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Tremendous advances in oceanographic observing and modeling systems over the 
last decade have led to unprecedented developments in the nature of information 
available to marine science. While improvements in observational technologies and 
networks have garnered much attention, remarkable developments in forecasting the 
ocean have received much less focus. Exploiting this new predictive skill to improve 
scientific understanding, generate advice and aid in the management of marine 
resources, is emerging as one of the new challenges of marine science.

Translating predictions of the physical environment into biological outcomes, 
however, is not straightforward. Fisheries scientists, for example, have been trying 
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to understand the links between physics and biology, and generate predictions of 
variables such as recruitment, for close to a century, with limited success. Nevertheless, 
spatial distributions and the timing of key events, which have received less focus, are 
often tightly linked to the physical environment and may have management-relevant 
applications. The first-such forecasts based on this skill are now starting to emerge.

This Frontiers in Marine Science Research Topic provides a snapshot of the  
state-of-the-art in Marine Ecological Prediction. It covers the opportunities for 
developing such forecasts, technical approaches that could be employed, and 
examples where the technology is already being applied. This body of work therefore 
marks an important milestone on the route to developing this new and exciting field 
of marine science.
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Editorial on the Research Topic

Seasonal-to-Decadal Prediction of Marine Ecosystems: Opportunities, Approaches,

and Applications

A quiet revolution is taking place in marine science. Like a caterpillar entering its chrysalis, marine
biology is metamorphosing into something new. Leaving its empirical origins behind, the first
signs of the predictive skill that characterizes sciences such as physics and chemistry are now also
emerging in biology. Climate scientists and oceanographers, taking advantage of the tremendous
advances in observational technology, scientific understanding, and computing power in recent
years, can now make skilful forecasts of the state of the ocean seasons, years, and in some cases
up to a decade into the future (Doblas-Reyes et al., 2013; Meehl et al., 2014). Such forecasts are
an exciting opportunity for marine ecologists and fisheries scientists, who finally may be able to
realize the dream of predictive skill present at the very birth of their field (e.g., Helland-Hansen and
Nansen, 1909). The first such pioneering products have already been operational for some years
now (e.g., Hobday et al., 2011; Eveson et al., 2015), and a second wave of products, inspired by the
successes of the first, is now building. A revolution is indeed, underway.

The manuscripts collated here sample the state-of-the art in seasonal-to-decadal forecasting
of marine ecosystems. Starting with the ocean itself, we look at developments in forecasting
the physical and biogeochemical environment. Case studies examine both operational marine
ecological forecast products and other instances where products could be developed. We then
look more generally at the way that forecasts can be used and evaluated and at their relationship
to climate-scale projections. Finally, we synthesize the lessons learned from this first generation
of forecasts.

Ocean predictability forms the basis for ecological predictability, and advances in this field are
providing exciting new opportunities to develop ecological forecasts from seasonal to multi-annual
to even decadal scales. For example, while the open ocean has been the main focus of forecast
development, economically important coastal regions have received less attention. Tommasi et al.
assess the ability of an earth systemmodel to make predictions of such regions on the multi-annual
timescale. They find surprisingly good results, showing useful skill for most regions, allowing
potential development of forecasts directly relevant to fisheries, aquaculture, and coastal assets
such as coral reefs. Rousseaux et al. highlight another new front by demonstrating the ability
of a fully-coupled biogeochemical model to forecast chlorophyll. They suggest that it may be
possible to move beyond temperature-driven ecological forecasts and potentially incorporate other
biologically relevant variables, such as productivity.
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We present several case studies of systems where there are
already operational forecast products, or where they could be
developed in the future. NOAA’s Monthly Bleaching Outlook,
detailed by Liu et al. is one of the longest running high profile
marine ecological forecast products. This system was key in
foreseeing and responding to the third global bleaching event
(2014–2016), where it motivated adaptation responses (e.g.,
closing reefs to tourism) even before the event started. Mills
et al. describe the development of a forecast system for the
timing of American lobster landings in the Gulf of Maine,
inspired by the needs of the local fishing industry. The work
serves as an excellent example of the full development cycle
of a forecast product, starting from end-user needs, applying
science, and communicating the results in an easily understood
manner. Hátún et al. proposes a causal link between the breeding
success of kittiwakes on the Faroe Islands and the abundance of
zooplankton on the feeding grounds that can potentially drive
a predictive system. Strand et al. present an investigation of the
advection of cod larvae along the Norwegian coast, showing
that wind driven events can hinder larvae reaching their nursery
grounds and potentially inform a recruitment forecast.

The ultimate test of model performance comes when it is
applied in the real world. Turner et al. test a bycatch forecast
model using a designed experiment with commercial fishing
vessels but find that, in the real world, their model has little
predictive skill. While this may be disappointing, there have
nevertheless been clear benefits arising from close collaborative
research with the industry.

Seasonal and decadal forecasting systems are also intimately
linked to climate projection systems: indeed, in most cases they
are actually the same model being used in slightly different
ways. Hobday et al. show how to combine predictions and
projections to develop a full picture of the evolution of the ocean
system. Their framework can be used by marine managers and
businesses to improve their decision making and profitability,
but also to prepare coping strategies during adverse times. Silber
et al. also examine this relationship via a discussion about
the challenges of modeling marine mammal distributions in
a changing climate. The authors provide a useful scheme for
prioritizing the organisms to focus on, with the best candidates
being vulnerable species where there is a high management need
and plentiful data.

The final paper, Payne et al. reviews the current state of
marine ecological forecasting, with a view to summarizing the
lessons learned. They find that the majority of operational marine
ecological forecast products are of species’ spatial distributions,
rather than their abundance. As abundance prediction is critical
for fisheries management and quota setting, improving ecological
abundance forecasts will expand the set of users. The lesson
common to all of the forecast products they examine is the
importance of a close collaboration between scientists, who can
inform about what is feasible, and end-users, who can define what
is useful.

In conclusion, the papers here show that marine ecological
forecasting is a rapidly evolving field with great potential
to support the decision-making of end-users. However, what
ultimately emerges from the chrysalis remains to be seen.

Will the field break into the scientific and management
mainstream, or will it remain limited to niche applications?
Will multi-year forecasting be possible in all regions of
the worlds ocean? Maintaining the existing momentum and
increasing the portfolio of ecological forecast products will be
challenging, particularly once the “low-hanging fruit” have all
been “picked.” Nevertheless, based on the products available to-
date, it is clear that seasonal-to-decadal prediction of marine
ecosystems is both a viable scientific discipline and one that
will make a significant contribution to the management and
performance of marine industries now and in the years
to come.
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Decisions made by fishers and fisheries managers are informed by climate and fisheries

observations that now often span more than 50 years. Multi-annual climate forecasts

could further inform such decisions if they were skillful in predicting future conditions

relative to the 50-year scope of past variability. We demonstrate that an existing

multi-annual prediction system skillfully forecasts the probability of next year, the next 1–3

years, and the next 1–10 years being warmer or cooler than the 50-year average at the

surface in coastal ecosystems. Probabilistic forecasts of upper and lower seas surface

temperature (SST) terciles over the next 3 or 10 years from the GFDL CM 2.1 10-member

ensemble global prediction system showed significant improvements in skill over the use

of a 50-year climatology for most Large Marine Ecosystems (LMEs) in the North Atlantic,

the western Pacific, and Indian oceans. Through a comparison of the forecast skill of

initialized and uninitialized hindcasts, we demonstrate that this skill is largely due to the

predictable signature of radiative forcing changes over the 50-year timescale rather than

prediction of evolving modes of climate variability. North Atlantic LMEs stood out as the

only coastal regions where initialization significantly contributed to SST prediction skill at

the 1 to 10 year scale.

