For the knee,
the range was from 5◦ to 60◦ ± 15◦ (Figure 5B), and for the hip,
the RoM was from −15◦ to 25◦ ± 15◦ (Figure 5C). Figures 5A-
C shows the joint angle displacements generated using the HA
modality. These displacements are averaged over the right and left
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TABLE 2 Comparison of HA and HAA strategies concerning the baseline (NOE): 5 days average of the relative reduction of metabolic expenditure and
p-value.

Relative reduction of metabolic expenditure (%) t-test, p < 0.05

HA vs. NOE 4.98 0.0191

HAA vs. NOE 7.75 0.0031

FIGURE 4

Normalized mean frequency (MF) measured as the difference between the initial and final stride during a 10 min walking test, for the (A) RF, (B) VM,
(C) TA, and (D) GL.

TABLE 3 Comparison on the 5 days average of the relative reduction of MF for the HA and HAA strategies with respect to the baseline (NOE).

Absolute difference of MF (Hz) Relative difference of MF (%)

HA vs. NOE @ Rectus femoris (RF) 1.2 1.5

HA vs. NOE @ Vastus medialis (VM) 3.2 4.3

HA vs. NOE @ Tibialis anterior (TA) 0.4 0.5

HA vs. NOE @ Gastrocnemius lateralis (GL) 0.9 1.1

HAA vs. NOE @ Rectus femoris (RF) 0.3 0.4

HAA vs. NOE @ Vastus medialis (VM) −1.1 −1.5

HAA vs. NOE @ Tibialis anterior (TA) −0.5 −0.6

HAA vs. NOE @ Gastrocnemius lateralis (GL) −0.7 −0.8

Positive values correspond to an increase in muscular fatigue, while negative values indicate a reduction in fatigue.

sides of the body during 10 min of consecutive striding for the
ankle, knee, and hip, respectively. Biomechanical consideration of
the averaged modification in the behavior of joint angles due to

the use of the HA assistive modality shows a slight reduction in
both hip flexion (2.24◦ ± 7.4◦ between 85 and 100% of the gait
cycle) and hip extension (1.4◦ ± 8.17◦ from 50 to 70% of the gait
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FIGURE 5

Kinematic analysis comparison on the Hips-assistance (HA) modality for the (A) ankle, (B) knee and (C) hip against baseline during walking on a
treadmill, and Hips-Ankles-assistance (HAA) modality for the (D) ankle, (E) knee and (F) hip.

cycle) during the late swing and stance phases, respectively, shown
in Figure 5C. The exosuit with HA modality reduces the extension
by about 3.63◦ ± 7.85◦. This is due to the force generated by the
exoskeleton while raising the leg and approaching the swing phase.
Consequently, to elongate the ET of the QPA at the beginning
of the stance phase, the hip extension is then increased. Hence,
the user compensates for this reduction in extension by increasing
flexion. The plots for the knee and ankle show similar effects when
using the HA modality (shown in Figures 5 A-B). The ankle angle,
specifically dorsiflexion, increases from 0 to 30% of the gait cycle
by 1.57◦ ± 5.98◦. From 50 to 70% of the gait cycle, plantarflexion
is also increased by 2.46◦ ± 14.33◦ showing an overall increase in
RoM of 1.88◦ ± 14.26◦ when compared to the baseline. The knee
flexion angle is reduced by about 3.17◦ ± 6.59◦ during late swing
(70−100% of the gait cycle), while the RoM is also reduced by
approximately 2.96◦ ± 7.4.

These changes in the angular displacements, which are very
little (varying from 1.5 to 3.5◦ approximately of the knees and
ankles), underline the fact that, due to the exchange of forces
with the exosuit, the walking pattern of the user has been slightly
modified. Considering these as compensatory effects, the changes
in ROMs are almost negligible compared to natural variations.
Moreover, the first external force encountered by the user during
the initial part of the gait cycle is in the opposite direction to the
user’s motion, which is required to elongate the ET. This force
causes the user to compensate slightly for the interference created
by the ET by varying the RoM of all three articulations. The ankle
shows an increase in the RoM of approximately 6.1%, the knee
shows a reduction in RoM of 5.2%, and the hip also indicates a
decrease of the RoM of 9.6%. A slight reduction in the RoM of all
three articulations is desirable, meaning that the assistance does not
significantly affect the natural movement.

5.3.2. HAA: hips-ankles-assistance strategy
kinematic analysis

In this section, the HAA strategy is assessed against baselines.
Figures 5D-F shows the joint angle displacements compared to
the configuration when the exoskeleton is not worn (NOE). Use
of the HAA strategy causes decreased dorsiflexion (this effect is
visible from 30 to 70% of the gait cycle) of 3.18◦ ± 9.47◦ and
reduced plantarflexion of 6.73◦ ± 11.63◦, from 70 to 95% of the
gait cycle shown in Figure 5D. This behavior shows an overall
relative reduction of 32.2% in the RoM and an absolute ankle
angle variation of 9.9◦ ± 13.5◦ over an average baseline range of
30.75◦. Figure 5E shows the knee angle trend. The initial angle
during extension and flexion is slightly increased by approximately
2.83◦ ± 11.64◦ during the extension phase at 0−20% of the gait
cycle and by approximately 0.75◦ ± 9.27◦ during the flexion phase
(60−80% of the gait cycle). For the hip angle, a slight shift of
the hip extension (from 10 to 65% of the gait cycle) generates an
increase of 3.4◦ ± 10.76◦ shown in Figure 5F. The knee shows
a relative reduction in the RoM of 1.86%, and the hip shows a
reduction in RoM of 7.3%. These changes in angular displacements,
particularly for the ankles, underline a certain degree of unwanted
influence and compensatory effects arising from the external forces
generated by the exosuit (i.e., forces required to elongate the
ETs). This effect is more pronounced on the ankle, where there
is an RoM reduction of about 32%, with an average range of
20.8◦ [residual RoM of 68% concerning the baseline, which is
just at the limit to be acceptable before being considered as a
pathologic pattern (Bonnefoy and Armand, 2015; Serrao et al.,
2017)]. On the other hand, both the hip and the knee trends
show a small increase in RoM. This configuration reports a small
variation of the RoM, thus not significantly affecting the natural
movement.
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FIGURE 6

Comparison of Baseline vs. Hips-assistance (HA) and Hips-Ankles-assistance (HAA) modality of the muscle activations of the (A) RF, (B) VM, (C) TA,
and (D) GL.

5.4. HA and HAA assistance strategies
comparison on the muscular analysis

5.4.1. HA: hips-assistance strategy muscular
analysis

Figures 6A-D shows the muscular activation of the RF, VM, TA,
and GL, respectively. All the plots are segmented and averaged over
each gait cycle. Figure 6 shows the data for the muscle activation
averaged over approximately 600 right and left gait cycles for
each of the five runs. As expected, the measurements of muscle
activation and joint angles are comparable with the normal average
behavior of the state-of-the-art available data as in Winter (2009).
All baselines are reported in blue in Figure 6. The effects of using
this exosuit, with QPA and the HA strategy, are evaluated and
compared against the baseline, with the baseline shown in blue
and red representing the exosuit with the HA strategy. When
the muscle activity of the HA-assisted device is lower than the
baseline, this means that only a small amount of muscle activity is
required for that specific portion of the gait phase due to the direct
assistance provided by the exosuit, or eventual positive synergetic
effects from interactions between muscle activations and different
walking patterns. More effort is required for that specific gait
section with higher muscle activity than the baseline. This effort
could be associated with the storing phases (elongation of the ET)

or possible indirect compensations arising from changes in the
walking pattern. Moreover, the muscular trends show a temporal
shift in the muscle activation of about 8% of the gait cycle compared
to the baseline. The main numerical results are reported in Table 4.

5.4.2. HA: hips-ankles-assistance strategy
muscular analysis

Figures 6A-D shows the muscular activation of the RF, VM,
TA, and GL, respectively. Comparing the HAA strategy against the
baseline shows a temporal shift in the muscle activation of about
5% of the gait cycle. The characteristic maximum for each of the
four muscles occurs earlier in their respective gait cycles. The main
numerical results are reported in Table 5.

5.5. HA and HAA muscular analysis
comparison: relative assistance and
resistance

To quantify and compare the assistance and resistance effects,
shown in Figure 6, the average trends of muscle activity associated
with the HA and HAA have been subtracted from the baseline and
normalized against the maximum muscle variation across all the
tests. Positive and negative relative variations of muscle activities
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TABLE 4 Muscles assistance and resistance of the HA as comparison with the baseline (NOE).

Muscle Assistance: portion of
gait cycle (%)

Assistance (%MVE) Resistance: portion of
gait cycle (%)

Resistance (%MVE)

Rectus femoris (RF) 10−40 7.6± 15.8 60−100, and 0−10 5.2± 16.4

Vastus medialis (VM) 10−20 5.9± 20.3 20−10 16.3± 16.9

Tibialis anterior (TA) 0−15, and 80−90 11.0± 18.4 15−80 8.9± 13.8

Gastrocnemius lateralis (GL) 50−60 7.1± 17.5 60−50 14.1± 12.5

TABLE 5 Muscles assistance and resistance of the HAA as comparison with the baseline (NOE).

Muscle Assistance: portion of
gait cycle (%)

Assistance (%MVE) Resistance: portion of
gait cycle (%)

Resistance (%MVE)

Rectus femoris (RF) 5−30 7.7± 16.5 40−70, and 90−100 4.3± 9.8

Vastus medialis (VM) 15−30 2.1± 9.1 90−15 6.1± 16.9

Tibialis anterior (TA) 0−15, and 70−90 11.3± 17.7 20−70 9.4± 14.6

Gastrocnemius lateralis (GL) 40−60 9.1± 13.7 90−20 4.6± 11.1

of the HA and HAA strategies for each muscle are separately
computed to estimate the relative assistance and resistance.
Assistance is when the muscle activity is below the reference
baseline, and the resistive phase is when the muscle activity
is higher than the baseline. The difference in muscle activity
compared to the baseline is averaged and normalized concerning
the mean value of the selected baseline section. Then, the result is
normalized over the ratio between the time portion of both assistive
and resistive phases and the whole averaged gait time. The barplot
in Figure 7 represents, with negative values, the muscle activity that
the user must provide to store energy in the exosuit (to elongate the
ETs).

In contrast, the positive part of the barplot represents the
assistance provided by the exosuit and reduces muscle activation.
Positive assistance and negative resistance values are generated
by comparing the muscle activation of the specific muscle and
control strategy against the baseline. The comparison is calculated
at the specific interval of the gait cycle, as reported in Tables 4, 5
for HA and HAA, respectively. The percentage of resistance and
assistance is derived as a difference between the baseline muscle
activity and specific control strategy and then normalized on the
baseline value. The system aids 10.0% and a resistance of 11.1%
for the RF in the HA configuration. The VM shows assistance
of 2.2% against the resistance of 65.5%. The TA shows assistance
of 9.8% with a resistance of 19.1%, and the GL shows assistance
of 2.4% and a resistance of 41.4%. The system assists 12.5% with
a resistance of 6.5% for the RF in the HAA configuration. The
VM shows assistance of 5.7% and a resistance of 11.4%. The
TA shows assistance of 9.2% against the resistance of 21.4%, and
the GL shows assistance of 10.7% against the resistance of 9.5%.
When considering the improvement from the HA to the HAA
modality, the resistance is reduced by 47%. This reduction is
calculated as the difference of each resistance measured at the four
muscles for each modality (HA and HAA). Then the differences
are normalized over the resistance measured for the HA mode.
It is important to underline that even if the energy can neither
be created nor destroyed, the energy stored in the ETs generates
unbalanced resistive and assistive effects on the muscles. This is
closely correlated to the behavior of the human biomechanical

system and the fact that humans can react differently during specific
gait phases, in some instances extracting or injecting energy (Di
Natali et al., 2019, 2020; Fanti et al., 2022).

6. Discussion

The functionality of the QPA requires an important interaction
between the user and the exosuit. This interaction is characterized
by a continuous mechanical energy exchange between the wearer’s
biomechanical system and the actuators’ ETs. Due to the high
complexity of the human system, it is not too obvious that adding
multiple actuators would generate a higher assistive impact. We
demonstrated in previous studies that the same exosuit platform
could generate assistance by reducing the torque and mechanical
power of the wearer (Di Natali et al., 2020). Still, also it could
provide just resistance for specific muscle training (Di Natali et al.,
2021). Finally, this work (Fanti et al., 2022) shows an oscillation
of both muscle activity and mechanical power about the reference
signals, thus, underlying complex behaviors of the whole system
composed of wearer and exosuit. These results are a function
of specific assistance strategies such as actuation placement and
control timing. Therefore, in this study, a comprehensive analysis
of metabolic cost, muscle fatigue, muscle activity and kinematic
patterns has been conducted to provide a clear view of what is
happening during the interaction with the exosuit.

The detailed analysis of the performance of the exosuit shows
a reduction in the metabolic cost in user fatigue using both
exosuit configurations, generating better performance with the
HAA. For the muscle fatigue data, we see that the fatigue is
strongly reduced for the HAA configuration, but this was not found
with the HA setup. The seemingly conflicting results prompted
further investigation with more attention on muscle activation and
kinematic analysis. The detailed muscle activation analysis showed
that the four main muscles involved are sensitive to the actuation
configuration. Causing a more (or less) effective net reduction in
muscular activity when compared against the baseline, as shown in
Figures 6, 7. Thus, both assistive and resistive phases, measured
in all four muscles during the gait cycle, are strongly correlated
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FIGURE 7

Relative assistance and resistance for each of the assessed muscles [rectus femoris (RF), vastus medialis (VM), tibialis anterior (TA), and
gastrocnemius lateralis (GL)] at specific assistive configuration.

to the selected configuration. This suggests that synergetic and
compensatory effects occur even if a specific control strategy at
the muscle level reduces metabolic cost. Thus, it is critical to
evaluate the interaction between exoskeletons and exosuit, focusing
on several indexes as shown in this study. A more comprehensive
analysis is necessary to assess particular side effects generated while
modifying the complex balance of human motion. Therefore, when
considering the full complexity of the compensatory and synergetic
effects, results show that assistance applied by an exosuit might
partially guarantee advantages. Moreover, the interaction between
the assistive device and the whole body must be studied, analyzed,
and understood. In addition, a more biomimetic control approach
can generate advanced performances with reduced compensatory
effects, as shown in this work when using the HAA and HA control
strategies.

With this study, we want also to underline the evidence of
the compensatory effects, which are shown in Figures 6, 7. This
is particularly evident for the VM and the GL, where a more
biomimetic controller (the HAA) reduces the compensatory effects.
By comparing the HAA and the HA configurations, we noticed an
increment of the assistance rather than the resistive effect. This,
however, is not valid when considering the TA. Indeed, there is
a slight worsening (from the HA to the HAA) of both assistive
and resistive effects. The TA suffers if both actuators are applied
bilaterally to the hip flexion and the ankle plantarflexion. This

actuation strategy generates compensatory behaviors, modifying
the standard muscular activation pattern. The development of
modified control strategies that seek to address this effect will form
part of future work in this area.

6.1. Discussion on the metabolic energy
consumption

The principal objective was to evaluate the effective reduction
of metabolic expenditure in both the HA and HAA exosuit
configurations. The results, reported in Table 2, show a net
reduction of metabolic expenditure for both configurations
concerning the baseline (NOE). Despite the added weight of the
device and the interaction with the exosuit, the HA reduces 5%
of the total metabolic cost, while the HAA reduces about 8%. The
HAA configuration strategy performs 1.55 times better than the
HA configuration when considering the metabolic cost. In other
words, taking advance of the work of Rafiq et al. (2017), it is
possible to derive a simple linear equation from the following
points: a walking speed of 4 km/h requires 2.9 MET. A walking
speed of 1.7 km/h requires 2.3 MET. The equation is as follows:
y = a ∗x+b. Where y is the MET and x is the speed, while a = 0.26
and b = 1.86. Therefore, if we substitute the metabolic cost found
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for the NOE and the HAA we can solve the equation for the
hypothetical walking speed (x). The hypothetical walking speed
of the NOE modality is 2.8 km/h, while the hypothetical walking
speed for the HAA modality is 2 km/h. This underlines the fact
that even an improvement of a few percentage points, such as is
seen comparing HA to HAA, strongly impacts the reduction in
metabolic consumption.

6.2. Discussion on the muscle fatigue
analysis

The results obtained from the analysis of the MF do not
confirm the study on metabolic consumption. In particular, the
HA strategy does reduce the metabolic cost but increases muscle
fatigue, while the HAA strategy reduces both the metabolic cost
and muscle fatigue. This effect arises because, in HA, the lower
part of the leg muscle involved in controlling the knee and ankle is
required to work more. This happens mainly during the elongation
of the elastic band. We see from Figure 6 that the tibialis and
gastrocnemius activate more than the baseline. This is particularly
evident for the gastrocnemius during the period of the gait cycle
when the elastic tendon is elongating (from 5 to 55%).

On the other hand, for the tibialis, the compensation (higher
muscular activation than baseline) occurs during the assistance
phase (60−65%), thus showing a counter effect, which could be
necessary to improve balance. These results do confirm that the
HAA configuration performs better than the HA arrangement
(Table 3). Indeed, only the HAA generates an effective advantage
on the user’s energy balance.

The results confirm that the design of the assistive strategies
must consider muscle synergies. When considering the HA
configuration, where a single bilateral QPA is applied to the
hip flexion, this assistive configuration is enough to counter the
additional weight of the device and, at the same time, reduce
metabolic expenditure. While the HAA configuration, which
has two bilateral QPAs (hips flexion and ankles plantarflexion),
performs better also, reducing muscle fatigue in three of the four
assessed muscles.

6.3. Discussion on the muscle pattern
analysis of the HA and HAA

The muscle activation of RF, VM, TA, and GL are evaluated
during the walking task to quantify the energy exchange for
both exosuit configurations. The results show that the control
configuration strongly affects the muscle pattern during walking.
Moreover, different control configurations, particularly this type of
QPA, involve a high degree of human-robot interaction and flow
of energy exchange, leading to diverse muscle activity trends, with
more marked increases and decreases with respect to the baseline
(Figures 6, 7).

The results show in both configurations (HA and HAA) the
generation of different effects during distinct phases of the gait cycle
due to the sequence of resistive and assistive phases. Therefore,
the controller must be well-designed/tuned regarding actuation
timing (Di Natali et al., 2020) and actuation configuration. When

comparing the HA and HAA configurations, the HAA performs
better than the HA in RF, VM, and GL by increasing the
assistance and decreasing the resistance (Figures 6, 7). Focusing
on the normalized and weighted RF activity for both the HA
(assistance of 10%, resistance of 11%), and the HAA (assistance
of 12.5%, resistance of 6.5%), show that a more biomimetic
assistive configuration (i.e., HAA) enhance the assistive effects at
the expenses of the resistive once. Thus, the HAA provides better
performance than the HA configuration. Even though the result
is slight, the HA affects the balance between the assistive and the
resistive effects on the RF. This has unwanted impacts on the
VM, TS, and GL, with considerable resistance effects. The side
effects on the VM and the GL are strongly reduced by introducing
assistance for the ankle plantarflexion (as in the HAA). In the
HA, the normalized and weighted VM activity (assistance of 2.2%,
resistance of 65.5%) and for the GL (assistance of 2.4%, resistance
of 41.4) show an equilibrium shifted toward the resistive effect
when compared with the HAA (VM assistance of 5.7%, resistance
of 11.4%, and GL assistance of 10.7%, resistance of 9.5%). For
the TA (mostly activated during ankle dorsiflexion and providing
balance), we noticed that both configurations cause similar effects,
with the resistance effect being more marked (assistance of about
9.5%, resistance of about 20%). We can assume that the walking
pattern is modified for both configurations. Thus, unwanted effects
and compensatory behaviors have to be counteracted.

This analysis demonstrates that when the actuation strategy is
designed accordingly with muscle synergy, as in the HAA, efficiency
increments due to augmentation of the assistance and a reduction
in the resistive effects are more evident (particularly for the RF
and the GL). On the other hand, the undesirable effects on the TA
could lead to rethinking the actuation strategy and timing to reduce
the side effects.

7. Conclusion and future works

This study compares two assistive strategies applied at hips
and ankles employing QPAs integrated on the XoSoft exosuit,
particularly vital as motions of the hip and ankle are considered
important in assisting the elderly with walking and may ultimately
be useful in reducing or even preventing falls. Hence, this work
suggests that this exosuit may provide immediate improvements
in walking performance by reducing muscle fatigue and metabolic
expenditure. This makes this a very promising approach that could
have essential benefits in activities of daily living for the elderly.

The investigation also evaluates the effective muscular
reduction as a net balance between the storage and release phases
for both exosuit configurations. Also importantly, side effects on
the walking pattern and muscle activation due to the wearing of
an external device are found to be strongly reduced on the VM
when using the HAA configuration. At the same time with the
TA, compensatory behaviors in both control configurations were
found to be negligible. This analysis underlines the importance
of a biomimetic assistive strategy to improve results and reduce
compensatory actions.

Finally, by investigating how healthy subjects respond to the
assistance provided by the QPA-powered exosuit, this study serves
to define the technology’s potential for improving mobility and
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enabling future potential rehabilitation benefits. In fact, not only
could the net assistance be used to enhance activities of daily living
or rehabilitation, but it may also be possible to take advantage
of the resistive phase of each QPA to train muscles in specific
gait phases or generate established controlled compensatory effects.
Future work will evaluate the impact on inexperienced subjects and
the relevance of the learning curve.

The highly encouraging results from this study will drive
further investigations in a broader population (particularly the
elderly and those suffering from gait disorders with low level
mobility impairments) and studies into compensatory behaviors
that arise when assisted by different actuation strategies.
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Contralaterally EMG-triggered
functional electrical stimulation
during serious gaming for upper
limb stroke rehabilitation: a
feasibility study

Chiara Höhler1,2*†, Laura Wild1†, Alexandra de Crignis2,

Klaus Jahn2,3 and Carmen Krewer1,2

1Faculty of Sport and Health Science, Chair of Human Movement Science, Technical University Munich,

Munich, Germany, 2Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling,

Germany, 3Ludwig-Maximilians University of Munich (LMU), German Center for Vertigo and Balance

Disorders (DSGZ), Munich, Germany

Introduction: Virtual Reality/serious games (SG) and functional electrical

stimulation (FES) therapies are used in upper limb stroke rehabilitation. A

combination of both approaches seems to be beneficial for therapy success. The

feasibility of a combination of SG and contralaterally EMG-triggered FES (SG+FES)

was investigated as well as the characteristics of responders to such a therapy.

Materials and methods: In a randomized crossover trial, patients performed two

gaming conditions: SG alone and SG+FES. Feasibility of the therapy system was

assessed using the Intrinsic Motivation Inventory (IMI), the Nasa Task Load Index,

and the System Usability Scale (SUS). Gaming parameters, fatigue level and a

technical documentation was implemented for further information.

Results: In total, 18 patients after stroke (62.1 ± 14.1 years) with a unilateral

paresis of the upper limb (MRC ≤4) were analyzed in this study. Both conditions

were perceived as feasible. Comparing the IMI scores between conditions,

perceived competence was significantly increased (z = −2.88, p = 0.004) and

pressure/tension during training (z = −2.13, p = 0.034) was decreased during

SG+FES. Furthermore, the task load was rated significantly lower for the SG+FES

condition (z = −3.14, p = 0.002), especially the physical demand (z = −3.08, p =

0.002), while the performance was rated better (z = −2.59, p = 0.010). Responses

to the SUS and the perceived level of fatigue did not di�er between conditions

(SUS: z = −0.79, p = 0.431; fatigue: z = 1.57, p = 0.115). For patients with

mild to moderate impairments (MRC 3–4) the combined therapy provided no or

little gaming benefit. The additional use of contralaterally controlled FES (ccFES),

however, enabled severely impaired patients (MRC 0–1) to play the SG.

Discussion: The combination of SG with ccFES is feasible and well-accepted

among patients after stroke. It seems that the additional use of ccFES may be

more beneficial for severely impaired patients as it enables the execution of the

serious game. These findings provide valuable implications for the development of

rehabilitation systems by combining di�erent therapeutic interventions to increase

patients’ benefit and proposes system modifications for home use.

Clinical trial registration: https://drks.de/search/en, DRKS00025761.

KEYWORDS

virtual reality, neuromuscular stimulation, patient treatment, electromyography, hand

recovery
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1. Introduction

Due to demographic change, stroke is becomingmore prevalent
(Feigin et al., 2021). Worldwide, there are more than 10 million
new cases each year, and more than 100 million people suffer from
stroke sequalae. Stroke is the second leading cause of death and a
major cause of disability (Feigin et al., 2021). Up to 40% of survivors
have long-term limitations in activities of daily living (ADLs) and
often rely on caregivers or are institutionalized (Luengo-Fernandez
et al., 2013). Therefore, stroke is of immense public health relevance
because of the burden it places on family members, the health care
system, and society (Crichton et al., 2016).

A stroke often results in sudden onset of neurological
symptoms like hemiparesis and hemihypesthesia, speech and visual
problems, balance disturbances, and neuropsychological symptoms
such as aphasia, apraxia, agnosia, and neglect. Symptoms depend
on the brain area affected and usually involve a combination
of several impairments. Survival probabilities after an ischemic
stroke improved over the past decades (Rücker et al., 2020).
Improvements in stroke management and treatment may have
contributed to this. However, 15-years after stroke about one-
third of survivors was living with a mild disability and one-
third with a moderate or severe disability. The latter suffer
long-term impairments in basic ADLs, such as dressing, and in
performing instrumental ADLs such as preparingmeals (Desrosiers
et al., 2003; Crichton et al., 2016). Therefore, stroke survivors are
often dependent on caregivers or are institutionalized (Luengo-
Fernandez et al., 2013). Upper limb function is fundamental to
ADLs and important for independence. Recovery of arm function
is targeted by various rehabilitative intervention strategies with
the overall goal of being less dependent in daily living (Desrosiers
et al., 2003; Pollock et al., 2014; Platz, 2021). These intervention
strategies are based on underlying mechanisms of neuroplasticity
and principles of motor learning (Meier, 2021). Therefore, training
has been shown to be effective for motor recovery when it is
repetitive (Veerbeek et al., 2014; French et al., 2016), intensive
(Pollock et al., 2014; Platz, 2021), task specific (Kleim and Jones,
2008; Veerbeek et al., 2014) and variable (Veerbeek et al., 2014;
French et al., 2016). Moreover, feedback and motivation are also
important for learning to be effective. The success of traditional
therapies is limited and current rehabilitationmethods often do not
adequately incorporate evidence based on motor learning theories
(Maier et al., 2019a). Therefore, new approaches are needed to
address these problems. Both, functional electrical stimulation
(FES) and Virtual Reality (VR)/serious gaming (SG) therapies are
used in stroke rehabilitation (Pollock et al., 2014; Platz et al.,
2020). Increasingly, the use of VR technologies in therapeutic
interventions for neurorehabilitation is also being discussed and
researched. VR technologies provide a multisensory environment
that promotes brain neuroplasticity and thus contributes to the
rehabilitation of motor disorders (Teo et al., 2016). Often, VR
technological interventions incorporate elements of gamification
to make therapy interesting and motivating (Doumas et al., 2021).
Such games, which are used for education and rehabilitation
purposes, are referred to as serious games (SG) (Doumas et al.,
2021). Those are specifically designed to facilitate brain plasticity
and recovery by incorporating principles of motor learning (Maier
et al., 2019b) and provide the user with task-specific and repetitive

training, which can be individualized to the patient’s ability and
motivates the user (Saposnik and Levin, 2011; Lohse et al., 2014;
Veerbeek et al., 2014; Laver et al., 2017; Maier et al., 2019a). A
Cochrane review, and a consecutive review published in 2021 could
confirm a positive effect on motor recovery when VR technologies
were used as an adjunct to conventional therapy (Laver et al.,
2017; Bui et al., 2021). To enable intensive training, even in
severely affected individuals with hemiplegia, electrostimulation
seems to be an appropriate therapeutic method (Oujamaa et al.,
2009; Meadmore et al., 2012). Electrical stimulation can be used in
a functional context, referred to as FES, to assist impaired or absent
function during a task (Moe and Post, 1962; Doucet et al., 2012).
FES applications can be orthotic applications aiming at replacing
a function or therapeutic applications which target the regain of
a function. While the orthotic application on the upper limb has
not been studied a lot, the positive effects of therapeutic FES
interventions include improvements in muscle strength (Veerbeek
et al., 2014; Küçükdeveci et al., 2018), motor function (de Kroon
et al., 2005; Veerbeek et al., 2014; Hebert et al., 2016; Küçükdeveci
et al., 2018; Monte-Silva et al., 2019), range of motion (Veerbeek
et al., 2014), and ADLs (Veerbeek et al., 2014; Howlett et al., 2015;
Eraifej et al., 2017). In addition, it has been shown that involving
the patient’s voluntary effort with EMG-triggered FES is more
effective compared to passive stimulation (de Kroon et al., 2005).
A combination of both approaches seems promising and has been
investigated in only a few studies so far (e.g., Meadmore et al., 2012;
Buick et al., 2016; Kumar et al., 2016; Collaborators GBDLRoS et al.,
2018; Lee et al., 2018; Fu et al., 2019; Chou et al., 2020; Norouzi-
Gheidari et al., 2021). In all of these studies task-specific training via
VR-based games was provided that incorporated FES. Various VR
and gaming devices (e.g., smart glove gaming system, touch table
screen, computer screens), as well as different FES systems (e.g.,
custom-built FES wristlet, single electrodes, and electrode arrays)
were used for this purpose. Additionally, two studies also integrated
an arm support system, such as SaeboMAS (Kutlu et al., 2016) or an
unweighting exoskeleton robotic system (Meadmore et al., 2012).
All games were designed to promote upper limb motor recovery
including reaching, grasping and object manipulation tasks, which
often mimicked ADLs such as opening a door, pressing a button, or
positioning an object.

A combined approach may have the potential to positively
impact treatment outcomes, as FES and SG complement each
other in terms of motor learning principles that are important
for effective neurorehabilitation interventions (Fu et al., 2019). In
addition, the combined use of VR/SG and FES providesmultimodal
feedback (visual, auditory, and proprioceptive), which may further
enhance the therapeutic effect (Lee et al., 2018). Preliminary results
have shown improvements in motor function (Meadmore et al.,
2012; Buick et al., 2016; Kumar et al., 2016; Kutlu et al., 2016;
Lee et al., 2018; Fu et al., 2019; Norouzi-Gheidari et al., 2021),
range of motion (Kutlu et al., 2016), and cognitive function (Fu
et al., 2019). The combined interventions were also found to be
interesting, motivating and challenging (Buick et al., 2016; Fu et al.,
2019), and to reduce the burden on clinical therapists (Chou et al.,
2020). However, there is limited evidence to support this novel
approach, and most studies included small numbers of patients,
had no control group and/or examined therapies for home use in
chronic stroke patients. Moreover, controlling FES stimulation still
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appears to be a challenge (Meadmore et al., 2012; Buick et al., 2016;
Kutlu et al., 2016; Lee et al., 2018). Existing control mechanisms
were either inaccurate, did not require voluntary patient effort, or
were complex, expensive and time-consuming and therefore not
feasible in the hospital setting. In contrast, using a contralaterally
controlled FES with kinematic sensing gloves seems feasible for
home use (Fu et al., 2019). A similar approach using FES with
the contralateral unimpaired hand controlled via EMG with a
commercially available stimulation device also appears feasible and
easy to use but has not yet been studied in combination with SG
(Krewer et al., 2008). Accordingly, the aim of the present work is
to investigate whether the combination of SG and contralaterally
EMG-triggered FES is feasible, and what factors might influence
the feasibility of the combined therapy system. Another objective
is to investigate the benefit from the additional use of FES while
playing SG.

2. Materials and methods

2.1. Participants

Patients in an inpatient rehabilitation hospital (Schoen Clinic
Bad Aibling) were screened for study eligibility based on the
following inclusion criteria: (i) ischemic or hemorrhagic stroke, (ii)
age ≥18 years, (iii) cognitively able to follow instructions, (iv) no
pain or low pain level in wrist or fingers of both limbs (Numerical
Rating Scale/Pain scale <4), (v) functional impairments in wrist
and fingers of one limb (Medical Research Council scale score
(MRC) ≤4), (vi) no rigid spasticity in the affected limb (Modified
Ashworth Scale (MAS) ≤3), and (vii) able to sit in a chair for
the duration of the session (about 1 h). Study-related and device-
related exclusion criteria were (i) pregnancy, (ii) severe psychiatric
disorders, (iii) active implantable devices (e.g., pacemaker), or
other metal implants within the stimulation area, (iv) severe
or frequent epileptic seizures in the past, (v) cancer, and (vi)
wounds in the application area of the electrodes or measuring
equipment. In addition, patients with no sensitivity in wrist or
fingers and no motion resulting from FES (e.g., due to atrophy
or polyneuropathy) were excluded from the study. A botulinum
toxin injection during study participation led to study termination.
The study was approved by the Ethics Committee of the Ludwig-
Maximilians University (LMU) Munich, Germany (registration
number: 21-0270), and registered with the German Clinical Trials
Register (registration number: DRKS00025761).

