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Molecular mechanism of Cu
metal and drought stress
resistance triggered by
Porostereum spadiceum
AGH786 in Solanum
lycopersicum L.

Falak Naz1, Muhammad Hamayun1*, Mamoona Rauf1*,
Muhammad Arif2, Sumera Afzal Khan3, Jalal Ud-Din2,
Humaira Gul1, Anwar Hussain1, Amjad Iqbal4, Ho-Youn Kim5

and In-Jung Lee6*

1Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan, 2Department of
Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan, 3Centre of Biotechnology and
Microbiology, University of Peshawar, Peshawar, Pakistan, 4Department of Food Technology, Abdul
Wali Khan University, Mardan, Pakistan, 5Smart Farm Research Center, Korea Institute of Science
and Technology, Gangneung, South Korea, 6Department of Applied Biosciences, Kyungpook
National University, Daegu, South Korea
Rapid industrialization and global warming have threatened the plants with

multiple abiotic stresses, such as heavy metals and drought stress. For crop

cultivation, the conventional approach of cleaning the soils by excavation is

very costly and not feasible for large scale. Establishing toxin-free and drought-

resistant crops is a major challenge in the environment under natural and

anthropogenic pressure. In the past decades, copper contamination of

agricultural land has become an emerging concern. For dry land reclamation,

several new strategies, including bioremediation (phytoremediation and

microbial remediation), have been used. Owing to the potential of Cu

hyperaccumulators, the current project aims to enhance the drought

tolerance and the phytoremediation potential of Solanum lycopersicum L.

with the inoculation of copper and 12% polyethylene glycol (PEG)–induced

drought stress–tolerant endophytic fungus Porostereum spadiceum AGH786

under the combined stress of copper heavy metal and PEG-induced drought

stress. When S. lycopersicum L. was watered with individual stress of copper

(Cu) concentration (400 ppm) in the form of copper sulfate (CuSO4.5H2O), 12%

PEG–induced drought stress and the combined stress of both negatively

affected the growth attributes, hormonal, metabolic, and antioxidant

potential, compared with control. However, the multistress-resistant AGH786

endophytic fungus ameliorated the multistress tolerance response in S.

lycopersicum L. by positively affecting the growth attributes, hormonal,

metabolic, and antioxidant potential, and by restricting the root-to-shoot

translocation of Cu and inducing its sequestration in the root tissues of

affected plants. AGH786-associated plants exhibited a reduction in the
frontiersin.org01
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severity of copper (Cu) and drought stress, with higher levels of SlCOPT (Cu

transporters) and SlMT (metallothionine) gene expressions in root and shoot

tissues, indicating that AGH786 contributed to resistance to copper metal

toxicity and drought stress in the host S. lycopersicum L.
KEYWORDS

Cu toxicity, heavy metal stress, metallothionine, drought stress, bioremediation,
endophytic fungi
Highlights
• The P. spadiceum AGH786 endophytic fungus has been

identified as a heavy metal stress–resistant, Cu

hyperaccumulator, and drought stress–tolerant fungus

in previous research.

• The P. spadiceum AGH786 endophytic fungus

promoted growth and alleviated the combined stress of

Cu and drought in S. lycopersicum L.

• The P. spadiceum AGH786 association enhanced the

level of growth-promoting hormones, metabolites, and

antioxidants under the combined stress of Cu and

drought in S. lycopersicum L.

• The gene expressions of SlCOPT (Cu transporters) and

SlMT (metallothionine) were strongly induced by P.

spadiceum AGH786 inoculation in S. lycopersicum L.

plants under the combined stress of Cu and drought.

• With the induction of SlCOPT (Cu transporters), P.

spadiceum AGH786 restricted the uptake and

translocation of Cu from root to shoot tissues and

sequestered the toxic Cu ions in fungal biomass and

root tissues of S. lycopersicum L.

• The AGH786–S. lycopersicum association proved to

be an e ffec t ive combinat ion of myco- and

phytoremediation strategies for quickly reclaiming

heavy metal–contaminated soils in drought-prone areas.
1 Introduction

Heavy metal contamination is increasingly becoming an

environmental problem and causes great adverse effects

around the world in the form of inorganic pollutants, which

are discarded in our soil and water and into the atmosphere

because of increased population growth and demands on rapidly

growing metal industries, agriculture, fertilizers, pesticides, and

improper waste disposal (Briffa et al., 2020). The exposure of

plants to soil contamination by metal stress aggravates drought
02
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stress in an additive manner, making the plants more vulnerable

to drought. Moreover, drought and heavy metal stress

undesirably disturb soil fertility too, which retards the growth

and development of plants (de Silva et al., 2012).

Copper (Cu) is an essential metal for normal plant

development but becomes rapidly toxic in excess. For example,

when the soil materials have been rich in copper and the pH of

the soil offers metal availability if the soil has been contaminated

by coal mining and waste deposits, or when agricultural soils

have been heavily fertilized with manure or sewage, a high Cu

content in the soil, which is toxic, may occur (Rehman et al.,

2020; Srivastava et al., 2021). Cu is an essential micronutrient

required for plant growth and is a good component of enzymatic

activity, protein synthesis, and several biochemical processes in

the cell. For example, it is the cofactor of enzymes involved in

many biochemical processes, including photosynthesis,

respiration, detoxification of peroxide anions, ethylene

perception, and cell wall metabolism. The natural soil’s Cu

content ranges from 60 to 125 mg kg−1 (Kabata-Pendias, 2010).

The average content of Cu in plant tissues ranges from 2 to

50 mg g−1 dry weight (Cohu and Pilon, 2007). Cu is highly toxic

as the redox cycling between Cu(I) and Cu(II) catalyzes the

production of hydroxyl radicals via Fenton’s reaction

(Dra̧ zkiewicz et al., 2004). Symptoms of toxicity usually appear

when the Cu concentration exceeds 20 mg g−1 dry weight in

vegetative tissues (Marschner, 1995). The more typical

symptoms of copper toxicity are leaf chlorosis and reduced

growth, which are mainly caused by nutrient uptake inhibition

or actual contact with plant metabolism (Kumar et al., 2021;

Angulo-Bejarano, et al., 2021). Cu is a heavy metal

anthropogenic contaminant that causes major health problems

and affects plants; its toxic level affects their growth and

productivity. Plant reaction to metal-induced stress may

involve the synthesis of various secondary metabolites

(Chrysargyris et al., 2021). Crop cultivation on such

contaminated types of soil affects plant growth and

productivity by damaging photosynthesis and inhibiting

transpiration and water uptake.

Plants have been known to adopt different strategies under

multiple stressful growth environments to enhance their
frontiersin.org
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tolerating potential by evolving various physiological,

morphological, biochemical, and molecular mechanisms.

Physiologically, plants can reorganize their root system

architecture by inducing primary root growth inhibition and

an increase in the lateral root density. Although the

morphological changes are generic, they may not be induced

through the same signaling pathway. Plant hormones, mainly

auxin, cytokinin, and ethylene, control root system architecture

and remodel characteristics of the root, including primary root

and lateral root growth as well as root hair formation (Juraniec

et al., 2016). Moreover, another adaptive mechanism is root

colonization, which is a competitive process and a vital step in

the creation of plant–microbe relationships, and both host plants

and their associated microbes’ characteristics may affect it

(Reinhold-Hurek and Hurek, 2011).

For dry, contaminated land reclamation, several new strategies,

including bioremediation (phytoremediation and microbial

remediation), have been used. Phytoremediation emerged as a

promising cost-effective and environmentally friendly technology

to render metals less bioavailable and less toxic (phytostabilization);

clean up metal-polluted soils (phytoextraction); and/or uptake and

release metals in methylated, volatile forms to the atmosphere such

as mercury, selenium, and arsenic (phytovolatilization). The most

employed strategies are phytoextraction and phytostabilization (de

Silva et al., 2012; Nascimento et al., 2021). However, for

phytoextraction (natural and chemical-assisted phytoextraction),

several hyperaccumulator crops uptake and overaccumulate the

heavy metal in their edible parts and medicinally used plant tissues,

which is a major limitation and a serious health concern for human

and animals. However, researchers have also used microbial

remediation of the contaminated soils.

More recently, phytoextraction with aided microbial

remediation has proven as more effective strategy for the

remediation of heavy metals from the environment, as microbes

not only self-accumulate metals but also help host plants in metal

accumulation in root tissues by restricting the uptake and

translocation by binding them to extracellular and intracellular

molecules. For example, plant growth-promoting bacteria Kluyvera

intermedia, Klebsiella oxytoca, and Citrobacter murliniae isolated

from a site contaminated by gold ore processing activities to assist

the phytoremediation of As, Cd, and Pb by Sorghum bicolor and

mitigate the metal toxicity in plants. (Boechat et al., 2020). In recent

years, the absorption of copper and other heavy metals through

filamentous fungi has received a great momentum as an evolving

technology for the elimination of the heavymetals frommining and

industrial waste (Dhankhar and Hooda, 2011; Ahemad and Kibret

2014), for example, Cu heavy metal–tolerant Rhizopus microspores

(Oladipo et al., 2018), Aspergillus niger and Penicillium citrinum

(Sazanova et al., 2015), Postia placenta, Meruliporia incrassate,

Wolfiporia cocos, and Antrodia vaillantii (Clausen and Green,

2003), Laccaria bicolor (Reddy et al., 2014), and Cd heavy metal–

tolerant Cerrena unicolor (Jarosz-Wilkołazka, 2006).
Frontiers in Plant Science 03
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The heavy metal toxicity inhibits enzymatic activity, plant

growth, and yield (Nematshahi et al., 2012). To withstand heavy

metal stress and metal toxicity, plants also have evolved various

defense mechanisms, such as (1) reduced heavy metal uptake; (2)

metal sequestration in vacuoles, both extracellular and

intracellular; (3) detoxification by enzymes; (4) regulating

excessive metal ion homeostasis; (5) binding to phytochelatins/

metallothioneins (MTs); (6) activation of various antioxidants,

enabling them to survive in the presence of a high concentration

of copper; (7) upregulation of copper-induced genes through Cu

signaling; and (8) overaccumulation of Cu-resistant proteins

(Juraniec et al., 2016; Kramer et al., 2020).

Napoli et al. (2019) found that Solanum lycopersicum L.

appears to be one of the efficient phytoremediator plants in the

removal of Cu concentration from the soil, considering the total

uptake by the plant and the remarkably accumulated Cu in fruits

and roots. However, being an edible food crop, an alternative

strategy must be used for the cultivation of S. lycopersicum L. in

heavy metal–contaminated, multistress-prone regions. So that

soil can be eliminated side by side, contamination-free crops

must be produced by farmers.

Combining plants and their associated microorganisms to

eliminate contaminants has proven to be a cost-effective, in situ,

and promising technology (Tiodar et al., 2021), as genetically and

physiologically resistant endophytic fungal microbes have shown

the dominant potential to increase the remediation of heavy metals

and stress tolerance in plants (Aziz et al., 2021a; Aziz et al., 2021b).

Given the serious challenges posed by global industrialization to

crop cultivation, as well as the risk of phytoremediation by major

edible crops such as tomatoes, in a multistress environment, the

current study was initiated to investigate a novel strategy for

mitigating the harmful effects of combined heavy metal (Cu) and

drought stress. Therefore, the present research also deciphers the

exploitation of the plant–microbe interaction for multistress

alleviation to grow a contamination-free, healthy crop of S.

lycopersicum L. under drought stress.

Endophytes can help the host plant species withstand

multiple difficulties, such as heavy metals, drought, high

temperature, and salinity, in addition to inducing stress-

responsive genes (Rauf et al., 2021; Javed et al., 2022; Ali et al.,

2022a; Aziz et al., 2022a; Aziz et al., 2022b; Rauf et al., 2022).

Endophytes have sparked a lot of interest in recent years because

of their function in host seedlings and defense.

Amin and Ahmad (2015) found that the S. lycopersicum L.

crop is susceptible to multiple impositions of stresses, such as

heavy metal, as well as drought stress. However, research has not

been done so far for mitigation of such combined stresses in S.

lycopersicum L.

Here, we aimed to exploit the combination of microbial

extraction, along with phytoextraction, by taking advantage of the

endophytic fungus (Porostereum spadiceum AGH786) and the host

plant S. lycopersicum L. as hyperaccumulator of Cu metal. Hence,
frontiersin.org
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the current study was rationalized to unravel the multistress-

tolerant endophytic fungi P. spadiceum AGH786 for the

alleviation of the combined stress of Cu and drought in S.

lycopersicum L. Hence, the present research aimed to explore the

effect of P. spadiceumAGH786 on the physiological, morphological,

hormonal, biochemical, and molecular parameters of S.

lycopersicum L. grown under the combined stress of Cu metal

toxicity and drought. The current investigation enabled us to

unravel the dual potential of the P. spadiceum AGH786–S.

lycopersicum symbiotic association as mycoremediation, as well as

the phytoremediation of Cu toxicity in dry, contaminated lands,

with the growth promotion of the host plant.
2 Methodology

2.1 Requisition of P. spadiceum AGH786

P. spadiceum (AGH786, Accession No 786) (Hamayun et al.,

2017) was obtained in the form of slants from the Department of

Botany, Plant–Microbe Interactions (PMI) Lab, Abdul Wali

Khan University Mardan.

2.1.1 Assessment of growth and tolerance
response of the P. spadiceum AGH786 strain
under the stress of Cu metal and polyethylene
glycol–mediated drought

Fungal strain P. spadiceum AGH786 was refreshed

according to the method of Hamayun et al. (2009) and Khan

et al. (2009). For subculturing, a section of the fungal colony was

transferred on media containing copper (II) sulfate

(CuSO4.5H2O) salt (CAS No. 7758-99-8; Sigma-Aldrich,

Deisenhofen, Germany); supplemented with various

concentrations of 0, 100, 500, and 1,000 ppm; incubated at 25°

C; and kept overnight at 28°C in the dark; growth was evaluated

phenotypically compared with control (0 ppm), as described by

Shen et al. (2013). The P. spadiceum AGH786 strain was grown

in a liquid medium by the method (Hamayun et al., 2017)

supplemented with various concentrations of 0, 100, 500, and

1,000 ppm. After incubation, the filtrate was used for the analysis

of metabolites and metal concentrations, subsequently. The

drought tolerance response was also evaluated on PDA plates

supplemented with 12% polyethylene glycol (PEG 8000), as

described by (Praveen Kumar et al., 2014).
2.2 Response of P. spadiceum AGH786
to 12% polyethylene glycol–induced
drought stress

The drought tolerance response was evaluated as described

by (Kumar et al., 2014) using 12% polyethylene glycol (PEG

8000) amended on PDA plates.
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2.3 Determination of hormones and
metabolites in the fungal cultural filtrate

Primary and secondary metabolites (carbohydrates,

proteins, and lipids), as well as indole-3-acetic acid (IAA),

gibberellic acid (GA), salicylic acid (SA), and abscisic acid

(ABA), were determined in the cultural filtrate of P. spadiceum

AGH786. IAA was estimated by using the Salkowski reagent as

described earlier (Hussain and Hasnain, 2011). GA and ABA

were determined by the method of Ergün (2002). SA was

estimated by using the technique of Warrier et al. (2013). For

the determination of the total flavonoid content, the method of

El Far and Taie (2009) was used. The method of Malik and Singh

(1980) was adapted for the determination of the total phenolic

content in fungal culture filtrate. The proline content was

determined according to the method of Bates et al. (1973).

Total soluble sugars were estimated as described by Nayer and

Reza (2008).
2.4 Soil experiment

2.4.1 Preparation of soil for the inculcation
Soil (sandy loam) suitable for local cultivation of tomato crops

was collected from the Mardan district of Khyber Pakhtunkhwa,

Pakistan, for physicochemical analysis. The sand content of the

soil mixture ranged from 71% to 74%. Silt content ranged from

11% to 13%. Clay content was 11%–16%. Soil pH ranged from 7.3

to 7.8. The electrical conductivity of the soil mixture ranged from

0.7% to 6%. Organic matter was 1.5%, carbonate was 1.32 meq/L,

bicarbonate was 2.8 meq/L, and Cl−1 was 15 meq/L.

The sterilized soil was supplemented with fungal mycelium

(2 g/100 g of soil), and plastic pots were prepared with 500 g of

soil mixture, sufficient enough for growing tomato plants for up

to 5 weeks. Pots without fungal biomass were used as control,

and the soil pots were kept for 1 week to grow fungal hype

uniformly in a growth chamber in the lab at 28°C.

2.4.2 Sowing of S. lycopersicum L. seeds
A non-hybrid variety of S. lycopersicum L. (Rio Grande)

seeds was obtained from the National Agricultural Research

Centre, Islamabad. Healthy, mature, and uniform-sized seeds

were selected by physical appearance. Seeds were washed three

times with autoclaved distilled water. Ethanol (70%) was applied

for the sterilization of S. lycopersicum L. seeds. The seeds were

washed with distilled water thrice and sown in the soil premixed

with fungal biomass (2 g/100 g of soil). Then, S. lycopersicum L.

seed pots were shifted to a growth chamber (day/night cycle: 14

h 28°C ± 0.3°C, 10 h 25°C ± 0.3°C; relative humidity, 70%; six

plants per treatment) for 1 month, in November 2019, in the lab

at Abdul Wali Khan University Mardan. The experiment was

designed with a completely randomized design; there were eight

treatments, and each treatment has six replicates.
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2.4.3 Experimental design
Fron
Treatment 1. Control (distal water)

Treatment 2. AGH786 (2 g/100g) (endophytic fungus)

Treatment 3. PEG (12%) (drought stress)

Treatment 4. Cu (400 ppm)

Treatment 5. Cu (400 ppm) + PEG (12%)

Treatment 6. AGH786 (2 g/100 g) + PEG (12%)

Treatment 7. Cu (400 ppm) + AGH786 (2 g/100 g)

Treatment 8. Cu (400 ppm) + AGH786 (2 g/100 g) + PEG

(12%)
Napoli et al. (2019) reported 400 ppm of Cu supplementation for

evaluation of Cu uptake and accumulation response of S.

lycopersicum L. from the Cu-contaminated soil. Consistently, in the

current research, S. lycopersicum L. plants were selected as an efficient

Cu accumulator and supplemented with the copper (II) sulfate

(CuSO4.5H2O) salt (CAS No. 7758-99-8; Sigma-Aldrich,

Deisenhofen, Germany), at the concentration of 400 ppm Cu/pot

at 14, 21, and 28 days after germination. After 5 weeks, growth

parameters of S. lycopersicum L. seedlings, including total chlorophyll

content, shoot–root length, and fresh and dry weight of shoot–root,

were measured. Seedlings were harvested, and fresh leaves grind in

liquid nitrogen for total carbohydrates; proteins; lipids; flavonoids;

phenols; proline; total antioxidants such as ascorbic oxidase (AAO),

catalase (CAT), and peroxidase (POD); and different plant hormones

such as GA, IAA, SA, and ABA. Chemicals and reagents were

purchased from Sigma-Aldrich (Deisenhofen, Germany), Fluka

(Buchs, Switzerland), and Merck (Darmstadt, Germany).

2.4.4 Drought stress on S. lycopersicum L.
For induction of drought stress, PEG 8000 was used at 12%,

and three doses of 300 ml of the PEG solution (12%) were given

to each pot for 3 days (Hamayun et al., 2010).
2.5 Growth parameters

At the end of the experiment, the total yield was recorded by

measuring the shoot, root length, and fresh and dry weight of S.

lycopersicum L. seedlings.

2.5.1 Chlorophyll and carotenoids content
For determination of chlorophyll and carotenoid contents,

Maclachlan and Zalik’s (1963) method was used.

2.5.2 Determination of endogenous indole-3-
acetic acid, gibberellic acid, salicylic acid, and
abscisic acid

For the determination of endogenous IAA contents of

grained fresh leaves (0.1 g) in liquid nitrogen, purification and
tiers in Plant Science 05
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extraction of IAA were performed as described above (Hussain

and Hasnain, 2011). GA and ABA were determined by the

method of Ergün (2002). SA was estimated by using the

technique of Warrier et al. (2013).

2.5.3 Determination of secondary metabolites
The total flavonoid content was estimated by the AlCl3

method, as mentioned earlier (El Far and Taie, 2009). The

phenolic content was determined by the method discussed

above. Proline contents were analyzed according to the

protocol of Bates et al. (1973). The total soluble sugar

estimation was performed according to Nayer and Reza

(2008), as discussed above. Optical Density (OD) was noted at

485 nm. For extraction of total lipid, we used the method of Van

Handel (1985). The determination of malondialdehyde (MDA)

was done as mentioned earlier (Schmedes and Hølmer, 1989).

2.5.4 Determination of antioxidant activities
With minor modifications, the DPPH (1,1-diphenyl-2-picryl

hydroxyl) scavenging activity was measured using the method of

Abbasi et al. (2011), Plant matter (0.1 g) was mixed in 1 ml

methanol, along with a 0.004% methanol solution of DPPH.

About 1 ml of the DPPH solution was then added to 0.5 ml of the

samples and then blended and kept for 30 min at room

temperature in the dark. The intensity of the DPPH staining

was estimated to be 517 nm. The decline in absorption by the

sample suggested an elevated scavenging of free radicals

according to the equation

%DPPH =
1 − AE
AD

� �
� 100

where AE = absorption with extract and AD = absorption of

DPPH solution only.

CAT activity was used for H2O2 cleavage (Guo et al., 2006).

The decrease in H2O2 is followed by a decrease in absorption at

240 nm, which was measured as M H2O2 min−1 cleavage.

After dehydrogenating guaiacol as a substratum, the

generation of PODs was calculated (Malik and Singh, 1980).

In 3 ml of the phosphate buffer (pH 7.0), the enzyme was

extracted from the plant. First, take 0.1 g of leaves and grind in 1

ml Tris buffer, centrifuged for 15 min at 5°C at 12,000 rpm.

Within 2–4 h, the obtained supernatant was employed as an

enzyme source. Pipet 3 ml phosphate buffer (0.1 M), 0.03 ml

H2O2 (12.3 mM or 0.04%) solution, 0.05 ml guaiacol solution

(20 mM), 0.1 ml plant extract, and 0.03 ml H2O2 (12.3 mM or

0.04%) solution into a cuvette. The resulting mixture was

properly shaken, and OD was recorded at 436 nm.

2.5.5 Reactive oxygen species accumulation
through 3,3′-diaminobenzidine

For examining the H2O2 biosynthesis and the accumulation

of the 3,3′-diaminobenzidine (DAB; Sigma, St. Louis, MO,
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USA), a staining assay was performed using leaf disc, as

described by Rauf et al. (2022).
2.6 Heavy metal content analysis in
fungal biomass and plant tissues

The bioavailability of Cu was assessed using atomic

absorption spectrometry, as described earlier (Li et al., 2014).

For determining the Cu content in fungus grown on Cu

supplemented media, fungal biomass was retrieved by filtering.

While plant samples were washed in water to remove surface

element traces, then divided into leaf, root, and shoot segments,

and oven-dried at 65°C for 48 h until the weight was constant.

The samples were then crushed to powder form with a mortar

and pestle, then 0.2 g roots/shoots powder was added for

digestion with 5 ml HNO3 (65% w/w) at 110°C for 2 h, then

cooled and mixed with 1 ml H2O2 (30% w/w), and heated for 1 h.

Next, the digests were diluted with deionized water in a conical

flask with triple deionized water (Shen et al., 2013).
2.7 RNA isolation and cDNA synthesis

Total RNA was extracted from S. lycopersicum L. seedlings

using the Gene JET Plant RNA Purification Kit (Thermo

Scientifics), as specified by the manufacturer. During the

isolation procedure, the DNase treatment was carried out

using RNase-free DNase that was obtained from the TURBO

DNase Kit by Ambion (Cambridge, United Kingdom). Around 2

µg of total RNA was reverse-transcribed using the Revert Aid

First Strand cDNA Synthesis Kit by Invitrogen (Karlsruhe,

Germany), as described earlier (Rauf et al., 2021).

qPCR primers were designed utilizing Primer 3.0

(Untergasser et al., 2012) for gene expression analysis of the

heavy metal stress–related molecular marker genes copper

transporters (SlCOPTs) and metallothionein (SlMTs). As an

internal control, ACTIN2 was used. All primers were

synthesized from Bio Basic (Korea), and sequences with gene

accession numbers have been mentioned in Table 1.

Amplification of each gene was performed in triplicate by

using an ABI PRISM 7900HT sequence detection system

(Applied Biosystems Applera, Darmstadt, Germany), and the

amplification product was visualized using SYBR Green

(Applied Biosystems Applera, Darmstadt, Germany).

Amplification curves were analyzed with a normalized reporter

(Rn: the ratio of the fluorescence emission intensity of SYBR

Green to the fluorescence signal of the passive reference dye).

Reverse transcription–quantitative PCR (RT-qPCR) expression

analysis was performed by using three independent biological

replicates with at least three technical replicates as described

earlier (Rauf et al., 2022).
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2.8 Statistical analysis

Each experiment was performed in triplicates, the data were

analyzed using ANOVA through SPSS-20, and the means that

differed from one another in a significant way were further

examined using the Duncan Multiple Range Test at the p-value

of 0.05 (SPSS, Inc., Chicago, IL, USA).
3 Results

3.1 Drought stress and Cu metal toxicity
response of P. spadiceum AGH786

Tolerance response of P. spadiceum AGH786 against

drought stress and Cu toxicity has been shown in Figures 1A,

B, which revealed the differential tolerance potential of the P.

spadiceum AGH786 strain growing on media (PDA and

Czapek), supplemented with the different concentrations of

copper salt at 100, 500, and 1,000 ppm and 12% PEG. In the

current results, the P. spadiceum AGH786 strain showed the

highest tolerance potential in terms of sustainable biomass

production at 100 ppm copper supplemented media compared

with the higher concentrations (500 and 1,000 ppm). In

addition, 12% PEG–treated media also showed sufficiently

sustainable biomass production (Figure 1C). Quantification of

bioavailable Cu content revealed that P. spadiceum AGH786

mycelium efficiently absorbed the Cu supplemented in growth

media, in a dose-dependent manner (Figure 1D).
3.2 Determination of hormonal,
metabolic, antioxidant, and H2O2 content
in P. spadiceum AGH786 culture filtrate

After the assessment of the tolerance response of P.

spadiceum AGH786 against drought stress and Cu toxicity,

plant growth-promoting hormones (IAA, GA, SA, and ABA)

were quantified. Significantly enough of these plant growth-

promoting hormones were quantified in AGH786 fungal culture

growing on media (Czapek), supplemented with the different

concentrations of copper salt at 100, 500, and 1,000 ppm and

12% PEG (Figure 2).

Moreover, hormonal contents were differentially

upregulated in various concentrations of copper salt at 100,

500, and 1,000 ppm, with the highest increase in IAA (AGH786-

treated media), GA (Cu 1,000 ppm), SA (Cu 1,000 ppm,

followed by Cu 500 ppm), and ABA (12% PEG and Cu 1,000

ppm) upon supplementing the Cu 1,000 ppm compared with the

control. However, IAA (Cu 1,000 ppm) contents were

significantly (p< 0.05) decreased with an increase in SA (Cu

1,000 ppm) and ABA (Cu 1,000 ppm) contents upon
frontiersin.org

https://doi.org/10.3389/fpls.2022.1029836
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Naz et al. 10.3389/fpls.2022.1029836
supplementation of 12% PEG compared with the control culture

of P. spadiceum AGH786 (Figures 2A-D).

After the assessment of the tolerance response of P.

spadiceum AGH786 against drought stress and Cu toxicity,

primary and secondary metabolites were also estimated in the

P. spadiceum AGH786 culture filtrate grown under PEG-

induced drought stress and Cu supplementation. Significantly

(p< 0.05), higher concentration of soluble sugars was recorded in

various concentrations of copper salt (100, 500, and 1,000 ppm),

with the highest increase (Cu 1,000 ppm) upon supplementing

the Cu 1,000 ppm compared with the control (Figure 2E).

The total soluble sugar content was also significantly

increased (Cu 1,000 ppm) in P. spadiceum AGH786 culture

grown in PEG-induced drought stress

A differentially higher concentration of total flavonoids was also

recorded in various concentrations of copper salt (100, 500, and 1,000

ppm) with the highest increase (Cu 500 ppm) upon supplementing

the Cu 500 ppm compared with the control. The total flavonoid

content was also significantly increased in the P. spadiceum AGH786

culture grown in PEG-induced drought stress (Figure 2F).

A differentially higher concentration of total phenolics was

also recorded in various concentrations of copper salt (100, 500,

and 1,000 ppm) with the highest increase upon supplementing

the Cu 1,000 ppm compared with the control. However, the total

phenolic content was significantly decreased (12% PEG) in the P.
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spadiceum AGH786 culture grown in PEG-induced drought

stress (Figure 2G).

The proline quantification test also showed an increase in the

P. spadiceum AGH786 culture grown on media having various

concentrations of copper salt (100, 500, and 1,000 ppm), with the

highest increase upon supplementing the Cu 500 ppm compared

with the control. However, the proline content was also

significantly increased in the P. spadiceum AGH786 culture

grown in PEG-induced drought stress (Figure 2H).

After the assessment of the tolerance response of P.

spadiceum AGH786 against drought stress and Cu toxicity,

antioxidant enzymes (CAT, POX, and AAO) and reactive

oxygen species (ROS) (H2O2) were also quantified. Results

showed a significant (p< 0.05) increase in POX and AAO

activities detected in the P. spadiceum AGH786 fungal culture

growing on media (Czapek), supplemented with the different

concentrations of copper salt at 100, 500, and 1,000 ppm, with

the highest increase in POX activity (Cu 500 ppm), AAO activity

(Cu 500 ppm), and CAT activity (Cu 500 ppm) compared with

the control. The H2O2 content was also increased at Cu 500 and

100 ppm supplementation compared with the control.

PEG-induced drought stress triggered a significant (p< 0.05)

increase in H2O2 content and antioxidant activity of POX, CAT,

AAO enzymes in the P. spadiceum AGH786 culture

(Figures 2I-L).
TABLE 1 Primers used for reverse transcription–quantitative PCR (RT-qPCR).

Primers used for RT-qPCR

Gene name Gene accession Gene code Primer sequences

Copper transporter Solyc08g006250 SlCOPT1_F ATTCTCTTCTCCGGTTGGCC

SlCOPT1_R CTAACTCCGTACAACGCCGT

Copper transporter Solyc06g005820 SlCOPT2_F GGCCAACCTGAGAAGAGAATC

SlCOPT2_R ATGAAGAACGACGGCCACAT

Copper transporter Solyc09g011700 SlCOPT3_F ACAAAAGGCCCATAGGTGCT

SlCOPT3_R TCTCAACCGCGACAAGTTCA

Copper transporter Solyc10g084980 SlCOPT4_F AAGCCGGAATACAAGCGGTT

SlCOPT4_R CTGCATGACCAACAACAGCC

Copper transporter Solyc02g082080 SlCOPT5_F GCTGTGAATGCTCCCCTTCT

SlCOPT5_R TGACATCATCCTCATCGCCG

Copper transporter Solyc09g014870 SlCOPT6_F TGACATGCCAGGAATGGGAG

SlCOPT6_R AGGACATACATGCCCGTTCG

Actin Solyc05g054480 SlACTIN_F AGATCCTCACCGAGCGTGGTTA

SlACTIN_R GAGCTGGTCTTTGAAGTCTCGA

Metallothionein NM_001247117.2 SlMT1-F CTAGCTGCAAGTGCGACAAC

SlMT1-R ACCCCAAGCACCAAAGTCTC

Metallothionein EU884310 SlMT2-F GCTGTGGATCTAGCTGCAAGTGCG

SlMT2-R AAGGGTTGCACTTGCAGTCAGATCC

Metallothionein NM_001247125.2 SlMT3-F ATGTCTTGCTGTGGTGGAAG

SlMT3-R TAGCAATTGCAAGGGTCACA

Metallothionein NM_001247362.2 SlMT4-F TGTGGGATGTACCCCGACTT

SlMT4-R TCTGTTGCTTTCTCAGCCACT
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3.3. Effect of P. spadiceum AGH786 on
growth attributes of S. lycopersicum L.
under Cu and polyethylene glycol stress

The effect of P. spadiceumAGH786 on S. lycopersicum L. plants

supplemented with copper salt (400 ppm) and PEG (12%) was

investigated in comparison to control, in terms of shoot–root fresh,

dryweight, and shoot–root length (Figure 3). Root colonization byP.

spadiceum AGH786 with S. lycopersicum L. was also assessed by

lactophenol cotton blue staining, which confirmed the successful

plant microbial interactions with the root tissue of S. lycopersicum L.

plants under observations (Figure 3B).

P. spadiceum AGH786 inoculation significantly promoted

the growth parameters in comparison to non-inoculated plants.
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Moreover, S. lycopersicum L. plants supplemented with copper

salt (400 ppm) and PEG (12%) and inoculated with P. spadiceum

AGH786 also exhibited a significant increase in the shoot length,

root length, shoot fresh weight, and dry weight, compared with

non-inoculated plants under stress (Figures 3C-H).
3.4 Effect of P. spadiceum AGH786 on
photosynthetic pigments of S.
lycopersicum L. under Cu and 12%
polyethylene glycol stress

The effect of P. spadiceum AGH786 on S. lycopersicum L.

plant’s photosynthetic potential, supplemented with copper salt
B

C D

A

FIGURE 1

(A) Growth of P. spadiceum AGH786 on different concentrations of Cu and 12% PEG on solid media. (B) Growth of P. spadiceum AGH786 on
different concentrations of Cu and 12% PEG on liquid media. (C) Fresh weight of P. spadiceum AGH786 on different concentrations of Cu and
12% PEG on liquid media. (D) Bioavailable Cu concentration in fungal biomass. Data represent the mean with standard error, and letters
represent the significant difference (p < 0.05).
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(400 ppm) and PEG (12%), was investigated in comparison to

control. The photosynthetic potential was evaluated in terms of

the production of chlorophyll a and b, total chlorophyll,

and carotenoids.

P. spadiceum AGH786 inoculation significantly promoted

the production of chlorophyll a and b, total chlorophyll, and

carotenoids in comparison to non-inoculated plants. Moreover,

S. lycopersicum L. plants supplemented with copper salt (400

ppm) and PEG (12%) and inoculated with P. spadiceum

AGH786 also showed a significant promotion in the

production of chlorophyll a and b, total chlorophyll, and

carotenoids, compared with non-inoculated plants under stress

(Figures 4A-D).
3.5 Effect of P. spadiceum AGH786 on
hormonal contents of S. lycopersicum L.
under Cu and polyethylene glycol stress

The effect of P. spadiceumAGH786 on S. lycopersicum L. plant’s

phytohormonal contents, supplemented with copper salt (400 ppm)

and PEG (12%), was investigated in comparison to control.

P. spadiceum AGH786 inoculation significantly promoted

the production of IAA, GA, and SA, while a reduction in ABA

levels was observed in comparison to non-inoculated plants

under normal growth conditions. Moreover, S. lycopersicum L.
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plants supplemented with copper salt (400 ppm) and PEG (12%)

and inoculated with the P. spadiceum AGH786 showed a

significant promotion in the production of IAA, GA, and SA,

while ABA content was also increased, compared to non-

inoculated plants under stress (Figures 5A-D).
3.6. Effect of P. spadiceum AGH786 on
metabolic attributes of S. lycopersicum L.
under Cu and polyethylene glycol stress

The effect of P. spadiceum AGH786 on S. lycopersicum L.

plant ’s primary and secondary metabolic contents,

supplemented with copper salt (400 ppm) and PEG (12%),

was investigated in comparison to the control.

P. spadiceum AGH786 inoculation significantly promoted

the production of total flavonoids, tannins, total proteins, and

total lipids in comparison to non-inoculated plants under

normal growth conditions, whereas total soluble sugar and

proline levels were reduced by P. spadiceum AGH786 in S.

lycopersicum L. Moreover, S. lycopersicum L. plants

supplemented with copper salt (400 ppm) and PEG (12%) and

inoculated with P. spadiceum AGH786 showed a significant

promotion in the total flavonoids, tannins, total proteins, total

soluble sugar, and total lipids in comparison to non-inoculated

plants under stress, whereas proline level was reduced by P.
B C D

E F G H

I J K L

A

FIGURE 2

Effect of P. spadiceum AGH786 on hormonal content of S. lycopersicum L. under heavy metal (Cu) toxicity and drought stress (12% PEG). (A)
Indole-3-acetic acid (IAA) level, (B) gibberellic acid (GA) level, (C) salicylic acid (SA) level, (D) abscisic acid (ABA) level, (E) total soluble sugars, (F)
total flavonoids, (G) total phenolics, (H) proline content, (I) catalase activity, (J) H2O2 content, (K) peroxidase activity, and (L) ascorbate oxidase
activity under different concentrations of Cu and 12% PEG in liquid media. Data represent the mean with standard error, and letters represent
the significant difference (p < 0.05).
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FIGURE 3

Effect of P. spadiceum AGH786 on growth attributes of S. lycopersicum L. under heavy metal (Cu) toxicity and drought stress (12% PEG). (A)
Effects of P. spadiceum AGH786 on the growth of host seedlings. (B) Root colonization by P. spadiceum AGH786. (C) Effects of P. spadiceum
AGH786 on shoot fresh weight. (D) Root fresh weight. (E) Shoot dry weight. (F) Root dry weight. (G) Shoot length. (H) Root length of host
seedlings. Data represent the mean with standard error, and letters represent the significant difference (p < 0.05).
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spadiceum AGH786 in S. lycopersicum L. compared with non-

inoculated plants under stress (Figures 6A-F).
3.7 Effect of P. spadiceum AGH786 on
reactive oxygen species generation and
antioxidant potential of S. lycopersicum
L. under Cu and polyethylene
glycol stress

In response to heavy metal toxicity and drought stress,

oxidative damage response in terms of ROS production was

evaluated in S. lycopersicum L. upon inoculation of P. spadiceum

AGH786. To this end, the amount of H2O2 was observed as

brown spots by using DAB staining in the leaves of S.

lycopersicum L. (Figure 7A). A higher amount of H2O2

accumulation was recorded in the individual treatment of Cu

and 12% PEG in plant tissues, whereas the highest increase was

found in plants treated with the combined treatment of Cu and

12% PEG, in comparison to control. The inoculation of P.

spadiceum AGH786 induced a reduction in ROS production
Frontiers in Plant Science 11
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and H2O2 accumulation in plants under stress compared with

the non-inoculated control (Figures 7A, B).

MDA content (product of lipid peroxidation in

biomembranes degradation by ROS overproduction) was

quantified in S. lycopersicum L. plants under stress upon

inoculation of P. spadiceum AGH786. Results showed that S.

lycopersicum L. plants under stress upon inoculation of P.

spadiceum AGH786 exhibited lower MDA content compared

with the non-inoculated control (Figure 7C).

The effect of P. spadiceum AGH786 on S. lycopersicum L.

plant’s antioxidant potential, supplemented with copper salt

(400 ppm) and PEG (12%), was investigated in comparison to

the control. Antioxidant potential was evaluated in terms of

induction of enzymatic (CAT, POX, and AAO) and non-

enzymatic antioxidants (AsA), free radical scavenging activity,

and total antioxidant production.

P. spadiceum AGH786 inoculation significantly induced the

enzymatic (CAT, POX, and AAO) and non-enzymatic

antioxidants (AsA) of S. lycopersicum L. plants in comparison

to non-inoculated plants. Moreover, S. lycopersicum L. plants

supplemented with copper salt (400 ppm) and PEG (12%) and
B

C D

A

FIGURE 4

Effect of P. spadiceum AGH786 on the photosynthetic potential of S. lycopersicum L. under heavy metal (Cu) toxicity and drought stress (12%
PEG). (A) Chlorophyll a, (B) chlorophyll b, (C) total chlorophyll, and (D) total carotenoids. Data represent the mean with standard error, and
letters represent the significant difference (p < 0.05).
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inoculated with P. spadiceum AGH786 also showed significant

induction in the enzymatic (CAT, POX, and AAO) and non-

enzymatic antioxidants (AsA), compared with non-inoculated

plants under stress (Figures 7D–I).
3.8 Effects of P. spadiceum AGH786 on
heavy metal Cu uptake in S.
lycopersicum L. under normal and
drought stress

P. spadiceum AGH786 decreased the toxicity of Cu through

limited uptake, translocation, and accumulation in the upper parts

of the S. lycopersicum plants (Figure 8). A significant reduction in

Cu was found in the leaves of S. lycopersicum associated with P.

spadiceum AGH786 as compared with the stem and root tissues of

inoculated and non-inoculated plants under combined stress of

heavy metal (Cu) and drought stress (12% PEG). Significantly

higher Cu content was retained in the soil pots with S. lycopersicum

L. plants associated with the P. spadiceum AGH786 fungal

endophyte compared with the non-inoculated control indicating a
Frontiers in Plant Science 12
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reduction in the uptake of the Cu content from the soil by root

tissue of plants under Cu stress, as shown in Figures 8C, D.

However, an opposite trend was recorded in the plants

treated with Cu, which showed an abrupt increase in the

uptake of Cu by root tissues and overaccumulation in the

shoot tissue, whereas the highest Cu content was quantified in

the leaf tissues of the non-inoculated S. lycopersicum plants

under Cu stress compared with the control. Significantly low Cu

content was retained in the soil pots with non-inoculated S.

lycopersicum L. plants compared with the inoculated control,

indicating a sufficient uptake of Cu to the root tissues of the

plants under Cu and drought stress.
3.9. Effects of AGH786 on Cu2+

transporters and metallothioneins gene
expressions in S. lycopersicum L.
under stress

The RT-qPCR analysis was carried out to evaluate the effect

of AGH786 inoculation on the expression level of selected Cu2+
B
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A

FIGURE 5

Effect of P. spadiceum AGH786 on hormonal content of S. lycopersicum L. under heavy metal (Cu) toxicity and drought stress (12% PEG). (A)
Indole-3-acetic acid (IAA), (B) gibberellic acid (GA), (C) salicylic acid (SA), and (D) abscisic acid (ABA). Data represent the mean with standard
error, and letters represent the significant difference (p < 0.05).
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transporters (COPTs) and MTs genes in the leaf and root tissues

of S. lycopersicum L. plants grown under single and combined

Cu and drought stress.

The expression levels of the SlCOPT1, SlCOPT2, SlCOPT3,

SlCOPT4, SlCOPT5, and SlCOPT6 and SlMT1, SlMT2, SlMT3,

and SlMT4 in the roots and leaf tissues of S. lycopersicum L. are

shown in Figure 9. The analysis revealed that SlCOPT3 and

SlCOPT6 genes exhibited a significantly higher expression (>4-

fold), both in root and shoot tissue, in response to Cu stress.

However, AGH786 inoculation significantly decreased the

expression of SlCOPT3 and SlCOPT6 genes up to the basal

level, both in root and shoot tissues of S. lycopersicum L. under

single and combined stress of Cu and drought (Figure 9).
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The expression levels of SlMT1, SlMT2, SlMT3, and

SlMT4 in the roots and leaf tissues of S. lycopersicum L. are

shown in Figure 9. The analysis revealed that SlMT1, SlMT2,

and SlMT3 genes exhibited a significantly higher expression

in leaf and root tissues (>4-fold change) in response to Cu

stress, whereas expression was downregulated (>0.5 fold) in

response to drought stress in root and shoot tissues. AGH786

inoculation induced the expression of SlMT1, SlMT2, and

SlMT3 genes (>5-fold) both in root and shoot tissues of S.

lycopersicum L. Moreover, the combined stress of Cu and

drought was induced (>3-fold), which was further increased

(>6-fold) by AGH786 inoculation in S. lycopersicum L.

plants (Figure 9).
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FIGURE 6

Effect of P. spadiceum AGH786 on metabolic attributes of S. lycopersicum L. under heavy metal (Cu) toxicity and drought stress (12% PEG). (A)
Total flavonoids, (B) total soluble sugar, (C) tannins, (D) proline, (E) total protein, and (F) total lipids. Data represent the mean with standard error,
and letters represent the significant difference (p < 0.05).
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FIGURE 7

Effect of P. spadiceum AGH786 on the antioxidant potential of S. lycopersicum L. under heavy metal (Cu) toxicity and drought stress (12% PEG).
(A) Effects of AGH786 on endogenous ROS accumulation. (B) H2O2 level. (C) MDA content. (D) Catalase activity. (E) Ascorbate oxidase activity.
(F) Peroxidase activity. (G) Total antioxidants. (H) Ascorbic acid. (I) DPPH activity. Data represent the mean with standard error, and letters
represent the significant difference (p < 0.05).
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4 Discussion

In general, microorganisms exhibit high tolerance to

multiple stresses (drought and heavy metals), acquired likely

through an evolutionary adaptation to a contaminated, harsh

environment. Fungi are more tolerant to environmental heavy

metals (HMs) than other microorganisms, for instance, bacteria,

because of differences in cellular metabolism (Rajapaksha et al.,

2004; Agustinho et al., 2018). Higher osmotic pressure in the cell

structure of fungi allows them to survive adverse conditions

(Agustinho et al., 2018). Moreover, fungi can survive in the soil

as sclerotia, chlamydospores, or other structures that allow the

microorganisms to survive under unfavorable conditions

(Golubović-Ćurguz 2010).

High tolerance of fungi has been observed when the

tolerance thresholds to Cu of pure cultures of systematically

distant soil microorganisms were compared. At high Cu

concentrations (128 mmol kg−1) applied to growing media,

fungal activity (acetate-in-ergosterol incorporation rate)

increased by seven times as compared with the control

(Rajapaksha et al., 2004).

Most of the plant growth-promoting endophytic fungi

belong to the group of sac fungi known as Ascomycota.

However, members of club fungi (Basidiomycota) have also

been shown to exist as endophytes in plant tissues and

promote growth by different mechanisms (Waller et al., 2005;

Khan et al., 2009).

Several Ascomycota filamentous fungi have been known to

be heavy metal stress resistant. For example, the Rhizopus

microsporus was found highly tolerant to a wide range of Cu

concentrations (400–1,000 mg kg−1); however, its high tolerance

capacity was apparent only at 25 mg kg−1 of Cd and 125 mg kg−1

of arsenic (As) (Oladipo et al., 2018). Organic acids induced

tolerance to copper-exposed filamentous fungi (A. niger and P.

citrinum) (Sazanova et al., 2015).

However, among Basidiomycota, only a few members have

been reported to be heavy metal stress tolerant. For example,

white rot basidiomycetes Abortiporus biennis and C. unicolor

showed a species-specific response to Cd stress. Cd biosorption

onto the mycelial surface was the predominant Cd sequestration

mechanism in C. unicolor that induced the Cd stress tolerance of

C. unicolor in comparison to A. biennis (Cd-sensitive). These

species-specific responses toward Cd suggest that C. unicolor

possesses a more efficient system than A. biennis to keep

intracellular Cd concentrations low. A. biennis showed higher

content of thiol compounds (cysteine, g-glutamylcysteine, and

glutathione in both its reduced and oxidized form) by Cd

application, whereas C. unicolor showed higher production of

oxalate and laccase by Cd application, which is corroborated by

the Cd stress tolerance response of C. unicolor (Jarosz-

Wilkołazka, 2006). Oxalic acid overproduction also triggered

Cu toxicity tolerance in brown rot basidiomycete fungi (P.
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FIGURE 8

Effect of P. spadiceum AGH786 on the endogenous copper
accumulation in various tissues of S. lycopersicum L. under
heavy metal (Cu) toxicity and drought stress (12% PEG). (A) Cu
accumulation in leaves. (B) Cu concentration in the stem. (C) Cu
concentration in roots. (D) Concentration of Cu in soil. Data
represent the mean with standard error, and letters represent the
significant difference (p < 0.05).
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placenta, M. incrassate, W. cocos, and A. vaillantii) (Clausen and

Green (2003). Reddy et al. (2014) found differential expression of

MTs in response to heavy metals and their involvement in metal

tolerance in the symbiotic basidiomycete L. bicolor. Combining

plants and their associated microorganisms to eliminate

contaminants and provide environmental stress alleviation

provides a cost-effective, in situ, and promising technology

(Tiodar et al., 2021).

Moreover, root-associated microorganisms, such as

mycorrhizal fungi and endophytic fungi, can remove,

inactivate, or degrade harmful environmental contaminants

(Aziz et al., 2021a; Aziz et al., 2021b; Wang et al., 2022).

Endophytic fungi are the essential components of root

microflora in the metal-contaminated ecosystem. They possess

various degradation pathways by which they increase host heavy

metal tolerance and assist the host’s survival in contaminated

soils, for example, extracellular metal sequestration (by secreting

organic acids and compounds), metal binding to cell walls

(hydroxyl, amide, carboxyl, and phosphate-rich cell walls of

the lignin-degrading fungus), intracellular metal immobilization

(through metal transporters and efflux pumps), and chemical

transformations and compartmentalization (through metal

chelators) (Gajewska et al., 2022).

During symbiosis, endophytic fungi either directly induce

resistance of the host plants to deal with heavy metal toxicity as

“phytoremediators” or indirectly improve tolerance by

improving water and mineral nutrient uptake in plants,
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increasing shoot biomass and causing modification in the root

morphology. In addition to their ability to promote plant

growth, endophytes can chelate and/or sequester heavy metals

in polluted soil (Zahoor et al., 2017). Therefore, these are called

“mycoremediators.” In addition, endophytic fungi–assisted

phytoremediation is a cost-effective and environmentally

friendly strategy (Wani et al., 2015).

Only a few reports of endophytic fungal members of

Basidiomycota are there, such as P. indica, that could improve

the tolerance of host plants to heavy metals that immobilized the

heavy metals in host plant roots, which can be very promising in

phytoremediation (Shahabivand et al., 2017; Ghorbani

et al., 2020).

Endophytic fungus P. spadiceum AGH786 (a member of

Basidiomycota) isolated from the roots of soybean (cv.

Hwangkeumkong) by Hamayun et al. (2017) demonstrated

resistance to drought and Cu stress and induced combined

stress tolerance against drought and Cu in S. lycopersicum L.

by colonizing the roots of host plants under stress.

Sessile plants are permanently confined to their germination

place. Some plant species have adapted growth responses

(morphological, physiological, biochemical, and molecular

adaptations) to deal with the profuse and quick variations in

environmental stress, such as drought, through diversity in the

context of stress adaptation, higher plants develop sophisticated

abiotic stress responses too, such as resistance to drought, to

optimize growth under stress (Takahashi et al., 2020). ABA is
FIGURE 9

Differential expression profile of SlCOPT and SlMT genes by Reverse transcription–quantitative PCR in the root and shoot tissues of S.
lycopersicum L. subjected to the single and combined stress of Cu and drought inoculated with AGH786 compared with the control.
Quantitative data represent the means ± standard deviation of three independent experiments and at least three technical replicates each.
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known as a stress hormone that responds to stress conditions

like drought by closing its stomata and expressing stress-related

genes (Cutler et al., 2010). In the scarcity of water, ABA

accumulates in leaf vasculature because of the response to

drought stress. ABA biosynthesis occurs in leaf vasculature

tissues (Takahashi et al., 2018).

Unfortunately, not all plant species have the capacity to

adapt to the changing environment for their survival and growth

under stress. Researchers have found that endophytic fungi

directly or indirectly induce the resistance of the host plants

against various biotic and abiotic stresses (Rauf et al., 2021; Javed

et al., 2022; Rauf et al., 2022) to deal with water stresses by

improving water and mineral nutrient uptake, modulating

antioxidant capacity to cope with ROS-prone destruction upon

stress in plants. Endophytic fungi–assisted drought stress

al leviation is a cost-effect ive and environmental ly

friendly strategy.

Endophytic fungi have also been found to secrete large

amounts of secondary metabolites such as terpenoids,

alkaloids, phenalenones, cytochalasins, terphenyls, xanthones,

diphenyl ether, sterols, squalene, gliotoxins, and their derivatives

with varied biological functions (El-Hawary et al., 2020; Rauf

et al., 2022).

In this study, P. spadiceum AGH786 ably tolerated with a

normal growth response on media supplemented with different

concentrations of Cu from 100 to 1,000 ppm. Moreover, the

growth response of P. spadiceum AGH786 was equally normal

upon induced drought 12% PEG compared with the control.

These findings support the hypothesis that P. spadiceum

AGH786 is a multistress-tolerant endophytic fungus that can

be exploited for growth promotion and induction of multistress

resistance in S. lycopersicum L.

Current research also shows that P. spadiceum AGH786 has

a strong potential for producing and secreting primary and

secondary metabolites and growth hormones such as IAA, GA,

SA, ABA, flavonoids, phenolics, sugar, and proline. The

sufficiently produced growth-related metabolites and

hormones consistently supported the positive role of P.

spadiceum AGH786 as a growth-promoting endophytic

fungus. Moreover, P. spadiceum AGH786 also produced

enough enzymatic antioxidants (CAT and AAO), both under

PEG-induced drought and Cu stress (in a dose-dependent

differential manner).

It is known that ROS are the metabolic byproduct of

photosynthesis and respiration that upon overproduction have

the potential to cause oxidative damage to cells during

environmental stresses. However, ROS play a key role in

plants as signal transduction molecules involved in mediating

responses to environmental stresses and different stimuli for

growth and development. The basal antioxidant system of the

cell helps to mediate the ROS overaccumulation by scavenging

activities (Tudzynski et al., 2012). Consistent with previous

reports, higher H2O2 accumulation in the culture filtrate of P.
Frontiers in Plant Science 17
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spadiceum AGH786 grown in media supplemented with 12%

PEG and Cu (100–1,000 ppm) compared with the control can be

explained by the activation of signaling mechanisms to support

fungus growth and stress responses. The scenario may be

suitable for stress alleviation in associated host plants with

H2O2 produced by endophytic fungus tended to induce the

antioxidant machinery of not only fungal cells but also for plant

tissues resided by endophytic fungus.

In the current situation, P. spadiceum AGH786 inoculation

to S. lycopersicum L. and heavy metal and induced drought stress

proline content were positively regulated in non-inoculated

plants, whereas in the same condition, lipid content was

negatively regulated under copper and 12% PEG stressed

environments. This is the reason that proline acts as an

osmolyte, direct free radical (ROS) scavenger, as well as

normalizes intracellular redox homeostasis.

In addition, plants can respond rapidly to water imbalance

(drought) by accumulating various osmolytes like proline Many

plants have been shown to accumulate proline in large quantities

when exposed to heavy metal stress. However, despite its

beneficial effects, proline may be toxic if overaccumulated or

applied in excessive concentrations (Mostofa et al., 2015). In this

work, we found that Cu stress induced a high increase in the

proline level, whereas AGH786 inoculation to S. lycopersicum

moderately reduced the accumulated proline content to a

moderate level and induced the tolerance in the seedlings

under single and combined Cu and drought stress.

Several reports have shown that ROS has the potential to

cause oxidative damage to cells during environmental stresses.

However, ROS plays a key role in plants as signal transduction

molecules involved in mediating responses to environmental

stresses, programmed cell death, and different developmental

stimuli (Mittler et al., 2004; Torres and Dangl 2005). The rapid

increase in ROS production is referred to as “the

oxidative burst.”

In our study, it was found that S. lycopersicum L. exposed to

abiotic stresses such as copper and induced drought 12% PEG

reduced host growth by slowing down their metabolic activities.

P. spadiceum AGH786 inoculation enhanced and stimulated the

growth of the host plant under combined stress of drought and

Cu, helped to detoxify copper metal by restricting the Cu uptake

by roots and sequestrating the excessive amount in roots by

metal chelators, and adapted to induced drought conditions by

strengthening osmolyte production and enhancing the

antioxidant potential of S lycopersicum L.

Consistent with the previous studies, the P. spadiceum

AGH786 endophytic fungus also modulated the hyperactivity

of various antioxidants (CAT, AAO, POD, and DPPH) in S.

lycopersicum L., which primarily helped to scavenge the

overproduced ROS under the combined stress of Cu toxicity

and drought (Evelin et al., 2019; El-Esawi et al., 2020). Among

the antioxidant enzymes’ catalytic activity by converting the

molecules of H2O2 into simple molecules of water and oxygen,
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ascorbate peroxidases (AAO) convert H2O2 into H2O and use it

as an electron donor. POD oxidizes aromatic electron donors

such as guaiacol and pyrogallol at the expense of H2O2 (Engwa,

2018). The present research also demonstrated the ability of P.

spadiceumAGH786 to associate with S. lycopersicum L. seedlings

and the potential of quenching DPPH to reduce the

accumulation of free radical ROS.

Previous reports have shown that MDA is overproduced

upon stress in plants because of the cellular destructive activities

of ROS (Hasanuzzaman et al., 2020). As a result, endophytic

fungi (P. spadiceum, AGH786) in the current study help S.

lycopersicum produce enough antioxidant enzymes to stop MDA

production and detoxify the cells from ROS by scavenging the

overproduced free radicals in the stressed host.

Although the Earth crust is made up of natural heavy metal

elements, their proportion has been altered by anthropogenic

activities such as rapid industrialization, extensive irrigation

systems, and agricultural practices. Involuntarily, these heavy

metals enter the food chain through overabsorption or

accumulation by growing crop plants in contaminated soils. The

overaccumulation of these heavy metals in plants decreases plant

growth. In such conditions, bioremediation techniques (including

mycoremediation and phytoremediation) are useful as compared

with other approaches (Aziz et al., 2021a). Our results showed that

P. spadiceum AGH786 is a growth-promoting endophytic fungus.

Inoculation of S. lycopersicum L., along with copper stress and

induced drought stress, relieved copper toxicity and reduced

induced drought effects on host plants through biochemical,

physiological, and molecular strategies.

Our results also revealed the positive role of P. spadiceum

AGH786 in helping in restricting Cu uptake by roots and

translocation of Cu from root to shoot. Thereby, copper

accumulation in roots, stems, and leaf tissues was

predominantly less than the toxic level for host plants,

compared with non-inoculated S. lycopersicum L.

Root-to-shoot translocation is a crucial activity for plants

that is an important limiting factor for the transportation of the

soil resources up to the fruits. A current study consistently

showed that P. spadiceum AGH786 association helped the plant

to prevent copper metal transport to leaves and other upper

parts like stems and leaves of the host plant during the vegetative

stage of plant growth. The roots of plants have direct contact

with soil, and all types of toxic metal ions affect the roots directly

(Shahabivand et al., 2016). Increased accumulation of heavy

metals in roots and their translocation to the upper aerial part

are observed in S. lycopersicum L. without the P. spadiceum

AGH786 association. These findings indicated the potential of P.

spadiceum AGH786 to remediate the excessive Cu ions in the

soil, as well as the roots of the host plant, by restricting the

uptake through plant root–localized Cu transporter channels.

Moreover, since P. spadiceum AGH786 can take up and

accumulate Cu content in its biomass, most of the Cu content

from the soil is probably eliminated by the mycoremidiation
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activity of the P. spadiceum AGH786 fungus. Previously, the role

of fungal endophytes has also been identified to restrict these

heavy metals outside the roots through extracellular absorption

mechanisms, and the huge accumulation of these metals in the

root endodermis in casparin strips blocks the translocation of

metal to the leaves (Li et al., 2014).

Fungal endophytes have also evolved various ways to

eliminate the heavy metal contents from soil and the host plants

directly or indirectly, such as Lindgomycetaceae P87 and

Curvularia geniculata P1, which were found to reduce mercury

ion Hg (II), and the reaction led to the formation of volatile forms

of Hg enabling its evaporation (Pietro-Souza et al., 2020).

However, A. flavus–associated tomato plants developed

tolerance against Cd and Cr toxicity via the expression of

SlGSH1 and SlPCS1 genes. Both genes helped in metal chelation

and mitigated Cd and Cr toxicity. Previously, the overexpressions

of GSH1, GSH2, PCS1, and PCS2 (Gasic and Korban, 2007;

Kühnlenz et al., 2014) were also shown to increase heavy metal

tolerance by raising glutathione (GSH) and phytochelatin (PCs)

levels. In addition, metal-tolerant proteins (MTPs) are divalent

cation transporters and play fundamental roles in plant metal

tolerance and ion homeostasis. The expression patterns of

cucumber MTP genes under Zn2+, Cu2+, Mn2+, and Cd2+ stress

have been studied where these MTPs were induced by a metal ion,

suggesting their involvement in metal tolerance or transportation

(Jiang et al., 2022).

Several genes have also been reported to be upregulated by

Cu excess, including laccase-like multicopper oxidases (Berni

et al., 2019). They oxidize Cu (I) to a less toxic Cu (II). The genes

upregulated by Cu excess also include Cu2+ transporters

(COPT), a Cu2+ transporting P-type ATPase (HMA5), or two

Cu chaperones (antioxidant protein1; ATX1 and ATX1-like Cu

chaperone) and copper-modified resistance1 (cmr1) protein (Puig

and Thiele, 2002; Sancenón et al., 2004; Andrés-Colás et al.,

2006; Juraniec et al., 2012; Shin et al., 2012). The Cu chaperones,

antioxidant protein1 (ATX1) family of Cu chaperones

specifically deliver Cu to heavy metal P-type ATPases. The

Arabidopsis thaliana expresses the ATX1-like Cu chaperone

CCH, which exhibits a plant-specific carboxy-terminal domain

with unique structural properties (Andrés-Colás et al., 2006).

It is also known that non-Cu accumulator plants store excess

Cu in S-rich MTs, as suggested by Mijovilovich et al. (2009) that

control heavy metal homeostasis and attenuate heavy metal–

induced cytotoxicity by chelation, thus lowering their

intracellular concentrations. Therefore, MTs have been used as

bimolecular markers for evaluating metal toxicity response

indicators within plants and environmental pollution in the soil.

In this study, to reveal the uptake, transport, and

accumulation of mineral elements in S. lycopersicum L., it was

inevitable to quantify the endogenous mineral concentration

and biomarker gene expression analysis induced or fluctuated by

the perturbance. A six-member family of COPT (SlCOPT1-6)

was identified and characterized in S. lycopersicum L. that are
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known to play important roles in Cu homeostasis, including

absorption, transportation, and growth in plants. Furthermore,

all the SlCOPTs contained several Cu-responsive elements

(CuRE, GTAC motif) and different types of cis-elements

related to hormone response, in which those related to ABA

predominated. The responsive elements associated with ABA,

cytokinins, GA, and auxin were found in all the SlCOPT

members (Romero et al., 2021), indicating the induction of

SlCOPT under the control of Cu and hormonal signaling.

It is also known that non-Cu accumulator plants store excess

Cu in S-rich MT-type structures, as suggested by Mijovilovich

et al. (2009). Plant MTs are thought to have a functional role in

heavy metal homeostasis, and they are used as biomarkers for

evaluating environmental pollution. MTs have low molecular

weight (7–9 kDa), are cysteine-rich, and possess high affinity for

heavy-metal, stress-responsive proteins. Different expressions of

MTs may be linked to their biochemical and physiological

functions. Additionally, MTs act as chelators of heavy metals.

They are essential for metal homeostasis and detoxification, and

they have important functions in the elimination of intracellular

free radicals. In addition, the thiol groups in MTs can act as

powerful antioxidants, so MTs may have a role in protecting
Frontiers in Plant Science 19
23
against oxidative damage. MT expression is tissue specific and

under developmental control, and several key plant hormones can

play a prominent role in the regulation of theMT gene expression.

Previously, it was also reported that the SlMT genes showed a

differential expression pattern when exposed to some heavy

metals such as Cu, Zn, and Fe (Ryan et al., 2013). The

expression of SlMT3 was induced in roots, leaves, and fruits

exposed to Cu compared with untreated groups, and SlMT4 was

significantly increased in fruits of S. lycopersicum L. exposed to Cu

and 12% PEG. Although Cu and applications have increased

SlMT1 and SlMT2 gene expressions compared with the control in

all tissues of S. lycopersicum L. subjected to different

concentrations of heavy metals, the highest levels of SlMT1 and

SlMT2 transcripts were found in roots and leaves, respectively

(Ryan et al., 2013). We also aimed to evaluate the expression of

biomolecular marker SlMT genes (SlMT1, SlMT2, and SlMT3) in

plants exposed to single and combined copper and drought stress.

Consistently, this study also revealed the differential expression of

SlMT1, SlMT2, and SlMT3 induced in S. lycopersicum L. plants

under single and combined Cu and drought stress inoculated with

the P. spadiceum AGH786 endophytic fungus. From current

findings, we concluded that AGH786 appeared as an efficient S.
FIGURE 10

Role of P. spadiceum AGH786 under combined stress of Cu and drought in S. lycopersicum L. Cu and drought stress inhibited plant growth,
while the association of AGH786 ameliorated S lycopersicum L. growth under Cu and drought stresses, through secreting phytohormones and
essential secondary metabolites under stress conditions and modulating the plant gene expression of Cu transporters, metal chelators, and
stress-related biomarker genes such as the SlCOPT and SlMT genes in the S. lycopersicum L. for restricting and sequestering the heavy metal
ions in the root tissue.
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lycopersicum L. growth-promoting and multistress-alleviating

endophytic fungus, and hence, it can be used as a biofertilizer in

heavy metal–contaminated fields to rescue the crops under

combined stress of Cu toxicity and drought.
5 Conclusion

Based on the outcomes of this study, it can be stated that the

plant growth-promoting endophytic fungus P. spadiceum AGH786

is a multistress-resistant isolate that not only eliminated the Cu

contamination from the soil through mycoremediation but also

triggered the plants’ defense mechanism to cope with Cu toxicity.

Moreover, the P. spadiceum AGH786 fungal association also

boosted the signaling mechanism of host plants to modulate and

optimally suppress the Cu uptake and translocation machinery and

enhance the toxic metal chelation mechanism in roots, thus

hindering the Cu uptake from roots and transport to upper

vegetative parts and converting the host plants into efficient

phytoremediators for Cu-contaminated soils (Figure 10).

Moreover, being drought resistant, the P. spadiceum

AGH786 isolate efficiently induced the resistance of host plants

against PEG-induced drought stress. In addition to this, the P.

spadiceum AGH786 isolate efficiently induced soil-related

multistress tolerance in host plants against drought as well as

Cu contamination.
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Deciphering the role of
endophytic microbiome in
postharvest diseases
management of fruits:
Opportunity areas in
commercial up-scale
production

Madhuree Kumari1†, Kamal A. Qureshi2†, Mariusz Jaremko3,
James White4, Sandeep Kumar Singh5, Vijay Kumar Sharma6,
Kshitij Kumar Singh7, Gustavo Santoyo8, Gerardo Puopolo9

and Ajay Kumar6*

1Department of Biochemistry, Indian Institute of Science, Bengaluru, India, 2Department of
Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia,
3Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and
Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and
Technology (K.A.U.S.T.), Thuwal, Saudi Arabia, 4Department of Plant Biology, Rutgers University, The
State University of New Jersey, New Brunswick, NJ, United States, 5Division of Microbiology, Indian
Council of Agricultural Research (ICAR), New Delhi, India, 6Centre of Advanced Study in Botany,
Banaras Hindu University, Varanasi, India, 7Campus Law Centre, Faculty of Law, University of Delhi,
New Delhi, India, 8Instituto de Investigaciones Quı́mico Biológicas, Universidad Michoacana de San
Nicolás de Hidalgo, Morelia, Mexico, 9Center Agriculture Food Environment, University of Trento,
Trentino, TN, Italy
As endophytes are widely distributed in the plant’s internal compartments and

despite having enormous potential as a biocontrol agent against postharvest

diseases of fruits, the fruit–endophyte–pathogen interactions have not been

studied detail. Therefore, this review aims to briefly discuss the colonization

patterns of endophytes and pathogens in the host tissue, the diversity and

distribution patterns of endophytes in the carposphere of fruits, and host–

endophyte–pathogen interactions and the molecular mechanism of the

endophytic microbiome in postharvest disease management in fruits.

Postharvest loss management is one of the major concerns of the current

century. It is considered a critical challenge to food security for the rising global

population. However, to manage the postharvest loss, still, a large population

relies on chemical fungicides, which affect food quality and are hazardous to

health and the surrounding environment. However, the scientific community

has searched for alternatives for the last two decades. In this context,

endophytic microorganisms have emerged as an economical, sustainable,

and viable option to manage postharvest pathogens with integral
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colonization properties and eliciting a defense response against pathogens.

This review extensively summarizes recent developments in endophytic

interactions with harvested fruits and pathogens—the multiple biocontrol

traits of endophytes and colonization and diversity patterns of endophytes. In

addition, the upscale commercial production of endophytes for postharvest

disease treatment is discussed.
KEYWORDS

endophytes, molecular interactions, biocontrol screening, commercial hurdles,
postharvest management, fruits
Introduction

In the recent era of climate change and the rising global

population, food security is one of the most critical issues

worldwide. At the same time, postharvest losses of fresh

products, including fruits, vegetables, or horticultural crops,

accelerate food security challenges. Currently, it has been

estimated that approximately 50%–60% of the total

agricultural production (Kumar and Kalita, 2017) and 30%–

50% of the total fruit production are lost after harvesting due to

improper storage, attack of pathogens, or the incidence of

diseases (Zhang et al., 2017). However, on the broad industrial

scale or even a laboratory scale, various chemical pesticides or

fungicides have been broadly employed to prevent postharvest

loss caused by phytopathogens or diseases. Nevertheless, the

undistributed use of chemical pesticides adversely affects the

nutrient constituents, texture, flavor, and quality of the fruits and

negatively impacts consumer health. Furthermore, the

emergence of resistant pathogen varieties against existing

pesticides is a severe problem (Hahn, 2014; Nicolopoulou-

Stamati et al., 2016). Therefore, the negative consequences of

chemical pesticides on fruit quality, human health, and the

environment urgently need the development of a reliable and

sustainable approach to replace toxic agrochemicals with

suitable microbial antagonists.

Utilizing the endophytic microbiome as a biocontrol agent

(BCA) during preharvest or postharvest storage conditions has

emerged as a suitable alternative to chemical pesticides in the last

few years (Singh et al., 2019; Kumar et al., 2021; Ahmad et al.,

2022). Endophytes are the microbes that colonize intercellular/

intracellular spaces of plants without causing any apparent sign

of infection (Bacon and White, 2016; Pathak et al., 2022).

Endophytes are well known for inducing plant growth-

promoting traits and ameliorating biotic and abiotic stresses

(Glassner et al., 2015). In addition, it synthesizes a plethora of

bioactive compounds that enhance the host’s immune response

and protect the plant from pathogen attacks or disease incidence

(Nair and Padmavathy, 2014; Singh et al., 2017). For practical
02
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biocontrol efficacy, the most challenging task is the

administration and establishment of microorganisms inside

the host plant. An endophytic microbiome is a suitable option

in this context due to better colonization and proliferation

efficacy (Busby et al., 2016; O’Brien, 2017). Nevertheless, there

is still a need to explore the endophytic microbiome for its

practical application as microbial antagonistic agents against

various phytopathogens or plant diseases during postharvest

storage conditions.

Furthermore, the diversity of endophytic microbiome in the

fruits, its role in biotic stress amelioration, and an insight into

the mechanistic aspects are still under investigation (Aiello et al.,

2019; Chaouachi et al., 2021). Therefore, research on the

endophytic microbiome and its role in minimizing postharvest

loss of horticultural crops, including fruits, needs special

attention with an in-depth discussion regarding their prospects

and their transition from lab to field or industry. This review

summarizes the molecular interaction of plant endophytes, the

diversity of endophytic microbiome, the screening of BCAs, and

the technological aspect of endophytic microbiome postharvest

management. This review also focuses on the literature and

discussion on the modes of application, the future aspects, and

the hurdles to be overcome for converting endophytes into the

success stories of postharvest management of fruits in a

sustainable manner.
An overview of microbial endophytes

Plants host diverse communities of microorganisms as

epiphytes (on the surface) or endophytes (inside the plant

tissue) and share a complex relationship. These host–microbe

interactions play significant roles in maintaining the plant

normal physiology under biotic and abiotic stress conditions

(Khalaf and Raizada, 2018; Verma et al., 2021). The term

endophyte was firstly introduced by De Bary (1866) as the

fungal species living inside the host tissue. However, Petrini

(1991) considered endophytes, of either fungal or bacterial
frontiersin.org
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strains, as those that reside in the host tissue or plant for at least

some part of their life cycle without causing any disease or

apparent sign of infection. With technological advancement or

next-generation sequencing (NGS), it has been estimated that

each plant species harbors multiple endophytic microbes during

its life cycle (Senthilkumar et al., 2011; Verma et al., 2021). The

latest NGS revealed that Proteobacteria is the most prominent

endophytic bacterial phylum, followed by Actinobacteria,

Firmicutes, and Bacteroidetes. In contrast, Glomeromycota is

the major fungal phylum followed by Ascomycota and

Basidiomycota; however, Pseudomonas, Pantoea, Acinetobacter,

and Enterobacter members of Gamma-Proteobacteria are the

commonly found bacterial genera. Arbuscular mycorrhizal fungi

(AMF) are the most prominent fungal taxa among endophytic

fungi in plant tissues (Hardoim et al., 2015; Kumar et al., 2020;

Verma et al., 2021).

The endophytic microbes within plant tissue interact with

plants and modulate the plant’s growth, fitness, and physiology.

The mutualistic endophytes live inside the host and mutually

benefit each other; for example, endophytes produce

phytohormones, solubilize nutrients, and modulate bioactive

compounds of the host, all resulting in the growth and

development of the plant, and in return, the plant provides

shelter and nutrients to the endophytes (Papik et al., 2020;

Khalaf and Raizada, 2020).
Colonization by microbial endophytes

The host–endophyte share a complex relationship that is

driven by various intrinsic and extrinsic factors (White et al.,

2019; White et al., 2021). However, the entry or establishment of

microorganisms in the host tissue is the primary step for any

strain to be an endophyte (White et al., 2019; Micci et al., 2022).

According to Kandel et al. (2017), endophytic colonization refers

to the entry, growth, and multiplication of endophytes within

the internal compartments of the plant host. However,

colonization is a complex process regulated by different

signaling molecules in several consecutive steps (Kumar et al.,

2020). Firstly, the plant species attract the microbes by the

specific components of their exudates, which are generally

composed of sugars , organic ac ids , amino ac ids ,

lipopolysaccharides (LPSs), flavonoids, and proteins and may

be specific for each microbial strain (White et al., 2019). The

microbes showed a chemotactic response toward the specific

components of the exudates and facilitated effective colonization

(Oku et al., 2012). The motility of the microbial strain/s toward

the host surface is facilitated by appendages that protrude from

the cell surface, such as flagella, or through type IV pili (Knights

et al., 2021). Several reports reinforce the importance of lateral

appendages during this movement (Sauer and Camper, 2001;

Zheng et al., 2015). For instance, flagella were reported to have

direct involvement in adhering to Azospirillum brasilense with
Frontiers in Plant Science 03
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wheat roots (Pinski et al., 2019). Böhm et al. (2007) reported type

IV pili and their direct role in the colonization of Azoarcus sp.

BH72 to the surface and root interior of rice. However,

attachment of the endophyte on the host surface is facilitated

through secretory products such as exopolysaccharides (EPSs),

LPSs, cell surface saccharides, and cellulase of the microbial

strain. For example, Meneses et al. (2011) reported that the

inactivation of gene gumD, which is responsible for EPS

synthesis, decreased the colonization rate of the endophytic

strain Gluconacetobacter diazotrophicus in rice roots.

Similarly, Monteiro et al. (2012) observed that inactivation

of gene wssD, bcsZ, which are responsible for the synthesis of

beta-1,4, glucanase (cellulose), decreased the colonization rate of

Herbaspirillum rubrisubalbicans M1 in Zea mays. The

endophytic microorganism, before its entry or colonization,

confronts the challenges of oxidative environments of the host

tissue. This situation is similar to the one the pathogens face

during infection of the host. The host plant provides a barrier to

oxidative burst, resulting in only a few microorganisms that can

enter plant cells (White et al., 2019; White et al., 2021).

Experiments have shown that this initial oxidative burst can

be reduced by treating seedlings with low concentrations of

humic substances, resulting in increased entry of bacteria into

root cells at root tips (White et al., 2021). To be an endophyte,

microbial strains must be able to survive in the oxidative

environment within plant cells (Di Pietro and Talbot, 2017;

White et al., 2019). In this context, several authors reported the

successful acclimation potential of endophytic strains; for

example, Enterobacter spp. encodes antioxidant enzymes

during the colonization of poplar plants (Balsanelli et al., 2016).

Additionally, Malfanova et al. (2013) reported genes

responsible for antioxidative enzymes used by Klebsiella to

protect the host plant from reactive oxygen species (ROS).

Similarly, strain G. diazotrophicus showed the expression of

antioxidant enzyme genes during the early stage of

colonization in rice plants (Meneses et al., 2017). In addition,

the colonization efficacy of the endophyte depends upon several

factors; host genotype, nutrient status, and specificity of

microbial strain are the prime factors (Hardoim et al., 2015).
Colonization patterns of endophytes and
pathogens in the host tissue

The colonization patterns of the pathogens and endophytes

are similar to some extent. However, the response of plant

defense systems differs and depends upon the nature of the

microorganisms. Similarly, the expression patterns against

oxidative stress are also different. Chen et al. (2020a) reported

the colonization patterns of endophytic strain Azoarcus olearius

and the pathogen Xanthomonas oryzae in rice plants and

observed differential expression patterns of genes. The

pathogen followed the salicylate pathway; however, the
frontiersin.org
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Azoarcus used the jasmonate signaling pathway during

colonization. The colonization patterns of symbiotic

endophytes and pathogenic strains are also dissimilar

regarding secretions. Pathogenic strains secrete comparatively

higher amounts of cell wall-degrading enzymes at the infection

sites. In contrast, a lower amount of cell wall-degrading enzymes

was reported during endophyte colonization, which could not

elicit the plant immune system and make easy access to

endophytes inside the host tissue (Elbeltagy et al., 2000;

Reinhold-Hurek et al., 2006; Naveed et al., 2014). The

overview of endophytic dynamics, entry, colonization,

transmission, and interacted factors is presented in Figure 1.
Diversity of endophytic microbiota in
the fruit

The physiology and biochemistry of the plant depend upon

the surrounding biotic and abiotic factors, which ultimately

affect the diversity and composition of the microbiota, either

epiphytes or endophytes. For instance, seasonal variations affect

the number of plant exudates, which are a determining factor in

rhizospheric microbial population and endophytic colonization

(Wang et al., 2009; Kuffner et al., 2012). The genotype (Mocali

et al., 2003), cultivars (Pettersson and Bååth, 2003), and host

plant’s age influence endophytic microbial compositions.

Recently published reports reinforce the variation in the

endophytic populations among the plant organs. For example,

Ren et al. (2019a) reported variations in the endophytic bacterial

microbiome among the different organs of the same Jingbai pear

(Pyrus ussuriensi Maxim.) plant. Maximum richness and

diversity were observed in the root tissue, followed by flower,

stem, and fruit, and the lowest were in the leaf tissue. This report

illustrates that each plant organ has a specific richness

or diversity.

Furthermore, in another study, Ren et al. (2019b) reported

variations in fungal richness or diversity in the different plant

organs of the Jingbai pear forest. They observed that the root

tissue had maximum fungal richness and diversity, followed by

stem, fruit, and leaf, and the lowest were observed in the flower

tissue. Thus, the diversity patterns of both bacteria and fungi are

different in the same plants. Finally, Dong et al. (2019) reported a

similar observation of bacterial distribution patterns among the

root zone, rhizosphere, phyllosphere, and endosphere of roots,

stems, leaves, fruits, and seeds of tomatoes under greenhouse

conditions. They observed that the root zone and rhizospheric

soil had the highest diversity and richness, followed by stem,

flowers, and fruits; however, the lowest diversity and richness

were observed in the phyllosphere tissue.

Abdelfattah et al. (2015) also reported that leaves contain

higher diversity than flowers or olive fruits (Olea europaea), and

the fungal diversity consequentially decreased from fruitlets to

mature stages of the olive. However, the trends of the fungal
Frontiers in Plant Science 04
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community were very similar from fruitlets to the flowering

stage, which later changed. However, the microbial diversity in

the flower or fruit section is similar to the diversity of some other

parts. Therefore, the uniqueness and diversity of endophytic

microbiota may vary among the different compartments of the

fruits (Ottesen et al., 2013). The uniqueness may be due to the

ovaries, which turn into flesh and create a new environment that

harbors specific microbiota or microbial strains (Tadych et al.,

2012; Aleklett et al., 2014).
Host–endophyte interaction in
terms of biocontrol agents

It is well known that during plant–microbe interactions,

microbial strains showed neutral, commensalism, mutualistic, or

pathogenic interaction with the host plants. The establishment

depends upon several factors, including the genotype of

microorganisms or host plants and the surrounding

environment (Brader et al., 2017). Plants rely on their

sophisticated defense systems to counteract attacks of

phytopathogens (Jones and Dangl, 2006), as the pathogenic

strains secrete numerous biomolecules inside the host during

infection. The host plant responds accordingly after recognizing

conserved structure and elicits its immune behavior as the first

line of defense to control the pathogen by the present pattern

recognition receptors (PRRs). The PRRs sense the nature of

microbes through the perception of microbe-associated

molecular patterns (MAMPs) or pathogen-associated

molecular patterns (PAMPs) (Plett and Martin, 2018).

Bacterial flagellin, elongation factor Tu (EF-Tu), fungal chitin,

and yeast mannans are the most commonly reported PAMPs/

MAMPs (Newman et al., 2013).

During co-evolution with the host plant, pathogenic strains

improved the strategies to suppress the MAMP/PAMP-

triggered immunity. In response, the host plant developed a

second line of defense known as effector-triggered immunity.

The plant system develops receptors that sense or recognize the

pathogen’s constituents. For instance, for the pathogenic

microbes (biotrophic) that depend upon the nutrient uptake

of living cells, a hypersensitive response may be activated,

which leads to the programmed cell death of plants under

attack (de Wit, 2007). However, this response must be

suppressed in the case of necrotrophic pathogens or

endophytes or symbiotic microorganisms (Liu et al., 2017).

However, to cope with the plant immune system, the

endophytic microorganisms produce their MAMPs, which do

not significantly elicit the host immune or defense system.

However, there is significant variation between the cell surface

components (flagellin proteins in the endophytic microbes) of

endophytic/symbiotic or pathogenic microbial strains (Trdá

et al., 2014), which show differential patterns at the time of

recognition by the receptors (Figure 2).
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Endophytes as biocontrol agents

To explore endophytes as biological control agents, several

factors have been considered relevant, including survival,

stability, storage, application, and marketability. Despite the

massive exploration of various microbial strains as BCAs in

vivo or in vitro, only a limited number of strain/s, bacteria, fungi,
Frontiers in Plant Science 05
31
or yeast, have been commercialized, and the possible reason is

the survivability or stability of BCAs. The endospore formation

of Bacillus subtilis or chlamydospore structure of Trichoderma

makes them most suitable compared to other microbial strains

because of stability or survivability under unfavorable conditions

to fulfill the requirement of commercial exploitation. However,

the endophytic microbiome can easily be administered,
FIGURE 1

Endophytes and their interaction with the host plants. The figure describes the detailed role and approach of root exudates, communication,
mobility, attachment, penetration, and target region (entry site) during endophyte colonization.
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penetrating and colonizing the host tissue, unlike other

microorganisms where colonization is a complex process.