Keywords: decadal predictions, multi-annual predictions, climate forecasts, large marine ecosystems, fisheries,

probabilistic forecasts, sea-surface temperature predictions

INTRODUCTION

Living marine resources (LMRs) and the marine ecosystems within which they exist are critical to
human health and coastal economies, providing services worth US$21 trillion each year (Costanza
et al., 1997). LMRs are strongly influenced by climate variability (Cushing and Dickson, 1976;
Sharp, 1987; Lehodey et al., 2006; Brander, 2007, 2010; Drinkwater et al., 2010; Ottersen et al.,
2010), creating a challenge for marine resource managers and fishers. Temperature fluctuations,
serving as proxies of important climate-driven ocean or ecosystem processes, are often associated
with variation in the productivity and spatial distribution of LMRs (e.g., Ellertsen et al., 1989; Dorn,
1992; Peterman et al., 1998; Mueter et al., 2002, 2011; Beaugrand et al., 2003; Perry et al., 2005;
Sullivan et al., 2005; Nye et al., 2009; Hunt et al., 2011; Kristiansen et al., 2011; Lindegren and
Checkley, 2013; Pinsky et al., 2013; Pershing et al., 2015).
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Century-scale temperature projections have been used to
show the impact of climate change on LMRs (Stock et al., 2011).
More recently, seasonal SST forecasts have started to improve
management and industry decisions at shorter time-scales
(Hobday et al., 2016; Tommasi et al., 2017a). Many decisions,
however, would benefit from climate forecasts over multi-annual
scales, in which both climate change and internal climate
variability can act to provide predictability (Tommasi et al.,
2017b). For instance, catch advice is dependent on a forecast of
fish abundance 1–3 years into the future (Brander, 2003). To
set rebuilding targets for overfished stocks, such forecasts need
to be extended 10 years into the future (NRC, 2014). Currently,
these stock status projections are developed using historical
observations that often span 30–50 years (RAM Legacy Stock
Assessment Database, www.ramlegacy.org). Fisheries managers
are therefore interested in assessing if temperature over the
next years to decade will be high or low relative to the past
30–50 years used to develop their management frameworks.
Such forecasts can inform managers on the need to develop
reference points more reflective of future conditions and climate-
informed stock status projections (Tommasi et al., 2017b). Multi-
annual climate predictions can also benefit long-term spatial
planning decisions regarding changes to closed areas, the setting
of future closures, preparation for emerging fisheries, adjustment
of quotas for internationally shared fish stock, and industry
capital investment decisions (Tommasi et al., 2017b). However,
while the skill of seasonal SST forecasts has been assessed at an
LMRs-relevant spatial scale (i.e. the coastal shelf) (Stock et al.,
2015), multi-annual SST predictability in coastal ecosystems has
not been quantified, limiting their use in LMRs management
decisions.

How SST will evolve across inter-annual to decadal time scales
is a function of both internal climate variability (e.g., El-Niño
Southern Oscillation, ENSO; the Pacific Decadal Oscillation,
PDO; Atlantic Multidecadal Variability, AMV) and forced
climatic changes from greenhouse gases and aerosol emissions,
as well as natural forcings like volcanoes and solar variations
(Meehl et al., 2009, 2014; Doblas-Reyes et al., 2013). Thus, multi-
annual predictive skill is dependent on initializing a climate
model in the correct state of internal climate variations (i.e.,
an initial-value problem), imposing accurate external forcing
(i.e., a boundary-value problem), and correctly simulating
the evolution of the predictable climate system components
arising from the initial state and external forcing. Each of
these is challenging on its own. Several studies, however, have
now shown that in the North Atlantic Ocean, the Southern
Ocean, and, more weakly, the western North Pacific Ocean,
initialization of the present climate state can significantly
contribute to forecast skill over many years (van Oldenborgh
et al., 2012; Doblas-Reyes et al., 2013; Yang et al., 2013; Meehl
et al., 2014; Msadek et al., 2014; Corti et al., 2015). Further
studies suggest that, over most of the globe, the main source
of 2–10 year SST prediction skill is the externally forced
signal due to greenhouse gases and aerosols (van Oldenborgh
et al., 2012; Corti et al., 2015). That is, greenhouse gases,
ozone and aerosol conditions today and their future evolution
allow one to make meaningful predictions about the next

decade relative to the range of conditions over the past half-
century.

By exploiting both sources of predictability, skillful multi-
annual SST predictions are possible (Smith et al., 2007;
Keenlyside et al., 2008; van Oldenborgh et al., 2012; Doblas-
Reyes et al., 2013; Yang et al., 2013; Corti et al., 2015), with
the North Atlantic, Indian Ocean, and western Pacific being
regions of significant skill even at the longer lead times of 6–10
years (Meehl et al., 2014). Interpretation of these results must
be tempered by the limited effective sample size for assessing
decadal predictions (Meehl et al., 2014) but they provide reason
for cautious optimism concerning the use of multi-annual to
decadal predictions for marine resource applications. It remains
to be assessed if the observed multi-annual prediction skill over
large ocean regions results in useful multi-annual prediction skill
at the coastal scales relevant to most marine resource decisions.
Furthermore, it is unclear whether the forced signal, which
becomes prominent across century scales, is also sufficient to
produce significant skill relative to the 30–50 year reference data
sets common in fisheries management. That is, will the next 1–10
years be warmer or cooler than the past 30–50 years upon which
decisions are being made?

In this paper, multi-annual SST forecasts are evaluated
through this fisheries lens. More specifically, we assess the ability
of the forecast system to predict if conditions over the next
year, 1–3 or 1–10 years will be warmer or colder than the
last 50. This is also the first time that these multi-annual SST
predictions are evaluated over Large Marine Ecosystems (LMEs)
(Figure 1), a coastal scale relevant to managed fisheries stock.
LMEs are coastal areas of 200,000 km2 or greater, whose extent
is determined by similarities in ecologically relevant variables
including bathymetry, hydrography, productivity, and trophic
relationships (Sherman, 2014). These coastal ecosystems serve
as a particularly relevant scale for LMRs decisions as, while
only making up ∼1/10th of the world’s oceans, they provide
95% of the world’s total fish catch (Stock et al., 2017). We
focus on assessing the probabilistic skill of the upper and lower
terciles of SST, as these events are of greatest concern to LMRs
managers and industry stakeholders (e.g., Spillman et al., 2015).
While forecast users are largely concerned with the overall
forecast skill, to improve multi-annual prediction systems it is
also important to identify sources of prediction skill. Thus, to
determine the sources ofmulti-annual SST predictability in LMEs
we verify forecasts with both initialization and external forcing
via greenhouse gases and aerosols (“initialized”) and those that
include just the external forcing (“uninitialized”).

METHODS

Multi-Annual Climate Predictions
We enlist a set of initialized and uninitialized climate forecasts
to accomplish our objectives. The uninitialized forecasts isolate
the contribution of the “forced” signal (i.e., that due to
greenhouse gases and aerosols), while the initialized forecasts
include skill arising from both the forcing and the initialization.
The combination thus allows us to determine the source of
prediction skill, at least between these two broad categories.
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FIGURE 1 | Global map of Large Marine Ecosystems (LMEs). Image Credit: NOAA Large Marine Ecosystem Program. No permission was required from the copyright

holder for the preproduction of this image.

Both initialized and uninitialized climate forecasts are produced
with the Geophysical Fluid Dynamics (GFDL) CM 2.1 global
climate model (Delworth et al., 2006). CM 2.1 has an atmospheric
resolution of 2◦ and an ocean resolution of 1◦ (see Table
A1 in the Supplement for a specification of how many
ocean model grid points are in each LME). In initialized
predictions, the model is constrained by the observed climate
state using the Ensemble Coupled Data Assimilation system
(ECDA, Zhang et al., 2007; Zhang and Rosati, 2010, ECDA
output is available at https://www.gfdl.noaa.gov/ocean-data-
assimilation-model-output/). The atmosphere assimilates the
NCEP atmospheric reanalysis (Kalnay et al., 1996), while the
ocean is constrained by SST observations from satellite and
profiles of temperature and salinity from the World Ocean
Database (Boyer et al., 2009). All simulations use observed
volcanic forcing.

