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Editorial on the Research Topic

Generative AI for brain imaging and brain network construction

1. Introduction

Brain imaging plays an important role in exploring brain which is claimed to be

the most complex thing in the universe. In recent years, there has been remarkable

progress in the field of brain imaging techniques. Meanwhile, advancements in brain

imaging technologies have greatly enhanced our understanding of brain networks. As an

important tool for exploring the relationship between brain structure and function, brain

network computation represents the most promising direction for artificial intelligence

to achieve breakthroughs and advancements in the field of neuroscience. By employing

artificial intelligence algorithms to integrate complementary features from multi-modal

brain imaging, it is possible to uncover the connectivity characteristics of neural circuits

and establish multi-level mapping brain network models based on function, structure,

and organization.

Generative artificial intelligence (AI) has witnessed significant expansion, encompassing

the utilization of available data to generate fresh content that exhibits comparable underlying

patterns to real-world data. The fusion of these two realms, generative AI and neuroimaging,

offers a promising path for delving into diverse domains of brain imaging and brain network

computation, specifically in the realms of extracting spatio-temporal brain characteristics

and reconstructing the topological connectivity of brain networks. Generative artificial

intelligence assists researchers in learning and understanding brain functional mechanisms

in a broader feature space under limited sample conditions. It aids researchers in designing

efficient fusion methods capable of handling and correlating multimodal data and domain

knowledge information. By integrating multimodal brain data with prior knowledge

from neuroscience, it achieves complementary synergy between the cooperative semantic

information and knowledge rules inherent in different levels and factors of the brain.

This Research Topic contains nine articles that can be broadly classified into three

categories: (1) four articles primarily focus on the application of generative artificial

intelligence methods for enhancing brain data, (2) three articles investigate the relationship

between artificial intelligence and brain mechanisms to explore the functioning principles of

the brain, (3) the remaining articles primarily address the application and development of

artificial intelligence in the diagnosis of brain disorders.
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Generative artificial intelligence is one of the rapidly evolving

fields. It has gained significant attention due to its inherent

advantages, especially in domains where data scarcity is a challenge.

The current construction of functional brain connectivity networks

from fMRI relies primarily on toolkits, leading to erroneous

estimation of connection strength and suboptimal performance in

disease analysis. Zuo et al. proposed a novel Adversarial Temporal-

Spatial Aligned Transformer (ATAT) model, which realizes a

region-guided feature learning network by taking the volume

and location of anatomical brain regions into account. And

it can adaptively adjust the boundary features of neighboring

regions and capture the global functional connectivity patterns

of distant brain regions. The validity and superior performance

of the proposed model in early Alzheimer’s Disease prediction

and progression analysis were verified by conducting experiments

on the ADNI dataset. Most artificial intelligence models used for

neuroimaging classification tasks have limitations in their learning

strategies and lack the ability for incremental learning. Cao et

al. constructed the BNLoop-GAN model, which combines multi-

modal brain networks and a multiple-loop learning algorithm to

enhance the accuracy of prediction tasks for Alzheimer’s Disease.

This advancement tackles the limitations of current AI models

employed in neuroimaging classification, which frequently suffer

from the absence of incremental learning capabilities during

batch training.

According to the study of Gong et al., this review

summarizes the integration of advanced brain imaging

techniques and generative AI models, which show promise

for extracting spatiotemporal brain features and reconstructing

topological connectivity of brain networks. It surveys four

classic generative models and their applications in brain

image computing and analysis. It also discusses challenges

and future directions in utilizing these AI techniques for

large-scale brain data analysis to understand brain structure-

function relationships, aid diagnosis and treatment of brain

diseases, and promote neuroscience research. However, issues

like data privacy and individual differences pose challenges

that need to be addressed through balancing data usage and

model interpretability. There is still controversy surrounding

the metrics and validation of synthetic images, and visual

assessment can be a time-intensive task. Brémond-Martin et

al. used similitude metrics and psychovisual evaluation to

validate the quality of synthesized images. They compared

the results obtained from these two evaluation methods

and further tested the images in a segmentation task. The

researchers discovered a correlation between certain metrics

and psychovisual decisions, suggesting the potential of using

specific combinations of blur metrics as possible alternatives to

psychovisual evaluations.

Currently, artificial intelligence and medical imaging

techniques advancements hold great significance for the progress

of brain science and our understanding of the human brain.

Jin et al. provided a comprehensive overview of computational

methods for reconstructing optic nerve fibers from medical

images in a review. It discusses the clinical importance of

optic nerve fiber reconstruction for diagnosing neurological

diseases and guiding neurosurgery. They describe two main

reconstruction strategies, image segmentation and fiber tracking,

with fiber tracking providing more detailed fiber structures. Both

conventional and AI-based approaches are reviewed for each

strategy, demonstrating the superior performance of AI-based

methods. Xiong et al. designed an improved HHT-Microstate

analysis method that combines the improved Hilbert Huang

Transformation (HHT) decomposition with microstate analysis

to investigate the differences in EEG microstate parameters in

each frequency band in nicotine addicts. The method is effective

in identifying substance addiction disorders and provides new

ideas and insights for the brain research of nicotine addiction.

Chen et al. reviewed the interplay between neuroscience and

artificial intelligence, from AI’s early inspiration from the

brain to its evolution and remarkable performance with little

neuroscience dependence. However, recent collaborations

studying neurobiological explainability of artificial intelligence

models reveal they may resemble biological computation despite

no explicit neuroscientific modeling. The authors proposed a

framework to evaluate brain-likeness of artificial intelligence

models to enable further improvements under the intertwined

development of both fields.

With the advancements in artificial intelligence technology

and a deeper understanding of human brain mechanisms,

artificial intelligence is playing an increasingly crucial role in

the diagnosis of brain disorders. Wang et al. implemented a

prior knowledge-based precise diagnosis of blend sign network

from head computed tomography scans, which achieves accurate

diagnosis of hybrid signs in head computed tomography

scans by incorporating a priori knowledge and combining

auxiliary tasks and self-knowledge distillation strategies. The

method demonstrated superior performance in experiments and

has the potential to assist physicians in reducing workload

and improving efficiency in clinical practice. Zongren et

al. came out with a multi-view brain tumor segmentation

model based on cross-window and focal self-attention, which

achieves excellent performance with high segmentation

accuracy while limiting the computational cost by enlarging

the receptive field by parallel cross windows and improve global

dependence by using local fine-grained and global coarse-grained

interactions, which provides a new solution for the field of brain

tumor segmentation.

These articles cover a wide variety of topics including brain

medical image enhancement, brain network generation and

reconstruction, brain mechanisms exploration, brain-inspired

computing, and brain disorders assisted diagnosis. These

researches enrich the corresponding research fields with insightful

methodologies and techniques, and ultimately offering alternative

solutions to effectively enhance the robustness, generalization

ability, and interpret ability for related tasks.

We hope that our readers will have a delightful experience when

reading these excellent articles.
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Introduction: The brain functional network can describe the spontaneous

activity of nerve cells and reveal the subtle abnormal changes associated with

brain disease. It has been widely used for analyzing early Alzheimer’s disease

(AD) and exploring pathological mechanisms. However, the current methods

of constructing functional connectivity networks from functional magnetic

resonance imaging (fMRI) heavily depend on the software toolboxes, which

may lead to errors in connection strength estimation and bad performance in

disease analysis because of many subjective settings.

Methods: To solve this problem, in this paper, a novel Adversarial Temporal-

Spatial Aligned Transformer (ATAT) model is proposed to automatically map

4D fMRI into functional connectivity network for early AD analysis. By

incorporating the volume and location of anatomical brain regions, the region-

guided feature learning network can roughly focus on local features for

each brain region. Also, the spatial-temporal aligned transformer network is

developed to adaptively adjust boundary features of adjacent regions and

capture global functional connectivity patterns of distant regions. Furthermore,

a multi-channel temporal discriminator is devised to distinguish the joint

distributions of the multi-region time series from the generator and the

real sample.

Results: Experimental results on the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) proved the e�ectiveness and superior performance of the

proposed model in early AD prediction and progression analysis.

Discussion: To verify the reliability of the proposed model, the detected

important ROIs are compared with clinical studies and show partial

consistency. Furthermore, themost significant altered connectivity reflects the

main characteristics associated with AD.

Conclusion: Generally, the proposed ATAT provides a new perspective in

constructing functional connectivity networks and is able to evaluate the
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disease-related changing characteristics at di�erent stages for neuroscience

exploration and clinical disease analysis.

KEYWORDS

functional brain connectivity, temporal-spatial transformer alignment, generative

adversarial learning, graph convolutional network, early Alzheimer’s disease

1. Introduction

Early Alzheimer’s disease (AD) includes the following three

successive stages: significant memory concern (SMC), early

mild cognitive impairment (EMCI), and late mild cognitive

impairment (LMCI). AD is a common long-term neurological

disorder in the elderly, which is generally connected with

the gradual decline in understanding, judgment, memory, and

executive ability until complete loss. AD is known as the leading

cause of death among old people worldwide (Zhang et al., 2022),

and its great harmfulness brings heavy psychological pressure

and economic burden to the families of patients. According to

literature (Derby, 2020), the number of people suffering from

AD and other dementias in the world currently exceeds 50

million, and the aging population further aggravates the rise of

the patient population. However, there is no consensus on the

pathological mechanism (Yuzwa et al., 2008; Diplas et al., 2018),

and many pharmaceutical companies had tried and failed to

develop effective drugs to cure AD. Therefore, early detection

and timely intervention for AD are the only possible way in

slowing down or preventing disease deterioration (Jack et al.,

2013). The development of neuroimaging has made the use

of non-invasive AD study become the mainstream of current

research because of no side effects on patients (Wang et al.,

2018c; Grassi et al., 2019; Yu et al., 2021; Alvi et al., 2022; Lei

et al., 2022; You et al., 2022). It is very promising for the scientific

community to develop effective methods to detect brain disease

and assist clinical treatment from medical imaging data (Wang

et al., 2022).

The brain functional network (BFN) derived from

functional Magnetic Resonance Imaging (fMRI) describes

the functional interactions among spatially distributed brain

regions. Brain science indicates that abnormal functional

connectivity always appears at the early stage of AD (Berron

et al., 2020). The BFN can give a universal understanding

of neurological symptoms and unravel the pathogenesis of

cognitive diseases. As mentioned in Yu et al. (2020) and Zuo

et al. (2021a), the whole brain is divided into several Region-

of-Interests (ROIs) according to the anatomical template. The

BFN is modeled as a graph, where each node represents the ROI

and each edge represents the functional connection strength

between paired ROIs. The conventional method is to use a

software toolbox to construct functional connectivity (FC)

and then extract effective features for disease diagnosis. For

example, Kabbara et al. (2018) investigated the abnormal hub

patterns associated with patients’ cognitive performance by

applying graph-theory analysis on the constructed functional

connectivity. This work preserved the topological structure

and gained better evaluation performance than the feature

extraction algorithm (Wang et al., 2017; Zuo et al., 2021b; Yu

et al., 2022) in Euclidean space. Considering the complexity of

brain neural activities and noisy data preprocessed from the raw

fMRI, it is significant for clinicians to investigate more advanced

methods for modeling effective BFNs in early AD analysis.

Brain functional network construction by using time series

can be divided into two classes: static-based method, and

dynamic-based method. The former utilized the whole brain

time series of fMRI to bridge links between ROIs for AD

analysis. The direct way of constructing a brain functional

network is to compute the person’s correlation (PC) between

any paired brain regions (Wang et al., 2007). To reduce

the possible impact of adjacent ROIs, Fransson and Marrelec

(2008) employed partial correlations to handle this problem and

achieved good performance in characterizing the changes of

the default mode network associated with the disease. But the

calculation of an inverse matrix usually comes up with multiple

solutions, so researchers adopted certain constraints on the

partial correlation estimation for a stable solution. For example,

thematrix-regularized network was encoded asmodularity prior

to optimizing sparse brain network and they (Qiao et al., 2016)

discovered potential biomarkers for personalized diagnosis. The

latter method benefits the temporal changes of brain functional

connectivity for capturing subtle transient neural abnormalities

and has recently been a hot spot in neurological disease analysis.

The direct approach is to generate a sequence of functional

networks and designed a fused learning algorithm to jointly

estimate the temporal network for early MCI detection (Wee

et al., 2016). Furthermore, the work in Gong et al. (2022) treated

the functional time series and functional connectivity as the

node features and edges respectively, and developed a graph

convolutional network (GCN) based model to generate multiple

brain networks for characterizing brain temporal community

by setting six-time sliding steps. To address the noisy problem

of limited volumes in a sliding window, Zhou et al. (2018)

proposed a matrix-regularized learning framework to learn

sparse and modular high-order connectivity features for MCI

classification. Although many studies have been conducted

in BFN construction, they mainly rely on some specific
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preprocessing in the software toolboxes to obtain temporal

features of each ROI. The drawbacks lie in two fields: one is

that the multiple parameter settings may lead to different errors

from person to person, and another is that a series of processes

can consume much time and fall far away from the goal of

clinical application.

Recently, data-driven models are capable of mining effective

common characteristics from noisy data. It has been widely

applied in various fields of medical image analysis, such as

disease severe assessment (Wang et al., 2020c), lesion area

segmentation (Hong et al., 2022b), health assessment (Wang

et al., 2018b), disease detection (Wang et al., 2018a; Yang et al.,

2022), image reconstruction (Hu et al., 2020b). To improve

disease analysis performance, many advanced machine learning

algorithms are designed to extract discriminative and robust

features (Zeng et al., 2017; Lei et al., 2018; Hong et al.,

2019; Wang et al., 2020b). Compared with the classification

performance of traditional Convolutional Neural Networks

(CNN) (Wang S.-Q. et al., 2015), the 3D Convolutional Neural

Network (C3D) is good at capturing the local spatial features in a

three-dimensional volume and has been successfully applied on

the cross-modal image synthesis (Hu et al., 2020a) and disease

recognition (Wang et al., 2020a). Moreover, the transformer

network (Jiang et al., 2021) can model the global relationship

between distant sub-patch regions. The ROI-based features can

be learned by C3D and transformer in sequence from 4D

fMRI data. Besides, Generative adversarial networks (GANs)

are regarded as a special case of variational inference (Mo

and Wang, 2009; Wang, 2009) and demonstrates impressive

performance in matching generated data distributions. The

obvious evidence is the success in generating cross-modal

medical images (Hu et al., 2019, 2021) and domain adaptation

segmentation (Hong et al., 2022a). It can be used as a

regularizer to constrain the representation learning for stable

and generalizable disease analysis.

Inspired by the above observations, in this paper, a novel

Adversarial Temporal-Spatial Aligned Transformer (ATAT)

model is proposed to automatically learn brain functional

networks from 4D fMRI for detecting early AD. The

constructed brain functional networks are also analyzed to

identify important ROIs and abnormal connections. The main

contributions of this work are as follows: (1) The region-

sequence aligned generator (RAG) is developed to first learn

rough ROI-based features by incorporating the brain anatomical

information, then finely adjust the boundary features of adjacent

ROIs to generate ROI time series and connectivity features.

It greatly enhances the ROI time series learning and fully

explores the spatial-temporal characteristics and connectivity

information among the whole brain. (2) The multi-channel

temporal discriminator is designed to constrain the learned

ROI time series with the empirical samples. It regularizes

the generator optimization and makes the connectivity feature

more robust. (3) Experimental classification results prove the

effectiveness of our model, and the discovered important ROIs

and abnormal connectionsmay be potential biomarkers for early

AD diagnosis or treatment.

The rest of this article is organized as follows. Section 2

describes the novel proposed ATAT model for brain functional

network construction. The experimental settings and prediction

results with competing methods are presented in Section 3. In

the Section 4, the reliability and limitations of this work are

discussed. Finally, the Section 5 summarizes the main remarks

of this paper.

2. Materials and methods

The proposed model includes three main parts, such as (1)

data preprocessing, (2) architecture of the proposed model, and

(3) objective functions for optimization.

2.1. Data description and preprocessing

The experimental data comes from the public Alzheimer’s

Disease Neuroimaging Initiative (ADNI-3). A total of 330

subjects with functional Magnetic resonance (fMRI) were

downloaded from the website1, including 86 Normal Control

(NC), and three successive stages of early AD (i.e., 82 SMC,

86 EMCI, 76 LMCI). The fMRI data is acquired under the 3.0

Teslamachine. The detailed scanning parameters for fMRI are as

follows: the imaging resolution ranges from 2.5 to 3.75mmalong

X and Y dimensional direction, the imaging slice thickness is

between 2.5 and 3.4 mm; the time of repetition (TR) ranges from

0.607 to 3.0 s, and the time of echo (TE) value is in the range of 30

to 32 ms. The recording time length is about 10 min. The mean

age of NC, SMC, EMCI, and LMCI is 74.4, 76.1, 75.7, and 75.8,

respectively. The gender is roughly the same in each category.

The fMRI data is preprocessed by the software toolbox

GRETNA (Wang J. et al., 2015), which contains about six

procedures for constructing ROI-based time series. Each 4D

fMRI data is processed by balancing magnetization equilibrium,

removing head-motion artifacts, normalizing spatial space,

smoothing, and filtering (0.01Hz ≤ f ≤ 0.08Hz). Finally, the

automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002) warps the preprocessed image to 90 non-overlapping

spatial ROIs, and the final functional features with the size

90 × 187 are obtained as the truth samples. Meanwhile, the

empirical functional connectivity is estimated by calculating the

Pearson correlation coefficients between paired ROI time series,

and this procedure can generate a 90× 90 correlation matrix for

each subject.

1 http://adni.loni.usc.edu/
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FIGURE 1

The framework of the proposed model. It consists of three parts: generator, discriminator, and classifier. The input is a four-dimensional fMRI,

and the output is a brain functional network.

2.2. Architecture

The architecture of the proposed ATAT is shown in Figure 1.

It contains three parts: the region-sequence aligned generator

(RAG), the multi-channel temporal discriminator (MTD), and

the global-local connectivity classifier (GCC). The RAG includes

a region-guided feature learning network(RFLNet), and a

spatial-temporal aligned transformer (SAT), which transforms

the 4D fMRI into ROI time series and brain functional network.

Firstly, the raw fMRI data is first sent to the RFLNet for

rough ROI-based feature extraction, and the SAT is utilized to

finely adjust the feature for adjacent ROIs and align the global

temporal correlation between any paired ROIs. Meanwhile,

the obtained ROI time series is linearly transformed into

brain functional networks through the connectivity learning

(CL) network. After that, the generated ROI time series is

constrained with the real sample distribution by the MTD.

Finally, both ROI time series and brain functional networks are

sent to the GCC for disease prediction. There are five objective

functions in the model’s optimization, including generator

loss, discriminator loss, reconstruction loss, classifier loss, and

regularized loss.

2.2.1. Region-sequence aligned generator

2.2.1.1. Region-guided feature learning network

As illustrated in Figure 2. This network learns a rough

mapping from the raw 4D fMRI to ROI-based time series by

introducing the position and volume of the brain anatomical

regions. The size of input data X is 64 × 64 × 48 × 187. It

first passes through four blocks with three successive layers:

3 × 3 × 3 convolutional layers with 1-stride, 2 × 2 × 2

average pooling layer with 2-stride, and a combination layer

of batch normalization(BN) + ReLu activation. The channel

number of the above four convolutional layers are 8, 16, 32, 64.

Then one 1 × 1 × 1 convolutional layer with 1-stride is used to

increase the channels for matching the N ROIs, followed by a

sigmoid activation function.

Next, we normalize the central location (x, y, z) and volume

(v) of N anatomical ROIs to constrain the brain region

information in the range 0− 1. Finally, the (x, y, z, v) of N ROIs

are treated as ROI embeddings, which are concatenated with

the flattened feature of sigmoid layer output, which is sent to a

one-layer linear projection (LP) layer for generating rough ROI

features. The rough ROI feature can be expressed as:

F1 = RFLNet(X, x, y, z, v) (1)

here, the X is the four dimensional volume data fMRI; x, y, z, v ∈

R
N×1; F1 ∈ R

N×q, the RFLNet is a combination of several

convolution and pooling operations.

2.2.1.2. Spatial-temporal aligned transformer

To learn more fined ROI temporal features, the spatial-

temporal aligned transformer module is designed to recalibrate

boundary ROI features and time sequence variations. It splits

into two parts: the spatial multi-head central attention (SMCA)

and the temporal aligned feed-forward (TAFF). Every ROI is

regarded as a token. The rough ROI feature is first sent to three
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FIGURE 2

The detailed structure of the RFLNet. The input is an example of three-dimensional fMRI volume with the size 64× 64× 48, and the ROI

information of the anatomical atlas with the size N× 4. The FRFNet outputs the initial feature for each ROI.

parallel LP layers to get query (Q), key (K), and value (V). Note

that, the calculation of K and V needs to consider the ROI

embeddings. The formulas can be defined as:

Q = LP(F1), K = LP(F1||x||y||z||v), V = LP(F1||x||y||z||v)

(2)

where, || means the concatenation operation. Then Q,K,V ∈

R
N×q are separated into h heads. Each head of token (i.e.,

Qi,Ki,Vi) has the dimensional size q/h. Taking one head as an

example, the central attention (CA) can be expressed:

CAi = Softmax(QiK
T
i /

√

q/h)Vi (3)

here, i means the index of h heads. The output of the spatial

multi-head central-attention module is the concatenation of all

heads and then with an LP layer (including residual mapping

and layer normalization). It can be defined as:

SMCA = LP(CA1||CA2||...||CAh)+ F1 (4)

The SMCA has the size N × q.

Next, the TAFF module adjusts the temporal characteristics

through the down mapping (DM) and up mapping (UM) layers

and reduces the potential noise effect. The DM layer reduces the

dimensional of SMCA from q to q/2, and the UM layer recovers

the feature’s dimension. Finally, the output of the TAFF module

can be defined as:

Fg = UM(DM(SMCA))+ SMCA (5)

where, Fg is the generated ROI time series with the size N × q.

To learn an effective brain functional network Ag , we

first compute the Euclidean distance between any pair of ROI

features and then apply a mapping matrix to it for similarity

adjustment. Finally, a Gaussian kernel is introduced to learn

non-linear projection for precise connectivity estimation. The

formula can be defined as:

Ag(i, j) = exp(−
(Fig − F

j
g)
2W

2σ 2
) (6)

here, Ag(i, j) represents the functional connectivity between

pairwise ROIs. Fig ∈ R
1×q means the ith ROI time series. W ∈

R
q×q is time series transformable matrix. σ is the bandwidth

of the Gaussian kernel, controlling the sparsity with the default

value 2.

2.2.2. Multi-channel temporal discriminator

As shown in Figure 3, the multi-channel temporal

discriminator (MTD) is used to constrain the generated

functional time series (Fg) distribution consistent with the

empirical functional time series (Fe). The Fe is computed from

the software toolbox, which is treated as the true sample. The

structure of MTD consists of N parallel networks, containing

three linear projections with q/2, q, and q/2 neurons. Each

MTD accepts i-th ROI time series and outputs one discriminate

value. Averaging all the discriminate values is the final

discriminate result.

2.2.3. Global-local connectivity classifier

The structure of the global-local connectivity classifier

(GCC) is illustrated in Figure 4. It accepts both functional

time series (i.e., Fe or Fg) and functional network (i.e., Ae

or Ag), outputs the disease label. A total of 5 layers are

designed in the GCC, including three graph convolutional

layers, one graph pooling layer, and one three-layer perceptron.

It is based on the graph convolutional network. The first

three layers (i.e., Gconv1,Gconv2,Gconv3) are utilized to diffuse
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global features and reduce the ROI feature dimension. The

graph pooling layer (Gpool) is utilized to average features

along the ROI feature dimension and get one value for each

ROI. And the MLP layer learns a linear mapping to recognize

the disease.

2.3. Objective functions

In this section, the five loss functions defined below

are utilized to optimize the model for disease prediction

and analysis. The reconstruction loss Lrec can constrain the

generator and retain the empirical features Fe, the generate

loss Lg and discriminate loss Ld are combined to optimize

the generator and discriminator, the classification loss Lcls and

regularized loss Lreg are utilized to upgrade the parameters

of CL network and GCC network. For the convenience of

explanation, we make the following simplification: G means

all the operations in the Region-sequence aligned generator, D

means the multi-channel temporal discriminator, and C is the

FIGURE 3

The structure of the multi-channel temporal discriminator. It

accepts the empirical time series or the generated time series,

and outputs the average discriminant result for distribution

constraints of all ROI time series.

global-local connectivity classifier. The raw fMRI data X follows

the distribution PfMRI , the PFe and PAe represent the empirical

functional time series Fe and empirical BFN Ae distribution,

respectively. Y is the truth label. These loss functions are defined

as follows:

Lrec = EX∼PfMRI ,Fe∼PFe ( ||G(X)− Fe|| ) (7)

Lg = EX∼PfMRI
[ (1− D(G(X)))2 ] (8)

Ld = EX∼PfMRI
[ (D(G(X)))2 ]+ EFe∼PFe [ (1− D(Fe))

2 ] (9)

Lcls = EX∼PfMRI
[−Y · log(C(G(X)))]

+ EAe∼PAe ,Fe∼FAe [−Y · log(C(Ae, Fe))] (10)

Lreg = E(||W||) (11)

The hybrid cost of the proposed model is:

Lall = Lrec + Lg + Ld + Lcls + λLreg (12)

3. Experiments and results

3.1. Experimental setup

There are six binary classification tasks for the evaluation

of the proposed model, including NC vs. SMC, NC vs.

EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI,

and EMCI vs. LMCI. The evaluation metrics are Accuracy

(ACC), Sensitive (SEN), Specificity (SPE), and F1-score. We

repeated the 10 times experiment using the five-fold cross-

validation on each binary classification and utilized the mean

value metrics for the final prediction. To demonstrate our

model’s good ability in FBN construction, we introduce two

classifiers [i.e., SVM (Suthaharan, 2016) and GCN (Kipf and

Welling, 2016)] to compare the BFN constructed by ATAT

and Empirical.

FIGURE 4

The structure of the global-local connectivity classifier.
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FIGURE 5

Display of brain functional network examples at di�erent disease stages. The BFNs in the upper row are generated by the GRETNA toolbox, and

the BFNs in the lower row are generated by the proposed model.

FIGURE 6

Prediction results of three scenarios tasks using (A) the SVM classifier and (B) the GCN classifier.

Our proposed model was implemented with the TensorFlow

framework on Ubuntu18.04 and the GPU of NVIDIA GeForce

RTX 3080 Ti. The parameters in the experiments are defined

as follows: N = 90, q = 187, h = 11,m = 3, λ =

10−5. During the training, we first update the weights in the

generator and the discriminator, then fix part of the generator

and optimize the network of CL and GCC. The learning rate

of the generator and the classifier were set to 0.0001, and

for the discriminator, the learning rate is set to 0.0004. The

Adam was adopted for training the proposed model with batch

size 2.

3.2. Prediction results

This section demonstrates the good performance of BFN

constructed by the proposed model. As shown in Figure 5, the

upper row shows the four stages of empirical FBN derived from

the GRETNA, while the lower row displays the corresponding

FBNs by the proposed model. The main connectivity patterns

have been preserved and dense connections become sparse

by comparing the empirical and ours. Figure 6 gives the

classification result comparison in terms of three scenarios tasks.

For the GCN classifier, the BFNs constructed by ours achieve the
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FIGURE 7

Spatial visualization of top 10 brain regions in the six classification scenarios. (A) NC vs. SMC. (B) NC vs. EMCI. (C) NC vs. LMCI. (D) SMC vs. EMCI.

(E) SMC vs. LMCI. (F) EMCI vs. LMCI.

best prediction results with a mean ACC of 87.50%, a mean SEN

of 84.26%, a mean SPE of 90.58% and a mean F1 of 86.81% in

NC vs. SMC task; the mean values of SMC vs. EMCI are 90.47,

91.86, 89.02, and 90.80%; in EMCI vs. LMCI task, the predicted

results are 85.61, 84.86, 86.27, and 84.70%. The standard error

also shows the superior stability of the proposed model.

To investigate the potential AD-related ROIs, we shield

one brain region and calculate the classification ACC as

the effect of this ROI on AD progression. After sorting the

ACCs in ascending order, the top 10 values are the most

important ROI in the classification evaluation. As is shown in

Figure 7, the spatial distribution of 10 important AD-related

ROIs is displayed in lateral, medial, and dorsal views using

the BrainNet Viewer (Xia et al., 2013). Specifically, the top 10

related ROIs are IFGoperc.L, MTG.R, PCL.L, PUT.R, CUN.L,

SMA.R, LING.L, DCG.R, PCUN.R, DCG.L in NC vs. SMC

classification scenario; The ten ROIs, including PCL.R, CAL.L,

CUN.R, HIP.R, CAL.R, TPOsup.L, SFGdor.L, ACG.R, CAU.R,

PCL.L, are important for NC vs. EMCI; also, the top 10

ROIs of NC vs. LMCI are SOG.L, ORBsup.L, REC.L, PUT.L,

PCG.L, ITG.L, PCUN.R, MTG.R, PUT.L, ORBsupmed.L; For

SMC vs. EMCI and SMC vs. LMCI classification, the important

ROIs are OLF.L, CUN.R, PCUN.L, CAL.R, CAU.R, LING.L,

ACG.R, CAL.L, PCL.L, DCG.R, and PCUN.R, PUT.L, PUT.R,

PCL.L, SMA.R, ORBsup.L, LING.L, ANG.L, HIP.R, ACG.R,

respectively; For EMCI vs. LMCI, the important ROIs are

PCUN.L, ORBsupmed.R, THA.L, ORBsupmed.L, ORBsup.R,

CAU.R, CAL.L, PUT.L, REC.L, ORBsup.L.

3.3. Brain network analysis

Besides the prediction of different early AD stages, the

other major purpose is to analyze the learned FBNs. After

applying the ATAT model to each subject, we can obtain

the mean FBN for each group of patients (i.e., NC, SMC,

EMCI, and LMCI). To investigate the altered connectivity of

FBN between different groups, we compute the difference of

six paired scenarios as shown in Figure 8. In each subplot,

reduced and increased connectivity can be observed between

different paired groups. To analyze the significant connections,

we set the 90% quantile value of the altered connectivity

strength as the threshold. The pictures in the lower row of

each subplot are the corresponding connectivity matrices by

setting the threshold value. Figure 9 shows these significant

connections in a circular graph. The number of reduced

connections are 219, 263, 235, 251, 222, and 163 for NC vs.

SMC, NC vs. EMCI, NC vs. LMCI, SMC vs. EMCI, SMC

vs. LMCI, EMCI vs.LMCI, respectively; the corresponding

number of increased connections are 183, 139, 166, 150, 179,

239. To show the main connectivity patterns in different

classification scenarios, we select the top 2% largest altered

connections (i.e., reduced, and increased). As shown in

Figure 10, different connectivity patterns can be seen in different

classification scenarios. Figure 11 depicts the top 5 reduced

and top 5 increased connections in the axial and coronal

view direction. The connectivity-related ROIs are listed in

Tables 1, 2.
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FIGURE 8

(A–F) The results of the altered functional connectivity estimated from the averaged BFNs between di�erent groups (i.e., NC vs. SMC, NC vs.

EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI, EMCI vs. LMCI). In each subfigure, the upper row means the reduced and increased

connections, the lower row shows the altered connections selected from the upper row with a threshold of 90% quantile value.

FIGURE 9

Circular graph of altered functional connectivity in MCI patients among 90 Anatomical Automatic Labeling (AAL) atlas regions. (A) From NC to

SMC. (B) From NC to EMCI. (C) From NC to LMCI. (D) From SMC to EMCI. (E) From SMC to LMCI. (F) From EMCI to LMCI.
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FIGURE 10

Top 2% altered functional connections in strength evaluation in the six classification scenarios. Each subfigure shares the same color bar, which

means the absolute connection strength. (A) NC vs. SMC. (B) NC vs. EMCI. (C) NC vs. LMCI. (D) SMC vs. EMCI. (E) SMC vs. LMCI. (F) EMCI vs.

LMCI.

FIGURE 11

The most significant 5 reduced connections and 5 increased connections mapped on the AAL 90 template using the BrainNet Viewer software

package. Blue color means the ROIs, red color means reduced connections, and green color means increased connections. (A) From NC to

SMC. (B) From NC to EMCI. (C) From NC to LMCI. (D) From SMC to EMCI. (E) From SMC to LMCI. (F) From EMCI to LMCI.
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TABLE 1 The top 10 significant altered connections estimated from the generated FBNs in NC vs. SMC, NC vs. EMCI, NC vs. LMCI using AAL90

template (− means reduced connections, + means increased connections).

From NC to SMC From NC to EMCI From NC to LMCI

Indices Names Indices Names Indices Names

-

11, 13 IFGoperc.L, IFGtriang.L 11, 13 IFGoperc.L, IFGtriang.L 11, 13 IFGoperc.L, IFGtriang.L

3, 24 SFGdor.L, SFGmed.R 19, 20 SMA.L,SMA.R 48, 56 LING.R, FFG.R

25, 26 ORBsupmed.L, ORBsupmed.R 25, 26 ORBsupmed.L, ORBsupmed.R 2, 58 PreCG.R, PoCG.R

45, 46 CUN.L, CUN.R 2, 58 PreCG.R, PoCG.R 53, 89 IOG.L, ITG.L

54, 90 IOG.R, ITG.R 6 9, 70 PCL.L, PCL.R 54, 90 IOG.R, ITG.R

+

7, 19 MFG.L, SMA.L 3, 20 SFGdor.L, SMA.R 4, 19 SFGdor.R, SMA.L

14, 20 IFGtriang.R, SMA.R 46, 56 CUN.R, FFG.R 5, 26 ORBsup.L, ORBsupmed.R

29, 30 INS.L, INS.R 59, 65 SPG.L, ANG.L 25, 27 ORBsupmed.L, REC.L

32, 33 ACG.R, DCG.L 71, 72 CAU.L, CAU.R 21, 73 OLF.L, PUT.L

47, 48 LING.L, LING.R 87, 89 TPOmid.L, ITG.L 40, 88 PHG.R, TPOmid.R

TABLE 2 The top 10 significant altered connections estimated from the generated FBNs in SMC vs. EMCI, SMC vs. LMCI, EMCI vs. LMCI using AAL90

template (− means reduced connections, + means increased connections).

From SMC to EMCI From SMC to LMCI From EMCI to LMCI

Indices Names Indices Names Indices Names

-

31, 32 ACG.L, ACG.R 20, 24 SMA.R, SFGmed.R 3, 20 SFGdor.L, SMA.R

47, 48 LING.L, LING.R 32, 33 ACG.R, DCG.L 53, 55 IOG.L, FFG.L

46, 60 CUN.R, SPG.R 47, 48 LING.L, LING.R 67, 68 PCUN.L, PCUN.R

51, 61 MOG.L, IPL.L 43, 56 CAL.L, FFG.R 71, 72 CAU.L, CAU.R

20, 69 SMA.R, PCL.L 67, 68 PCUN.L, PCUN.R 48, 90 LING.R, ITG.R

+

3, 4 SFGdor.L, SFGdor.R 5, 6 ORBsup.L, ORBsup.R 4, 19 SFGdor.R, SMA.L

51, 53 MOG.L, IOG.L 25, 26 ORBsupmed.L, ORBsupmed.R 26, 27 ORBsupmed.R, REC.L

71, 72 CAU.L, CAU.R 27, 28 REC.L, REC.R 5, 28 ORBsup.L, REC.R

81, 83 STG.L, TPOsup.L 45, 46 CUN.L, CUN.R 31, 32 ACG.L, ACG.R

48, 90 LING.R, ITG.R 51, 53 MOG.L, IOG.L 50, 52 SOG.R, MOG.R

4. Discussion

4.1. E�ect of the generator

The main goal of the proposed model is to generate

BFNs from 4D fMRI data. The modules in the generator play

an important role in disease prediction and brain network

analysis. To investigate the influence of the generator structure

on the classification performance (i.e., NC vs. LMCI), we

replace the RFLNet and the SAT modules with traditional

C3D (Hong et al., 2020) and transformer (Jiang et al., 2021),

respectively. In both cases, the anatomical ROI information

is not included in the module. Figure 12 shows that either

the C3D or Transformer network can degrade the prediction

performance, and the traditional transformer network has a

worse influence on classification than the C3D network. It may

indicate the proposed RFLNet learns rough ROI-based features

with a litter effect on the results, and the SAT network finely

adjusts the adjacent ROI-based temporal features which may

greatly influence the classification performance. Furthermore,

the reconstructed error of the ROI time series is measured by

the mean absolute error (MAE) metric. As shown in Figure 13,

the divergence of the MAE for each disease (i.e., NC, SMC,

EMCI, and LMCI) demonstrates the reliable results of the

designed generator.

4.2. Comparison with related works

In the six classification scenarios, there are eight ROIs that

overlap more than three times in the identified brain regions.

These important ROIs are the orbital part of the superior frontal

gyrus (ORBsup.L), the anterior cingulate and paracingulate

gyri (ACG.R), the calcarine fissure and surrounding

cortex (CAL.L), the lingual gyrus (LING.L), the precuneus

(PCUN.R), the paracentral lobule (PCL.L), the caudate

nucleus (CAU.R), the lenticular nucleus putamen (PUT.L).

Most of these ROIs are consistent with the previous studies
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FIGURE 12

Influence of di�erent generator structures on the classification

performance.

FIGURE 13

Mean absolute error between the empirical and generated time

series over the training processes.

(Li et al., 2017; Yu et al., 2017; Ye et al., 2019), which

demonstrates the strongly correlation with AD. In addition,

the most significant altered connectivity (also called abnormal

connections) related ROIs contain the identified eight brain

regions. These listed ROIs in the table are mainly distributed

in the frontal lobe, temporal lobe, and occipital lobe. The

frontal lobe is located in the most anterior part of the cerebral

hemispheres, accounting for the first 1/3 of the surface of the

cerebral hemispheres. It is mainly related to higher mental

activity, including physical activity control, language speaking,

self-awareness, and emotional expression. The identified ROIs

(i.e., SFGdor, ORBsup, IFGoperc, IFGtriang) associated with

the superior frontal gyrus can be founded in Whitwell et al.

(2007). The visual and language information is memorized by

the temporal lobe, in which patients with AD showed abnormal

levels of tau protein in the inferior temporal gyrus (Mormino

et al., 2016). The occipital lobe participates in visual processing,

for example, the lingual gyrus shows altered functional

connectivity in AD patients (Skouras et al., 2019). In general,

the derived important ROIs and abnormal connections by the

proposed model can reflect the main characteristics associated

with AD.

4.3. Limitations and future directions

Although the proposed model in the experiment has

achieved good classification results and reliable connectivity

analysis, there are two deficiencies in this work. One is that it

only considers the binary classification tasks, which may not

capture the continuously changing characteristics during the

disease progression. We will conduct multi-class classification

experiments to investigate the common changes at different

stages of AD. Another limitation is that the dataset used in this

study is relatively small. In the future study, we will increase the

amount of data to validate the proposedmodel for brain disorder

analysis by using other larger datasets [UK biobank (Sudlow

et al., 2015), ABIDE (Heinsfeld et al., 2018)].

5. Conclusion

In this paper, we proposed a novel ATAT model to

construct brain functional networks for early AD diagnosis

and analysis. The three-player generative adversarial network

is alternatively optimized and can learn effective functional

connectivity features from 4D fMRI. By incorporating the brain

anatomical information, the rough ROI features can be extracted

by focusing on the local spatial information of individual brain

region. Furthermore, the SAT module explores the temporal

characteristics and connectivity information for finely adjusting

the boundary features of adjacent ROIs. Meanwhile, the

generated features from the region-sequence aligned generator

are constrained by the adversarial loss and reconstruction

loss. Compared to the empirical method, the brain functional

networks constructed by the proposed model achieve higher

classification performance. The identified important ROIs

and abnormal connections may be the potential biomarkers

for early AD diagnosis. Generally, our proposed model has

the potential in constructing complex functional connectivity

features and exploring abnormal functional connections for

neurodegenerative diseases study.
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Fueled by the development of neuroscience and artificial intelligence (AI),

recent advances in the brain-inspired AI have manifested a tipping-point

in the collaboration of the two fields. AI began with the inspiration of

neuroscience, but has evolved to achieve a remarkable performance with

little dependence upon neuroscience. However, in a recent collaboration,

research into neurobiological explainability of AI models found that these

highly accurate models may resemble the neurobiological representation of

the same computational processes in the brain, although these models have

been developed in the absence of such neuroscientific references. In this

perspective, we review the cooperation and separation between neuroscience

and AI, and emphasize on the current advance, that is, a new cooperation, the

neurobiological explainability of AI. Under the intertwined development of the

two fields, we propose a practical framework to evaluate the brain-likeness of

AI models, paving the way for their further improvements.

KEYWORDS

artificial intelligence, brain, brain-inspired intelligence, neurobiological
explainability, AI evaluation, artificial neural network

Introduction

Artificial intelligence (AI) starts with the notion of creating Turing-powerful
intelligent systems (Turing, 1936). He claimed that his desire was to build a machine
to “imitate a brain” and also to “mimic the behavior of the human,” which means
the likeness to both the brain and the behavior is requisite to realize such intelligent
systems. For this to happen, pioneers in the field (Rosenblatt, 1958; Fukushima and
Nixon, 1980; Bi and Poo, 1998; Masquelier and Thorpe, 2007) have drawn inspiration
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from the neurobiological representation to develop AI models.
However, early models or algorithms strictly mimicking the
neural processes in the brain have constantly failed to
deliver satisfactory performances, such as the perceptron
(Rosenblatt, 1958), Hebbian learning rules (Kempter et al.,
1999), and Sigmoid (Han and Moraga, 1995). Gradually,
computer scientists have strayed away from neuroscience and
turned to engineering and mathematical solutions to design
“outcome-driven” models. These models achieved remarkable
performance in many aspects, including but not limited to object
recognition (Riesenhuber and Poggio, 2000), speech and music
recognition (Kell et al., 2018; Sutskever et al., 2019), and motor
movement (Todorov, 2000).

Nonetheless, comparison between AI and the brain has
never stopped. Once optimized performance is achieved,
researchers (Yamins et al., 2014; Güçlü and van Gerven, 2015;
Eickenberg et al., 2017; Zhuang et al., 2021) begin to search
for the neurobiological explainability of these advanced models,
that is, the similarity of the neurobiological representation of
the same computational processes between AI models and
the brain. The authors wish that through unraveling the
neurobiological explainability of AI models, one could achieve
a better understanding of the brain and thus promote the
development of neuroscience (Lindsay, 2021). Interestingly,
in return, the evaluation of resemblance between current
AI models and the brain may also shed lights on how far
away these models are to the Turing-powerful (i.e., brain-like)
intelligent systems.

During the three stages (Figure 1) of AI development, the
role of neuroscience has experienced a shift from the “guide,”
who provides guiding principles to the design of AI models,
to the “judge,” who provide references for the evaluation of
AI models. In this review, we will look back to the mutual
development of AI and neuroscience, and propose a framework
to evaluate the brain-likeness of AI models that can serve AI
development in multiple ways.

The collaboration and separation
of artificial intelligence and
neuroscience

Brain is the most complex and efficient non-artificial
intelligent system known to humans. Throughout history,
the promise of creating machine intelligence with brain-
like ability has been a motivation of innovation (Roy et al.,
2019). One way to realize such intelligence is to scrutinize
the organization principles of brain’s structures and functions
and thus seek inspiration for the design of AI. Hassabis
et al. (2017) stated that if a new facet of neurobiological
representation were found, it would be considered as an
excellent candidate for incorporation into AI. Over the
years, AI models have been rapidly developed by drawing

inspiration from the brain neural networks, whereas algorithms,
architectures, and functions of models have benefited greatly
from mimicking such neurobiological representations (e.g.,
neuro-synaptic framework and hierarchical structure).