2.2. Study design

In this randomized crossover trial, the feasibility of serious
gaming (SG) was compared to SG supported by FES (SG+FES).
Each participant first underwent a baseline assessment to determine
their current functional status. Patients received two consecutive
training sessions of SG alone (control condition) and two
consecutive training sessions of SG+FES (experimental condition).
Whether they started with or without FES support, was randomized
with an allocation ratio of 1:1. Randomization with different block

sizes of four and six, was done using sealed envelopes. Due to the
nature of the trial, patients, therapists and assessors were not blind
to the group allocation. Each session lasted about 45 to 60min.
Between the conditions at least an 1-day washout period was
scheduled to lower the risk of carryover effects from the previous
intervention (Dwan et al., 2019). All four sessions were completed
within the timeframe of 2 weeks. The schematic of the study design
is illustrated in Figure 1.

2.3. Intervention

The intervention in each condition consisted of performing
serious gaming exercises with (SG+FES) and without (SG) FES
support of the affected hand. Study participation did not affect the
standard therapies during the rehabilitation stay, which took place
to the usual extent.

For the gaming scenario, the Rehabilitation Gaming System
(RGS; Eodyne Systems S.L., Barcelona, Spain), a VR-based
rehabilitation tool, was used in both conditions. The RGS
platform provides gamified and engaging exercises for effective and
functional recovery of motor and cognitive functions, validated in
stroke patients (Cameirão et al., 2009, 2011; Ballester et al., 2017).
The system integrates a motion sensor (Leap Motion, Inc., San
Francisco, United States) to capture hand movements in real time,
which can be mapped to a hand- and forearm-like virtual avatar
on a computer screen, allowing the player to interact with the
game scenario. In the current trial, the Bubbles scenario was used,
which targets grasping, reaching and bi-manual coordination. In
this scenario, bubbles rise from a lake which need to be burst to
score points by catching the bubbles with an open hand, and then
closing the hand to bust. The exercise can be tailored to the user.
The side of appearance of the bubbles can be adjusted. For this trial,
the side of appearance of bubbles was set to the patient’s paretic
side to encourage the use of the impaired hand. Furthermore, the
size of the bubbles can be set according to the patient’s ability
to open and close the hand, and the speed of the game can be
adjusted by increasing the frequency of the rising bubbles. Size and
speed were adjusted for each patient individually. Regarding the
size, the smaller the bubbles, the less the user must open the hand,
but the more they must close it to make them burst. Accordingly,
smaller bubbles were chosen for patients who could not open their
hand completely, or who had good ability in closing the hand, to
make the task challenging. As the size equaled different scoring
values, ranging from very large (one point per bubble) to very
small (ten points per bubble), size and speed were adjusted only
at the beginning of each game and documented for each patient
to make the sessions comparable. Patients were seated in front
of a large screen on which the game was displayed. The motion
sensor was placed on the table in front of the patient. If needed,
the proximal part of the arm (i.e., the elbow and forearm) was
supported and guided by the therapist to move the arm toward the
bubble, allowing the patient to concentrate on opening and closing
the hand. The current total score was constantly visible at the top of
the screen, and in the end of each game the performance was ranked
in comparison with previous games. A briefing and explanation
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FIGURE 1

Scheme of the study design.

FIGURE 2

The Bubbles scenario (SG+FES) of the Rehabilitation Gaming System, including a motion sensor in front of the patient to track wrist and finger

movements as well as a mouse and keyboard to change gaming parameters. A therapist is providing proximal support. Stimulating electrodes are

placed on the left wrist extensors, EMG electrodes on the right wrist extensors. The patient’s informed consent was obtained for publishing photo

material.

of the game scenario was scheduled for the first session. For each
session a total game duration of 30min was targeted, which was
divided into three separate games of 10min each. For patients who
were unable to play the game due to insufficient hand opening to
grasp a bubble, the session was terminated after a few minutes.
Otherwise, there was a short break between the games to reduce
muscle fatigue. The set-up of the system is shown in Figure 2.

During the SG+FES session, finger and wrist extension were
supported by electrical stimulation using the STIWELL med 4
(MED-EL Elektromedizinische Geräte GmbH, Innsbruck, Austria).
To facilitate finger and wrist extension, a pair of self-adhesive
electrodes was attached to each forearm targeting extensor carpi
ulnaris, extensor digitorum communis, and partially also extensor

carpi radialis muscles (Krewer et al., 2008). The myoelectric activity
from the non-paretic contralateral side was used to trigger the
stimulation when a set EMG threshold was reached. Further, we
refer to this form of stimulation as contralaterally controlled FES
(ccFES). Thus, patients could decide at which time the stimulation
should be triggered. The opening of the affected hand is then
delayed by about one second after activating the hand extensor
muscles of the non-paretic limb. The schematic of EMG-based
ccFES is illustrated in Figure 3.

Biphasic square-wave pulses with a frequency of 35Hz and
a pulse width of 250 µs were used for stimulation. The muscle
contraction/relaxation time ratio was set to 2/1 s on/off time.
Therefore, 2 s of stimulation were followed by one second of

Frontiers inNeurorobotics 04 frontiersin.org65

https://doi.org/10.3389/fnbot.2023.1168322
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Höhler et al. 10.3389/fnbot.2023.1168322

FIGURE 3

Scheme of EMG-based ccFES. Two electrodes are placed on each forearm. First, both hands are closed (A). Then the non-paretic hand (left hand)

opens (B). Muscle activity is recorded by EMG and exceeds a set threshold. Stimulation of the a�ected paretic hand (right hand) is triggered. Wrist and

finger extensor muscles of the a�ected hand contract and the hand opens (C).

pause. The stimulation included no ramping-up and ramping-
down period to insure fast reaction on the game. However, in
patients with instable wrists, a ramping-up and ramping down of
0.5 s was added to reduce strain on the structures. The stimulation
intensity (mA) and EMG-threshold (µV) was set individually
for each patient. Therefore, the intensity was slowly increased
until the first muscle twitch was seen and was further increased
to the level that produced maximum wrist and finger extension
without discomfort or pain. The EMG threshold was set to trigger
stimulation when the non-paretic hand was opened without much
effort. For integrating the stimulation to the gaming therapy, there
are two different ways: Either the patient opens the unaffected hand
first, which triggers the stimulation and leads to the opening of the
affected hand, or the patient opens both hands simultaneously and
the function of the affected hand is supported by the stimulation.
The second option is only possible if the patient can open the hand
volitionally. The procedure of the game in the SG+FES condition
is as follows: (i) A bubble rises from the lake, (ii) patient opens
his unaffected hand/both hands at the same time, (iii) the muscle
activity exceeds the EMG threshold and triggers the stimulation on
the affected side, (iv) short time later the affected hand opens/the
hand opening improves, (v) the hand motion is detected by the
sensor and displayed as virtual motion by the avatar, (vi) the digital
avatar catches the bubble with the opened hand, (vii) the bubble
attaches to the avatar’s hand, (viii) the patient closes the affected
hand volitionally (including use of gravity) or with the support of
the therapist, (ix) the bubble bursts and points are collected.

2.4. Outcome parameters

Baseline patient characteristics including sociodemographic
characteristics, severity of impairment, cognition (Montreal
Cognitive Assessment, MoCA) (Nasreddine et al., 2005), pain, and
technical affinity were collected before the interventions. For more
details see Table 1. Assessments were performed immediately after
completing each condition (see Figure 1).

2.4.1. Primary outcomes
Feasibility of the therapy system was assessed after each

condition using the Intrinsic Motivation Inventory (IMI), the Nasa
Task Load Index (NASA-TLX), the System Usability Scale (SUS),
and the vertical numerical rating scale (NRS-FRS) for perceived
fatigue. Patients either filled the questionnaires by themselves or
with the support of the supervising researcher.

The patients’ motivation during the respective interventions
was assessed using the IMI, a multidimensional questionnaire
designed to evaluate motivational structures for performing given
tasks in laboratory experiments (McAuley et al., 1989; Dec et al.,
1994). In recent years, the use of the IMI has become widespread
in stroke rehabilitation research. Monardo, Pavese (Monardo
et al., 2021) also recommend the use of the IMI to assess
patient motivation and satisfaction during technology-assisted
rehabilitation. For the purpose of the study, a shorter version
with a total of 20 items was selected (Bergmann et al., 2018).
It contains the following five subscales relevant for our study:
interest/enjoyment, value/usefulness, effort, perceived competence,
and felt pressure and tension. Four items per subscale were
included and rated on a seven-point Likert scale from “strongly
disagree”/1 to “strongly agree”/7. The original questionnaire was
translated into German and slightly modified to adapt them to
the given task. The subscale interest/enjoyment directly reflects the
patient’s intrinsic motivation, whereas the other concepts influence
intrinsic motivation and self-regulatory behavior. For example, it
is assumed that individuals internalize and become self-regulating
when they can identify with an activity’s value (Dec et al., 1994). The
total score and the score per subscale were calculated by averaging
the respective items.

The NASA-TLX is a multidimensional rating scale for
measuring a person’s subjectively perceived workload during or
shortly after completing a given task (Hart and Staveland, 1988).
The measurement tool comprises a total of six subdimensions of
workload: mental demand, physical demand, temporal demand,
performance, effort, and frustration. The subscales are presented
on straight lines with the endpoints low and high on which patients
mark the point that best represents their subjective perception of
workload of the given task (NASA Ames Research Center, 1986).
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TABLE 1 Demographic and clinical patient characteristics (n = 18).

Parameter M (SD), min-max; or
number

Age [years] 62.1 (14.1), 40–86

Sex (men/women) 15/3

Type of stroke (ischemia/hemorrhage) 11/7

Side of paresis (left/right) 7/11

Time after stroke [months] 2.4 (1.6), 1.0–7.3

Fugl-Meyer Assessment (FMA)

FMA—upper extremity motor
function (0–66)

26.1 (18.6), 4–59

FMA—hand/part C (0–14) 6.4 (4.6), 0–13

FMA—sensory function (0–12) 9.1 (3.7), 0–12

Categorization (severe,
0–28/moderate, 29–42/mild, 43–66)

11/3/4

Montreal Cognitive Assessment
(MoCA, 0–30)

23.7 (5.6), 10–28 (12 normal, 2 mild, 4
moderate)

Modified ashworth scale (max value;
0/1/1+/2/3)∗

5/4/5/2/2

Tardieu scale (max value; 0/1/2/3/4)∗ 5/2/7/4/0

Medical research council scale∗

Finger extensors (0/1/2/3/4/5) 3/8/1/2/4/0

Wrist extensors (0/1/2/3/4/5) 4/6/1/4/3/0

Mean maximum grip strength [kg]

Paretic hand 4.9 (6.4), 0–22.8

Non-paretic hand 30.5 (11.0), 7.6–48

Technical Affinity questionnaire—Total
score (TA-EG, 0–5)

3.6 (0.7), 2.5–4.5

TA-EG—Enthusiasm (0–5) 3.6 (1.1), 1.6–5.0

TA-EG—Competence (0–5) 3.8 (0.9), 1.8–5.0

TA-EG—Positive attitude (0–5) 3.9 (0.8), 2–5

TA-EG—Negative attitude (0–5) 3.2 (0.6), 1.8–4.4

AMoCA score of 26 or above is considered normal; a score from 18–25 is considered a mild,

10–17 a moderate, and less than 10 points a severe cognitive impairment. ∗individual values

are shown in Supplemental Table 1.

For scoring, the line is divided into 20 equal intervals marked by
vertical ticks. The position of the marker is then rated numerically
on a scale from 0 to 100, with five points for each interval. If a
subject marks between two ticks, the value is rounded up. The
value of each subscale is measured and represents a unique score.
The mean value of the subscales gives the overall RAW-TLX
score between 0 and 100, whereas a higher score indicates greater
perceived workload (Hart, 2006). The German version of the RAW-
TLX was used. The term NASA-TLX is retained in the following
for simplification.

Testing usability during and after the development of a product
or system is an incredibly important process (Peres et al., 2013).
The patients’ perceived usability of the therapy system (SG and
SG+FES) was assessed using the SUS. Thereby usability is defined
as the appropriateness of a system or tool to a purpose or to a

context in terms of effectiveness (success), efficiency (effort), and
satisfaction (level of comfort). The SUS comprises a total of ten
items, which are rated on a five-point Likert scale from “strongly
disagree”/0 to “strongly agree”/4 (Brooke, 1996). The SUS was
proven to be a valid and reliable instrument (even with small
samples) for assessing the overall perceived usability of a wide
range of products and services (including health care devices).
In this study, a translated German version of the SUS was used
and the term “system” was changed to “therapy system” for better
suitability (Bangor et al., 2008). In addition, a rating scale was
used to determine the degree to which the patient perceived
ccFES as supportive or as disturbing. The rating scale consists of
a ten-centimeter horizontal line divided into 20 equal intervals
marked by vertical ticks with the endpoints “disturbing”/0 and
“supportive”/10. The higher the value, the more supportive the
ccFES was perceived to be.

After each therapy session, the level of perceived fatigue was
assessed using a vertical numerical rating scale supplemented
by faces (NRS-FRS) (Chuang et al., 2015). The tool is easy to
administer and has shown a high sensitivity and specificity in
assessing fatigue intensity in patients with stroke. In addition,
compared to the normal numerical rating scale (NRS), it may
be more suitable for patients who lack cognitive and visuospatial
functions. The NRS-FRS scale consists of a ten-centimeter vertical
line with a rating scale from “no fatigue”/0 to “worst possible
fatigue”/10 and six facial expressions (from smiling to crying).
Patients were asked to rate their perceived overall fatigue level by
pointing to a number on the scale that best represented it. Based on
the score assigned, fatigue can be categorized as no fatigue (0), mild
(1–3), moderate (4–6), or severe fatigue (7–10).

Lastly, adverse events were documented.

2.4.2. Secondary outcomes
Gaming parameters (duration and score) were recorded during

each session to assess the orthotic efficacy of the therapy system.
The gaming duration was defined as the amount of time spent
performing the serious game per session, whereas the score was
defined as the total number of points achieved during therapy
per session. To make the scores comparable between the sessions
and conditions, the total number of points were divided by the
level of difficulty (bubble size). Thus, the number of points also
corresponds to the number of successful hand opening and closing
repetitions. The patient’s performance was automatically saved in a
remote medical information management system and additionally
noted on a documentation sheet. For both parameters, the mean
value for each condition was used for analyses.

2.5. Data and statistical analysis

Descriptive statistics (mean, M; standard deviation, SD;
median, Mdn; Q1–Q3, quartile 1–quartile 3) are used to describe
the study population and outcome variables. Outcome variables
were first tested for normality using the Shapiro-Wilk test.
For between-condition comparisons, paired-sample t-tests or
Wilcoxon signed-rank tests were performed. In addition, subgroup
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Wilcoxon tests were performed with classification of patients
based on disease severity and spearman rank correlations (non-
parametric test for ordinal or metric data) were used to analyze
relationships between feasibility and (1) time since stroke, (2) age,
(3) technical affinity, and (4) degree of cognitive impairment. The
alpha level was set to.05. Inferential analysis was performed using
IBM SPSS Statistics 27 and visualization was done in RStudio.

3. Results

3.1. Baseline

Between June and September 2021, and April and November
2022 inpatients at the Schoen Clinic Bad Aibling were screened
for eligibility (see criteria in Section 2.1). Figure 4 shows the
patients’ flow through the study. Of 400 patients who were
assessed for eligibility, 294 patients did not meet the previously
defined inclusion criteria. The top three reasons for not meeting
the inclusion criteria were: only fine motor impairments in the
paretic hand (inclusion criteria v), not being able to sit upright
for more than 1 h (inclusion criteria vii), or not being able to
follow instructions due to cognitive or language impairments
(inclusion criteria iii), in 21%, 13%, or 12% of the excluded patients,
respectively. Three patients declined to participate. Other reasons
for not being able to participate (n = 82) were e.g., a hospital stay
shorter than 2 weeks, or a language barrier due to the inability to
understand or speak German.

In the end, 21 of the screened patients were included
in the study of which one patient dropped out before study
participation and two patients after baseline assessment (see
Figure 4). Demographic and clinical characteristics of analyzed
patients (n= 18) are shown in Table 1.

3.2. Primary outcome parameters

The IMI, NASA-TLX and SUS questionnaires as well as the
perceived fatigue level provide subjective measures of feasibility.
Questionnaire results are reported for both conditions in Table 2.

Comparing the IMI scores between conditions, the statistical
values indicate a significant increase in the patients’ perceived
competence (z =−2.88, p= 0.004) and a decrease in the perceived
pressure/tension during ccFES supported training (z = −2.13, p
= 0.034). Furthermore, the task load was rated significantly lower
in the SG+FES condition (z = −3.14, p = 0.002). The subscale of
physical demand showed lower values (z = −3.08, p = 0.002) and
performance higher values (z =−2.59, p= 0.010) for the SG+FES
condition. Responses to the SUS did not differ significantly between
conditions (z = −0.79, p = 0.431). Also, the perceived level of
fatigue showed no significant difference (z = 1.57, p= 0.115).

The technical and user documentation revealed that the
addition of ccFES was perceived as very supportive (Mdn = 9.0,
Q1–Q3 = 7.8–10.0). However, 16 of the 18 patients (mild: 2/4,
moderate: 3/3, severe: 11/11) needed proximal support of the
paretic arm, which was given by the therapist.

3.3. Factors influencing feasibility

A subgroup analysis reveals the severity of the hemiparesis as
a factor that had an influence on the feasibility of using SG+FES
compared to SG alone. Mildly and moderately impaired patients
perceived no difference in feasibility between conditions (p ≥

0.068). However, patients with a severe hemiparesis remarked
a significantly higher task load during the therapy when they
were not supported by ccFES (MdnSG = 50.0, Q1–Q3SG = 41.7–
58.3, MdnSG+FES = 35.8, Q1–Q3FES+SG = 16.7–47.5, z = −2.1,
p = 0.033). Furthermore, their intrinsic motivation was higher
when playing the game with ccFES support (MdnSG = 4.9, Q1–
Q3SG = 4.6–5.5, MdnSG+FES = 5.5, Q1–Q3SG+FES = 5.3–5.8,
z =−2.0, p= 0.046).

The patients’ technical affinity showed a positive correlation (r
= 0.46) with the feasibility of the SG+FES condition, assessed by
the SUS, which is tending toward statistical significance (p= 0.053).
Factors such as age, time since stroke and the degree of cognitive
impairment (according to the MoCA) did not correlate with any
feasibility assessment of the SG+FES condition (p ≥ 0.192).

3.4. Secondary outcome parameters

Since one patient (severely impaired) received physical support
in hand opening and closing by the therapist, the online effect
of ccFES was analyzed in 17 patients. Gaming parameters (i.e.,
the gaming score and the session duration) were compared
between SG+FES and SG condition. Overall, the support by
ccFES showed a significant effect on the gaming duration (z
= −2.41, p = 0.016) enabling longer training times. With the
support of ccFES, patients played on average 27.7 (SD = 4.5,
min = 16.3) minutes, while the training lasted on average 17.8
(SD = 14.2, min = 0) minutes without ccFES. In Figure 5, the
difference in gaming duration is grouped according to the severity
of impairment. For patients with a mild or moderate hemiparesis,
the therapy duration was not expanded by the addition of ccFES
support. However, only few severely impaired patients (4/10),
were able to play the therapy game without ccFES support at
all (10.3 ± 14.2min), but the support by ccFES enabled them
to train on average 28.0 (SD = 4.2) minutes (z = −2.41, p =

0.016). Overall, the gaming duration of ccFES supported trials
ranged from 20 to 30min. Factors preventing the patients from
finishing the 30min of therapy included muscle fatigue, general
fatigue, shoulder pain, and time pressure due to the patient’s
therapy schedule.

With respect to the gaming score, patients achieved a 50.5
points higher score when they were supported by ccFES (183.0 ±

97.5 points) compared to no support (132.5 ± 146.2 points). This
effect reached statistical significance (t(16) = −2.17, p = 0.045).
Subgroup analyses reveal a significant online effect of ccFES leading
to an increase of on average 84.9 (95%CI = 22.8–147.0) points in
the group of severely impaired patients (t(9) = −3.09, p = 0.013).
As visualized in Figure 6, there is no clear pattern for mildly and
moderately impaired patients; some profited from ccFES support,
others achieved less points in the SG+FES condition.
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3.5. Harms

Neither FES nor the gaming scenario itself led to any serious
adverse events. By following the manufacturer’s instructions,
device-related exclusion criteria were set to reduce the risk of
harms. During recruitment, attention was given to not include
patients with allergies to adhesive material. Reactions to the
stimulation include temporary redness of the skin, most likely
induced by an increase in blood flow. Pain in the shoulder or at
the back of the hand was recorded as side effect of the general
intervention by two patients, leading to an earlier termination of
the therapy session (after 15–20 min).

4. Discussion

4.1. Feasibility of the system

The feasibility of combining a SG application with ccFES was
investigated within the population of subacute stroke patients in

the design of a randomized crossover study. It was demonstrated
that the combination of SG with EMG-based ccFES is feasible,
safe and well-accepted among patients after stroke. Overall, both
conditions were perceived as motivating, and were rated to be
at an appropriate task load. The SUS score was high in both
conditions, with 85.0 points in SG and 82.5 points in SG+FES
condition, which is considered as good according to the existing
literature (Bangor et al., 2008, 2009). Thus, the results indicate
that both systems are easy to learn for most people, easy to use
without much technical support and not too complex, inconsistent
or awkward. In addition, most subjects felt confident in using
the therapy systems and could imagine using those regularly.
The results of the IMI show that both conditions were with a
median score of 5.5 (SG+FES) and 5.3 (SG) perceived as enjoyable
and valuable, and thus patients were motivated during therapy.
This is in line with previous work (Buick et al., 2016; Fu et al.,
2019; Doumas et al., 2021). When ccFES support was provided,
patients perceived a significantly higher level of competence and
experienced significantly less pressure. This is also evident in
the results of the NASA-TLX, which show a significantly lower

FIGURE 4

The patients’ flow through the study. SG, Serious Gaming; SG+FES, contralaterally EMG-triggered FES.
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TABLE 2 Feasibility scores for both conditions and the inferential comparison between conditions.

Outcome parameters SG+FES
Mdn (Q1–Q3)

SG
Mdn (Q1–Q3)

Statistical values

IMI (0–7)∗ 5.5 (5.3–5.8) 5.3 (4.8–5.5) z =−1.66, p= 0.097

Interest/enjoyment 7.0 (6.8–7.0) 6.7 (6.2–7.0) z =−1.11, p= 0.265

Value/usefulness 6.8 (6.0–7.0) 6.8 (6.2–7.0) z =−0.61, p= 0.539

Effort 7.0 (6.4–7.0) 6.8 (5.5–7.0) z =−0.72, p= 0.473

Perceived competence 5.9 (4.8–6.6) 4.9 (2.5–5.5) z =−2.88, p= 0.004

Pressure/tension 1.8 (1.0–2.5) 2.3 (1.0–3.0) z =−2.13, p= 0.034

NASA-TLX (0–100)∗ 32.9 (22.9–46.9) 49.2 (37.1–58.7) z =−3.14, p= 0.002

Mental demand 47.5 (25.0–76.3) 50.0 (17.5–53.8) z =−0.42, p= 0.678

Physical demand 50.0 (13.8–76.3) 72.5 (50.0–90.0) z =−3.08, p= 0.002

Temporal demand 42.5 (18.8–50.0) 50.0 (23.8–50.0) z =−0.54, p= 0.593

Performance 20.0 (10.0–37.5) 52.5 (25.0–96.3) z =−2.59, p= 0.010

Effort 30.0 (20.0–52.5) 62.5 (23.8–50.0) z =−1.85, p= 0.064

Frustration 5.0 (0.0–25.0) 12.5 (3.8–31.3) z =−1.07, p= 0.284

SUS (0–100)∗ 85.0 (71.9–90.6) 82.5 (74.4–88.1) z =−0.79, p= 0.431

Perceived fatigue level (0–10)∗ 4.5 (2.3–6.5) 2.5 (0.0–6.1) z = 1.57, p= 0.115

IMI, Intrinsic Motivation Inventory; NASA-TLX, Nasa Task Load Index; SG, Serious Gaming; SG+FES, Serious Gaming plus contralaterally EMG-triggered FES; SUS, System Usability Scale.
∗individual values are shown in Supplementary Table 2.

FIGURE 5

Individual changes (n = 17) in therapy duration [min].

workload when the movement was support by ccFES with a median
of 32.9 points, compared so SG only with a median of 49.3 points.
Specifically, the physical and temporal demand was significantly
lowered by ccFES. In general, patients rated the stimulation as
supportive rather than distracting. However, almost 90% of patients
needed proximal anti-gravity support in order to participate in
the therapy. This points out the strong need of adding a proximal
robotic component (e.g., lightweight exoskeleton) to the system.

FIGURE 6

Individual changes (n = 17) in gaming score [points].

Our results thus proof that the combination of SG and EMG-
based ccFES is as feasible as SG alone, and in some aspects
even superior to SG alone. According to previous research,
the implementation of such a combined therapy is expected to
have additional benefits on motor recovery. By adding ccFES to
SG, the following principles are incorporated and complement
each other. SG delivers individualized, task-specific training in a
multisensory environment, including visual and auditory feedback
on performance and results (Cameirão et al., 2009). In addition, it
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promotes the active execution ofmovements of the paretic limb and
observation of movement through an avatar representation on the
computer screen (Cameirão et al., 2009). Moreover, controlling FES
with the contralateral side encourages bilateral arm movements,
which can be beneficial in improving motor recovery after stroke
(Cauraugh and Kim, 2002). Doumas, Everard (Doumas et al., 2021)
demonstrated that a greater focus on these principles increases the
efficacy of SG therapies.

The investigation of factors that influence the feasibility of
the combined system revealed the severity of the upper limb
hemiparesis as one aspect. Especially, severely impaired patients
rated the SG+FES condition as motivating and supportive, in
terms of reducing the task load. Since the age of the participants,
the time since stroke and the degree of cognitive impairments
had no influence on the feasibility of the combined training, the
results imply no restrictions in therapy prescription. However, it
has to be highlighted that the time since stroke for the investigated
study cohort was seven months or shorter (without specification
in the inclusion and exclusion criteria). Solely, technical affinity is
a potential influencing factor of feasibility. Patients with a higher
technical affinity tend to rate the combined approach even more
positive, potentially because they are in general more open for new
technologies and less afraid to use them.

4.2. Orthotic e�ect

Only patients with sufficient residual movement activity were
able to play the game under the SG condition without ccFES,
while it was possible for all patients under the SG+FES condition
regardless of impairment. This becomes evident in the significant
increase in therapy time in the combined training compared to
unassisted SG. More than half of the severely impaired patients
were not able to perform the game without assistance, so ccFES
enabled them to execute the SG at all. Obviously, this group
of severely impaired patients were those who had the strongest
orthotic effect in terms of therapy duration. ccFES facilitated
these patients to increase the therapy intensity and the number
of repetitions of hand opening, which could potentially lead to an
increased rehabilitation outcome for the severely affected patients.

When comparing the success achieved in the game indicated by
the resulting scores, ccFES led to an orthotic effect. However, only
the performance of patients with a severe hemiparesis significantly
improved under ccFES support. In contrast, patients with mild to
moderate impairment showed little or no gain in their performance
in the SG+FES condition.

Although moderately and mildly impaired patients did not
show any orthotic effect, a therapeutic effect of the combined
SG+FES application might still be possible due to the increased
sensory information. It is worth to highlight that the control of
the additional ccFES component did not lead to any disadvantage,
neither in feasibility nor in work load. A therapeutic effect, however,
needs to be investigated in future studies, as this was not addressed
in the here presented trial. That would even mean to focus
on different outcome parameters to investigate the therapeutic
effect (e.g., Action Research Arm Test, Barthel Index, Functional
Independence Measure).

4.3. Strengths and limitations

To our knowledge, this is one of the few studies demonstrating
the feasibility of combining serious gaming with ccFES using a
randomized controlled design and the first study using ccFES
for this purpose. Some study-related weaknesses, however, were
identified that limit the interpretability and generalizability of the
results. The patients and the research team were not blinded with
respect to the applied interventions. However, the research team
itself did not rate feasibility nor the orthotic efficacy of the system.
Rather was the assessment of the orthotic effect captured by means
of the gaming system. Also, regarding the subjective report of
feasibility by the participating patients, the patients have to be
aware of the different gaming conditions to better evaluate the
feasibility. Therefore, the potential risk of bias due to the lack of
blinding is considered to be low. Despite possible biases due to self-
reporting, such as recall bias, the inclusion of patients’ opinions and
needs in a participatory design is necessary for the rehabilitation
system to be user-friendly and accepted by patients. Since the vast
majority of patients did not show cognitive impairments, it is not
expected that many patients could not recall the therapy sessions,
which were performed right before answering the questionnaires.
Regarding the sample size, it is important to note that the focus
of this work was to demonstrate the feasibility of the concepts of
combining serious gaming with EMG-based ccFES in a hospital
setting, instead of testing the efficacy in upper limb rehabilitation.
Future work is needed to verify these results with a larger number
of participants, especially to perform higher powered sub-group
analysis according to the severity of the hemiparesis. Lastly, there
are some limitations of the system when thinking about using it
at home. For an application of the system at home, it is necessary
to allow the patient to train without support of a therapist, and
therefore the following implications were derived. The goal of
the Bubbles scenario of the RGS system was to burst bubbles by
opening and closing the hand. The extension of the fingers and
the opening of the hand were supported by ccFES. However, to
successfully score points, finger bending is also essential, which
was not supported in the current study. For patients with very
limited flexion, it was not possible to play the game without
the therapist manually closing the hand. Therefore, not only the
extensor but also the flexor muscles of the fingers should be
stimulated with ccFES. Furthermore, the bubble game of the RGS
system required a good proximal arm function to be able to hold
the hand independently over the motion sensor and thus to be able
to play the game. However, since proximal arm function was not
sufficient in almost all patients and no arm support system was
planned for the study, the therapist had to physically assist the
proximal joints

Our findings provide valuable implications for the development
of rehabilitation systems by combining different therapeutic
interventions to increase patients benefit. The combined approach
provides individualized, task-specific rehabilitation with the
potential to increase therapy intensity, especially for severely
impaired patients with muscle weakness, and to maintain patients’
motivation and engagement. To bring this therapy system from
a hospital setting to home use, the integration of an additional
arm support system (e.g., exoskeleton) would be necessary,
as shown to be feasible in two studies investigating SG+FES
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(Meadmore et al., 2012; Kutlu et al., 2016). Such a hybrid
combination of robotic and FES has already been studied and
makes a proportion of about 25% of existing hybrid systems,
as shown in a recent review (Höhler et al., 2023). As another
solution, either in addition or as an alternative to FES, the
distal functions could also be supported by integrating a hand
support system [e.g., hand exoskeleton (Prange-Lasonder et al.,
2017)]. The combined use of robotic and FES support for hand
functions, however, has not yet been studied (Höhler et al.,
2023).
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Introduction: The rise of soft robotics has driven the development of devices

for assistance in activities of daily living (ADL). Likewise, di�erent types of

actuation have been developed for safer human interaction. Recently, textile-

based pneumatic actuation has been introduced in hand exoskeletons for

features such as biocompatibility, flexibility, and durability. These devices have

demonstrated their potential use in assisting ADLs, such as the degrees of freedom

assisted, the force exerted, or the inclusion of sensors. However, performing ADLs

requires the use of di�erent objects, so exoskeletons must provide the ability to

grasp andmaintain stable contact with a variety of objects to lead to the successful

development of ADLs. Although textile-based exoskeletons have demonstrated

significant advancements, the ability of these devices to maintain stable contact

with a variety of objects commonly used in ADLs has yet to be fully evaluated.

Materials and methods: This paper presents the development and experimental

validation in healthy users of a fabric-based soft hand exoskeleton through

a grasping performance test using The Anthropomorphic Hand Assessment

Protocol (AHAP), which assesses eight types of graspingwith 24 objects of di�erent

shapes, sizes, textures, weights, and rigidities, and two standardized tests used in

the rehabilitation processes of post- stroke patients.

Results and discussion: A total of 10 healthy users (45.50 ± 14.93 years old)

participated in this study. The results indicate that the device can assist in

developing ADLs by evaluating the eight types of grasps of the AHAP. A score of

95.76 ± 2.90% out of 100% was obtained for the Maintaining Score, indicating

that the ExHand Exoskeleton can maintain stable contact with various daily living

objects. In addition, the results of the user satisfaction questionnaire indicated a

positive mean score of 4.27 ± 0.34 on a Likert scale ranging from 1 to 5.

KEYWORDS

hand exoskeleton, soft robotics, soft actuators, activities of daily living, assistive

technologies

1. Introduction

Stroke is a leading cause of mortality and disability worldwide (Feigin et al., 2022).
Common effects of stroke include communication impairments, balance and coordination
deficits, reduced strength andmotor control, and joint stiffness caused by spasticity (Murphy
and Werring, 2020). In addition to these physical impairments, stroke survivors often
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experience dependence on others for activities of daily living
(ADLs), altered mood, and impaired social interaction (Schultz
et al., 1997), which can significantly diminish their overall quality
of life.

Hand function loss is one of the most common impairments
experienced by stroke survivors (Liu et al., 2018). Given that the
hand is critical for performing many activities of daily living,
including self-care, eating, writing, washing, and dressing, this
impairment can significantly affect a person’s independence and
quality of life. The hand’s complexity, with more than 20 degrees
of freedom (DoFs) and a wide range of motion (RoM) in each
joint, enables it to execute various movement patterns for grasping
different objects (Kapandji, 1971). Thus, restoring hand function is
essential for the rehabilitation of a stroke survivor.