However, the effectiveness of BCAs against the pathogen may

also depend upon various factors, including the growth or

physiological state of the plant, genotype, colonization pattern,

population dynamics, and the surrounding environmental

conditions (Card et al., 2016; Bolı́ var-Anillo et al., 2020).

Recent studies have reported the antagonistic activities of a

diverse range of endophytes, which is present on the fruit

surface. A number of bacterial, actinomycetes, and fungal

species are present on the fruit surface that can impact the

growth of postharvest pathogens (Huang et al., 2021). Similar to

field conditions, Pseudomonas, Citrobacter, Paenibacillus,

Burkholderia, and Bacillus sp. are some of the most prevalent

biocontrol bacteria found on fruit surfaces (Shi et al., 2013;

Huang et al., 2021). The use of endophytic yeast Metschnikowia

pulcherrima along with chitosan prevented the growth of

Alternaria alternata in table grapes (Stocco et al., 2019).

Aureobasidium pullulans prevented the growth of Botrytis

cinerea and Monilinia laxa in sweet cherries and table grapes,

decreasing the decomposition rate of fruits between 10% and

100% (Schena et al., 2003). Pantoea dispersa controlled the black

rot of sweet potato by exhibiting antibiosis (Jiang et al., 2019).

Trichoderma and Nodulisporium are some of the most found

fungal BCAs on the carposphere. Recently, mycofumigation

with the fungal volatile organic compounds (VOCs) has also

gained attention to inhibit the growth of postharvest pathogens

(Zhi-Lin et al., 2012). Suwannarach et al. (2013) reported on

biofumigation with the Nodulisporium spp. CMU-UPE34, an

endophytic fungus, to prevent the postharvest decay of citrus

fruits. The endophytic fungal stain Nodulisporium sp. strain
Frontiers in Plant Science 06
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GS4d2II1 produced six different VOCs, which inhibited

Fusarium oxysporum growth in cherry tomato fruits after their

harvest (Medina-Romero et al., 2017). Details of endophytic

microbial strains and their utilization in postharvest disease or

pathogen control of fruits have been discussed in Table 1.
Screening of endophytic
biocontrol agents

The search for endophyte agents with biocontrol capacities is

imperative in detecting those agents with excellent antagonistic

capacities against potential pathogens. Detecting these

characteristics depends on having better chances of generating

microbial endophyte-based biocontrols with good chances of

being successful in open field application and not just showing

good actions in the laboratory. Next, we detail some tools for

detecting and selecting endophytic BCAs. Screening microbial

antagonists against various phytopathogens is one of the most

crucial steps. The BCAs are generally screened on the basis of

some specific characteristics such as parasitism, in which BCAs

live together with the host plant, resulting in antagonistic effects

(Mukherjee et al., 2012). Furthermore, strains having the

capability to synthesize antimicrobial or volatiles compounds

and enzymes such as pectinases and cutinases, which can

interfere with pathogenicity factors or reduce the virulence of

pathogens, are preferred for BCA screening (Zimand et al., 1996;

Kapat et al., 1998).

However, other direct or indirect mechanisms have been

employed to screen suitable BCAs for particular or broad-scale

phytopathogens causing plant diseases. Dual-culture assay is one
FIGURE 2

The figure illustrates the mechanism by which plants sense to differentiate symbiotic and pathogenic microorganisms.
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of the standard phenotype-based direct screening methods for

identifying microbial antagonists during in vitro identification.

In this assay, BCAs and pathogens were cocultivated on

semisolid media. The pathogen’s antagonistic behavior toward

BCAs and pathogenicity are evaluated by measuring the lesion

diameter (Shi et al., 2014). During the evaluation, both the BCAs

and the pathogen were grown together on the plates at different

locations, and a significant decrease in mycelium growth and

fungal spores was observed (Comby et al., 2017). In another case,

the pathogen has been evenly spread over the plate, and BCA

was spotted over the medium. The clear zone around the spotted

BCA was measured to evaluate biocontrol activity. The larger the

clear zone, the higher the biocontrol potential (Shehata

et al., 2016).

Synthesis of antimicrobial compunds, either diffusible or

volatile, by the microbial endophytic strain is also one of the

parameters for biocontrol screening. During in vitro volatile

analysis, the BCA and the pathogen grow on an agar base plate,

which is grown under physically separated conditions and sealed

with parafilm or tape to avoid VOC escape (Stinson et al., 2003).

However, screening of BCAs in liquid media has also been done

under which both the BCAs and pathogen were grown either

simultaneously or consecutively, and their impact has been

evaluated either by measuring the optical density or by the

microscopic evaluation of pathogen spore or germination tube of

mycelia tube (Omar and Abd-Alla, 1998).

However, in vivo screening is the standard method for

evaluating potential BCAs under natural or greenhouse

conditions through several parameters such as measuring

lesion diameter, disease severity, or defined disease index

(Lecomte et al., 2016). In vivo screening not only is based on
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antagonistic activity but also includes the physiological status of

the plant by measuring water status (e.g., transpiration, stomatal

conductance), variation in antioxidant activity (e.g., enzymatic

activity levels), production of plant defense molecules (e.g.,

phytoalexins), morphological growth parameters such as plant

height, the dry or fresh weight of certain plant parts, or the

flowering date (Lecomte et al., 2016). The antagonistic potential

of the BCAs varies with plant genotype or species; differences in

host genotypes differentially regulate the physiological functions

that may modulate the rate of infections and response of host

immune systems. Similarly, the colonization potential of the

endophytes, which depends upon the various physiochemical

nature of plant exudates, also impacts the biocontrol potential

against the pathogen more efficiently and effectively (Martin

et al., 2015).
Postharvest factors that affect the
quality of food and disease incidence

Postharvest diseases can result from incorrect postharvest

practices and faulty preharvest management. The significant

postharvest factors that affect the storage of food are as follows.
Fruit storage conditions

Fruits are generally transported to supermarkets and cold

chains before reaching customers’ hands. Temperature, pH, and

humidity conditions in cold chains significantly affect the growth

of pathogens and endophytes (Carmona-Hernandez et al., 2019).
TABLE 1 Endophytic microbial strains used for the postharvest disease or pathogen management in fruits.

Endophytic strains Domain Disease/Pathogens Plants/Fruits References

Bacillus velezensis QSE-21 Bacteria Postharvest gray mold of fruit Tomato Xu et al., 2021

Paenibacillus polymyxa Bacteria Penicillium digitatum Citrus Lai et al., 2012

Bacillus subtilis L1-21 Bacteria Penicillium digitatum Citrus Fruits Li et al., 2022

Endophytic bacteria Bacteria Monilinia laxa and Rhizopus stolonifer Stone fruits Pratella et al., 1993

Bacillus amyloliquefacies Bacteria Botryosphaeria dothidea Kiwi fruit Pang et al., 2021

Pseudomonas synxantha Bacteria Monilinia fructicola and
Monilinia fructigena,

Stone fruit Aiello et al., 2019

Lactobacillus plantarum CM-3 Bacteria Botrytis cinerea Strawberry fruit Chen et al., 2020b

Bacillus subtilis L1-21 Bacteria Botrytis cinerea Tomato Bu et al., 2021

Penicillium sp. Fungi Botrytis cinerea Grapes fruits Noumeur et al., 2015

Daldinia eschscholtzii Fungi Colletotrichum acutatum Strawberry fruits Khruengsai et al., 2021

Saccharomycopsis fibuligera Yeast Botrytis cinerea Guava fruits Abdel-Rahim and Abo-Elyousr,
2017

Muscodor suthepensis CMU-
Cib462

Fungi Penicillium digitatum Tangerine fruit Suwannarach et al., 2016

Fusarium sp. Fungi Fusarium oxysporum, Aspergillus niger and Rhizopus
stolonife

Postharvest pathogens of
vegetables

Tayung et al., 2010
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Low pH due to fruit metabolism and high humidity support the

growth of fungal pathogens (Arah et al., 2015). In addition,

temperature and pH conditions also influence the production of

volatile secondary metabolites (VOCs) from the microbes

(Lazazzara et al., 2017; Fadiji and Babalola, 2020). In a study, a

lower pH condition of the fermentation medium significantly

influenced the production of phloroglucinol and gallic acid from

isolated endophytic fungus Colletotrichum gloeosporioides

(Gasong and Tjandrawinata, 2016).
Physical handling and gaseous treatments

The rough handling of already ripened fruits invites the

attack of pathogens on soft and brushed surfaces. In addition,

mechanical injuries to the fruits due to improper handling can

increase the metabolism and ethylene production, which can

cause adverse biotic stresses on the stored fruits (Miller, 2003).

The stored fruit’s carbon monoxide (CO) treatment increases

ripening and decreases pathogen infestation. The Alternaria rot

in jujube fruits was effectively controlled by CO application in

fruit storage conditions (Zhang et al., 2020). High carbon dioxide

concentration around fruits also reduced the respiratory activities

and consumption of soluble solids, which results in a reduction in

pathogen infection (Huyskens-Keil and Herppich 2013). Apart

from the growth of pathogens, physical handling and food

storage conditions can also play a significant role in the growth

and secondary metabolite production of endophytes.
Postharvest management strategies
by endophytes: Action mechanisms

Endophytes are known to show a myriad of mechanisms

against pathogens ranging from direct competition to change in

the molecular architecture of the host plants. Endophytes against

postharvest pathogens, being a relatively new field, require an in-

depth literature review to understand the possible mechanisms

employed against postharvest pathogens. Following are the

possible mechanisms that endophytes employ to combat

pathogenic attacks on the harvested fruits.
Direct competition for space and nutrients

In the tripartite system of fruit–pathogen–endophyte

interaction, the nutrition and space of the host are limited.

Nitrogen, carbon, macronutrients, and micronutrients are

essential for the survival of both endophytes and pathogens

(Kumari et al., 2020a, b). Endophytes, being fast in growth and

colonization, quickly occupy the exposed fruit surface and
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outnumber pathogens in the space competition and utilization

of nutritional resources (Adame-Álvarez et al., 2014; Spadaro

and Droby, 2016). Different studies have demonstrated the

utilization of carbon resources by endophytic Bacillus spp.,

inhibiting spore germination of the pathogens; however,

bacterial dosage needs to be optimized according to the fruit

(Carmona-Hernandez et al., 2019). A phenotypic and gene

transcription study revealed the increased expression of genes

involved in nutrition uptake by the bacterium Lactobacillus

plantarum when cocultivated with the pathogen Aspergillus

carbonarius isolated from grape berries (Lappa et al., 2018).

The L. plantarum culture effectively inhibited the growth of four

fungal pathogens isolated from the grape berries. A 32%–90%

inhibition in mycotoxin produced by A. carbonarius was also

observed after coculturing with L. plantarum. Successful in vivo

application of this bacterium not only may help in controlling

postharvest pathogens but also will act as a source of probiotics

for modulating gut microflora.
Production of siderophores (iron-
chelating compounds)

Iron is one of the essential minerals required for the growth,

survival, and virulence of pathogens. Siderophores are the

secondary microbial metabolites produced by many

endophytes, which can form a tight and stable octahedral Fe

(H2O6)3+ complex with available iron (Miethke and Marahiel,

2007). The exposed fruit surface is an adverse niche, where the

bioavailability of nutrients, especially iron, is relatively low. In

the competition for survival, endophytes are known to colonize

faster than pathogens, chelating the available iron by producing

several types of siderophores and thus depriving the postharvest

pathogen of any iron source (Chowdappa et al., 2020). Genome

mining of the endophytic Pseudomonas fluorescens BRZ63 has

revealed siderophore production by the bacterium, protecting

against several postharvest pathogens, including Colletotrichum

dematium K, Sclerotinia sclerotiorum K2291, and Fusarium

avenaceum (Chlebek et al., 2020). Many endophytic Bacillus

sp. produce bacilibactin type of siderophore-protecting bacterial

wilt in banana (Carmona-Hernandez et al., 2019). Trichoderma

spp. has been known to produce hydroxamate siderophore,

which can deplete iron and inhibit the growth of postharvest

pathogens in apples and citrus fruits (Sood et al., 2020). Though

the endophytic Trichoderma spp. is still in the nascent stage for

controlling postharvest diseases of fruits, it can pave a new and

sustainable path for the disease control of fruits after harvest.

However, optimizing the concentration of endophytes and

factors affecting siderophore production should not be

neglected to increase endophytic efficiency against

postharvest pathogens.
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Production of bioactive antimicrobial
compounds and antibiosis

Endophytic microbiomes have recently emerged as potent and

novel sources of secondary metabolites, many of which are

antimicrobial. They are known to produce alkaloids, flavonoids,

phenolics, terpenoids, steroids, non-ribosomal peptides, and VOCs

(Kumari et al., 2018). For example, endophytic Trichoderma sp.

produced antifungal epipolythiodioxopiperazines, peptaibols,

koninginins, and pyrenes, which combat postharvest diseases in

kiwi fruit, apple, and banana (Khan et al., 2020). The recently

published review article by Huang et al. (2021) briefly covered the

bioactive compounds produced by endophytes and how they

enhance the resistance against postharvest diseases of fruit and

vegetables. Similarly, Carmona-Hernandez et al. (2019) also covered

the bioactive compounds, volatiles produced by the endophytic

strains, and their role in postharvest disease management. The

details of bioactive metabolites produced by endophytes, which can

potentially be used against postharvest pathogens of fruits, are

described in Table 2.

Though the potential of bioactive secondary metabolites is

enormous in postharvest disease control of fruits, the low quantity

produced, in planta pressure, and influence of the culture

conditions are some of the factors that need optimization.
Mycoparasitism and production of
lytic enzymes

One of the essential mechanisms employed by endophytic

fungi against pathogenic fungi is mycoparasitism by the

production of cell wall-degrading enzymes and direct

parasitism. The lytic enzymes, including glucanase, chitinase,

and cellulose produced by endophytes, can degrade the

pathogenic cell wall. For example, Talaromyces acidophilus a

fungal strain AUN-1 emerged as a novel mycoparasite of

postharvest pathogen B. cinerea by producing lytic enzyme

chitinase, lipase, and protease (Abdel-Rahim and Abo-Elyousr,

2018). Endophytic fungus Choiromyces aboriginum inhibited

postharvest pathogen Pythium sp. by producing b-1,3-
glucanases and degraded the pathogenic cytoplasm coiling

around the hyphae (Cao et al., 2009). In the same sense, plant

beneficial fungus Trichoderma spp. can inhibit the growth of

several pathogens through parasitism, for example, a

Trichoderma sp. strain inhibited the fungal pathogen F.

oxysporum by producing a lytic enzyme and coiling around

the pathogenic fungal hyphae (Rajani et al., 2021).

Some bacterial strains are also prolific producers of lytic

enzymes, making them suitable candidates for postharvest

disease management, though endophytes specifically have not

been explored much. For example, endophytic Bacillus sp. are
Frontiers in Plant Science
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known to produce b-1,3-glucanase, chitinase, and protease, which
can disrupt fungal cell walls (Carmona-Hernandez et al., 2019).

The hydrolytic enzymes produced by B. subtilis 739 caused the

lysis of phytopathogenic fungi A. alternata, B. sorokiniana, F.

culmorum, and R. solani. The cocktail of cold-adapted lytic

enzymes produced by archaea and cold-adapted bacteria has

also shown their potential against antagonistic fungal pathogens

(de Oliveira et al., 2020), which provides an excellent opportunity

to explore endophytes from extreme conditions.
Production of endotoxins and
lipopolysaccharides

Endophytes are being developed as prolific producers of LPSs

of several lengths of fatty acids. For example, phengicines and

iturins produced by B. subtilis GA1 inhibited the growth of B.

cinerea in apple fruits (Toure et al., 2004). Thus, the optimized

media conditions for synthesizing LPSs from endophytes can pave

a sustainable path for the biological control of postharvest fruit

diseases. The toxin Leu7-surfactin was produced from the

endophytic bacterium Bacillus mojavensis RRC 101 against

antagonistic fungus Fusarium verticillioides (Snook et al., 2009).

Several mycotoxins produced by endophytic fungi can also be

explored for their efficacy against the antagonistic pathogens to

control postharvest disease, though their safety also needs to be

analyzed thoroughly (Lacava and Azevedo, 2013).
Modulating the redox homeostasis of
harvested fruits and pathogens

Many postharvest pathogens overcome the fruit defense

system by manipulating their redox potential. For example,

Penicillium digitatum, the causative agent of green mold in

citrus fruits, produces catalase that decomposes hydrogen

peroxide to establish an infection (Macarisin et al., 2007).

Endophytes provide oxidative stress protection to plants

(Hamilton et al., 2012; White et al., 2019). However, their role

in modulating stress in postharvest disease management is not

much explored. Endophytes help plants combat biotic stress by

lowering lipid peroxidation and accumulation of proline

(Spadaro and Droby, 2016). As an example, endophytic fungus

Paraburkholderia phytofirmans strain PsJN increased the

expression of genes involved in reactive oxygen species (ROS)-

scavenging pathways, resulting in detoxification of ROS and

modulating the signaling pathways (Pacifico et al., 2019). The

plant–pathogen and endophytic relation has been documented

well in literature, but the research on the role of endophytes in

modulating redox homeostasis of stored fruits needs

special attention.
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Quorum sensing and biofilm formation
and disruption by endophytes

Bacterial endophytes, including Bacillus spp. and

Pseudomonas spp., are known to colonize exposed fruit areas

by quorum sensing (QS) and biofilm formation. The ability of

endophytic bacteria to secrete small molecules such as tyrosol,

farnesol, and phenethyl alcohol to regulate colonization helps

them outnumber the pathogenic microbes in the competition for

space and nutrients (Carmona-Hernandez et al., 2019). Recently,

endophytes were also found to produce anti-QS molecules, which

can help combat the biofilm established by pathogenic bacteria

on fruit surfaces. For example, endophytic fungi Fusarium

graminearum and Lasiodiplodia sp. isolated from the plant

Ventilago madraspatana produced secondary metabolites with

anti-QS potential (Mookherjee et al., 2017). Furthermore, the

isolated fungi produced QS inhibitors that were quantified

spectrophotometrically by their ability to inhibit the production

of violacein in wild and mutants of Chromobacterim violaceum

(Rajesh and Rai, 2013). Whether it is biofilm formation or the

production of anti-QS molecules by endophytes, both properties

can be exploited in postharvest disease management in fruits, as

this field of research remains unexplored.
Modulation and synthesis of phytohormones

Endophytic microbes can synthesize phytohormones,

including auxin, gibberellins, cytokines, ethylene, nitric oxide,
Frontiers in Plant Science 10
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and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase,

which provide additional immunity to postharvested plants to

cope up with biotic and abiotic stresses (Ali et al., 2017). The

increased phytohormone synthesis helps to overcome the stress-

induced wilting. Not only are the endophytes capable of

synthesizing plant hormones themselves, but they can also

modulate the plant–hormone metabolic pathways for

enhanced stress tolerance. For example, the interaction of

endophytic fungus Piriformospora indica in the synthesis of

auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic

acid (SA), jasmonates, and brassinosteroids resulted in better

efficiency of stress tolerance in higher plants (Xu et al., 2018).
Induction of disease resistance in fruits

In response to a pathogenic attack, plants develop two kinds

of disease resistance mechanisms: 1) systemic acquired response

(SAR) and 2) induced systemic resistance (ISR). Many

endophytic microbes have been known to elicit ISR, thereby

providing solid immunity against biotic stress (Pacifico et al.,

2019). Endophytes activate ISR pathways by synthesizing

pathogen-related proteins, enhancing the synthesis of phenolic

compounds, and activating signaling pathways by jasmonate/SA

and ethylene (Jacob et al., 2020) (Figure 3).

The endophytic bacterial strain Pseudomonas putida MGY2

was able to control anthracnose caused by C. gloeosporioides in

harvested papaya fruit (Shi et al., 2011). It was found that the

endophyte induced ISR by increasing the gene expression of
TABLE 2 Bioactive compounds produced by endophytic microbes used in the management of postharvest diseases of fruits.

Endophytic microbes Production of bioactive com-
pound

Putative role against postharvest pathogens References

Bacillus subtilis Iturin A, lipopolysaccharide Antifungal activity against F. oxysporum, Pythium ultimum, and
Phytophthora sp.

Ek-Ramos et al., 2019

Bacillus sp. Surfactin, fengycin Used against bacterial diseases Jasim et al., 2016

Pseudomonas aeruginosa Phenyltetradeca-2,5-dienoate Used against bacterial diseases Pratiwi et al., 2017

Bacillus amyloliquefaciens CEIZ-
11

lipopolysaccharide Antifungal activity against Botrytis cinerea and Alternaria alternata Zouari et al., 2016

Pseudomonas putida BP25 VOCs Antifungal activities against Phytophthora capsici and Radopholus
similis

Sheoran et al., 2015

Chaetomium globosum Chaetomugilin A and D Antifungal activity against Fusarium sp. and Verticillium sp. Pimentel et al., 2011

Trichoderma lixii (IIIM-B4) Peptaibol Shows antibacterial activities Katoch et al., 2019

Trichoderma sp. VOCs Antifungal activities against Sclerotium rolfsii and Fusarium
oxysporum

Rajani et al., 2021

Aspergillus fumigatus Alkaloids Shows antifungal activities against postharvest pathogens Li et al., 2012

Trichoderma polyalthiae Violaceol I and Violaceol II Showed antimicrobial activities Nuankeaw et al., 2020

Streptomyces sp. Enduspeptide B,
neomaclafungins A-I

Strong antifungal activities Jakubiec-Krzesniak et al.,
2018

Streptosporangium oxazolinicum
K07-0460

Polyketides Antibacterial activities against Xanthomonas sp. Matsumoto and
Takahashi, 2017

Xylariales sp. a-pyrone derivatives Antifungal activities against Botrytis cinerea, Fusarium oxysporum
and Alternaria sp.

Rustamova et al., 2020

Alternaria sp. Alternarilactone-A Antifungal activities against Verticillium cinnabarium and
Gaeumannomyces graminis

Rustamova et al., 2020
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phenylalanine ammonia-lyase (PAL), catalase (CAT), and

peroxidase (POD), increasing the phenolic content and

decreasing the production of ethylene. The same group

demonstrated the control of Phytophthora nicotianae disease

in papaya fruits by induction of the pathogenesis-related protein

1 gene (PR1) and non-expression of PR1 gene (NPR1) after

inoculation of P. putida MGP1 strain (Shi et al., 2013). Louarn

et al. (2013) demonstrated a significant change in the endophytic

community in organically and conventionally grown carrots.

Endophytic Bacillus amyloliquefaciens YTB1407 strain elicited

ISR by activating the expression of SA-responsive PR1 gene, thus

inhibiting pathogenic fungus Fusarium solani. The literature is

insufficient regarding the elicitation of molecular responses of

fruits in postharvest conditions. Furthermore, in-depth

mechanistic studies are required to understand the disease

resistance of fruits after endophytic microbe application.
Modulating the native microbiota and
ecological effects

The endophytic microbial population modulates the native

microbiota of fruits, roots, leaves, and soil, promoting a

sustainable crop production system. Therefore, it is of great

economic relevance (Sturz et al., 2010; Baghel et al., 2020).

However, its interference with the native population of

harvested fruit microbiota is still waiting to be explored.
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Endophytes bear the potential to shift the native bacterial

population toward favorable conditions for plant growth and

stress amelioration (Baghel et al., 2020). It has been found that

healthy fruits tend to have a diverse microbial community,

whereas diseased fruits have a limited microbial growth

dominated by pathogen microorganisms (Huang et al., 2021).

In their study, Diskin et al. (2017) found that colonization of

endophytic communities was much less prevalent in mango

fruits suffering from stem-end rot disease than that in their

healthier counterpart. By utilizing multiple mechanisms,

including parasitism, production of bioactive compounds, lytic

enzymes, and siderophores against postharvest pathogens,

endophytes can modulate the native microbiota of the

harvested fruits to increase their resistance against biotic stresses.
Controlling mycotoxins

Mycotoxins are a major cause of qualitative and quantitative

loss in stored fruits. Deoxynivalenol, alternariol, aflatoxin, and

patulin, produced by antagonistic fungi, can impact fruit and

human health negatively (Bartholomew et al., 2021). Many

endophytes and their secondary metabolites have shown the

effectiveness of controlling mycotoxins in vitro and in planta

(Abdallah et al., 2018) in maize and other crops, although studies

on their impact on postharvested fruits are limited. Sarrocco and

Vannacci (2018) emphasized preharvest application of
FIGURE 3

Activation of induced systemic resistance (ISR) signaling pathway and production of bioactive secondary metabolites after colonization of
endophytes in the host (postharvested fruits).
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endophytes for controlling postharvest damage caused by

mycotoxins. The VOCs produced by endophytic fungi can be

incorporated in edible biofilms or can be an ingredient during

packaging to effectively control mycotoxins in store fruits (Mari

et al., 2016).

As biocontrol strategies usually rely on a single or mixture

of antagonists, endophytic microbial strains have been suggested

as antagonistic microorganisms against various diseases in

various crops. The additional effect of endophytic microbiota

as BCAs is the phytohormone synthesis, metabolites, and

nutrients util ized for growth promotion and stress

management in host plants (Lodewyckx et al., 2002;

Suhandono et al., 2016).

In the recent past, various BCAs, including bacteria, yeast,

and fungi, have been frequently applied for effective management

of postharvest pathogens, while practices with endophytes are

very limited. Endophytes’ properties appear superior to those of

epiphytic microorganisms due to their better colonization and

tolerance potential against various biotic and abiotic stresses (Shi

et al., 2010). In recent years, several pieces of literature regarding

utilizing the endophytic microbiome for screening BCAs against

postharvest pathogens have been reported. Shimizu et al. (2009)

reported on the endophytic actinomycete Streptomyces sp., which

showed effective biocontrol potential against the pathogen

Colletotrichum orbiculare, the causal agent of anthracnose

disease in cucumber. Similarly, Shi et al. (2010) reported on P.

putida biovar isolated from the pericarp of papaya with strong

colonization potential and showed potent inhibition against

several pathogens.

Additionally, the strain effectively inhibits the growth of P.

nicotianae just after a short period of treatment. Lai et al. (2012)

screened the endophytic strain Paenibacillus polymyxa isolated

from the root tissue of Sophora tonkinensis and showed

antagonistic potential against P. digitatum, one of the most

devastating pathogens causing postharvest diseases in

citrus fruit. The application of endophytic strains effectively

reduces postharvest decay by inhibiting conidia germination in

a fungal cell suspension. Additionally, the unwashed cell

suspension of the strain was found to be more effective than

the washed cell suspension and culture filtrate in the in

vivo trials.

Ji et al. (2008) isolated 45 endophytic bacterial strains from

the mulberry leaves (Morus alba L.) and reported the strong

inhibitory potential of B. subtilis Lu144 against Ralstonia

solanacearum, the causal agent of bacterial wilt of mulberry

fruits. Furthermore, Furuya et al. (2011) utilized the strain B.

subtilis KS1 isolated from the skin part of grape berry and

applied it as a potential antagonistic agent against fungal

grapevine diseases. In vitro screening showed that the strain

effectively suppressed the growth of B. cinerea and C.

gloeosporioides. Furthermore, after applications in the

vineyards, the strains significantly reduce the incidence of
Frontiers in Plant Science 12
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downy mildew from the leaves and skin of the berry. Chen

et al. (2016) screened the B. amyloliquefaciens PG12 strain

isolated from apple fruits as a potential BCA against apple

ring rot disease. The strain significantly suppressed the

Botryosphaeria dothidea growth during in vivo and in vitro

screening and showed a potent antagonistic effect against

different fungal pathogens. Madbouly et al. (2020) evaluated

the biocontrol potential of endophytic yeast strains

Schwanniomyces vanrijiae, Galactomyces geotrichum, Pichia

kudriavzevii, isolated from apple fruits, against the pathogen

Monilinia fructigena, the causal agent of apple fruit brown rot of

golden delicious apples. During in vitro test analysis, all three

endophytic yeast strains showed inhibitory potential against M.

fructigena and significantly inhibited conidial germination by

67.6%–89.2%. In the last few years, rapid enhancement can be

seen in the use of endophytic microorganisms in postharvest

disease management in fruits. However, still, most of the

experiments are limited to the laboratory scale. Furthermore,

we need to study how the fruit microbiome affects the fruit’s

physiology and disease resistance and how the fruit-associated

microbial communities shifted during the postharvest stages and

after applying BCAs.
Commercial upscale production and
hurdles ahead

Antagonistic endophytic application against postharvest

diseases, especially in fruits, has emerged as a new generation

of pesticides. Though the mechanisms are still to be deciphered

completely, many endophytes have paved their path to

commercial applications. B. subtilis strain B-3 has been

patented, and pilot experiments have been conducted against

the peach brown rot disease. It was observed that after the

application of the endophyte in either powder or paste form, it

was as effective as traditional pesticide benomyl in Clemson, SC,

USA (Pusey et al., 1988). Products based on B. subtilis QST713

with the trade name Serenade™ are produced commercially by

AgraQuest Inc., USA, against powdery mildew, brown rot, and

late blight of apple, pear, and grapes (Punjia et al., 2016).

Multiple formulations in many countries with trade

names, including Candifruit™, Shemer™, and Boni-protect™,

have been successfully used against postharvest pathogens

(Fenta et al., 2019). The endophytes, a new concept, have

to face many hurdles for their successful commercialization.

In addition to the agricultural giants such as Dupont,

Monsanto, and Bayer, many small startup companies such as

Indigo and NewLeaf Symbiotics have entered the microbial

domain with promising contributions. The following hurdles

need to be overcome to achieve economically and sustained

commercial-scale production of antagonistic endophytes or

their products.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1026575
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kumari et al. 10.3389/fpls.2022.1026575
Increased shelf life and multiple stress-
tolerant endophytic microbes

In the niche of postharvest fruits, endophytes have to

overcome several biotic and abiotic stresses (Diskin et al.,

2017). For the successful application and upscale production

of antagonistic endophytes against postharvest diseases of fruits,

the endophytes must be stress-tolerant to prolong their shelf life

and sustain antipathogenic activities. Many stress-tolerant

endophytic microbes are already studied for plant growth

promotion in adverse conditions (Giauque et al., 2019; Singh

et al., 2022). Furthermore, the synergistic application

of endophytes can also help increase the shelf life of

endophytes in their battle against postharvest pathogens

(Huang et al., 2021). Therefore, exhaustive screening of stress-

tolerant endophytes and their in vitro and in vivo stress

amelioration potential should be conducted for the endophytes

to go from lab to field.

Some endophytes are deeply associated with their host for

stress tolerance and the production of the desired natural

products (Khare et al., 2018). Therefore, their ability to cope

up with the stress condition in the absence of their host plants

and the niche of postharvest fruits should also be assessed before

their commercialization.
Optimizing the modes of
endophyte application

The modes of application of endophytes to the surface of

postharvest fruits also play a crucial role in plant disease

management and increasing the shelf life of the endophytes.

Therefore, the application of endophytes on fruit surfaces should

be optimized on a case-by-case basis. Generally, the

formulations are applied as liquid or powder/paste

formulations. Though the dry form provides a longer shelf life,

it can cause a loss of viability of microbes through repeated

rehydration-dehydration processes (Kumari et al., 2020a, b).

Many rehydration agents, including whey proteins and

maltodextrins, have been suggested to coat dry formulations

(Martin et al., 2017). For sustained release of endophytes, their

secondary metabolites, and VOCs, nanoencapsulation of the

products and nanoemulsions can also be studied (Pandey et al.,

2020). Recently, Ghazy et al. (2021) studied the role of anise

extract oil nanoemulsion against different postharvest

antagonistic bacteria for their sustained release. A combination

of SA with endophytic B. subtilis was used to treat postharvest

diseases by F. oxysporum and P. infestans (Lastochkina et al.,

2020). Preharvest and postharvest modes of endophytic

application should also be considered for their antagonistic

application. For the upscale production of endophytes as

postharvest disease management in fruits, the mode of
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application is an important parameter, whose optimization

should be carried out in detail.
Sustained release and cost-effective
production of microbial metabolites

The commercialization of secondary metabolites and

VOCs derived from endophytes faces hurdles in sustainable

release and economic upscale production. Media optimization,

selection of potent microbial strains, and metabolic

engineering are some of the parameters that can be employed

(Sah et al., 2020; Kamat et al., 2020; Taritla et al., 2021) for the

sustained production of desired antimicrobial secondary

metabolites from endophytes. The addition of some of the

precursors from the host system has also been studied during

media optimization for continuous upscale production of the

antimicrobial metabolites from endophytes during the

fermentation process.

The second hurdle faced during their commercialization

includes the hydrophobicity of natural products. To overcome

the solubility issue, several solutions, including their

encapsulation in non-toxic and biodegradable polymers, have

been proposed (Soh and Lee, 2019), which provide solubility and

the slow release of the active ingredient. Chitosan, carrageenan,

starch, and alginate nanopolymers have been used to encapsulate

natural products, including polyphenols, alkaloids, and

terpenoids with increased water solubility and bioactivity

(Detsi et al., 2020).
Overcoming the in planta pressure for
survival and stress amelioration

The biggest hurdle in successfully applying endophytic

microbes in the fruit microbiome is overcoming their host

pressure. Endophytes have always lived as symbionts with

their host, sharing many physical and chemical attributes with

their host plants (Spadaro and Droby, 2016). Several hypotheses,

including the defensive mutualism hypothesis, xenohormesis

hypothesis, and trait-specific endophytic infallibility (TSEI)

hypothesis, have been shared among the research community

to describe the co-evolution of the host and the endophytes

(Kusari et al., 2015; Pathak et al., 2022). Their isolation and

survival without their hosts may alter their growth cycle and

physiological performance in the competition of the new fruit

microbiome. The question of replacement dynamics with the

preexisting microbiome of fruits is always relevant while

introducing a new endophytic strain. The mode of application

and the growth and production of secondary metabolites in vitro

should be monitored before their in vivo application in

postharvested fruit microbiomes.
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Genome mining and metagenomics

Getting the superior strains of endophytes required digging

deep into the unexplored wealth of endophytes and exploring

the biosynthetic pathways to synthesize beneficial secondary

metabolites, siderophores, and phytohormones. To bypass the

tedious process of endophyte isolation and screening for

postharvest disease management, genome mining and

metagenomic studies can be performed to select the right

strain economically (Kusari et al., 2015). For example, genome

mining of the endophytic fungus Penicillium dangeardii revealed

a cluster of 43 biosynthetic genes demonstrating their strong

ability to synthesize secondary metabolites (Wei et al., 2021)

exploited in postharvest disease management. Thus, genome

mining and metagenomics can provide better endophytic strains

that can be commercially produced for the desired

secondary metabolites.
Change in policymaking and
awareness regarding the use
of antagonistic endophytes

The most critical parameter for introducing endophytes as

substitutes for conventional pesticides in postharvest disease

management is to increase the awareness of the end-users and

people involved in the distribution chain. Therefore, outreach

programs and workshops related to these new ideas should

constantly be organized to bring awareness and benefits of

using endophyte-based biopesticides.

Any effort is not fruitful without governments, policymaking,

and funding agencies to implement new technologies in agri-

business sectors. Earlier, the Department of Biotechnology

(DBT), India, launched the National Biocontrol Network

Programme (NBNP) to popularize and commercialize more

than 30 biopesticides (Kumari et al., 2020a, b). Similar

programs should be launched and funded to popularize

financial, most effective, and eco-friendly products for managing

postharvest diseases of fruits.
Safety of endophytes and their
secondary metabolites for consumers
and the environment

Endophytes, a new aspect of BCAs in postharvest disease

management in fruits, need thorough scrutiny regarding their

safety for consumers and the environment. Endophytes

themselves or their products should not be opportunistic

pathogens or should not pose any harm to the environment.

Unfortunately, many of the earlier studied rhizobacteria or their

secondary metabolites have acted as opportunistic human
Frontiers in Plant Science 14
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pathogens or environmental contaminants in certain

conditions (Keswani et al., 2019). To avoid similar conditions

with the endophytes, their safety in animal models and their

effect on the environment due to higher dosage should also

be assessed.
Conclusion

Endophytic microorganisms can colonize different organ

tissues of the host plant and interact in multiple ways to

regulate physiological and metabolic pathways, which can

further be utilized in the effective management of postharvest

diseases. Endophytic bacterial, actinomycetes, and fungal strains

have been broadly utilized as BCAs against various plant

pathogens during preharvest and postharvest stages. Currently,

it is estimated that approximately 30% of the total fruit

production is lost annually due to various diseases. Therefore,

the potential colonization efficacy of endophytes is a crucial

characteristic for disease management.

In addition, next-generation omics may be applied to identify

the gene(s) responsible for disease management. Thus, during the

application, consortia of mixed microbial agents (bacteria-bacteria;

bacteria-fungus; fungus-fungus) showed a practical approach in

disease management, but the survival and better adaptability of

both strains together are reasons for further investigation,

particularly under diverse environmental conditions. Endophytes

have reported multiple mechanisms that are used to inhibit

pathogenic growth and increase fruit health. Though there are

numerous examples of successful bioformulations of microbial

endophytic strains capable of controlling the pathogenicity of the

pest or pathogens during preharvest conditions, their application

in postharvest pathogen control is in the nascent stage. Further

application of endophytic microbiome can further reduce, or at

some point will eliminate, the harmful dependence on chemical

pesticides and fungicides in postharvest disease management.
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Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-
Enriquez, G., Cerdan-Cabrera, C. R., and Hernandez-Montie, L. G. (2019).
Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review.
Agronomy 9, 121. doi: 10.3390/agronomy9030121

Chaouachi, M., Marzouk, T., Jallouli, S., Elkahoui, S., Gentzbittel, E., Ben, C.,
et al. (2021). Activity assessment of tomato endophytic bacteria bioactive
compounds for the postharvest biocontrol of botrytis cinerea. Postharvest Biol.
Technol. 101, 161–170. doi: 10.1016/j.postharvbio.2020.111389

Chen, C., Cao, Z., Li, J., Tao, C., Feng, Y., and Han, Y. (2020b). A novel
endophytic strain of lactobacillus plantarum CM-3 with antagonistic activity
against botrytis cinerea on strawberry fruit. Biol. Cont. 148, 104306. doi:
10.1016/j.biocontrol.2020.104306

Chen, X., Marszałkowska, M., and Reinhold-Hurek, B. (2020a). Jasmonic acid,
not salicyclic acid restricts endophytic root colonization of rice. Front. Plant Sci. 10,
1758. doi: 10.3389/fpls.2019.01758

Chen, X., Zhang, Y., Fu, X., Li, Y., and Wang, Q. (2016). Isolation and
characterization of Bacillus amyloliquefaciens PG12 for the biological control of
apple ring rot. Postharvest Biol. Technol. 115, 113–121.

Chlebek, D., Pinski, A., Zur, J., Michalska, J., and Hupert-Kocurek, K. (2020).
Genome mining and evaluation of the biocontrol potential of pseudomonas
fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus l.) against
fungal pathogens. Int. J. Mol. Sci. 21, 8740. doi: 10.3390/ijms21228740

Chowdappa, S., Jagannath, S., Konappa, N., Udayashankar, A. C., and Jogaiah, S.
(2020). Detection and characterization of antibacterial siderophores secreted by
endophytic fungi from cymbidium aloifolium. Biomol 10, 1412. doi: 10.3390/
biom10101412

Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S., Dupont, J., et al.
(2017). Screening of wheat endophytes as biological control agents against
fusarium head blight using two different in vitro tests. Microbiol. Res. 202, 11–
20. doi: 10.1016/j.micres.2017.04.014

Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H., and Sessitsch, A. (2011).
Endophytes of grapevine flowers, berries, and seeds: identification of cultivable
bacteria, comparison with other plant parts, and visualization of niches of
colonization. Microbial Ecol. 62 (1), 188–197. doi: 10.1007/s00248-011-9883-y

Cruz, A. F., Barka, G. D., Blum, L. E. B., Tanaka, T., Ono, N., Kanaya, S., et al.
(2019). Evaluation of microbial communities in peels of Brazilian tropical fruits by
amplicon sequence analysis. Braz. J. Microbiol. 50, 739–748. doi: 10.1007/s42770-
019-00187-y

De Bary, A. (1866). “Morphologie und physiologie der pilze, flechten, und
myxomyceten,” in Hofmeister’s handbook of physiological botany. Ed. W.
Engelmann(Leipzig).

de Oliveira, T. B., de Lucas, R. C., Scarcella, A. S. D. A., Pasin, T. M., Contato, A.
G., and Polizeli, M.D.L.T.D.M. (2020). Cold-active lytic enzymes and their
applicability in the biocontrol of postharvest fungal pathogens. J. Agric. Food.
Chem. 68 (24), 6461–6463. doi: 10.1021/acs.jafc.0c03085

Detsi, A., Kavetsou, E., Kostopoulou, I., Pitterou, I., Pontillo, A. R. N., Tzani, A.,
et al. (2020). Nanosystems for the encapsulation of natural products: the case of
chitosan biopolymer as a matrix. Pharmaceutics 12, 669. doi: 10.3390/
pharmaceutics12070669

Di Pietro, A., and Talbot, N. J. (2017). Fungal pathogenesis: Combatting the
oxidative burst. Nat. Microbiol. 2 (7), 1–2.

de Wit, P. J. (2007). How plants recognize pathogens and defend themselves.
Cell. Mol. Life Sci. 64 (21), 2726–2732. doi: 10.1007/s00018-007-7284-7

Diskin, S., Feygenberg, O., Feygenberg, D., Droby, S., Prusky, D., and Alkan, N.
(2017). Microbiome alterations are correlated with occurrence of postharvest stem-end
rot in mango fruit. Phytobiomes 1, 117–127. doi: 10.1094/PBIOMES-05-17-0022-R

Dong, C.-J., Wang, L.-L., Li, Q., and Qing-Mao, S. (2019). Bacterial communities
in the rhizosphere, phyllosphere and endosphere of tomato plants. PloS One 14
(11), e0223847. doi: 10.1371/journal.pone.0223847

Ek-Ramos, M. J., Gomez-Flores, R., Orozco-Flores, A. A., Rodrı́ guez-Padilla, C.,
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Endophytic bacteria are mainly present in the plant’s root systems. Endophytic

bacteria improve plant health and are sometimes necessary to fight against

adverse conditions. There is an increasing trend for the use of bacterial

endophytes as bio-fertilizers. However, new challenges are also arising

regarding the management of these newly discovered bacterial endophytes.

Plant growth-promoting bacterial endophytes exist in a wide host range as part

of their microbiome, and are proven to exhibit positive effects on plant growth.

Endophytic bacterial communities within plant hosts are dynamic and affected

by abiotic/biotic factors such as soil conditions, geographical distribution,

climate, plant species, and plant-microbe interaction at a large scale.

Therefore, there is a need to evaluate the mechanism of bacterial

endophytes’ interaction with plants under field conditions before their

application. Bacterial endophytes have both beneficial and harmful impacts

on plants but the exact mechanism of interaction is poorly understood. A basic

approach to exploit the potential genetic elements involved in an endophytic

lifestyle is to compare the genomes of rhizospheric plant growth-promoting

bacteria with endophytic bacteria. In this mini-review, we will be focused to

characterize the genetic diversity and dynamics of endophyte interaction in

different host plants.

KEYWORDS

host endosymbiont interactions, mechanism of interaction, bacterial endophytes,
plants, endophytic
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1 Introduction

Plants interact with diverse microbial populations in the

ecosystem (Delaux et al., 2015). Microorganisms can colonize on

plants’ surfaces or internal parts depending on the host genotype

and the molecular signals released by plant roots.

Microorganisms can colonize on plants’ surfaces or internal

parts depending on the host genotype and the molecular signals

released by plant roots. Endophytes are prokaryotic bacteria

found within the healthy host tissue (Brader et al., 2014).

Bacterial endophytes can benefit the host in several ways, such

as biotic and abiotic stress resistance, increased availability of

nutrients, degradation of toxic molecules, and production of

phytohormones (Kandel et al., 2015).

Plant populat ion dynamics have soi l microbia l

intermediation. The plant has a microbial population in

the phyllosphere, endophytes, or rhizospheric microbes. The

ecology and phenotype of the plants can be affected by the

influence of symbiotic microbes on the atmosphere and

competition for soil resources.

The plant genotype affects the microbial make-up of the

phyllosphere, rhizosphere, and endophytic microorganisms

(Lynch et al., 2001). Although the precise method involves the

plant-associated microorganisms and ecosystem function, the

other specific mechanism is still unknown. Because they are co-

evolved with bacteria, plants are immobile and need to control

the results of their intricate interactions (Schnitzer and

Klironomos, 2011). Different sorts of chemicals are

continuously produced by plant roots, gathered, and secreted

into the soil (Wood et al., 2012) known as the root exudates

which contain enzymes, water, mucilage, H+ ions, and primary,

secondary compounds made up of carbon (Singh, 2015). Every

plant species’ rhizosphere is known to have a microorganism

population that is 100 times higher than soil and is mostly

controlled by compounds generated by roots (Jonkers et al.,

2003; Bever, 2003). The favorable plant-soil microbial response

enhances the microbial populations’ spatial spread (Schimel

et al., 2007), while negative reaction results in plant

replacement, which demands recolonization of locally specific

roots (Bever et al., 2010; Pedrotti et al., 2013).

It has been proposed that endophytic bacteria vary from

rhizobacteria in their genetic architecture, which may account

for their capacity to colonise plant tissues internally. However,

no specific gene or gene family has been found to explain the

endophytic regime. In a 2014 study, the whole genomes of nine

Proteobacteria were compared to identify a list of genes that may

play a role in the endophytic activity. So yet, only a few of those

genes have undergone experimental testing to determine

whether they are involved in endophytic colonisation (Shen

et al., 2013; Ouyabe et al., 2019). In this study, we have

documented some mechanisms involved in plant endophyte

interaction at the molecular level.
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2 Plant growth promotion
by endophytes

PGPEs enhance plant development through three interconnected

mechanisms: phytostimulation, biofertilization, and biocontrol.

Phytostimulation is the production of phytohormones for direct

plant development (Vishwakarma et al., 2021). The amount of the

plant hormone ethylene frequently declines as a result of the enzyme

1-aminocyclopropane-1-carboxylate (ACC) deaminase (Cruz Barrera

et al., 2020). According to numerous studies, the pea plant and the

pepper plant (Pseudomonas putida and Piper nigrum, respectively)

both have bacterial endophytes that release ACC deaminase to aid

plant growth (Ruduś et al, 2013). By controlling ethylene levels in

plants, ACC deaminize production may minimize abiotic stress

because an increase in ethylene can obstruct DNA synthesis, root

and shoot growth, and cell division. However, the specific method for

enhanced plant development is still unknown (González Candia,

2021). Bacterial strains also produced other hormones which include

abscisic acid, indole-3-acetic acid, and jasmonic acid, to stimulate

plant growth (Forchetti et al., 2007).The endophytes can enhance

plant growth by increasing the availability of important nutrients

known as bio-fertilization.

Nitrogen fixation is the most studied phenomenon of bio-

fertilization which is the conversion of atmospheric nitrogen into

ammonia (Mishra and Arora, 2016). Bacterial species like

Azospirillum spp., Pantoea agglomerans, and Azoarcus spp. all

are known to be involved in a substantial amount of nitrogen

fixation in plant roots (Indiragandhi et al., 2008). Nonetheless,

only 21 PGPEs can increase plant phosphorus availability by

solubilizing phosphate. The metal cation linked to phosphorous is

chelated as a result of the release of low molecular weight acids,

making it more available to plants. The researchers have isolated,

identified, and assessed the ability of Achromobacter xiloxidans

and Bacillus pumilus to solubilize phosphate in sunflowers

(Barrera et al., 2020). PGPEs were utilized to treat corn,

lowering the quantity of artificial phosphorus fertilizer required

while increasing yields by up to 50% (Cruz Barrera et al., 2019).

The protection of plants from phytopathogens and their

growth promotion is known as biological control. Antibiotic and

siderophores production are involved in biological control

mechanisms. Siderophores like pyochelin and alicyclic acid

and chelate iron are not directly involved in disease control

due to their competition with pathogens for trace metals

(Leopold, 1964). The disease can be suppressed in plants by

antimicrobial metabolites secreted by bacterial endophytes such

as 2,4-diacetylphloroglucinol (DAPG). Seed treatment of

eggplant (Solanum melongena) with DAPG-producing

bacterial endophytes reduced 70% of eggplant wilt caused by

Ralstonia solanacearum (Rana et al., 2020a).

Burkholderia, Bacillus, Pseudomonas, Enterobacter, and

Serratia are just a few of the bacterial endophyte strains that

are successful at preventing the growth of pathogenic germs in
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both in vitro and in vivo settings (Khan and Doty, 2009). Aside

from that, bacteria from the genera Bacillus, Enterobacter,

Arthrobacter, Azotobacter, Isolptericola, Streptomyces, and

Pseudomonas improved the crop’s stress resistance from heat,

drought, and salt (Rana et al., 2020b; Khalil et al., 2021). The

most important interaction between these endophytes and

symbiotic plants allowed the plants to significantly increase

their biomass and height while lowering stress. Although, it is

not yet clear how bacterial endophytes lessen abiotic stress (Liu

et al., 2014).
2.1 Rhizobium and process of
nodule formation

Rhizobium is a member of the family Rhizobiaceae and the

class Alphaproteobacteria. Rhizobium, was the name given to

this genus for the first time by Frank in 1889. There are 11 non-

rhizobial species and 49 rhizobial species in the family

Rhizobiaceae at the moment (Ledermann et al., 2021). The
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rhizobial species induce the nodules on the roots of plants

(Fabaceae family) and are linked to symbiotic nitrogen-fixing

bacteria. The nodule’s nitrogen fixation activity is extremely

oxygen sensitive. The host plant receives continual supplies of

reduced nitrogen from the bacterial enzyme system in this

symbiotic connection, and the bacteria in exchange receive

nutrients and energy from the plant (Van Rhijn and

Vanderleyden, 1995). Nodules can occur in about 10% of

legumes. The majority of the rhizobacteria in soil are oxygen

sensit ive and feed on the decomposing remains of

other organisms.

In roots, nitrogen-fixing bacteria occur as irregular cells

known as bacteroids, which are frequently Y, club-shaped and

appear as straight rods with a regular structure (Figure 1).

Bacteroidsencode genes that determine the rhizobium’s host

specificity (Lodwig and Poole, 2003). Rhizobia that generate

nodules but are unable to fix nitrogen are sometimes referred to

as ineffective strains, whereas effective strains cause nitrogen

fixation in nodules. Nodule development is controlled by certain

genes known as nod genes i.e. nodF, nodE, nodL, nodP, nodQ,
FIGURE 1

Diagrammatic representation of the whole process of nodule formation through rhizobia.
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and nodH (Basile and Lepek, 2021). Some substances, such as

flavonoids, are released by the root cells and trigger the

production of nodules in bacteria by activating the nod gene.

In essence, these chemicals are in charge of identifying the

proper host and attaching to the root hairs.

The nod factors, which are secreted by bacteria, cause the root

hairs to curl (Moran, 1997). The root hair tip is damaged by

rhizobia, which also causes the infection thread to arise. The

thread then extends to neighboring cells by thread branching, and

the bacteria continue to grow within the growing network of

tubes, continuing to create nod factors that encourage the growth

of the root cells and ultimately result in the formation of root

nodules (Oldroyd et al., 2011). Following a week of infection,

nodules are visible with the unaided eye and each nodule contains

thousands of living rhizobium bacteria, the majority of which are

malformed and are referred to as bacteroids. Small sections of the

plant cell membranes called symbiosomes, which may or may not

include multiple bacteroids, are located next to bacteroids and are

active sites for nitrogen fixation (Ratu et al., 2021). Through the

Nitrogenase enzyme, also known as Nitrogenize catalysis, nitrogen

gas from the atmosphere is converted inside legume nodules into

ammonia, which is then assimilated into amino acids, DNA, and

RNA as well as significant energy molecules like ATP or other

chemicals like vitamins, flavones, and hormones (Bergersen,

1961). The Nitrogenize complex is protected by a variety of

mechanisms used by aerobic free-living bacteria, including

physical barriers and fast metabolic rates. Azotobacter, for

instance, circumvents this issue by maintaining the lowest

oxygen concentration in its cells and the greatest rate of

respiration of any organism. In the instance of Rhizobium, the

nodule’s red iron-containing protein, similar to hemoglobin in

function to bond with oxygen, maintains control over the oxygen

level (Lindström and Mousavi, 2020). However, this avoids the

accumulation of free oxygen to prevent the loss of Nitrogenize

activity while still providing enough oxygen for the metabolic

functioning of bacteriods. Rhizobia and plants work together to

make leghemoglobin, something neither of them could ever do on

their own. Even in poor soil with few nutrients and insufficient

nitrogen to support the growth of other plants, these nodules

increase crop output (Lodwig and Poole, 2003).
2.2 Spread and variation of microbes
from seed to plants

Plants and their microbial diversity vary throughout their life

span of plants. These factors, prompt the structure and variety of the

microbial community (Honma and Shimomura, 1978). Seed-born

microbes gain entry into the germinating plant and take advantage of

other colonizing microbes as well as opportunistic pathogens from

the surrounding soil (Glick et al., 1999; Oteino et al., 2015). Hence the

overall microbial biota and population changed dramatically

throughout the life cycle of plants. The important ways of entry
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into host plants are through root hair cells, root cracks, and wounds

whereas other sources include stomata particularly of young stems

and leaves; lenticels, and germinating radicles (Figure 2). Vertical seed

transmission is another possible way to receive endophytic bacteria

through plant host generations (Bergersen, 1961).
2.3 Presence of plant microbes in
different parts of plants

Microorganisms associated with plants formed a complex

network. Different studies suggested that plant-associated

microbes live inside plant tissues or on the surface of plant

parts such as leaves, stems, fruit, and roots (Clarholm, 1985).

The microbiome studies of A. thaliana leaves showed that plant

genotype, surrounding plants, and abiotic features affected the

microbial population structure (Teixeira et al., 2013). These

interactions are responsible for expediting the defense signals

between plants and the efficacy of natural biological control agents

(Morgan et al., 2005). Microbial populations might indirectly

affect the other taxa of microbes by altering the host growth

response or metabolites without direct interaction with microbes.
3 Beneficial effects of microbes on
plant growth and development

Plants usually take nutrients from the soil which constitutes

a pool for microscopic life forms including bacteria, fungi,

actinomycetes, algae, and protozoa. So, among them, the

bacteria are the most common ones and have the maximum

proportion in soil. The maximum number of bacteria present in

the rhizosphere near the roots of plants is different from bulk soil

(Luu et al., 2020). As these bacteria are present in more

concentration in the soil so the bacteria may affect a plant

through three different pathways (Edwards and Harding,

2004). PGPEs can promote plant growth directly by expediting

the procurement of compounds or modifying levels of plant

hormones and reducing the inhibitory effect of plant growth and

pathogenicity by acting as biocontrol agents (Yan et al., 2019).

The benefits provided by the endophytes to the host plants and

their mechanisms are described in (Table 1).
4 Role of PGPEs against biotic stress

Throughout their lives, plants are exposed to harmful abiotic

and biotic stresses. The damage that bacteria, fungi, viruses,

nematodes, viroids, and insects do to plants is referred to as

“biotic stress.” Rhizobacteria that promote plant growth by

generating phytohormones or facilitating the uptake of

particular nutrients might affect plant growth through biotic

stress (Tiwari et al., 2020). However, PGPR reduces or even
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eliminate the negative impacts of plant pathogens. For example,

Pseudomonas fluorescens produces 2,4-Diacetyl Phloroglucinol,

which inhibits the development of pathogenic fungi in plants

(Suslow and Schroth, 1982). Chitinase and laminarinase, two

extracellular enzymes generated by P. stutzeri, caused the lysis of

Fusarium solanimycelia and root rot (Cano-Salazar et al., 2011).

During a seven-month field trial, the endophytic B. cenocepacia

reduced the prevalence of fusarium wilt disease in banana plants

by 3.4%, compared to 24.5% in untreated infected plants (Sapak

et al., 2008). The antibiotic Pyrrolnitrin, which helps to reduce

cotton damping off losses brought on by Rhizoctonia solani, was

developed by several endophytic Pseudomonas fluorescens

strains (Timper et al., 2009). Fusarium oxysporum, which was

used as a bio-agent to create resistance in tomato plants, was

successfully protected against P. fluorescens in flowering plants

(Dudai, 2011). A bacteria that inhabit plant roots called Bacillus

amyloliquefaciens has the power to control plant diseases and

promote plant growth (Vardi et al., 2021).

In a study, it was discovered that bacterial endophytes shield

cucumber plants from the cucumber anthracnose produced by

Pseudomonas fluorescents (Akköprü et al., 2021). It was once

believed that Achromobacter sp., Streptomyces sp., and Bacillus
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licheniformis were responsible for the foliar disease known as

downy mildew. The downy mildew disease infestation level was

lowered by Pseudoperonospora cubensis (Basu et al., 2022),

which ultimately resulted in an increased yield.

The management of pests, which has become a challenge for

most crops since pests have evolved a tolerance to pesticides, is

another use for these endophytic bacteria (Deng et al., 2014).

Entomopathogenic bacteria have been used to combat pests that

are immune to insecticides (Figure 3). A few fungi from the

genera Podonectria, Verticillium, Hirsutella, Sphaerostilbe,

Agerata, Metarhizium Aschersonia, and Myriangium are used

for the biological management of pests. Brevibacillus

laterosporus is effective against nematodes, Lepidoptera,

Coleoptera, and toxic fungi in plants in addition to insects

(Skinner et al., 2014).
5 Identification of endophytic
bacteria interaction with Host

In recent years, next-generation sequencing (NGS)

techniques have been utilized to study the whole population of
FIGURE 2

Overview of the endophytic bacterial mode of entry into different plant tissues.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1092105
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mushtaq et al. 10.3389/fpls.2022.1092105
TABLE 1 Examples of plant growth-promoting rhizobacteria tested for various crop types.

PGPR Plant Benefits to plant growth References

Pseudomonas sp.

Green gram
Increased plant dry weight, number of nodules, total chlorophyll content, root/
shoot N, P seed protein, and yield.

(Del Carmen Orozco-
Mosqueda et al, 2020)

Soybean
Wheat

Increased soil enzyme activity, nutrient absorption, and yield (Kalyani et al., 2008)

Chickpea An enhanced fresh and dry weight of plants (Berendsen et al., 2012)

Rice More ability to control fungal and bacterial pathogens (Bulgarelli et al., 2012)

Canola Encouraged growth and cadmium accumulation in plants (Agler et al., 2016)

Mustard Improved growth and reduced Cr contents among plants (Foster, 1988)

Soybean, mung
bean, wheat

Promotes growth of plants (Bertin et al., 2003)

Pseudomonas putida

Mung bean
The ethylene production repressed in treated plant
Increase the growth and decreases Pb and Cd uptake

(Glick, 2012)
(Ahemad and Khan, 2012)

Lectuca Enhancement of shoot/root length attained through concentrated inoculants (Sharma et al., 2011)

Artichoke
PSB along with N fixers increase in shoot length/weight, germination percentage
seedling vigor, and reduction in germination time

(Tank and Saraf, 2010)

Pseudomonas aeruginosa

Maize
Endorsed plant growth and helped soil metal utilization, increase Pb and Cr
uptake

(Lawongsa et al., 2008)

Black gram
Reduced Cd deposition in tissues, widespread rooting, and increased plant
growth

(Wu et al., 2015)

Indian mustard
and pumpkin

Increased in plant growth, decrease in Cd uptake (Rajkumar et al., 2006)

Tomato, Okra,
African spinach

Increase in Dry weight of tomato, okra, and spinach (Gupta et al., 2002)

Pseudomonas fluorescens

Alfalfa Enhanced Fe and Cu movement from root/shoot (Mayak et al., 1999)

Peanut Increase in pod yield and nodule dry weight (Lobo et al., 2019)

Soybean Increased plant growth (Rekha et al., 2007)

Canola Protect plants against the inhibitory effects of Cd (Jahanian et al., 2012)

Maize
Increase of plant growth, height, seed weight, no. of seed/ear, leaf area, shoot dry
weight

(Curá et al., 2017)

Azospirillum amazonense Rice
Grain dry matter deposition, panicle count, and nitrogen buildup at the grain
maturity stage all increase

(Sant'anna et al, 2011)

Azospirillum brasilense Common bean Increase of Root growth in plants (Adesemoye et al, 2008)

Azospirillum lipoferum Cotton
An increase in soil microorganisms, plant height, and seed production was
observed, but no changes in boll weight or staple length.

(Fayez and Daw, 1987)

Azotobacter chroococcum Chinese mustard Increased plant development and metal toxicity protection for the plant (Jha, 2017)

Azospirillum brasilense Rice Increased grain yield (Gupta et al., 2005)

Kluyvera ascorbate
Mustard, Tomato
Canola,

Heavy metals reduce plant growth but do not boost metal uptake. (Safronova et al., 2006)

Bradyrhizobium

Green gram
The development traits at all of the studied pesticide dosages (quizalafop-p-ethyl
and clodinafop)

(Wani et al., 2007)

Soybean and
yellow Lupin

Increased biomass, nitrogen content, deposition of metals (Dell’amico et al, 2008)

(Continued)
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cultivable or non-cultivable bacteria inside plants, as well as their

genomes. The interaction of host and bacterial endophytes has

insightful concerns for the biological functioning of plants. As a

result of interactions, rapid changes in host phenotype occurs

also it is assumed as a driving force for the speciation and co-

evolution of both the genetic system of host and bacteria

(Fawcett, 1944). Though old genetic techniques to study plant-

microbe interaction are less efficient, time-consuming, costly,

and labor-intensive required a wide range of experiments and

are usually limited to certain known genes (De Oliveira et al.,

2004) in comparison to investigating the host-microbe

interactions in molecular levels, it is needed to understand the

phenotypic phenomena and genomics in depth. So the

development of NGS technologies or metagenomic studies has

provided the best way to understand the host-pathogen system.

Through this technology, we can construct genome models of

different organisms, which includes strains, their natural

populations over time and their evolutionary histories (Navas

et al., 2017; Sharma et al., 2021).

These complicated interactions can be analyzed and

integrated by viewing plant microbiomes as a system. To

better understand endophytism, contemporary genomic

investigations incorporating metaomics and comparative

studies can be quite beneficial (Dubey et al., 2020). A better

understanding of endophyte interactions could be used to

improve agricultural management by increasing plant

development, biocontrol, and bioremediation (Alaimo

et al., 2018). Some of the tools being utilized or that could be

used to understand the link between plants and endophytes
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include genome sequencing, comparative genomics,

microarray, next-generation sequencing, metagenomics,

and metatranscriptomics (Dixit et al., 2022). To study

endophytes and their apparent function in host plant

ecology, contemporary methods and approaches need to be

investigated (Gaiero et al., 2013).

Another way to identify the endophytic bacteria interact

with the plant is to isolate the endophytic bacteria culture and

then classify based on its phenotypic traits, and a few isolates

from each category are identified further through partial

sequencing of the 16S rRNA gene (Khare et al., 2018). The

results of partial sequencing show that the isolates belonged

to the genera Pseudomonas, Stenotrophomonas, Bacillus,

Pantoea, and Serratia of bacteria (Liu et al, 2017>2552).

These isolates are tested for their ability to produce

siderophores, phosphate solubilization, atmospheric

nitrogen fixation, protease, and hydrogen cyanide, as well as

phytohormones like auxin and gibberellin (Eid et al., 2019).

Auxin and gibberellin, two plant growth hormones, can be

produced by all strains, though to varying degrees. Almost all

strains could solubilize phosphate (Lata et al., 2019). The

outcomes of protease, siderophore, and atmospheric

nitrogen-fixing ability vary between strains. These findings

provide information on the relationship between endophytic

bacteria and their host plant (Vandana et al., 2021).

Furthermost genomic methods require recognition of

variations among sequences within species or populations, like

point mutations, Addition/deletions, and structural variations in

structures (Bulgarelli et al., 2013).
TABLE 1 Continued

PGPR Plant Benefits to plant growth References

Green gram
Increase of nodule number, seed yield, grain protein, root/shoot N at 290 mg Ni/
kg soil

(Burd et al., 2000)

Brevundimonas Canola Isolated cadmium directly from the solution (Gholami et al., 2009)

Enterobacter cloacae Canola Significant increases in root and shoot length were observed.
(Bashan and González,
1999)

Klebsiella oxytoca
Maize Increase of plant growth parameters (Remans et al., 2008)

Enterobacter sakazakii

Brevibacillus White clover Increased plant growth and nutrition and decreased zinc conc. Anjum et al., 2007)

Methylobacterium oryzae,
Berkholderia sp.

Tomato
Significant increase in shoot/root length attained through bacterial cells
inoculation

(Wu et al., 2006)

Sinorhizobium sp. Brown mustard Increased the efficacy of Pb (Thakuria et al., 2004)

Bacillus spp Barley Increased root/shoot weight (Dary et al., 2010)

Rhizobium sp. Pea Increase of the dry matter, nodule numbers, root/shoot nitrogen
(Lugtenberg and Kamilova,
2009)

Mycobacterium sp. Canola Prevent plant against the inhibitory effects of cadmium (Wani et al., 2008)

Bacillus sp.
Paenibacillus sp.

Rice Considerably encouraged the root/shoot growth. (Robinson et al., 2001)
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5.1 Evolution of new pathogenic
strains of microbes

One of the great evolutionary changes in life is the

development of advantageous symbioses between eukaryotic

(plants) and prokaryotic creatures (Chebotar et al., 2015).

According to certain theories, the relationship between

endophytic bacteria and plants frequently depends on two

fundamental elements: currency and a system for exchanging

currency. The currency could be, for instance, a root exudate

that bacteria can take up in the context of interactions between

plants and endophytic bacteria (Mercado-Blanco and JJ

Lugtenberg, 2014). Similarly, bacteria may release hormones

that encourage plant growth, such as auxin and gibberellins,

which may be favorable for plant growth (Maksimov et al.,

2018). It is anticipated that selection will favor the evolution of

mutualism when the exchange of currencies between the two

parties is balanced. Therefore, it is hypothesized that increased

mutualistic dependency develops through reciprocal co-

evolution or adaptation by one of the partners through the

selection of features directly related to the mutualistic interaction

(Chen et al., 2021).

Competition for scarce shared resources like iron may also

lead to asymmetrical currency exchange, which could help to

explain why some plant-microbe interactions are hostile (Hong

and Park, 2016). Furthermore, because the rhizosphere is open,
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the free diffusion of resources derived from plants may promote

higher levels of cheating in which mutant bacterial genotypes

take benefit of “public goods” without producing substances that

aid plant growth (Pandey et al., 2017). Because of this,

mutualistic plant-microbe interactions may need additional

enforcement from the plant, such as penalizing dishonest

bacterial genotypes or positively identifying genotypes that

promote plant growth (Ryan et al., 2008).Intriguing research

would also be done to see whether endophytic bacteria and

plants may coevolve from first neutral interaction and whether

plants can coevolve in response to rhizosphere bacteria (Santos

et al., 2018). In conclusion, by showing that plant-associated

bacteria can quickly evolve along the symbiotic connection

within a few growth cycles, our results urge eco-evolutionary

management of endophytic bacteria and plants interactions in

agriculture (Aswani et al., 2020).
5.2 Endophytic bacteria in
disease management

Crop productivity is impacted by a number of common

plant diseases that are present worldwide. Some of the serious

ones are wilt disease, root rot, powdery mildew, leaf spot, leaf

curl, and blight. To counter these phytopathogens, endophytic

bacteria are crucial (Latha et al., 2019).
FIGURE 3

Mechanism of plant growth promotion by rhizobacteria (PGPR).
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By producing proteins associated with pathogenesis (PRPs)

and defense enzymes that stop the growth of phytopathogens

that cause disease, endophytic bacteria can produce

siderophores, antimicrobial compounds, and systemic

resistance (Pandey et al., 2019). Bacterial endophytes are also

potentially useful biocontrol agents. Plant diseases degrade plant

performance and crop quality, which reduces crop output

(Muthukumar et al., 2017). It has been shown that the

nitrogen-fixing bacteria Azotobacter chrococcum , the

phosphate-solubilizing bacteria PSB (Pseudomonas cepacia),

the endophytic bacterial strains Lysinibacillus sp. and Bacillus

subtilis, and their combination as bio-fertilizers can reduce the

incidence of bacterial wilt disease in chili plants by up to 80%

(Tewari et al., 2019).

The endophytic bacterial strain B. subtilis showed the

strongest (80%) illness suppression (Jacob et al., 2020). This

endophyte could also considerably aid the growth of the chili.

Chemical pesticides are typically used to manage such

phytopathogens, but this tactic has raised concerns about

environmental contamination and contributed to the

emergence of resistance to specific chemicals over time

(Prasad et al., 2020). New insecticides must always be

developed to address this. Chemical pesticides are thought to

be ineffective when compared to endophytic bacteria acting as

biocontrol agents or bioinsecticides. A broad array of

mechanisms, including direct antagonism via the generation of

antibiotics, siderophores, hydrogen cyanide, hydrolytic enzymes

(chitinases, proteases, and lipases), etc., are involved in the

biocontrol of plant diseases (Puri et al., 2017).
6 Conclusion

Some of the bacterial endophytes or PGPR are commonly

used to control different diseases and as biological control agents

so nowadays most of the focus is the understanding of complex

interactions and their mechanisms and outcome either beneficial

or harmful. It is hard to find the exact mechanism of interaction

among complex microbial populations residing in the soil and

environment near to host. So that proper characterization and

management strategies can be devised according to the current

need of time. In recent time peoples are preferring organic food

and disliked the use of fertilizers and chemicals in agriculture. As

the world population is increasing and food shortage issues are
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raised, in the current situation food security is an important

topic for debate. Hence bacterial endophytes can be used as an

alternative to chemical fertilizers, nutrient sources, and

biological control agents for various plant pathogens. Scientists

are focusing on the use of these endophytes in the form of

biopesticides, and biofertilizers with different trade names for

the control of different diseases and sustainable agricultural

systems. Although the application of these endophytes in

combination may lead to the development of optimum PGPEs

inoculants that robust, and slight variation of environmental

factors will not affect the plant growth promotion.
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Diaporthe atlantica enhances
tomato drought tolerance by
improving photosynthesis,
nutrient uptake and enzymatic
antioxidant response

Eric C. Pereira1, Iñigo Zabalgogeazcoa1, Juan B. Arellano1,
Unai Ugalde2 and Beatriz R. Vázquez de Aldana1*

1Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of
Salamanca, Consejo Superior de Investigaciones Cientı́ficas (IRNASA-CSIC), Salamanca, Spain,
2Biofungitek Limited Society (S.L.) Parque Cientı́fico y Tecnológico de Bizkaia, Derio, Spain
Functional symbiosis with fungal endophytes can help plants adapt to

environmental stress. Diaporthe atlantica is one of the most abundant fungal

taxa associated with roots of Festuca rubra subsp. pruinosa, a grass growing in sea

cliffs. This study aimed to investigate the ability of a strain of this fungus to

ameliorate the impact of drought stress on tomato plants. In a greenhouse

experiment, tomato plants were inoculated with Diaporthe atlantica strain EB4

and exposed to two alternative water regimes: well-watered and drought stress.

Several physiological and biochemical plant parameters were evaluated.

Inoculation with Diaporthe promoted plant growth in both water treatments. A

significant interactive effect of Diaporthe-inoculation and water-regime showed

that symbiotic plants had higher photosynthetic capacity, water-use efficiency,

nutrient uptake (N, P, K, Fe and Zn), and proline content under drought stress, but

not under well-watered conditions. In addition,Diaporthe improved the enzymatic

antioxidant response of plants under drought, through an induced mechanism, in

which catalase activity was modulated and conferred protection against reactive

oxygen species generation during stress. The results support that Diaporthe

atlantica plays a positive role in the modulation of tomato plant responses to

drought stress by combining various processes such as improving photosynthetic

capacity, nutrient uptake, enzymatic antioxidant response and osmo-protectant

accumulation. Thus, drought stress in tomato can be enhanced with

symbiotic fungi.

KEYWORDS

symbiosis, diaporthe, drought stress, fungi, antioxidant defense, nutrient uptake, proline,
photosynthetic capacity
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1 Introduction

Drought is a multidimensional stress that causes a wide range of

morphophysiological, biochemical and molecular modifications on

plants, affecting their growth and development (Farooq et al., 2009;

Chaves et al., 2011). At a cellular scale, a series of harmful

perturbations in some central processes occur, including disorders

in water homeostasis, perturbations in metabolic functions and

hormonal imbalance. In addition, changes in chlorophyll synthesis,

root differentiation, foliage development, stomatal movement, and

water and mineral nutrition occur, leading to a decrease in plant yield

and water use efficiency (Kapoor et al., 2020; Kaur et al., 2021).

Drought also induces the generation of reactive oxygen species (ROS),

which cause oxidative damage and disturb the cell redox regulatory

functioning (Cruz de Carvalho, 2008; Impa et al., 2012).

To cope with water deficit, plants have developed mechanisms to

capture more water from the soil or to minimize water loss via

transpiration (Osakabe et al., 2014; Takahashi et al., 2020).

Morphological changes such as an increase in root size for better

exploring the soil and increasing surface absorption can occur (Hund

et al., 2009). In response to drought stress, the stomatal closure

reduces transpirational water loss, but also causes a decrease in both

CO2 diffusion and photosynthetic carbon assimilation rate (Shahzad

et al., 2016). The production of compatible organic solutes, such as

proline, is another important mechanism to adapt to water deficit,

contributing to osmotic adjustment, ROS detoxification, and

stabilization of membrane, enzyme and protein structures (Farooq

et al., 2009; Takahashi et al., 2020). In order to cope with oxidative

stress under drought, plants also use antioxidant defense systems

(Shahzad et al., 2016). The antioxidant apparatus helps to scavenge

reactive oxygen species (ROS) and to regenerate ascorbate (AsA)

using enzymatic antioxidants like catalase (CAT), ascorbate

peroxidase (APX) or dehydroascorbate reductase (DHAR) (Koffler

et al., 2014; Noctor et al., 2014; Laxa et al., 2019).

Tomato (Solanum lycopersicum L.) is one of the most important

horticultural crops in the world. Its high sensitivity to water deficit has

prompted different approaches for obtaining drought-resistant

cultivars. The plant microbiome can have an important role in

plant growth and stress tolerance, having applications related to

crop production (Ray et al., 2020; Pozo et al., 2021).

Diaporthe is one of the most abundant fungal taxa associated with

roots of Festuca rubra subsp. pruinosa, a grass growing in sea cliffs

(Pereira et al., 2019). In this habitat, F. rubra grows in rock fissures

where nutrient availability is scarce, and exposure to salinity is intense

(Castroviejo, 2021). When inoculated in agricultural grasses, a

Diaporthe strain ameliorated salt stress, increasing proline, nutrient

uptake, and phytohormones, resulting in plant growth improvement

(Toghueo et al., 2022). That fungal strain belongs to Diaporthe

atlantica, a dominant species of the genus in Festuca roots

(Toghueo et al., 2023). Symbiotic microorganisms from saline

environments might benefit plants in their adaptation to drought

stress (Rodriguez et al., 2008; Hosseyni Moghaddam et al., 2021).

Plant responses to drought and salinity have much in common

because both conditions induce osmotic stress and oxidative

damage in an early stage, which leads to a decrease in growth,

stomatal aperture, and a deficit in nutrients (Forni et al., 2017; Ma
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et al., 2020). Therefore, plant adaptation to both stresses could be

mediated by similar mechanisms involving plant responses such as

growth attenuation, accumulation of compatible solutes as proline,

increased levels of antioxidants and protective proteins, suppression

of energy-consuming pathways and gene expression regulation

(Bartels and Sunkar, 2005; Munns, 2011).

Thus, the main objective of this work was to evaluate the ability of

a Diaporthe atlantica strain isolated from Festuca rubra subsp.

pruinosa to improve the growth and drought tolerance of tomato

plants. For this purpose, the changes of tomato plants in physiological

and biochemical parameters such as chlorophyll, gas exchange,

mineral elements, proline, antioxidant enzyme activities and

antioxidant capacity were evaluated.
2 Materials and methods

2.1 Fungal material

The Diaporthe strain EB4 was originally isolated from surface-

disinfected roots of an asymptomatic plant of Festuca rubra subsp.

pruinosa, collected in a natural population on the northern coast of

Galicia, Spain (Pereira et al., 2019). This strain belongs to Diaporthe

atlantica, a newly described species (Toghueo et al., 2023).

Most Diaporthe atlantica strains, including EB4, do not sporulate

on laboratory media (Toghueo et al., 2023), for this reason, fungal

mycelium was used as inoculum. To produce Diaporthe EB4 mycelial

inoculum, 30 g of sugar beet pulp pellet mixed with 9.0 g CaCO3, 4.5 g

CaSO4 and hydrated with 60 ml of water were autoclaved in wide-

mouth glass bottles for 30 minutes at 121°C (Vázquez de Aldana et al.,

2020). Each bottle of sugar beet pulp substrate was inoculated with

four plugs of mycelium from a potato dextrose agar (PDA) culture

and incubated at room temperature (20-22°C) for four weeks.
2.2 Experimental design

To determine the effect of Diaporthe inoculation on tomato plants

under drought stress, a bioassay with two variables was designed:

Diaporthe inoculation (inoculated or uninoculated plants) and water

treatment (well-watered and drought stress). For each of the four

treatments, ten replicates were considered. To inoculate plants, seeds

of tomato cv. Marmande were sown in a plastic tray containing a

substrate composed of seven parts of peat and perlite (1:1 v/v),

previously treated at 80°C for 24 h, and one part of Diaporthe EB4

inoculum. Uninoculated plants were obtained from seeds sown in a

tray containing only the peat and perlite mixture. Ten-day-old

seedlings were individually transplanted to 300-ml plastic plots

containing the heat-treated substrate with or without inoculum for

the inoculated and uninoculated seedlings, respectively.

During the first week, all plants were exposed to a well-watered

regime. After this period of adaptation, two watering treatments were

applied for five weeks: a well-watered, and a drought stress regime. In

the well-watered regime, plants were watered three times per week at

100% of the water holding capacity. In the drought stress treatment,

plants were watered three times per week at 10% of the water holding
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capacity of the soil. To avoid plant death under drought stress, these

plants were watered once at 100% of the water holding capacity three

weeks after the drought treatment was initiated.

Five weeks after the start of the watering treatment, all plants were

harvested. Three leaves from the same branch were collected from

each plant and immediately immersed in liquid nitrogen and kept at

−80°C for antioxidant enzyme analysis. Then, each plant was

separated into leaves, stems, and roots and lyophilized to measure

dry weight and for chemical analyses.
2.3 Detection of Diaporthe in
inoculated plants

The presence of Diaporthe in inoculated plants was diagnosed by

light microscopy in root samples collected at harvest time. Fresh root

fragments were cleared in 5% KOH at 90°C for 15 min, neutralized

with approximately three volumes of 1% HCl at 20°C overnight,

stained with trypan blue (Berthelot et al., 2016), and visualized.
2.4 Measurements of plant physiological and
biochemical parameters

2.4.1 Photosynthetic parameters
The chlorophyll content was determined 24 h before plant

harvesting by means of a leaf-clip sensor (Dualex Force, Orsay,

France). In each plant, three leaves of the third branch from the top

were selected, and the average chlorophyll content was obtained from

three measurements taken at the central position of each leaf.

The gas exchange measurements at 400 ppm CO2, including

stomatal conductance, CO2 assimilation rate, and water use efficiency

(WUE) were obtained from leaves of the third branch from the top of

four randomly replicate plants per treatment, making use of a CIRAS-

3 portable gas exchange system (PP-Systems, Amesbury, MA, USA)

24 h before plant harvesting. The leaves were pressed between the

upper and lower gaskets of the leaf cuvette head of CIRAS-3 and pre-

acclimated for 15−20 min.

2.4.2 Analysis of mineral element content
The concentration of mineral elements (N, P, K, Ca, Fe, S and Zn)

was analyzed in five replicates of leaf samples. For that purpose,

freeze-dried and ground samples were calcined at 450°C for 8 h, and

ashes were dissolved in HCl : HNO3:H2O (1:1:8). Then, P, K, Ca, Fe, S

and Zn contents were determined by inductively coupled plasma

atomic emission spectroscopy (ICP-OES) in a Varian 720-ES

spectrometer (Agilent, USA). Carbon and Nitrogen contents were

analyzed by the Dumas combustion method in a C-N analyzer (Leco

CHN-628, USA).

2.4.3 Antioxidant enzyme determination
At harvest time, the third leaf from three different branches of the

same plant were pooled for antioxidant enzyme activity assays. Samples

of fresh leaves previously stored at −80°C were ground with liquid

nitrogen and kept at −80°C until the measurement of the antioxidant

enzyme activities. The antioxidant activities of catalase (CAT),
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ascorbate peroxidase (APX), and dehydroascorbate reductase

(DHAR) were measured in leaf samples of four plant replicates per

treatment following the methods described below by Bendou et al.

(2022) and Pérez-López et al. (2009). APX was selected as a

representative peroxidase activity enzyme because it belongs to the

ascorbate-glutathione cycle, it is very sensitive to stress conditions, and

it is well established that APX also regulates redox signaling pathways

in normal plant development (Caverzan et al., 2012). A 96-well

microplate reader FLUOstart® Omega (BMG Labtech, Ostenberg,

Germany) was used for all the spectrophotometric methods.

For CAT activity, 40 mg of the ground samples were mixed with

0.5 ml of 50 mM Tris-HCl (pH= 7.8), 0.1 mM EDTA, 0.2% (v/v)

Triton X−100, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 2

mM dithiothreitol and beaten with glass beads for 1 min. The

homogenates were filtered through a layer of muslin and gel-filtered

over MicroSpin G25 columns (Amersham Biosciences, Sweden)

equilibrated with 50 mM Tris−HCl (pH= 7.8), 0.1 mM EDTA and

0.2% (v/v) Triton X−100. CAT activi ty was measured

spectrophotometrically by monitoring the disappearance of H2O2 at

240 nm in a reaction mixture of a final volume of 300 ml containing 50
mM potassium phosphate buffer (pH= 7.0), 25 mM H2O2 and 5 ml of
the filtered supernatant.