In the initial collaboration between AI and neuroscience,
the direct inspiration from neuroscience accelerated the start-up
of AI. The earliest application was the perceptron (Rosenblatt,
1958), a simple abstract of neurons, mimicking the simple
neuronal activity in visual cortex, such as the weights of
synapses, the biases of the thresholds, and the activation
function of the neural cells. Years later, inspired by Hubel
and Wiesel’s (1962) study in the visual cortex, Fukushima and
Nixon (1980) proposed an advanced model, Neocognitron, the
precursor of the modern convolutional neural networks (CNN),
which mimicked the organizations of neural cells in the visual
cortex. Apart from the inspiration of how neurons activate,
researchers also designed some brain-corresponding models
(e.g., topographic maps) inspired by how brain is organized. For
example, Burak and Fiete (2009) modeled the network topology
of the rats entorhinal cortex to form the neural substrate for
dead-reckoning.

Although AI is profoundly inspired by the neurobiological
representation of the brain, surprisingly, these brain-mimicking
models have never achieved a satisfactory performance, likely
due to their over-simplification of the real neural system.
For instance, Hebbian learning, a neurobiologically schemed
method, fail to produce models with adequate performance
as it does not take into consideration of the synapse’s
downstream effect on the network output (Lillicrap et al.,
2020). Gradually, researchers (Rumelhart et al., 1986; Hinton
et al., 2012; Lecun et al., 2015) started to turn to engineering
and mathematical solutions to maximize model performance
regardless of its underlying neurobiological relevance. In
these works, the authors replaced the former neurobiological
schemed methods with back-propagation, an algorithm without
a prior neurobiological relevance, and solved the low-efficiency
problem of synaptic modification (Lillicrap et al., 2020).
Moreover, replacing the former neurobiologically inspired
Sigmoid function (Han and Moraga, 1995) with the activation
function ReLu (Deng et al., 2010) has been demonstrated to
substantially improve the performance of deep neural networks
(DNNs) since Krizhevsky et al. (2012). Given such superior
performances, are these models operated in anyway similar
to the most efficient system we ever know, the brain, despite
they are not strictly structured to follow any neurobiological
principles?

Neurobiological explainability of
artificial intelligence

Despite of the turning of design principles from mimicking
neurobiological representation of the brain to optimizing
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FIGURE 1

Timeline of the development of the interaction between neuroscience and AI. During the development, the interaction between neuroscience
and AI has experienced 3 stages: (1) neuroscience guided the design of AI models; (2) implementations of engineering and mathematical tools
instead of neurobiological principles in the development of AI models have led to substantial improvement in model performances, but the
complex algorithms and huge parametric space behind the high performance pose a dilemma for the explanation of the underlying specific
decision-making of the models, which are also called “black box” models (Arrieta et al., 2020); (3) by comparing the predicted neurobiological
representation by modern AI models to the real neural processes in the brain, neurobiological explainability are provided to AI models.

performance with tools from engineering and mathematics,
AI and neuroscience have never really grown apart. With the
rapid development of AI, researchers (Yamins et al., 2014;
Güçlü and van Gerven, 2015; Eickenberg et al., 2017; Zhuang
et al., 2021) believe that these advanced models are capable to
promote the development of neuroscience in return. In specific,
they advocate for seeking for the neurobiological explanations
for AI models as an alternative way to better understand the
organization principles of the brain.

Early studies exploring the neurobiological explainability of
AI models have mainly focused on visual recognition. Yamins
et al. (2014) first examined the similarity between real brain
activities and predicted activations from CNN model. The
authors trained CNN model to match human performances
on various visual recognition tasks. The results showed that
the third and the fourth (top) layer of the model could
effectively predict the inferior temporal activity recorded with
functional MRI during image recognition. Other findings
(Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014;
Güçlü and van Gerven, 2015) also confirmed that deep neural
network (DNN) models trained for visual recognition have
remarkable predictability for the neural responses in the human
visual system as well. Moreover, Cichy et al. (2016) found
that the predicted brain activities by DNN trained for object
categorization are highly resemble to the brain activations
recorded via both fMRI and MEG during the same cognitive
process, not only in the physical space domain (i.e., matching
the hierarchical topography in the human ventral and dorsal

visual streams), but also in the temporal domain (i.e., matching
the time course over visual processing).

In addition to visual recognition, models designed for
other utilities also showed similar predicted neurobiological
representations with the real activities in the corresponding
neural systems. A recent heavily focused area is the
neurobiological explainability of AI models for language
processing, including syntax processing (Gauthier and Levy,
2019), semantic processing (Pereira et al., 2016; de Heer
et al., 2017), and comprehension (Schrimpf et al., 2021).
Adding to these evidence, highly corresponded mappings
between predicted (by the AI) and recorded (in the brain)
neurobiological representations have also been found in other
cognitive systems, such as the auditory system (Kell et al.,
2018), the motor system (Sussillo et al., 2015), and even the
hippocampal formation (Whittington et al., 2021).

Quantify the progress toward
Turing-powerful intelligence

Such demonstration of neurobiological explainability of
AI models has opened the door for new contributions from
neuroscience, to provide alternative tools to quantitatively
evaluate the progress we made toward the Turing-powerful
intelligent systems. Normally, evaluation to the distance to such
intelligent systems concentrates at the behavioral level, where
the performance of models would be evaluated, such as model-
model comparison and model-to-human behavior comparison.
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However, the neurobiological explainability gives us cues to
evaluate the brain-likeness of the models, which mainly focused
on whether they can solve the same problems as the brain.
Evaluation at the both behavioral and neurobiological gives us
a more comprehensive insight to evaluate the distance to the
Turing-powerful intelligent systems. Besides, the improvements
of the algorithm can also indicate the advancement toward
the Turing-powerful intelligent systems. To further elaborate
on this new role of neuroscience in AI development, here, we
capitalize on the Marr’s (1982) widely recognized computational
framework, and discuss such applications in three levels.

Evaluation at the computational level

In Marr’s theory, the first level, computational level,
concerns the problems that models can solve. The evaluation
of the performance of the models can be categorized into
two ways: model-to-model comparison and model-to-human
behavior comparison. The model-to-model comparison literally
compares performances of different models for the same task.
For instance, Xu et al. (2021) compared supervised models
to unsupervised models and found that the latter trained
with 10 min of labeled data, could rival the best supervised
model trained with 960 h of labeled data. The model-to-human
behavior comparison contrasts AI performance to human
performance during the same task. For instance, Rajalingham
et al. (2018) compared the ANNs’ (Artificial neural networks)
accuracy in the visual categorization task with the behavioral
results from 1,477 primates (1,472 humans and 5 monkeys),
and evaluated that the models could not achieve the human-like
behavioral performance.

Evaluation at the algorithmic level

The second level of Marr’s theory, algorithmic level,
concerns the processes that models go through. During the
exploration into the neurobiological explainability of models,
the training methods for models displayed a positive shift,
implying that models turned out to be more intelligent. First,
the training methods for models in the earlier studies aimed
to map the computational models into the corresponding brain
activity (Mitchell et al., 2008) when receiving the same stimuli,
or to use the brain responses to constrain the models (Cadieu
et al., 2014). And then the artificial neural response generated
from models and the unlearned brain data were compared.
However, in more recent studies, researchers (Yamins et al.,
2014; Kell et al., 2018; Schrimpf et al., 2021) start to train AI
models with only behavioral (e.g., objects and their labels) but
not any neuroimaging data. Interestingly, while the models were
not optimized to fit brain signals in the first places, they can still
predict the brain responses during the same cognitive process

proficiently. These findings suggest that the computational
processes of these models can be brain-like enough to generate
neurobiological representation without explicit training.

Furthermore, the shift of paradigm from supervised to
unsupervised models during the prediction of neurobiological
representation can also be seen as a step-forward toward brain-
like intelligence, since the latter is considered to be more
similar to human learning pattern which is constantly exposed
to unlabeled environments (Mitchell, 2004), which could even
automatically learn the human bias from image classification
(Steed and Caliskan, 2021). In earlier studies, models used to
predict neurobiological representation were mostly supervised
models (Cadieu et al., 2014; Yamins et al., 2014; Güçlü and
van Gerven, 2015). A study even suggested that unsupervised
models could not predict the brain responses (Khaligh-Razavi
and Kriegeskorte, 2014). However, with the improvement of
unsupervised models during the decade (Xu et al., 2021), recent
studies have found evidence that unsupervised models could
successfully predict the neural response as well. For instance,
Zhuang et al. (2021) found that the unsupervised models
achieved a high prediction accuracy in the primate ventral
stream that equaled and even surpassed the performance of the
best supervised model. Thus, the recent success of unsupervised
models in predicting brain representation suggests that AI
models have made a giant step forward on the human-like path.

Evaluation at the
implementation/physical level

The last level of Marr’s theory, implementation/physical
level, concerns the brain-likeness of the models.

First, instantiation (i.e., the neural representation of models)
of the brain-inspired model would be an explicit and effective
measure for judging success and spurring the progress to the
Turing-powerful intelligence. It is an explicit measure since
the layers in the models almost correspond to the hierarchical
structure of the brain (Kell et al., 2018), where we can
directly compared the detailed performance in each layer with
the corresponding responses in the brain. If a model could
highly predict the response in the brain, we consider that its
corresponding parameters/weight would be vital to achieve the
Turing-powerful intelligent systems (Hassabis et al., 2017). It
is also an effective measure to drive models toward the goal.
For example, Yamins et al. (2014) found that the top layer in
the model could better predict the activity in IT cortex while
other layers did not achieve the satisfactory performance. In this
case, we may allocate more energy to optimize the layers that
cannot successfully explain the corresponding neurobiological
representation, which determines the most productive way to
allocate resources.

Second, the evaluation of models from the perspective
of neuroscience further supports the validation of behavioral
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results. Many studies have indicated that the more brain-like
the model is, the better performance the model has in the task.
For instance, Yamins et al. (2014) indicated that when a model
highly predicts the IT (Inferior temporal) cortex, the better
performance it would have in the object recognition task. And
the same results were also found in another study (Khaligh-
Razavi and Kriegeskorte, 2014). They compared 37 models
with the human’s and monkeys’ cortex, respectively, showing
that the models with more relevant correspondences with the
neural representation in IT cortex have better performance in
object recognition. Further, in the language model, Schrimpf
et al. (2021) compared the predictability for neural response
between 43 diverse language models, where they found models
with high next-word predictive ability, like GPT models, have
a better performance in predicting brain signals in language
comprehension. Even they compared the ability of the next-
word prediction of these models in another dataset, the neural

predictivity still significantly correlated with the behavioral
results. The parallel but highly correlated results provide us
an opportunity to evaluate and further modify models from
another perspective, neuroscience. Combining with the first
point, it gives us a sight that we may modify the models more
brain-like in order to achieve better performance.

Third, the evaluation at the behavioral level may not
comprehensively explain the brain-like intelligence, as the
way to process information differs in the brain and behavior
(Bechara et al., 1997; Soon et al., 2008). Researchers claimed
that the unconscious biases observed in the brain guided
behavior before the conscious knowledge did, which means
the brain signal might capture the subtle differences that
were obscure at the behavioral level. Thus, the evaluation at
the neurobiological level may evaluate the distance to the
Turing-powerful intelligence more accurately compared to the
behavioral evaluation.

FIGURE 2

Schematic of the AI-Brain loop. First, present the same task (e.g., audio recognition) to human subjects and AI models, which are subsequently
trained for this task. Second, record the neural activities in the brain by neuroimaging techniques (e.g., fMRI., EEG., MEG., ECoG), and predict
neural responses with these trained AI models. Third, compare the recorded neural activity and the artificial neural activity generated by models.
Fourth, use the artificial neural activity to fit the neural activity by modifying the corresponding layers or parameters. Fifth, implement the
behavioral evaluation of model and see whether the performance achieve the human-like level. If not, implement the continuous fit until it
achieves the both human-like and brain-like level.
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Implications for the improvement
of AI models

Thus far, we have reviewed the collaboration and
separation between neuroscience and AI, and highlighted the
significance of the current collaboration. More importantly,
we propose the importance of evaluating models from the
perspective of neuroscience. The evaluation tells us the
closeness between the current models and the brain, which
is critical to optimize models in achieving the Turing-
powerful level.

To move forward, here, we present an AI-brain loop
framework in which we implement the explicit evaluation
from neuroscience and accurate modification in each layer
and even parameters to the models (Figure 2), inspired by
the human-in-the-loop (Li et al., 2014) and inception loop
(Walker et al., 2019).

In this framework, we propose that the AI models trained
for specific behavioral task can use neural recordings during
the same task as neurobiological reference. Comparisons
between recorded and model-predicted neural responses can
be used to tune the parameter space of the AI models,
and more realistic neurobiological representation of the
models can be achieved during the process of minimizing
the differences between the two. Lastly, performance of
the modified models at behavioral level will be used to
verify that whether models with higher brain-likeness
level, but also function at the human-like level. Then
we also test the modified models at the behavioral level
and see whether the performance improves. Such clues of
the modification are fundamental to achieve the Turing-
powerful intelligent system since it echoes Turing’s claim
(Turing, 1936) that models are qualified in not only
“mimicking the behavior of the human,” but also “imitating
the brain.”

The call for Turing-powerful intelligent system asks
to look beyond performance optimization, but to focus
more on how to achieve higher brain resemblance
in future AI models. We believe that re-introducing
neuroscience back into AI development through this
neurobiological explainability provides a promising opportunity
to outbreaking the “black-box” dilemma suffered by most
of modern AI models. By “jumping out of the box”
and developing more brain-like AI through such AI-
brain comparisons, we may eventually leap forward to
such ultimate goal.
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Introduction: Automated diagnosis of intracranial hemorrhage on head computed

tomography (CT) plays a decisive role in clinical management. This paper presents a

prior knowledge-based precise diagnosis of blend sign network from head CT scans.

Method: We employ the object detection task as an auxiliary task in addition to

the classification task, which could incorporate the hemorrhage location as prior

knowledge into the detection framework. The auxiliary task could help the model pay

more attention to the regions with hemorrhage, which is beneficial for distinguishing

the blend sign. Furthermore, we propose a self-knowledge distillation strategy to deal

with inaccuracy annotations.

Results: In the experiment, we retrospectively collected 1749 anonymous

non-contrast head CT scans from the First A�liated Hospital of China Medical

University. The dataset contains three categories: no intracranial hemorrhage (non-

ICH), normal intracranial hemorrhage (normal ICH), and blend sign. The experimental

results demonstrate that our method performs better than other methods.

Discussion: Our method has the potential to assist less-experienced head CT

interpreters, reduce radiologists’ workload, and improve e�ciency in natural clinical

settings.

KEYWORDS

blend sign, intracranial hemorrhage, hemorrhage expansion, prior knowledge,

self-knowledge distillation, convolutional neural network

Introduction

Intracranial hemorrhage (ICH) is a serious neurological disorder. It accounts for about

30% of the whole number of patients with stroke (Qureshi et al., 2009). Many factors such

as congenital development, vascular disease, and head injury could lead to ICH (Heit et al.,

2017). According to the hemorrhage location, some recent studies (Qureshi et al., 2001)

subdivide ICH into intraparenchymal hemorrhage (IPH), intraventricular hemorrhage (IVH),

epidural hemorrhage (EDH), subdural hemorrhage (SDH), and subarachnoid hemorrhage

(SAH) (Qureshi et al., 2001). Recently, some researchers have paid much attention to the blend

sign and black hole sign, two new types of ICH (Li et al., 2015, 2016). Blend sign (Li et al., 2015) is

composed of two parts with apparently different CT attenuation. There is a well-defined margin

(Li et al., 2017) between the hyperattenuated and relatively hypoattenuated regions, as shown

in Figure 1. Some recent studies (Yagi et al., 2019; Zhang et al., 2020; Li et al., 2021; Yang et al.,

2021) have shown that blend sign and black hole sign are closely associated with hemorrhage

expansion in ICH.

Non-contrast head computed tomography (CT) is a well-known and practical imaging

approach for the diagnosis of intracranial hemorrhage (Heit et al., 2017). In the non-contrast CT

slices, regions with intracranial hemorrhage appear highlighted since blood has a slightly higher
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density than other brain tissues (Nguyen et al., 2016). Patients in

emergency departments usually need an evaluation of head CT. In

general, the precise diagnosis of intracranial hemorrhage is crucial

in patients to assess the need for clinical treatment (Chilamkurthy

et al., 2018). Most hospitals usually provide CT scan interpretations

by junior radiologists or emergency physicians. Then some senior

radiologists will review the initial interpretations. The CT scan

interpretation is time-consuming, of low quality, and is unreliable.

Several studies have confirmed that some misinterpretations may

even lead to clinical consequences (Alfaro et al., 1995; Strub et al.,

2007). A precise diagnosis system for intracranial hemorrhage from

head CT scans is desirable.

Artificial intelligence and deep learning have recently shown

great performance in medically assisted diagnosis (Shin et al., 2016;

Havaei et al., 2017; Kamnitsas et al., 2017; Chen et al., 2018).

Chen et al. (2018) presented a 3D U-Net to segment cranial

vasculature in CTA volume without manual annotations. Havaei

et al. (2017) proposed a brain tumor segmentation model with

deep neural networks. Kamnitsas et al. (2017) provided an efficient

multi-scale 3D CNN with fully connected CRF for accurate brain

lesion segmentation. Shin et al. (2016) utilized convolutional neural

networks for computer-aided detection problems. Recently, some

researchers have introduced generative learning into brain disease

diagnosis (Wang et al., 2018, 2022; Hu et al., 2019, 2021; Yu

et al., 2021, 2022; You et al., 2022). Wang et al. (2018) presented

a convolutional neural network-based framework for bone age

assessment. Hu et al. (2019) proposed one adversarial U-Net with

different normalizations for cross-modality synthesis from MRI to

PET. Yu et al. (2021) applied GAN with high-order pooling for

Alzheimer’s disease. Yu et al. (2022) introduced a novel multi-

directional perception generative adversarial network to visualize

the morphological features of Alzheimer’s disease. Hu et al. (2021)

introduced bidirectional mapping generative adversarial networks

for brain MRI to PET synthesis. You et al. (2022) designed a fine

perceptive generative adversarial network to produce high-resolution

MR images from low-resolution counterparts in the wavelet domain.

Wang et al. (2022) proposed a segmentation model for brain stroke

lesions with consistent perception generative adversarial networks.

Some researchers have explored the detection of abnormalities in

head CT with machine learning and deep learning methods (Xiao

et al., 2010; Li et al., 2012; Chang et al., 2018; Titano et al., 2018).

Classification-based approach is the conventional approach. Li et al.

(2012) reported a machine-learning algorithm with high diagnostic

value for SAH detection. Prevedello et al. (2017) proposed one small

deep-learning model to detect critical test findings for head CT.

Chilamkurthy et al. (2018) proposed a deep-learning algorithm for

detecting critical findings in head CT scans. They retrospectively

collected 4,304 scans for evaluation. Ye et al. (2019) introduced a

three-dimensional (3D) joint convolutional neural network for the

classification of five subcategories of ICH. Lee et al. (2019) presented

an explainable deep-learning algorithm for ICH classification with a

small dataset. One disadvantage of these classification-basedmethods

is that the model may fit some unimportant features, such as the

background. Moreover, some researchers (Grewal et al., 2018; Liu

et al., 2021) introduced the segmentation into the diagnosis of head

CT. Grewal et al. (2018) applied three segmentation tasks as auxiliary

tasks to guide the classification model’s attention to the regions with

hemorrhage. Kuo et al. (2019) proposed an expert-level detection

model for acute intracranial hemorrhage, which performed joint

classification tasks and segmentation tasks. Liu et al. (2021) presented

a few short-learningmodel for intracranial hemorrhage segmentation

model with classification task as the auxiliary task. These studies

show that segmentation tasks can help highlight the regions with

hemorrhage and extract more discriminative features (Xie et al.,

2020). However, the segmentation task relies on highly accurate pixel-

level annotations, which are time-consuming and challenging for

large scale datasets. Furthermore, some researchers directly applied

the object detection models for the diagnosis of hemorrhage. Chang

et al. (2018) collected 11,021 CT scans from a single institution

and proposed a hybrid convolutional neural network (CNN) with

mask RCNN (He et al., 2017) for ICH detection and quantification.

However, the regions with hemorrhage are fewer in the CT scans, and

most CT scans have no hemorrhage. These anchor-based detection

methods face the imbalance problem of samples and are always

difficult for model optimization.

In fact, the region with hemorrhage is the most important basis

for distinguishing blend sign from normal ICH. Radiologists mainly

make evaluations based on the region with hemorrhage (Li et al.,

2017). Then we employ the region with hemorrhage as a prior

knowledge, and hope to add this prior knowledge to the model.

This study proposes a prior knowledge-based model for the precise

diagnosis of blend sign from head CT scans. We apply object

detection to replace segmentation as the auxiliary task to reduce

the annotation difficulty. Object detection only needs region-level

annotation, e.g., center and bounding box, which are simpler and

more robust than segmentation. Furthermore, there are inevitably

some inaccuracies in the annotations. We propose a self-knowledge

distillation strategy to deal with the inaccuracy annotations. We train

a model as the teacher model and generate the pseudo labels for the

training images. The pseudo labels contain much information about

the negative categories. Using the pseudo labels as the supervision

can gradually reduce the impact of inaccuracy annotations. Finally,

we evaluated the proposed model on the collected dataset. Extensive

results show that our method achieves better performance than the

baseline model.

The contributions of this study are 3-fold:

• We retrospectively collected 1,749 anonymous non-contrast

head CT scans from the First Affiliated Hospital of China

Medical University and annotated 13,276 slices for evaluation.

These slices are divided into three categories: no intracranial

hemorrhage (non-ICH), normal intracranial hemorrhage

(normal ICH), and blend sign.

• We present a prior knowledge-based diagnosis of blend sign

from head CT scans. We apply an object detection task as the

auxiliary task to reduce the annotation difficulty. The auxiliary

task can help the model pay more attention to the regions

with hemorrhage.

• We propose a self-knowledge distillation strategy to deal

with incorrect annotations. The soft predictions contain much

information about the negative categories and can gradually

reduce the impact of inaccuracy annotations.
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FIGURE 1

Examples of slices in our dataset: (A) non-ICH, (B) normal ICH, (C) blend sign, and (D) blend sign mimic (Normal ICH).

FIGURE 2

Dataset collection and selection process.

Materials and methods

Data collection and labeling

We retrospectively collected 1,749 anonymous non-contrast head

CT scans from the Department of Neurosurgery, the First Hospital

of China Medical University, Shenyang, China. The time of data

collection is from 19 September 2018 to 24 December 2020. All scans

were from the Asian population. CT scanners used in our dataset had

slices per rotation varying from 16 to 128. All of the CT scans in our

dataset were independently annotated at scan level and slice level by

three radiologists. These radiologists had corresponding experiences

of 6, 11, and 15 years in interpreting head CT scans. None of them

was involved in the clinical care of the enrolled patients. After careful

review and annotation, 125 CT scans were then excluded from further

analysis due to the following reasons: postoperative patients (65);

absence of non-contrast axial series (33); and patients were younger

than 7 years (27). The remaining 1,614 available CT scans were finally

used in our study. The dataset collection and selection process is

shown in Figure 2.

Each of the experienced radiologists independently evaluated

the scans and slices in our dataset. For the classification task,

experienced radiologists recorded the following findings for each

slice (Chilamkurthy et al., 2018): (1) normal head CT (non-ICH),

(2) normal ICH (including EDH, SDH, SAH, IPH, and IVH), (3)

blend sign. In some slices, both normal ICH and blend sign may

occur in the same slices, and we consider these slices as blend sign

slices. For the detection task, each radiologist records whether one

slice contains hemorrhage or not. For each hemorrhage region, the

experienced radiologists annotate the center point and its bounding

box (left, right, top, and bottom).

We apply the majority vote of these three radiologists’

interpretations as the gold standard (Chilamkurthy et al., 2018). By

slice-level annotation, there were 8,864 slices with non-ICH, 3,965

slices with normal ICH, and 447 slices with blend sign. The ratio of

blend sign: normal ICH:non-ICH is approximately equal to 1 : 9 : 22.

To effectively evaluate our algorithm as well as benefit the learning

process, we intentionally kept such a high prevalence of blend sign in

our dataset to ensure that there were enough positive samples.

Data pre-processing and augmentation

To highlight and emphasize specific pixels, we choose three

different windows and encode them into the following RGB images:

tissue window (WL = 40, WW = 40) for the red channel; brain

window (WL = 50, WW = 100) for the green channel; and blood

window (WL = 60, WW = 40) for the blue channel. Before being fed

into the model, we reshape all CT slices to size 512×512 to reduce

GPU memory usage. Then we convert all pixels from CT slices into

floating point tensors and rescale the pixels values (between 0 and

255) into the [0, 1] interval.

Considering that our dataset is relatively small, we apply data

augmentation to mitigate over-fitting in our task. In this article,

we choose five forms of data augmentation operations, left-right

flipping, left-right shifting, up-down shifting, random rotations (up

to 10 degrees), and random scaling (0.9 to 1.1). The augmentation

operations are shown in Figure 3. During the training process,

the data generator will randomly choose the above augmentation

operations for each slice, which means that the input to the model

is different at each epoch. We find that data augmentation could

largely enrich the training dataset and improves the performance of

our model on the task of blend sign and normal ICH detection.

Overview of the proposed method

The proposed method consists of three parts: the pre-trained

DCNN, the classification branch, and the detection branch. The

pipeline of the proposed method is shown in Figure 4. The input
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FIGURE 3

Random augmentations for CT slices: (A) original slice, (B) left-right flipping, (C) rotation (10◦, (D) rotation (−10◦, (E) scaling (0.9), (F) scaling (1.1), (G)

shifting (right), and (H) shifting (down).

image is fed into the pre-trained DCNN to extract the feature maps.

Then the feature maps from the last convolutional block (Block L)

are fed into two branches, the classification branch and the detection

branch. The classification branch gets the predictions with global

average pooling (GAP) layer and linear layers. Then detection branch

gets the locations with convolutional layers. In this way, the detection

branch could transfer the hemorrhage localization information to

boost the classification branch.

Pre-trained networks
Considering that our dataset is relatively small, we decided to use

some pre-trained deep convolutional neural networks (DCNNs) as

the backbones. Following (Lee et al., 2019), we choose one widely

applied architecture, VGG16 (Simonyan and Zisserman, 2015),

ResNet-50 (He et al., 2016), and Inception v3 (Szegedy et al., 2016), as

the pre-trained networks. These architectures are pre-trained on one

subset of ImageNet dataset (Deng et al., 2009). For the classification

branch, we add one GAP layer and one linear layer after the last

convolutional block (block L). We add two convolutional layers

for the detection branch after the last convolutional block ( Block

L). Then we fine-tune the pre-trained backbone, the classification

branch, and the detection branch with our dataset.

Classification branch
Automatic blend sign classification is a multi-class classification

problem. Each input image can be labeled as three mutually exclusive

types. For each input slice, the classification branch will produce

a three-dimensional output vector, where outputi is the probability

that the input slice belongs to class i. The conventional loss is

cross-entropy (CE) loss as follows:

Lce = −

3
∑

i=1

yi ln ŷi (1)

Where yi is the ground truth and ŷi is the probability of class i our

model predicts given an input slice x.

Considering the class-imbalanced problem in our dataset, models

trained on these samples are biased toward dominate classes, non-

ICH and normal ICH. To deal with the class-imbalanced problem,

we try to use weighted cross-entropy (WCE) loss function as:

Lwce = −

3
∑

i=1

wiy
i ln ŷi (2)

Where wi is the corresponding loss weight for class i. The weights

are to reduce the effects of imbalanced data distribution. The weights

can be fixed or automatically adjusted during the training process.

Through conductive experiment, we set the weights as w1,2,3 =

1, 2, 20, respectively. In the experiments, we find that WCE loss

could partially solve the class-imbalanced problem and improve the

performance of our algorithm.

Detection branch
The detection branch is inspired by the famous anchor-free

detection frameworks, such as FCOS (Tian et al., 2019) and

CenterNet (Duan et al., 2019). The detection branch aims to predict

the localization of the hemorrhage region for the input image. In

this branch, we consider the normal ICH and blend sign as the

foreground, and consider the non-ICH as the background. The

output of the detection branch is one of the key-point maps with

five channels. The first channel indicates the probability of the center

point of the hemorrhage region. The other four channels are the

bounding box (left, right, top, and bottom) of the hemorrhage region.

The loss function for the detection branch is defined as:

Ldet =
1

N

N
∑

j=1

Lcls(pj, p̂j)+
1

N

N
∑

j=1

pjLreg(bj, b
∗
j ), (3)

Lcls(pj, p̂j) = pj ln p̂j + (1− pj) ln p̂j, (4)
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FIGURE 4

Overview of the precise diagnosis of the blend sign system. Given one CT slice, we first use a pre-trained CNN (trained on the ImageNet dataset) to

extract feature maps, then put the feature maps into the classification branch and the segmentation branch, respectively.

Lreg(bj, b̂j) =
∣

∣

∣
bj − b̂j

∣

∣

∣
, (5)

Where pj and p̂j are the ground truth and probability of the j-

th position being the center point of one hemorrhage region. The

ground truth pj is equal to 1 if the j-th position is the center point

of one hemorrhage region, and pj is equal to 0 if the j-th position

is not the center point of one hemorrhage region. bj represents the

ground truth bounding box (bj,left , bj,right , bj,top, and bj,bottom) for the

hemorrhage region, b̂j is the predicted bounding box.N is the number

of pixels in an input image. Lcls is log loss over two classes (center

point vs. not center point). Lreg is the smooth L1 loss following (Tian

et al., 2019). Following Duan et al. (2019), we perform Gaussian

rendering for all ground truth p for faster training.

Self-knowledge distillation
For some slices, it is difficult to distinguish blend sign and normal

ICH. Thus, it will inevitably lead to some inaccurate labels. The

inaccurate annotations may bring a certain degree of challenges

for the training process and the model would be misled by these

inaccurate labels. We applied a self-knowledge distillation (Zhang

et al., 2021) strategy to solve this problem. In addition to the positive

category, the predictions also contain a lot of information about the

negative category. The information on the negative category can be

transferred to the student by self-knowledge distillation. Thus, the

inaccuracy annotations can be changed gradually. Figure 5 shows

the training process of self-knowledge distillation. We first train a

model with the training images as the teacher model. Then we use

the teacher model to generate predictions (pseudo labels) for each

training image. Next, we train a student model by minimizing the

distance between the predictions from the teacher and the student

as follows:

Lskd = KL(ŷt‖ŷs), (6)

Where KL is the Kullback–Leibler divergence to measure the distance

between two predictions. ŷt and ŷs are the predictions of the

classification branch from the teacher and the student, respectively.

Since inaccurate labels mainly affect the classification branch, we

apply self-knowledge distillation for the classification task. We apply

the student model as the teacher model in the next iteration of the

training process.

Optimization
The whole loss function for the proposed method is as follows:

L = Lwce + λ1Ldet + λ2Lskd, (7)

Where λ1 and λ2 are the hyper-parameters to balance the effect of

different losses. Through conductive experiment, we set λ1 = 1 and

λ2 = 10 for our experiments.

Experiments and results

Implementation details

Training details
We carry out all experiments on the PyTorch framework (version

1.7.1) with a single Nvidia GTX 1080Ti GPU card of 11 GB memory.

We choose stochastic gradient descent (SGD) with the momentum

(0.9) and the weight decay (0.0005) as the optimizer. We apply

the “ploy” learning rate decay, in which the learning rate equals to

base−lr ∗ (1 − iter
total−iter

)power . We set the base learning rate (base−lr)

as 0.01 and the power as 0.9. The mini-batch size is 16, the input

size is 512 × 512, and the training epoch number is 50. Data

augmentation operations include random flipping, re-scaling (from

2 to 0.5), and rotation.

Evaluation metric
Considering that our dataset is with a class-imbalanced problem,

we would like to choose Sensitivity, Specificity, F1 score, and AUC

(area under the receiver operating characteristic (ROC) curve) as the

statistical evaluation metrics. We define TP as the number of true
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FIGURE 5

Illustration of self-knowledge distillation.

positives, FP as the number of false positives, TN as the number of

true negatives, and FN as the number of false negatives. The definition

of sensitivity, specificity, and F1 score are as follows:

Sensitivity =
TP

TP + FN
, (8)

Specificity =
TN

TN + FP
, (9)

F1 =
2× TP

2× TP + FN + FP
. (10)

ROC curves were obtained by varying the threshold and plotting

the true positive rate (i.e., sensitivity) and false positive rate (i.e., 1-

specificity) at each threshold. We performed all statistical analyzes

with the python package scikit-learn, and generated all statistical

plots with Matplotlib.

Evaluation protocol
Considering that our dataset is relatively small, we may have

insufficient samples for validation and test set if we use simple

hold-out validation. The evaluation results may also be not reliable.

To address this problem, we apply K-fold cross-validation as the

evaluation protocol. It will split the dataset into K partitions

with equal size. For each fold, we choose one partition as the

validation set and train a model on the remaining K-1 partitions.

The final score would then be the average of K validation scores.

Particularly, in this study, we use a 5-fold validation as the evaluation

protocol. We will randomly split the dataset into five partitions

of equal size, and then train and evaluate five different models.

Then the final evaluation score is the average of five different

evaluation scores.

Results

Table 1 presents the comprehensive comparisons with existing

datasets on five aspects: number of scans, five-type annotation, blend

TABLE 1 Comparison with other related datasets for the detection of

intracranial hemorrhage.

Dataset # Scans Five-type Pixel-wise Blend

annotation annotation sign

Chilamkurthy

et al. (2018)

491 X × ×

Grewal et al.

(2018)

252 × X ×

Lee et al.

(2019)

904 X × ×

Ye et al. (2019)

2,836 X × ×

Ours 1,614 × × X

#Scans: number of scans in the dataset. Five-type annotation: annotation for ICH, IPH, IVH,

EDH, and SDH.

sign, and pixel-wise annotation. We can find that most datasets focus

on the five-type (ICH, IPH, IVH, EDH, and SDH) detection tasks.

These datasets rarely provide the pixel-wise annotation except for

the dataset, as explained by in Grewal et al. (2018). This is because

the pixel-wise annotation is time-consuming, which is challenging

for large scale datasets. Our dataset is the only one to consider the

detection of blend sign.

Table 2 presents the inter-rater interpretation agreement among

the three radiologists. Concordance between the three radiologists

on our dataset was highers for non-ICH (All Fleiss’s κ = 0.91),

representing excellent agreement with these findings. Blend sign

has the lowest concordance with All Fleiss’s κ = 0.79, indicating

substantial agreement.

Table 3 summarizes the performance of the proposed method.

Our method achieved AUCs of 0.972 for blend sign, 0.978 for

normal ICH, and 0.999 for non-ICH. For Sensitivity, our method

achieved 0.845 for blend sign, 0.898 for normal ICH, and 0.984

for non-ICH. For Specificity, our method achieved 0.941 for

Frontiers inNeuroscience 06 frontiersin.org
34

https://doi.org/10.3389/fnins.2023.1112355
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1112355

TABLE 2 Reliability of the gold standards for our dataset.

R1 and R2 R2 and R3 R1 and R3 All Fleiss’s κ

p(%) κ p(%) κ p(%) κ

Non-ICH 97 0.91 98 0.92 98 0.91 0.91

Normal ICH 94 0.85 96 0.87 95 0.86 0.86

Blend sign 89 0.78 92 0.81 91 0.79 0.79

R, radiologist; p, percentage agreement rate; κ , Cohen’s κ coefficient, a statistic to measure inter-rater agreement; All Fleiss’s κ coefficient, a statistic to measure the agreements among multiple raters.

Values of κ and All Fleiss’s κ >0.80 indicate excellent agreement, and 0.60–0.80 indicate substantial agreement.

TABLE 3 Performance of the automated detection algorithm on our dataset with ResNet-50 as the backbone.

WCE AT SKD Sensitivity Specificity F1 score AUC

X 0.544 0.986 0.672 0.966

Blend Sign X X 0.716 0.977 0.768 0.972

X X X 0.845 0.941 0.781 0.977

X 0.929 0.842 0.913 0.964

Normal ICH X X 0.897 0.897 0.911 0.967

X X X 0.898 0.936 0.928 0.978

X 0.978 0.953 0.932 0.996

Non-ICH X X 0.982 0.945 0.929 0.994

X X X 0.984 0.986 0.968 0.999

WCE, weighted cross-entropy loss; AT, auxiliary task (detection task); SKD, self-knowledge distillation. The bold values indicate the best score.

blend sign, 0.936 for normal ICH, and 0.986 for non-ICH. Based

on these results, we have three significant findings. First, the

performance of normal ICH was consistently higher than that of

the blend sign. This may be because, compared with the blend

sign, slices with normal ICH are much easier to be discriminated.

Second, auxiliary task (detection task) and self-knowledge distillation

method could boost the performance, especially for the sensitivity

of blend sign (from 0.544 to 0.845). This demonstrated the

effectiveness of auxiliary task (detection task) and self-knowledge

distillation method. Third, the sensitivity of normal ICH was

slightly decreased from 0.929 to 0.898. This is because the model

would predict some slices with normal ICH into blend sign.

Table 4 shows the performance with different pre-trained backbones.

We can observe that there are slight differences among different

pre-trained backbones.

Error analysis

We introduce the confusion matrix to evaluate the performance

and analyze the error. The row of the confusion matrix is the

predicted label, and the column is the true label. Figures 6A–C shows

the confusion matrix with different combinations. From Figure 6A,

we find that the classification of blend sign is terrible, 43% of slices

with blend signs were incorrectly predicted as non-ICH. Meanwhile,

only 2% of slices with normal ICH were incorrectly predicted as

blend sign. It is because the model is unable to distinguish the slices

with normal ICH and blend sign. The model tends to predict

the slice with a blend sign as normal ICH. In addition, we propose

TABLE 4 Performance of the automated detection algorithm with di�erent

pre-trained backbones.

Backbone F1 score AUC

VGG16 0.762 0.964

Blend sign ResNet-50 0.781 0.977

Inception V3 0.773 0.970

VGG16 0.932 0.981

Normal ICH ResNet-50 0.928 0.978

Inception V3 0.915 0.972

VGG16 0.949 0.995

Non-ICH ResNet-50 0.968 0.999

Inception V3 0.955 0.997

the auxiliary task (detection task) and find that only 28% of slices

with blend sign were incorrectly predicted as non-ICH. The results

indicate that the auxiliary task (detection task) can force the model to

pay more attention to the regions with hemorrhage and make more

accurate predictions. Moreover, when we apply the self-knowledge

distillation, 85% of slices with blend sign were correctly predicted,

and only 15% of slices were incorrectly predicted as non-ICH. The

improvement in prediction accuracy demonstrates the effectiveness

of the self-knowledge distillation method for inaccurate annotations.

The above-mentioned results indicate that the main challenge is to

distinguish blend sign from normal ICH. Our proposed auxiliary task
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FIGURE 6

Confusion matrix of the classification results. (A) WCE, (B) WCE+AT, and (C) WCE+AT+SKD. WCE, weighted cross-entropy loss; AT, auxiliary task

(detection task); SKD, self-knowledge distillation.

FIGURE 7

Examples of original slices with their corresponding class activation heatmaps. (A) Original slice of non-ICH, (B) original slice of normal ICH, (C) original

slice of blend sign, (D) class activation heatmaps of the original slice of non-ICH, (E) class activation heatmaps of the original slice of normal ICH, and (F)

class activation heatmaps of the original slice of blend sign. It is interesting to note that the regions with hemorrhage are strongly activated, and this is

probably how the network can make decisions.

(detection task) and self-knowledge distillation can partially solve

this challenge.

Visualizing what our model learns

To understand which parts of a given image lead to the final

classification decision, we apply “Class Activation Map” (CAM)

visualization as a powerful technique (Ye et al., 2019). The specific

method we choose is Grad-CAM (Selvaraju et al., 2017). CAM

visualization produces heatmaps of “class activation” over input

images. These heatmaps are 2D score grids, which indicate how

important each location is regarding the class considered. CAM

visualization is helpful to understand the decision process of our

model as well as analyze the classification errors. It also might

provide guidance for interpretation during clinical applications.

Three examples from our dataset are shown in Figure 7, where the

bright areas indicated high importance for decision marking and

gray areas indicated low importance. It was interesting to note that

the areas with bleeding attracted the most attention, while the areas
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without hemorrhage attracted less attention. In addition, we can

also observe some non-overlapping regions between the highlighted

regions and the bleeding regions. These results demonstrate that

our approach could partly guide the model to pay more attention

to the bleeding regions and misclassify some bleeding regions. The

constraints of the detection task may cause misclassification. The

detection task could only encourage the model to pay more attention

to some rectangular areas rather than the accurate pixels.

Discussion

This study focuses on the precise diagnosis of blend sign from

head CT scans with a deep learning approach. Our contributions

are summarized in the following aspects. First, we retrospectively

collected 1,749 anonymous non-contrast head CT scans and

annotated 13,276 slices for evaluation. Second, we present a prior

knowledge-basedmodel for blend sign from head CT scans.We apply

an object detection task as the auxiliary task to help the model pay

more attention to the regions with hemorrhage. Third, we propose a

self-knowledge distillation strategy to reduce the impact of incorrect

annotations. Results from Figure 6 and Table 3 confirm that the

proposed auxiliary task (object detection task) and self-knowledge

distillation indeed improved the performance of blend sign detection.

Coarse heatmaps in Figure 7 show that the regions with hemorrhage

attract more attention than the other regions. These heatmaps have

the potential to be employed as a coarse bleeding localization map. In

summary, our proposed algorithm assists the detection of blend sign

and normal ICH with high accuracy, which may be a useful tool for

the precise diagnosis of blend sign.

The proposed algorithm produces a pretty good performance in

our dataset. AUCs for all the findings were >0.97. The F1 score for

all the findings except the blend sign is >0.92. The Specificity for

all the findings is greater than or equal to 0.94. For the diagnosis of

blend sign, our algorithm achieves Sensitivity as 0.845, Specificity as

0.941, F1 score as 0.781, and AUC as 0.972. This may be because

of two reasons. First, we retrospectively collected a large amount

of anonymous non-contrast head CT scans from the First Affiliated

Hospital of China Medical University. We apply the majority vote of

three radiologists as the ground truth, which is a better gold standard

than one radiologist. The quality of annotation is relatively high.

Second, we apply an auxiliary task (object detection) and the self-

knowledge distillation strategy, which are suitable for our condition.

The auxiliary task could help the model to pay more attention to

the regions with hemorrhage and extract more discriminate features.

At the same time, self-knowledge distillation could vastly reduce the

impact of incorrect annotations.

Our study also has several limitations. First, all slices in our

dataset were from the Asian population, which may limit the

generalization of our algorithm. It is desirable to include information

on populations from other continents in the future. Second, to

enhance our algorithm’s performance and ensure there are enough

positive samples to train themodel. The prevalence of ICH (including

blend sign and normal ICH) in our dataset is much higher than

in some popular datasets and real clinical diagnoses. For example,

the reported incidence rate of ICH is 12% in the famous Quer25k

dataset (Chilamkurthy et al., 2018), while in our dataset, the incidence

rate of ICH is 32%. The performance of our algorithmmay change in

real clinical applications. Third, we only have 1,614 available cases

in our dataset, including 8,864 slices of non-ICH, 3,965 slices of

normal ICH, and 447 slices of blend sign. The number of blend

sign is quite limited. Performance may be adversely affected by the

lack of training examples. Although transfer learning, auxiliary task,

and self-knowledge distillation could boost the performance of our

algorithm, the performance may drop a lot in real clinical cases.

The next step is expanding our dataset and collecting more available

scans, especially with blend sign. Finally, Fleiss’s κ coefficient for

blend sign is just 0.79, which means there is some inconsistency in

the annotation of many slices with blend sign. The low blend sign

identification rate of junior radiologists may need more investigation

and may affect the training and generalization of our algorithm.

Although self-knowledge distillation could partially alleviate the

impact of inaccurate labeling, we also need to improve the reliability

of annotations in the future.