The primary goal of stroke rehabilitation is to improve patients’
quality of life and achieve the highest level of independence
possible for each individual (Kelley and Borazanci, 2009; Good
et al., 2011). This process typically begins with an evaluation of
the patient’s condition, which may include the use of outcome
measures (Fetters and Tilson, 2018). Based on this assessment, the
therapist will develop an individualized rehabilitation program that
includes a series of exercises aimed at improving motor recovery
and increasing hand and finger strength, dexterity, and range of
motion (RoM).

However, hand rehabilitation is a long-term process that
requires patience, persistence, andmany repetitive exercise routines
that involve interaction between the patient and therapist, making
it a laborious and costly process. As a result, many stroke survivors
discontinue therapy before achieving the maximum potential for
hand function recovery (Mohammadi et al., 2018).

Advancements in technology have led to the emergence of hand
exoskeletons, which aid in rehabilitation therapies and assist with
activities of daily living (ADLs). Hand exoskeletons are soft robotics
devices that are inspired by biological systems and are designed
to be safer for humans (Hsiao et al., 2019). This technology
uses soft and flexible components such as polymers (Rus and
Tolley, 2015; Whitesides, 2018) to reduce size, complexity, weight,
and cost (Ferguson et al., 2020). Furthermore, soft robotics has
inspired the development of actuator designs for hand exoskeletons
that perform movements kinematically similar to natural human
joint movements (Whitesides, 2018). As a result, safe, lightweight,
portable, and affordable devices have been developed.

Hand exoskeletons based on soft robotics have proven to be
effective in recovering hand function (Aisen et al., 1997; Carmeli
et al., 2011). In particular, these devices have drastically reduced
the rehabilitation process’s cost and the workload of therapists by
enabling patients to perform intense repetitive movements (Wolf
et al., 2006; Kutner et al., 2010).

Recently, the use of textile-based pneumatic actuation has been
explored in the development of hand exoskeletons, leveraging the
lightness, softness, flexibility, durability, and biocompatibility of
fabrics (Sanchez et al., 2021; Fu et al., 2022). These properties
are crucial for developing assistive devices (Boser et al., 2020;
du Plessis et al., 2021). For example, researchers have shown
that geometric variations in the textile structure can enhance
the anisotropy, allowing for a wider range of motion and
increased force generated by fabric-based actuators (Cappello et al.,

2018a,b). Soft robotic gloves have been developed using flexible
thermoplastic polyurethane (TPU) coated fabrics for bidirectional
actuation (Yap et al., 2017), and multi-articular actuators and
textile-based capacitance soft sensors have been incorporated into
the next generation of gloves (Zhou et al., 2019). Furthermore, a
study has been conducted to investigate the mechanical properties
of various fabrics, leading to the design of a glove that can assist
in thumb abduction, finger flexion, and extension movements (Ge
et al., 2020). The development of textile-based hand exoskeletons
shows promising results and is an emerging field that could
have significant implications for stroke rehabilitation and ADL
assistance.

Textile-based exoskeletons have shown great potential in
assisting with activities of daily living (ADLs) for post-stroke
patients, particularly in the execution of repetitive motions such as
flexion, extension, and thumb abductionmovements. These devices
can generate the necessary force to grasp most objects commonly
used in daily life, which are estimated to require a distal tip force
of around 7.3 N, as most everyday objects weigh no more than 1.5
kg (Matheus and Dollar, 2010). For example, the devices presented
by Zhou et al. (2019) and Ge et al. (2020) can exert forces of 37 and
47.9 N, respectively.

In addition, a study by Cappello et al. (2018b) demonstrated
how their exoskeleton was able to assist in the rehabilitation
therapy of spinal cord injury (SCI) patients through the Toronto
Rehabilitation Institute Hand Function Test (TRI-HFT), which
includes a manipulation test of 10 objects used in ADLs. However,
while these devices have successfully provided the necessary force
for grasping objects, their ability to maintain stable contact with
various objects commonly used in ADLs has yet to be fully
evaluated. For instance, Gerez et al. (2020) evaluated the grasping
ability of a hybrid exoskeleton on 13 objects from the Yale-
CMU-Berkeley object set, which is a collection of daily living
objects that facilitates benchmarking in robotic manipulation and
grasping (Calli et al., 2015).

Overall, while textile-based exoskeletons have shown promise
in assisting with ADLs, further evaluation of their ability to grasp
and maintain stable contact with various objects is needed to fully
assess their effectiveness in daily life scenarios.

This paper builds upon the work of Ramos et al. (2022)
by integrating textile actuators into an assistive device. In their
study, Ramos et al. demonstrated that pleated textile actuators
with a length of 16 cm and a width of 2 cm are capable of
achieving a distal tip force of 9.18 ± 1.16 N, which is sufficient
force to aid patients in manipulating various daily objects. Based
on this finding, we present the development of a fabric-based
hand exoskeleton, named the ExHand Exoskeleton, designed to
assist stroke survivors with activities of daily living (ADL). Before
its use on post-stroke patients, we experimentally validate the
device on healthy subjects using the Anthropomorphic Hand
Assessment Protocol (AHAP), a protocol developed by Llop-
Harillo et al. (2019) for evaluating anthropomorphic robotic and
prosthetic devices. The AHAP uses 25 objects from the Yale-
CMU-Berkeley object set and quantifies the device’s ability to hold
the objects through eight relevant grasp types. Additionally, we
evaluate the device’s functionality through two outcome measures
commonly used in the rehabilitation process of post-stroke
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FIGURE 1

ExHand Exoskeleton actuator. (A) Textile-based actuator, composed of two balloons for flexion and extension movements and three layers of fabric,

one layer of pleated stretch fabric, and two layers of sti� fabric. (B) Graphical representation of the textile-based actuator components.

patients. Finally, we evaluate the usability of the device through
a questionnaire.

This document is structured as follows: Section 2 details
the development and experimental validation of the ExHand
Exoskeleton. Section 3 presents the evaluation results, and Section 4
compares our results with those of related work while highlighting
advantages and limitations. Finally, we conclude and outline future
work in Section 5.

2. Materials and methods

2.1. The ExHand Exoskeleton

As previously stated, this work presents the development and
evaluation of the ExHand Exoskeleton. This section presents the
exoskeleton actuators, the construction of the hand exoskeleton
ExHand (its mechatronic system and its functionalities), and
finally, the experimental validation of the exoskeleton.

2.2. Exoskeleton actuators

Before using the textile actuators on the hand exoskeleton, their
structure and operation are detailed. Elastic and inelastic fabric
and thermoplastic elastomer (TPE) materials are used to construct
the actuators. Specifically, a rigid fabric and an elastic fabric type,
Lycra (Lycra-Nilon POWER ID-0019-056, Facol, Colombia), were
used to construct the actuator. The construction process is done
by creating a pocket from two layers of rigid fabric and adding a
pleated elastic fabric on top. The fabric-based actuator comprises
three layers of fabric (two layers of rigid material and one layer of
plated stretch fabric) and two TPE balloons housed in the pockets
generated by the fabric layers, as shown in Figure 1. Thus, flexion

and extension movements are achieved by selective pressurization
of the inner balloons.

2.3. Exoskeleton construction

The construction of the ExHand Exoskeleton is first carried
out by searching for a suitable glove. The glove selection was
based on the anthropometric measurements of the Colombian
population (target population) and the glove sizing system used
in Colombia, which uses two dimensions: metacarpal perimeter
and hand length. Figure 2 and Table 1 present anthropometric
measurements of the hand of the Colombian population divided
by gender and percentiles, and Table 2 presents the glove sizes
in Colombia.

An anthropometric design requires adapting the products to
90% of the user population. For this reason, the most commonly
used percentiles in ergonomic design are 5 (smaller people) and
95 (larger people), representing 90% of the population (Robinette,
2012). Therefore, the 95 percentile of the male is selected to ensure
most users’ comfortable use of the exoskeleton. Thus, glove size
nine is the most appropriate for these measurements, as it has a
metacarpal perimeter of 22.9 cm and a hand length of 19.2 cm,
which is very close to the anthropometric measurements of the 95th
percentile of the male (metacarpal perimeter of 22.15 cm and hand
length of 19.90 cm).

Once the glove is obtained, the actuators are placed. To facilitate
the attachment of the actuators to the glove, a cutout is made to
place them from the tip of the finger to the dorsal area of the glove.
As a result, each actuator measured 13, 18.6, 19.6, 18.7, and 16 cm
for the thumb, index, middle, ring, and little finger, respectively.
Thus, the textile actuators were sewn around each finger from the
tip of the finger to the dorsal part of the hand, and a silicone coating
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FIGURE 2

Human hand anthropometric measurements, illustration adapted

from Chaurand et al. (2007).

TABLE 1 Anthropometric measures of the hand in the Colombian

population, males (n = 1,315) and females (n = 785) between 20 and 59

years old (Chaurand et al., 2007).

Gender Female Male

Percentile 5 50 95 5 50 95

1. Wrist width (cm) 4.48 4.93 5.43 5.00 5.58 6.05

2. Hand width (cm) 6.85 7.45 8.03 7.78 8.45 9.08

3. Hand length (cm) 15.43 16.60 17.95 16.83 18.30 19.90

4. Palm length (cm) 8.48 9.23 10.08 9.28 10.28 11.23

5. Wrist perimeter
(cm)

13.53 14.68 16.10 15.20 16.53 17.98

6. Metacarpal
perimeter (cm)

16.58 17.95 19.40 18.85 20.45 22.15

TABLE 2 Glove dimensions according to the Colombian sizing

system (Rincón Becerra and Garc-a-Acosta, 2014).

Glove size
Metacarpal perimeter

of the glove (cm)

Hand length

of the glove (cm)

6 15.20 16.00

7 17.80 17.10

8 20.30 18.20

9 22.90 19.20

10 25.40 20.40

11 27.90 21.50

of Ecoflex 00-30 (Smooth-On, USA) was applied on the palmar area
to generate a non-slip surface to improve grip. Finally, an elastic
band with Velcro was added to fix the glove to the patient’s wrist.
The ExHand Exoskeleton is shown in Figure 3.

2.4. Mechatronics system

The pneumatic system of the ExHand Exoskeleton is composed
of an air pump ROB-10398 (Sparkfun Electronics, USA) of 32
psi of pressure. The ROB-10398 air pump can be used either as
a vacuum pump or an air pump; in this case, the air pump is

used for the ExHand Exoskeleton. For the selective pressurization
of the balloons, a system of 11 solenoid electrovalves (Adafruit,
USA) of three ways in two positions is implemented. Thus, 10
electrovalves control the flexion/extension movements performed
by the selective pressurization of the internal balloons, and one
electrovalve controls the air output. In addition, ten pressure
sensors (MPX4250DP, NXP, Netherlands) have been added to
measure the air pressure entering each of the inner balloons.
Thus, air leakage due to over-pressurization is prevented, and the
pressure can be adjusted to the user’s requirements. The pneumatic
schematic of the ExHand Exoskeleton is presented in Figure 4.

The control of each internal balloon gives the exoskeleton
the ability for the extension balloons to work simultaneously
with the flexion balloons; this enables the exoskeleton to perform
different combinations resulting in different types of grasp such
as power grip, pulp pinch, tripod pinch commonly used in
ADL, or actuate each finger separately if needed. Figure 5 shows
some configurations.

A web interface was developed for the operation of the
exoskeleton; in this interface, different modes of operation are
established, for example, the extension of all fingers, different
grips such as power grip, pulp pinch or tripod pinch, and
depressurization of the system. Also, a configuration panel was
added to adjust the pressure limits for each internal balloon as
required by the user.

Regarding the electronics system, 3 ADCs (ADS1115, Adafruit,
New York, USA) are configured at 860 samples per second to read
the pressure sensors’ data. In addition, four 4-channel MOSFET
switching modules were implemented as electric switches for the
air pump and solenoid valves. Thus, as soon as a command is
received from the web interface, the air pump, and solenoid valves
corresponding to the requested motion are turned on, as shown
in Figure 5A or Figure 5B. Once the pressure set by the user is
reached, the air pump and solenoid valves are turned off to prevent
over-pressurization. In the event of an air leak due to damage to
the internal balloons, the air pump and corresponding solenoid
valve will be kept until the user sends a different command from
the web interface. All the processing and control of the device is
performed by one single board computer (Raspberry Pi 3 B+) with
the official operating system for Raspberry Pi systems based on
Debian, Raspbian OS, and running Robot Operating System (ROS).
In terms of consumption, the Raspberry Pi 3 B+ is sufficient to
power the ADCs and pressure sensors, as each ADC consumes
5 V/150 µA, and each pressure sensor consumes 5 V/7.0 mA.
As for the air pump (12 V, 1 A) and the solenoid valves (5 V,
220 mA), a separate 12 V/5 A power supply and a DC-DC voltage
regulator (LM2596, DFRobot, Shanghai, China) set to 5 V are
used. Finally, Figure 6 illustrates the electronic system and its
connections for clarity.

2.5. ExHand Exoskeleton features

The study by Ramos et al. (2022) found that the textile-based
actuators used to construct the ExHand Exoskeleton achieved a
maximum distal tip force of 9.18 ± 1.16 N and a full bending time
of 1.01 ± 0.33 s. Afterwards, benchtop experiments are performed
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FIGURE 3

The ExHand Exoskeleton. (A) Dorsal side of the ExHand Exoskeleton shows the placements of the textile actuators on the glove. (B) Palmar side of

the ExHand Exoskeleton, the coating of EcoFlex 00-30, and how the elastic band fixes to the user’s wrist are shown here.

FIGURE 4

Schematic of the pneumatic system of the ExHand Exoskeleton.

to evaluate the time required to fully open and close the hand
exoskeleton and the maximum force that can be exerted during
grasping/holding.

2.5.1. Time required to fully open and close
Tomeasure the time required to open and close the exoskeleton

completely, a volunteer was invited to done the exoskeleton while
performing flexion and extension movements until the user’s
hand closed and opened as much as possible. The tests were
recorded with a side camera, and the time was taken using a
stopwatch from starting to pressurize the exoskeleton until the full
flexion/extension movement was achieved.

2.5.2. Exoskeleton maximum grasping/holding
force

To evaluate the maximum grasping/holding force of the
ExHand Exoskeleton, a 90 kg manual electronic dynamometer

(Instruterm, Brazil) was used, and an experiment similar to that
of Zhou et al. (2019) was performed, where grasping/holding
force was evaluated as the bending force required to extend the
pressurized flexion actuators of all fingers without the thumb. A 3D
printing that included the flexion DoFs of the fingers was placed
inside the glove.

2.6. Experimental validation with healthy
users

2.6.1. Participants
To evaluate the functionality and usability of the ExHand

Exoskeleton, healthy users between 18 and 70 years of age, normal
hand motor function, and the ability to perform gross and light
gripping actions without discomfort or pain were included. The
Ethical Committee in the Colombian School of Engineering Julio
Garavito approved the study. All participants were informed about
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FIGURE 5

(A) For example, activating solenoid electrovalves for air release, the red lines indicate the airflow. (B) Activation of solenoid electrovalves to perform

a power grip. Di�erent grasp configurations of ExHand Exoskeleton: (C) Power grip, (D) pulp pinch, (E) tripod pinch, or (F) one finger.

the scope and purpose of the study, and all participating individuals
signed an informed consent form.

2.6.2. Functional tests
As previously mentioned, the functionality of the ExHand

Exoskeleton is evaluated through the AHAP and two outcome
measures used in the rehabilitation process of post-stroke patients.
For the development of the tests, the participants were instructed
to relax their muscles and let the exoskeleton actuation assist the
flexion and extension movements of the fingers. After reading
and signing the informed consent, the exoskeleton is donned to
the participant, and the test procedure is explained. Furthermore,
the exoskeleton was controlled by an operator using the web
application. The operator adjusts the air pressure value entering
each inner balloon according to the user’s hand to perform
complete flexion and extensionmovements before starting the tests.
Before grasping any object, the operator activates the extension
movement, depressurizes the exoskeleton, and then activates the
flexion movement according to the most appropriate grip for each

object; once the object is released, the exoskeleton is depressurized
again. All interventions were recorded using two cameras, one in
front of the participant to capture a top view and the second on the
side.

2.6.2.1. Grasping performance test

The Anthropomorphic Hand Assessment Protocol
(AHAP) (Llop-Harillo et al., 2019) was chosen to evaluate
the ability of the textile-based ExHand Exoskeleton to grasp
various everyday objects. This protocol defines a total score that
quantifies the ability to perform everyday grasps using a set of
internationally available objects. AHAP uses the YCB set of objects
proposed by Calli et al. (2015), including 25 objects of daily life
with different shapes, sizes, textures, weights, and rigidities. Within
the objects are food items, kitchen items, tools, form items, and
task items. Although the AHAP is focused on anthropomorphic
hands for robotic and prosthetic applications, the results obtained
by the protocol provide a baseline for comparison and a way to
recognize possible improvements in the design of the devices, such
as hand exoskeletons.
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FIGURE 6

Electronic system and connections of the ExHand Exoskeleton.

AHAP involves two non-grasp postures and eight different
grasps: hook grip, spherical grip, tripod pinch, extension grip,
cylindrical grip, diagonal volar grip, lateral pinch, and pulp pinch.
In this case, the two non-grasp postures and one object associated
with these postures were excluded since the evaluation of these
postures would not provide revealing results for the analysis of
grasping of the hand exoskeleton.

For the execution of the protocol, the participant must be
standing and positioned near a table, as shown in Figure 7.

Thus, the participant is instructed on the correct grasping
posture for each object according to Llop-Harillo et al. (2019)
and can practice with the object for 1 min. The objects
are handed to the participant by the operator. Subsequently,
the participant holds the grasp for 3 s. The participant
naturally rotates the hand with low acceleration for the palm
to point downwards (180◦) and keeps the grip for another
3 s. Finally, the operator depressurizes the system to release
the object.
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FIGURE 7

Experimental setup used to perform the AHAP, shows the position of

the cameras, the subject, the operator, and the control box.

The protocol is repeated three times for each object, and the
score is divided as follows: the ability of the device to perform
the grip correctly, similar to a healthy subject (Grasping) and the
ability to hold the object without it moving (Maintaining).Grasping
score and Maintaining score are scored from when the object is
attempted to be grasped to when the object is released. In addition,
Grasping is scored with values of 0, 0.5, and 1, being 1 if the grasping
is completed with the correct grasping type, 0.5 if the grasping
posture is different from the correct grasping type and 0 if the
device cannot grasp the object. In the same way, Maintaining is
scored with values of 0, 0.5, and 1, 1 if the object remains static
while being held, 0.5 if the object moves and 0 if the object is
dropped. The Grasping andMaintaining scores of the three objects
of each type of grip are added together to obtain the final score
for each grasp. Afterwards, a final score obtained from the two
previous scores is calculated; this score is named the Grasping
Ability Score (GAS) and quantifies the device’s ability to perform
all grasps. All scores are presented as a percentage. A GAS score
of 100% means that the device can perform the different grasps in
the same form as a healthy person (Llop-Harillo et al., 2019). To
score the ExHand Exoskeleton, three external evaluators provided
the Grasping, Maintaining, and GAS scores for each type of grasp
using the video recorded during each test.

2.6.2.2. Box and Blocks Test

Another test performed is the Box and Blocks Test (BBT).
BBT is a common outcome measure used to assess the unilateral
gross manual dexterity in various populations, including stroke
survivors with mild-to-moderate deficits (Thompson-Butel et al.,
2015; Kontson et al., 2017). This test complements the AHAP as
its results provide information on how the use of the device may
affect the user’s dexterity to perform ADLs that require a precise
grip. The BBT contains 150 wooden cubes of 2.5 cm of sides and a
wooden box (dimensions 53.7 × 25.4 × 8.5 cm) divided into two
compartments by a partition of 15.2 cm in height. The test consists
of moving, one by one, the maximum number of blocks from one
compartment of the box to the other within 60 s (Mathiowetz et al.,
1985). The participant performed the test seated close to a table.

TABLE 3 Air pressure values to reach complete extension and flexion

movements in all fingers.

Finger Air pressure for
extension

movement (psi)

Air pressure for
flexion

movement (psi)

Thumb 8.90± 0.16 4.63± 0.16

Index 9.95± 0.08 8.34± 0.28

Middle 10.45± 0.08 8.85± 0.37

Ring 9.95± 0.08 8.59± 0.22

Little finger 9.35± 0.24 5.57± 0.09

The box was placed on the table on the participant’s midline and
oriented lengthwise, with the compartment containing the blocks
oriented toward the hand evaluated (Mathiowetz et al., 1985).
The final score is the number of blocks transferred from one box
compartment to another in 60 s.

2.6.2.3. Jebsen Taylor Hand Function Test

The Jebsen Taylor Hand Function Test (JTHFT) is another
common outcome measure and has been used in clinical and
research settings in different patient populations. The JTHFT
assesses hand motor function through different ADL-related
tasks (Jebsen, 1969). This consists of seven subtasks, including:

• Writing a 24-letter sentence.
• Turning over five cards of 7.6 × 12.7 cm (page turning

simulation).
• Grasping five small objects (e.g., pennies, paper clips, bottle

caps) and placing them in a container.
• Stacking five checkers.
• Simulated feeding.
• Moving five large empty cans.
• Moving five large heavy cans (450 g).

The participant must be seated close to a table to start the test. A
stopwatch is used to record the time taken in each subtask. The total
score is the sum of time taken for each subtask, where shorter times
indicate better performance (Jebsen, 1969; Takla et al., 2018).

2.6.3. Usability assessment
The Quebec User Evaluation of Satisfaction with Assistive

Technology (QUEST) 2.0 has been applied to assess the
participant’s perception. This questionnaire was designed to assess
people’s satisfaction with assistive devices. QUEST includes the
rating of 12 items using a 5-point Likert scale (1: not satisfied at all,
2: not very satisfied, 3: more or less satisfied, 4: quite satisfied, and
5: very satisfied) and is divided into three scores: Device, Services,
and Total QUEST (Demers et al., 2000).

To identify the level of satisfaction or dissatisfaction of users
when using the ExHand Exoskeleton, QUEST 2.0 was adapted
to evaluate only six items corresponding to the Device score:
Dimensions, weight, adjustment, safety, comfort, and effectiveness.
The participants answered the questionnaire once the functional
tests were completed.
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TABLE 4 The ExHand Exoskeleton performs the di�erent types of grasps and objects of the AHAP.

Grasp Type Objects

Hook

Spherical grip

Tripod pinch

Extension grip

Cylindrical grip

Diagonal volar grip

(Continued)
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TABLE 4 (Continued)

Grasp Type Objects

Lateral pinch

Pulp pinch

3. Results

The development of the ExHand Exoskeleton with fabric-based
actuation has been carried out. A glove with an approximate weight
of 137 g and an approximate system weight (weight of the power
supply, the air pump, the electrovalves, the pressure sensors, the
ADCs, and the single board computer) of 971 g was obtained. In
addition, ten participants (five males and five females, 45.50±14.93
years old) performed the tests and completed the study successfully.
All results were expressed as mean values with standard deviation.

First, the ExHand Exoskeleton achieves a full opening and
closing time of 2.00 ± 0.35 and 3.47 ± 0.30 s, respectively.
Furthermore, the exoskeleton’s maximum grasping/holding force is
87.98 ± 1.55 N. Also, The air pressure values to perform complete
flexion and extension movements are presented in Table 3. Table 3
shows that the extension values were slightly higher than the flexion
values, indicating that greater force is required to open the hand
than to close it. Furthermore, less air pressure was required to
achieve complete flexion of the thumb and little finger with values
of 4.63± 0.16 and 5.57± 0.09 psi, respectively.

Second, Table 4 shows how the exoskeleton performs the
different types of grasps with the objects of the AHAP and the
scores obtained are presented in Table 5. Thus, the exoskeleton
achieved a Maintaining high score in each of the different types
of grasp. However, the Grasping score was only successful in the
Hook grip and above 50% for the rest of the grasps, indicating that
the ExHand Exoskeleton can hold the objects but not in the way
indicated by the test. Finally, a GAS score of 80.80 ± 2.10% was
obtained.

Third, the number of blocks transferred during the BBT was
presented in Table 6, indicating a total of 4.10 ± 0.57 blocks
per minute using the exoskeleton. This value is minimally small
compared to the 61.59 ± 7.75 blocks per minute without the
exoskeleton.

Fourth, the JTHFT all subtasks scores and total performance
time are shown in Table 7. The full performance time to complete
de JTHFT with the ExHand Exoskeleton was 495.77 ± 31.38 s,
and the better times using the exoskeleton were for the Writing
Simulation and Feeding subtasks.

The times obtained in the JTHFT and the results of the
BBT complement the AHAP results, as they demonstrate that the
exoskeleton assists in the execution of various daily living tasks,
such as feeding and writing. However, although the exoskeleton
assists in ADLs, it performs these tasks more slowly than a
healthy person.

Finally, the QUEST 2.0 scores are shown in Table 8. According
to the scores, the device satisfaction means score for the
participants was 4.27± 0.34 out of a maximum score of 5.

4. Discussion

A fabric-based soft hand exoskeleton for assistance in ADL was
developed and evaluated, and a glove with a weight of 137 g and
a system weight of ∼971 g was obtained. Compared with other
related devices, the weight of the ExHand Exoskeleton is similar
to the glove of Ge et al. (2020), which weighs 128 g, or the glove of
Yap et al. (2017) with a weight of 99 g. In terms of the maximum
force exerted by the exoskeleton, a total of 87.98 ± 1.55 N was
achieved. Comparing the force with similar devices, such as Ge’s
device, which achieved a force of 47.9 N (Ge et al., 2020), or
the 37 N force of Zhou’s device (Zhou et al., 2019), the ExHand
Exoskeleton achieved a force above these devices. This difference
in grasping/holding force with the other devices may be due to the
method applied and to the silicone layer applied on the palmar side
of the glove, which creates a non-slip surface. However, a better
comparison would have to be made with the same materials and
methods as those applied by Zhou et al. (2019) or Ge et al. (2020).

The experimental validation of the ExHand Exoskeleton
in healthy users shows the exoskeleton successfully assists the
participants in accomplishing all tasks. In the first instance, the
pressure results indicate pressure values for extension movement
between 8.90 ± 0.16 and 10.45 ± 0.08 psi and pressure values
for flexion movement between 4.63 ± 0.16 and 8.85 ± 0.37
psi. In comparison with other similar fabric-based soft actuation
devices, a similar value is found in the study of Yap et al. (2017),
which requires 70 kPa (∼ 10 psi) of input pressure to perform
extension and flexion movements, contrary to other studies such as
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TABLE 5 Grasping performance test scores divided into Grasping,

Maintaining, and total GAS scores for the di�erent types of grasp.

Grasp type Grasping
score (%)

Maintaining
score (%)

GAS score
(%)

Hook 100.00± 0.00 99.44± 0.48 99.72± 0.24

Spherical grip 73.33± 1.66 94.44± 4.81 83.89± 3.15

Tripod pinch 59.44± 3.15 93.33± 5.77 76.39± 1.34

Extension grip 63.88± 6.36 100.00± 0.00 81.94± 3.18

Cylindrical grip 68.33± 9.61 92.22± 4.19 80.28± 3.78

Diagonal volar grip 50.00± 0.00 93.89± 3.94 71.94± 1.97

Lateral pinch 61.66± 2.5 98.33± 1.44 80.00± 1.91

Pulp pinch 50.00± 0.83 94.44± 2.55 72.22± 1.20

Final score 65.83± 3.02 95.76± 2.90 80.80± 2.10

The gray color indicates the highest score in the grasping performance test.

TABLE 6 Score of BBT with and without the ExHand Exoskeleton.

BBT score
without Exoskeleton

BBT score
with Exoskeleton

61.50± 7.76 4.10± 0.57

TABLE 7 Total performance time and scores of all subtasks of JTHFT with

and without the ExHand Exoskeleton.

Subtask Performance time
without

Exoskeleton (s)

Performance
time
with

Exoskeleton (s)

Writing 12.74± 1.54 25.33± 3.18

Cards turning 5.18± 0.79 84.78± 7.77

Grasping small
objects

5.02± 0.59 85.48± 8.03

Stacking checkers 6.48± 1.60 78.78± 4.56

Simulated feeding 9.47± 1.04 26.26± 3.84

Large empty cans 4.16± 0.64 93.21± 17.31

Large heavy cans 5.05± 1.17 101.94± 16.37

Total performance
time

48.1± 5.43 495.77± 31.38

Cappello et al. (2018a,b) require a pressure of 172 kPa (∼ 25 psi) or
Ge et al. (2020) pressurizing their glove with 140 kPa (∼ 20 psi).

In addition, the results of the AHAP show that the ExHand
Exoskeleton can assist users in grasping objects of daily life
with different shapes, sizes, textures, weights, and rigidities. It is
evidenced by the Maintaining Score of 95.76 ± 2.90% in which a
percentage higher than 90% was obtained for all types of grasps.
However, it is observed that the lowest percentages were for the
Tripod Pinch, Cylindrical Grip, and Diagonal Volar Grip with
percentages of 93.33 ± 5.77%, 92.22 ± 4.19%, 93.89 ± 3.94%,
respectively, due to the large and heavy objects such as a skillet,
chips can or a tuna can, in which the contact of the glove with the
object was not sufficient to maintain a stable contact. Therefore, the

TABLE 8 Mean QUEST 2.0 scores.

Item Level of
satisfaction

Dimensions 4.20± 0.39

Weight 4.10± 0.44

Adjustment 4.40± 0.26

Safety 4.10± 0.37

Comfort 4.30± 0.34

Effectiveness 4.50± 0.26

Device satisfaction 4.27± 0.34

TABLE 9 Box and Blocks Test (BBT) results in di�erent studies found in

the literature.

References Participants
BBT score

Without
exoskeleton

With
exoskeleton

Zhou et al.
(2019)

Two C4 and, one
C5 SCI
participants

3.67± 3.51 4.11± 3.17

Tran et al.
(2020)

One C6 SCI
participant

13 4

Thimabut et al.
(2022)

20 stroke
survivors

2.2± 0.6 8.60± 2.00

Dudley et al.
(2021)

A stroke survivor 5 10

Radder et al.
(2018)

65 older adults
with different
diseases and
diagnoses

About 50 About 45

Polygerinos
et al. (2015b)

A participant
with muscular
dystrophy

10 14

object moved, slipped or fell during the test. Therefore, although
force tests are performed on the hand exoskeletons, combining
themwith grasping tests with different objects is important to verify
that the devices assist and facilitate the grasping of different objects
related to ADLs.

Also, a score of 65.83 ± 3.02% obtained in the Grasping

score demonstrated the exoskeleton’s incorrect grasping of different
objects. Furthermore, the lowest percentages are obtained for pinch
grasps, such as the tripod pinch, lateral pinch, or pulp pinch,
similar to the findings of Cappello et al. (2018b) in the TRI-HFT
administered to patients with SCI using the soft robotic glove.

Lastly, a GAS Score of 80.80 ± 2.10% is obtained, possibly
related to the lack of movements such as abduction, adduction,
and opposition to the thumb. Since the thumb represents the most
important finger of the hand due to its ability to perform flexion,
extension, and opposition, and more than 50% of types of grasps
require thumb movements (Feix et al., 2009). Some exoskeletons
have added active or passive actuators to add abduction/adduction
movements to their devices. For example, Ge et al. (2020)
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TABLE 10 Jebsen Taylor Hand Function Test (JTHFT) results in di�erent studies found in the literature.

References Participants JTHFT results

Subtask Performance
time without
Exoskeleton (s)

Performance
time with

Exoskeleton (s)

Tran et al. (2020) One C6 SCI
participant

Writing 28.20 27.70

Cards turning 18.70 68.50

Grasping small
objects

34.30 113.00

Stacking checkers 15.80 14.4

Simulated feeding 14.10 65.20

Large empty cans 9.70 *

Large Heavy Cans 49.30 *

Radder et al. (2018) 65 older adults
with different
diseases and diagnoses

Total performance

time without

Exoskeleton (s)

Total performance time with Exoskeleton (s)

About 78 About 95

Van Ommeren et al. (2018) Five chronic
stroke patients

Total performance

time without

Exoskeleton (s)

Total performance time with Exoskeleton (s)

118.62 134.43

Polygerinos et al. (2015a) A healthy
participant

Subtask Performance time with exoskeleton (s)

Cards turning 44

Stacking checkers 26

Large empty cans 29

Large heavy cans 39

implemented a textile actuator between the thumb and index finger
to achieve thumb abduction. Li et al. (2019) placed actuators
made of NinjaFlex 85A TPU between each finger to perform
abduction/abduction movements. Gerez et al. (2020) developed
a hybrid exoskeleton in which pneumatic chambers are added
between each finger and an extra thumb to perform a secure and
stable grip by increasing the contact area between the object and
the glove.

Furthermore, the present study showed the performance of the
ExHand Exoskeleton with 4.10 ± 0.28 blocks per minute for the
BBT and a Total Performance Time of 495.77 ± 31.38 s in the
JTHFT. Tables 9, 10 show similar studies to compare with other
devices and analyze the performance of the ExHand Exoskeleton
in the BBT and JTHFT.