The homogenizing medium for DHAR analysis consisted of 50

mM potassium phosphate (pH= 7.8), 0.1 mM EDTA, 0.2% (v/v)

Triton X−100, 2 mM AsA, 5 mM cysteine, 0.1 mM PMSF and 1% (w/

v) poly(vinylpolypyrrolidone). An amount of 40 mg of ground

samples were incubated with 0.5 ml of the homogenizing buffer for

10 min at 6−8°C, filtered through a layer of muslin and centrifuged at

16,100 g for 15 min. DHAR activity was determined by monitoring

AsA formation via dehydroascorbate (DHA) reduction at 265 nm.

Briefly, the final volume of the assay mixture was 300 ml, and
contained 2.5 mM glutathione (GSH), 0.1 mM EDTA, 50 mM

potassium phosphate (pH= 6.6) and 10 ml of supernatant. The

reaction was initiated by adding 10 ml of 0.2 mM DHA to the

reaction mixture. The reaction rate was corrected for the non-

enzymatic reduction of DHA by GSH.

For the APX activity, the ground samples were homogenized as in

the previous paragraph. APX activity was analyzed by measuring the

oxidation of AsA at 290 nm. Briefly, a volume of 290 ml of reaction
mixture containing 0.8 mM AsA and 50 mM HEPES (pH= 7.6) was

mixed with 10 ml of the supernatant. The oxidation rate of AsA

measured as the decline in absorbance at 290 nm was estimated 1−6

min after starting the reaction with the addition of H2O2 at a final

concentration of 1.2 mM. Corrections were made for the non-

enzymatic oxidation of ascorbate by H2O2 and for the oxidation of

ascorbate in the absence of H2O2.

The measurement of the CAT, APX and DHAR activities were

carried out 25°C and protein content in the supernatant was

measured according to the Bradford method (Bradford, 1976).
2.4.4 Ferric reducing antioxidant potential assay
The total antioxidant capacity was determined in leaves of five

replicates of each treatment using the ferric ion reducing antioxidant

power (FRAP) method (Benzie and Strain, 1996). This method is

based on the reduction of the colorless [Fe(III)−,4,6-tri(2-pyridyl)-s-

triazine)2]
3+ complex, abbreviated as Fe(III)-TPTZ, to the blue-
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colored Fe(II)-TPTZ complex, formed by the action of electron

donating antioxidants at low pH. The FRAP reagent was prepared

by mixing 300 mM acetate buffer (pH=3.6), a solution of 10 mM

TPTZ in 40 mM HCl, and 20.35 mM FeCl3 at a ratio of 10:1:1 (v/v/v).

Five mg of each plant sample were extracted in 700 µl of 50% aqueous

acetone for 30 min in an ultrasound bath at 8°C. The mixture was

centrifuged and transferred to a 96-well plate where 8 µl of the

sample, 8 µl of phosphate buffer saline, and 200 µl of FRAP reagent

were added to each well. The absorbance was measured at 593 nm

after 30-min incubation in a microplate reader FLUOStar Omega

(BMG Labtech, Ostenberg, Germany). A standard curve was prepared

us ing d i ff e r ent concent ra t ions o f 6 -hydroxy-2 ,5 ,7 , 8 -

tetramethylchroman-2-carboxylic acid (Trolox). The results were

expressed as mmol trolox equivalent/g dry weight.

2.4.5 Total phenolic compounds content
The content of total phenolic compounds in leaf samples (five

replicates of each treatment) was determined spectrophotometrically

according to the Folin-Ciocalteu method (Ainsworth and Gillespie,

2007). An aliquot of 100 µl of 50% aqueous acetone extract of each

sample, prepared as previously described for the FRAP assay was

mixed with 500 µl of Folin-Ciocalteu reagent (Scharlab Chemie S.A.).

After 5 min, a volume of 400 ml of a 700 mM Na2CO3 solution was

added. The mixture was incubated for 60 min and the absorbance at

765 nm was measured in a 96-well plate in a microplate reader

FLUOStar Omega (BMG Labtech, Ostenberg, Germany). Gallic acid

was used as a reference standard, and the results were expressed as

mmol gallic acid equivalent/g dry weight.

2.4.6 Proline content
Proline content was quantified in leaves offive plant replicates per

treatment using the spectrophotometric method described by

Shabnam et al. (2016), adapted to 96-well plates in our laboratory.

Approximately 15 mg of freeze-dried and ground plant material were

homogenized in 500 µl of 3% aqueous sulfosalicylic acid and kept for

10 min in ice. The mixture was centrifuged at 10°C and 16,000 g for

10 min and the supernatant was mixed with 250 ml of glacial acetic
and 500 µl of ninhydrin reagent. Then, the mixture was heated at

99°C for 40 min and immediately cooled with ice. The mixture was

centrifuged and an aliquot of 200 µl was transferred to a 96-well plate

where the absorbance was measured at 513 nm in a microplate reader

FLUOStar Omega (BMG Labtech, Ostenberg, Germany). L-proline

(Acrós Organics) was used as a standard for quantification.
2.5 Statistical analyses

The data were evaluated for statistical assumptions of the

ANOVA using the Shapiro-Wilk normality test and Levene´s equal

variance test. The effect of Diaporthe inoculation and water treatment

on plant parameters were analyzed with a two-way ANOVA.

Differences between treatment means were evaluated by Tukey’s

test. All the statistical analyses were performed by means of Sigma-

Plot 14.5.
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3 Results

3.1 Detection of Diaporthe in
inoculated plants

Fungal structures were not observed by light microscopy in the

roots of inoculated plants. Therefore, it appears that the association of

Diaporthe EB4 with tomato plants may be rhizospheric and

not endophytic.

No visual disease symptoms were observed on roots or leaves of

plants inoculated with Diaporthe, regardless of the water regime. This

indicates that this Diaporthe strain is not pathogenic to tomato plants.
3.2 Effect of Diaporthe and water regime on
plant biomass production

In terms of dry weight, both inoculation and water treatment

significantly affected the shoot growth of tomato plants. However, the

interaction of both factors was not significant (Figure 1; Table 1). The

shoot biomass increased in inoculated plants regardless of drought

stress. Compared to uninoculated plants, Diaporthe increased the

shoot biomass by 45% in well-watered plants, and by 80% under

drought. Compared to the well-watered treatment, drought

significantly reduced the shoot biomass by 58% (Figures 1A, B).

For the root biomass, a significant effect of inoculation, water

treatment, and their interaction was detected (Figure 1C; Table 1).

The root biomass increased in inoculated compared to uninoculated

plants in the well-watered treatment (33%), but this difference was not

significant under drought stress (Figure 1C). The root:shoot ratio

increased in uninoculated repect to inoculated plants under drought,

but the difference in the well-watered treatment was not

significant (Figure 1D).
3.3 Effect of Diaporthe and water regime on
photosynthesis activity and WUE

A significant effect of Diaporthe, water treatment, and their

interaction was detected on the chlorophyll content (Table 1).

Compared to uninoculated plants, the chlorophyll content

increased significantly with Diaporthe inoculation, and this increase

was larger under drought stress than in well-watered plants

(Figure 2A). The inoculation with Diaporthe significantly increased

the stomatal conductance regardless of the water regime

(Figure 2B; Table 1).

A significant effect of Diaporthe and its interaction with water

treatment was detected on the CO2 assimilation rate (Table 1).

Compared to uninoculated, this parameter increased in inoculated

plants under drought stress, but the difference in well-watered plants

was not significant (Figure 2C). In parallel to these results, the WUE

increased in inoculated plants compared to uninoculated under

drought stress, but such a difference was not significant in well-

watered plants (Figure 2D).
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3.4 Effect of Diaporthe and water regime on
mineral elements content

The N, P, K, Fe, S and Zn content was significantly affected by the

Diaporthe × water treatment interaction (Table 1). Compared to

uninoculated, the concentration of N, P, K, Fe and Zn increased

significantly in inoculated plants under drought stress, but differences

in the well-watered treatment were not significant (Figure 3). The S

content increased due to Diaporthe in both well-watered and drought

treatments (Figure 3F). The Ca concentration was only significantly

affected by Diaporthe inoculation, increasing in inoculated plants

regardless of water regime (Figure 3D). The total C content

was not significantly affected by any factor or their interaction

(Figure 3H, Table 1).
3.5 Effect of Diaporthe and water regime on
biochemical plant parameters

3.5.1 Antioxidant enzyme activity
A significant effect of Diaporthe-inoculation, water treatment, and

their interaction was detected on the activity of catalase (CAT) (Table 1).
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The CAT activity increased with Diaporthe inoculation, but only when

plants were subjected to drought stress (Figure 4A). DHAR activity was

affected by Diaporthe inoculation and drought stress, but not by their

interaction (Table 1). The DHAR activity increased under drought stress

regardless of inoculation, and in inoculated plants regardless of water

treatment (Figure 4B). The APX activity was significantly lower in plants

under drought stress regardless of inoculation (Figure 4C).

3.5.2 Antioxidant capacity and phenolic
compounds content

A significant effect of the inoculation × water treatment interaction

was detected on the antioxidant capacity (Table 1). Compared to

uninoculated, this parameter decreased in Diaporthe-inoculated plants,

but only under drought stress (Figure 5A). The phenolic compound

content was not significantly affected by any factor (Figure 5B).

3.5.3 Proline content
A significant effect ofDiaporthe inoculation, drought stress, and their

interaction was detected on the proline content (Table 1). Compared to

uninoculated plants, this osmolyte increased significantly in inoculated

plants under drought stress; however, Diaporthe did not change the

proline content in well-watered plants (Figure 6).
B C D

A

FIGURE 1

(A) Six-week-old tomato plants uninoculated (yellow) or inoculated with Diaporthe strain EB4 (blue), with two different water treatments (well-watered
or drought stress), (B) shoot biomass, (C) root biomass, and (D) root/shoot ratio. Different letters indicate different means (Tukey p<0.05) for the
[Diaporthe inoculation × Drought] interaction. Values are means +SE (n=10). Level of significance: *p < 0.05; ***p < 0.001.
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4 Discussion

Diaporthe species are one of the most abundant components of

the culturable fungal microbiome of Festuca rubra subsp. pruinosa

roots (Pereira et al., 2019). These plants grow in an habitat where

exposure to salinity and limited soil nutrients are characteristic.

Diaporthe atlantica strain EB4, isolated from roots of Festuca rubra

subsp. pruinosa, was recently shown to improve plant growth and

alleviate salt stress in two agricultural grasses: tritordeum and

perennial ryegrass (Toghueo et al., 2022). This finding prompted us

to analyze new symbiotic systems in which we could investigate the

potential benefits of Diaporthe EB4 with non-gramineous agricultural

plants of economic relevance such as tomato.

The genus Diaporthe includes pathogenic and endophytic species

(Gomes et al., 2013). Tomato plants inoculated with Diaporthe EB4

exhibited an apparently healthy phenotype with no obvious disease

symptoms. In addition, we did not observe by light microscopy any

fungal structures inside the plant root tissues. This led us to conclude that

Diaporthe EB4 should hold a non-pathogenic, epiphytic association with

tomato plants, and moved forward to run experiments in which tomato

plants were challenged with drought stress.

Although there was no experimental evidence for an endophytic

association between Diaporthe EB4 and tomato, inoculated plants
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performed better than uninoculated plants, showing more biomass

under both water regimes. Plants under drought stress showed

evident changes in morphology, including lower plant biomass,

smaller height, lower number of branches and reduced leaf area, all

detrimental characteristics usually associated with slower plant cell

expansion and division rates (Jaleel et al., 2009). This proved that a

beneficial symbiotic association between Diaporthe EB4 and tomato

plants occurred. Some plant-fungal symbiotic associations are known

to enhance water retention and nutrient absorption, which, in turn,

increase photosynthesis and production of stored material resulting in

better root and shoot biomass (Li et al., 2019; Sarkar et al., 2021).

Previously it was observed that Diaporthe EB4 caused an

enhancement of the content of abscisic (ABA) and indole-acetic

acid (IAA) in leaves of tritordeum under salt stress, accompanied

by an increase in the root and shoot biomass (Toghueo et al., 2022). In

addition, Diaporthe EB4 cultures produced extracellular IAA

(Toghueo et al., 2022). ABA and IAA are well known for their roles

in maintaining water retention capacity and hydraulic properties in

plants under drought, and modulating changes in root morphology

(Tiwari et al., 2017; Saleem et al., 2018). Thus, Diaporthe EB4 could

induce the formation offine roots under drought stress, increasing the

root-soil contact, and improving nutrient and water uptake. Recently,

Diaporthe masirevici was demonstrated to have a positive effect on
TABLE 1 Results of two-way analysis of variance showing the effect of inoculation with Diaporthe EB4, water treatment and their interaction on tomato.

Diaporthe inoculation Water treatment Diaporthe × watering

F P F P F P

Shoot dry weight 39.60 <0.001 146.1 <0.001 1.738 0.196

Root dry weight 14.47 <0.001 113.6 <0.001 5.724 0.022

root/shoot ratio 25.91 <0.001 38.58 <0.001 12.12 0.001

Chlorophyll content 122.9 <0.001 18.67 <0.001 33.92 <0.001

Stomatal conductance 16.21 0.002 0.574 0.463 1.007 0.335

CO2 assimilation 26.69 <0.001 0.462 0.510 7.023 0.021

WUE 8.332 0.014 24.97 <0.001 23.94 <0.001

N 26.47 <0.001 81.15 <0.001 9.942 0.006

P 16.51 <0.001 45.90 <0.001 6.105 0.025

K 0.704 0.414 156.0 <0.001 20.46 <0.001

Ca 13.99 0.002 0.439 0.517 1.125 0.305

Fe 1.172 0.295 56.13 <0.001 18.24 <0.001

S 240.4 <0.001 84.97 <0.001 43.72 <0.001

Zn 37.43 <0.001 76.33 <0.001 26.96 <0.001

C 1.403 0.253 0.352 0.561 0.622 0.442

CAT 9.126 0.011 48.80 <0.001 8.816 0.012

DHAR 4.880 0.047 9.241 0.002 2.207 0.163

APX 0.095 0.763 40.10 <0.001 3.366 0.091

Antioxidant capacity 1.472 0.243 25.27 <0.001 16.59 <0.001

Phenolic compounds 2.107 0.166 1.168 0.296 4.555 0.057

Proline 6.297 0.023 11.97 0.030 4.662 0.046
f

Numbers in bold indicate that the factor significantly affects the variable.
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plant development by enhancing IAA production and phosphate

solubilization (da Silva Santos et al., 2022).

In this study, Diaporthe EB4 stimulated soil uptake and

mobilization to the plant shoot of several macro- and

micronutrients (N, P, K, Ca and S, and Fe and Zn) with essential

roles in plant development, biosynthesis of photosynthetic pigments

and proteins, photosynthesis and hormonal water regulation (Ahmad

and Abdin, 2000; Peng et al., 2007; Hänsch and Mendel, 2009). The

increase in the content of the above mineral nutrients, related to an

increase in shoot biomass, was particularly significant in Diaporthe–

inoculated plants under drought conditions. Diaporthe EB4 could

suppress, at least in part, the negative effect of drought stress on plant

biomass through a more efficient system of absorption of nutrients

(Figure 7). The fact that the inoculated plants under drought had an

unexpectedly higher mineral content than those under well-watered

conditions was attributed to a dilution effect on the mineral nutrient

content in inoculated plants under well-watered (and more favorable
Frontiers in Plant Science 0765
growth) conditions, in which the C metabolism was not

downregulated and the partitioning of C towards structural

components was not restricted as observed under drought stress

(Ghaffari et al., 2019). In our study, the increase in biomass of

Diaporthe-inoculated tomato plants seems to be conveyed by

hormone mediated root structural changes leading to improved

mineral uptake and water retention.

The decrease in plant growth caused by drought is also associated

with the downregulation of photosynthesis (Parkash and Singh,

2020). In the present study, drought stress caused an evident

reduction in the stomatal conductance and the CO2 assimilation

rate of leaves in uninoculated plants, thereby limiting the synthesis

and sink distribution of photosynthates. However, no significant

changes in chlorophyll content were observed in uninoculated

plants between drought and well-watered conditions, suggesting

that, although there was a prominent decline in shoot biomass, the

photosynthetic apparatus did not sustain severe photodamage.
B

C D

A

FIGURE 2

(A) Chlorophyll content, (B) stomatal conductance, (C) CO2 assimilation rate, and (D) water use efficiency (WUE), of tomato plants uninoculated (yellow)
or inoculated with Diaporthe EB4 (blue), with two different water treatments (well-watered or drought stress). Different letters indicate different means
(Tukey p < 0.05) for the [Diaporthe inoculation × Drought] interaction. Values are means +SE (n=5). Level of significance:*p < 0.05; **p < 0.01;
***p < 0.001.
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Interestingly, Diaporthe enhanced the chlorophyll content and the

CO2 assimilation rate under both water treatments. The net CO2

assimilation rate in inoculated plants under drought was highest and

correlated with the highest content of N and chlorophyll in leaves.

This information can be used to predict that the maximum

carboxylation rate by Rubisco (Vcmax) should also be the highest

in inoculated plants under drought stress (Wang et al., 2021). Similar

effects have been reported in other symbiotic systems. For example,

Diaporthe liquidambari improved N accumulation in rice (Yang et al.,

2014; Yang et al., 2015) and an increase in chlorophyll content was

observed in Trichoderma–inoculated Theobroma cacao and

Neotyphodium–inoculated Elymus dahuricus under drought stress

(Zhang and Nan, 2007; Bae et al., 2009), whereas an enhancement

of net CO2 assimilation was reported in Neotyphodium–infected tall

fescue (Newman et al., 2003). Likewise, an improved adaptation to

drought stress was observed in barley inoculated with Piriformospora

indica as a result of enhanced activity of key enzymes of the N

metabolism and a better distribution of N in the plant (Ghaffari

et al., 2019).

Diaporthe EB4 was shown to increase the IAA content of Lolium

perenne and tritordeum plants exposed to salt stress (Toghueo et al.,

2022), and exogenous application of IAA was reported to increase the

chlorophyll content in maize exposed to salt stress, and to stimulate

stomatal aperture due to improved concentration of K in cells (Kaya
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et al., 2013). In this regard, the accumulation of macronutrients like K

in leaves, together with an increase in IAA, seems to optimize leaf

CO2 assimilation and water use. In our study, Diaporthe-inoculated

plants under drought stress exhibited the greatest WUE, even though

the stomatal conductance increased. In contrast, plants of Lolium

arundinaceum symbiotic and non-symbiotic with Epichloë

coenophialum (growing in the aboveground plant parts) held

similar transpiration rates (Swarthout et al., 2009). In our study, the

improvement of the relationship between the assimilated CO2

molecules and the loss of H2O molecules by transpiration was

mainly attributed to a higher Rubisco activity (higher Vcmax) in

the leaves of inoculated plants under drought, instead of a decrease in

stomatal opening. Indeed, water movement through the xylem vessels

could be enhanced in inoculated plants under drought stress because

of the higher soil uptake of K by Diaporthe–colonized roots.

Therefore, Diaporthe EB4 might promote tomato plant growth and

confer tolerance to drought stress by improving soil uptake of mineral

nutrients, chlorophyll content, leaf photosynthesis, and K–mediated

stomatal dynamics (Figure 7).

In response to ROS production caused by drought stress, plants

have developed an intricate antioxidant defense network composed of

enzymatic and non–enzymatic antioxidants that scavenge ROS and

maintain cellular redox homeostasis (Ahmad et al., 2010; Muhammad

et al., 2021). In our study, APX and CAT, both H2O2 scavenging
B C

D E F

G H
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FIGURE 3

(A) Total nitrogen, (B) phosphorus, (C) potassium, (D) calcium, (E) iron, (F) sulphur, (G) zinc and (H) total carbon contents in tomato plants uninoculated
(yellow) or inoculated with Diaporthe EB4 (blue), with two different water treatments (well-watered or drought stress). Different letters indicate different
means (Tukey p<0.05) for the [Diaporthe inoculation × Drought] interaction. Values are means +SE (n=5). Level of significance: *p < 0.05; **p < 0.01;
***p < 0.001.
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FIGURE 4

Activity of the antioxidant enzymes (A) catalase (CAT), (B) dehydroascorbate reductase (DHAR), and (C) ascorbate peroxidase (APX) of tomato plants
uninoculated (yellow) or inoculated with Diaporthe EB4 (blue), with two different water treatments (well-watered or drought stress). Different letters
indicate different means (Tukey p < 0.05) for the [Diaporthe inoculation × Drought] interaction. Values are means +SE (n=5). Level of significance:
*p < 0.05; **p < 0.01; ***p < 0.001.
BA

FIGURE 5

(A) Antioxidant capacity, and (B) total phenolic compounds content of tomato plants uninoculated (yellow) or inoculated with Diaporthe EB4 (blue), with
two different water treatments (well-watered or drought stress). Different letters indicate different means (Tukey p<0.05) for the [Diaporthe inoculation ×
Drought] interaction. Values are means ± SE (n=5). Level of significance: ***p < 0.001.
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enzymes, varied their activities under drought stress regardless of

inoculation treatment, although in different ways. The activity of CAT

increased under drought stress, implying that H2O2 accumulated in

the plant cells, and this activity was notably higher in inoculated

plants under drought. We thus propose that Diaporthe EB4 could

similarly confer tolerance to drought through an induced mechanism,
Frontiers in Plant Science 1068
in which the activity of some antioxidant enzymes like CAT could

be modulated.

Intriguingly, under drought stress the APX activity decreased,

while the DHAR activity increased. Both APX and DHAR belong to

the ascorbate-glutathione cycle. The decrease in APX activity is

probably due to a lower content of ascorbate in leaf cells, which is
FIGURE 6

Proline content in leaves of tomato plants uninoculated (yellow) or inoculated with Diaporthe EB4 (blue), with two different water treatments (well-
watered or drought stress). Different letters indicate different means (Tukey p<0.05) for the [Diaporthe inoculation × Drought] interaction. Values are
means +SE (n=5). Level of significance: *p < 0.05.
BA

FIGURE 7

Overview of the effect of drought stress in uninoculated and Diaporthe-inoculated tomato plants. (A) Drought stress had a deleterious effect on tomato plant
growth and biomass production. This biomass reduction can be associated with a reduction in photosynthetic activity caused by a reduction in stomatal
conductance and consequently in the CO2 assimilation rate, and also by a decline in the chlorophyll content. The stomatal closure decreased the water
movement on the plant which can be also associated with a decrease in the mineral uptake. In response to drought stress, the activity of CAT and proline
content increased to reduce oxidative damage and for an osmotic counterbalance, however, this increase does not seem to be enough to alleviate the
negative effect. (B) Diaporthe significantly mitigated the harmful impact of drought stress through combined mechanisms, which include an increase in the
chlorophyll content, an optimal stomatal conductance that facilitates the CO2 assimilation, and a greater WUE, indicating the plant maintains its stomata
open and subsequently preserves an optimal photosynthesis activity. Diaporthe stimulated the increase of antioxidant defense system, e.g., CAT and DHAR,
suggesting a reduction of the oxidative stress caused by water limitations; significantly enhanced the proline content that can participate in the osmotic
adjustment or in the structure protection, and increased the mineral uptake. All together favor plant growth under drought stress.
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consistent with the lower growth of tomato plants under drought

stress and the role of ascorbate in cell expansion and cell division

(Foyer, 2018). APX was not significantly affected by Diaporthe

inoculation. However, the significant increase in DHAR activity in

inoculated plants under drought suggested that cellular ascorbate

regeneration was better in the presence of Diaporthe EB4, although

the content of ascorbate in inoculated plants probably did not reach

levels similar to those under well-watered conditions on the basis of

plant biomass. Altogether, Diaporthe EB4 could improve the

enzymatic antioxidant response of tomato plants and confer

protection against ROS generation during drought stress (Figure 7).

Additionally, fungal endophytes can induce the formation non–

enzymatic antioxidant metabolites such as phenolic compounds

(White and Torres, 2010; Bacon and White, 2016; Varela et al.,

2016). In our previous studies, Diaporthe EB4 did not enhance the

total phenolic content in grasses under control or salt stress

conditions (Vázquez de Aldana et al., 2021; Toghueo et al., 2022).

In the present study, we obtained rather similar results and Diaporthe

seemed to induce a decline in the non–enzymatic antioxidant capacity

under drought stress and to have no significant effect on the total

phenolic content.

Osmotic adjustment through the accumulation of solutes such as

proline is an important mechanism of plant adaptation to salinity and

drought (Munns, 2011; Kaur and Asthir, 2015). In fact, an enhanced

accumulation of proline due to inoculation with Diaporthe EB4 also

occurred in plants of tritordeum under salt stress (Toghueo et al.,

2022). In addition to its role as osmolyte, proline interacts with

protein and membranes stabilizing their structures and activities

(Farooq et al., 2009; Zivcak et al., 2016) and deters oxidative

damage through scavenging of ROS, such as hydroxyl radicals

formed during H2O2 decomposition within the Fenton reaction

(Das and Roychoudhury, 2014). In this study, the highest proline

accumulation was detected in inoculated plants under drought, a

result in line with previous studies in which fungal endophytes like

Penicillium sp., Trichoderma harzianum, DSE, or Piriformospora

indica conferred drought tolerance to several crops and increased

accumulation of proline as osmoprotectant (Molina-Montenegro

et al., 2016; Alwhibi et al., 2017; Valli and Muthukumar, 2018;

Swetha and Padmavathi, 2020). This accumulation of proline did

not seem to notably reduce the loss of water molecules on the basis of

the stomatal conductance. This led us to propose, together with its

role as an osmoprotectant and ROS scavenger, that proline is also a

source of reducing power (NADPH) that plants can use to produce

ATP in the dark, showing an oscillating day/night content pattern

(Signorelli, 2016) as they also use the accumulation of osmoprotectant

sugars under drought stress to produce cell energy when the stress

ceases (Ghaffari et al., 2019).

In conclusion, this study shows the capacity of Diaporthe

atlantica, a fungus symbiotic with plants adapted to a saline

environment, to promote growth and adaptation to drought stress

on tomato. Diaporthe played a positive role in the modulation of

tomato responses to drought stress through the combination of

various processes. Diaporthe could confer drought stress tolerance

to tomato by improving soil uptake of mineral nutrients, chlorophyll

content, leaf photosynthesis and K-mediated stomatal dynamics. In
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addition, Diaporthe could improve the enzymatic antioxidant

response of tomato, through an induced mechanism in which the

activity of some enzymes like CAT could be modulated and confer

protection against ROS generation during drought stress. An

enhanced accumulation of proline could also play an important

role in the response of plants to water stress, acting as

osmoprotectant, ROS scavenger, and a source of reducing power to

produce energy. In general, these results indicate that symbiotic fungi

can enhance tomato tolerance to drought stress.
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The core microbiota of plants exerts key effects on plant performance and

resilience to stress. The aim of this study was to identify the core endophytic

mycobiome in U. minor stems and disentangle associations between its

composition and the resistance to Dutch elm disease (DED). We also defined

its spatial variation within the tree and among distant tree populations. Stem

samples were taken i) from different heights of the crown of a 168-year-old elm

tree, ii) from adult elm trees growing in a common garden and representing a

gradient of resistance to DED, and iii) from trees growing in two distant natural

populations, one of them with varying degrees of vitality. Endophyte

composition was profiled by high throughput sequencing of the first internal

transcribed spacer region (ITS1) of the ribosomal DNA. Three families of yeasts

(Buckleyzymaceae, Trichomeriaceae and Bulleraceae) were associated to DED-

resistant hosts. A small proportion (10%) of endophytic OTUs was almost

ubiquitous throughout the crown while tree colonization by most fungal taxa

followed stochastic patterns. A clear distinction in endophyte composition was

found between geographical locations. By combining all surveys, we found

evidence of a U. minor core mycobiome, pervasive within the tree and

ubiquitous across locations, genotypes and health status.

KEYWORDS

fungal endophytes, metabarcoding, plant-fungal interactions, Dutch elm disease, core
microbiome, tree microbiome
1 Introduction

The endophytic assembly in deciduous plant tissues (e.g. annual plants, and deciduous

leaves) is largely configured each season through horizontal transmission, when priority

effects appear to be crucial (Toju et al., 2018b; Ridout et al., 2019; Debray et al., 2022).

However, the assembly of endophytes in perennial organs (e.g. tree stems) is likely more

complex (Saikkonen, 2007). Studies in crop plants and forest trees have reported consistent
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co-occurrence of endophytic assemblages known as core

microbiomes, i.e., assemblages of microbes that constantly reside

in the plant and are shared among conspecific hosts (Shade and

Handelsman, 2012; Thomas et al., 2019; Noble et al., 2020). These

core microbes are part of functional networks that positively or

negatively affect host performance (Bonito et al., 2019). However,

little is understood about core microbes of perennial organs and the

extent to which their assembly is shaped by random colonization,

environmental cues or active host recruiting factors (Müller et al.,

2016). Perhaps because sampling in large tree crowns presents

methodological difficulties, the diversity and spatial distribution

of endophytes in long-lived trees remain largely unexplored.

Numerous environmental factors can potentially affect plant

colonization by endophytes, including age, light availability, spatial

distance from soil, and microclimate within the crown (Johnson

and Whitney, 1989; Helander et al., 1993; Bahram et al., 2022). The

endophytic composition can be also affected by host geographical

location and host vitality (Agostinelli et al., 2018). Indeed, some

endophytes that colonize long-lived trees are facultative

saprotrophs or necrotrophs living in a cryptic phase (Carroll,

1988; Baum et al., 2003). Through environmental filtering, local

climatic conditions (e.g. temperature, humidity and rainfall) can

strongly influence the production and release of microbial

propagules with potential to invade tree tissues (Zimmerman and

Vitousek, 2012; Giauque et al., 2019). Furthermore, host-specific

traits can drive an active recruitment of microbes (Cregger et al.,

2018; Gallart et al., 2018). For instance, a genotype-dependent

production of defense compounds against pathogens was shown

to alter endophyte community assembly in maize (Saunders and

Kohn, 2009). As a consequence of host and environmental effects

on microbiomes, the composition of the surrounding vegetation

and changes in land use can alter endophyte community at stand

level (Li et al., 2019). In sum, endophyte assembly is conditioned by

complex interactions among plants, microbes and the environment.

The current pandemic of Dutch elm disease (DED) is caused by

Ophiostoma novo-ulmi. Since the beginning of the past century,

DED has caused massive loss of elm trees native to Europe and

North America (Martıń et al., 2019b). The disease is vectored by

elm bark beetles in the genera Scolytus and Hylurgopinus, or

transmitted through root contacts. After inoculation, the fungus

establishes in internal plant tissues, where it sporulates and spreads

systemically, causing massive occlusion and embolism of xylem

vessels. In most cases, infection ultimately leads to a wilt syndrome

and tree death (Ouellette and Rioux, 1992), although some

individuals are able to survive as recruiting trees through disease-

resprouting cycles (Brasier and Webber, 2019). The composition of

endophytic fungi in elms remains largely unexplored. A previous

study showed that endophyte diversity in elms was influenced by

host location and genotype (Martıń et al., 2013), and that the

diversity of the mycobiome in the xylem (but not in leaves or bark)

of elm trees susceptible to DED was higher than in resistant trees.

However, this study addressed only the culturable fraction of

endophytes, which account for less than 5% of the total fungal

richness within a tree (authors, personal observation).

Elm resistance to DED is affected by multiple factors, including

the genetic make-up of hosts and pathogens, and their interaction
Frontiers in Plant Science 0273
with the environment (Martıń et al., 2021). The role of microbiome

in tree resistance remains poorly understood, although in ash

dieback complex associations between endophytes and host

genotypes seem to condition the outcome of disease (Griffiths

et al., 2020). It is becoming clearer that certain endophytic

infections trigger systemic responses in plants (Mejıá et al., 2014)

in certain cases priming plant defense against pathogens, as was

recently evidenced in the case of the elm-O. novo-ulmi pathosystem

(Martıńez-Arias et al., 2021a). Some endophytes may also produce

antimicrobial metabolites, enzymes, hormones and other bioactive

compounds, enhancing host resistance (Hardoim et al., 2015; Busby

et al., 2016; Martıńez-Arias et al., 2021c). In particular, the core

microbiome of a plant seems to exert key effects on plant

performance and resistance to various stressors (Shade and

Handelsman, 2012; Toju et al., 2018a). Following this concept,

core taxa associated with elms probably perform essential functions,

including protection against disease.

The general aim of this study was to identify the core

endophytic mycobiome in U. minor stems as a first step to

unravelling the ecology of elm microbial consortia. To address

this aim we studied: i) the spatial variation of endophyte

composition within the aerial part of a mature tree and between

distant geographical locations; ii) the endophyte composition of ten

U. minor trees showing a gradient of resistance level to O. novo-

ulmi; and iii) the fungal composition of six large U. minor trees

showing different vitality levels but growing in the same location.
2 Materials and methods

2.1 Plant material

To determine how tree stem fungal microbiome is structured,

we sampled wood tissue from twigs (1-2 cm diameter) and trunks

(5-cm cores at breast height) from trees at four locations in Spain in

the spring of 2012. We focused on stem endobiome because it is a

perennial tissue, in which microbiome interactions have time to

evolve and mature, and because the agent responsible for DED is a

vascular pathogen and therefore mostly interacts with the xylem

microbiome. To prevent inclusion of epiphytic flora, the external

layer of the bark (periderm) was manually extirpated after the

collection. The stem tissues analyzed were xylem and the

remaining phloem.

2.1.1 Within-tree mycobiome variation
Ten spots were sampled within the crown and on the stem of a

landmark Ulmus minor tree (Somontes, Madrid, Spain; Figure 1;

‘landmark tree’). The samples comprised eight twigs from the

crown at four heights (3, 8, 13 and 18 m) and two orientations

(north and south), and two trunk cores (same orientations). Cores

were extracted using a sterilized core drill. The 25-m tree was a

lingering monumental elm. Common garden tests on clones

generated from its cuttings showed that the tree was not

genetically resistant to DED (data not shown), and in 2014 it died

after an exceptionally harmful DED outbreak.
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2.1.2 Wood mycobiome and elm DED resistance
The second sampling was at the elm clonal bank (common

garden setup) at the Puerta de Hierro Forest Breeding Centre

(Madrid; Figure 1), the headquarters of the Spanish elm breeding

program. The clonal bank has around 250 genotypes from Spain,

including seven DED-resistant genotypes (Martıń et al., 2015). Four

twigs were collected from scaffold branches in 10 trees

(Supplementary Table 1) catalogued as resistant (n=3; V-AD2;

M-RT1.5; M-DV5), intermediately susceptible (n=4; CR-RD2;

GR-HL2; J-CA2; MA-PD2), or susceptible (n=3; GR-DF3; M-

DV1; TO-PB1). Samples were collected at four spots per tree to

ensure accurate representation of the endophyte composition and

mitigate any effect of local infections (see below). All twigs were

collected from the lower half of the crown, to a height of 4 m.

The level of resistance to DED of the 10 U. minor clones

sampled at the clonal bank was determined during screening tests

at the Spanish elm breeding program at Puerta de Hierro Forest

Breeding Centre (Madrid, Spain) (Supplementary Table 1,

Supplementary Text). The 10 trees sampled have been never

artificially inoculated with the DED pathogen.

2.1.3 Variation in trees differing
in vitality phenotype

Following the same protocol as in the clonal bank, twigs from

six trees were collected from a natural U. minor stand in the

municipality of Rivas-Vaciamadrid (Rivas population; ‘Madrid

province’; Figure 1). This population lacks genetically resistant

clones (tested in a common garden) but has not been eradicated

by DED. The reasons behind this elusion are unclear but could be

due to phenotypic avoidance due to the effect of biotic or abiotic

factors. The stand is nonetheless showing clear signs of dieback, in

part because of DED infections but various other undetermined

causes might be playing a role. Most trees in this stand belong to the
Frontiers in Plant Science 0374
susceptible U. minor var. vulgaris. This taxon presents very low

genetic variability, because it originated from a single U. minor tree,

the Atinian elm (Gil et al., 2004). Indeed, these trees are genetically

similar to the clone TO-PB1, another U. minor var. vulgaris

specimen held at the Breeding Centre (and included in the clonal

bank collection). We collected samples from trees ranging various

health statuses (Supplementary Figure 1). Those health statuses

(named RIV1 to RIV6) were scored visually from 1 (no symptoms)

to 6 (profuse dieback symptoms).

2.1.4 Variation among geographical locations
Using the same protocol as in the clonal bank, three trees from a

small, natural stand in the province of Burgos (approximately 150

km north of the other locations; Figure 1) were sampled to provide a

background reference of endophyte diversity and composition of

the populations in Madrid province.
2.2 DNA isolation, amplification and NGS

After the collection, samples were sterilized, peeled, frozen and

ground. All these steps were carried out in a laminar flow cabinet to

minimize contaminations. The four twig samples taken from each

individual tree at the clonal bank, Rivas and Burgos populations were

combined and milled together, resulting in one pool of wood powder

per sampled tree. DNA was isolated from the powder after enzymatic

digestion to improve recovery of fungal DNA. Zirconium oxide beads

were added during vortexing to increase cell wall lysis. Endophyte

composition was profiled by high throughput sequencing of the first

internal transcribed spacer region (ITS1) of the ribosomal DNA.

Sequencing effort was uneven among experiments, prioritizing the

landmark tree samples, which were also the first to be processed to

determine the level of resolution needed in subsequent experiments.

The clonal bank experiment followed in sequencing effort, to attain

accurate values of endophyte abundance for identifying potential

associations with DED resistance. The Burgos population was only

shallowly sequenced since, as an outgroup, was only intended to test for

ubiquity of microbiome elements detected in the other populations.

DNA amplification was performed in two steps: (1) to cover the target

region with oligonucleotides that contained the specific fungal primer

ITS1-F (Gardes and Bruns, 1993) or the non-specific primer ITS2

(White et al., 1990); (2) to attach the adaptors for the sequencing

platform. After the second PCR, the product of all the samples was

quantified, pooled equimolarly and pyrosequenced in a 454 GS FLX

Titanium platform (Roche, Basel, Switzerland). A negative control

sample was created by autoclaving collected twigs three times and then

applying to them the same protocols previously described. A more

detailed description of these methods is available in the

Supplementary Text.
2.3 Bioinformatic pipeline

The bioinformatic treatment of pyrosequencing output was

performed following the guidelines of Lindahl et al. (2013).
FIGURE 1

Geographical location of the four collection sites.
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Demultiplexing, denoising, dereplication, dechimerization and

sequence truncation processes were carried out using the default

values of the RunTitanium script developed in AmpliconNoise

v1.29 (Quince et al., 2011; Supplementary Text). The ITS1 region

was then extracted from the sequences using FungalITSextractor

(Nilsson et al., 2010).

Although AmpliconNoise creates OTUs (Operational

Taxonomic Units) by collapsing identical sequences, we further

clustered them with the grammar-based software GramCluster 1.3

(Russell et al., 2010) in greedy mode to build new OTUs,

allowing higher variation among sequences. This program was

run on the whole dataset (i.e. pooling the output of all samples)

to build OTUs across all samples, allowing subsequent among-

sample comparisons.
2.4 Taxonomic assignment

Taxonomic composition was investigated using the naïve

Bayesian classifier method implemented in R package dada2 v.

1.22.0 (Wang et al., 2007; Callahan et al., 2016). We used the last

available UNITE release (16/10/2022) (Kõljalg et al., 2005; Nilsson

et al., 2019; Kõljalg et al., 2020) as the reference curated database.

For OTUs of special interest, we carried out BLAST searches on the

NCBI database to double-check the assignment provided by dada2

using the UNITE database.
2.5 Diversity estimates and
hypothesis contrasts

Commonly used diversity indices were estimated for each

sample collected, using the counts per OTU as taxonomic

information. Shannon’s H and Simpson’s l indices, and species

richness on counts rarefacted to 500, were calculated using R

package “vegan” v. 2.6.4 (Oksanen et al., 2015). Statistical

analyses were performed taking into account that count data in

these types of studies follow a negative binomial distribution as in

RNA-seq experiments (McMurdie and Holmes, 2014). As suggested

by these authors, R package DESeq2 v. 1.34.0 (Love et al., 2014),

which is designed to construct negative binomial models, was used

to examine the data and test for associations between taxonomic

group abundance and resistance to DED. In order to explore the

structure of the samples, DESeq2 was used to perform a variance-

stabilizing transformation of the OTU counts to conduct a standard

Principal Components Analysis. Tests for associations were run on

the clonal bank samples, setting crown wilting percentage (as a

proxy of resistance) as the only explanatory variable. Significance

was calculated with a Wald test and adjusted for multi-testing using

the default DESeq2 approach that estimates False Discovery Rate

adjusted P-values (more details in Supplementary Text). Given the

unreliable taxonomic certainty of OTU formation through

clustering and the possible redundancy in ecological function of

closely related species and genera, we decided to focus on the higher

taxonomic levels (such as family and order).
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2.6 Core microbiome demarcation

The distributions of number of samples in which each OTU was

present (OTU incidence distribution) were used to determine which

OTUs were putatively from the core microbiome, following the

concept of Shade and Handelsman (2012). The expected pattern of

incidence of OTUs, if their occurrence probability is low and mostly

based on randomness (i.e. local infections rather than core

microbiome), must agree with a Poisson or negative binomial

distribution. Therefore, if the OTU incidence distribution departs

from that hypothesized behaviour, it can be assumed that non-local

infections are occurring. Consequently, we selected more than seven

samples as the threshold value in both the landmark tree and the

clonal bank because it was where the distributions clearly diverged

from Poisson distributions (see Results). Thus, OTUs present in

more than seven spots of the landmark tree or in more than seven

trees of the clonal bank, and also present in at least two out of the

four locations, were considered core members.
3 Results

3.1 Sampling effort and saturation

After running the bioinformatic pipeline, we obtained 106,047

informative reads (considered counts). These were grouped by

GramCluster into 435 clusters (considered OTUs henceforth).

Out of these, 74 were singletons, 40 doubletons and 23 tripletons.

A further 263 OTUs were represented by more than five reads. Five

OTUs belonged to kingdoms other than fungi. Those OTUs plus

the ones represented by singletons or doubletons were discarded for

further analyses. To ensure a more accurate OTU richness

comparison, we rarefied the count data to 500 reads per sample.

The mean values (± s.e.) of rarefied OTUs ranged from 64.4 ± 3.3 in

one of the lower resprouted branches of the Somontes tree to 15.6 ±

2.1 in one sample from the Rivas stand (RIV2, with advanced

dieback). Rarefaction curves supported the figures observed by the

rarefaction to 500 reads and indicated that the sampling effort was

sufficient to capture the richness trends of each sample

(Supplementary Figures 2, 3). Principal Component Analysis

showed a separation between sites (Figure 2).

Across the total sample set, 103 families, 48 orders, 17 classes

and 3 phyla were detected. Out of the 317 OTUs not discarded, 293

were assigned to a phylum, 267 to a class, 256 to an order and 228 to

a family. Genus was provided for 203 OTUs, and species for 131.

However, both genus and species assignments cannot be considered

reliable due to the reduced taxonomic resolution of the ITS1.
3.2 Within-tree distribution of endophytes

The Somontes tree had 68,612 reads passing filtering, clustered

into 231 OTUs (8 singletons, 2 doubletons and 14 tripletons, just

considering the landmark tree counts). Regarding incidence, 11

OTUs were present in all the in-tree spots sampled and 22 were
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present in at least eight (Table 1, Figure 3A). A further 80 OTUs

were present in just one spot and 58 were present in two

(Figure 3A). The number of OTUs at higher abundance in the

tree did not follow a purely rare event distribution such as the

Poisson or negative binomial distribution, as seen in the smooth but

distinguishable peak at the end of the distribution (Figure 3A).

Three phyla, 15 classes, 41 orders and 81 families were detected

within the tree (Figure 4). Across the tree, the levels of diversity

(measured as Shannon’sH, Simpson’s l and rarefied OTU richness)

were generally high, with the following deviations: (i) the two lowest

branches, produced from resprouts from the trunk, displayed

remarkably higher levels of diversity; (ii) one sample from the

trunk and one from the middle crown exhibited low values of both

H and l.
3.3 Endophyte diversity in relation
to DED resistance

High-throughput sequencing on the 10 trees of varying levels of

resistance to DED from the clonal bank at Puerta de Hierro

breeding center produced 20,534 sequences after filtering. The

sequences were clustered into 173 OTUs: 20 singletons, 11

doubletons and 19 tripletons. Similar to the results in the

Somontes tree, most OTUs were present in just one sample (67),

two samples (27) or three samples (17). However, the counts did not

drop at a rate consistent with a Poisson process, and reached a

stable level beyond five samples (Figure 3B). In total, two phyla, 15

classes, 34 orders and 68 families were detected (Figures 5A, C).

Clone TO-PB1 (susceptible) displayed the lowest levels of

diversity (H = 1.03). Conversely, the resistant clone M-RT1.5

showed the highest overall diversity estimates (H = 2.94). GR-

HL2 (susceptible) and MA-PD2 (moderately resistant) also

displayed high diversity values. Wilting after DED inoculation
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(used as a proxy of susceptibility) was not significantly correlated

with any of the diversity estimates, indicating the absence of a

strong correlation between diversity estimates and resistance to

DED. However, the limited sample size (n = 10) may have

prevented detection of a more subtle correlation.

The tests of association between wilting and taxa abundance

produced unambiguous hits (Table 2). Three families and three

orders were significantly associated with resistance and one family

and order was associated with susceptibility. The family with the

highest association was Buckleyzymaceae (Figure 6A), a

Basidiomycota of the Cystobasidiomycetes class and undefined

order (Incertae sedis). It had lower support at OTU level,

represented by the genus Buckleyzyma (OTU_71). The next most

significant hit was from the family Trichomeriaceae, Ascomycota

(Figure 6B), a recently circumscribed family in the order

Chaetothyriales, excised from family Herpotrichiellaceae. It was

also supported, but to a lesser degree, by the hit at OTU level, in

OTU_41 assigned to the genus Knufia. The next and least

significant hit at family level was Bulleraceae (Figure 6C), echoing

at order level as Tremellales (Basidiomycota). Two OTUs (OTU_70

and OTU_55) were significant and belonged to the genera

Genolevuria (based on UNITE) or the related Cryptococcus (based

on NCBI). All these taxa were negatively associated with

susceptibility (proxied as wilting). Family Diatrypaceae was

positively associated with susceptibility, and this result was

reproduced with stronger support at order level (Xylariales) and

at class level (Sordariomycetes). Also, OTU_1 and OTU_19

(Sordariomycetes) were posit ively associated to DED

susceptibility, being the former assigned by dada2 to the genus

Anthostoma and by BLAST into NCBI’s GenBank to Lopadostoma

but both with suboptimal identity (< 95%, due to a 11-bp indel), and

the latter assigned via dada2 only at order level (Hypocreales), but

via BLAST into NCBI’s GenBank to Annulohypoxylon multiforme,

Xylariales (>99% identity). These findings hint at a general

relationship between the Sordariomycetes and susceptibility.
3.4 Endophytic mycobiome in trees
representing a gradient of vitality

The six samples collected in the natural riparian stand at Rivas-

Vaciamadrid municipality from trees at varying stages of dieback

produced 13,408 reads, clustered into 92 OTUs: 16 singletons and

11 doubletons. Forty-eight were represented by more than five

reads. Only six OTUs were present in all trees and 10 were present

in five samples (Figure 3C). The secondary peak found in the OTU

incidence distribution was not in the total number of samples (n =

6) but in n = 5.

None of these OTUs was identified as genus Ophiostoma or

order Ophiostomatales, even though the UNITE database included

several accessions for both O. ulmi and O. novo-ulmi, and it was

undoubtedly detected as singleton in two trees of the clonal bank

(GR-DF3 and V-AD2). The most affected tree (RIV2) and two trees

with moderate dieback (RIV1 and RIV4) were dominated by

Sordariomycetes: RIV1 was rich in Diatrypaceae and RIV2 in

Bionectriaceae (Figures 5B, C). Both RIV4 (moderate dieback)
FIGURE 2

First two axes from the Principal Component Analyses performed on
the OTU counts after variance stabilizing transformation.
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and RIV6 (incipient dieback) had Nectriaceae as the most abundant

family, although it was also abundant in the healthy RIV3. The two

healthy trees (RIV3 and RIV5) were more infected than the other

trees by Dothideomycetes and Eurotiomycetes. For diversity, RIV5

exhibited the highest values in all three indices calculated

(Shannon’s H, Simpson’s l and rarefied OTU richness). The
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affected RIV1 and RIV6 displayed high values of H and richness,

and RIV3 (healthy) and RIV6 had high values of l. The tree with
lowest vitality (RIV2) had the lowest diversity values.

The healthiest tree (RIV5) displayed a clearly distinct pattern

that was much richer in Basidiomycota (Figure 5B).

Trichomeriaceae was the most common family in this tree,
TABLE 1 OTUs present in at least eight samples of the landmark tree or the clonal bank.

OTU id Phylum Order Class Family Genus NL NC NT Npop

OTU_0 Ascomycota Dothideomycetes Myriangiales NA NA 7 9 21 4

OTU_2 Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria 8 7 23 4

OTU_6 Ascomycota Dothideomycetes Dothideales Saccotheciaceae Aureobasidium 7 10 26 4

OTU_7 Ascomycota Dothideomycetes Myriangiales Endosporiaceae Endosporium 10 10 26 4

OTU_8 Ascomycota Dothideomycetes Pleosporales Cucurbitariaceae NA* 2 9 19 4

OTU_10 Ascomycota Dothideomycetes Pleosporales Didymellaceae NA 10 10 29 4

OTU_13 Ascomycota Orbiliomycetes Orbiliales Orbiliaceae Retiarius 6 8 15 3

OTU_14 Ascomycota Dothideomycetes Mycosphaerellales Teratosphaeriaceae Lapidomyces 3 8 11 2

OTU_15 Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Filobasidium 10 9 25 4

OTU_16 Ascomycota Dothideomycetes Mycosphaerellales Extremaceae Petrophila 4 8 13 3

OTU_18 Ascomycota Sordariomycetes Hypocreales Incertae sedis Trichothecium 0 10 16 3

OTU_21 Ascomycota NA NA NA NA 8 8 19 4

OTU_23 Ascomycota NA NA NA NA 10 7 17 2

OTU_24 Ascomycota Leotiomycetes Thelebolales Pseudeurotiaceae NA* 10 9 23 4

OTU_25 Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium 10 5 17 4

OTU_27 Ascomycota Lecanoromycetes Caliciales Physciaceae Rinodina 10 10 21 3

OTU_29 Ascomycota Dothideomycetes NA NA NA 9 8 20 3

OTU_32 Ascomycota Dothideomycetes Mycosphaerellales NA NA 2 8 11 3

OTU_33 Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium 10 10 28 4

OTU_34 Ascomycota Sordariomycetes Xylariales Leptosilliaceae* Leptosillia* 8 3 13 3

OTU_35 Ascomycota Dothideomycetes Botryosphaeriales Botryosphaeriaceae Neofusicoccum 9 7 16 2

OTU_38 Ascomycota Sordariomycetes Xylariales Xylariaceae Entoleuca* 0 9 15 3

OTU_40 Ascomycota Eurotiomycetes Chaetothyriales Trichomeriaceae NA 9 9 18 2

OTU_41 Ascomycota Eurotiomycetes Chaetothyriales Trichomeriaceae Knufia 10 10 29 4

OTU_46 Ascomycota NA NA NA NA 10 9 26 4

OTU_51 Ascomycota NA* NA* NA* NA* 6 8 17 4

OTU_65 Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma 9 6 23 4

OTU_66 Ascomycota Dothideomycetes Pleosporales Didymellaceae NA 10 7 25 4

OTU_71 Basidiomycota Cystobasidiomycetes Incertae sedis Buckleyzymaceae Buckleyzyma 9 8 22 4

OTU_80 Ascomycota Eurotiomycetes Chaetothyriales NA* NA* 9 5 22 4

OTU_102 Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria 8 2 11 3

OTU_178 Ascomycota NA NA NA NA 8 1 9 2
frontie
Taxonomic assignment is based on ITS1 DNA similarity with UNITE database. Star (*) indicates assignment change after check in the NCBI database. The final columns show the number of
samples in the landmark tree (NL), the clonal bank (NC) and the total sample set (NT) and the number of geographical locations (Npop) where the OTUs were detected. Bold numbers indicate
presence in eight or more collected samples. NA indicates Not Assigned
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followed by Saccotheciaceae. The microbiome of RIV2, a tree with

low vitality, was dominated by Bionectriaceae (OTU_147, identified

as genus Geosmithia both in UNITE and NCBI; 100% of identity).

This OTU was virtually absent in the other samples, except in the

healthiest (RIV5), where it was not abundant but had a

significant presence.

Regarding the taxa significantly associated with DED resistance,

Buckleyzymaceae (represented mostly by OTU_71) was virtually
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absent from the population. Trichomeriaceae (represented mostly

by OTU_41) was present in all trees but was much more abundant

in RIV1 (dieback) and RIV5 (very healthy). Bulleraceae was slightly

present in the healthiest tree RIV5. The single OTU associated with

increased DED susceptibility (OTU_1; Diatrypaceae) was very

abundant in RIV1 (dieback).
3.5 Patterns across the four sites – core
fungal endobiome of U. minor

To assess the extent of ubiquity of the most common OTUs, we

examined the patterns of OTU incidence pooling the global sample

set (n = 29). Of the 317 OTUs passing filtering, 88 were present in

only one sample, 64 in two samples and 34 in three samples.

Distribution then reached a local maximum at six samples. Two

clusters were present in all 29 samples (OTU_10, Didymellaceae,

Dothideomycetes; and OTU_41, Trichomeriaceae, Eurotiomycetes,

associated with DED resistance, see above), one was present in all

but one (OTU_33, Cladosporiaceae, Dothideomycetes), and three

others were present in all but two (Table 1). Beyond the category of

“presence in nine samples” distribution was effectively flat. In other

words, the number of OTUs present in 10 to 29 samples always

ranged from 1 to 5. Note that not all samples were taken under the

same conditions (single twig vs. pooled twigs).

To detect core mycobiome members, we used the independent

distributions of each experiment presented in previous sections, and

the incidence across all of collection sites. In that regard, 37 OTUs were

found in the four sampled populations, 44 in three, 88 in two, and 153

were private to a single population. Both the pooled samples and the

across-sites distributions concur with the distributions of OTUs in the

clonal bank and, to a lesser extent, with that of the OTUs in the

landmark tree. The OTUs present more frequently in our sampling

than could be expected by chance are very likely members of the core

microbiome (see Discussion). In total, 32 OTUs passed the criteria for

core microbiome membership: 29 belonging to Ascomycota and three

to Basidiomycota.
4 Discussion

4.1 Within-tree variation in species richness
and diversity

Analyses on the landmark tree endophytic mycobiome did not

reveal a clear structure, but allowed to draw some interesting

conclusions: (i) although most of the samples collected displayed

a similar taxonomic composition, some were remarkably different.

For instance, a southern mid-height branch (H1S) was massively

infected by a single OTU (Figure 4). (ii) The two lowest branches,

resprouts from the trunk (epicormic shoots) aged a few years old,

displayed higher taxonomic richness than any other branches, with

a relatively higher representation of Basidiomycota. (iii) Finally,

samples from the trunk showed a richness comparable to that of the

crown branches. Taking this into consideration, when sampling

trees to characterize their overall stem endophytic flora and to avoid
A

B

C

FIGURE 3

OTU frequency spectra for (A) landmark tree, (B) clonal bank and (C)
Rivas population.
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considerable biases due to abnormally high local infections, we

recommend pooling tissue from at least two branches. However,

mixing samples from epicormic and crown branches should be

avoided, because they are likely to represent different endobiome

compositions. The greater richness found in the lower branches

supports previous research (Andrews et al., 1980; Johnson and

Whitney, 1989) and could be partly attributed to the high density of

inoculum in the ground with ability of entering into the stems

through roots, bark surface and stomata in leaves (Bahram et al.,
Frontiers in Plant Science 0879
2022). Similarly, as a substrate for fungi, epicormic shoots may

differ in anatomy and vigor from proleptic shoots (Negrón

et al., 2013).
4.2 Endobiome and resistance to DED

The abundance of three distinct fungal endophytic taxa was

associated with higher host resistance to DED (Table 2).
FIGURE 4

Taxonomic composition in the landmark tree. Only the most relevant taxa are shown. Colored bars represent the frequency of taxa at the levels of
phylum, class, order and family (top to bottom). Numbers next to the bars indicate the Shannon (italics) and Simpson (bold) indices and the OTU
richness rarefacted to 500 reads (with standard error). (Background image source: Tree Silhouette copy by Bob G in flickr, licensed under CC BY-
NC-SA 2.0).
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Interestingly, the two highest associations at family level

(Buckleyzymaceae, in Cystobasidiomycetes; Trichomeriaceae, in

Eurotiomycetes) were mostly driven by OTUs considered to be

members of the core microbiome (OTU_71 and OTU_41,

respectively). Moreover, a trait of two out of the three taxa

(Buckleyzymaceae and Bulleraceae) is that they grow, or are able

to grow, as yeasts. Yeasts have the ability to systemically colonize

plants and produce phytohormones and siderophores that promote

plant growth and alleviate stress (Joubert and Doty, 2018; Martıńez-

Arias et al., 2021c). The greater abundance of these yeasts in

resistant trees could improve tree resilience to DED infection,

promoting resistance mechanisms to the physiological disorders

caused by the pathogen. O. novo-ulmi also spreads systemically
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through the plant’s vascular system in a yeast-like phase (Nigg et al.,

2015) (blastospores), even in resistant trees (Martıń et al., 2019a),

inducing vessel embolism. Our results suggest that resistant trees

benefit from harboring a high proportion of two fungi from the core

endobiome (OTU_71 and OTU_41), which have the capacity to

extensively colonize the plant. Extensive or systemic spread of an

endophyte could allow higher interaction with the pathogen

throughout the plant, and possibly a higher level of interaction

with the plant’s physiological functions.

The first endophyte was assigned to Buckleyzyma aurantiaca,

based on the sequence similarity to the accessions in the database

UNITE. When the ITS sequence of this OTU was run against

Genbank, equal hits were returned for several accessions identified
A

B C

FIGURE 5

Taxonomic composition in (A) clonal bank and (B) Rivas population. Only the most relevant taxa are shown. Colored bars represent the frequency of
taxa at the levels of phylum, class, order and family (top to bottom), following legend color code (C). Numbers next to the bars indicate the Shannon
(italics) and Simpson (bold) indices and the OTU richness rarefacted to 500 reads (with standard error). (Tree icon sources: minimal tree simple SVG
Silh, licensed under CC0 1.0 and tree-304418 by Clker-Free-Vector-Images in pixabay under Pixabay licence).
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as Buckleyzyma and Rhodotorula, both cultured and uncultured, but

with a level of identity of 97.22% (140/144 bp). This OTU is likely to

be an undescribed species. Cystobasidiomycetes is a group of

basidiomycetous yeasts with unclear systematics that includes

strains previously isolated from plants (Oberwinkler, 2017), soils

and waters (Jones, 2011; Duarte et al., 2015; Jones et al., 2015). An

elm endophytic yeast from Cystobasidiomycetes was shown to

reduce O. novo-ulmi growth in vitro, partly due to the release of

volatiles (Martıńez-Arias et al., 2021c). Furthermore, its inoculation

into elm plantlets in tandem with a Chaetothyrial yeast, favored

root development, photosynthesis and survival against abiotic stress

(Martıńez-Arias et al., 2021b).

The second endophyte (OTU_41) was assigned to Knufia by

our pipeline. In Genbank, it did not retrieve perfect identities,

obtaining a maximum identity of 97.55% (196/201 bp) and three

gaps to Knufia but also to genus Exophiala. Most accessions were

derived from uncultured strains, and some from molecular studies

in soils and plants. This OTU could therefore also belong to an

undescribed species. The Trichomeriaceae (Chaetotyriales) were

formerly part of the Herpotrichiellaceae, which have been reported

to grow in the sexual phase in dead plants and wood (Geiser et al.,
Frontiers in Plant Science 1081
2006). Members of Chaetotyriales can be classified as dark septate

endophytes, which can provide important benefits to their hosts as

reducers of biotic or abiotic damages (Punja and Utkhede, 2003; de

Tenório et al., 2019).

The third associated taxon was represented by two OTUs

(OTU_70 and OTU_55) of the genus Cryptococcus (via BLAST to

NCBI; 100% and 97% of identity, respectively) or Genolevuria (via

dada2 to UNITE), both Tremellal yeasts frequently found in plants

and water (Jones et al., 2015). Albrectsen et al. (2018) found

Cryptococcus as an endophyte in beetle-damaged Populus tremula

leaves. In addition, Cryptococcus apparently outcompetes the

Rosaceae pathogen Botrytis cinerea due to niche occupancy

(Zambell and White, 2017).
4.3 Phenotypic vitality and
wood mycobiome

The study of the natural population with varying degrees of

dieback brought out some notable taxa. Firstly, Geosmithia spp. was

extremely abundant in the declining tree RIV2. Concurringly, it was
TABLE 2 Taxa with significant positive or negative associations (padj < 0.1; p-value < 0.05 for OTUs) with resistance to DED.

Taxon baseMean log2FC lfcSE stat p-value padj Family Order

Class

Cystobasidiomycetes 24.343 -2.038 0.475 -4.292 0.00002 0.00027

Sordariomycetes 762.750 2.178 0.538 4.051 0.00005 0.00038

Eurotiomycetes 71.577 -0.979 0.327 -2.994 0.00275 0.01375

Order

Xylariales 676.281 2.719 0.560 4.852 0.00000 0.00004

Cystobasidiomycetes incertae sedis 19.118 -1.896 0.488 -3.886 0.00010 0.00153

Chaetothyriales 59.560 -0.881 0.365 -2.410 0.01595 0.15951

Tremellales 64.275 -0.977 0.426 -2.294 0.02180 0.16351

Family

Buckleyzymaceae 11.154 -2.128 0.572 -3.723 0.00020 0.01102

Diatrypaceae 784.043 5.423 1.557 3.484 0.00049 0.01385

Trichomeriaceae 49.146 -1.170 0.362 -3.233 0.00123 0.02288

Bulleraceae 32.251 -2.889 0.982 -2.943 0.00325 0.04551

OTU

OTU_1 762.255 5.413 1.552 3.488 0.00049 0.05298 Diatrypaceae Xylariales

OTU_70 19.432 -3.625 1.171 -3.097 0.00196 0.09598 Bulleraceae Tremellales

OTU_71 13.338 -2.251 0.751 -2.998 0.00272 0.09598 Buckleyzymaceae Incertae sedis

OTU_19 4.591 2.510 0.878 2.860 0.00424 0.09598 Hypocreales

OTU_55 20.021 -3.811 1.338 -2.848 0.00440 0.09598 Bulleraceae Tremellales

OTU_41 49.449 -1.475 0.567 -2.602 0.00928 0.16857 Trichomeriaceae Chaetothyriales
The test of association was performed by a Wald test. Column baseMean shows the mean of normalized counts; log2FC: estimate of the effect size scaled to the log2 of fold change; lfcSE: standard
error of this estimate; stat: value of the Wald test statistic; and p-value and padj: respectively, the raw and the adjusted (for multiple tests) probabilities that the observed statistic is part of the null
distribution. These columns correspond to the output of the function DESeq from R package DESeq2. A positive fold change indicates association with susceptibility to DED.
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FIGURE 6

Relation between susceptibility to DED (measured as leaf wilting
percentage) of the ten clonal bank genotypes and the normalized
counts detected from reads of endophytic fungal families (A)
Buckleyzymaceae, (B) Trichomeriaceae and (C) Bulleraceae.
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identified as the dominant fungi in a U. minor tree with extensive

dieback symptoms in the absence of DED pathogens (Hänzi et al.,

2016). CertainGeosmithia fungi could therefore act as opportunistic

or latent pathogens in elms, as previously reported by Hänzi et al.

(2016). The presence of this genus in the healthy tree (RIV5)

suggests that it is able to live as an endophyte in latent

pathogenicity. Pepori et al. (2018) found that elms inoculated
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with Geosmithia fungi remained largely asymptomatic, and joint

inoculation of Geosmithia and O. novo-ulmi reduced wilting

symptoms compared to inoculation with O. novo-ulmi only. They

also found parasitic behaviour of Geosmithia towards O. novo-ulmi.

In elms, Geosmithia was frequently found in DED-infected trees

(Pepori et al., 2015), most likely carried there by the beetles that are

also the vectors of DED pathogens. Further research is needed into

the potential contribution of Geosmithia to tree dieback in Rivas or,

in contrast, the potential role of this taxon in the phenotypic

avoidance of DED found in this elm stand.

Secondly, two other trees with dieback symptoms (RIV6 and

RIV4) were dominated by Nectriaceae (especially RIV4). OTU_92

(Fusarium) was responsible for this signature and was also very

abundant in the healthy RIV3. The family Nectriaceae

(Sordariomycetes) includes facultative parasites that cause stem

cankers, and saprobes. In elms, dieback symptoms have been

associated with colonization by Nectria sp. (Heybroek, 1993; Plante

and Bernier, 1997).
4.4 Core microbiome and
among-site variation

Sampling from different spots in a single tree and from genetically

different trees enabled the detection of robust signatures of a core

microbiome. Out of the 231 OTUs found in the landmark tree, 11 were

present in all samples (10) and 22 in more than seven samples

(Table 1). In the clonal bank, eight OTUs were present in eight trees,

seven were present in nine trees and another seven were in all trees

(10). In the landmark tree and the clonal bank, the number of OTUs

did not decrease following the pattern expected by randomness. The

number of OTUs reached a tableau beyond five samples in both

distributions (Figures 3A,B), and a relative maximum at the end of the

distribution in the landmark tree (Figure 3A). Therefore, the

probability that a given sample would contain a specific OTU

depended on the OTU in question. Thus, not all OTUs can be

considered rare events (i.e. events that would display Poisson

distributions). Others with high probabilities of occurrence displayed

different distributions (Poisson distributions, but with “absence of

OTU” as rare event). Although not appreciable, perhaps due to their

low numbers, other OTUs may have behaved as “medium frequency

events”, retrieving binomial distributions. Thus, the lack of agreement

between the observed distributions and the expected monotonic

decrease, characteristic of pure Poisson processes, shows that OTU

occurrences range from rare to highly frequent. OTUs that follow a

pattern of occurrence consistent with a Poisson distribution could be

considered local infections with arguably different but low likelihoods

of infecting a stem. Highly frequent OTUs, on the other hand, are likely

to be members of the core microbiome. It is unclear why this latter

group of endophytes is pervasive, but it could be explained by a high

infective capacity (Griffin and Carson, 2018) (e.g. through insect

vectors, rain and wind) and/or systemic propagation within the

plant, as occurs in some endophytic yeasts (Joubert and Doty, 2018).

Shallower sampling may not have allowed us to distinguish between

the two trends in OTU occurrence, because the distributions would

have overlapped, obscuring the underlying pattern. The most
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commonly found fungal taxa both in the landmark tree and the clonal

bank were the ascomycetous classes Dothideomycetes, Eurotiomycetes,

Sordariomycetes, Leotiomycetes and Lecanoromycetes, and the

basidiomycetous classes Tremellomycetes and Cystobasidiomycetes.

We identified 32 core OTUs by defining the coremicrobiome as the

OTUs that are present in at least eight out of 10 samples in either the

landmark tree or the clonal bank, and present in at least two

populations. Although most of them were present in most samples

across the four populations, some were abundant in the clonal bank but

rare or absent in the landmark tree (e.g. OTU_18 and OTU_38).

Considering that the clonal bank includes trees from various

provenances across Spain (Supplementary Table 1) and a few are

from the same provenance as the landmark tree, it is conceivable that

these OTUs are controlled mostly by environmental cues (Zimmerman

and Vitousek, 2012). Conversely, a few OTUs were widespread in the

landmark tree, but rarer in the clonal bank (e.g. OTU_66, OTU_80 and

OTU_102). OTU_66 andOTU_80were present in the four populations

and most of the samples but surprisingly lacking in some trees from the

clonal bank. This pattern hints at an implication of host genotype (see

Bálint et al. (2013)). However, physiological status and microscale

environmental variation could also explain this pattern. The clear

separation of samples by site shown in the Principal Component

Analysis (Figure 2) indicates the important role of geographical

location in shaping fungal endobiome communities. New targeted

experiments are needed to confirm or refute these hypotheses.
5 Concluding remarks

We found clear evidence of the existence of a core endophytic

mycobiome in elm stems, which account for circa 10% of the total

endophyte richness. Our study strongly suggests that some core

endophytes are associated to DED resistant genotypes. Recent works

have shown the beneficial role of some endophytic yeasts in U. minor

resilience against stress and in priming defenses against O. novo-ulmi

(Martıńez-Arias et al., 2021a). Therefore, resistant trees could not only

display inherent genetic mechanisms of resistance, such as narrow

earlywood vessels (Martıń et al., 2021) or an early molecular response

against the pathogen (Sherif et al., 2016), but could also benefit from

mechanisms of resistance provided by their symbiotic microbiome. If

this microbiome were heritable, new possibilities for elm breeding

could arise directed to improve microbial functioning. Otherwise, the

possibility of transplanting beneficial microbiomes could open new

prospects for the fight against the disease.
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Gil, L., Fuentes-Utrilla, P., Soto, Á., Cervera, M. T., and Collada, C. (2004). English
Elm is a 2,000-year-old Roman clone. Nature 431(1053):1053. doi: 10.1038/4311053a

Griffin, E. A., and Carson, W. P. (2018). “Tree endophytes: Cryptic drivers of tropical
forest diversity,” in Endophytes of forest trees. Eds. A. M. Pirttilä and A. C. Frank
(Cham), 63–103. doi: 10.1007/978-3-319-89833-9_4

Griffiths, S. M., Galambao, M., Rowntree, J. K., Goodhead, I., Hall, J., O’Brien, D.,
et al. (2020). Complex associations between cross-kingdom microbial endophytes and
host genotype in ash dieback disease dynamics. J. Ecol. 108, 291–309. doi: 10.1111/
1365-2745.13302

Hänzi, M., Cochard, B., Chablais, R., Crovadore, J., and Lefort, F. (2016). First report
of Geosmithia langdonii and geosmithia spp. isolated from a decaying elm (Ulmus
minor) in Geneva, Switzerland. Folia For. Pol., 58(2):96-102. doi: 10.1515/ffp-2016-
0011

Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S.,
Campisano, A., et al. (2015). The hidden world within plants: Ecological and
evolutionary considerations for defining functioning of microbial endophytes.
Microbiol. Mol. Biol. Rev. 79, 293–320. doi: 10.1128/MMBR.00050-14
Frontiers in Plant Science 1384
Helander, M. L., Neuvonen, S., Sieber, T., and Petrini, O. (1993). Simulated acid rain
affects birch leaf endophyte populations. Microb. Ecol. 26, 227–234. doi: 10.1007/
BF00176955

Heybroek, H. M. (1993). “The Dutch elm breeding program,” in Dutch Elm disease
research: cellular and molecular approaches. Eds. M. B. Sticklen and J. Sherald(New
York), 16–25.

Johnson, J. A., and Whitney, N. J. (1989). An investigation of needle endophyte
colonization patterns with respect to height and compass direction in a single crown of
balsam fir (Abies balsamea). Can. J. Bot. 67, 723–725. doi: 10.1139/b89-096

Jones, E. B. G. (2011). Fifty years of marine mycology. Fungal Divers. 50, 73.
doi: 10.1007/s13225-011-0119-8

Jones, E. B. G., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A.,
Boekhout, T., et al. (2015). Classification of marine ascomycota, basidiomycota,
blastocladiomycota and chytridiomycota. Fungal Divers. 73, 1–72. doi: 10.1007/
s13225-015-0339-4

Joubert, P. M., and Doty, S. L. (2018). “Endophytic yeasts: Biology, ecology and
applications,” in Endophytes of forest trees. Eds. A. M. Pirttilä and A. C. Frank (Cham),
3–14. doi: 10.1007/978-3-319-89833-9_1

Kõljalg, U., Larsson, K.-H., Abarenkov, K., Nilsson, R. H., Alexander, I. J., Eberhardt,
U., et al. (2005). UNITE: a database providing web-based methods for the molecular
identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068. doi: 10.1111/
j.1469-8137.2005.01376.x

Kõljalg, U., Nilsson, H. R., Schigel, D., Tedersoo, L., Larsson, K.-H., May, T. W., et al.
(2020). The taxon hypothesis paradigm–on the unambiguous detection and
communication of taxa. Microorganisms 8:1910. doi: 10.3390/microorganisms8121910

Li, X. G., Jousset, A., de Boer, W., Carrion, V. J., Zhang, T. L., Wang, X. X., et al.
(2019). Legacy of land use history determines reprogramming of plant physiology by
soil microbiome. ISME J. 13, 738–751. doi: 10.1038/s41396-018-0300-0

Lindahl, B. D., Nilsson, R. H., Tedersoo, L., Abarenkov, K., Carlsen, T., Kjøller, R.,
et al. (2013). Fungal community analysis by high-throughput sequencing of amplified
markers – a user’s guide. New Phytol. 199, 288–299. doi: 10.1111/nph.12243

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. doi: 10.1186/
s13059-014-0550-8

Macaya-Sanz, D., Witzell, J., Collada, C., Gil, L., and Martin, J. A. (2020). Structure of
core fungal endobiome in Ulmus minor patterns within the tree and across genotypes
differing in tolerance to Dutch elm disease. bioRxiv 2020.06.23.166454. doi: 10.1101/
2020.06.23.166454

Martıń, J. A., Domıńguez, J., Solla, A., Brasier, C. M., Webber, J. F., Santini, A., et al.
(2021). Complexities underlying the breeding and deployment of Dutch elm disease
resistant elms. New For. doi: 10.1007/s11056-021-09865-y
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Bio-priming with salt tolerant
endophytes improved crop
tolerance to salt stress via
modulating photosystem II
and antioxidant activities in a
sub-optimal environment

Khadija Irshad1, Zamin Shaheed Siddiqui1*, Jianjun Chen2,
Yamna Rao1, Hafiza Hamna Ansari1, Danish Wajid1,
Komal Nida1 and Xiangying Wei3*

1Department of Botany, Stress Physiology Phenomic Centre, University of Karachi, Karachi, Pakistan,
2Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of
Food and Agricultural Science, University of Florida, Apopka, FL, United States, 3Institute of
Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
Abiotic stress is one of the major constraints which restrain plant growth and

productivity by disrupting physiological processes and stifling defensemechanisms.

Hence, the present work aimed to evaluate the sustainability of bio-priming salt

tolerant endophytes for improving plant salt tolerance. Paecilomyces lilacinus

KUCC-244 and Trichoderma hamatum Th-16 were obtained and cultured on

PDA medium containing different concentrations of NaCl. The highest salt (500

mM) tolerant fungal colonies were selected and purified. Paecilomyces at 61.3 × 10-

6 conidia/ml and Trichoderma at about 64.9 × 10-3 conidia/ml of colony forming

unit (CFU) were used for priming wheat and mung bean seeds. Twenty- days-old

primed and unprimed seedlings of wheat and mung bean were subjected to NaCl

treatments at 100 and 200 mM. Results indicate that both endophytes sustain salt

resistance in crops, however T. hamatum significantly increased the growth (141 to

209%) and chlorophyll content (81 to 189%), over unprimed control under extreme

salinity. Moreover, the reduced levels (22 to 58%) of oxidative stress markers (H2O2

and MDA) corresponded with the increased antioxidant enzymes like superoxide

dismutase (SOD) and catalase (CAT) activities (141 and 110%). Photochemical

attributes like quantum yield (FV/FM) (14 to 32%) and performance index (PI) (73 to

94%) were also enhanced in bio-primed plants in comparison to control under

stress. In addition, the energy loss (DIO/RC) was considerably less (31 to 46%),

corresponding with lower damage at PS II level in primed plants. Also, the increase

in I and P steps of OJIP curve in T. hamatum and P. lilacinus primed plants showed

the availability of more active reaction centers (RC) at PS II under salt stress in

comparison to unprimed control plants. Infrared thermographic images also
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showed that bio-primed plants were resistant to salt stress. Hence, it is concluded

that the use of bio-priming with salt tolerant endophytes specifically T. hamatum

can be an effective approach tomitigate the salt stress cosnequences and develop a

potential salt resistance in crop plants.
KEYWORDS

Chlorophyll ‘a’ fluorescence, bacterial priming, wheat, mung bean, ionic stress,
response
Introduction

The twin goals of ensuring global agricultural productivity and

its execution in a sustainable manner are challenged due to the

increased incidence of ecological catastrophes (Ebert and Engels,

2020). As a result, our agriculture system is frequently subjected to

both biotic and abiotic stress. In the last few decades, a number of

studies have been reported the effect of abiotic and biotic stressors

on crops (Chinnusamy et al., 2005; Kwon et al., 2009; Fizza et al.,

2021; Ansari et al., 2022), highlighting the alternate means of

controlling the negative impacts of such stressors and sustain

plant growth in a sub-optimal environment. Moreover, out of

many environmental fluctuations, soil salinization has become a

fundamental enigma as it has been encountered in all climates. The

assault of this salinity stress, which is mainly caused by sodium ions,

can be observed in the germination, growth, development, and

reproduction of the crop (Mahmood et al., 2021). Hence, soils are

rendered hypersaline due to the prevalence of NaCl by natural or

anthropogenic means, which decreases crop production by more

than 20% (Porcel et al., 2012). In response to salt stress, plants show

plasticity in terms of periodic adjustment like osmolyte synthesis

due to physiological modifications in their defensive metabolism

(Nephali et al., 2021). However, the strategies to adapt salt tolerance

in crops have become insufficient to overcome extreme salinity

(Augé et al., 2014). Thus, to mitigate the salt stress and sustain the

modern agriculture system, various biotechnological approaches

have been employed to ensure crop productivity.

Among such approaches, bio-priming has been considered an

innovative and sustainable method for alleviating plant salt stress.

Seed bio-priming is a strategy of seed treatment (seed priming) for

regulating plant growth, managing stress, and improving seed

germination (Sarkar et al., 2021). Moreover, seed priming alone

(osmo-priming, matrix priming) or in combination with a low

dosage of biocontrol agents have been reported to increase the

germination rate, uniformity and sustainability of plant growth and

development under sub-optimal environment (Johnson and

Puthur, 2021). However, Seed priming via conventional and

specifically chemical means impaired the soil ecosystem, which

creates fluctuations in the food chain. Therefore, seed bio-priming

with plant growth-promoting microbes (PGPM) that are naturally

colonized around the root zone of the plants has a great potential to
0287
increase the plant’s performance in a suboptimal environment

(Dimkpa et al., 2009).

In addition, it is currently being recognized that the application

of endophytes offers a great potential to reduce the abiotic and

biotic stress in plants. Lately, the application of endophytes to

reduce the hypersaline stress in plants has also been reported

(Sandhya et al., 2009; Yao et al., 2010; Verma et al., 2021). Several

studies suggested that the endophytes sustained growth by

increasing the uptake of nutrients such as zinc, phosphorus,

boron and copper and making other nutrients available to plants

in a saline-sodic soil (Sarma et al., 2015; Liu et al., 2017).

Paecilomyces lilacinus and Trichoderma hamatum are endophytic

saprophyte fungus that can be found in different soil types and have

the ability to grow in a broad range of soil pH having sodium ions.

P. lilacinus is effectively used to control nematode growth as it has the

ability to penetrate and destroy the embryo. Similarly, T. hamatum is

a beneficial endophytic plant symbiont, compared to P. lilacinus

which is widely used to control fungal diseases in crop plants (Afzal

et al., 2013). Some reports indicate that that Trichoderma enhanced

the tolerance to abiotic stress in plants (Shoresh et al., 2010; Estrada

et al., 2013). However, the role of P. lilacinus in plants to enhance

stress tolerance against abiotic stress has not been reported so far.

Hence, the present study aimed to probe the application of P. lilacinus

and T. hamatum as an effective bio-priming agent in crop plants

against hypersaline environment.

Plant photosynthesis coupled with defense mechanisms are the

prime physiological modulations that indicate the health status of

the crops. The thorough analysis of the photosynthetic apparatus

via non-destructive approach like chlorophyll fluorescence can

mimic the real time changes in perturbation and light harvesting

efficiency of the photosynthetic membrane. Furthermore, light

harvesting complexes and reaction centers of PS II are not only

true source of energy production but also plays a crucial role to

stress tolerance under abiotic stresses. Therefore, the present study

evaluated the sustainable role of isolated endophytes through seed-

priming on photo-physiology, light harvesting efficiency, energy

fluxes, and subsequent antioxidant system in two important crops,

under a suboptimal environment. Also knowing that the energy

exploitation in the photosynthetic apparatus of bio-primed plants

during salt stress tolerance has not been documented so far.

Likewise the application of T. hamatum and P. lilacinus as a
frontiersin.org
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bio-priming agent to enhance salt tolerance in plants is yet to be

studied In essence, the current research was designed to scrutinize

the energy distribution inside the photosynthetic membrane by

non-destructive means to explicate the energy source for the

induction of salt tolerance in plants due to bio-stimulating

natural colonizers i.e., T. hamatum and P. lilacinus.
Materials and methods

Seed source and selection

Seeds of Wheat (Triticum aestivum) and Mung bean (Vigna

radiata) were collected from the Stress Physiology Phenomic

Centre, Department of Botany, University of Karachi, and surface

sterilized into 10% NaClO (sodium hypochlorite) for 3 min to

remove the surface fungus and dust. Seeds were then thoroughly

washed with distilled water to remove NaClO traces.
Collection and purification of beneficial
endophytic fungi

The plant-beneficial fungal endophytic fungi P. lilacinus and T.

hamatum were obtained from Karachi University Culture

Collection (KUCC) and purified on PDA (Potato Dextrose Agar)

with several replicates. Saline medium of PDA was prepared to

examine the salt tolerance of P. lilacinus and T. hamatum, having

several concentrations of NaCl (100, 200, 300, 400, and 500 mM) in

its composition. These sets were kept at room temperature 30-34 ±

2°C for 7 days to select salt-tolerant endophytic strains and later it

was used for further study (Figure 1). The Colony-forming unit

(CFU) was maintained at 61.3 × 10-6 Conidia/ml of Paecilomyces
Frontiers in Plant Science 0388
and about 64.9 × 10-3 Conidia/ml of Trichoderma colony forming

units (CFU) per milliliter for liquid as:

Cfu=ml =
No :   of   colonies  � dilution   factor
The   volume   of   the   culture   plate
Inoculation of fungal endophytes by seed
priming technique

The endophytic fungi P. lilacinus and T. hamatum were

inoculated in plants by seed bio-priming technique as described

by Saeid et al. (2018). Seeds of Wheat and Mung bean were selected

for the inoculation of endophytes. The fungal suspension was

prepared from pure PDA cultures by adding 10 ml of sterile

distilled water into fungal plates. Plates were slightly scratched by

a wire loop and fungal suspension was poured into a beaker (the

process was repeated twice). The final volume was made up to

100 ml with sterile distilled water to make the stock. From the

fungal spore stock, 25 ml was taken and made up the volume up to

100 ml with sterile distilled water to prepare 25% fungal suspension.