Conclusion

In this study, we propose a prior knowledge-based precise

diagnosis of blend sign from head CT scans. We constructed

a dataset with 1,614 available cases, 8,864 slices with non-ICH,

3,965 slices with normal ICH, and 447 slices with blend sign. To

better distinguish the slices with normal ICH and blend sign, we

propose the object detection task as an auxiliary task in addition

to the classification task. The auxiliary task can help the model

pay more attention to the region with hemorrhage. In addition,

we employ a self-knowledge distillation strategy to reduce the

influence of inaccurate annotations. Our precise diagnosis may

assist less-experienced head CT interpreters in reducing initial

misinterpretations. It also may reduce radiologists’ workload and

improve efficiency in a natural clinical setting. Experimental results

show that our method achieved AUCs of 0.972 for blend sign, 0.978

for normal ICH, and 0.999 for non-ICH, which is a pretty good

performance. In the future, we plan to collect more available scans

with high reliability of annotations and extend our algorithm to

clinical practice.
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Introduction: Recently, the Transformer model and its variants have been a great 
success in terms of computer vision, and have surpassed the performance of 
convolutional neural networks (CNN). The key to the success of Transformer vision 
is the acquisition of short-term and long-term visual dependencies through self-
attention mechanisms; this technology can efficiently learn global and remote 
semantic information interactions. However, there are certain challenges associated 
with the use of Transformers. The computational cost of the global self-attention 
mechanism increases quadratically, thus hindering the application of Transformers for 
high-resolution images.

Methods: In view of this, this paper proposes a multi-view brain tumor 
segmentation model based on cross windows and focal self-attention which 
represents a novel mechanism to enlarge the receptive field by parallel cross 
windows and improve global dependence by using local fine-grained and global 
coarse-grained interactions. First, the receiving field is increased by parallelizing 
the self-attention of horizontal and vertical fringes in the cross window, thus 
achieving strong modeling capability while limiting the computational cost. 
Second, the focus on self-attention with regards to local fine-grained and global 
coarse-grained interactions enables the model to capture short-term and long-
term visual dependencies in an efficient manner.

Results: Finally, the performance of the model on Brats2021 verification set is 
as follows: dice Similarity Score of 87.28, 87.35 and 93.28%; Hausdorff Distance 
(95%) of 4.58 mm, 5.26 mm, 3.78 mm for the enhancing tumor, tumor core and 
whole tumor, respectively.

Discussion: In summary, the model proposed in this paper has achieved excellent 
performance while limiting the computational cost.

KEYWORDS

brain tumor segmentation, cross window, CNN, Transformer, focal self-attention

1. Introduction

Brain tumors represent new growths in the cranial cavity that are also known as intracranial 
tumors and brain cancer and originate from the brain, meninges, nerves, blood vessels and brain 
appendages, or from other tissues or organs via metastasis. Most of these growths can produce 
headache, intracranial hypertension, and focal symptoms. The incidence of brain tumors is 7–10 per 
100,000 subjects, and more than half of such tumors are malignant. According to a study by the 
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World Health Organization (WHO), brain tumors have become one of 
the three major tumors endangering human health. The early 
identification and effective segmentation of brain tumors is very 
important if clinicians are to formulate treatment plans and improve the 
survival rates. However, at present, clinicians mainly segment brain 
tumors from nuclear magnetic resonance imaging (MRI) by hand; this 
practice is time consuming and also renders the accuracy of segmentation 
entirely dependent on the experience of the technician or physician. 
Therefore, convolutional neural networks (CNNs) (Long et al., 2015) and 
Transformer (Vaswani et al., 2017; Chen et al., 2021; Yuan et al., 2021) and 
other computer-aided diagnostic technologies are increasingly becoming 
a new trend with which to segment brain tumor images. Figure 1 shows 
that MRI data of different morphologies captured different pathological 
features of tumors.

The segmentation method is based on convolutional neural networks 
(CNNs) and has generated remarkable achievements in the field of 
medical image segmentation and other visual fields with its powerful 
characterization ability. However, CNNs are associated with limitations in 
global modeling or remote contextual interactions and spatial 
dependencies prevent further expansion of brain tumor segmentation, 
thus inspiring the use of Transformer and attention mechanism in 
medical imaging. Following the pioneering work of Transformer in the 
field of vision, Vision Transformer (Dosovitskiy et al., 2020) has created a 
general model in the field of natural language processing (NLP) and 
vision (Zheng et al., 2021). Several variants were subsequently developed, 
assisting the introduction of Transformer into medical image 
classification, target detection, medical image segmentation, and other 
fields. However, with the prosperity of Transformer in the visual field, 
many researchers found that although the full attention mechanism of 
Transformer played a significant role in global modeling or remote 
context interaction, it also generated problems associated with 
computational complexity secondary growth (Zhang et  al., 2021). 
Moreover, due to high computational complexity and memory 
consumption, the full self-attention mechanism of Transformer cannot 
be applied to medical image segmentation.

To improve efficiency and reduce computational complexity, 
researchers have suggested replacing the full self-attention mechanism 
with a limited range of local window self-attention mechanisms. 
Furthermore, considering the information interaction between 
windows, shift operation is utilized (Liu et al., 2021, 2022; Cao et al., 
2023) and information can be exchanged between nearby Windows, 
thus alleviating the problem of computational efficiency, at least to 
some extent. However, expansion of the receptive field in this way is 

rather slow, and many windows need to be stacked to achieve global 
self-attention (Liang et al., 2021). For high-resolution image models, 
such as medical image segmentation, a large receptive field is 
particularly important as this can affect the local or remote acquisition 
of contextual information. In view of this, this paper proposes a multi-
view brain tumor segmentation model based on cross window and 
focal self-attention which can retain computational complexity while 
achieving a large receptive field. Several innovations and major 
contributions were involved in the development of this new model.

 a. An innovative mechanism were used to extract characteristic input 
information from brain tumors, and rich local semantic 
information was extracted with fine-grained interactions. Then, 
global semantic information was captured with coarse-grained 
interactions. This effectively alleviated the problem of high 
computational complexity associated with the global self-
attention mechanism.

 b. The characteristic information of brain tumor was extracted by 
cross window, and the self-attention weights within the window 
were learned from both horizontal and vertical directions by 
concurrent multiple self-attention mechanisms; then, their 
weights were concatenated. This expands the receptive field of 
self-attentional learning and balances the relationship between 
computational complexity and self-attentional learning ability 
in Transformer.

 c. Locally enhanced location coding was adopted to apply the location 
information to the linear projection value; then, the location 
information was directly merged into each Transformer block, 
effectively improving the accuracy of pixel level segmentation for 
brain tumors.

 d. The novelty model proposed was applied to the field of brain tumor 
segmentation and verified on Brats2019 and Brats2021 data sets. 
The experimental results showed that the model proposed in this 
paper has achieved excellent performance and outstanding clinical 
application value.

The sections of this paper are arranged as follows. In the second 
section, we introduce the existing literature related to this paper. In 
the third section, we  elaborate the architecture of the focal cross 
window model. The fourth section provides verification of model by 
using two brain tumor data sets, while the final section summarizes 
the main contents of this paper and discusses future research 
and perspectives.

FIGURE 1

Magnetic resonance imaging (MRI) of multimodal brain tumors. The green, yellow, and blue regions in the ground truth indicate edema (ED), an 
enhancing tumor (ET), and non-enhancing tumor and necrosis (NCR/NET), respectively.
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2. Related work

2.1. Vision Transformer

The Vision Transformer (Dosovitskiy et al., 2020) model, as the 
first application of Transformer in the field of computer vision, 
exhibits strong universality, not only in the field of NLP, but also in 
the field of vision. As far as possible, the model follows the design of 
the original Transformer model. Firstly, the two-dimensional input 
feature map was partitioned through the patch partition module, 
and the partitioned patch was flattened into a token sequence along 
the channel direction (Chu et al., 2021a,b). A learnable embedded 
token classification header was added to the original token sequence 
prior to self-attentional learning; this was implemented by a hidden 
layer perceptron (MLP) during pre-training (Chu et al., 2021a,b; 
Touvron et al., 2021; Zhu et al., 2021), implemented by a linear layer 
when fine-tuned. Because Transformer’s self-attention learning 
sequence remains constant, it loses important location information. 
To solve this problem, researchers embedded the location coding 
information before multi-head self-attention learning. The model 
uses standard learnable 1D location embedding to preserve the 
location information in the token sequence. The encoder layer of 
Transformer is composed of multi-head attention and MLP modules, 
and the Layernorm (LN) layer is used before each module is applied 
(Gao et  al., 2022; Huang et  al., 2022; Lin et  al., 2022). The 
groundbreaking results of the Vision Transformer model 
demonstrated that a pure Transformer-based architecture can 
achieve applications comparable to CNNs, thus demonstrating the 
potential of Vision Transformer for the unified processing of natural 
language processing and visual tasks. Influenced by the success of 
the Vision Transformer model, many researchers improved the 
model from a range of aspects, including computational complexity, 
segmentation accuracy, and parallelization, so as to improve the 
efficacy of downstream tasks such as target detection and image 
segmentation (Howard et  al., 2017; He et  al., 2021; Wang et  al., 
2021a,b; Yuan et al., 2021). This led to the development of the Swin 
Transformer model (Liu et al., 2021) which limits the self-attention 
learning scope of Vision Transformer to a local window and acquires 
global information by shifting information between local windows. 
Thus, the computational complexity of the model is reduced, and the 
accuracy of image classification is improved. Some researchers 
combined Vision Transformer with a CNN to connect input features 
with the Transformer layer after convolution processing, learn local 
information through CNN, learn global semantic information by 
Transformer, and then combine the two strategies. This allowed the 
acquisition of rich semantic feature information. However, when 
Swin Transformer switches information between local windows 
during shift operation, the receptive field expands slowly, and many 
Transformer blocks need to be stacked to obtain global semantic 
information. However, combining CNN with Transformer (Wang 
et al., 2021a,b) makes Transformer lose its original ability to capture 
short-term and remote semantic information at the same time. 
Therefore, to solve these above problems, we  applied the Cross 
Window to balance the relationship between the computational 
complexity of the model and the self-attentional learning ability. 
Under the premise of reducing computational complexity, 
we expanded the receptive field of self-attentional learning, thus 
improving the accuracy of brain tumor segmentation.

2.2. The global and local self-attention

In the field of medical image analysis, Transformer models usually 
need to process many long sequence tokens due to the high resolution 
of images. Over recent years, many researchers have proposed various 
effective self-attention mechanisms to solve the problem of secondary 
computing and high memory overhead in Transformer. On the one 
hand, for many applications featuring medical image segmentation, 
CNN is combined with Transformer. The token quantity is reduced 
through CNN down-sampling, and then the global self-attention 
weight is acquired by coarse-grained interactions. Although this 
method can improve the efficiency of Transformer, it loses rich 
semantic information around the tokens, and loses the ability to 
capture both short-term and remote semantic information. On the 
other hand, fine-grained self-attention weights are learned in local 
windows, and then coarse-grained global self-attention weights are 
captured by window shift or other operations. In this model, 
we  hypothesize that both fine-grained and coarse-grained self-
attentional learning are important. Some recently developed advanced 
models also support his concept (Hu et al., 2018; Bello et al., 2019; 
Chen et al., 2019; Srinivas et al., 2021). Experimental results of this 
paper show that the combination of global and local self-attention can 
effectively improve performance.

This paper proposed focal self-attention model is shown in 
Figure 2. The left image shows that feature semantic information is 
learned by a full self-attention mechanism which will increase the 
computational complexity by a factor of two. The middle image 
indicates that global semantic features are captured by a coarse-
grained method. The image on the right shows the proposed model 
combined fine-grained and coarse-grained focal self-attention 
mechanism. This mechanism divides patch tokens into three levels 
of granularity. Self-attentional learning operations of different sizes 
are performed in each window respectively, thus combining local 
fine-grained and global coarse-grained strategies to capture short-
term and remote semantic information more efficiently 
and effectively.

3. Materials and methods

Focal cross transformer model is a new mechanism to enlarge the 
receptor field by parallel cross window and improve global 
dependencies by using local fine-grained and global coarse-grained 
interactions. The model realizes local and global semantic information 
interaction by focal self-attention, and uses parallel cross window to 
enlarge the perceptive field and limit the rapid growth of 
computational complexity.

3.1. Overall architecture

The overall model utilizes UNet encoder decoder architecture, 
and the encoder architecture of the Focal cross transformer model is 
shown in Figure 2. Specifically, the input MRI section of multimodal 
brain tumor data was formulated by

 X
H W D C∈ × × ×



 (1)
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Where the image size is H × W × D, and the number of input 
channels of the image is represented by C. Firstly, the image was sliced 
along the depth direction. For each slice, the input size of the image 
was formulated by

 X
H W∈ × ×



4

 (2)

And then step convolution was used to convert the input image 
into the patch token of H/4  ×  W/4. In the encoder path, step 
convolution was used for down-sampling to acquire the layered 
architecture. The encoder was divided into four layers; each layer 
contained Ni focal cross transformers. In the focal cross transformer 
layer, horizontal and vertical stripes were used for parallel self-
attention learning, and fine-grained learning was applied around each 
token. This paper used coarse-grained strategies at long distances to 
gain global attention. Next, the feature was transformed by feature 
mapping; in addition, the image size was halved and the number of 
channels was doubled by step convolution between layers. Then, 
we stacked the up-sampling and convolution repeatedly to obtain 
high-resolution segmentation results.

3.2. Focal cross transformer

Although the original full self-attention mechanism can capture 
short-term and remote semantic information, its computational 
complexity is a quadratic form of feature graph size. To alleviate this 
problem, many researchers tend to use local windows to limit the 
scope of self-attentional learning, to reduce the computational 
complexity and memory consumption. Then, the information 
between local windows is exchanged by shift operation to acquire 
global information. However, this operation destroys the ability of the 
original self-attention mechanism to learn both short-term and 
remote semantic information at the same time. Furthermore, each 
token can still only obtain semantic information within a limited area; 
therefore, more blocks need to be  stacked to acquire the global 
receptive field. The focal self-attention based on cross window would 
enlarge the receptive field and acquire local and global semantic 
information interactions in a more efficient manner while limiting the 
rapid growth of computational complexity.

3.3. Focal self-attention

To better realize local and global semantic information interactions, 
the model used a focal self-attention mechanism that used fine-grained 
tokens locally and coarse-grained tokens globally, rather than 
implementing full self-attention mechanism with a fine-grained 
strategy. Therefore, the global self-attention mechanism can 
be implemented on the premise of limiting the quadratic increase of 
computing complexity. Using this system, it was possible to achieve 
long-term self-attention in less time and with less memory because it 
only used fine-grained tokens locally and coarse-grained tokens in the 
long run. However, in practice, we need to query and copy all other 
tokens for each token, which is still associated with a high computational 
cost for high-resolution brain tumor images. In view of this, feature 
mapping was divided into Windows to solve this problem. As shown in 
Figure  2, the left image represents the use of full self-attention 
mechanism to learn feature semantic information, which will increase 
the computational complexity by a factor of two; the middle image 
represents the use of a coarse-grained strategy to capture global 
semantic features. However, a large amount of local feature information 
was lost. The image on the right represents combined fine-grained and 
coarse-grained focal self-attention mechanism. For the input feature 
graph By the formula 2( ), this paper first divided data into a window 
grid of SP×SP, using fine-grained tokens inside the window and coarse-
grained tokens outside the window.

To express the proposed method more clearly, this paper defined 
three terms: feature levels, marked with SL, which represented the 
granularity level of extraction for input feature graphs. In Figure 2, this 
papershow the extraction of three granularity levels. Feature windows 
size, marked with SW, represent the size of the window size in the SL level 
and the number of summary tokens, thus providing sub-windows. 
Feature windows number, marked with SN, represents the total number 
of SW in the SL tier. By applying these three terms {SL, SW, SN}, An module 
that clearly displays the model, as shown in Figure 2 at the fine-grained 
level; the three tags are identified {3,11,11} Figure 3.

3.3.1. Cross window self-attention
As shown in Figure 4, this paper separated the features from fine-

grained local self-attention and coarse-grained global self-attention. 
Taking fine-grained local self-attention as an example, a multi-head 
self-attention mechanism was used to map the input features to T 

FIGURE 2

A patch token display of a brain tumor input feature map under different granularity levels. The image on the left shows that feature semantic 
information is learned by a full self- attention mechanism. The intermediate image representation captures the global semantic feature information 
completely with coarse granularity. The image on the right shows the proposed model combined fine-grained and coarse-grained focal self-attention 
mechanisms to capture semantic features.
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heads; then, each head performed self-attention computations in a 
horizontal or vertical window Figure 5.

After mapping the input features to T headers, the headers were 
segmented to realize parallel computation, where {1,2,…,T/2} 
performs horizontal self-attentional segmentation, {T/2,T/2 + 1,...,T} 
performs vertical segmentation, and T is usually even. The features 
were partitioned equally in the horizontal direction and X was 
partitioned into non-overlapping [X1,X2,…,XM] windows of equal 
width and SU size. Each window contained SU × W tokens. SU can 
be used to balance the relationship between self-attention learning and 
computational complexity, and then fine-grained self-attention weight 
calculation was carried out for each Token in each SU × W size window. 
Finally, the self-attention results of two parallel groups in horizontal 
direction and vertical direction were cascaded.

Let us suppose that the dimensions of queries, keys and values of 
the input feature X projected to the T-th head are all dt; then, the 
formula for calculating self-attention of the T-th head is as follows:

 
X X ,X , ,XM= …[ ]1 2

 (3)

 
Y Attention X W ,X W ,X Wt

i i

Q

i i
K
i i

V
i= ( ) 

(4)

 
Attention X Y ,Y , ,YH t t t

M

t
( ) = …





1 2  
(5)

 X
i S W CU∈ ×( )×
  (6)

FIGURE 3

The overall architecture of this paper proposed Focal Cross Transformer. The left image represents the encoder path architecture diagram of the 
overall architecture, and the right image represents the proposed Focal Cross Transformer.

FIGURE 4

As an illustration of this paper focal cross-attention model, the image on the left represents fine-grained local self-attention while the image on the 
right represents coarse-grained global self-attention, The input feature X was calculated through fine-grained and coarse-grained strategies. In the 
fine-grained strategy, the input feature was mapped to the T-head and then the head was divided. Next, we calculated horizontal and vertical 
autogenous attentions in parallel. Finally, the self-attention results for the two parallel groups in the horizontal direction and vertical directions were 
cascaded. A similar operation was performed for the coarse-grained strategy.
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M

H

S
i , , ,M

u

= = …{ }, 1 2

 
(7)

 
W W W

Q

i
K
i

V
i C dt, , ∈ ×



 (8)

In these formulae, the corresponding vertical window size is 
similar. The horizontal and vertical parallel grouping results are 
then cascaded.

 Focal Cross Attention X Concat head , head , , headT− = …( ) ( )1 2  (9)

3.4. Network encoder

Considering that processing the three-dimensional (3D) 
Transformer will significantly increase computational complexity and 
memory consumption, we slice the input feature and slice along the 
depth direction to obtain a two-dimensional image with input feature

 X∈ ×


240 240

 (10)

The overlapped convolutional tokens (kernel = 7, stride 4) were 
then used to obtain the tokens of

FIGURE 5

Visualization of MRI brain tumor segmentation under different methods. Focal Cross Transformer was compared with the results derived from Unet3D, 
3D PSwinBTS, TransBTS, and other models on the BraTS 2021 dataset.
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H W
4 4

60 60× ∈( )×
X 

 
(11)

The dimension of each token was C. Then patch token was 
captured short-term and remote semantic information was acquired 
through the focal cross transformer layer. In the encoder path, there 
were four stages, each of which had Ni focal cross transformer layers; 
this maintained the number of tokens. Each focal cross transformer 
layer was divided into fine-grained and coarse-grained self-attention 
mechanisms according to granularity level, thus balancing 
computational complexity and self-attention learning ability according 
to granularity. At each level of granularity, the self-attention window 
range was extended by a parallel Cross window; then, the horizontal 
and vertical self-attention weights were concatenated. To form a 
hierarchical structure between the focal cross transformer layers, 
we  used a convolutional layer (kernel = 3, stride 2) to reduce the 
number of tokens and double the channel size. The complete encoder 
architecture is shown in Figure 3.

3.5. Network decoder

To generate segmentation results in the original slice image, 
we introduced a CNN decoder for up-sampling and to generate pixel-
level segmentation. Slice image features

 X

H H
C

∈
× ×



32 32
8

 (12)

were converted by the feature mapping layer following the encoder 
layer. Specifically, the sequence data was projected into the standard 
two-dimensional space through the feature mapping module; then, the 
image size was expanded and the number of channels was halved by 
up-sampling through transpose convolution. Then, this paper stacked the 
upper sampling layer and the convolution layer four times to produce 
high-resolution segmentation results. Finally, the slices were concatenated 
to produce segmentation results in the original 3D space.

3.6. Positional encoding

Since the sequence order of the self-attention mechanism 
remained constant, it can lose important positional information. In an 
ablation experiment performed previously with Swin Transformer 
(Liu et al., 2021), it was proven that location information can affect the 
accuracy of image classification; therefore, sresearchers tend to use 
various location coding mechanisms to re-add the lost location 
information. At present, absolute position coding, relative position 
coding and conditional position coding are commonly used. The 
absolute position code uses sinusoidal functions of different 
frequencies to generate the code, which is then added to the input. 
Relative position coding considers the distance between markers in 
the input sequence and can naturally process long sequences of input 
information during training. Conditional location coding (CPE) 
relaxes the limitations imposed by explicit location coding on input 
size, thus allowing Transformer to handle inputs of different sizes. 

However, both absolute and relative location coding can add location 
information to the input token before the Transformer block. This 
paper concept was derived from the locally enhanced location coding 
proposed by Dong et al. (2022), in which this model applied location 
information to the linear projection value and then directly 
incorporated the location information into each Transformer block.

 
Z a b v

i

t

j

n

ij

t

ij

t

ij

t= +( )
=
∑

1  
(13)

In Equation (5), Zit  represents the T th element of vector Zi, aijt  
represents the result of calculation at the t th element, the queue, key, 
and bijt  represents position coding information. vijt  represents the value 
of the self-attention calculation.

4. Experimental results

In this paper, Brats2021 and Brats2019 data sets are used to verify 
the proposed model. Experimental results and ablation experiments 
demonstrate that the proposed model extends the receptor field by 
parallel cross window and improves the global dependence by using 
local fine-grained and global coarse-grained interactions. It can limit 
the computational complexity and improve the segmentation accuracy 
of brain tumors.

4.1. Training data and pre-processing

4.1.1. Training data
The datasets used for model verification in this study were all Brats 

datasets. This type of dataset is provided by the brain tumor segmentation 
challenge organized annually by the Medical Image Computing and 
Computer Assisted Intervention Society (MICCAI). This challenge has 
been held for 10 consecutive years and exerts significant influence in the 
field of medical image segmentation. All imaging data sets are manually 
segmented by 1 to 4 experienced specialists following the same protocol; 
then, their markings are reviewed by board-certified neuroradiologists. 
In the present study, the first dataset we used was Brats2021, which 
included 2,000 patients (8,000 mpMRI scans) including the training set 
(1,251 patients), the validation set (219 patients), and the test set (530 
patients). Each sample consisted of MRI scans from four modes: native 
T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted 
(T2), T2 Fluid Attenuated Inversion Recovery (T2-flair) volumes, post-
contrast T1-weighted (T1GD), T2-weighted (T2), and T2 fluid 
attenuated inversion recovery (T2-flair) volumes. This paper also 
included different clinical modalities and a variety of instruments from 
multiple medical institutions. Each mode had a data size of 240 × 240 × 
155 and shared split labels. Each label had four classes {0,1,2,4}: label 0: 
background; label 1: necrotic tumor core (NCR); label 2: peritumoral 
edematous/invaded tissue (ED), and label 4: GD-enhancing tumor (ET). 
The second data set was brats2019, which was not a subset of brats2021; 
the two datasets were significantly different. The only common data were 
the images and annotations of BraTS’12-'13; but this did not affect 
experimental comparisons. The data set included a training set (335 
cases) and a validation set (125 cases). The number of samples and 
modes in each data set were the same.
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4.1.2. Pre-processing
All Brats mpMRI scans are available as NIfTI files (.nii.gz).

Standardized and enhanced methods were used to process the input 
data before it was entered into the model for verification. Since the 
MRI images provided were not standardized, we normalized the gray 
level of each image and kept the background region as 0. The brats 
data set has been pretreated with cranial stripping and other 
procedures. At the same time, four types of data enhancement were 
implemented in this paper in order to prevent overfitting problems 
and enhance the Rubon property of the model.

 1. Random cropping: considering the large number of black 
background voxels in the border of the original image, the 
image was randomly cropped to size (128 × 128 × 128) voxels.

 2. Random flip: the image is flipped randomly with a probability 
of 50% along the coronal plane, sagittal plane and axial plane.

 3. Intensity normalization: as the data sets are collected from 
different instruments in different institutions, the image 
intensity will be  different, and it is necessary to carry out 
intensity normalization. In this paper, Z-Score normalization 
is used to process data.

 
X

X
j
i j

i
j

j

( )
( )

=
− β

α  
(14)

Where β  is the mean and α  is the standard deviation.
 4. Gaussian noise: gaussian noise is added to the training process 

to improve the robustness and generalization ability of the 
model. Gaussian noise is a noise generated by adding normal 
distributed random values with a mean of zero and standard 
deviation to the input data.

4.2. Implementation details and evaluation 
metrics

4.2.1. Implementation details
This paper trained model with Pytorch, using 8 NVIDIA RTX A5000 

(24GB memory) to train 7,050 epochs from scratch using a batch size of 
16. For optimization, this paper adopted the Adam optimizer and set its 
initial learning rate as 0.0003. To achieve more effective convergence, this 
paper set the decay rate as 0.9 in each iteration. For data set preprocessing, 
this paper adopted standardization, random flipping, and other strategies 
to prevent overfitting, but many epochs still needed to be trained. In the 
training stage, the original training data set was segmented according at 
a ratio of 8:2 for model training, adjustment, and optimization. According 
to the inference stage, this paper rescaled the original image and cut the 
intensity value. Then, this paper uploaded the evaluation model and 
prediction results to the official website of the host party.

4.2.2. Evaluation metrics
The model used four evaluation metrics for analysis 

and comparison.

 1. The dice similarity coefficient (DSC), which was used to 
measure the similarity between the brain tumor region 

predicted by the proposed Focal Cross transformer and the 
actual segmentation results provided by Brats; the value range 
was [0,1] and the greater the value, the higher the accuracy of 
model prediction. Of these, true positive (TP), the actual brain 
tumor region, was used to predict the brain tumor region; 
while true negative (TN was predicted to be the normal brain 
tissue region. The false positive (FP) region was actually normal 
but was predicted to be brain tumor region. The false negative 
(FN) region was actually negative but was predicted to 
be normal.

 
Dice

TP

FP TP FN
=

+ +
2

2  
(15)

 2. Hausdorff_95 (95% HD), the Dice coefficient was sensitive to 
the region inside the tumor, and the Hausdorff distance was 
sensitive to the delimited boundary. The Hausdorff_95 
represents the last value of the Hausdorff distance multiplied 
by 95% and was used to eliminate the influence of outlier value 
small subsets.

 
Hausdorff distance P Sup d x,Y , Sup d X,yx Z y Y95 95= ∈ ∈( ) ( ){ }  (16)

 3. Sensitivity, it refers to the proportion of pixels whose true value 
is tumor that are judged as corresponding tumor or edema.

 
Sensitivity

TP

TP FN
=

+  
(17)

 4. Specificity, it refers to the proportion of pixels that are judged 
to be normal among the pixels whose true values are normal.

 
Specificity

TN

TN FP
=

+  
(18)

4.3. Main results

4.3.1. Brats 2021
As with previous brain tumor segmentation research, this paper 

first performed a five-fold cross-validation evaluation on the training 
set. The average Dice scores of this model for the ET, WT and TC 
regions were 89.39, 93.58 and 88.65%, respectively. Similarly, at the 
interface stage, this paper also evaluated the performance of the model 
by qualitative and quantitative analysis. On the verification set 
submitted to the official website, we also compared the segmentation 
results of this model with currently available models; quantitative 
analysis results are shown in Table 1. The visualized results are shown 
in Figure 5.

The Dice scores of this model on the BraTS 2021 validation set for 
ET, TC and WT were 88.28, 86.35 and 93.28% respectively, and the 
corresponding results of the Hausdorff were 4.58, 5.26 and 3.78, 
respectively. Compared with a previous classical algorithm (Table 1), 
the segmentation accuracy was higher, and the segmentation (in 
Hausdorff distance) was also significantly improved. Compared with 
the classical Unet3D model, the Dice coefficient of the model 
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proposed in this paper for the ET, TC and WT areas, was increased by 
9.26, 6.62 and 4.21%, respectively. Since the UNet3D model only used 
a CNN to learn local feature information, its learning ability for global 
and long-distance semantic features was insufficient, thus resulting in 
a big difference between the segmentation accuracy and this model. 
Compared with the TransBTS model combined with Transformer and 
UNet, the Dice coefficient of the Focal Cross Transformer method for 
the ET, TC and WT regions, increased by 1.68, 1.09 and 1.81%, 
respectively. Compared with the Swin Unter model with layered Swin 
Transformer, the Dice coefficient of the model proposed in this paper 
for the ET and WT regions increased by 1.48 and 0.68%, respectively, 
and decreased by 1.15% in the TC region. In the next experiment, 
we found that adjusting the width of the stripes in focal cross-attention 
could further improve the segmentation accuracy of the Focal Cross 
Transformer model in the TC region, but could lead to a large increase 
in computational complexity and memory. Therefore, this paper 
adopted the current configuration on the BraTS 2021 dataset for 
model validation (Table 2).

4.3.2. Qualitative analysis
This paper visualized the segmentation results of the model on the 

BraTS 2021 dataset by applying Unet3D, 3D PSwinBTS, TransBTS and 
other methods. During visual display, we were unable to obtain the 
ground truth value for the verification set in the BraTS 2021 dataset; 
thus, this paper performed five-fold cross-validation evaluation of 
Unet3D, 3D PSwinBTS, TransBTS, and focal cross Transformer model 
on the training set.

4.3.3. Brats 2019
this paper also evaluated the segmentation results of model on the 

BraTS 2019 validation set. Because the BraTS 2019 dataset and the 
BraTS 2021 dataset are different in terms of the number of cases; the 
sequence type and image size were the same. This paper directly 
applied hyperparameters on the BraTS 2021 dataset to train model. 
The average Dice scores of the Focal Cross Transformer model on the 
BraTS 2019 validation set for ET, WT and TC were 89.68, 93.88 and 
89.25%, respectively. The Hausdorff results were 4.32, 4.26 and 3.28, 
respectively. Compared with the Unet3D, 3D PSwinBTS, and 
TransBTS models, the Focal Cross Transformer model showed clear 
improvements in the Dice coefficient and the Hausdorff two 
evaluation indices (Table 2).

The model presented in this paper achieves excellent 
performance on BraTS 2019 validation set. This was mainly 
because the model uses Fine-grained local self-attention and 
Coarse-grained global self-attention mechanisms to extract the 
input characteristic information from brain tumors and extract 
rich local semantic information through fine-grained grained 
mechanisms. Then, global semantic information was captured with 
coarse granularity. This strategy effectively improved the pixel level 
segmentation accuracy.

4.4. Ablation study

To more effectively verify the performance of the model, this 
paper performed extensive ablation experiments to prove the 
rationality and feasibility of the model’s design principle. This paper 
investigated the model’s capabilities in several different ways. Unet3D, T
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3D PSwinBTS and TransBTS proved that the combination of CNN 
and Transformer effectively improved the performance of the model. 
Therefore, this paper no longer independently verified the influence 
of CNN and Transformer on the performance for brain 
tumor segmentation.

4.4.1. Coarse-grained global and fine-grained 
local

This paper used fine-grained tokens locally and coarse-grained 
tokens globally, rather than implementing a full self-attention fine-
grained mechanism. The combination of coarse-grained global self-
attention and fine-grained local attention mechanism is an important 
aspect of the model proposed in this paper. However, full self-attention 
adopted by vision Transformer cannot be  applied to brain tumor 
segmentation due to high levels of computational complexity. 
Therefore, it is not possible to verify cases that only use fine-grained 
full self-attention mechanisms. This paper only verified the comparative 
performance between a model that adopted the combination of global 
coarse-grained and local fine-grained mechanisms and a model with 
the same granularity. This paper use the combined CNN and cross 
Transformer model in the encoder to perform a comparison 
experiment between the segmentation of brain tumors with the same 
particle size and the current model combined with coarse-grained 
global and fine-grained local mechanisms. The input features size is 
shown in Formula (1); then, slices were generated along the depth 
direction. For each slice and the input size of the image is shown in 
Formula (2), step convolution was used to convert the input image into 
a patch token of H/4 × W/4. In the encoder path, step convolution was 
used for down-sampling to achieve the layered architecture. Table 3 
shows the results of comparative experiments. For ET, TC and WT, 
Dice coefficients of the coarse-grained global and fine-grained local 
models increased by 2.02, 3.03 and 3.69%, respectively.

4.4.2. Cross window
In the model, this paper extended the scope of the self-

attention window by applying a parallel cross window and then 
concatenated the horizontal and vertical self-attention weights. 
This paper created sw = 1 and sw = 2 Windows separately in the 
horizontal direction to learn self-attention, and the same 
configuration was also adopted in the vertical direction; ‘sw’ 
indicates the size of the sharded self-attention window width. 
Table 4 shows the Dice coefficients of self-attentional learning and 
cross window model for ET, TC and WT in the horizontal and 
vertical directions, respectively. By performing comparative 
experiments, this paper proved that by combining horizontal and 
vertical self-attention weights, this model effectively increased the 
receptive field of the self-attention window and improved the 
segmentation performance of the model.T
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TABLE 3 Ablation study on coarse-grained global and fine-grained local 
mechanism.

Method Dice (%)

ET TC WT

Coarse-grained 85.26 84.32 89.59

Coarse-grained global 

and fine-grained local
87.28 87.35 93.28
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5. Conclusion

This paper developed a novel segmentation model for brain 
tumors. Fine-grained local self-attention and coarse-grained global 
self-attention mechanisms were combined to extract characteristic 
input information from brain tumors and extract rich local semantic 
information through fine-grained mechanisms. Then, global 
semantic information was captured with coarse granularity. The 
cross window concurrent multi-head and self-attention mechanism 
was used to learn the self-attention weight in the window from both 
horizontal and vertical directions, thus expanding the receptive field 
of self-attention learning. This also balanced the relationship 
between computational complexity and self-attention learning 
ability in Transformer. Experimental results on the Brats2021 and 
Brats2019 datasets validated proposed model. In future research, 
we will continue to explore ways to improve Transformer’s global 
self-attention learning ability and reduce computational complexity 
so that we  can build an efficacious segmentation model for 
brain tumors.
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Improved HHT-microstate analysis 
of EEG in nicotine addicts
Xin Xiong 1, Jiannan Feng 1, Yaru Zhang 1, Di Wu 1, Sanli Yi 1, 
Chunwu Wang 2, Ruixiang Liu 3 and Jianfeng He 1*
1 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, 
Kunming, China, 2 College of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 
China, 3 Department of Clinical Psychology, Second People's Hospital of Yunnan, Kunming, China

Background: Substance addiction is a chronic disease which causes great harm to 
modern society and individuals. At present, many studies have applied EEG analysis 
methods to the substance addiction detection and treatment. As a tool to describe the 
spatio-temporal dynamic characteristics of large-scale electrophysiological data, EEG 
microstate analysis has been widely used, which is an effective method to study the 
relationship between EEG electrodynamics and cognition or disease.

Methods: To study the difference of EEG microstate parameters of nicotine addicts 
at each frequency band, we  combine an improved Hilbert Huang Transformation 
(HHT) decomposition with microstate analysis, which is applied to the EEG of nicotine 
addicts.

Results: After using improved HHT-Microstate method, we  notice that there is 
significant difference in EEG microstates of nicotine addicts between viewing smoke 
pictures group (smoke) and viewing neutral pictures group (neutral). Firstly, there is 
a significant difference in EEG microstates at full-frequency band between smoke 
and neutral group. Compared with the FIR-Microstate method, the similarity index 
of microstate topographic maps at alpha and beta bands had significant differences 
between smoke and neutral group. Secondly, we  find significant class × group 
interactions for microstate parameters at delta, alpha and beta bands. Finally, the 
microstate parameters at delta, alpha and beta bands obtained by the improved HHT-
microstate analysis method are selected as features for classification and detection 
under the Gaussian kernel support vector machine. The highest accuracy is 92% 
sensitivity is 94% and specificity is 91%, which can more effectively detect and identify 
addiction diseases than FIR-Microstate and FIR-Riemann methods.

Conclusion: Thus, the improved HHT-Microstate analysis method can effectively 
identify substance addiction diseases and provide new ideas and insights for the 
brain research of nicotine addiction.

KEYWORDS

addictions, improved HHT-microstate, EEG, frequency band, detect

1. Introduction

Substance addiction is a chronic relapsing disease, which refers to the adaptation and 
dependence of individuals after long-term abuse of harmful substances (World Health 
Organization, 2009). It includes drug addiction and other mental addictions such as alcohol, 
nicotine, and caffeine. The root cause is the long-term adaptation of the brain to addictive 
substances, which makes it difficult for individuals to give up due to the escalating behavior of 
substance intake, even though they have been aware of the negative effects (Pengfei et al., 2019). 
Substance addiction can lead to a range of diseases, such as lung cancer, iron-deficiency heart 
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disease and esophageal cancer, and cause an enormous emotional, 
financial and medical burdens on individuals and society. Previous 
studies on the cognitive function of addicts with different substances 
have shown that addiction have an impact on cognition. For example, 
addicts have impaired executive control function, increased 
impulsivity (Fulton and Charlotte, 2009), decreased decision-making 
ability (Zernig et al., 2007), and strong memories related to addiction 
cues (Robbins et al., 2008; Yan Xue et al., 2017); Meanwhile, drug 
addicts have abnormal sleep structure (Conroy and Arnedt, 2014), 
whose sleep stages affected by various addictive substances (Colrain 
et  al., 2014). In addition, addiction theory has also shown that a 
common character of substance addiction is drug cue response, which 
means that compared with non-addicts, addicts show significantly 
different physiological and psychological responses when they face 
with smoke cues or neutral cues (Linyuan and Xiaoyi, 2005). 
Moreover, the responsiveness of addicts to cigarette-related cues is 
also the main factor of relapse (Wei et al., 2017), which means that the 
brain response of addicts to cigarette cues may predict their ability to 
give up smoking continually. At present, the main treatment methods 
of substance addiction are drug therapy, psychotherapy, physical 
therapy, and neutral feedback therapy. In recent years, the technique 
of Brain Computer Interface (BCI) from the perspective of 
electrophysiology has been proposed and applied to the research of 
addiction. BCI is a communication system built between the brain and 
other external devices, rather than relying on the brain transmission 
pathway composed of peripheral nerves and muscles, which is a new 
way of human-computer interaction. By using a non-invasive, cheap 
and powerful tool, Electroencephalogram (EEG), it can record the 
configuration of brain electric fields produced by the coordination of 
different nerve combinations and have a high temporal resolution 
(Arshad et al., 2022; Totev et al., 2023). Besides, with the development 
of the computer technology, some relevant and novel algorithms 
including Generative Adversarial Network (GAN), Convolutional 
Neural Networks (CNN) were employed for features extraction at 
EEG bands or to explore the potential neutral mechanism of the brain 
(Hu et al., 2020; Prasanth et al., 2020; Yan et al., 2020), and also made 
great contributions in some specific states or diseases such as 
Parkinson, depression and epilepsy (Uyulan et al., 2020; Chu et al., 
2021; Gabeff et al., 2021). On this basis, studies showed that the brain 
of substance addict has abnormal functions and structural changes 
(Bjork and Gilman, 2014). Therefore, many researchers have processed 
the cognitive function of the brain in different states and collected 
signals from the cerebral cortex to analyze the mechanism 
of addiction.

Previous investigations and studies on EEG signals of addicts have 
shown that there are some qualitative and quantitative changes in EEG 
signals of these addicts, including EEG coherence, frequency domain 
features and nonlinear features, and EEG source localization. As a 
measurement of brain network, coherence reflects functional 
connectivity and activity synchronization among brain regions 
(Franken et al., 2004) and has advantages in terms of high temporal 
resolution and measurement of brain networks among neuron 
populations. Compared with non-addicted people, EEG coherence in 
addicted people is significantly enhanced (Yan Xue et al., 2017) and 
significantly correlate with the changes in smoking cravings (Littel 
et al., 2009), which is advisable to explore the changes in brain activity 
related to addiction. In the frequency domain, there are less alpha 
EEG rhythm and more beta EEG rhythm in the addicted people, and 

many delta-theta rhythms with low amplitude in the central brain 
region (Benos and Kapinas, 1980; Olivennes et al., 1983; Gekht et al., 
2002); addicts have higher EEG correlation dimension than 
non-addicts, which can reflect the attention deficit of addicted people 
(Světlák et al., 2010). Furthermore, the analysis method of EEG source 
localization has also been applied to research the mechanism of 
addiction and solved the problem of observing the difference of brain 
activity and locating deep source error in high temporal and spatial 
resolution (Pascualmarqui et al., 1994). In addition, the rank-based 
feature selection method was used to assign weight values to EEG 
features such as the interhemispheric coherence and spectral power at 
EEG bands of patients with alcohol disorders, which obtain the better 
accuracy with the classification of the most discriminative features 
(Mumtaz et al., 2017). Meanwhile, study also found that the theta 
band (4–8 Hz) between the frontal and posterior cortical regions had 
a high level of synchronization in the brain of drug addicts according 
to the connectivity of subband cortical network which was calculated 
by synchronization likelihood algorithm (Coullaut-Valera et al., 2014).

EEG microstate is one of the methods to determine and quantify 
the oscillatory activity and dynamic characteristics of the cerebral 
cortex. It was first proposed by Lehmann, who regarded the multi-
channel spontaneous EEG signals as a series of EEG topographic maps 
changing over time. Each EEG topographic map is the superposition 
of the effects of all the sources that are instantly active at present and 
is a global measure of instantaneous EEG activity (Lehmann et al., 
1987; Lehmann, 1994). It reveals that the distribution of brain 
electrical activity does not change continuously but discretely over 
time. The topological structure of one EEG topographic map does not 
smoothly change to another structure, but stays in a quasi-stable state 
for about 80–120 ms, and then suddenly changes to another structure. 
Several EEG topographic maps with the same topological structure 
are classified as a class of microstate (Arjun et  al., 2014). In the 
literature of microstate analysis, generally four different microstate, 
typically labeled from A to D, respectively correspond to the activities 
of auditory network, visual network, prominence network and 
attention network (Britz et al., 2010) and can usually explain more 
than 80% of the variance present in the EEG data (Lehmann et al., 
2005; Seitzman et al., 2017). The temporal parameters of microstate 
include global interpretation variance, mean duration, occurrence and 
coverage of microstates, which provide new avenues for quantifying 
cortical oscillatory activity with functional relevance. The changes of 
these parameters can reflect the impact of diseases on the brain, such 
as Parkinson’s disease (John et al., 2023), dementia (Grieder et al., 
2016), schizophrenia (Andreou et al., 2014) and Alzheimer’s disease 
(Strik et al., 1997). Besides, there are also studies on the identification 
of epilepsy (Kiran et al., 2018) and motor imagination (Weifeng et al., 
2017) by using microstate parameters, and the accuracy is relatively 
high. However, most previous studies on EEG of addicted subjects 
were based on the analysis of brain network and EEG characteristics. 
Therefore, using microstate analysis to compare different EEG of 
addicts is a valuable method to analysis and detect substance addiction.

Previous studies have shown that the dynamics of microstates in the 
time domain are correlated with those in the spectrum domain. Milz 
et al. (2017) found that there was a consistent relationship between intra-
band microstates and power, which meant that the intra-cortical intensity 
and spatial distribution of alpha frequency band were determined. 
Traditional microstate analysis method lacks frequency domain 
information (Koenig et  al., 2018), which affects the conclusion of 
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correlation between microstate and spectrum domain. In order to solve 
this problem, Ehtasham et  al. (2019) used the empirical mode 
decomposition (EMD) and instantaneous frequency model in the Hilbert 
Huang Transform (HHT) method to extract the spectral features of 
microstates in time series. This method can preserve the local spectral 
properties of the original data in time domain, and does not require prior 
characteristic information of data, or as in the case of other decomposition 
methods such as Fourier, or wavelet analysis, it does not assume a 
pre-determined set of basis functions (Daubechies et al., 2011; Thakur 
et  al., 2013). Therefore, in this paper, an improved HHT-Microstate 
method was used to research the EEG of nicotine addicts. By preserving 
the instantaneous properties of the data in the spectrum domain, the 
microstate time series was analyzed to evaluate the instantaneous changes 
of the spectral features of the EEG data.