On the one hand, compared to the study by Zhou et al. (2019),
which also used a textile-based actuation glove, similar results
were obtained in the BBT, showing that the ExHand Exoskeleton
is slightly better by getting a lower standard deviation, it is also
considered that our study was performed on healthy users so a
better comparison will be made once the experimental validation
of our device with pathological users is achieved. On the other
hand, when comparing devices of different actuation, studies such
as Tran et al. (2020), Radder et al. (2018), and Polygerinos et al.
(2015a) found that the use of exoskeletons increases the time to

complete the tests but assisted patients who failed to complete the
test without the exoskeleton. Even so, the ExHand Exoskeleton
showed a decrease in BBT and JTHFT performance. This could be
related to the fact that the activities were performed with complete
flexion and extension movements for every grasp, and the time
required for the exoskeleton to perform the extension movement of
2.00± 0.35 s and the flexionmovement of 3.47± 0.30 s, in addition
to the deflation time which is about second. This can be seen in
the times of the JTHFT subtasks, as the longer times are related to
multi-object tasks, as opposed to theWriting subtask and Simulated
Feeding subtask, as only one extension and one flexion movement
were required to grasp a single object, a pen for theWriting subtask
and a piece of cutlery for the Simulated Feeding subtask, which
resulted in the shortest times of the ExHand Exoskeleton (times of
25.33 ± 3.18 and 26.26 ± 3.84 s, respectively) and similar to those
presented by Van Ommeren et al. (2018) and Tran et al. (2020).

One way to improve the results in future evaluations is
to create an internal balloon pressurization configuration that
performs movements similar to those of the healthy person,
considering that most of the grip types required partial extension
or flexion movements instead of complete movements, thus
decreasing the pressurization and depressurization times of the
device. Also, more sensors such as bending, strain, or force
sensors are considered for inclusion in future works to provide
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adequate grip force and posture feedback. Polymer optical
fibers (POFs) are an emerging alternative for instrumentation in
different applications. These sensors have been used to measure
parameters such as angle, pressure, temperature, humidity, force,
strain, and acceleration (Leal-Junior et al., 2019). In addition,
POFs are immune to electromagnetic fields, have multiplexing
capabilities, and are compact (Leal-Junior et al., 2019; De Arco
et al., 2023), characteristics that make these types of sensors
potentially suitable for use in soft hand exoskeletons. Another
limitation is that the ExHand Exoskeleton does not recognize the
human user’s intention. Although a web interface is developed
for easy operation of the device, future work will include a
brain-computer interface (BCI), electroencephalography (EEG), or
electromyography (EMG) signals as control signals to associate
the patient’s movement intention with the exoskeleton movement.
Likewise, it is proposed to implement a control system using a
combination of sensors to improve precision and thus promote
better assistance.

Experimental validation also shows a mean positive score of
4.27 ± 0.34 for the QUEST 2.0 survey, i.e., an overall “quite
satisfied” result. A value is similar to the studies conducted by
Yoo et al. (2019) and Dudley et al. (2021) and the studies
presented by Radder et al. (2019) and Tsai et al. (2019) in the
System Usability Scale (SUS) questionnaire, another usability test.
Surveys show people’s acceptance of using these devices to assist or
restore hand function, so using these surveys is recommended to
provide researchers with information about user requirements and
user satisfaction to compare subjectively with other devices (Pei
et al., 2017; Yoo et al., 2019). Nevertheless, although healthy
participants positively valued the ExHand Exoskeleton, users
with anthropometric measurements lower than those of the
glove mentioned that sometimes they did not perceive the
grip of some objects, especially the smaller ones. Hence, it is
considered the fabrication of various sizes of actuators according
to different anthropometric measures and avoids the use of a glove.
Furthermore, the involvement of clinicians and pathological users
is needed to further validate the product’s usability. Moreover,
it is important to mention that the breathability of the glove
was affected by applying a layer of silicone on the palmar side.
Although the users were not uncomfortable, a study in post-stroke
patients should consider procedures for device sanitization to avoid
the risk of contamination by using the device in different users.
Moreover, future works may involve the development of a device
that leaves the users’ palmar area free and thus avoids using a
glove.

Finally, it is demonstrated that a textile-based exoskeleton,
such as the ExHand Exoskeleton, can perform different grasps
by evaluating its performance of 24 daily living objects of
different shapes, sizes, textures, weights, and stiffness by achieving
a score of 80.80 ± 2.10%, considering 100% means that the
grips are performed in the same way as a healthy person.
Likewise, it is highlighted that using 11 electrovalves to control
the movement of each finger allows different grasp configurations
as required by the user. Therefore, applying the AHAP (Llop-
Harillo et al., 2019), a protocol for evaluating and comparing
prostheses and robotic hands, is also a valuable tool in developing
and comparing hand exoskeletons. Besides, the experimental

validation of the exoskeleton with ten healthy subjects showed
the repeatability of the study and similar results to the
similar devices reported in the literature, confirming the device’s
suitability to perform a stable contact with a variety of daily
living objects.

5. Conclusions and future works

The development and validation of a soft fabric-based
hand exoskeleton assistance in ADL were presented. The
results validate the ability of the application of the ExHand
Exoskeleton to assist in grasping different types of objects
used in ADLs. However, several challenges remain for
the ExHand Exoskeleton to be addressed in future works,
mainly the addition of low-cost, lightweight sensors; the
development of actuators capable of different movements
such as adduction and abduction, and opposition of the thumb;
and lastly, the evaluation and validation of the device in
stroke survivors.
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Scientific Institute, Florence, Italy, 5Department of Experimental and Clinical Medicine, University of

Florence, Florence, Italy

Objective: The objective of this study is to verify the reliability and the concurrent

and discriminant validity of the measurements of spasticity o�ered by the robotic

device, quantifying the (1) test–retest reliability, (2) correlation with the clinical

evaluation using the Modified Ashworth Scale (MAS), (3) inter-rater reliability

between the two physiotherapists, and (4) ability to discriminate between healthy

and stroke patients.

Methods: A total of 20 stroke patients and 20 healthy volunteers participated

in the study. Two physical therapists (PT1 and PT2) independently evaluated the

hand spasticity of stroke subjects using the MAS. Spasticity was assessed, both in

healthy and stroke patients, with the Amadeo device at three increasing velocities

of passive movement for three consecutive repeated assessments, while raw data

of force and position were collected through an external program.

Data analysis: The intraclass correlation coe�cient (ICC) and the weighted kappa

were computed to estimate the reliability of the Amadeo device measurements,

the inter-rater reliability of MAS, and the correlation between theMAS and Amadeo

devicemeasurements. The discriminant ability of the Amadeo device was assessed

by comparing the stroke and healthy subjects’ spasticity measurements with the

percentage of agreements with 0 in MAS for healthy subjects.

Results: The test–retest reliability of the Amadeo device was high with ICC at all

three velocities (ICC = 0.908, 0.958, and 0.964, respectively) but lower if analyzed

with weighted kappa correlation (0.584, 0.748, and 0.749, respectively) as mean

values for each velocity. The correlation between Amadeo and the clinical scale

for stroke patients with weighted kappa correlation was poor (0.280 ± 0.212 for

PT1 and 0.290 ± 0.155 for PT2). The inter-rater reliability of the clinical MAS was

high (ICC = 0.911).

Conclusion: Both MAS and Amadeo spasticity scores showed good reliability.

The Amadeo scores did not show a strong clinical correlation with the MAS in

stroke patients. Hitherto, Amadeo evaluation shows trends that are consistent

with the characteristics of spasticity, such as an increase in spasticity as the

speed of muscle stretching increases. The ability of the device to discriminate

between stroke patients and healthy controls is low. Future studies adopting

an instrumental gold standard for spasticity may provide further insight into the

validity of these measurements.
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muscle spasticity, muscle tone, rehabilitation, stroke, Amadeo, upper limb
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1. Introduction

Spasticity is usually defined as a motor alteration or disorder
characterized by an increase in the excitability of the myotatic
or stretch reflex, causing an increase in tone. The speed is a
determining factor, as the higher the speed, the greater the stretch-
resistant reflex contraction (Thibaut et al., 2013; Wissel et al., 2015;
Spasticity, 2017). This can highly interfere with movement, speech,
and the patient’s activities of daily living (Balci, 2018; Roman et al.,
2022).

Stroke is among the neurological pathologies causing spasticity.
Stroke-induced spasticity is a neurological disorder resulting from
damage to the first motor neuron and can be difficult to treat in
the initial periods after brain damage (Sunnerhagen, 2016). It is a
complex phenomenon due to the heterogeneity of its symptoms
and its effects on motor control (Sáinz-Pelayo et al., 2020).
This causes patients to experience hypertonia, clonus, flexor, and
extensor spasms. Spasticity presents in different forms depending
on the site of the lesion, the time since lesion, and its size (Balci,
2018).

Both spasticity and muscle weakness caused by neurological
damage (spastic paresis) are the most common motor disorders
after stroke and markedly influence the patient, becoming a
challenge during the rehabilitation process (Meseguer-Henarejos
et al., 2018). Moreover, spasticity also causes other associated
symptomatologies such as pain, shortening of tendons and
connective tissue, contractures, decreased joint range, or further
muscle weakness (Thibaut et al., 2013; Meseguer-Henarejos et al.,
2018). These factors have repercussions on the rehabilitation
process due to delays or changes in the treatment that alter
or modify the functional recovery (Wissel et al., 2015). In
addition, spasticity is related to an alteration of normal posture,
which aggravates associated factors and increases fatigue, disturbs
the person’s sleep, and decreases the sense of safety, resulting
in the need for increased medical attention and home care
(Meseguer-Henarejos et al., 2018). Spasticity is often a fluctuating
condition that can be exacerbated or attenuated by different
factors (temperature, infection, stress, etc.) and its assessment may
be difficult.

The clinical assessment process remains challenging (Balci,
2018). Traditionally, the evaluation of spasticity has been based
on the application of scales, such as the Modified Ashworth Scale
(MAS), Tardieu Scale, Spam Severity Scale, or Triple Spasticity
Scale (TSS), among others (Balci, 2018; Sáinz-Pelayo et al.,
2020). However, these existing scales are based on the clinician’s
perception, experience, and training over the years (Johnson, 2002).
Among the measurement methods, MAS (Pandyan et al., 1999)
is the most widely used to measure muscle tone and spasticity,
measuring the resistance exerted by the muscle to stretching until
the full range of motion (ROM) of the joint is achieved (Meseguer-
Henarejos et al., 2018). Notwithstanding the spread use in clinical
practice, the main limitation of this scale is that the administration
velocity is not strictly determined, leading to the possibility to
influence the result. Determining the degree of spasticity in an
accurate and reliable way is critical and can compromise the
patient’s evaluation and the selection of the most appropriate
rehabilitation process.

In the last years, new electromechanical devices have been
developed, with a specific interest in robotic devices. Therapies
using robotic devices can accelerate the process of neuroplasticity
due to the constant stimulation provided by haptic interaction and
the amount of proprioceptive and sensory information (Calabr
et al., 2019). For instance, patients can receive timely feedback
on their performance from robotic devices and achieve better
adherence to treatment with an introduction of interactive games
or tasks (Chien et al., 2020). In addition to provide repetitive,
high-intensity training, stroke survivors can perform independent
training with less supervision from therapists (Mehrholz et al.,
2018; Chien et al., 2020).

Therapies using robotic devices have been implemented in
rehabilitation sessions and are now recommended in several
guidelines for stroke patients (Serrano-López Terradas et al.,
2022). Robotic devices are a support tool for the therapist to
intensify motor relearning, assist the patients according to their
needs, quantify performance by providing feedback during therapy,
and allow repetitive and high-intensity training (Jakob et al.,
2018; Dehem et al., 2019; Aprile et al., 2020; Esquenazi et al.,
2021). Robotic devices are also capable of measuring patient’s
performance, helping professionals by providing an objective
assessment of various components of motor impairment (Keller
et al., 2015; Dehem et al., 2017). This objective assessment could
be used, for example, to personalize the rehabilitation treatment or
adjust medication.

There are several types of robotic devices for hand treatment,
such as exoskeletons and end-effector systems, all dedicated to
motor rehabilitation (Calabr et al., 2019; Tyromotion, 2023).
Some of these devices, due to the presence of sensors and
actuators, include the possibility to assess upper limb kinematics
and provide an objective and quantitative evaluation of arm
movements after brain damage (Dehem et al., 2017). Some
devices such as the REAplan robot (Dehem et al., 2017), Reharob
system, HWARD, Reogo (De-la-Torre et al., 2021), MIT Manus
(Bosecker et al., 2010), HapticKnob (Lambercy et al., 2010),
and Tyromotion Amadeo device (Tyromotion, 2023) aim also to
assess and grade the spasticity. We will focus on the Amadeo
Tyromotion robotic device due to its ability to provide an automatic
spasticity assessment of the hand and the individual fingers in
stroke patients.

Amadeo Tyromotion is a robotic device oriented to motor and
sensory rehabilitation of the hand that also allows the assessment
of spasticity. It contains several programs designed for any stage of
a hand affected by a neurological pathology (Butt et al., 2020). It
consists of a screen facing the user who can interact with the robot
through games, tasks, or more specific programs in an interactive
format. The hand and forehand are placed on a platform that is
connected to the main unit. The wrist is restrained with a Velcro
band to prevent movement of the elbow and shoulder. The fingers
are attached throughmagnets to the unit’s rails. The visual feedback
on the screen is an added factor for functional motor rehabilitation.
Amadeo can be adapted to any type of patient, whether adult
or pediatric, offering therapeutic exercises through games aimed
at motor control during grip functions (finger flexion) or hand
release (finger extension) (Fasoli and Adans-Dester, 2019). The
robot also quantifies the measuring tone, spasticity, strength, and
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ROM through games and specific tests, monitoring the status and
progress of patients using the device (Germanotta et al., 2020).

The aim of this study is to describe the quality of the spasticity
measures provided by Amadeo Tyromotion and compare it with
the clinical assessment. We aim to verify the reliability, concurrent
and discriminant validity of spasticity measurements offered by the
robotic device.

2. Materials and methods

2.1. Material

For this study, we used the Amadeo Tyromotion robotic device
(Tyromotion, 2023), a robot for hand rehabilitation that includes
both motor and sensory rehabilitative components (see Figure 1).
To ensure that the data acquisition was accurate, the hand unit (i.e.,
a main platform where force and position sensors are located) was
sent for calibration to Tyromotion’s factory.

To perform the Amadeo Tyromotion therapy, the PT places
the forearm of the patient’s affected limb on a platform, restraining
the arm and wrist with straps to ensure the stability of the limb on
the device (see Figure 1). Then, each finger is independently placed
on magnetized rails, directly coupling the person with the device,
which allows the flexion–extension movement of the fingers. The
Amadeo has three operation modes of mobility treatment as
follows: passive, active assisted, and active movement. The robot
is able to calibrate the full passive range of motion for each finger
before the start of a session and provides assistive force to complete
the remaining ROM during the exercise. In addition, the maximum
flexion and extension force of each finger is recorded to calibrate
the exercise when force control is needed. Amadeo also provides
automatic measures of ROM, strength, muscle tone, and spasticity
(Bishop et al., 2017).

The assessment and quantification of spasticity are based on
algorithms that calculate, from raw data, both MAS and Tardieu
scale, attributing a score for each finger and the full hand. In the
current study, we focus only on theMAS assessment, since it is most
often used clinically in the assessment of adults. The robot starts
from a position of finger flexion, and it extends the fingers in two
different groups as follows: the thumb (finger one) on one side in a
separate way and the other fingers (from finger two to finger five)
on the other side. The Amadeo selects a time window during finger
extension, in which it performs the spasticity measurement (0–
100% ROM, individually for each finger). If an unexpected finger
flexion reaction is detected during the evaluation and the finger
cannot reach the full ROM, the finger slide automatically stops, and
the spasticity evaluation finishes, flexing the fingers again to end the
assessment, attributing the corresponding degree of spasticity based
on the force exerted against that extension. During the Amadeo
spasticity assessment, the fingers are extended at three different
velocities as follows: slow (v1 ≈ 0.01 m/s), medium (v2 ≈ 0.05
m/s), and fast (v3 ≈ 0.1 m/s). Although the MAS is performed
clinically at a single speed, here, we retained the Amadeo spasticity
measurements at the three velocities, to test the effect of speed on
the assessment.

For data collection, data acquisition software is used. This
program records the force and position data of the fingers in real

time, while the subject is performing the therapy with the Amadeo
device. After collecting data, these were processed with Matlab
(R2021a, The MathWorks Inc.).

Physical therapists used the MAS to assess the patients’ hand
spasticity at a single high speed, as established by the scale (UAB
UA, 2014).

2.2. Participants

In this study, we analyzed data obtained from 40 volunteer
participants, recruited through the Hospital Los Madroños
(Madrid), divided into two groups:

1. The control group, composed of 20 healthy subjects, was
selected based on the inclusion criteria as follows: (1) being
aged between 18 and 80 years (2), their age being close to the
mean age of the experimental group, and (3) acceptance of
informed consent. The exclusion criteria for this group were as
follows: (1) having previously suffered neurological pathologies,
(2) presenting pathologies affecting the mobility and strength of
the upper limb, (3) photosensitive epilepsy, (4) rejection of new
technologies, and (5) cognitive deficits preventing them from
understanding the program.

2. The experimental group was composed of 20 stroke patients
from the advanced neurorehabilitation unit of hospital los
madroños. the inclusion criteria for this group were as
follows: (1) diagnosis of hemispheric stroke with upper limb
involvement; (2) being aged between 18 and 80 years; (3)
ability to provide informed consent; (4) sufficient trunk control
to maintain prolonged sitting for at least the minimum time
necessary to perform the robotic therapy; (5) preserved vision;
(6) patient conscious and able to understand verbal commands
and instructions; and (7) patients with no other concomitant
pathologies affecting motor and/or sensory function. The
exclusion criteria were as follows: (1) hemiparesis caused by
other diagnoses; (2) pregnancy or lactation; (3) photosensitive
epilepsy; (4) severe medical or psychiatric disorder; and (5)
refusal of new technologies.

All participants gave their informed consent; the procedures
had the approval of the institutional ethics committee (Hospital
Universitario Severo Ochoa de Leganés Ethical Committee for
clinical research) and were conducted in accordance with the
Declaration of Helsinki.

2.3. Experimental design

Each participant was independently assessed on the same day
by two physical therapists (PT1 and PT2) who scored the spasticity
of the full hand and each finger using the MAS. The therapists
were mutually blind to each other’s assessment. To minimize the
modulation of muscle tone induced by mobilization, the assessors
were asked to estimate spasticity in <5 repetitions. Then, the
participant was assessed using the Amadeo device. The positioning
on the device was carried out according to the indications in
the user manual provided by Tyromotion for the correct use

Frontiers inNeurorobotics 03 frontiersin.org92

https://doi.org/10.3389/fnbot.2023.1172770
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Urrutia et al. 10.3389/fnbot.2023.1172770

FIGURE 1

Amadeo Assessment of MAS scale with the hand support of the physical therapist while clinical evaluation.

FIGURE 2

Scheme of the protocol used for the data acquisition of spasticity in subjects.

of Amadeo. The subjects were held in a seated position, in a
comfortable and relaxed posture, in a chair with backrest and
armrests, and with the forearm resting on the device in pronation.
The straps were adjusted to the arm and wrist, and the magnets
were placed on the distal phalanx of the fingers, leaving the distal
interphalangeal joint free. The experimental room was set between
21◦C and 23◦C, according to regulatory bodies in Spain.

Before starting the assessment, Amadeo needs a reference of the
passive ROM of each finger to establish the limits of movement
in which the device will move the subject’s fingers during the
session. The therapist passively opened the participant’s hand
coupled to the device until reaching the limit of flexion–extension
movements. Then, for each velocity, the Amadeo device performs

a cycle consisting of the extension of fingers, maintenance of this
extension, and flexion (one cycle for velocity). Amadeo provides
spasticity estimation and delivers a score for both the full hand
and each finger, that is assumed to be equivalent to the MAS. Raw
data of position and force were acquired while spasticity assessment
saved in an external device. The result of Amadeo’s evaluation for
each finger and the full hand was recorded in the data collection
notebook at the end of the test, together with relevant observations,
if applicable. The time-course of the whole evaluation is presented
in Figure 2.

The three velocities mentioned above were measured, starting
with the slowest (v1) and ending with the fastest (v3). At each
velocity, the group from finger two to finger five was recorded
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TABLE 1 Demographic and clinical characteristics of the evaluated individuals.

Subjects Age (years) Sex Type of stroke Time since stroke (months) NIHSS

Stroke
N = 20

Mean: 62.5± 14.5
Range: 48± 29

Male= 10
Female= 10

Ischemic= 13
Hemorrhagic= 7

Mean: 6.1± 6.7
Range: 16.5± 14.5

Median: 10
Range: 15± 10

Controls
N= 20

Mean: 53± 14.8
Range: 50.5± 28.5

Male= 7
Female= 13

FIGURE 3

Mean MAS estimation and standard deviations of stroke patients

during all the protocols of assessment.

first, followed by the evaluation of finger one. This procedure was
repeated three times (r1, r2, and r3) (see Figure 2).

The PTs carried out the assessment in succession with ∼1-min
rest between the two evaluations. 1-min rest was also assured before
the assessment by Amadeo.

2.4. Data presentation and analysis

The raw data were recorded by the software with a 200Hz
sampling rate. These were analyzed automatically by MATLAB for
their interpretation. To verify whether the number of repetitions of
both the PTs and Amadeo affected the evaluation, we analyzed the
time-course of the MAS ratings using a Friedman test.

Amadeo’s quality of data used for MAS estimation was
descriptively reported in the result section. Statistical analysis was
made for (1) Amadeo reproducibility assessment, (2) correlation
between Amadeo and each PT evaluation, (3) correlation between
clinical assessment obtained from the two PTs, and (4) capability of
the Amadeo to distinguish between healthy and stroke patients. The
Amadeo reproducibility assessment was obtained by correlating
each velocity (v1, v2, and v3) over the three runs of evaluation

(run 1, run 2, and run 3) of the whole hand using the weighted
kappa coefficient.

Moreover, we also computed the one-way random effect
interclass correlation coefficient (ICC), with a 95% confidence
interval (Lee et al., 1989; Meseguer-Henarejos et al., 2018),
Spearman (Brashear et al., 2002; de Raadt et al., 2021), and Kendall’s
tau correlation. We decided to use these correlation analyses, in
order to compare our results with previous studies (Mokkink et al.,
2020). However, we considered the kappa statistics as the more
appropriate due to the characteristics of the measured variable
(MAS) (McHugh, 2012).

The comparison of spasticity measured by PTs and the Amadeo
device was performed using both whole hand spasticity assessment
and values for each individual finger. We observed that the total
values attributed by the Amadeo device in the MAS correspond to
the highest spasticity value found in fingers two, three, four, and
five, leaving the spasticity value given to the finger one isolated and
without considering it for the MAS total scale (probably due to the
bad quality of the results obtained from finger one, see “Results”).
For this reason, the position and force curves for the finger one have
been excluded from the data analysis.

To evaluate the capability of Amadeo to distinguish between
healthy and stroke subjects, we also calculated the percentage
of agreement between PTs and between Amadeo and PTs. We
considered the value as correct assigned by Amadeo which agrees
with the value offered by the therapists. For this purpose, the
percentage of success between the Amadeo and PTs for each
velocity in each run was calculated. Two variables about the
agreement were calculated as follows: (i) the percentage of absolute
agreement (only the exact value is considered between the Amadeo
and PT); (ii) the percentage of agreement by considering agreement
values that oscillate between ±1 of the MAS (i.e., with a value of
MAS 1+, the values 1 and 2 are also taken as a hit, with all the
values of the scale).

3. Results

All participants completed the whole examination. Clinical
and demographic data are presented in Table 1. Full patients’
characteristics and spasticity assessment scores are provided as
Supplementary material.

To confirm if the number of repetitions of the PTs and Amadeo
affects our evaluation, we analyzed the time-course of the MAS
ratings. Figure 3 shows the mean MAS estimation and the standard
deviations of all stroke patients evaluated by PTs and Amadeo in
time sequence, as shown in Figure 2, including only the highest
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velocity, i.e., v3. No statistically significant differences among
evaluations were observed (Friedman, p > 0.05).

3.1. Amadeo quality of data used for MAS
estimation (descriptive)

Figure 4 shows some examples of the finger position data
from the Amadeo device during acquisitions at velocities that are
assumed constant. Figures 4A, B show examples of data acquisition
on the displacement from finger two to finger five. Figure 4A shows
the change in the position represented by a constant velocity with
corresponding to a linear performance, which we refer to as a
good-quality acquisition. However, Figure 4B, shows not perfectly
straight lines, for this subject at v3, which we refer to as poor-quality
acquisition. Figure 4C shows examples of particularly low-quality
finger one displacement. These inconsistencies occur during finger
extension, i.e., the motion whose data are used by the device for
spasticity assessment and are present in both healthy and stroke
subjects. This can lead to errors in data analysis, resulting in
incorrect assessment of spasticity. These inconsistencies are mostly
found in the finger one, where the occasions, when a curve with
straight lines is obtained, are rare.

To confirm the quality of the recorded data and speed-
dependency of the spasticity assessment, Amadeo’sMAS estimation
vs. velocity was performed. As observed in Figure 5A, finger one
presents low-quality data as its value does not seem to increase with
velocity: it basically presents a value of 4 on the spasticity assessed
by Amadeo for any velocity in each run of acquisition for stroke
patients. On the other hand, Figures 5B, C show an increase in the
spasticity measurements of Amadeo with the velocity for finger two
and the whole hand. This behavior was identified for the rest of
the fingers.

3.2. Comparisons of spasticity scores
obtained by PTs and amadeo

3.2.1. Correlation analysis
The reproducibility of the Amadeo spasticity estimation using

weighted kappa was 0.584 for v1, 0.748 for v2, and 0.749 for v3.
These scores indicate a substantial agreement at least for data
obtained at v2 and v3 (Bohannon and Smith, 1987). These values
are presented as mean values of the three runs for each velocity,
with errors of 0.064, 0.159, and 0.053, respectively. Similar good
agreement was obtained also using ICC, where the results show a
correlation of 0.908 for v1, 0.958 for v2, and 0.964 for v3, for the
whole hand evaluation.

When correlating the Amadeo data of the whole hand with
the PT evaluations, maximum correlation results were obtained at
the highest velocities (v3) for both the whole hand and all fingers
and ICC and weighted kappa. For example, the ICC was 0.76
with PT1 (run 1 v3, being the best correlation) and 0.72 with PT2
(run2, v3 being the best correlation). On the other hand, the worst
correlations were obtained with lower velocity (v1). For example,
the ICC was 0.27 with PT1 (run 1 v1 being the worst correlation)
and 0.18 with PT2 (run 2, v1 being the worst correlation).

MAS evaluations between therapists (PT1 vs. PT2) showed high
correlations for the hand assessment (ICC= 0.911; weighted kappa
= 0.586). When individual fingers were evaluated, a satisfactory
result was obtained (ICC = 0.961, Spearman’s correlation = 0.867,
Kendall’s tau = 0.847), these data being the highest correlations
found in the analysis of each finger. The percentage of agreement
between PTs was also very high (see Figure 6B).

As described above, some curves obtained by Amadeo were
of poor quality (inconsistencies). However, when the analysis was
conducted after removing the curves with inconsistencies, the
results were similar. No relationship was observed between the
quality of the biomechanical curves and the agreement between the
PTs and Amadeo assessment.

3.2.2. Percentage of agreement
In this analysis, we considered as correct the value assigned by

Amadeo that agrees with the value offered by the therapists. For
this purpose, the percentage of success between the Amadeo and
therapists for each velocity in each runwas calculated (see Figure 6).
In healthy subjects, the Amadeo device has a mean accuracy (i.e.,
percentage of zero values on the MAS) of 60% in run 1; 68% in run
2, and 76% in run 3, as can be observed in Figure 6A. However, if
we also consider as correct MAS values of ±1 (see methods), the
accuracy percentage in healthy subjects rises to 73% in run 1, 78%
in run 2, and 82% in run 3 (see Figure 6A). In stroke patients, the
percentage of hits between PTs, that is, the number of times that
therapists rate stroke subjects with the same MAS value, we obtain
a 45% hit rate when they obtain the same score, and it increases to
90% if we consider a ±1 difference in the scale between them (see
Figure 6B).

As for the spasticity assessment in stroke patients, the
percentage of agreement between the Amadeo and the PTs scores
(i.e., same value for Amadeo and PT) was 26% for run 1, 31% for
run 2, and 30% for run 3, when considering PT1 (see Figure 6C),
and 25% for run 1, 22% for run 2, and 20% for run 3, when
considering PT2 (see Figure 6D). If we include in the percentage
of agreement also differences between the Amadeo and the PT
MAS score of ±1, then this percentage increases, obtaining values
between 24% and 30% for PT1, and between 26% and 33% for PT2.

4. Discussion

Our data can be summarized as follows: (1) the reproducibility
of the Amadeo grading is high (substantial agreement obtained
using weighted kappa calculation); (2) the correlation between
Amadeo and PTs is higher when Amadeo evaluates spasticity at
high velocity (v3), while it is very low at lower velocities (v1 and
v2); (3) the reproducibility of the PT grading is high; and (4) the
percentage of agreement between Amadeo and PTs is lower than
the agreement between PTs. Moreover, we observed that Amadeo
evaluation of the spasticity of finger one is often of very poor
quality, with many inconsistencies and the absence of an observed
correlation between spasticity scores and velocity. Thus, finger
one should be discarded from the Amadeo spasticity assessment.
The other fingers also have occasional inconsistencies, but the

Frontiers inNeurorobotics 06 frontiersin.org95

https://doi.org/10.3389/fnbot.2023.1172770
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Urrutia et al. 10.3389/fnbot.2023.1172770

FIGURE 4

Examples of the acquired data of finger position. (A) with a constant velocity of extension from finger two to finger five. (B) with inconsistencies

during the extension from finger two to finger five. (C) with inconsistencies found in finger one.

elimination of inconsistencies does not improve the correlation
between Amadeo and PTs.

The Amadeo spasticity assessment returned the best results,
both in terms of reproducibility and correlation with clinical scores,
for v3. This is not surprising since, among the three speeds, v3 (0.1
m/s) is the closest one to the velocity that should be adopted in the
clinical test, according to Bohannon and Smith (1987) (full ROM in
1 s) (UAB UA, 2014).

Early finger extension capacity after stroke is a critical motor
sign of recovery. This capacity can be used for direct therapy to
those who will most benefit from it (Orihuela-Espina et al., 2016).
Quantifying spasticity, which directly influences the hand opening

function, may help clinicians to identify the focus of treatment
for people affected by stroke. In addition, a reliable assessment of
spasticity will provide relevant and objective information about the
neurorehabilitation treatment (Balci, 2018).

MAS is a simple and quick method of assessment, which
does not require any equipment (Meseguer-Henarejos et al., 2018).
Despite this, it is still a controversial tool as it partly depends on
the person performing the assessment. Since spasticity depends on
the speed of stretching, differences between raters in the velocity
of passive motion may contribute to disagreement in MAS scoring
(Balci, 2018). Our data confirmed partially that the operator
dependency of the MAS as the percentage of the agreement to
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FIGURE 5

Box plots showing median, interquartile range, and minimum and maximum values, measured in the group of stroke subjects at each velocity and in

each run of acquisition. (A) Spasticity measurements of Amadeo from finger one; (B) spasticity measurements of Amadeo from finger two; (C)

spasticity measurements of Amadeo from the whole hand.

provide the exact values of MAS is low (∼50%). On the other
hand, when we consider as an acceptable agreement a difference
of one point of the MAS, this percentage of agreement is quite high
(around 90%).

The MAS inter-rater reliability (PT1 VS PT2) for the hand
spasticity assessment reported a moderate-substantial weighted
kappa of 0.586, and an ICC of 0.911. According to Hager (2003),
ICC scores should be considered poor when they are below 0.4,
sufficient if ranging between 0.4 and 0.59, good if ranging between
0.6 and 0.75, and excellent if above 0.75. Based on this, the inter-
rater reliability of the two PTs in rating the spasticity of the whole
hand was excellent, and even higher than what reported for other
joints (Bohannon and Smith, 1987).

We also found good reliability for the robotic device, with ICC
> 0.900 at all three velocities and weighted kappa>0.6 at v2 and v3.
These values are much higher than those reported by Germanotta
et al. (2020), who found a low reproducibility (ICC < 0.5) of the
Amadeo spasticity measurements at v1 and v3. However, the study
by Germanotta et al. (2020) has an important difference from the
present study because it compared Amadeo evaluations performed
on consecutive days, using the passive ROM of the first day. This
may greatly influence the measurement, given the characteristics
of spasticity and a possible different positioning of the patient on
the device. Since patient positioning and passive range of motion
setting are part of the Amadeo assessment procedure, the reliability
of Amadeo spasticity measurements in the present study might

be partially overestimated. Taking into account the characteristics
of spasticity, the MAS value depends on the afferences received
by the muscle spindle, so a good position is essential to avoid
triggering this neural hyperreactivity and, in turn, get the spasticity
assessment (Aloraini et al., 2015). Some articles have elaborated
a treatment protocol with the Amadeo in which they specify the
modes and times of treatment (Aprile et al., 2020), but there
is no clear agreement on how the patient should be placed in
the Amadeo. This issue could be very important to improve the
measure and the effectiveness of the device, improving the quality
of the session (Bevan et al., 2021; Meyer et al., 2021). Indeed, future
studies should provide more insight into the usability of this device
(Orekhov et al., 2021) in comparison to other devices (Park et al.,
2020).