The chaotic nature of the climate system, uncertain and
limited observations used to initialize prediction systems,

imperfections in climate model formulations, and uncertainty
in future radiative forcing lead to climate predictions being
inherently uncertain. The first three sources of uncertainty are the
most dominant for multi-annual climate forecasts. To quantify
some of this uncertainty, climate prediction centers produce a
set of predictions called a forecast ensemble. Each ensemble
member is a prediction produced using slightly different initial
conditions. These ensemble forecasts are also essential to
communicate to users the likelihood of future climate outcomes
through probabilistic forecasts. Here, a 10-member ensemble of
retrospective predictions of 1–10-year lead time was developed
by first initializing the model on January 1 of every year from
1965-2011 and thenmaking predictions of annual SST conditions
1–10 years into the future (Yang et al., 2013; Msadek et al.,
2014). For instance, a 1-year lead SST forecast initialized in 1995
corresponds to the average SST from January to December 1995,
while a 10-year lead SST forecast initialized in 1995 corresponds
to the average SST from January to December 2004. Hence the
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hindcast period varies with lead time, spanning the period of
1965–2011 for a lead 1 forecast and the period of 1974–2020
for a 10-year lead prediction. The 47 initialization years, 10 lead
times, and 10 ensemble members resulted in a total of 4,700
predictions. Using these predictions, we developed SST forecasts
for management timeframes of interest to LMR users: over the
next year, over the next 3 years, and over the next 10 years. A 1-
year lead time prediction provided the forecast of next year SST
conditions. Forecasts of annual SST conditions over the next 3 or
10 years were developed by averaging predictions of 1–3-year or
1 to 10-year lead times, respectively.

The model was forced with prescribed temporally varying
anthropogenic (e.g., greenhouse gases) and natural (e.g., volcanic
aerosols) radiative forcing following the CMIP5 historical and
RCP4.5 scenarios (Meinshausen et al., 2011). The uninitialized
10-member ensemble predictions were computed in the same
manner except that the model was not initialized to observations.
Its initial state is consistent with the greenhouse gas and aerosol
conditions for each year, but the internal modes of climate
variability (e.g., ENSO) overlying this mean climate state are
random. Thus, skill of the uninitialized predictions is only
dependent on the forced signal (greenhouse gases and aerosols).
The predictions were retrieved from the GFDL archive, but are
also available on the GFDL data portal (data1.gfdl.noaa.gov). SST
predictions for each LME were extracted from the global dataset
and spatially averaged over each LME.

Forecast Verification
Forecast skill was evaluated against the Hadley Centre Sea
Ice and Sea Surface Temperature (HadlSST1.1) observational
dataset at 1◦ resolution. The monthly data for 1965–2015 was
downloaded from the U.K. Met Office (www.metoffice.gov.uk/
hadobs/hadisst/) and annual averages were computed for each
LME. Note that because of ice coverage and other issues, the
Antarctic and Arctic LMEs had sparse annual observational SST
data going back to the 1960s and hence were removed from the
analysis.

Due to imperfections in the climate model formulation, after
initialization, the model drifts to its preferred climate state.
Hence, there is a systematic difference between the model and
the observed climatologies. This systematic bias in the mean
was removed by subtracting a lead-dependent model climatology
from the prediction and computing forecast anomalies (CLIVAR,
2011). The climatology spanned the length of the hindcasts and
was produced using cross-validation, that is without the year
being forecasted. Note that as observations were available up to
2015, the length of hindcasts that could be verified for lead times
6–10 years ranged from 46 to 42 years, respectively, instead of the
47 years used for lead times 1–5 years.

Once the forecast anomalies were produced, the upper and
lower terciles of SST for each LME were calculated. Following
Becker and van den Dool (2016), for each lead time, a normal
distribution was fit over all available hindcasts (minus the year
being forecasted) across all ensemble members, and the standard
deviation (std. dev.) was calculated. Forecast anomalies above
+0.43∗std. dev. were considered above normal (upper tercile)
and forecast anomalies below −0.43∗std. dev. were considered

below normal (lower tercile). Using the standard deviation fit
to the forecast data to define the forecast terciles corrects for
systematic biases in forecast spread (Becker and van den Dool,
2016).

Performance of the retrospective forecasts was assessed by
calculating forecast accuracy and the Brier Score (BrS). Accuracy
measures the proportion correct of a yes/no forecast of an event
(Wilks, 2011) and is defined as:

Accuracy = (hits+ correctnegatives)/totalnumberofhindcasts

Here the event was SST being in the upper (or lower) tercile.
Upper and lower tercile events were assessed separately, and the
prediction for each ensemble member, initiation year, and lead
time was assigned a 1 (event happened) or a 0 (event did not
happen). The event was forecast to occur if more than half of the
ensemble members predicted the event. Hits were the number of
times that both the forecast and observations were in the upper
(or lower) tercile and correct negatives were the number of times
that both the forecast and observations were not in the upper (or
lower) tercile. Forecast accuracy ranges between 0 and 1 (perfect
skill), with, for terciles, accuracy greater than 0.56 being better
than chance (Spillman and Hobday, 2014).

Forecast accuracy is a relatively easy to understand skill
metric, but all the ensemble predictions are reduced to a single
yes/no forecast. Hence, we also produced a probability forecast
for each category as the fraction of ensemble members being in
the upper (or lower) tercile for each initiation year and lead time.
The quality of the probabilistic forecast was assessed using the
Brier Score (BrS). The BrS is an estimate of the mean square error
of the probabilistic forecast (Wilks, 2011) and is defined as:

BrS(t) =
1

N

∑N

α=1
(f∝ (t) − o∝(t))

2

Where t is the lead time, f is the forecasted probability of an event
determined by the fraction of forecast ensemble members within
the upper (lower) tercile, o is the observed probability of an event
(either 0 or 1), andN is the length of the hindcast period. The BrS
ranges from 0 (perfect score) to 1.

Currently, fisheries decisions assume that future
environmental conditions impacting fish productivity (i.e.,
recruitment, mortality, growth), will be like the past. Future
productivity is determined by drawing random samples from the
full range of past environmental conditions. Thus, it is of interest
to evaluate forecast skill relative to climatology (i.e., assume that
upper and lower tercile events will always have a 0.33 probability
of occurrence). Probabilistic forecast skill was hence also assessed
relative to climatology using the Brier Skill Score (BSS), which
compares the BrS or the forecast to that of a reference forecast
(Wilks, 2011):

BSS(t) = 1− BrS(t)/BrSref(t)

The BrSref was computed using the climatological frequencies
(0.33 in the case of tercile events).

Finally, to assess if most of the forecast skill was derived
from correctly forecasting the internal variability of the climate
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system (i.e., ENSO or PDO events) or from the warming trend,
the skill of the initialized forecast was compared to that of
an uninitialized forecast by computing a BSS where the BrSref
was the probability forecast of the uninitialized forecasts, post-
processed in the same manner as the initialized forecasts. The
BSS ranges from 1 (perfect score) to negative infinity (no skill).
Negative scores indicate no additional skill as compared to the
reference forecast.

Sampling uncertainty was assessed by computing confidence
intervals for each of the skill metrics described above using
a bootstrap procedure (Mason, 2008; Wilks, 2011). Forecast-
observation pairs were randomly resampled with replacement
to generate 1,000 new forecast-observation vectors of length 47.
Skill metrics were computed for each of the 1,000 vectors to
obtain a sampling distribution for the skill scores. The lower and
upper 95% confidence intervals were defined by the 0.025 and
0.975 quantiles.

RESULTS

Forecast accuracy in predicting temperatures as being in the
higher or lower tercile with a 1 year lead time exceeded 0.7 in
80% of LMEs (Figures 2–4). Forecast accuracy was particularly
high for LME’s in the North Atlantic, with LMEs from the
Norwegian to the Iberian coastal shelves in the eastern Atlantic
and the Newfoundland-Labrador Shelf, the Caribbean Sea, and
the North Brazil Shelf on the western side exceeding 0.8
accuracy for predictions of both upper and lower tercile events
(Figures 2, 3). In the Indian Ocean, forecast accuracy exceeded
0.8 in the West-Central Australian Shelf. While accuracy was
generally lower for Pacific Ocean LMEs, upper and lower tercile
events in the East China Sea, South China Sea and Sulu-Celeb
Sea, were predicted with over 0.8 accuracy (Figures 2, 3). By
contrast, forecast accuracy in southern and eastern Pacific Ocean
LMEs, namely the Indonesian Sea, the Northeast and Southeast
Australian shelves, New Zealand, the Humboldt Current, the
Central-American shelf, the Gulf of California, and, for the lower
tercile, the California Current, was not significantly higher than
random chance (Figure 4). Forecast skill was also low in the
Patagonia Shelf, the Benguela Current and the Southeast US
(Figures 2–4).