In this study, we selected two different types of nicotine addiction 
EEG data and used the improved HHT method to divide the EEG data 
into five frequency bands, including delta band (0.5–4 Hz), theta band 
(4–8 Hz), alpha band (8–12 Hz), beta band (12–30 Hz), and gamma 
band (30–40 Hz). By comparing the differences of the microstate 
parameters between the two types of tasks at each frequency band, 
we selected the microstate parameters with significant differences as 
features to detect different types of nicotine addiction. At the same 
time, in order to highlight the superiority of the improved 
HHT-Microstate method, the frequency band division method and 
EEG feature analysis method are compared with Finite Impulse 
Response (FIR) method and EEG Riemann distance method, which 
includes FIR-Microstate method, HHT-Riemann method and 
FIR-Riemann method. Finally, we  proved that the improved 
HHT-Microstate method is superior to other methods and can detect 
and identify different addiction states more effectively.

2. Materials and methods

2.1. Method

Our experiments in this paper are carried out on the platform of 
Matlab_2019 and the corresponding toolbox of EEGLAB_2019. The 
main method has two parts. Firstly, the data is time-frequency 
decomposition by using the Empirical Mode Decomposition (EMD) 
and instantaneous frequency model. Secondly, microstate analysis 
method is applied to each frequency band for the extraction of 
microstate topographic maps and microstate parameters at each 
frequency band.

2.1.1. Time-frequency analysis—improved Hilbert 
Huang transform

The obstacle to finding a correlation between microstates and 
spectrum is to correlate microstates in different temporal resolutions 
with spectral analysis. On the one hand, the EEG microstate analysis 
is carried out in the time domain and determine the EEG data and 
similarity index of the given segmentation for each instance; On the 
other hand, traditional spectrum analysis methods require at least a 
period to calculate the spectral power of any given frequency band. 
Therefore, in order to solve this obstacle, the EMD and instantaneous 
frequency models in HHT (Huang, 1998) were used for time-
frequency analysis (Huang et al., 2009; Liu et al., 2022). However, in 
the process of decomposition, the traditional EMD will cause 

problems of mode aliasing, which makes the component lose the 
single feature scale feature. Ensemble Empirical Mode Decomposition 
(EEMD) model has been optimized for EMD, but the added Gaussian 
white noise will remain and affect the result. To solve the problem of 
mode aliasing in EMD and reconstruction error or low computational 
efficiency in EEMD, a CEEMDAN method is used in this paper. By 
adding adaptive white noise to the EEMD, errors in signal 
reconstruction can be reduced and high computational efficiency can 
be ensured. Besides, it could maintain the original temporal resolution 
while transforming time-domain data into time-frequency domain 
data. The main steps of CEEMDAN are as follows:

 (1) Signal can obtain several Intrinsic Mode Functions (IMFs) after 
EMD, and each IMF must satisfy two restrictions: ① The difference 
between the number of extreme points and zero points is not more 
than 1; ② The mean value between the local maximum envelope 
and the local minimum envelope at any time is 0.

Add white noise βAj(t) to the original signal x(t), where β is the 
standard noise and j is the number of noises added. The newly 
constructed signal is Z(t) = x(t) + βAj(t). The first order component of 
CEEMDAN is:
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The remainder is r1 = Z(t) − IMF1.
 (2) The original signal of the second IMF component is 

Z(t) = r1 + βAj(t), after decomposition, it can obtain:
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The remainder is r2 = Z(t) − IMF2.
 (3) Next, repeat step (1) and (2) until the decomposition is 

complete. m IMF components are obtained, and the residual is:
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 (4) The reconstruction formula is:
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Due to the existence of false IMF components in the process of 
EMD decomposition, these false IMF components should be eliminated 
in practical application. The correlation between the real IMF 
component and the original signal is greater than those in false 
component, and the proportion of the real IMF component is larger 
than those in false IMF component. At present, the commonly used 
methods to eliminate false IMF components include correlation 
coefficient method, gray correlation degree method, mutual 
Information method, energy ratio method and K-S test method. Gray 
correlation degree method and K-S test method can better distinguish 
the false IMF component for single component signals, but it is difficult 
to distinguish the complex signals with multiple components (Yang 
et al., 2013). Correlation coefficient method and energy ratio method 
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have great amplitude dependence on signals, which is not conducive to 
the differentiation of false IMF components (Bao et al., 2009). Mutual 
Information (represented by the symbol IMI) can accurately calculate 
the correlation between the IMF component and the original signal, 
and has certain advantages in distinguishing the false IMF component.

Therefore, our paper uses IMI to select IMF components. IMI 
describes the degree of correlation between two random variables, and 
the amount of common information between two variables can 
be  measured by IMI. The larger the IMI, the more common 
information between variables, and the stronger the correlation. For 
the ith IMF component ci(t) of the signal and the original signal x(t), 
the IMI between them is defined as:

 
I c x p c x

p c x
p c p xMI i i

i

i
; ;

;( ) = − ( ) ( )
( ) ( )

Σ log

 
(5)

where, p(ci) and p(x) are the marginal probability distributions of 
the ith IMF component ci(t) and the original signal x(t) respectively; 
p(ci,x) is the joint probability distribution of the ith IMF component 
ci(t) and the original signal x(t).

After the decomposition of CEEMDAN and the selection of IMI, 
HT is used to calculate the instantaneous frequency and amplitude for 
IMF. The impulse response of HT is:

 
h t

t
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The HT expression of IMF is:

 H IMF t h t IMF t( )( ) = ( ) ∗ ( ) (7)

where, H(∙) is the function of HT, * is the convolution. Then:
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Therefore, the instantaneous frequency can be expressed as:
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F(t) and a(t) are the instantaneous frequency and amplitude of IMF, 
respectively. Based on the instantaneous frequency value of IMF, IMFs 
with different instantaneous frequency values can be  obtained by 
selecting different sampling frequency for each electrode data and 
decomposing them. The instantaneous frequency value is adjusted to the 
frequency range of the above 5 frequency bands, which can obtain the 
corresponding 5 frequency bands. In addition, the time information can 
be saved after microstate extraction.

2.1.2. Microstate analysis
The core of microstate analysis is to segment EEG data into 

microstates by using clustering algorithms. The well-established 
standardized procedures in EEGLAB (Poulsen et al., 2020) are used 
for the microstate analysis. The specific processes are as follows:

 (1) The quantized scalar values for electric potentials across EEG 
electrodes also known as Global Field Potential (GFP) are 
computed for EEG: the standard deviation of voltage values at 
all electrodes of a topographic map at a time, which is used to 
describe the strength of the electric field of a topographic map. 
The formula is as follows:
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where, K is the number of channels, Vi(t) is the voltage and 
potential at the ith electrode, and Vmean(t) is the instantaneous 
average potential between electrodes.

GFP represents the intensity of the electric field on the brain 
at every moment. It is usually used to measure the total response 
of the brain to the event or to represent the rapid changes in brain 
activity. The local maximum of its curve represents the moment 
of the strongest field intensity and the highest signal-to-noise 
ratio. Therefore, using the topographic map at the peak of GFP 
to represent other surrounding topographic maps for analysis is 
an effective method to improve the microstate signal-to-noise 
ratio and reduce the amount of computation (Murray et  al., 
2008). At the same time, it is also found that the topographic map 
at the peak of GFP is similar to the surrounding one, while the 
similarity at the valley is low (Pascual-Marqui and Michel, 1995; 
Thomas et  al., 2002; Walther, 2005), which means that the 
transition from one topographic map to another is completed at 
the negative peak of GFP.

 (2) The modified k-means clustering algorithm is used for cluster 
analysis (Murray et al., 2008), and EEG data is clustered into n 
microstates. Clustering model is as follows:

 x Azn n n= + ε  (13)

where, xn is the EEG signal sampled for the nth time, 1 ≤ n ≤ N, N 
is the number of time sample; A∈RC × K is the topographic map of 
clustering, C is the number of channels, and K is the number of 
clustering (the number of microstate class). zn∈RK × N is the activation 
state of the microstate at the nth sampling; εn is EEG signal noise 
sampled at the nth time.

 (3) Global Explained Variance (GEV) and Cross-Validation 
criterion (Poulsen et al., 2020; CV) are calculated to evaluate 
the fitness of microstates and determine the optimal number 
of microstates.

GEV is an index to measure the similarity between each EEG 
sample and its assigned microstate, so the higher the GEV value, the 
better the result. The formula is as follows:
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where, GFPn is the global field potential and the standard 
deviation of all EEG electrodes sampled at the nth time.

The value of CV is related to residual noise, so a smaller value of 
CV should be obtained. The calculating formula is as follows:
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where, σ  is the estimator of the residual noise variance.
 (4) After matching the extracted microstates to the EEG signals of 

the subjects, the EEG microstate parameters between the two 
tasks at each frequency band are calculated respectively:

①  Mean Duration (MD): the mean duration of time that one 
microstate keeps stable.

②  Time Coverage Ratio (TCR): percentage in time coverage of 
one type of microstate.

③  Occurrence Per Second (OPS): frequency of occurrence of 
one microstate.

④  Global Explained Variance (GEV): an index to measure the 
similarity between each EEG sample and its assigned microstate.

2.2. Data and pre-processing

The dataset used in this paper is derived from a novel cognition-
guided neurofeedback BCI dataset on nicotine addiction, which 
includes smoking subjects performing two cognitively guided tasks at 
a sampling frequency of 250 Hz (Bu et  al., 2021). The cognitively 
guided task of the dataset is to record EEG data by allowing subjects 
to focus on the smoking-related pictures (e.g., holding a cigarette in 
hand) and paired neutral pictures (e.g., holding a pencil in hand). The 
EEG data of smoking-related pictures and neutral pictures on each 
subject were recorded in six groups, respectively.

In this study, EEG data of 20 subjects were selected from this 
dataset, including 120 groups of EEG data in smoking-related 
pictures (smoke) and 120 groups of EEG data in neutral pictures 
(neutral). In the pre-processing step, the original EEG signals 
were filtered to 0.1–40 Hz to remove noise and other interference 
signals. At the same time, the eye electrodes were removed, and 
the corresponding potentials of 45 electrodes (F7, F5, F3, F1, FZ, 
F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, 
C5, C3, C1, CZ, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, CP2, 
CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8) were selected 
for evaluation.

By using the CEEMDAN and instantaneous frequency model in 
the improved HHT method, our experiment divided the addiction 
EEG data with two different tasks into five frequency bands including 
delta band (0.5–4 Hz), theta band (4–8 Hz), alpha band (8–12 Hz), 
beta band (12–30 Hz), and gamma band (30–40 Hz). Then, 
we  analyzed and compared the microstate parameters at each 
frequency band.

3. Results

3.1. Full band microstates

According to GEV and CV, the difference is the largest when the 
number of EEG microstates in neutral group is 6 and smoke group is 
5 in Figure 1. Therefore, we selected 6 microstates in neutral group 
and 5 in smoke group, which is shown in Figure 2. Microstates A, B, 
and C in neutral group and smoke group are similar to the classic 
microstates. However, microstate D, with positive and negative voltage 
located in the frontal central region (ignoring polarity), is related to 
attention network and sleep (Delorme and Makeig, 2004), which is 
split into microstates D1 and D2 in neutral group, but does not split 
in smoke group. In addition, an additional microstate E is generated 
in both groups.

3.2. Time-frequency analysis

In this study, as mentioned above, instantaneous parameters 
were extracted to provide an insight into the local variations in 
the spectral domain of EEG data. For each subject, and for each 
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FIGURE 1

The effective number of microstates based on the fitness.
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FIGURE 3

Taking channel F7 as an example, the EEG signal was decomposed into IMFs, where (A) decomposed signal in neutral group, (B) decomposed signal in 
smoke group.

channel, the EEG data were decomposed into a set of IMFs using 
the CEEMDAN algorithm, which is followed by the estimation of 
instantaneous amplitudes and instantaneous frequency using 
HT. As an example, Figure 3 shows the decomposed IMFs for 
channel F7 of EEG data from a representative subject. Figure 4 
shows the corresponding energies at each band. It should 
be  noted that the whole-time length of 1  min is used for 
decomposition and for a better display only 5 s data are shown. 
Figure 5 shows the sub-band energies across 45 electrodes for one 
time instance.

3.3. Sub-band microstates and statistical 
analysis

We performed microstate analysis at each EEG frequency band 
obtained by improved HHT method. According to GEV and CV, the 
optimal number of microstate at delta, alpha and theta bands is 5, 
while the optimal number of microstate at beta and gamma bands is 
4. Figure 6 shows each band microstate topographic maps obtained by 
improved HHT method.

Microstate parameters at each frequency band under the 
improved HHT method were calculated, including MD, OPS, TCR, 

and GEV. The results are shown in Table 1. Multi-way ANOVA was 
performed for microstate parameters at each frequency band. We find 
significant class × group interactions for all microstate parameters: ① 
delta band: MD (F = 120.98, p < 0.001, η2 = 347164.93), OPS 
(F = 702.13, p < 0.001, η2 = 140.94), TCR (F = 551.46, p < 0.001, 
η2 = 5.55), GEV (F = 305.58, p < 0.001, η2 = 4.78); ② alpha band: GEV 
(F = 9.98, p < 0.001, η2 = 0.047); ③ beta band: TCR (F = 3.42, p = 0.017, 
η2 = 0.04), GEV (F = 25.45, p < 0.001, η2 = 0.16); Then, we performed 
separate one-way ANOVA for each microstate parameter at delta, 
alpha and beta bands between neutral and smoke group. The results 
are shown in “Supplementary Tables A.” These follow-up tests reveals 
significant between group differences for band microstates: ① At delta 
band, the OPS, TCR and GEV of microstate D5 in neutral group are 
higher than those in smoke group (OPSneutral = 1.59 ± 0.30, 
OPSsmoke = 1.44 ± 0.20; TCRneutral = 0.22 ± 0.11, TCRsmoke = 0.18 ± 0.03; 
GEVneutral = 7.75 ± 2.49, GEVsmoke = 6.64 ± 1.81); ② At alpha band, the 
OPS, TCR and GEV of microstate A2 in neutral group are lower than 
those in smoke group (OPSneutral = 2.03 ± 0.22, OPSsmoke = 2.14 ± 0.15; 
TCRneutral = 0.21 ± 0.03, TCRsmoke = 0.22 ± 0.02; GEVneutral = 7.62 ± 1.65, 
GEVsmoke = 8.62 ± 1.65); ③ At beta band, the TCR and GEV of 
microstate B2 in neutral group are lower than those in smoke group 
(TCRneutral = 0.25 ± 0.04, TCRsmoke = 0.27 ± 0.02; GEVneutral = 7.47 ± 1.89, 
GEVsmoke = 8.67 ± 3.53).
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FIGURE 2

EEG microstates on two response tasks, the number in neutral group is 6, the number in smoke group is 5.
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3.4. Classification and recognition on 
microstate parameters

According to the results in section 3.3, microstate parameters with 
significant differences between the two tasks were selected as features, 
including MD, OPS, TCR and GEV at delta, alpha, and beta band, 
which were performed for classification under Gaussian kernel 
SVM classifier.

The results are shown in Table 2. The classification effect is 
optimal at delta band. The microstate D1 has the highest 
classification accuracy (92%), sensitivity (94%) and specificity 
(91%). Other microstates at delta band also have better 
classification results. Then, microstate A2 and A3 at alpha band 
also have good classification effect, with the highest accuracy of 
78%, sensitivity of 75% and specificity of 87%. Furthermore, 
microstate B1 and B2 at beta band have general classification 
effect, with accuracy of 73%, sensitivity of 90% and 
specificity of 84%.

Besides, selecting the microstates D1, A2, and B2 with the best 
classification result, we also plot the ROC curve, which shows that D1 
has the best results in classification. The specific result is shown in 
Figure 7.

3.5. Comparing with other methods in 
nicotine addiction detection

Some EEG analysis methods which similar to the improved 
HHT-Microstate were also employed to analyze EEG data of these 
nicotine addiction subjects. Previous studies have greatly improved 
the decoding accuracy of EEG by calculating the spatial feature of the 
Riemann distance in the EEG of motion imagination at frequency 
bands (Qu et al., 2022). And in the traditional microstate analysis, the 
Finite Impulse Response (FIR) filter in EEGLAB (Michel and Koenig, 
2017) was employed to filter EEG data according to the frequency 
band range. Therefore, microstates and Riemann distance were 
calculated from EEG signal at each frequency band filtering by FIR 
and HHT. The result of analysis and comparison according to these 
methods are as follows.

Figure 8 shows each band microstate topographic maps obtained 
by FIR method. For further comparison with the improved 
HHT-Microstate, similarity index (Kingsley and Sethukarasi, 2023) 
was calculated for each single-band and full-band microstate 
topographic maps, respectively, for the purpose of 
corresponding comparison.

Firstly, the difference index of each EEG band topographic maps 
between the two types of tasks was compared. The results in Figure 9 
show that the improved HHT method provides more variability 
among the topographic maps at each frequency band.

Secondly, the permutation test was conducted for the similarity of 
the two topographic maps (Koenig et al., 1999). Table 3 shows the 
permutation test results of the similarity index among topographic 
maps. The difference of the test results under the improved HHT 
method is mainly reflected in the microstate A2 and A5 at alpha band 
and the microstate B4 at beta band.

In addition, the GEV under the two methods were calculated, 
respectively. The GEV under the improved HHT method is higher 
than the traditional filtering method, which are shown in Table 4.

Furthermore, microstate parameters and Riemann distance at 
each frequency band calculated under the FIR method were shown 
in “Supplementary Tables B,” which include MD, OPS, TCR and 
GEV for microstate, model of AIRM, Stein, Jeffery and LogED for 
Riemann distance. Multi-way ANOVA was performed for each 
parameter at each frequency band. We do not find significant class 
× group interactions for all parameters. We  also did one-way 
ANOVA for each microstate parameter and Riemann distance at 
delta, alpha and beta bands between neutral and smoke group. The 
results were shown in “Supplementary Tables C.” Only few 
parameters have significant difference.

Finally, we  also select microstate parameters and Riemann 
distance at delta, alpha and beta bands between the two tasks as 
features, which were performed for classification under Gaussian 
kernel SVM classifier.

The results are shown in Tables 5–7. The optimal effect of 
classification for microstate is A4 at alpha band, which has the highest 
classification accuracy (87%), sensitivity (88%) and specificity (86%), 
and for Riemann distance it is beta band, which has the highest 
classification accuracy (71%), sensitivity (67%) and specificity (75%). 
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FIGURE 4

Energy diagram at each band of F7 channel within 5 s, where (A) neutral group; (B) smoke group.
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The effect of classification for FIR-Microstate and FIR-Riemann is 
inferior to improved HHT-Microstate.

4. Discussion

As a category of mental illness, substance addiction is a cause of 
avoidable morbidity and mortality around the world. Nicotine 
addiction is the most widely distributed and the most numerous 
substance addiction type. According to relevant studies, nicotine 
addicts are different from non-addicts in cognitive function, sleep 
structure and smoking cue response. Therefore, many studies 
mainly carry out on the mechanism of addiction and intervention 
methods, which have great potential clinical benefits for the 
intervention and treatment of substance addiction. Spontaneous 

EEG signal, modulated by cognitive and sensory processing 
(Samaha et al., 2022), fluctuates in milliseconds and explains the 
transient brain functional states. Therefore, it is necessary to further 
explore the brain mechanism of smoking cue response and find 
effective markers of smoking cue response as targets for addiction 
detection and intervention.

In order to determine the fluctuation dynamics of brain neural 
sources in the time domain, Lehman (Lehmann et  al., 1987; 
Lehmann, 1994) proposed the method of EEG microstate analysis 
which quantified the spatial distribution of nerve potentials among 
scalp electrodes at each time, reflected the sum of instantaneous 
activity of brain neutral clusters with fewer microstate topographic 
maps, and examined the functional activity network of the brain 
(Lehmann et  al., 1987). It is the best choice for time domain 
analysis. On this basis, Ehtasham et  al. (2019) used the HHT 
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FIGURE 5

Sub-band energies across 45 electrodes, where (A) neutral group; (B) smoke group.
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TABLE 1 Microstate parameters at each frequency band under the improved HHT method.

Subjects Microstates
MD OPS TCR GEV

neutral smoke neutral smoke neutral smoke neutral smoke

Delta

D1 127.66 ± 10.97 131.01 ± 14.50 1.62 ± 0.39 1.63 ± 0.40 0.21 ± 0.06 0.22 ± 0.07 19.30 ± 6.60 20.33 ± 9.49

D2 125.50 ± 7.63 127.18 ± 7.83 1.49 ± 0.49 1.68 ± 0.20 0.19 ± 0.07 0.21 ± 0.03 11.77 ± 2.33 12.54 ± 3.79

D3 123.63 ± 9.19 126.21 ± 6.37 1.45 ± 0.42 1.59 ± 0.16 0.18 ± 0.06 0.20 ± 0.03 9.55 ± 1.90 9.26 ± 1.93

D4 127.82 ± 23.78 125.16 ± 7.34 1.57 ± 0.28 1.53 ± 0.20 0.21 ± 0.09 0.19 ± 0.03 9.19 ± 3.66 8.27 ± 1.96

D5 130.38 ± 34.43 121.22 ± 5.64 1.59 ± 0.30 1.44 ± 0.20 0.22 ± 0.11 0.18 ± 0.03 7.75 ± 2.49 6.64 ± 1.81

Theta

T1 123.31 ± 7.28 122.23 ± 8.37 1.95 ± 0.17 1.89 ± 0.16 0.24 ± 0.03 0.23 ± 0.03 10.00 ± 1.93 10.04 ± 2.32

T2 117.21 ± 5.98 119.86 ± 6.50 1.85 ± 0.11 1.82 ± 0.14 0.22 ± 0.02 0.22 ± 0.02 8.41 ± 1.44 8.45 ± 1.61

T3 115.51 ± 4.88 118.03 ± 6.38 1.74 ± 0.12 1.74 ± 0.11 0.20 ± 0.02 0.21 ± 0.02 7.37 ± 1.37 7.59 ± 1.19

T4 110.36 ± 5.43 112.61 ± 5.81 1.59 ± 0.13 1.64 ± 0.13 0.18 ± 0.02 0.18 ± 0.02 6.23 ± 0.96 6.40 ± 0.79

T5 109.74 ± 5.89 106.56 ± 4.40 1.49 ± 0.17 1.51 ± 0.15 0.16 ± 0.02 0.16 ± 0.02 5.29 ± 0.84 5.27 ± 0.89

Alpha

A1 108.60 ± 6.93 105.67 ± 5.46 2.20 ± 0.20 2.21 ± 0.17 0.24 ± 0.03 0.23 ± 0.02 9.64 ± 2.22 9.56 ± 1.50

A2 101.13 ± 6.60 104.07 ± 3.83 2.03 ± 0.22 2.14 ± 0.15 0.21 ± 0.03 0.22 ± 0.02 7.62 ± 1.65 8.62 ± 1.65

A3 100.27 ± 6.50 102.84 ± 5.59 1.96 ± 0.19 2.01 ± 0.17 0.20 ± 0.03 0.21 ± 0.02 7.18 ± 1.90 7.41 ± 1.47

A4 97.52 ± 4.45 97.24 ± 6.64 1.85 ± 0.18 1.79 ± 0.15 0.18 ± 0.02 0.17 ± 0.22 6.13 ± 0.82 5.97 ± 1.03

A5 96.73 ± 5.82 95.94 ± 4.41 1.81 ± 0.22 1.70 ± 0.15 0.18 ± 0.03 0.16 ± 0.02 5.69 ± 1.69 5.16 ± 0.90

Beta

B1 87.81 ± 6.92 83.90 ± 16.97 3.39 ± 0.16 3.88 ± 2.70 0.30 ± 0.03 0.29 ± 0.03 9.68 ± 3.47 9.48 ± 3.55

B2 80.62 ± 5.13 80.14 ± 14.76 3.11 ± 0.45 3.81 ± 2.58 0.25 ± 0.04 0.27 ± 0.02 7.47 ± 1.89 8.67 ± 3.53

B3 80.50 ± 3.65 76.48 ± 14.88 1.62 ± 0.39 1.63 ± 0.40 0.25 ± 0.03 0.23 ± 0.03 6.60 ± 1.17 6.35 ± 1.39

B4 76.90 ± 5.42 76.24 ± 15.44 1.49 ± 0.49 1.68 ± 0.20 0.20 ± 0.03 0.21 ± 0.03 4.91 ± 1.18 5.25 ± 1.33

Gamma

G1 120.30 ± 52.82 138.77 ± 102.42 1.45 ± 0.42 1.59 ± 0.16 0.30 ± 0.07 0.31 ± 0.08 10.09 ± 5.82 10.83 ± 7.82

G2 106.48 ± 53.52 93.68 ± 8.23 1.57 ± 0.28 1.53 ± 0.20 0.27 ± 0.05 0.26 ± 0.04 7.18 ± 2.88 6.52 ± 1.84

G3 90.54 ± 12.54 87.53 ± 20.00 1.59 ± 0.30 1.44 ± 0.20 0.22 ± 0.05 0.22 ± 0.08 4.68 ± 1.28 4.71 ± 2.10

G4 101.80 ± 57.41 94.04 ± 26.97 1.95 ± 0.17 1.89 ± 0.16 0.21 ± 0.05 0.21 ± 0.06 3.98 ± 1.17 4.51 ± 1.64

FIGURE 6

Microstate topographic maps at each frequency band, i.e., delta band (D1, D2, D3, D4, D5), theta band (T1, T2, T3, T4, T5), alpha band (A1, A2, A3, A4, 
A5), beta band (B1, B2, B3, B4), and gamma band (G1, G2, G3,G4).
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method to transform the time-domain data into the spectral 
domain data, which retained its instantaneous characteristics, 
constructed the correlation between microstate and spectral 
features, and proved that this method was superior to the traditional 
filtering method through experimental comparison. Therefore, in 
this paper, an improved HHT method and FIR method were used, 
respectively, for frequency band decomposition and microstate 
analysis on EEG of nicotine addiction under two types of different 
tasks. Besides, microstate parameters with significant differences 
after improved HHT decomposition were used as features to classify 
and detect nicotine addiction.

4.1. Comparison of microstate parameters 
at each frequency band

Since cue response plays an important role in the 
psychological cognition, withdrawal and relapse of nicotine 

addictions, many experiments have been conducted to study the 
different cues provided by nicotine addicts, which include the 
cues related to neutral control and cigarettes to different degrees. 
Through different cue feedback, it is found that cigarette-related 
cues caused higher levels of de-alpha synchronization (Cui et al., 
2013), and theta band in frontal lobe shows strong network 
coherence in smoking cues (Shinan, 2020). At the same time, 
studies have shown that there are significant differences in 
microstate parameters between addicts and non-addicts, and 
better identification and detection can be  achieved under the 
SVM optimized by genetic algorithm (Peng, 2019). Thus, 
combined with previous studies, whether there are significant 
differences in microstate parameters at different frequency bands 
and whether accurate identification and detection can 
be  achieved in the face of different smoking cues is a worth 
studying problem in the cue response of substance addicts.

Therefore, in our paper, two time-frequency decomposition 
methods were employed to divide the EEG data of nicotine addicts 
into five different bands and compared the microstate parameters 
between two different cue-response tasks at each frequency band to 
find differences.

The experimental results show that the two groups of full band 
microstates in Figure  2, microstate D in neutral group split into 
microstates D1 and D2, while those in smoke group does not split. In 
addition, an additional microstate E is generated in both tasks groups. 
Whether this microstate is unique to nicotine addicts needs further 
research. Then, MD, OPS, TCR and GEV at each frequency band 
obtained by the improved HHT method are shown in Table  1. 
According to the result of multi-way ANOVA, we find significant class 
× group interactions for microstate D5, A2 and B2 at specific delta, 
alpha and beta bands. However, the study of Ehtasham et al. (2019) 
found that the optimal number of microstates at each frequency band 
was 4, and the parameters were similar and consistent at each 
frequency band, without significant difference through healthy 
non-addicts. Our experimental results are similar to previous studies 
that there are significant differences in coherence, power, and energy 
between addicts and non-addicts at specific EEG bands (Reid et al., 

FPR

TP
R

FIGURE 7

ROC curves of classification on microstate D1, A2, and B2..

TABLE 2 Classification results of microstates at delta, alpha, and beta bands by using improved HHT-Microstate.

Subjects Microstates Accuracy (%) Sensitivity (%) Specificity (%)

Delta [0.1–4 Hz]

D1 92.86 94.29 91.43

D2 90.35 90.03 90.29

D3 83.33 68.89 91.11

D4 87.88 86.02 88.14

D5 83.34 66.67 91.36

Alpha [8–12 Hz]

A1 69.44 75.08 63.89

A2 78.30 73.58 83.02

A3 71.28 46.81 87.74

A4 56.71 64.86 48.16

A5 61.86 58.28 64.22

Beta [12–30 Hz]

B1 70.19 55.77 84.62

B2 73.47 90.88 53.06

B3 61.02 61.02 61.02

B4 63.64 70.45 56.82
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2004; Peng, 2019), which may indirectly indicate that the EEG of 
nicotine addicts is different at certain frequency bands. Therefore, the 
difference of EEG microstate parameters at specific frequency bands 
can be used to detect substance addiction. Furthermore, based on the 
results of one-way ANOVA for each microstate parameter between 
neutral and smoke group at delta, alpha and beta bands, D5OPS, D5TCR 

and D5GEV in neutral group at delta band are higher than those in 
smoke group, A2OPS, A2TCR and A2GEV in neutral group at alpha band 
are lower than those in smoke group and B2TCR, B2GEV in neutral group 
at beta band are higher than those in smoke group. We can distinguish 
and detect nicotine addiction with different cue responses mainly by 
these microstate parameters at these frequency bands.

FIGURE 8

Microstate topographic maps at each frequency band, i.e., delta band (D1, D2, D3, D4, D5), theta band (T1, T2, T3, T4, T5), alpha band (A1, A2, A3, A4, 
A5), beta band (B1, B2, B3, B4), and gamma band (G1, G2, G3,G4).

FIGURE 9

After frequency band division by the two methods, the similarity index hot plot of all microstate topographic maps at each EEG frequency band 
between two kinds of different tasks is extracted. The horizontal axis is EEG microstate of the neutral group and the vertical axis is EEG microstate of 
the smoke group.

62

https://doi.org/10.3389/fnins.2023.1174399
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xiong et al. 10.3389/fnins.2023.1174399

Frontiers in Neuroscience 12 frontiersin.org

4.2. Detection of nicotine addiction by 
improved HHT-microstate method

Previous studies have used microstate correlation parameters 
to classify and detect different diseases or tasks and have achieved 
better identification and detection effect. For example, for heroin 
addicts, the features of EEG microstate parameters and negative 
peak of microstate duration were used to classify, with the accuracy 
of 72% (Peng, 2019). At the same time, there are different spatial 
microstates between patients with high and normal cranial 
pressure. Microstate parameters were used to classify patients with 
high and low cranial pressure, which can obtain the highest 
classification accuracy (87%; Shuaiyang, 2021). In this paper, 
microstate parameters with different frequency bands under 

different cue-response tasks were selected as features to the 
Gaussian kernel SVM classifier for classification and detection. The 
microstate parameters at delta band, alpha band and beta band 
were used to classify substance addiction. The microstate D1 at 
delta band has the highest classification accuracy (92%), sensitivity 
(94%), and specificity (91%), the microstate A2 at alpha band and 
microstate B2 at beta band also have better classification result. At 
the same time, the microstates with the best classification result at 
each band were selected and plot the ROC curves, which also 
mainly reflected the best result on microstate D1 and the better 
result on microstate A2 and B2 by evaluating the AUC under each 
curve. Therefore, microstate parameters at delta and alpha bands 
are promising for the identification and detection of 
nicotine addiction.

TABLE 3 The permutation test results of the similarity index between the full-band and single-band microstate topographic map of subjects’ EEG.

Microstates A B C D E

Bands
Improved 

HHT
FIR

Improved 
HHT

FIR
Improved 

HHT
FIR

Improved 
HHT

FIR
Improved 

HHT
FIR

Delta

D1 0.31 0.85 0.28 0.86 0.34 0.88* 0.29 0.83 0.35 0.86*

D2 0.25 0.86 0.22 0.86 0.27 0.88 0.23 0.83 0.34 0.85

D3 0.23 0.86 0.20 0.86 0.24 0.88 0.22 0.84 0.32 0.86

D4 0.30 0.87 0.38 0.87 0.39 0.89 0.38 0.84 0.35 0.87

D5 0.37 0.87 0.35 0.87 0.32 0.89 0.37 0.84 0.38 0.87

Theta

T1 0.25 0.79 0.23* 0.79 0.27 0.85 0.23* 0.76 0.34 0.92

T2 0.13 0.80 0.13 0.80 0.16 0.86 0.16 0.77 0.22 0.92

T3 0.28 0.79 0.29 0.79 0.26 0.85 0.30 0.76 0.22 0.92

T4 0.30 0.81 0.24 0.80 0.39 0.86 0.25 0.77 0.42 0.91

T5 0.20 0.82 0.15 0.81 0.24 0.87 0.19 0.78 0.29 0.92

Alpha

A1 0.47 0.80 0.47 0.79 0.47 0.85 0.48 0.77 0.33 0.92

A2 0.04* 0.80 0.04 0.79 0.04* 0.85 0.05* 0.76 0.04* 0.90

A3 0.30 0.81 0.34 0.80 0.37 0.86 0.32 0.77 0.35 0.92

A4 0.29 0.80 0.30 0.79 0.29 0.85 0.32 0.77 0.28 0.91

A5 0.21* 0.80 0.19* 0.80 0.17* 0.86 0.20* 0.77 0.11* 0.91

Beta

B1 0.18 0.79 0.19 0.80 0.20 0.83 0.14 0.77 —— ——

B2 0.17 0.79 0.17 0.80 0.16 0.82 0.16 0.77 —— ——

B3 0.32 0.80 0.26 0.80 0.23 0.85 0.24 0.77 —— ——

B4 0.50* 0.81 0.04* 0.81 0.06* 0.85 0.04* 0.78 —— ——

Gamma

G1 0.16 0.76 0.25 0.79 0.21 0.78 0.21* 0.76 —— ——

G2 0.22 0.76 0.34 0.80 0.30 0.78 0.28 0.77 —— ——

G3 0.32 0.76 0.31 0.79 0.21 0.78 0.11 0.76 —— ——

G4 0.40 0.80 0.37 0.81 0.27 0.83 0.16 0.78 —— ——

The results with statistically significant differences are indicated by asterisks (*).

TABLE 4 GEV for all microstates at each frequency band under improved HHT method and traditional filtering method.

EEG Data Methods Delta Theta Alpha Beta Gamma

Neutral
Improved HHT 55.17 37.93 36.77 27.10 21.15

FIR 31.79 33.20 34.89 24.50 33.19

Smoke
Improved HHT 55.14 38.29 37.15 27.57 22.87

FIR 32.49 32.8 34.99 28.39 34.21
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4.3. Comparison of analysis result between 
the improved HHT-microstate and other 
methods

In order to further prove the intrinsic superiority of the improved 
HHT-Microstate method, this experiment compared the improved 
HHT-Microstate method with other similar EEG analysis methods, 
including the frequency band microstates and frequency band 
Riemann distance extracted by FIR filtering methods, and conducted 
corresponding statistical analysis and classification detection, 
respectively. According to the comparison results in section 3.5, it is 
found that there were significant differences on the similarity of 
microstate topographic maps, statistical analysis and classification 
results of parameters between different methods.

Firstly, according to Figures 6, 8, it could obviously observe that 
there were significant differences between the two methods for each 
EEG microstate topographic map at delta and gamma bands in neutral 
and smoke group, and there were also some other significant 
differences in the microstate topographic maps at other bands. The 
similarity index among all topographic maps at each EEG frequency 
band of the two groups obtained by the improved HHT and FIR is 
shown in Figure 9, in which the improved HHT method has a lot of 
variability among the band topographic maps. According to the 
permutation test in Table  3, the similarity of improved 
HHT-Microstate method at alpha and beta bands is significantly 
different. However, the FIR method does not detect these differences. 
In addition, the GEV under the improved HHT-Microstate method is 
higher than the FIR method.

Then, the same multi-way ANOVA as improved 
HHT-Microstate method was performed on the FIR band 
microstate parameters and Riemann distance, however, there were 
no significant interaction. At the same time, only a few parameters 
of each feature were significantly different under the one-way 
ANOVA between neutral and smoke group. For more accurate 
verification, we  also chose feature parameters consistent with 
improved HHT-Microstate method for classification detection, 
which means that microstate parameters and Riemann distance 
at delta, alpha and beta band were selected as features for 
classification. According to the results in Tables 5–7, it is found 
that the result of classification for microstate is A4 at alpha band, 
which has the best accuracy (87%), sensitivity (88%) and 
specificity (86%), and for Riemann distance is beta band, which 
has the best accuracy (71%), sensitivity (67%) and specificity 
(75%). Thus, the effect of classification for the improved 
HHT-Microstate is better than FIR-Microstate, HHT-Riemann 
and FIR-Riemann methods, which means that the improved 
HHT-Microstate method is more suitable to represent the 
characteristics of EEG microstates and more representative than 
other methods in describing the dynamic characteristics  
of EEG.

4.4. Expectation

As a widespread medical and social problem in the world, 
substance addiction causes great harm to the physical health of 

TABLE 5 Classification results of microstates at delta, alpha, and beta bands by using FIR-Microstate.

Subjects Microstates Accuracy (%) Sensitivity (%) Specificity (%)

Delta [0.1–4 Hz]

D1 64.44 62.22 66.67

D2 66.67 68.89 64.44

D3 62.22 93.33 31.11

D4 77.78 86.67 31.11

D5 77.78 73.33 82.22

Alpha [8–12 Hz]

A1 54.00 60.00 48.00

A2 65.00 52.00 78.00

A3 63.00 62.00 64.00

A4 87.00 88.00 86.00

A5 79.00 64.00 94.00

Beta [12–30 Hz]

B1 65.91 81.82 50.00

B2 64.78 72.73 56.82

B3 64.77 72.73 56.82

B4 65.91 77.27 54.55

TABLE 6 Classification results of Riemann distance at delta, alpha, and 
beta bands by using HHT-Riemann.

Bands
Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)

Delta 62.22 55.56 68.89

Alpha 57.78 64.44 51.11

Beta 64.29 71.43 57.14

TABLE 7 Classification results of Riemann distance at delta, alpha, and 
beta bands by using FIR-Riemann.

Bands
Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)

Delta 60.00 51.11 68.89

Alpha 57.45 57.45 57.45

Beta 71.43 67.35 75.51
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human and the stability of society. At present, the main 
treatment methods are physical therapy, drug therapy, 
psychological therapy and neurofeedback therapy. In recent 
years, with the development of BCI, EEG research has become 
a new diagnostic basis and treatment for substance addiction, 
which includes analyzing and comparing the differences of EEG 
signals in substance addiction, addiction withdrawal, and 
healthy controls. In this paper, the improved HHT method was 
used to divide the frequency band of EEG data and preserve the 
instantaneous characteristics of the time-domain data in the 
spectrum domain. At the same time, the EEG microstates of 
patients with nicotine addiction under different cue-response 
tasks were compared, and it was found that there were significant 
differences in the EEG microstates between different  
tasks.

However, with the advancement of computer technology, an 
increasing number of computational methods have been applied 
to brain research, such as Generative Adversarial Network 
(GAN), which solves the problem of imbalanced medical images 
(Hu et al., 2020), constructs super-resolution MR Images (You 
et al., 2022), reconstructs the lost BOLD signal (Yan et al., 2020) 
and fuse multi-modality medical images (Hu et al., 2021). All of 
them are latest research results in the brain science field and very 
enlightening the research of nicotine addiction in this paper. 
Therefore, our next step is to use these new techniques to analyze 
EEG signals and discover hidden information, which can 
be combined with microstate analysis.

Finally, there are individual differences in EEG signals. 
Increasing the amount of data will help further validate the 
results of this article, which is also one of our next steps. Besides, 
the methods of signal process could also be  improved, for 
instance, some other adaptive time-frequency analysis methods 
(Wacker and Witte., 2011; Hadjileontiadis et al., 2017) can replace 
the improved HHT method and calculate the corresponding 
instantaneous frequency or instantaneous amplitude to obtain 
the unique EEG bands.

5. Conclusion

In this paper, we  compared the difference of EEG microstates 
between nicotine addicts by using the improved HHT time-frequency 
decomposition method. We  selected microstate parameters with 
significant difference as features for classification and got better 
recognition detection results. These results indicate that the EEG data at 
frequency bands obtained by the improved HHT method is more 
suitable to represent the characteristics of EEG signals, and the 
microstates obtained by this method can be effectively distinguished 
from the EEG data of nicotine addiction, which means that the improved 
HHT-Microstate analysis can offer new ideas and insights for the brain 
research of nicotine addiction and provide more effective methods and 
basis for the diagnosis and treatment of substance addiction.
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Optic never fibers in the visual pathway play significant roles in vision formation.

Damages of optic nerve fibers are biomarkers for the diagnosis of various

ophthalmological and neurological diseases; also, there is a need to prevent

the optic nerve fibers from getting damaged in neurosurgery and radiation

therapy. Reconstruction of optic nerve fibers frommedical images can facilitate all

these clinical applications. Although many computational methods are developed

for the reconstruction of optic nerve fibers, a comprehensive review of these

methods is still lacking. This paper described both the two strategies for optic

nerve fiber reconstruction applied in existing studies, i.e., image segmentation

and fiber tracking. In comparison to image segmentation, fiber tracking can

delineate more detailed structures of optic nerve fibers. For each strategy, both

conventional and AI-based approaches were introduced, and the latter usually

demonstrates better performance than the former. From the review,we concluded

that AI-basedmethods are the trend for optic nerve fiber reconstruction and some

new techniques like generative AI can help address the current challenges in optic

nerve fiber reconstruction.
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1. Introduction

The visual pathway is a general name for a series of brain tissues including the optic

nerve (ON), optic chiasm (OC), optic tract (OT), lateral geniculate nucleus (LGN), optic

radiation (OR), and visual cortex (VC) (Smith and Strottmann, 2001; Jäger, 2005). In the

visual pathway, ON, OC andOT are formed by the axons of the retinal ganglion cells (Becker

et al., 2010), while OR is formed by another type of optic nerve fibers. These two types of optic

nerve fibers are connected at the LGN, which is a relay station of optic signals (Fujita et al.,

2001). The optic never fibers along the visual pathway are responsible for the conduction of

optic signals from the retina to the visual cortex and play significant roles in vision formation.
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Optic nerve fibers can be affected by various ophthalmological

diseases, e.g., glaucoma (Hernowo et al., 2011; Tellouck et al.,

2016; Haykal et al., 2022), age-related macular degeneration

(Prins et al., 2016; Yoshimine et al., 2018) and optic neuritis

(Yamamoto et al., 2005; Spierer et al., 2010; Zhao et al., 2018),

and neurological diseases, e.g., multiple sclerosis (MS) and

Alzheimer’s disease (AD) (Reich et al., 2010; Klistorner et al.,

2015; Mutlu et al., 2018; Wang et al., 2021). For different

types of diseases, optic nerve fibers would represent varied

symptoms like edema, demyelination, atrophy and degeneration at

different locations along the visual pathway, which would change

the original morphological and even structural characteristics

of the optic nerve fibers. Also, the severity of the symptoms

is highly relevant to disease progression. Dysfunction of optic

nerve fibers would cause serious vision problems; describing the

status of optic nerve fibers in morphology and structure can

help determine a patient’s condition and choose the appropriate

treatment strategy.

In addition, it is not uncommon that optic nerve fibers get

compressed or damaged due to tumors and traumas (Romano

et al., 2007, 2009; Chamberland et al., 2018). It requires a clear

delineation of the morphological and structural status of the optic

nerve fibers to evaluate the damage. Meanwhile, the accurate

locations of the optic nerve fibers in the brain play significant roles

in neurosurgery for compression release and damage repair. The

location information of the optic nerve fibers is also crucial for

radiation therapy to protect the optic nerve fibers from radiation

(Isambert et al., 2008; Dai et al., 2021).