In the study by Esquenazi et al. (2018), the validity of the
Amadeo system in measuring spasticity in stroke patients on the
MAS was tested in comparison to a physical therapist, and perfect
reliability was found between the two measurements (ICC = 1.0).
However, the reliability was estimated by computing the average
measures of ICC, that is, usually much higher than the single
measurements of ICC. This finding has not been confirmed by
Germanotta et al. (2020) in a multicenter trial that enrolled both
stroke patients and healthy subjects, where the correlation between
the MAS measured with Amadeo and the MAS measured clinically
was found very low as in the present study. On the other hand,
they concluded a good discriminant validity of Amadeo, with all
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FIGURE 6

Percentage of agreements in the MAS spasticity assessment between the Amadeo device and therapists. (A) In relation to healthy subjects; (B)

agreements between therapists in stroke patients; (C) agreements between the Amadeo device and therapist 1; (D) agreements between the

Amadeo device and therapist 2. The percentage of absolute hits is shown in black; the percentage of absolute agreements is shown in red, and ±1 in

the MAS value.

spasticity measurements obtained from stroke patients who were
statistically different from those of healthy controls. Our data
do not show that the device always differentiates between these
subjects, but it reaches 80% of success in the detection of healthy
subjects at v3. It is important to point out that, although we
were expecting a zero MAS score for healthy participants, Amadeo
returned 33% of values (i.e., 353 out of 1080) above zero. However,
since we did not set criteria for the setting of the flexion–extension
passive ROM in the Amadeo, it is possible that inconsistent results
may at least be partially related to this factor. Indeed, if the range
is too wide when approaching the last degrees of movement, the
device exerts a longitudinal pull on the fingers rather than a joint
extension. Further research should address this issue.

This study has some limitations. First, PTs and Amadeo
evaluation were performed sequentially during a single session
of assessment. As we know that training may affect spasticity,
it is possible that the real evaluation conditions were not the
same. To avoid interfering with the reproducibility of the scale,
some authors suggest that MAS should not be repeated more
than five times in each record (de Raadt et al., 2021). This is
because muscle tone can be modulated and has an impact on the
subsequent rating of spasticity. Other authors leave some time
of rest between evaluations, to avoid this interference (Mokkink

et al., 2020). Our therapists carried out the assessment consecutively
with 1-min rest between evaluations, and the repetitions on
each finger were always <5 in each patient. The preparation
phase for the Amadeo assessment (e.g., placing the magnetized
guides on the patient’s fingers, positioning, and immobilizing
the arm and wrist on the device, setting the passive range of
motion for evaluation) started 1 minute after the second PT
assessment and lasted several minutes. After that, the Amadeo
MAS assessment was conducted. Thus, it is unlikely that the
previous evaluations have influenced the Amadeo measurements.
Although we cannot exclude the fact that the absence of a longer
period of rest among the evaluations may have contributed to
some extent to the observed disagreement, the effect should have
been minimal, if any (see Figure 3). In our opinion, this limitation
cannot explain the very low percentage of agreement between PTs
and Amadeo.

Another limitation is that the three acquisitions with
the Amadeo device were performed in succession, without
repositioning the patient’s arm and hand. We chose this procedure
because we were interested in studying the reproducibility of the
Amadeo measurements during passive finger extension, avoiding
the influence of other potential sources of variability. Of course,
both arm positioning and ROM setting depend on the rater and
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have a great impact on the measurements, so they could greatly
increase variability.

Moreover, the whole evaluation was performed on the same
day, and no longitudinal study was performed. Considering that
assessment of spasticity usually requires multiple longitudinal
measurements, future studies should confirm our data in a
longitudinal way and possibly on a larger sample of patients. Future
studies should also include a more accurate standardization of the
position of the hand and fingers and the ROM setting, together
with stronger control over parameters such as the temperature
of the environment and the time elapsed since the pathological
event, to reduce errors during acquisitions. Finally, we chose the
MAS as the gold standard, but the validity and reproducibility over
time of this scale have been thoroughly questioned. Possibly, the
Amadeo scores and the clinical MAS scores should be compared
with instrumental measurements of spasticity, providing a more
reliable and valid reference standard. Moreover, since the device
offers an assessment also on the Tardieu scale, future studies
should verify the reliability and the concurrent and discriminant
validity of the measurements of spasticity offered by the robotic
device for this scale. Indeed, while the MAS focuses on the
resistance of the muscle to stretching, the Tardieu scale is based
on the velocity exerted during stretching. It is possible that the
three speeds of assessment proposed by the Amadeo protocol
are therefore specifically designed for the Tardieu-like assessment,
possibly returning better results.

5. Conclusion

In conclusion, both the clinical and the Amadeo MAS scores
were reproducible, although further studies are needed to test
reproducibility over different days. However, the Amadeo MAS
scores did not show a strong clinical correlation with the MAS in
stroke patients. This may suggest that some aspects of spasticity
are engaged by Amadeo and not by the PTs and/or vice versa.
It is possible that Amadeo scores related to finger 2–5 at high
velocities measure a performance consistent with spasticity, but this
should be verified by further research. Future studies, including
standardization of the position of the hand and finger in order to
reduce errors during acquisitions and adopting an instrumental
gold standard for measuring spasticity, may provide more insight
into the validity of these measurements.
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Introduction: Stroke survivors often compensate for the loss of motor function

in their distal joints by altered use of more proximal joints and body segments.

Since this can be detrimental to the rehabilitation process in the long-term, it is

imperative that such movements are indicated to the patients and their caregiver.

This is a di�cult task since compensation strategies are varied and multi-faceted.

Recent works that have focused on supervised machine learning methods for

compensation detection often require a large training dataset of motions with

compensation location annotations for each time-step of the recorded motion.

In contrast, this study proposed a novel approach that learned a linear classifier

from energy-based features to discriminate between healthy and compensatory

movements and identify the compensating joints without the need for dense and

explicit annotations.

Methods: Six healthy physiotherapists performed five di�erent tasks using healthy

movements and acted compensations. The resulting motion capture data was

transformed into joint kinematic and dynamic trajectories. Inspired by works in

bio-mechanics, energy-based features were extracted from this dataset. Support

vector machine (SVM) and logistic regression (LR) algorithms were then applied

for detection of compensatory movements. For compensating joint identification,

an additional condition enforcing the independence of the feature calculation for

each observable degree of freedom was imposed.

Results: Using leave-one-out cross validation, low values of mean brier score

(<0.15), mis-classification rate (<0.2) and false discovery rate (<0.2) were obtained

for both SVM and LR classifiers. These methods were found to outperform

deep learning classifiers that did not use energy-based features. Additionally,

online classification performance by our methods were also shown to outperform

deep learning baselines. Furthermore, qualitative results obtained from the

compensation joint identification experiment indicated that the method could

successfully identify compensating joints.
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Discussion: Results from this study indicated that including prior bio-mechanical

information in the form of energy based features can improve classification

performance even when linear classifiers are used, both for o	ine and online

classification. Furthermore, evaluation compensation joint identification algorithm

indicated that it could potentially provide a straightforward and interpretable way

of identifying compensating joints, as well as the degree of compensation being

performed.

KEYWORDS

compensation detection, stroke rehabilitation, machine learning, bio-mechanical

features, supervised classification

1. Introduction

Stroke is one of the leading causes for long-term disability
worldwide (Murray et al., 2012) and often results in upper-
extremity motor impairment in survivors (Kwakkel et al., 2003)
that can severely affect their quality of life and health (Franceschini
et al., 2010; Morris et al., 2013). Hence, regaining upper-
limb function post-stroke is vital for patient recuperation and
consequently, is a major target of rehabilitative-therapy. In
particular, repetitive and task specific training of the affected
limbs have been suggested to be one of the main drivers of
rehabilitation (Bütefisch et al., 1995; Dickstein et al., 1997).
Training has traditionally been conducted with assistance and
feedback from physiotherapists in a clinical setting. However, this
requires constant monitoring and guidance by the physiotherapist,
a task that becomes difficult with the increasing number of
patients (Pollock et al., 2000). While this can be addressed in
part by recommending exercises to the patient for in-home
rehabilitation at later stages of recovery (Turton and Fraser,
1990), adopting such an approach introduces novel challenges -
namely, providing appropriate feedback to the patient regarding
their performance.

Recently, efforts have been made to this end, as well as
to alleviate the physiotherapists’ workload in clinical settings
by introducing automation into the rehabilitation pipeline, for
instance via robot-assisted therapy (Aprile et al., 2020; Takebayashi
et al., 2022) and interactive game-based therapy (Laver et al.,
2017; Laffont et al., 2020). These techniques must be equipped
with evaluation mechanisms that can automatically assess the
quality and success of the ongoing rehabilitation exercise or task
performed by patients, ideally in an online manner, in order to
provide useful feedback for facilitating improvement in real-time.
However, such an automatic quantification of task performance can
be challenging. While the success of task or exercise completion is
relatively simple to track and quantify automatically—for example
by tracking the distance between the end-point of the impaired
limb and the goal position, it might not provide an adequate
picture of performance, especially with regards to the reappearance
of premorbid motor behavior (Cirstea and Levin, 2007). This
complication arises in part from the use of compensatory strategies
by the patient in the post-stroke period.

Stroke patients often compensate for the impairment caused
in one joint by overusing an unimpaired joint for the successful

accomplishment of rehabilitation exercises or activities of daily
living (Cirstea and Levin, 2000). Any redundant joint that is
relatively underused for a particular motion or task can be recruited
when the typically used joint is impaired to ensure successful
completion of the task. The degree of compensation provided
by the recruited joint can vary from mild to severe (Cirstea
and Levin, 2000). It has been noted that the long-term use of
compensatory strategies can interfere with rehabilitation goals
(Takeuchi and Izumi, 2012). Accurate and automatic identification
of compensatory strategies and deviation from healthy motion is
therefore an integral part of monitoring exercise/task performance
during a therapy session. Moreover, inclusion of this information
has been found to be helpful by the patients (Fruchter et al., 2022).

Most of the research toward automatic compensation detection
has been geared toward exploiting data-driven supervised learning
methods for the task. In general, such methods rely on the
availability or acquisition of a dataset of motions which are
labeled by experts to be either healthy or compensatory. The
acquired dataset of motions is used to train a machine learning
model, which can be used afterwards for classifying observed
motions at test time. Previous works have explored a variety of
machine-learning architectures and models for this task, ranging
from decision-trees (Sellmann et al., 2022) and non-parametric
methods, such as k-Nearest Neighbor classification (Cai et al.,
2019) and Support Vector Machine classifiers (Taati et al., 2012;
Zhi et al., 2017) to parametric deep learning methods, such as
a Multi-layer Perceptron (MLP) (Lin et al., 2021) or recurrent
neural networks with Long Short-TermMemory (LSTM networks)
(Zhi et al., 2017). A wide range of measurements including
kinematics (Taati et al., 2012; Zhi et al., 2017; Sellmann et al.,
2022), applied forces (Cai et al., 2019), and muscle activity (Ma
et al., 2019) have been used as an input for these data -driven
classifiers.

However, existing learning-based solutions fall short of fully
addressing one or more of several common challenges posed
by the task of automatic compensation detection. One major
challenge is the identification of compensating joints. By leveraging
multi-class classification techniques, many approachesare able
to detect three common types of compensations in reaching
motion—namely torso lean-forward, torso rotation and scapular
elevation (Zhi et al., 2017; Cai et al., 2019; Ma et al., 2019).
By design, such a classification method is geared toward
detecting only one type of compensation per input motion
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segment, which can be a shortcoming when the motion segment
contains multiple compensation strategies. Kashi et al. (2020)
uses multi-label classification to mitigate this issue. However,
like the preceding works, this approach relies on explicit
annotations of compensation locations. This requirement can
pose some limitations on the applicability of the compensation
detection mechanism since providing such a detailed descriptor
of the compensation strategy can be cumbersome and is
subject to labeling error by the expert annotator Hickey et al.
(2007). The latter can especially occur when indicators of
compensatory movements are subtle and beyond the visual
capabilities of physiotherapists (Abbott et al., 2022). This
indicates that it is hard to find an objective measure for
compensation magnitude and affected location, especially via
supervised classification methods that rely on detailed annotations
from experts.

Another challenge is discriminating between healthy and
compensatory motions in real-time. This is particularly desirable
since it can allow for the correction of a compensatory motion
as it is being performed either by the means of direct feedback
to the patient or through other methods such as alerting the
responsible physiotherapist in case of in-clinic rehabilitation.
The classification output could also be used by a robotic
system to promote more desirable kinematics by means of
a force feedback. However, many of the methods discussed
above either train their model with pre-segmented motions and
assume access to similarly segmented data during test-time (Kashi
et al., 2020) or use a sliding window of fixed size for online
classification (Zhi et al., 2017; Cai et al., 2019; Ma et al.,
2019) which may not be able to capture long-range temporal
correlations.

Lastly, most existing works for compensation detection
leverage datasets that are quite small in size due to the difficulty
of collecting data on a large scale from patients. For example,
many works (Zhi et al., 2017; Uy and Abu, 2020; Khoramdel
et al., 2021) learn from the Toronto Rehab Stroke Pose Dataset
(Dolatabadi et al., 2017) that collects kinematic data from a cohort
of 9 stroke survivors and 10 healthy patients, Cai et al. (2019)
perform their analysis on data from 8 stroke survivors, and Lin
et al. (2021) uses a dataset of motions from 10 stroke survivors.
Yet, many works use deep neural networks for learning a a model
for compensation detection (Zhi et al., 2017; Khoramdel et al.,
2021; Lin et al., 2021). This can be counter-productive since
deep learning-based architectures typically have a large number
of parameters that often outnumber the small training dataset
making the model susceptible to overfitting (Bishop and Nasrabadi,
2006) and reduced generalizability. Furthermore, owing to the large
parameter size, these models often take longer to train. Thus,
there is a growing need for data-driven methods for compensation
detection that can learn from small datasets with non-explicit
labels in order to decrease the reliance on manual annotation and
can be applied online for obtaining predictions in real-time from
streaming data.

In this work, we take a step toward closing these gaps by
proposing a novel approach that learns a linear classification model
that can not only discriminate between compensatory motions
and healthy ones, but also identify compensating upper-body

TABLE 1 Demographic information of the participants.

Characteristics Distribution

(Mean ± Std.)

Number of participants 6

Female 6

Age (years) 26± 2.5

Weight (kg) 59± 11.15

Height (cm) 167± 3.93

Right-hand dominance 6

joints without requiring explicit labels in the training data. To
learn an accurate classifier, selection of appropriate features is
of utmost importance. In this regard, we take inspiration from
bio-mechanical literature pertaining to natural motion generation
and design energy-based features that can be used to learn a
classifier. These features include joint jerk, power, torque rate
and effort, and they are often used as proxies for metabolic
energy expenditure which biomechanical models optimizes for
producing natural movements (Gauthier et al., 2010; Huang et al.,
2012). Thus, by including them as features, we propose that
they can inform the classifier regarding the degree of atypicality
of the motion. We calculate these features independently for
each observed degree of freedom (DoF). This allows us to
identify compensating joints in a given motion by exploiting the
product of its corresponding features and the weights of the
learned classifier.

We verify our approach using leave-one-out cross validation on
a dataset of healthy and acted compensatory motions by qualified
physiotherapists. The present study reports quantitative results that
demonstrate the efficacy of our approach toward identification of
compensatory motion and the degree to which the upper-body
joints are attributed to such motion. Furthermore, we demonstrate
that a linear classification model trained on energy-based features
shows competitive performance compared to deep learning-based
methods including MLP and LSTM that can automatically extract
relevant features from raw data (Shaheen et al., 2016) when
discriminating healthy motions from compensatory ones.

2. Materials and methods

2.1. Dataset

Six participants with no mobility impairments were recruited
for this study. All participants are trained physiotherapists.
Informed consent was gathered from all of the participants.
Table 1 summarizes the demographic information for all
the participants.

2.1.1. Motion primitives
We collected movement data for five different motion

primitives, each of which corresponds to a single goal-oriented
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motion trajectory. These include (i) a bimanual task where the
participant lifts a tray to their chest level with both arms, (ii) a
unimanual task to reach and grasp an object at the eye-level, (iii) a
unimanual task to reach and grasp an object at the chest-level, (iv)
a unimanual task to reach and grasp an object such that it includes
pronation and (v) supination. We illustrate these primitive motion
patterns in Figure 1.

Repetition of such motions is often part of rehabilitation
exercises (Thielman et al., 2004; Bayona et al., 2005; Rensink
et al., 2009) as they comprise major motions used for performing
activities of daily living. Each of these primitives display a wide
range of joint activity and joint interactions both for healthy and
atypical movements. The experimental setup for the bimanual tray
lifting task consists of cardboard tray with dimensions 35.5 cms ×
24.8 cms × 3 cms and weight 0.1 kgs. For the grasping tasks, we
use a height-adjustable tripod that is mounted with a cylindrical
rod of length 20 cms (the grasp object). We additionally place a
side table close to the participant’s dominant arm and adjust its
height such that they are able to place their elbow flexed naturally at
90 degrees. We controlled for reach length among the participants
by placing the tripod holding the grasp object such that it is
always within reach. This is done by adjusting the position of the
tripod such that its central column touches the participants’ wrist
when they extend their arm. At the beginning of the bimanual
motion, the tray is placed on the participant’s lap and grasped by its
sides. The starting point for the participant’s dominant arm during
the reaching motions is on the side-table. Figure 2 illustrates the
experimental setup for this work.

2.1.2. Compensation simulation
In addition to generating natural motions corresponding to

each of the 5 tasks, the participants also simulated different types
of compensatory movements simulating stroke patients for each
task. With regards to the latter, the participants, all of whom
were physiotherapists, were instructed to enact compensations that
were most commonly observed by them during their experience of
interacting with stroke patients using their dominant arm. No other
restrictions were placed on the type of the compensation strategies
the participants could simulate. However, all of the collected
motions (including the acted compensatorymovement trajectories)
begin with the participant sitting in a natural or “healthy” pose, with
no visible joint compensations.

Figure 1 illustrates the different motion primitives that
comprise the dataset and compares healthy and compensated
movement examples for each motion primitive. We additionally
plot the distribution of range of motion (RoM) observed
throughout the collected trajectories for each joint in Figure 3.
RoM has been widely used by physiotherapists to assess motion
health (Mortazavi and Nadian-Ghomsheh, 2019) along with other
criteria. The minimum average overlap between healthy and
compensatory motions was noted to be around 38 percent. This
can be attributed to the fact that RoM in compensatory motion
widely distributed according to the task and a person who
performed it, highlighting a challenge in identifying compensatory
movements using simple classification approaches, such as
thresholding on RoM.

2.1.3. Dataset size
We collected 5 repetitions of healthy movements and 5

repetitions of 3 acted compensatory movements for each of the 5
tasks (bimanual task, unimanual reaching to an eye level height,
unimanual reaching to a chest level height, unimanual reaching
with pronation, and unimanual reaching with supination) from 6
participants. This means that a total of 5 × (3 + 1) × 5 × 6 =

600 trajectories are collected, 100 trajectories for each individual
participant.

For ensuring the variability of the healthy motions in the
dataset, we calculated the width of 95% confidence intervals (C.I)
for peak motions of the different joints and compared them to the
95% CI’s width obtained by Gates et al. (2016) on a similar task
(unimanual reaching). We found these values to be comparable to
the previous work for most joints. Furthermore, for most joints,
the range of peak motions in compensatory movements was found
to be greater than 70% of the 95th percentile of peak motion
range across all movements (where this range is given by [0,
95th percentile of peak motion]), indicating high variability of the
motions in the acted compensations dataset. The 95th percentile of
peak motions is calculated from McGregor et al. (1995) for trunk
movements and from Gates et al. (2016) for other joints.

2.2. Data measurement

We used Qualisys Track Manager (Senior, 2004), a marker-
based motion capture system with fifteen cameras to capture
the movement data of the participants. A total of 31 markers
were placed on each participant. Of these, 10 markers were used
purely for scaling an OpenSim (Delp et al., 2007) upper-body
musculoskeletal model used for analysis (discussed below) to
the participant and were removed while tracking and recording
the actual motion of the participant. Figure 4 summarizes the
placement and purpose of the body markers. We collected the 3D
positions of the markers with respect to a common global reference
frame for each of the movement trajectories generated by the 6
participants at a rate of 100 Hz.

2.3. Automatic motion segmentation

In order to streamline the process of data collection, the healthy
repetitions of the distinct tasks by each physiotherapist are collected
as one contiguous motion. We adopt the same approach for
collecting the 3 different types of acted compensation movements
from the participants. Therefore, we essentially have 4 contiguous
mozion data per task per participant. From these trajectories,
we automatically extract the individual motions corresponding to
each of the 5 primitives with a simple approach similar to work
presented in Fod et al. (2002). The following steps are performed
for this purpose: (i) the marker trajectory is first smoothened with
a Savitsky-Golay filter (Savitzky and Golay, 1964) of a window
of length 200 milliseconds. Next, (ii) the velocity of the end-
effector markers (in our case, the markers on the participants’
wrists) is calculated by taking the first derivative of the marker
positions. Finally, (iii) zero-crossings vector for the marker velocity
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FIGURE 1

Representation of healthy and compensatory motions for the 5 primitives in our dataset.

trajectory are obtained. We pick the locations where velocity is
0 in all three axes. These yield the start and end locations of
each individual motion. We illustrate these steps in Figure 5.
We modify this approach for extracting non-segmentable motion
primitives during online classification at test time as described in
Section 2.9 Note that each trajectory consists of multiple repeated
motions that begin from the start position, execute the motion
primitive, which ends when a target configuration is reached (for
example, the tray is lifted to the chest level in the bimanual
task, and the cylindrical object is grasped in a particular manner
for the reaching task) and return back to the start position.
Since participants are not explicitly asked to follow any protocol
as they move back to the start position, after executing the
motion primitive, we exclude this portion of the trajectory from
our analysis.

2.4. Data processing

We used OpenSim (Delp et al., 2007), an open source software
package for modeling, simulation and analysis of human bio-
mechanical systems for processing the collected data. For our
analysis, we used an OpenSim biomechanical model of a human
skeleton with 17 DoFs. The first three of these 17 DoFs are (i)
torso flexion, which corresponds to leaning forward (ii) torso tilt,
a movement that corresponds to a sideways bend of the torso, and
(iii) torso rotation, which corresponds rotation of the torso about
its length. The rest of the 14 DoFs correspond to the left and right
arms of the participant and mirror each other. For brevity’s sake,
we list the DoFs for only one arm. These include (iv) elevation
plane, (v) elevation angle, (vi) shoulder rotation, (vii) elbow flexion,
(viii) forearm rotation, (ix) wrist flexion, and (x) wrist deviation.

For detailed descriptions of these DoFs, we refer the readers to
Holzbaur et al. (2005). The 3 DoFs corresponding to the torso along
with the 7 arm DoFs corresponding to the dominant arm of the
participants comprise the set that is used for our analysis.

We will now describe our data processing pipeline (illustrated
in Figure 6). First, a generic upper-body musculoskeletal model
with 17 DoFs was scaled and registered to each of the 6 participants.
Following this, the marker trajectories were processed using
OpenSim’s inverse kinematics tool to infer the corresponding
joint angle trajectories of the scaled models associated with each
participant. We represent the joint angle trajectories with {qt}

T
t=1,

where qt denotes the joint configuration of the musculoskeletal
system at the discretized time-step t and T denotes the length
of the motion trajectory. The joint configuration qt = {qit}

NJ

i=1
is essentially a vector of relative angles corresponding to the
NJ rotational DoFs in the musculoskeletal model of the upper
body that we are using for this study. We additionally obtain
trajectories of joint angle velocity {q̇t}

T
t=1 and acceleration

{q̈t}
T
t=1 via automatic differentiation. Finally, we used Opensim’s

inverse dynamics tool to derive the torques applied at each
joint at each time-step (represented in this work as the joint-
dynamic trajectory {τ t}

T
t=1) for producing the corresponding joint-

kinematic trajectory {qt , q̇t , q̈t}
T
t=1. All collected trajectories are

smoothened by using a low-pass filter with a cut off frequency of
6 Hz.

2.5. Feature extraction

Given the kinematic and dynamic trajectories of the motion,
we obtain several metrics commonly used for analysis of human
motion generation in biomechanics literature. This includes (i)
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FIGURE 2

Setup for each of the 5 motion primitives. A tray is used for the bimanual lifting task. A cylindrical rod fixed at the top of a tripod is used to mark the

target position for the reaching tasks. The participants were asked to grasp the cylindrical rod during the reaching tasks. For reaching to an eye-level

and chest-level heights, the rod is aligned vertically. For pronation and supination tasks, the rod was rotated 90 degrees such that it was horizontal.

FIGURE 3

Histogram plotting the Range of Motion observed for di�erent joints for healthy and compensatory motions.

angular jerk (q̈it), an indicator of the degree of movement
smoothness in the joint space, maximization of which has been
correlated to natural arm movement generation (Wada et al.,
2001), (ii) power (|q̇it · τ it |), (iii) effort (|τ̈ it |), and (iv) torque
rate (|τ̇ it |). The weighted sum of the last three metrics have

been proposed by several previous works to be an indicator
of metabolic cost (Zhou et al., 2017; Wong et al., 2021),
minimization of which is theorized as one of the biomechanical
principles for human motion (Gauthier et al., 2010; Huang et al.,
2012).
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FIGURE 4

Marker placement on participants’ dominant side. The placement of

the upper shoulder marker, the elbow inside and outside marker, the

wrist in and out markers, and the pelvis marker are mirrored on the

non-dominant side of the participant, but are used only for scaling

the OpenSim model.

We create an input feature matrix φt corresponding to
each time-step t of the trajectory. This is done in two steps.
First, we calculate the 4 aforementioned metrics for 10 DoFs
in the musculoskeletal model separately at each time-step t of
the movement trajectory. Next, we update each feature at time-
step t by replacing it with cumulative averaging of all the
features seen until t to obtain the Cumulative Averaged Energy
(CAE) features. This attempts to encode temporal information in
the features.

2.5.1. Input normalization
Lastly, all features are normalized using min-max scaling

between the values of 0 and 1 across the training dataset in order
to remove any bias arising from numerically higher feature values
(Singh and Singh, 2020). At test time, the feature values are scaled
using themin-max values extracted from the training dataset. Since,
we use leave-one-out cross-validation, feature normalization is
done independently for each fold of evaluation. The resulting CAE
feature matrix (see Figure 7) denoted by φ = {φd}

40
d=1 containing

40 scalar features forms one of the inputs to the classifier discussed
in the Section 2.7.

2.6. Generation of the training dataset

For online classification, we generate the training dataset Dtr

by calculating the feature matrix for each time-step of each of
the NMtr movement trajectories. This corresponds to the input
feature vector φt,m comprising a single datapoint along with a
ground-truth label. The latter is required by supervised learning
methods. Since we have access to only sparse binary labels which we
denote as ym corresponding to the fullm-th trajectory, we generate
ground-truth labels for the intermediate steps of the trajectory by
replicating the label corresponding to the full trajectory for all
the frames, thus obtaining a label yt,m for the t-th frame of the
m-th motion trajectory. Assuming that the m-th trajectory has a

length of Tm, the full dataset D has a total of
∑NMtr

m=1 Tm data-
points. We can therefore succinctly represent our training dataset
Dtr as follows:

Dtr = {φm,tm , ym,tm ; ∀tm ∈ {1, . . . ,Tm}, ∀m ∈ {1, . . . ,NMtr }} (1)

2.7. Classification algorithm

We train a linear classification model (Bishop and Nasrabadi,
2006) using supervised learning for discriminating between healthy
and compensatory motions. More concretely, our goal is to learn a
linear hyperplane w · φ + b = 0, where the learnable parameters w
and b are learnt such that the following conditions:

w · φ + b < 0 H⇒ Compensation

w · φ + b ≥ 0 H⇒ No Compensation
(2)

are maximally satisfied over the training datasetDtr .
Many different methods for learning the parameters w, b

have been described in the literature. We employ two popular
approaches, namely linear Support Vector Machine (SVM)
classification and Logistic Regression (LR) for learning these
parameters. We describe these methods in the following
subsections.

2.7.1. Logistic regression
LR (Bishop and Nasrabadi, 2006) learns the parameters

w, b by minimizing the regularized cross-entropy loss on the
training dataset.

L(w, b|D) = −
∑NDtr

i=1 [yi log σ (w · φi + b)

+(1− yi) log(1− σ (w · φi)+ b)+ λ||w||22] (3)

where σ (a) = 1
1+exp(−a) denotes the sigmoid function, || · ||

denotes the Euclidean norm, λ is the regularization constant, and
NDtr demotes the size of the training dataset.

This loss has its basis in Maximum Likelihood Estimation
(Bishop and Nasrabadi, 2006) which maximizes the probability
p(φ) = σ (w · φ + b) of the input φ that belongs to the
true class over the dataset Dtr . Once the classification model has
been trained, the output of function p(.) can be interpreted as
an indicator of the classification confidence. Thus, a probability
value of 0.5 indicates that the classification model is uncertain
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FIGURE 5

An illustration of the steps followed for automatic motion segmentation. In step 3., the green region corresponds to the execution of the motion

primitives and are analyzed. The gray region corresponds to the participant moving back to their start positions and are not analyzed.

FIGURE 6

Data processing pipeline. We obtain marker-based kinematic data and process it using OpenSim to compute joint kinematic and dynamic

trajectories. This is followed by extraction of energy-based features.

regarding its prediction, while values closer to 0 or 1 indicate high
model confidence.

2.7.2. Support vector machine with a linear kernel
SVMs learn a linear classification hyperplane that can separate

the positive and the negative class such that the margin for
separating these two classes has the maximum distance. While
SVM is a non-parametric method and typically remaps the input
feature space to an infinite dimensional latent space when using

complex kernels (Bishop and Nasrabadi, 2006), in this work, we
use a linear kernel, that effectively translates to learning the model
parameters w, b by minimizing the Hinge Loss, that is given
as follows:

L(w, b|D) =

NDtr
∑

i=1

yi
1

2
wTw + α

NDtr
∑

i=1

max(0, 1− yi(w · φ + b)) (4)

where α is a regularization parameter.
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FIGURE 7

The CAE feature matrix. The rows depict the 10 DoFs and the

columns depict the feature types. Each cell in the matrix

corresponds to a feature.

2.7.3. Training hyper-parameters
Our proposed models with energy based features are both

trained for 5, 000 iterations. The SVM model is trained with a
squared-hinge loss and L2 penalty, while the LR model is trained
with an LBFGS optimizer that minimizes the L2 -penalized cross-
entropy loss described in Equation 4.

2.8. Identification of compensating joint

We propose to identify the compensating DoFs by exploiting
a feature vector corresponding to each DoF independently. Given
the parameters of the Ridge Regression model {w, b}, where w =

{wd}
40
d=1 is the set of weights with a one-to-one correspondence

with the elements of the feature matrix φ, we sort the list of 10 DoFs
based on the corresponding weight-feature product given by:

ψj = wj,Jerkφj,Jerk + wj,Powφj,Pow + wj,Effφj,Eff + wj,TRφj,TR (5)

for the j-th DoF. If the class predicted by a trained model
is “Compensated”, the DoF corresponding to the most negative
weight-feature product contributes the most to that classification.
This can be seen in Equation 2 which shows the linear combination
of the weights and features per DoF determines the classification
prediction by the model.

2.9. Online feature extraction and
classification

For online classification, we must calculate the CAE
features in an online manner from the input stream of
joint kinematic and dynamic data. As noted in Section 2.5,
creation of CAE features includes an aggregation process that
presupposes the availability of segmented motion primitives.
Therefore, similar to Section 2.3, we employ automated

motion segmentation using zero-crossings of the end-effector
velocity to extract goal-directed motion primitives from the
trajectory. However, since for online classification, data is
processed as a stream, and the full trajectory is revealed to
us frame-by-frame, automatic segmentation is reapplied at
regular intervals to update motion-primitive locations. The
procedure for online segmentation is given as follows: (i)
Maintain a history of Thist previous observations of joint
kinematics and dynamics, i.e {qt , q̇t , q̈t , τ t}

Thist
t=1 as well as marker

positions {mt}
Thist
t=1 . (ii) At regular intervals, recalculate the

zero-crossing points from the marker history as well as
update the observation history. (iii) Use the last observed
zero-crossing point as the beginning of a motion primitive for
calculating CAE features at time step t as described in Section
2.5.

2.10. Baseline models for comparison

We compare our approach of training the SVM and LR
linear classifiers with energy-based features against 2 other baseline
models. The first is an MLP with 2 hidden layers and 10 neurons
in each layer. The second baseline is an LSTM with 2 hidden
layers with 50 neurons each. Both architectures were employed
in recent works for classification of compensatory motion (Zhi
et al., 2017; Lin et al., 2021) and have served as baselines for
other works that use deep learning architectures for analysing
human motion data (Azmi and Sulaiman, 2017; Rustam et al.,
2020; Wan et al., 2020; Ahad et al., 2021; Yao et al., 2021;
Yu et al., 2021). LSTM, in particular has been considered to
be suitable for modeling temporal processes, both in context
of compensation detection as well as other domains. Since our
objective is to demonstrate that exploiting prior bio-mechanical
knowledge via energy-based features has competent performance
to automatic feature extraction via deep neural networks, the input
to our deep neural network baselines are joint-kinematic and
dynamic trajectories [similar to Zhi et al. (2017)]. We use a sliding
window of size s and an overlap of s − 1 frames to create input
vector at time-step t of size s × 4 × NJ . This is aligned with
previous approaches which also look at a fixed-length window of
data that slides along the trajectory, both for generating training
datapoints and at test-time, for online classification (Zhi et al.,
2017; Lin et al., 2021). Window length s was determined to be 100,
corresponding to 1.0 seconds for MLP and 20, corresponding to
0.2 seconds for LSTM using grid-based hyper-parameter search.
Further, the number of neurons in each layer of MLP and
LSTM was also determined by using grid-based hyper-parameter
search.