Later, the surface sterilized and dried seeds of both crops were

treated by soaking in the spore suspensions prepared for different

time intervals (5, 10, and 15 min). The seeds were dried under a

sterile air stream in laminar air flow for 2 h (Singh et al., 2013).
Experimental design and stress application

The experiment was conducted at the Stress Physiology

Phenomic Center, Department of Botany, University of Karachi,

Pakistan. Under natural environmental conditions, the experiments

were organized in a completely randomized design to analyze
FIGURE 1

Endophytes culture on high saline medium to use in plant. Highest salt tolerance endophytes culture was used in further study.
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endophytic symbiosis with the crop plant. Two sets of experiments

were conducted, 1) Seeds without inoculation of P. lilacinus and T.

hamatum and 2) Seeds with inoculation of P. lilacinus and T.

hamatum. Ten treated seeds were sown per pot having 1 Kg of soil

and allowed to germinate. The composition of the soil is 80.5% sand

particles, 7.1% silt and 8.1% clay, 4.10% organic carbon, 0.83% total

nitrogen, pH 7.6, and electrical conductivity was 1.7 dS.m-1. Wheat

and Mung bean were allowed to grow at an average day-night

temperature of 33 ± 4°C to 22 ± 3°C. Twenty days old inoculated

and un-inoculated seedlings were treated with different salt

concentrations by gradual increment method to reach 100 and

200 mM NaCl. In this regard, 50 mM for 200 mM and 25 mM for

100 mM was given on alternate days. The moisture level was

maintained by adding up water as stated by Umar and Siddiqui

(2018). The whole setup of the experiment was repeated with four

replicates of treatments and controls. The plants were exposed to

saline treatments for 7 days and later plants were harvested.
Relative water content

For the calculation of Relative water content (RWC) Barrs and

Weatherley (1962) method was applied with some modifications.

Randomly selected leaves of each control and treated samples of an

area of 4 × 2 cm2 of wheat and 1.2 cm2 ofMung bean were excised from

the mid-veins and the edge section and fresh weight (FW) was

recorded. Later, leaves were kept in Petri plates of 90 mm diameter

for12 h, which contain distilled water. Afterward, the leaves samples

were taken off the Petri plate and turgid weight (TW) were recorded.

For themeasurement of the dry weight (DW), leaves samples were oven

dried at 80°C for 48 hours. RWC was calculated by using the formula:

RWC =
FW − DW
TW − DW

 �100
Stomatal conductance and chlorophyll
content index

For the observation of stomatal conductance, young randomly

selected leaves of Wheat and Mung bean from each treated and

control intact plant was used between 9:00 A.M. and 11:00 A.M. For

this investigation, Decagon Leaf Porometer (Model SC-1) was used,

and data were recorded from the middle and lower part of the leaf

surface. The stomatal conductance of leaf was expressed as mmole

m-2s-1. Similarly, the chlorophyll content index (CCI) of young leaves

of each treated and control intact plant leaf was recorded between

9:00 A.M. and 11:00 A.M. Chlorophyll Content Meter CCM-200;

Opti-Sciences Inc., Hudson, NH, USA was used. The average values

of ten leaves of each replicate were used to show in bar graphs.
Photochemical traits of photosystem II

For the photochemical traits of Photosystem II assessment,

chlorophyll fluorescence was recorded by using as Opti-Sciences
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Fluorometer (Model OS-30 p+; Hudson, USA). For the analysis, the

youngest and fully expended leaves were selected between 9:00 A.M.

and 11:00 A.M. From intact plants, leaves were clipped for 60 min

for dark-adapted measurement from each treatment and control

plant. Light-adapted quantum yield was recorded under a normal

day-light environment. Performance index (PIABS), Original (FO),

and maximum (FM), the dark-adapted quantum yield of PS II

photochemistry was calculated by the ratio of variable to maximum

fluorescence (FV/FM), photochemical quenching (qP), and JIP test

data was used to calculate as described by Strasser et al., 2010;

Stirbet and Govindjee, 2011 (Supplementary Table 1).
IR thermal images

FLIR-E5 (FLIR Systems, USA) was used before harvesting. IR

thermal sensor observed the infra-red thermography from each

Wheat and Mung bean treated and control plant. Before the

measurement, the system was optimized for 60-90 min, and later

on, images were taken. A computerized report was generated using

FLIR Software 2.10 after transferring the images into the computer.
H2O2 content

Total hydrogen peroxide (H2O2) content was estimated

according to the method described by Velikova et al. (2000).

Freshly harvested leaf samples were homogenized in 3 ml of 0.1%

(w/v) trichloroacetic acid (TCA) in an ice bath. Afterward,

homogenate was centrifuged at 12000 rpm for 15 min. Later on,

0.5 mL of 10 mM phosphate buffer (pH 7.0) and 1 ml of 1 M

potassium iodide (KI) were mixed with 0.5 ml of supernatant.

Optical density of the supernatant was taken at 390 nm. H2O2

content was estimated with reference to a standard curve and

expressed in mmole g-1 FW.

H2O2  Content = Ve  �R  � D : F
Vs

 � W  

Where,

Ve = Volume used for the estimation, R = Reading from

the standard curve, D.F = Dilution factor, Vs = Volume of extract,

W =Weight of leaf sample.
Malondialdehyde content

Lipid peroxidation in the leaf tissues was observed by Dhindsa

et al. (1981), the amount of malondialdehyde (MDA) produced by

the reaction of Thio-barbituric acid (TBA). Freshly harvested leaves

samples of 0.25 g were homogenized with 0.1% trichloroacetic acid

(TCA) in a pestle and mortar and centrifuged at 10,000 rpm for

5 min. 1mL supernatant was added into 4 ml of 20% TCA

containing 0.5% TBA. The mixture was heated for 30 min in a

water bath at 95 °C and allowed to cool. Absorbance was recorded at

532 and 600 nm. MDA-TBA extinction co-efficient was recorded at

532 nm.
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Conc:   of MDA   ( μM) =
(A532 − A600)

155
Antioxidant enzymes activity

Leaf sample of 500 mg in liquid nitrogen (5°C) was

homogenized with 10 ml of abstraction buffer (Tris-HCl pH 6.8,

10 ml DDT, 0.1 mM EDTA, 50 mg PVP) for enzymatic antioxidant

evaluation. The mixture was centrifuged at 15,000 rpm for 10

mins to estimate total protein by the method described by

Bradford (1976). The antioxidant enzymes i.e., Superoxide

Dismutase (EC # 1.15.1.1) and catalase (EC # 1.11.1.6) was

measured by the method of Beyer and Fridovich (1987) and

Patterson et al. (1984), respectively.
Statistical analysis

The data generated from the treated and control groups were

subjected to statistical analyses using the software SPSS Version 20

(IBM, United States). The Bonferroni Post- hoc test was applied to

differentiate significant differences among the mean values of
Frontiers in Plant Science 0590
different treatments and presented as small alphabets on the bar

graphs (p< 0.05).
Results

Morphological response of plants against
different priming treatments

In the sub-optimal environment, seedling length of wheat and

mung bean plants was significantly reduced compared to control

(Figure 2). It was evident from the data that the maximum

reduction in root and shoot length was observed in wheat (13.83

and 17.4 cm) and mung bean (6.77 and 13.5 cm) plants when

exposed to 200 mM salt stress. However, bio-priming with T.

hamatum and P. lilacinus alleviates the salt stress and thus

increases the seedling length of wheat from 26 to 149% and mung

bean from 5 to 216% (Supplementary Table 2). It was observed that

bio-priming agents results in a more profound increase in the root

length as compared to the shoot length. However, general trend

shows that the increase in priming duration such as 5, 10, and 15

minutes had a positive impact on the shoot length in both plants

compared to root length. Unlike, the percentage of root length with
FIGURE 2

Effects of bio- priming with fungal endophytes on Root Length (RL), Shoot Length (SL) and Root/Shoot ratio of wheat and mung bean grown under
saline environment Note: The symbols on the horizontal axis represents: Control: Seeds without priming, Pl = Seed priming with Paecilomyces
lilacinus, Th = Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 & 200 mM NaCl concentration. On
bars, vertical lines represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant difference between the the means of
treatment at p<0.05.
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respect to time duration was slightly increased in bio-primed

treated wheat (20 to149%) and substantially increased in mung

bean plants (66 to 285%) under 200 mM salt stress (Figure 2,

Supplementary Table 2). Among all the treatments, the highest

root-to-shoot ratio was observed in mung bean plants when it was

primed with T. hamatum (141 to 209%) salt stress, followed by P.

lilacinus (57 to 157%) under 200 mM salt stress. However, the root

to shoot ratio was comparatively much lower in wheat plants

compared to mung bean (Figure 2).
Chlorophyll content index and
stomatal conductance

Salt stress substantially reduced the chlorophyll content index

(CCI) and stomatal conductance of the unprimed plants in

comparison to the primed. Bio-priming with T. hamatum

significantly increased CCI over control in wheat plants with an

increase in priming duration, which was about 141 to 285% under

100 mM and 81 to 189% in 200 mM salinity (Figure 3,

Supplementary Table 2). Moreover, P. lilacinus priming had a

substantially negative effect on wheat plants at 100 mM salt

stress, displaying a decline in CCI percentage over control (-43,

-42 and -44%) but substantially increased the CCI content of wheat

plants over control under 200 mM salt stress (44, 83, and 362%). P.

lilacinus expressed more profound effect on the mung bean plants

compared to wheat, had significantly increased the CCI at both 100

and 200 mM salt stress (47 - 170%and 35 - 61%).

Two types of the consequential stimulated regime by priming

agents in wheat and mung bean plants regarding stomatal

conductance were observed under extreme salinity (200 mM).

Stomatal conductance was significantly decreased in wheat plants
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over the control when primed with T. hamatum, (-47, -32, and

-16%) and with P. lilacinus (-28, -17, and -14%). In contrast, in

mung bean plants, both priming agents substantially increased the

stomatal conductance over the control (9, -8, 3, 159, 65 and -6%)

with some exceptions under 200 mM salt stress respectively

(Figure 3, Supplementary Table 2).
Oxidative damage markers

Elevated level of H2O2 and MDA in un-primed plants indicates

that salt stress relatively increased the oxidative stress. Bio-priming

alleviates the stress in wheat and mung bean plants as the oxidative

damage was relatively lower than in control plants. Under 100 mM

salt stress, H2O2 was relatively lower in wheat plants primed with T.

hamatum (-15, 23, and -22%) and P. lilacinus (-52, -21, and -12%)

with some exceptions. (Figure 4, Supplementary Table 2).

Moreover, the MDA content among the primed plants was

considerably lower in both wheat and mung bean plants in

comparison to the control plants. It was evident from the data

that MDA content was considerably decreased with the priming of

T. hamatum (-47, -39, and 58%) than with P. lilacinus (-29, -32, and

4.98%) in wheat plants under high salinity (200 mM).
Photochemical attributes

Salt stress results in a significant decrease in the performance

index (PI) and an increase in the dissipation per reaction center

(DIO/RC) in wheat and mung bean plants, which was later

overcome by bio-priming. Results showed that under 200 mM

salt stress, the highest PI was observed in mung bean plants primed
FIGURE 3

Effects of bio-priming on chlorophyll content index (CCI) and stomatal conductance (gs) of wheat and mung bean plants grown under saline
environment. The symbols on the horizontal axis represents: Control: Seeds without priming, Pl = Seed priming with Paecilomyces lilacinus, Th=

Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 &200 mM NaCl concentration. On bars, vertical lines
represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant difference between the means of treatment at p<0.05.
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with T. hamatum (94%) followed by P. lilacinus (73%) over the

control (unprimed plants). Likewise, a similar trend was observed

regarding the maximum quantum yield of PS II (FV/FM) in mung

bean plants (32 and 26%) in comparison to the un-primed stress

plants. In wheat plants, priming of P. lilacinus caused the highest PI

and FV/FM (455 and 18%), followed by T. hamatum (357 and 14%)

under 200 mM salt stress. However, one way to assess the plant’s

performance is to observe the release of absorbed energy, which

indicates the performance of the plant under stress conditions. In

the present study, we found that dissipation per reaction center

(DIO/RC) was significantly decreased due to the priming in both

wheat (-31, -42, and -35%) and mung bean (-39, -42, and -46%)

under the extreme salinity level (200 mM) (Figure 5,

Supplementary Table 2).

The OJIP induction curve analysis showed the effect of salt

stress as the increase in salinity level (from 0, 100, and 200 mM)

caused the decline in the fluorescence intensity (OJIP curve) of the

un-primed wheat plants. Highest peaks of the induction transients

were observed among the bio-primed plants under both non-stress

and stress conditions (T. hamatum and P. lilacinus), while the

lowest curve was displayed by the unprimed 200 mM stress plants.

However, one striking pattern was observed among the OJIP curve

of plants primed with T. hamatum (10 min priming duration) in

wheat and mung bean plants. In wheat plants under control

(unstressed) conditions, the aforementioned treated plants

showed the lowest induction curve, which was moderately

increased under 100 mM salt stress and led to the highest peak of

all under 200 mM salt stress. In contrast, a complete revert pattern

was observed in mung bean plants. T. hamatum (10 mins) primed

plants had the highest induction curve values in the control

environment, which then decreased to moderate values and then
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further decreased to a lower curve in the high salinity (200 mM)

environment (Figure 6). Moreover, in mung bean plants, the lowest

curves were still attributed to the un-primed plants, showing the

stress retardation in the photosynthetic machinery of the mung

bean plants. The highest curves were exhibited by the plants primed

with P. lilacinus under 200 mM stress.
Antioxidant enzymes

Antioxidant enzymes including super oxide dismutase (SOD)

and catalase (CAT) activities were measured at different NaCl

concentrations with and without endophytes i.e. P. lilacinus and

T. hamatum application. In comparison to the control condition,

SOD and CAT activities were stimulated by the degree of salinity

stress at 100 mM (44 to 141%) and 200 mM (27 to 110%) in both

varieties. However, among the two varieties, the increment of SOD

and CAT in wheat was greater in comparison to mung beans.

Moreover, among the priming treatments, T. haamatum (15 min)

prompted the highest SOD (141, 151, 74 and 110%) and CAT (141,

71, 62 and 62%) activity under increasing salt stress over the

control, in which the least antioxidant activity was observed.

Besides, among different treatments of P. lilacinus the highest

increment in SOD (44 to 72%) and CAT (40 to 101%) activities

was attributed to the 15 min of priming in both varieties. (Figure 7).
Discussion

Due to the changing climate and the increasing assault of abiotic

stress, agricultural productivity is heavily curtailed. In the present
FIGURE 4

Effects of bio-priming with fungal endophytes on hydrogen peroxide (H2O2) and Malondialdehyde (MDA) contents of wheat and mung bean grown
under saline environment. The symbols on the horizontal axis represents: Control: Seeds without priming, Pl = Seed priming with Paecilomyces
lilacinus, Th = Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 & 200 mM NaCl concentration. On
bars, vertical lines represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant difference between the means of treatment
at p<0.05.
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FIGURE 5

Effects of bio-priming with fungal endophytes on OJIP transient curve of wheat and mung bean grown under saline environment. The symbols on
the horizontal axis represents: Control: Seeds without priming, Pl = Seed priming with Paecilomyces lilacinus, Th= Seed priming with Trichoderma
hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 & 200 mM NaCl concentration.
FIGURE 6

Effects of bio-priming with fungal endophytes on Catalase Specific Activity (CAT) and Superoxide Dismutase Specific Activity (SOD) contents of
wheat and mung bean grown under saline environment. The symbols on the horizontal axis represents: Control: Seeds without priming, Pl = Seed
priming with Paecilomyces lilacinus, Th= Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 & 200 mM
NaCl concentration. On bars, vertical lines represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant difference between
the means of treatment at p<0.05.
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study two sodium-tolerant biological priming agents, namely T.

hamatum and P. lilacinus, with three priming durations (5, 10, and

15 min) were used. Later seeds were allowed to germinate and grow

in a salt-stress environment. It was observed that the root and shoot

length of both wheat and mung bean plants declined with the

elevating salt stress. It is evident from the literature that salt stress

inhibited plant growth in a sub-optimal environment (Dey et al.,

2004; Azooz et al., 2013; Fizza et al., 2021; Ansari et al., 2022). The

decrease in plant growth is attributed to nutrient imbalance,

osmotic, and ionic stress (Iqbal and Ashraf, 2013; Rasool et al.,

2013; Alqarawi et al., 2014). In the present study, it was observed

that the priming with T. hamatum and P. lilacinus increased the

root and shoot length of both wheat and mung bean plants in a sub-

optimal environment (Figure 2). The highest and most significant

amelioration was observed in mung bean plants by virtue of

Trichoderma priming. Our findings are in accordance with those

of Mastouri et al. (2010) and Rawat et al. (2013), who found that

Trichoderma isolates mitigate the negative effects of salt stress in

several plants. It was reported that Trichoderma is symbiotically
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associated with plants and thus enhances plant growth due to

hormonal modulation or molecules closely related to GA3 (Iqbal

and Ashraf, 2013; Rawat et al., 2013). Thus, Trichoderma

association also elongates roots, which aids plants in absorbing

nutrients and water from the soil and improves their ability to

withstand salt stress (Arora et al., 1992). Likewise, some

Paecilomyces spp. has also enhanced plant growth via growth-

regulating metabolites like IAA and GA that could work to

ameliorate the stress (Bashri and Prasad, 2016; Liu et al., 2019).

Our results, with respect to the decrease in chlorophyll content

index (CCI) under salt stress are supported by the findings of

Ahmad et al. (2016) for Cicer arietinum, and Alqarawi et al. (2014)

for Ephedra alata. The decrease in pigment content is attributed to

several factors, including the detrimental effects of salt stress on

chloroplast (Zörb et al., 2009), increased activity of chlorophyllase

and the consequent reduction in chlorophyll synthesis (Sultana

et al., 1999), and instability of the pigment protein complex (Levitt,

1980). The outcomes also demonstrated the potential of T.

hamatum and P. lilacinus in curtailing the detrimental effects of
FIGURE 7

Effects of bio-priming on maximum quantum yield of PSII (FV/FM), activity of water splitting complex on donor site of PSII (FV/FO), performance
index (PI), quantum yield of energy dissipation (FO/FM), electron transport rate through PSII (FM/FO), approximated initial slope of fluorescence
transient (MO), absorption per reaction centre (ABS/RC), trapping per reaction centre (TRO/RC), electron transport per reaction centre (ETO/RC) and
dissipation per reaction centre (DIO/RC) of wheat and Mung bean grown under saline environment. The values of the parameters are expressed as
percentage increase or decrease over the control (considered as 100). The symbols on the horizontal axis represents: Control: Seeds without
priming, Pl = Seed priming with Paecilomyces lilacinus, Th= Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute,
0, 100 & 200 mM NaCl concentration. On bars, vertical lines represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant
difference between the means of treatment at p<0.05.
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NaCl on the CCI and induced a significant rise in chlorophyll

content in both salt-treated plants and control plants (Figure 1). P.

lilacinus has also been reported to increase the chlorophyll content

in carrot plants (Nesha and Siddiqui, 2017). Moreover,

Trichoderma spp. has also been linked to improvements in the

pigment system and the reduction of harmful effects of NaCl,

according to Rawat et al. (2011) and Zhang et al. (2013).

Compared to control, plants that are primed with T. hamatum

showed improvement in photosynthetic pigments could be

attributed by the synthesis of phytohormones such auxin,

gibberellins, and cytokinins (Martı ́nez-Medina et al., 2014;

Resende et al., 2014).

Salt stress reduced the stomatal conductance of wheat and

mung bean plants which is one of the most common responses of

plants to prevent excessive water loss and controls the passage of

carbon and water between plants and the atmosphere (Brodribb

and McAdam, 2011). However, the priming of T. hamatum

significantly increased the stomatal conductance over control (un-

primed) under extreme salt stress (Figure 1). While in wheat plants,

stomatal closure was observed to reduce transpiration and conserve

water during salt stress. This closure is regulated through the ABA

level as well as extensive signal transduction of guard cells induced

by T. hamatum (Efetova et al., 2007; Joshi-Saha et al., 2011).

Therefore, two different behavior of T. hamatum priming was

observed under high salt stress. In wheat plants, it fosters higher

stomatal conductance which could be a strategy to fix more CO2

due to a fast growth strategy before the onset of salt stress

consequences compared to mung bean plants.

In salt stress, H2O2 can serve both as a measure of toxicity or

that damaged plant cells permanently or it may be a secondary

messenger that controls the plant’s antioxidant defense (Gechev

et al., 2006). In the current investigation, we discovered that salt

stress led to a considerable rise in H2O2 levels. However, in primed

wheat plants, the level of H2O2 was significantly lower than in

mung bean plants. Moreover, the more decrease in H2O2 level was

observed among the plants primed with T. hamatum, therefore,

we proposed that priming of T. hamatum promoted lesser

oxidative or cellular damage caused by salt stress which is in

accordance with the finding of Güler et al. (2001). Likewise, the

other damage marker, MDA content was also lower among the

wheat plants over the mung beans, hence, the priming was more

effective among the wheat plants. As suggested by earlier studies,

salt stress may have an impact on altering the composition of

membrane lipids since it caused lipid peroxidation (Samadi et al.,

2019). The decrease in MDA content suggested that T. hamatum

prevented the plant from oxidative damage in comparison to

unprimed plants. These findings strongly concur with those of

Zhang et al. (2013) who discovered lower levels of lipid

peroxidation in cucumber plants under salt stress that had been

treated with T. harzianum.

Salt stress adversely affects the photosynthetic apparatus of the

plants which can be observed through chlorophyll a fluorescence

parameter. Chl fluorescence is frequently employed as a measure of

photosystem efficiency because it offers important information

about the quantum efficiency of photochemistry and heat
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dissipation (Lichtenthaler and Burkart, 1999). Quantum yield

(FV/FM) and PS II functionality gradually decreased with the

increase in exposure time and salt concertation, which negatively

affected the membrane stability. This suggests that the PS II reaction

center deteriorated under higher stress levels (Lu and Zhang, 2000).

However, T. hamatum priming significantly enhanced the FV/FM
and PS II efficiency of stressed plants over control and P. lilacinus

priming. These outcomes are indicative of T. hamatum efficacy to

enhance salt tolerance which is linked with the improved PS II

functionality in stressed plants. The increase in energy loss (DIO/

RC) among the control plants exhibited stress damage at the PS II

level which was quite higher among the control plants while bio-

primed plants had considerably very low dissipation hence, lower

damage at PS II level.

According to the findings of Ran et al. (2021), the OJIP curve of

the present work showed a decline in I and P values with elevated salt

stress. However, the increase in I and P steps in T. hamatum and P.

lilacinus primed plants showed the availability of more active reaction

centers (RC) PS II under salt stress in comparison to control

(unprimed plants) (Kalaji et al., 2011). This indicated that bio-

primed plants were more tolerant to salt stress as their absorbed

energy was more efficiently transferred to reaction centers for

photochemistry (Tsimilli-Michael and Strasser, 2008; Stirbet and

Govindjee, 2011). The decrease in I and P phase under salt stress

control (unprimed) plants was due to a bottleneck in electron transfer

at the electron acceptor side of the PSI, the increase in cyclic electron

flow (CEF) around the PS I is revealed by the decrease in I-P phase

(Kono et al., 2014; Hamdani et al., 2015). This has been alleviated via

T. hamatum priming that mitigate the smooth electron flow between

PS II and PS I which resulted in high photosynthetic yield of the

stressed and unstressed plants (Figure 6).

According to the leaf energy flux model (Figure 8) the highest

absorption per reaction center (ABs/RC) and dissipation per

reaction center (DIO/RC) were observed among the un-primed

plants (wheat and mung bean) which was due to more inactive

reaction centers (RC) to active reaction center ratio. Hence, this

explains that the controlled plants were able to absorb more

photons, but the trapped energy was not used to reduce the

plastoquinone pool and absorbed photon was rather dissipated

in the form of energy or heat. However, bio-priming enhanced the

active to inactive RC ratio among the wheat and mung bean plants

which helped to increase the rate of QA reduction by trapped

exciton (TRO/RC) under high salt stress (200 mM). This increment

led to the enhanced electron transport (ETO/RC) which reflected

the increased activity of active RC to reoxidize the reduced QA

(Grieco et al., 2015). This combined increased in trapping and

transport of exciton displayed the stress tolerance induced by bio-

priming agent which reflected in the enhanced photosynthetic

yield (PI) and least energy dissipation (DIO/RC) of the

primed plants.

The infra-red thermographic images also evidently supported

the results. A significant color change was observed among the

leaves of primed and un-primed plants indicating a rise in leaf

temperature of the control plants under high salt stress (Figure 9).

This rise in temerature reflects the decline in water contents of the
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FIGURE 8

Effects of seed priming with fungal endophytes on infra-red thermal images of wheat and mung bean grown under saline environment. The symbols
on the horizontal axis represents: C = Seed without priming, PL5= Seed priming with Paecilomyces lilacinus for 5 mins, PL 10= Seed priming with
Paecilomyces lilacinus for 10 mins, PL 15= Seed priming with Paecilomyces lilacinus for 15 mins, TH 5= Seed priming with Trichoderma hamatum
for 5 mins, TH 10= Seed priming with Trichoderma hamatum for 10 mins, TH 15= Seed priming with Trichoderma hamatum for 15 mins. 0 (C), 100
and 200 mM represents different salinity (NaCl) levels.
FIGURE 9

Membrane pipeline model showing the proportion of specific energy fluxes in treated plants. In the membrane, ABS/RC, TRO/RC, ETO/RC, and DIO/
RC indicate absorption, maximum trapped exciting flux per active PSII, electron transport, and dissipation flux, respectively. The value of each
parameter can be seen in relative changes in the width of each arrow (see the color legend). The diagram exhibits the variation of ABS/RC, TRO/RC,
ETO/RC, and DIO/RC, for seven treatments, namely, A=200mM, B1=200mM and Paecilomyces lilacinus strain with 5 minutes time interval,
B2=200mM and Paecilomyces lilacinus strain with 10 minutes time interval, B3=200mM and Paecilomyces lilacinus strain with 15 minutes time
interval, C1=200mM and Trichoderma harzianum strain with 5 minutes time interval, C2=200mM and Trichoderma harzianum strain with 10
minutes time interval, and C3=200mM and Trichoderma harzianum strain with 15 minutes time interval. The model displays fluxes in different
shapes; the size of each shape was developed by the different values of four fluxes in each treatment.
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leaves. It was evident from the data that bio-primed plants

demosntrate lesser increase in leave temperature corresponding

with higher water content. Moreover, under the water stress, leaf

temperature somewhat mimicked the gas exchange rates and grain

output, perhaps due to other changes brought on by this stress

factor in plants, like impairments in the rates of photosynthesis

and partitioning of energy in plant leaves and canopy structures

(resulting in variations in the absorption and/or dissipation of

energy) (Casari et al., 2019). Therefore, the results were coherent

that the bio-primed plants were more tolerant to varying levels of

salt stress (0, 100, and 200 mM) in comparison to the

control plants.

Antioxidant activities are important physiological aspects

playing a key role in coping with salt stress (Guo et al., 2018).

Abiotic stress causes an increase in ROS production that must be

controlled in a homeostatic pool, yet excessive levels of ROS can

produce oxidative stress, which can damage plant physiology and

cause plant death by causing denaturation of protein structure, lipid

peroxidation, and nucleotide disruption (Demidchik, 2015). In this

context, an increase in antioxidant activity protects cells against

environmental challenges like salinity and drought. P. lilacinus &

specifically T. hamatum treated plants showed a remarkable

increase in antioxidant enzyme activities like SOD and CAT

under high salt stress (200 mM). which significantly reduce the

production of ROS like H2O2 that is potent enough to induce lipid

peroxidation in cell membrane. Hence, increasing antioxidant

activities ultimately brings down the level of MDA in treated

plants as compared to control by scavenging ROS (Figure 7).

It is concluded that bio-priming with endophytes produces

resistant in crop plants to salt stress through modulation in

physiological and photosystem II functionality which was further

supported by the infrared thermographic images of the stress and

control plants. Endophytes not only sustain better quantum

absorption and energy flow in plants but also contribute to

sustaining photosystem II performance and lower down the stress

markers production and energy loss in a sub-optimal environment.

Further our current findings suggest that the use of bio-priming

with salt tolerant and bio-stimulating natural colonizers specifically

with T. hamatum could be a suitable approach in mitigating salt

stress in wheat and mung bean plants.
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Instituto Politécnico De Bragança, Bragança, Portugal, 3Functional and Evolutionary Ecology, Estación
Experimental De Zonas Áridas - CSIC, Almerı́a, Spain, 4Institute for Multidisciplinary Research in
Applied Biology (IMAB), Universidad Pública De Navarra, Pamplona, Spain, 5Centre of Molecular and
Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
Plant-associated microorganisms are increasingly recognized to play key roles in

host health. Among several strategies, associated microorganisms can promote

the production of specific metabolites by their hosts. However, there is still a

huge gap in the understanding of such mechanisms in plant-microorganism

interaction. Here, we want to determine whether different levels of olive leaf spot

(OLS) disease incidence were related to differences in the composition of fungal

and secondary metabolites (i.e. phenolic and volatile compounds) in leaves from

olive tree cultivars with contrasting OLS susceptibilities (ranging from tolerant to

highly susceptible). Accordingly, leaves with three levels of OLS incidence from

both cultivars were used to assess epiphytic and endophytic fungal communities,

by barcoding of cultivable isolates, as well as to evaluate leaf phenolic and volatile

composition. Fungal and metabolite compositions variations were detected

according to the level of disease incidence. Changes were particularly noticed

for OLS-tolerant cultivars, opposing to OLS-susceptible cultivars, suggesting that

disease development is linked, not only to leaf fungal and metabolite

composition, but also to host genotype. A set of metabolites/fungi that can act

as predictive biomarkers of plant tolerance/susceptibility to OLS disease were

identified. The metabolites a-farnesene and p-cymene, and the fungi Fusarium

sp. and Alternaria sp. were more related to disease incidence, while Pyronema

domesticum was related to the absence of disease symptoms. Cultivar

susceptibility to OLS disease is then suggested to be driven by fungi, volatile

and phenolic host leaves composition, and above all to plant-fungus interaction.

A deeper understanding of these complex interactions may unravel plant

defensive responses.
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Venturia oleaginea, epiphytes, endophytes, volatile compounds, phenolic compounds
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1 Introduction

In natural ecosystems, the aboveground parts of plants come

across a myriad of fungal species that can colonize the surface

(epiphytes) or internal plant tissues (endophytes), with beneficial or

detrimental outcomes (Zeilinger et al., 2016). For example, different

fungal groups (e.g. Trichoderma and Epicoccum) have

demonstrated the ability to protect host plants from pathogens,

while others (e.g. Colletotrichum) are well-recognized pathogens

causing plant diseases (Poveda and Baptista, 2021). Despite the

ecological and agricultural importance of plant-fungal associations,

the complex interaction network occurring among fungi and plants

is still not fully understood (Chaudhry et al., 2021). There are still

many open questions that remain unanswered regarding how plant-

associated microorganisms contribute to the health status of their

host. Recent studies have provided strong evidences about the

capacity of endophytes to improve plant protection against

pathogens by supplying several bioactive metabolites to their host

(Fadiji and Babalola, 2020). From the wide range of secondary

metabolites that are induced during plant-microbial interactions,

both phenolic and volatile organic compounds (VOCs) seem to be

particularly important, due to their recognized antimicrobial

activity and ability to induce plant defenses against pathogens

(Tilocca et al., 2020; Wallis and Galarneau, 2020; Poveda, 2021).

However, the elucidation of plant associated microorganism

potential to improve plant health through the synthesis of

bioactive metabolites in host tissues is a challenging task,

especially if studied in the nature. In fact, the microorganisms

that interact with plants are ubiquitous in nature and can contribute

to metabolite production in different ways. Microorganisms can

produce their own secondary metabolites (which will be mixed with

those produced by plant host), change the biosynthesis of plant host

metabolites, or even metabolize plant host secondary metabolites

and produce new metabolites (Pang et al., 2021). Probably due to

such complex aspects occurring during plant-microorganism

interactions, few studies have focused on the mechanisms

employed by microorganisms in protecting host plant

from pathogens.

The olive leaf spot (OLS) disease, caused by the fungus Venturia

oleaginea (Castagne) Rossman & Crous (syn. Fusicladium

oleagineum, Spilocaea oleaginea), is one of the most damaging

diseases of olive tree (Olea europaea L.) worldwide (Viruega et al.,

2013). Fungal development is mostly restricted to olive leaf tissues,

including leaf surface and subcuticular areas, causing scab lesions

and leaf-drop symptoms, leading occasionally to tree death

(Viruega et al., 2013). Under the same agro-climatic conditions,

the OLS disease is more severe in certain olive tree cultivars (e.g.

“Madural” and “Verdeal Transmontana”) than in others (e.g.

“Cobrançosa”) (Pereira, J.A., Per. Com.). In the present work, this

biological system was chosen as a model for studying the impact of

interactions occurring among fungi and plant hosts on the plant

health status. Indeed, the availability of olive cultivars with distinct

susceptibility levels to OLS, and with the possibility in displaying

different levels of disease incidence, is an advantage. Detected

differences on fungal communities or metabolites (volatile and

phenolic compounds) of host plant leaves could thus be linked to
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the cultivar or disease incidence effect. Moreover, using this model,

the simultaneous study of interactions occurring between plant and

epiphytes or endophytes is possible. This is particularly relevant due

to the recognized ability of V. oleaginea to develop in the surface

and subcuticular spaces of the leaves. By considering these aspects,

we hypothesized that plant interactions with fungi could modify

plant secondary metabolites composition, thus affecting the

incidence of OLS disease on these cultivars. Specifically, we

address the following questions: (1) Is OLS incidence related to

host-associated epiphytic and endophytic fungal communities

composition in leaves? (2) Is OLS incidence related to host plant

composition on phenolic and volatile compounds? (3) Is there any

relation among fungal consortia and secondary metabolites

composition that could explain different incidence levels of OLS

disease? As far as we known, no previous investigation has

addressed concerning fungal communities and chemical

composition of leaves as a whole. The understanding of these

complex associations (i.e. host plant, phytochemicals, fungal

communities and disease incidence) might improve our

knowledge on the role of different fungal taxa and metabolites in

OLS disease incidence.
2 Materials and methods

2.1 Study site and olive leaves collection

The study was conducted in two olive orchards at Mirandela

region (Northeast of Portugal), at coordinates N 41° 32.593’ W 07°

07.445’ (orchard 1) and N 41° 29.490’ W 07° 15.413’ (orchard 2).

Each orchard comprises olive trees from three olive cultivars, i.e.

“Cobrançosa”, “Madural” and “Verdeal Transmontana”, at the

spacing of 7 x 7m, and is managed through integrated production

guidelines (Malavolta and Perdikis, 2018). These three cultivars are

considered tolerant (“Cobrançosa”) and susceptible (“Madural” and

“Verdeal Transmontana”) to OLS disease. In each orchard, five trees

per cultivar were randomly selected in close proximity to each

other. Leaves were randomly collected in the four orientations of the

tree canopy, at 1.5 meters above the ground, from March to May.

The collected leaves were used to assess OLS disease incidence of

each tree (% infected leaves), to determine epiphytic and endophytic

fungal communities, as well as chemical composition (i.e., phenolic

and volatile compounds). The disease incidence (%) in each

surveyed olive tree was assessed using a total of 60 randomly

collected leaves. The number of observed symptomatic leaves was

used for determining the percentage of infected leaves. For chemical

evaluations, and to mimic natural conditions within the tree

canopy, a mixture of ten randomly selected leaves per tree was

used, comprising five leaves with visible spots (OLS-symptomatic

leaves) and five leaves without visible spots (asymptomatic leaves).

For fungal diversity assessment was used a similar procedure by

using a mixture of six leaves per tree (three OLS-symptomatic leaves

and three asymptomatic leaves). All evaluations were performed

using fresh leaves (immediately upon their collection), with

exception of assessment of phenolic compounds that used

lyophilized leaves. For this, leaves were stored in a deep freezer at
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-20°C, lyophilized, ground to a fine powder using an analytical mill,

and stored in a dark room until phenolic analysis.
2.2 Assessment of foliar
fungal communities

2.2.1 Fungal isolation
Both epiphytic and endophytic fungal communities in olive tree

leaves were evaluated based on culture-dependent methods. The

isolation of fungal epiphytes was performed by the dilution plate

method, by using around 1-gram weight of leaf samples in 9 mL of

sterile potassium phosphate buffer pH 7.0 (0.20 g/L KCl; 8 g/L NaCl;

1.4 g/L Na2HPO4; 0.24 g/L KH2PO4), according to the procedure

described by Gomes et al. (2018). Briefly, aliquots (1 ml) of the

resulting microbial suspension were separately plated in triplicate onto

Potato Dextrose Agar (PDA, Difco) and Plate Count Agar (PCA,

Himedia) media, supplemented with 0.01% (w/v) chloramphenicol

(Oxoid, Basingstoke, Hampshire, UK). In total, 1,080 Petri plates were

inoculated (30 trees x 6 leaves x 2 culture media x 3 replicates). Plates

were incubated at 25 ± 2°C in the dark for fungal growth and colonies

counting. The number of epiphytes (i.e. the number of individual

colonies of fungi on the leaf surface) was expressed as log CFU/cm2.

For estimating the leaf surface, an ellipse equation (A=pab) was used,
being A the area, whereas a and b were the half-length of longitudinal

and transverse axes of a leaf, respectively.

Endophytic fungi were isolated from the same leaves used to

isolate epiphytes. Epiphytes were removed by surface disinfection of

leaves, using the procedure previously optimized by Martins et al.

(2016), which consisted in the sequential immersion of leaves in

70% (v/v) ethanol for 2 min, 3–5% (v/v) sodium hypochlorite for 3

min, 70% (v/v) ethanol for 1 min, and sterile distilled water (three

times, 1 min each). After disinfection, each leaf was cut into five

fragments (ca. 5 x 5 mm), which were transferred to the same

culture media used to isolate epiphytes. Endophytic fungi were

isolated from a total of 1,800 leaf tissue segments (30 trees x 6 leaves

x 2 culture media x 5 fragments). Validation of the surface

sterilization procedure was done by imprinting the surface of

sterilized leaf tissues onto PDA and PCA media. Emerging fungal

colonies were subcultured on fresh medium until pure epiphytic/

endophytic cultures were obtained.
2.2.2 Fungal identification
Each fungal colony was identified by using morphological and

molecular approaches, according to Gomes et al. (2018). Briefly, fungal

isolates were firstly grouped according to their morphological similarity

at colony level (colony appearances, mycelial textures, sporemass color,

diffusible pigment and pigmentations on both obverse and reverse of

colonies). Three representative isolates of each morphotype were

further selected for molecular identification, using the internal

transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA).

Total genomic DNA was extracted from harvested mycelial/spores

using the REDExtract-N-Amp™ Plant PCR kit (Sigma, Poole, UK)

following manufacturer’s instructions. The ITS region (ITS1, 5.8S,

ITS2) was amplified using ITS1/ITS4 primers set (White et al.,
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1990). Amplifications occurred in a MyCycler™ (Bio-Rad)

thermocycler, using 50 µL PCR reactions, which contained 5 µL of

10x complete PCR buffer (0.1% tween 20, 25 mMMgCl2, pH 8.8), 1 µL

dNTPs of 10mM, 1 µL of each primer (10 µM), 4 µL of DNA, 0.2 µL of

DFS-TaqDNAPolymerase (5 U/µL) (BIORONGmbH) and 37.8 µL of

distilled sterile water. The PCR program was set for an initial

denaturation step at 95°C for 5min, followed by 30 cycles of

denaturation at 94°C for 40s, primer annealing at 48°C – 56°C

(being 54°C the most used) for 50s and extension at 72°C for 45s,

followed by a final extension step at 72°C for 7 min. The amplified

products (~ 650 bp) were purified and sequenced using Macrogen Inc.

(Madrid, Spain) services. The obtained DNA sequences were analysed

with DNASTAR v.2.58 software and fungal identification was

performed using the NCBI database (http://www.ncbi.nlm.nih.gov)

and BLAST algorithm, according the procedure described by Gomes

et al. (2018). The obtained sequences are available at GenBank with the

following accession numbers: KU324941-KU325040; KU325041-

KU325240; KU325241-KU325457. Each operational taxonomic unit

(OTU) was taxonomically classified according to the Index Fungorum

Database (www.indexfungorum.org).
2.3 Phenolic compounds identification
and quantification

2.3.1 Standards and reagents
Used standards were purchased from Sigma (St. Louis, MO,USA) or

Extrasynthèse (Genay, France). Methanol and formic acid were obtained

from Merck (Darmstadt, Germany). The water was treated in a Milli-Q

water purification system (Millipore, Bedford, MA, USA) before use.

2.3.2 Extraction of phenolic compounds
Before the extraction of phenolic compounds, each lyophilized

leaf sample was powered and sieved using a 900 mm sieve. The

extraction was performed as previously described by Vinha et al.

(2002). Briefly, about 1.5 g of the powdered leaf samples were

weighed in quadruplicates. Each sample was separately mixed with

50 mL of methanol (99.96%, Aldrich) at 150 rpm for 1 h (room

temperature). The obtained methanolic extracts were filtered

through a Whatman No.4 paper and evaporated (Stuart RE3000,

UK) to dryness under reduced pressure (35°C). After dissolution in

2 ml methanol (99.96%, Aldrich) and filtration (Whatman No. 2),

an aliquot of 20 ml of the obtained extracts was analyzed by HPLC.

2.3.3 Analysis of phenolic compounds
Chromatographic separation was performed as previously

reported by Vinha et al. (2002), with an analytical HPLC unit

(Knauer Smartline), equipped with a Knauer Smartline autosampler

3800, and a Knauer Diode Array Detector (DAD). A reversed-phase

Spherisorb ODS2 column was used during analysis (250 x 4.6 mm, 5

mm particle size, Merck, Darmstadt, Germany). The used solvent

system was a gradient of water–formic acid (19:1) and methanol,

applied at a flow rate of 0.9 mL min−1. Spectral data from all peaks

were accumulated within the 200–400 nm range. Chromatograms

were recorded at 280, 320 and 350 nm, and data were managed on
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ClarityChrom® software (Knauer, Berlin, Germany). Phenolic

compounds were quantified through the comparison performed

with known amounts of external standards: hydroxytyrosol,

oleuropein, chlorogenic acid and rutin were quantified at 280 nm,

caffeic acid at 320 nm, and verbascoside, apigenin-7-O-glucoside,

luteolin-7-O-glucoside and luteolin at 350 nm. HPLC analyses were

performed using two technical replicates for each extract. The

means of the four replicates for each tree leaf sample were then

calculated. Phenolic compounds were expressed as the amount of

phenolics per dry weight (DW) of leaf extract (mg/g of DW).
2.4 Volatile identification
and quantification

The extraction and analysis of volatile compounds from fresh

leaves were performed according to the methodology described by

Malheiro et al. (2015), with some modifications.

2.4.1 Extraction of volatile compounds
The extraction of leaf volatiles was performed by headspace solid

phase microextraction (HS-SPME). Around 1-gram weight of fresh

leaves was placed in 50 ml vials, containing 10 ml of 4-methyl 2-

pentanol (10.65 ppm dissolved in methanol), which was used as an

internal standard. The vials were sealed with a polypropylene cap with

a silicon septum. Following an incubation in an ultrasonic bath at 40°C,

for 10 min, the divinylbenzene/carboxen/polydimethylsiloxane (DVB/

CAR/PDMS; 50/30 mm) fiber was inserted into the vial headspace for

more than 30 minutes, at 40°C, for volatile adsorption. The volatiles

were desorbed by placing the fiber into the gas chromatographic (GC)

injection port for 10 min, at 280°C. The HS-SPME analyses were

performed using five replicates for each tree leaf sample.

2.4.2 Gas chromatography-mass spectrometry
(GC-MS) conditions

Chromatographic analysis was performed on an Agilent 6890

series GC (Agilent, Avondale, PA, USA), with splitless injection,

coupled to a MS detector (Agilent 5973), according to the

conditions described by Malheiro et al. (2015). Volatile compounds

were identified by comparing the experimental spectra with spectra

from NIST data bank (NIST/EPA/NISH Mass Spectral Library,

version 1.6, U.S.A.) and also by comparison of their GC retention

index. Retention indices were determined as reported by Malheiro

et al. (2015). Concentration of identified compounds were calculated

by the ratio of each individual base ion peak area to the area of the

internal standard. The obtained ratio was then converted to mass

equivalents, on the basis on the internal mass standard added.

Volatiles were represented as the amount of volatile compound per

fresh weight (FW) of leaf tissue (mg/kg of FW).
2.5 Data analysis

Based on OLS disease assessment results, three ranges of disease

incidence were defined: 0-5%, 5-10%, and 10-15%. Data was
Frontiers in Plant Science 04103
analyzed considering each group of disease incidence and each

cultivar. Thus, a total of nine experimental units were established

(three ranges of disease incidence per cultivar), each one with a

sample size of three to four trees. The normality assumption of the

data was verified using the Shapiro-Wilk test.

2.5.1 Differences on fungal communities
and metabolite profiles among OLS incidence
ranges and cultivars

The total number and abundance of fungal OTUs and

metabolites (phenolic and volatiles compounds) for each olive

tree are presented as the mean for each OLS disease incidence

range (0-5%, 5-10%, 10-15%) and cultivar (“Cobrançosa”,

“Madural”, “Verdeal Transmontana”). Differences between means

were evaluated by one-way analysis of variance (One-way ANOVA)

with SPSS v.20, followed by Tukey’s post hoc test (p <0.05). Non-

metric Multidimensional Scaling (NMDS) plots, based on Bray–

Curtis distances, were performed to assess the variation in the

composition of foliar fungal communities and metabolite profiles,

among different ranges of OLS disease incidence (0-5%, 5-10%, 10-

15%). Kruskal’s stress was used to estimate goodness of fit

(commonly acceptable when <0.2). A one-way analysis of

similarity (ANOSIM) was used to determine significant

differences in fungal (or metabolite) compositions among OLS

incidence groupings, using Bray–Curtis distance matrices.

ANOSIM generates a P-value (significant level below to 0.05) and

a R-value, which gives the degree of discrimination between groups

and ranges from 0 (indistinguishable) to 1 (completely dissimilar)

(Clarke and Gorley, 2015). NMDS plots and ANOSIM analyses

were performed using Community Analysis Package v. 6.0

(Henderson and Seaby, 2019). Subsequent analyses were

performed in R (R Core Team 2018). Using the ‘heatmap 2’

function of gplots package, with the Euclidean distance, heatmaps

with hierarchical clustering were constructed for grouping host

cultivars and OLS incidence ranges, according to the abundance of

fungal OTUs (abundance >10) and metabolites (abundance >12).

Each sample was transformed into a row Z-score and high relative

values were colored differently from those with low relative values.

2.5.2 Relationship between OLS disease
incidence, host cultivar, fungal OTUs
and metabolites

Random forest analysis was firstly performed to identify the

ranking importance of variables (fungal OTUs and metabolites) for

predicting OLS incidence (Breiman, 2001; Cutler et al., 2007). This

analysis was set through machine learning algorithms, using the R

RandomForest package (Cutler et al., 2007). For each tree grown on

a bootstrap sample, the error rate for observations left out of the

bootstrap sample was monitored. The predictor variables explained

74.1% and 85.2% of the variation in fungal OTUs and metabolites,

respectively. The Gini coefficient indicates the variable contribution

(importance) for OLS disease incidence. Spearman correlations and

redundancy analyses (RDA) were then performed using the most

important fungal OTUs and metabolites, which were pre-selected

by the random forest analysis (Gini index >100). The Spearman
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correlations were computed using the R corrplot package (Wei

et al., 2017), in order to check the correlation between fungal OTUs,

metabolites and OLS incidence. RDA was performed using R vegan

package (Oksanen et al., 2017), in order to find relationships among

cultivars (“Cobrançosa”, “Madural”, “Verdeal Transmontana”),

OLS disease incidence ranges (0-5%, 5-10%, 10-15%), fungal

OTUs and secondary metabolites. One-way analysis of variance

(ANOVA) was carried out with ‘anova’ function, to test significant

differences between cultivars or OLS incidence groupings,

previously obtained by RDA ordination based on fungal OTUs

and metabolites.
3 Results

3.1 Differences on fungal communities and
metabolite profiles among OLS incidence
ranges and cultivars

Overall, 154 fungal operational taxonomic units (OTUs), 18

phenolic and 73 volatile compounds, were identified from all

analyzed olive leaves (Figures S1–S3). Among the identified

fungal genera, Cladosporium, Alternaria and Fusarium were the

most frequently isolated, representing 35% of the total number of

isolates. In what concerns metabolites, the phenolic compounds

oleuropein, apigenin-7-O-glucoside, rutin and verbascoside, as well

as the volatiles Z3-hexen-1-ol-acetate and Z3-hexen-1-ol, were the

most abundant, accounting together for 78% and 82% of the total

phenolic and volatile fraction, respectively.

In general, the number of both fungal OTUs and detected

metabolites did not change significantly across the three levels of

OLS disease incidence (Figure S4). In what concerns abundance,

only the abundance of fungal isolates retrieved from the most OLS-

susceptible cultivar (“Verdeal Transmontana”) exhibited a 2-fold

significant increase (p <0.05) in trees with the highest OLS disease
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incidence. The comparison among cultivars, showed only

differences on the number of volatile compound (Figure S5).

Indeed, with an increase of OLS disease incidence, the levels of

volatiles decreased significantly (p<0.05) in cv. “Cobrançosa”, while

increased significantly (p<0.05) in cv. “Madural”.

The comparison between the endophytic and epiphytic

communities across distinct OLS incidences showed differences in

terms of diversity and abundance (Figure S6). With the highest OLS

disease incidence, endophytic fungi displayed a greater increase in

abundance (up to 1.4-fold, p <0.05) and richness (up to 1.1-fold,

p <0.05) than epiphytic fungi. Regarding the epiphytic community,

only a significant increase was detected for epiphytes abundance in

trees with the highest OLS incidence (up to 1.3-fold, p <0.05).

The composition of fungal communities and metabolite profiles

differs significantly among trees with distinct disease incidence

levels (Figure 1; Table S1). Hierarchical cluster analysis based on

the most abundant fungal OTUs also separated fungal communities

into two main groups, corresponding to the communities found in

trees with low OLS incidence and communities with higher

incidence levels (Figure 2A). However, such separation was

dependent upon the olive cultivar. Fungal communities from cv.

“Verdeal Transmontana” clustered together, regardless of tree

disease incidence. In contrast, the fungal composition from cvs.

“Cobrançosa” and “Madural” differed when considering trees

exhibiting high and low OLS incidence levels (ANOSIM, R=0.40,

p=0.001). Accordingly, fungal communities from cv. “Verdeal

Transmontana” were less distinct in trees with different OLS

incidence levels (ANOSIM, R=0.33, p=0.002). Nevertheless, the

ANOSIM analysis could still distinguish all three incidence levels

in this cultivar (R=0.31, p=0.016). Differences on fungal community

composition between cultivars were always lower in trees displaying

the highest OLS disease incidence, which was particularly detected

in cvs. Cobrançosa” and “Madural”. Indeed, the highest difference

on fungal communities between cultivars was detected at the lowest

OLS-disease incidence level (ANOSIM, R=0.72, p=0.001).
A B

FIGURE 1

Non-metric multidimensional scaling (NMDS) plots of foliar fungal communities (A) and metabolite profiles (B) detected on olive trees displaying
different levels of OLS disease incidence (0-5%, 5-10%, 10-15%). Clustering analysis was performed with Bray-Curtis distance. Kruskal’s stress values
are displayed.
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The metabolite profiles of trees from the three cultivars were

distinct (ANOSIM, R=0.32, p=0.001), being these differences greater

between cvs. “Madural” and “Verdeal Transmontana” (ANOSIM,

R=0.35, p=0.001). Although less relevant than for fungal

communities, leaf metabolite composition within each cultivar

also varied with OLS-disease incidence, being the greatest

differences observed among trees with the lowest and highest

disease incidence levels (Figure 2B). This result was particularly

observed for trees from cvs. “Madural” (ANOSIM, R=0.970,

p=0.002) and “Cobrançosa” (ANOSIM, R=0.88, p=0.002), while

cv. “Verdeal Transmontana” exhibited a similar metabolite

composition among all trees (ANOSIM, R=0.125, p=0.079).
3.2 Relationship between host cultivar,
foliar fungal community, metabolite profile
and disease incidence

One of the goals of this study was the identification of a set of

fungal OTUs and metabolites that could explain differences in

susceptibility of different olive tree cultivars to OLS disease. The

complexity of this biological system, in which multiple interaction

effects can occur between host plant, fungi, and metabolites,
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together with the large amount of microbial/metabolite produced

data, increases the difficulty of this task. Thus, to more accurately

predict such relationships, a random forest analysis was employed

to select the most relevant variables (i.e. fungi/metabolite) for the

prediction of OLS incidence. The random forest ranks the

importance of input variables measured by a Gini coefficient

value. A higher Gini coefficient value represents a greater variable

importance (Cutler et al., 2007). Eight fungal OTUs and ten

metabolites (four phenolics and six volatiles) were identified as

the most important variables for determining OLS disease incidence

(Gini coefficient > 100; Figure S7). For testing the association

between fungi, metabolites and OLS disease incidence, the

selected variables were then used to perform Spearman

correlations (Figure 3). The results revealed that the volatiles (E)-

a-bergamotene, a-farnesene and p-cymene, the phenolic luteolin,

and the fungal OTUs Alternaria sp., exhibited significant positive

correlations with disease incidence. In contrast, Cladosporium

cladosporioides and Pyronema domesticum were negatively

correlated with OLS disease incidence. Other fungal OTUs were

also found to be either negatively or positively correlated with some

metabolites, as well as with other fungal OTUs. Specific significant

inter- and intra-group metabolites correlations also existed, being

particularly observed a strong positive correlation between the
FIGURE 2

Variation of fungal communities (A) and metabolites profiles (B) in leaves of olive trees from distinct cultivars (“Cobrançosa”, “Madural” and “Verdeal
Transmontana”), displaying different levels of OLS disease incidence (0-5%, 5-10% and 10-15%). Heat maps indicate differences in the relative
abundances of the most abundant fungal OTUs and metabolites. The color-scale ranges from red z < -3 to blue z >3, indicating the abundance of
fungal OTUs and metabolites. Fungal isolates exclusively found on the episphere (leaf surface) and endosphere (leaf interior) are shown in green and
purple color, respectively.
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volatiles a-farnesene and p-cymene, and between these two

compounds and 1-octanol.

Since Spearman correlations only test the correlation between

two variables, we have additionally performed a redundancy

analysis (RDA). Beyond a simple ordination among the variables

(unconstrained ordination, as in PCA), the explanatory variables

are used in this analysis to test their predictive power on the

multidimensional variable space (constrained ordination). The

final outcome expresses how much of the variance in the set of

response variables (fungal OTUs and metabolites) is explained by

the set of explanatory variables (host cultivar and disease incidence

level). Note that the order of explanatory to predictor variables was

inverted relatively to the random forest analysis. Here, the question

is how well OLS disease incidence levels or olive cultivars

discriminate among metabolites or components of the fungal

community. As for the previous Spearman correlations, only the

most important variables preselected by the random forest analysis

were used in RDA. OLS disease incidence ranges (p <0.01) and olive

cultivars (p <0.01) were clearly discriminated among foliar fungal

community and metabolite profiles (Figure 4). Several correlations

were also detected between metabolites, fungal OTUs, host

cultivars, and OLS disease incidence. The strength of such

correlations was assessed by the arrow length and angle between

arrows and axes. The lowest OLS disease incidence range is more
Frontiers in Plant Science 07106
closely associated to cv. “Cobrançosa”, and to the presence of P.

domesticum on leaves. In contrast, higher OLS disease incidence is

more associated to cv. “Verdeal Transmontana”. The segregation of

trees with higher OLS disease incidence is based on their metabolite

and fungal profiles. Disease incidence of 5-10% was mostly related

with the metabolites a-farnesene, p-cymene, apigenin-7-O-

glucoside and to the presence of Alternaria sp.; while the highest

disease incidence (10-15%) was more closely associated to

verbascoside, Z3-hexenoic acid, methyl ester, butanoic acid,

methyl ester, and to the presence of Fusarium sp.
4 Discussion

To the best of our knowledge, the present study is the first work

to address the relationship between host plant, foliar fungal

communities, metabolic profiles and plant disease incidence

under field conditions. We attempted to determine whether

differences in susceptibility of different olive tree cultivars to OLS

disease is linked to fungal communities and/or metabolite

composition of host plant leaves.

Our results underline the importance of fungal communities

inhabiting the leaves of each olive tree as possible determinants of

disease incidence. Indeed, several significant correlations occurred

between the abundance of specific fungi (Alternaria sp., C.

cladosporioides or P. domesticum) and the incidence of OLS
FIGURE 3

Spearman correlations between fungal OTUs abundance,
metabolites concentration and OLS disease incidence. These
correlations were only performed with variables (fungal OTUs and
metabolites) preselected by the random forest analysis. Blue color
represents positive correlations, while red color represents negative
correlations. Circle size and color shading indicate correlation
coefficient values. High coefficient values (maximum = 1) are
represented by larger and darker circles, while smaller and lighter
circles represent lower coefficient values (minimum = 0). Asterisks
indicate statistically significant correlations at *p < 0.05, **p < 0.01
and ***p < 0.001.
FIGURE 4

Redundancy analysis (RDA) ordination plot showing the association
between the OLS disease incidence levels (0-5%, 5-10% and 10-
15%), olive tree cultivars (“Cobrançosa”, “Madural” and “Verdeal
Transmontana”), leaf fungal community and metabolites
composition. This analysis was only performed with variables (fungal
OTUs and metabolites) preselected by the random forest analysis. In
RDA analysis, a positive correlation between two variables is
expressed by relatively long vectors pointing approximately in the
same direction, whereas a negative correlation is indicated by
arrows pointing in opposite directions. The longer the variable
decline, the stronger the relationship of that parameter with the
olive cultivar/disease incidence. The percentage of variation is
explained by each axis.
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disease. Moreover, the relation between fungal composition and

disease incidence was found to be dependent on host cultivar (and

thereby on genotype susceptibility). When analyzing the three levels

of OLS disease incidence, a greater variation on the foliar fungal

composition was detected in the OLS-tolerant cv. “Cobrançosa”, in

comparison with the susceptible cv. “Verdeal Transmontana”. We

hypothesize that fungal community changes could affect OLS disease

incidence, probably due to the role of endophytic/epiphytic fungi that

could act as biocontrol agents for olive diseases (Poveda and Baptista,

2021). A reduction on the abundance of those fungi able to provide

host plant protection against OLS disease could determine higher

disease incidence in the most tolerant cultivar. Contrasting with what

occurs in the tolerant cultivar, the pathogen could be more adapted to

the leaf fungal community on the most OLS-susceptible cultivar (cv.

“Verdeal Transmontana”).

The pathogen V. oleaginea itself is able to alter the fungal

community of leaves during disease development. Accordingly,

those trees displaying the highest OLS disease incidence exhibit a

more similar foliar fungal community composition, regardless of

the olive tree cultivar considered. The results from the present study

are in line with the now accepted idea that disease development and

progression depend on pathogen adaptation to the new

environment, as well as on the interactions outcomes established

with other microorganisms in the shared niche (McNally and

Brown, 2015). Although microbiota studies can help to

understand the role of other fungi for the development of olive

diseases, it would be difficult to determine whether the reported

changes are really due to the pathogen itself or are only a result from

disease development. Taking this into consideration, changes in the

fungal microbiota of olive in the presence of different diseases, as

those caused by Xylella fastidiosa (Giampetruzzi et al., 2020),

Pseudomonas savastanoi pv. savastanoi (Gomes et al., 2019),

Colletotrichum sp. (Martins et al., 2021), and even V. oleaginea

(Varanda et al., 2019), have been studied. For example, when

studying OLS disease, Varanda et al. (2019) revealed a relation of

OLS disease and the abundance of specific isolates, such as Chalara

sp. and Foliophoma sp., while the absence of disease was related to

the presence of Alternaria sp. and Epicoccum sp. isolates. These

results contradict the findings from the present work, in which the

presence of Alternaria sp. was strongly related to the development

of the disease. These results suggest that other factors could be

affecting plant disease development as well.

In the present study, leaf volatile emissions changed both

quantitatively and qualitatively in leaves from trees exhibiting

different incidences of OLS disease. Detected variations were

different according to the host cultivar, suggesting that volatile

compounds can probably contribute to plant OLS-resistance/

tolerance. As far as we know, this is the first time in which such

differences were detected according to the cultivar susceptibility to

disease, leaving us to speculate on the underlying mechanism.

Differences on cultivar susceptibility can be caused by multiple

factors, including the activation of different plant defense pathways.

Indeed, in a meta‐analysis about induced plant volatiles, the effects

of pathogenic infections caused by distinct fungi were attributed to

differences in the induced defense pathways (Ameye et al., 2018).

Curiously, on the most OLS-tolerant cultivar, a suppression rather
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than an induction of volatile emissions was observed in trees with

increasing levels of disease incidence. Similar results were obtained

following pathogen attacks in maize and potato plants (Seidl-

Adams et al., 2015; Moreira et al., 2021). The reduction on

volatile emissions has been associated with enhanced defense

responses, suggesting that volatiles may also act as disease

suppressors (Erb, 2018). However, little is known about such

volatile capacity and mechanisms involved in the process (Erb,

2018). In the present work, specific volatile compounds (i.e. a-
farnesene, p-cymene and 1-octanol) were found to be positively

correlated with each other and with OLS incidence, suggesting that

they may be integrated in a specific pathway and contribute to a

higher OLS incidence. Given the capacity of volatiles to regulate

different signaling cascades involved in plant defense, the

integration of these volatile compounds through a signaling

crosstalk is likely to occur (Erb, 2018).

The phenolic composition of olive tree leaves also changed with

OLS disease incidence levels, displaying a variable pattern that

depends on the cultivar. As for volatile compounds, the observed

differences on phenolics might reflect the variation of olive tree

cultivars on their susceptibility to disease. A relation between

phenolic composition and susceptibility to infection was previously

found in Norway spruce when attacked by the needle bladder rust

(Ganthaler et al., 2017), or in maize after infection with Fusarium

verticillioides (Bernardi et al., 2018). The possible contribution of

phenolic compounds to OLS resistance/tolerance of host cultivar was

further reinforced by the positive correlation found between some

phenolic compounds (i.e. luteolin, rutin, verbascoside and apigenin-

7-O-glucoside) and OLS disease incidence.

Previous works on plant defense responses to pathogen attacks

mainly used reductionist approaches, by focusing on host plant

protection conferred by either fungal (Collinge et al., 2022) or plant

secondary metabolites (Zaynab et al., 2018). In the present study,

disease incidence was interlinked for the first time to host cultivar,

to fungal communities inhabiting leaves and to leaf metabolite

composition. Different olive tree cultivars, grown in the same field,

exhibited distinct fungal communities on their leaves and displayed

diverse leaf metabolite compositions. Thus, host cultivar appears to

affect, not only leaf fungal composition, but also metabolite profiles.

Moreover, the interaction effects between fungi and metabolite

compounds could also play an important role on the composition

of each other. Accordingly, changes on fungal and metabolite

composition in leaf samples from trees with different incidence

levels of OLS disease revealed a similar trend, suggesting a possible

link between fungi and metabolites. This relationship is further

reinforced by the significant correlations found between certain

fungal OTUs and metabolites. Although further analysis is required,

we hypothesize that fungal communities residing in olive leaves

could influence the metabolites of host plant, as previously observed

by Trichoderma endophytes (Marra et al., 2020; Dini et al., 2021).

Reciprocally, leaf metabolites could also affect fungal communities

on olive leaves, as previously suggested for other plant species

(Zambell and White, 2017).

A strength of our work is the identification of fungal OTUs and

secondary metabolites strongly associated with OLS disease

incidence. The lowest level of OLS incidence, which was found to
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be associated to the most OLS-tolerant cultivar, was linked to the

presence of P. domesticum that appears to suppress OLS disease.

This possibility is worth investigating further in the future.

Although P. domesticum has already been described to colonize

the inner tissues of other plant species (Ghasemi et al., 2019),

information about their role in conferring host plant protection

against biotic stress is completely lacking. The highest level of OLS

incidence, which was associated to the most OLS-susceptible

cultivar (cv. “Verdeal Transmontana”), was found to be positively

correlated with various fungal OTUs and metabolites. Among the

fungal taxa positively correlated with OLS incidence, both

Alternaria sp. and Fusarium sp. have been extensively described

as important plant pathogens causing numerous diseases in several

plant species (Hernandez-Escribano et al., 2018; Wei et al., 2018). In

what concerns olive tree, only few reports described their capacity

to infect olive fruits, causing fruit-rot (Moral et al., 2008; Trapero-

Casas et al., 2009). Both genera have been described as making part

of synergistic pathogen-pathogen interactions that often lead to

increased disease severity (Lamichhane and Venturi, 2015). Thus,

both fungi are likely to play a similar role in our pathosystem.

Besides the fungal role on OLS disease development, the positive

correlation of specific secondarymetabolites with OLS incidence could

also implicate them on OLS disease development or as part of plant

defense responses. Among the positively correlated metabolites, both

a-farnesene and p-cymene seem to be the most important volatiles

produced in leaves from trees with higher OLS disease incidence. Both

sesquiterpenes have been described as important players on plant

defenses against pathogen attacks (Runyon et al., 2020; Lemaitre-

Guillier et al., 2021), suggesting a potential defensive role. In a similar

way, other phenolic compounds, apigenin-7-O-glucoside and

verbascoside, could play a role on OLS plant responses, since their

levels have been previously described to increase after pathogen

infection (Markakis et al., 2010; Schmidt et al., 2015). In addition,

other phenolics (e.g. flavonoids and cinnamic acid derivatives) and

volatile (e.g. ester) compounds were also positively correlated with

OLS disease incidence, although without significance. Therefore, the

role of positively correlated metabolites with OLS disease incidence is

more likely to be part of plant defense responses to pathogen attack.

In conclusion, both fungal communities and metabolite

compositions, in association with plant genotype, seem to play an

important role on OLS disease incidence. The OLS-tolerant cv.

“Cobrançosa” displayed greater variation in fungal and metabolite

assemblages among trees with different OLS incidence, when

compared to OLS-susceptible cv. “Verdeal Transmontana”. Thus,

differences on cultivar OLS-susceptibility are likely to be related

with leaf fungal composition, metabolites (both phenolic and

volatile compounds), and a combination of both. The complex

interactions occurring between the host plant (cultivar), fungi and

metabolite composition will influence the OLS disease incidence.

Our work identified several key fungi and metabolites that could

play an important role in the susceptibility/tolerance of cultivars to

OLS disease. In this regard, future studies on the interactions of

Pyronema domesticum with olive tree and V. oleaginea pathogen

could provide functional roles of this fungus in host susceptibility/

resistance to OLS disease.
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Role in oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). PloS
One 10, e0125070. doi: 10.1371/journal.pone.0125070

Markakis, E. A., Tjamos, S. E., Antoniou, P. P., and Roussos, P. A. (2010). Phenolic
responses of resistant and susceptible olive cultivars induced by defoliating and
nondefoliating Verticillium dahliae pathotypes. Plant Dis. 94, 1156–1162. doi:
10.1094/PDIS-94-9-1156

Marra, R., Coppola, M., Pironti, A., Grasso, F., Lombardi, N., d’Errico, G., et al. (2020).
The application of Trichoderma strains or metabolites alters the olive leaf metabolome and
the expression of defense-related genes. J. Fungi 6, 369. doi: 10.3390/jof6040369

Martins, F., Mina, D., Pereira, J. A., and Baptista, P. (2021). Endophytic fungal
community structure in olive orchards with high and low incidence of olive
anthracnose. Sci. Rep. 11, 1–11. doi: 10.1038/s41598-020-79962-z

Martins, F., Pereira, J. A., Bota, P., Bento, A., and Baptista, P. (2016). Fungal
endophyte communities in above- and belowground olive tree organs and the effect of
Frontiers in Plant Science 10109
season and geographic location on their structures. Fungal Ecol. 20, 193–201. doi:
10.1016/j.funeco.2016.01.005

McNally, L., and Brown, S. P. (2015). Building the microbiome in health and disease:
Niche construction and social conflict in bacteria. Philos. Trans. R. Soc Lond. B Biol. Sci.
370, 20140298. doi: 10.1098/rstb.2014.0298

Moral, J., de la Rosa, R., León, L., Barranco, D., Michailides, T. J., and Trapero, A.
(2008). High susceptibility of the olive cultivar FS-17 to Alternaria alternata in
southern Spain. Plant Dis. 92:1252. doi: 10.1094/PDIS-92-8-1252A

Moreira, X., Granjel, R. R., de la Fuente, M., Fernández-Conradi, P., Pasch, V.,
Soengas, P., et al. (2021). Apparent inhibition of induced plant volatiles by a fungal
pathogen prevents airborne communication between potato plants. Plant Cell Environ.
44, 1192–1201. doi: 10.1111/pce.13961

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B.,
et al. (2017). “Community ecology package: Ordination methods, diversity analysis and
other functions for community and vegetation ecologists,” in R package version 2, 3–2.
Available at: https://cran.r-project.org/web/packages/vegan/.

Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., et al. (2021). Linking plant
secondary metabolites and plant microbiomes: A review. Front. Plant Sci. 12, 621276.
doi: 10.3389/fpls.2021.621276

Poveda, J. (2021). Beneficial effects of microbial volatile organic compounds
(MVOCs) in plants. Appl. Soil Ecol. 168, 104118. doi: 10.1016/j.apsoil.2021.104118

Poveda, J., and Baptista, P. (2021). Filamentous fungi as biocontrol agents in olive
(Olea europaea l.) diseases: Mycorrhizal and endophytic fungi. Crop Protect. 146,
105672. doi: 10.1016/j.cropro.2021.105672

R Core Team (2018). “A language and environment for statistical computing,” in R
foundation for statistical computing (Vienna, Austria: The R Foundation). Available at:
http://www.R-project.org/.

Runyon, J. B., Gray, C. A., and Jenkins, M. J. (2020). Volatiles of high-elevation five-
needle pines: chemical signatures through ratios and insight into insect and pathogen
resistance. J. Chem. Ecol. 46, 264–274. doi: 10.1007/s10886-020-01150-0

Schmidt, R., Cordovez, V., De Boer, W., Raaijmakers, J., and Garbeva, P. (2015). Volatile
affairs in microbial interactions. ISME J. 9, 2329–2335. doi: 10.1038/ismej.2015.42

Seidl-Adams, I., Richter, A., Boomer, K. B., Yoshinaga, N., Degenhardt, J., and
Tumlinson, J. H. (2015). Emission of herbivore elicitor-induced sesquiterpenes is
regulated by stomatal aperture in maize (Zea mays) seedlings. Plant Cell Environ. 38,
23–34. doi: 10.1111/pce.12347

Tilocca, B., Cao, A., and Migheli, Q. (2020). Scent of a killer: Microbial volatilome
and its role in the biological control of plant pathogens. Front. Microbiol. 11, 41. doi:
10.3389/fmicb.2020.00041

Trapero-Casas, A., Roca, L. F., Moral, J., López-Escudero, F. J., and Blanco López, M.
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Fungal strain and crop cultivar
affect growth of sweet pepper
plants after root inoculation
with entomopathogenic fungi

Liesbet Wilberts1,2, Nicolas Rojas-Preciado1,2,
Hans Jacquemyn2,3 and Bart Lievens1,2*

1Centre of Microbial and Plant Genetics (CMPG) Laboratory for Process Microbial Ecology and
Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S) KU
Leuven, Leuven, Belgium, 2Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium, 3Laboratory
of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
As endophytes, entomopathogenic fungi can protect plants against biotic and

abiotic stresses and at the same time promote plant growth and plant health. To

date, most studies have investigated whether Beauveria bassiana can enhance

plant growth and plant health, while only little is known about other

entomopathogenic fungi. In this study, we evaluated whether root inoculation

of the entomopathogenic fungi Akanthomyces muscarius ARSEF 5128, B.

bassiana ARSEF 3097 and Cordyceps fumosorosea ARSEF 3682 can promote

plant growth of sweet pepper (Capsicum annuum L.), and whether effects are

cultivar-dependent. Plant height, stem diameter, number of leaves, canopy area,

and plant weight were assessed four weeks following inoculation in two

independent experiments using two cultivars of sweet pepper (cv. ‘IDS RZ F1’

and cv. ‘Maduro’). Results showed that the three entomopathogenic fungi were

able to enhance plant growth, particularly canopy area and plant weight. Further,

results showed that effects significantly depended on cultivar and fungal strain,

with the strongest fungal effects obtained for cv. ‘IDS RZ F1’, especially when

inoculated with C. fumosorosea. We conclude that inoculation of sweet pepper

roots with entomopathogenic fungi can stimulate plant growth, but effects

depend on fungal strain and crop cultivar.

KEYWORDS

Akanthomyces muscarius, Beauveria bassiana, Cordyceps fumosorosea, endophyte,
plant growth promotion
1 Introduction

Entomopathogenic fungi are well known for their ability to infect and kill insects (Shah

and Pell, 2003; Islam et al., 2021). After invading a host, the fungus proliferates and invades

the host’s organs and tissues, leading to the death of the insect. Next, the fungus emerges

from the insect cadaver and produces thousands of new spores, which then disperse and
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infect a new host (Shah and Pell, 2003; Islam et al., 2021). Due to the

fact that they are able to suppress natural insect populations and

generally impose no or minimal adverse effects on humans and the

environment (but see Hu et al., 2016), entomopathogenic fungi are

commonly used as bioinsecticides, especially because virtually all

insect orders are vulnerable to fungal diseases (Hajek and St Leger,

1994; Glare et al., 2012; Bamisile et al., 2021). There are several

products based on entomopathogenic fungi commercially available

for insect control, predominantly based on members of the genera

Akanthomyces (previously Lecanicillium and Verticillium)

(Hypocreales: Cordycipitaceae), Beauveria (Hypocreales:

Cordycipitaceae), Cordyceps (previously Isaria and Paecilomyces)

(Hypocreales: Cordycipitaceae) and Metarhizium (Hypocreales:

Clavicipitaceae) (Faria and Wraight, 2007; van Lenteren

et al., 2018).

In addition to colonizing insect hosts as pathogens, an

increasing number of studies have shown that entomopathogenic

fungi can associate with plants, often by colonizing plant tissues

without causing disease symptoms as endophytes (Vega, 2008;

Vidal and Jaber, 2015; Gange et al., 2019; Quesada-Moraga,

2020). Local or systematic colonization occurs mainly in the

roots, stems, leaves and internal tissues of plants (Behie et al.,

2015). The endophytic behavior of entomopathogenic fungi has

been reported in numerous cultivated and non-cultivated plant

species, both naturally colonized and artificially inoculated by

diverse methods, and several of these fungi have the potential to

improve the plant’s response to biotic and abiotic stresses (Vega,

2008; Vidal and Jaber, 2015; Vega, 2018; Gange et al., 2019; Francis

et al., 2022). For example, banana and common bean plants

inoculated with entomopathogenic fungi showed reduced

reproduction rates and higher mortality rates of the banana root

borer (Cosmopolites sordidus), one of the most important pests on

bananas (Akello et al., 2008), and the pea leaf miner (Liriomyza

huidobrensis) (Akutse et al., 2013), respectively, while endophytic

colonization of sweet pepper by entomopathogenic fungi had

negative effects on the development and fecundity of aphids

(Myzus persicae) (Jaber and Araj, 2018; Wilberts et al., 2022).

Moreover, endophytic entomopathogenic fungi have been shown

to reduce pathogen infestation (Jaber and Alananbeh, 2018; Jaber

and Ownley, 2018) and provide plants with drought stress tolerance

(Ferus et al., 2019).

Given their capability to increase plant resistance against biotic

and abiotic stress, endophytic entomopathogenic fungi are being

increasingly evaluated as biostimulants or biopesticides (Lacey et al.,

2015; Lugtenberg et al., 2016; Jaber and Ownley, 2018; Vega, 2018;

Quesada-Moraga, 2020). However, most studies exploring the

potential of endophytic entomopathogenic fungi in agricultural

sustainability have focused on their use as biocontrol agents to

suppress insect pests (Vidal and Jaber, 2015; Vega, 2018;

Mantzoukas and Eliopoulos, 2020) and less research has focused

on their possible role as plant growth promoters, notwithstanding a

number of studies have shown their potential to stimulate plant

growth following endophytic colonization (Tall and Meyling, 2018;

Canassa et al., 2019; Espinoza et al., 2019; Ahmad et al., 2020).

Given that endophytic entomopathogenic fungi can persist for a

long time in host tissues, growth-promoting effects can be expected
Frontiers in Plant Science 02111
to last for a long time (Brownbridge et al., 2012; Bamisile et al.,

2020), although there are also examples of transient colonization

that led to enhanced growth (Gurulingappa et al., 2010; Resquıń-

Romero et al., 2016), further enhancing their appeal as plant

growth promoters.

Among endophytic fungal entomopathogens, Beauveria

bassiana is the most frequently studied species to promote plant

growth (Vega, 2018). It has been reported as early as 1990 as

naturally occurring in maize (Vakili, 1990), and has since then been

isolated from several other plant species (Márquez et al., 2007; Vega

et al., 2010; Pimentel et al., 2016). The fungus has also been

successfully established as an endophyte in several crops

following artificial inoculation, benefiting plant growth and

overall plant health (Espinoza et al., 2019; Saragih et al., 2019;

Shaalan et al., 2021). By contrast, only little attention has been given

to other fungal entomopathogens like Akanthomyces or Cordyceps,

and their potential benefits on plant growth and plant health remain

to be investigated. Furthermore, the effects of entomopathogenic

fungi have been shown to vary between plant species (Gurulingappa

et al., 2010; Sánchez-Rodrıǵuez et al., 2018), suggesting that plant

growth promotion may be affected by the host’s genotype or

cultivar. Because plant-fungus interactions comprise complex

molecular dialogues that induce large-scale transcriptomic

changes in both partners (Tucci et al., 2011; Pieterse et al., 2014;

Alam et al., 2021; Mattoo and Nonzom, 2021), it can be assumed

that both the entomopathogenic fungal strain and cultivar strongly

determine the net result of the plant response, but evidence is

still scarce.

The aim of this study was to assess the plant growth promoting

capabilities of different species of entomopathogenic fungi and to

assess whether plant responses are mediated by plant cultivar.

Therefore, we tested the effects of root inoculation of two

cultivars of sweet pepper (Capsicum annuum L.; Solanaceae) with

B. bassiana (ARSEF 3097) and the fungal species Akanthomyces

muscarius (ARSEF 5128) and Cordyceps fumosorosea (ARSEF 3682)

on plant height, stem diameter, number of leaves, canopy area and

plant weight. Experiments were performed in two different years.
2 Materials and methods

2.1 Plant and fungal material

Two cultivars of sweet pepper were used in this study: cv ‘IDS

RZ F1’ (Rijk Zwaan, De Lier, the Netherlands) and cv ‘Maduro’

(Enza Zaden, Enkhuizen, the Netherlands). These cultivars are

commonly used in commercial sweet pepper cultivation in

Belgium. Both cultivars have crude, medium-size red fruits. IDS

RZ F1 is resistant to Tobamovirus pathotypes P0, P1, P2 and P3,

while Maduro is resistant to pathotypes P0, P1 and P2. Plants were

sown in a 3:1 mixture of potting mix (Universal potting mix;

Agrofino, Ghent, Belgium) and white sand, and incubated until

fungal inoculation (see further) in a plant cabinet that was equipped

with LED lights above the foliage, providing a photosynthetic flux

density of 790 μmol photons m-2s-1 (23 ± 1°C, 65 ± 2% RH and a

16L:8D photoperiod) (MD1400, Snijders Labs, the Netherlands).
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Three endophytic entomopathogenic fungi were used in this study:

Akanthomyces muscarius ARSEF 5128 (Ve-6; previously known as

Lecanicillium muscarium), Beauveria bassiana ARSEF 3097 (ATCC

74040), and Cordyceps fumosorosea ARSEF 3682 (Apopka 97;

previously identified as Isaria fumosorosea). These three fungi are

the active substance in the bioinsecticides Mycotal®, Naturalis® and

PreFeRal®, respectively. Originally, A. muscarius ARSEF 5128 was

isolated from a greenhouse whitefly in Littlehampton (UK) (Hall,

1982), B. bassiana ARSEF 3097 from a boll weevil in the Rio Grande

Valley (USA) (Wright, 1996) and C. fumosorosea ARSEF 3682 from

a mealy bug in a greenhouse in Apopka (USA) (Vidal et al., 1998).

All strains have been shown to colonize plants as an endophyte

upon artificial inoculation in various crops, including sweet pepper

(Kuchár et al., 2019; Rondot and Reineke, 2019; Nicoletti and

Becchimanzi, 2020; Doherty et al., 2021; Wilberts et al., 2022).

The strains were acquired from the Agricultural Research Service

Collection of Entomopathogenic Fungal Cultures (ARSEF; New

York, USA), and were stored as agar plugs in glycerol at -80°C.
2.2 Fungal spore suspensions and
plant inoculation

Stored agar plugs of each fungus were plated onto quarter-

strength (¼) Sabouraud dextrose agar with yeast extract (Oxoid

Holdings Ltd, United Kingdom) (SDAY), and once again replated

onto the same agar medium before use. Conidial suspensions were

prepared by culturing the fungi in darkness on SDAY for seven days

at 25°C, followed by flooding the plates with sterile physiological

water (0.8% NaCl) and scraping fungal tissue of the plates. Next,

fungal fragments and spores were filtered through microcloth (Mira

Cloth, Merck, Massachusetts, USA) to remove fungal hyphae, and

the spore concentration was determined by using a Bürker

hemocytometer under the microscope, and diluted to 1×107

conidia mL-1. Before inoculation, a 100 μL aliquot of 1×103

spores mL-1 was plated on three SDAY plates to check spore

viability. The number of germinated and ungerminated spores

was determined under the microscope after 24 h of incubation at

25°C. Spores with germ tubes at least two times longer than their

diameter were considered as germinated. The germination assays

showed >90% viability rate for all fungal spore suspensions used in

the experiments.