Currently, there are several imaging techniques that can

provide an in-vivo delineation of the optic nerve fiber in the visual

pathway. Particularly, computed tomography (CT) and magnetic

resonance imaging (MRI) are used to reveal the optic nerve fibers

at the anterior visual pathway, i.e., from the optic disc to the

LGN (Tamraz et al., 1999; Wichmann and Müller-Forell, 2004),

while diffusion tensor imaging (DTI) is usually applied to delineate

the optic nerve fibers at the OR (Dayan et al., 2015b). These

imaging techniques make it possible to evaluate the morphological

and structural status of the optic nerve fibers and target their

locations in the brain via in-vivo approaches, and reconstructing

the optic nerve fibers from medical images can further facilitate

these approaches.

Manual optic nerve fiber reconstruction is difficult and time-

consuming, thus computational approaches for automated optic

nerve fiber reconstruction are developed. These computational

approaches can be divided into two categories, i.e., image

segmentation and fiber tracking. The former is used for CT/MRI

images, while the latter is performed for DTI data. Despite the

difference in implementation, these approaches face the same

challenge, i.e., the thin-long structure of the optic nerve fibers.

The thin-long structure makes the optic nerve fibers easily affected

by the partial volume effect (PVE) (Mansoor et al., 2016). PVE

can decrease the image contrast to neighboring tissues, increasing

the difficulty of image segmentation (Cabezas et al., 2011); also,

it enables multi-orientations in each voxel, raising the complexity

of orientation estimation for fiber tracking (Alexander et al., 2001;

Jeurissen et al., 2019). Though various computational approaches

are proposed for this challenge in optic nerve fiber reconstruction,

it has not been well addressed yet.

In recent years, some advanced techniques such as generative

artificial intelligence (AI) have been developed and these techniques

exhibit their potential in handling this challenge. Generative AI

has demonstrated its power in image super-resolution and multi-

modal image synthesis (Hu et al., 2020a,b, 2021; You et al.,

2022). The major cause of PVE is the low image resolution, thus

higher image resolution can help get it alleviated. Multi-modal

image fusion is another way to resist PVE. Multi-modal images

can provide consistent and complementary information to release

the confusion caused by PVE. However, it is not common to

see multi-modal approaches for optic nerve fiber reconstruction

as the acquisition of multi-modal data would be expensive and

time-consuming in clinical practice. Multi-modal image synthesis

provides a cheap and efficient way to acquire multi-modal images

(Hu et al., 2021), removing the biggest barrier that hinders multi-

modal research on optic nerve fiber reconstruction.

To apply generative AI and other new techniques in optic

nerve fiber reconstruction, it is better to gain a comprehensive

understanding of the task and the existing methods. However,

to the best of our knowledge, a comprehensive review of the

computational approaches for the reconstruction of optic nerve

fibers frommedical images is still lacking. Therefore, we performed

such a review in this paper. We started with the anatomy

of the visual pathway and imaging techniques of the optic

nerve fibers. Then, we described both the two strategies, i.e.,

image segmentation and fiber tracking, for optic nerve fiber

reconstruction. For each strategy, both conventional and AI-based

methods were introduced. Finally, we discussed the selection

rules and future challenges to performing optic nerve fiber

reconstruction, providing guidance for clinical application and

future studies. More details can be viewed in the following sections.

2. Anatomy of visual pathway

The visual pathway consists of the ON, OC, OT, LGN, OR, and

VC (Tamraz et al., 1999; Smith and Strottmann, 2001; Wichmann

andMüller-Forell, 2004; Jäger, 2005), as shown in Figure 1. The ON

is the first part of the visual pathway. It is a thin-long myelinated

fiber bundle formed by the axons of the retinal ganglion cells. There

is a pair of ONs, which start from the optic disks of each eye, pass

through the orbit and optic canals, and finally get crossed at the

OC. Based on the locations, the ON can be further divided into

four segments, i.e., the intraocular, intraorbital, intracanalicular,

and intracranial segments. The lengths for the four segments are

about 1mm, 30mm, 6mm, and 10mm, respectively. The OC is

a flat x-shape structure located at the junction of the floor and

the anterior wall of the third ventricle. It is just situated anteriorly

to the pituitary stalk. In OC, only the optic nerve fibers from the

medial retina (nasal side) would get crossed, while those from the

lateral retina (temporal side) remain uncrossed. Then, the optic

nerve fibers at each side keep going from the posterolateral angle

of the OC and form the left and right OTs. The optic nerve fibers

in OTs run backward and lateralward of the OC and wind around

the midbrain. Most of these optic nerve fibers get terminated at the

LGN, while there are also some passing over the LGN and reaching

the superior colliculus to coordinate eye movements. The LGN is

located in the lateral geniculate body, which is the posterior-inferior

Frontiers inNeuroscience 02 frontiersin.org69

https://doi.org/10.3389/fnins.2023.1191999
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jin et al. 10.3389/fnins.2023.1191999

FIGURE 1

Schematic of anatomy of visual pathway. ON, optic nerve; OC, optic

chiasm; OT, optic tract; LGN, lateral geniculate nucleus; OR, optic

radiation; VC, visual cortex.

aspect of the thalamus. The LGN consists of alternating gray and

white matter layers and serves as a relay station in the visual

pathway (Fujita et al., 2001). The LGN projects the visual signal

from the retina to the VC, and the optic nerve fiber connecting

the LGN and VC form the optic radiation. The OR can be divided

into three major fiber bundles, i.e., the dorsal, lateral, and ventral

bundles. The dorsal and lateral bundles pass through the temporal

and parietal lobes posteriorly and terminate at the occipital lobe; the

ventral bundle runs anteriorly and laterally into the temporal lobe

and bypasses the temporal horn of the lateral ventricle, generating

the Meyer’s loop (Tamraz et al., 1999; Dayan et al., 2015b). The

VC is also called the striate cortex. It is located at the superior and

inferior lips of the calcarine fissure.

It is seen that the major components of the visual pathway are

optic nerve fibers. Separated by the LGN, the two types of optic

nerve fibers share similar symmetric curved thin-long structures

but vary from each other in length, diameter, and curvature. Also,

they are located with different neighboring tissues. The optic nerve

fibers in the anterior visual pathway, i.e., from the optic disc to the

LGN, are mostly located around muscle, fat, cranium, and blood

vessels, while those in the OR are next to the brain’s gray and white

matters. The differences in these anatomical characteristics lead to

quite different representations in medical images. More details on

imaging would be introduced in the next section.

3. Imaging of optic nerve fibers in
visual pathway

Currently, CT, MRI and DTI are the common imaging

techniques for in-vivo delineation of the optic nerve fibers in the

visual pathway. CT and MRI images are usually used to assess

the optic nerve fibers in the anterior visual pathway (Smith and

Strottmann, 2001; Becker et al., 2010). In general, MRI is superior

in imaging the optic nerve fibers than CT as it can achieve high

contrast among soft tissues. In comparison with CT, it can more

easily differentiate the optic nerve fibers from the complex adjacent

tissues in the orbit and sellar regions. Also, MRI is free from

radiation and is safer than CT. Nevertheless, CT has its advantage

in revealing bony tissues and foreign bodies. It can reveal the

damages to the visual pathway caused by orbital or optic canal

trauma as well as the calcification of the optic nerve fibers due to

the tumor compression. In addition, CT is less affected by motion

artifacts and can be applied to people with metal implants, making

it a better choice than MRI in some special clinical scenarios.

Besides CT and MRI, DTI can also be applied to reconstruct

the optic nerve fibers in the anterior visual pathway; and, it can

provide more details such as the fiber crossing at the OC (He

et al., 2021). But, DTI takes much longer scanning time than

MRI and CT, making it less practical in clinical scenarios. Instead,

DTI is more frequently applied to reconstruct the optic nerve

fibers in the OR (Dayan et al., 2015a; Schurr et al., 2018). The

three fiber bundles in OR are located very close to other white

matter tracts; the subtle variations in white matter signal make it

difficult to reveal the anatomical heterogeneity in OR from CT

and conventional MR images (Yogarajah et al., 2009; Winston

et al., 2012). DTI is a technique to monitor the motion of water

molecules in the human body by collecting multi-gradient MRI

images. As the motion of water molecules is bounded by the nerve

fibers, its speed and direction can be used to describe the structure

and orientation of nerve fibers. Unlike MRI and CT images, the

structure of optic radiation cannot be directly viewed in raw DTI

images. There is a need to calculate the DTI metrics or perform

fiber tracking to reveal the structure of the OR. It is seen that

the three imaging techniques have their unique advantages and

their own application scenarios. Also, the different representations

of the optic nerve fibers in images of different modalities require

different reconstruction methods. Usually, image segmentation is

applied to CT and MRI images where optic nerve fibers exhibit a

certain image contrast to neighboring tissues, while fiber tracking

is performed to DTI data to exploit the structural and orientational

information for more precise delineation of the optic nerve

fibers. Both image segmentation and fiber tracking approaches

can be further classified as conventional and AI-based methods.

In the following two sections, we would describe more details

of both the conventional and AI-based methods using the two

reconstruction strategies.

4. Fiber reconstruction by image
segmentation

4.1. Conventional methods

Image segmentation is usually used to reconstruct optic

nerve fibers from CT and MRI images. Conventionally, there

are various methods to perform image segmentation, such as

thresholding, boundary-based, region-based, model-based, atlas-

based, etc (Despotović et al., 2015; Wang et al., 2016). The
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thresholding methods are not suitable for the segmentation of

the optic nerve fibers given their poor image contrast with

neighboring tissues at some segments of the visual pathway. Also,

their thin-long structures make it difficult to perform boundary-

based and region-based methods. It is found that most methods

for optic nerve fiber reconstruction are model-based or atlas-based

(Table 1).

Model-based methods would first define a model based on the

prior information on the shape and appearance of the tissue to be

segmented and then fit the model to the new images (Heimann

and Meinzer, 2009). The models can be either fixed geometry

models or deformable models. For the fixed geometry models,

they can be easily fitted via an explicit parameter estimation based

on selected landmarks. The deformable models such as active

shape models, active appearance models and level-set are usually

fitted with searching or optimization procedures. Particularly,

Bekes et al. (2008) approximate the ON in a CT image as a

cone and cylinder and fit the cone and cylinder using a semi-

automatic way. This fixed-model-based approach is simple but

its reproducibility is doubted. Noble and Dawant (2011) applied

an atlas-navigated optimal medial axis and deformable model

(NOMAD) to segment the ON and OC based on paired CT

and T1-weighted MRI images. The exploitation of multi-modal

images and hybrid methods (model- and atlas-based) enhances

the segmentation results, but the paired CT and MRI images

are not always available in clinical practice. Yang et al. (2014)

proposed a weighted partitioned active shape model to segment

the anterior visual pathway from T1-weighted MRI images. This

method is also capable to segment the OT, which is believed

as a more challenging task than ON and OC segmentation

before this study. Mansoor et al. (2015) developed a method

entitled PArtitioned Shape and Appearance Learning (PAScAL)

to segment the anterior visual pathway from MRI images.

This method can also be applied to the pathological anterior

visual pathway.

Atlas-based methods treat the segmentation problem as a

registration problem, i.e., aligning the new image and the atlas

(Cabezas et al., 2011). Usually, an atlas contains two image

volumes, one intensity image (template) and one segmented

image (label). Image registration is used to build the geometrical

connection between the new image and the template; then,

the segmentation can be achieved by propagating the label to

the image space via the geometrical connection. D’haese et al.

(2003) manually drew an atlas that includes the ON based on

visually selected MRI images and segmented the ON with the

atlas. Gensheimer et al. (2007) extended single-atlas segmentation

to multi-atlas segmentation and performed additional post-

processing procedures including a ray casting algorithm, reshaping

of unreasonable cross sections, and surface fitting to further modify

the inaccurate contours. Isambert et al. (2008) applied a multi-

atlas segmentation method to segment ON and OC from MRI

images under clinical conditions. Asman et al. (2013) developed

a non-local model to perform multi-atlas segmentation for the

ON based on CT images. Harrigan et al. (2014) and Panda

et al. (2014) paid attention to the robustness of the atlas-based

segmentation for the ON and proposed an improved registration

procedure.

4.2. AI-based methods

AI-based methods are data-driven approaches, which learn the

rules from the data. Such approaches reduce manual operations

like predefining models or atlases and are more easily implemented

in practice. AI-based methods usually treat the segmentation

procedure as a pixel/voxel-wise classification or clustering task.

In the beginning, the classification/clustering is performed using

conventional machine learning algorithms based on hand-crafted

features. For example, Dolz et al. (2015) extracted features from

neighborhood information and applied the support vector machine

(SVM) to conduct the classification. With the occurrence and

development of deep learning techniques, it becomes possible to

integrate the feature extraction procedure into the learning process,

further simplifying the procedure to segment the optic nerve fibers.

The studies on deep learning methods for optic nerve fiber

segmentation from CT/MRI images have passed through three

periods (Table 2). In the early period, deep learning methods

are only used for feature extraction and segmentation is still

implemented by conventional methods. For example, Mansoor

et al. (2016) used a stacked auto-encoder to learn new feature

representations for a model-based segmentation procedure. After

this early period, deep learning is also used for pixel/voxel

classification. At this stage, the network is usually formed by two

network modules, e.g., a convolutional neural network (CNN)

and a fully connected network, responsible for feature extraction

and pixel/voxel classification, respectively. Based on this basic

network structure, Ren et al. (2018) extended the original CNN

to an interleaved structure for joint segmentation of optic nerve

and chiasm; Dolz et al. (2017) replaced the CNN with a stacked

denoised auto-encoders to learn a compact representation of

the hand-crafted features; Duanmu et al. (2020) modified the

CNN using a multi-resolution path approach to combine multi-

scale features. Recently, a more powerful network, i.e., the U-

Net, has been developed (Ronneberger et al., 2015). U-Net is

composed of a down-sampling branch and an up-sampling branch.

The down-sampling and up-sampling branches are made up of

paired encoders and decoders, respectively. The down-sampling

procedure can help extract the context information and the up-

sampling procedure is used for fine localization. Also, there are skip

connections between the encoders and decoders. As there might

be information loss during the up-sampling procedure, the skip

connections make it possible to combine the up-sampling results

with the original information before the down-sampling procedure.

With the skip connections, the localization can be more accurate.

Compared with the two-module network, U-Net further integrates

the feature extraction and pixel/voxel classification procedures.

The state-of-the-art (SOTA) methods for optic nerve fiber

reconstruction from CT/MRI images are mostly based on

the U-Net. Particularly, some researchers tried to modify the

encoders and decoders as well as their connections to enhance

context information exploitation. For example, Zhu et al. (2019)

added squeeze-excitation blocks into the down-sampling and

up-sampling approaches; Tong et al. (2019) and Zhu et al.

(2021) tried DenseNet and V-Net, which enhance the connections

among encoders and decoders, to segment the ON and OC

from CT and MRI images. Also, some researchers tried to add
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TABLE 1 Conventional image segmentation methods for optic nerve fiber reconstruction.

Method type Method description Anatomical region Imaging modality Research

Model-based Geometry model ON CT Bekes et al., 2008

Atlas-navigated optimal medial axis and deformable

model (NOMAD)

ON, OC CT, MRI Noble and Dawant, 2011

Weighted partitioned active shape model ON, OC, OT MRI Yang et al., 2014

PArtitioned Shape and Appearance Learning (PAScAL) ON, OC, OT MRI Mansoor et al., 2015

Atlas-based Single-atlas ON MRI D’haese et al., 2003

Multi-atlas, Post-processing ON, OC CT Gensheimer et al., 2007

Multi-altas ON, OC MRI Isambert et al., 2008

Multi-atlas, non-local model ON CT Asman et al., 2013

Multi-atlas, variable voxel resolution and field of view ON CT Harrigan et al., 2014;

Panda et al., 2014

ON, optic nerve; OC, optic chiasm; OT, optic tract.

TABLE 2 AI-based image segmentation methods for optic nerve fiber reconstruction.

Method type Method description Anatomical region Imaging modality Dataset Research

Machine Learning SVM ON MRI Private Dolz et al., 2015

CNN only Stacked auto-encoder ON, OC, OT MRI Private Mansoor et al., 2016

CNN+FCN Stacked denoised auto-encoders+FCN ON, OC MRI Private Dolz et al., 2017

Interleaved CNN+FCN ON, OC CT PDCCA Ren et al., 2018

Multi-resolution multi-scale

CNN+FCN

ON, OC CT Private Duanmu et al., 2020

U-Net-Like Squeeze-excitation Block ON, OC CT PDDCA, TCIA Zhu et al., 2019

Connection Enhancement, Global

restriction

ON, OC CT PDCCA Tong et al., 2018

Connection Enhancement, Global

restriction

ON, OC CT PDCCA Tong et al., 2019

Connection Enhancement ON, OC CT Private Zhu et al., 2021

Recursive ensemble segmentation ON, OC MRI Private Chen et al., 2019

Localization+Segmentation ON, OC CT PDCCA Wang et al., 2019

Localization+Segmentation, Atlas

information

ON, OC, OT MRI Private Zhao et al., 2019

Localization+Segmentation, Atlas

information

ON, OC, OT CT, MRI Private, PDCCA Ai et al., 2020

Localization+Segmentation ON, OC MRI Private Liu and Gu, 2020

Localization+Segmentation ON, OC CT PDCCA Amjad et al., 2022

Pre-processing OC MRI CHIAS M Puzniak et al., 2021b

Pre-processing ON CT TCIA Ranjbarzadeh et al.,

2022

Post-processing ON, OC CT Private Ibragimov and Xing,

2017

Post-processing ON, OC MRI Private Mlynarski et al., 2020

ON, optic nerve; OC, optic chiasm; OT, optic tract; SVM, support vector machine; CNN, convolutional neural networks.

global loss restrictions to avoid irregular segmentation results due

to the pixel/voxel-wise segmentation strategy. Specifically, Tong

et al. (2018, 2019) added a latent shape restriction as well as

an adversarial restriction to guarantee the global shape of the

segmented ON and OC. Besides the modification of network

blocks and losses, some researchers paid attention to the training

strategies. Chen et al. proposed a recursive ensemble organ

segmentation framework. In this framework, the organs that are

easily segmented, e.g., the eyeballs, would be first segmented; and

then, the segmentation results are fed to the network together
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with the original inputs for the segmentation of more complicated

organs like ON and OC (Chen et al., 2019). Wang et al. proposed

a hybrid network containing two U-Nets for localization and

segmentation, respectively. The U-Net for localization was named

“LocNet” and used to localize the region of the ON, while the

one for segmentation was named “SegNet” and applied only in the

extracted region to exclude other interference (Wang et al., 2019).

Zhao et al. adopted a similar strategy but replaced the LocNet with

an atlas-based approach, i.e., performing registration between the

atlas and a new image to localize the ON. They also generated a

spatial probabilistic distribution map using the atlas to assist the

segmentation (Zhao et al., 2019; Ai et al., 2020). Differently, Liu

and Gu (2020) and Amjad et al. (2022) replaced the SegNet with

a two-module network, where the CNN adopted a multi-resolution

structure.

In addition to the deep learning networks, researchers also tried

to enhance the segmentation results using proper pre-processing

and post-processing approaches. For the pre-processing, Puzniak

et al. (2021b) applied a data-augmentation strategy to train a 3D

U-Net. Ranjbarzadeh et al. (2022) pre-processed the input images

by combining a fuzzy C-mean clustering algorithm, histogram

equalization, and a texture descriptor based on the local directional

number. For post-processing, Ibragimov and Xing (2017) proposed

a post-processing procedure based on Markov random fields.

Mlynarski et al. (2020) developed a graph-based post-processing

approach to guarantee the connectivity between the eyes and OC.

5. Fiber reconstruction by fiber
tracking

5.1. Conventional methods

Fiber tracking, also called fiber tractography, is a computational

procedure to reconstruct nerve fibers from DTI images. Although

there is a debate on the reliability of fiber tracking in delineating the

true brain nerve fibers, it has been widely applied in both medical

research and clinical practice. There are also plenty of studies

focusing on the reconstruction of optic nerve fibers, especially for

the OR, using fiber tracking.

Fiber tracking would estimate a series of streamlines to

delineate the global fiber tractography using deterministic,

probabilistic, or global algorithms (Jeurissen et al., 2019; Li

et al., 2020). Deterministic algorithms are proposed based on

the assumption that there is a predominant orientation in each

voxel of DTI images. Common deterministic algorithms include

streamlines tracking (STT) (Basser, 1998; Basser et al., 2000), fiber

assignment by continuous tracking (FACT) (Mori et al., 1999; Chao

et al., 2008), Tensor-lines (Weinstein et al., 1999), tensor deflection

(TEND) (Lazar et al., 2003), and vector criterion tracking (VCT)

(Kim et al., 2004). These algorithms usually select the diffusion

tensor as the model to describe fibers’ microstructures at each

voxel. But, the diffusion signal would be inevitably distorted by

noise and artifacts, affecting the certainty of voxel orientation

inferred from the diffusion tensor (Jones, 2010). The assumption

of one orientation per voxel is also doubted due to the existence

of crossing fibers (Behrens et al., 2007). The existence of these

problems raises concerns about the deterministic algorithms; the

probabilistic algorithms are then proposed. To cope with the

uncertainty, the probabilistic algorithms use the probability density

functions (PDF) (Behrens et al., 2003) and fiber orientation

distribution (FOD) (Tournier et al., 2004) to represent fibers’

microstructures at each voxel. Based on these probabilistic models,

the algorithms like probabilistic index of connectivity (PICo)

(Parker et al., 2003), unscented Kalman filter (UKF) (Malcolm et al.,

2010), probabilistic tracking with crossing fibers (PROBTRACKX)

(Behrens et al., 2007), ConTrack (Sherbondy et al., 2008), particle

filtering tractography (PFT) (Zhang et al., 2009), and 2nd-order

Integration over Fiber Orientation Distributions (iFOD2) (Smith

et al., 2012) are proposed. Compared with deterministic algorithms,

probabilistic algorithms can delineate more complicated nerve

fiber distributions; but, they would also cause a large number of

false positive streamlines and suffer from heavy computational

costs. Both the deterministic and probabilistic algorithms are

based on local information, while global algorithms treat fiber

tracking as a global optimization problem. The existing global

algorithms can be mostly divided into two categories, i.e.,

graph-based algorithms (Iturria-Medina et al., 2007) and Gibbs

algorithms. Graph-based algorithms should set the seeding and

targeting regions, which is not necessary for Gibbs algorithms

(Kreher et al., 2008). Global algorithms can avoid the error

accumulation problem in local algorithms and reduce the number

of false positive streamlines; but, their computational costs are

much greater than local algorithms and convergent solutions are

not guaranteed.

Besides the algorithm, there are also some key operations and

settings to ensure an accurate fiber tracking procedure (Jacquesson

et al., 2019; Jeurissen et al., 2019). For local algorithms and graph-

based global algorithms, there is a need to determine the seeding

and target regions of interest (ROIs). The seeding and target

ROIs mean the two ends of the generated fibers by the tracking

algorithms. Except for the whole-brain tracking, these two ROIs

can be drawn in a manual way (Rossi-Espagnet et al., 2020; Haykal

et al., 2022) or by projecting the labels in a built brain atlas (Karahan

et al., 2019; Papadopoulou et al., 2021). In addition, the ROIs can

also be acquired by other fiber tracking procedures (Davion et al.,

2020). Besides these two types of ROIs, there are also inclusive

and exclusive ROIs for the filtering of valid fibers (Horbruegger

et al., 2019). In addition, some thresholds to constrain the fibers’

lengths, curvatures/angles, and fractional anisotropy (FA)/fiber

orientation distribution function (fODF) values are also set for the

filtering process.

The specific methods for optic nerve fiber reconstruction are

shown in Table 3. The reconstruction of the optic nerve fibers

from DTI images follows the above fiber tracking frameworks; but,

the selection of tracking algorithms, ROI drawing, and thresholds

setting would change with the location of optic nerve fibers.

Particularly, deterministic algorithms can be applied to the optic

nerve fibers in the anterior visual pathway (Dasenbrock et al., 2011;

De Blank et al., 2013; Takemura et al., 2017; Hofstetter et al., 2019;

Jin et al., 2019) but they are not suggested for OR reconstruction

(Yogarajah et al., 2009). The OR region is close to the neighboring

white matter tracts and image voxels in this region are more likely

to contain multiple orientations. The probabilistic algorithms can
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be applied for both the two types of optic nerve fibers (Dayan

et al., 2015a; Kammen et al., 2016; Zolal et al., 2016; Backner

et al., 2018; Yoshimine et al., 2018; Ather et al., 2019; Glick-Shames

et al., 2019; Wu et al., 2019; Davion et al., 2020; Lacerda et al.,

2020; Rossi-Espagnet et al., 2020; Reid et al., 2021; Haykal et al.,

2022; Liu et al., 2022); but, there are still some differences. The

probabilistic algorithms are proposed to handle the uncertainty and

they can be classified into different categories based on the source

of the uncertainty (Jeurissen et al., 2019). The reconstruction of

optic nerve fibers at the anterior visual pathway and in the OR

has different uncertainty sources. The former’s uncertainty comes

from the interference of the complicated skull base environment,

which contains nerves, bone, air, soft tissue, and cerebrospinal

fluid; the latter’s uncertainty is mainly due to the multi-orientation

problem. The difference in uncertainty sources would affect the

selection of the probabilistic algorithms. In addition, the seeding

ROIs for the ON and OT reconstruction are usually set as the end

of the eyeballs and the OC, respectively, while those for the OR

are set as the LGN. The target ROIs include the OC, LGN and VC

for the reconstruction of the ON, OT and OR, respectively. The

other settings like the inclusive and exclusive ROIs as well as the

thresholds would be more task-specific.

5.2. AI-based methods

The conventional framework for fiber tracking is a complicated

procedure containing the processes like pre-processing, seeding,

tractography, and filtering of valid streamlines. Although several

softwares integrate these processes (Table 3), the operations like

ROI drawing, tracking algorithm selection, and threshold setting

still require manual implementation. In recent years, AI technique

has developed rapidly; researchers are trying to replace these

manual operations with automated ways using AI technique

(Table 4).

AI-based methods are applied first in the tractography process.

Neher et al. (2017) tried to perform the tractography by machine

learning. They applied a random forest classifier to learn multiple

potential directions of a streamline from the raw diffusion

signals and determined the streamline’s progressing direction and

termination using a neighborhood sampling strategy and a voting

scheme, respectively. Poulin et al. treated the tractography as a

regression problem and proposed the recurrent neural networks

(RNN) to acquire the mapping between the diffusion signal and

the streamlines’ directions for both whole-brain and bundle-

specific tractography (Poulin et al., 2017, 2018). The RNN can

exploit both the new observations and the past seen information

along the tracked streamlines. In addition to the diffusion signals,

Jörgens et al. (2018) further pointed out the importance of the

previous step directions for the tractography. They adopted an

alternative way to predict the next step direction of a streamline

via a multi-layer perceptron (MLP), whose input is a vector

acquired by concatenating the diffusion signals and previous

step directions. Wegmayr et al. (2018) also used an MLP to

perform the tractography and further validated the significance

of previous step directions; but, they changed the input of the

MLP as a vector formed by a flattened data block and several

incoming vectors. The tractography can also be implemented

via reinforcement learning and Théberge et al. (2021) proposed

a general framework for this strategy. Apart from these local

tractography methods, Wasserthal et al. (2018) developed a U-Net-

like network to directly reconstruct the fiber tracts from the fields

of fODF peaks.

Recently, several AI-based methods have been applied

in processes other than tractography. For the pre-processing

approach, AI-based methods focus on two aspects, i.e., generating

high-fidelity diffusion signals from low-quality input and building

the diffusion model from the raw diffusion signals. Acquiring

high-fidelity diffusion signals usually requires a certain number

of diffusion-encoding directions and multi-shell acquisitions,

which takes a long scanning time. Tian et al. (2020) proposed

a 10-layer CNN to reduce the requirement on the number of

diffusion-encoding directions, particularly limiting the number

to the minimum level for diffusion tensor calculation. Koppers

et al. (2017) and Jha et al. (2022a) reconstructed the multi-shell

diffusion signals from single-shell acquisitions using DNN and

U-Net-like network, respectively. Zeng et al. (2022) proposed a

super-resolution network to enhance the FOD model that was

built based on the single-shell acquisition, and Jha et al. (2022b)

developed a more complicated network containing multiple

encoder-decoder structures and discriminators. Mapping raw

diffusion signals to diffusion models is also very challenging. It

is quite difficult for conventional methods to estimate the fibers’

number and orientations per voxel from raw diffusion signals. Li

et al. (2021) demonstrated the advantages of AI-based methods

in this challenging task. They proposed a SuperDTI network for

diffusion model generation and the test results suggest that their

model is less sensitive to noise and more robust to misregistration

than conventional tensor fitting methods. Karimi et al. (2021a,b,c)

further verified the superiority of AI-based methods via a series of

explorations on diffusion metric map generation, fODF generation

and fibers’ number and orientations estimation. In addition to

the pre-processing process, AI-based methods are also used to

achieve automatic seeding. Avital et al. (2019) and Wasserthal

et al. (2019) tried automated seeding using U-Net and U-Net-like

network, respectively. There are also studies focusing on AI-based

automated filtering of valid streamlines. Particularly, AI can be

used to draw inclusive or exclusive ROIs, such as He’s work (He

et al., 2023). Also, AI models can be used to directly classify or

cluster the reconstructed streamlines (Xu et al., 2019; Zhang et al.,

2020; Chen et al., 2021; Xue et al., 2022, 2023).

Although multiple AI-based methods are proposed for fiber

tracking, the application of these methods in optic nerve fiber

reconstruction is still rare. To the best of our knowledge, Reid

et al. (2021) applied a U-Net-like network to automatically draw

seeding ROI at the optic tract. He et al. (2023) proposed a unified

global tractography framework for automatic visual pathway

reconstruction. Li et al. (2022) used a modified SupWMA network

to cluster the streamlines in the anterior visual pathways. These

methods demonstrate the feasibility and effectiveness of AI-based

methods in optic nerve fiber reconstruction, while there is still

room for further improvement.
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TABLE 3 Conventional fiber tracking approaches for optic nerve fiber reconstruction.

Method type Model/algorithm Anatomical region Software Research

Deterministic Tensor/FACT OT DTI Studio Dasenbrock et al., 2011

Tensor/FACT OT TrackVis Jin et al., 2019

Tensor/FACT OT dTV II FZRx Takemura et al., 2017

Tensor/FACT ON, OT, OR DTI Studio De Blank et al., 2013

FOD/STT OT, OR ExploreDTI Hofstetter et al., 2019

Probabilistic Tensor/PICo ON FSL Zolal et al., 2016

Tensor/PICo OR Camino Dayan et al., 2015a

Tensor/ConTrack OT, OR VISTA Backner et al., 2018

Tensor/ConTrack OT, OR VISTA Glick-Shames et al., 2019

Tensor/ConTrack OT, OR VISTA Yoshimine et al., 2018

Tensor/PROBTRACKX ON, OT FSL Wu et al., 2019

Tensor/PROBTRACKX2 ON, OC, OT FSL Ather et al., 2019

FOD/iFOD2 OR MRtrix3 Davion et al., 2020

FOD/iFOD2 OR MRtrix3 Lacerda et al., 2020

FOD/iFOD2 OT, OR MRtrix3 Rossi-Espagnet et al., 2020

FOD/iFOD2 OR MRtrix3 Reid et al., 2021

FOD/iFOD2 OT, OR MRtrix3 Haykal et al., 2022

FOD/iFOD2 OR MRtrix3 Liu et al., 2022

ON, optic nerve; OC, optic chiasm; OT, optic tract; OR, optic radiation; FOD, fiber orientation distribution.

6. Discussion

Optic nerve fiber reconstruction is a common step to

evaluate or project optic nerve fibers in clinical diagnosis and

treatment. As shown in section 2, optic nerve fibers have thin-

long structures and varying curvatures at different segments of

the visual pathway, making them difficult to evaluate in either

qualitative or quantitative ways without the reconstruction from

the medical images. Also, manual delineation of the optic nerve

fibers would be a tough task and costs a lot of time. As a

result, computational methods are highly needed for clinical

applications on optic nerve fibers. It is found that optic nerve fibers

can be revealed in images of multiple modalities and there are

different reconstruction strategies for each imaging modality. Also,

each reconstruction strategy has both conventional and AI-based

implementations. This paper reviews the existing computational

methods to guide optic nerve fiber reconstruction in medical

research and clinical practice and demonstrates the trend for

future studies.

CT and MRI images are widely used for the visualization

of the optic nerve fibers at the anterior visual pathway, i.e.,

from the end of the eyeballs to the LGN, while DTI can be

used to visualize the optic nerve fibers along the entire visual

pathway. Even though, DTI would not replace CT and MRI

for optic nerve fiber reconstruction in clinical practice at the

current stage. On one hand, DTI is with longer scanning time

and lower image resolution than CT and MRI, making it less

applicable in clinical practice. On the other hand, there are still

debates on the consistency between the reconstructed fibers from

DTI data and the real fibers in anatomy (Jeurissen et al., 2019),

which limits its application scenarios such as the OAR drawing in

radiation therapy.

Image segmentation and fiber tracking are two different

reconstruction approaches for CT/MRI and DTI, respectively.

Besides that, there are some other differences between these

two approaches. Fiber tracking can achieve a more precise

delineation of the optic nerve fibers than image segmentation,

allowing the extraction of more accurate features to describe

the morphological and structural changes of optic nerve fibers.

For example, optic nerve fiber degeneration can be described by

the volume change based on image segmentation results while

it can be more precisely evaluated by the reduction in optic

nerve fiber number based on fiber tracking results. Nevertheless,

fiber tracking is time-consuming and its computational process is

complicated and easily affected by noises and artifacts (Tournier

et al., 2002; Lazar and Alexander, 2003). Also, it is not

uncommon that there are false positive results and it requires

abundant experience and enough knowledge of brain anatomy

to ensure an accurate result (Jeurissen et al., 2019). These

drawbacks restrict the scenarios where it can apply in clinical

practice. In comparison to fiber tracking, image segmentation

would be more efficient and robust; also, its results can be

easily evaluated.

In comparison with conventional methods, AI-based methods

are believed to be the trend for both image segmentation and

fiber tracking. For image segmentation, AI-based methods

are preferred to conventional model-based and atlas-based

methods. Model-based methods require the design of complicated
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TABLE 4 AI-based fiber tracking approaches.

Process AI model Research

Pre-processing CNN Tian et al., 2020

DNN Koppers et al., 2017

U-Net-like Jha et al., 2022a

SRN Zeng et al., 2022

Encoder-decoder, Discriminator Jha et al., 2022b

SuperDTI network Li et al., 2021

MLP, U-Net Karimi et al., 2021a,b,c

Seeding U-Net Avital et al., 2019

U-Net-like Wasserthal et al., 2019

Tractography Random forest classifier Neher et al., 2017

RNN Poulin et al., 2017, 2018

MLP Jörgens et al., 2018;

MLP Wegmayr et al., 2018

Reinforcement learning Théberge et al., 2021

U-Net-like Wasserthal et al., 2018

Filtering U-Net-like He et al., 2023

CNN Xu et al., 2019

CNN Zhang et al., 2020

Siamese networks Chen et al., 2021

Contrast learning Xue et al., 2022, 2023

CNN, convolutional neural networks; DNN, deep neural networks; RNN, recurrent neural

networks; SRN, super-resolution networks.

models to fit the thin-long structure of the optic nerve fiber;

such models are difficult to estimate based on the complex

background along the visual pathway and their robustness

is doubted. Atlas-based methods require the registration

between the target and template, while it is not easy to get

two images fully aligned given the individual differences and

interference from noises and artifacts. AI-based methods are

data-driven approaches, which can automatically learn rules

from complicated data. AI-based methods are more easily

performed than those conventional methods and demonstrate

much better segmentation accuracy and robustness. The only

disadvantage of AI-based methods now is their high demand for

fine-annotated labels.

For fiber tracking, the superiority of AI-based methods over

conventional methods is not as great as image segmentation at

the current stage. On one hand, AI-based methods are mostly

proposed for one certain step of the fiber tracking procedure

and a proper end-to-end AI-based fiber tracking approach is

still lacking. On the other hand, the conventional methods for

each fiber tracking step have been well integrated into toolboxes

and software, decreasing their difficulty in implementation.

Even though, it is seen that more and more studies on fiber

tracking are trying to replace the conventional methods with AI-

based ones.

It is also noticed that there are still some challenges in the

reconstruction of optic nerve fibers from medical images with

AI-based methods. These challenges point out the direction of

future studies. The first challenge is the thin-long structure of

the optic nerve fibers. The long optic nerve fibers pass through

various brain regions that are formed by different brain tissues,

yielding complicated contextual information. Meanwhile, the thin

structure makes the signal intensities of the optic nerve fibers

easily affected by their neighboring tissues due to the PVE, yielding

varied signal intensities at different segments of the visual pathway.

The existing image segmentation methods applied multi-scale,

coarse-to-fine, or iterative strategies to handle the variations in

signal intensity and contextual information; pre-processing and

post-processing are also used to modify the false-positive and

missing voxels. Even though measures are taken, it is seen that

the improvement is far from satisfactory, suggesting that the

current local voxel-based segmentation strategy would not be

powerful enough to handle such a complicated problem. Also,

the long optic nerve fibers have varied curvatures. In existing

fiber tracking frameworks, the curvature is a significant sign for

tracking termination and fiber selection. The varied curvatures

increase the difficulty of setting these rules. Furthermore, it

requires a large field of view to reveal the long optic nerve fibers

in an image at the current stage. To achieve such a field of

view, the image resolution has to be sacrificed to maintain an

acceptable scanning time in clinical practice, increasing the PVE.

Thus, more powerful segmentation and fiber tracking strategies

are required to cope with the challenges brought by the thin-

long structure.

The second challenge is the lacking of task-specific datasets.

AI-based methods are data-driven methods and their performance

highly depends on the quality of data. To the best of our knowledge,

most existing studies on image segmentation and fiber tracking are

based on private datasets, which are not available to the public.

There are a minor number of publicly available datasets, such as

PDDCA (Raudaschl et al., 2017), TCIA (Clark et al., 2013; Zhu

et al., 2019), and CHIASM (Puzniak et al., 2021a,b) for image

segmentation and HCP for fiber tracking. However, these datasets

are not initially collected for optic nerve fiber reconstruction.

Most of these datasets require further cleaning and annotation

operations. Meanwhile, the imaging protocols and pre-processing

steps in these datasets may not be consistent with those used

in clinical practice. Also, in some of the datasets, the images

only cover part of the optic nerve fibers and cannot be used to

reconstruct the entire visual pathway. In addition, the situations

like multi-modal images and disease-specific deformation are not

fully considered in these existing datasets. Therefore, building

a dataset specifically for optic nerve fiber reconstruction is in

great need.

The third challenge is the control of computational cost.

For image segmentation, more powerful segmentation networks

are usually with more complicated network structures at

the current stage. Also, the inputs are 3D brain images

for the reconstruction of optic nerve fibers. These together

indicate a high computational cost. For fiber tracking,

the tractography is usually an iterative process and time-

consuming for both conventional and AI-based methods. The
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high computational cost would reduce the value of clinical

application. The way to balance the computational cost and

reconstruction performance would be another challenge in

future studies.

There are some new techniques such as generative AI that

can help address these challenges. Generative AI has demonstrated

its power in image super-resolution and image synthesis. Image

super-resolution can be used to cope with the low-resolution

problem caused by the large field of view. Also, image synthesis

can be used to generate more data to get full exploitation of

the existing datasets. In addition, it is realized that multi-modal

fusion would be a possible way to enhance the performance

of optic nerve fiber reconstruction. There are many other

examples to support its effect on segmentation (Menze et al.,

2014; Ibtehaz and Rahman, 2020; Wang et al., 2022). The

combination of segmentation results and fiber tracking has

once been explored (Reid et al., 2021; He et al., 2023). The

segmentation results can be used as the seeds for tractography

or the masks to filter valid streamlines. Therefore, developing

new fusion and combination methods would be a feasible way

to improve the reconstruction performance. Nevertheless, this

kind of method would face the problem that multi-modal

images are difficult to acquire in clinical practice. Generative

AI provides a way for multi-modal image synthesis. Thus, in

the future, we can try these new techniques in optic nerve

fiber reconstruction.

7. Conclusion

In this paper, we provided a comprehensive review of the

current SOTA computational methods for the reconstruction of

optic nerve fibers. We described the difficulties to delineate or

evaluate the optic nerve fibers directly from medical images,

suggesting the necessity of optic nerve fiber reconstruction. We

reviewed both the image segmentation and fiber tracking methods

and the successful application of these methods in previous studies

indicates the feasibility and effectiveness of computational methods

in optic nerve fiber reconstruction. Also, we introduced both the

conventional and AI-based implementations, and there is no doubt

that AI-based methods are better choices for optic nerve fiber

reconstruction. Meanwhile, we also pointed out the challenges for

the existing AI methods, and future studies are needed to address

these challenges.
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Recent years have witnessed a significant advancement in brain imaging

techniques that o�er a non-invasive approach to mapping the structure and

function of the brain. Concurrently, generative artificial intelligence (AI) has

experienced substantial growth, involving using existing data to create new

content with a similar underlying pattern to real-world data. The integration

of these two domains, generative AI in neuroimaging, presents a promising

avenue for exploring various fields of brain imaging and brain network

computing, particularly in the areas of extracting spatiotemporal brain features

and reconstructing the topological connectivity of brain networks. Therefore,

this study reviewed the advanced models, tasks, challenges, and prospects of

brain imaging and brain network computing techniques and intends to provide

a comprehensive picture of current generative AI techniques in brain imaging.

This review is focused on novel methodological approaches and applications of

related new methods. It discussed fundamental theories and algorithms of four

classic generative models and provided a systematic survey and categorization

of tasks, including co-registration, super-resolution, enhancement, classification,

segmentation, cross-modality, brain network analysis, and brain decoding. This

paper also highlighted the challenges and future directions of the latest work with

the expectation that future research can be beneficial.

KEYWORDS

generative models, brain imaging, brain network, di�usion model, generative adversarial

network, variational autoencoder

1. Introduction

Brain imaging, providing a way to non-invasively map the structure and function of the

brain, has developed significantly in recent years (Gui et al., 2010). For instance, functional

brain imaging, such as functional magnetic resonance imaging (fMRI), has the potential

to revolutionize researchers’ understanding of the physical basis of the brain and offers a

powerful tool to understand how the brain adapts to various cognitive activities and tasks

(Allen et al., 2014). Additionally, it offers a powerful tool that assists in understanding how

the brain adapts to various cognitive activities and tasks. Generative artificial intelligence

refers to new technologies that employ existing data including images, text, and audio files
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to create new content. This new content has a similar underlying

pattern of real-world data and has great potential applications

in many areas. Synthetic data from generative AI (Wang et al.,

2017; Lei et al., 2020b) can train machine learning models (Liu

Y. et al., 2021; Lei et al., 2022b) to be less biased and help

robots to learn more abstract concepts both in the real and virtual

world. The development of neuroimaging as a cross-discipline

between imaging and neuroscience has enabled the qualitative

and quantitative analysis of images in multiple dimensions.

Neuroimaging is a powerful tool for studying brain science,

revealing the anatomical structure and working mechanisms of

the brain, as well as diagnosing and treating brain diseases. The

synergistic developments between emerging analytic technologies

and data-sharing initiatives have the potential to transform the role

of neuroimaging in clinical applications. While basic neuroscience

focuses on understanding how brain activity produces behavior,

clinical applications aim to develop tools that are useful for clinical

decision-making and treatment development.

Brain images reveal multiple modalities due to different

imaging principles and techniques. As shown in Figure 1, multi-

modality brain imaging contains many different types, such as

diffusion tensor imaging (DTI), fluid-attenuated inversion recovery

(FLAIR) MRI, Susceptibility weighted imaging (SWI) MRI,

resting state functional MRI (rs-fMRI) and fluorodeoxyglucose

positron emission tomography (FDG-PET), etc. Brain imaging

can be divided into two broad categories such as functional

and structural imaging. Functional neuroimaging, which has

generated great optimism about its potential to both revolutionize

researchers’ understanding of the physical basis of the brain

and to provide clinically useful tools (Yu et al., 2021b),

has made significant progress in achieving the former goal.