2.10.1. Input normalization
Similar to the CAE features, before the input is accepted by

either of the classification models, it is normalized using min-
max scaling. Normalization is done independently for each fold of
evaluation similar to the feature normalization for our proposed
approach (Section 2.5.1).
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2.11. Evaluation criteria

2.11.1. Evaluation metrics and cross-validation
We evaluate our proposed approach against other approaches

with three performance metrics - mean brier score, mean miss-
classification rate and mean false discovery rate. Brier Score (BS) is
used to measure the quality of uncertainty estimation of the model
and can be formulated as BS = 1

N

∑N
i=1 yi − p(φi) where N is the

size of the set over which BS is being calculated. A small value for
BS indicates that the classification model is well calibrated. Miss-
classification rate (MCR) measures the proportion of true class
examples miss-classified as the other class. Note that MCR = 1 −
recall, which is another popularmetric for quantifying classification
performance. Finally, false discovery rate (FDR) is calculated as the
proportion of true class predictions that are incorrectly classified.
We note that FDR = 1 − precision. Smaller values for each of
these metrics (BS, MCR, FDR) is indicative of good classification
performance.

All performance metrics are calculated for samples belonging
to each class separately and take the mean. This is done to
counterbalance the class-imbalance in the dataset which occurs
since more acted compensation trajectories are collected than
healthy trajectories.

Cross-validation for all evaluations is performed with leave-
one-out approach (LOOCV), in order to ensure that we do not
overfit to the test dataset (Cawley and Talbot, 2003).

2.11.2. Significance testing
We additionally report the significance of classification

performance among different methods. While it is common to
use McNemar’s test for this purpose, we cannot directly apply
it on our test datapoints since they constitute different time-
steps of the same trajectory and can be highly correlated, thus
violating the independent samples assumption of the test. As
a result, we instead use voting to aggregate the predictions at
trajectory level where possible (model comparison and ablation
study) and apply the Bonferroni-Holm correction to adjust
the p-values whenever we conduct multiple comparisons. We
deem the results to be statistically significant if p < 0.05. For
each of the comparisons, we report statistics in the following
format, χ2(degrees-of-freedom,N = number of samples) =

value of statistic, p < 0.05 or p > 0.05.
Unfortunately, when assessing online classification

performance, the test outputs always correspond to fractions
of the same trajectory since the purpose of the experiment is
to test the model performance on streaming data. This violates
the independence assumption of McNemar’s test. Consequently,

significance testing with McNemar’s test could not be conducted
for this experiment.

TABLE 2 Comparison of model performance using three metrics whose

mean and standard deviation over all the test-folds generated using

LOOCV are reported.

Model Brier score Mis-
classification

rate

False
discovery

rate

MLP 0.191± 0.05 0.332± 0.092 0.221± 0.094

LSTM 0.230± 0.109 0.270± 0.122 0.281± 0.169

SVM 0.119± 0.093 0.151± 0.124 0.177± 0.103

LR 0.119± 0.060 0.137± 0.072 0.194± 0.089

The bold entries indicate the smallest mean and corresponding standard deviation in

the column.

3. Results

3.1. Model comparison

We compare the performance of our linear classifiers
(SVM and LR) trained with energy-based features on the
baseline deep learning models MLP and LSTM trained on raw
observations (See Section 2.10 for a detailed description of the
baseline models).

As indicated in Section 2.11.2, we use voting to aggregate the
predictions at trajectory level to calculate the average performance
metrics (Table 2). LR achieves the lowest mean mean BS (0.119)
and MCR (0.137) amongst all the models. SVM has the lowest
FDR (0.177). The highest mean BS (0.230) and FDR (0.281)
is obtained by LSTM and the highest mean MCR (0.332) is
obtained by MLP.

Furthermore, we conduct McNemar’s test to assess the
significance of model performances. LR significantly outperforms
MLP, χ2(1,Nk = 600) = 8.51, p < 0.05, as well as LSTM,
χ2(1,Nk = 600) = 5.78, p < 0.05. No significant differences
were found between the classification performance of SVM and LR,
χ2(1,N = 600) = 5.54, p > 0.05. SVM significantly outperforms
MLP, χ2(1,N = 600) = 23.36, p < 0.05, and LSTM, χ2(1,N =

600) = 17.69, p < 0.05. Finally, the classification performance of
MLP was not found to be significantly different from that of LSTM,
χ2(1,N = 600) = 0.653, p > 0.05.

We additionally report averaged balanced accuracy (i.e the
mean of “Healthy” and “Compensation” classification accuracies)
separately for each temporal inter-quartile-range of the trajectory
where the temporal-quartiles describe the fraction of the trajectory
covered. These results are categorized by type of motion primitive
and illustrated in Figure 8. Balance accuracy (BA) for each bin B

with NBheal healthy datapoints and NBcomp compensatory datapoints
is calculated as:

BA =
1

2

(

∑NBheal
i=1 |φ

Bheal
i classified as “Healthy”

NBheal

+

∑NBcomp

i=1 |φ
Bcomp

i classified as “Compensatory”

NBcomp

)

3.1.1. Online classification results
We validate our proposed method for online feature extraction

and classification in this section. Our test data for each
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FIGURE 8

Balanced accuracy computed via LOOCV for various models as one progresses along the trajectory horizon for various pre-segmented motion

primitives. The color gradient of the bars indicate the average model confidence at the corresponding time-step of the trajectory.

TABLE 3 Comparative performance of di�erent models on online classification tasks.

Brier score Misclassification rate False discovery rate

MLP 0.199± 0.047 0.298± 0.066 0.299± 0.065

LSTM 0.217± 0.059 0.328± 0.080 0.342± 0.068

SVM (fixed-seg) 0.188± 0.036 0.233± 0.072 0.313± 0.036

LR (fixed-seg) 0.169± 0.056 0.223± 0.075 0.302± 0.039

SVM (auto-seg) 0.154± 0.05 0.171± 0.085 0.237± 0.048

LR (auto-seg) 0.134± 0.075 0.168± 0.085 0.228± 0.051

The mean and standard deviation of three evaluation metrics over the folds of LOOCV are reported here. The bold entries indicate the smallest mean and corresponding standard deviation in

the column.

fold from LOOCV comprises of the continuous trajectories of
repeated motions (healthy or compensatory) collected from the
corresponding “Left Out” participant before the data-processing
step of automatic segmentation. We process the whole continous
trajectory frame-by-frame at the rate of 100 Hz for both our
energy-based linear classifiers, as well as the baseline methods
(MLP and LSTM). Thus at each time-step t, we have access
to only the first t frames. We use the method proposed in
Section 2.9 for automatic segmentation and online extraction
of the CAE features. We contrast the method proposed for
online feature extraction in Section 2.9 with a simple method
that assumes that all the non-segmentable motion primitive have
a length of 1 second and are contiguous. In the case of the
deep learning baselines MLP and LSTM, we use a First In First
Out (FIFO) buffer for obtaining the windowed input. These
buffers have the same length as the sliding windows used for

training the models. Thus, s = 100 (corresponding to 1.0
seconds) for MLP and s = 20 (corresponding to 0.2 seconds)
for LSTM.

Thus, for all the approaches, we obtain a predicted class
for each time-step of the trajectory. However, during the
calculation of evaluation metrics, we exclude test datapoints
that correspond to the portion of the trajectory where the
participant is returning to the start position after executing
the motion primitive since participants are not explicitly
asked to follow any protocol during this portion of the
motion. We report our results in Table 3. Our experiment
shows that when automatic segmentation employed, our
method (LR (auto-seg) achieves the lowest mean BS (0.134),
MCR (0.168), and FDR (0.228). The highest mean BS
(0.217), MCR (0.328), and FDR (0.342) is achieved by
LSTM.
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3.1.2. Uncertainty estimation comparison
In addition to model accuracy, the quality of uncertainty

estimation is also an important factor for measuring the
performance of classification models. As discussed previously, BS
is one approach toward quantifying model uncertainty estimation
performance and has been reported for various models in
Tables 2, 3. We additionally provide qualitative results in the
Figure 9 in the form of calibration plots. We note that while
none of the models are perfectly calibrated, SVM and LR,
both of which use CAE features, are the closest to the ideal
classifier.

3.2. Compensating joint identification

In this section, we show qualitative results for the identification
of compensating joints in Figure 10. All the sample trajectories
shown in the Figure belong to the “Compensated” class and were
randomly sampled from the same class. However, note that despite
this, some of the early frames of the motion are classified as
“Healthy”. Since all our test trajectories begin with a healthy pose,
this result is in accordance with our expectations. We note that the
weight-feature product also potentially provides an interpretable
way of identifying the compensating joints as well as the relative
degree of compensation. The more negative the weight-feature
product corresponding to a DoF, the more likely it is that the DoF
is contributing to a compensation classification.

3.3. Ablation study of feature aggregation

Lastly, we conduct an ablation study of the feature aggregation
step (Section 2.5) for LR models to evaluate the benefit of
aggregating the trajectory features until current time step t with
an averaging function. We compare our proposed aggregation
mechanism against other feature aggregation mechanisms,
including no aggregation, where no feature aggregation is
performed, and windowed aggregation, where instead of
calculating the cumulative average, the final feature at each
time step t is calculated as the average of the feature values over a
window of size s ∈ {20, 100} centered at time step t, corresponding
to 0.2 and 1.0 seconds respectively.

Similar to Section 3.1, we use voting to aggregate the
predictions at trajectory level to calculate the average performance
metrics (Table 4). Using CAE features yields the lowest mean MCR
(0.137) and lowest mean FDR (0.194). The lowest mean BS (0.110)
is achieved by using features averaged over a 1 second long window
i.e, “Windowed Avg Feature (1s)”. Models that donot use any
feature aggregation yield the highest mean BS (0.168), highest mean
MCR (0.229), and highest mean FDR (0.286).

Statistical testing with McNemar’s test reveals that models
trained with CAE features significantly outperform models that do
not use feature aggregation, i.e., “Without Feature Aggregation”,
χ2(1,N = 600) = 65.29, p < 0.05, as well as models using features
averaged over a 0.2 seconds long window i.e, “Windowed Avg
Feature (0.2s)”, χ2(1,N = 600) = 65.29, p < 0.05. However, the
McNemar’s test is unable to show a significant difference between

the classification performances of models using CAE features and
models with features averaged over a 1 second long window i.e,
“Windowed Avg Feature (1s)”, χ2(1,N = 600) = 0.02, p > 0.05.
Among other comparisons, models with “Windowed Avg Feature
(1.0s)” significantly outperformmodels trained on “Windowed Avg
Feature (0.2s)”, χ2(1,N = 600) = 34.68, p < 0.05, as well
models trained without feature aggregation, χ2(1,N = 600) =

69.89, p < 0.05. Finally, models with “Windowed Avg Feature
(0.2s)” significantly outperform models trained without feature
aggregation, χ2(1,N = 600) = 30.04, p < 0.05.

4. Discussion

The aim of this work was to validate a novel approach for
automatically detecting compensation strategies with an analytical
capability from the kinematic and dynamic trajectory of a motion.
For this purpose, we trained a linear classifier on energy-based
features. In order to identify the individual joints contributing
to compensation, these features were calculated independently
for each observable DoF in the distinct segments of the upper
body. Temporal information was encoded by aggregating the
energy-based features along the input trajectory using cumulative
averaging. Two typical methods for learning the linear classifier,
namely SVM and LR were investigated.

Our proposed method was validated on a dataset of 5
motion primitives collected from 6 physiotherapists with healthy
movements as well as acted compensations. This allowed us to
collect a larger variety of compensatory behavior as observed by
experienced physiotherapists in contrast to simulating just three
types of compensatory behaviors (Zhi et al., 2017). Furthermore,
previous approaches (Zhi et al., 2017; Cai et al., 2019; Ma et al.,
2019) only collected a dataset for uni-manual reaching tasks. In
contrast, we record the motions for a bi-manual task (lifting a tray),
as well as tasks requiring pronation and supination.

We compared our method against two deep learning baselines
MLP and LSTM (Section 2.10) that can perform automatic
feature extraction, and have been used in previous approaches for
compensation detection (Zhi et al., 2017; Khoramdel et al., 2021;
Lin et al., 2021).

Comparison of evaluation metrics (Table 2) and statistical
testing with McNemar’s test (Section 3.1) showed our methods
(LR and SVM) significantly outperformed deep learning baselines,
namely MLP and LSTM. In contrast, in Zhi et al. (2017),
classification performance of LSTM was noted to be similar for
healthy participants and better for stroke patients compared to
SVM (without energy-based features). Our results thus indicate
that including prior biomechanical information in the form
of energy-based features can allow for superior classification
performance compared to deep learning approaches, even when
simple linear classification methods are used. These results are very
promising since both baseline models that exploit deep learning
have a larger number of trainable parameters by design and are
therefore susceptible to overfitting to the training data (Bishop and
Nasrabadi, 2006).

We additionally validated our proposed online classification
mechanism. Table 3 showed that our proposed methods, LR and
SVM models yielded lower values of mean BS, MCR and FDR
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FIGURE 9

Calibration plots demonstrating the quality of uncertainty quantification by various models for the 5 di�erent movement primitives. The closer the

plot is to the ideal classifier, the better the uncertainty estimation quality of the model.

FIGURE 10

Examples of compensating joint identification using the LR classification model for various tasks with acted compensations are shown. The model’s

classification prediction is indicated along with the model confidence score. The joints that contribute to the classification “Compensatory” in last

frame of the sequence are shown in the last column along with their corresponding weight-feature product. The more negative the value for this

product is, the greater the possibility that the corresponding joint is being used for compensation. Positive values of this product indicate that the

corresponding joint is used in typical movements.
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TABLE 4 Results from the ablation study for determining the best aggregation over features.

Feature aggregation mode Brier score Mis-classification rate False discovery rate

Without Feature Aggregation 0.168± 0.034 0.229± 0.059 0.286± 0.03

Windowed Avg Feature (0.2s) 0.140± 0.039 0.188± 0.048 0.260± 0.038

Windowed Avg Feature (1s) 0.110± 0.051 0.138± 0.079 0.202± 0.091

Cumulative Avg Feature 0.119± 0.060 0.137± 0.072 0.194± 0.089

The mean and standard deviation of all three metric values are calculated over LOOCV folds. The bold entries indicate the smallest mean and corresponding standard deviation in the column.

compared to LSTM. Furthermore, these models yielded lower
values of mean BS and MCR; and lower or similar values
of FDR compared to MLP. In practice, lower values of these
metrics corresponds to better classification performance. This
indicates that, equipped with energy-based features, models with
less trainable parameters such as LR and SVM can perform
online classification for compensation detection as well as deep
learning-based models that have considerably more parameters.
Since training time scales with the size of the model, and can
consequently impact online classification computation time in
cases where model retraining is needed (such as continual learning
Hadsell et al., 2020), this is a promising result.

Within the context of online classification, we studied two
different methods for online segmentation of motion primitives
for calculating CAE features. Our preferred method, automated
motion-primitive segmentation using zero-crossing of velocities
(Section 2.3) achieved lower values of BC, MCR, and FDR
compared to a method that assumes the full motion to be
composed of contiguous segments, each with a fixed length of
one second. However, the method that we use for automated
motion-primitive segmentation can be limited in its applicability
since it strongly depends on how cleanly the movement data
is separable into primitives by instances of zero velocity, which
is not always possible in real scenarios. In a real-world setting,
natural human movements may contain hesitation and noise,
and therefore multiple points of zero-crossing velocities can be
observed, despite not corresponding to the actual beginning
or end of a motion primitive. In such situations, assuming a
fixed segmentation-length for the calculation of CAE features
can still give acceptable results. Many additional methods exist
for primitive motion segmentation in literature. For instance,
Barbič et al. (2004) uses probabilistic principal component
analysis to track changes in the motion distribution and find
segmentation points; Beaudoin et al. (2008) uses k-Nearest
Neighbors to cluster individual motion frames, associate different
clusters with a unique symbol and subsequently partition the
complete movement based on identification of different cluster
sub-sequences; Kulić et al. (2012) uses clustering and hidden
markov models (HMM) for online segmentation; and Zhou et al.
(2022) uses transfer learning to learn a segmentation model from
related motion data that already has segmentation labels. We
leave the investigation and validation of these methods and their
robustness to real-world noisy data for compensation detection to
future works.

Our proposed approach for compensation joint identification
(Section 2.8 and Figure 10), potentially provides a straightforward
and interpretable way of identifying compensating joints, as well

as the degree of compensation being performed without having
to rely on detailed-annotations of compensation locations as
opposed to previous approaches (Zhi et al., 2017; Cai et al., 2019;
Ma et al., 2019; Kashi et al., 2020). Visual verification of the
randomly sampled trajectories in the figure indicates the method
can successfully identify the compensating joints. However, this
result is only a qualitative observation since the ground truth
labels for loci of true compensation were not a part of the dataset
annotation. Full validation of this technique via collection of
annotations for a validation set and comparison of the prediction
results with the same is left to future work.

We additionally investigated the impact of trajectory progress
toward the final kinematic pose on classification accuracy and
model confidence. Our analysis in Figure 10 indicates that model
confidence tends to increase as the time step t of the trajectory
progresses. This is more clearly observed in Figure 8 at a
macro level, where both the model confidence and accuracy
tends to increase as the trajectory progresses for all the model
architectures we studied. However, we also noted that for most
cases, model accuracy reached higher magnitudes earlier for
linear classification models (LR and SVM) compared to the deep
learning baselines (MLP and LSTM). We believe that this is
owed to including prior biomechanical information in the linear
classifiers inputs in form of energy-based features, which, as we
have already shown in Section 3.1, outperform baseline deep
learning methods.

Regarding model performance across various tasks, the analysis
presented in Figure 8 indicates that classification accuracy is
relatively lower for bimanual tray lifting compared to other
tasks. This suggests that the difference between healthy and
compensatory behavior in terms of joint kinematics and dynamics
during bimanual motions is inherently dissimilar to that during
uni-manual motions. If that is the case, ensemble-based models,
where each model is trained to identify compensations for
individual task types can be used. However, additional data
and analysis is required for a thorough investigation of this
dissimilarity.

We also studied model confidence more closely in calibration
plots shown in Figure 9. Both a qualitative review of these results
along with the BS reported in Tables 2, 3 show that LR and SVC
models are better calibrated than the deep learning-based MLP and
LSTM models. This implies that the uncertainty values estimated
by our linear classification models is more reliable than those
predicted by the deep learning baselines. This result is consistent
with previous literature which link overfitting (more commonly
observed in deep neural networks) to uncertainty calibration (Guo
et al., 2017; Mukhoti et al., 2020).
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Lastly, we conducted an ablation study to determine the best
mode of feature aggregation. We found that models trained with
CAE features significantly outperform models trained without
feature aggregation or with features averaged over a sliding window
of size 0.2 seconds. We speculate that the success of CAE features
can be attributed cumulative averaging of the features over the seen
trajectory, which helps encode the trajectory history in the feature
and leads to better classification. We note however, that averaging
features over a larger window (with length 1 second) does not lead
to a significantly different classification performance than using
CAE features. A possible reason could be that a window of length 1
second is able to capture enough temporal information for accurate
classification. However, the window size is still an additional hyper-
parameter to be optimized when the mode of feature aggregation
is chosen to be averaging over a fixed length window. In contrast,
using CAE features does not require any such hyper-parameter
optimization.

While this study proposes a novel method for compensation
detection and compensating joint identification from sparse
labels, which, to our knowledge has not been explored
before in literature, it also has a few limitations that
must be considered during application of this approach,
and can be improved upon in future extensions of this
work.

Even though all of our participants, being experienced
physiotherapists, are familiar with common compensation
strategies and drew from experience while simulating compensated
motions, variability of compensation strategies in patients
can be higher since multiple factors, such the stroke severity
(Levin et al., 2016) and fatigue (Zhi et al., 2017) and their
combinations can affect the type and degree of compensation
employed in different ways. Compensations arising from
milder impairments may be only slightly discernible and
consequently harder to classify (Zhi et al., 2017). Future
work will therefore explore the robustness of the methods
established in this approach on motion data collected from
patients.

Furthermore, this study comprised of analysing 5 motion
primitives, most daily living tasks are much more complex and
are composed of different primitive motions. We will therefore
verify the robustness of this approach on a dataset of more complex
motions in the future.

Additionally, this work strictly imposes the condition of
calculating features that are independent for each observable
DoF in order to infer compensating joints. However, low
coordination between 2 or more DoFs has also been noted to
be an indicator of compensation (de Los Reyes-Guzmán et al.,
2017). Thus, incorporating features measuring joint-coordination
such as movement correlation (de Los Reyes-Guzmán et al.,
2017) can be a promising line of investigation for subsequent
studies.

Finally, the problem of compensation detection from
kinematic data is closely related to other applications for
human motion classification such as human activity recognition
Vrigkas et al. (2015) and gait analysis Yao et al. (2021). Many
of these works therefore deal with similar challenges, such as
processing temporal data, online classification and multilabel
classification. Consequently, future works can also investigate

novel solutions from these works for compensation detection.
For instance, Chamroukhi et al. (2013) proposed a method for
automated motion segmentation for human activity recognition
using expectation-maximization and HMM which can also be
investigated for online classification using our approach; and Yao
et al. (2021) combined different temporal features such as time-
domain, frequency-domain and wavelet-domain based features for
gait analysis which can also be used to extend the CAE feature set
proposed in this work for compensation detection.

5. Conclusion

Reliable identification of compensatory strategies in post-
stroke patients is crucial for the long-term recovery of the
patient. Current methods rely on densely annotated training
datasets that can be cumbersome to acquire. To mitigate
this, we propose to train a linear classifier with energy-
based features that can automatically classify disjointed
motion primitives as healthy or compensatory in addition
to identifying the compensating joints from sparsely labeled
training data. We acquired a dataset of 5 motion primitives
including bimanual lifting and uni-manual reaching tasks
executed by 5 healthy physiotherapists multiple times, both
with and without simulated compensations. The methods
proposed in this were validated on the aforementioned dataset
using leave-one-out cross validation and outperformed deep
learning-based methods that are parameter heavy and are
more difficult to train. Future studies will verify the methods
proposed in this work on data collected from actual stroke
patients.
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Providing high degree of personalization to a specific need of each patient

is invaluable to improve the utility of robot-driven neurorehabilitation. For the

desired customization of treatment strategies, precise and reliable estimation of

the patient’s state becomes important, as it can be used to continuously monitor

the patient during training and to document the rehabilitation progress. Wearable

robotics have emerged as a valuable tool for this quantitative assessment as the

actuation and sensing are performed on the joint level. However, upper-limb

exoskeletons introduce various sources of uncertainty, which primarily result from

the complex interaction dynamics at the physical interface between the patient

and the robotic device. These sources of uncertaintymust be considered to ensure

the correctness of estimation results when performing the clinical assessment of

the patient state. In this work, we analyze these sources of uncertainty and quantify

their influence on the estimation of the human arm impedance. We argue that

this mitigates the risk of relying on overconfident estimates and promotes more

precise computational approaches in robot-based neurorehabilitation.

KEYWORDS

reliable automated assessment, sensitivity analysis, human-exoskeleton interaction,

uncertainty quantification, neuromechanical state estimation, uncertainty-aware

simulation

1. Introduction

Medical robotics have advanced greatly with application in many domains, such as
robot-assisted surgery (D’Ettorre et al., 2021), service robots in healthcare (Holland et al.,
2021) or rehabilitation robotics (Laut et al., 2016). Particularly in the field of physical
rehabilitation, an ever-increasing demand for automation technology is observed. Stroke,
for instance, is the second leading cause of death worldwide (Feigin et al., 2014) with
an increasing trend due to rising life expectancy in many parts of the world (Boehme
et al., 2017; Donkor, 2018). However, while stroke is a highly relevant cause for motor
impairment, many other neurological disorders, such as cerebral palsy, multiple sclerosis
or Parkinsons disease, require similar treatment strategies during rehabilitation to improve
or retain motor functions (Krebs et al., 2008). In particular, high-intensity (Ringleb et al.,
2008) and repetition training (Kwakkel et al., 1999) have been shown to produce promising
recovery results. Due to these requirements, effective rehabilitation is time- and labor-
intensive, therefore, both patients and healthcare professionals can benefit greatly from
robot-assisted rehabilitation strategies.

Frontiers inNeurorobotics 01 frontiersin.org118

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1167604
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1167604&domain=pdf&date_stamp=2023-08-24
mailto:samuel.tesfazgi@tum.de
https://doi.org/10.3389/fnbot.2023.1167604
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1167604/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Tesfazgi et al. 10.3389/fnbot.2023.1167604

In recent years exoskeletons, also referred to as wearable
robotic devices (Lo and Xie, 2012), have emerged as a powerful
tool for rehabilitation. Since they are designed in a manner that
the kinematic chain aligns with the user, sensing and actuation
can be performed at the joint level here. One of the main
benefits of rehabilitation robotics lies in their application during
robot-aided patient assessment. Here, robotic devices are used
to monitor patients before. after, or during training, thereby
tracking the recovery progress and informing the treatment
strategy. In the case of neurological disorders, there are multiple
functional impairments, e.g., arm hemiparesis, limited hand
dexterity or over-rigid joints, that inhibit motor functions of
affected individuals (Carvalho-Pinto and Faria, 2016). Thus, the
quantitative estimation of the dynamic parameters underlying
these effects using wearable robotic devices can greatly benefit
neurorehabilitation. Particularly relevant in the case of stroke
is spasticity, a motor disorder described by hyperactivity in
tonic stretch reflexes (Mclellan, 1981) which leads muscles to be
overly resistive to elongations and thus reduced mobility of the
affected limb (Sommerfeld et al., 2004). In current clinical practice,
spasticity assessment scales, such as the Modified Ashworth Scale
(MAS) are used to evaluate the muscle tone of patients. Here,
the clinician induces a passive motion by manually perturbing the
target joint of the patient. Concurrently, the muscle tone is assessed
by tactually observing the movement resistance. Even though this
method has been proven to be useful in clinical practice (Gregson
et al., 1999), there are shortcomings that could be alleviated through
robotic assessment. Specifically, the coarse and discrete nature of
the scales limit the level of precision. Additionally, the evaluation
is subjective at its core, which can lead to possibly unreliable and
biased estimates that are not consistently reproducible (Blackburn
et al., 2002; Raghavan, 2015).

Hence, the deployment of robot-aided assessment is
expected to improve the objectivity and repeatability of
clinical evaluations (Lambercy et al., 2012). In particular,
joint impedance is commonly used as a concise measure for
the patient state (Maggioni et al., 2016), since it describes the
relationship between joint motion and opposing torque, which
is often abnormally increased (Chung et al., 2004). In recent
years, a multitude of these assessment approaches based on
exoskeletons for upper-limb rehabilitation have emerged. In Ren
et al. (2013), an upper-limb exoskeleton quantitatively estimates
the joint stiffness of the shoulder, elbow and wrist joints. More
recently, a decomposition of the coupled human arm dynamics is
proposed to allow the estimation of local and inter-joint stiffness
effects following stroke (Zhang et al., 2017). A more extensive
impedance estimation is conducted in Wang et al. (2021), where
an exoskeleton is used to identify the inertia, viscosity and stiffness
components of the elbow joint of patients’ with spastic arms
using genetic algorithms. Despite the fact that the benefits of
robot-aided assessment in comparison to human-administered
clinical scales have been demonstrated in studies (Bosecker et al.,
2010), exoskeleton applications suffer from the introduction of
unintended interaction forces to the user (Jarrassé et al., 2010)
with adverse effects on the clinical evaluation. These interaction
forces cannot be avoided completely due to uncertainties in the
complex physical human-exoskeleton interaction. In particular,
sources of uncertainty are known to arise due to kinematic

incompatibilities, soft coupling and inaccuracies in the human
dynamics model (Pons, 2008). So far, the influence of these sources
of uncertainty on the arm impedance estimation has not been
analyzed sufficiently, and a quantitative ranking of their impact is
missing. However, since the assessment is used to guide the therapy
of patients, it is paramount to make these uncertainties explicit
in order to increase precision and ensure that clinicians are not
misinformed by overconfident assessment results. Therefore, it is
important to investigate how uncertain the obtained impedance
parameter estimates are and how to effectively reduce uncertainty
for exoskeleton-based automated assessment.

1.1. Related work

The influence of uncertainties on the robot-aided impedance
estimation can be quantified bymean of a sensitivity analysis. These
methods investigate how uncertainty in the output of a system, e.g.,
the result of the automated assessment, is influenced by variations
in the input of a system (Pianosi et al., 2016), e.g., sources of
uncertainty in the complex human-exoskeleton interaction. Thus,
by analyzing these sensitivities and ascribing quantitative measures
of importance to each source of uncertainty, the robustness of the
automated assessment can be quantified (Thabane et al., 2013).
Previously, it has been shown how sensitivity analysis methods are
used to support efforts in uncertainty reduction (Hamm et al., 2006)
and facilitate robust decision making under uncertainty (Nguyen
and de Kok, 2007; Singh et al., 2014).

In general, sensitivity analysis can be approached in multiple
ways, with three principle classes identified in Christopher Frey
and Patil (2002): analytical, statistical and graphical methods.
Typically, analytical methods, such as Kohberger et al. (1978) and
Ma et al. (2021), require access to a differential equation model
of the system and perform analysis by monitoring the partial
derivative over the uncertain parameters (Abraham et al., 2007).
In Schiele (2008), an analytical 1 DoF model of the interaction
forces induced by kinematic incompatibilities on the elbow joint is
proposed.While the presentedmodel was validated experimentally,
remaining sources of uncertainty are not considered and it
limits the utility of the model as interaction effects cannot be
captured by it. Due to the complexity of the human-exoskeleton
interaction dynamics, a closed-form description that captures all
sources of uncertainty concurrently is not available, which makes
analytical sensitivity analysis methods impractical. On the other
hand, statistical and graphical approaches solely require access to
input-output samples of the system (Christopher Frey and Patil,
2002). Here, samples are generated by evaluating the examined
system for a factorial combination of all sources of uncertainty to
obtain pertinent statistical information and gain rigorous insights,
which is infeasible to do experimentally. Thus, simulations are
often used instead (Iooss and Saltelli, 2017). However, to the
best of the authors’ knowledge, no human-exoskeleton simulation
environment considers all of the key sources of uncertainty present
during the complex, physical interaction. In Agarwal et al. (2010),
for instance, the authors analyzed challenges due to kinematic
misalignments on the elbow joint to inform the simulation-based
design of an arm exoskeleton. On the other hand, the effect of the
human musculoskeletal model on lower-limb exoskeleton control
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during gait is investigated in Khamar et al. (2019). Lastly, Kühn
et al. (2018) present an upper-limb simulation of the human,
exoskeleton and their respective coupling where simplified 6
DoF springs are used to model soft-contacts. However, in order
to fully understand the effect of uncertainty in exoskeleton-
based impedance assessment, all sources of uncertainty and their
interaction effects must be considered. Thus, a simulation platform
which can systematically express the uncertain human-exoskeleton
interaction is required in order to quantify the impact of sources of
uncertainty on the estimated impedance parameter.

1.2. Contribution

In this work, we perform a sensitivity analysis that
quantitatively investigates the influence of various sources of
uncertainty on the exoskeleton-based arm impedance estimation.
Through this process, a more precise understanding of the
uncertainty composition and their prioritization is achieved,
which facilitates effective measures to increase the performance
of exoskeleton-based automated assessment and reduces the risk
of relying on overconfident results. We propose a two-phase
approach, where initially the negligible sources of uncertainty
are identified, and then a ranking of the most influential factors
is performed in the second phase. Due to the complexity of the
human-exoskeleton interaction dynamics, we adopt a sampling-
based sensitivity analysis which allows us to quantify the influence
of each source of uncertainty independently as well as the
interaction effects among them. In order to generate the samples
required for the analysis, we develop a high-fidelity simulation
environment of the human-exoskeleton system that includes the
key sources of uncertainty, which are informed by the physical
understanding of the system and identified in the literature.

2. Materials and methods

In this section, the technical problem is formulated and
the relevant material and methods are shown. An overview of
the proposed uncertainty quantification procedure is shown in
Figure 1. From top to bottom the colored blocks illustrate the phase
selection, the process of obtaining input parameter samples, the
process of obtaining output samples and the evaluation procedure
using quantitative sensitivity analysis methods. First, during the
phase selection the sampling strategy is determined, which is
chosen in accordance to the objective of the respective sensitivity
analysis method. Following this, the input parameter samples

are generated. Here, the examined sources of uncertainty are
sampled depending on the previously selected sampling strategy.
Then, the input parameter samples are retrieved in the form
of parameterized human-exoskeleton simulation instances, where
the varied parameters are associated with different sources of
uncertainty. Subsequently, the output sample block is applied.
Here, the exoskeleton-based automated assessment is run for
the sampled simulation parameterizations to obtain impedance
parameter estimates for the human arm. Finally, the sensitivity

analysis is performed. Depending on the sampling strategy chosen
beforehand, different sensitivity analysis methods are deployed on

the estimated impedance parameters to investigate the impact of
the modeling uncertainties with respect to the observed estimation
error. By deploying this sensitivity analysis scheme we are able to
derive the most influential sources of uncertainty that influence the
exoskeleton-based arm impedance estimation.