When the forecast lead time was extended to 1–3 years,
forecast accuracy for both upper and lower terciles generally
increased (Figures 2–4). At this lead time, accuracy greater than
0.8 was extended to most LMEs in the Indian and western Pacific
Ocean, and to the Scotian Shelf, Northeast US, and East Brazil
Shelf in the Atlantic Ocean (Figures 2, 3). However, accuracy
remained not significantly different than that of a random
forecast in the Benguela Current, Southeast US and the southern
and eastern Pacific Ocean (Figures 2–4).

When the forecast lead time was extended to 1–10 years,
forecast accuracy for both upper and lower tercile events
increased in most LMEs (Figures 2–4). Forecast accuracy for
both upper and lower terciles was greater than 0.9 for all LMEs
in the Indian Ocean except the Gulf of Thailand, all Atlantic
LMEs except the Southeast US, the South Brazil Shelf, and the

Patagonia Shelf, and in the western Pacific from the East-Central
Australian shelf to the Sea of Japan (Figures 2, 3). In the eastern
Pacific, the only LME showing an increase in accuracy was
the equatorial Central-American Shelf (Figures 2, 3). Accuracy
remained not significantly different than that of a random
forecast for the Gulf of Alaska, the California Current, the
Gulf of California, and the Humboldt Current (Figure 4). The
observed increased prediction skill from 1 year to 1–10 year
averages reflects the prominence of the forced signal in driving
multi-annual prediction skill. This may seem counter-intuitive,
as the 10-year time horizon minimizes the value of initialization.
However, for a 1–10 years prediction this negative impact
is surpassed by longer averaging periods, which smooth out
unpredictable internal variability, and longer time horizons
increasing the prominence of a predictable forced signal. When
the averaging period was reduced to three years, as in the
1–3 years forecast, for a prediction of conditions 8–10 years
into the future, forecast accuracy, while still significant over
many LMEs owing to the prominence of the forced signal,
decreased as compared to a 1–3 years forecast because of the
reduced impact of initialization at this longer lead time (Compare
Figures 2, 3–5).

Probabilistic forecast skill of both upper and lower tercile
SST anomalies, as determined by the BrS, mirrored patterns in
forecast accuracy. For a 1 year lead time, forecast error was
highest in the Patagonia Shelf, the Southeast Australian Shelf, the
Southeast US, the Benguela Current and the Gulf of California
(Figures 2, 3, and Figure A1). Forecast error generally decreased
with increasing forecast average, a notable exception being the
eastern Pacific Ocean LMEs, the Patagonian Shelf, the South
Brazil Shelf, the New Zealand Shelf, the Gulf of Thailand, and the
Southeast US (Figures 2, 3, and Figure A1).

The accuracy and BrS demonstrated that forecasts of upper
and lower SST terciles relative to conditions over the past 50
years were skillful for most LMEs globally and across lead
times of interest to fisheries decisions (Figures 2–4). Forecasts
were generally more skillful than climatology, with the BSS
being positive over most LMEs for all lead times for both
upper and lower tercile events (Figures 6, 7). As was the case
with accuracy and BrS, BSS increased from 1, 1–3 to 1–10
years, with similar patterns of relative skill across systems.
At 1 year lead times, uncertainty was sufficiently large that
forecast skill was significantly better than climatology (i.e., BSS
confidence interval did not cross 0) only in North Atlantic LMEs,
the western equatorial Pacific Ocean LMEs, and the Western
Central Australia Shelf (Figures 6, 7, and Figure A2). Skill over
climatology was generally better for lower tercile events, with
significantly positive BSS also extending to the Agulhas Current,
Somali Coastal Current, Bay of Bengal, and all LMEs in the
Australian shelf in the Indian Ocean; the California Current and
Gulf of Alaska in the eastern Pacific Ocean; and to the Canary
Current, the Scotian shelf, the Caribbean Sea, and the East and
South Brazil shelves in the Atlantic Ocean (Figure 7 and Figure
A2). As forecast skill improved with increasing forecast average
for most LMEs, so did skill over climatology, except for the
Southeast US, the Patagonian Shelf, the South Brazil Shelf, the
New Zealand Shelf, and eastern Pacific LMEs which showed no
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FIGURE 2 | Forecast accuracy (left) and Brier Score (BrS, right) for upper SST tercile predictions for a 1 year ahead forecast and over the next 3 and 10 years.

Forecast accuracy ranges between 0 (no skill) and 1 (perfect skill). The BrS ranges from 0 (perfect score) to 1 (no skill).

improvement over climatology for a 10 years forecast average
(Figures 6, 7, and Figure A2).

The BSS relative to the uninitialized forecasts was positive for
most LMEs for both upper and lower tercile events for a 1 year
lead time forecast, suggesting that initialization contributed to
forecast skill at this lead time (Figures 6, 7). However, forecasts
were uncertain and most lower 95% confidence intervals
exceeded zero (Figure A3). Only predictions for the Celtic-
Biscay Shelf, the Faroe Plateau, the Newfoundland-Labrador
Shelf, the Gulf of Alaska, and the West-Central Australian Shelf
LMEs showed significantly better skill than the uninitialized
forecasts at a 1 year lead time (Figure A3). As forecast lead time
progressed, skill relative to the uninitialized forecast decreased
(Figures 6, 7). The BSS relative to the uninitialized forecast
was near 0 or negative in many LMEs at the 10 years forecast
average as much of the forecast skill was derived from the
forced signal (Figures 6, 7). As for the 1 year lead time, there
was largely no significant difference between initialized and
uninitialized forecasts at 1–3 and 1–10 years lead times (Figure
A3). Forecasts for LMEs around the Atlantic subpolar gyre,
namely the Newfoundland-Labrador Shelf, Scotian Shelf, Faroes
Plateau, Norwegian Sea, North Sea, Celtic-Biscay Shelf, and the
Iberian Coastal, were an exception, showing significant skill over
the uninitialized forecast for the 10 years forecast average for both
upper and lower tercile events (Figures 6, 7 and Figure A3).

DISCUSSION

This work demonstrates that global climate forecasts have
significant skill in predicting occurrence of above average warm
or cold SST events at a multi-annual scale in coastal areas, with
average being the mean SST conditions over the past 50 years. At
a 1 year lead time, forecasts were more skillful than climatology
in the North Atlantic, the Western Central Australia Shelf, and
the western equatorial Pacific Ocean. Prediction skill increased
with longer forecast averages. Predictions of upper and lower
SST terciles over the next 3 or 10 years were significantly better
than climatology over most LMEs in the North Atlantic, the
western Pacific, and Indian oceans. This is consistent with studies
showingmulti-annual retrospective forecast skill over the Indian,
western Pacific andNorth Atlantic oceans (van Oldenborgh et al.,

2012; Doblas-Reyes et al., 2013; Karspeck et al., 2015).
Over large ocean regions, much of the predictive skill at a

multi-annual scale is associated with the ability of multi-annual

prediction systems to correctly predict the response of the climate
system to increasing greenhouse gas emissions (van Oldenborgh

et al., 2012; Doblas-Reyes et al., 2013; Yang et al., 2013; Müller
et al., 2014; Corti et al., 2015; Karspeck et al., 2015). Here we show
that this conclusion also applies to the regional shelf scale, with

forecast skill of the uninitialized predictions being comparable to

that of the initialized forecasts over most LMEs. Furthermore, as
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FIGURE 3 | Forecast accuracy (left) and Brier Score (BrS, right) for lower SST tercile predictions for a 1 year ahead forecast and over the next 3 and 10 years.