However, functional neuroimaging results and models have yet

to be incorporated into clinical practice. For decades, numerous

translational neuroimaging and radiological studies have identified

the characteristics that predict health-related outcomes (Wang S.-

Q. et al., 2015; Wang et al., 2020a), including current diagnostic

categories and measures of symptoms (Lei et al., 2022a), cognitive

and affective computing processes, and cognitive performance.

Redefining diagnostic categories, identifying neuropathological

features, and assessing healthy brain function outside of current

clinical diagnostic categories are potential outcomes of such studies.

Further analysis of brain images can provide morphological

information about brain regions, such as their volume, thickness,

and surface area. Automated computer analysis has replaced

expert anatomists’ manual labeling of brain images. In voxel-

based morphometry, voxels are segmented into one of three tissue

categories (cerebrospinal fluid, white matter, or gray matter) based

on their image intensity. After recording all scans in the study into

a common anatomical space, the gray matter density of each voxel

can be compared between the whole brain and the subject, using

the average brain as a template. This process extracts graphical

data information about brain-related patterns from brain imaging

voxels with high-resolution structures. Lundervold and Lundervold

(2019) demonstrated that the introduction of automated computer

analysis of magnetic resonance imaging has facilitated the in

vivo study of whole-brain coordinated patterns in thousands of

individuals (Hu et al., 2020b).

Moreover, in the field of network neuroscience (Bassett and

Sporns, 2017), the theory and applications of generative AI offer

a powerful tool for brain imaging and brain network computing

including but not limited to extraction of brain spatiotemporal

features and the reconstruction of the topological connectivity of

brain networks (Calhoun et al., 2014; Gong et al., 2022). Brain

networks, which represent the global connectivity of the brain’s

structure and function, are crucial in understanding the neural basis

of cognitive processes, neuroanatomy, functional brain imaging,

and neurodevelopment. Brain network computing involves the

construction, reconstruction, analysis, and optimization of brain

networks. While brain imaging allows for the qualitative and

quantitative analysis of the brain’s anatomical and functional

structure in two or three dimensions, brain network computing

enables the study of brain topological features and covariant

features (Isallari and Rekik, 2021). Various tools, such as PANDA

(Cui et al., 2013) and GRETNA (Wang J. et al., 2015), can be

used for constructing brain networks. However, the brain networks

produced by these tools are subjective, time-consuming, and

depend on the operator’s experience. This review also surveys

the development of AI-based algorithms that can automatically

construct brain networks.

This paper provides a brief overview of research related to

generative learning models in brain imaging from three different

perspectives: AI-based generative models, tasks for brain imaging,

and the prospects of generative AI for brain imaging. The paper

reviews recent developments and advancements made in each of

these areas.

2. Generative learning model

The generative learning model refers to a class of machine

learning (ML) models that can generate new data similar to

the training data on which they were trained. Large-scale

generative models are trained on massive datasets and require

specialized hardware, such as GPUs, for efficient training. As

shown in Figure 2, several types of generative models exist,

including Generative Adversarial Networks (GANs), Variational

Autoencoders (VAEs), Flow Models, and Denoising Diffusion

Probabilistic Models (DDPMs). Introduced by Goodfellow et al.

(2014), GANs are a type of neural network comprising two parts:

a generator network that creates new data and a discriminator

network that distinguishes between real and fake data. VAEs,

proposed by Kingma and Welling (2013), generate new data by

learning a compressed representation of the input data. Flow

Models, proposed by Rezende and Mohamed (2015), model the

probability distribution of the input data and invert it. DDPMs,

a new type of generative model introduced by Ho et al. (2020),

have gained popularity in recent years. They draw inspiration from

the physical process of gas molecule diffusion, in which molecules

diffuse from high-density to low-density areas. DDPMs learn to

model the data distribution from input data incrementally.

2.1. Variational autoencoder

Autoencoders are a type of neural network that encode the

input X into a low-dimensional vector z, also known as the latent

space, and then reconstruct the input X based on z. By minimizing

the error between X and the generated output X̂, autoencoders

Frontiers inNeuroscience 02 frontiersin.org82

https://doi.org/10.3389/fnins.2023.1203104
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gong et al. 10.3389/fnins.2023.1203104

FIGURE 1

Multi-modality brain imaging includes DTI, sMRI, fMRI, PET, and other imaging types.

are trained to gradually reduce the reconstruction error, thereby

achieving the goal of reconstruction. However, autoencoders suffer

from the limitation of not being able to generate new content

as they cannot produce latent vectors arbitrarily. This is because

the latent vectors z are all encoded from the original images by

the encoder.

In Equation (1), where a set of raw data samples X1, ...,Xn

is available to describe the population, direct sampling from the

probability distribution p(X) would be feasible if p(X) were known.

However, in practice, the distribution of the raw data p(X) is

typically unknown.

p(X) =
∑

Z

p(X|Z)p(Z) (1)

p(Z) =
∑

X

p(Z | X)p(X)

= N (0, I)
∑

X

p(X)

= N (0, I)

(2)

To address this issue, researchers have added constraints to the

latent space Z (the space corresponding to the latent vectors) to

impose a prior distribution on the latent vectors. This led to the

development of the variational autoencoder (VAE) model, which

adds a constraint to the encoder to force it to produce latent

variables that follow a normal distribution in Equation (2). It is this

constraint that distinguishes VAE from traditional autoencoders.

A key aspect of variational autoencoders (VAEs) is the addition

of a constraint that enforces a normal distribution on the latent

space Z. Determining this normal distribution is the primary

objective of VAEs. To specify a normal distribution, two parameters

must be determined: the mean µ and the standard deviation σ .

To accomplish this, the encoder encodes input samples X into

two latent dimension vectors, µ and σ , which represent the mean

and variance of the latent space assumed to follow a normal

distribution (Mo and Wang, 2009). To sample Z from this latent

space, VAE assumes that the latent normal distribution can generate

the input images. VAE first samples a random vector ǫ from the

standard normal distribution N(0, I), and then computes:

Z = µ + σ ⊙ ǫ (3)

Here ⊙ denotes element-wise multiplication. Z is a vector

sampled from the latent space, and Z is used as input to the

decoder to generate a reconstructed sample X̂. The above steps

constitute the forward propagation process of the entire network.

To perform backpropagation, the loss function is evaluated from

two aspects: the similarity between the generated output X̂ and the

original input X and the similarity between the distribution of the

latent space and the normal distribution. The similarity between X

and X̂ is generally measured using reconstructions loss, while the

similarity between two distributions is generally measured using

the Kullback-Leibler divergence (Joyce, 2011).

KL(p(x)||q(x)) =

∫

p(x)ln
p(x)

q(x)
dx (4)

Loss(X, X̂) = Lossreconstruction

+ βLossKL(z,N (0, Id))
(5)
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FIGURE 2

The schematic diagram of generative learning model includes VAE, GAN, flow-based model, and di�usion model.

In summary, VAEs have found useful applications in brain

imaging. VAEs can effectively cluster similar patterns in brain

activity data and detect subtle changes that may not be easily

perceptible to the human eye (Tezcan et al., 2017; Cheng et al.,

2021). Furthermore, the learned lower-dimensional representation

by VAEs can also serve as a data compression method to minimize

computational resources when analyzing complex brain network

data (Qiao et al., 2021). The ability to model complex data and

generate new data points that resemble the original ones makes

VAEs a powerful tool in gaining insights into the underlying

mechanisms of neurological disorders and diseases (Zhao et al.,

2019).

2.2. Generative adversarial network

A Generative Adversarial Network (GAN) is a type of machine

learning framework designed byGoodfellow et al. (2014). GANs are

composed of two neural networks that compete against each other

in a zero-sum game, where one agent’s gain is another agent’s loss.

The framework learns to generate new data with the same statistics

as the training set, enabling the GAN to generate new data that

resembles the original data.

min
G

max
D

V (D,G)w = Ex∼pdata(x)

[

logD (x)
]

+ Ez∼pz(z)

[

log (1− D (G (z)))
]

(6)

GANs are based on game theory and can be viewed as a

two-player minimax game, where the generator aims to minimize

the difference between the distribution of the generated samples

and the distribution of the real data, while the discriminator

aims to maximize the difference between the two distributions.

During training, the generator tries to produce samples that

can mislead the discriminator into thinking they are real, while

the discriminator tries to correctly distinguish between real and

synthetic samples.

The generator usually consists of a series of deconvolutional

layers that gradually upsample the random input vector into

a sample that is intended to resemble the training data. The

discriminator usually consists of a series of convolutional layers

that downsample the input image or sample into a lower-

dimensional feature representation, followed by a few fully

connected layers that compute the final prediction. The loss

function used in GANs is typically the binary cross-entropy

loss, which measures the difference between the predicted
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probabilities of the discriminator and the true labels (0 for

synthetic samples and 1 for real samples). Other loss functions

such as Wasserstein distance or hinge loss have been proposed

to address some of the limitations of the binary cross-entropy

loss. However, the original GAN suffers from the issue of

gradient vanishing, which can lead to unstable training and poor

sample quality. One of the main challenges of training GANs

is the mode collapse problem, where the generator produces a

limited variety of samples that are similar to each other, rather

than generating diverse samples that cover the entire range

of the training data. Several techniques have been proposed

to overcome this problem, such as adding noise to the input

of the discriminator, using different types of regularization, or

using multi-scale or multi-modal architectures. To overcome this

limitation, methods such asWGANwere introduced, which use the

Wasserstein distance to measure the distance between the real and

generated distributions.

Wc[p̃(x), q(x)] = inf
γ∈5(p̃(x),q(x))

E(x,y)∼γ [c(x, y)] (7)

The Wasserstein GAN (WGAN), proposed by Arjovsky et al.

(2017), aims to overcome the limitations of the original GAN

model by using the Wasserstein distance to measure the distance

between the real and generated distributions. The objective of

WGAN is to minimize the optimal transport cost function,

which represents the minimum cost of transforming the generated

distribution q(x) into the real distribution p̃(x) through a series

of small steps. The cost of each step is measured by the cost

function c(x, y), which represents the distance between the samples

x and y. By using the Wasserstein distance instead of the

Jensen-Shannon divergence used in the original GAN, WGAN

is able to provide more stable training and generate higher

quality samples.

argmin
G

argmax
T,‖T‖L≤1

Ex∼p̃(x)[T(x)]− Ex∼q(z)[T(G(z))] (8)

WGAN, which uses the Wasserstein distance instead of the

Jensen-Shannon divergence used in the original GAN, provides

more stable training and generates higher quality samples. WGAN

also has other advantages, such as improved convergence properties

and the ability to measure the distance between distributions more

accurately. Overall,WGAN represents a significant advancement in

the field of generativemodeling and has been successfully applied in

various applications, such as image generation, data augmentation,

and domain adaptation. Its success has led to the development of

several variants, such as Wasserstein GAN with Gradient Penalty

(WGAN-GP; Gulrajani et al., 2017), which further improves the

stability and efficiency of training.

Another widely used GAN variant in the medical field is

CycleGAN, a type of unsupervised learning technique proposed

by Zhu et al. (2017), which can learn the mapping between

two different domains without any paired data. CycleGAN has

several advantages, such as its ability to learn the mapping

between two domains without the need for paired data and its

ability to handle multimodal and many-to-many mappings. It

has been successfully applied in various applications, including

medical image analysis, such as image-to-image translation,

segmentation, and registration. CycleGAN has also inspired the

development of several variants, such as DualGAN (Yi et al.,

2017), DiscoGAN (Kim et al., 2017), and UNIT (Liu et al.,

2017), which further improve the performance and versatility

of the original CycleGAN. The main idea behind CycleGAN

is to use two generators and two discriminators to learn the

mapping between the domains. The formula for CycleGAN is

as follows:

G∗, F∗ = argmin
G,F

max
Dx ,DY

L(G, F,DX ,DY ) (9)

The two generators in CycleGAN are used to generate

images from one domain and then transform them into images

from the other domain. The two discriminators are used to

distinguish between the generated images and the real images

from the other domain. The CycleGAN objective function

includes two GAN losses, which encourage the generators to

generate realistic images, and a cycle-consistency loss, which

encourages the generators to learn a mapping between the

two domains.

L(G, F,DX ,DY ) = LGAN(G,DY ,X,Y)

+ LGAN(F,DX ,Y ,X)

+ λLcyc(G, F)

(10)

LGAN(G,DY ,X,Y) = Ey∼Ptan(y)[logDY (y)]

+ Ex∼Ptan(x)[log(1− DY (G(x))]
(11)

Lcyc(G, F) = Ex∼ptan(x)[‖F(G(x))− x‖1]

+Ey∼ptan(y)[‖G(F(y))− y‖1]
(12)

Overall, GANs have found useful applications in brain imaging

and network analysis. They can generate synthetic data samples

that resemble real data (Dar et al., 2019), enabling researchers to

explore brain activity patterns and identify underlying structures.

GANs can also augment data by generating synthetic samples

to balance imbalanced classes in the dataset, improving deep

learning performance in tasks such as image segmentation and

classification (Gao et al., 2021). Also, GANs (Lei et al., 2020a)

can generate new brain activity patterns (Zuo et al., 2021)

in brain network analysis, which can be used to simulate

brain activity under various conditions and understand how

the network responds to different stimuli. GANs (Wang et al.,

2020b) can also help model the relationships between different

brain regions and predict the functional connectivity patterns of

the brain.

2.3. Flow-based generative model

Flow-based generative models are a type of deep generative

model that can learn to generate new samples similar to a

given dataset. Flow-based models are based on the concept of

normalizing flows, which are transformations that can map a
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simple distribution (e.g., Gaussian) to a more complex distribution

(e.g., the distribution of the training data). Flow-based models

have been applied to a wide range of applications, such as

image generation, video generation, text generation, and even

molecular design. Several variations of flow-based models have

been proposed, such as conditional flow-based models, which can

generate samples conditioned on a given input, and autoregressive

flow-based models, which can generate samples by sequentially

generating each dimension of the sample.

Flow-based models consist of a series of invertible

transformations that map a simple distribution to the distribution

of the training data. The inverse of each transformation is

also computable, which allows for efficient computation of

the likelihood of the data and generation of new samples. The

transformations can be learned using maximum likelihood

estimation or other methods.

G∗ = argmaxG

m
∑

i=1

logPG(x
i)

≈ argminGKL(Pdata||PG)

(13)

log q(x) = −
D

2
log(2π)−

1

2

∥

∥f (x)
∥

∥

2
+ log

∣

∣

∣

∣

det

[

∂f

∂x

]∣

∣

∣

∣

(14)

During training, the flow-based model learns to maximize the

likelihood of the training data, which is typically computed using

the change of variables formula and the likelihood of the simple

distribution. The model can be trained using stochastic gradient

descent or other optimization methods. It has several advantages

over other types of generative models, such as explicit likelihood

computation, efficient sampling, and the ability to perform exact

inference. However, they also have some limitations, such as the

requirement of invertible transformations, which can restrict the

expressiveness of the model.

In summary, Flow-Based Generative Models offer a promising

approach for modeling complex data distributions and have

potential applications in brain imaging and brain network research.

These models can accurately cluster brain activity patterns,

identify the structure of the data, and generate synthetic data

that resemble the real samples (Dong et al., 2022). Additionally,

Flow-Based Models can be used to learn a lower-dimensional

representation of the functional connectivity patterns in the

brain, enabling researchers to identify relevant features for

predicting network changes. The direct modeling of likelihood

and the ability to generate novel samples make these models a

powerful tool in understanding the underlying mechanisms of

complex systems.

2.4. Di�usion model

Diffusion models belong to the category of latent variable

models in machine learning that utilize Markov chains and

variational inference to discern the underlying structure

of a dataset. They offer a promising avenue for deep

generative modeling owing to their straightforward training

process, robust expressive capacity, and ability to generate

data via ancestral sampling without the prerequisite of a

posterior distribution.

log p(x) ≥ Eq(x1 :T |x0)

[

log
p (x0 :T)

q (x1 :T | x0)

]

= Eq(x1|x0)

[

log pθ (x0 | x1)
]

︸ ︷︷ ︸

reconstruction term

− Eq(xT−1|x0)

[

DKL

(

q (xT | xT−1) ‖p (xT)
)]

︸ ︷︷ ︸

prior matching term

−

T
∑

t=2

Eq(xt |x0)

[

q (xt−1 | xt , x0) pθ (xt−1 | xt)
]

︸ ︷︷ ︸

denoising matching term

(15)

The optimization of the diffusion model culminates in training

a neural network to predict the original image from any time step

of the noise image as input, with the optimization objective being

to minimize the prediction error. Moreover, the optimization of

the noise-matching term in equation 15 can be approximated by

minimizing the expected prediction error at each time step using

random sampling.

L0 = − log pθ (x0 | x1) (16)

Lt−1 = DKL

(

q (xt−1 | xt , x0) |pθ (xt−1 | xt)
)

LT = DKL

(

q (xT | x0) |p (xT)
)

argmin
θ

Et∼U{2,T}

[

Eq(xt |x0)

[

DKL(q(xt−1|xt , x0)
]]

(17)

In contrast to other deep generative models such as VAE,

GAN, and normalizing flow, diffusion models offer unique

advantages while overcoming several limitations and challenges.

The training of VAEs can be challenging due to the difficulty

in selecting the variational posterior, while GANs require an

additional discriminator network, and normalizing flow models

have limited expressive power. In contrast, diffusion models

utilize the diffusion process of data points through the latent

space to derive a solution that involves training only a generator

with a simple objective function, without the need for training

other networks.

In computer vision, diffusion models train neural networks

to denoise images blurred with Gaussian noise by learning to

reverse the diffusion process. Three examples of generic diffusion

modeling frameworks used in computer vision include denoising

diffusion probabilistic models, noise-conditioned score networks,

and stochastic differential equations. In brain imaging and brain

network analysis, diffusion models serve as a valuable tool for

estimating the underlying structure of brain function and structure

(Chung and Ye, 2022), which is essential for understanding the

mechanisms of neurological disorders and diseases (Myronenko,
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2018). By modeling the diffusion of data points through the

latent space, diffusion models are capable of effectively capturing

changes in brain connectivity over time and identifying regions

critical to brain structure (Wolleb et al., 2022). Additionally,

diffusion models can simulate brain activity under different

conditions and predict how the brain network will respond to

various stimuli.

Overall, diffusion models provide a valuable approach to

modeling latent spaces in various fields, including computer

vision, brain imaging, and brain network analysis. By offering

an efficient and effective means of estimating the underlying

structure of datasets, diffusion models can be a powerful tool for

gaining insights into the spatiotemporal dynamics of large and

complex systems.

3. Tasks for brain imaging and brain
network construction

In this section, tasks in brain imaging and brain network

construction are specifically categorized and investigated in

eight categories, including co-registration and super-resolution

(shown in Figure 3), enhancement and classification (shown

in Figure 4), segmentation and cross-modality (shown in

Figure 5), and brain network analysis and brain decode (shown

in Figure 6).

3.1. Co-registration

Co-registration is a crucial step in medical image analysis to

align images from different modalities or time points. However, it

is a challenging task due to various factors, such as noise, artifacts,

motion, and anatomical differences. Many innovative methods

have been proposed to tackle these challenges and improve co-

registration performance.

For instance, Sundar et al. (2021) proposed conditional GANs

to address intra-frame motion problems in dynamic PET studies

of the brain. Yang et al. (2020) proposed indirect multimodal

image registration and completion by using synthetic CT images

obtained from multi-contrast MRI. Kong et al. (2021) introduced

RegGAN for image-to-image translation and registration which

includes noise reduction. Furthermore, Wang B. et al. (2022)

proposed invertible AC-flow for direct generation of attenuation-

corrected PET images without CT or MR images. Apart from these

deep learning-based methods, a diffusion-based image registration

method called DiffuseMorph was introduced by Kim et al. (2022).

This method overcomes the limitations of traditional and deep

learning-based methods due to computational complexity and

topological folding.

These proposed methods have shown promising results in

improving co-registration performance in medical imaging. Future

research can explore further advances to overcome the remaining

challenges, such as reducing the time taken for co-registration

while maintaining high accuracy and improving the robustness and

generalization of existing solutions.

3.2. Super-resolution

Research into high-resolution brain imaging has yielded

promising results, with generative models proving to be a popular

and effective approach (Sun et al., 2022). One such approach, as

described in Song et al. (2020), involves using a GAN architecture

with anatomical and spatial inputs for creating super-resolved

brain PET images. According to the authors, the proposed

GAN outperforms other deep learning models and penalized

deconvolution techniques. Similarly, You et al. (2022) suggests

using fine perceptive generative adversarial networks (FP-GANs)

for high-resolution magnetic resonance imaging. This technique

applies a sub-band generative adversarial network and sub-band

attention for super-resolution in individual sub-bands.

These studies contribute to the growing body of literature on

super-resolution tasks for brain imaging, with generative models

emerging as promising solutions. The success of these models

suggests that they could be applied to other high-resolution

imaging tasks requiring greater detail and precision (Wicaksono

et al., 2022). However, further research is needed to fully evaluate

the performance and potential limitations of generative models for

these tasks.

3.3. Enhancement

Data enhancement is a widely adopted approach in

improving the performance of deep learning models for

various medical image analysis tasks. Some studies cater

to the task of data enhancement in medical tasks using

generative AI. The first CycleGAN-based method for MR-

to-CT synthesis proposed by Wolterink et al. (2017), shows

that this technique can generate high-quality synthetic CT

scans that are similar in appearance to real ones. Both

the designed GAN model and novel loss function take

enhancement tasks a step further in their performance (Dar

et al., 2019).

Similarly, Yurt et al. (2021) proposed a multi-stream approach

that integrates multiple source images to synthesize missing

multi-contrast MRI images, outperforming other state-of-the-

art methods. Zhan et al. (2021) proposed a Multi-scale Gate

Mergence based GAN model that accurately diagnoses patients

with corrupted image sequences by weighing different modalities

across locations. Luo et al. (2021) proposed an edge-preserving

MRI image synthesis GANmodel, infusing an auxiliary edge image

generation task to help preserve edge information and improve

latent representation features, and an iterative multi-scale fusion

module to further improve the quality of the synthesized target

modality. Recently, Upadhyay et al. (2021) proposed a robust

GAN-based framework that models an adaptive loss function to

improve robustness to out-of-distribution (OOD)-noisy data and

estimates per-voxel uncertainty in predictions for image-to-image

translation across two real-world datasets in medical imaging

applications. Luo et al. (2022) proposed an adaptive rectification-

based GAN model with spectral constraint to synthesize high-

quality standard-dose PET images from low-dose PET images,

reducing radiation exposure while maintaining accurate diagnoses.
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FIGURE 3

Co-registration and super-resolution task diagrams applying generative AI for brain imaging.

These studies demonstrate the promising potential of deep

learning-based approaches and data enhancement in enhancing the

quality and performance of medical image generation tasks.

3.4. Classification

Classification of brain diseases is a crucial task for early

diagnosis and effective treatment. The advancements in deep

learning techniques have led to the development of various

generative models for the automatic classification of neuroimages.

Recently, serval generative models were proposed to focus on brain

disease classification tasks.

In 2019, Pan et al. (2019) propose a unified deep learning

framework to jointly perform image synthesis and disease diagnosis

using incomplete multi-modal neuroimaging data. The proposed

method includes two networks: a Disease-Image Specific Neural

Network (DSNN) to capture the spatial information of MRI/PET

scans and a Feature-consistent Generative Adversarial Network

(FGAN) to synthesize missing images by encouraging DSNN

feature maps of synthetic images and their respective real

images to be consistent. The method achieves state-of-the-art

performance for Alzheimer’s disease identification and mild

cognitive impairment conversion prediction tasks. Besides, pattern

expression offered complementary performance to biomarkers

in predicting clinical progression, making these deep-learning-

derived biomarkers promising tools for precision diagnostics and

targeted clinical trial recruitment. Yang Z. et al. (2021) applied

deep learning framework to longitudinal data and revealed two

distinct progression pathways that were predictive of future

neurodegeneration rates.

Indeed, there are several generative models that have been

designed with a deeper consideration of prior settings for tasks

such as biomarkers and clinical reports. Wang et al. (2020a)

propose an ensemble of 3D convolutional neural networks (CNNs)

with dense connections for automatic diagnosis of Alzheimer’s

disease (AD) and mild cognitive impairment (MCI). The proposed

model was evaluated on the ADNI dataset using a probability-

based fusion method that combines multiple architectures. Shin

et al. (2020) propose a GAN-based approach for the diagnosis of

Alzheimer’s Disease (AD) using T1-weighted MRIs as input data.

The authors incorporate AD diagnosis into the training objective to

achieve better classification performance. This architecture shows

state-of-the-art results for three- or four-class classification tasks

involving MCI, normal cognition, or Alzheimer’s disease. Kim

et al. (2020) propose a GAN-based model for classifying
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FIGURE 4

Enhancement and classification task diagrams applying generative AI for brain imaging.

Alzheimer’s disease (AD) and normal cognitive condition (NC).

The authors use slice-selective learning to reduce computational

costs and extract unbiased features. The researchers trained the

model using an 18F-fluorodeoxyglucose ([18F] FDG) PET/CT

dataset obtained from the Alzheimer’s Disease Neuroimaging

Initiative database. The approach seems feasible when there are

insufficient datasets available for training individual deep neural

networks (Wang et al., 2018; Yu et al., 2020) with single-source

training datasets.

Furthermore, like Baur et al. (2020) propose a practical

method for unsupervised brain MRI anomaly detection in clinical

scenarios using a CycleGAN-based style-transfer framework.

The proposed approach involves mapping real healthy data to

a distribution with lower entropy and suppressing anomalies

by filtering high-frequency components during training. The

experiments demonstrate that the proposed method outperforms

existing methods on various metrics, such as F1 score, PRC AUC,

and ROC AUC, thus demonstrating its potential for practical

applications in clinical settings.

Therefore, generativemodels have demonstrated their potential

in various classification tasks for brain diseases. These models can

extract features that are not directly visible, thereby aiding in the

early diagnosis and accurate classification of diseases.

3.5. Segmentation

Generative models have gained significant attention in the field

of medical image segmentation for their capability of reducing

the dependence on manually labeled data. This paper reviewed

the recent advances in generative models for segmentation tasks,

focusing on brain tumor segmentation (Myronenko, 2018). In

2019, Yuan et al. (2020) presented a 3D unified generative

adversarial network, achieving any-to-anymodality translation and

multimodal segmentation through a single network based on the

anatomical structure. Ding et al. (2021) proposed ToStaGAN, a

two-stage generative adversarial neural network, for brain tumor

segmentation, which incorporates coarse prediction maps with

fine-grained extraction modules and dense skip connections. In

2022, Wang S. et al. (2022) introduced Consistent Perception

Generative Adversarial Network (CPGAN), an alternative to deep

learning algorithms with expensive labeled masks, demonstrating

superior segmentation performance over other methods with

less labeled data on Anatomical Tracings of Lesions After

Stroke. Wu et al. (2021) presented an unsupervised brain

tumor segmentation method called Symmetric-Driven Generative

Adversarial Network (SD-GAN) in 2021, which utilizes inherent

anatomical variations by learning a non-linear mapping between
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FIGURE 5

Segmentation and cross-modality task diagrams applying generative AI for brain imaging.

left and right brain images. SD-GAN outperforms state-of-the-

art unsupervised methods, providing a promising solution to

unsupervised segmentation tasks.

These studies demonstrate that generative models have become

increasingly important for medical image segmentation owing

to their ability to learn from unannotated data and promising

performance in comparison to traditional supervised methods.

3.6. Cross-modality

Cross-modality image synthesis has become an active research

area in medical imaging, where the goal is to generate images

in a target modality from the input in another modality. Several

generative models have been proposed for this task, including

variations of generative adversarial networks (GANs) and encoder-

decoder models. In recent years, significant progress has beenmade

in using generative models for cross-modality image synthesis in

the brain.

One of the early works in this area introduced gEa-GAN and

dEa-GAN by Yu et al. (2019), which integrated edge information

to bridge the gap between different imaging modalities. The

resulting synthesized images showed superior quality compared

to several state-of-the-art methods, as demonstrated on various

datasets. Another study (Hu et al., 2021) introduced Bidirectional

GAN, which used a bidirectional mapping mechanism to embed

diverse brain structural features into the high-dimensional latent

space. The method achieved better quality in generating PET

images than other models trained on the same dataset, while

preserving diverse details of brain structures across different

subjects. Other studies explored more challenging scenarios, such

as Jiao et al. (2020) generating magnetic resonance (MR)-like

images directly from clinical ultrasound (US) images of fetal brains

and Sharma andHamarneh (2019) synthesizingmultiplemodalities

of neuroimaging data. The former study proposed an end-to-

end trainable model that utilized shared latent features between

US and MR data to generate realistic MR-like images, while the

latter study introduced a multi-input, multi-output variant of

GAN to synthesize sequences missing in brain MRI scans. The

proposed models achieved promising results and demonstrate the

feasibility of using generative models in clinical practice. Moreover,

a bidirectional mapping mechanism is designed to embed the

semantic information of PET images into the high-dimensional

latent potential space for improving the visual quality of the
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FIGURE 6

Brain network analysis and brain decode task diagrams applying generative AI for brain imaging.

cross-modal synthesized images (Hu et al., 2019, 2020a). The

most attractive part is that the method can synthesize perceptually

realistic PET images while preserving the different brain structures

of different subjects.

Several other studies have also proposed novel generative

models, including MouseGAN (Yu et al., 2021c) for segmenting

mouse brain structures in MRI images and SC-GAN (Lan et al.,

2021) for synthesizing multimodal 3D neuroimaging data. The

former study achieved improved segmentation using modality-

invariant information, while the latter used spectral normalization,

feature matching, and self-attention modules to stabilize the

training process and ensure optimization convergence. These

studies have shown that generative models have the potential to

improve existing neuroimaging analysis tasks and provide new

tools for diagnosis and follow-up.

Finally, some studies have attempted to integrate generative

models with disease diagnoses (Yang H. et al., 2021). Moreover, in

neuroimaging data, One study (Pan et al., 2022) proposed a disease-

image-specific deep learning framework that utilizes image-disease

specificity to highlight different disease-relevant regions in the

brain, with promising results on Alzheimer’s Disease and mild

cognitive impairment conversion prediction tasks. These studies

highlight the potential of generative models to not only generate

images of other modalities but also aid in downstream analysis and

diagnoses using inter-modality information.

3.7. Brain network analysis

Brain network modeling is a critical research field in

neuroscience that aims to understand the complex relationships

among structural and functional connectivity patterns in the

human brain. In recent years, deep learning has been increasingly

used in brain network analysis as it shows promising results

in predicting brain graphs, inferring effective connectivity, and

diagnosing Alzheimer’s disease using multimodal neuroimaging

data. To this end, several deep learning frameworks have been

proposed to generate reliable individual structural connectivity

from functional connectivity, MultiGraphGAN, and MGCN-

GAN proposed by Bessadok et al. (2020) and Zhang et al.

(2020). These frameworks combine adversarial learning and

topology preservation to generate high-quality brain graphs

from limited data effectively. Some studies focused on inferring

effective connectivity from functional MRI data, including

EC-GAN and MGCN-GAN proposed by Liu et al. (2020),

incorporate adversarial learning and graph convolutional

networks to effectively infer brain structure-function relationships.

Additionally, some studies aimed at diagnosing Alzheimer’s

disease using multimodal neuroimaging data, such as MRL-AHF

and HGGAN proposed by Zuo et al. (2021) and Pan et al.

(2021), which leverage adversarial learning and hypergraph

representation to effectively integrate and represent multimodal
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data. Overall, deep learning frameworks have been shown to hold

great potential in brain network modeling, rapidly advancing

our understanding of brain structure-function relationships and

improving the prediction accuracy of brain disorders, such as

brain drug addiction (Gong et al., 2023). Future research in

this area will likely continue to explore and develop new deep

learning-based approaches to further enhance modeling accuracy

and generalization performance.

3.8. Brain decoding

Generative models have become a popular research focus in

the field of brain decoding tasks, especially in the reconstruction

of perceived images from fMRI signals. Baek et al. (2021)

proposed a hierarchical deep neural network model of the

ventral visual stream to explain the innate emergence of

face-selectivity. VanRullen and Reddy (2019) applied a deep

learning system to reconstruct face images from fMRI data,

achieving accurate gender classification and decoding of visually

similar inputs. Ren et al. (2021) proposed the Dual-Variational

Autoencoder/Generative Adversarial Network framework,

which outperforms state-of-the-art methods in terms of visual

reconstruction accuracy. Chen et al. (2022) introduced the MinD-

Vis framework, which uses a self-supervised representation of

fMRI data and a latent diffusion model to reconstruct high-quality

images with semantic details, outperforming state-of-the-art

methods in semantic mapping and generation quality. Dado

et al. (2022) presented a novel experimental paradigm, HYPER,

for neural decoding of faces from brain recordings using

generative adversarial networks, achieving the most accurate

reconstructions of perception to date. These studies demonstrate

the potential of generative models in brain decoding tasks,

which can help advance our understanding of brain function

and perception.

The application division of generative artificial intelligence

methods in the field of brain image analysis is shown in

Figure 7. The existing models mentioned above are divided

according to tasks, and the names of the corresponding models

are marked under the relevant tasks, which can be mainly

divided into eight categories as shown in the figure. The most

representative methods shown in the figure, the more research

is optimized under this mainstream model. The four mainstream

methods have different adaptation conditions for different

tasks. In terms of coregistration, cross-modality, segmentation,

classification, clustering, and super-scoring tasks, the optimization

of the GAN model is significantly better than the other three

mainstream models. The reason is that the GAN-based method

can be well applied to brain image generation tasks. In brain

network analysis and brain decoding tasks, the encoding and

decoding structure of the VAE-based method will have more

advantages. Flow-based models have relatively few applications

and have a certain degree of application in super-resolution,

brain decoding, and co-registration tasks. Diffusion models have

high-quality generation effects and have been gradually used

in various tasks of brain image analysis, and have achieved

certain achievements.

4. Discussion

4.1. Challenge

The domain of brain image analysis and brain network

computing confronted many obstacles that have impeded the

development of the field. In order to progress future research more

effectively, this review delves into some significant challenges and

expounds on them in the following:

4.1.1. Small sample problem
Medical image datasets are generally much smaller than

datasets in other fields, due to the challenging task of acquiring and

annotating medical images. For example, for lung nodule detection

tasks, due to the small number of lung nodules, the number of

positive samples in the dataset is very small, and the size, shape,

and position of lung nodules also vary greatly, making it difficult for

algorithms to accurately detect lung nodules. Therefore, the small

sample problem has become one of the major obstacles for machine

learning algorithms in the field of medical imaging. In addition to

methods such as meta-learning that can effectively solve the small

sample problem, improvement can be done by using prompts to

modify pre-trained models, utilizing prior knowledge, and model

ensembles. For example, in lung nodule detection tasks, pre-trained

models can be used to extract features and prompts can be used to

guide the model on how to detect lung nodules. In addition, prior

knowledge can be used to constrain the output of themodel, such as

constraining the size and shape of the output lung nodules. Finally,

model ensembles can be used to improve algorithm robustness and

generalization capabilities.

4.1.2. High dimensional data problem
Medical scans or images are typically high-dimensional data

types that contain large amounts of information. For example,

in brain medical imaging, 3D MRI or fMRI is typically used to

obtain brain structure and functional information. These data often

contain millions of pixels or thousands of time points, so extracting

meaningful, non-redundant, and non-overfitting features from

such high-dimensional data is a new challenge formachine learning

algorithms in the field of medical imaging. For the task of feature

extraction from high-dimensional brain data, due to the complexity

of brain structure and function, single modality feature extraction

methods often have difficulty in extracting meaningful features.

For example, in brain MRI images, tissue such as gray matter,

white matter, and cerebrospinal fluid have different shapes and

positions, so multi-modality feature analysis methods are required

to extract meaningful features. In addition, as there are complex

relationships between brain structure and function, multi-modality

feature analysis methods are necessary to extract the relevant

features between structure and function.

4.1.3. Realism of di�erent modalities
Generative models have been widely applied in the field

of medical data generation. However, the generated modality

data may suffer from the problems of unreliability or modality
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FIGURE 7

Model categorization map under di�erent brain image analysis tasks. Coregistration: CAE-GAN (Yang et al., 2020), RegGAN (Kong et al., 2021), cGAN

(Sundar et al., 2021), AC-flow (Wang B. et al., 2022), Di�useMorph (Kim et al., 2022); Enhancement: α-GAN (Kwon et al., 2019), AR-GAN (Luo et al.,

2022), Multi-stream GAN (Yurt et al., 2021), Intro VAE (Hirte et al., 2021), MBTI (Rouzrokh et al., 2022); Segmentation: ToStaGAN (Ding et al., 2021),

CPGAN (Wang S. et al., 2022), SD-GAN (Wu et al., 2021), DAE (Bangalore Yogananda et al., 2022), MedSegDi� (Wu et al., 2022), PD-DDPM (Guo et al.,

2022); Super-resolution: Flow Enhancer (Dong et al., 2022), Dual GANs (Song et al., 2020), FP-GAN (You et al., 2022); Cross-modality: UCAN (Zhou

et al., 2021), MouseGAN (Yu et al., 2021c), BMGAN (Hu et al., 2021), D2FE-GAN (Zhan et al., 2022), SynDi� (Özbey et al., 2022), UMM-CSGM (Meng

et al., 2022); Classification: CN-StyleGAN (Lee et al., 2022), THS-GAN (Yu et al., 2021a), Smile-GAN (Yang Z. et al., 2021), VAEGAN-QC (Mostapha

et al., 2019); Brain network analysis: LG-DADA (Bessadok et al., 2021), AGSR-Net (Isallari and Rekik, 2021), GSDAE (Qiao et al., 2021), GATE (Liu M.

et al., 2021), MAGE (Pervaiz et al., 2021); Brain decode: D-VAE (Ren et al., 2021), DMACN (Lu et al., 2021), DGNN (VanRullen and Reddy, 2019),

Untrained DNN (Baek et al., 2021), MinD-Vis (Chen et al., 2022).

inconsistency. MRI and fMRI are common modalities in medical

imaging. For MRI image generation, there may be problems

such as insufficient reconstructed image resolution, lacking local

details, and artifacts. In fMRI data generation, there may be

signal suppression in local regions, interference from noise, and

motion artifacts. In recent years, the generation of genetic data

has also had a significant impact on the medical field. One major

problem in generating genetic data is that the generated data

may differ from real genetic data because real genetic data are

produced by many genetic factors working together. Thus, when

generating genetic data, multiple factors must be considered to

improve the realism and consistency of generated data. While

problems that could occur in extensively experimented image

modalities may be easily identified and optimized, this realism

problem can be hard to discern in complex or abstract modalities.

Ultimately, such erroneously generated data may lead to incorrect

diagnoses or treatments. To address this problem, researchers

have proposed many methods, such as introducing special loss

functions, such as cycle consistency in the model process in the

image domain, and introducing strategies such as multi-modality

joint and multi-task learning to improve the generative quality and

realism of modal data.

4.1.4. Standard validation issues
The lack of universally accepted validation standards for

evaluating the performance of machine learning models in the

field of medical imaging makes it difficult to compare results from

different studies or ensure the best performance of the models. As

the structure of the human brain is complex and diverse, specific

to the generation task of brain diseases, more requirements are

raised, and large differences exist between different regions, thus

how to evaluate the performance of generative models to produce

meaningful generative models. For example, for the generation

task of MRI images, evaluation metrics can use traditional image

quality evaluation indicators such as PSNR, SSIM, FID, etc., but

these indicators cannot fully reflect the performance of the model

in medical applications, such as whether the model generates

anatomy structure consistent with real data, and whether it can

better display lesion areas. Therefore, researchers have proposed
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some specific evaluation indicators, such as similarity of structure

with real images, neuron activation, diagnostic accuracy, etc., to

more accurately evaluate the performance of generative models.

However, the universality and comparability of these indicators still

need more experimental verification and exploration in order to be

better applied to different tasks and datasets.

4.1.5. Model interpretability
The issue of model interpretability is another challenge that

must be addressed in medical image generation models. The

model needs to have a certain level of interpretability so that

physicians and researchers can understand the model’s predictions

and generate results. In the task of generating brain disease, model

interpretability is particularly critical. Doctors need to be able

to understand the relationship between the abnormal structures

in the generated images and the underlying diseases, in order

to make accurate diagnoses and treatment decisions. During the

generation of images, the model may introduce factors such as

image noise and artifacts, which can seriously affect medical

diagnosis. To address these issues, interpretability techniques can

provide valuable assistance. For example, visualization techniques

can help doctors and researchers better understand the generated

results and identify abnormal factors by generating comparative

images and visualizing the internal feature maps of the model. In

addition, model interpretability can also be achieved by adding

interpretation layers or using interpretable models. However,

there are some limitations to the use of data in the scenario

of generating brain diseases. For example, due to privacy issues

involving patients, medical imaging data is often highly sensitive

and therefore difficult to obtain large-scale datasets directly. In

addition, the different brain structures of different patients pose a

challenge to the generated results of the model. Therefore, when

generating brain diseases, it is necessary to consider the balance

between data usage scenarios and model interpretability in order

to obtain more accurate and interpretable results.

4.1.6. Limitation
There are still inescapable limitations to brain imaging

computing using generative AI. Firstly, before the application of

the synthetic brain image data set for training, if the differences

between the synthetic data set and the real data set are not fully

studied, the generated results will be biased. Secondly, most current

generative brain image analysis methods may generate illogical

“unnatural data" due to the lack of labels and causal features in the

generating process. The robustness and reliability of the algorithm

may be impacted. Thirdly, in the process of model training, it is

possible to remember the distribution of original training samples.

If the original training sample can be reversely inferred from the

synthesized data, there will be “implicit privacy" leakage problem,

and how to protect privacy more closely is still a question to

be explored.

4.2. Future direction

New generative methods in brain network research are likely

to find applications in both basic and clinical research. In the

coming years, generative learning and signal processing techniques

will remain essential tools for furthering our understanding of the

brain. This paper presents three perspectives on future approaches

to brain network research:

4.2.1. Brain circuit identification
The application of generative models in brain circuit research

is gaining more attention. Through the utilization of generative

models, researchers are able to extract significant information about

neural circuits from brain data. In the field of neuroscience, neural

circuits are key elements for understanding brain function and

are crucial for regulating various cognitive and affective behaviors.

Deep learning can assist in revealing the intricate structure,

profound functionality, and impact of the brain. Generative models

can support neural circuit research by learning data features in

brain circuits. In particular, generative models can be employed to

generate, transform, and improve neuroimaging data, consequently

creating novel and high-quality data to facilitate a more profound

comprehension of neural circuits. Furthermore, generative models

can serve as a data augmentation technique to diversify the limited

neural circuit data samples, which can boost both training and

disease diagnosis efficiency. Moreover, this technique can simulate

and generate experiments related to the connection and variation

of neural circuits among patients, ultimately resulting in more

experimental evidence and predictive capacity for neural circuit

research, therefore yielding more information for disease diagnosis

and treatment.

4.2.2. Precise localization of brain regions
In the field of brain disorders, exploration of potential

treatment options is a common practice. Generative models are

capable of assisting in the comprehension of neural regulation

and localization by producing intricate images that reflect the

interconnectivity between different regions of the brain. Neural

regulation denotes the procedure through which the brain

controls behavior and emotions by moderating the excitatory

and inhibitory activities of neurons. In neuroscience, generative

models can simulate and forecast complex neural regulation

processes. These models are instrumental in comprehending

the mechanisms of neural regulation during brain development,

deducing the reciprocal interaction between neurons and synapses,

and predicting the patterns of connectivity between distinct

neurons. Furthermore, synthetic neural imaging data is useful in

providing researchers with a better appreciation of macroscopic

neural regulation patterns. To pinpoint the location and function of

particular brain areas, researchers can input significant image data

into a generative model to learn the features of brain structures and

more precisely localize brain regions. In functional connectivity

analysis, generative models can generate hypothetical functional

connectivity data and compare it with actual data to identify

the links between various brain regions. The identification of

possible targets for the treatment of brain-related disorders involves

investigating the associations between the functions of neurons,

synapses, and specific diseases. Generative models, as tools for data

analysis and prediction, can effectively learn features and patterns

automatically from vast amounts of neural data, and aid in target

identification for the moderation or treatment of such diseases.
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Thus, generative models can enable the comprehension of neural

regulation and brain localization, facilitate the search for targets

and solutions to treat brain disorders, and ultimately improve

patients’ quality of life.