The remainder of the section is structured as follows: in
Section 2.1, the dynamics governing the human-exoskeleton system
are introduced and a qualitative account on uncertainties in the
automated assessment is provided. Subsequently, a high-fidelity
simulation of the human-exoskeleton interaction is presented in
Section 2.2 with particular focus on including the key sources of
uncertainty present in the system. In Section 2.3, the proposed
assessment procedure is explained and technical details regarding
the estimation process are provided. Finally, in Section 2.4, the
deployed sampling strategies and sensitivity analysis methods
are presented.

2.1. Uncertainty during human-exoskeleton
interaction

In order to perform the sensitivity analysis in an interpretable
manner it is necessary to have an understanding of the investigated
system. To this end, we first formulate the nominal human-
exoskeleton interaction model. Subsequently, uncertainties are
introduced to the nominal model.

2.1.1. Nominal human-exoskeleton interaction
model

The instrumented assessment using an upper-limb exoskeleton
is considered in this work. Therefore, we start by establishing the
dynamics governing motion of the human arm. We model the
dynamics using Euler-Lagrange equations (Featherstone, 2007) of
the form,

MMMh(qqq)q̈̈q̈q+CCCh(q, q̇q, q̇q, q̇)q̇̇q̇q+ gggh(qqq) = τττhum + τττ int,h. (1)

Here, qqq ∈ R
d is the d-dimensional state vector containing the

joint configuration of the human arm, with q̇̇q̇q ∈ R
d describing the

angular velocities and q̈̈q̈q ∈ R
d describing the angular accelerations.

On the left side of (1) the matrix MMMh : R
d → R

d×d denotes
the human inertia matrix, CCCh : R

d × R
d → R

d×d the human
Coriolis matrix and gggh : R

d → R
d the human gravitational

component. In addition to the human generated joint torques
τττhum, an interaction torque τττ int,h acts on the human arm, due
to the contact with the robotic system. In (1), τττhum represents
the projected joint-level torques induced through variations of
muscle lengths, muscle activation and the resulting tensions (Shin
et al., 2009). Therefore, τττhum describes the summed dynamics of
internal origin and contains the relevant joint dynamics parameter
necessary to quantify the patient’s inner state. In the case of stroke,
a viscoelastic model of the human-generated torque during passive
mobilization tasks is proposed (McCrea et al., 2003). Thus, we can
formulate the human-generated torque τττhum as

τττhum = KKKh(qqq, q̇qq)qqq+DDDh(qqq, q̇qq)q̇qq, (2)
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FIGURE 1

Depiction of the complete, proposed sensitivity analysis scheme. From top to bottom the blocks illustrate the di�erent steps taken during the

proposed scheme. First, during the phase selection the sampling strategy is determined. Subsequently, in the input parameter sample block input

samples in the form of human-exoskeleton simulation instances are drawn. The output sample block illustrates the generation of output samples

using the automated assessment process. Lastly, the input-output samples are used to obtain sensitivity measures which is visualized in the sensitivity

analysis.
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where KKKh : R
d × R

d → R
d×d and DDDh : R

d × R
d → R

d×d

correspond to the joint stiffness and viscosity matrix, respectively.
In McCrea et al. (2003) the validity of linear viscoelasticity
parameters for the modeling of resistive torques in personas with
chronic stroke is demonstrated. Therefore, it can additionally
be assumed that the parameters are independent of the current
configuration, which allows the application of standard regression
methods. Thus, the instrumented assessment of the patient’s state
can be reformulated as a linear regression problem using the
parametric model

τττhum = KKKhqqq+DDDhq̇qq. (3)

In order to estimate the impedance parameters KKKh and DDDh,
it is first necessary to extract the human generated torque
τττhum in (1). This is not trivial in general, as the intrinsically
generated human muscle torque cannot be measured directly.
Hence, τττhum has to be inferred using the available measurements
and dynamics knowledge. For wearable robots deployed in
clinical applications, measurements regarding joint positions and
motor torques are typically available (e.g., Trigili et al., 2020).
Unless additional expensive and possibly inconvenient force-
torque sensors are mounted at the physical interface between
human and exoskeleton (An and Hollerbach, 1987), the interaction
torque τττ int,h is also unknown. To overcome this issue, knowledge
regarding the dynamics model of the robotic system can be
exploited to replace the unknown interaction torque τττ int,h.
Similar to the human, the exoskeleton is described by its rigid
body dynamics

MMMe(θθθ)θ̈̈θ̈θ +CCCe(θ , θ̇θ , θ̇θ , θ̇)θ̇̇θ̇θ + ggge(θθθ) = τττm − τττ int,e, (4)

whereMMMe : R
n → R

n×n is the inertia, CCCe : R
n × R

n → R
n×n the

Coriolis matrix and ggge : R
n → R

n the gravitational component
of the exoskeleton dynamics. The joint positions, velocities and
accelerations of the robotic system are given by θθθ ∈ R

n, θ̇̇θ̇θ ∈ R
n and

θ̈̈θ̈θ ∈ R
n respectively. In the following, we assume that the kinematic

chain of human and exoskeleton align, thereby, resulting in n = d.
Furthermore, the movement of the joints is driven by the motor
torques τττm and analogs to (1), an interaction torque τττ int,e is exerted
on the exoskeleton, which acts in the opposing direction in (4).

In the nominal model, three idealized assumptions are made:
first, a perfect alignment of the human and exoskeleton kinematic
chain is assumed. Second, no displacement of the attachments
occurs during movement. Third, a completely rigid interface
transmits forces between the human and exoskeleton. If these
assumptions hold, both the human’s and exoskeleton’s joint
kinematics match qqq = θθθ and the interaction torques can be
written to

τττ int,h = τττ int,e . (5)

For the sake of the derivation of the nominal model we hypothesize
the dynamics of the robotic system and human to be known. Then,
it is possible to derive the human generated torque τττhum from (1),
(4), and (5):

τττhum = MMMh(θθθ)θ̈̈θ̈θ +CCCh(θ , θ̇θ , θ̇θ , θ̇)+ gggh(θθθ)

+MMMe(θθθ)θ̈̈θ̈θ +CCCe(θ , θ̇θ , θ̇θ , θ̇)+ ggge(θθθ)− τττm
︸ ︷︷ ︸

τττ int,h

(6)

Since the motor torque τττm and exoskeleton kinematics {θθθ , θ̇θθ , θ̈θθ} are
measurable and the dynamics are assumed to be known, the human
torque τττhum, as given in (6), is directly computable. Therefore,
all the necessary input and output information are available to
estimate the human joint viscoelasticity parameters KKKh and DDDh via
linear regression using the parametric model (3):

yyy = XXXωωω, (7)

where the labels yyy follows from the human torque computation
according to (6), the input matrix XXX contains the human joint
measurements under the assumption that qqq = θθθ and the
viscoelasticity parameters of interest are described by ωωω. Thereby,
performing the regression analysis for each joint yields













τ 1hum,i
τ 2hum,i

...
τThum,i













︸ ︷︷ ︸

yyy

=













q1i q̇1i
q2i q̇2i
...

...
qTi q̇Ti













︸ ︷︷ ︸

XXX

[

kh,ii
dh,ii

]

︸ ︷︷ ︸

ωωω

, (8)

with
{

τ thum,i

}T

t=1 denoting the computed human torques and
{

qti , q̇
t
i

}T

t=1 representing the kinematics measurements of the i-th
joint at discrete time step t over the duration T of the assessment.
Here, kii and dii are the i-th main diagonal entries of the joint
stiffness and viscosity matrices, respectively. The parameter vector
ωωω can be computed directly given access to inputs XXX and labels yyy
as such:

ωωω =
(

XXX⊺XXX
)−1

XXX⊺yyy. (9)

However, while the approach is mathematically convenient and can
straight forwardly be implemented, it can result in large estimation
errors, because it does not account for the uncertainties in the
human-exoskeleton interaction dynamics.

2.1.2. Sources of uncertainty
There are multiple factors that introduce uncertainties

to the above described nominal model, which stem from
variations in the biomechanics of individuals. In particular three
key sources of uncertainty that adversely affect the physical
interaction are identified in the literature (Pons, 2008): kinematic
incompatibilities, soft contact dynamics and inaccuracies in the
nominal dynamics model. In the following these sources of
uncertainty and their impact on the nominal dynamics are
presented in more detail.

2.1.2.1. Kinematic incompatibilities

First, we consider kinematic incompatibilities between the
exoskeleton and human, which are particularly prevalent in
wearable robots with kinematic chains mirroring the human
kinematics. These kinematic incompatibilities arise due to
anatomical variations between users and variations within a user
that occur during motion. Therefore, achieving a perfect alignment
is infeasible (Jarrassé and Morel, 2012). Depending on the extent of
the mismatch, it is considered a macro-misalignment or a micro-
misalignment. Here, macro-misalignments are typically induced by
offsets in the center of rotation (CoR) between the human and
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exoskeleton joints. These CoR offsets are the result of a multiple
factors, such as an imprecise donning procedure or translations
that occur in the instantaneous center of rotation of human
joints for certain movements (Grant, 1973). In Figure 2A, the
macro-misalignment due to CoR offsets is shown conceptually for
a simplified two-link human-exoskeleton-system moving in the
vertical plane. The top and bottom links represent the upper arm
and forearm, respectively, emulating motion in flexion/extension
direction. Here, the CoR offsets are visualized by xoff and yoff
using red arrows. While macro-misalignment can be reduced
by performing careful donning and including redundant DoFs
in the robotic kinematic chain, micro-misalignments still occur
despite these mitigation strategies. This is for instance because
the human kinematic chain is not comprised of idealized, circular
joints. Therefore, misalignments cannot be removed completely
in practice and must be explicitly considered for a robust
automated assessment.

The main consequence of these kinematic incompatibilities is
induced displacements of the attachments between the exoskeleton
and human limb during joint motion. Consequently, these
displacements result in forces at the physical interface. The
resulting impact on the nominal dynamics of the human-
exoskeleton interaction can be observed at multiple points. First,
the previously assumed joint alignment does not hold anymore,
leading to a discrepancy in the joint angles, i.e., qqq 6= θθθ in general.
Moreover, an offset and joint angle dependent displacement of
the attachments along the axial direction occurs, which leads to a
change in the interaction torque transmission (5):

∼
τττ int,h = BBB

(

xxxoff,yyyoff,qqq,θθθ
)

τττ int,e , (10)

where BBB : Rd×d is a d-dimensional diagonal matrix with the main
diagonal entries describing the displaced attachment points. In

(10),
∼
τττ int,h represents the uncertain interaction torques which

now depends on the CoR offsets denoted by xxxoff and yyyoff .
Similarly, the induced displacement torques depend on the CoR
offsets and joint angles deviations (Schiele, 2008). Therefore, we
obtain following uncertain human torque under consideration of
kinematic incompatibilities:

∼
τττ hum =MMMh(qqq)q̈̈q̈q+CCCh(q, q̇q, q̇q, q̇)+ gggh(qqq)+

∼
τττ int,h

(

xxxoff,yyyoff,qqq,θθθ
)

+
∼
τττ d

(

xxxoff,yyyoff,qqq,θθθ
)

, (11)

where
∼
τττ d denotes the uncertain displacement torques. In addition

to
∼
τττ int,h and

∼
τττ d, uncertainty also arises in (11) due to the

dependence on qqq, since the human joint angle cannot be measured
directly and cannot be inferred accurately from θθθ , since qqq = θθθ

no longer holds. Note that, given completely rigid bodies, these
kinematic incompatibilities would theoretically make movements
impossible and lead to extremely high interaction forces, due to
the kinematic system being hyperstatic (Jarrassé and Morel, 2012).
However, in practice deformation occurs at the physical interface,
since the human limb is not rigid, which allows to retain mobility.
The uncertainty that arises due to this plasticity is addressed in
the following.

2.1.2.2. Soft-tissue contact dynamics

The second important aspect that introduces uncertainty to the
physical human-exoskeleton interaction are morphological factors
at the coupling between the robot and human. Specifically, the
robotic system induces the desired movement by transmitting
forces through the soft-tissue of the human limb at the attachment
straps. Here, the considered soft-tissue primarily includes muscles,
fat tissue and skin, but may also include smaller anatomical parts,
such as ligaments, tendons or blood vessels. This is in contrast to the
nominal dynamics model which assumes a rigid connection (11).
Therefore, the dynamic properties of the human soft-tissue impact
the description of the physical interaction.

Soft-tissue is most commonly modeled by elastic or viscoelastic
components (Maurel, 1999). Viscoelastic dynamic behavior can
for instance be represented by Voight-elements as illustrated
in Figure 2B. Here, the soft coupling between the human and
exoskeleton link is achieved via a Voight-element at the attachment.

Hence, the displacement torques
∼
τττ d and the interaction torque

∼
τττ int,h become functions of the viscoelastic parameters, since all
interaction forces are transmitted through soft contacts. It leads to

∼
τττ hum = MMMh(qqq)q̈̈q̈q+CCCh(q, q̇q, q̇q, q̇)+ gggh(qqq)

+
∼
τττ int,h

(

xxxoff,yyyoff,qqq,θθθ ,KKKst,DDDst
)

+
∼
τττ d

(

xxxoff,yyyoff,qqq,θθθ ,KKKst,DDDst
)

, (12)

where KKKst and DDDst denote the lumped viscoelastic properties of
the coupling due to soft-tissue. In Schiele (2008) a more detailed
analysis of the displacement forces and their transmission through
soft-tissue modeled as Voight-elements is presented. However,
while linear, uniaxial models as shown in (12) are used for
practicality, they describe the complex relationship between applied
pressure and resulting deformation of the soft-tissue in a simplified
manner. A more rigorous approach is to use discrete finite
element to approximate the continuous medium and propagating
the evolution of the deformation in simulations (Maurel et al.,
2002). However, since this is an iterative procedure, it cannot
straightforwardly be translated to an analytical model.

2.1.2.3. Inaccuracies in the human dynamics model

Another source of uncertainty that needs to be considered
are inaccuracies in the human dynamics model. This is due to
significant variations in the biomechanics of each human. To
mitigate this, precise measurements of geometrical and inertial
properties of the anatomical links are necessary to compute the
personalized model parameters required for the human rigid
body dynamics (1). However, gathering the information needed
to estimate the human model parameter can be expensive,
cumbersome and time-intensive (Zajac et al., 2002). Therefore, in
clinical practice most commonly standard tables of anthropometric
parameters are used (de Leva, 1996) to infer model parameters by
scaling the default dynamics model to the height and weight of
a particular individual. However, since the approach only yields
an approximate measure, uncertainties are introduced. Thus, the

uncertain human torque
∼
τττ hum under additional consideration of
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FIGURE 2

Two-link mechanical model of an interaction between a human (blue) and exoskeleton (gray) arm. (A) Illustrates kinematic incompatibilities and the

resulting CoR o�sets depicted with xo� and yo�. (B) Visualizes soft coupling between the human and exoskeleton link using a Voight-element.

the modeling inaccuracies is

∼
τττ hum =

∼

MMMh(qqq)q̈̈q̈q+
∼

CCCh(q, q̇q, q̇q, q̇)+
∼
gggh(qqq)

+
∼
τττ int,h

(

xxxoff,yyyoff,qqq,θθθ ,KKKst,DDDst
)

+
∼
τττ d

(

xxxoff,yyyoff,qqq,θθθ ,KKKst,DDDst
)

, (13)

where
∼

MMMh,
∼

CCCh, and
∼
gggh denote the uncertain inertial, Coriolis and

gravitational component of the human arm dynamics, which differ
from the approximation obtained from the anthropometric tables.
We summarize the torque due to the uncertain passive dynamics of
the human limb with

∼
τττ rbd,h =

∼

MMMh(qqq)q̈̈q̈q+
∼

CCCh(q, q̇q, q̇q, q̇)+
∼
gggh(qqq). (14)

Thereby, we can write (13) to a more compact form for
improved readability

∼
τττ hum =

∼
τττ rbd,h +

∼
τττ int,h +

∼
τττ d. (15)

Here,
∼
τττ rbd,h denotes the uncertain rigid body dynamics of the

human arm due to unknown parameters in
∼

MMMh,
∼

CCCh and
∼
gggh.

Differently to the human limb, the model parameters governing the
dynamics of the exoskeleton (4) can reasonably be assumed to be
known or can be obtained accurately using classical identification
procedures (Hollerbach et al., 2008). Note that in (15), both
∼
τττ int,h and

∼
τττ d are in principle torques that are induced by the

interaction with the exoskeleton. However, they differ in the sense

that
∼
τττ int,h represents the desired loads that should be transmitted

to the human limb, while
∼
τττ d are purely undesired torques due

to kinematic incompatibilities. Since the human torque under

consideration of uncertainties
∼
τττ hum (15) differs from the nominal

human torque τττhum (6) used in the regression analysis (8),
errors are introduced to the estimated impedance parameters. In
particular, deploying (6) for the computation of the human torque
τττhum implicitly allocates torques that are unaccounted for by the

nominal dynamics model to be generated due to joint spasticity.
Thus, solving the regression problem will not result in the true
viscoelasticity parameter KKKh and DDDh. By directly comparing the
nominal human torque τττhum to the true, uncertain human torque
∼
τττ hum, we obtain

τττhum
︸︷︷︸

yyy

=
∼
τττ hum
︸ ︷︷ ︸

∼
yyy

−1τττ rbd,h − 1τττ int,e −
∼
τττ d

︸ ︷︷ ︸

1yyy

. (16)

Here, 1τττ rbd,h denotes residual torques due to differences in
the nominal human dynamics model τττ rbd,h and the unknown,

true dynamics model
∼
τττ rbd,h. Similarly, 1τττ int,e represents residual

torques due to errors in the interaction torque modeling, while
∼
τττ d

are the displacement torques due to kinematic incompatibilities.
From (16) it can be seen that the labels yyy deployed in (8) do

not agree with the true output
∼
yyy , i.e., the human torque

∼
τττ hum

under consideration of uncertainties. The difference is summarized
in (16) using 1yyy. Moreover, the measurements for the desired
input matrix XXX according to (8) are not available, since kinematic
incompatibilities result in a mismatch between the human joint
angle qqq and exoskeleton joint angle θθθ . Hence, it can be seen how the
uncertainties qualitatively influence the outcome of the regression
analysis and impact the automated assessment negatively. However,
it remains unclear exactly how sensitive the assessment is with
respect to the different sources of uncertainty, which we propose
to quantify with a sampling-based sensitivity analysis in this work.

2.2. High-fidelity human-exoskeleton
simulation

In order to perform a sampling-based sensitivity analysis, a
highly controlled environment is required. Obtaining the samples
experimentally is infeasible, due to the missing ground-truth
information and the large sample size that is required. Therefore,
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in this work we deploy a high-fidelity simulation environment of
the human-exoskeleton system to generate samples. To this end,
we develop a novel human-exoskeleton simulation which explicitly
accounts for the complex contact dynamics present during physical
interaction. Here, an optimization-based physics engine called
MuJoCo (Todorov et al., 2012) is deployed which is widely used
in the modeling of robotic and biomechanical systems in contact-
rich environments (Lowrey et al., 2016; Acosta et al., 2022). In
particular, three key features of the proposed simulation enable the
realistic emulation of the effects caused by sources of uncertainty
and thereby facilitate the sampling-based sensitivity analysis: A
musculoskeletal model to simulate the human, the consideration
of soft contact dynamics at the attachments and a realistic load
transmission via a mechanical interface. The proposed human-
exoskeleton simulation is shown in Figure 1 in the input parameter

sample block. Here, the human skeletal system is depicted in
gray, while the muscular system is visualized with red lines.
Furthermore, the two red cylindrical shapes on the forearm and
upper arm represent the simulated human soft-tissue. Also, it
can be seen that the physical interface is realized via cuffs and
straps that wrap around the human upper and forearm. The
complete human-exoskeleton simulation environment is made
publicly available.1 A brief summary of the key components is
presented below. Following this, a more detailed explanation of
each of the components of the simulation, their working principles
and the performed validations is provided.

Human musculoskeletal model: A musculoskeletal model is
implemented for the shoulder and elbow. Deploying a
musculoskeletal model of the human arm here is necessary
for two reasons. First, the simulated muscular system is used
to generate the human torque and emulate spastic behavior.
Second, the rigid skeletal system facilitates the introduction of
variability in the human kinematics and dynamics. Thereby,
it is possible to sample over two of the three sources of
uncertainty described in Section 2.1.2.

Soft-tissue simulation: In the proposed simulation, soft-tissue is
explicitly implemented by a composition of multiple micro-
elements, which together form an object with viscoelastic
material properties. The viscoelastic properties of the soft-
tissue object can be varied, thereby allowing to sample over
viscoelastic properties of the soft-tissue.

Physical human-exoskeleton interface: We simulate the
mechanical interface explicitly by implementing cuffs and
straps, which enclose the human arm and facilitate a realistic
load transmission. Thereby effects that typically arise at the
interface, such as attachment displacements, can be emulated.

2.2.1. Simulation of the human musculoskeletal
system

A musculoskeletal model is used in the proposed simulation
environment. Here, the rigid component of the human arm has

1 Open-source code of the upper-limb human-exoskeleton simulation

environment is available at: https://github.com/stesfazgi/rehyb_mujoco.

five DoFs, three on the shoulder joint and two at the elbow
joint. For the shoulder, the human simulation can rotate along
the flexion-extension, abduction-adduction and internal-external
axis. Regarding the elbow, the simulation allows movement along
the flexion-extension and pronation-supination rotations. While
a rigid wrist-hand model is also included in the simulation, in
our envisioned interaction scenario with the exoskeleton it is
not pertinent. The inertial properties of the rigid skeletal system
are designed using statistical anthropometric data (Ramachandran
et al., 2016) with a default reference person of height 1.75m
weighting 70kg. Thereby resulting in a nominal upper arm length of
36.37cm, a nominal forearm length of 34.9cm, a nominal upper arm
mass of 2.25kg and a nominal forearm mass of 1.31kg. However, it
is possible to adjust all of the parameters to account for variations
in the target population.

In addition to the multi-link rigid body dynamics, the
simulation accounts for the dynamics induced by the muscular
system. In MuJoCo, biological muscles are modeled by means
of muscle-tendon systems which induce dynamics dependent on
origin and insertion sited and the forces generated by a muscle
actuator. Here, the generated muscle force Fm follows the dynamics

Fm(l, v, a) = −F0Flv(l, v, a), (17)

where l is the scaled length of the muscle, v is the scaled velocity
and a ∈ [0, 1] denotes the muscle activation level. Additionally,
F0 describes the peak active force and Flv the force-length-velocity
function, which are both fitted according to values derived from
the experimental findings in Holzbaur et al. (2005). The origin and
insertion sites of the muscles are also implemented in accordance
with anthropometric data (Ramachandran et al., 2016), thereby
ensuring that the dynamics of the simulated musculoskeletal
system follow the real-world dynamics closely.

2.2.1.1. Validation of the human musculoskeletal model

In order to check the validity of the simulated human
musculoskeletal model, a simulation experiment is performed.
Specifically, it is examined whether the moments generated by the
muscular system lie in similar ranges as those observed in real
experiments. A common clinical procedure to assess the muscle
strength is by means of the maximal isometric torque test (Amis
et al., 1980; Garcia et al., 2016). Here, we use this procedure to
adapt and validate the simulated elbow muscle contraction, which
is a useful measure to quantify the neuromuscular properties of
spastic muscles (Wang et al., 2019). In the proposed simulation, the
dynamics of the elbow are governed by eight muscles. Specifically,
four extensor muscles are considered, namely, the long, lateral and
median triceps and the anconeus. Moreover, four flexor muscles are
regarded, including the long and short biceps, the brachialis and
the brachioradialis. The experimental procedure for the isometric
torque test in flexion direction is as follows: First, the shoulder is
flexed in the sagittal plane at 90deg and mechanically locked in
this configuration. While the shoulder is fixed in place, the elbow is
flexed in discrete steps of 1deg increments. At each of the discrete
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FIGURE 3

Results of the maximum isometric torque test. Here, the torque generated by the elbow flexors (left) and extensors (right) is shown over di�erent

elbow joint angle. Our human musculoskeletal model (blue) is shown to agree more closely with experimental data than the comparison simulation

(red).

increments a maximum contraction of the elbow flexor muscles is
applied, and the resulting torque is measured.

The results of performing the maximum isometric torque
test in the simulation are shown in Figure 3. Here, the left-
hand side shows the isometric flexion torque, while the right side
depicts the extension torque. We compare our simulation results
(blue) against related biomechanical models of the musculoskeletal
system (Holzbaur et al., 2005) (red) and two experimental data
sets (Amis et al., 1980; Buchanan et al., 1998). For the isometric
flexion torque on the left, it is possible to see that our simulation
results match the observed maximum torque of around 80Nm
closely, while the comparison simulation exhibits a higher peak at
100Nm. Analogously, our simulation obtains a similar value for
the peak extension torque as the experimental data set at −50Nm,
while the simulation in Holzbaur et al. (2005) results in a lower
absolute value at −41Nm. With respect to the curve shape both
data set 1 (Amis et al., 1980) and data set 2 (Buchanan et al., 1998)
display different behaviors. This is to be expected due to variability
in real experiments and between different subjects, however, the
simulation results indicate that our model lies within this range.
Particularly, when observing the joint angle at which the peak
extension torque is reached for instance, it is clearly visible that our
simulation agrees with the experimental data more closely.

2.2.2. Simulation of the upper-limb exoskeleton
In this work, the simulated robotic system is inspired by the

specification detailed in Trigili et al. (2020), where an upper-
limb exoskeleton with three actuated DoFs on the shoulder
level and one actuated DoF for the elbow (flexion-extension) is
presented. For the envisioned scenario, we consider all passive
and regulatory DoFs to be fixed, therefore, the simulated upper-
limb exoskeleton is a four-DoF open chain. Joint friction is
implemented via viscous dampers and the inertial properties are
designed to roughly match comparable robotic devices. While
each joint is associated with an actuator in the simulation, we
do not consider elastic actuators here. The actuating motors are

also scaled in accordance with the maximum torques the real
system can provide according to Trigili et al. (2020). Note that
while the simulated exoskeleton is inspired by Trigili et al. (2020),
this represents an exemplary device and may be replaced by a
different wearable robotic system of interest. The proposed method
for the spasticity assessment and sensitivity analysis constitute a
general methodology and are therefore not limited to this specific
hardware and could be applied to other exoskeleton designs
as well.

2.2.3. Physical interface and complex contact
dynamics

In our simulation, the physical interface is composed of
two contact areas which represent the exoskeleton attachments
on the upper and lower arm of the human. On the human
side, complexity of the contact dynamics is primarily caused by
soft-tissues and their influence on the force transmission at the
linkage between the human arm and exoskeleton. In order to
replicate the behavior of human soft-tissue in the simulation,
three-dimensional composite objects are used, where one central
element is surrounded by multiple external elements. Here, the
elements of the three-dimensional composite object are arranged
such that the resulting geometry approximates the human limb
shape and thus a simplification of the commonly used finite
element method (Maurel et al., 2002) is achieved. Figures 4A–C
depicts the composite object which takes an ellipsoid shape in
the simulation environment, where the large sphere at the center
of the ellipsoid visualizes the central element of the composite
object, while the external elements are illustrated by the smaller
spheres. The viscoelastic behavior of the resulting composite object
is determined by several soft equality constraints on the relative
distance between the different elements, which is illustrated in
Figure 4D. Each soft equality constraint generates a force that can
be approximately interpreted as a spring-damper link between two
elements. Additionally, one constraint acting on all the elements
is set to preserve the global volume of the composite object.
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FIGURE 4

(A–C) Depict a composite object with an ellipsoid shape from di�erent viewing angles. (D) A cross-section of the composite object with the central

element in light gray and external elements in dark gray. Three types of soft constraints hold the elements together: central-external constraints

(green), external neighbors constraints (orange), and a global volume constraint (blue).

FIGURE 5

Depiction of the mechanical support at the physical interface in the simulation environment. (A) An illustration of the semi-cylindrical cu� composed

of welded box primitives. (B) An illustration of the placement of the human limb within the cu�. (C) The implementation of straps using composite

objects to fix the limb to the semi-cylinder.

The parameters of all constraints are fitted to approximate the
viscoelastic behavior of real human soft-tissue.

On the exoskeleton side, forces are generally transmitted to
the human arm via the mechanical supports, e.g., cuffs and straps,
which induce movement by pushing or pulling the limb (Pons,
2008). Therefore, we follow the same design principle in the
simulation in order to render the contact dynamics in high
fidelity. First, the arm supports are implemented using a hollow
semi-cylinder shape. Since MuJoCo does not directly handle
concave bodies, the desired shape is approximately realized by
an arrangement of welded box primitives (Figure 5A). Second,
the human arm is placed inside the support (Figure 5B). Third,
the implementation of the arm straps is realized using composite
objects which are arranged in a two-dimensional grid. By welding
two opposing sides of the strap to the arm support, the human limb
is fixed to the attachment as illustrated in Figure 5C.

2.2.3.1. Validation of the human-exoskeleton contact

dynamics

In order to validate the geometric compliance of the simulated
limb, the stress-strain relationship of the composite object is
investigated in the form of a compression test. In the validation,
a uniaxial tension is applied to a solid material and the

relationship between compressing stress σ and axial strain ε is
quantified (Pelleg, 2012). This property is called Young’s modulus
E and is computed as

E =
σ

ε
=

F/A

dl/l
, (18)

where F is the applied force,A is the unit area and dl/l is the relative,
normalized displacement of the composite body. It characterizes
the compressive properties of a material, i.e., a higher Young’s
modulus E describes a stiffer material and a lower E indicates a
softer material.

During the compression test, an incrementally increasing
compressive stress is applied to the composite body via two
rigid objects to opposing sides of the body. Subsequently, at
each incremental step, the Young’s modulus was computed
from the strain, i.e., the relative deformation, of the composite
body. The results are compared with experimental data acquired
from mammal muscular tissue (Ogneva et al., 2010) to verify
the validity of the simulated soft-tissue. The results of this
comparison are shown in Figure 6. Here, the green lines visualize
the experimentally determined Young’s moduli for relaxed (solid
line) and contracted (dashed line) muscle fibers (Ogneva et al.,
2010) and the green shaded area indicate the resulting range of
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FIGURE 6

Result of the compression test. The green shaded area depicts the potential range of Young’s moduli (Ogneva et al., 2010) determined by relaxed

muscles (solid green) and active muscles (dashed green) from experimental data. The range of achievable Young’s moduli in the simulation is bound

by the soft configuration of the composite object (solid blue) and the rigid configuration (dashed blue).

potential Young’s moduli. Analogously, the blue lines bound the
range of achievable Young’s moduli via the simulated composite
object. The upper and lower bound are obtained by performing the
above-described compression test for different parameterizations
of the composite object. Given that the simulated, admissible
values enclose the experimental data for higher strains, it is
possible to approximate the elastic properties of muscle soft-
tissue partially. Note however, that the Young’s modulus provided
from the experimental data (Ogneva et al., 2010) constitutes a
linear fit and therefore does not exhibit the typical nonlinear
stress-strain relationship which is normally characterized by a
region of increasing modulus (Pons, 2008) as depicted by our
simulation in Figure 6. Thus, the slight difference for lower strain
levels can be explained due to approximation error caused by the
linear fit in Ogneva et al. (2010). Furthermore, the experimental
data only considers muscle fibers and is therefore expected to
vary from the considered soft-tissue, e.g., due to additional
fat tissue at the attachments. The additional flexibility in the
simulation environment to parameterize lower Young’s moduli
is thus favorable, since the expected variation generally leads to
softer materials.

2.3. Exoskeleton-based automated
assessment

With the nominal and uncertain dynamics model (Section 2.1)
and a human-exoskeleton simulation that includes the key sources
of uncertainty (Section 2.2) introduced, the required input samples
for the sensitivity analysis can be generated. Here, the input samples
are instantiations of the simulation with varying parameters for
the different sources of uncertainty. Since we investigate how these
uncertainties impact the results of an automated assessment, the
output samples are in the form of estimated impedance parameter.
The procedure by which these output samples are generated is
explained in this section.

In order to perform the spasticity assessment in an automated
manner, two components are necessary. First, a data generation
procedure is required during which the robotic system interacts
with the human arm to induce observations from which the
impedance parameters can be inferred. Secondly, the captured
data needs to be used to estimate the parameters. In this work,

we propose a fully automated scheme for the data generation
and estimation that leverages model knowledge to produce the
required labels yyy. The complete scheme is illustrated with a block
diagram in Figure 7. Here, the real system represents the true,
uncertain human-exoskeleton system which is reproduced in the
simulation environment. On the other hand, the nominal model
block describes the idealized dynamics model that can be computed
analytically. The reference trajectory θθθd, θ̇̇θ̇θd is depicted in the blue
block and is used to observe the joint resistance along a predefined
movement, similar to the passive mobilization that is typically
performed by a clinician. It acts as an input to the PD-controller,
which replicates the manual perturbation generated by the clinician
using the exoskeleton.