Forecast accuracy ranges between 0 and 1 (perfect skill). The BrS ranges from 0 (perfect score) to 1 (no skill).

unpredictable internal variability is smoothed out by forecasting
over a longer period (García-Serrano and Doblas-Reyes, 2012),
the relative importance of the warming trend in driving SST
increases for forecasts of SST conditions over the next 3 or 10
years and these forecasts were more skillful than 1 year lead
time predictions. The importance of the radiatively forced signal
in providing skill on a 1–10 years scale suggests the potential
viability of a purely statistical forecasting system in those LMEs
where the forced signal dominates. Such a comparison is outside
of the scope of this paper. We note, however, that a statistical
approach would be unable to capture changes in the rate of
warming over time and the high multi-annual prediction skill of
North Atlantic LMEs arising from initialization.

North Atlantic LME’s stood out as the only ones where
initialized SST forecasts for the next 10 years were significantly
more skillful than the uninitialized predictions. Even when the
forecast lead time was increased to 8–10 years, initialized forecast
skill remained significantly higher than that of an uninitialized
prediction for some North Atlantic LMEs (Figure A6). Other
work has shown that initialization greatly improves multi-annual
forecast skill in the subpolar gyre region of the North Atlantic
(Keenlyside et al., 2008; Pohlmann et al., 2009; van Oldenborgh
et al., 2012; Doblas-Reyes et al., 2013; Yang et al., 2013; Meehl
et al., 2014; Corti et al., 2015; Karspeck et al., 2015). Multi-
annual SST variability in this subpolar gyre region of the North

Atlantic is influenced by ocean dynamics, particularly by decadal
variability in the Atlantic meridional overturning circulation
(Delworth et al., 1997; Matei et al., 2012; Robson et al., 2012a;
Barrier et al., 2015). Hence, initialization of ocean conditions
can substantially improve prediction skill (Matei et al., 2012;
Robson et al., 2012b, 2014; Yeager et al., 2012; Yang et al., 2013;
Msadek et al., 2014). Here we demonstrate that the higher skill
derived from initialization can be extended to the coastal shelves
influenced by the subpolar Atlantic gyre circulation.

Multi-annual prediction skill was limited for eastern Pacific
coastal areas from the Gulf of Alaska to the Humboldt Current.
Large scale SST variability in the eastern Pacific is strongly forced
by the atmosphere (Chhak et al., 2009; Johnstone and Mantua,
2014), which has a short memory. Furthermore, ocean dynamics
driving SST in this region, such as coastally trapped Kelvin waves
and eastern boundary currents, act on a faster time scale than,
for instance, the Atlantic overturning circulation. Hence, eastern
Pacific SST predictability may be intrinsically more limited than
in other regions, such as the North Atlantic, where slow ocean
dynamics play a dominant role in determining SST fluctuations
(Robson et al., 2014). For instance, Eastern Pacific SST variability
is strongly influenced by ENSO and its teleconnections. This
results in some of the highest seasonal SST prediction skill across
global LMEs (Stock et al., 2015), but the low predictability for
ENSO beyond the seasonal timescale (CLIVAR, 2001; Palmer
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FIGURE 4 | Forecast Accuracy with 95% confidence intervals for each LME for upper and lower SST tercile predictions for a 1 year ahead forecast and over the next

3 and 10 years. Accuracy scores higher than the dotted line are better than chance.

FIGURE 5 | Forecast accuracy (top) and Brier Score (BrS, bottom) for upper and lower SST tercile predictions for a 8–10 years forecast. Forecast accuracy ranges

between 0 and 1 (perfect skill). The BrS ranges from 0 (perfect score) to 1 (no skill).
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FIGURE 6 | Brier Skill Score (BSS) for upper SST tercile predictions relative to climatology (left) and uninitialized predictions (right) for a 1 year ahead forecast and

over the next 3 and 10 years. The BSS ranges from 1 (perfect score) to negative infinity (no skill). Negative scores indicate no additional skill as compared to the

reference forecast.

et al., 2004; Jin et al., 2008; Tippett et al., 2012; Ludescher
et al., 2014) reduces multi-annual prediction skill in this region
(García-Serrano and Doblas-Reyes, 2012; Karspeck et al., 2015).
Eastern Pacific LMEs also stood out because, unlike most LMEs,
multi-annual predictability declined with increasing forecast
averages. This may stem from the lower relative importance of
the linear warming trend over internal variability in determining
SST variability in this region (Doblas-Reyes et al., 2013, Karspeck
et al., 2015). Indeed, Eastern Pacific LMEs show some of the
weakest evidence of a warming trend, with SST over the two
major upwelling regions, the California and Humboldt currents,
decreasing over the past thirty years (Belkin, 2009).

Multi-annual predictability is also limited by model error.
SST bias of CM 2.1 is most evident in upwelling regions and
in the Southern Ocean (Delworth et al., 2006). LMEs in the
major upwelling centers, the California, Humboldt, and Benguela
currents, and those bordering the Southern Ocean, namely the
Southeast Australian Shelf, New Zealand, and the Patagonian
Shelf showed some of the lowest multi-annual prediction skill.
Bias in Gulf Stream position, which tends to be too northerly in
CM2.1 (Saba et al., 2016), may have decreased prediction skill
in the Southeast US shelf LME. Moreover, SST predictability in
coastal regions remains limited by the inability of current multi-
annual prediction systems to represent fine-scale shelf processes,

such as upwelling and coastal wave dynamics (Jacox et al., 2015),
and fine-scale bottom topography (Saba et al., 2016). Higher
resolution and improved representation of ocean and shelf
processes may further enhance multi-annual SST predictability
in LMEs. Furthermore, it should be stressed, that these results
are from one model. Their robustness should be tested across
multi-annual prediction systems. Operationalization of coastal
scale multi-annual forecasts will require further testing with a
multi-model ensemble as was done for the first real-time global
multi-annual predictions in Smith et al. (2013). A multi-model
ensemble may also reduce sampling uncertainty and increase
predictability, as was observed for seasonal predictions of SST in
LMEs (Hervieux et al., 2017).

Our work demonstrates that current multi-annual SST
predictions, when assessed as anomalies relative to conditions
over the past 50 years, have significant skill in many coastal
ecosystems, particularly when averaged over the next three or
ten years. This presents opportunities for fisheries managers,
which are required to produce multi-annual forecasts of
fish stock biomass. Current management decisions are
based on the scope of past variability. Integration of more
precise forecasts of environmental conditions into fisheries
models may reduce bias in fisheries projections, provide
warning of changes in fish productivity, and produce
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FIGURE 7 | Brier Skill Score (BSS) for lower SST tercile predictions relative to climatology (left) and uninitialized predictions (right) for a 1 year ahead forecast and

over the next 3 and 10 years. The BSS ranges from 1 (perfect score) to negative infinity (no skill). Negative scores indicate no additional skill as compared to the

reference forecast.

better estimates of the rebuilding potential of overfished
stocks (Pershing et al., 2015; Miller et al., 2016; Tommasi
et al., 2017a). Fisheries decisions would also greatly benefit
from the inclusion, in addition to SST, of multi-annual
predictions of other fishery-relevant variables such as bottom
temperature or primary productivity (e.g. Séférian et al.,
2014).

While promising, it needs to be stressed that retrospective
forecast skill represents likely, not actual, future forecast skill.
In particular, the hindcasts presented here included prescribed
forcing from stratospheric aerosols resulting from large volcanic
eruptions (such as those of El Chichón in 1982 and Pinatubo
in 1991). Eruptions such as these are not presently predictable
on multi-year timescales, so real-time forecasts would not
be able to forecast the impact of unpredictable volcanoes.
While van Oldenborgh et al. (2012), in an assessment of
the relative impacts of volcanic aerosols on retrospective SST
forecast skill, showed that forcing from volcanos provides
only a small contribution to multi-annual SST predictability
relative to the greenhouse-gas forced trend, an evaluation
of real-time forecast skill (e.g., Smith et al., 2013) at an
LME scale would increase condifence in the reliability of the
predictive skill here presented. Development of such real-time,
operational multi-annual forecast capabilities would also be
required for continued use of such forecasts into fisheries

decisions. Furthermore, the observed SST predictability at multi-
annual scales relative to the 50-year reference stems from past
and ongoing anthropogenic climate change. Thus, while there
is cause for optimism regarding the utility of multi-annual
predictions to the fishery sector in adapting to this warming
trend, this optimism rests within the reality of strong multi-
annual change.
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Using a global ocean biogeochemical model combined with a forecast of physical

oceanic and atmospheric variables from the NASA Global Modeling and Assimilation

Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific

for the period 2012–2015 with a focus on the forecast of the onset of the 2015 El Niño

event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties

of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration

from the forecast with the corresponding monthly ocean chlorophyll data from the

Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-

NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability

in chlorophyll concentration in the Equatorial Pacific, including the beginning of the