Plants were inoculated as described in Wilberts et al. (2022).

Briefly, at the first true leaf stage seedlings were uprooted and roots

were rinsed under running tap water. Next, roots were dipped in 10

mL of the conidial spore suspensions for 18h. Roots of a separate set

of seedlings were submerged in 10 mL physiological water to be

included as non-inoculated (control) plants. Seedlings were then

placed individually in 17-cm-diameter plastic pots in a 3:1 mixture

of potting mix (Universal potting mix; Agrofino, Ghent, Belgium)

and white sand (for chemical characteristics of the potting medium,

see Table S1; Supporting information), and put in the greenhouse

according to a randomized complete block design. The experiment

was performed with 10 replicates per treatment, yielding 2 cultivars
Frontiers in Plant Science 03112
× 4 treatments × 10 plants = 80 plants in total. The experiment was

performed twice (February-March 2021 and February-March 2022,

further referred to as “Exp 2021” and “Exp 2022”, respectively). In

both trials, plants were maintained at 23 ± 5°C, 65 ± 10% RH and a

photoperiod of 16L:8D. Plants were watered daily with a nutrient

solution for sweet pepper (Table S2; Supporting information).

Temperature, relative humidity and solar insolation in the

greenhouse were monitored throughout the experiments (Figure

S1; Supporting information).
2.3 Plant growth

To assess plant growth, plant height (from lowest leaf node to

the highest node), stem diameter, number of leaves, canopy area,

and fresh and dry weight were measured for each plant. Plant height

was measured at the start of the experiment (i.e. immediately after

inoculation and potting) and subsequently every week for a total

period of four weeks. All other variables were measured at the end of

the experiment, i.e. four weeks after transplantation. Stem diameter

was measured 1 cm above the lowest leaf node with a sliding caliper.

Canopy area was calculated from top view images taken with a

Canon EOS 1300d camera with Canon zoom lens EF-S 18-55mm f/

3.5-5.6 III. The surroundings of the plants, including the plant pots,

were covered with blue plastic as a contrast, while a red reference

card of known size (15 × 10 cm) was put next to each plant. Then,

canopy area was calculated by color segmentation with an R tool

based on the EBImage (Pau et al., 2010) and imagemagick packages

by separating the green plant pixels from the blue background. The

red reference surface was used to calculate the green area (van

Wesemael et al., 2019). To determine fresh and dry weight of the

plants, plants were removed from the pots and roots were washed.

Next, after air drying, fresh weight of the plants was determined.

Subsequently, the plants were placed in individual paper bags and

dried for five days at 80°C, after which the dry weight was

determined. Before weighing the plants, the fifth leaf of every

plant was collected, surface-sterilized (Landa et al., 2013) and

subjected to DNA extraction and PCR amplification using the

species-specific primer combinations ITS1F (Gardes and Bruns,

1993) and Am_Rv1 (5’-AGATGCTGATAATACAGAGTT-3’),

ITS1F and Bb_Rv1 (5’-GATGCTGGAATACAAGAGTTTGAG-

3 ’) and ITS1F and Cf_Rv1 (5 ’-CGGATTCAGAAAGA

CTGATAG-3’) to detect A. muscarius, B. bassiana and C.

fumosorosea respectively, as described in Wilberts et al. (2022).
2.4 Statistical analysis

Plant height was analyzed using a Generalized linear mixed

model (GLMM) based on a Gamma distribution with a log link

function using treatment, plant cultivar, and week as fixed factors,

while plant was entered as random factor (performed with the

‘glmer’ function from the lme4 package). Plant height was entered

as response variable, and the interaction factor between the fungal
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treatment and cultivar was added to the model. Stem diameter,

canopy area, fresh weight and dry weight were analyzed using a

Generalized Linear Model (GLM) based on a Gamma distribution

with a log link function using treatment, plant cultivar and their

interaction as fixed factors (performed with the ‘glm’ function from

the lme4 package). The number of leaves was analyzed using a GLM

based on a Poisson distribution with a log link function using

treatment, plant cultivar and their interaction as fixed factors. For

this analysis, each plant was considered a biological replicate, giving

a total of 10 replicates per treatment. To evaluate overall differences

between the different treatments and cultivars, an analysis of

variance (ANOVA) Type III test was performed on all models.

When an overall difference was observed, a post hoc pairwise

comparison (with estimated marginal means using the emmeans

package) was performed to determine the pairwise differences

between the different treatments and cultivars. The statistical

analysis of the greenhouse experiments was performed for each

dataset separately, as experiments were performed in different years.

A significance level of a = 0.05 was applied to establish significant

differences. All analyses and visualization of the data (ggplot2

package) were performed using R version 3.6.1 (R Core

Team, 2019).
3 Results

3.1 Plant growth

Cultivar had a strong effect on plant growth, while the effects of

fungal strain were less pronounced and differed between the two

experiments (Table 1). The effect of fungal strain on plant growth

was strongest in the experiment performed in 2022 (Table 1). Plant

height of IDS RZ F1 plants was significantly larger than that of Maduro

plants over the course of both experiments (Figure 1; Table 1). In the

experiment performed in 2021 (Exp 2021), fungal inoculation with the

entomopathogenic fungi did not have a significant effect on plant

height (Table 1). In the experiment performed in 2022 (Exp 2022),

fungal inoculation resulted in higher IDS RZ F1 plants, especially when

inoculated with C. fumosorosea (P = 0.019). For Maduro plants, fungal

inoculation did not elicit an effect on plant height compared to control
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plants (A. muscarius: P = 0.997; B. bassiana: P = 0.967; C. fumosorosea:

P = 0.868).

Stem diameter did not differ between cultivars in Exp 2021,

while in Exp 2022 Maduro plants were thinner than IDS RZ F1

plants (Figures 2A, B; Table 1). In the first experiment, IDS RZ F1

plants inoculated with A. muscarius were significantly thicker than

plants inoculated with C. fumosorosea (P = 0.028), while no other

differences were observed among treatments (Figure 2A). In the

second experiment, plants inoculated with B. bassiana and C.

fumosorosea had significantly thicker stems than control plants

for both cultivars (IDS RZ F1 - B. bassiana: P = 0.037; IDS RZ F1

- C. fumosorosea: P = 0.020; Maduro - B. bassiana: P = 0.034;

Maduro - C. fumosorosea: P < 0.001) (Figure 2B). Likewise, Maduro

plants inoculated with C. fumosorosea had significantly thicker

stems than Maduro plants inoculated with A. muscarius (P =

0.042) (Figure 2B).

The number of leaves did not differ significantly between

cultivars in both experiments (Table 1). Also fungal inoculation

did not affect the number of leaves significantly (Figures 2C, D;

Table 1). Canopy area of IDS RZ F1 plants was significantly larger

than that of Maduro plants in both experiments (Figures 2E, F;

Table 1). While fungal inoculation did not significantly affect

canopy area in Exp 2021, clear effects were observed in Exp 2022

(Figures 2E, F). Specifically, in Exp 2022, fungal inoculation of IDS

RZ F1 plants resulted in a wider canopy for all fungi compared to

the control plants (A. muscarius: P = 0.043; B. bassiana: P = 0.015;

C. fumosorosea: P < 0.001). Furthermore, IDS RZ F1 plants

inoculated with C. fumosorosea had a significantly wider canopy

than IDS RZ F1 plants inoculated with A. muscarius or B. bassiana

(A. muscarius: P < 0.001; B. bassiana: P < 0.001) (Figure 2F). IDS RZ

F1 control plants had a canopy area of 449.57 ± 72.50 cm² on

average, compared to 574.98 ± 86.46 cm², 595.22 ± 129.37 cm² and

883.44 ± 116.90 cm² for IDS RZ F1 plants inoculated with A.

muscarius, B. bassiana and C. fumosorosea, respectively. Maduro

plants inoculated with C. fumosorosea also had a wider canopy than

Maduro plants inoculated with A. muscarius (P = 0.026) and

control plants (P < 0.001), although the difference was less

pronounced than in IDS RZ F1 plants. Maduro plants inoculated

with C. fumosorosea had a canopy area of 481.47 ± 94.04 cm² on

average, while Maduro plants inoculated with A. muscarius and
TABLE 1 Effects of fungal strain, cultivar and their interaction on growth of sweet pepper plants1.

2021 2022

Fungal strain Cultivar Fungal strain × Cultivar Fungal strain Cultivar Fungal strain × Cultivar

Plant height 5.372 9.269 ** 2.426 8.945 * 32.321 *** 3.049

Stem diameter 8.115 * 1.594 7.315 10.362 * 5.802 * 1.02

Number of leaves 5.860 2.274 3.401 3.356 2.020 0.835

Canopy area 6.834 11.949 *** 3.233 54.902 *** 21.868 *** 4.847

Fresh weight 2.014 13.685 *** 14.314 ** 34.132 *** 15.730 *** 0.560

Dry weight 5.704 14.426 *** 19.432 *** 39.289 *** 19.020 *** 1.947
1Chi-square distribution values from ANOVA on 10 plants per treatment measured four weeks after inoculation for all growth variables except plant height. Plant height was compared over the
course of four weeks with weekly measurements (Generalized Linear Mixed Model). Asterisks indicate significant differences between the treatments (0.05 > P > 0.01: *; 0.01 > P > 0.001: **P <
0.001: ***).
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control plants had an average canopy area of 370.16 ± 86.91 cm²

and 323.73 ± 79.04 cm², respectively. Maduro plants inoculated

with B. bassiana had a canopy area of 402.38 ± 90.40 cm² on

average (Figure 2F).

Fresh weight of IDS RZ F1 plants was higher than that of Maduro

plants in both experiments (Figures 3A, B; Table 1). In Exp 2022,

fresh weight of plants inoculated with the entomopathogenic fungi

was significantly higher than that of control plants for both cultivars

(IDS RZ F1 - A. muscarius: P = 0.001; IDS RZ F1 - B. bassiana: P <

0.001; IDS RZ F1 - C. fumosorosea: P < 0.001; Maduro - A. muscarius:

P < 0.001; Maduro - B. bassiana: P < 0.001; Maduro - C. fumosorosea:

P < 0.001) (Figure 3B). IDS RZ F1 plants inoculated with A.

muscarius, B. bassiana and C. fumosorosea had a fresh weight of

50.28 ± 11.24 g, 50.96 ± 83.48 g and 66.18 ± 6.28 g on average,

respectively, while IDS RZ F1 control plants weighted 31.56 ± 6.81 g

on average. Maduro plants inoculated with A. muscarius, B. bassiana

and C. fumosorosea weighted 30.69 ± 8.62 g, 34.51 ± 11.49 g and

40.90 ± 8.73 g on average, respectively, while Maduro control plants

only weighted 18.98 ± 8.13 g (Figure 3B). Similarly, dry plant weight

was significantly higher in inoculated plants compared to control

plants (IDS RZ F1 - A. muscarius: P < 0.001; IDS RZ F1 - B. bassiana:

P < 0.001; IDS RZ F1 - C. fumosorosea: P < 0.001; Maduro - A.

muscarius: P = 0.002; Maduro - B. bassiana: P < 0.001; Maduro - C.

fumosorosea: P < 0.001) (Figure 3D). In contrast to Exp 2022, an effect

of fungal inoculation on plant weight was not observed in Exp 2021

(Figure 3C). However, both for fresh weight and dry weight, there was
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an interaction effect between cultivar and treatment in Exp 2021. This

interaction effect was not observed in Exp 2022 (Table 1).
3.2 Endophytic colonization of the plants

At the end of both experiments, endophytic colonization by the

three fungi was assessed by subjecting a sample from the fifth true

leaf from all investigated plants to PCR analysis. The inoculated

fungi could not be detected in any leaves of either inoculated or

control plants four weeks after inoculation.
4 Discussion

In this study, we investigated the plant growth promoting

capabilities of different species of entomopathogenic fungi and

assessed whether plant responses were mediated by plant cultivar.

Overall, entomopathogenic fungi had positive effects on plant

growth parameters. However, effects were more pronounced in

the experiment performed in 2022 compared to the experiment

performed in 2021, possibly due to different climatic factors,

although both experiments were set-up in the same way in the

same period of the year (Figure S1, Supporting information).

Similarly, previous studies have shown that entomopathogenic

fungi like B. bassiana promote plant growth in diverse plant
BA

FIGURE 1

Average plant height of Capsicum annuum cv. IDS RZ F1 and cv. Maduro, inoculated with Akanthomyces muscarius ARSEF 5128, Beauveria bassiana
ARSEF 3097 or Cordyceps fumosorosea ARSEF 3682, compared to control plants (n = 10). Plant height was measured weekly over a period of four
weeks after fungal inoculation. The experiment was set up twice: in February-March 2021 (A) and in February-March 2022 (B). Error bars represent
standard error of the mean.
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species, including chive (Espinoza et al., 2019), cucumber (Shaalan

et al., 2021), bean (Jaber and Enkerli, 2016), grapevine (Mantzoukas

et al., 2021), maize (Tall and Meyling, 2018; Liu et al., 2022), red

chili (Saragih et al., 2019), and wheat (Guzmán et al., 2021). By

contrast, there are also studies that found no or sometimes negative

effects of endophytic entomopathogenic fungi on plant growth

(Vega, 2018; Moloinyane and Nchu, 2019). Our results also

showed that plant growth promoting effects differ with fungal

species. Specifically, we found that inoculation with C.

fumosorosea resulted in the strongest growth promotion of sweet
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pepper, while effects of inoculation with A. muscarius and B.

bassiana were less pronounced.

Although most growth variables were affected by fungal

inoculation in the 2022 experiment, fungal inoculation had the

largest effect on leaf area and consequently plant weight. Plants

inoculated with the tested entomopathogenic fungi had larger leaves

and a larger canopy area, which can have strong implications for

crop yield. With a greater canopy area, photosynthesis can be

enhanced, vegetative growth increased, and consequently the

aging of the plant delayed (Worku et al., 2007; Jo and Shin,
B

C D

E F

A

FIGURE 2

Stem diameter (A, B), number of leaves (C, D), canopy area (E, F) of Capsicum annuum cv. IDS RZ F1 and cv. Maduro, inoculated with Akanthomyces
muscarius ARSEF 5128, Beauveria bassiana ARSEF 3097 or Cordyceps fumosorosea ARSEF 3682 compared to control plants four weeks after fungal
inoculation (n = 10). The experiment was set up twice: in February-March 2021 (A, C, E) and in February-March 2022 (B, D, F). Asterisks indicate a
significant difference between the two cultivars (ANOVA, P < 0.05). Different letters indicate significant differences between treatments (Generalized
linear model, P < 0.05). When no letters are given, no significant differences were observed.
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2020). Therefore, most studies on plant growth include leaf and/or

canopy area as a major growth parameter, as plant weight is often

too general as a parameter for plant development (Jo and Shin,

2020). It needs to be noted, however, that effects in our study were

evaluated up to four weeks after fungal inoculation. While we

specifically focused on vegetative growth in this study, further

studies should be performed on how the observed growth

promotion by fungal inoculation affects the growth of sweet

pepper when the plants are balancing vegetative and

generative growth.

Effects of fungal treatments resulted in similar trends in both

cultivars. However, effects were more pronounced in the IDS RZ F1

cultivar, resulting in stronger significant differences between the

treatments, while fungal treatments more often had a small to

neutral effect on Maduro plant growth. Similarly, Canassa et al.

(2020) found differences in plant growth between strawberry

cultivars upon inoculation with entomopathogenic fungi. Fungal

colonization of the internal parts of a plant is mediated by various

biomolecules which drive dynamic changes in the expression of

genes in the host plant and the fungus (Pieterse et al., 2014; Mattoo

and Nonzom, 2021), and consequently can lead to strain- and

cultivar-dependent differences. Furthermore, differences in plant

colonization degree may affect plant responses (Jaber and Ownley,

2018). In our study, inoculated fungi could not be detected at the
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end of the experiment, suggesting that endophytic colonization was

transient or that the fungi did not establish systematically in the

plants, or at least not in the investigated leaf tissues (fifth leaf).

Colonization of plant tissue by entomopathogenic fungi may be

transient, with recovery of the fungi only in the first days after

inoculation, especially when plants are grown in non-sterile soil, as

was the case in this study (Posada et al., 2007; Gurulingappa et al.,

2010; Allegrucci et al., 2017). Many factors may affect the degree to

which entomopathogenic fungi colonize plant tissue, including

inoculation method, environmental conditions and competing

rhizosphere and endosphere microorganisms (Tefera and Vidal,

2009; Parsa et al., 2018; Rajab et al., 2020), but the exact

mechanisms and forces behind endophytic colonization by

entomopathogenic fungi still remain to be elucidated (Vega,

2018). Nevertheless, despite limited or even no endophytic

co lon iza t ion , benefic i a l e ff e c t s o f inocu la t ion wi th

entomopathogenic fungi have been observed, indicating that long

term colonization or systemic colonization is not required to induce

positive fungus-mediated effects (Parsa et al., 2018; Tall and

Meyling, 2018). Further research should explore how and to

which extent our plants were colonized by the fungal strains and

how this affected plant responses. Regardless of fungal treatments,

there were clear differences between both sweet pepper cultivars. In

both experiments performed, Maduro plants were shorter, had
B

C D

A

FIGURE 3

Fresh weight (A, B) and dry weight (C, D) of Capsicum annuum cv. IDS RZ F1 and cv. Maduro, inoculated with Akanthomyces muscarius ARSEF 5128,
Beauveria bassiana ARSEF 3097 or Cordyceps fumosorosea ARSEF 3682 compared to control plants four weeks after fungal inoculation (n = 10). The
experiment was set up twice: in February-March 2021 (A, C) and in February-March 2022 (B, D). Asterisks indicate a significant difference between
the two cultivars (ANOVA, P < 0.05). Different letters indicate significant differences between treatments (Generalized linear model, P < 0.05). When
no letters are given, no significant differences were observed.
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smaller leaves and weighed significantly less than IDS RZ F1 plants.

Contrary to our results, Maduro is described as generally slightly

bigger than IDS RZ F1 according to the cultivar description. On the

other hand, IDS RZ F1 is selected to produce fruits somewhat earlier

than Maduro, so it is possible that young IDS RZ F1 plants, as we

have studied, grow slightly faster. Nevertheless, although IDS RZ F1

plants were bigger than Maduro, both had the same number of

leaves, meaning that IDS RZ F1 has a more open growth, which

makes harvesting, and general handling of the crop, easier.

Taking together that inoculation with entomopathogenic fungi

has been shown to protect plants against pests and pathogens

(Bamisile et al., 2018; Vega, 2018) and that our results clearly

show that inoculation of sweet pepper with entomopathogenic

fungi enhances plant growth, these fungi have the potential for

multitarget effects in crops on both growth promotion and

biocontrol. However, the underlying mechanisms remain to be

unraveled. Enhanced plant growth might have been facilitated via

improved acquisition of nutrients, phytohormone production,

induced resistance, production of antibiotics and secondary

metabolites, and/or production of siderophores (Vega, 2018;

Baron and Rigobelo, 2022). For example, inoculation of potato

with Metarhizium brunneum resulted in an increased leaf area and

plant weight, which was correlated with an increased amount of

nitrogen and phosphorous content, and an increased water use

efficiency (Krell et al., 2018). Which scenario is at play for the fungi

investigated in our study, remains to be unraveled. Further, more

research is required on the secondary metabolites produced by these

endophytic entomopathogenic fungi, which may possibly end up in

the fruits, as some have been found to possibly be toxic to mammals

(including humans), such as beauvericin (Hu et al., 2016;

Mallebrera et al., 2018).

In conclusion, our results indicate that plant root inoculation

with entomopathogenic fungi enhanced overall plant growth of

sweet pepper, but effects depend on fungal strain and crop cultivar.

Effects also differed between years, suggesting that environmental

factors can influence the outcome of endophytic colonization by

entomopathogenic fungi on plant growth. Strongest plant growth

promoting effects were observed for cv IDS RZ F1 inoculated with

C. fumosorosea ARSEF 3682, expressed by enhanced canopy area

and increased plant weight. These results open possibilities for the

implementation of plant inoculation with entomopathogenic fungi

as plant growth promoters to support and stimulate

sustainable agriculture.
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School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
Introdution: Fungal endophytes are widespread and dwell inside plant cells for at

least part of their life without producing any symptoms of infection. Distinct host

plants may have different fungal endophyte rates and community compositions.

Despite this, the endophytic fungi connected with the host plant and their hostile

behaviors, remain unknown.

Methods: The objective of the current research was to isolate and identify

endophytic fungal species from the root of Andrographis paniculata. The

effects of fungal isolate APR5 on the mycelial growth of phytopathogens and

the production of plant-promoting traits were assessed.

Results and discussion: Endophytic fungal isolate APR5 showed higher inhibitory

efficacy in dual and double plate assay against the tested phytopathogenic fungi.

The scanning electron microscope analysis demonstrated that the

phytopathogenic fungal hyphae were coiled by endophytes which makes them

shrink and disintegrate. Further, an ethyl acetate crude extract effectively

suppressed the mycelium growth of Rhizoctonia solani by 75 ± 0.1% in an agar

well diffusion assay. The fungal isolate APR5 was identified as Lasiodiplodia

pseudotheobromae using the nuclear ribosomal DNA internal transcribed

spacer (ITS) region and qualitatively evaluated for their capacity to produce

plant growth-promoting hormones. Gas chromatography-mass spectrometry

was implemented to acquire a preliminary understanding of the secondary

metabolic profile of ethyl acetate crude extract. 1-octadecene, erythritol,

niacin, oleic acid, phenol, pantolactone, phenyl ethyl alcohol, p-cresol, and

tbutyl hydroquinone are the metabolites analyzed in a crude extract of APR5

isolate and are reported to have antimicrobial properties.

KEYWORDS

agriculture, biocontrol agent, chemical pesticide, endophyte, food production,
phytopathogenic fungi
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1 Introduction

The global population has grown significantly from 1.6 billion

in 1900 to 7.0 billion in 2011, in the past century. It is estimated that

by the year 2050, there will be 9.7 billion people around the world,

increasing the demand for water resources. Under this scenario, the

production of food will need to expand by around 70% by 2050 and

twice or triple by 2100, while aiming to reduce the impact on the

environment (Poveda et al., 2021). Fungi are a prominent disease-

causing agent on plants with a huge loss of up to 90% of agricultural

production (Elamathi and Mathanraj, 2017). Soil-borne fungal

pathogens reduce agricultural productivity and degrade the

quality of food products. Such fungal infections with a wide host

range spread diseases in a variety of commercially important crops

(Dukare et al., 2020). These well-known soil-borne pathogens may

be found in many types of soil. Due to their saprophytic nature, they

may spend more time in the soil. This condition has been

documented in at least 32 nations, with warm-climate countries

being the hardest impacted (Karthika et al., 2020). Banana,

cucumber, potato, tomato, and tobacco are the mainly affected

crops by soil-borne pathogens all over the globe. The deadliest

ailment to strike tomato plants worldwide, particularly in uplands,

is Fusarium wilt. In the wilted plants with yellowed leaves, Fusarium

wilt causes a 60–70% reduction in fruit output and infects 30–40%

of the crop annually (Jinal and Amaresan, 2020; Karthika

et al., 2020).

Macrophomina phaseolina causes seedling blight, charcoal,

stem, and root rot and affects approximately 500 plant species

from over 100 families all around the world. It affects commercially

significant vegetables, cotton, sorghum, sunflower, and legumes and

has a wide geographic spread in tropical and subtropical nations.

When exposed to humans, M. phaseol ina can infect

immunosuppressed patients (Javed et al., 2021). When the

temperature is high (30–35°C) and soil moisture is low (under

60%), it lowers farmer profitability by inducing major yield loss in

sorghum and soybean. When the disease emerged at the pre-

emergence stage, groundnut cultivars experienced 100% yield loss

(Marquez et al., 2021). Due to its enduring nature, it can survive for

up to 3 years in the shape of microsclerotia as resistant forms in

infected plant detritus or dirt (Khan et al., 2021). Rhizoctonia solani

is a major soil-borne fungus detected in both cultivated and non-

cultured soils. It lives as sclerotia in the soil and does not produce

asexual spores. The most prevalent infection induced by R. solani is

seedling damping-off (Goudjal et al., 2014). Sclerotia are superficial,

firm, and distinctively shaped dark brown to black masses, are

the most obvious symptom of black scruf, and result in distorted

and fractured tubers. The wide host range and overwintering

characteristics of R. solani make them difficult to control using

conventional biological and chemical methods (Rafiq et al., 2020).

To suppress the occurrence of soil pathogenic fungi, synthetic

fungicides notably bavistin, benomyl, and thiram have traditionally

been utilized (Dukare et al., 2020). These fungicides were

transformed into poisonous compounds by the host plant tissue

or by pathogens. In addition to fungicide resistance and increasing

soil pollution, the widespread use of chemical fungicides has the
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potential to disrupt microbial ecosystems and weaken the ozone

layer (Goudjal et al., 2014). About 10 to 40% of the nutrients from

chemical fertilizers are ultimately absorbed by plants and the

remainder are leached, their use would aid in reducing the loss of

nutrients (Poveda et al., 2021). The rise in production demand,

restrictions on agrochemicals usage, and the emergence of

resistance towards the chemical products used led to the need for

new and effective biocontrol agents (Elamathi and Mathanraj,

2017). Due to their non-polluting and eco-safe nature, biocontrol

agents with plant growth-promoting traits can leads to chemical-

free sustainable agriculture (Dukare et al., 2020).

Endophytic fungi are ubiquitous and stay intercellular or

intracellular in plants for at least a portion of their lives without

triggering infection symptoms (Nayak et al., 2016). Darnal,

Germany discovers endophytes in 1904. Endophytic fungi

similarly colonize plant tissues as plant pathogens and

mycorrhizae, with a series of stages that include host recognition,

fungal spore germination, epidermal penetration, and tissue

colonization (Nayak et al., 2016). Mutualistic, symbiotic,

communalistic, and trophobiotic are the various interaction types

found between host plants and endophytes (Masi et al., 2019). The

frequencies and community compositions of fungal endophytes

may vary for different host plants (Piska et al., 2015). Endophytic

fungi are identified to have mutualistic relationships with their hosts

and mostly protect plants from tissue-invading pathogens or

herbivores by producing secondary metabolites, phytohormones

that encourage plant development, or by delivering nutrients to the

host. They may also interact directly with their hosts through niche

competition, hyperparasitism, by releasing poisonous substances

and by inducing systemic resistance (Radu and Kqueen, 2002; Bila´

nski and Kowalski, 2022). By secreting plant growth-promoting

chemicals that might confer resistance to the host plant during

favorable environmental circumstances, the endophytic fungi

improve the growth response in infected host plants mostly

through nutrient cycle (Piska et al., 2015). Endophytic

microorganisms are a relatively unexplored community that is

currently gaining attraction in medical and agricultural research.

Different researchers worked on the endophytic fungi of various

medicinal plants in and around India (Nayak et al., 2016; Roy

et al., 2016).

Andrographis paniculata is an erect annual herb with a harsh

flavor and belongs to the Acanthaceae family. Andrographis is a genus

of little annual shrubs with 28 species primarily found in tropical Asia.

In north-eastern India, the plant is known as Maha-tita, or “king of

bitters” (Nayak, 2015). It is native to India and Sri Lanka and the plant

is extensively cultivated in Asia. In China, Indonesia, Hong Kong, the

Philippines, Malaysia, and Thailand, it is used as traditional herbal

medicine. It is referred to as Hempedu Bumi in Malaysia. Flavonoids,

diterpenes, lactones, aldehydes, alkanes, and ketones were found in

this medicinal plant. Andrographolide and Kalmeghin are the

bioactive chemical compounds found in their leaves (Firdous et al.,

2020). In addition to its widespread usage as an immunostimulant,

Kalmegh is stated to have anti-snake venom, antihepatotoxic,

antimalarial, antibiotic, antihepatitic, anti-inflammatory, antipyretic

and anti-thrombogenic effects (Nayak, 2015). It is recognized as
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‘Sirunangai’ or ‘Siriyanangai’ in Tamil (Arunachalam and Gayathri,

2010).A. paniculata harbors endophytic bacteria with the capability to

act as plant growth regulators and promoters (Masi et al., 2019). 14-

Deoxyandrographolide, 14-deoxy-11,12-didehydroandrographolide,

neoandrographolide, and andrographolide are the labdane type

diterpene lactones and a major bitter component of this plant

(Rashid et al., 2018). Due to the existence of many bioactive

metabolites, medicinal plants have a specific microbiome that can

enhance the potential for interaction with microorganisms. Plant

growth-promoting microbes stimulate plant growth by competing

with microbial pathogens, activating plant defense responses, and

secreting plant growth-promoting chemicals that include auxins,

bacterial volatiles, and cytokinins (Sinha and Raghuwanshi, 2015).

Research findings on medicinal plants and endophytes have revealed

that the therapeutic properties of medicinal plants are not only due to

the chemicals found in the plant but also to the endophytes that dwell

within the plant (D’Souza and Hiremath, 2015). Selecting plants for

investigating endophytic fauna for a specific goal usually involves

several considerations. The objective of this experiment was to

evaluate the hostile behavior of soil-borne pathogenic fungi and

fungus endophytes from the plant A. paniculata. The present

research will contribute to the investigation and application of

endophytic fungus for enhanced plant disease management.
2 Materials and methods

2.1 Procurement of indicator
microorganisms

Fusarium oxysporum, Macrophomina phaseolina, and

Rhizoctonia solani are the diagnostic phytopathogens used for

assessing the antifungal ability of endophytic fungus. The

Department of Plant Pathology at Annamalai University in

Chidambaram graciously provided with these soil-borne fungus

phytopathogens. The maintenance and cultivation of fungal strains

were carried out on a potato dextrose agar (PDA, HiMedia

Laboratories, Mumbai, India).
2.2 Isolation of endophytic fungus from
Andrographis paniculata

The root segments were carefully detached from the healthy

Andrographis paniculata in Ranipet district, Tamilnadu, India

(Latitude 12.9272; Longitude 79.36883). The plant parts were

cleaned with distilled water to get rid of dirt and debris.

Following 4% NaOCl solution for 3 minutes, 70% ethanol for 1

minute, and 70% ethanol for 30 seconds, the surface of the root was

sterilized. Upon that, the root segments were washed three times

with clean Milli-Q water. 100 µL of Milli-Q water from the final

wash was spread over the fresh PDA plate to check the efficacy of

surface sterilization (control plate). The surface-sterilized root

segments were then cut into tiny sections of about 0.5 cm, placed

on PDA plates, and incubated for 7 to 10 days at 27 ± 2°C until the

fungal endophytes appeared. The fungal strains were purified using
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the single hyphal tip method and then plated on a PDA medium

(Rakshith et al., 2013).
2.3 Antagonistic activity

2.3.1 Dual culture method
A dual culture experiment was conducted to evaluate the

antagonistic activity of endophytic fungus against soil-borne

phytopathogens. On the opposing plate, active pathogenic (3 days

old culture of F. oxysporum, M. phaseolina, and R. solani) and

endophytic fungus were put as 8 mmmycelial plugs with a 3 cm gap

between them and 1 cm from the border. The control dish contains

only the pathogenic fungi disc. The experiment was carried out in

triplicates and incubated at 27 ± 2°C. When the pathogenic fungus

completely covered the control dish, growth suppression was

recorded (Rakshith et al., 2013).

The following equation was used to estimate the growth

inhibition rate:

The percentage of inhibition (%) = [(RC−RT)/RC] ×100

Whereas RC denotes the radius of the control colony,

RT denotes the radius of the test colony.

2.3.2 Double plate technique
Endophytic fungus were grown on sealed petri plates to assess

their volatile compound production. About 5 mm discs of test

pathogens and endophytic fungi were each placed in the center of

two separate bottom petri dishes. One of the plates (with the

pathogen) was then flipped over to the other bottom containing

endophyte to form a chamber. This experimental setup was sealed

with parafilm and kept for 7 days at 27 ± 2°C. Endophytic fungus

without pathogens at the bottom were used as a control. The

percentage of inhibition was assessed following a week of

monitoring (Chen et al., 2016).

2.3.4 Scanning electron microscopy analysis
Visualization of the morphologic changes in pathogenic fungus

was done using scanning electron microscopy (SEM) analysis. To

investigate changes in the hyphal morphology of test fungi caused

by the antagonistic action of endophyte, 0.5 cm pieces of agar media

from the edge of the inhibition zone were analyzed. The samples

were prepared to view under SEM (EVO/18 Research , Carl Zeiss).
2.4 Molecular genomic identification of the
endophytic fungus

Molecular identification was carried out by employing 18S

rRNA sequencing. Using the NucleoSpin® Tissue Kit, the

genomic DNA was extracted. Using the universal primers ITS-1F

(5 ’-TCCGTAGGTGAACCTTGCGG-3 ’) and ITS-4R (5 ’-

TCCTCCGCTTATTGATATGC-3’), the genomic DNA was

amplified. The PCR was conducted in a 20 µL reaction mixture

that comprised 5 pM of forward and reverse primers, template

DNA, 0.1 mg/mL BSA, 1 unit of AmpliTaq Gold DNA polymerase

enzyme, 1X PCR buffer (100 mM Tris HCl, pH-8.3; 500 mM KCl),
frontiersin.org

https://doi.org/10.3389/fpls.2023.1125630
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Segaran and Sathiavelu 10.3389/fpls.2023.1125630
0.2 mM each dNTP (dATP, dGTP, dCTP, and dTTP) and 2.5 mM

MgCl2. The 40 cycles of denaturation at 95°C for 30 s, annealing at

58°C for 40 s, extension at 72°C for 60 s, and final extension at 72°C

for 5 minutes were the first step in the amplification process. A PCR

thermal cycler was used to do the PCR amplification (GeneAmp

PCR System 9700, Applied Biosystems). The PCR results were

examined using a UV transilluminator and 1.2% agarose gel

electrophoresis. Using BLAST search, the outcomes were matched

to the National Center for Biotechnology Information (NCBI). A

phylogenetic tree was created by the neighbor tree joining method

(Jenila and Gnanadoss, 2018).
2.5 Analysis of the antifungal activity
of a crude extract

2.5.1 Preparation of endophytic fungal extracts
The endophytic fungus (3 days old culture) were grown for 21

days under steady circumstances at 27 ± 2°C in a 500 mL conical

flask (Borosil graduated narrow mouth flasks code 4980024)

containing 300 mL potato dextrose broth. After the incubation

period, Whatman No. 1 filter paper was deployed to separate the

fungal mat from the culture filtrate. Multiple solvents with different

polarities were used to extract the secondary metabolites from

culture filtrates using a separating funnel (Borosil funnel code-

6400). Petroleum ether (pet ether), dichloromethane (DCM), ethyl

acetate (EA), and butanol were some of the solvents utilized. The

chemical compounds were extracted from the fungal mycelium mat

using methanol. The organic phase was obtained and condensed in

a rotary evaporator (Model: RE100-Pro). The extracted metabolites

were dried and stored for further analysis at -20°C.

2.5.2 Agar well diffusion assay
Phytopathogenic fungal discs of about 8 mm (F. oxysporum, M.

phaseolina, and R. solani)were placed in the center of a fresh PDA plate,

and different solvent extracts of various filtrate concentrations (25, 50,

75, and 100 µg/mL) were loaded into four wells made in equivalent

distance. For antifungal tests, the desiccated crude preparations were

reconstituted with dimethyl sulfoxide (DMSO). The control plates with

pathogens were loaded with 10% DMSO solvent and incubated at 27 ±

2°C. The results from the control plate were compared to the proportion

of mycelial growth inhibition in the test plate. Three replications of the

assay were done for each treatment. Using the above-mentioned

formula, the growth inhibition percentage of phytopathogens’ radial

mycelial growth was calculated (Wei et al., 2020).

2.5.3 Poisoned food technique
Poisoned food bioassay was used to evaluate the effectiveness of

fungal crude extracts against phytopathogens. Molten PDA medium

was mixed with fungus extracts (1000 µg, 500 µg, and 250 µg/mL

DMSO), which are thought to be poisonously feeding for pathogens.

Intoxicated PDA plates were inoculated with a pathogen’s mycelia

plug, which was then incubated at 27 ± 2°C for 7 days. By contrasting

the radial expansion of the pathogen cultured in the test and control

plates (DMSO), the impact of extracts on the growth of the pathogen
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was identified. The inhibition percentage formula was used to

calculate the findings as a percent suppression of pathogen

development (Gupta et al., 2022).

2.5.3 GC-MS analysis
GCMS was used to assess the crude extract of L.

pseudotheobromae APR5. The investigation was done on an

Agilent 7890B gas chromatography system and an Agilent MS

240 Ion Trap with HP-5MS capillary column (5 percent phenyl

methyl polysiloxane, 30 m, 250 M, 0.25 M). The startup oven

temperature was 50°C, which was set for 1 minute, proceeded by a

10°C min-1 ramp to 200°C, which was held for 1 minute, then a 5°C

min-1 ramp to 325°C, which was held for 1 minute. A total of 1 liter

was supplied, and the temperature was maintained at 280°C. The

carrier gas was helium, and the ionizing electron energy was 70 eV.

The extract was separated into tenths of a liter. The ions were found

in the 50–1000 m/z range. The GC required 25 minutes to complete.

The dried crude obtained was diluted with the same solvent and

studied with GC-MS analysis (Veilumuthu et al., 2022).

2.5.4 Analysis of ethyl acetate crude extracts by
Fourier transform infrared spectroscopy

The fungal crude extracts were FTIR analyzed using a Shimadzu

FT-IR spectrophotometer (Model: IR Affinity). The functional

groups contained in the chemical compounds were recorded in

the range of 4000–400 cm-1. The infrared absorption spectrum is

used to determine the chemical bonds in the molecule. The

annotated spectrum indicates that the chemical bonds in the

sample absorb a certain wavelength of light. For FTIR

instrumentation examination, the dried crude extract of fungus

was employed (Veilumuthu and Christopher, 2022).
2.6 Plant growth-promoting traits

For the screening of indole acetic acid (IAA) synthesis, the isolated

endophyte was grown on Czapek broth medium for 7 days at 27 ± 2°

C. After seven days, the samples were filtered, and the amount of IAA

in the culture filtrate was measured by the addition of 1 mL of

Salkowski reagent to 2 mL of the filtrate and incubated for 30 minutes

in the dark (Bilal et al., 2018). To determine whether siderophores

were present, 1 mL of the fungus culture’s supernatant was combined

with 0.4 mL of 2% liquid FeCl3. The transition from yellow to brown

confirms the presence of siderophore synthesis. To investigate the

production of hydrocyanic acid (HCN), Whatman paper strips

(dipped in the solution of 0.3% picric acid and 1.5% Na2CO3) were

attached to the top lid of a petri dish, and fungus isolates were grown

on a PDAmedium.When the yellow color paper strip turns brown, it

is considered to be positive. The presence of ammonia generation was

detected by adding 2–3 droplets of Nessler’s reagent to the culture

supernatant of fungus grown in 10 mL of peptone. Pikovskaya’s agar

medium (PVK, Himedia) was supplemented with 0.1% zinc oxide and

2.5% tricalcium phosphate at pH 7.0 ± 0.2 to screen the ability of the

fungal isolate to solubilize phosphate. The inoculation of fungal culture

was done on a medium and after 24–48 h of incubation at 28°C, the
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formation of a halo inhibitory zone around the fungal radial growth

indicated a positive outcome (Chowdhary and Sharma, 2020).
2.7 Statistical analysis

To achieve three values for in vitro experiments, samples were

analyzed in three replicates and the outcomes were measured. The

GraphPad Prism Version 9.5.1 (733) software was used to perform

the statistical analysis. All results were presented in terms of mean ±

standard deviation (SD).
3 Results

3.1 Ethnomedicinal investigation of
selected medicinal plants

In the present research, Andrographis paniculata, a medicinal

plant was examined for its fungal endophytes. Being one of the

bitterest herbs, it is highly valued in traditional medicine. Previous

studies documented the anti-fungal and anti-typhoid properties of

plant extracts. Consequently, the primary goal of this work was to

identify a potent endophytic fungus with biocontrol and plant

growth-promoting traits.
3.2 Isolation and identification of fungal
endophytes from Andrographis paniculata

The endophytic fungus isolate APR5 was isolated from the

healthy roots of Andrographis paniculata. The single hyphal tip

approach was used to purify the endophytic fungal isolates, which

were then plated on a PDA medium (Figure 1). No fungal or

bacterial growth was observed on the control plates. The fungal
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isolate APR5 is a fast-growing white fungus that turns black after

72 h. The results of the ITS analysis showed that isolate APR5 was

most similar to L. pseudotheobromae with >97% identity. The 18S

rRNA sequence of L. pseudotheobromae isolate APR5 was deposited

in Genbank and the accession number (OP999617) was received.

The sequences from the nucleotide BLAST result were

used to create the phylogenetic tree (Figure 2). To our knowledge,

no studies have been conducted on the biocontrol ability and plant

growth promoting traits of endophytic fungal isolate

L. pseudotheobromae.
3.3 The inhibitory effects on
phytopathogenic fungi

3.3.1 Antagonistic activity of endophytic fungus
on test pathogens

The fungal isolate APR5 showed efficient antagonistic activity

against F. oxysporum,M. phaseolina, and R. solani in a dual culture

assay. The dual culture plates display the inoculation of endophytic

fungus APR5 (on the right side) with the appropriate fungal

pathogens (on the left side). L. pseudotheobromae grows and

completely covers the colony of pathogen F. oxysporum through

mycoparasitic activity in 3 days of incubation (Figure 3A). The

endophyte stops growing when it gets in contact with the pathogens

M. phaseolina and R. solani. Here, both the endophyte and

pathogenic fungi compete for the substrate (Figures 3B, C).

Among the tested three pathogenic fungi, F. oxysporum was

highly inhibited with an inhibition percentage of 70 ± 0.15%,

followed by R. solani (66 ± 0.1%) and M. phaseolina (54 ± 0.1%).
3.3.2 Volatile metabolites of endophytic fungus
The antagonistic effect of endophytic fungus APR5 was analyzed

by performing a double plate assay. When compared to the control,
FIGURE 1

(A) Morphological appearance of endophytic fungus Lasiodiplodia pseudotheobromae APR5 isolated from Andrographis paniculata root; (B) The
scanning electron micrographs of spores and hyphae of endophytic fungus Lasiodiplodia pseudotheobromae APR5 (A) (scale bar = 10 mm), (B) (scale
bar = 1 mm), (C) (scale bar = 2 mm), (D) Morphological characteristics of a single spore (scale bar = 2 mm). The spores and hyphae were observed at
3500x and 10,000x.
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the development of test phytopathogens was significantly slowed

down by the VOCs produced by the fungal endophyte. The

pathogenic radical growth in the experimental group was much less

than that in the control group (Figure 4). The inhibition percentage for

F. oxysporum,M. phaseolina, and R. solani was 65 ± 0.1%, 24 ± 0.05%,

and 70 ± 0.1% on the seventh day respectively.

3.3.3 Analysis of antagonistic actions
using SEM images

The phytopathogenic fungi from the dual culture plate were

observed using SEM and it was discovered that the endophytes were

responsible for the aberrant morphology of the fungus hyphae. The

endophytes induced morphological anomalies in the pathogenic

fungal hyphae, according to the SEM findings. The endophyte

coiled around the hyphae of pathogenic fungi (Figures 5A–C).

Shriveling and hyphal disintegration were the morphological

alterations observed on the pathogen’s hyphae. The hyphal

breakages were observed on the fungal pathogens that are co-

cultured with the potent endophyte (Figure 5D).
3.4 Antifungal bioassay of fungal
crude extracts

The impacts of different crude extracts of L. pseudotheobromae

APR5 on the mycelial growth of soil-borne pathogens (F. oxysporum,
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M. phaseolina, and R. solani) at different concentrations ranging from

100-25 µg/mL were examined. Significant antifungal activity was

observed in the ethyl acetate crude extract against R. solani (Figure 6).

In contrast to the control wells, which were covered with fungal

hyphae, the hyphal growth was reduced toward the wells filled with

ethyl acetate crude. When compared to the control plate, EA crude

inhibited mycelial growth at the rate of 75 ± 0.1%. The organic

fractions that were extracted with pet ether suppressed the mycelial

growth of F. oxysporum with an inhibition percentage of 74 ± 0.05%.

The inhibition percentage of all three concentrations of ethyl acetate

crude extract was > 50%. The simple linear regression was analyzed

using GraphPad Prism 9.5.1. The inhibition rate and log

[concentration] value showed a significant linear association based

on the outcomes of the toxicity test (R2 = 0.9363, p < 0.5). With

increasing pet ether extract concentrations, the hyphae’s growth and

branching patterns were disturbed, resulting in the aberrant bending

of the pathogenic fungal colony. On the other hand, the controls

showed normal hyphal development. Results are displayed as the

percentage of inhibition in Table 1. These findings suggest that A.

paniculata associated with L. pseudotheobromae APR5 have a range

of remarkable disease-suppressing properties.
3.5 In vitro antifungal activity test

The agar dilution technique was used to evaluate the antifungal

activity of EA crude extracts, which showed the highest inhibition of

75 ± 0.1% in the agar diffusion assay. We evaluated various

concentrations of fungal crude extracts using the food poisoning

method to assess the fungicidal activity. The effectiveness of fungal

endophytes in combating phytopathogens was confirmed by the

results of the poisoned food approach. The most prominent

bioassay for evaluating the efficacy of endophytic fungus against a

broad range of diseases is the poisoned food technique (Gupta et al.,

2022). The outcomes are shown as the percentage inhibition in

radial growth (PIRG) values of pathogens cultured on a PDA

medium poisoned with ethyl acetate crude extracts of endophyte.

The concentrations of each crude extract that was examined ranged

from 0–1000 ppm. The petri dishes were incubated for seven days

at room temperature. By monitoring the growth of fungal colonies

on all four plates (1,000 ppm, 500 ppm, 250 ppm, and control

DMSO), the treatment’s effectiveness was determined (cm) (Figure
FIGURE 3

Antagonistic activity of endophytic fungus Lasiodiplodia pseudotheobromae APR5 towards tested soilborne phytopathogens (A) Fusarium
oxysporum, (B) Macrophomina phaseolina and (C) Rhizoctonia solani.
FIGURE 2

Phylogenetic tree of endophytic fungus Lasiodiplodia
pseudotheobromae APR5 isolated from the root region of
Andrographis paniculata.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1125630
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Segaran and Sathiavelu 10.3389/fpls.2023.1125630
7). The secondary metabolites present in EA crude extract inhibited

the mycelial growth of phytopathogens by reductions in hyphal

diameter (Table 2). At 1000 ppm, an inhibition percentage of 35 ±

0.05% was observed in the mycelial growth of F. oxysporum growth.
3.6 Analysis of crude extracts by GC-MS

The GC-MS investigation was carried out to identify chemical

compounds present in the EA crude extract of L. pseudotheobromae

APR5, which showed the highest inhibitory effect of 75 ± 0.1%

towards R. solani. By comparing the mass spectra with the MS

spectral database, chemical compounds were identified based on the

data of molecular formula, molecular mass, structures, and

retention time. The peak area reflected a quantitative percentage
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of the expected chemical in ethyl acetate crude extract

(Figure 8). Phenol, erythritol, phenylethyl alcohol, niacin, t-

butylhydroquinone, 1-octadecene, octadecanoic acid, oleic acid,

and p-cresol were the chemical compounds with antimicrobial

activity identified from the selected crude extract. Table 3

illustrates a few chemical compounds from ethyl acetate crude

with significant biological activity.

3.7 FT-IR Analysis

FT-IR spectrum of this core exhibited a broad intense peak at

3533.59 cm-1 corresponding to the phenolic OH stretching frequency

and then the C-H band of alkanes concerning 2985.81 cm-1. The

presence of the sharp intense bands suggests the adsorption of the

capping layer of the nanoparticles corresponds to C = N bond, C–O
frontiersin.or
FIGURE 5

Scanning electron microscopy image demonstrating the morphological changes in the hyphae of M. phaseolina (A), (B) and R. solani (C, D).
FIGURE 4

Antagonistic effect of volatile organic compound produced by Lasiodiplodia pseudotheobromae APR5, against tested soilborne phytopathogens
(A) Fusarium oxysporum, (B) Macrophomina phaseolina and (C) Rhizoctonia solani; (a),(b),(c) are their corresponding control plates.
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bond stretch of ether groups, andN =H bond located at the stretching

frequency of 1735.93 cm-1, 1043.49 cm-1, and 1234.44 cm-1

respectively. The FTIR spectrum was displayed in Figure 9.
3.8 Plant growth-promoting traits

The endophyte L. pseudotheobromae APR5 was observed to

produce IAA which is indicated by the appearance of dark pink color

(Figure 10A). However, the isolate did not produce HCN. A difference

in color intensity (Figure 10B) between the test and control samples
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revealed that the isolate APR5 was a siderophore producer. The lack of

brown color development after the addition of Nessler’s reagent

confirmed that the ammonia production outcome was not positive.

The isolate APR5 was not a phosphate solubilizer, as evidenced by the

results of the phosphate solubilization experiment (Table 4).
4 Discussion

Endophytic fungi offer a lot of promising applications in

farming and food production. In recent times, the advancement
FIGURE 6

Inhibition of pathogenic fungal mycelial growth induced by different fungal crudes obtained from Lasiodiplodia pseudotheobromae.
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of new genetic and bioinformatics approaches has enabled the

identification of fungal endophytes species with the potential to

stimulate the growth of their host plants, due to a range of various

processes. The isolation of novel endophytes with significant

potential for application in agriculture will be facilitated by

studies on microbial diversity in novel plant species as well as in

various geographical settings and conditions (Poveda et al., 2021).

Without exhibiting any disease symptoms in the hosts, endophytic

fungi live inside host plant tissue. Their attachment may be

obligatory or facultative and they engage in complicated

interactions that include antagonistic behavior and mutualism.

The growth of endophytes is severely constrained by plants, but

they use a variety of strategies to gradually adapt to their habitats

(Ikram et al., 2022). Few investigations have documented the
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existence of biocontrol agents with the capacity to promote plant

growth while simultaneously acting as antagonists against a variety

of fungi diseases. Biological control microorganisms have been

perceived as a beneficial and ecologically secure alternative to

synthetic fungicides for controlling soil-borne diseases (Khan

et al., 2021). Several authorized biocontrol agents from the genera

Agrobacterium, Bacillus, Candida, Coniothyrium, Gliocladium,

Pseudomonas, Streptomyces, and Trichoderma are widely

commercialized (Khan et al., 2021). Therefore, the purpose of this

research was to investigate the potential of endophytic fungi to

suppress fungal pathogens with a wide host range along with

stimulating plant productivity and growth. When used in the

field, a biocontrol agent with broad-spectrum antifungal

properties has greater prospects than those that are active,
TABLE 1 Antifungal activity of extracts obtained from Lasiodiplodia pseudotheobromae isolate of Andrographis paniculata.

Pathogen

Extract

Fusarium oxysporum Macrophomina phaseolina Rhizoctonia solani

Concentration µg/mL Concentration µg/mL Concentration µg/mL

25 50 75 100 25 50 75 100 25 50 75 100

Pet
ether

69 ±
0.05

72 ±
0.11

73 ±
0.05

74 ±
0.05 6 ± 0.05 6 ± 0.05

14 ±
0.05

19 ±
0.15

34 ±
0.15 35 ± 0.1

50 ±
0.05 65 ± 0.1

DCM 27 ±
0.07 28 ± 0.1

31 ±
0.05 33 ± 0.1 19 ± 0.1 21 ± 0.1 26 ± 0.1

24 ± 0.1
–

37 ±
0.05

45 ±
0.05

61 ±
0.05

Ethyl acetate 55 ±
0.12

56 ±
0.12

57 ±
0.05

58 ±
0.05 – 7.1 ± 0.1 5 ± 0.05

19 ± 0.1 62 ±
0.15 63 ± 0.1 70 ± 0.1 75 ± 0.1

Butanol
33 ± 0.1

34 ±
0.05

52 ±
0.05 53 ± 0.1

50 ±
0.05 33 ± 0.1

36 ±
0.05

48 ± 0.1 36 ±
0.11 38 ± 0.2

59 ±
0.05

62 ±
0.11

Methanol 54 ±
0.05

55 ±
0.05 66 ± 0.1 69 ± 0.1

63 ±
0.05 62 ± 0.1

26 ±
0.05

24 ± 0.1 47 ±
0.05

51 ±
0.15 58 ± 0.1

64 ±
0.15

Standard
83 ± 0.1

84 ±
0.05

85 ±
0.05

87 ±
0.05 74 ± 0.1

75 ±
0.05

82 ±
0.05

84 ±
0.05

71 ±
0.05

75 ±
0.05 73 ± 0.1

82 ±
0.05
fron
* Values are expressed as inhibition percentage Mean ± SD, n = 3.
‘-’ denotes no antifungal activity.
FIGURE 7

Effect of ethyl acetate crude extract from Lasiodiplodia pseudotheobromae on mycelial growth of phytopathogens (A) Fusarium oxysporum,
(B) Macrophomina phaseolina, and (C) Rhizoctonia solani at different concentrations (1000 ppm, 500 ppm, 250 ppm, and control DMSO) after 7
days of incubation.
tiersin.org

https://doi.org/10.3389/fpls.2023.1125630
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Segaran and Sathiavelu 10.3389/fpls.2023.1125630
particularly against one or two microorganisms (Ali et al., 2020b).

Endophytic fungal species from the genera Curvularia,

Chaetomium, Piriformospora, Fusarium, Epicoccum, Trichoderma,

and Penicillium are well recognized for increasing the plant host’s

resistance towards biotic and abiotic stresses (Rajani et al., 2021;

Khan and Javaid, 2022). The synthesis of bioactive compounds,

direct competition for nutrients and space with the pathogen, or

activation of induced systemic resistance are plausible mechanisms

by which Aspergillus terreus confers resistance to the host against

Colletotrichum gloeosporioides (Gupta et al., 2022). VOCs and n-

VOCs generated by Fusarium solani F4-1007 (endophyte of

Solenostemma arghel) had the strongest antifungal efficacy,

inhibiting Cochliobolus spicifer colony formation by 37.27% and

37.1%, respectively. Penicillium oxalicum and Sarocladium kiliense

were the endophytes isolated from the medicinal plant Aloe

dhufarensis had strong antifungal properties against the

pathogenic Fusarium sp. and during the VOCs analysis, they

revealed the presence of amide, fatty acids, 1,2-diols, fatty acid

methyl esters and furfuryl alcohol (Abdel-motaal et al., 2022). In

addition to mycoparasitism, VOCs are very crucial for the

endophyte Trichoderma to combat pathogenic fungi. The

development of Fusarium oxysporum-CFO, Sclerotinia

sclerotiorum-TSS and Sclerotium rolfsii-CSR were considerably

suppressed by endophytic Trichoderma sp. in a double-plate
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experiment (Rajani et al., 2021). Trichoderma spp. has drawn a

lot of interest for its use in the treatment of S. rolfsii due to their

exceptional capacity for root colonization, destruction of sclerotia,

and generation of antifungal metabolites. Inducing plant defense

reactions, producing enzymes that break down cell walls,

mycoparasitism, antibiosis, and competition for resources and

niches are some of the mechanisms adopted to suppress the

development of fungal pathogens (Ali et al., 2020a).

Endophytes associated with medicinal plants have antagonistic

behavior toward phytopathogens that cause illness and can produce

secondary metabolites that are antioxidant, antimicrobial, and

insecticidal (Abdel-motaal et al., 2022). The antibiosis action of

strain Talaromyces sp. DYM25 prevented the development of

Fusarium equiseti. The bioactive persistence of filtered broth

against F. equiseti was initially tested, demonstrating its potential

as a bio-control agent across a variety of circumstances including

the presence of metal ions, high temperature, an alkaline

environment, and UV radiation. In the pot experiment findings,

F. equiseti induced cucumber wilt, which could be prevented by

utilizing the fermentation broth of Talaromyces sp. DYM25 (52.9%)

(Luo et al., 2021). The diameter of the inhibitory zone clearly

showed that the endophytes Pleosporales sp., Phoma sp., Cytospora

pruinosa, Thielavia basicola, and Fusarium lateritium showed the

greatest antibiosis towards Hymenoscyphus fraxineus. Cytoplasmic

extrusions, spiral twists, the formation of torulose hyphae, and

excessive lateral branching are the morphophysiological

deformations of H. fraxineus hyphae, developed under endophyte

pressure. The majority of horticulture and crops are the target for

the endophyte-based biocontrol techniques that are now being

explored. The pathogen Cronartium ribicola, which causes the

debilitating illness white pine blister rust, was efficiently inhibited

by fungal endophytes of Pinus monticola (Bila´nski and Kowalski,

2022). Colletotrichum siamense isolated from Piper nigrum leaves

and Paecilomyces variotii from Caralluma acutangula

demonstrated antifungal potential against the widespread
FIGURE 8

Gas chromatography-mass spectrometry profile of ethyl acetate crude extract from Lasiodiplodia pseudotheobromae APR5.
TABLE 2 Mycelial growth and inhibition percentage of test
phytopathogenic fungi at 1000ppm.

Phytopathogens Mycelia growth (cm) Mycelia growth
inhibition (%)

Fusarium oxysporum 4.8 35 ± 0.05

Macrophomina
phaseolina 8.5 4 ± 0.07

Rhizoctonia solani 7.6 15 ± 0.07
*Values are expressed as inhibition percentage Mean ± SD, n = 3.
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pathogen (Poveda et al., 2021). Phomopsis sp., an endophytic fungus

has attracted a lot of interest in the finding of new biochemically

and physiologically effective metabolites and has direct usage in

medicine and agricultural biotechnology. Pyrocidines A and B were

the antibiotics recently found from the endophyte Acremonium

zeae of maize and showed considerable antifungal activity against

Fusarium verticillioides and Aspergillus flavus (Yu et al., 2009). 3b-

Hydroxy-ergosta-5-ene,3-oxo-ergosta-4,6, 8 and 22-tetraene, 3b,

5a-dihydroxy-6b-acetoxy-ergosta-7,22-diene,and 3b, 5a-

dihydroxy-6b-phenylacetyloxy-ergosta-7,22-diene are the

antimicrobial steroids from Colletotrichum sp., an endophyte of

Artemisia annua, displayed fungistatic activities towards

pathogenic fungi such as Helminthosporium sativum,

Phytophthora capisici, Rhizoctonia cerealis, Gaeumannomyces

graminis var. tritici, and Phytophthora capisici in the crops. The

finding of effective medications or insecticides from endophytes is

challenging because most steroid chemicals derived from

endophytes have moderate antimicrobial activity. Pestalachloride

A and B, two novel antibiotics isolated from endophytic

Pestalotiopsis adusta, exhibit considerable antifungal efficacy

against three plant diseases causing fungal pathogens Gibberella

zeae, Verticillium arboretum and Fusarium culmorum. A group of

phenolic acids from Phoma sp., of the Guinea plant, inhibits the

mycelial growth of Ralstonia solanacearum and Sclerotinia

sclerotiorum (Yu et al., 2009). However, a rising number of
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publications suggest that the application of endophyte can be

reliably used to safeguard forests and ornamental trees (Bila´nski

and Kowalski, 2022)

Lasiodiplodia pseudotheobromae is a cryptic species that were

previously identified as Lasiodiplodia theobromae (Alves et al.,

2008). In tropical and subtropical areas, Lasiodiplodia species are

widespread and exist in a range of monocotyledonous,

dicotyledonous, and gymnosperm. Lasiodiplodia is a member of

the Ascomycota phylum, Dothideomycetes class, Botryosphaeriales

order, and Botryosphaeriaceae family, which is composed of 110

species and 17 fungal genera. Members of this family, including the

species in the genus, infect a wide spectrum of hosts or live as

saprophytes or endophytes inside living tissues (Coutinho et al.,

2017). The species has been discovered in Africa, Europe, and Latin

America, where it has been found in fruit trees and forests. Similar

to L. theobromae, L. pseudotheobromae also appears to have a

worldwide distr ibution and a diverse host range. L.

pseudotheobromae F2 obtained from undamaged Illigera

rhodantha (Hernandiaceae) flowers exhibited antibacterial

activity. Lasiodiplines E from the fungal isolate was effective

towards clinical strains such as Veillonella parvula, Bacteroides

vulgates, Streptococcus sp., and Peptostreptococcus sp. By

modifying bacterial cells and limiting their proliferation, ethyl

acetate extract of L. pseudotheobromae IBRL OS-64, an

endophytic fungus from the leaf of Ocimum sanctum was active
TABLE 3 List of chemical compounds in the ethyl acetate crude extract of Lasiodiplodia pseudotheobromae APR5.

Name of the
compound

RT Molecular
weight

Molecular
Formula

Area
%

Structure Biological activ-
ity

Reference

Phenol 6.362 94.11 C6H5OH 0.19 Antimicrobial (Sabbineni,
2016)

Erythritol 6.723 122.12 C4H10O4 0.12 Antimicrobial (Shimizu et al.,
2022)

Pantolactone 8.098 130.14 C6H10O3 0.14 Antiplasmodial (Baldé et al.,
2021)

(Continued)
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TABLE 3 Continued

Name of the
compound

RT Molecular
weight

Molecular
Formula

Area
%

Structure Biological activ-
ity

Reference

Phenylethyl alcohol 8.879 122.16 C8H10O 4.21 Antimicrobial (Lilley and
Brewer, 1953)

Niacin 10.934 123.11 C6H5NO2 0.13 Antimicrobial
Antioxidant, Anti-
inflammatory,
Anticarcinogenic,
Antitubercular

(Naglah et al.,
2015)

t-Butylhydroquinone 15.120 166.22 C10H14O2 0.18 Antimicrobial (Ooi et al.,
2013)

1-Octadecene 15.590 252.5 C18H36 1.19 Antimicrobial (Hameedha
et al., 2014)

Octadecanoic acid 20.254 284.5 C18H36O2 25.94 Antimicrobial (Kima et al.,
2016)

Oleic Acid 22.460 282.5 C18H34O2 2.95 Antimicrobial (Dilika et al.,
2000)

p-Cresol 23.785 108.14 C7H8O 0.39 Antimicrobial (Harrison et al.,
2021)
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against Methicillin-resistant Staphylococcus aureus. The growth of

both Gram-positive and Gram-negative bacteria was significantly

suppressed (Jalil and Ibrahim, 2022).

Indole-3-acetic acid (IAA) is a kind of auxin that was associated

with plant growth. For the development and growth of shoots and
Frontiers in Plant Science 13132
roots, indole acetic acid (IAA) is a crucial chemical substance. Plant

growth-promoting compounds like indole acetic acid (IAA) and

gibberellins were secreted by endophytic and soil fungi. IAA was

more effectively produced by Trichoderma isolate obtained from the

rhizosphere region (Syamsia et al., 2015). Talaromyces sp. from

Caltha appendiculata tubers generated an IAA of 7.60 ± 0.32 mg/L

on a PDB medium supplied with L-tryptophan (Wang et al., 2022).

IAA produced by microorganisms enhances the root surface area and

thus improves the uptake of nutrients and water (Ali et al., 2020b).

IAA was produced by Penicillium roqueforti (CGF 1) in yeast, malt,

glucose, and sucrose at concentrations of 36.9 g/mL, 36.0 g/mL, and

35.7 g/mL respectively. IAA levels in Trichoderma reesei isolated from

Solanum surattense were from 40-52 g/mL in sucrose, 39.5 g/mL in

yeast and glucose, and 38.0 g/mL in malt extract (Ikram et al., 2022).

Alternaria alternata (Solanum nigrum), Aspergillus awamori

(Withenia somnifera), Aspergillus niger (Camellia sinensis),

Colletotrichum fructicola (Coffea arabica), Colletotrichum siamense
TABLE 4 Growth-promoting traits of Lasiodiplodia pseudotheobromae
APR5 isolated from A. paniculata.

Plant growth-promoting traits Result

IAA production +++

HCN production –

Siderophore production +

Ammonia production –

Phosphate solubilization –
‘+’ indicate positive, ‘-’ indicates no production.
FIGURE 10

Growth-promoting characteristics of Lasiodiplodia pseudotheobromae APR5 (A) The production of IAA and (B) Siderophore.
FIGURE 9

FTIR analysis of ethyl acetate crude extract from Lasiodiplodia pseudotheobromae APR5.
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(Piper nigrum), Epicoccum nigrum (Caralluma acutangula),

Fusarium tricinctum (Solanum nigrum) and Penicillium crustosum

(Teucrium polium) are the IAA producing fungal endophytes.

Furthermore, Aspergillus terreus obtained from paprika plants is

capable of producing IAA in tomato plants, which promotes its

growth and inhibits the bacterial speck disease brought on by

Ralstonia solanacearum, Pseudomonas syringae pathovar (pv.)

tomato, and Colletotrichum acutatum. Trichoderma harzianum, T.

asperellum and Paecilomyces formosus enhance seedling growth,

length of shoot and plant biomass in Capsicum chinense, whereas

Beauveria brongniartii from Carica papaya improves the diameter of

the fruit (Poveda et al., 2021).

Epicoccum nigrum isolated from the host plant Pistacia vera

generates siderophores in the in vitro condition. The endophytic

fungus Beauveria brongniartii can solubilize phosphate and also

generates IAA and siderophores on Capsicum chinense and Carica

papaya (Poveda et al., 2021). Plant growth-promoting endophytes

actively invade plant tissues and enhances the host plants’ growth

and crop yield. The biochemical and physiological metabolism

depend heavily on iron. Since the oxidation of ferrous iron and

elemental Fe to insoluble ferric iron, cannot support microbial

development and the free iron content in the environment is

extremely low with the range of 10−7 mol (Ikram et al., 2022).

The amount of dissolved ferrous iron in calcareous soils is between

10-10 to 10−9 M which is two to three orders of magnitude less than

the amount needed by living things (10−7 to 10−5 M). The

siderophore-mediated iron absorption system used by a few

microbes has evolved as a result of environmental constraints and

biological necessities. The insoluble ferric iron present in the

environment is transported into the cell with the help of

siderophores. Various microorganisms synthesize siderophores

and combat plant diseases due to this, the bioavailability of iron

for pathogens is diminished (Poveda et al., 2021). Therefore, further

research into the application of biological control in the

management of vegetable diseases will be valuable (Luo et al.,

2021). Our study is the first report to reveal L. pseudotheobromae

as the fungal endophyte from the medicinal plant A. paniculata. In

addition to providing the foundation for future research and

development of new biopesticides from a fungal source. The

current investigation established the existence of antifungal

inhibitors in crude extracts of the endophytic fungus isolated

from A. paniculata. To better understand the potential and

processes of these natural inhibitors, more research needs to be

done to define the bioactive components of the extracts.
5 Conclusion

Endophytes can enhance the host plants’ development and

resistance to adverse environmental circumstances. Endophytic

fungi associated with A. paniculata have not been studied in

terms of plant-protecting biocontrol agents. Understanding the
Frontiers in Plant Science 14133
colonization and function of endophytic fungi found in various

regions of medicinal plants is the purpose of this work. For the first

time, inhibitors were discovered in crude extracts of endophytic

fungi derived from A. paniculata, laying the groundwork for future

research. To acquire a better knowledge of the capability and

actions of natural inhibitors, more research into the bioactive

compounds of the extracts should be explored. According to the

findings of the present study, the compounds present in the extracts

can be used in medicinal applications to safeguard eukaryotic

models and plants. However, further research is required to

examine all the expenses and advantages of concealing fungal

endophytes in a variety of environmental situations to expand the

usage and proficiency of endophytes in agriculture.
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Introduction: Mulberry bacterial wilt is a serious destructive soil-borne disease

caused by a complex and diverse group of pathogenic bacteria. Given that the

bacterial wilt has been reported to cause a serious damage to the yield and

quality of mulberry, therefore, elucidation of its main pathogenic groups is

essential in improving our understanding of this disease and for the

development of its potential control measures.

Methods: In this study, combined metagenomic sequencing and culture-

dependent approaches were used to investigate the microbiome of healthy

and bacterial wilt mulberry samples.

Results: The results showed that the healthy samples had higher bacterial

diversity compared to the diseased samples. Meanwhile, the proportion of

opportunistic pathogenic and drug-resistant bacterial flora represented by

Acinetobacter in the diseased samples was increased, while the proportion of

beneficial bacterial flora represented by Proteobacteriawas decreased. Ralstonia

solanacearum species complex (RSSC), Enterobacter cloacae complex (ECC),

Klebsiella pneumoniae, K. quasipneumoniae, K. michiganensis, K. oxytoca, and P.

ananatis emerged as the main pathogens of the mulberry bacterial wilt.

Discussion: In conclusion, this study provides a valuable reference for further

focused research on the bacterial wilt of mulberry and other plants.

KEYWORDS

bacterial wilt, drug-resistant bacteria, Enterobacter cloacae complex, Klebsiella,
mulberry, opportunistic pathogens, RSSC
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Introduction

Mulberry is a perennial dicotyledonous tree or shrub (Dai et al.,

2020) that is widely cultivated throughout subtropical and temperate

regions, and has a significant economic value (Xie et al., 2020).

Mulberry leaves are exclusively used as a food source for the

domesticated silkworm Bombyx mori L. (Ji et al., 2008; Chan et al.,

2016). Besides its use as silkworm forage, mulberry is now used as a

raw material in animal feed (Jiang et al., 2022), medicine (Meng et al.,

2020) and food industry (Maqsood et al., 2022). However, the

occurrence of mulberry diseases has seriously affected the healthy

and stable development of the sericulture industry (Dong et al., 2021).

For instance, mulberry bacterial wilt is a destructive disease that

seriously affects the yield and quality of mulberry (Dong et al., 2021).

Mulberry bacterial wilt was first reported in 1969 in Shunde City,

Guangdong province of China, and has spread to most mulberry

planting areas in Guangdong (Lai et al., 1979). Mulberry bacterial wilt

is still prevalent in the main sericulture-producing areas of Guangdong,

Guangxi and other places in China (Dai et al., 2016), and has been

reported in many other mulberry planting areas in the country.

Mulberry bacterial wilt is a vascular disease which is difficult to

diagnose with the naked eye at the initial stage of infection. However,

in the middle stage of the disease, the leaves lose moisture and then

curl or wilt, turning black or brown. In the late stage of the disease, the

leaves of the whole plant are withered until they fall off, the xylem

turns brown streaked or dark brown, and white pus-like bacteria

overflow from the cross-section of the diseased root (Wang et al., 2008;

Zhu et al., 2010; Zhou et al., 2021; Luo et al., 2022; Yuan et al., 2023a).

The pathogen of mulberry bacterial wilt has complex and diverse

characteristics. Lai et al. (1979) isolated and identified the pathogen

of mulberry bacterial wilt for the first time. Initially, Pseudomonas

solanacearum was considered as a pathogen causing mulberry

bacterial wilt, which was later renamed as Ralstonia solanacearum,

and now classified as R. pseudosolanacearum. Wang et al. (2008)

reported for the first time that the mulberry wilt was also caused by

Enterobacter cloacae complex (ECC). Subsequently, Zhu et al. (2010)

isolated E. mori from mulberry wilt disease samples. Zhou et al.

(2021) isolated E. roggenkampii strain KQ-01 from the bacterial wilt-

resistant mulberry cultivar YS283, which can cause mulberry wilt.

Luo et al. (2022) isolated Klebsiella michiganensis AKKL-001 from

mulberry bacterial disease samples, which can also cause mulberry

wilt. Recently, Pantoea ananatis strain LCFJ-001 was isolated from

mulberry bacterial wilt disease samples and was reported to cause

mulberry wilt (Yuan et al., 2023a).

Currently reported pathogens of mulberry bacterial wilt can be

divided into four categories: Ralstonia, Enterobacter, Klebsiella, and

Pantoea (Supplementary Figure 1). The gradual increase in sericulture

production and exchange activities in the recent times has also led to

an increased occurrence of bacterial wilt in mulberry fields in China,

leading to significant challenges to the healthy development of the

sericulture industry in the country. As this complex disease is caused

by a number of pathogens, it still remains to be known which

pathogen is the main pathogen, making its prevention and control

difficult. It has been reported that the occurrence of plant diseases is

related to changes in their crop microbiome, and that the study of

changes in their microbiome can further reveal their pathogenesis (Li
Frontiers in Plant Science 02137
et al., 2022). Therefore, in order to further understand the basis of

pathogenesis and provide a valuable reference for prevention and

control, this study was carried out to explore the changes in mulberry

microbiome in bacterial wilt and healthy samples of mulberry. In the

present study, we collected (2017 to 2022) 35 mulberry bacterial wilt

disease samples from Guangdong, Guangxi, and other regions of

China. The diseased mulberry samples were isolated and tested for

pathogenicity of pathogenic bacteria. At the same time, due to the

limitations of traditional culture-dependent method, we also used the

metagenomic sequencing to further explore the main pathogenic

groups in the diseased and healthy mulberry samples.
Materials and methods

Metagenomic sequencing of
mulberry samples

Collection of mulberry samples
A survey of mulberry fields where mulberry wilt was prevalent in

Liucheng (109.24°, 24.65°) and Rong’an (109.35°, 25.15°) counties of

Guangxi, China was conducted (see Supplementary Figures 2A–I for

description). The mulberry samples with typical disease symptoms in

the field were processed for laboratory verification.

Metagenomic sequencing of mulberry samples
The pH values of the diseased (wilted) plants and rhizosphere

soil of typical mulberry in Liucheng and Rong’an were tested. Eight

samples were collected (Supplementary Table 1) and sent to the

Science Corporation of Gene Co., Ltd. for metagenomic sequencing

to analyze the types, and abundance of pathogens in the samples.

Extraction of genomic DNA
The genome DNA was extracted from samples using the Ezup

Column Bacteria genomic DNA purification kit (Sangon Biotech

(Shanghai) Co., Ltd., China). DNA purity and concentration were

measured by gel electrophoresis and NanoDrop 2000 (Thermo

Scientific) spectrophotometer (Yuan et al., 2023b).

Amplification of the target region
The 16S rRNA gene consists of nine hypervariable regions flanked

by regions of more conserved sequence. To maximize the effective

length of PE 250 sequencing reads of Illumina HiSeq2500, the region

encompassing the V3 and V4 hypervariable regions of the 16S rRNA

gene was targeted for sequencing. The V3-V4 hypervariable region

was amplified using a specific primer with the barcode

(Supplementary Table 2). All PCRs were carried out in 40 mL
reactions with 20 mL of 2×Taq MasterMix, 0.5 mM forwards and

reverse primers, and approximately 10 ng of template DNA.

Temperature cycling consisted of denaturation at 94°C for 2 min,

followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 60°

C for 30 s, and elongation at 72°C for 20 s., and finally, 72°C for 7 min.

The purity and concentration of all amplicons were characterized by

gel electrophoresis and Qubit@ 2.0 Fluorometer (Thermo Scientific).

The amplicons with bright main strips and the right length were

chosen for the subsequent experiments (Yuan et al., 2023b).
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Library preparation and
metagenomic sequencing

PCR products with different barcodes were mixed in

equidensity ratios. Then, a mixture of PCR products was used to

prepare pair-end sequencing libraries. The libraries were generated

following the Illumina HiSeq 2500 standard protocol (Illumina,

Inc., San Diego, CA). Paired-end reads (250 bp) were generated on

the Illumina HiSeq2500 platform. Three replicates of each sample

were used for metagenomic sequencing (Yuan et al., 2023b). The

metagenomic sequencing data have been uploaded to the NCBI

(National Center for Biotechnology Information) with accession

number PRJNA911049. Finally, based on taxonomy, the abundance

of each bacterial genus was counted, and Origin 2019b software

(OriginLab Corporation, Northampton, MA, USA) was used to

make bacterial abundance maps of different samples and the

Shannon, Chao-1 and Simpson values of each sample

were calculated.
Analysis of mulberry samples using
culture-dependent approach

Collection of mulberry samples
During 2019 to 2022, a total of 35 samples of diseased plants

were collected from Guangxi, Guangdong and Hainan in China

(Supplementary Table 3). M. atropurpurea varieties Lun40 and

Kangqing10 were used as the healthy group (Supplementary

Table 3), and 20 copies of each variety were collected in mulberry

field of the South China Agricultural University, Guangzhou,

Guangdong, China (113.35°, 23.17°).
Isolation of bacteria from mulberry samples
The experimental design is depicted in Supplementary Figure 3.

Firstly, the collected diseased or healthy roots were rinsed under the

faucet, and the surface stains were washed with soapy water and the

samples were wiped with a clean gauze. The roots were cut into

small sections of three centimeters in length using clean scissors.

Then, the sections were soaked in 75% ethanol for 1 min, rinsed

with sterile water three times, soaked in 0.1% mercuric chloride for

5 min, and rinsed with sterile water five times. Then, the surface-

sterilized small section was placed in a sterile glass petri dish, the

xylem in the center was removed with sterile tweezers and scissors,

cut into pieces and ground in a sterile mortar. The ground xylem

was placed in 10 mL of sterile saline and in a shaker at 28°C and 140

r/min for 10 minutes to form a liquid containing xylem bacteria.

The liquid was then removed and diluted eight times according to

the 10-fold dilution method (Yuan et al., 2023a).

A total of 0.1 mL of each gradient was spread evenly on Lysogeny

Borth (LB) agar plates (Guangdong Huankai Co., Ltd., China) and

nutrient agar plates (Guangdong Huankai Co., Ltd., China). Then,

the plates were placed in a biochemical incubator at 28°C for two days

for cultivation. Finally, single colonies were picked from LB agar and

nutrient agar media and drawn on new nutrient agar plates, and each

colony was purified for seven generations (Yuan et al., 2023a).
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Classification of bacteria

Classification of the bacteria was based on analysis of 16S rRNA

gene using universal primer 27F/1492R (Bredow et al., 2015). All

strains were inoculated in nutrient broth medium (Guangdong

Huan Kai Co., Ltd., China) and placed in a shaker at 28°C and 140

r/min for 12 h. Bacterial genomic DNA was extracted using the

Ezup Column Bacteria Genomic DNA purification kit (Sangon

Biotech (Shanghai) Co., Ltd., China). DNA from all purified isolates

was used for PCR amplification of the 16S rRNA gene, which was

performed in a 25 mL volume under the following conditions: one

cycle of 98°C for 4 min, followed by 30 cycles of 98°C for 30

seconds, 55°C for 30 seconds, 72°C for 1 minute, and final an

extension at 72°C for 10 minutes. The PCR-amplified products were

transferred to a laboratory in Shanghai, China, at Sangon

Biotechnology Co. Ltd. in Shanghai, China, and then sequenced

by the Sanger method (Yuan et al., 2023a).

The generated sequences were aligned using BioEdit software

version 7.0 and then subjected to analysis by the Basic Local

Alignment Search Tool (BLAST) search program of the NCBI

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to determine the

sequence homology with closely related organisms (Altschul et al.,

1997). Microorganisms with high homology (97-100%) were

selected as the closest matches. All bacterial isolates were assigned

to the genus level separately based on information from the closest

microorganisms. In addition, the NCBI taxonomic database was

used to classify all bacterial strains at the phylum, class, order, and

family levels (Yuan et al., 2023b). All bacterial 16S rDNA sequences

generated in this study have been submitted to the NCBI. The

accession numbers OP990608-OP990981 are bacterial 16S rDNA

sequences derived from healthy samples; OP989957-OP990607 are

bacterial 16S rDNA sequences derived from diseased samples.

Finally, based on the 16S rRNA gene bacterial identification

results, the abundance of each bacterial genus was counted, and

the bacterial abundance maps of different samples were made using

Origin 2019b software (OriginLab Corporation, Northampton, MA,

USA) and the Shannon, Chao-1, and Simpson values of healthy and

diseased samples were calculated.
16S rRNA gene phylogenetic
tree construction

The 16S rDNA sequences of typical strains of Ralstonia,

Enterobacter, Klebsiella, and Pantoea were downloaded from the

List of Prokaryotic names with Standing in Nomenclature (https://

lpsn.dsmz.de/). The 16S rDNA of six strains of Ralstonia, 30 strains

of Enterobacter, 12 strains of Klebsiella, and 12 strains of Pantoea

were selected for construction of phylogenetic trees (Supplementary

Table 4). At the same time, the 16S rDNA sequences of strains

identified in our laboratory (Supplementary Table 4) and the 16S

rDNA sequences downloaded from the NCBI were used as

references. The sequences were compared using MUSCLEv.3.8.31

software. The phylogenetic trees were constructed using the

maximum likelihood tree with MEGA-X software, and the

bootstrap value was set to 1000 (Yuan et al., 2023a).
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Cultivation of mulberry branches

Healthy 15-year-old healthy M. atropurpurea cultivar Lun40

(susceptible to bacterial wilt) obtained from the South China

Agricultural University mulberry field (Guangzhou, Guangdong,

China), (113.35°, 23.17°) was selected as plant material for this

study. The samples were collected in December 2021. Firstly, old

branches of Lun40 with a diameter of 0.5-0.75 centimeter were

selected and cut into stem segments of 10-12 centimeters in length

and containing three lateral shoots. The stems were washed with

soapy water to remove surface dust and soaked in 0.5% sodium

hypochlorite solution for five hours. The stems were then inserted

into the sterile MS liquid medium and placed in an artificial climate

incubator at 25°C, 12 h/d light, and 85% humidity. The culture was

incubated for 25 days until the lateral shoots sprouted and exhibited

2-3 leaves. During this period, the sterile MS liquid medium was

changed every day (Yuan et al., 2023b).
Pathogenicity test

To investigate the pathogenicity of Ralstonia, Enterobacter,

Klebsiella, and Pantoea, the following procedures were adopted:

1) the pure cultures of all the bacteria (Supplementary Table 4) were

placed in nutrient broth medium overnight. The overnight cultured

bacteria solution was adjusted to OD600 nm=0.1 with sterile MS

liquid medium. 2) After cultivation, the Lun40 mulberry branch

with 2~3 leaves was placed into the diluted bacterial solution. The

sterile MS liquid medium was set as the healthy group. 3) The

treated Lun40 mulberry branches were cultured for 12 days in an

artificial climate incubator at 28°C, 12 h/d light, and 85% humidity,

and the disease incidence in plants was observed. 4) Morbidity rate=

(A-B)/C×100%. A: The total number of diseased mulberry branches

in the experimental group; B: The total number of diseased

mulberry branches in the control group; C: The total number of

mulberry branches (Yuan et al., 2023b).