For the reference trajectory a sigmoid function is selected,
since it is known to generate a minimum jerk profile on the joint
level (Flash and Hogan, 1985), thus, leading to a natural and
comfortable motion for the patient. With the reference trajectory
being defined, the exoskeleton applies a torque on the human arm
to emulate the manual perturbation performed by the clinician.
This is achieved by using the feedback provided by the exoskeleton
measurements θθθ , θ̇̇θ̇θ and feeding the current tracking error eee, ė̇ėe into a
PD-controller to compute the required motor torque:

τττm(eee, ė̇ėe) = KpKpKpeee+KdKdKdėee, (19)

where eee=θdθdθd−θθθ andKpKpKp,KdKdKd are the feedback gains of the controller.
By applying the motor torque (19), the human-exoskeleton system
is moved and, given sufficiently high control gains, the desired
trajectory θdθdθd is tracked. For the gains of the exoskeleton PD-
controller Kp = 50 and Kd = 15 is set. In order to induce spastic
behavior in the human simulation, a constant, co-contracting
muscle activation of a = 0.4 is simulated for the muscles associated
with the examined joint. Thereby the human arm will produce a
resisting torque opposing the exoskeleton during a change in joint
position. The data that is generated during the passive mobilization
is used for the regression analysis (8).

For the data generation according to the nominal model,
perfect alignment between the human and exoskeleton kinematic
chain is assumed. Thus, the measured angles θθθ , θ̇̇θ̇θ are assumed
to match the human joint kinematics qqq, q̇̇q̇q, thereby providing
the nominal input variables XXX for the linear regression (8).
Furthermore, the output vector yyy is required, which comprises
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FIGURE 7

Block diagram of the data collection and estimation scheme for the automated assessment.

measurements of the human internal torqueτττhum. Sinceτττhum is not
directly measurable, we exploit the nominal model in Figure 7 to
overcome this problem. Specifically, using the knownmotor torque
(19) and the nominal dynamics model (6) we can compute the
nominal human torque τττhum to be

τττhum(θθθ , θ̇̇θ̇θ , eee, ė̇ėe) = MMMh(θθθ)θ̈̈θ̈θ +CCCh(θ , θ̇θ , θ̇θ , θ̇)+ gggh(θθθ)
︸ ︷︷ ︸

τττ rbd,h

+MMMe(θθθ)θ̈̈θ̈θ +CCCe(θ , θ̇θ , θ̇θ , θ̇)+GGGe(θθθ)− τττm(eee, ė̇ėe)
︸ ︷︷ ︸

τττ int,h

.(20)

Here, the parameters of the nominal human model are chosen
according to anthropometric data (Ramachandran et al., 2016)
with a nominal reference person of height 1.75m and a weight of
70kg, which results in a nominal upper arm length of 33.37cm, a
nominal forearm length of 31.9cm, a nominal upper arm mass of
2.25kg and a nominal forearm mass of 1.31kg. Thus, by measuring
the trajectory of the exoskeleton joint kinematics θθθ , θ̇̇θ̇θ over time
and computing the corresponding nominal human torques τττhum

according to (20), the regression analysis (8) can be performed for
each joint independently.


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]

︸ ︷︷ ︸

ωωω

, (21)

where, differently to (8), X̂̂X̂X represent the inputs when the
exoskeleton kinematic measurements θθθ , θ̇̇θ̇θ are used as a placeholder
for the human joint kinematics qqq, q̇̇q̇q. Note that deploying (20)
for the computation of the human torques implicitly allocates
torques that are unaccounted for by the nominal dynamics
model to be generated due to spasticity in the patient’s joints.
Intuitively, this is analog to the principle applied during manual
assessment, where the human limb is assumed to be passive and
any encountered resistance is allocated to spasticity. However, as

detailed in Section 2.1.2, different sources of uncertainty impact the
human-exoskeleton interaction, which result in interaction torques
that are not considered in (20). Thus, solving (21) will not result in
the true viscoelasticity parameter KKKh and DDDh, due to the impact of
uncertainties on the regression analysis.

2.4. Sensitivity analysis of uncertainties

The goal of this section is to quantify the impact of the
uncertainties on the estimated impedance parameters during the
exoskeleton-based automated assessment. To this end a sensitivity
analysis is performed to examine how variations in the output of
a numerical model or simulations can be ascribed to variations of
its inputs. We consider uncertainties in the modeling of physical
human-exoskeleton interaction as input factors to quantitatively
assess their importance. Analogously, the estimated viscoelasticity
parameters KKKh and DDDh represent the output samples of the
sensitivity analysis. Therefore, sensitivity is defined as the induced
variability in the parameter estimates KKKh and DDDh due to variability
in the uncertain inputs and is quantified by means of so-called
sensitivity indices (Saltelli et al., 2004). Intuitively, these sensitivity
indices represent importance measures which are allocated to
each input parameter of the simulation, i.e., each source of
uncertainty (Pianosi et al., 2016). In this section, the methods used
for the sampling-based sensitivity analysis procedure are presented.
First, the input sample generation is described in Section 2.4.1.
Following this, Section 2.4.2 details the deployed methods for the
computation of the sensitivity indices.

2.4.1. Sampling sources of uncertainty
For the input sample generation, we draw samples over

different parameterization of the human-exoskeleton simulation.
Here, each sampled simulation instance represents a distinct
patient with the individual variations present in the population.
Six biomechanical parameters are chosen as input factors, where
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TABLE 1 Sources of uncertainty and associated simulation parameters for

the input sample generation.

Uncertainty Simulation
parameter

Value range

Kinematic incompatibilities Length upper arm 27.28cm–37.78cm

Kinematic incompatibilities Length forearm 28.27cm–34.55cm

Inaccuracies in dynamics model Mass upper arm 0.3kg–3.41kg

Inaccuracies in dynamics model Mass forearm 0.1kg–1.82kg

Soft contact dynamics Elasticity upper
arm

100.5N/m–974.43N/m

Soft contact dynamics Elasticity forearm 100.5N/m–974.43N/m

each parameter is associated with a different source of uncertainty.
An overview of the parameters, their respective uncertainties
and the value ranges is depicted in Table 1. Here, kinematic
incompatibilities are produced by varying the length of the
human limb. In particular, changes in the upper arm length lead
to macro-misalignments and a resultant CoR offset, since the
exoskeleton link length remains unchanged. In contrast, varying
the human forearm length induces micro-misalignments. The
second source of uncertainty investigated during the sensitivity
analysis are inaccuracies in the dynamics model. By perturbing
the mass of the upper and forearm, errors in the nominal model
are evoked as the gravitational component and inertia of the
human limb are dependent on the mass. Lastly, uncertainties due
to soft-tissue contact dynamics are considered by sampling over
different elasticities of the human upper arm and forearm at the
attachments. The value ranges of the samples shown in Table 1 are
derived from statistical information provided by anthropometric
data (Ramachandran et al., 2016). Here, a fixed viscosity of
100Ns/m is chosen for the micro-elements comprising the soft-
tissue to avoid numerical instabilities.

In addition to defining the input variability space, i.e., the
value ranges shown in Table 1, further design choices regarding
the sampling strategy have to be made. In general two classes of
sampling concepts can be differentiated, One-At-a-Time (OAT)
and All-At-a-Time (AAT) methods (Pianosi et al., 2016). While
in OAT methods variations are induced by perturbing one input
parameter only and keeping all other fixed, AAT methods induce
output variations by varying all input parameters concurrently.
The main advantage of OAT in comparison to AAT sampling
is the reduced computational load due to fewer samples being
required. However, because of the concurrent sampling in AAT
methods, the joint influence of input factors due to interaction
between the parameters can be analyzed, thereby, providing more
insights (Pianosi et al., 2016). Depending on the deployed method
to estimate the importance measures, both approaches can be
beneficial. Therefore, the following section presents sensitivity
analysis methods with distinct sampling strategies for different
investigation purposes.

2.4.2. Sensitivity analysis methods
Depending on the setting and purpose of the sensitivity

analysis, different methods are appropriate. In Saltelli et al. (2008)

two main purposes are introduced. First, the goal of ranking the
most relevant input factors which is called factor prioritization.
Second, identifying input factors with negligible impact which is
called factor fixing. Beyond these two main settings, other purposes
are introduced as well. However, given that the proposed sensitivity
analysis is supposed to inform the decision making process in
clinical practice and lead to more robust spasticity assessment,
our quantitative analysis is mainly focused on factor prioritization
and factor fixing, since these information lead to a practical guide
to performing more robust automated assessment. Additional
information may also be derived by qualitative sensitivity analysis
methods, e.g., using scatter plots (Beven, 1993; Kleijnen andHelton,
1999).

Furthermore, potential interactions between the investigated
sources of uncertainty should also be considered. Since these
interactions may emerge for various parameters and it is a-
priori unknown how the interactions behave with respect to
the magnitude of the parameters, we ideally want to perform
a dense sampling over the input variability space. To this
end global sensitivity analysis methods are preferred, which
investigate variations over the complete range of admissible
inputs. Global sensitivity analysis methods have previously been
shown to facilitate tasks such as supporting efforts in uncertainty
reduction (Hamm et al., 2006) and facilitating robust decision
making (Nguyen and de Kok, 2007; Singh et al., 2014).

2.4.2.1. Elementary e�ects method

Given these requirements, there are multiple viable sensitivity
analysis methods. First, Morris method (Morris, 1991), also
referred to as elementary effects test, is an efficient and suitable
approach to perform factor prioritization and fixing. Here, a
perturbation-based design is deployed, where the whole input
space is explored by applying perturbations to each input factor
separately and computing global sensitivity measures from the
probed samples. This is done by computing so-called elementary
effects EE for each input factor xi

EEi =
f (x1, . . . , xi−1, xi + 1i, xi+1, . . . xK)− f (x1, . . . , xK)

1i
, (22)

where xxx = (x1, x2, . . . , xK) represents a set of input parameters,
f (xxx) denotes the function that maps inputs to model responses, K
is the total amount of examined input parameters and 1i is the
perturbation applied to the i-th input parameter. In order to achieve
a global measure of sensitivity, the input space is sampled with r

trajectories, each consisting of K+1 sampling points, where each
point differs in just one input factor by a fixed amount 1 (Morris,
1991). Thereby, each trajectory allows for the computation of one
EE per input factor and the sensitivity measures for each parameter
can be computed as such:

µi =
1

r

r
∑

j=1

EE
j
i (23)

=
1

r

r
∑

j=1

f (x
j
1, . . . , x

j
i + 1

j
i, . . . x

j
K)− f (x

j
1, . . . , x

j
K)

1
j
i

σ 2
i =

1

r − 1

r
∑

j=1

(EE
j
i − µi)

2, (24)
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where 1
j
i represents the perturbation of the i-th input parameter

x
j
i in trajectory j and EE

j
i denotes the computed elementary effect

associated with parameter xi along trajectory j. Here, the mean
µ and standard deviation σ of the elementary effects EE are
proposed as sensitivity measures (Saltelli et al., 2008). In particular,
µ (23) represents how much the input parameter affects the
output, while σ (24) is a measure for the induced effects due
to interaction with other inputs, i.e., how much EEi varies when
changes in the remaining i− 1 parameters occur. Specifically, a
small σi implies that the effect of parameter xi on the output,
which is shown by µi, is independent of the other parameters.
Therefore, Morris method is particularly well suited for factor
fixing, since a simultaneous consideration of both µ and σ allows
the identification of negligible input factors, which have both little
interaction with the other inputs (small σ ) and do not influence
the output strongly (small µ). Moreover, applying this approach
requires relatively few samples, which further increases its utility
for factor fixing in cases where model evaluations are expensive.
However, since it is a perturbation-based OAT method, it may lead
to erroneous results if the target system exhibits high-frequencies
in its response to variations in the input (Pianosi et al., 2016).

2.4.2.2. Variance-based sensitivity analysis

An alternative approach that facilitates the analysis of output
sensitivity with respect to each input factor over their complete
value range are variance-based sensitivity analysis methods, also
referred to as Sobol method (Sobol, 1993). Here, modeling
uncertainty is specifically considered by regarding the input
parameters as stochastic variables with a defined probability
distribution. Thereby, a conceptual link between sensitivity and
uncertainty is exploited and sensitivity is analyzed by investigating
how uncertainty in the input propagates to the output variables.
Subsequently, the relative contribution of each input is decomposed
and used as a measure of sensitivity. To this end variance is used as
a measure to quantify uncertainty. The so-called first-order effect Si,
which is a measure for the individual contributions of inputs to the
output variance, is computed as

Si =
V(z)− Exi

[

Vx−i (z | xi)
]

V(z)
, (25)

where z = f (xxx) is the output variable, E denotes the expectation
and V the variance. Here, Vx−i (z | xi) expresses the conditional
variance of the output z over x−i, i.e., all inputs except xi, given
that xi is fixed. Analogously, Exi (z | xi) denotes the conditional
expected value. Therefore, the second term in (25) expresses the
expected variance in the output given that the i-th input xi is fixed.
A small value for this expectation, and consequently a high value
for Si, implies that a significant reduction in output variance can be
achieved by fixing xi (Saltelli et al., 2008). Thus, the first-order index
Si is a measure for the direct contribution of an input to the output
variance, which in turn functions as a place-holder for sensitivity.

On the other hand, the total-order index STi indicates the
total effect of an input xi on the output variance including
interactions with other input factors (Homma and Saltelli, 1996)
and is defined as

STi =
Ex−i

[

Vxi (z | xi)
]

V(z)
. (26)

Moreover, variance-based methods allow for the computation
of further, higher-order indices, such as second-order or third-
order ones. Thereby, by computing all 2K − 1 orders, variance-
based sensitivity measures can theoretically capture the sensitivities
present in the system completely. However, since this is
computationally infeasible in practice, a good approximation can
be achieved by computing only the first-order and total-order
terms (Saltelli et al., 2004).

Thus, variance-based methods are well equipped to analyze
sensitivities in a principled manner by both quantifying the
importance of individual inputs and groups of inputs. Moreover,
an uncertainty-aware modeling paradigm is supported and, by
sampling the input space using probability distributions, the full
range of input variations can be investigated. However, due to their
sampling-intensive nature, it is impractical to deploy them directly
when model evaluations are expensive. Therefore, we propose to
use both the elementary effect test and variance-based sensitivity
analysis in conjunction. Thereby, non-influential input parameters
are detected by the efficient elementary effect method and can
be discarded prior to performing a more extensive analysis using
variance-based methods.

3. Results

In this section we present the findings of performing the
proposed two-phase sensitivity analysis scheme. First, in Section
3.1 the elementary effect test is deployed to screen parameters that
do not effect the automated assessment outcome significantly and
can therefore be fixed for subsequent investigations. Second, the
variance-based sensitivity analysis is performed on the remaining
input parameter in Section 3.2 to determine the relative importance
of the different model uncertainties. Lastly, a qualitative analysis of
the obtained samples is conducted in Section 3.3 to provide further
insights. For clarity of presentation the automated assessment
is limited to the estimation of the elbow joint stiffness. The
presented sensitivity analysis is implemented in Matlab using
the SAFE toolbox (Pianosi et al., 2015), while the simulation
model is implemented in Python using the MuJoCo physics
engine (Todorov et al., 2012).

3.1. Factor fixing using elementary e�ects

In order to identify non-influential parameters, we deploy
the elementary effect method as described in Section 2.4.2. To
this end, input parameter samples are drawn for which the
human-exoskeleton simulation is instantiated and subsequently
the automated assessment is run for each model instance to
generate the respective output samples. Here, we use a radial design
for sampling the input parameter hyperspace, since it has been
shown to achieve superior performance for computing elementary
effects (Campolongo et al., 2011). A total of r = 150 trajectories
is generated for k = 6 input parameters, which are listed in
Table 1, resulting in 1050 sampling points. For the generation of
the random sampling vectors required in the radial design, the
well-established Latin hypercube approach (McKay et al., 1979;
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FIGURE 8

Estimated mean µ vs. standard deviation σ of the elementary e�ects EE (left) and approximated 95% confidence bounds via bootstrapping (right).

Here, each input factor is represented by one marker and the confidence bounds are represented by the patterned area associated with each marker.

Helton and Davis, 2003) is used. Moreover, a uniform distribution
of the input parameter space is assumed.

The results of the elementary effect test are depicted in Figure 8.
On the left-hand side, it is clearly visible that the estimated
sensitivity measures indicate the mass of the upper arm x3 as
the least influential input parameter. The low value estimated
for both the mean and standard deviation implies that the input
factor has both little direct impact on the estimated joint stiffness
during the automated assessment procedure and moreover does
not interact strongly with the remaining parameters. This makes
sense intuitively since the mass of the upper arm is not expected to
influence the estimated torque on the elbow level. However, due to
the design of the passive mobilization experiment in Section 2.3,
it is first necessary to drive the human arm into the desired
initial configuration to start the procedure. Thereby different upper
arm mass parameterization could potentially influence the precise
starting state, which in turn can lead to slight changes in the
estimated stiffness. However, from the results of the elementary
effect test it is apparent that these disturbances do not impair
the assessment process. Differently, the length of the upper and
forearm exhibit the highest sensitivity both with respect to the
mean and standard deviations. Therefore, the elementary effect
method identifies the parameters associated with uncertainties
due to kinematic incompatibilities as the most dominant ones.
Lastly, the remaining parameters regarding the soft-tissue contact
dynamics and the mass of the forearm are estimated to have a
comparable sensitivity measure with the mass having a slightly
larger impact in both µ and σ .

Sampling-based sensitivity analysis methods inherently
approximate the true sensitivity indices given the observed
samples. Therefore, especially when working with small to
medium sample sizes, it is pertinent to validate the robustness
of the obtained results. In order to investigate this, an additional
robustness analysis can be performed (Pianosi et al., 2016) which
assesses whether similar sensitivity measures would have been
obtained with different input samples. This can be achieved

in a sample-efficient manner by approximately computing the
confidence bounds of the estimated similarity measures using
bootstrapping (Efron and Tibshirani, 1993). Note that while
bootstrapping is an efficient technique, the obtained confidence
intervals do not constitute theoretically guaranteed bounds in
general and can result in overly optimistic estimates when applied
to the Morris method (Yang, 2011; Romano and Shaikh, 2012).
However, applying the method still allows to retrieve valuable
insights regarding the estimated sensitivity indices. The results
of the robustness analysis are displayed in Figure 8 on the right.
Here, a total of 300 µ and σ values are computed for each input
factor, where each value is generated by drawing 150 samples with
replacement from the original 1050 sampling points. Notably,
the confidence bounds for the upper arm mass x3 are very small,
thereby indicating that the mass of the upper arm can confidently
be regarded as a non-influential input factor that can be fixed for
subsequent analysis. In contrast, the upper arm length x1 and
forearm length x2, which are identified as the most important ones
by the elementary effect test, are associated with large confidence
intervals. In particular the forearm length x2 features the highest
uncertainty in the estimated sensitivity measures. Therefore, the
results are not conclusive to make reliable statements beyond the
screening of the upper arm mass and the deployment of further
sensitivity analysis methods is required.

3.2. Factor prioritization using
variance-based sensitivity analysis

Following the elementary effect test in the previous evaluation,
we perform an additional variance-based sensitivity analysis to
obtain a more rigorous understanding of the uncertain sensitivity
patterns present in the human-exoskeleton system. To this end
we exploit the findings of the prior section to fix the upper
arm mass x3, as it is identified as a non-influential factor, which
leads to a reduction of the computational load of the proposed
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FIGURE 9

Visualization of the output distribution, i.e., error in the impedance

parameter estimation, due to the sampled input parameters. Here,

the empirical probability distribution function (PDF) is shown.

variance-based analysis. For the input sample generation of the
remaining parameter we use the two-phase sample procedure
proposed for the variance-based approximation of the first-
order and total-order indices (Saltelli et al., 2010). In the first
phase, a total of 2N random samples is generated, which are
referred to as base samples. Subsequently, KN additional input
samples are produced by resampling vectors of the base samples.
Thereby, this method requires N(K + 2) model evaluation for
the estimation of the first-order and total-order effects and is
computationally more efficient than a naive approach (Saltelli
et al., 2010). Here, we set N = 3, 000 and investigate K=5
input factors leading to a total of 21, 000 simulation runs.
The random base samples are again obtained using the Latin
hypercube method assuming a uniform distribution over the input
parameters.

The resulting output distributions is shown in Figure 9 with
the empirical probability distribution function (PDF), which
is approximated from the output samples. Here, the output
distribution, i.e., the estimation error in KKKh, resembles a Normal
distribution with a mean estimation error slightly larger than
0Nm/rad. Thereby, it can be seen how the sampling of uncertainties
in the input variability space induces an output distribution and
impacts the assessment results. Note that an implicit assumption in
variance-based sensitivity analysis is that variance is an appropriate
measure to capture uncertainty (Pianosi et al., 2016). Since
the empirical PDF in Figure 9 resembles a Normal distribution
and is neither multi-model nor highly-skewed, this assumption
holds true, thus strengthening the viability of deploying the
approach here.

Figure 10 depicts the resulting first-order indices Si on the
left and total-order indices STi on the right. Additionally, the
90% confidence interval are shown by the error bars, which
are computed using bootstrapping. From the first-order effects
it is clearly visible that the factors x1, x2 and x3 are the most
influential ones, with the length of the forearm x2 having the
highest impact. Moreover, the results indicate that the softness
of the upper and forearm x5 and x6 are negligible, since their
respective total-order indices are close to zero. Note that a total-
order index of value zero constitutes a necessary and sufficient
condition for an input factor to be non-influential (Pianosi et al.,

2016). The negative signs for the first-order indices of x5 and x6
can be attributed to numerical errors, which are known to occur
for input factors with negligible sensitivity indices when using
the deployed sampling method (Saltelli et al., 2008). Moreover,
the sum of the first-order effects computes to 0.78, while the
sum of the total-order effects is 1.13. Since both sums are not
equal to 1, it can be concluded that there are interaction effects
present among the input factors in the system. Additionally, it
can be seen in Figure 10 that the total-order indices of each factor
are greater than the respective first-order indices. Thus, it can
be inferred that all of the studied input parameter participate in
the interactions.

Finally, we perform a convergence analysis to affirm the
reliability of the obtained results. Since the sensitivity indices
are approximated from samples, a convergence analysis assesses
whether the evaluated sample size is sufficiently large to make
a statement regarding the importance of the input factors. This
can be done efficiently by recomputing the results from increasing
sets of sub-samples of the original data set and analyzing the
convergence of the observed indices (Nossent et al., 2011; Pianosi
et al., 2016). The results of the performed convergence analysis are
shown in Figure 11. Here it can be seen that both the first and
total-order indices converge quickly when increasing the size of
the sub-samples with few changes in the indices after sub-samples
of half the size of the original set. This indicates that a sufficiently
large input sample size is chosen in the evaluation. Since the error
bars in Figure 10 are also small when compared to the estimated
indices, the obtained results can be deemed robust. Therefore, we
can conclude that the length of the forearm is the most influential
source of uncertainty, with the upper arm length and the mass of
the forearm following as the next most important factors.

3.3. Qualitative sensitivity analysis

In previous sections, we have analyzed the impact of
uncertainties on the human-exoskeleton interaction from a
quantitative manner, which is a particularly suitable approach
when screening for influential and non-influential factors and
when ranking those. By applying the elementary effect test and
variance-based sensitivity analysis in Sections 3.1 and Section
3.2, input parameters associated with kinematic incompatibilities
and erroneous dynamics model are identified as the most
relevant uncertainties. However, little information regarding their
functional influence on the system is retrieved and, while
interaction between the inputs is indicated, their exact nature
remains unclear. Therefore, we perform an additional qualitative
sensitivity analysis to gain further insights into the most influential
sources of uncertainty.

Figure 12 visualizes the relationship between input and output
samples for x1, x2, and x4. Each black dot in the scatter plot
indicates an input-output sample pair, while the larger red dots
depict the average output values over an interval range of the
respective input. Here, equidistant intervals that split the input
value ranges into 10 bins are used, which result in a width of
0.02 for x1 and x2, and 0.17 for x4. For the evaluation, a total of
1,500 input samples are generated assuming a uniform distribution
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FIGURE 10

Estimated first-order indices Si (left) and total-order indices STi (right) with 90% confidence intervals using the variance-based sensitivity analysis. The

left figure shows the most influential factor is x2 followed by x1 and x4. The total-order e�ects on the right identify both x5 and x6 to have no impact,

since STi = 0 constitutes a necessary and su�cient condition.

FIGURE 11

Convergence plot illustrating the estimated sensitivity indices using an increasing amount of sub-samples. Both the first-order and total-order

indices converge quickly, which implies that a su�cient sample size is chosen for the variance-based sensitivity analysis.

for each parameter. Note that here the x2 sample range is slightly
larger compared to the previous evaluation, since the sampling
strategy of the qualitative sensitivity analysis is more robust to
erroneous model responses, which can occur due to simulation
failures caused by unreasonable input parameter combinations. In
Figure 12 it is clearly visible that variation in the length of the
upper arm x1 induce a nonlinear change in the output, while both
forearm length changes x2 and forearm mass changes x4 have a
linear influence. The linear relationship in x2 and x4 is consistent
with the physical intuition for the examined system, since the
gravitational component of the human arm dynamics in (1) is a
linear function in the link length and the mass. Thus, it is indicated
that the forearm length x2 has to be considered as a source of
uncertainty with respect to both kinematic incompatibilities and
modeling errors, which leads to a better understanding of the high
sensitivity ranking of x2 in the variance-based analysis. Differently,
the output exhibits a nonlinear behavior in x1 with a continuous
decrease in the slope for larger upper arm lengths. Thereby, it can
be derived that beyond a certain threshold the misalignment in the

center of rotations due to variations in x1, lead to extreme errors
in the output value and may cause catastrophic failures. Thus,
despite the relative lower prioritization in Section 3.2, the upper
arm length remains a significant uncertainty and it needs to be
ensured that the mismatch to its nominal values is below certain
runaway boundary conditions.

Finally, we visualize the interaction between the input
parameters using colored scatter plots in Figure 13, where one
input factor is depicted on the x-axis against another one on
the y-axis with the marker color indicating the output value.
Here, the emergence of patterns provides an indication for the
interaction between two factors. From Figure 13 on the far right
it can be seen that little interaction is taking place between upper
arm length x1 and forearm mass x4, since the output values do
not change significantly with concurrent changes in the input
parameters. However, it can be detected that the upper arm length
x1 is dominant for very large values, since the markers along the
maximal y-axis values are all colored in red. On the other hand,
a slight interaction between the forearm length x2 and mass x4
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FIGURE 12

Scatter plot visualizing the output samples against input samples for variations of the upper arm length x1 (left), variations of the forearm length x2
(middle) and variations of the forearm mass x4 (right). The red dots illustrate the mean output for equidistant bins along each input.

FIGURE 13

Colored scatter plot depicting samples of the i-th input parameter on the x-axis against the j-th on the y-axis, where the marker color indicates the

respective estimation error. By observing emerging pattern in the plot, conclusions regarding the interaction of two input factors can be derived.

can be inferred from the middle plot, where the estimation error
appears to grow strongly, if both input parameters are increased
jointly. Intuitively, this can be ascribed to the fact that an increase
in the forearm length also shifts the center of mass of the link,
which in turn increases the influence of the forearmmass. Lastly, in
Figure 13 on the left it can clearly be seen that for very high values
of x1 the upper arm length dominates the output, which is indicated
by the red marker coloring along maximal x-axis values.

4. Discussion

The present study performed a quantitative sensitivity analysis
of the major sources of uncertainty present in an upper-
limb human-exoskeleton system, and their impacts on the arm
impedance parameter estimation was investigated. The performed

analysis indicates kinematic incompatibilities and errors in the

nominal dynamics model as the most influential sources of

uncertainty. Specifically, variations in the assumed forearm length

belong to both classes of uncertainty and appear to be the

most significant factor according to the results in Figure 10.

However, given a wider input variability space, the influence due

to variations in the upper arm length dominates, as shown in the

qualitative analysis in Figures 12, 13. Here, the results indicate
that for slight kinematic misalignments within a 5% range of

the nominal upper arm length, the resulting estimation error

only grows approximately linearly. However, when the upper arm
misalignment increases beyond the approximately linear range, the
nonlinear functional behavior results in a blow up of the estimation
error. While qualitative sensitivity analysis approaches are more
ambiguous, this finding makes sense intuitively, as the upper arm
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length is associated with offsets in the center of rotation, which
is typically considered a significant source of uncertainty (Schiele,
2008; Jarrassé and Morel, 2012). In addition to the above-described
link lengths, the mass of the forearm is the third-most relevant
source of uncertainty according to both the elementary effect test
and the variance-based sensitivity analysis. Here, the forearm mass
has implications regarding the nominal dynamics model, since it
is relevant for both the gravitational and inertial properties of the
human arm. In contrast, the contact dynamics due to soft-tissue
at the attachment are the least relevant as the results in Figure 10
indicate them to be non-influential.

Given the results, it can be seen that uncertainty has
a significant effect on the exoskeleton-based arm impedance
estimation. In order to help reduce overconfidence in assessment
results, the estimation procedure may benefit from employing
uncertainty-aware regression techniques, e.g., Gaussian Processes,
which model uncertainty explicitly, and thus make it transparent
for the clinician (Rasmussen andWilliams, 2005). Besidesmodeling
the uncertainty, practical steps can be taken to increase the
precision of the assessment by exploiting insights provided by
our sensitivity analysis. In particular, reducing the effect of
kinematic incompatibilities should be prioritized here. More
specifically, a close alignment of the center of rotations has
to be ensured. Inclusion of passive DoFs on the shoulder as
well as the elbow level can mitigate the influence of kinematic
incompatibilities (e.g., Vitiello et al., 2013). Additionally, special
care should be taken during the donning procedure to ensure an
ideal alignment before and during the usage. Second, our sensitivity
analysis shows that errors in the nominal dynamics model, due
to inaccuracies in the modeling of gravitational and inertial
properties of the human arm, adversely affect the impedance
estimation result. Therefore, measures should be taken to reduce
these effects. This can be achieved by performing more extensive
identification procedures for the human arm model instead of
relying on standardized models derived from anthropometric data.
The benefits of deploying more personalized models has been
demonstrated recently in rehabilitation scenarios (Just et al., 2020).
While modeling inaccuracies are expected to be less prevalent for
the robotic system, they may also adversely affect the assessment.
For example in scenarios where unknown and nonlinear friction
components influence the robot joints (Chang et al., 2009),
the device dynamics may differ from the original identification.
Therefore, ensuring the accuracy of the robot model also needs to
be considered in practice when performing automated assessment.

The simulation environment proposed in the presented study

emulates realistic load transmissions between the human and
exoskeleton via a mechanical interface composed of supporting
cuffs and straps. In addition, we facilitate soft contacts by

augmenting the human musculoskeletal model by simulated soft-
tissue at the attachment areas. To the best of the authors’
knowledge, it is the first upper-limb human-exoskeleton simulation
that acknowledges the contact dynamics at the mechanical
interface between human and robot by implementing both
the interface and the human soft-tissue explicitly. Therefore
we believe that the developed high-fidelity simulation platform
lends itself well for exploitation in diverse use cases and is
particularly suitable to investigate safety and ergonomics in
control development. The consideration of ergonomics in physical

human-robot interaction is a field that has recently gained growing
attention and is considered crucial for driving advances in human-
robot collaboration (Gualtieri et al., 2021; Sunesson et al., 2023).
Having an explicit implementation of the physical interface is
particularly relevant here, in order to accurately represent loads
arising at the human limb during interaction with an exoskeleton.
Moreover, our proposed simulation platform also provides utility
in assisting simulation-based hardware development of wearable
robotics, as the consideration of safety and ergonomics is desirable
here (Agarwal et al., 2010).

While the present study quantitatively analyzed how
uncertainties in the human-exoskeleton interaction impact the
arm impedance estimation, some simplifying assumptions were
made. First, an idealized, fully known robotic system is assumed.
Despite the fact that inertial and gravitational components can
reasonably be derived for the exoskeleton, commonly, unknown
friction dynamics remain. However, we do not expect this to be
a significant issue, since a multitude of friction compensation
strategies exist (Huang et al., 2019), which can straight-forwardly
be applied in the considered scenario. Another assumption was
made with respect to the simulation of spastic behavior of the
human arm. In particular, we did not consider joint synergies
or phase-dependent descriptions of spasticity. Since in this work
the focus lied on isolating the influence of uncertainties on the
mechanical interaction and consequently on the assessment,
the consideration of a more complex spasticity model would
provide limited additional benefit to the objective of the study.
Still the presented human musculoskeletal simulation allows for
the inclusion of different spasticity behaviors in principle. Thus,
despite these limitations, the presented results enable us to derive
the most relevant sources of uncertainty that impact the physical
human-exoskeleton interaction, and thereby help increase the
precision of exoskeleton-based arm impedance estimation.

5. Conclusion

We conclude that this work presents a novel framework to
analyze the influence of sources of uncertainty in the human-
exoskeleton interaction and their impact on the exoskeleton-based
impedance estimation. Due to an increasing demand for robot-
based neurorehabilitation and assessment, we argue that the
explicit consideration and quantification of uncertainties is
paramount, as this allows for more robust and trustworthy
estimates. To this end, a human-exoskeleton simulation
environment is developed to facilitate the use of sampling-
based sensitivity analysis methods. The performed sensitivity
analysis indicates that uncertainties significantly impact the
impedance estimation, and are primarily caused due to kinematic
incompatibilities and inaccuracies in the nominal rigid body
dynamics model of the human arm. Therefore, the findings
of the study may also be used to increase the precision of
exoskeleton-based automated assessment, i.e., by extending
model calibrations of the human arm, more careful donning
procedures or by deploying uncertainty-aware regression
techniques. In the future, we plan to exploit this framework to
develop approaches for uncertainty reduction during exoskeleton-
based impedance estimation, in order to reduce the estimation
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uncertainty below pre-defined tolerances. Thus, providing
a constructive approach for improving exoskeleton-based
automated assessment.
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