2015–2016 El Niño. The anomaly correlation coefficient (ACC) was significant (p < 0.05)

for forecast at 1-month (R = 0.33), 8-month (R = 0.42) and 9-month (R = 0.41) lead

times. The root mean square error (RMSE) increased from 0.0399 µg chl L−1 for the

1-month lead forecast to a maximum of 0.0472 µg chl L−1 for the 9-month lead forecast

indicating that the forecast of the amplitude of chlorophyll concentration variability was

getting worse. Forecasts with a 3-month lead time were on average the closest to the

S-NPP VIIRS data (23% or 0.033 µg chl L−1) while the forecast with a 9-month lead

time were the furthest (31% or 0.042 µg chl L−1). These results indicate the potential for

forecasting chlorophyll concentration in this region but also highlights various deficiencies

and suggestions for improvements to the current biogeochemical forecasting system.

This system provides an initial basis for future applications including the effects of El

Niño events on fisheries and other ocean resources given improvements identified in the

analysis of these results.

Keywords: enso, chlorophyll, phytoplankton, forecast, biogeochemical modeling

INTRODUCTION

Forecast models of atmospheric conditions have considerably improved over the past few decades
and are routinely used to predict weather patterns including hurricanes, winds and other potentially
threatening conditions. Natural processes in the atmosphere, ocean and land can each influence
climate in sometimes predictable ways. Developing forecasting systems for ocean biogeochemical
processes is a scientific challenge that has important implications in the management of marine
ecosystems and resources. One of the challenges of improving subseasonal to seasonal forecasting
skill is to identify and characterize sources of subseasonal to seasonal natural modes of variability
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(e.g., El Niño Southern Oscillation), slowly varying processes
(e.g. ocean biogeochemistry), and external forcing (e.g., winds,
radiation).

Most oceanographic forecasts emphasize physical conditions
(e.g., temperature, mixing), ocean biogeochemical forecasts are
less common and have mostly focused on the prediction of algal
blooms and hypoxia (e.g., Wynne et al., 2005; Greene et al.,
2009; Stumpf et al., 2009; Evans and Scavia, 2010). Various
approaches have been developed to predict biogeochemical
variables from statistical relationships with temperature, wind
speed and other variables to the use of more complex numerical
models. A typical application of these biogeochemical forecasts
is the prediction of Harmful Algal Blooms (e.g., Stumpf
et al., 2009; Raine et al., 2010). One example is the Eastern
Gulf of Mexico Harmful Algal Bloom Operational Forecast
System (GOMX HAB-OFS) developed by NOAA to follow
the development of a toxic dinoflagellate, Karenia brevis,
that produces Neurotoxic Shellfish Poisoning, kills fishes and
marine mammals and leads to health and economical losses
resulting from respiratory irritation in the waters off Florida.
This forecasting system relies on satellite ocean color and
transport direction data from satellite imagery combined with
in situ samples. They issue semi-weekly bulletins that serve as
decision support tools for coastal resource managers, federal
and state agencies, public officials, and academic institutions
(Kavanaugh et al., 2016). The forecast was expanded to
other regions and the system is described in several papers
(e.g., Stumpf et al., 2003, 2009; Tomlinson et al., 2004).
Other examples of biogeochemical forecast efforts include the
forecast of hypoxia zone in the Gulf of Mexico (Scavia et al.,
2003), net primary production in the tropical Pacific (Séférian
et al., 2014), annual salmon yields (Scheuerell and Williams,
2005), sardines distribution (Kaplan et al., 2016), seasonal
distributions of southern Bluefin tuna (Hobday et al., 2011;
Eveson et al., 2015) and coral bleaching (Goreau and Hayes,
2005).

While some of these forecasting systems rely on satellite
ocean color data, others rely on biochemical variables that
cannot be directly derived from ocean color data or that do
not have statistical relationship with variables that can be
derived from satellite data (e.g., nutrient, oxygen concentration).
Furthermore, satellite data can have large gaps (e.g., clouds,
aerosols, interorbital gaps, high solar zenith angles) that do not
allow for a systematic and complete coverage of the area of
interest. Here we combine an established biogeochemical model
with a seasonal forecast of atmospheric and ocean conditions
to provide a 9-month forecast of total chlorophyll in the
Equatorial Pacific for the period 2012–2015. The assimilation
of satellite ocean color to provide the initial conditions for
the forecast ensures the best use of the data available, while
the forecast provides a complete coverage of the chlorophyll
concentration (among other variables) for a 9-month forecast.
The skill of the forecasting system is assessed by comparing
the total chlorophyll to those from the satellite Suomi-National
Polar-orbiting Partnership Visible Infrared Imaging Radiometer
Suite (S-NPP VIIRS).

MATERIALS AND METHODS

The NASA Ocean Biogeochemical Model (NOBM) is a three
dimensional biogeochemical model of the global ocean coupled
with a circulation and radiative model (Gregg et al., 2003;
Gregg and Casey, 2007). NOBM has a near-global domain
that spans from −84◦ to 72◦ latitude at a 1.25◦ resolution
in water deeper than 200 m. NOBM is coupled with the
Poseidon ocean general circulation model. The Poseidon
model (Schopf and Loughe, 1995) is a reduced gravity ocean
model with 14 layers in quasi-isopycnal coordinates forced by
wind stress, sea surface temperature, and shortwave radiation
(Gregg and Casey, 2007). The NOBM contains 4 explicit
phytoplankton taxonomic groups (diatoms, cyanobacteria,
chlorophytes and coccolithophores), 3 detritus components
(silicate, nitrate/carbon and iron), 4 nutrients (nitrate, silicate,
iron and ammonium) and one zooplankton group. The growth
of phytoplankton is dependent on total irradiance, nitrogen
(nitrate + ammonium), silicate (for diatoms only), iron and
temperature (see Rousseaux and Gregg, 2015 for more details).
Surface photosynthetically available radiation is derived from the
Ocean-Atmosphere Spectral Irradiance Model (OASIM; Gregg
and Casey, 2009).

A spin-up run of 100 years has been shown to produce stable
initial conditions for biological variables (Gregg and Rousseaux,
2014). The NOBM model is then run for 14 years using ocean
and atmospheric variables as forcing from the Modern-Era
Retrospective analysis for Research and Applications (MERRA,
Rienecker et al., 2011) and ocean chlorophyll data from Sea-
Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate-
resolution imaging spectroradiometer (MODIS)-Aqua in data
assimilation mode (Gregg and Rousseaux, 2014). Starting in
2012, the model assimilates chlorophyll data from S-NPP VIIRS
and uses transient MERRA data to force the circulation model.
The assimilation of satellite chlorophyll uses a multivariate
methodology where the nutrients are adjusted corresponding
to the chlorophyll assimilation using nutrient-to-chlorophyll
ratios embedded in the model (Rousseaux and Gregg, 2012).
The difference between the chlorophyll assimilation results and
the prior chlorophyll produced by the model (the analysis