Analysis of variance (ANOVA) was performed using Excel

software. Each set of experiments for each pathogen species was
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medium as a control, each group had three replicates (Yuan

et al., 2023b).
Data statistics

Data analysis was performed using a one-way analysis of

variance (Levene’s test was used to evaluate the equality of

variance before analysis), and the least significant difference test

was used to determine the significant difference between the means

as a post hoc analysis. P<0.05 was considered significant. Excel 2016

software (Microsoft, Redmond, WA, USA) and Origin 2019b 64Bit

were used to analyze and map the data.

Results

Analysis of metagenomic
sequencing quality

The description of sequencing data of the bacterial 16S rDNAV3-

V4 regions collected from mulberry xylem and rhizosphere soil are

shown in Table 1. Briefly, the GC was greater than 53%, Q20 was

greater than 96%, and Q30 was greater than 94%. This indicates a low

sequencing error rate and high quality and reliability of the data.
Analysis of diversity of bacterial
community in mulberries based on
metagenomic sequencing

As shown in Table 2, the bacterial community OTU numbers,

Shannon index, Chao-1 index and Simpson index of the diseased

rhizosphere soil (QKB04 and QKB08) and xylem (QKB03 and

QKB07) were lower compared to the healthy rhizosphere soil (KB06

and QKB10) and xylem (QKB05 and QKB09). From these, the

bacterial diversity of the rhizosphere soil and xylem of the diseased

mulberry was lower compared to the healthy mulberry.
TABLE 1 Description of metagenomic sequencing data.

Sample Reads(#) Base(nt) GC(%) Q20(%) Q30(%)

QKB04** 167,870 41,967,500 53.74 96.60;88.78 94.03;82.91

QKB06* 183,782 45,945,500 54.6 96.82;89.16 94.30;83.23

QKB08** 167,210 41,802,500 54.68 96.81;89.51 94.33;83.81

QKB10* 188,724 47,181,000 54.04 96.81;89.58 94.36;83.96

QKB03** 156,488 39,122,000 55.03 96.72;89.52 94.18;83.93

QKB05* 120,666 30,166,500 54.12 96.81;89.74 94.39;84.16

QKB07** 125,124 31,281,000 53.49 96.80;88.99 94.32;83.20

QKB09* 136,356 34,089,000 53.73 96.90;89.79 94.53;84.26
fro
“*”: healthy group; “**” diseased group; Reads(#): The total number of reads for sequencing; Bases (nt): the number of bases for sequencing = the total number of reads for sequencing×150 (150 is
the length of the sequencing read); Q20 (%): the proportion of bases with a sequencing quality value greater than 20 (error rate less than 1%) in R1 and R2 sequencing reads; Q30 (%): the
proportion of bases with sequencing quality more significant than 30 (error rate less than 0.1%) in R1 and R2 sequencing reads; GC (%): GC proportion.
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Analysis of bacterial community
composition of mulberries based on
metagenomic sequencing

The phylum-level abundance distribution of bacterial

populations in the mulberry rhizosphere soil was associated with

17 phyla (Figure 1A). From these, Proteobacteria had the highest

abundance in diseased and healthy samples, followed by

Actinomycetes and unclassified bacteria. At the genus level, the

taxonomic sequence of the mulberry rhizosphere soil was associated

with 49 genera (Figure 1B). The abundance distribution of the

dominant flora are shown in Table 3. Pseudomonas accounted for

the largest proportion, followed by Mycobacteria, Erwinia and

Ralstonia, respectively. The Pseudomonas disease samples showed

a significant downward trend (P<0.05), whereas the Erwinia disease

samples showed a significant upward trend (P<0.05). Interestingly,

there was no significant difference in the abundance of Ralstonia

between healthy and diseased samples (P<0.05).

The phylum-level abundance distribution of bacterial

populations in mulberry xylem was associated with seven phyla

(Figure 1A). Proteus was the first dominant bacterial group in both

healthy and diseased mulberry samples and its abundance

accounted for more than 90% in both healthy and diseased

groups. Many sequences in xylem could not be classified (7.8%

richness), indicating the diversity of the xylem bacteria. At the

genus level, the bacteria in the mulberry xylem part were related to

23 genera (Figure 1B). The abundance distribution of the dominant

bacterial taxa is shown in Table 3. Pseudomonas was found to be the

most abundant, followed by Erwinia and Ralstonia, respectively.

Interestingly, the abundance of Pseudomonas was lower in the

diseased group compared to the healthy mulberry group, whereas

abundance of Erwinia and Ralstonia showed a reverse trend.
Bacterial composition and diversity
in mulberries based on a culture-
dependent approach

A total of 1052 strains of the xylem bacteria were isolated from all

samples. From these, 389 strains were from the healthy mulberry

samples (CKS) (Supplementary Table 5), 663 strains were from the
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diseased (bacterial wilt) mulberry samples (MBWS) (Supplementary

Table 6). Based on the results of 16S rRNA gene, CKS culturable

strains were divided into 58 genera, distributed in 4 phyla, 6 classes,

18 orders and 28 families (Supplementary Table 5). The Shannon,

Simpson and Pielou values were 3.03, 0.90 and 0.75, respectively

(Table 4). The culturable strains of MBWS were divided into 69

genera, distributed in 4 phyla, 9 classes, 17 orders and 31 families

(Supplementary Table 6). The values of Shannon, Simpson and

Pielou were 3.17, 0.92 and 0.75, respectively (Table 4). This finding

indicated that the diversity of the xylem bacteria in the MBWS

samples was slightly higher compared to the CKS samples (P>0.05).

All isolates belonged to Actinobacteria, Bacteroidetes, Firmicutes

and Proteobacteria phyla. From these, Proteobacteria was found to

the dominant phylum in the bacterial community of mulberry xylem

(Figure 2A). The most abundant Proteobacteria (CKS 70.95%,

MBWS 88.98%) mainly contained the Alphaproteobacteria,

Betaproteobacteria, and Gammaproteobacteria-like bacteria.

Firmicutes was the second most dominant phylum (CKS 19.53%,

MBWS 4.67%) and contained only bacilli, consisting of Bacillus

(Figure 2A). Actinomycetes was the third most dominant bacterial

phylum (CKS 8.99%, MBWS 2.71%) and was represented by

Microbacteria (Figure 2A). At the genus level (Figure 2B),

Pseudomonas, Enterobacter, and Acinetobacter were found to be the

main groups of the xylem bacteria.
Analysis of bacterial community
of mulberries based on culture-
dependent approach

Unique and shared bacterial genera between healthy and

diseased mulberry groups are shown in the Venn diagram

(Figure 3). The number of shared attributes across all groupings

was 33 (Figure 3). In addition, the number of unique genera in the

MBWS was higher than the number of unique and shared genera in

the CKS group. Genera including Enterobacter, Pseudomonas,

Acinetobacter, Delftia, Pantoea, Stenotrophomonas, Rhizobium,

Bacillus, Agrobacterium, Kosakonia, and Microbacterium, with an

average segregation rate of >1% in MBWS and CKS, were the 11

core genera of mulberry xylem bacteria (Figure 2B).
TABLE 2 The number of OTUs and diversity index of the read sequence (Tags) bacterial community of the sequenced branch samples.

Sample Shannon Chao-1 Simpson OTU Tags

QKB04** 6.90c 5554.90b 0.87b 1364b 5676a

QKB06* 7.39d 15270.62e 0.93c 5543f 30833c

QKB08** 6.77c 12231.04d 0.89b 4329e 26340b

QKB10* 7.42d 15988.35e 0.94c 6531g 39377d

QKB03** 5.36a 6968.12b 0.81a 2750c 24642b

QKB05* 5.84b 7704.39c 0.90bc 2860c 27899b

QKB07** 5.48a 3178.83a 0.88b 862a 5387a

QKB09* 5.23a 6928.89b 0.88b 3303d 39219c
frontie
“*”: indicates the healthy group; “**” indicates the diseased group. Different superscript letters in the vertical column indicate significant differences between means by one-way analysis of
variance (ANOVA) and least significant difference (LSD) test (P<0.05).
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The separation frequencies of Achromobacter, Acinetobacter,

Brenneria, Brucella, Delftia, Escherichia, Herbaspirillum, Klebsiella,

Ochrobac t rum , Pantoea , Ra l s ton ia , Rhi zob ium and

Stenotrophomonas in the CKS were significantly lower (P<0.05)

compared to the MBWS group. Additionally, Herbaspirillum,

Brenneria, Klebsiella and Ralstonia were isolated only in the

diseased samples (Figure 4A).
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The isolation frequencies of Agrobacterium, Agrococcus,

Atlantibacter , Microbacterium , Bacil lus , Lysinibacil lus ,

Oceanobacillus , Paenibacillus , Enterobacter , Kosakonia ,

Pseudomonas, Staphylococcus and Streptomyces were significantly

higher (P<0.05) in the CKS compared to the MBWS group.

Additionally, Agrococcus, Paenibacillus, and Streptomyces were

not isolated in the MBWS group (Figure 4B).
B

A

FIGURE 1

Abundance distribution of bacterial populations based on metagenomic sequencing at the phylum (A) and genus (B) levels. QKB04: Liucheng
(109.24°, 24.65°) diseased sample rhizosphere soil; QKB06: Liucheng (109.24°, 24.65°) healthy sample rhizosphere soil; QKB08: Rong’an (109.35°,
25.15°) diseased sample rhizosphere soil; QKB10: Rong’an (109.35°, 25.15°) healthy sample rhizosphere soil; QKB03: Liucheng (109.24°, 24.65°)
diseased sample xylem; QKB05: Liucheng (109.24°, 24.65°) healthy sample xylem; QKB07: Rong’an (109.35°, 25.15°) diseased sample xylem; QKB09:
Rong’an (109.35°, 25.15°) diseased sample xylem; “*”: indicates the healthy group; “**” indicates the diseased group.
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The distribution of four main types of
pathogenic bacteria in mulberries

In order to explore the main group of pathogenic bacteria

causing bacterial wilt of mulberry, the distribution of Ralstonia,

Enterobacter, Klebsiella, and Pantoea in 35 diseased samples was

analyzed (Figure 5). From these diseased samples, Ralstonia,

Enterobacter, Klebsiella, and Pantoea were isolated from 6

(17.14%), 30 (85.71%), 12 (34.28%) and 12 (34.28%) diseased

samples, respectively. From the 30 diseased samples in which

Enterobacter was isolated, Klebsiella, Pantoea, and Ralstonia were

isolated from 10, 9, and 5 samples, respectively.
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Phylogenetic analysis of four main types of
pathogenic bacteria

Classification was based on 16S rDNA sequences of Ralstonia,

Enterobacter, Klebsiella, and Pantoea (Figure 6). Ralstonia was

mainly concentrated in the RSSC and R. pickettii (Figure 6A).

There were two main groups of Enterobacter: the ECC (E. kobei,

E. chengduensis, E. chuandaensis, E. hormaechei, E. cloacae, E.

sichuanensis, E. roggenkampii, E. ludwigii, and E. cancerogenerus.)

and E. lignolyticus (Figure 6B). Klebsiella species were mainly

divided into K. michiganensis and K. oxytoca (Figure 6C).

Pantoea species were mainly clustered into two groups i.e., P.

dispersa and P. anthophila (Figure 6D).
Pathogenicity test of four main types of
pathogenic bacteria

To further understand the role of Ralstonia, Enterobacter,

Klebsiella and Pantoea in mulberry wilt, the pathogenicity test

was conducted. As shown in Table 5, it was found that the

average pathogenicity rate of Ralstonia derived from the MBWS

was found to be 60.13%. The pathogenicity rate of Ralstonia with

16S rRNA accumulated in the RSSC (R. solanacearum species

complex) clade was higher than 43.33%, while the pathogenicity

rate of Ralstonia aggregated in R. pickettii was 0% (Figure 6A). The

average pathogenicity rate of Enterobacter derived from the MBWS

was found to be 44.89%. From these, the main pathogenic group

was concentrated in the ECC (E. cloacae complex) (Figure 6B), with

greatly varying pathogenicity rates between them. The average
TABLE 3 Richness of important bacterial genera in different samples based on metagenomic sequencing data.

Species QKB04** QKB06* QKB08** QKB10* QKB03** QKB05* QKB07** QKB09*

Acinetobacter 2.66% 2.15% 1.78% 10.15% 2.05% 2.73% 2.88% 1.73%

Arthrobacter 0.15% 0.14% 0.55% 1.79% 0.075% 0.045% 0.11% 0.018%

Bacillus 4.05% 1.38% 3.38% 5.63% 0.14% 0.16% 0.43% 0.13%

Enterobacter 0.12% 0.12% 0.43% 0.45% 0.42% 0.44% 0.37% 0.19%

Erwinia 10.37% 4.62% 34.54% 24.30% 48.76% 19.69% 35.71% 15.23%

Klebsiella 0.017% 0.15% 0.030% 0.086% 0.040% 0.097% 0.019% 0.14%

Mycobacterium 8.52% 5.98% 0.68% 0.90% 0.19% 0.12% 0.32% 0.11%

Paenisporosarcina 1.12% 0.019% 0.042% 0.053% 0.0035% 0.016% 0.037% 0.0025%

Pantoea 0.14% 0.039% 0.072% 0.070% 0.11% 0.15% 0% 0.079%

Pseudomonas 32.13% 49.29% 14.37% 22.37% 21.62% 53.11% 29.76% 65.88%

Ralstonia 9.49% 3.54% 2.86% 3.17% 2.34% 2.15% 6.42% 2.15%

Sphingomonas 1.71% 1.27% 0.28% 0.51% 0.15% 0.21% 0.59% 0.12%

Stenotrophomonas 0.45% 0.15% 0.11% 1.53% 0.13% 0.11% 0.30% 0.13%

Steroidobacter 0.29% 1.34% 0.36% 0.48% 0.11% 0.10% 0.22% 0.090%
fron
“*”: indicates the Healthy group; “**” indicates the Diseased group.
TABLE 4 Profiles of bacterial community diversity in the biomass of
diseased and healthy mulberry samples based on culture-dependent
approach.

M. atropurpurea

MBWS** CKS*

Number of isolates 663b 389a

Number of genera 69b 58a

Shannon-Weaver (H’) 3.17a 3.03a

Simpson’s index (D) 0.92a 0.90a

Pielou’s evenness (E) 0.75a 0.75a
“*”Healthy group; “**” Diseased group; MBWS: mulberry bacterial wilt sample. CKS: Healthy
samples (healthy mulberry samples). Different letters in the same row indicate significant
difference between means by one-way analysis of variance (ANOVA) and least significant
difference (LSD) test (P<0.05).
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pathogenicity rate of Klebsiella derived from the MBWS was found

to be 44.76%. From these, the main pathogenic groups were K.

michiganensis, K. quasipneumoniae, K. oxytoca and K. pneumoniae

(Figure 6C), with greatly varying pathogenicity rates between them.

The average pathogenicity rate of Pantoea derived from the MBWS

was found to be 6.79%. From these, P. ananatis strain LCFJ-001 had

the highest pathogenicity rate of 38.33%, while the others showed

0% pathogenicity rate (Figure 6D).
Discussion

Plant bacterial wilt is generally considered a highly destructive

xylem disease caused by the R. solanacearum complex (RSSC).

However, the advancement of bacterial wilt research shows that, in

addition to other pathogens, the E. cloacae complex (ECC) can also

cause bacterial wilt in African marigoldx (Jeevan et al., 2022), ginger
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(Cosmas et al., 2016) and mulberry plants (Wang et al., 2008; Zhu

et al., 2011). Although the pathogenic bacteria of mulberry bacterial

wilt are said to be complex and diverse, they mainly include Ralstonia

(Pan et al., 2013), Enterobacter (Wang et al., 2008; Wang et al., 2010;

Zhu et al., 2010; Zhu et al., 2011; Zhou et al., 2021), Klebsiella (Luo

et al., 2022) and Pantoea (Yuan et al., 2023a). In order to better

elucidate the interaction between the microbiome and mulberry, we

used combined metagenomic sequencing and a culture-dependent

approaches to explore the composition and diversity of bacterial

communities in mulberry bacterial wilt samples.

We found 19 phyla and 112 genera in the diseased and healthy

mulberry rhizosphere soil and xylem using Illumina HiSeq2500

sequencing. In contrast, four phyla and 97 genera were isolated and

characterized using a culture-dependent approach. This discrepancy

in the result infers that this phenomenon maybe linked to the

inherent limitation of the culture-dependent method, as it is not

entirely possible to isolate all xylem bacteria due to the limitation of
BA

FIGURE 2

Relative abundance (%) of cultivable bacteria in different communities isolated from healthy and diseased mulberry at the phylum (A) and genus
(B) levels. MBWS, mulberry bacterial wilt sample; CKS, Healthy samples (healthy mulberry samples).
FIGURE 3

Bacterial Venn diagrams of healthy and diseased mulberry samples. MBWS, mulberry bacterial wilt sample; CKS, healthy mulberry samples.
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the medium. On the contrary, it has been said that the metagenomic

sequencing method can compensate for this limitation of the culture-

dependent method (Zhang et al., 2020). Based on the results of

metagenomic sequencing and Shannon, Chao-1, Simpson, and OTU,

it was observed that the number and diversity of microbial flora in

rhizosphere soil and xylem of healthy mulberry were higher than

those of the diseased mulberry samples. Suhaimi et al. (2017) and Tao

et al. (2022) also found that the diseased samples had a lower

microbial diversity compared to the healthy samples. However,

Kaushal et al. (2020) found contrasting result and reported higher
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OTU richness and diversity in the symptomatic roots. It is generally

believed that a low microbial diversity in microbial communities

favors pathogen invasion (Locey and Lennon, 2016). This argument

is supported by finding of our recent report in which we found that

the diversity of endophytes in highly resistant or moderately resistant

varieties of mulberry bacterial wilt was significantly higher compared

to the weakly resistant or susceptible varieties (Yuan et al., 2023b).

This evidence also supports finding of the present study and

demonstrate a potential link between diversity of microbial species

and susceptibility.
B

A

FIGURE 4

Isolation rates of abundant bacteria isolated from healthy and diseased mulberry. (A) Bacterial species and classification rates greater than CK in
MBWS; (B) Bacterial species and classification rates greater than MBWS in CK; MBWS: mulberry bacterial wilt sample. CKS: Healthy samples (healthy
mulberry samples). Bars with different letters indicate a significant difference between means by one-way analysis of variance (ANOVA) and least
significant difference (LSD) tests (P< 0.05).
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Interestingly, both metagenomic sequencing and culture-

dependent approaches revealed that Proteobacteria was a main

phylum in both diseased and healthy mulberry rhizosphere soils

and xylem, followed by Firmicutes and Actinobacteria.

Proteobacteria, Firmicutes, and Actinobacteria were essential

components of bacteria in healthy and diseased mulberry xylem.

This finding is in line with the evidence reported by Yuan et al.

(2023b); Xu et al. (2019) and Ou et al. (2019). The culture-

dependent method also revealed that Proteobacteria and

Bacteroidetes had greater (P<0.05) abundance in the diseased

mulberry xylem compared to the healthy samples. In contrast,

Actinobacteria and Firmicutes had greater (P<0.05) abundance in

the healthy xylem compared to the diseased samples. Interestingly,

Kaushal et al. (2020) have reported that the abundance of

Proteobacteria and Actinobacteria showed a similar trend in the

banana Mchare cultivar. Suhaimi et al. (2017) have also reported

that the healthy samples had higher richness of Proteobacteria than

the diseased samples.

At the subordination level, metagenomic sequencing revealed

that Erwinia, Pseudomonas, Ralstonia, and Acinetobacter were the

dominant genera, accounting for more than 1% of the eight samples

tested. On the other hand, the culture-dependent approach revealed

that Enterobacter, Pseudomonas, Acinetobacter, Delftia, Pantoea,

Stenotrophomonas, Rhizobium, Bacillus, Agrobacterium, Kosakonia,

and Microbacterium accounted for more than 1% of the microbial

populations in healthy and diseased mulberry xylem. Overall,

Pseudomonas and Acinetobacter were found to be the main

constituent groups of the mulberry microbiome. This finding is

supported by similar evidence reported by previous studies of Xu

et al. (2019) and Ou et al. (2019), who reported that Pseudomonas

was indeed an essential endophytic flora of mulberry. This evidence

is further reinforced by reports of Suhaimi et al. (2017) and Kaushal

et al. (2020) who also showed that Pseudomonas was an essential

component of the banana bacterial flora. In our previous study, we

found that Pseudomonas was one of the component of the

endophytic flora in mulberry, but had no obvious control effect

on the bacterial wilt of mulberry trees caused by E. roggenkampii
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strain KQ-01 (Yuan et al., 2023b). Acinetobacter was found to be an

endophyte in mulberry and its proportion was significantly higher

in mulberry varieties susceptible to bacterial wilt compared to the

resistant varieties. In addition, the control rate of Acinetobacter

against bacteria wilt caused by E. roggenkampii strain KQ-01 was

higher than 80% (Yuan et al., 2023b). Seemingly, these results are

contrasting and highlight that the precise roles played by

Pseudomonas and Acinetobacter in plants need to be elucidated in

future focused research.

Intriguingly, both metagenomic sequencing and culture-

dependent methods employed in the present study showed that

the proportion of Pseudomonas in the rhizosphere soil and xylem of

healthy mulberry was higher compared to the diseased mulberry

samples. Similarly, Suhaimi et al. (2017) showed that the abundance

of Pseudomonas in the healthy banana samples was higher

compared to the diseased samples. Using metagenomic

sequencing, we found that the proportion of Erwinia bacteria in

the rhizosphere soil and xylem of the diseased mulberry was higher

compared to the healthy mulberry samples. However, this result

was not supported by finding of the culture-dependent method.

This finding is reinforced by evidence of our previous study in

which a similar phenomenon was observed in mulberry samples

(Yuan et al., 2023b).

In addition, the culture-dependent method revealed that the

abundance of many opportunistic pathogens and drug-resistant

bacteria was significantly higher in the xylem of the diseased

samples compared to their healthy counterparts. Infections in

humans have been reported mostly with opportunistic pathogens,

including Achromobacter (Menetrey et al., 2021), Acinetobacter

(Amorim and Nascimento, 2017), Brucella (Roop et al., 2021),

Delftia (Deb et al., 2020), Escherichia (Bhatt et al., 2019),

Herbaspirillum (Bloise et al., 2021), Klebsiella (Rodrıǵuez–Medina

et al., 2019), Ochrobactrum (Bratschi et al., 2020), Pantoea (Cobo

et al . , 2021), Ralstonia (Ryan and Adley, 2014) and

Stenotrophomonas (Menetrey et al . , 2021). Moreover,

Acinetobacter (Shin et al., 2020), Escherichia (Tang et al., 2022),

Klebsiella (Dong et al., 2022), Pantoea (Yoshimura et al., 2022) and
FIGURE 5

Isolation of Ralstonia, Enterobacter, Klebsiella, and Pantoea in different mulberry bacterial wilt samples.
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Stenotrophomonas (Ferreira et al., 2020) have been shown to have

multidrug resistance.

In the present study, Herbaspirillum, Klebsiella, and Ralstonia

were not isolated in the healthy mulberry xylem, indicating that

these bacteria might have invaded after infection. Similar results

were obtained by Hu et al. (2020), who found an increase in the

relative abundance of Ralstonia , Stenotrophomonas and

Achromobacter in the infected samples compared to the healthy
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samples. Although we suspect that the overuse of agricultural

antibiotics and untreated farmyard manure exacerbates this

situation, the precise underlying basis of this phenomenon

remains to be explored. In addition, Brenneria was only isolated

in the diseased mulberry samples but not in the healthy xylem.

Brenneria has been reported to be a pathogen of woody plants that

can cause cankers in plants including walnut (Poret–Peterson et al.,

2019), oak (Denman et al., 2012), willow (Maes et al., 2009), alder
B

C
D

A

FIGURE 6

Phylogenetic trees of Ralstonia (A), Enterobacter (B), Klebsiella (C), and Pantoea (D) based on 16S rRNA genes. “*” indicates the representative
species; the red marks are the isolates of this study.
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(Maes et al., 2009) and poplar (Li et al., 2015). Currently, Brenneria

is rarely reported in mulberry, and whether this pathogen is

emerging as a new pathogen of mulberry sti l l needs

further investigation.
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The culture-dependent method showed that many bacteria that

have been reported to promote plant growth or control bacterial

wilt were present in the mulberry samples. These included:

Agrobacterium (Soares et al., 2020), Microbacterium (Singh and
TABLE 5 Pathogenicity tests of Ralstonia, Enterobacter, Klebsiella, and Pantoea.

Ralstonia Enterobacter Klebsiella Pantoea

Strain Name Morbidity % Strain Name Morbidity % Strain Name Morbidity % Strain Name Morbidity %

LKqk 100±0 XCYG-001 36.66±1.66 AKKL-001 85±2.88 LCFJ-001 38.33±1.66

LZqk 63.33±1.67 KQ-01 100±0 YDKL-002 55±2.88 MBWS1.(11) 0±0

XCqk 100±0 MBWS1.(13) 38.33±1.67 MBWS1.(12) 61.66±1.66 MBWS3.(2) 33.33±1.66

XZqk 100±0 MBWS2.(10) 83.33±1.67 MBWS4.(11) 41.67±1.67 MBWS4.(6) 0±0

YDqk 63.33±1.67 MBWS3.(20) 71.67±1.67 MBWS5.(17) 36.67±3.33 MBWS7.(13) 0±0

YLqk 43.33±1.67 MBWS4.(19) 71.67±1.67 MBWS6.(8) 0±0 MBWS11.(2) 0±0

MBWS2.(6) 45±2.88 MBWS5.(15) 36.67±1.67 MBWS9.(7) 70±2.88 MBWS13.(17) 0±0

MBWS6.(12) 0±0 MBWS6.(10) 100±0 MBWS10.(16) 41.66±1.66 MBWS16.(13) 0±0

MBWS8.(25) 0±0 MBWS7.(22) 16.67±1.67 MBWS11.(8) 0±0 MBWS17.(3) 0±0

MBWS12.(23) 63.33±1.67 MBWS8.(4) 0±0 MBWS13.(8) 61.67±1.6 MBWS18.(5) 0±0

MBWS18.(1) 80±2.88 MBWS9.(12) 36.67±1.67 MBWS14.(14) 70±2.88 MBWS19.(6) 16.66±1.66

MBWS35.(1) 63.33±1.67 MBWS10.(15) 68.33±4.41 MBWS28.(6) 0±0 MBWS24.(16) 0±0

MBWS12.(13) 0±0 MBWS31.(7) 58.33±1.67 MBWS32.(20) 0±0

MBWS13.(7) 73.33±1.67 MBWS32.(30) 45±2.88

MBWS14.(15) 36.67±1.67

MBWS15.(7) 0±0

MBWS17.(15) 35±2.88

MBWS18.(19) 55±2.88

MBWS19.(4) 0±0

MBWS20.(4) 53.33±1.67

MBWS22.(5) 0±0

MBWS23.(1) 100±0

MBWS24.(9) 51.67±1.67

MBWS25.(16) 0±0

MBWS26.(16) 0±0

MBWS27.(4) 100±0

MBWS28.(16) 100±0

MBWS29.(3) 0±0

MBWS30.(9) 100±0

MBWS32.(5) 16.67±1.67

MBWS33.(12) 55±2.88

MBWS34.(11) 0±0

Morbidity mean 60.13%a Morbidity mean 44.89%b Morbidity mean 44.76%b Morbidity mean 6.79%c
Different letters in the same row indicate significant difference between means by one-way analysis of variance (ANOVA) and least significant difference (LSD) test (P<0.05). Values represent the
mean. Error bars indicate ± standard deviation.
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Singh, 2019), Bacillus (Im et al., 2020), Lysinibacillus (Lelapalli et al.,

2021), Oceanobacillus (Alhindi and Albdaiwi, 2022), Paenibacillus

(Abdallah et al., 2019), Enterobacter (Anand et al., 2021), Kosakonia

(Brock et al., 2018), Pseudomonas (Zhuo et al., 2022) and

Streptomyces (Olanrewaju and Babalola, 2019). In agreement with

our finding, Hu et al. (2020) also reported similar results. They

found that the relative abundance of Pseudomonas, Bacillus, and

Falsibacillus, which are generally considered beneficial to plants,

was significantly higher in the healthy mulberry samples compared

to the diseased samples. This group of bacteria can be considered as

a bank of beneficial microbial flora of mulberry. Interestingly, in the

present study, the abundance of these bacteria was lower in the

diseased samples compared to the healthy mulberry samples.

We further revealed that Enterobacter was the most widely

distributed among the four types of pathogenic bacteria, accounting

for 85.71%, followed by Klebsiella and Pantoea, which accounted for

34.28%. In contrast, Ralstonia accounted for the lowest (17.14%)

proportion. This result indicated that Enterobacter might be the

primary pathogen group causing bacterial wilt of mulberry,

however, further focused research is needed to reinforce this

evidence and gain more insights in this domain. Based on the 16S

rDNA sequence and its pathogenicity, Ralstonia was mainly

clustered into two clades, the RSSC and R. pickettii. The

pathogenicity of Ralstonia clustered in the same clade as the

RSSC was greater than 45%, while clustered in the other clade, R.

pickettii showed no pathogenicity. Meanwhile, Enterobacter was

mainly clustered into the ECC and E. lignolyticus. A total of 73.91%

of Enterobacter bacteria clustering in the ECC showed

pathogenicity. E. lignolyticus clustered in one clade and showed

no pathogenicity. Klebsiella was mainly clustered into two clades

centered on K. pneumoniae, K. quasipneumoniae, K. oxytoca, and K.

michiganensis, and both showed pathogenicity. Pantoea mainly

clustered into two clades centered on P. dispersa and P.

anthophila and did not show strong pathogenicity. However, P.

ananatis strain LCFJ-001 (CP066803.1) which was discovered

earlier (Yuan et al., 2023a) by our laboratory was shown to be

pathogenic, with a pathogenicity rate of 38.33%. The RSSC, ECC, K.

pneumoniae, K. quasipneumoniae, K. oxytoca, K. michiganensis, and

P. ananatis were found to be the main components of the

pathogenic bacteria of mulberry bacterial wilt.

During the RSSC infection, the Sol system can be regulated to

produce an acylated homoserine lactone (AHL) quorum signaling

factor, which is ubiquitous in various gram-negative bacteria, but it

is poorly studied in the RSSC (Flavier et al., 1997). When AHL

reaches a critical concentration, it diffuses into the cell to bind

transcriptional regulators and activates other virulence regulators

(Baltenneck et al., 2021). Density-dependent signaling systems

centered on AHL are standard in gram-negative bacteria and

have been reported in Enterobacter (Shastry et al., 2018),

Klebsiella (Hosny and Fadel, 2021), and Pantoea (Jiang et al.,

2015). It remains to be explored if there is a possibility that the
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RSSC can secrete enough AHL through the Sol regulation system to

cooperate with other pathogenic bacteria and to infect together.
Conclusion

The llumina HiSeq2500 sequencing and traditional culture

medium approaches employed in the present study revealed that

the bacterial diversity of healthy mulberry was higher compared to

the diseased mulberry. The phyla Proteobacteria, Firmicutes and

Actinobacteria constituted an important component of bacteria in

the healthy and diseased mulberry. In addition, the abundance of

many opportunistic pathogens and drug-resistant bacteria was

significantly higher in the diseased samples compared to the

healthy counterparts. It was found that the RSSC, ECC, K.

pneumoniae, K. quasipneumoniae, K. oxytoca, K. michiganensis,

and P. ananatis were the main components of the pathogenic

bacteria of mulberry wilt. From these, the ECC was found to be

the most widely distributed in the diseased samples. This study

provides reference data for further focused research on the bacterial

wilt of mulberry and other plants.
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Serendipita indica mitigates
drought-triggered oxidative
burst in trifoliate orange
by stimulating antioxidant
defense systems

Yu Wang1, Jin-Li Cao1, Abeer Hashem2,
Elsayed Fathi Abd_Allah3 and Qiang-Sheng Wu1*

1College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China, 2Botany and
Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia, 3Plant
Production Department, College of Food and Agricultural Sciences, King Saud University,
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Soil drought is detrimental to plant growth worldwide, particularly by triggering

reactive oxygen species (ROS) burst. Serendipita indica (Si), a culturable root-

associated endophytic fungus, can assist host plants in dealing with abiotic

stresses; however, it is unknown whether and how Si impacts the drought

tolerance of citrus plants. To unravel the effects and roles of Si on drought-

stressed plants, trifoliate orange (Poncirus trifoliata L. Raf.; a citrus rootstock)

seedlings were inoculated with Si and exposed to soil drought, and growth, gas

exchange, ROS levels, antioxidant defense systems, and expression of genes

encoding antioxidant enzymes and fatty acid desaturases in leaves were

measured. Soil drought suppressed plant biomass, whereas Si inoculation

significantly increased plant biomass (10.29%-22.47%) and shoot/root ratio

(21.78%-24.68%) under ample water and drought conditions, accompanied by

improved net photosynthetic rate (105.71%), water use efficiency (115.29%),

chlorophyll index (55.34%), and nitrogen balance index (63.84%) by Si

inoculation under soil drought. Soil drought triggered an increase in leaf

hydrogen peroxide and superoxide anion levels, while Si inoculation

significantly reduced these ROS levels under soil drought, resulting in lower

membrane lipid peroxidation with respect to malondialdehyde changes.

Furthermore, Si-inoculated seedlings under soil drought had distinctly higher

levels of ascorbate and glutathione, as well as catalase, peroxidase, and

glutathione peroxidase activities, compared with no-Si-inoculated seedlings. Si

inoculation increased the expression of leaf PtFAD2, PtFAD6, PtD9, PtD15, PtFe-
SOD, PtCu/Zn-SOD, PtPOD, and PtCAT1 genes under both ample water and soil

drought conditions. Overall, Si-inoculated trifoliate orange plants maintained a

low oxidative burst in leaves under drought, which was associated with

stimulation of antioxidant defense systems. Therefore, Si has great potential as

a biostimulant in enhancing drought tolerance in plants, particularly citrus.
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Introduction

Drought stress (DS) is a frequent environmental factor that has

a detrimental impact on plant physiological activities and

morphological performance, such as lowering leaf gas exchange,

slowing plant growth, and overproduction of reactive oxygen

species (ROS) (Ahluwalia et al., 2021). ROS are highly reactive

and toxic by-products of photosynthesis and photorespiration

processes in plants, and the excess ROS causes oxidative damage

to various macromolecules, thereby limiting plant growth and

development (Ilyas et al., 2021; Tyagi et al., 2022a). Superoxide

anion (O·−
2 ) and hydrogen peroxide (H2O2) are the two most

prevalent ROS induced by DS in plants (Miller et al., 2010).

Plants also possess antioxidant defense systems to scavenge ROS,

where antioxidant enzymes include superoxide dismutase (SOD),

catalase (CAT), peroxidase (POD), and others, and non-enzymatic

antioxidants include ascorbic acid (AsA), glutathione (GSH),

carotenoids, and tocopherols (Mukarram et al., 2021). As a result,

uncovering changes in antioxidant defense systems could clarify the

drought-resistant potential of plants.

Citrus is the most widely grown fruit crop in the world (Addi

et al., 2022). Because of its poor root hairs, trifoliate orange

(Poncirus trifoliata L. Raf.), a common citrus rootstock, relies

heavily on extraradical hyphae of arbuscular mycorrhizae in roots

for water and nutrient uptake from the soil (Ortas, 2012). Symbiotic

associations between arbuscular mycorrhizal fungi (AMF) and

plants are prevalent, with AMF providing water and mineral

nutrients to the host and the host providing carbohydrates to the

fungal partner (Prasad et al., 2008; Tyagi et al., 2022b). Earlier

studies have demonstrated that AMF could enhance drought

tolerance in citrus, and the underlying mechanism is associated

with mycorrhizal improvement of root structure and physiological

activities, as well as stressed gene expression activation (Marulanda

et al., 2007; Yaghoubian et al., 2014; Cheng et al., 2021; Liu et al.,

2022; Wang et al., 2023). However, the application of AMF in the

citrus field is limited because it cannot be cultured in vitro on a large

scale without host plants. As a result, selecting an effective

culturable endophytic fungus with functions similar to AMF has

become a pressing problem in citriculture.

Serendipita indica (formerly Piriformospora indica) (Si) is a

culturable endophytic fungus that can colonize a variety of host

roots, including citrus (Varma et al., 2012; Yang et al., 2021a). Si

possesses AMF-like characteristics (Mensah et al., 2020) and was

isolated from an Indian desert (Verma et al., 1998), suggesting that

it may be drought-tolerant. Earlier studies had reported significant

increases in biomass and sustained growth in barley (Hordeum

vulgare) and Arabidopsis (Arabidopsis thaliana) after inoculation

with Si under drought (Sherameti et al., 2008; Ghaffari et al., 2019).

Proteomics demonstrated that the colonization of Si raised

photosynthesis-related protein levels in drought-stressed host

plants (Ghaffari et al., 2019). Si colonization in cabbage (Brassica

campestris) decreased leaf malondialdehyde (MDA) levels under

DS, and several antioxidant enzyme activities were upregulated

within 24 h (Sun et al., 2010). After Si inoculation, wheat (Triticum

aestivum), eggplant (Solanum melongena), and walnut (Juglans
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regia) decreased ROS levels and elevated CAT and POD activities

in leaves (Yaghoubian et al., 2014; Swetha and Padmavathi, 2020;

Liu et al., 2021). Si inoculation also changes the expression of

stressed genes under DS. Si inoculation, for example, boosted the

expression of four drought-associated genes in leaves of drought-

stressed cabbage, namely, DREB2A, CBL1, ANAC072, and RD29A

(Sun et al., 2010). However, Si inoculation in wheat inhibited CAT

activity under drought conditions, achieving a significant level at

−0.5 MPa (Hosseini et al., 2017). In maize, CAT and ascorbate

peroxidase (APX) activities were also decreased under DS by Si

(Hosseini et al., 2018). These conflicting results show that Si is

variable in modulating antioxidant defense systems in host plants

and more research needs to be investigated, especially as the

molecular mechanism lags behind physiological advances.

Citrus plants, particularly trifoliate orange, have been

demonstrated to be a host plant for Si, and inoculation with Si

promoted their growth behavior through increasing auxin levels

and nutrient acquisition (Yang et al., 2021a; Liu et al., 2023).

However, it is unknown whether and how Si impacts the drought

tolerance of trifoliate orange in terms of antioxidant defense

systems. This study was carried out to investigate the effects of Si

inoculation on growth, leaf gas exchange, ROS levels, antioxidant

enzyme activities, antioxidant levels, and the expression of genes

encoding antioxidant enzymes and fatty acid desaturases under DS.

Such study can evaluate the potential of Si as a biostimulant for

drought tolerance in citrus.
Materials and methods

Plant culture and experimental design

Four-leaf-old trifoliate orange seedlings grown in autoclaved

sands were chosen. Si was inoculated at the time of transplanting. Si

was provided by Prof. Z.-H. Tian (Yangtze University), which was

kept in our laboratory. The proliferation of this fungus was

performed in vitro as per the protocol of Yang et al. (2021a),

achieving a spore suspension of 5.0 × 108 CFU/mL and a mycelial

solution of 0.018 g/mL.

Three seedlings were planted in a plastic pot that had been pre-

filled with an autoclaved mixture consisting of soil and river sands

mixed in a 4: 1 ratio by volume to obtain a relative low Olsen-P level

(9.73 mg/kg). At the time of transplanting, 12.5 mL of spore

suspension and 14.5 mL of mycelial solution were inoculated

around roots of potted seedlings as the inoculation treatment

(+Si). In contrast, the uninoculated treatment (−Si) also received

the same volume but autoclaved spore suspension and mycelium

solution (Rong et al., 2022). The treated seedlings were subjected to

the controlled environments described by Cao et al. (2023). The

weighing method was used to keep the soil moisture of these potted

plants at 75% of the maximum water holding capacity (MWHC) in

the field (well-watered, WW). The condition lasted for 7 weeks.

Subsequently, the soil moisture regime was altered for half of the

plants to 55% of the MWHC in the field (DS) for 9 weeks, while the

soil moisture regime remained unchanged for the remaining plants.
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Thus, this study consisted of two factors: Si inoculation

treatments (+Si and − Si) and two soil moistures (WW and DS).

There were four treatments, each with six replications, with a total

of 72 seedlings and 24 pots.
Determination of growth and root fungal
colonization frequency

After 9 weeks of drought exposure, the treated plants were

harvested and weighed promptly. The Epson Root Scanner (V700)

and WinRHIZO software (2007b) were used to quantify root

surface area and volume. Then, 1-cm root segments were selected

and stained for Si colonization in the roots using the method of

Phillips and Hayman (1970). In addition, root segments were cut

into thin slices of longitudinal sections using a double-sided blade.

Subsequently, a drop of 0.05% trypan blue was introduced to

observe the fungal colonization. Root fungal colonization was

examined under a microscope, and root fungal colonization

frequency was estimated as the percentage of Si -colonized root

segment number to total detected root segment number.
Determination of leaf
physiological variables

On a sunny day (9:00 a.m.) before harvest, leaf gas exchange

parameters, including net photosynthetic rate (Pn), transpiration

rate (Tr), and stomatal conductance (Gs), were measured on the

fourth leaf below the tip of trifoliate orange seedlings using a Li-

6400 portable photosynthesizer (Li-COR, USA). The

photosynthesizer was preheated for 20 min before used. After

calibrating and zeroing the photosynthesizer, the leaf area,

ambient water vapor pressure, and CO2 concentrations were set

at 6.5 cm2, 1.01 kPa, and 400 µmol/m2/s, respectively. During

measurement, the data were recorded after stabilization. Water

use efficiency (WUE) was defined as the Pn/Tr ratio.

A portable plant polyphenol-chlorophyll meter (Dualex

Scientific+, Orsay, France) was used to measure nitrogen balance

index (Nbi) and chlorophyll index (Chi) in leaves.

The concentration of leaf H2O2 was determined according to

the KI colorimetric method reported by Velikova et al. (2000). Leaf

O·−
2 levels were assayed using the protocol outlined by Zou et al.

(2015). Leaf MDA concentrations were measured according to the

thiobarbituric acid method described by Sudhakar et al. (2001).

Leaf CAT activity was determined colorimetrically at 240 nm

according to the method described by He et al. (2020). The

absorbance of reaction solutions changed by 0.01 at 240 nm in

1 min as a unit (U) of CAT. Leaf POD activity was assayed using the

guaiacol method described by Chance and Maehly (1955), where

the absorbance of reaction solutions changed by 0.1 at 470 nm in

1 min as a U of POD. Leaf APX activity was determined as per the

protocol outlined by Wu (2018), where the reaction solution

consisted of 50 mM potassium phosphate buffer (the enzyme

extraction solution), 6 mM AsA, and supernatants. The

absorbance of reaction solutions changed by 0.01 at 290 nm in
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1 min as a U of APX. Leaf glutathione reductase (GR) activity was

analyzed according to the method of Chen andWang (2002), where

the reaction mixture consisted of 1 mM NADPH, 0.1 M tricine-

NaOH buffer (the enzyme extraction solution), supernatants, and 5

mM oxidized GSH. The absorbance of reaction solutions changed

by 0.01 at 340 nm in 1 min as a U of GR.

Fresh leaf samples (0.30 g) were ground into a homogenate in 5

mL of 5% trichloroacetic acid solution and centrifuged at 15,000×g

for 15 min. The supernatant was used for the assay of AsA and

GSH, and the procedure for the assay had been described in detail

by Li et al. (2022).
Determination of the expression of genes
encoding antioxidant enzymes and fatty
acid desaturases

Total RNA of leaves was extracted using the TaKaRa MiniBEST

Plant RNA Extraction Kit. Following detection of total RNA

concentration and purity, total RNA was reverse transcribed into

cDNA based on the PrimeScript™ RT reagent Kit with the gDNA

Eraser kit. Each treatment’s cDNA obtained was employed as the

template for RT-PCR amplification. According to the findings of Wu

et al. (2019a), five antioxidant enzyme genes and four fatty acid saturase

genes were chosen and thus designed for their primers in qRT-PCR

(Supplementary Table S1). The internal reference gene in this

investigation was b-actin. The SYBR Green PCR Master Mix and

Real-time PCR Detection System (BIO-RAD, Hercules, USA) were

used for real-time PCR. There were three biological replicates for each

determination. The 2−DDCt method (Livak and Schmittgen, 2001) was

used to calculate expression of genes. Relative expression of genes was

normalized with the uninoculation treatment under WW conditions.
Statistical analysis

The two-way analysis of variance under the condition of SAS

software (v8.1) was used to compare the variance of the

experimental data, and Duncan’s multiple-range test was

performed to assess significant (p< 0.05) differences

across treatments.
Results

Effects of DS on root fungal
colonization frequency

Fungal colonization was found in roots of Si-inoculated

seedlings, but not in no-Si-inoculated seedlings, with more

transparent pear-shaped chlamydospores in Si-inoculated roots

under DS (Figures 1A, B) than under WW (Figures 1C, D). Root

fungal colonization frequency was 30.1% under WW conditions

and 61.9% under DS conditions, respectively (Table 1). Si

inoculation and DS treatment interacted (p< 0.01) to affect root

fungal colonization frequency.
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Effects of Si inoculation on plant growth
variables under DS

DS and Si inoculation significantly impacted plant growth

behavior of trifoliate orange seedlings (Supplementary Figure S1).

DS treatment inhibited plant biomass, root surface area, and root

volume of Si-inoculated plants by 23.74%, 15.29%, and 12.50%,

respectively, compared withWW treatment (Table 1). Leaf number,

biomass, root surface, and root volume of no-Si-inoculated plants

were also decreased under DS versus WW by 8.38%, 17.94%,

21.71%, and 14.06%, respectively. Si inoculation significantly

increased shoot/root ratio, leaf number, biomass, root surface

area, and root volume under WW conditions by 24.68%, 17.80%,

22.47%, 26.93%, and 12.50%, respectively, and under DS conditions

by 21.78%, 19.82%, 10.29%, 13.82%, 17.31%, and 14.55%,

respectively, compared with no-Si inoculation. The interaction of

DS treatment and Si inoculation significantly affected biomass.
Effects of Si inoculation on leaf gas
exchange under DS

Leaf Pn, Gs, and Tr in Si-inoculated seedlings was inhibited

under DS versus WW by 42.89%, 43.63%, and 43.40%, respectively,

and leaf Pn and WUE in no-Si-inoculated seedlings were also

suppressed by 40.86% and 64.20%, respectively (Figures 2A–D).

Compared with no-Si inoculation, Si inoculation profoundly raised
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leaf Pn, Tr, and Gs under WW conditions by 113.01%, 179.16%,

and 165.67%, respectively, and it also raised leaf Pn and WUE by

105.71% and 115.29% under DS conditions, respectively. DS and Si

inoculation interactively (p< 0.01) affected Tr, Gs, and

WUE (Table 2).
Effects of Si inoculation on leaf chlorophyll
index and nitrogen balance index under DS

Compared with WW treatment, soil drought significantly

reduced leaf Chi of Si-inoculated seedlings and Nbi of no-Si-

inoculated seedlings by 8.50% and 18.78%, respectively, coupled

with an 8.78% significant increase in Nbi of Si-inoculated seedlings

(Figures 3A, B). Si inoculation raised leaf Chi and Nbi by 58.33%

and 22.34% under WW conditions and 55.34% and 63.84% under

DS conditions, respectively, compared with no-Si treatment. A

significant (p< 0.01) interaction appeared in Nbi (Table 2).
Effects of Si inoculation on leaf
ROS levels under DS

Leaf H2O2 and O·−
2 levels were significantly raised under DS

versus WW conditions: 17.21% and 29.26% higher in Si-inoculated

seedlings and 20.21% and 69.66% higher in no-Si-inoculated

seedlings, respectively (Figures 4A, B). Compared with no-Si
A B

DC

FIGURE 1

Root colonization of Serendipita indica (Si) in trifoliate orange seedlings under drought stress (A, B) and well-watered (C, D) conditions. The red
arrow indicates transparent pear-shaped chlamydospores.
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treatment, Si inoculation had a significantly inhibitory effect on leaf

H2O2 and O·−
2 levels, with 8.88% and 21.54% lower under WW

and 11.15% and 40.22% lower under DS, respectively. A significant

(p< 0.01) interaction appeared in O·−
2 levels (Table 2).
Effects of Si inoculation on leaf
MDA levels under DS

Leaf MDA levels were significantly increased by 16.95% in no-

Si-inoculated seedlings, but not Si-inoculated seedlings, under DS

versus WW (Figure 5). Compared to no-Si treatment, Si inoculation

significantly reduced leaf MDA levels by 15.13% under WW and

17.12% under DS, respectively.
Effects of Si inoculation on leaf
antioxidant levels under DS

Leaf AsA and GSH levels were significantly decreased under DS

versus WW conditions by 45.89% and 7.13% in Si-inoculated

seedlings and 15.04% and 9.42% in no-Si-inoculated seedlings,

respectively (Figures 6A, B). However, Si inoculation significantly

raised leaf AsA and GSH levels by 85.66% and 11.50% under WW

conditions and 18.24% and 14.31% under DS conditions,

respectively, compared with no-Si inoculation treatment.
Effects of Si inoculation on leaf antioxidant
enzyme activities under DS

Compared with WW treatment, DS treatment significantly

decreased leaf GR and APX activities by 12.09% and 24.26% in Si-

inoculated seedlings, while it distinctly raised leaf POD activities by
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34.07% in Si-inoculated seedlings, along with a significant decrease in

leaf APX and CAT levels by 16.26% and 23.90% in no-Si-inoculated

seedlings (Figures 7A–D). Si inoculation significantly increased leaf GR,

APX, POD, and CAT activities underWWby 28.98%, 82.34%, 26.84%,

and 11.88%, respectively, compared with no-Si inoculation. Under DS,

Si inoculation significantly raised leaf POD, APX, and CAT activities by

87.36%, 64.92%, and 38.43%, respectively, compared with no-Si

inoculation. A significant (p< 0.01) interaction appeared in POD and

APX activities (Table 2).
Effects of Si inoculation on leaf antioxidant
enzyme genes expression under DS

Compared with WW treatment, DS treatment triggered

upregulation of PtCu/Zn-SOD and PtCAT1 gene expression in

leaves of Si-inoculated seedlings by 1.07- and 0.94-fold,

respectively, but it also suppressed the expression of PtMn-SOD,

PtFe-SOD, and PtPOD genes in leaves of no-Si-inoculated seedlings

by 0.77-, 0.53-, and 0.07-fold, respectively (Figure 8). The

expression of PtMn-SOD, PtCu/Zn-SOD, PtPOD, and PtCAT1

genes in leaves of no-Si inoculated seedlings was upregulated

under DS versus WW conditions by 0.79-, 0.25-, 3.24-, and 1.65-

fold, respectively, accompanied by the downregulated expression of

PtFe-SOD genes. Si inoculation induced the upregulated expression

of PtMn-SOD, PtFe-SOD, PtCu/Zn-SOD, PtPOD, and PtCAT1

genes under WW conditions by 8.38-, 5.46-, 2.12-, 5.28-, and

1.56-fold, respectively, compared with no-Si inoculation. Under

DS conditions, Si inoculation upregulated the expression of PtMn-

SOD, PtFe-SOD, PtCu/Zn-SOD, PtPOD, and PtCAT1 genes by 0.19-

, 3.43-, 4.19-, 0.38-, 0.87-fold, respectively. There was a significant

interaction between DS treatment and Si inoculation on the

expression of leaf PtMn-SOD, PtFe-SOD, PtCu/Zn-SOD, and

PtPOD genes (Table 2).
TABLE 1 Changes in root fungal colonization frequency and plant growth of trifoliate orange seedlings inoculated with Serendipita indica (Si) under
well-watered (WW) and drought stress (DS) conditions.

Treatments Root fungal coloniza-
tion frequency (%)

Plant
height
(cm)

Leaf number
(num./plant)

Biomass (g
FW/plant)

Root
surface
area
(cm2)

Root
volume
(cm3)

Shoot/
root
ratio

WW-Si
0c 12.98 ± 0.44b 16.72 ± 0.68bc 4.85 ± 0.27b

54.35 ±
2.77b

0.64 ± 0.06b
0.52 ± 0.04b

WW+Si
30.1 ± 4.3b 15.83 ± 3.49a 18.44 ± 1.53a 5.94 ± 0.36a

63.76 ±
3.31a

0.72 ± 0.06a
0.65 ± 0.06a

DS-Si
0c 12.26 ± 0.31b 15.28 ± 0.98c 3.98 ± 0.17c

42.55 ±
3.90c

0.55 ± 0.03c
0.53 ± 0.04b

DS+Si
61.9 ± 5.9a

14.69 ±
2.46ab

18.00 ± 1.55ab 4.53 ± 0.26b
54.01 ±
1.30b

0.63 ± 0.05b
0.64 ± 0.06a

Significance

DS ** NS NS ** ** ** NS

Si ** ** ** ** ** ** **

Interaction ** NS NS * NS NS NS
Data (means ± SD, n = 6) followed by different letters in the same column indicate significant (p< 0.05) differences. NS, not significant at p< 0.05; *, p< 0.05; **, p< 0.01.
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A B
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FIGURE 2

Effects of Serendipita indica (Si) on leaf net photosynthetic rate (Pn) (A), transpiration rate (Tr) (B), stomatal conductance (Gs) (C), and water use
efficiency (WUE) (D) of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions. Data (means ± SD, n = 4) followed
by different letters upon the bars indicate significant (p< 0.05) differences.
TABLE 2 Significance of variables in trifoliate orange seedlings inoculated with Serendipita indica (Si) under drought stress (DS) conditions.

Variables DS Si Interaction Variables DS Si Interaction

Chi * ** NS POD * ** **

Nbi NS ** ** GR NS * NS

Pn ** ** NS APX ** ** **

Tr NS ** ** PtMn-SOD ** ** **

WUE ** ** ** PtFe-SOD ** ** **

Gs NS ** ** PtCu/Zn-SOD ** ** **

H2O2 ** ** NS PtCAT1 ** ** NS

O·−
2 ** ** ** PtPOD ** ** **

MDA ** ** NS PtFAD2 ** ** NS

AsA ** ** ** PtFAD6 ** ** **

GSH ** ** NS PtD9 ** ** **

CAT ** ** NS PtD15 ** ** **
F
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NS, not significant at p< 0.05; *, p< 0.05; **, p< 0.01.
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Effects of Si inoculation on leaf fatty acid
desaturase genes expression under DS

The expression of PtFAD2 gene in leaves of Si-inoculated

plants was downregulated by 0.10-fold under DS versus WW

conditions, accompanied by 0.35- and 0.86-fold upregulation of

PtFAD6 and PtD15, respectively (Figure 9). In leaves of no-Si-

inoculated plants, the expression of PtD9 gene was upregulated by

1.94- fold under DS versus WW conditions. Compared with no-

Si-inoculated treatment, Si inoculation significantly raised the

expression of leaf PtFAD2, PtFAD6, PtD9, and PtD15 genes by

3.70-, 3.65-, 3.30-, and 1.18-fold under WW conditions,

respectively, and by 4.94-, 8.52-, 0.63-, and 1.86-fold under DS

conditions, respectively. DS treatment and Si inoculation

interacted significantly to affect the expression of PtFAD6, PtD9,
and PtD15 genes (Table 2).
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Discussion

In this study, root colonization frequency of Si in trifoliate orange

seedlings was significantly increased under DS versus WW conditions,

which is consistent with Si-colonized white clover under DS (Rong

et al., 2022). Si was isolated from arid zones and is therefore well

adapted to drought (Boorboori and Zhang, 2022). It has been shown

that Si preferentially colonized the root-hair zone, and the colonization

frequency of Si increased with root senescence (e.g., under drought

conditions) (Schäfer and Kogel, 2009). Nevertheless, a decrease in root

Si colonization was observed in wheat plants under DS versus WW

conditions (Yaghoubian et al., 2014). In Eleusin coracana plants, DS

also induced the decrease in root Si colonization (Tyagi et al., 2017). In

maize, root Si colonization was not distinctly affected by DS (Xu et al.,

2017). This suggests that the response of root Si colonization to DS

is variable.
A B

FIGURE 3

Effects of Serendipita indica (Si) on leaf chlorophyll index (A) and nitrogen balance index (B) in leaves of trifoliate orange seedlings under well-watered
(WW) and drought stress (DS) conditions. Data (means ± SD, n = 4) followed by different letters upon the bars indicate significant (p< 0.05) differences.
A B

FIGURE 4

Effects of Serendipita indica (Si) on leaf hydrogen peroxide (H2O2) (A) and superoxide anion radical (O·−
2 ) (B) concentrations in trifoliate orange

seedlings under well-watered (WW) and drought stress (DS) conditions. Data (means ± SD, n = 4) followed by different letters upon the bars indicate
significant (p< 0.05) differences.
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Plants change root architecture in response to DS, with reduced

lateral root density and allocating more nutrients to old roots

(Lynch, 2018). Soil drought can strongly inhibit crop growth

(Wahab et al., 2022). The present study also observed a decrease

in plant growth variables under DS versus WW conditions,

regardless of Si inoculation or not. However, Si-inoculated

trifoliate orange seedlings represented greater plant growth

performance and root surface area and volume, regardless of WW

and DS. Similar results were reported in barley and wheat

inoculated with Si under DS conditions (Hosseini et al., 2017;

Ghaffari et al., 2019). Such changes may be linked to the fact that

Si could promote the auxin and cytokinin synthesis of host plants

(Liu et al., 2023; Rong et al., 2023).
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Leaf gas exchange is closely linked to growth responses (Wu

et al., 2019b). In the present study, DS treatment significantly

reduced Pn, WUE, and Nbi in leaves of no-Si-inoculated

seedlings, and Pn, Tr, Gs, Chi, and Nbi in Si-inoculated seedlings,

compared with WW treatment. Interestingly, DS significantly

raised Tr and Gs in no-Si-inoculated seedlings compared with

WW treatment. This may be explained by the fact that prolonged

DS irreversibly damages leaf tissues of no-Si-inoculated plants, thus

accelerating Tr and Gs and leaving them in a more drought state

(Yang et al., 2021b). In addition, Si application considerably raised

Pn, Gs, Tr, Chi, and Nbi in WW-treated seedlings and Pn, Chi, Nbi,

and WUE in DS-treated seedlings, compared with no-Si-inoculated

treatment. This showed a significant improvement of WUE in Si-
FIGURE 5

Effects of Serendipita indica (Si) on leaf malondialdehyde (MDA) concentrations in trifoliate orange seedlings under well-watered (WW) and drought
stress (DS) conditions. Data (means ± SD, n = 4) followed by different letters upon the bars indicate significant (p< 0.05) differences.
A B

FIGURE 6

Effects of Serendipita indica (Si) on ascorbic acid (AsA) (A) and glutathione (GSH) (B) concentrations in leaves of trifoliate orange seedlings under
well-watered (WW) and drought stress (DS) conditions. Data (means ± SD, n = 4) followed by different letters upon the bars indicate significant
(p< 0.05) differences.
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inoculated seedlings only under DS conditions, which was related to

the involvement of mycelium of Si in water uptake. On the other

hand, the Si inoculation also enhanced Pn by promoting

chlorophyll formation, accompanied by an enhancement of Nbi.

Under DS, Si-inoculated rice plants also exhibited similar results

(Saddique et al., 2018). In Eleusine coracana plants, Si inoculation

distinctly raised chlorophyll levels under DS (Tyagi et al., 2017).

These increases under both Si inoculation and DS conditions are

associated with Si-promoted P uptake and photosystem II efficiency

(Tariq et al., 2017). Li et al. (2021) also observed the raised Chi level

in Ipomoea batatas plants after Si inoculation. Proteomics analysis

showed that Si inoculation on barley led to significant upregulation

of various photosynthesis-related protein levels under DS, including

photosystem complex proteins and photorespiratory enzymes

(Ghaffari et al., 2019).

In the present study, ROS levels were induced to increase, and

MDA was elevated in Si- and no-Si-inoculated trifoliate orange

seedlings under DS versus WW conditions, indicating that the

drought triggered oxidative damage in trifoliate orange seedlings.
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Furthermore, inoculation with Si was able to significantly reduce

leaf H2O2 and O·−
2 levels as well as MDA concentrations,

accompanied by a higher decrease under DS conditions than

under WW conditions. Similar result was reported in maize

plants under DS after Si inoculation (Kaboosi et al., 2023). MDA

is a by-product of membrane lipid damage under DS (Pavlović

et al., 2018). Sun et al. (2010) found that MDA levels in leaves of Si-

colonized B. campestris plants in response to DS were delayed,

coupled with the upregulation of antioxidant enzyme activities

within 24 h. Si inoculation under DS also triggered a decrease in

leaf ROS and MDA contents in Triticum aestivum and Solanum

melongena (Yaghoubian et al., 2014; Swetha and Padmavathi, 2020).

Therefore, Si-inoculated plants recorded lower oxidative burst and

oxidative damage under drought, showing their enhanced drought

tolerance. Nevertheless, Si colonization in walnut plants

dramatically decreased MDA levels in leaves, but not roots under

DS, suggesting a tissue dependency (Liu et al., 2021).

In plants, the AsA-GSH cycle, mediated by GR and APX, is

associated with H2O2 scavenging (Irshad et al., 2021). Our study
A B
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FIGURE 7

Effects of Serendipita indica (Si) on glutathione reductase (GR) (A), ascorbate peroxidase (APX) (B), peroxidase (POD) (C), and catalase (CAT) (D) in
leaves of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions. Data (means ± SD, n = 4) followed by different
letters upon the bars indicate significant (p< 0.05) differences.
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indicated that drought treatment markedly reduced leaf AsA and

GSH levels, whereas inoculation with Si significantly increased leaf

AsA and GSH levels, regardless of soil moisture regimes.

Meanwhile, Si-inoculated seedlings also maintained a high APX

activity under drought and a higher APX and GR activity under

WW than no-Si-inoculated seedlings. This means that Si-inoculated
Frontiers in Plant Science 10160
plants have a more efficient AsA-GSH cycle to scavenge ROS under

DS, which is in agreement with the results obtained by Rong et al.

(2022) inoculating Si on white clover under DS. In A. thaliana, Si

inoculation responded to DS by enhancing the AsA-GSH cycle

pathway in plants (Sun et al., 2010). Under salt stress conditions, Si

also provided tomato plants with a superior AsA-GSH cycle to
FIGURE 8

Effects of Serendipita indica (Si) on relative expression of five antioxidant enzyme genes in leaves of trifoliate orange seedlings under well-watered (WW)
and drought stress (DS) conditions. Data (means ± SD, n = 3) followed by different letters upon the bars indicate significant (p< 0.05) differences.
FIGURE 9

Effects of Serendipita indica (Si) on relative expression of four fatty acid desaturase genes in leaves of trifoliate orange seedlings under well-watered
(WW) and drought stress (DS) conditions. Data (means ± SD, n = 3) followed by different letters upon the bars indicate significant (p< 0.05) differences.
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eliminate ROS (Ghorbani et al., 2018), suggesting that Si plays an

important role in modulating the AsA-GSH cycle under adversity.

This study also represented enhanced CAT and POD activities

after Si inoculation under WW and DS. It has been demonstrated

that Si colonization raised antioxidant enzyme activities in host

plants including CAT and POD (Lin et al., 2019). Under drought, Si

inoculation also enhanced the CAT activity of I. batatas (Li et al.,

2021). Wheat inoculated with Si exhibited lower levels of lipid

peroxidation as well as higher CAT and APX activities under DS

(Yaghoubian et al., 2014). Si inoculation, on the other hand,

reduced CAT activity of drought-stressed wheat and APX activity

of drought-stressed wheat and maize (Hosseini et al., 2017; Hosseini

et al., 2018). This indicated that Si effects on antioxidant enzyme

activities are variable. Alternatively, Si inoculation activates

drought-escape mechanisms in host plants, thereby doing not

require enhanced antioxidant enzyme activities in response to

drought (Jangir et al., 2021). In follow-up studies, we should

explore how the Si activates the signaling pathway of antioxidant

enzyme system in host plants subjected to DS.

Inoculation with Si also altered the expression of genes

encoding antioxidant enzymes and fatty acid desaturases under

DS, with increased expression in leaf PtFe-SOD, PtCu/Zn-SOD,

PtPOD, PtCAT1, PtFAD2, PtFAD6, PtD9, and PtD15 genes.

Similarly, inoculation of Rhizophagus irregularis upregulated leaf

PpGR, PpMn-SOD, and PpCu/Zn-SOD expression of Robinia

pseudoacacia plants under 200 mM NaCl conditions, but not 100

mM NaCl (Chen et al., 2020). Wu et al. (2019a) also reported that

Funneliformis mosseae inoculation upregulated root PtFAD2,

PtFAD6, and PtD9 gene expression in trifoliate orange under DS.

In field citrus, Si inoculation also upregulated the expression of

CsPOD, CsCAT1, and CsFAD6 in leaves (Li et al., 2022). This

suggests that even in the absence of abiotic stress, Si can activate the

expression of antioxidant defense genes in host plants. In leaves of

B. campestris and maize, Si inoculation also upregulated the

expression of stressed genes (DREB2A, CBL1, ANAC072, and

RD29A) under soil drought (Sun et al., 2010; Xu et al., 2017). In

Gerbera jamesonii seedlings, Si inoculation also triggered the

upregulated expression of NHX2 and SOS1 under salt stress

(Chen et al., 2022). Sun et al. (2010) proposed that the Ca2+

sensing regulatory protein could activate Si to induce drought-

responsive gene expression. However, whether this case occurred in

this study remains to be verified.
Conclusions

In summary, Si inoculation alleviated the inhibitory effect of soil

drought on growth, Pn, WUE, and Chi of trifoliate orange seedlings, as

well as the oxidative damage. This study firstly reported that low

oxidative burst in Si-inoculated seedlings exposed to soil drought was

associated with increased antioxidant enzyme activities and antioxidant

levels, as well as upregulated expression of genes encoding antioxidant

enzymes and fatty acid desaturases. Si has a high potential as a

biostimulator for enhanced plant drought tolerance.
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Symbiotic compatibility between
rice cultivars and arbuscular
mycorrhizal fungi genotypes
affects rice growth and
mycorrhiza-induced resistance

Ludivine Guigard, Lea Jobert, Nicolas Busset,
Lionel Moulin and Pierre Czernic*

PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
Introduction: Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota

clade and can form root symbioses with 80% of Angiosperms, including crops

species such as wheat, maize and rice. By increasing nutrient availability, uptake

and soil anchoring of plants, AMF can improve plant’s growth and tolerance to

abiotic stresses. AMF can also reduce symptoms and pathogen load on infected

plants, both locally and systemically, through a phenomenon called mycorrhiza

induced resistance (MIR). There is scarce information on rice mycorrhization,

despite the high potential of this symbiosis in a context of sustainable water

management in rice production systems.

Methods: We studied the symbiotic compatibility (global mycorrhization &

arbuscules intensity) and MIR phenotypes between six rice cultivars from two

subspecies (indica: IR64 & Phka Rumduol; japonica: Nipponbare, Kitaake,

Azucena & Zhonghua 11) and three AMF genotypes (Funneliformis mosseae

FR140 (FM), Rhizophagus irregularis DAOM197198 (RIR) & R. intraradices FR121

(RIN)). The impact of mycorrhization on rice growth and defence response to

Xanthomonas oryzae pv oryzae (Xoo) infection was recorded via both

phenotypic indexes and rice marker gene expression studies.

Results: All three AMF genotypes colonise the roots of all rice varieties, with clear

differences in efficiency depending on the combination under study (from 27% to

84% for Phka Rumduol-RIN and Nipponbare-RIR combinations, respectively).

Mycorrhization significantly (a=0.05) induced negative to beneficial effects on

rice growth (impact on dry weight ranging from -21% to 227% on Azucena-FM

and Kitaake-RIN combinations, respectively), and neutral to beneficial effects on

the extent of Xoo symptoms on leaves (except for Azucena-RIN combination

which showed a 68% increase of chlorosis). R. irregularis DAOM197198 was the

most compatible AMF partner of rice, with high root colonisation intensity (84%

of Nipponbare’s roots hyphal colonisation), beneficial effects on rice growth (dry

weight +28% (IR64) to +178% (Kitaake)) and decrease of Xoo-induced symptoms
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(-6% (Nipponbare) to -27% (IR64)). Transcriptomic analyses by RT-qPCR on

leaves of two rice cultivars contrasting in their association with AMF show two

different patterns of response on several physiological marker genes.

Discussion: Overall, the symbiotic compatibility between rice cultivars and AMF

demonstrates adequate colonization, effectively restricting the nutrient

starvation response and mitigating symptoms of phytopathogenic infection.
KEYWORDS

Oryza sativa, plant-fungi interactions, biological control, Xanthomonas oryzae,
symbiotic association, biotic stress
Introduction

In recent years, there has been a growing interest in the

naturally occurring interactions between plants and the

inhabitants of their root microbiome. It has been widely reported

that this cohort of microorganisms plays a role in the growth of

their host and in its tolerance to biotic and abiotic stresses

(Berendsen et al., 2012; Schlaeppi and Bulgarelli, 2015; Vannier

et al., 2019; de la Fuente Cantó et al., 2020). These include

arbuscular mycorrhizal fungi (AMF), which form a mutualistic

association with the roots of various crops such as wheat, maize or

rice. (Paszkowski and Boller, 2002; Suzuki et al., 2015; Fiorilli

et al., 2018).

The establishment of this symbiosis is mediated by a molecular

dialogue between the partners, via the exudation of strigolactones

by the plant and the recognition of fungal Myc factors

(lipochitooligosaccharides or short-chain chitin oligomers)

(Mbodj et al., 2018; Ho-Plágaro and Garcıá-Garrido, 2022).

When in contact with the root, the hyphae changes into an

adhesive structure named hyphopodia, enabling the access to the

internal root cortex. It spreads via intercellular spaces and colonise

cortical cells with highly branched intracellular structures named

arbuscules, preferential sites of exchange with their host (Gutjahr

et al., 2008; Gutjahr et al., 2009; Jung et al., 2012; Liu et al., 2022).

Their number and functioning in a plant root system is recognised

as a marker of symbiotic compatibility (Montero et al., 2019).

During these exchanges, plants retribute up to 30% of their

produced photosynthates to the fungi in the form of sugars and

lipids (Jung et al., 2012; Sugiura et al., 2020). In return, mycorrhizal

fungi provide a multitude of beneficial effects. The mere presence of
rhizal fungi; CT, non-

nular inoculum without

F., Funneliformis; FM,

tercellular hyphae; JA,

yricularia; Pi, inorganic

tative polymerase chain

Rhizophagus irregularis

les; Xoo, Xanthomonas
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the fungi within cortical root cells can enhance shoot and root

biomass, especially stimulating the lateral roots formation and

development in wheat, rice or maize (Oláh et al., 2005; Gutjahr

et al., 2009; Chiu et al., 2018; Fiorilli et al., 2018). Its hyphal network

enables it to cover a large area of soil, mineralising and recovering

essential and/or poorly bioavailable nutrients or water for the

development of its host (Begum et al., 2019; Kadam et al., 2020).

Particularly, phosphorus is a key nutrient in AMF symbiosis with

plants (Smith et al., 2011). Its bioavailability (or lack thereof due to

complexation with soil particulates) affects the recruitment and

functioning of the fungal association with its host (Breuillin et al.,

2010; Jiang et al., 2021). Mycorrhization impacts inorganic

phosphate (Pi) responsive genes expression in multiple plant

species, such as rice or wheat, suppressing for instance the Pi

starvation response typically occurring in low Pi soils (Yang et al.,

2012; Fiorilli et al., 2018; Campo and San Segundo, 2020). In

addition to improving the mineral nutrition of the plant, the

AMF symbiosis can help its host tolerate a wide range of stresses.

It can increase its host’s tolerance to a variety of abiotic stresses,

from drought to excessive temperature, or reduce root uptake of

heavy metals (de Andrade et al., 2015; Begum et al., 2019; Chen

et al., 2019). AMF symbioses also enhance their host’s tolerance to

pathogen pressure at two complementary levels. Fungal root

colonisation protects the host both by competing with soil

pathogens for its photosynthates and colonisation sites and by

triggering a local defence response (accumulation of callose, ROS,

phenols and R proteins) (Schouteden et al., 2015; Gupta et al., 2017;

Dowarah et al., 2021). By modulating phytohormonal pathways

such as jasmonate, salicylic acid and ethylene, AMF primes its host’s

defence responses in the shoot via a mechanism called mycorrhiza-

induced resistance (MIR) (Jung et al., 2012; Gupta et al., 2017;

Fiorilli et al., 2018; Nishad et al., 2020). This MIR results in reduced

foliar symptoms and control of pathogen development on a variety

of plants and shoot pathogens (Liu et al., 2007; Fiorilli et al., 2018;

Kadam et al., 2020). Due to their ability to improve soil fertility and

plant health, AMF have great potential as plant bioinoculants in

the field.

This potential is as promising as AMF are generally known to

have low host specificity, capable to induce growth of a multitude of

different crops (Van Geel et al., 2016). However, recent meta-
frontiersin.org
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analyses and studies highlighted that there exists different symbiotic

compatibilities between AMF species and crop cultivars since

different associations results in different phenotypic observations

(Pérez-de-Luque et al., 2017; Campos et al., 2018; Silva et al., 2018).

A meta-analysis on 115 studies showed that some specific

associations between AMF genera and plant host families are

more efficient for crop growth promotion, such as the Poacees

family with the AMF genera Funneliformis and Rhizophagus (Van

Geel et al., 2016). Crop responsiveness to mycorrhization is indeed

plant genotype-dependent, as well as AMF species-dependent and is

positively linked with AMF colonisation (Lehmann et al., 2012).

This meta-analysis explained that the relationship between crop

mycorrhizal response and AMF colonisation wasn’t significant for

wheat or barley, while recent studies have underlined differences in

symbiotic compatibility between rice genotypes, both in terms of

AMF colonisation and its effect on rice growth (Suzuki et al., 2015;

Diedhiou et al., 2016; Davidson et al., 2019).

Rice typical watering mode is flooding, but it has major

drawbacks: monopolising a third of the world’s freshwater, high

levels of methane production, soil polluting streaming of chemical

inputs and negative impact on AMF development (Redeker et al.,

2000; Chandel et al., 2002; Saito et al., 2018; Chialva et al., 2020). As

a substitute to constant flooding, Alternate Wetting and Drying

(AWD) rice management practices have been developed, reducing

water use by up to 30% and methane emissions by 48% without

reducing yield (Richards and Sander, 2014; LaHue et al., 2016). Rice

varieties that are AMF-responsive should therefore be selected in

fields that are being converted from flooded to AWD rice systems.

Within these paddy fields, initial studies showed little or no

colonisation of different rice varieties under flooded conditions

(Lumini et al., 2011; Vallino et al., 2014), but recent ones have

reported AMF colonisation in experimental and farmers’ fields

around the world, especially in rainfed lowland systems (Chialva

et al., 2020; Sarkodee-Addo et al., 2020; Barro et al., 2022). There are

few studies on the natural occurrence of AMF communities and their

diversity in rice paddy fields (Wang et al., 2015; Bernaola et al., 2018a;

Zhang et al., 2020; Wang et al., 2021). AMF communities rely on the

site and the irrigation mode and Glomerales, Archaeosporales and

Diversisporales are generally the predominant orders (Lumini et al.,

2011; Chialva et al., 2020; Barro et al., 2022). Members from the

Glomeraceae, Claroideoglomeraceae and Paraglomeraceae families have

been found in paddy fields in China and Ghana (Wang et al., 2015;

Sarkodee-Addo et al., 2020), including the well-studied Rhizophagus

irregularis and Funneliformis mosseae species. Another analysis on

fragrant black rice in Indian fields identified R. intraradices and F.

mosseae in both field and rice root samples (Surendirakumar et al.,

2021). Their global distribution in various fields, long-term storage

ability, and ability to form symbiosis with a wide range of plant hosts

make them excellent models for studying AMF symbiosis (Berruti

et al., 2016).

Under greenhouse conditions, there is evidence that rice

mycorrhization can improve plant biomass, yield and tolerance to

multiple abiotic and biotic stresses (Gutjahr et al., 2009; Campos-
Frontiers in Plant Science 03166
Soriano et al., 2012; Li et al., 2016; Campo et al., 2020). These

beneficial effects depend on rice developmental stage, variety and

AMF genotype (Suzuki et al., 2015; Sisaphaithong et al., 2017; Wang

et al., 2021). Surprisingly, studies on the global effect of AMF

symbiosis on both rice’s growth and defence responses are scarce

or limited to a few combinations of rice cultivars and AMF species.

Studies by Campos-Soriano & San-Segundo showed that the

mycorrhization of a single japonica variety, Senia, by the AMF

model R. intraradices enhances its biomass and resistance to

Pyricularia (P.) oryzae, both locally and systemically (Campos-

Soriano et al., 2010; Campos-Soriano et al., 2012). Two AMF

species, R. irregularis and F. mosseae, inoculated on 12 japonica

rice varieties showed contrasted effects on rice growth, Pi content in

leaves, and resistance to P. oryzae infection (Campo et al., 2020). A

multi-AMF species inoculant on another two tropical japonica

varieties also increases their growth but at the same time their

susceptibility to insect attacks and Rhizoctonia solani infection

(Bernaola et al., 2018b). Finally, a large study by Suzuki et al.,

2015 showed a range of impact (from improvement to

deterioration) of F. mosseae’s inoculation on the biomass of 64

rice genotypes.

In order to develop AMF bioinoculants for rice production

under AWD conditions, it is necessary to deepen our understanding

of the symbiotic compatibility between rice and AMFs. This will

assess which combinations are beneficial, negligible, or detrimental

to plant growth and responses to environmental stresses.

In this study, the symbiotic compatibility between six varieties

of japonica and indica rice and three AMF genotypes, known to

interact with rice, was characterised. Model rice varieties as well as

varieties with potential for AWD programs were targeted. We

analysed the colonisation rate and intensity as well as the

functioning of the interaction between rice and mycorrhizal fungi.

We then assessed how AMF inoculation impacts rice’s growth and

defence responses to a pathogenic infection by Xanthomonas oryzae

pv. oryzae (Xoo). We used a combination of phenotypic and rice

gene expression studies to uncover promising compatible

associations. How phenotypic responses of rice to AMF symbiosis

can be linked to systemic changes in marker gene expression

(ranging from growth, phytohormonal balances to defence

response) was investigated in the leaves of two rice model

cultivars contrasting in AMF establishment and responses.
Materials and methods

Plant and fungal material

Six Oryza sativa cultivars and three AMF genotypes belonging to

three different species were selected and their characteristics are listed

in Table 1. Two indica (IR64 and Phka Rumduol) and four japonica

(Azucena, Kitaake, Nipponbare and Zhonghua 11) subspecies were

selected. Seeds were obtained from IRRI and propagated at IRD except

for Phka Rumduol which was provided by CIRAD.
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Funneliformis mosseae FR140 (FM), Rhizophagus intraradices

FR121 (RIN) and Rhizophagus irregularis DAOM 197198 (RIR)

were purchased from MycAgro Lab (Technopôle Agro-

Environnement, Bretenière, France) in the form of individual

granular inoculums (100 spores/g).
Plant growth conditions

Rice seeds were dehusked and surface-sterilised by immersion

in 70% ethanol for 3 min, then in 3.8% sodium hypochlorite

supplemented with 1% Tween 20 under agitation (180 rpm) for

30 min. Seeds were rinsed three times with sterile water, three times

with 2% filtered sodium thiosulfate and three more times with

sterile water. They were incubated overnight at 28°C in sterile water

in the dark and then germinated on sterile-soaked sand for three

days at 28°C. To ensure the absence of contaminants, 100 µL of the

last rinse water and imbibition water were plated on tryptic soy agar

(Sigma-Aldrich) Petri dishes. Four homogeneous rice seedlings

were then transferred to anti-coiling pots (Comptoir Vert,

France) filled with 150 mL of clay beads (6-18 mm, Terres &

Traditions, France) and 450 mL of sterile inert substrate composed

of 70% of sand, 20% sieved perlite and 10% of vermiculite (Campo

& San Segundo, 2020). This substrate was inoculated with either the

AMF granular inoculum, or the granular inoculum without fungal

spores (control) at a volume of 5% per pot.

Rice plants were grown for 2.5 months in a growth chamber (12 h

day/night, 28°C day, 26°C night, 75% humidity). The substrate was

moistened for one week and then watered three times a week with a

Hoagland solution (Hoagland and Arnon, 1938) reduced in

phosphate (2.5 mM Ca(NO3)2, 2.5 mM KNO3, 1 mM MgSO4, 0.25

mM (NH4)2SO4, 25 µMKH2PO4 and trace elements, complete recipe

in Supplementary Table 1), with the watering volume gradually

increased according to the cultivar growth.
Rice growth phenotyping

Maximum height, shoot and root fresh weights were measured

for each plant (n = 20 per condition). Shoot dry weight was also

measured after drying at 40°C for one week at 48 h (n = 20 par

condition). Roots were stored in 70% ethanol at 4°C until

mycorrhizal quantification (n= 5 pools of 4 root systems).
Mycorrhizal quantification

The root systems of four plants from the same pot were washed

in tap water, placed in 70% ethanol and stored at 4°C until analysis.

Fungal structures were stained using a blue ink-based protocol

modified from Cao et al., 2013. Roots were heated to 80°C for

45 min in 10% KOH. They were rinsed three times with ultrapure

water (MilliQ) and stained with a staining solution consisting of 5%

blue ink (Waterman “Bleu Sérénité”) in 5% acetic acid at room

temperature for 10 min. They were then rinsed three times with

ultrapure water and fixed in 5% acetic acid overnight.
TABLE 1 Rice cultivars and AMF genotypes used in this study.

Plant/Fungal
Material

Characteristics Reference

Oryza sativa subsp. japonica

Nipponbare japonica reference, high-
quality sequenced genome,
AMF-responsive, drought
sensitive

Gutjahr et al.,
2008;
Matsumoto
et al., 2016;
Degenkolbe
et al., 2009

Kitaake model for rice
transformation, short cycle,
not light sensitive, AMF-
responsive, drought
tolerant to a certain extent

Jain et al.,
2019; Mubarok
et al., 2019; Shi
et al., 2021

Azucena short cycle, not light
sensitive, sensitive to
phytoparasitic nematodes,
not yet tested on AMF
symbiosis
drought tolerant

Masson et al.,
2022;
Ghorbanzadeh
et al., 2023

Zhonghua 11 short cycle, not light
sensitive, resistant to
phytoparasitic nematodes,
widely used in China for T-
DNA mutant sources,
AMF-responsive
drought sensitive

Phan et al.,
2018; Huang
et al., 2020;
Masson et al.,
2022; Nguyen
et al., 2022;
Xiao et al.,
2009

Oryza sativa subsp. indica

IR64 indica reference, high yield
quality, sensitive to
nematodes, AMF-
responsive, drought
sensitive

Suzuki et al.,
2015; Mackill
and Khush,
2018; Phan
et al., 2018;
Ghorbanzadeh
et al., 2023

Phka Rumduol jasmine premium rice,
highly cultivated in
Cambodia, not yet tested
on AMF symbiosis
drought sensitive

Masson et al.,
2022;
Zhao et al.,
2016

AMF genotypes

Funneliformis mosseae FR140 Colonise a large variety of
hosts including rice,
worldwide presence in
fields, induce MIR in rice
against Pyricularia (P.)
oryzae and in wheat against
Xanthomonas oryzae.
Colonise a large variety of
hosts including rice,
worldwide presence in
fields, induce MIR in rice
against P. oryzae

Vos et al.,
2012; Suzuki
et al., 2015;
Berruti et al.,
2016; Fiorilli
et al., 2018;
Campo et al.,
2020.

