Research Topic

Adult Neurogenesis: Beyond Rats and Mice

About this Research Topic

Every machine requires regular maintenance and replacement of old, worn out parts. Most biological tissues routinely replace old cells with new ones. Unlike other tissues, the nervous system–being the most complex biological device found in nature–uniquely maintains most of its neurons throughout life and ...

Every machine requires regular maintenance and replacement of old, worn out parts. Most biological tissues routinely replace old cells with new ones. Unlike other tissues, the nervous system–being the most complex biological device found in nature–uniquely maintains most of its neurons throughout life and replaces relatively few. It preserves hotspots where it generates new neurons from resident stem cells during adulthood in a process known as adult neurogenesis, which varies among different species in its features, dynamics and regulation. In spite of its widespread prevalence in the animal kingdom, the preponderance of studies conducted on a few laboratory rodent species such as rats and mice limits our understanding of the evolution, regulation and function of adult neurogenesis. The anatomy, complexity and functions of the brain vary greatly in the animal kingdom: from simple bilaterians to humans. Therefore, both comparative and focused studies on different species will shed more light on the origin, development and purpose of adult neurogenesis.

Adult neurogenesis was discovered and described by Joseph Altman and Gopal Das in rats and has been investigated in many species such as the zebrafish, frog, songbird, mole, mole-rat, vole, bat, fox, dolphin, elephant, shrew, monkey, and human. With the development of genetic manipulation techniques, researchers have focused largely on inbred laboratory rodents. While this provides a strong advantage of restricting genetic variation in the group, it also narrows our perspective on adult neurogenesis as a biological phenomenon. Moreover, the rapid development of genetic tools has made Mus musculus the species of choice in studying adult neurogenesis. This remains the predominant deterrant against the use of unconventional animal models and leaves some challenging open questions.

• How did adult neurogenesis evolve?
• Does our survival depend on adult neurogenesis?
• What is the link between adult neurogenesis and brain complexity?
• How do adult neurogenesis and animal behaviour influence each other?
• How does adult neurogenesis contribute to brain plasticity and cognition?
• How do experimental conditions affect adult neurogenesis?

Studying unconventional species will give us insights into the evolution and function of the brain, strengthen our understanding of the cellular basis of cognition and behaviour, and help adult neurogenesis find its place in the puzzle. With this Research Topic we endeavour to answer the open questions in the field and encourage engaging discussions on the comparative and evolutionary aspects of adult neurogenesis. This Research Topic aims to showcase the latest studies on adult neurogenesis in wild and uncommon laboratory animals by encouraging primary research articles, opinions, and perspectives to fill the gaps in our knowledge of the generation of new neurons in the adult brain.

Acknowledgment: The Topic Editors would like to acknowledge the contribution of Nambirajan Govindarajan to the success of this Research Topic. Thanks to him, this important topic was brought to life, allowing the scientific community to contribute to an open debate, on a single online platform, on adult neurogenesis.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 March 2017 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 March 2017 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top