increments) are used to adjust the nutrient concentrations. The
multivariate assimilation is applied to silica and dissolved iron,
as well as nitrate. These conditions are used as initial conditions
for each forecast (using the month prior to the start of the
forecast). The forcing data used for the forecast include zonal and
meridional wind stress, sea surface temperature and shortwave
radiation. These forecast files are produced by the NASA Global
Modeling and Assimilation Office (GMAO) using the GEOS-5
system (https://gmao.gsfc.nasa.gov/weather_prediction/). These
forecasted atmospheric and ocean variables are currently
provided to the North American Multi-Model Ensemble
(NMME) prediction project, as well as to other national
(International Research Institute for Climate and Society,
IRI) and international (Asia-Pacific Climate Center, APCC)
ensemble seasonal forecasting efforts (Borovikov et al., in
review).
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The bias and uncertainties in the system are assessed by (1)
comparing the satellite ocean chlorophyll used for validation
and data assimilation to in situ data, (2) comparing the
chlorophyll concentration from a free-run model (without
data assimilation) to satellite ocean color and (3) comparing
the chlorophyll concentration from a run assimilating satellite
chlorophyll with those from the satellite (Figure 1). The in
situ data used to evaluate the bias and uncertainties in the
S-NPP VIIRS chlorophyll include data collected from the
National Oceanographic Data Center (Gregg and Conkright,
2002), NASA in situ database (Werdell and Bailey, 2002;
Werdell et al., 2003), and Atlantic Meridional transect (Aiken
et al., 2000) archives (Gregg et al., 2009). The quality of the
biogeochemical system used is then assessed using a hindcast
from 2012 to 2015 forced using MERRA data (procedure 2a,
b on Figure 1). The uncertainties in this system are evaluated
by comparing the chlorophyll concentration in the Equatorial
Pacific from this run with those from S-NPP VIIRS. To
evaluate the effects of the forcing data on the chlorophyll
concentration estimates, we then compare a free-run model
forced by transient MERRA forcing data with one forced by
climatological MERRA data. Finally we compare the monthly
chlorophyll concentration from the assimilation run to the
monthly concentration from S-NPP VIIRS (procedure 3 on
Figure 1). Bias is quantified by averaging the monthly percent
difference between the chlorophyll concentration from themodel
(free-run and assimilating run) and the satellite chlorophyll
concentration for the period 2012–2015 and the standard error
is calculated. The uncertainty is quantified using a correlation
coefficient. A statistically significant correlation coefficient is
defined as one with a p-value smaller than 0.05.

The skill of the various forecasts is assessed using three
metrics: (1) the percent difference between the NPP-VIIRS
chlorophyll data and the forecast (bias) (procedure 4 on
Figure 1), (2) the anomaly correlation coefficient (ACC) and (3)

FIGURE 1 | Diagram describing the different procedures used to characterize

bias and uncertainties in the system and forecasts described in this study.

the root mean square error (RMSE). The anomaly correlation
coefficient provides information on the linear association
between forecast and observations but is insensitive to biases
and error in variances. It is calculated as between the model
prediction (p) and satellite observation (o) of chlorophyll over
N months (N = 38) and computed as:

ACC =

∑
(p− p̄)(o− ō)√∑

(p− p̄)2
∑

(o− ō)2

The RMSE measures the magnitude of the error, is sensitive to
large values but does not indicate the direction of the error. It is
calculated as:

RMSE =

√
1

N

∑
[(p− p̄)(o− ō)]2

where p̄ and ō are the temporal averages of chlorophyll.
A total of 38 retrospective forecasts were run, each for a 9-

month period. The first forecast started in March 2012 and the
last forecast started in April 2015. The percent difference between
the satellite and the forecast chlorophyll quantifies themean error
in the forecast. It allows us to assess whether the forecast has on
average a positive or a negative bias.

RESULTS AND DISCUSSION

Assessing the Skill of the Model System
The first source of uncertainty reflects the inherent bias of
satellite-derived chlorophyll concentration and is assessed by
comparing the S-NPP VIIRS chlorophyll to in situ fluorometric
chlorophyll data. For the period from 2012 to 2014, the global
chlorophyll from S-NPP VIIRS compared favorably to in situ
chlorophyll (bias= 11.8%, semi-interquartile range= 27.9% and
R= 0.86; Table 1).

The second source of uncertainty lies in how well the model
simulates chlorophyll concentration. This source of uncertainty
is assessed by comparing the chlorophyll concentration
(Toggweiler et al., 1991) from the free-run model (no data

TABLE 1 | Summary table of bias and uncertainties of the various elements of the

system used to forecast.

Type of bias/uncertainties Bias Uncertainties

Chlorophyll from satellite versus in situ

data (Global)

11.8% R = 0.86, P < 0.05

Chlorophyll from free-run model

versus satellite chlorophyll (transient

forcing data, Equatorial Pacific,

2012–2015)

27.87 ± 1.72% R = 0.72, p < 0.05

Chlorophyll from free-run model

versus satellite chlorophyll

(climatological forcing data, Equatorial

Pacific, 2012–2015)

85.67 ± 2.77% R = 0.47, p < 0.05

Chlorophyll concentration from

assimilating run versus satellite

chlorophyll (Equatorial Pacific,

2012–2015)

12.34 ± 0.52% R = 0.95, P < 0.05
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assimilation but uses transient forcing conditions fromMERRA)
with the corresponding satellite ocean color data. For the period
from 2012 until 2015, monthly chlorophyll concentration from
the free-runmodel were significantly correlated to those from the
satellite ocean color (S-NPP VIIRS, R = 0.72, p < 0.05; Table 1).
The chlorophyll from the free-run model was on average
within 27.87 ± 1.72% (average ± standard error) of the S-NPP
VIIRS chlorophyll. Chlorophyll fields in the Equatorial Pacific
showed agreement with satellite data (Figure 2). The model
reproduces the main features observed by the satellite ocean
color. The consistent positive bias in chlorophyll concentration
in the Equatorial Pacific in the free-run model suggest that the
upwelling in the Equatorial Pacific in the model is overestimated
and therefore leads to higher chlorophyll concentration than
those observed. The overprediction of the upwelling in the
Equatorial Pacific in models has been suggested for some time
(e.g., Toggweiler et al., 1991; Zheng et al., 2012). In some other
areas, such as along the South America coastline as well as in the

region of the Costa Rica Dome, the chlorophyll concentration
from the free-run model was underestimated. This is most likely
due to the nature of the reduced gravity circulation model. The
model therefore does not include topographic effects, nor does it
allow the representation of cross-shelf advection and convection.

In the Equatorial Pacific, the monthly chlorophyll
concentration from a run assimilating S-NPP VIIRS chlorophyll
data was significantly correlated (R= 0.95, P< 0.01;Table 1) and
on average within 12.34± 0.52% of the S-NPP VIIRS chlorophyll
concentration. The assimilation of satellite chlorophyll to
provide the initial conditions used for the forecast is therefore
an improvement over using the initial conditions provided by
the free-run model without data assimilation. We therefore use
this set-up to provide the initial conditions for the forecasting
systems.

Finally the data used to force the model have their own
inherent bias and uncertainties. While this is beyond the
scope of this paper, we note that the bias in the forcing data

FIGURE 2 | Climatology of chlorophyll concentration (µg chl L−1, 2012–2015) map of (A) the free-run model, (B) S-NPP VIIRS, and (C) the difference between the

free-run model and S-NPP VIIRS in the Equatorial Pacific.
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used here have been assessed in other papers (e.g., Rienecker
et al., 2011). By comparing the chlorophyll concentration
from the free-run model using climatological MERRA forcing
data compared to using transient MERRA data we can
assess the improvements that such transient forcing data can
provide to the system. The chlorophyll concentration from
the free-run model using transient MERRA forcing data were
considerably closer to the chlorophyll concentration from the
S-NPP VIIRS (27.87 ± 1.72%) than the free-run model using
climatological MERRA data (85.67 ± 2.77%, Figure 3). This
indicates the advantage of using transient forcing data to
further improve the initial conditions used for the forecasting
system.

General Skill of the Forecasts
We assess the skill of our forecast by comparing each 9-
month forecast to the observed chlorophyll concentration in
the Equatorial Pacific from S-NPP VIIRS for the corresponding
month. There was a consistent positive bias in the chlorophyll
forecasted, as in the hindcast from the free-run model compared
with S-NPP VIIRS (Figure 2). Of the 38 forecasts, the average
percent difference between the forecasted chlorophyll and the S-
NPP VIIRS chlorophyll varied between 23% (3 months lead time,
the equivalent of 0.033 µg chl L−1) and 30.7% (9 months lead
time, the equivalent of 0.042 µg chl L−1, Figures 4, 5). Except
for the monthly chlorophyll concentration at 5 and 6-month
lead time, the chlorophyll concentration from the forecasts were
always significantly correlated to those from S-NPP VIIRS (data
not shown). The highest correlation coefficient was observed at
8-month lead time (R= 0.53, p < 0.01).