Rhizophagus intraradices
FR121

Gutjahr et al.,
2008; Campos-
Soriano et al.,
2012; Berruti
et al., 2016.

Rhizophagus irregularis
DAOM197198

Colonise a large variety of
hosts including rice, long-
term storage, worldwide
presence in fields,
sequenced genome, induce
MIR in rice against P.
oryzae.

Stockinger
et al., 2009;
Tisserant et al.,
2013;
Berruti et al.,
2016; Campo
et al., 2020.
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Five replicates of 20 to 25 fragments from coronary roots were

mounted between slide and glass and the mycorrhizal index (global

mycorrhization and arbuscular intensity) were assessed as in

Trouvelot et al., 1986, on a Axiozoom Zeiss microscope.
Biocontrol assays against Xanthomonas
oryzae pv oryzae

Infection of Xanthomonas oryzae pv. oryzae PXO99 (Xoo)

was carried out on 50-days old rice plants by leaf clipping as

described in Niño-Liu et al., 2005. The extent of chlorosis and

necrosis was assessed 14 days post inoculation (dpi) on each leaf

(n = 18). Mock inoculations were made with sterile water to

assess that the sole clipping of the leaf does not induce any

disease symptoms.
RNA extraction and quantitative PCR of
rice gene expression

RNA was extracted from leaf samples collected during leaf-

clipping (before infection, at 50 days post germination). They were

ground to a fine powder using a TissueLyser II (Retsch) at 30 Hz, for

15 s twice. Each biological replicate consisted of two (Nipponbare)

to three (IR64) leaf samples from the same pot, with four biological

replicates for each condition. Total RNA was extracted using

TriReagent (Sigma) and a DNAse (QIAgen) treatment was added

in the protocol before purification with the RNA Clean &

Concentrator kit (Zymo), according to the manufacturer’s

instructions. The quantity and quality of total RNA was assessed

using a NanoDrop 1000 spectrophotometer (ThermoFisher).

Approximately 360 ng of total RNA from each biological replicate

was used for retrotranscription into cDNA using SuperScript III

Reverse Transcriptase (Thermo Fisher Scientific). cDNAs were

diluted 5-fold and RT-qPCRs were performed using the

Takyon™ Low ROX SYBR 2X MasterMix blue dTTP

(Eurogentec) on a LightCycler 480 qPCR system (Roche). Plate

preparation was automated using the epMotion 5070 pipetting

robot (Eppendorf). Four independent biological replicates were

analysed for each condition, each one analysed in triplicate.

Relative gene expression is calculated by comparing each sample

to the standard’s (number of cycles of EF1a, DCt), and then to the

control group (FM, RIN & RIR vs. CT, DDCt). The fold change is

calculated with 2−meanDDCt and the logFC represents the relative

expression of each marker gene as indicated in (Pfaffl, 2001). The

list of marker genes, their function and the primers used in this

study are listed in Table 2.
Statistical analyses

Statistical analyses were performed with Rstudio (version

2022.2.0.443) and R (version 4.1.3) softwares using the packages

“readxl” , “ t idyverse” , “ggplot2” , “rs ta t ix” , “ggpubr” ,

“multicompView”, “car”, “pcr”, “pheatmap”. As phenotypic data
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of mycorrhization and arbuscular intensity indexes fulfilled

normality (Shapiro test, p>0.05) and homoscedasticity (Levene

test, p>0.05) hypotheses, a two-way ANOVA was used to test the

significance of rice cultivar and AMF genotype effects on these

parameters, and one-way ANOVA with Tukey test were used for

pairwise group comparisons. For rice growth and biocontrol traits,

these data did not fulfil the normality and homoscedasticity

hypotheses, thus a non-parametric ANOVA with Kruskal-Wallis

test (a=0.05) followed by pairwise comparisons with Wilcoxon tests

(a=0.05) were used for mean group comparisons of measured

phenotypic traits.

For the analysis of the expression of rice marker genes, the “pcr”

package was used. Linear regression was used to assess statistical

differences between AMF inoculation and marker gene expression.

To visualise the relative expression of each marker gene as a

function of rice cultivars and AMF inoculation, a heatmap of

LogFC was made with the “pheatmap” package.
Results

Mycorrhizal colonisation and arbuscular
content in AMF-rice japonica and indica
rice cultivars

To assess the symbiotic compatibility between the three AMF

genotypes (RIN, RIR, FM) and the six rice cultivars (listed in

Table 1), we analysed the mycorrhization rates in the 18

combinations. We focused on the global fungal colonisation rate

and the percentage of visible arbuscules in the mycorrhizal roots

(see Material & Methods). The use of mycorrhizal index of global

mycorrhization and arbuscular intensity allowed us to quantify the

interaction between AMF and rice. The mean of each mycorrhizal

index for each combination are presented in Figure 1 and in

Supplementary Table 2.

We tested whether rice cultivar and AMF genotype have an

impact on rice’s global mycorrhization and arbuscular intensity

index, with a two-way ANOVA test. Both indexes are statistically

significantly affected by either rice cultivar or AMF genotype (Two-

Way ANOVA, F = 66.91593, p< 2.10-6; F = 4.9315, p< 0.01).

All the rice cultivars tested were root colonised by each AMF

genotype (Figure 1; Supplementary Table 2). Each fungal organ

(hyphal structures, spores, vesicles and arbuscules) was clearly

visible on each combination as shown in Figure 2 and

Supplementary Figure 1. The global intensity of mycorrhization

ranged from 27.20% (Phka Rumduol with RIN) to 83.90%

(Nipponbare with RIR). Independently of the fungal inoculation,

indica rice varieties have the less intense symbiotic percentage,

ranging from 27.20% (Phka Rumduol - RIN) to 46.8% (IR64 - RIN)

(Supplementary Table 2). The percentage of mycorrhization of the

japonica cultivars ranges from 43.20% (Kitaake with FM) to 83.90%

(Nipponbare with RIR). Nipponbare is the most intensely

mycorrhized cultivar with 79%, 77.90% and 83.90% for FM, RIN

and RIR inoculation, respectively (Supplementary Table 2).

The arbuscular percentage of the mycorrhizal roots ranged from

3.22% (Azucena with FM) to 49.40% (Nipponbare with RIR)
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TABLE 2 Rice marker genes used in RT-qPCR expression studies.

Gene
name

Annotation RAPDB Forward primer (5’-3’) Reverse primer (5’-3’) References

Reference gene

OsEF-1A Os03g0177400 - Rice elongation factor 1A GAAGTCTCATCCTACCTGAAGAAG GTCAAGAGCCTCAAGCAAGG
Petitot et al.,
2017

Defence response

OsWRKY30
Os08g0499300 - WRKY transcription factor,
Disease resistance against X. Oryzae, Drought
tolerance

ATGGCTGTCTGTCAGAGAGGATG CAGTGGTAGGAGAAGGTTGTGC Ryu et al., 2006

OsMPK10
Os01g0629900 - Similar to Blast and wounding
induced mitogen-activated protein kinase

TCAACTCCAATTCCTGCCAAG AACAACTCTTCCTGGTCTTGC
Nguyễn et al.,
2014

OsPAL4
Os02g0627100 - Phenylalanine ammonia-lyase,
Broad spectrum disease resistance

CCTCGCCATCGCTGCCATC GCCGTTGTTGTAGAAGTCGTTCAC
Petitot et al.,
2017

OsPR5
Os12g0628600 - Similar to Thaumatin-like
pathogenesis-related protein 3 precursor

CGCTGCCCCGACGCTTAC ACGACTTGGTAGTTGCTGTTGC
Delteil et al.,
2012

OsTGAP1
Os04g0637000 - TGA-type bZIP Transcription
Factor, Regulation of diterpenoid phytoalexin
production, Defence response

ATGGCCAGTGAAGGATGAAG CTCTTGTGCCCACATCAGAA
Okada et al.,
2009

OsDXS3
Os07g0190000 - Similar to 1-deoxy-D-xylulose
5-phosphate synthase 2 precursor

TGTTCTTGCCAGACAGGTAC GTCGGCTGATGTGTATATGC
Valette et al.,
2020

Hormone (SA)

OsNPR1
Os01g0194300 - Ankyrin-repeat protein,
Herbivore-induced defence response, Blast
disease resistance

AGAAGTCATTGCCTCCAG ACATCGTCAGAGTCAAGG
Kumari et al.,
2016

OsWRKY45
Os05g0322900 - WRKY transcription factor,
Benzothiadiazole (BTH)-inducible blast
resistance

CGGGCAGAAGGAGATCCAAAACT GCCGATGTAGGTGACCCTGTAGC
Shimono et al.,
2012

Hormone (JA)

OsJAMyb
Os11g0684000 - JA-dependent myb
transcription factor

TAGGGGTTCAAAGAGGACCA TCCTCAGTGCAATTCTGGAG
Yokotani et al.,
2013

OsJAZ6
Os03g0402800 - TIFY family protein,
JASMONATE-ZIM domain (JAZ) protein, JA
signalling, Regulation of spikelet development

TTGATGACTTCCAGCTGAGAA GCGCTGTGGAGGAACTCTTG Lu et al., 2016

OsLOX4
Os03g0700400 - Lipoxygenase-3, Generation of
stale flavour

TGGTGGAGCAGATCTACGTG ATCGCCTTGATCGAGTAGCC
Nguyen et al.,
2022

Hormone (ET)

OsACS1
Os03g0727600 - ACC synthase, Ethylene
biosynthesis

GATGGTCTCGGATGATCACA GTCGGGGGAAAACTGAAAAT
Petitot et al.,
2017

Nutrient homeostasis

OsNIA1
Os02g0770800 - NADH/NADPH-dependent
nitrate reductase

AAGGTGTCTTGTGCTGGATGGC AGCTTGTCGAGTTCGTCCTTGC
Tang et al.,
2012

OsIRO2

Os01g0952800 - Iron-related bHLH
transcription factor 2, Tolerance to Fe
deficiency, Regulation of Fe uptake from soil, Fe
translocation to grain during seed maturation

ACGAGCTCTACTCCTCCCTC CTTCTGCAGCTCGGGTATGT Ogo et al., 2006

OsMGD2
Os08g0299400 - Monogalactosyl diacylglycerol
(MGDG) synthase, Adaptation to Pi deficiency,
Phosphate utilisation and acquisition

AGACAGGTTGCCAGATGGTT CTGGAGCTTGTGGATGTCCT
Hasegawa et al.,
2010

OsPAP23 Os08g0280100 - Purple acid phosphatase 23 GACTCTGGTTGGTTGTGTGC GCATCAGCGTGTTCATGGAA
Secco et al.,
2013

(Continued)
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TABLE 2 Continued

Gene
name

Annotation RAPDB Forward primer (5’-3’) Reverse primer (5’-3’) References

OsSPX3
Os10g0392600 - SPX domain-containing
protein, Negative regulation of phosphate
signalling, Pi homeostasis

CAGTCCATCCGATCCGATCC TCTCTCAATGACTCGTTTCGT
Secco et al.,
2013

Development

OsXTH17

Os08g0237000 - Xyloglucan
endotransglucosylases/hydrolase, Cell wall
modification processes during rice growth and
development

GCCGACTTCCACACCTACAA GCCAGGTCGTCGTACTTCTT Lin et al., 2019

OsYABBY6
Os12g0621100 - Similar to Filamentous flower-
like yabby protein

TTCGTCGTCTTCCAAGCTCA ACCCTTTGCCTCTTCTCTGG
Jiang et al.,
2015
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FIGURE 1

Mycorrhization index of each AMF genotype according to rice cultivar. Left: global mycorrhization intensity (%), right: arbuscular content (%). Blue: F.
mosseae, red: R. intraradices, yellow: R. irregularis. Turquoise, dark red and dark yellow: indica rice. Light blue, red and yellow: japonica rice. Letters
above boxplots indicate statistical groups according to the results of the ANOVA and Tukey tests (p value< 0.05). Phka.r: Phka Rumduol; Zhonghua:
Zhonghua 11.
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(Supplementary Table 2). Japonica rice cultivars showed the highest

percentage of visible arbuscules in the mycorrhized system

compared to indica rice, with RIN and (Figure 1). On the other

hand, each rice genotype in interaction with FM formed almost no

arbuscules, with a maximum of 5.24% in Zhonghua 11

(Supplementary Table 2).
Growth response of rice cultivars to
AMF colonisation

The phenotypic response of rice to AMF inoculation and

symbiosis establishment was assessed by growth measurements.

Maximum height, fresh and dry shoot weight and fresh root weight

were measured for each combination (n = 20) and are shown as

boxplots in Figure 3. All the corresponding measured values are

listed in Supplementary Table 2. Developmental stage of each

cultivar (at 10 weeks) is shown in Supplementary Figure 2. Plants

were still at developmental vegetative stage, except for Kitaake

plants which flowered one week before harvest.

The dataset shows that AMF inoculation can result in an

increase, decrease or no significant effect on plant growth

parameters. We observed a significant decrease in the height of

IR64 during the interaction with FM or RIN (-18.81% and -14.12%

respectively, Figure 3A and Supplementary Table 2). The RIR

genotype resulted in a significant increase in both root and shoot
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weights for Phka Rumduol, Kitaake, Zhonghua 11 and Nipponbare.

However, this effect was not statistically significant for Azucena.

The effect on rice’s dry weight wasn’t as significant as on height or

fresh weight, but was still a good proxy for the beneficial effect of

AMF on rice growth (Figure 3).

Under our growth conditions, we observed different growth

rates depending on the rice cultivar. Uninoculated Kitaake was the

smallest rice cultivar both in size (24.65 cm) and weight (0.19 g,

0.11 g, 0.09 g on average for fresh shoot, root and dry shoot weight,

respectively; Supplementary Table 2). Still, mycorrhization of

Kitaake induced a clear improvement in growth: the highest dry

weight among all combinations being obtained with Kitaake in

association with RIN (0.30 g, Figure 3D; Supplementary Table 2).

This combination showed the greatest positive effect on rice’s

growth on all variables: 36% taller, 259%, 270% and 221% heavier

on biomass of fresh shoots and roots, and dry shoots, respectively

(Supplementary Table 2).

Globally, FM inoculation affected rice growth non-significantly

(Nipponbare, Phka Rumduol, Zhonghua 11) or negatively (Azucena,

IR64), in both height and weight (Figure 3). The only significant

positive interaction was with Kitaake: 20% taller, 163%, 177%, 125%

heavier on its fresh shoot & root and dry shoot weights, respectively

(Figure 3; Supplementary Table 2). The effect of RIN inoculation was

contrasting: beneficial on Kitaake and Zhonghua 11, negative on IR64

and Phka Rumduol or non-significant on Azucena and Nipponbare

(Figure 3). RIR was the AMF genotype that induce the most positive
FIGURE 2

AMF colonisation in rice roots. Plants were stained using the ink-acetic acid method. External fungal organs: external hyphae (eh), spores (sp).
Symbiotic fungal organs: intercellular hyphae (ih); hyphopodia (hy); vesicule (v); arbuscules (a). (A) = Colonisation of Nipponbare roots by R.
intraradices FR121. (B) = Colonisation of Nipponbare roots by F. mosseae FR140. (C) = Colonisation of Azucena roots by R. irregularis DAOM197198.
(D) = Colonisation of Zhonghua 11 roots by R. intraradices FR121.
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effects among all rice cultivars: +35% and +20% leaf height with Kitaake

and Phka Rumduol, respectively (Figure 3A); +182% and 103% fresh

shoot weight with Kitaake and Zhonghua 11, respectively (Figure 3B)

and +196% and +149% fresh root weight with Kitaake and Phka

Rumduol, respectively (Figure 3C).

Our results show that the effect of AMF inoculation on rice

growth depends on both rice cultivars and AMF genotypes: ranging

from negative, neutral to beneficial outcomes across the 18

combinations under study.
Mycorrhiza-induced resistance

The potential of each fungal inoculum to induce systemic

resistance in the leaves of each rice cultivar during a shoot

phytopathogen infection was investigated. Rice plants were

infected by leaf-clipping with Xanthomonas oryzae pv oryzae

PXO99 (Xoo) and the extent of chlorosis and necrosis was

recorded 14 days later. The results are shown as boxplots in

Figure 4 and all the corresponding measured values are listed in

Supplementary Table 2.

The effect of AMF inoculation on the chlorosis and necrosis

symptoms of rice induced by Xoo differed greatly between
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combinations. Only two combinations, both with RIN, showed a

significant increase in leaf symptoms: Azucena on chlorosis (+69%)

and Phka Rumduol on necrosis (+106%). Regarding the bio-

protective effects of AMF, chlorosis symptoms were significantly

reduced on IR64 in combination with FM (-24%) and RIR (-26%),

on Zhonghua 11 in combination with FM (-44%), RIN (-28%) and

RIR (-29%), and on Nipponbare with FM (-40%) and RIN (-34%)

(Figure 4 and Supplementary Table 2). For necrosis, only Zhonghua

11 and Nipponbare showed significant reductions of symptoms.

These reductions in the size of necrosis were observed with the three

AMF genotypes: -65%, -66% and -64% for Zhonghua 11 with FM,

RIN and RIR respectively; and -78%, -87% and -64% for

Nipponbare with FM, RIN and RIR, respectively (Figure 4 and

Supplementary Table 2).
RT-qPCR analysis of growth and immunity
molecular marker genes in contrasting
rice-AMF combinations

We observed contrasted patterns of symbiotic compatibility

among our AMF-cultivar combinations. In order to link these

observed differences with the expression level of leaf marker
B

C

D

A

FIGURE 3

Effect of mycorrhization on phenotypic traits for each combination. (A) Maximum leaf height (cm). (B) Shoot fresh weight (g/plant). (C) Fresh root weight
(g/plant). (D) Shoot dry weight (g/plant), depending on AMF inoculation. Green box plot: CTRL (no AMF), blue: FM (F. mosseae FR140), red: RIN (R.
intraradices FR121), yellow: RIR (R. irregularis DAOM197198). n=20 for each combination except Kitaake-RIN and Kitaake-FM with n=6 and n=8,
respectively. *: p value< 0.05. **: p value< 0.01. ***: p value< 0.005. ****: p value<< 0.005 (Wilcoxon test; adjusted pvalue with Bonferroni method).
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genes, we selected two rice cultivars with contrasting AMF

responses: Nipponbare and IR64. The first is a japonica model

cultivar and was the most intensely mycorrhized, regardless of the

AMF genotype, with the interaction having non-significant to

beneficial effects on its growth and tolerance to Xoo infection

(Figures 1, 3, 4). The latter is an indica model cultivar, that was

significantly less mycorrhized, with non-significant to negative

effects of the AMF interaction on its growth, but with beneficial

effects on its tolerance to Xoo infection (Figures 1, 3, 4). We selected

19 markers genes of development, nutrient homeostasis, hormonal

balances and defence and their expression was normalised to that of

EF1a reference gene. The list of marker genes, their function and the

primers used in this study are listed in Table 2. A summary of the

statistical comparison of gene expression for each combination, for

both Nipponbare and IR64, is provided in Supplementary Table 3

and Supplementary Figures 3, 4. Their expression was visualised as

a heatmap in Figure 5.

The expression of two cellular growth marker genes,

OsYABBY6, responsible for abaxial-adaxial polarity and whose

expression is needed for leaf development (Jiang et al., 2015), and

OsXTH17, a xyloglucan endotransglucosylase/hydrolases involved

in primary cell wall formation (Lin et al., 2019) was recorded. A

non-significant induction of OsXTH17 expression was observed for

Nipponbare in interaction with RIN (p= 0.055), while that of

OsYABBY6 is repressed with FM (p=0.009) (Figure 5;

Supplementary Table 3; Supplementary Figure 3). In IR64, their

expression was not significantly affected independently of the AMF

genotype (Supplementary Figure 4).

To assess the effect of mycorrhization on mineral homeostasis

in leaves, one iron transporter (OsIRO2), one nitrate-reductase

(OsNIA1) and three Pi transporters, marker genes of Pi-starvation

response (OsMGD2, OsPAP23 and OsSPX3) were selected. The

expression of almost all mineral marker genes was significantly

reduced in Nipponbare leaves (OsNIA1, OsMGD2, OsPAP23 with

RIN, OsSPX3 with either AMF genotype), except for a non-

significant strong induction of OsIRO2 expression when

associated with RIN (p= 0,09) (Figure 5; Supplementary Table 3).

In leaves of IR64, the expression of OsMGD2 and OsPAP23 was not
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significantly affected. The expression of the other mineral marker

genes was reduced only significantly for OsSPX3 in RIN-

mycorrhized leaves, and for OsNIA1 and OsIRO2 in FM-

mycorrhized leaves (Figure 5; Supplementary Table 3;

Supplementary Figures 3, 4).

Mycorrhization is known to affect the hormonal balance in

mycorrhized plants. Its effect on the expression of jasmonate (JA:

OsLOX4, a lipoxygenase responsible for the biosynthesis of JA

(Nguyen et al., 2022) and OsJAMyb & OsJAZ6, both responsible

for JA signalling (Yokotani et al., 2013; Lu et al., 2016), ethylene

(ET: OsACS1, 1-aminocyclopropane-1-carboxylate synthase

responsible for ethylene biosynthesis) and salicylic acid (SA:

OsNPR1, mediating SA biosynthesis and responsives genes

(Kumari et al., 2016) & OsWRKY45, a transcription factor

mediating SA signalling) pathways was investigated. Overall,

jasmonate- and ethylene-related genes expression was not

significantly repressed in Nipponbare and IR64 leaves (Figure 5;

Supplementary Table 3). SA-related genes were not significantly

repressed, except for OsNPR1 in RIN mycorrhized-IR64 leaves

(Figure 5; Supplementary Table 3; Supplementary Figures 3, 4).

The expression of defence-related genes was recorded to assess

how mycorrhization affects the defence response in healthy leaves.

OsPR5 is a pathogenesis-related protein, OsPAL4 is a broad-

spectrum disease resistance-related gene and OsTGAP1 &

OsDXS3 are responsible for phytoalexines production in rice

(Okada et al., 2009; Delteil et al., 2012; Petitot et al., 2017; Valette

et al., 2020). OsMPK10 and OsWRKY30 are responsible for early

disease-mediated signalling, the latter also responsive to SA and JA

treatments (Ryu et al., 2006; Nguyễn et al., 2014). Globally, defence

genes appeared to be more induced in mycorrhized IR64 leaves than

in Nipponbare leaves (Figure 5; Supplementary Figures 3, 4). In

Nipponbare leaves, we observed i) a significant repression of OsPR5

expression, irrespective of the AMF species, ii) a significant down-

regulation of OsPAL4 expression with FM, iii) a non-significant

down-regulation with RIN (Supplementary Table 3). In leaves of

IR64, phytoalexin biosynthesis-related genes (OsDXS3 and

OsTGAP1) were not significantly induced in plant associated with

AMF. When mycorrhized with RIR, the expression of OsWRKY30
B

A

FIGURE 4

Size of chlorosis (A) and necrosis (B) symptoms following leaf clipping with Xoo, for each rice cultivar-AMF genotype combination. Green: no AMF,
blue: F. mosseae FR140, red: R. intraradices FR121, yellow: R. irregularis DOAM197198. n=18 for each combination except Kitaake-RIN and Kitaake-
FM with n=5 and n=7, respectively. *: p value< 0.05. **: p value< 0.01. ***: p value< 0.005 (Wilcoxon test).
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is significantly induced but not the one of OsMPK10 (p-value = 0.03

and 0.07, respectively) (Figure 5; Supplementary Table 3).
Discussion

Symbiotic compatibility between six rice
cultivars and three AMF genotypes
depends on the studied combination

In this study we have characterised the symbiotic compatibility

between multiple rice cultivars from japonica and indica subspecies

in association with three AMF genotypes (F. mosseae FR140, R.

intraradices FR121 and R. irregularis DAOM197198). First, we

observed that all rice cultivars selected for this study were

colonised by each fungal inoculum, their colonisation intensity

differing between rice cultivars (Phka Rumduol being the lowest

and Nipponbare the highest in terms of global mycorrhization). A

similar pattern was also observed at the arbuscular level, with FM

developing fewer arbuscules when interacting with rice, compared

to the two Rhizophagus genotypes. We also observed an effect of

AMF colonisation on rice growth that could be either beneficial,

neutral, or negative. However, there was no direct relationship

between the level of colonisation and the growth phenotype: both

indica rice cultivars had similar AMF colonisation and arbuscular

levels, but the tendency of IR64 to be negatively affected on growth

wasn’t observed for Phka Rumduol (Figures 1, 3). The japonica

cultivars used in this study were generally beneficially affected in

their growth (either in height or weight; Figure 3). A special case was

observed with the cultivar Kitaake. As stated earlier, early mortality

and a general lack of growth were observed for this cultivar in our
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inert substrate. We hypothesised that Kitaake’s growth wasn’t

optimal under these drastic conditions. However, plants that have

managed to grow were well colonised by the three AMF (43%, 69%

and 71% of roots colonised by FM, RIN, and RIR respectively). The

highest levels of growth improvement were recorded for this

cultivar: 37% taller, 259%, 270% and 221% heavier on biomass of

fresh shoots and roots and dry shoots (Supplementary Table 2).

AMF symbiosis is known to enhance root anchoring and nutrient

uptake in poor soils, thereby improving plant health (Paszkowski

and Boller, 2002; Gutjahr et al., 2009; Chiu et al., 2018). However,

early growth depression following mycorrhization has also been

documented in wheat, barley, and soybean (Jacott et al., 2017). Such

depression was eventually overcome (or not) in the later life cycle of

the crop (Jacott et al., 2017). This growth depression can be

explained by the genetic variability of AMF genotypes and their

symbiotic effectiveness, but the recurring hypothesis is related to the

trade-off between plant photosynthates and soil nutrients recovered

by AMF (Jin et al., 2017). Our differences in the phenotypic growth

effects of mycorrhization among rice cultivars could be explained by

an imbalance between early life stage development and the

photosynthetic carbon cost for AMF establishment and function

(Jacott et al., 2017; Jin et al., 2017). Our growth conditions were

adapted from recent studies on wheat and rice mycorrhization,

composed of a mixture of sand, sieved perlite, and vermiculite. It

mimics sandy soil and is easy to sterilise. Though, this inert

substrate is still poor in essential nutrients, and a modified

Hoagland’s solution depleted in phosphate was used to water the

plants. Several studies have shown that similar conditions allow

both crop species to grow and the establishment of an efficient AMF

symbiosis (Gutjahr et al., 2008; Fiorilli et al., 2018; Campo and San

Segundo, 2020; Campo et al., 2020; Guo et al., 2022).
FIGURE 5

Relative expression of rice marker genes in response to mycorrhization, in Nipponbare and IR64 leaves. Marker genes related to development,
nutrition, hormone balance and defence were selected from the literature (listed in Table 2). Transcript levels were normalised to that of the
reference gene EF1a. The log2 fold change values are shown in red (positive), green (negative) and grey (between -0.5 and 0.5) (n = 4). JA= jasmonic
acid. ET= ethylene. SA= salicylic acid. “*”= statistically significant (p-value< 0.05). “.”= tendencies (p-value< 0.10).
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Japonica cultivars respond better to
mycorrhization than indica cultivars

Under our growing conditions, japonica rice appeared to be

more intensely colonised than indica rice. (Figure 1; Supplementary

Table 2). The result of upland japonica rice cultivars being more

colonised and responding more to AMF colonisation than flooded

indica rice cultivars is shared by several studies, considering their

different root architecture and the co-evolution between AMF and

upland rice in aerobic selective condition, optimizing their

interaction (Diedhiou et al., 2016; Davidson et al., 2019). It is

important to note that we selected two indica rice cultivars

compared to four japonica, depending on the valuable factors

listed in Table 1. This study should be extended to more rice

genotypes from both subspecies to understand if this pattern can be

generalised. The global understanding of how rice mycorrhization is

affected by host genotype is currently limited. In a published report,

the mycorrhizal growth response (MGR, corresponding to the ratio

between the dry weight of mycorrhized and control plants) was

measured for 64 rice genotypes from different subspecies 4 weeks

after inoculation with F. mosseae. Differences between genotypes

were observed but not related to indica or japonica origin (Suzuki

et al., 2015). A possible explanation is that variations in AMF

recognition receptors between host genotypes affect their symbiotic

compatibility. OsCERK1, a LysM receptor-like kinase that is

essential for AMF recognition and activation of the symbiosis

pathway, is also responsible for root branching in rice (Chiu

et al., 2018; Choi et al., 2018). It has been proposed that natural

variation between allelic variants of the OsCERK1 gene in different

rice cultivars may affect their symbiotic compatibility with R.

irregularis DAOM 197198 (Huang et al., 2020). A higher level of

AMF colonisation, 14 days post inoculation, was reported for eleven

indica rice cultivars, compared to eight japonica. The difference was

proposed to be related to an underrepresented OsCERK1 haplotype,

absent in japonica rice and present in their selected indica cultivars

(Lefebvre, 2020). In our study, we obtained opposite results, but we

chose to harvest the rice after two months of growth, which, in

addition to the different substrate used, may explain the difference.

Several reports have shown that root colonisation of Nipponbare

becomes clearly visible after 14 days post inoculation, and

arbuscules after 3 to 4 weeks (Gutjahr et al., 2015; Guo et al.,

2022; Liu et al., 2022). It would be interesting to assess whether rice

cultivar also affects the kinetics of AMF establishment and

functioning in the long term.
Beneficial effects on resistance to Xoo
are highly dependent on rice cultivar
and AMF genotypes

As plant colonisation by AMF has often been shown to be

associated with a better protection against pathogens, we conducted

biocontrol trials against Xoo. We observed a general tendency for

symptoms to decrease, which was statistically significant for some

AMF-rice cultivar combinations (Figure 4; Supplementary Table 2).
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Only two among 18 showed an increase in the leaf symptoms when

associated with an AMF (Phka Rumduol and Azucena associated

with RIN). Almost all well-colonised japonica rice species showed a

significant reduction of at least one Xoo-induced symptoms thanks

to MIR, particularly with Zhonghua 11 and Nipponbare cultivars.

The most-colonised rice cultivar, Nipponbare, see chlorosis and

necrosis symptoms reduced in both FM and RIN conditions. With

the most compatible one, this reduction of symptoms can be

noticed but is not statistically significant. This reduction of

symptoms becomes statistically significant in a repeated study on

20 non-mycorrhizal Nipponbare and 20 associated with RIR

(Additionnal file 6: Supplementary Figure 3). An induction of

39%, 107% and 187% of Nipponbare’s maximum height, shoot

and root dry weight, respectively was shown, linked with a

reduction of chlorosis symptoms by 32% at 14 days post-clipping.

It is noteworthy that IR64, a rice variety three times less intensively

mycorrhized, also shows reduced chlorosis symptoms when

mycorrhized with FM or RIR. A possible explanation could reside

in the differences between rice genotypes themselves, being more or

less sensitive to AMF colonisation and their established interaction,

having then important or little to no effects on rice growth

phenotype, but notable impacts on rice nutrient physiology and

defence responses. Our results highlight here that symbiotic

compatibility between AMF and rice species states for a sufficient

amount of colonisation allowing significant nutrient starvation

r e s p o n s e i n h i b i t i o n a n d ph y t o p a t h o g e n - i n d u c e d

symptoms reduction.

The potential of biological control by AMF symbiosis is well

documented in the literature, although pathogen-dependent.

Mycorrhization of japonica rice cultivars by AMF genotypes such

as R. intraradices, R. irregularis or F. mosseae showed both a local

and a systemic defence response against Pyricularia oryzae,

sometimes associated with an increase in shoot biomass

(Campos-Soriano et al., 2010 ; Campos-Soriano et al., 2012;

Campo et al., 2020). In Triticum aestivum cv. Chinese Spring

associated with F. mosseae, the AMF symbiosis confers both a

positive effect on growth and resistance to X. translucens (Fiorilli

et al., 2018). Two American rice cultivars inoculated with a mixture

of AMF genotypes showed increased susceptibility to two insects

and Rhizoctonia solani infections, but without growth defects or

nutrient losses, suggesting an effect of symbiosis on defence vs

growth trade-off (Bernaola et al., 2018b).
Oryza sativa cv japonica Nipponbare is the
best AMF-responsive rice cultivar

Many research studies focus on the association between R.

irregularis and Nipponbare (Gutjahr et al., 2009; Gutjahr et al.,

2015; Campo et al., 2020; Guo et al., 2022; Liu et al., 2022). Since

they are both models (sequenced genomes, easy to grow, transform

and store, controlled lifecycle), deepening our knowledge of their

interaction at different life stages of both organisms may shed light

on how rice interacts with and benefits from AMF and vice-versa.

Under our conditions, Nipponbare was the rice cultivar with the
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best level of mycorrhization, regardless of the AMF inoculated

(Figure 1; Supplementary Table 2). There is no significant negative

effect of mycorrhization on its growth, with a tendency of AMF

symbiosis to increase both height and weight (Figure 3). After Xoo

infection, a significant reduction of symptoms was observed with

FM and RIN (Figure 4). To further confirm this, the experiment was

repeated (n = 20) for Nipponbare in combination with R. irregularis

DAOM197198 and showed then a clear positive effect on growth

promotion (height, root and leaf weight) and on biocontrol against

Xoo (Supplementary Figure 5). At the molecular level, RT-qPCR

analysis showed that the expression of cellular development marker

genes was induced by mycorrhization, even after two months of

growth (Figure 5; Supplementary Table 3). Under these conditions,

the overall expression of nutrient transporter and defence genes was

down-regulated. As these genes are known to be induced upon

starvation, Nipponbare in symbiosis with AMF could then be

considered to be in a healthy state.

Our results are in agreement with previous work. On

Nipponbare, Glomus intraradices, which could be classified as R.

irregularis according to the current AMF phylogeny, colonises more

than 60% of the large lateral roots and increases both dry weight and

coronary root length (Gutjahr et al., 2009). Colonisation kinetics of

R. irregularis on this cultivar showed high colonisation rates (up to

87% of root length, of which 59% contained arbuscules) and the

presence of viable arbuscules and vesicles up to six weeks after

inoculation (Gutjahr et al., 2015; Liu et al., 2022). Here we show that

even after ten weeks, arbuscules and vesicles were still clearly visible

and in larger numbers. A study on the effect of pre-inoculation of F.

mosseae on Nipponbare before transplanting in the field showed a

root colonisation rate of 65%, an arbuscule content of 1.3% and a

vesicle content of 6% (Sisaphaithong et al., 2017), consistent with

our results. Growing conditions and practices may have an impact

on this low arbuscule content. After 10 weeks of association with F.

mosseae, eight temperate japonica cultivars used in Spanish or

Italian fields had between 20 and 60% of arbuscules in their

mycorrhized roots, with non-significant to beneficial effects on

both rice growth and P. oryzae tolerance (Campo et al., 2020).

The geographical origin and genotype of the host may determine its

symbiotic compatibility with different AMF genotypes.
Defence potential imprint revealed by
systemic molecular analyses

The description of the phenotypic responses (rice growth and

tolerance to Xoo) of different rice cultivars to inoculation with each

AMF genotype allowed us to assess the symbiotic compatibility

between them. To understand how AMF symbiosis affects the

molecular functioning in two rice cultivars with contrasting

phenotypic responses to AMF, the leaf molecular responses of

Nipponbare and IR64 after six weeks of interaction were studied.

Local molecular responses to the establishment of the
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mycorrhization have been well studied in rice roots (Güimil et al.,

2005; Gutjahr et al., 2009; Campos-Soriano et al., 2010, reviewed in

Choi et al., 2018), but the systemic effects on the responses of rice

leaves are still poorly described. A panel of rice marker genes

involved in development, nutrient status, phytohormone

signalling and defence responses (listed in Table 2, detailed in the

results) was selected, and their expression analysed in healthy 50-

day old leaves of Nipponbare and IR64.

First of all, the response of Nipponbare leaves to root

mycorrhization was consistent with our phenotypic results. We

observed a modulation of developmental gene expression, coupled

with a reduced starvation response (repression of Pi starvation’s

marker genes and a nitrate reductase marker gene, Figure 5;

Supplementary Table 3). Defence related genes expression was

not significantly to negatively affected by AMF symbiosis in

Nipponbare, suggesting that mycorrhization does not induce a

systemic defence response under healthy conditions. Overall,

mycorrhization of the japonica rice Nipponbare highlights an

improvement of rice’s development and nutritional status, to be

linked with the reported increase in growth in this most intensely

mycorrhized rice. This imprint on rice’s expression pattern hints for

a better overall state and tolerance against abiotic as well as biotic

stressors. The study of the effect of either one of them on

mycorrhized Nipponbare is interesting to assess which specific

systemic mechanisms will act on the trade-off between growth

and tolerance.

Mycorrhized IR64 plants showed a different response to AMF

symbiosis. A non-significant repression of developmental and

nutrient starvation response marker genes was observed, coupled

with a non-significant induction of the defence response (Figure 5;

Supplementary Table 3). Under our growth conditions,

mycorrhization of IR64 does not seem to be as beneficial as of

Nipponbare and this is still to be linked with phenotypic results (i.e.

a non-significant to negative impact of mycorrhization on IR64’s

growth with a less mycorrhized cultivar).

The nutritional status of both our rice cultivar were investigated

thanks to iron, phosphate and nitrate-related genes expression.

There is a strong trend of induction of OsIRO2 expression in leaves

of Nipponbare interacting with RIN (Figure 5; Supplementary

Table 3; Supplementary Figure 3). This transcription factor is

induced under Fe deficiency, modulating key genes involved in

iron uptake in rice (OsNAS1, OsTOM1 or OsYSL15), with IRO2-

overexpressing rice showing improved Fe-deficiency tolerance

compared to the non-transgenic lines (Ogo et al., 2006; Ogo et al.,

2011). Mycorrhization may affect iron homeostasis, via its effect on

IRO2 expression, affecting Fe uptake and translocation to shoots

and grains (Ogo et al., 2011) but little research has been done on this

subject. Leaves of the japonica rice Senia show an increase of IRO2

expression during mycorrhization with RIR, while wheat symbiosis

with FM triggers an accumulation of Fe-uptake related proteins in

roots, linked with a translocation of iron from roots to shoots,

suggesting both a beneficial effect of mycorrhization on iron
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homeostasis in mycorrhized hosts (Campos-Soriano et al., 2012;

Fiorilli et al., 2018).

AMF have been demonstrated to increase the bioavailability of

essential nutrients such as nitrogen and phosphate to their host

roots. This capacity can be linked with the repression of OsNIA1

and Pi-starvation-related genes expression in the leaves of our two

studied rice cultivars. (Figure 5; Supplementary Table 3;

Supplementary Figures 3, 4). These results are in line with

previous reports, and specifically results showing the repression of

OsSPX3, OsPAP23 and OsMGD2 expression in Loto rice leaves in

association with FM (Liu et al., 2007; Gutjahr et al., 2008; Fiorilli

et al., 2018; Campo and San Segundo, 2020; Vannini et al., 2021).

The expression of marker genes for phytohormones

biosynthesis or signalling in leaves was not significantly affected

by AMF symbiosis, except for a repression of the SA perception

gene (OsNPR1) in leaves of IR64 (Figure 5; Supplementary Table 3;

Supplementary Figure 4). Recent literature reports contradictory

results on the effect of mycorrhization on SA pathways in wheat or

rice: the first is not affected on any SA-related pathways during FM

mycorrhization, while OsNPR1 is induced in some japonica rice

cultivars (Campos-Soriano et al., 2012; Fiorilli et al., 2018; Tian

et al., 2019). Mycorrhization effect on SA-related pathways may be

plant species-dependent (Campo and San Segundo, 2020).

Under our conditions, ethylene and jasmonate related genes

were not significantly repressed in both cultivars (Figure 5;

Supplementary Table 3). Ethylene biosynthesis is known to be

induced in tomato and wheat and repressed in rice leaves under

mycorrhization, not significantly in our case (Fiorilli et al., 2018;

Campo and San Segundo, 2020). Jasmonate-related genes are

previously reported to be modulated by mycorrhization in

different rice cultivars, both on its biosynthesis or signalling

(Campos-Soriano et al., 2012; Campo and San Segundo, 2020).

MIR is reported to occur via JA-related pathways, leading to

reduced symptoms and pathogen load in multiple host-pathogen

interactions (Dowarah et al., 2021). The molecular responses to Xoo

infection may allow us to understand if the reduction of symptoms

occurring in both our rice cultivars are linked with MIR, a primed

induction of defence responses, responding faster and more

efficiently than non-mycorrhized controls, or by an overall better

rice health state (related to both growth and nutritional status

improvement). If the MIR hypothesis appears to be true, deeper

transcriptional analyses are to be conducted to understand by which

mechanisms MIR occurs.

Overall, the systemic response of rice to AMF symbiosis is

dependent on rice cultivar and AMF genotype but can be linked to

an overall improvement in rice health.
Conclusion

In this study we showed that the establishment of the AMF

symbiosis and its effects on rice depends on both the rice cultivar and

the AMF genotype for each variable studied. We found that

mycorrhizal growth enhancement and induced resistance to Xoo

strongly depends on both rice variety and AMF genotype. In our
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study and under our conditions, japonica rice chosen subspecies tend

to be more colonised and have more benefits on growth and defence

responses than indica ones. In the model rice cultivars Nipponbare

and IR64, root colonisation rate, growth enhancement or shortage in

both shoot and roots can be associated with a systemic modification

of molecular pathways in leaves. These differences in rice response

raise the question of how beneficial the AMF symbioses really are. In

some cases, AMF interactions are detrimental to the growth of the

plant host or its response to the environment (Jin et al., 2017;

Bernaola et al., 2018b). The assumption that AMF symbiosis can

be viewed as an equilibrium between mutualism and parasitism, with

symbiont considered as more or less efficient and cooperative

partners (Kiers et al., 2011; Kaur et al., 2022), may be closer to

biological reality. In our study, we have identified rice-AMF

combinations that are able to develop into a functional symbiosis

with positive effects on both rice growth and tolerance to

phytopathogens. These combinations should now be tested in

unflooded rice field conditions with low Pi to unravel their

true potential.
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Ho-Plágaro, T., and Garcıá-Garrido, J. M. (2022). Molecular regulation of arbuscular
mycorrhizal symbiosis. Int. J. Mol. Sci. 23, 5960. doi: 10.3390/ijms23115960

Huang, R., Li, Z., Mao, C., Zhang, H., Sun, Z., Li, H., et al. (2020). Natural variation at
OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. New Phytol. 225, 1762–
1776. doi: 10.1111/nph.16158

Jacott, C. N., Murray, J. D., and Ridout, C. J. (2017). Trade-offs in arbuscular
mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop
breeding. Agronomy 7, 1–18. doi: 10.3390/agronomy7040075

Jain, R., Jenkins, J., Shu, S., Chern, M., Martin, J. A., Copetti, D., et al. (2019). Genome
sequence of the model rice variety KitaakeX. BMC Genomics 20 (1), 1–9. doi: 10.1186/
s12864-019-6262-4

Jiang, D., Fang, J., Lou, L., Zhao, J., Yuan, S., Yin, L., et al. (2015). Characterization of
a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.
PLoS One 10 (2), 1–19. doi: 10.1371/journal.pone.0118169

Jiang, F., Zhang, L., Zhou, J., George, T. S., and Feng, G. (2021). Arbuscular
mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying
bacteria along their extraradical hyphae. New Phytol. 230, 304–315. doi: 10.1111/
nph.17081

Jin, L., Wang, Q., Wang, Q., Wang, X., and Gange, A. C. (2017). Mycorrhizal-
induced growth depression in plants. Symbiosis 72, 81–88. doi: 10.1007/s13199-016-
0444-5

Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., and Pozo, M. J. (2012).
Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38,
651–664. doi: 10.1007/s10886-012-0134-6

Kadam, S. B., Pable, A. A., and Barvkar, V. T. (2020). Mycorrhiza induced resistance
(MIR): a defence developed through synergistic engagement of phytohormones,
metabolites and rhizosphere. Funct. Plant Biol. 47, 880–890. doi: 10.1071/FP20035

Kaur, S., Campbell, B. J., and Suseela, V. (2022). Root metabolome of plant–
arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal
phenotype. New Phytol. 234 (2), 672687. doi: 10.1111/nph.17994

Kiers, E. T., Duhamel, M., Beesetty, Y., Mensah, J. A., Franken, O., Verbruggen, E.,
et al. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis.
Science 333, 880–882. doi: 10.1126/science.1208473

Kumari, C., Dutta, T. K., Banakar, P., and Rao, U. (2016). Comparing the defence-
related gene expression changes upon root-knot nematode attack in susceptible versus
resistant cultivars of rice. Sci. Rep. 6, 1–13. doi: 10.1038/srep22846

LaHue, G. T., Chaney, R. L., Adviento-Borbe, M. A., and Linquist, B. A. (2016).
Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes
multiple environmental and agronomic objectives. Agriculture Ecosyst. Environ. 229,
3039. doi: 10.1016/j.agee.2016.05.020

Lefebvre, B. (2020). An opportunity to breed rice for improved benefits from the
arbuscular mycorrhizal symbiosis? New Phytol., 1404–1406. doi: 10.1111/nph.16333

Lehmann, A., Barto, E. K., Powell, J. R., and Rillig, M. C. (2012). Mycorrhizal
responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on
studies from 1981 to 2010. Plant Soil 355, 231–250 (. doi: 10.1007/s11104-011-1095-1

Li, H., Luo, N., Zhang, L. J., Zhao, H. M., Li, Y. W., Cai, Q. Y., et al. (2016). Do
arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution
and chemical forms in rice? Sci. Total Environ. 571, 1183–1190. doi: 10.1016/
j.scitotenv.2016.07.124

Lin, L., Zhao, Y., Liu, F., Chen, Q., and Qi, J. (2019). Narrow leaf 1 (NAL1) regulates
leaf shape by affecting cell expansion in rice (Oryza sativa L.). Biochem. Biophys. Res.
Commun. 516, 957–962. doi: 10.1016/j.bbrc.2019.06.142

Liu, Y.-N., Liu, C.-C., Zhu, A.-Q., Niu, K.-X., Guo, R., Tian, L., et al. (2022). OsRAM2
function in lipid biosynthesis is required for arbuscular mycorrhizal symbiosis in rice.
Mol. Plant Microbe Interact. 35, 187–199. doi: 10.1094/MPMI-04-21-0097-R

Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D., and
Harrison, M. J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and
systemic alterations in gene expression and an increase in disease resistance in the
shoots. Plant J. 50, 529–544. doi: 10.1111/j.1365-313X.2007.03069.x

Lu, Y. C., Feng, S. J., Zhang, J. J., Luo, F., Zhang, S., and Yang, H. (2016). Genome-
wide identification of DNA methylation provides insights into the association of gene
expression in rice exposed to pesticide atrazine. Sci. Rep. 6, 1–15. doi: 10.1038/
srep18985

Lumini, E., Vallino, M., Alguacil, M. M., Romani, M., and Bianciotto, V. (2011).
Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal
fungal soil communities. Ecol. Appl. 21, 1696–1707. doi: 10.1890/10-1542.1
Frontiers in Plant Science 16179
Mackill, D. J., and Khush, G. S. (2018). IR64: a high-quality and high-yielding mega
variety. Rice 11, 1–11. doi: 10.1186/s12284-018-0208-3

Masson, A. S., Vermeire, M. L., Leng, V., Simonin, M., Tivet, F., Nguyen Thi, H., et al.
(2022). Enrichment in biodiversity and maturation of the soil food web under
conservation agriculture is associated with suppression of rice-parasitic nematodes.
Agriculture Ecosyst. Environ. 331, 1-15. doi: 10.1016/j.agee.2022.107913

Matsumoto, T., Wu, J., Itoh, T., Numa, H., Antonio, B., and Sasaki, T. (2016). The
Nipponbare genome and the next-generation of rice genomics research in Japan. Rice 9,
1–11. doi: 10.1186/s12284-016-0107-4

Mbodj, D., Effa-Effa, B., Kane, A., Manneh, B., Gantet, P., Laplaze, L., et al. (2018).
Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and
impact on plant growth and resistance to abiotic stresses. Rhizosphere 8, 12–26.
doi: 10.1016/j.rhisph.2018.08.003

Montero, H., Choi, J., and Paszkowski, U. (2019). Arbuscular mycorrhizal
phenotyping: the dos and don’ts. New Phytol. 221, 1182–1186. doi: 10.1111/nph.15489

Mubarok, H., Basunanda, P., and Santoso, T. J. (2019). Tolerance of T2 generation
'Kitaake' Rice (Oryza sativa L.) CRISPR/cas9-osGA20ox-2 mutant strains to drought
condition. Ilmu Pertanian (Agricultural Science) 4)3, 123–130. doi: 10.22146/ipas.37032

Nguyễn, P. V., Bellafiore, S., Petitot, A. S., Haidar, R., Bak, A., Abed, A., et al. (2014).
Meloidogyne incognita - rice (Oryza sativa) interaction: a new model system to study
plant-root-knot nematode interactions in monocotyledons. Rice (N Y) 7, 23.
doi: 10.1186/s12284-014-0023-4

Nguyen, H. T., Mantelin, S., Ha, C. V., Lorieux, M., Jones, J. T., Mai, C. D., et al.
(2022). Insights into the genetics of the zhonghua 11 resistance to meloidogyne
graminicola and its molecular determinism in rice. Front. Plant Sci. 13. doi: 10.3389/
fpls.2022.854961

Niño-Liu, D. O., Darnielle, L., and Bogdanove, A. J. (2005). A Simple Method of
Mass Inoculation of Rice Effective for Both Pathovars of Xanthomonas oryzae, and the
Construction of Comparable Sets of Host cDNA Libraries Spanning Early Stages of
Bacterial Leaf Blight and Bacterial Leaf Streak. J. Phytopathol. 153, 500–504.
doi: 10.1111/j.1439-0434.2005.01004.x

Nishad, R., Ahmed, T., Rahman, V. J., and Kareem, A. (2020). Modulation of plant
defense system in response to microbial interactions. Front. Microbiol. 11. doi: 10.3389/
fmicb.2020.01298

Ogo, Y., Itai, R. N., Kobayashi, T., Aung, M. S., Nakanishi, H., and Nishizawa, N. K.
(2011). OsIRO2 is responsible for iron utilization in rice and improves growth and yield
in calcareous soil. Plant Mol. Biol. 75, 593–605. doi: 10.1007/s11103-011-9752-6

Ogo, Y., Itai, R. N., Nakanishi, H., Inoue, H., Kobayashi, T., Suzuki, M., et al. (2006).
Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription
factor in graminaceous plants. J. Exp. Bot. 57, 2867–2878. doi: 10.1093/jxb/erl054

Okada, A., Okada, K., Miyamoto, K., Koga, J., Shibuya, N., Nojiri, H., et al. (2009). OsTGAP1,
a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid
phytoalexins in rice. J. Biol. Chem. 284, 26510–26518. doi: 10.1074/jbc.M109.036871
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Deciphering the mechanisms,
hormonal signaling, and
potential applications of
endophytic microbes to
mediate stress tolerance
in medicinal plants

Praveen Pandey1,2*†, Arpita Tripathi1,3†, Shweta Dwivedi2,4,
Kanhaiya Lal2,4 and Tripta Jhang2*

1Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants,
Lucknow, India, 2Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow, India, 3Faculty of Education, Teerthanker
Mahaveer University, Moradabad, India, 4Academy of Scientific and Innovative Research (AcSIR),
Ghaziabad, India
The global healthcare market in the post-pandemic era emphasizes a constant

pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants

are the only natural resource to meet this by supplying an array of bioactive

secondary metabolites in an economic, greener and sustainable manner. Driven

by the thrust in demand for natural immunity imparting nutraceutical and life-

saving plant-derived drugs, the acreage for commercial cultivation of medicinal

plants has dramatically increased in recent years. Limited resources of land and

water, low productivity, poor soil fertility coupled with climate change, and biotic

(bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought,

salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant

productivity enhancement through sustainable strategies. Plants evolved

intricate physiological (membrane integrity, organelle structural changes,

osmotic adjustments, cell and tissue survival, reclamation, increased root-

shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones

synthesis, proline, protein levels, antioxidant enzymes accumulation, ion

exclusion, generation of heat-shock proteins, synthesis of allelochemicals.

etc.), and cellular (sensing of stress signals, signaling pathways, modulating

expression of stress-responsive genes and proteins, etc.) mechanisms to

combat stresses. Endophytes, colonizing in different plant tissues, synthesize

novel bioactive compounds that medicinal plants can harness to mitigate

environmental cues, thus making the agroecosystems self-sufficient toward

green and sustainable approaches. Medicinal plants with a host set of

metabolites and endophytes with another set of secondary metabolites

interact in a highly complex manner involving adaptive mechanisms, including

appropriate cellular responses triggered by stimuli received from the sensors

situated on the cytoplasm and transmitting signals to the transcriptional

machinery in the nucleus to withstand a stressful environment effectively.

Signaling pathways serve as a crucial nexus for sensing stress and establishing
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plants’ proper molecular and cellular responses. However, the underlying

mechanisms and critical signaling pathways triggered by endophytic microbes

are meager. This review comprehends the diversity of endophytes in medicinal

plants and endophyte-mediated plant-microbe interactions for biotic and abiotic

stress tolerance in medicinal plants by understanding complex adaptive

physiological mechanisms and signaling cascades involving defined molecular

and cellular responses. Leveraging this knowledge, researchers can design

specific microbial formulations that optimize plant health, increase nutrient

uptake, boost crop yields, and support a resilient, sustainable agricultural system.
KEYWORDS

plant-microbe interaction, medicinal plants, biotic-abiotic stress, signaling pathways,
ethylene, salicylic acid, jasmonic acid
1 Introduction

Medicinal plants are crucial in the pharmaceutical and drug

industries for providing many pharmaceutically vital bioactive

molecules for herbal medicine. Rising consumer demand for

herbal drugs and natural products has significantly increased the

cultivation acreage of medicinal plants, competing with fixed land

resources for cereals and other horticultural crops. The intent of

increasing productivity per unit area from the limited land

resources has led to excessive usage of agrochemicals (fertilizers,

insecticides, pesticides, weedicides, etc.) consumption over the past

few decades. Their redundant usage has critically affected soil

microbiome and environmental health. Therefore, developing

green, efficient, affordable, and eco-friendly agrotechnologies is

essential for improving medicinal plants’ health and productivity.

Sustainable agricultural production is a significant challenge in the

global climate change paradigm. In this context, harnessing

endophytic microbes as biostimulants can be an effective,

sustainable approach. Endophytes are microorganisms (bacteria

or fungi) that spend at least a portion of their life cycle forming

an association with an asymptomatic plant (Vanessa and

Christopher, 2004). Medicinal plants are strongly influenced by

microbial endophyte association. In general, endophytic microbes

can modify their structure and diversity depending on genotypes,

organs, health conditions, and growth stages of host medicinal

plants in order to obtain a constant supply of nutrients. Medicinal

plants have a range of physiological characteristics, metabolites, and

growth patterns that influence their ability to attract different

endophytic microbes. Environmental factors considerably impact

the quality and yield of medicinal plants. They not only affect the

distribution of a medicinal plant but also determine the species of

microbial endophytes that can colonize the host during its life cycle.

Plants grown in biologically diverse soil abundant with

beneficial microbes have better survival under harsh conditions.

The plant’s roots anchor it to the soil, enabling it to absorb minerals

and essential nutrients and synthesize chemical substances

mediating various plant-microbe interactions. These interactions

comprise mutualistic relationships with beneficial microbes;
02182
however, parasitism occurs with harmful microbes (Badri et al.,

2009). The plant deploys surface-localized receptor proteins to

recognize self-modified or microbe-derived molecules to

recognize microbial invaders are potentially harmful or beneficial

microbes. The recognition of b-glucan chains and plant immunity

depends on the degree of polymerization and b-1,3-glucan receptor

systems perception by a specific plant species (Wanke et al., 2020).

The positive interactions have practical implications useful in

pharmaceutical, biotechnological, and agricultural applications,

but the negative interactions lead to severe plant diseases that

endanger global agricultural productivity. Utilizing plant-microbe

interactions eliminates the need for synthetic inorganic pesticides

and fertilizers, which lowers input costs and, thus, minimizes the

impact of synthetic agrochemicals on vital existing ecological

communities (Whipps and Gerhardson, 2007). Furthermore,

plant-microbe symbiosis produces crucial compounds of

industrial and pharmaceutical interest, which eliminates the need

for costly catalysts and synthetic derivatives (Wu et al., 2007).

Integrating plant-associated microbes into farming to support

agricultural production mitigates a series of biotic and abiotic

perturbations (Tanaka et al., 2005; Vega et al., 2008; Wani et al.,

2016; Lata et al., 2018; Mukherjee et al., 2021; Siddique et al., 2022).

Biotic and abiotic factors influence many morpho-physiological

disturbances in plants, including stunted growth and development,

senescence, altered gene expression, cellular metabolism, etc.,

reducing overall crop yield and quality (Purohit et al., 2019).

Abiotic stresses are caused by non-living factors such as drought,

salinity, waterlogging, temperature extremes (heat, cold, and

freezing), metal toxicity, etc., while biotic stresses (caused by

living organisms, especially bacteria, fungi, viruses, insects,

nematodes, and weeds, etc.), directly starve the hosts of their

nutrients limiting the growth or plant death resulting in the pre-

and post-harvest crop losses. Plants can mitigate biotic stressors

even if they lack an adaptive immune system by adjusting to

spec ific , sophi s t ica ted s tra teg ies such as ant ib ios i s ,

hypersensitivity, allelochemical synthesis, membrane integrity,

organelle modifications, etc. Plants’ genetic makeup controls the

defensive schemes that respond to these stresses. Numerous genes
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in the plant genome are either tolerant or resistant to various biotic

stressors. Being sessile, plants have no choice to escape these

environmental cues; however, they alter their genetic architecture

for stress adaptation. Specifically, by inducing immunological

responses, generating antioxidants, and inhibiting pathogen

growth, endophytic microorganisms help plants cope with biotic

and abiotic stress. Notably, the interaction between plants and

microbes results in the production of a wide range of bioactive

substances, including artemisinin, taxol, phenolic acid, huperzine,

azadirachtin, vindoline, guanosine, inosine, serpentine ajmalicine,

curcumin, and camptothecin, which are profoundly utilized in

agriculture and medicine.

Endophytes modulate levels and activity of phytohormones,

viz., gibberellins, cytokinins, ethylene (ET), abscisic acid (ABA),

jasmonic acid (JA), and salicylic acid (SA), which play a crucial role

in plant growth, fitness, and stress amelioration (Barnawal et al.,

2016; Egamberdieva et al., 2017; Xu et al., 2018; Sabagh et al., 2021;

Chaudhary et al., 2022; Tripathi A. et al., 2022). In stressful

conditions, plant defense systems trigger appropriate cellular

responses by responding to stimuli from sensors situated on the

cytoplasm or cell surface and transmitting signals to the

transcriptional machinery in the nucleus with the help of various

signaling pathways. Signaling pathways are crucial for sensing stress

and establishing the proper molecular and cellular responses (Mir

et al., 2022). Phytohormones are an integral part of the plant

defense system, commonly known as the plant’s systemic

acquired resistance (SAR) and induced systemic resistance (ISR).

These plant hormones operate as plant protective agents against

different phytopathogens. In addition to regulating plant

physiological and morphological responses, phytohormones also

shape the plant microbiome. Different phytohormones induce

distinct effects on plant microbiomes. Plants constantly face a

wide range of biotic and abiotic stresses that lead to specific

transcriptional variations at the individual gene level, with high

variability and stress specificity. Therefore, more practical and

fundamental studies are required to address the processes and

functioning of hormonal signaling and crosstalk. Hence, this

review focuses on a detailed overview of the diversity of

endophytes in medicinal plants and defense mechanisms at the

cellular level associated with endophyte-mediated plant-microbe

interactions for biotic-abiotic stress alleviation, including different

signaling pathways.
2 Diversity of endophytic microbes in
medicinal plants

Endophytic microbes live in various plant habitats that

communally shape the plant endomicrobiome and are most

frequently found in plant roots, stems, leaves, fruits, and seeds.

Generally, they establish communities in intercellular spaces;

nevertheless, certain species can penetrate cells (Toubal et al.,

2018). The primary habitat and colonization of endophytic

microbes are roots, and their preferred entry points are root

hairs, cracks, or wounds caused by phytopathogen infection; this
Frontiers in Plant Science 03183
permits the leakage of metabolites that attract more endophytes.

Nevertheless, the other vital regions for root colonization are the

cortex and epidermis intercellular gaps (Compant et al., 2005). For

instance, the root colonization of Piriformospora indica,

commences in the cortical area with a biotrophic development

stage and proceeds to a cell death-dependent step. Rhizospheric

microbes associated with Fenugreek (Trigonella foenumgraecum)

stimulate host plant growth via soil nutrient uptake and recycling

(Kumari et al., 2020). Different endophytes may serve as the

primary root mutualistic symbionts in stressful situations where

mycorrhizae are often scarce (Mandyam et al., 2010; Rat et al.,

2021). Sometimes, endophytes enter within the xylem vessels that

migrate from the root zones; several harbor-diversified

communities penetrate the aerial regions utilizing the soil surface.

The majority of endophytic microorganisms embrace an array of

entryways, especially the leaves (phyllosphere), above ground stem

(caulosphere), below ground stem (laimosphere), flowers

(anthosphere), fruits (carposphere), and seeds (spermasphere)

(Lindow and Brandl, 2003; Ritpitakphong et al., 2016; Abdullaeva

et al., 2020; Sun et al., 2023). Upon arriving leaves and stems from

openings like stomata, they grow and create a thin biofilm (Frank

et al., 2017). In addition, several microbes might penetrate the inner

regions and establish where other microorganisms may invade the

xylem. They continue to colonize and grow in various organs, such

as the caulosphere, phylloplane, anthrosphere, and carposphere

(Meyer and Leveau, 2012). These microbes are inherently

advantageous in that they serve as a marker for the beginning of

the community structure in the seedling and the end of the

community assemblage in the seed (Shahzad et al., 2018). They

are pretty intriguing since they transmit their personalities to

subsequent generations vertically and can generate endospores,

uphold plant growth, control cell motility, and regulate

endogenous phytohormones, which improve the structure of the

soil, disrupt seed dormancy, and degrade xenobiotics. However,

seed endophytes developed multiple paths; few penetrate through

the xylem, stigma, and the extrinsic route, wherein an external

factor contaminates seeds. The floral components of plants have not

been comprehensively investigated to study endophytic diversity;

nevertheless, Qian et al. (2014) isolated an endophytic fungus,

Lasiodiplodia sp., from floral parts of Viscum coloratum, which is

involved in the synthesis of vital metabolites. Therefore, the

diversity of endophytic communities is primarily determined by a

series of transforming factors, including the host genetic makeup

and immune system, the environment, microbe-microbe

interactions, types of soil, and nutrition. Figure 1 depicts the

schematic representation of the diversity of endophytic microbes

in various plant parts.
3 The complexity of the plants-
microbes relationship

Plant-microbe interactions bear a complex relationship

depending on the biological and physicochemical ecology of

soil, seed surface, phyllosphere, and rhizosphere. While
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“obligate” microbes interact with living cells in order to develop

and complete their life cycle, “epiphytes” grow upon another plant

merely for physical support, and “opportunistic” microbes

occasionally penetrate the endosphere of plants (Hardoim et al.,

2008). The plant and the endophyte coexist in this interaction and

greatly benefit one another (Ting et al., 2009). These endophytes

are frequently rhizospheric; basal root zones with tiny crevices and

the apical root zone may be the ideal sites for their linkage and

subsequent entrance into the host (Gagne et al., 1987). They

multiply throughout the host plant (Hallmann et al., 1997) and

dwell in the cells, vascular system, or intercellular regions (Bell

et al., 1995). While roots have the most excellent chance of

colonization through the epidermis created by the lateral root

system, endophytic microbes could penetrate through the stomata

and transmit vertically to offspring via maternal seeds (Agarwal

and Shende, 1987). It is indisputable from the “balanced

antagonism” during asymptomatic colonization among the host

and endophytic microorganisms that endophytes can survive

inside the host without invoking any innate immunity and

enhance their ability to sustain themselves by producing

substances that are similar to those of plants (Schulz and Boyle,

2005). According to extensive research on the symbiotic

association between endophytic microbes and their host plant,

the plant safeguards and sustains the endophytes, which ‘in return’

deliver natural compounds with therapeutic potential (antiviral,

antifungal, antibacterial, insecticidal, etc.) to uplift the former’s

productivity and sustainability in their natural habitat.

Additionally, they defend host plants from phytopathogens by

triggering the synthesis of plant secondary metabolites under

adverse conditions (Azevedo et al., 2000; Strobel, 2003). Hence,

they are now considered an essential component of biodiversity;

the distribution of endophytic microflora varies depending on the

host. They have been found inside nearly all vascular plants,
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notably those with medicinal properties that have been assumed

to be linked to drug synthesis; several studies have shown that

these endophytes represent a significant source of medicinal

compounds (Zhang et al., 2006).

Endophytic microbes have a wide and diverse niche in plants,

which leads to a complex relationship that implies mutualism,

antagonism, and rarely parasitism (Nair and Padmavathy, 2014).

They reside within the plant tissue, wherein numerous bacteria and

fungi species constitute the “plant endomicrobiome,” capable of

triggering a number of cellular and physiological changes in the

plant. Some relationships between plants and microbes are

commensalism, whereby the plant incurs no harm, but the

microbe benefits. The microbes and the plant interact through

chemical signaling molecules released by the plants and discharge of

corresponding microbial substances (phenols, steroids, taxol,

xanthones, terpenoids, benzopyranones, isocoumarins, chinones,

tetralones, cytochalasins, and enniatines, etc.), resulting in a two-

way “crosstalk” that employs signal transduction. Once a link

between plant and microbe is established, both organisms

continue to monitor each others’ physiology and adjust their

behavior accordingly. Endophytic bacteria have a considerable

advantage over plants’ rhizospheric bacteria and provide more

benefits than microorganisms outside of the plants and in the

rhizosphere because they are in direct contact with the plant

tissues (Araujo et al., 2002; Hardoim et al., 2015). Fungal

endophytes spread into progeny via hyphal fragments or spores

in above-ground tissues by pathogens (biotic dispersal agents) or air

or water (abiotic dispersal agents) through parent plants, whereby

the progeny become infected (Hodgson et al., 2014; Gagic et al.,

2018), growing in the rhizosphere’s nutrient-rich environment,

harboring airborne pathogenic organisms (Sasse et al., 2018),

enabling transmission of fungal endophytes across different host

species (Wiewiora et al., 2015).
FIGURE 1

A simplified diagramm showing microbial diversity in various plant parts viz., leaves (phyllosphere), above ground stem (caulosphere), below ground
stem (laimosphere), flowers (anthosphere), fruits (carposphere), and seeds (spermasphere). Sidebar color intensities represent microbial density and
diversity; dark red represents high, and light blue indicates low diversity and density.
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4 Interaction of secondary
metabolites of the host and
metabolites from endophytic
microbes

The interaction between secondary metabolites of the host and

metabolites from endophytic microbes is a complex and dynamic

process that can result in diversified effects from beneficial to

detrimental. One of the most fascinating aspects of endophytic

microbes is their potential to synthesize bioactive compounds that

might interact with secondary metabolites of their host. Plant

secondary metabolites perform diverse functions in plants,

including growth and development, inherent immunity (Piasecka

et al., 2015), defense responses (Isah, 2019), stress adaptation (Yang

et al., 2018), phytopathogen control, operating as signals for plant-

microbe symbiosis, and transforming microbial communities

linked to hosts (Guerrieri et al., 2019). Similarly, plant

microbiomes are involved in many of the abovementioned

processes, directly or indirectly modulating plant metabolism

(Trivedi et al., 2020; Adeleke and Babalola, 2021; Ayilara et al.,

2022). Plants can shape their microbiome by secreting an array of

metabolites; consequently, the microbiome could affect the host

plants’metabolome. Perhaps in medicinal plants, the stimulation of

secondary metabolites through endophytes is a common

phenomenon that can transform the rhizobiome (Sasse et al.,

2018; Cotton et al., 2019). Recent research suggested that

interactions between plants and their microbiomes could increase

the biomass of Salvia miltiorrhiza, having a unique microbiome

(Sphingomonas, Pantoea, Dothideomycetes, and Pseudomonas), as

well as affect the synthesis of a novel bioactive compound

“tanshinone” (Chen et al., 2018; Huang A. C. et al., 2019).

Similarly, Marmoricola sp. and Acinetobacter sp. enhanced

morphine content in Papaver somniferum via modulating

expression of morphine biosynthesis genes (Ray et al., 2019), and

Phialemoniopsis cornearis, Fusarium redolens, and Macrophomina

pseudophaseolina influenced forskolin biosynthesis in a medicinal

plant Coleus forskohlii (Mastan et al., 2019). Using a chemical

recognition framework, plants can also recognize specific

molecules released by microbiomes that trigger plants to build

signaling networks, modify associated gene functions, and

accumulate specific secondary metabolites (Tidke et al., 2019).

Nevertheless, it is likely that a portion of these so-called

“secondary metabolites” are actually the metabolic by-products of

their endophytic microbes. Endophytic microbes can synthesize

numerous secondary metabolites, such as paclitaxel (taxol),

podophyllotoxin, camptothecin, and deoxypodophyllotoxin,

which are also generated by plants (Etalo et al., 2018; Furtado

et al., 2019; Pang et al., 2021). Consequently, it is crucial to

distinguish which metabolites originated from the plant

microbiome and which ones from the host.

The effects of microbial secondary metabolites on plants have

been well-documented. Even though some pathogenic microbes

secrete toxins that harm plants, such as fumonisins and AAL-toxins

made by the Fusarium sp. and Alternaria alternata f. sp. (Chen

et al., 2020), many microbes synthesize valuable secondary
Frontiers in Plant Science 05185
metabolites that promote plant growth; for example, Bacillus

tequilensis SSB07 produces several phytohormones viz.,

gibberellins, IAA, and ABA which boosted growth and

thermotolerance in soybean (Kang et al. , 2019). Plant

microbiomes can also produce numerous volatile organic

compounds (aldehydes, alcohols, ammonia, ketones, terpenes,

e s t e r s , e t c . ) tha t can influence p lant deve lopment ,

communication, pathogen defense, and prevent herbivorous

insects and parasitic nematodes (Kai et al., 2009; Ortıź-Castro

et al., 2009; Zhang et al., 2020). Maggini et al. (2017) reported

that the influence of the interaction between the medicinal plant

Echinacea purpurea (L.) Moench and its endophytic microbes

revealed that microbes could affect the synthesis of volatile

organic compounds, phenylpropanoid, and alkamides in the host.

Besides, plant-derived non-volatile secondary metabolites like

flavonoids and coumarins shape the root microbiota.

Furthermore, secondary metabolite “benzoxazinoids” could act as

allelochemicals and natural pesticides on the root microbiome (Hu

et al., 2018; Schütz et al., 2019; Jacoby et al., 2020). The symbiotic

relationships of plants and endophytic microbes enable them to

sustain safely, regardless of extremely harsh environments. The

long-term coevolution within ecosystems due to this mutual

association, each endophyte evolved a distinct range of hosts,

allowing them to colonize a specific host group. The production

of secondary metabolites , crucial for endophyte-host

communication for mutual survival and their sensitivity to

various habitats, is hypothesized to be influenced by the

coevolution of endophytes and their host (Lind et al., 2017).

Endophytes and their host plants share precursors in their

corresponding secondary metabolite in biosynthesis pathways.

However, endophytes may mimic the host pathways to establish

their own metabolic route for secondary metabolites (Alam et al.,

2021). Overall, it has been confirmed that despite their diversity,

secondary metabolites are synthesized via a few shared biosynthetic,

and the metabolomic pathways of endophytic microbes and their

host are similar. Determining whether these secondary metabolites

are produced by plants or due to symbiosis with endophytic

microorganisms remains disputed. Therefore, understanding the

processes influencing plant-microbiome assembly, signaling

crosstalk in plant-microbiome communications, genetic controls

on secondary metabolites, and how microbiomes and environment

alter them are exciting research areas for the future.
5 Endophytes-mediated plant-
microbe interactions to mitigate
environmental cues

Plant phenotypic performance is determined by its genotype,

environment, and interactions between genotype x environment.

The phenotypic potential of a crop is fully expressed in a stress-free

environment with no interference from any environmental factors.

However, plants endure a range of perturbations categorized into

two major groups: (i) weather extremes or abiotic stresses (drought,

soil salinity, waterlogging, low and high temperatures, etc.) and (ii)
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pathogenesis or biotic stresses (bacteria, viruses, fungi, insects,

nematodes, etc.). Endophytes improve plants’ stress tolerance by

stimulating the synthesis of secondary metabolites (comprising or

clinically useful molecules) through various sophisticated strategies

(Tripathi A. et al., 2022; Liu et al., 2023). Moreover, they decrease

the pressure caused by toxic heavy metals, reduce hazardous

greenhouse gases, and limit pests’ growth on plants through a

plethora of other specific methods (through extracellular

sequestration, modulating antioxidative enzyme activities, mineral

nutrient uptake, degradation of pathways for reducing

phytotoxicity, etc.) (Azevedo et al., 2000; Stępniewska and

Kuźniar, 2013). Remediation by conventional strategies is quite

expensive, laborious, and unsustainable, whereas plant-microbe-

based approaches for remediation are remarkably potent, less

intrusive, and sustainable (Anderson et al., 1993; Radwan, 2009).

Additionally, endophytic plants with pertinent metabolic

frameworks and degradation pathways toward diminishing

phytotoxicity and optimizing decay can rejuvenate groundwater

and wastelands (Weyens et al., 2009). Polyaromatic hydrocarbon

(PAH) removal by endophytes is also successful; decreasing

atmospheric carbon by storing carbon in plants’ rhizospheres is

likely a viable strategy (Wu et al., 2009). The schematic

representation of the impact of biotic and abiotic perturbations

on plants and how the integration of endophytic microbes helps to

alleviate these perturbations is illustrated in Figure 2.
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5.1 Endophytic microbes for abiotic stress
tolerance in host medicinal plants

Abiotic factors like drought, salt, heat, freezing, heavy metal

toxicity, hypoxia and anoxia, waterlogging, and nutritional

imbalance are the most severe constraints leading to a drastic

decline in crop production (about 51–82%), which hampers

global food and nutritional security (Khare and Arora, 2015;

Cooke and Leishman, 2016; Yadav et al., 2020; Del Buono, 2021;

Raza et al., 2022; Kaur et al., 2023). These stressors have become

more common over the past several decades, mainly as a result of

the aberrant weather fluctuations triggered by climate change.

Plants tolerate these stresses by modifying their physiological,

molecular, and biochemical architecture to maintain homeostasis,

including osmotic adjustment, nutrient absorption and

assimilation, enzyme activity, membrane integrity, metabolic

alterations, and most notably, photosynthesis (Moradtalab et al.,

2018; Ahanger et al., 2019; Raza, 2021). Most of these imbalances in

response to stress conditions are linked to phytohormone synthesis

and distribution in plants’ underground and aerial regions (Verma

et al., 2016; Arif et al., 2021). Plants generate reactive oxygen species

(ROS) as a consequence of these abiotic stresses, which cause severe

cell injuries (Oktem et al., 2008; Hasanuzzaman et al., 2020). To

counteract the damaging effects of these cues, plants respond

physiologically and molecularly, which includes the synthesis of
A

B

FIGURE 2

Impact of biotic and abiotic stresses on plants (A), integration of endophytic microbes in plants for improving yield quality and tolerance against
different stresses (B).
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essential proteins associated with metabolism, stimulation of cell

signaling, and transcription factors governed through the

expression of the majority of stress-tolerant genes that, in turn,

are driven by multifaceted biomolecules (Hasanuzzaman et al.,

2020; Raza, 2022).

Drought stress has a detrimental effect on plant growth and

development, physiological, biochemical, and cellular metabolism,

viz., cell membrane elasticity, fluidity, integrity, stomatal

conductance, water potential, the structure of enzymes, proteins,

amino acids, nucleic acids, etc. and, as well as the homeostasis of the

agroecosystems (Kutasy et al., 2022; Noor et al., 2022). Plants

modulate diverse cellular signaling pathways, including

phytohormones, stress response proteins, osmolytes, and

antioxidant enzymes for drought adaptation (Kosar et al., 2021).

Numerous endophytes generate ACC deaminase (1-Amino

Cyclopropane-1-Carboxylate), which assists its host plant in

combating drought by interrupting the ET biosynthesis pathway

and diminishing the ET levels, which in turn restricts stress signals.

Bacillus licheniformis K11, having auxin and ACC deaminase-

producing activities, mitigated drought’s detrimental effects

without using synthetic agrochemicals (Lim and Kim, 2013).

Nevertheless, drought drastically reduces photosynthesis

compared to plants’ respiration (Vanlerberghe et al., 2016). Crop

plants activate regulons like dehydration-responsive element-

binding protein (DREB2) in response to temperature and drought

stress (Nakashima et al., 2012). Furthermore, plants produce

defensive chemicals in response to drought by mobilizing the

metabolites critical for their osmotic adjustment. ABA-mediated

stomatal closure may be crucial in controlling plant development by

lowering other abiotic stressors, including osmotic stress (Waqas

et al., 2012). An endophytic microbe, Sinorhizobium meliloti

increased FeSOD and CU/ZnSOD, improving drought tolerance

in alfalfa (Naya et al., 2007). Likewise, Meng and He (2011) reported

an arbuscular mycorrhizal fungus (AMF) maximizes nutrient

uptake and modulates metabolic activities (soluble sugar,

chlorophyll, leaf subsurface, total phosphorous, total underground

nitrogen and tanshinone content, and decreases the content of total

aerial nitrogen) to boost drought tolerance in Salvia. Moreover,

Trichoderma hamatum promoted drought tolerance in the

Theobroma cacao plant by delaying drought-related stomatal

conductance and net photosynthesis adjustments (Bae et al.,

2009). Sziderics et al. (2007) claim that a fungus called

Piriformospora indica increases resistance to osmotic stress by

expressing the enzymes ACC-oxidase and lipid transfer protein.

The synthesis of ROS under drought conditions often leads to

premature cell death (Cruz de Carvalho, 2008), and antioxidant

enzymes like catalase (CAT), polyphenol oxidase (PPO), and

peroxidase (POD) scavenge ROS to prevent stress-induced

damage (Zandalinas et al., 2018). These antioxidants also facilitate

rejuvenation from water deficit and dehydration (Laxa et al., 2019).

Similarly, Bacillus amyloliquefaciens and Pseudomonas fluorescens

improved drought tolerance in Mentha piperita (L.) by enhancing

antioxidant enzymes, total phenolic content, and decreasing

malondialdehyde (MDA) and proline content (Chiappero et al.,

2019). Therefore, antioxidant-producing endophyte microbes are

being explored further for favorable eco-friendly gains. Recent
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research demonstrates the beneficial effects of antioxidant

enzymes in peppermint under severe drought (Chiappero et al.,

2019; Asghari et al., 2020). Proline accumulation is a key strategy for

promoting drought tolerance as it helps in the maintenance of

protein structure and function to preserve membrane integrity

(Kishor et al., 2005). Besides enhancing antioxidant activity,

Pseudomonas strains and Bacillus subtilis also considerably

increased proline levels and total soluble sugars in sweet corn

(Zarei et al., 2020). Endophytic microbes have an inherent

property to produce phytohormones such as gibberellins (GA),

auxin, JA, SA, and ABA. These hormones could also be directly

responsible for stimulating various defensive systems in host plants.

It has been demonstrated that SA performs an important role in

drought stress by altering nitrogen metabolism, inducing the

generation of antioxidants, and glycine betaine accumulation,

thereby conferring protection from stress (Khan et al., 2022).

Shah et al. (2019) reported that Piriformospora indica promotes

drought tolerance by synthesizing auxins and bioactive compounds

in Cymbidium aloifolium (L.) Sw. Similarly, Azospirillum brasilense

and A. Chroococcum enhanced drought stress tolerance via

improving ABA, proteins, phenolic, soluble sugars, flavonoid, and

oxygenated monoterpenes while reducing the activity of CAT and

GPX in Peppermint (Asghari et al., 2020). An endophyte,

Paenibacillus polymyxa strain CR1, increased Arabidopsis’s

dehydration-responsive genes (RD29), enabling the plants to face

drought environments effectively (Liu et al., 2020). Likewise, the

GOT9 strain of Bacillus subtilis in Arabidopsis stimulated the

upregulation of several genes related to drought stress, specifically

response-to-desiccation (RD20 and 29B), encodes dehydrin protein

(RAB18), as well as 9-cis epoxy carotenoid dioxygenase (NCED3),

consequently mitigating the physiological damage caused by

drought (Woo et al., 2020). An erratic rainfall pattern due to

climate change often functions as an acute stressor, leading to a

rapid increase in available soil water, ultimately resulting in

premature plant death. Wang et al. (2009) showed that

Penicillium griseofulvin reduces water stress injury by improving

the function of protective enzymes and osmotic levels, thereby

increasing the ability to withstand salt, drought, and water stress in

Glycyrrhiza uralensis. Furthermore, Orchard et al. (2016) claimed

that the AMF Glomus tenue enhanced the tolerance of ryegrass

(Lolium rigidum) plants during waterlogging stress. Pseudomonas

putida inoculation in Arabidopsis regulated linked to key polyamine

synthetic genes [ADC (arginine decarboxylase), CPA (N-carbamoyl

putrescine amidohydrolase, AIH (agmatine iminohydrolase), SPMS

(spermine synthase), SPDS (spermidine synthase) and SAMDC (S-

adenosyl methionine decarboxylase)] affecting the amounts of

polyamine in cells. The higher level of putrescine and free cellular

spermidine is positively linked with water stress (Sen et al., 2018).