4.2.3. Brain diseases and mechanisms
Neurodegenerative diseases, particularly Alzheimer’s disease,

are caused by damage to neurons and synapses in the brain,

resulting in declines in cognitive and memory function and

eventually leading to dementia. Studies have shown that generative

models can forecast the speed of a patient’s cognitive function

decline, aiding physicians in early disease diagnosis. These models

can also assimilate prior knowledge on diverse physiological,

neural, cognitive, and behavioral processes, such as visual

information processing, perception, language, and memory

cognition. Generative models have helped in analyzing the onset

mechanism of the disease and developing individualized treatment

plans. Consequently, they are expected to become pivotal tools

for exploring and comprehending brain mechanisms, with the

potential to boost the precision of neurodegenerative disease

diagnosis and treatment (Jing et al., 2022).

4.2.4. Multi-scale brain atlas
Population-based multi-scale brain research is a prominent

focus in neuroscience (Betzel and Bassett, 2017). Its goal is

to integrate information from multiple levels to understand

the structure and function of the brain, establish connections

between them, and gain insights into the working principles of

the brain. Macro-level research investigates the overall structure

and function of the brain, while micro-level research focuses

on the cellular-level structure and function of neurons and

synapses. Meso-scale research investigates small structures, such

as cortical columns, connections, and neuronal clusters. Genomics

studies the influence of genes on the brain’s structure and

function. Generative models integrate multiple data sources to

reveal the complex mechanisms of the brain and explore the

interactions between neurons and brain regions, providing a

comprehensive view of the brain network. They can also predict

gene expression data, diagnose and treat individual differences

in diseases. Although the use of generative models in the

study of the brain is still in its early stages, the accumulation

of data and technological advances are expected to expand

their usage.

These approaches will help build a comprehensive and

accurate representation of the human brain and enable

the discovery of new insights across neurological and

psychiatric disorders.

5. Conclusion

This article provides a review of generative artificial intelligence

for brain image computing and brain network computing.

Generative AI can be divided into four main methods: variational

autoencoder (VAE), generative adversarial network (GAN), flow-

based model, and diffusion model. These models offer a promising

solution for analyzing and interpreting large-scale brain imaging

data. Generative AI has enabled researchers to gain a better

understanding of the brain’s physical basis and how it adapts

to various cognitive activities in the field of brain imaging. In

the context of brain network computing, generative AI can be

used to reconstruct the topological connectivity of brain networks.

However, there are limitations associated with using generative AI

for analyzing brain imaging data. For instance, medical imaging

data is often highly sensitive due to privacy issues involving

patients, making it difficult to obtain large-scale datasets directly.

Additionally, different brain structures of different patients pose a

challenge to the generated results of the model. Therefore, when

using generative AI techniques to generate brain diseases or analyze

large-scale medical imaging datasets, it is necessary to balance data

usage scenarios and model interpretability in order to obtain more

accurate and interpretable results. In conclusion, generative AI has

broad application prospects in brain imaging and brain network,

which can help to better understand the internal function and

structure of the brain, promote the diagnosis and treatment of

brain diseases, and provide new opportunities and methods for

neuroscience research.
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Recent advancements in AI, big data analytics, and magnetic resonance imaging 
(MRI) have revolutionized the study of brain diseases such as Alzheimer’s 
Disease (AD). However, most AI models used for neuroimaging classification 
tasks have limitations in their learning strategies, that is batch training without 
the incremental learning capability. To address such limitations, the systematic 
Brain Informatics methodology is reconsidered to realize evidence combination 
and fusion computing with multi-modal neuroimaging data through continuous 
learning. Specifically, we  introduce the BNLoop-GAN (Loop-based Generative 
Adversarial Network for Brain Network) model, utilizing multiple techniques such 
as conditional generation, patch-based discrimination, and Wasserstein gradient 
penalty to learn the implicit distribution of brain networks. Moreover, a multiple-
loop-learning algorithm is developed to combine evidence with better sample 
contribution ranking during training processes. The effectiveness of our approach 
is demonstrated through a case study on the classification of individuals with AD 
and healthy control groups using various experimental design strategies and 
multi-modal brain networks. The BNLoop-GAN model with multi-modal brain 
networks and multiple-loop-learning can improve classification performance.

KEYWORDS

BNLoop-GAN model, multiple-loop-learning, evidence combination-fusion computing, 
magnetic resonance imaging, brain network analysis, Alzheimer’s disease

1. Introduction

The rapid advancement of AI and big data technologies have revolutionized the field of brain 
investigation, providing new insights into its workings and potential applications. However, 
medical research on the brain presents more significant challenges as it involves navigating the 
complex interplay of biological, psychological, and environmental factors. In response to this, 
the Brain Informatics (Zhong et  al., 2011) methodology has been proposed to study the 
mechanisms underlying the human information processing system with big data (Zhong et al., 
2005). As the core part of Brain Informatics, a series of “evidence combination-fusion computing 
(ECFC)” methods (Kuai et al., 2022) are developed to promote fundamental and translational 
studies of the brain, encouraging to handle multi-source brain big data continuously during 
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learning and validating phases of models and systems. The continuous 
learning enables the more effective utilization of existing information 
and experiences learned by previous data, which are different from the 
current most machine learning algorithms.

Alzheimer’s Disease (AD), as a neurodegenerative disease that 
occurs frequently in the elderly, has become a severe threat to the 
health, with clinical manifestations of cognitive decline, accompanied 
by other physiological or mental disorders (Citron, 2010; Ferrari and 
Sorbi, 2021). In recent years, Magnetic Resonance Imaging (MRI) 
technology has emerged as a valuable tool in diagnosing AD due to its 
non-radiative, non-invasive, and non-harmful characteristics. In 
particular, it offers high tissue resolution and can be  utilized for 
imaging with a variety of parameters (Jin et al., 2020; Cao et al., 2022). 
However, single modality-based investigations may not provide 
sufficient information to identify complex diseases. The multi-modal 
MRI techniques, such as diffusion MRI (dMRI) and functional MRI 
(fMRI), can provide a holistic view to observe changes in brain 
structure and function of AD (Cuingnet et al., 2011; Zhang et al., 
2020). In the context, considering the advantages of complementary 
information, multi-modal analyses corresponding to both structural 
and functional characteristics have a great boom simultaneously 
(Poldrack and Farah, 2015). Furthermore, the brain network analysis 
has been widely employed in the diagnosis of brain diseases, which 
can provide valuable insights into the connected mechanisms between 
different brain regions (Lama and Kwon, 2021). For instance, dMRI 
(Soares et  al., 2013) has been  utilized to construct structural 
connectivity to measure the connections of nerve fiber bundles in 
white matter, while resting-state functional MRI (rsfMRI) (Sheline 
and Raichle, 2013; Soares et al., 2016) has been used to construct 
functional connectivity to detect the functional activity of the brain.

Recent advancements in AI, particularly Generative Adversarial 
Networks (GANs), have demonstrated great potential in analyzing 
complex brain data. GANs are capable of learning and generating new 
data samples that resemble the input data (Fahimi et al., 2020). In the 
context of AD, GANs can be trained on large datasets of brain images 
to learn patterns associated with the disease, helping in the diagnosis 
of AD by identifying subtle changes in brain structure or function. 
However, the current limitations of most AI models in neuroimaging 
classification tasks lead to underutilization of existing information and 
insufficient processing of unbalanced data. The primary challenge lies 
in the strategy of randomly selecting data for training at once, which 
ignores the potential benefits of utilizing data systematically 
and continuously.

Confronted with the complexity of these brain science problems, 
the Brain Informatics methodology provides a systematic perspective 
to understand the principles and mechanisms of human information 
processing related to high-order cognition functions cognitive 
functions (such as reasoning, calculation and problem solving) (Yang 
et  al., 2009), as well as the development of new technologies for 
analyzing the biological characteristics and clinical applications on 
brain diseases. In the context of Brain Informatics, multi-modal and 
multi-scale brain data are analyzed systematically by considering 
different distributions of samples, so as to personalized applications. 
For example, the Data-Brain driven general intelligence model (Kuai 
and Zhong, 2020) is proposed to realize systematic brain computing 
in terms of the diversities of brain data from the experimental 
perspective. In particular, an iterated and evolved computing cycle was 
designed to continuously evidence combination and fusion computing.

In this paper, we propose the BNLoop-GAN model, which couples 
the Loop-based Generative Adversarial Network with the ECFC 
method for multiple loop brain network learning. The main 
contributions of this study can be  summarized as follows: (1) an 
enhanced-GAN model is developed, utilizing techniques such as 
conditional generation, patch-based discrimination, and Wasserstein 
gradient penalty to learn the implicit distribution of brain networks; 
(2) a multiple-loop-learning algorithm is introduced, which combines 
evidence with better sample contribution ranking during continuous 
training phases; (3) the BNLoop-GAN model is applied to a case study 
of AD classification, where single-modal and multi-modal brain 
networks are computed iteratively to improve classification performance.

The rest of this paper is organized as follows: Section 2 provides a 
review of related works on brain networks, GANs, and AD. Section 3 
introduces the overall framework of the BNLoop-GAN model for 
classification tasks, which comprises an enhanced GAN model and a 
multiple-loop-learning algorithm. Section 4 describes the 
experimental settings, data preparation, brain network construction, 
and performance evaluation. Section 5 presents results and discusses 
different scenarios on single-modal and multi-modal brain networks. 
Finally, Section 6 gives a conclusion and outlines future work.

2. Related work

Recently, AI models have gained widespread popularity in image 
generation, image super-resolution and other requirements based on 
their generative capabilities of addition, deletion, and modification. In 
the medical field, GAN models have been widely applied to diagnosis 
of AD. For instance, Yu et  al. (2022) proposed a Multidirectional 
Perception GAN that uses a multidirectional mapping mechanism to 
learn morphological features for classifying AD severity at different 
stages. Yu et al. (2021) also proposed a three-player cooperative game-
based framework with the high-order pooling scheme, namely 
tensorizing GAN, which is used to learn the structural information of 
MRI to assess mild cognitive impairment and AD. Moreover, a 
condition GAN (cGAN) model (Jung et  al., 2023) is proposed to 
generate high-quality 3D MR brain images at different stages of AD, 
which integrates an additional module to ensure smooth and realistic 
transitions in 3D space, and uses an adaptive identity loss to preserve 
patient identification features. Ji et al. (2021) proposed a framework 
utilizing recurrent GANs for estimating effective connectivity from 
rsfMRI data, revealing potential differences in neural influence and 
information flow between AD and healthy control (HC) groups.

Given the complexity of AD, many studies have paid attention to 
use GAN models for multi-modal neuroimaging analysis. Pan et al. 
(2021) developed a Decoupling GAN to detect abnormal neural 
circuits for AD, which decomposes a brain network into two parts and 
utilizes an analytic module associated with the hyperedge neurons 
algorithm. The proposed model can extract complementary topology 
information between rsfMRI and diffusion tensor imaging (DTI) to 
detect abnormal neural circuits at different stages of AD. Moreover, a 
cross-modal transformer GAN (Pan and Wang, 2022) has been 
introduced, which employs a bi-attention mechanism to merge 
rsfMRI and DTI data effectively, facilitating the identification of 
AD-associated brain connectivity and enhancing the accuracy of 
classification. Zuo et  al. (2021) developed a multi-modal 
representation learning and adversarial hypergraph fusion framework 
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using complete trimodal images (MRI, DTI and rsfMRI) to address 
the limitation of data distribution inconsistency in AD diagnosis. Zuo 
et al. (2021) also developed a prior guided adversarial representation 
learning and hypergraph perceptual network, which can evaluate the 
changing characteristics of brain connectivity at different stages of AD.

With the progress of brain connectivity, brain network analyses 
break a new ground in the study of AD. Cui et al. (2018) developed a 
minimum spanning tree method to construct the brain functional 
network, and extracted the topological features of the brain network. 
They used the support vector machine to compare AD and HC groups. 
Islam and Zhang (2018) proposed a deep convolutional neural network 
to learn features from a small and imbalanced dataset of structural MRI, 
which can identify and classify AD at different stages. Ye et al. (2019) 
selected DTI from 161 participants and used multivariate distance 
matrix regression (MDMR) analysis to detect structural abnormalities of 
brain networks during the development of AD disease. On the basis of 
the seed regions selected by MDMR analysis, supervised learning was 
applied to evaluate the predictive performance of AD. Furthermore, 
Zhang et al. (2022) proposed a multi-graph convolutional network based 
on GAN, which can learn the complex relationship between individual 
brain structural and functional networks automatically. Lei et al. (2021) 
proposed an automatic weighted centralized multi-task learning 
framework, in which multi-task learning is applied to identify features 
integration of structural and functional connectivity, for providing new 
insights into early AD detection.

Considering the complexity and systematization of brain computing 
in current big data era, the loop-based strategy is adopted to perform 
continuous learning inspired by Brain Informatics methodology. For 
example, Kuai et al. (2021) proposed the ECFC method to analyze multi-
task fMRI data from different sources through merging systematic 
experimental design with evidence type reasoning. The uncertainty is 
analyzed and inferred to provide finer interpretations from both 
cognitive functions and brain regions. Furthermore, the similar strategy 
is adopted to decode the hidden relationship between connectivity 
abnormalities and brain disorders as well (Kuai et al., 2021). However, 
these methods only concern with fMRI at a single modal. In this paper, 
we extend the loop-inspired method from single modal to multiple 
modals, and from cognitive functions to brain diseases. In the next 
section, we will introduce how to realize a GAN-driven multiple-loop-
learning to carry out systematic brain big data computing.

3. Methods

3.1. Overview

In this section, we introduce the overall framework for addressing 
the classification task of brain networks between abnormal and HC 
groups. The framework consists of three main components, which is 
illustrated in Figure  1. The first component is the brain network 
computing component, by which both structural and functional brain 
networks are obtained by analyzing multi-modal brain images. The 
second and third components are the enhanced-GAN model and the 
multiple-loop-learning algorithm, respectively, both of which 
constitute the Loop-based Generative Adversarial Network model for 
Brain Network (BNLoop-GAN). Before brain networks are learned, 
some preprocessing steps are required, including: the multi-modal 
MRI data are processed, such as denoising, calibration, correction; and 
then brain networks are constructed, such as brain region selection, 

region segmentation, time series extraction and connectivity 
measures. Afterwards, the constructed brain networks are recognized 
by the BNLoop-GAN model with Classifiers to realize classification 
tasks. During this process, a multiple-loop-learning algorithm is used 
to select the small batch of samples from the whole training set step 
by step. The selected samples have an easier-to-learn probability 
distribution, which can reduce the complexity of model training. Each 
round of training processes is considered as a loop 
( , | ,Loop i Loop j i j N +− − ∈ ), in which the same number of 
samples from abnormal and HC groups are selected 
( , , , , , , , , , ,|x y p q m nS x y p q m n N +∈ ), where x p m, ,  represents the 
number of abnormal groups; y q n, ,  represents the number of HC 
groups; x y p q m n= = =, , . More specifically, a multiple-loop-learning 
algorithm is developed, depending on the training loop from 
previous iterations.

3.2. The enhanced-GAN model

To provide greater clarity on the enhanced-GAN model within 
the BNLoop-GAN model, illustrated in Figure 2, we present further 
details on its constituent components: a generator, a discriminator, 
and a classifier. The generator is structured with transposed 
convolutional layers, batch normalization, and activation functions 
such as ReLU and Sigmoid. Similarly, the discriminator and classifier 
share the similar structure, both of which are composed of 
convolutional layers, batch normalization, and LeakyReLU 
activation functions.

To provide support for the generation of matrices with specified 
attributes in the subsequent multiple-loop-learning algorithm, the 
enhanced-GAN model incorporates conditional information into 
both the generator and discriminator. This is accomplished through 
the use of a conditional GAN (cGAN) (Mirza and Osindero, 2014) 
architecture, which enables the model to better comprehend the 
contextual information of the generation task.

Patch-based processing is commonly utilized in computer vision 
tasks, including image analysis and object recognition, because it 
allows for local analysis of image features. This approach can 
be especially useful when dealing with complex symmetric matrices, 
as it enables the network to focus on smaller, more manageable 
sections of the input at a time. The idea of PatchGAN (Isola et al., 
2017) is combined here to map the input to N N∗  patches. These 
patches are designed to process matrices in a “patch-wise” manner, 
meaning that they divide the input image into small overlapping 
patches and process each patch individually. By learning the brain 
regions using block features, it is possible to gain a deeper 
understanding of how the network is processing and interpreting the 
input matrix at a local level. This information can be  useful for 
identifying patterns or features within the brain regions that are 
important for the network’s decision-making process and for 
improving the performance of the network on the 
discrimination task.

Wasserstein GAN with gradient penalty (WGAN-GP) (Gulrajani 
et al., 2017) is added to address the problems of traditional GANs 
(Goodfellow et  al., 2014), such as mode collapse and training 
instability. The core concept of WGAN-GP is to use Wasserstein 
distance to measure the difference between the generated and real 
data distributions and to enforce the Lipschitz continuity of the 
network through gradient penalty. Compared to traditional 
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Wasserstein GAN (Arjovsky et  al., 2017), WGAN-GP has the 
advantage of providing more stable training performance and 
producing better sample quality of brain networks. The definition of 
Wasserstein distance is shown as follows:

 
( ) ( ) ( ),,, inf

r gr g x yp pW P P E x yγγ ∼∼∏  = −   
(1)

where Pr  is the real distribution and Pg  is the model distribution 
implicitly defined by the generator; ∏( )p pr g,  denotes the set of all joint 
distributions γ x y,( )  whose marginal distributions are Pr  and Pg  
respectively; ( ),x yE x yγ∼  −   is the mathematical expectation of 
distance x y− ; and { }inf   is the lower bound of set.

In order to solve the mode collapse and improve the convergence 
speed of traditional GANs, the gradient penalty is added to the 

FIGURE 1

The overall framework for the classification of brain networks. AB, abnormal groups; HC, healthy control groups.

FIGURE 2

The architecture of the enhanced-GAN model. AB, abnormal groups; HC, healthy control groups.
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discriminator loss function, and the generated samples are constrained 
by Lipschitz. The discriminator loss function is:

 

( ) ( )

( )

~ ~
2
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ˆ 1λ
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where λ represents the coefficient of the gradient penalty item; 

x̂P  generates a straight-line uniform sampling between Pg  and Pr ; 
( )ˆ ˆ∇xD x  is the gradient of the discriminator network; 2  stands for 

second norm of matrix.

3.3. Multiple-loop-learning algorithm

Contrary to most of existing methods that learn data using batch 
training, this framework splits whole dataset into different subsets for 
incremental learning. The flowchart of the multiple-loop-learning 
algorithm in Figure  3 illustrates how to generate incremental 
training plans.

As shown in Figure 3, in the first loop (Loop i i− =, 1), the learning 
process starts by randomly selecting AB and HC samples with a 
predefined size from the database. Both the Generator and the 
Discriminator are pre-trained to drive the multiple-loop-learning 
algorithm. The pre-trained Generator is then employed to generate fake 
samples that are close to the true distribution of samples. The pre-trained 
Discriminator is used to process the real and generated samples to 
compute the sample contribution ranking using Euclidean Distance. To 
select samples with an easier-to-learn distribution during training loops, 
the top half of the ranking samples is chosen as the batch for training the 
classification model, and the middle half to three-quarters of the ranking 
is prepared for the next loop sample. The bottom quarter of the ranking 
is put back into the database. Thus far, the first round of loop ends when 
the classifier has learned a batch. The samples ranked in middle half to 
three-quarters of the previous round are combined with randomly 
selected samples to obtain AB and HC samples, which are used in a new 
round of loop. Multiple-loop-learning is achieved through continuous 
loop optimization, and the algorithm continues until the classifier 
converges. Algorithm 1 provides specific details of the algorithm.

Algorithm 1: BNLoop-GAN with multiple-loop-learning.

Input: the pre-training classifier C, generator G, and discriminator D;

the brain network matrix of healthy control groups, MHC;

the brain network matrix of abnormal groups, MAB;

the real matrix, RM;

the fake matrix, FM;

the table of sample contribution ranking of RM, TRM;

Output: the trained classifier, C;

the accuracy of C, ACC;

1: Initializing the loop = 0;

2: Initializing the batch_samples;

3: while C not converge

4:  random select MHC and MAB to fill RM M M
loop

HC AB,( ) to batch_samples from the 

database;

5: generate FM M M
loop

HC AB,( ) from G of random noise;

6:  TRM ← Euclidean Distance computing D(RM M M
loop

HC AB,( )) and D(FM M M
loop

HC AB,( ));

7: choose RM M M
loop

HC AB,( ) of 1/2 top-ranked TRM for training classifier C;

8: get ACC;

9: RM M M
temp

HC AB,( ) ← RM M M
loop

HC AB,( ) of 1/2–3/4 top-ranked TRM;

10: RM M M
loop

HC AB,( ) of 1/4 bottom-ranked TRM back to the database;

11: loop + +;

12: initializing RM M M
loop

HC AB,( );

13: adding RM M M
temp

HC AB,( ) to RM M M
loop

HC AB,( );

14: end while

15: return C, ACC

FIGURE 3

The flowchart of the multiple-loop-learning algorithm with the BNLoop-GAN model. AB, abnormal groups; HC, healthy control groups; C, the 
classifier; G, the generator; D, the discriminator.
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4. Experiments

4.1. Datasets and preprocessing

In this paper, the MRI data (including dMRI and rsfMRI) were 
gathered from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database.1 These subjects were instructed to rest with their 
eyes open, not to think of anything in particular, and not to fall asleep 
while collecting rsfMRI. The data set contains 42 AD patients 
(72.0 ± 17.0, 30F/93M) and 42 gender-age matched HC groups 
(74.5 ± 10.9, 39F/92M).

To start with, the raw MRI data were converted from DICOM to 
NIfTI using “dcm2niix” function in the MRIcroGL software.2 The bvec 
and bval files were generated to calculate various diffusion properties 
on the diffusion gradients and directions. All diffusion-based 
tractography approaches and subsequent connectome reconstructions 
were performed in the MRtrix3 software.3 Firstly, the initial diffusion 
images were denoised to increase signal-to-noise ratio. Secondly, 
gibbs-ringing and bias field correction were performed to reduce 
artifacts and non-regularities. The eddy current-induced distortion 
was removed, and head motion error was corrected. Finally, the mean 
b0 image generated by averaging all the images with b = 0 s/mm2 was 
used to register the diffusion image to the structural MRI using the 
FSL toolbox.4 The rsfMRI data were processed by SPM12 software5 
with the standard procedures, including slice-timing correction, 
realignment to the median image, and co-registration to the individual 
structural MRI.

4.2. Brain network computing

4.2.1. Construction of diffusion MRI networks
The constrained spherical deconvolution (CSD) method 

overcomes the limitations of crossing fibers inherent in the diffusion 
tensor model (Tournier et al., 2008). Therefore, we performed multi-
shell multi-tissue CSD method to obtain the fiber orientation 
distribution (FOD) (Jeurissen et al., 2014). The white matter pathways 
of whole brain were reconstructed using probabilistic streamline 
tractography through the second-order integration over FOD 
algorithm (Smith et al., 2013). The aparc2009 template (Destrieux 
et al., 2010) of FreeSurfer was used to divide each brain region, and 
the connection strength is normalized by the number of streamlines 
divided by the brain volume, thereby constructing structural 
brain networks.

4.2.2. Construction of resting-state functional 
MRI networks

The functional brain networks were constructed using the Nilearn 
package in Python.6 For each subject, the average time series of each 

1 https://adni.loni.usc.edu

2 https://www.nitrc.org/projects/mricrogl

3 https://www.mrtrix.org

4 https://www.fmrib.ox.ac.uk/fsl

5 https://www.fil.ion.ucl.ac.uk/spm/software/spm12

6 https://nilearn.github.io

brain region were extracted using the aparc2009 template of 
FreeSurfer. Then, the connectivity characteristics were measured using 
the Pearson correlation coefficient as shown in Equation 3, by which 
the matrices of N*N-dimensional functional connectivity were 
obtained for each subject.
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where r X Y,( )  is the Pearson correlation coefficient to measure 
connected effects between brain regions X  and Y ; X i( ) and Y i( ) 
represent the time series from two different brain regions respectively, 
i N=1 2, ,.., , and N  is the number of time points of the subject; X  and 
Y  are the mean values of X i( ) and Y i( ) respectively.

4.2.3. Joint learning of multi-modal brain 
networks

Brain disorders exhibit muti-aspect changes in the brain’s 
structural, functional and dynamic characteristics frequently. The 
structure forms the foundation of function, while the function is 
the representation of structure. Multi-modal MRI data analyses 
can capture complementary characteristics from diverse 
perspectives, bringing richer information and benefiting 
classification tasks consequently. We adopted the joint learning 
method of multi-modal data, that is, superimposing the number 
of dMRI and rsfMRI brain network channels. The follow-up 
experimental results can reflect its advantages compared with 
single-modal brain networks.

4.2.4. Brain network augmentation
In order to reduce noise and facilitating normalization of input 

features, we performed min-max scaling, which involves scaling the 
data to a range between 0 and 1. Additionally, to prevent over-fitting, 
the data augmentation techniques were used to expand the training 
data set, as shown in Figure 4.

For a given image in Figure 4, it can be seen that an original 
matrix (A) is transformed by moving its first column to the last 
column, generating an in-process matrix (B), and then its first row 
is moved to the last row, resulting in the enhanced matrix (C). In 
this way, the strategy of data augmentation will avoid breaking the 
symmetry of the matrix. We  repeat this process on the newly 
generated enhanced matrix (C), generating 163 additional enhanced 
matrices from one original brain network matrix corresponding to 
a single subject, and 13,692 enhanced matrices from 84 subjects in 
total. We employed all of these matrices, with 80% reserved for 
training and 20% for testing.

4.3. Model description and evaluation 
indicators

Table 1 presents the architectural parameters of the BNLoop-GAN 
model in detail. This model is capable of accommodating both single-
modal and multi-modal inputs, with the parameter ‘n’ in Table 1 
denoting the number of modalities.
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Three indicators are used to evaluate the performance of the 
model, including accuracy (ACC ), sensitivity (SEN ), specificity 
(SPE). The formula is defined as follows:

  
ACC TP TN

TP TN FP FN
=

+
+ + +  

(4)

  
SEN TP

TP FN
=

+  
(5)

  
SPE TN

FP TN
=

+  
(6)

FIGURE 4

The strategy of data augmentation. (A) Original matrix. (B) In-process matrix. (C) Enhanced matrix.

TABLE 1 The architectural parameters of the BNLoop-GAN model.

Sub-module Layer Kernel Stride Padding
Size of feature map 
(height × width × channels)

Activation 
function

Generator

Input – – – 1 × 100 × n –

ConvT 1 4 1 0 4 × 4 × 512 ReLU

ConvT 2 4 2 1 8 × 8 × 256 ReLU

ConvT 3 4 2 1 16 × 16 × 128 ReLU

ConvT 4 4 2 1 32 × 32 × 64 ReLU

ConvT 5 12 1 1 41 × 41 × 32 ReLU

ConvT 6 4 2 1 82 × 82 × 16 ReLU

ConvT 7 4 2 1 164 × 164 × n Sigmoid

Discriminator

Input – – – 164 × 164 × n –

Conv 1 4 2 1 82 × 82 × 16 LeakyReLU

Conv 2 4 2 1 41 × 41 × 64 LeakyReLU

Conv 3 10 1 0 32 × 32 × 128 LeakyReLU

Conv 4 4 2 1 16 × 16 × 256 LeakyReLU

Conv 5 4 2 1 8 × 8 × 512 LeakyReLU

Conv 6 4 1 0 5 × 5 × n –

Classifier

Input – – – 164 × 164 × n –

Conv 7 4 2 1 82 × 82 × 16 LeakyReLU

Conv 8 4 2 1 41 × 41 × 64 LeakyReLU

Conv 9 10 1 0 32 × 32 × 128 LeakyReLU

Conv 10 4 2 1 16 × 16 × 256 LeakyReLU

Conv 11 4 2 1 8 × 8 × 512 LeakyReLU

Conv 12 8 2 1 2 × 2 × 1 –

ConvT, Transposed Convolution; Conv, Convolution.
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TABLE 2 The results of AD classification of different brain network 
learning strategies using various models.

Model

Brain 
Network 
Learning 
Strategy

ACC 
(%)

SEN 
(%)

SPE 
(%)

FCN ① 77.2 74.7 79.6

② 75.3 73.9 80.3

③ 81.4 80.2 82.2

FCN with loop of 

conditional generation

① 77.3 74.5 79.8

② 75.1 73.6 79.9

③ 81.6 80.5 82.5

FCN with loop of 

conditional generation 

and patch-based 

discrimination

① 78.2 75.1 80.5

② 76.1 74.2 81.2

③ 82.3 81.0 83.1

FCN with loop of 

conditional generation 

and Wasserstein 

gradient penalty

① 77.8 75.2 80.6

② 75.9 74.1 81.1

③ 82.1 80.9 83.0

BNLoop-GAN ① 79.1 76.3 81.2

② 77.0 75.2 81.9

③ 83.8 81.8 84.9

FCN is the fully convolutional neural network. Three brain network learning strategies were 
utilized, including: ① Single-modal brain networks based on dMRI; ② Single-modal brain 
networks based on rsfMRI; ③ Multi-modal brain networks based on dMRI and rsfMRI. The 
bold values represent the highest accuracy, sensitivity and specificity of the BNLoop-GAN 
model on Multi-modal brain networks based on dMRI and rsfMRI.

FIGURE 5

The process of multiple-loop-leaning.

where FP, FN, TP, and TN denote False Positive, False Negative, True 
Positive and True Negative assessments, respectively.

Furthermore, due to the complexity of AD diagnosis, the Receiver 
Operating Characteristic (ROC) curve and Area under the ROC 
Curve (AUC) are utilized to evaluate the efficacy of binary 
classification models. The ROC curve plots the true positive rate 
(TPR) against the false positive rate (FPR), with TPR on the y-axis and 
FPR on the x-axis.

  
TPR TP

TP FN
=

+  
(7)

  
FPR FP

FP TN
=

+  
(8)

The AUC is the area under the ROC curve, with values ranging 
from 0 to 1. A higher AUC indicates better model performance, 
with 0.5 indicating random guessing and 1 indicating 
perfect prediction.

5. Results and discussions

A case study was performed to examine the classification 
performance corresponding to single-modal brain networks and 
multi-modal brain networks, respectively, through the BNLoop-GAN 
model with the multiple-loop-learning algorithm. In order to evaluate 
the effectiveness of the different components incorporated into the 
enhanced-GAN model, we conducted a series of ablation experiments. 
Table 2 presents the results of these experiments, which were evaluated 
using three indicators.

Taking into account the necessity of conditional information for 
driving multiple-loop-learning algorithms, we conducted a series of 
Loop-based ablation experiments on the baseline FCN model. 
Compared to the baseline FCN, the FCN with loop of conditional 
generation demonstrated no significant improvement in indicators for 
any modality. Simply capturing the similarity of samples through 
conditional information is not enough to improve loop efficiency. 
However, FCN with loop of conditional generation and patch-based 
discrimination, as well as FCN with loop of conditional generation and 
Wasserstein gradient penalty, both improved performance of the 
classifier for all modalities. The patch-based discrimination ensures 
that the generated images have a high degree of similarity to real 
images in terms of brain regions. The Wasserstein gradient penalty 
enforces the Lipschitz continuity constraint in the discriminator. Both 
of them contributes to the improved quality of generated samples. It is 
worth noting that the BNLoop-GAN model exhibited the highest 
performance for all three modalities, combining techniques of 
conditional generation, patch-based discrimination, and Wasserstein 
gradient penalty to learn the implicit distribution of brain regions. 
These techniques optimize the model by improving the quality of 
generated samples, selecting samples with an easier-to-learn 
distribution during training loops, and providing better performance 
on a classification task of brain networks. In addition, the evaluation 
indicators for multi-modal data are higher than those for single-
modal data.

The training processes of each loop driven by the multiple-loop-
learning algorithm in the BNLoop-GAN model are shown in Figure 5. 
The overall trend of the training process reveals that the model’s 
accuracy can be  improved steadily and effectively, regardless of 
whether single-modal or multi-modal data is used. Furthermore, it 
can be  seen that multi-modal brain networks learned by the 
BNLoop-GAN model achieve the better accuracy of 83.8% than 
others related to single-modal brain networks.
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Figure  6 illustrates the computation of ROC curves, which 
provide a comprehensive representation of performance across 
different brain network types. Sub-figure (A) and (B) are constructed 
using two strategies of original matrices (without brain network 
augmentation) and enhanced matrices (with brain network 
augmentation) as a test set to verify the effectiveness of the model. 
The experimental results prove that data augmentation actually 
increase the performance of the model. The six curves of each 
sub-figure are represented by different colors corresponding to 
different modalities and different model strategies. It can be clearly 
seen that the classification effect of the model based on multi-modal 
data is significantly higher than that of single-modal data. 
Additionally, each dotted ROC curves represent the performance of 
the basic mode (i.e. FCN), whereas the solid ROC curves depict the 
performance of the entire BNLoop-GAN model using the multiple-
loop-learning algorithm. Compared with the AUC value of the 
single classifier model, the classification of BNLoop-GAN model has 
a slight improvement, indicating that the effectiveness of the 
multiple-loop-learning algorithm can improve the performance of 
classification, and it performs better in the use of multi-modal data. 
The AUC value reaches 0.872. All experiments are performed in the 
same experimental environment with the parameters of the 
equipment (Intel(R) Core(TM) CPU i7-8750H @ 2.20GHz, 12 CPU 
cores, 8GB NVIDIA GeForce GTX 1070).

In recent years, an increasing number of studies utilize multiple 
modalities, such as dMRI and fMRI, to improve the classification of 
brain networks. Various combination techniques, including feature 
selection (Yu et al., 2022), data augmentation (Venugopalan et al., 
2021), transfer learning (Ghaffari et al., 2022), and more, have been 
proposed to optimize classification results. For instance, Meng et al. 
(2022) proposed the multi-modal LassoNet model, which combines 
fMRI and DTI modalities in a sparse Lasso neural network 
framework and incorporates connection strength and subject 
structure to construct a comprehensive multi-modal brain network. 
The model has achieved a classification accuracy of approximately 
90.68% for AD-HC. Mohtasib et  al. (2022) conducted a 
comprehensive connectivity analysis between the default mode 

network regions using group independent component analysis on 
rsfMRI data, and examined the paired structural connectivity 
between the frontal lobe region and the hippocampus using DTI data. 
They applied both logistic regression and random forest models to 
classify AD patients and HC groups, achieving an accuracy of 74%. 
Although some current studies can achieve higher accuracy, it is 
worth noting that the evaluation strategy is based on k-fold cross-
validation (Alorf and Khan, 2022) which is difficult to transfer into 
real-world scenarios. In this paper, we consider the test samples are 
not seen in the training phrase. The advantages of the proposed 
BNLoop-GAN model are as follows. Firstly, an enhanced-GAN 
model is designed for facilitating to learn the implicit distribution of 
the brain networks. Secondly, it utilizes the multiple-loop-learning 
algorithm to select easier-to-learn samples during training loops, 
continuously improving model classification performance. Lastly, the 
model can achieve satisfy performance on classification tasks of AD 
using multi-modal brain network fusion.

6. Conclusion

In this paper, the BNLoop-GAN model with a multiple-loop-
learning algorithm is proposed to the classification of brain diseases 
from the brain network perspective. The proposed model is evaluated 
by the AD classification task, using rsfMRI, dMRI, and their fusion. 
The experimental results show that the fused brain image learning can 
achieve a better performance than others, strengthening the 
importance of fusing structural and functional information. Moreover, 
the loop learning mode can effectively learn the implicit distribution 
of brain networks to reduce training complexity and improve 
classification performance. In the future, more effort will be required 
to solve the following issues, such as: expanding multi-modal MRI 
data such as task-state fMRI to capture deeper feature patterns; 
designing the reasoning rules for representing the main and 
supplementary modal types with weights and their relations; enriching 
the “evidence combination-fusion computing” methods for multi-
modal brain data.

FIGURE 6

The ROC curves of the BNLoop-GAN model. (A) The ROC curve of original matrices. (B) The ROC curve of enhanced matrices.
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Introduction:Datasets containing only few images are common in the biomedical

field. This poses a global challenge for the development of robust deep-learning

analysis tools, which require a large number of images. Generative Adversarial

Networks (GANs) are an increasingly used solution to expand small datasets,

specifically in the biomedical domain. However, the validation of synthetic images

by metrics is still controversial and psychovisual evaluations are time consuming.

Methods: We augment a small brain organoid bright-field database of 40

images using several GAN optimizations. We compare these synthetic images

to the original dataset using similitude metrcis and we perform an psychovisual

evaluation of the 240 images generated. Eight biological experts labeled the full

dataset (280 images) as syntetic or natural using a custom-built software. We

calculate the error rate per loss optimization as well as the hesitation time. We

then compare these results to those provided by the similarity metrics. We test the

psychovalidated images in a training step of a segmentation task.

Results and discussion: Generated images are considered as natural as the

original dataset, with no increase of the hesitation time by experts. Experts

are particularly misled by perceptual and Wasserstein loss optimization. These

optimizations render the most qualitative and similar images according to metrics

to the original dataset. We do not observe a strong correlation but links between

some metrics and psychovisual decision according to the kind of generation.

Particular Blur metric combinations could maybe replace the psychovisual

evaluation. Segmentation task which use the most psychovalidated images are

the most accurate.

KEYWORDS

psychovisual, metric, validation, brain organoid, AAE

1. Introduction

The scarcity of public datasets of annotated biomedical images remains an unresolved

bottleneck to develop specialized and robust analysis tools. Often, research groups do not

share experimental data for privacy reasons. The high costs of equipment, long acquisition

times, and necessary in-depth expertise can be a brake to acquisitions by other teams

(Chakradhar, 2016). To benefit from the advances in deep-learning (DL) for automated

image analysis, large training datasets are necessary. Moreover, original dataset constraints

create a problem of class imbalance with deep learning training procedures. These problems

are emphasized with small sets, reduced to a few images (Tajbakhsh et al., 2016).

Data augmentation is widely used in the biomedical domain to increase the size

of image datasets (Singh and Raza, 2021). While classical data augmentation, based on

transformations (flip-flops, rotation, whitening, etc.), does not increase the diversity of

the dataset, a solution widely provided in the biomedical field is the use of Generative

Adversarial Networks (GAN) which produce new synthetic images from natural ones (Yi

et al., 2019; Lan et al., 2020).
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GANs are unsupervised deep-based architectures composed

of generator and a discriminator. The generator aims at creating

visually realistic and natural images while the discriminator tries

to decipher whether the result is generated (Goodfellow et al.,

2014). Both networks are trained simultaneously with the same

loss function. Since its first creation, multiple GAN architecture

variations have been proposed to generate and extend biomedical

datasets (Lan et al., 2020; Fernandez et al., 2021; Chen et al.,

2022). However, the validation of these synthetic images remains

a challenge Alqahtani et al. (2019). Two main evaluating methods

are existing the non-automated based upon psychophysics methods

in perceptual psychology, and automated methods based upon

metrics (Salimans et al., 2016a; Zhou et al., 2019). Psychovisual

evaluation is a time consuming gold standard which requires many

subjects to reduce its’ intrinsic subjectivity. On the other hand,

there is no commonly approved specific metric to evaluate whether

GAN-generated synthetic images can be considered as natural. The

use of common metrics is also controversial (Borji, 2019).

We consider the case of brain organoids, three dimensional

cultures differentiated from pluripotent stem cells (Lancaster et al.,

2013). After a neural induction, brain organoids present cell

communications, organized tissues and an organization similar

to the brain with various regions such as neuro-epithelial zones

(Kelava and Lancaster, 2016). They complement in vivo brain

models to follow physiological and pathological brain development.

However, brain organoids suffer from batch syndrome: in the same

culture environment they do not innately develop comparable

morphologies (Lancaster et al., 2013).

There are no specific tools to study the development of brain

organoids. Though it may seem natural to implement machine

learning algorithms to aid this task, few brain organoid image

datasets are publicly available. Between january 2018 and june

2020 for instance only six over 457 articles in the brain organoid

field let the image datasets in openaccess and only one concerns

brain organoids in bright-field (Brémond Martin et al., 2021).

The emergence of brain organoids has created a new field, few

laboratories have the knowledge and experience necessary to grow

these cultures. Pandemic restrictions have further limited the

possibility for several teams to grow and image such culture over

the past few years.

The largest public brain-organoid image dataset we know of

contains 40 images (Gomez-Giro et al., 2019). Data augmentation

solutions have already been used to increase the size and diversity of

this brain organoid bright-field dataset. An adversarial autoencoder

(AAE) seems the architecture the most suited to augment images

of brain organoid bright-field acquisition (Brémond Martin et al.,

2022a). This AAE differs from the original GAN architecture

by the input given to the encoding part (original images)

and its generative network containing an auto-encoder-decoder

framework (Goodfellow et al., 2014; Makhzani et al., 2016). The

encoder learns to convert the data distribution to the prior

distribution, while the decoder learns a deep generative model that

maps the imposed prior to the data distribution thanks to a latent

space (Makhzani et al., 2016). As is typical with AAEs, the images

generated are visibly blurry.

To improve the sharpness during the generation, we test

various loss functions to improve the adversarial network

(Brémond Martin et al., 2022a). However, these results are based

upon metric calculation and a dimensional reduction to compare

all feature images (original and generated with each optimization)

in the same statistical space. Indeed some metrics may not been

suited to identify the naturality of an image as they are originally

created to test the similitude or the quality of images (Borji, 2019;

Brémond Martin et al., 2022a). In our previous contribution we

observe the data augmentation strategy based upon AAE loss

optimizations used during the training step of a DL segmentation

algorithm improve the quality of the shape extraction of brain

organoids (Brémond Martin et al., 2022a). The first raised question

is does these images seems as natural as the original images to

furnish a better segmentation quality compared to a result issue

from classic data augmentation strategies? Another fundamental

issue remains unresolved: do these synthetic images seem natural

to a biological expert point of views as for metric(s)? Psychovisual

evaluations have been already made on others bright-field cell

synthetic cell generation (Malm et al., 2015). This evaluation is an

important step for the validation of a particular generative model of

images. Thus the selected images as natural by Human Biological

experts could maybe help to train deep based segmentation

methods and characterize their development but with now a double

psychovisual-metric validation.

We propose to evaluate the synthetic images generated by an

AAE (Brémond Martin et al., 2022a) using both with similarity

metrics and biological experts. The purpose of this article is to give

the lacking non-automated psychovisual evaluation of the synthetic

images which is a new contribution compared to our previous

contribution which focus on automated metric based and statistical

strategies in order to understand if the naturality of these images

could explain the segmentation results (Brémond Martin et al.,

2022a). The second original part of the work is to find a metric

combination which may replace or complete the psychovisual non-

automated evaluation. Related work is presented in the following

section. Section 3 describes the generative network, the metric

evaluation and the psychovisual evaluation. Section 4 successively

shows the results for the metric evaluation and the pyschovisual

evaluation, followed by a cross-analysis of the two evaluation

methods. These results are analyzed in the Section 5. Section 6 sums

up the main contributions of this paper.

2. Related work

The first generative adversarial network, proposed by

Goodfellow et al. (2014), is constituted by two connected networks:

the generative model (GM) maps the images into the space (z)

by an objective function (F); the discriminative model (DM)

determines the probability for which a point from z belongs to

the original dataset (o) or to the generated dataset (g). Training F

increases the probability that the data synthesized is attributed to o.

The probability of correct sample labeling (belonging to generated

g or original o) is maximized by D. Simultaneously, GM is trained

to leverage the discriminator function expressed by:

min
GM

max
DM

F(DM,GM) = Eopdata[logDo]+ Egpg[log(1− D(Gz))].

(1)
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An overview of various GAN architectures used for medical

imaging is given by Yi et al. (2019). Previous work compares five

GAN architectures commonly used for biological datasets to find

the best suited network to increase a small database of bright-

field images of organoids (Brémond Martin et al., 2022a): the

original GAN implementation (Goodfellow et al., 2014); CGAN

gives to the generator input the correct label (physiological or

pathological) (Mahmood et al., 2018); DCGAN by Radford et al.

(2015) is constituted by a convolutional neural networks instead of

the generator; INFOGAN uses the generated images at an epoch

to train the subsequent (Hu et al., 2019); AAE by Makhzani et al.

(2016) uses an auto-encoder as a generator. This work evaluates the

generated images using metrics.

As already reported in the literature by Lan et al. (2020), GAN

and CGAN produce mode collapse with such a small dataset.

In addion, GAN produces a white imprint around the shape

of the organoid. DCGAN and INFOGAN generate a divergent

background which makes the images difficult to exploit. This

is probably due to the high variability of the small dataset, as

mentioned in Lan et al. (2020). Only AAE produces images of

similar quality to the orignal and seems the best architecture to

generate images with a few input. However, AAE generates blurry

images and the background differs from the light-to-black gradient

present in many bright-field images.

Noise-injection during the AAE generation was studied to

improve the background generation with satisfying results in

BrémondMartin et al. (2022b). In this paper, we further explore the

effect of loss optimization on the AAE architecture to improve the

sharpness of the generated images. The results are evaluated by an

automatic approach based on metrics and by a psychovisual study.

The last part aims at giving an application of such psychovalidated

images in a segmentation task.

3. Methods

In this section, we first present the generative methods and

optimizations used. We follow by a description of the metric

and psychovisual evaluations including the experimental setup,

datasets and experts. We present the analysis methodologies of

the neurobiologist decisions and the comparison of psychovisual

evaluations with metric calculations. We finish by giving an asset of

the importance of psychovalidated images in an augmented dataset

strategy for a segmentation task.

3.1. Generative adversarial networks

3.1.1. Original images
Our dataset is composed of 40 microscope acquisitions and 240

synthetic images created by a AAE loss optimizations. “Original”

images are the 40 bright-field brain organoid acquisitions provided

by Gomez-Giro et al. (2019). This dataset is made of image of 20

physiological and 20 pathological organoids acquired over three

days on the same apparatus. These input images (1, 088 × 1, 388

pixels) are cropped and scaled to 250×250 pixels, maintaining their

original proportions. A scale factor of 4 is chosen so the scripts can

run in a reasonable amount of time without downgrading the input

image quality too much.

3.1.2. Loss optimizations
The images generated by the AAE architecture we use are

somewhat blurry. To overcome this phenomenon we study how the

discriminator loss can influence the quality of the image generation.

We consider six losses: the Binary Cross Entropy (BCE) which is

most commonly used in GANs and five other losses which are

specifically known to improve the contrast or sharpness of the

generated images.

BCE is the most commonly used loss for GANs and the baseline

of this work. It is calculated by:

BCE = −
1

n

n
∑

i=1

(yi(log(y
′
i)))− ((1− yi)(log(1− y′i))) (2)

with y the real image tensor and y′ the predicted ones

(Makhzani et al., 2016) and n the number of training.

Summing the L1 norm to the BCE is reported to reduce over-

fitting (Wargnier-Dauchelle et al., 2019).We hypothesize this norm

could improve the quality of the generation as reported in image

restoration tasks which does not over-penalize large errors (Zhao

et al., 2017).

L1 =
1

n

n
∑

i=1

|yi − y′i|1 (3)

BCEL1 = BCE+ αL1. (4)

α is set to 10−4, as in the original paper.

The least square loss (LS) is reported by Mao et al. (2017) to

avoid gradient vanishing in the learning process step resulting in

better quality images:

LS =
1

n

n
∑

i=1

(yi − y′i)
2 (5)

A Poisson loss is used in Wargnier-Dauchelle et al. (2019) to

improve the sensitivity of a segmentation task:

LPoisson =
1

n

n
∑

i=1

(y′i − yi) log(y
′
i + ǫ) (6)

where ǫ is a regularization term set to 0.25.

The DeblurGAN was developed to unblur images using the

Wasserstein loss (Kupyn et al., 2018). Since we are also interested

in deblurring the output images, we have tested this loss with the

proposed AAE where (P(y, y′)) is the joint distributions of y and y′

for which the distributions are equal to Py and Py′, and p(y,y’) the

proportion of y or y’ to move to have Py = py′:

Wass(P(y, y′)) =

n
∑

i=1

inf
p(P(y,y′))

Eyi,yi′δp(||yi− yi′||) (7)

However, we do not apply a l2 content loss such as in Kupyn

et al. (2018) added to theWasserstein loss, or add a penalty gradient
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to theWasserstein loss such as in Gulrajani et al. (2017). Our dataset

containing various subclasses (physiological and pathological brain

organoid images acquired at three developmental stages), we aim

at creating a Normalized Wasserstein loss to avoid imbalanced

mixture proportions (Balaji et al., 2019). We apply the L2

normalization on theWasserstein loss, producing a new loss we call

the Perceptual Wasserstein loss for the first time to our knowledge,

applied on an AAE architecture:

P.Wass(P(y, y′)) =

n
∑

i=1

√

inf
p(P(yi,yi′))

Eyi,yi′δp(||yi− yi′||)2 (8)

3.1.3. Training
Figure 1 shows the global training setup. The 40 original images

are used to generate 40 ǎsynthetic images for each architecture

(each loss). Input and output images measure 250 × 250 pixels.

Training lasts 2,000 epochs for each optimization; this corresponds

to the plateau before over-fitting for all loss optimizations.

3.1.4. Resources
The GAN algorithms are developed in Python 3.6 with

an Anaconda framework containing the 2.3.1 Keras and 2.1

Tensorflow versions. All scripts are executed on an Intel Core i7-

9850HCPUwith 2.60 GHz and aNVIDIAQuadro RTX 3000s GPU

device.

3.2. Metric evaluation

Six metrics are used to compare the similitude of the synthetic

images generated by the AAE to the original dataset. A blur metric

is used to evaluate the quality of these synthetic images.

The Frechet InceptionDistance (FID) is calculated between two

groups of images (Heusel et al., 2017). This score tends toward low

values when the two groups (original O or generated G images)

are similar, with µ the average value of the pixels of all images of

a group, and 6 the covariance matrix of a group:

FID(O,G) = ‖µO − µG‖
2 +T (6O + 6G − 2(6O6G)

1
2 ) (9)

The Structural Similarity Index (SSIM) is calculated using

luminescence, contrast and structure byWang et al. (2004) between

two images o and g belonging respectively to O and G.

SSIM(o, g) =
(2µoµg + c1)(2σog + c2)

(µ2
o + µ2

g + c1)(σ 2
o + σ 2

g + c2)
(10)

where σ represents the standard deviation, c1 is a constant

that ensures the luminance ratio is always positive when the

denominator is equal to 0, and c2 is an other constant for the

contrast stability. The SSIM ranges between 0 (no similitude) and 1

(high similitude).

The Universal Quality Metric (UQM) is based on the

calculation of the same parameters as SSIM and was proposed by

Wang and Bovik (2002). UQM ranges between 0 and 1 (1 being the

highest quality):

UQM(o, g) =
4µoµgµog

(µ2
o + µ2

g)(σ
2
o + σ 2

g )
(11)

Entropy-based Mutual Information (MI) measures the

correlation between original and generated images and ranges

between 0 (no correlation) and 1 (high correlation) (Pluim et al.,

2003):

MI(o, g) =
∑

o∈O

∑

g∈G

P(o, g)log
P(o, g)

P(o)P(g)
(12)

where P(o, g) is the joint distribution of o belonging to O and g

from G.

The Mean Square Error (MSE) between an original image and

a synthetic image is calculated as:

MSE(o, g) =
1

mn

m
∑

i=1

n
∑

j=1

(o(i, j)− g(i, j))2 (13)

The Peak Signal to Noise Ratio (PSNR) indicates a high signal

power against noise, as used in Jiang et al. (2021). High values

correspond to qualitative images. Pixels in images are ranked

between 0 and 255, thus the maximum pixel value of an image is

notedmax(o) and equals at most 255.

PSNR(o, g) = 20 logmax(o)− 20 logMSE(o, g) (14)

where log denotes the common logarithm.

As a quality metric we calculate the blur index proposed by

Tsomko et al. (2008) based on local image variance. A low score

corresponds to a sharp image. In the following equation, the image

is of size (m,n), the predictive residues a given image pixel are p(i, j)

and their median p′(i, j):

Blur =
1

m(n− 1)

m
∑

i=1

n−1
∑

j=1

[p(i, j)− p′(i, j)]2 (15)

The FID is designed to compare groups of images. We thus

successively compare each group of synthetic images with the

original input images. The FID reference range is calculated on

the original image developmental stages. The SSIM, UQM, PSNR,

MI, and MSE are designed to compare two images. For each group

of synthetic images (all six losses) we successively compare every

image with each original image and then compute the average of

these 40 × 40 values. We also calculate these values on all pairs

of original images to compare the results to the original range.

The Blur index is calculated on individual images. We store the

minimum andmaximum value of this index for the original images

and the average value per loss for the synthetic images.

3.3. Psychovisual evaluation

3.3.1. Dataset of original and synthetic images
The dataset to evaluate contains two classes of images the

40 microscopic acquisitions mentionned in Section 3.1.1 and the
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FIGURE 1

Experimental scheme of AAE supporting data augmentation of cerebral organoids bright-field images. The generator tries to persuade the

discriminator that it has generated a true and slightly variable image of input dataset. The discriminator tries to find the true ones. They improve each

other by backpropagation, formulated by an objective function based on a loss. Losses variations implemented in this article are symbolized by 1.

Input image is from Gomez-Giro et al. (2019).

240 synthetic images created by the previous mentioned AAE loss

optimizations: binary cross entropy (BCE), binary cross entropy

with a L1 normalization (BCE + L1), least squares (LS), Poisson,

Wasserstein (Wass.), perceptual Wassertein (P. Wass). The size of

these 280 images is 250× 250 pixels.

3.3.2. Randomization
To perform a double blind test the images are not labeled

during the visualization so neither the experts or the team can be

biased by the images information (real, generated, nor its kind of

generation). Real and generated images are randomized at each

test run. Each biological expert evaluates the complete randomized

dataset (280 images). The randomization and corresponding labels

are stored in a .csv file which is only accessible for result analysis.

3.3.3. Experts
The experts who evaluated the database are biologists from

ERRMECe laboratory, EA1391, CY Cergy Paris University. The

group of eight experts is composed of three men and five

women who are either PhD students, research engineers or

researchers. They all have an expertise in neuronal culture and

microscopy acquisition. We do not allow duplicate evaluators

across evaluation procedure. During each evaluation session the

evaluator is physically isolated from the other participants, without

knowledge of other experts responses or images labels.

3.3.4. Evaluation software
To help experts in their evaluation and to ensure consistency

throughout the entire experiment, we built a dedicated software

using Python 3.6, as shown Figure 2. The interface consists

of an image displayed (250 × 250 pixels), a cursor with

three buttons: Real, Generated, Next and the number of

remaining images to classify. Keyboards shortcuts are available

for Real, Generated, and Next buttons (respectively A, P,

and Tab keys on an AZERTY keyboard) to facilitate the

process. Images on the screen are updated each time Next

is hit (or the corresponding keyboard shortcut). Clicks on

Next are counted as a pass if not preceded by a Real or

Generated click.

3.3.5. Experimental protocol
An operator enters the expert name and the date and hour

of the recording. All eight experts chose to use their own mouse

with the experiment laptop. The protocol, consisting of a single

session and including all 280 images (real and synthetic), is

described in Figure 2. A pass is consider as an answer. The

decision and answer time are saved at each click in a .csv file

only accessible to analyze the results. The operator is present

nearby to verify the smooth functioning of the experimental

process and to capture any comments made by the experts. The

list of questions the expert has to answer after the process is

listed below:
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FIGURE 2

Experimental procedure of psychovisual evaluation. Left image represents a sample from original dataset and right image represents a specific loss

optimized sample generated with an AAE. Screenshot of the software helping biological experts to decipher natural to non-natural content of brain

organoid culture images. Eight biological experts test this procedure.

• Why do you classify this generated image as a false?

The operator shows the generated image with the longest

hesitation.

• Why do you classify this original image as a false? The operator

shows the original image with the longest hesitation, if this

situation exists.

• What should we improve in future sessions?

We summarize the answers to these questions in the

results section.

Each evaluation run produces two .csv files: One stores the

randomization i.e. the order and label of each image presented.

The second stores the experts’ name and for each image present the

answer time and the decision.

3.4. Analysis

The first analysis step consists in associating the randomization

and the results files. We obtain, for each expert and for each image

the decision and the decision time. The decision is then labeled as

true positive (TP) or false negative (FN) for the original images and

false positive (FP) or true negative (TN) for the synthetic images.

3.4.1. Parameter calculation
It is then standard to calculate the error rate (ER), defined as the

number of false decisions divided by the total number of decisions.

ER =
FP+ FN

FP+ FN+ TP+ TN
(16)

For the original images, this becomes:

ERO =
FN

FN+ TP
(17)

and for the synthetic images:

ERG =
FP

FP+ TN
. (18)

However, we wish to compare the proportion of synthetic

images falsely labeled as true, with the proportion of original images

label as true.We thus calculate the Positive Rate (PR) of the original

images:

PRO = 1− ERO =
TP

FN+ TP
. (19)

For the synthetic images PRG = ERG.

As a second parameter, we calculate the decision occurrence for

each modality for each subgroup by a simple counting and render

it in a % according to the total effective of a group of images.

We also evaluate the number of positive answers given by each

expert as a count and the number of images given as a positive by

zero expert, one expert, two experts etc. or the eight experts. Time

decision and all these parameters are calculated between original

and generated images, or between original and each modality of

loss generation (BCE, BCE + L1, LS, Poisson, Wass., P. Wass.),

globally or by each decision subgroups (FP, FN, TP, TN). All results

are rendered as bargraphs representing variables (Time Decision in

seconds or occurrence in% or error rates) according to one ormany

factors (group and subgroups of decision).

3.4.2. Metrics vs. human decision
To verify if some metrics highlight the same loss as producing

the most natural images as experts, we plot each metric values for

each loss group by each decision factor modality (FP, FN, TP, TN).

In the dot representations for each loss group, eachmetric is plotted

according to the Normalized Error Rate NER with individuals

decision time t for the FP and for FN modality:

NER =
FP× tFP + FN× tFN

FP+ FN+ TP+ TN
(20)
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where tFP and tFN are the average decision time respectively for

FP and FN. In practice, this becomes, for the original images:

NERO =
FN× tFN

FN+ TP
(21)

and for the synthetic images:

NERG =
FP× tFP

FP+ TN
. (22)

To verify if a relation exists between a metric or a particular

combination of metrics (M) and the decision or the time decision

(DT), we calculate KL divergences on dimensional reduction results

(Joyce, 2011).

KL =
∑

x∈X

Mx × log

(

Mx

DTx

)

(23)

We only represent here kl-divergence corrplots for each

individual metric (and not metric combinations) for space

considerations. We consider all possible metric combinations C:

C =

{(

n

k

)

|k ∈ N∗, k ≤ n

}

(24)

where n = 6 is the total number of metrics. The total number

of metric combinations considered is thus 63.

We then calculate Pearson and Kendall correlations between

metric combinations and KL-div results (for error rate and

time decision) for original and synthetic groups. We show the

Pearson correlation for the ten best metric combinations. The best

representation of these results (error rate or time by KL divergence)

are represented as a scatter plot.

3.4.3. Statistical analysis
The normality is verified by a Shapiro and quantile to quantile

graphics. We verify the homocedasticity in normal cases by a

Bartlett test and in the case of non-normality by a Levene test. In

case of a normality and homocedasticity, arametric tests are used

(Anova), and non-parametrics tests otherwise (Kruskall–Wallis

with a Tuckey post hoc test). Regression models are implemented to

verify the interaction of factors (group and decision) on a specific

variable (time or error rate or occurrence for instance). We use a

post-hoc Holm test to compare two by two the effect of factors on

variables after the regression.

We take an alpha risk at 5%. Correlation matrices are based on

Pearson correlation tests.

3.5. Segmentation task

3.5.1. Dataset
We first build a training dataset composed the 40 images from

the original dataset and 40 images obtained by flip-flops, rotations,

whitenings, or crops of these original images. This “clasical” dataset

composes our baseline. We build five “psychovisual” training

datasets where we replace part of the classically augmented images

by synthetic images which are validated by 0, 2, 4, 6, or 8 experts.

All datasets are composed of 80 images of which 40 original but the

proportion of synthetic images decreases as the number of experts

required to validate an image increases. Ground truth has been

manually segmented with the ITK-SNAP software (Yushkevich

et al., 2006).

3.5.2. U-Net
Segmentation allows the extraction of an image content from

its background. Various segmentation procedures exist but we

have chosen U-Net which is widely used in the biomedical field

(Ronneberger et al., 2015). U-Net has the advantage of working well

for small training sets with data augmentation strategies, and has

already been used for the ventricle segmentation of cleared brain

organoids (Albanese et al., 2020).

3.5.3. Training
To robustly evaluate the performance of the segmentation a

these small datasets we use a leave-one-out strategy where we only

test on the original images. This results in 40 training sessions per

dataset. We stop the training at 1,000 epochs with an average time

of training of more than 1 h for each leave-one-out loop (six cases

of augmentations× 40 images = 240 h almost for the total training

step). The summary of the leave-one-out strategy for every tested

case is summarized in Figure 3.

3.5.4. Comparison of segmentations
To compare ground truth cerebral organoid content

segmentation (GT) and U-Net (u) ones in various conditions,

mean Dice scores are calculated as:

Dice(GT,u) =
2|GT ∩ u|

|GT| + |u|
(25)

Thanks to the TP, FP, TN, and FN we could calculate the

Accuracy, the Specificity, the Sensitivity, and the F1-score. The

Accuracy is the ratio of true on the positives labels:

Accuracy =
TP + TN

TP + FP + TN + FN
(26)

The Sensitivity is the ratio between how much were correctly

identified as positive to how much were actually positive:

Sensitivity =
TP

TP + FN
(27)

The Specificity is the ratio between how much were correctly

identified as negative to how much were actually negatives:

Specificity =
TN

TN + FP
(28)

The Precision is the ratio between how much were correctly

identified as positives to how much were actually labeled as

positives:

Precision =
TP

TP + FP
(29)
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FIGURE 3

Experimental scheme of the leave-one-out strategy to test the e�ect of various data augmentation on the segmentation quality. ∗∗∗If p-value ≤ 0.001.

TABLE 1 Samples of original images and synthetic images generated by the AAE.

Original BCE BCE + L1 LS Poisson Wasserstein P. Wass.

We show 3 of the 40 images for each group: original and per AAE loss variation.

The F1-Score allow to summarize the precision and the recall

(Sensitivity) in an unique metric:

F1− Score = 2 ∗
Precision ∗ Sensitivity

Precision+ Sensitivity
(30)

3.5.5. Visualization
To highlight real/false positive/negative segmentation

we create a superimposed image composed by the ground

truth and a sample of each segmentation resulting from the

various trainings. We update the pixels values in lightpink

the FP cerebral organoid segmentations and, in lightgreen

the FN.

4. Results

We first present the metric evaluation of the synthetic images,

then the results of the psychovisual evaluation of these synthetic

images, and finally the correlations between the metrics and the

psychovisual evaluation.

4.1. Qualitative evaluation

Table 1 shows three sample input images and three of the 40

synthetic images generated by each of the six AAE variations. Some

of the generated samples are blurry and present a white imprint

(BCE, BCE + L1, LS). Others show sharper edges and less visible
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TABLE 2 Metric evaluation of AAEGAN brain organoid bright-field generated images.

Metric Best Original BCE BCE + L1 LS Poisson Wass. P. Wass.

FID Low 0.47–0.80 1.20 1.41 1.33 1.41 1.10 0.82

SSIM High 0.65–0.71 0.63 0.62 0.60 0.63 0.62 0.50

UQM High 0.63–0.87 0,83 0,83 0.84 0.84 0,83 0,82

MI High 0.21–0.47 0.37 0.39 0.36 0.41 0.46 0.42

Blur low 0.10–86.28 135.93 116.30 135.01 106.71 59.84 59.00

PSNR Low 11.9–16.6 13.47 13.74 13.53 13.74 13.17 12.86

MSE Low 93.25–106.23 103.13 103.35 104.01 103.33 103.11 102.93

We have calculated metrics on generated images from each AAE loss variations, with the BCE loss as the baseline. Scores outside the original range are in gray, best values are displayed in bold.

imprints (Poisson, Wasserstein and P. Wass.). For this group of

three losses, only a few of the generated images seem to be identical

to a given input image. For example the Poisson loss produces three

images which are a blurred version of the original. These networks

do not suffer from mode collapse.

4.2. Metric evaluation

To quantitatively confirm the visual analysis of the generated

images, we calculate several metrics on both the original and

synthetic images. These results are summarized in Table 2. This

table presents the range of values given by the original images

and the average value of each group of synthetic images (per loss

optimization).

All six groups of synthetic images are within range of the

original for the UQM, MI, PSNR, and MSE metrics. Images

generated with a Poisson or LS loss have the highest UQM index.

MI and MSE reach the best scores for the generated images using

the Wasserstein losses. The FID and SSIM are out of range for all

six groups of synthetic images. The average FID for the Perceptual

Wasterstein loss is the closest to the original (0.82 vs. 0.80). Only

the Wasserstein and Perceptual Wasserstein produce images that

on average are within the range of the Blur metric for the original

images.

Images generated with a Wasserstein and Perceptual

Wasserstein loss are on average within the range of the original

images for five out of sevenmetrics. Quantitatively, theWasserstein

and Perceptual Wasserstein networks generate images of a quality

that most reassembles the original batch. In particular, the

Perceptual Wasserstein loss generates the best results for four

of the seven metrics. It appears to be the most appropriate loss

optimization to generate cerebral organoid images with this AAE.

4.3. Psychovisual evaluation of synthetic
images

In Figure 4, we compare the occurrence of each decision

in percentages for original and generated groups. There is less

misleading in original and generated group than right decisions.

However, 30% of misleading is observed in the generated group. A

misleading corresponds to a false positive answer.

FIGURE 4

Overall view of decision per original and generated group. Error bars

indicate the variability per expert. (Left) Error rate per original and

generated group. The baseline (original) corresponds to positive rate

PR. (Right) Occurrence of answers per original and generated

group. ∗If p-values ≤ 0.05, ∗∗ if p-value ≤ 0.01, and with ∗∗∗ if p-value

≤ 0.001.

Figure 5 focuses on the images that are labeled as “natural” by

the experts. We found the number of false positive selected images

by all the participants is small (<20), and 30 images are selected by

five participants. Almost 70 images are not selected at all by experts

as natural (first column). To observe the number of false positive

answer by each experts (see Figure 5). Three experts answer less

positive answers than the others (less than the half of the visualized

dataset). One expert considered over 150 images as natural.

We retrieve the decision time before the expert give an answer

whatever the kind of generation, as shown Figure 6. Biological

experts answer in the same time for generated and original images.

However, the hesitation time is longer for false answers that for

correct answers.

4.4. Feedback on the psychovisual
procedure

Experts in cultures consider images as natural when an ovoid

shape with neuroepithelial formation and some cell dispersion
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FIGURE 5

Study of positive answers. (Left) Number of images per number of positive answers. (Right) Number of positive answers by experts.

FIGURE 6

Mean decision time for all the experts. (Left) Per original and generated group. (Right) Per decision. ∗If p-values ≤ 0.05.

appears. When we ask experts why they classify a generated image

as a synthetic, they answer the background contains an imprint,

or superimposed contours or there is an artifact, or the image is

too noisy, but they hesitate longer due to the possible content.

They explain that they classify an original image as a synthetic

because of a microscopic acquisition artifact, learned by one of the

architectures, and reproduced on the worst synthetic images. They

would like to have less images in a session, and a larger image on

the screen.

4.5. Psychovisual evaluation of loss
optimization

The error rate is particularly higher in the Wass. and P. Wass

groups than for the original one (see Figure 7 left). In the P. Wass

case this high score is strengthen by the absence of statistical

differences. These particular loss optimizations drive the experts to

mislead and consider the images from these two groups as natural.

In Figure 7 right, there is a difference between false positives of

original and generated images from BCE, BCE+L1, Wass. and

P. Wass. loss optimization. However, if we consider the intra-factor

loss comparison, we can observe statistical differences between

FP and TN of each for the BCE, BCE + L1, LS and Poisson

loss rendering too small the proportion of misleading. There is

no differences between these two occurrences decision for images

generated by a Wass. or a P. Wass. loss showing 42% of FP and

almost 60% of FP.

To observe which group of images is the most selected as

positive, we observe the number of image selected by group in the

Figure 8 left, P. Wass. and Wass. images are selected as natural

by the most of experts (a few Poisson, and a few BCE by seven

experts and L1 + BCE). The same three experts as in Figure 5 only

answer positive in most of the case for P.Wass. images (see Figure 8
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FIGURE 7

Overall results of decision per loss optimization groups. (Left) E�ect of loss optimizations on the error rate. The baseline (original) corresponds to

Positive rate (PR). (Right) Occurrence of answer per loss optimizations. ∗If p-values ≤ 0.05, ∗∗ if p-value ≤ 0.01 and with ∗∗∗ if p-value ≤ 0.001.

right). Four experts answer more synthetic images but more even

for P. Wass. Only one expert seems to answer identically for all

synthetic group of images.

If we do not consider the kind of decision, there is no difference

of decision time per group of synthesis, (Figure 9 left). When we

study the decision time per group, the experts take more time

to answer only when they are confronted to synthetic images

generated with a least square optimization (Figure 9 right).

4.6. Concordance of metrics and
psychovisual evaluations

4.6.1. Comparisons
After observing the psychovisual decisions by generated

groups, we compare qualitative and similitude metrics to the

previous results in order to verify if the same groups are selected,

but also to verify if some metrics or combination of metrics can be

used as a proxy to human psychovisual evaluation.

An overview of these results is given in Table 3 shows

no differences between decision whatever the group of loss

optimization or the calculated metric. FID is the highest for Poisson

loss than for others groups whatever the kind of decision. BLUR

metric is the highest for the decision with LS generated images.

In term of SSIM, UQI indexes and PSNR, the decision reach the

highest score for original images and no improvement is visible

with generative methods. For MSE and MI the decision rate reach

the highest score similarly for original and P. Wass. generated

images. No differences are visible in term of decision with UQI.

4.6.2. Correlations
To identify the metrics which best correspond to the

psychovisual evaluation, we plot metrics against error rate in

Figure 10. We show the Blur scatterplot as an example of point

representations. In this graphic, we observe that the green color

points (Original) are near the darker-purple ones (P. Wass.).

Figure 10 also represents the KL divergence between the P. Wass

group and all other groups for all metrics. If we look at the first

column, P.Wass andOriginal images are closest according to SSIM,

MI and UQI. These metrics are good candidates to build a metric

that mimics psychovisual evaluations.

Figure 11 summarizes the correlations between the

psychovisual assertion and the hestitation time or error rate

according to each metric or chosen metric combinations. The

main result is the absence of correlation for single metrics,

however, combination with a Blur metric, FID (for the error

rate correlations) and SSIM-FID-MI (for the time correlation)

render the highest results in Figure 11 top left. The same result

is represented in Figure 11 top right. To observe the group

representation between the Error rate or the Time and the KL

divergence of points represented for these two combinations

(Blur-FID and Blur-SSIM-FID-MI) (see Figure 11 bottom right

and left). The LS and BCE group are far from the others point

representations. P. Wass. group is superimposing the original one

with Wass. Others groups are not distinguishable, however, there

are at the peripheral zone of the perceptual-original amount. The

KL divergence representation with respect to the error rate of these

two metric combinations is given in the bottom part of Figure 11.

4.7. Influence of psycho-validated images
on a segmentation task

Then the second task is to verify the interest of using synthetic

images which have been validated by 0, 2, 4, 6, or 8 biological

experts to train a segmentation task.

4.7.1. Qualitative results
To observe the quality of the segmentation, we show a ground

truth segmentation performed with the ITK-SNAP software, and
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FIGURE 8

Study of positive answers per loss optimization. (Left) Number of images per loss optimization per number of positive answer. (Right) Number of

positive per loss optimization for each expert.

FIGURE 9

Mean decision time for per loss optimizations compared to the original input images. (Left) Globally. (Right) Per decision. ∗If p-value ≤ 0.05, ∗∗ if

p-value ≤ 0.01 and with ∗∗∗ if p-value ≤ 0.001.

automatic segmentations performed with a U-Net architecture

with various data augmentation strategies, see vignettes in Table 4.

The “0 experts” group corresponds to training the segmentation

with images that have been selected by none of the experts.

In the others training images are previously selected by 2, 4,

6, and 8 experts. We observe less false positive regions (in

pink) and false negative regions(in green) if the segmentation is

performed after training on a dataset containing images validated

by 6 or 8 experts. If synthetic images selected by six or more

experts are used for training, we observe almost no errors on

the segmentation.

4.7.2. Quantitative results
Table 4 summarizes the metrics used to compare the ground

truth segmentation with the segmentation performed by U-net

trained on data augmented with classic strategies or on a varying

portion of synthetic images. The segmentation is better when the

network is trained with images validated by 8 experts, with higher

levels of Dice, Accuracy, Sensibility and F1-score. The highest

sensitivity is reach by the group trained on 41 synthetic images

validated by two experts and by the group trained on images

validated by no experts. However, the corresponding specificity is

very low.

5. Discussion

In this part we present to our knowledge the first psychovisual

and metric evaluation comparison of Loss optimized generative

adversarial network of brain organoid bright-field images. This

study helps at validating most natural images generated by various

AAE loss optimizations. We also contribute to strengthen metric

evaluation by highlighting some images from optimized generated

adversarial network to be perceived by Human biological expert

as natural microscopic images: with a P. Wass. loss perception
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TABLE 3 Average and standard deviation of five of metrics on original and synthetic images per psychovisual decision (true or false) and per loss

optimization.

Decision Count Blur SSIM PNSR MSE MI UQI

avg. σ avg. σ avg. σ avg. σ avg. σ avg. σ

Positive

Original TP 297 64.15 50.28 0.78 0.17 42 41.49 2973 3163 0.90 0.46 0.86 0.12

BCE FP 79 100.22 15.40 0.62 0.06 13.52 3.20 3713 2610 0.856 0.14 0.83 0.10

BCEL1 FP 77 104.16 38.89 0.61 0.07 13.54 2.94 3549 2320 0.82 0.13 0.83 0.09

LS FP 39 155 44.78 0.59 0.07 13.77 3.00 3403 2276 0.78 0.11 0.84 0.09

Poisson FP 74 93.17 22.76 0.63 0.06 13.86 2.84 3275 2139 0.86 0.14 0.84 0.09

Wass. FP 134 61.47 18.25 0.61 0.06 13.33 2.38 3499 1980 0.90 0.14 0.83 0.07

P. Wass. FP 197 47.19 17.13 0.63 0.07 12.48 2.44 4272 2389 0.95 0.17 0.80 0.07

Negative

Original FN 23 44.93 25.36 0.71 0.01 10.10 0.90 6418 1326 0.88 0.23 0.78 0.04

BCE TN 241 105.01 20.95 0.62 0.06 13.57 3.16 3647 2555 0.85 0.13 0.83 0.10

BCEL1 TN 243 110.43 39.30 0.60 0.07 13.60 2.87 3477 2248 0.81 0.13 0.83 0.09

LS TN 281 156 44.21 0.58 0.06 13.79 2.80 3307 2118 0.78 0.11 0.84 0.09

Poisson TN 246 106.12 25.34 0.62 0.06 13.86 2.77 3248 2090 0.84 0.13 0.84 0.09

Wass. TN 186 56.96 17.18 0.63 0.07 13.41 2.58 3510 2116 0.90 0.13 0.83 0.07

P. Wass. TN 123 41.22 14.04 0.63 0.07 12.69 2.55 4123 2414 0.95 0.16 0.80 0.075

Best values are displayed in bold.

neurobiologists are misled 60% of the time and 40% by Wass.

They take more time to answer when they are misled. We compare

human and metric evaluation and found mutual information to be

the most related to their decision metric, although no correlation

appeared in our experiment for single metrics, but only for

combinations including blur. Using synthetic images validated by

an increasing number of experts to train a segmentation network

increases the accuracy of the segmentation with respect to classic

augmentation strategies, even if the proportion of synthetic images

decreases.

Synthetic images generated with AAE are coherent with

original dataset and thus whatever the kind of loss optimization.

The generation of brain organoid images with others architectures

does not improve the synthesize in term of quality or similitude

according to Brémond Martin et al. (2022a), whereas it seems the

case with loss optimization. The P. Wass. loss optimization of AAE

performs best according to metrics. Other loss optimizations show

also high similitude, though with a lower quality. In this context, we

plan to explore what type of information each loss brings during

the image generation. We aim at trying others embedded losses

(already used for segmentation tasks) during the generative process

based upon high level prior like object shape, size topology or inter-

regions constraints (El Jurdi et al., 2021). These losses could be used

on condition that the morphological development of CO is better

characterized.

Biomedical experts select around 40% of synthetic images as

natural compared to the original dataset. Thus, the generation by

AAE networks generate a large part of realistic images such as

the background of bright-field acquisition or, their content. The

non-selected images where considered sometimes as non-natural

due to some artifacts reproduced in some of them, or by a

superposition of contours. Nevertheless, the selected images can

help train a DL segmentation network.

A first argument of the strong validation of the selected images

as natural is the time to take a decision (Shaffrey et al., 2002). If

the time to answer natural for a generated group corresponds to

the time to answer natural or original images, we could consider

these two groups are perceived as similar. We found no differences

between original and generated images and thus whatever the kind

of loss optimization used to produce them. So they are not doubting

when they classify an image as natural or generated. However

psychovisual evaluation shows an increase of decision time before

answering when they answer as false positive (depending of the

loss optimization) or false negative. This behavior is specifically

shown from a Least Square Loss Optimization generated images

considered as natural. When we ask participants why they have

doubt on a particular image, they answer that it was linked with

some acquisition artifact learned by the generated process and

found on a lot of images (a bunch of cells) or, by a blurry contour

which could be due to the acquisition in the case of original

images (Ali et al., 2022). For false negative answers, they only

said that the artifact acquisition is also present (and they thought

it was a generated). In the future, we think a pre-process image

treatment has to be done on images to correct the acquisition

artifact before the generative process, to avoid these false negative

in the psychovisual evaluation or, to add a component in the

generative network to avoid these artifacts (Galteri et al., 2017; Ali

et al., 2022).
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FIGURE 10

Comparison of error rate per optimization losses and per metrics. (Left) Blur score with respect to the normalized error rate for all 280 images

grouped by optimization loss. (Right) KL divergence between the P. Wass group and all other groups for all metrics. Dark green represents a strong

divergence between. Groups with a small KL divergence groups with respect to P. Wass. are white.

FIGURE 11

Correlations between metrics and psychovisual assessment on all 240 synthetic images. (Left) Error rate. (Right) Hesitation time. (Top) Correlation

matrix of the ten best combinations. (Bottom) Example of error rate (resp. hesitation time) over KL divergence for a given metric combination: (Left)

Blur and FID. (Right) Blur SSIM MI and UQI.
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TABLE 4 Segmentation results after training on a varying number of synthetic images.

GT Classical No. of experts validating the synthetic images

0 2 4 6 8

No. of synthetic images – 0 33 41 22 16 14

Sample result

Dice 1.0 0.80 0.62 0.59 0.61 0.67 0.82

Accuracy 1.0 0.77 0.63 0.61 0.68 0.62 0.93

Sensitivity 1.0 0.94 0.96 0.97 0.87 0.83 0.91

Specificity 1.0 0.92 0.50 0.48 0.60 0.56 0.94

F1-score 1.0 0.84 0.64 0.61 0.64 0.59 0.87

Seventy-nine images are used for training of which 39 are from the original data set. The remaining 40 are a combination of classic transformations and synthetic images. Tests performed with

no synthetic images (classical) are compared to those performed with synthetic images validated with an increasing number of experts (0 to 8). Best values per metric are displayed in bold.

Only 15 images are selected by all the experts as natural. Five

experts select over 100 images as natural and three <80. This study

raises a question: could we use images considered by only five

experts as natural in a training step? Thus we thought we need

to increase the number of biological experts to overcome future

studies in order to be more precise on the number of images

considered as natural. We could also analyze the answers by the

field of expertise of biological experts too (separate those whomade

only culture or only microscopic acquisition from those working in

both fields).

Nonetheless, human Psychovisual experts choose in majority

images from generative adversarial network as natural if they

are from Wass. and P. Wass. loss and, a few BCE, BCE-

L1. These two first kinds of generation are also highlighted

by most of the metrics in an other study to have the

better quality and to be the most similar to original images

(Brémond Martin et al., 2022a). Thus, the psychovisual evaluation

strengthen the choice of the use of these two and particularly

the perceptual one in generative process. We can now confirm

the idea that the regulation term of the Wass. distance

between two images (Kupyn et al., 2018) could improve the

learning of the pattern or characteristics of brain organoids

in images and contribute to generate more natural images

in term of content and aspects. In future studies we will

remove the images that did not dupe the experts to only

train on human-validated images. We would like to see if this

increases the segmentation accuracy and study the impact on the

morphological characterization.

However, the few BCE and BCE-L1 images selected as natural

by psychovisual experts could maybe have also a great interest

whereas the metric are not pointing them as natural images

(Brémond Martin et al., 2022a). As we know the use of metric is

still controversial for the GAN evaluation as they are measuring

similitude and quality (Borji, 2019). Here, we could not highlight

a strong correlation between the use of certain metrics and the

decision to reject or not a generated image as natural. To correlate

a metric and psychovisual evaluation instead of a binary answer

“natural” or “not natural,” some authors use a graduation scale

(Pedersen and Hardeberg, 2012; Pedersen, 2015). This approach

could be tested in future studies.

No metric used in this study could replace a human perceptual

evaluation to decipher the naturality of an image generated. There

is a certain link with FID, BLUR or MI and the group and MI

with the mean decision but it remains weak. We could only say

that similitude and referenced-bases metrics are more linked to the

decision than qualitative metrics and non-reference-based metrics.

And when we compare metrics with decisions some patterns

appear according to the kind of loss optimization. The use or

not of a measure to decipher natural generated examples is an

issue recently discussed (Borji, 2019). To compare fairly images

generated by various optimized models, there is no consensus for

a use of a particular metric. In other fields such metric comparisons

highlight a wavelet structural similitude indexWSSI, ametric which

based upon SSIM but less complex and more accurate in term

of quality assessment (Rezazadeh and Coulombe, 2009; Pedersen,

2015). However, we do not want an identical image but one just

resembling as a natural one. This could explain these metrics are

not well designed for the GAN specific evaluation when they are

considered alone. This study comparing the overall psycho-visual

evaluation and seven metrics is one of the pioneer work which

could contribute to help at pointing a metric of “natural,” and it

failed partially.

Based upon our KL divergence maps, we suggest that a

combination of metrics which best represents the psychovisual

evaluation decision (BLUR, SSIM, MI, UQI) could be used

as a substitue for a human psychovisual evaluation which is

time consuming. Nevertheless, this work on metric combinations

replacing a psychovisual evaluations need to be further studied.

In other fields the combination of metrics help at pointing out

some results in term of quality or similitude (Yao et al., 2005;

Pedersen and Hardeberg, 2012; Okarma et al., 2021). An other

idea could also to use non-reference quality metrics combinations

(Rubel et al., 2022). Some authors tries also to implement directly

a discriminator of generative adversarial networks based upon

human perception, this could be a solution if it is not time

consuming (Fujii et al., 2020; Arnout et al., 2021). It is not the case
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in this study, for us, an important task is to found an appropriate

metric for highlighting “the naturality” of the image and replacing

the psycho-visual evaluation. An idea is to test psycho-metrics

instead of classical similitude or quality metrics such as Hype from

Zhou et al. (2019) which is an alternative of FID from Heusel et al.

(2017), or implementing the GFI quality assessment created by Tian

et al. (2022).

The more experts validate a portion of synthetic images in the

dataset, the better the segmentation quality. This suggests that if

more experts are available to select images, and strengthen the

naturality of the synthetic dataset used during the training, it could

improve the accuracy of the segmentation results. However, even

if the psychovalidation of certain synthetic images allows us to

improve the segmentation, this method is still subjective. It could

include biases of the experts about the model, its configuration,

and the project objective. It requires knowledge of which images

are considered as natural and which ones are not for the target

domain, so the number of experts available in the field diminished

while our task required more experts. It is limited to the number

of images that can be reviewed in a reasonable time (Booij et al.,

2019).

Validation by six experts is the minimum to improve the

segmentation, but quantitative analysis show us, eight experts

validation is the minimum due to the equilibrium state between the

specificity and the sensibility. The performance of human judges

is not fixed and can improve over time, other articles choose a

validation by 15 experts for instance which is not possible in our

biomedical context which requires experts in the field (Denton

et al., 2015; Salimans et al., 2016b).

We could also apply this psychovisual evaluation on others

datasets to attempt to answer more specifically to the metric

replacement. We thought about noise optimized generated images

of brain organoids with an AAE for the same aim (BrémondMartin

et al., 2022b). It could be interesting to observe if with a noise

injection, similar to the bright-field acquisition images, generated

images are more perceive as natural even if metrics are not pointing

a particular kind of noise. Indeed, qualitative and similitudemetrics

point out Gaussian noise and shot noise injection. But as said

previously, this could maybe only due to the metric choice (Borji,

2019). An analysis of Psychovisual evaluation could maybe help

at highlighting a combination of metrics. In this future study, it

could be also interesting to observe for example the microscopic

experience of the Biological expert as a new criterion. A larger

application of this methodology could be made on others kind of

generation (such as on GAN, Goodfellow et al., 2014 or DCGAN,

Radford et al., 2015) and maybe help at pointing out the best

GAN model for brain organoid generation used during a training

segmentation task.

In this study we use a unbalanced dataset with more synthetic

images than original. Nevertheless, biological experts do not know

the number of real or synthetic images which render it unbiased.

In future studies, we need to obtain and use more original images

in order to re-equilibrate. We use a software created specifically

for the psychovisual task for brain organoid images. The software

needs to be updated due to some limitations. We have to realize

batch process with pauses to limit the tiredness of biological experts

similar to others psychovisual evaluations (Shaffrey et al., 2002).We

have to add also a cursor with a score instead of a button to estimate

a natural range in future studies and facilitate correlations studies

(Tian et al., 2022). The size of the image of the screen has to be

increase but not for all the participants. Apart from these updates,

the use of the software is simple and practical according to their

feedback.

To strengthen our statistical analysis we should increase the

number of biological experts. However, it could include biases of

the experts: it requires knowledge of which image is considered as

natural and which one is not for the target domain, so the number

of experts available in the field is diminished while our task required

more experts. The performance of human judges is not fixed and

can improve over time, other articles choose a validation by 15

experts for instance which is not possible in our biomedical context

which requires experts in the field (Denton et al., 2015; Salimans

et al., 2016a). Moreover, psychovisual evaluation is limited to the

number of images that can be reviewed in a reasonable time (Borji,

2019). The tradeoff between the number of synthetic images used

to train a network and the number of validating experts could be

further explored.

6. Conclusion

In this study psycho-visual evaluations allow us to:

• Validate some synthetic image generated from loss

optimization of generative brain organoid images with

an AAE in term of decision time and decision.

• Describe the quality and similitude of the synthetic images

with the original dataset by a metric validation.

• Verify if some synthetic images could be considered as natural

by psychovisual expert decision.

• Compare psychovisual and metric evaluations.

• Paves the way to finding a metric or a metric combination that

mimics psychovisual evaluations.

• Show the interest of selecting images validated by the highest

number of experts in a data augmentation strategy for a

segmentation task.

This selected images could be use in the training

phase of a segmentation task in order to help at their

morphological development characterization for instance.

We also need to evaluate psychovisually noise injected optimized

synthesized images.

In future studies we suggest a combination of metrics or a

perceptual metric could maybe help at replacing the psycho-visual

assessment which is time consuming. Such methodology could be

used for others brain organoid data-sets generated with a generative

adversarial network.
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