Recently, Endostemon obtusifolius plant inoculated with

Paenibacillus polymyxa and Fusarium oxysporum showed

enhanced drought tolerance (Ogbe et al., 2023). In other studies

Streptomyces dioscori SF1 strain enhanced drought, salinity and

phytopathogen resistance in Glycyrrhiza uralensis via the

production of ammonia, IAA, enzyme activities, potassium

solubilization, nitrogen fixation and Sphingomonas paucimobilis

ZJSH1 strain ameliorate drought, salt, and heavy metal toxicity in
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Dendrobium officinale plants (Li X. et al., 2023; Li J. et al., 2023).

Fungal endophytes, Acrocalymma aquatic and Alternaria

alstroemeriae provide tolerance against drought-induced damage

in Isatis indigotica simply because of synergistic effects on soil

enzymatic activity, soil organic material, the biomass of roots, as

well as epigoitrin levels (Li W. et al., 2023).

Salinity stress is the most critical abiotic stress that limits crop

growth, development, and metabolism, resulting in reduced yield

and productivity (Khan et al., 2020; Han et al., 2021). Worldwide,

over 6% of the land is classified as saline; this percentage by 2050 is

predicted to rise drastically owing to climate change, further

aggravating the situation for farming systems. Salinity triggers

osmotic pressure, inadequate nutrient supply, and increased ion

accumulation beyond critical levels (Hasegawa et al., 2000; Hafeez

et al., 2021; Saddiq et al., 2021). Human-generated causes such as

irrigation with saline water, industrial pollution, and excessive use

of harmful agrochemicals often increase salt stress (Zhu et al., 2019).

Different strategies for enhancing plant development under salt

stress are triggered by microbial inoculation, including the synthesis

of ACC-deaminase, antioxidant enzymes, phytohormones, volatile

organic compounds, osmoprotectant metabolites (glycine, proline,

alanine, glutamic acid, threonine, serine, choline, betaine, aspartate,

and organic acids), modifying ion transporters, which in turn

preserves ionic, osmotic, and water homeostasis (Choudhary

et al., 2022; Gamalero and Glick, 2022; Kumawat et al., 2022).

When sodium ions accumulation reaches toxic levels, ROS is

produced that severely damages cellular organelles, viz.,

mitochondria, chloroplasts, cell membranes, and peroxisomes,

impairing plants’ metabolic systems (Munns and Gilliham, 2015).

Furthermore, high salinity declined the plant’s water absorption

capacity, resulting in poor stomatal activity and reduced cell growth

as a consequence of lower cellular water levels. According to Liu

et al. (2011), during salt stress, soluble protein content and

peroxidase activity (POD) are modulated by endophytic fungi

Botrytis sp. and Chaetomium globosum in Chrysanthemum

morifolium. Recently, Jan et al. (2019) claimed salt stress

tolerance in Euphorbia milii is promoted by the fungus Yarrowia

lipolytica. An endophyte, Brachybacterium paraconglomeratu strain

SMR20, ameliorates salt stress in Chlorophytum borivilianum via

delaying chlorosis and senescence, enhanced foliar nutrient uptake,

deamination of ACC, modifying ET, IAA, ABA, proline, and MDA

(Barnawal et al., 2016). Similarly, Glutamicibacter halophytocola

enhanced tolerance to high NaCl levels in Limonium sinense (Qin

et al., 2018). de Zélicourt et al. (2018) have demonstrated that an

endophyte Enterobacter sp. conquers the root and shoot tissues of

Arabidopsis and promotes salt stress tolerance via producing 2-

keto-4-methylthiobutyric. For instance, a bacterial endophyte,

Burkholderia phytofirmans modified the gene expression for

encoding signaling of cell surface component that signals bacteria

of environmental stimuli and subsequently enhances their

metabolism (Pinedo et al., 2015; Sheibani-Tezerji et al., 2015).

Additionally, numerous bacteria in the plant endosphere modify

ABA-mediated cell signaling systems as well as their production

during salt stress, which may promote plant development. Similarly,

Pseudomonas PS01 induced salinity tolerance by modulating the

expression of stress-responsive genes LOX2 (lipoxygenase) while
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reducing GLY17 (glycogen synthase 17) and APX2 (ascorbate

peroxidase 2) in Arabidopsis (Chu et al., 2019). A critical factor in

managing the nutrient profile and promoting plant growth during

salt stress is enhanced microbe-mediated soil enzymatic activity

(Shabaan et al., 2022). Recent research revealed that applying

Kosakonia sacchari to soil can lower antioxidants like CAT, APX,

GR (glutathione reductase), and SOD (superoxide dismutase) levels

and oxidative stress markers like proline, MDA, and H2O2 (Shahid

et al., 2021). Similarly, Pseudomonas putida, Klebsiella sp.,

Alcaligenes sp., and P. cedrina enhanced salt stress tolerance by

decreasing the accumulation of MDA, proline, and H2O2 in

Medicago sativa (Tirry et al., 2021). Karthikeyan et al. (2012)

demonstrated that the inoculation of Achromobacter xylosoxidans

in Catharanthus roseus reduced ET levels and increased the content

of antioxidants such as APX, CAT, and SOD under salinity stress.

Moreover, halophilic microorganisms control critical stress

signaling pathways, such as proline, ABA, and MDA synthesis,

ultimately minimizing stress impacts (Ayaz et al., 2022). Likewise,

Semwal et al. (2023) reported that Bacillus strains NBRI HYL5,

NBRIHYL8, and NBRIHYL9 with ACC deaminase activity, biofilm,

phosphate solubilization, exo-polysaccharide and alginate

generation properties enhanced abiotic stress tolerance in

Gloriosa superb. Endophytic microbes, Streptomyces umbrinus

EG1 and S. carpaticus EG2 promote root-shoot growth and

chlorophyll content, thereby enhancing salt tolerance in Iris

persica and Echium amoenum plants (Oloumi et al., 2023).

Like drought, salinity, and water stress, global agricultural

production is greatly constrained by temperature extremes (heat,

cold, and freezing). Heat stress alters the rate of osmotic adjustment,

resulting in a disparity in water potential and a negative impact on

metabolism and tissue damage. Plants have developed several

tolerance mechanisms to cope with such temperature extremes,

including the synthesis of heat-shock proteins (HSPs), pathways for

eliminating ROS, and the stimulation of certain phytohormones

(Khan et al., 2020; Haider et al., 2021; Raza et al., 2021a). The

consequences of cold stress, including chilling temperatures of 15°C

and freezing temperatures below 0°C, also severely impact the

growth and development of plants (Habibi, 2015). Cold-induced

abiotic stress profoundly affects all cellular processes in plants,

including several signal transduction pathways by which these

stressors are transduced, such as ABA, protein kinase, Ca2+,

protein phosphate, ROS components, etc. The plants’ gene

expression is altered in response to surviving cold stress, which

modifies osmolytes levels, membrane lipids, phytohormones,

proteins, ROS scavenging enzymes, and phenolic content

(Ritonga et al., 2021; Saleem et al., 2021; Hwarari et al., 2022; Wei

et al., 2022). For example, Fernandez et al. (2012) demonstrated that

by balancing carbohydrate metabolism, stress-induced gene

expression, and increased metabolite levels, Burkholderia

phytofirmans PsJN bacterized grapevine showed enhanced

tolerance against low temperature. Similarly, Su et al. (2015))

discovered that treating Arabidopsis thaliana with Burkholderia

phytofirmans PsJN during cold stress curtailed the plasmalemmas’

disruption and strengthened the mesophyll cell wall. In other

studies, PsJN ameliorated cold tolerance in Vitis vinifera with an

improved accumulation of proline, aldehydes (ALD), and MDA
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along with PAL (phenylalanine ammonia-lyase) and STS (stilbene

synthase) genes (Theocharis et al., 2012) as well as improved CO2

fixation, starch and phenolics (Barka et al., 2006). However, the

Dichanthelium lanuginosum plant relies on endophytic fungi

Curvularia protuberate in three-way mutualistic interactions with

a virus (virus-fungal endophyte-plant) for survival at high soil

temperatures (Márquez et al., 2007).

Metal toxicity is increasing globally due to anthropogenic

activities that have not only polluted the soil but also pose a severe

threat to human health when they reach the food chain and are

biomagnified. Heavy metals like arsenic (As), cadmium (Cd), lead

(Pb), mercury (Hg), aluminum (Al), copper (Cu), and zinc (Zn)

supplied through irrigation significantly influenced soil dynamics

(Nazli et al., 2020; Mehmood et al., 2019; Bashir et al., 2021; Haseeb

et al., 2022). The deleterious effects of heavy metal ions on tissues,

such as the stimulation of necrosis and chlorosis, inhibition of

chlorophyll biosynthesis, and membrane lipid degradation, may

significantly impact crop productivity (Takasaki et al., 2010; Raza

et al., 2021b; Raza et al., 2022). Plants have evolved sophisticated

mechanisms, including hyperaccumulation, tolerance, exclusion, and

chelation with organic compounds as the fundamental strategies.

Research findings have suggested that endophytic microorganisms

play a significant role in boosting resilience to metal toxicity via

complex mechanisms, including intracellular accumulation,

sequestration, extracellular precipitation, and conversion of toxic

metals to a negligible or non-toxic form (Rajkumar et al., 2009; Ma

et al., 2016; Mishra et al., 2017). Interestingly, Domka et al. (2019)

discovered a fungal endophyte called Mucor sp. significantly

strengthens the ability of Arabidopsis arinosa to tolerate metal

toxicity. Furthermore, an endophyte, Bacillus sp. SLS18 diminishes

the toxicity of heavy metals by accumulating biomass in the root

tillers and leaves of Solanum nigrum and Phytolacca acinosa (Luo

et al., 2012). Similarly, microbial endophytes Paenibacillus

hunanensis strain CIMAP-A4 and BAC-7 improved arsenic

tolerance in Bacopa monnieri (L.) via IAA production and biofilm

formation (Tripathi P. et al., 2022). Xu et al. (2016) claimed that

Agrobacterium spp. and Bacillus spp. reduced arsenate to arsenite in

Pteris vittata (L.). An endophyte, Paenibacillus relieved heavy metal

toxicity in Tridax procumbens (Govarthanan et al., 2016) as well as

helped in the removal of PAHs phytotoxicity via biodegradation of

phenanthrene through co-metabolism in Plantago asiatica (Zhu

et al., 2016). Endophytic microorganisms can also diminish heavy

metal-induced oxidative-stress damage (Wan et al., 2012). The toxic

effects of Cd accumulation were synergistically controlled by various

plant metabolic defensive systems, including hyperaccumulators,

detoxification routes, and antioxidative processes by bacterial

endophytes, Klenkia, Modestobacter, Sphingomonas in Lonicera

japonica (Xie et al., 2023) Pseudomonas strain E3 in Solanum

nigrum (Chi et al., 2023).
5.2 Endophytic microbes for biotic stress
tolerance in host medicinal plants

Biotic stresses are known to be affected by abiotic stress

conditions in terms of their incidence and dissemination (Scherm
Frontiers in Plant Science 09189
and Coakley, 2003; McDonald et al., 2009; Ziska et al., 2010; Peters

et al., 2014). Through modifications to plant physiology and defense

mechanisms, these stress conditions also directly impact plant-pest

interactions (Scherm and Coakley, 2003; Duveiller et al., 2007;

Gimenez et al., 2018). Several biological agents, including

bacteria, fungi, viruses, weeds, insects, and nematodes, are the

major stress factors that tend to increase ROS, affecting how well

plants operate physiologically and molecularly and decreasing

agricultural productivity. Plant-parasitic nematodes can attack all

parts of the plant, although they predominantly harm the root

system and spread disease through the soil. They cause stunting and

wilting, which are symptoms of inadequate nutrition. Although

they seldom kill, their hosts’ viruses can harm plants systemically,

producing stunting, chlorosis, and malformations in different

regions of the plant. Piercing-sucking insects can spread viruses

to plants via their styles. In combination with bacteria, fungi cause a

more severe impact, resulting in vascular wilts, leaf spots, and

cankers (Schlenker and Roberts, 2009). Insects may physically

harm plants severely, including the leaves, stems, bark, and

flowers, while infected plants can transmit viruses and bacteria to

healthy plants via insects.

In many cases, weeds can take over habitats faster than certain

attractive plants because they proliferate and generate many viable

seeds. Inhibiting the growth of desirable plants, such as crops or

flowers, is not done directly by weeds, which are viewed as

undesired and unproductive plants, but rather through competing

with the desirable plants for nutrients and space. Through

antagonistic action, endophytic microbes can strengthen plants’

defense systems against pathogen invasion (Miller et al., 2002;

Gunatilaka, 2006). Additionally, they are said to improve the

health of the soil and crops by assisting plants in coping with

biotic stress. Therefore, using endophytic microbes as biofertilizers

and biocontrol agents has established a natural alternative to

harmful chemicals for crop production and alleviating biotic

stress. In general, two mechanisms, systemic-acquired resistance

(SAR) and induced systemic resistance (ISR), confer plant

resistance to pathogens. ISR is defined as the plants’ innate

resistance primarily mediated by beneficial microbes via

modulating root immunity, root colonization, and the production

of specific elicitors like volatile organic compounds, siderophores,

polysaccharides, enzymes, and phytohormones, whereas SAR is

considered as the plants’ acquired resistance (Olowe et al., 2020;

Hamid et al., 2021).

A wide range of pests and pathogens can be successfully

combated using the SAR and ISR mechanisms (Vlot et al., 2021;

Meena et al., 2022; Yu et al., 2022). Even though multiple studies

have shown that endophytic microbes regulate diversified

physiological, cellular, and molecular functions in plants and aid

in their survival when attacked by pathogens (Teixeira et al., 2019;

Olowe et al., 2020; Castiglione et al., 2021; Yu et al., 2022),

unfortunately, the fundamental mode of action of pathogenesis

has yet to be discovered. The results of comprehensive

investigations show that developing resistance to several

pathogens, such as bacteria, viruses, and fungi, relies on complex

mechanisms that may operate simultaneously (Yu et al., 2022),

including stimulation of several defense response genes and
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enzymes (CAT, GPX (guaiacol peroxidase), APX, GR, SOD, and

POD), accumulation of hormones (auxin, GA, ET, JA, and SA),

glucanases, sugars, chitinases, PR proteins, secondary metabolites

and osmolytes which in turn play a direct role in limiting the growth

and spread of pathogens (Baxter et al., 2014; Pieterse et al., 2014;

Conrath et al., 2015; Camejo et al., 2016; Guo et al., 2019; Olowe

et al., 2020; Luo et al., 2022). Previous research confirmed that

endophytes significantly control the host’s gene expression,

physiological responses, and defense-related processes in plants

(Van Bael et al., 2012; Estrada et al., 2013; Salam et al., 2017). For

instance, JA and SA prove to be very helpful in plant stress

responses against phytopathogens (Mejıá et al., 2008; Ren and

Dai, 2012; Khare et al., 2016). Furthermore, the gibberellins

synthesized by endophytes boost insect and pathogens’ resistance

via SA and JA pathways (Waqas et al., 2015a). Fusarium solani, an

endophyte, induces systemic resistance to the pathogenic fungi

Septoria lycopersici by promoting the expression of genes

associated with the pathogenesis (Kavroulakis et al., 2007).

Additionally, some endophytic microbes produce an array of

bioactive compounds that might improve the plants’ resistance to

different phytopathogens such asMacrophomina phaseolina, which

causes charcoal rot disease via siderophores-synthesizing (Arora

et al., 2001), Vertcillium wilt (Mercado-Blanco et al., 2004),

Cadosporium sphaerospermum and C. cladosporioides through the

synthesis of pathogen-toxic cadinane sesquiterpenoids (Silva et al.,

2006), antagonistic to pathogenic fungi by toxic chemical

“trichothecin” (Zhang et al., 2010), Fusarium oxysporum and F.

Solani (Yang et al., 2012), Rhizoctonia solani, Pythium myriotylum,

Phytophthora capsici, Colletotrichum gloeosporioides, and

Radopholus similis by producing volatile substances(Sheoran

et al., 2015) as well as inhibiting pathogenic fungi by releasing

some toxins (Wang et al. (2012). According to Strobel et al. (1999),

an endophytic microbe Cryptosporiopsis cf. quercina in

Triptergyium wilfordii (thunder god vine) produces “cryptocin”

and “cryptocandin,” which are poisonous to the host plant’s

pathogenic fungus Pyricularia oryzae. Moreover, Cao et al. (2009)

reported endophytes, Stachybotrys elegans, Choiromyces

aboriginum, and Cylindrocarpon linked with cell wall-disruptive

enzymes combat pathogenic fungi in Phragmites australis plant.

Microbial endophytes viz., Cohnella sp., Paenibacillus sp., and

Pantoea sp. induced plant defense mechanism against

anthracnose disease in Centella asiatica (Rakotoniriana et al.,

2013). In other studies, Bacillus amyloliquefaciens improved

tolerance to root-rot in Panax notoginseng (Ma et al., 2013),

phytophthora blight resistance in Ginkgo biloba (Yang et al.,

2014), and inhibited multiple phytopathogens in Curcuma longa

via synthesizing ‘iturin’ and ‘surfactin’ (Jayakumar et al., 2019).

Hong et al. (2018) reported that microbial endophytes,

Stenotrophomonas maltophilia and Bacillus sp. suppressed

phytopathogens growth in Panax ginseng. Fungal endophytes,

Penicillium chrysogenum and Alternaria alternate enhanced

tolerance against pathogenic microorganisms in Asclepias sinaica

by producing extracellular enzymes viz., amylase, pectinase,

xylanase, cellulase, gelatinase, and tyrosinase (Fouda et al., 2015).

In another study, Withania somnifera plants inoculated with

Talaromyces trachyspermus effectively combat phytopathogens
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which resulted from the antagonistic activity of endophytes and

enhanced IAA, phosphate solubilization, and siderophore synthesis

(Sahu et al., 2019). Similarly, Jiang et al. (2018) showed that Bacillus

velezensis increased plants’ resistance to gray mold disease caused

by Botrytis cinerea by activating antioxidant-mediated defense

signaling genes SOD, POD, CAT, and SA-signaling genes viz.,

NPR1 (non-expressor of pathogenesis-related genes) and PR1

(pathogenesis-related protein1). These findings suggest that

endophyte priming triggers molecular and biochemical changes

that prevent pathogen invasions of plants. Interestingly, Kumar

et al. (2016) identified that the inoculation of the endophyte

Peanibacillus lentimorbus in Nicotiana tabacum reduced the

prevalence of CMV (cucumber mosaic virus) by augmenting the

expression of genes related to stress PR1, AsSyn (asparagine

synthetase), Gluc (b-1,3-glucanase), BR-SK1(brassinosteroid

signaling kinase 1), TCAS (tetra-hydrocannabinolic acid

synthase), ZF-HD (zinc finger-homeodomain), RdRP2 (RNA

dependent RNA polymerase), and antioxidants (CAT, SOD, APX,

and GPX). Recently, Azabou et al. (2020) reported that an

endophyte Bacillus velezensis OEE1 prevents Verticillium wilt

disease in olive plants by producing antifungal volatile organic

molecules (benzene acetic acid, 1-decene, phenyl ethyl alcohol,

tetradecane, and benzaldehyde). Likewise, Microbacterium sp.

SMR1 enhanced downy mildew tolerance in Papaver somniferum

(L.) via protein modification, differential expression of transcripts

related to signal transduction, transcription factors, and SA-

dependent defense pathway (Ray et al., 2021). Many researchers

showed the ability of both bacterial and fungal endophytes to

control diseases and phytopathogens by synthesized volatile and

non-volatile compounds, soluble antifungal metabolites and by

specific mechanisms including activation of defense enzymes and

PR proteins associated with ISR, JA/ET mediated disease resistance,

antagonism, antimicrobial, antioxidant, and anti-proliferative

properties, production of IAA, siderophores.and b-1,3-glucanase,
proteolytic activity, chitinase and cellulose synthesis in diverse

medicinal plants including Chloranthus elatior, Taxillus chinensis,

Salvia miltiorrhiza, Curcuma longa, Dioscorea bulbifera, Viola

odorata, Cremastra appendiculata, Angelica sinensis, Cornus

florida, Nicotiana tabacum, Zingiber zerumbet and Piper betle

(Harsha et al., 2023; Jiao et al., 2023; Manasa et al., 2023; Mei

et al., 2023; Rotich and Mmbaga, 2023; Salwan et al., 2023; Santra

and Banerjee, 2023; Sharma et al., 2023; Song et al., 2023; Thankam

and Manuel, 2023; Wang et al., 2023; Yehia, 2023; Zou et al., 2023).

It is well documented that endophytic microbes improve host

plant resistance to insect herbivores primarily by synthesizing a

variety of alkaloid-based protective chemicals in the plant tissue or

by changing the nutritional quality of the plant. Eventually,

endophytes such as Chaetomium cochliodes, Trichoderma viride,

and Cladosporium cladosporioide are known to facilitate insect

resistance in creeping thistle (Gange et al., 2012) and red spruce

(Sumarah et al., 2010). An endophyte, Epichloë coenophiala AR584,

showed enhanced herbivore resistance in Lolium arundinaceum

(Schreb.) via the production of alkaloids which provide anti-

herbivore defenses, stoichiometry, photosynthesis, and

transpiration rates, and stomatal conductance (Johnson et al.,

2023). Endophytes function as an acquired plant immune system,
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taking up space, fighting diseases that may otherwise attack the

host, and delaying or deterring herbivores’ infection. For instance,

Bittleston et al. (2011) showed that an endophyte Leucocoprinus

gongylophorus produces compounds that are antagonistic fungal-

ants’ symbionts to boost insect resistance. Furthermore, an

endophyte Chaetomium Ch1001 increases resistance to the root-

knot nematode by synthesizing ABA that affects the insect juveniles’

second-stage motility (Yan et al., 2011). Additionally, endophytes

Beauveria bassiana and Lecanicillium dimorphum improve insect

resistance by altering cell division-related protein expressions in the

host plant (Gómez-Vidal et al., 2009). Daungfu et al. (2019)

found that bacterial endophytes Bacillus subtilis LE24, B.

amyloliquefaciens LE109, and B. tequilensis PO80 from the citrus

plant with antagonistic properties against phytopathogens might be

helpful in the biocontrol of diseases. Diab et al. (2023) recently

claimed that endophytic microbes, Streptomyces sp. ES2,

Streptomyces, Nocardioides, and Pseudonocardia produce

metabolites that act as natural biocontrol agents against insects in

Artemisia herba-alba and A. judaica plants. A list of endophytic

microbes enhancing abiotic and biotic stress tolerance and

associated mechanisms in the host plants are shown in Table 1

(bacterial endophytes) and Table 2 (fungal endophytes).

These studies confirm that endophytes may increase the hosts’

tolerance to pathogens through diverse methods. In summary,

while endophytes invade plant tissues, they impact the

interactions between both the endophytes and the pathogens,

perhaps causing facilitation (positive stimulation of pathogens),

negatively reinforcing host resistance, or exhibiting merely no effect

(Suryanarayanan et al., 2009; Adame-Alvarez et al., 2014; Schmidt

et al., 2014). Nevertheless, it is unclear how endophytic

entomopathogenic fungi invade and are colonized; this requires

additional research for confirmation. Plants sense the information

signal of stresses and respond accordingly to activate specific

molecules to combat such stressors. Furthermore, the behavior of

a given plant species or cultivar may vary, plant responses are

frequently organ-dependent, and findings acquired with whole

plants are sometimes misleading.

6 Mechanisms mediating plant-
microbe interactions to alleviate
biotic-abiotic stresses

Plants have developed a multitude of physiological (membrane

integrity, organelle structural changes, osmotic adjustments,

photosynthesis, and respiration, cell and tissue survival,

reclamation, increased root-shoot ratio, increased root hair length

and density, photosynthates translocations, antibiosis,

hypersensitivity, etc.), biochemical (phytohormones synthesis,

proline, protein levels, increased chlorophyll accumulation, ACC-

deaminase production, antioxidant enzymes accumulation, ion

exclusion, generation of heat-shock proteins, protein

denaturation, membrane lipid saturation/unsaturation, synthesis

of allelochemicals. etc.), and cellular (sensing of stress signals,

signaling pathways, ROS generation, SAR, ISR, modulating

expression of stress-responsive genes and proteins, regulation of
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transcriptional factors, etc.) adaptive mechanisms to withstand

stressful environments (Figure 3). Endophytes live close

interactions with plants and penetrate host plants through their

roots, seeds, leaves, and stems to colonize their internal tissues.

During the initial phases of colonization, endophytes produce

exopolysaccharides (EPS), which aid in adhesion to the root

surface and shield them from oxidative damage (Wan et al.,

2012). During the fungal transmission of phosphate and nitrogen,

the AMF mycelial system mainly spreads around plant roots and

facilitates nutrient intake that promotes plant growth in adverse

circumstances. Moreover, by maintaining plants’ homeostasis,

endophytes diminish water stress damage and trigger regulons

like DREB2, stress-induced gene expression, better CO2 fixation,

starch and phenolics, HSPs generation, balancing carbohydrate

metabolism, disrupting plasmalemmas, and reinforced cell walls

to face of drought and temperature (heat and cold) and strengthen

the functioning of protective enzymes and osmosis delivering plants

more resilience plants to various abiotic stressors including

drought, waterlogging and salinity (Barka et al., 2006; Nakashima

et al., 2012; Raza et al., 2021a). Different strategies for enhancing salt

stress tolerance triggered by microbial inoculation are synthesis of

antioxidant enzymes, phytohormones, ACC-deaminase, volatile

organic compounds, osmoprotectant compounds (glycine,

proline, alanine, glutamic acid, threonine, serine, choline, betaine,

aspartate, and organic acids), altering ion transporters, resulting in

water, ionic, and osmotic homeostasis. They further strengthen

plant resistance to heavy metal toxicity through transport, cell wall

development, redox communication, and intra/extra-cellular

trapping. Most of these abnormalities in reaction to stressful

situations are attributed to the creation and dissemination

phytohormones in plants’ subterranean and aerial parts (Verma

et al., 2016; Arif et al., 2021). Phytohormones also operate as signal

molecules between endophytic microbes and plants, regulating

structural and morphological changes necessary for plant growth

and to accelerating total root biomass through expanding root

length and surface (Spaepen et al., 2007). For instance,

Sphingomonas sp. isolated from Tephrosia apollinea augment host

plant growth through IAA production (Khan et al., 2014),

Pseudomonas spadiceum lowers osmotic stress by producing GA

(Waqas et al., 2012) and Pseudomonas , Sphingomonas ,

Stenotrophomonas, and Arthrobacter sp. generate cytokinins that

perform an indispensable function in plants including apical

dominance, chloroplast development, cell growth and

transformation, senescence prevention, and plant-pathogen

interactions (De Hita et al., 2020). Endophytes, including

Rhizobium sp., Azospirillum brasilense, Burkholderia cepacia,

Acetobacter diazotrophicus, and Klebsiella oxytoca have the

potential of biological nitrogen fixation that supply alternate

nitrogen for farming (Kong and Hong, 2020). Additionally, some

endophytes, such as Pseudomonas fluorescens have the potential to

dissolve insoluble phosphates or to liberate organic phosphates

through the manufacturing of citric, malic, and gluconic acids

(Otieno et al., 2015). Endophytes are also successful in

bioremediation (Ayilara et al., 2023) through various methods,

such as reducing heavy metal stress (Zhang et al., 2012) and

removing dangerous greenhouse gases (Stępniewska and Kuźniar,
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TABLE 1 Biotic-abiotic stress tolerance and plant defense mechanism conferred by endophytic bacteria in host medicinal plants.

Endophytic microbes
Host
medicinal
plants

Stress type Plant defense mechanism References

Sinorhizobium meliloti Medicago sativa
(L.)

Drought FeSOD and CU/ZnSOD are up-regulated Naya et al.,
2007

Bacillus amyloliquefaciens,
Pseudomonas fluorescens

Mentha piperita
(L.)

Drought Enhance antioxidant enzymes (POX and SOD), total phenolic
content, decrease MDA and proline

Chiappero
et al., 2019

Azospirillum brasilense, Azotobacter
chroococcum

Mentha piperita
(L.)

Drought Improve ABA, proteins, SOD, phenolic, soluble sugars, flavonoid,
and oxygenated monoterpenes, while reducing the activity of
CAT and GPX

Asghari et al.,
2020

Fusarium oxysporum (EOLF-5) Endostemon
obtusifolius (E.
Mey. ex Benth.)
NE Br.

Drought Production of ammonia and siderophore, free radical scavenging
ability

Ogbe et al.,
2023

Acrocalymma aquatica Alternaria
alstroemeriae

Isatis indigotica
Fortune

Drought Via synergistic effects on soil enzymatic activities, organic matter,
root biomass, epigoitrin content

Li W. et al.,
2023

Pseudomonas putida, Klebsiella sp.,
Alcaligenes sp., P. cedrina

Medicago sativa
(L.)

Salinity Decrease accumulation of MDA, proline and H2O2 Tirry et al.,
2021

Enterobacter sp. SA187 Citrus (L.) Salinity Ethylene stimulation de Zélicourt
et al., 2018

Burkholderia phytofirmans Arabidopsis
Thaliana (L.)
Heynh.

Salinity Improve proline and modulate genes responsible for ABA
signaling (RD29,
RD29B), antioxidant linked(APX2), glyoxylate pathway (GYLI7),
reduce
expression of JA signaling gene (LOX2)

Pinedo et al.,
2015

Bacillus megaterium Arabidopsis
Thaliana (L.)
Heynh.

Salinity Enhanced CYP94B3 (linked with JA-Ile catabolism) Erice et al.,
2017

Bacillus amyloliquefaciens Arabidopsis
Thaliana (L.)
Heynh.

Salinity Up-regulation of genes responsible for antioxidant (POX and
GST), ET-signaling (ACS7, ACS11, ACS2, and ACS8), JA-
signaling (LOX), down-regulating ABA-signaling (NCED3, ABI1,
NCED4, and MARD1)

Liu et al., 2017

Brachybacterium paraconglomeratu
strain SMR20

Chlorophytum
borivilianum
Santapau &
R.R.Fern.

Salinity Deamination of ACC, delayed chlorosis and senescence, reducing
stress ethylene, modifying IAA and ABA levels, alteration of leaf
pigments, proline, malondialdehyde, and enhanced foliar nutrient
uptake

Barnawal et al.,
2016

Achromobacter xylosoxidans Catharanthus
roseus (L.) G.
Don

Salinity Increased germination percentage and root weight under saline
conditions

Karthikeyan
et al., 2012

Glutamicibacter halophytocola Limonium
sinense (Girard)
Kuntze

Salinity Improved tolerance to high NaCl concentration Qin et al., 2018

Streptomyces umbrinus EG1 and
Streptomyces carpaticus EG2

Iris persica L.
and Echium
amoenum Fisch.
& C.A.Mey.

Salinity Promotes root and shoot growth and chlorophyll content Oloumi et al.,
2023

Bacillus, Brevibacillus, Agrobacterium,
and Paenibacillus

Vicia faba L. Salinity By decreasing growth parameters and metabolic activities, and
increasingcproline content and of antioxidant enzymes activity

Mahgoub et al.,
2021

Bacillus subtilis,B. tequilensis, B.
licheniformis, B. sonorensis
Burkholderia sp., Acinetobacter pittii

Artemisia annua
(L.)

Water, drought,
and salinity

Improving artemisinin yield and content by siderophore
production, phosphate solubilization,
IAA production, ACC deaminase activity and nitrogen fixation

Tripathi et al.,
2020

Bacillus sp. strain NBRI HYL5,
NBRIHYL8, NBRIHYL9

Gloriosa superba
L.

Abiotic stress ACC deaminase activity, biofilm, phosphate solubilization, IAA,
exo-polysaccharide and alginate generation

Semwal et al.,
2023

Burkholderia phytofirmans strain
PsJN

Vitis vinifera (L.) Chilling Enhancement of chilling tolerance Barka et al.,
2006
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TABLE 1 Continued

Endophytic microbes
Host
medicinal
plants

Stress type Plant defense mechanism References

Burkholderia phytofirmans (PsJN) Vitis vinifera (L.) Cold Balancing carbohydrate metabolism Fernandez
et al., 2012

Bacillus sp. SLS18 Solanum nigrum
(L.), Phytolacca
acinosa Roxb.

Heavy metal
toxicity (Mn and
Cd)

Improving biomass and root tillers accumulation Luo et al., 2012

Pseudomonas koreensis AGB-1 Miscanthus
sinensis
Andersson

Heavy metal
toxicity (Zn Cd
As and Pb)

Through extracellular sequestration, increased Catalase and SOD
activities

Babu et al.,
2015

Serratia nematodiphila LRE07 Solanum nigrum
(L.)

Heavy metal
promoted
oxidative injury

Improving essential mineral nutrient uptake and antioxidative
enzymes activities

Wan et al.,
2012

Paenibacillus hunanensis strain
CIMAP-A4, BAC-7

Bacopa monnieri
(L.)

Heavy metal
toxicity (Arsenic)

IAA production and biofilm formation Tripathi P.
et al., 2022

Bacillus gaemokensis strain CIMAP-
A7

Andrographis
paniculata
(Burm.f.) Nees

Phytotoxicity
(Atrazine)

By reducing stress enzymes, proline, and malondialdehyde
accumulation

Tripathi et al.,
2021

Paenibacillus sp. Tridax
procumbens (L.)

Heavy metal
toxicity

Relieved heavy metal stress in plants Govarthanan
et al., 2016

Agrobacterium spp. and Bacillus spp. Pteris vittata (L.) Heavy metal
toxicity (Arsenic)

Reduced arsenate to arsenite Xu et al., 2016

Paenibacillus sp. Plantago asiatica
(L.)

Phytotoxicity
Polycyclic
aromatic
hydrocarbons
(PAHs)

Biodegradation of phenanthrene through co-metabolism Zhu et al., 2016

Klenkia, Modestobacter,
Sphingomonas

Lonicera japonica
thunb

Heavy metal-
toxicity

The toxic effects of Cd accumulation were synergistically
controlled by various plant metabolic defensive systems viz.,
detoxification routes and antioxidative processes

Xie et al., 2023

Pseudomonas strain E3 Solanum nigrum
L.

Heavy metal-
toxicity

By increasing cadmium (Cd) extraction via hyperaccumulator Chi et al., 2023

Pseudomonas fluorescence Olea europaea
(L.)

Disease Antagonism Mercado-
Blanco et al.,
2004

Penicillium citrinum LWL4,
Aspergillus terreus LWL5

Helianthus
annuus (L.)

Disease Modulation of antioxidants, defense hormones, and functional
amino acids

Waqas et al.,
2015b

Bacillus
amyloliquefaciens

Nicotiana
tobaccum (L.)

Disease Regulate expression of PPO, JA/ET signaling Jiao et al., 2020

Microbacterium sp. SMR1 Papaver
somniferum (L.)

Disease (Downy
mildew)

By protein modification, differential expression of transcripts
related to signal transduction, transcription factors, SA-dependent
defense pathway

Ray et al., 2021

Bacillus amyloliquefaciens Panax
notoginseng
(Burkill) F.H.
Chen.

Disease (Root-
rot)

Antagonistism Ma et al., 2013

Cohnella sp., Paenibacillus sp. and
Pantoea sp.

Centella asiatica
(L.) Urban

Disease
(Anthracnose)

Induction of plant defense mechanism, antagonism Rakotoniriana
et al., 2013

Bacillus amyloliquefaciens Ginkgo biloba
(L.)

Disease
(Phytophthora
blight)

Produced antibiotics and induced systemic resistance Yang et al.,
2014

Bacillus sp. Curcuma longa
(L.)

Disease Induced host disease resistance Jayakumar
et al., 2019
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2013). In heavy metal-contaminated soil, bacterial root endophytes

associated with the medicinal plant Festuca rubra produce

siderophores (hydroxamate and catechol) that accelerate host

plant development (Grobelak and Hiller, 2017).
Frontiers in Plant Science 14194
Biocontrol strategies by endophytic microbes exist directly

through pathogen control or indirectly utilizing systemic plant

resistance (Santoyo et al., 2016). They produce different kinds of

siderophores (phenolate, hydroxamate, carboxylate, etc.) to
TABLE 1 Continued

Endophytic microbes
Host
medicinal
plants

Stress type Plant defense mechanism References

Stenotrophomonas sp., Serratia
marcescens, Bacillus thuringiensis

Cornus florida L. Disease Activation of defense enzymes and PR proteins associated with
induced systemic resistance

Rotich and
Mmbaga, 2023

Bacillus amyloliquefaciens Nicotiana
tabacum L.

Disease By activation of JA/ET mediated
disease resistance

Jiao et al., 2023

Bacillus spp., Klebsiella aerogenes,
Pseudomonas fuscovaginae,
Enterobacter tabaci, Pantoea spp.,
Kosakonia spp.

Zingiber
zerumbet (L)
Smith

Disease Antagonism, biocontrol agents for soil-borne soft-rot disease
(Pythium spp.)

Harsha et al.,
2023

Bacillus velezensis Piper betle L. Disease Through induction of defense enzymes Manasa et al.,
2023

Peanibacillus lentimorbus B-30488 Nicotiana
tobaccum (L.).

Virus Targets antioxidant enzymes and PR genes Kumar et al.,
2016

Streptomyces sp. ES2, Streptomyces,
Nocardioides, and Pseudonocardia

Artemisia herba-
alba Asso, A.
judaica L.

Insect By producing metabolites that acts as natural biocontrol agents Diab et al., 2023

Bacillus subtilis, Myxormia sp. Angelica sinensis
(Oliv.) Diels

Pathogenic fungi Secretes some toxic chemicals harmful to pathogens viz.,
Fusarium oxysporum, F. Solani

Yang et al.,
2012

Bacillus subtilis LE24, B.
amyloliquefaciens LE109, B.
tequilensis PO80

Citrus (L.) Phytopathogen Pathogen biocontrol Daungfu et al.,
2019

Pseudomonas putida BP25 Piper nigrum (L.) Phytopathogen Suppression of pathogens Sheoran et al.,
2015

Bacillus velezensis
OEE1

Olea europaea
(L.)

Pathogenic fungi:
Verticillium
dahliae

Producing antifungal lipopeptides and
secondary metabolites

Azabou et al.,
2020

Phyllobacterium myrsinacearum Epimedium
brevicornu
Maxim

Phytopathogenes Antagonistism He et al., 2009

Stenotrophomonas maltophilia and
Bacillus sp.

Panax ginseng
C.A. Meyer

Phytopathogenic
fungi

Suppressed pathogen growth Hong et al.,
2018

Pantoea, Agrobacterium,
Pseudomonas, Bacillus sp.,
Colletotrichum sp., Trichothecium
roseum, Phomopsis liquidambari

Artemisia annua
L.

Phytopathogens Antagonistic activity Zheng et al.,
2021

Pseudomonas sp. SWUSTb-19 Aconitum
carmichaelii
Debx

Pathogenic fungi Antagonism, bio-control agent against southern blight Zou et al., 2023

Bacillus amyloliquefaciens SNMB1 Salvia
miltiorrhiza
Bunge

Phytopathogens
and salinity

Antifungal activity Mei et al., 2023

Kocuria rocea, Bacillus subtilis,
Brevibacterium casei, Actinobacterium
JS14 strain, B. Amyloliquefaciens, B.
velezensis

Curcuma longa
L.

Phytopathogens
and salinity

Antimicrobial properties, producing hormones viz., IAA, GA, CT
and secondary metabolites

Thankam and
Manuel, 2023

Clonostachys pseudochroleucha,
Parathyridaria percutanea,
Curvularia lunata

Dioscorea
bulbifera L.

Phytopathogens Phosphate solubilisation, siderophore, IAA, and HCN production,
amylase, lipolytic, protease, cellulolytic and chitinase activity

Sharma et al.,
2023
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TABLE 2 Biotic-abiotic stress tolerance and plant defense mechanism conferred by endophytic fungi in host medicinal plants.

Endophytic microbes
Host medicinal
plants

Stress type Plant defense mechanism References

Piriformospora indica Cymbidium aloifolium (L.)
Sw.

Drought and
pathogen

By synthesizing auxins and bioactive
compounds

Shah et al.,
2019

Trichoderma hamatum DIS 219b Theobroma cacao (L.) Drought Drought-induced adaptation in stomatal
closure and net photosynthesis

Bae et al., 2009

Paenibacillus polymyxa (EORB-2) Endostemon obtusifolius (E.
Mey. ex Benth.) N.E. Br.

Drought Production of ammonia and siderophore, free
radical scavenging ability

Ogbe et al.,
2023

Streptomyces dioscori SF1 Glycyrrhiza uralensis Fisch.
ex DC.

Drought,
salinity,
phytopathogens

Via production of ammonia, IAA, enzymes
activities, potassium solubilization, nitrogen
fixation

Li X. et al.,
2023

Sphingomonas paucimobilis ZJSH1 Dendrobium officinale
Kimura et. Migo

Drought, salt,
and heavy metal
toxicity

By hormones (IAA, SA, ABA and
zeaxanthin), phosphate cycle, antioxidant
enzymes, and polysaccharides

Li J. et al., 2023

Funneliformis mosseae, Rhizophagus
intraradices, Claroideoglomus etunicatum

Sesbania sesban (L.) Merr. Salinity Secrets phytohormones Abd Allah
et al., 2015

Yarrowia lipolytica Euphorbia milii Des Moul. Salinity By producing IAA, IAM (indole-3-acetamide),
phenol, and flavonoid

Jan et al., 2019

Chaetomium globosum, Botrytis sp. Chrysanthemum
morifolium (Ramat.)
Hemsl.

Salinity Increase POD activity and soluble protein
content

Liu et al., 2011

Glomus mosseae, G. microcarpum, G.
fasciculatum, G.intraradices, Gigaspora
margarita, and Gigaspora heterogama

Jatropha curcas (L.) Salinity By improving physiological parameters (leaf
relative water content, chlorophyll, proline,
and soluble sugar), antioxidant enzymes
(SOD, POD, APX, GR), and by reducing
oxidative damage to lipids

Kumar et al.,
2015

Arbuseular mycorrhiza, Penicillium griseofulvum Glycyrrhiza uralensis Fisch.
ex DC.

Water, drought,
and salinity

Improving the activity of protective enzymes
and osmotic levels

Wang et al.,
2009

Glomus tenue Lolium rigidum Gaud. Waterlogging By improving root length and other morpho-
physiological mechanisms

Orchard et al.,
2016

Piriformospora indica Capsicum annum (L.) Osmotic stress Encoding lipid transfer protein and ACC-
oxidase enzyme

Sziderics et al.,
2007

Curvularia protuberate Dichanthelium
lanuginosum (Ell.) Gould

Heat Mutualism Márquez et al.,
2007

Mucor sp. Arabidopsis arenosa (L.)
Lawalrée

Heavy metal-
induced
oxidative stress

Down-regulating catalase activity Domka et al.,
2019

Preussia africana, Bjerkandera adusta,
Schizophyllum commune, Alternaria embellisia,
Trichaptum biforme, Septoria malagutii, A.
consortiale, Verticillium dahliae, Fusarium
avenacearum, Trametes versicolor

Anthemis altissima L.,
Matricaria parthenium L.,
Cichorium intybus L.,
Achillea millefolium L., A.
filipendulina Lam.

Abiotic stress Produced the highest level of IAA-like
compounds which enhances seed germination

Hatamzadeh
et al., 2023

Epulorhiza sp. Anoectochillus formosanus
Hayata

Abiotic stress Strengthen enzyme activities which enhances
survival rate of seedlings

Tang et al.,
2008

Sclerotium sp. Atracty lancea (Thunb.)
DC.

Abiotic stress Improving the protection of cells from
desiccation and metabolism of the host,
enhancing survival rate of seedlings

Chen et al.,
2008

Colletotrichum tropicale Theobroma cacao (L.) Disease (frosty
pod rot, witches
broom, black
pod rot)

Antagonism Mejıá et al.,
2008

Epulorhiza sp. AR-18 Anoectochilus roxburghii
(wall.) Lindl

Disease Production of siderophore Arora et al.,
2001

(Continued)
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converse security against pathogens (Rajkumar et al., 2010).

Competition for habitats and food resources, the formation of cell

wall-degrading enzymes, lytic enzymes, antibiotic compounds, the

commencement of ISR, and the quenching of pathogens’ quorum

sensing, among some of the other mechanisms (Rajesh and Rai,

2014). The majority of endophytes are recognized for synthesizing
Frontiers in Plant Science 16196
secondary metabolites, notably phenols, terpenoids, alkaloids,

flavonoids, steroids, and peptides, which have potent antifungal

and antibacterial effects and restrict the spread of harmful

pathogens. There have been numerous reports of endophytes

producing a variety of lytic enzymes, including chitinase, amylase,

proteases, cellulose, and hemicelluloses (Bodhankar et al., 2017).
TABLE 2 Continued

Endophytic microbes
Host medicinal
plants

Stress type Plant defense mechanism References

Colleto trichum gloeosporioides,
Trichoderma tomentosum, Colletotrichum
godetiae, Talaromyces amestolkiae

Cremastra appendiculata
(D.Don) Makino

Disease Antagonism, production of IAA,
siderophores.and b-1,3-glucanase, proteolytic
activity, chitinase and cellulose synthesis

Wang et al.,
2023

Colletotrichum acutatum Angelica sinensis (Oliv.)
Diels

Disease Antimicrobial, antioxidant, and anti-
proliferative properties

Yehia, 2023

Leucocoprinus gongylophorus Cordia alliodora Cham. Insect Release some toxins, antagonism Bittleston et al.,
2011

Chaetomium cochliodes, Cladosporium
cladosporioides, Trichoderma viride

Cirsium arvense (L.) Scop. Insect Release some toxic chemicals harmful to
pathogens

Gange et al.,
2012

Beauveria bassiana, Lecanicillium dimorphum,
L. cf. Psalliotae

Phoenix dactylifera (L.) Insect Regulate cell division-related proteins
expression in the host

Gómez-Vidal
et al., 2009

Penicillium citrinum LWL4, Aspergillus terreus
LWL5

Helianthus annuus (L.) Insect Salicylic and jasmonic acid pathways Waqas et al.,
2015a

Penicillium rubens (150 strains) Picea glauca
(Moench) Voss

Insect Release toxic chemicals Sumarah et al.,
2010

Epichloë coenophiala AR584 Lolium arundinaceum
(Schreb.)

Biotic
(Herbivore
attack)

Stoichiometry, secretion of certain alkaloids
which provide anti-herbivore defences

Johnson et al.,
2023

Paraphaeosphaeria sp. Vaccinium myrtillus Pathogenic fungi Flavonoid biosynthesis and degradation Koskimäki
et al., 2009

Choiromyces aboriginum, Stachybotrys elegans,
Cylindrocarpon

Phragmites australis (Cav.)
Steud.

Pathogenic fungi Produce cell wall-degrading enzymes to kill
pathogenic fungi

Cao et al., 2009

Gilmaniella sp. AL12. Atractylodes lancea
(Thunb.) DC.

Pathogenic fungi Production of JA-inducing defense responses Ren and Dai,
2012

Chaetomium globosum L18 Curcuma wenyujin
Y.H.Chen & C.Ling

Pathogenic fungi Produce some toxic chemicals harmful to
pathogens

Wang et al.,
2012

Trichothecium roseum Maytenus hookeri Loes. Pathogenic fungi Release “trichothecin” toxic to
phytopathogens

Zhang et al.,
2010

Phomopsis cassia Cassia spectabilis DC. Pathogenic fungi Produce cadinane sesquiterpenoids toxic to
pathogens

Silva et al., 2006

Cryptosporiopsis cf. quercina Triptergyium wilfordii
Hook. f.

Pathogenic fungi Produce cryptocin and cryptocandin toxic to
pathogens Pyricularia oryzae

Strobel et al.,
1999

Penicillium chrysogenum Pc_25, Alternaria
alternata Aa_27

Asclepias sinaica (Bioss.) Pathogenic
microorganisms

Synthesizing extracellular enzymes viz.,
amylase, pectinase, xylanase, cellulase,
gelatinase, and tyrosinase.

Fouda et al.,
2015

Talaromyces trachyspermus Withania somnifera (L.) Phytopathogenes Via antagonistic activity to pathogens and
enhancing IAA, phosphate solubilization, and
siderophore synthesis

Sahu et al.,
2019

Diaporthe sp. CEL3, Curvularia sp. CEL7 Chloranthus elatior Sw. Pathogenic fungi Synthesized volatile and non-volatile
compounds, soluble antifungal metabolites

Santra and
Banerjee, 2023

Pestalotiopsis sp., Neopestalotiopsis parvum and
Hypoxylon investiens

Taxillus chinensis (DC.)
Danser

Pathogenic fungi Antifungal activity Song et al.,
2023

Enterobacter, Microbacterium, Pseudomonas,
Rhizobium, and Streptomyces

Viola odorata L. Phytopathogenes Synthesis of antimicrobial and antioxidant
products, free radical scavenging capacity

Salwan et al.,
2023
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Lytic enzymes are critical for establishing endophytes in host cells

by the formation of protein biofilms as well as polysaccharides,

which lend phytopathogens’ cell walls structural rigidity (Limoli

et al., 2015). Nevertheless, it is also beneficial in managing plant

diseases through cell wall breakdown while causing cell death (Cao

et al., 2009). The virulence-associated factors, viz., biofilm creation,

toxin synthesis, antibiotic resistance, and secretions of degradative

exoenzymes, are closely governed by quorum sensing. Several

pathogenic microbes, Pseudomonas and Ralstonia, effectively

employ acylated homoserine lactones for communication, causing

significant crop damage (Mansfield et al., 2012). In order to prevent

infection, the antiquorum sensing mechanism could be employed

(Chen et al., 2013). Moreover, once a pathogen attacks, the inherent

immune system is triggered, which blocks the pathogen’s invasion

and stops its spread. It is an early defense system against

phytopathogens, which involves physical barriers like trichomes,

stiff cell walls, and waxy cuticles. Plants release exudates from their

roots, comprising proteins, amino acids, and organic acids, which

interact among the host plant and endophytes (Kawasaki et al.,

2016; Shen et al., 2019; Inbaraj, 2021). Hyperparasitism is a novel

biocontrol mechanism where the parasitic host is a plant pathogen;

probably the most common hyperparasite is a well-known

necrotrophic mycoparasite called Trichoderma species that feeds

on host mycelium (Qualhato et al., 2013).

In summary, plant-microbe interactions are an efficient, eco-

friendly way for plants to cope with severe environmental

conditions. Plants evolved multifaceted relationships with diverse

groups of microbes to combat biotic-abiotic stresses. Generally,

microbes stimulate plant growth by optimizing the physiology and

metabolism of the host through different mechanisms. The
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symbiosis relationships of microbes on host plants might

encourage their recruitment through responsive feedback

regarding plant health. Endophytes strengthen crop yield by

promoting plant growth via regulating nutrient supply and

metabolism, enhancing abiotic stresses (heat, drought,

waterlogging, salinity, metal-toxicity etc.) tolerance by generating

phytohormones, osmotic adjustment, photosynthesis, and

respiration rate while controlling biotic stresses (phytopathogens)

through antibiosis, SAR, ISR, competition with pathogens,

hyperparasitism, and synthesizing toxins and currently extensively

utilized in sustainable agriculture. The mechanism strategies

whereby endophytic microbes promote plant growth and control

phytopathogens, resulting in increased yields, have been

schematically illustrated in Figure 4.
7 Hormonal signaling and crosstalk to
mitigate biotic-abiotic stresses

Plants’ defense mechanism is influenced by many factors,

primarily genetic makeup and the physiological condition of the

plant. Each cell in a plant’s defense system has figured out how and

where to respond to stressors, thereby creating an inherent

immunity. Among these strategies, phytohormones substantially

impact plants’ ability to endure stresses. Generally, cytokinins,

gibberellins (GAs), and auxins (IAAs) are linked to plant growth

and development, whereas ET, JA, and SA are related to plant

defense (Koo et al., 2020; Hossain et al., 2021). GAs and IAAs play a

significant role in abiotic and biotic stress tolerance, whereas ET, JA,

and SA promote abiotic stress tolerance (Kazan, 2013; Santino et al.,
FIGURE 3

Physiological, biochemical, and cellular responses to mitigate biotic and abiotic stresses.
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2013; Colebrook et al., 2014). When carried directly to the

appropriate cells or transmitted to distant tissues, these hormones

influence various physiological networks at low concentrations,

increasing resistance to environmental stresses (Colebrook et al.,

2014). A comprehensive phytohormone network’s tweaking enables

plants to respond in a balanced way to developmental and

environmental stimuli.
7.1 Ethylene signaling

ET, the gaseous phytohormone, has diversified functions in

plants, including cell division and elongation (Love et al., 2009),

apical dominance (Yeang and Hillman, 1984; De Martinis, 2000),

senescence and abscission (Pierik et al., 2006), flowering (Ogawara

et al., 2003; Wang et al., 2013), fruit ripening (Barry and

Giovannoni, 2007), breaking seed dormancy and promoting seed

germination (Corbineau et al., 2014; Wang et al., 2018; Ahammed

et al., 2020), as well as a critical role in programmed cell death

(Bouchez et al., 2007). It is a crucial player in both harmful and

advantageous plant-microbe interactions (Pierik et al., 2006;

Schaller, 2012; Ravanbakhsh et al., 2018; Liu et al., 2019), either

through interactions with other phytohormones (Leon-Reyes et al.,

2009; Leon-Reyes et al., 2010; Zander et al., 2010) or by controlling

the expression of ethylene-responsive genes (Broekaert et al., 2006;

Teixeira et al., 2019). Since many biotic and abiotic perturbations

influence plants’ physiological and developmental processes, ET

synthesis plays a pivotal role in the plant’s adaptation to these

environmental threats (Arraes et al., 2015; Sun et al., 2016; Fröhlich
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et al., 2023). The sensing of ET signaling occurs at the endoplasmic

reticulum membrane, triggering a signaling cascade that controls

the transcription of ethylene-responsive genes in the nucleus via

ERFs (ethylene-responsive factors) (Ju and Chang, 2015). However,

the ET-signaling pathway in Arabidopsis is negatively regulated by

the ET-receptors viz., ethylene response sensors (ERS1, ERS2),

ethylene response (ETR1, ETR2), and ethylene insensitive4

(EIN4) (Liu and Wen, 2012). These ET-receptors stimulate

constitutive triple response1 (CTR1) in the absence of ET-

signaling, which restricts EIN2, a positive regulator of ET-

signaling, through phosphorylating EIN2 ’s C-terminus.

Conversely, the presence of ET renders the ET receptors inactive,

thereby prevent ing CTR1 ac t iva t ion . Subsequent ly ,

dephosphorylated and cleaved EIN2 C-terminus (CEND) reaches

the nucleus, where it stimulates the function of ethylene-

insensitive3/ethylene-insensitive3-like1 (EIN3/EIL1), which

modulates the expression of ethylene-responsive genes like ERFs.

ERFs constitute transcription factors (TFs) with AP2domains that

control various genes associated with stress tolerance, growth,

development, and hormone-related pathways (Chen et al., 2010;

Shakeel et al., 2015; Zhao et al., 2021).

The up-regulation of ET-biosynthesis genes following

interactions with advantageous microbes reveals that ET-signaling

is activated not only in response to pathogenic microbes but also to

helpful endophytic microbes before they are recognized as friends,

possibly to optimize the colonization of adequate levels of beneficial

microbes (Ravanbakhsh et al., 2018; Eichmann et al., 2021). Owing

to inherent physiological reactions to abiotic stressors, plants can

instantly produce an enormous amount of ET, which helps the

plants to withstand external challenges, but it can also jeopardize

growth and development, thereby reducing crop yield and

productivity since increased ET levels can cause senescence,

abscission, and chlorosis. Research on plant growth-promoting

rhizobacteria (PGPR) has shown that they can prevent soil-borne

pathogen infections in plants in an ET-dependent way.

Furthermore, beneficial microbes can stimulate ISR and SAR in

plants to control diseases (Ton et al., 2001).
7.2 Salicylic acid signaling

SA, a key phytohormone, has crucial physiological and cellular

impacts on plants, including membrane permeability and

photosynthetic metabolism, and absorption and transport of ions

during stress (Noreen et al., 2009). Furthermore, SA is recognized to

outwit various abiotic stresses like ROS, pathogens attacks, drought,

and salinity (Hara et al., 2012). Additionally, it regulates plant

responses to infection by diversified pathogens, viz., bacteria, fungi,

viruses, etc. (Fujita et al., 2006; Loake and Grant, 2007), and is

necessary for developing resistance strategies like host cell death,

ISR, and SAR. The expression of various genes, including those

encoding PR-proteins (pathogenesis-related proteins), might be a

mechanism whereby SA induces stress tolerance (Nakashima et al.,

2009). The cytoplasm contains an oligomer of NPR1, a crucial

regulator of SA-induced plant resistance. Once a disease has

occurred, it monomerizes and transports to the nucleus,
FIGURE 4

Schematic representation of the endophytes mediated mechanisms
in biotic-abiotic stress amelioration in plants. The figure depicts
endophytes boosting crop yield through enhancing abiotic stress
tolerance by promoting plant growth via regulating nutrient supply
and metabolism, phytohormones, osmotic adjustment,
photosynthesis, and respiration rate while controlling biotic stress
(phytopathogens) through antibiosis, SAR, ISR, competition with
pathogens, hyperparasitism, and synthesizing toxins.
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activating a series of genes involved in pathogenesis (Kinkema et al.,

2000). But in normal plants, Cys156’s S-nitrosylation, which

prevents its monomerization, controls the oligomer to monomer

switch. Following infection, nitrous oxide (NO) accretion causes the

Arabidopsis thaliana SA-binding protein 3 (ATSABP3) to become

S-nitrosylated at Cys280, which reduces the protein’s capacity to

bind to SA and inhibits its carbonic anhydrase function (Wang F.

et al., 2019). In contrast, S-nitrosylation regulates SAR by focusing

on the NPR1/TGA1 system. As mentioned earlier, SA activates

thioredoxin (TRX), which helps denitrosylate NPR1 so that it may

be monomerized throughout the plant immune response

(Kneeshaw et al., 2014). This facilitates NPR1 to enter the nucleus

and interact with the primary leucine zipper transcription factor

TGA, which in turn makes it easier for TGA to bind to the gene-

expression promoters. Upon sensing and detecting stimuli of

stresses, mitogen-activated protein kinase (MAPK) cascades are

triggered that regulate the stress-modulatory systems and are

responsible for the signaling of diverse cellular activities under

different stressors (Brader et al., 2007). SA facilitates the activation

of MAPK pathways driven by pathogen infection and the

subsequent production of PR genes for host defense (Xiong and

Yang, 2003). Following MPK3 phosphorylation, the Arabidopsis

protein VIP1 is translocated into the nucleus and functions as a

covert inducer of PR1 genes (Pitzschke et al., 2009). Similarly,

MAPKs such as MPK3, MPK4, and MPK6 are confronted with

different stresses (Ichimura et al., 2000; Gudesblat et al., 2007).

Moreover, pathogen-associated molecular patterns (PAMPs), such

as flagellin, activate MAPK cascades to develop pathogen response

signaling (Chinchilla et al., 2007). In addition to interacting with

ABA-signaling pathways and ROS to improve plant defense, MAPK

cascades also play a crucial role in modulating cross-tolerance

(Miura and Tada, 2014; Zhou et al., 2014).
7.3 Jasmonic acid signaling

JA is another hormone crucial for eliciting responses against

various biotic and abiotic perturbations by triggering plant defense

signaling systems (Berendsen et al., 2012; Broekgaarden et al., 2015;

Wang J. et al., 2020; Yadav et al., 2021). It is ubiquitously present in

plants, having multiple regulatory functions, notably root growth

inhibition (Han et al., 2023), axis elongation and root formation

(Huang P. et al., 2019), leaf senescence (Wang T. et al., 2020),

stomatal opening (Suhita et al., 2003), and flower formation (Niwa

et al., 2018). Research findings have shown that JAs boost plant

growth and development and various adverse environmental

circumstances using JA-signaling pathways. Microbe-associated

molecular patterns (MAMPs), damage-associated molecular

patterns (DAMPs), and herbivore-associated molecular patterns

(HAMPs), which are predominantly derived from attacking

organisms, cell damage, and abiotic stresses, are some plant-

environment interaction models linked to JA-signaling pathways

(Newman et al., 2013; Basu et al., 2018; Hou et al., 2019). The most

functional JAs in plants’ cells is jasmonyl isoleucine (JA-Ile); however,

under normal conditions, its concentration is relatively low (Fonseca

et al., 2009). It is recognized that the formation of JA-Ile in plant
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leaves during stressful situations serves as a physiological defensive

system. Jasmonates are transported to the apoplast and nucleus from

the cytoplasm by JA-transfer protein1 (JAT1), located in both cell and

nuclear membranes (Wang Y. et al., 2019). Even in distant regions,

the presence of JAs in the apoplast triggers the JA-signaling system,

and the signals are sent to neighboring cells via the vascular bundles

and air transmission (Thorpe et al., 2007). Different JAs synthases are

localized in the sieve component of vascular bundles, which enables

the re-syncretization of JAs throughout their movement (Heil and

Ton, 2008). The biosynthesis of the JA precursor 12-oxo-PDA

(OPDA) in the phloem sieve component has confirmed the theory

of re-synthesis. Owing to the reduced level of JA-Ile under normal

situations, specific transcription factors (TFs) are unable to activate

the promoters of jasmonates-responsive genes. Owing to the reduced

level of JA-Ile under typical conditions, specific transcription factors

(TFs) cannot trigger the promoters of jasmonates-responsive genes.

The expression of the jasmonates sensitive genes is inhibited by

the efficient transcriptional repression complex, composed of the

proteins rendering and the putative JAZ (jasmonate-zim domain)

interactor. This complex is further activated by histone deacetylase

6 (HAD 6), which closes the open complex (Hause et al., 2003).

Thirteen JAZ proteins from Arabidopsis have been identified to

contain the main ZIM domain and the C-terminal JA-associated

domain. Different parts of JAZ proteins promote protein complexes

(Gimenez-Ibanez et al., 2015). JAZ links with TFs and NINJA

(novel interactor of JAZ) [comprising ethylene-responsive element

binding factor associated with amphiphilic repression (EAR) motif

and recruits TPL (topless)] to form the JAZ-NINJA-TPL repressor

complex (Pauwels and Goossens, 2011). The amino acid sequence,

JAZ degron, known as JAZ degron seems to have a bipartite

structure with a loop and amphipathic alpha hexyl that bind

coronatine or JA-Ile and coronatine insensitive 1 (COI1),

respectively (Sheard et al., 2010). SKP1 (Suppressor of

kinetochore protein1) and SCF (cullin-F-box) create the

ubiquitin-proteasome complex. Establishing an SCF-type E3

ubiquitin ligase is the outcome of the interaction between SKP1

and cullin with the F-box protein. In stressful conditions, this F-box

protein COI can identify the JA-Ile and deliver it to the nucleus. JA-

Ile facilitates JAZ and COI1 communication inside the SCF

complex, with inositol pentakisphosphate functioning as a

cofactor in the formation of the CO1-JAZ co-receptor complex

(Mosblech et al., 2011). JAs-mediated defenses are modulated by

the proteasome-mediated degradation of the JAZ protein and the

release of transcription factors (TFs) under environmental

perturbations. According to Qi et al. (2011), there is solid proof

that the expression of the genes that respond to jasmonates is

primarily dependent on the linkage of transcription factors (TFs)

with JAZ repressors.
7.4 Crosstalk between ethylene, jasmonic
and salicylic acid

Hormonal signaling crosstalk triggers plants to develop certain

specific traits that make them tolerant against the plethora of biotic

and abiotic stresses via distinct molecular pathways with a complex
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network of regulatory interactions (complementary, antagonistic,

and or synergistic). Specifically, ET modulates plant defense by

controlling the levels of JA and SA (Leon-Reyes et al., 2009; Zander

et al., 2010). In such defense responses, ET and JA act synergistically

(Penninckx et al., 1998; Zhu, 2014), nevertheless, it has also been

reported that they mutually antagonize functions of each other in

some specific circumstances (Turner et al., 2002; Bodenhausen and

Reymond, 2007). Lorenzo et al. (2003) documented that the ERFs

integrate signals from ET and JA. Eventually, other prominent

genes that are expressed following the detection of ET and JA

include PDF1.2, POTLX3, ACS (ethylene synthesis gene), THI2.1

(thionin), PR-3 (chitinase), PR-4 (hevein-like protein), PR-6

(proteinase inhibitor), and PR-9 (peroxidase) (Kolomiets et al.,

2000; Norman-Setterbald et al., 2000; Kondo et al., 2007; Chen

et al., 2009). However, ET shows antagonistic effects with SA, and

they can both suppress each other’s biosynthetic pathways. The

direct interaction between NPR1 and EIN3 prevents the

transcription of genes activated by EIN3, a crucial element of SA

signaling (Huang P. et al., 2019). As a result, EIN3 and EIL1 bind

directly to the SID2 promotor, decreasing pathogen-induced SA

production and increasing disease susceptibility in host plants

(Chen et al., 2009).

Likewise, it is quite interesting that the crosstalk between the

antagonistic pathways of hormones JA and SA also results in plant

tolerance to various stresses. Several genes, including MYC2, plant

defensin 2.1 (PDF2.1), TGAs, MAPK, NPR1, ERF1, WRKY62,

WRKY70, glutaredoxin 480 (GRX480), and octadecanoid-

responsive Arabidopsis (ORA59), play a critical role in JA-SA

inter-modulation (Wang et al., 2021). Three NAC (TF family)

genes-ANAC019, ANAC055, and ANAC072 interact with MYC2

in different ways to prevent SA accumulation. These TFs also

regulate the expression of genes that produce SA. GRX480

preferentially binds to TGAs, modulating PR1 gene expression,

and MPK4 controls GRX480 positively (SA-signaling pathway),

while MYC2 is negatively regulated (JA-signaling pathway).

However, GRX genes can prevent the activation of the JA

response gene ORA59 (Wang et al., 2020). The hormonal changes

between interactions of JA and SA enhance plants’ tolerance against

chilling, drought, and oxidative stress. Methyl jasmonate (MeJA)

possesses excellent permeability to cell membranes than JA and is

very volatile by nature, and it might quickly diffuse nearby plants

(Munemasa et al., 2011). External MeJA supplementation controls

the formation of ROS and the immune systems by promoting

antioxidant enzyme activity in Panax ginseng (Wahab et al., 2022).

Following stress sensing, plants rapidly generate ROS (Wojtaszek,

1997; Foyer and Noctor, 2005). Furthermore, the plant meticulously

regulates ROS synthesis to prevent tissue damage (Vinocur and

Altman, 2005; Mittler et al., 2011; Bhattacharjee, 2008). It has been

recognized that although higher levels of ROS are toxic and harmful

to organisms and can cause permanent cell death, its lower levels are

primarily responsible for controlling stresses. Perhaps ROS could be

the critical factor facilitating cross-tolerance between biotic and

abiotic stress-responsive stimuli (Choudhury et al., 2013; Kissoudis

et al., 2014). A diagrammatic representation of ET, JA, and SA

signaling cascade and pathway genes for biotic and abiotic stress

tolerance is illustrated in Figure 5.
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8 Endophytic microbes as
biostimulants in sustainable
agriculture

8.1 Benefits

Endophytes are an array of ubiquitous microorganisms that

inhabit different niches in plant tissues. In addition to the fact that

endophytic microbes can help plants to lessen the negative effects of

abiotic stresses, research has shown that endophytes have functional

traits with linked detrimental impacts of environmental factors on

the continued existence and development of susceptible plant

species by synthesizing bioactive compounds, triggering resistance

that results from gene expression, and altering the metabolism of

certain enzymes. They can inhibit the growth of phytopathogens via

the production of antifungal compounds, thereby augmenting crop

yields by facilitating plants to acquire nutrients while synthesizing

phytohormones. Moreover, they reduce heavy metal stress,

eliminate hazardous greenhouse gases, and degrade PAHs in the

bioremediation process (Stępniewska and Kuźniar, 2013).

Additionally, in recent years, endophytes have gained more

recognition for their use in the phytoremediation of a range of

environmental pollutants and could be helpful in developing

effective cleanup systems (McGuinness and Dowling, 2009;

Weyens et al., 2009; Segura and Ramos, 2013; Anyasi and

Atagana, 2018; Adeleke et al., 2022). The diversity of endophytes,

their ability for stress adaptation, and their synthesis of metabolites

make them an endless supply of novel metabolites that can reduce

harmful chemicals in agriculture. To illustrate, several studies have

reported the beneficial effects of microbial endophytes on a wide

range of medicinal plants, includingWithania somnifera, Artemisia

annua, Papaver somniferum, Cymbidium aloifolium, Salvia

miltiorrhiza, Catharanthus roseus, Bacopa monnieri, Nicotiana

tobaccum, Andrographis paniculata, Chlorophytum borivilianum,

Panax ginseng, Panax notoginseng, Curcuma longa, Curcuma

wenyujin, etc. (Meng and He, 2011; Karthikeyan et al., 2012;

Wang et al., 2012; Ma et al., 2013; Barnawal et al., 2016; Kumar

et al., 2016; Hong et al., 2018; Jayakumar et al., 2019; Sahu et al.,

2019; Shah et al., 2019; Jiao et al., 2020; Ray et al., 2021; Zheng et al.,

2021; Mei et al., 2023; Salwan et al., 2023; Sharma et al., 2023; Song

et al., 2023; Wang et al., 2023; Zou et al., 2023). Thus,

unquestionably, these endophytes have demonstrated tremendous

potential as a green and eco-friendly alternative for boosting food

production in sustainable agricultural systems.
8.2 Potential applications

Biostimulants are a class of substances or microbes derived

from natural resources that are applied to soil or plants to boost

crop yield and quality by stimulating plants’ biological processes or

enriching the soil microbiome for better nutrition and stress

tolerance. Biostimulants have emerged as a boon for sustainable

agriculture because they significantly accelerate the process of

agronomic trait advancement in plants without jeopardizing yield,
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quality, or biodiversity. In recent years, endophytic microorganisms

have been thoroughly explored for the possibility of being utilized as

biostimulants for minimizing the usage of harmful chemicals in

agriculture, thereby fulfilling the WHO’s envisioned sustainable

development goals while ensuring food and nutritional security

(Omotayo and Babalola, 2020). To exemplify, investigations using

endophytic microorganisms have demonstrated their potential roles

as biostimulants (Kumar et al., 2015; Wani et al., 2016; Hashem

et al., 2017; Vyas et al., 2018; Saia et al., 2021; Tharek et al., 2022),

biofertilizers (Arora and Mishra, 2016; Santoyo et al., 2016),

biopesticides (Gange et al., 2012; Waqas et al., 2015a; Lugtenberg

et al., 2016), and biocontrol agents (Hashem et al., 2017; Halecker

et al., 2020; Jiao et al., 2020). Likewise, da Silva et al. (2017)

developed an inexpensive and efficient biostimulant formulation

made with endophytic diazotrophic bacteria and humic acids that

boosts crop production while ensuring the finest use of fertilizers.

Considering the practical implications, microbial formulations

promote plant growth and development by restoring soil

minerals, improving plant nutrient uptake, or making nutrients

easily accessible (Bashan et al., 2014; Mishra et al., 2015). In

addition, they also affect the host’s other beneficial effects, such as

osmotic adjustment, stomatal regulation, shaping root architecture,

and adjustment of nitrogen accumulation and metabolism

(Compant et al., 2005). Bioinoculants facilitate seed treatment by

distributing inoculants evenly over seeds, causing systemic acquired
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resistance (Ma, 2019), and assisting in bioremediation using a

metabolic engineering approach (Dangi et al., 2019). In terms of

agrochemical and metal pollutants solubilization, bioabsorption,

and mineralization, endophytes have also proven effective in

environmental remediation (Gavrilas ̧ et al., 2022). Studies have

advanced further the potential implementation of microorganisms

as traditional biological control agents (BCAs) by inundating

inoculation in plants. Tahir et al. (2017) found that Bacillus

subtilis volatiles negatively impact Ralstonia solanacearum’s

physiology and ultrastructure and elicit systemic resistance in

tobacco against bacterial wilt. The best characterized and most

frequently microbial endophytes in biological control programs are

Beauveria bassiana and Metarhizium anisopliae have antagonistic

activities on plant pathogens via an array of mechanisms, including

the synthesis of metabolites (volatile compounds, antibiotics, and

enzymes), competition, parasitic relationships, triggering systemic

resistance by the plant, and improvements in plant growth (Vidal

and Jaber, 2015; Vega, 2018; Moraga, 2020; Baron and Rigobelo,

2021). In another study, endophytes frequently assist plants in

reinforcing their defense mechanisms by facilitating the stimulation

of induced systemic resistance, which occasionally overlaps with

those of acquired systemic resistance, considering both of themmay

foster the growth and development of plants (Busby et al., 2016) and

protect against phytopathogens (Chadha et al., 2015). Therefore,

implementing microbial formulations as biocontrol or biofertilizers
FIGURE 5

Signaling pathways and regulatory genes to mitigate biotic and abiotic stresses. This figure show a simplified depiction of biotic/abiotic stress-
induced signaling pathways like jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) signal transduction and their cross-talk with each other. JA
has a central hub position acting with ET and SA. ET, in turn, primarily regulates SCF biosynthesis, transport, and signaling, which is crucial for
establishing other genes, like ORA59, ORA37, ERF1, AtMMYC2, and WRKY70, and activation of downstream signaling genes for resistance to different
type stresses. Furthermore, a cascade of early (primary) and late (secondary) genes is activated in response to pathogen and insect-induced damage.
Genes of herbivory resistance, plant disease resistance, JAs, and endogenous signaling molecules are not only involved in the pathogen resistance
mechanism of plants but also have an apparent defensive effect on necrotrophic pathogens. Significant changes in defensive enzymes and
secondary metabolites occur, which play essential roles in plant resistance against pathogens. CEV1, Cellulose synthase family protein; WIPK,
wound-induced protein kinase; OPDA, 12-oxo-PDA; SCFCOI1, (Skp, Cullin, F-box containing complex); ORAs, octadecanoid-responsive Arabidopsis;
ERFs, ethylene-responsive genes, AtMYC2, Arabidopsis thaliana MYC2; VSP1, vegetative storage protein1; LOX2, lysyl oxidase-like 2; THI2.1, thionin
2.1; PDF2.1, plant defensin2.1; HEL=, AP2: adipocyte protein 2, EREBPs, ethylene-responsive element binding proteins; MYBs, Myeloblastosis; CBF,
C-repeat binding factors; DREBs, dehydration responsive element binding protein; HSF4/21, heat shock factor protein, GST, plant glutathione S-
transferases; RLKs, receptor-like kinases; TRP, transient receptor potential; Rd, responsive to desiccation, Kln, kallikreins; Cor15b, cold-
responsive15b.
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might be an effective alternative to the overuse of agrochemicals.

Perhaps the most environmentally and farmer-friendly step toward

sustainability might be developing consortia from aspiring

endophytic strains from native agricultural fields, resulting in

multifaceted bio-solutions.
8.3 Challenges

Despite the widespread interest in endophyte research, there are

still certain challenges in designing efficient microbial formulations,

such as:
Fron
i. Endophytes are tissue-specific; identifying suitable host

plants, their healthy tissues or organs is critical.

ii. Isolating novel endophytes and investigating the relevant

complementary or antagonistic signaling pathways

during symbiosis.

iii. Pecularity of microbial consortia in terms of their modes

of action. Some endophytes have aseptic or uncultivable

properties, making synthetic cultivation challenging.

Therefore, developing new bioengineering systems or

modifying traditional isolation methods is crucial.

iv. The biological constraint still exists even though some

endophytes’ facultative nature offers the possibility of

continued colonization, provided they can survive in

the rhizosphere.

v. The interactions of microbial biostimulants with the

micro-climate (temperature, pH, water, humidity,

nutrients, etc.), host plants (defense system and

exudates), and native microbes should also be considered.

vi. The inoculants’ concentration, functionality, and

survivability during storage as well as maintaining

sterility, are critical for designing efficient formulations.

vii. Limitation of biological adjuvants as bio-careers.

viii. Artificially inoculated endophytes may begin acting as

latent pathogens by disseminating toxins through the

food chain.

ix. The potential of exogenously applied endophytic

microbes to establish a habitat beneficial to both entities

is contingent upon their ability to compete successfully

with native microbes. Thus, inoculating crops with

consortia rather than a single strain will increase their

persistence.

x. Licensing/registration of formulations before arriving on

the market is complicated.
Screening of endophytic microbes in a greenhouse, either solely

or in combined applications, has proven to be efficient in

maximizing crop yields. Designing formulations with high

microbial concentrations and survivability is crucial for

developing potent biostimulants. However, finding the most

critical factors and ensuring sterility during the formulation

process is challenging because testing every possible combination

is not feasible. Therefore, the commercial success of endophyte-

based biostimulants requires a comprehensive knowledge of
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molecular plant-microbe interaction, methods of transmission,

and strategies for establishing a symbiotic relationship between

the endophyte and host plant. The research efforts aimed at

discovering microbial biostimulants are beginning, which might

result in significant advancement in this emerging field. In modern

agriculture, methods to increase the use of endophytic

microorganisms are desired to use these microbes alone or in

combination with bioprospecting as bioinoculants in crop

systems. The most effective methods for using endophytic

microorganisms in agriculture have not yet been identified.

However, applying endophytes as seed dressings or directly into

the soil is the most frequent and common method utilized by

farmers. Meanwhile, the implementation of these endophytes-based

inoculations is unsuccessful on field sites owing to issues with the

endophytes’ establishment.

Therefore, the manifold characteristics of endophytes make

them possible alternatives to harmful agrochemicals, and thus,

they are now being utilized more frequently throughout the

world. Endophyte-based biostimulants are cost-effective, preserve

natural soil microbiota, have few or no hazardous byproducts,

enrich soil organic matter, and ensure ecosystem sustainability.

Utilizing improved microbial inoculants can be one of the best

input components for green farming. Although endophytic

microorganisms can be engineered, little is known about their use

as bioinoculants in contemporary farming situations. Therefore,

more research is required to determine the effectiveness of

microbial bio-input for commercialization before these

endophytes can be used as bioinoculants to improve soil health

and crop yield.
9 Conclusion

The yield and quality of medicinal plants are considerably

influenced by various edaphic and climatic factors such as soil

characteristics, soil microbiota, light, humidity, temperature,

drought, salinity, etc. To adapt to a stressful environment, plants

acclimatize themselves by modulating the genes responsive to stress,

transcriptional factors, and biosynthesis signaling pathways.

Furthermore, in stressful conditions, plant defense systems trigger

appropriate cellular responses by stimuli from the sensors situated on

the cytoplasm or cell surface and transmitting signals to the

transcriptional machinery in the nucleus with the help of various

signaling pathways. Sustainable production is still a significant

challenge; perhaps specific strategies might be helpful in such

scenarios as rescue measures like integrating plant-associated

microbes into farming systems, supporting agricultural production

through various interventions, and mitigating biotic and abiotic

perturbations. Utilizing endophytic microbes as biostimulants not

only eliminates the need for synthetic inorganic pesticides and

fertilizers but also lowers input costs and, more importantly,

minimizes the impact of these agrochemicals on vital existing

ecological communities. Nevertheless, its practical application

suffers some limitations, viz., endophytes are tissue-specific, and

tissue type, the host, and the environment mainly influence their

functionality. However, the information gap of their multifaceted
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nature in plant tissues has hampered the advancement of endophyte

research in various fields. Furthermore, the underlying mechanisms

governing these interactions are still not fully explored; several studies

have raised the hope of their potential exploitation of plant-microbe

interactions in managing various stresses. Therefore, to promote the

practicality of endophyte-assisted biological applications as

biostimulants, particularly in the field, comprehensive research is

necessitated to demonstrate an insight into the microorganisms in its

host medicinal plants. Modern high-throughput genomic studies

have revolutionized the field of microbiome research by unveiling

the enigmatic realms of endophytism, facilitating the pursuit of

endophytes, enabling the sequencing of a broader range of

microbes, and enticing a comprehensive examination of microbial

ecosystems by taxonomic classification, phylogeny, and evolutionary

studies, In the future, advanced omics approaches such as genomics,

transcriptomics, proteomics, and metabolomics can support an in-

depth knowledge of plant-microbe interactions and stress signaling

pathways, leading to its potential exploitation in agriculture for

improving yield, quality, and resistance of medicinal plants, drug

development, and management of the environment.
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CAT Catalase

PPO Polyphenol oxidase

POD Peroxidase

ACC deaminase 1-Amino Cyclopropane-1-Carboxylate deaminase

SOD Superoxide dismutase

AMF Arbuscular mycorrhizal fungus

MDA malondialdehyde

POD Peroxidase activity

GR Glutathione reductase

ALD Aldehydes

HSPs Heatshock proteins

PAL Phenylalanine ammonia-lyase

STS Stilbene synthase

SAR Systemic-acquired resistance

ISR Induced systemic resistance

ROS Reactive oxygen species

GPX Guaiacol peroxidise

NPR1 Non-expressor of pathogenesis-related genes

PR1 Pathogenesis-related protein1

CMV Cucumber mosaic virus

AsSyn Asparagine synthetase

Gluc b-1,3-glucanase

BR-SK1 Brassinosteroid signaling kinase 1

TCAS Tetra-hydrocannabinolic acid synthase

ZF-HD Zinc finger-homeodomain

RdRP2 RNA dependent RNA polymerase

GAs Gibberellins

IAAs Auxins

ERS Ethylene response sensors

ETR Ethylene response

EIN4 Ethylene insensitive4

CTR1 Constitutive triple response1

CEND Cleaved EIN2 C-terminus

EIN3/EIL1 Ethylene-insensitive3/ethylene-insensitive3-like1

TFs Transcription factors

PGPR Plant growthpromoting rhizobacteria

PR-proteins Pathogenesis-related proteins

THI2.1 Thionin2.1
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ATSABP3 Arabidopsis thaliana SA-binding protein 3

TRX Thioredoxin

PAMPs Pathogen-associated molecular patterns

MAMPs Microbe-associated molecular patterns

MAPK mitogen-activated protein kinase

DAMPs Damage-associated molecular patterns

HAMPs Herbivoreassociated molecular patterns

JA-Ile Jasmonyl isoleucine

JAT1 JA-transfer protein1

OPDA 12-oxo-PDA

JAZ Jasmonate-zim domain

HAD 6 Histone deacetylase 6

NINJA Novel interactor of JAZ

TPL Topless

COI1 Coronatine insensitive 1

SKP1 Suppressor of kinetochore protein 1

SCF Cullin-F-box

PDF2.1 Plant defensin 2.1

GRX480 Glutaredoxin 480

ORA59 Octadecanoidresponsive Arabidopsis

MeJA Methyl jasmonate
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