To assess the uncertainties in our forecast, we utilize two
deterministic skill metrics: ACC and RMSE. The ACC for the
forecast was significant for the 1-month lead time (R = 0.33, P
< 0.05) as well as for the 8- and 9-month lag forecast (R= 0.42

and R = 0.41 respectively, Table 2). This indicates that for
these leads, the forecast chlorophyll had statistically the correct
phasing when compared to those from S-NPP VIIRS. The spatial
distribution of the anomaly correlation coefficient further reflects
the overprediction of the upwelling in this Equatorial Pacific
(Figure 6). While the forecasted chlorophyll concentrations at
1-month lead are significantly correlated with those from S-
NPP VIIRS for the majority of the Equatorial Pacific, some
areas in the upwelling tongue are not significant. The second
skill metric, RMSE, increased from 0.040 µg chl L−1 at 1-
month lead to 0.047 µg chl L−1 at 9-month lead forecast.
These results suggest that while the phasing may have been
reasonable at 8- and 9-month lag forecast, the amplitude of
the signal was getting worse. Regardless, RMSE of 0.047 µg
chl L−1 is still very acceptable for a 9-month lag forecast.
These results suggest some skill in forecasting the chlorophyll
variability in the Equatorial Pacific especially at 1-month lag
when the ACC is significant and the RMSE is at its lowest. For
all forecasts, the chlorophyll concentrations were always within
30.7% of the chlorophyll concentration from S-NPP VIIRS. This
is similar to the uncertainties reported for this instrument (semi-
interquartile range of S-NPP VIIRS versus in situ chlorophyll =
27.9%).

Prediction of the 2015 El Niño
In the Equatorial Pacific, the El Niño Southern Oscillation is
the dominant source of interannual variability and has been
shown to have a considerable impact of the biogeochemistry,
including chlorophyll concentration and recruitment of higher
trophic levels, in this region (e.g., Strutton and Chavez, 2000;
Martinez et al., 2009). Forecasting El Niño events is the focus
of many prediction centers. While the focus of assessments such
as the North American Multi-Model Ensemble home has been
on the skills in forecasting sea surface temperature, there has

FIGURE 3 | Time series of chlorophyll concentration (µg chl L−1) for NPP-VIIRS (black), free-run model with transient MERRA forcing data (red) and free-run model

with a climatological MERRA forcing data (green).
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been very little work on forecasting biogeochemical variables
such as chlorophyll using a dynamical system. The temporal
evolution of the various forecasts in this study highlights the
variability between the forecasts and our skills in predicting the
decline in chlorophyll concentration that was observed in the
Equatorial Pacific during the 2015 El Niño event (Figure 4).
Starting in January 2015 the forecast suggested a decline in
chlorophyll concentration that would reach a minimum in May
2015 (average of the 8 forecasts available for this month of 0.13
µg chl L−1). The S-NPP VIIRS data observed this minimum 1

month later in June 2015 (0.13 µg chl L−1). The chlorophyll
concentration from S-NPP VIIRS then increased to reach a peak
in August 2015 (0.14 µg chl L−1). This increase in chlorophyll
was also reflected in the various forecasts although it was
overestimated. After August 2015, chlorophyll concentration
declined reflecting the onset of the 2015 El Niño and the
suppression of the upwelling in the Equatorial Pacific. This
decline was also observed in the chlorophyll concentration from
S-NPP VIIRS. Of the four forecasts available for September 2015,
only one had predicted this decline. The other three forecasts

FIGURE 4 | Chlorophyll concentration in the Equatorial Pacific (10◦S–10◦N) for the period 2012–2015 from S-NPP VIIRS (black), individual forecasts (gray) and the

1-month lead chlorophyll concentration of every forecast (blue). The last forecast is highlighted in red.

FIGURE 5 | Average difference between forecasted chlorophyll and chlorophyll from S-NPP VIIRS for corresponding month (left axis) and Anomaly Correlation

Coefficient (ACC; right axis).
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TABLE 2 | Anomaly Correlation Coefficient (ACC) and RMSE between the

chlorophyll concentration in the Equatorial Pacific from the forecast at 1- to

9-month lead time and the corresponding monthly chlorophyll concentration from

S-NPP VIIRS.

No.

months

lead time

ACC RMSE

1 0.329* 0.0399

2 0.272 0.0397

3 0.318 0.0411

4 0.267 0.0427

5 0.121 0.0435

6 0.153 0.0450

7 0.263 0.0470

8 0.417* 0.0471

9 0.409* 0.0472

*indicates that the anomaly correlation coefficient was significant (p < 0.05).

predicted a decline but delayed by 1 month (chlorophyll started
to decline in October 2015). For the four forecasts, September
2015 was their 6- to 9-month lead forecast which we previously
showed had relatively low skills compared to the 1-month lead
forecasts. In the last forecast (highlighted in red in Figure 3),
September 2015 corresponded to its 6-month lead forecast and
this forecast predicted particularly well the decline in chlorophyll
concentration that occurred between August and December 2015
in the Equatorial Pacific in response to the El Niño event.
The spatial distribution of the chlorophyll anomaly between
December 2015 and March 2015 (first month of the last forecast
available) coincides well with that from S-NPP VIIRS for the
corresponding month (Figure 7). The area of negative anomaly
in chlorophyll concentration along the South American coast
is distinguishable in both the forecast and the S-NPP VIIRS
chlorophyll data. The overestimation of the upwelling system
in the forecast is also visible on this spatial representation of
the chlorophyll anomalies. The temporal evolution of these
various forecasts highlights the impacts that the atmospheric
forcing data have on the forecast of chlorophyll. As the forecasts
get closer to the El Niño event, the forecasted atmospheric
and oceanographic physical forcing data have more skills and
therefore lead to a better forecast in chlorophyll concentration.
The forecast of chlorophyll in this region therefore relies
heavily on the existence of accurate forecast of atmospheric
forcing data. The initial conditions seem to play a more minor
role in the forecasting skill for predicting chlorophyll in this
region.

Uncertainties of the Approach
The uncertainties in the forecast of atmospheric and oceanic
variables used to force the model play a critical role in
our ability to provide a successful forecast. The skill of the
variables produced by the GMAO forecasting system and
that are used to force the model in forecast mode can
also be a source of uncertainties and have been assessed in
(Borovikov et al., in review). The SST anomaly correlation

coefficient from the forecast in the tropical Pacific has a
high correlation coefficient (R > 0.8) with the Reynolds SST
for lead month 1–3 and remained above 0.6 by lag month
9 indicating significant (p < 0.05) skill. A case study of
the El Niño event of 2015/2016 in (Borovikov et al., in
review) suggested an overprediction of the magnitude in SST
anomalies observed during the 2015/2016 El Niño event but
was overall in good agreement with the conditions that were
observed.

The forecast of chlorophyll concentration presented here
is based on one single set of forecasting data while the
forecasting system used at GMAO provides forecasts for several
ensembles. Using ensemble forecasting instead of a single
forecast might further improve our skill. Initial conditions can
be perturbed in various ways to account for initial condition
uncertainty. The uncertainty in the forecasted forcing data
provided by GMAO could be accounted for by running
with the various ensembles they provide for the variables
used to force the biogeochemical forecast. Finally the model
uncertainty could be accounted for using some stochastic
parametrization at the sub-grid level such as the one used by
the European Centre for Medium Range Weather Forecasts
(Buizza et al., 1999).

Another source of uncertainty in our forecast is the
assimilation methodology, the Conditional Relaxation Analysis
Method used for bias correction for SST products (Reynolds,
1988) and applied here for chlorophyll (Gregg, 2008). This
method does not utilize ensembles which can potentially improve
the initial conditions for the forecast. It would also extend the
memory of the assimilation, which appears to survive<2 months
here and assist in the skill of the 1-month forecast. However,
there is little evidence that the 2–9 month forecasts could
benefit substantially from improved initial conditions, which
are quite close to the S-NPP VIIRS chlorophyll as suggested in
Table 1.

Future Improvements and Applications
While these results suggest some skill in our ability to forecast
chlorophyll concentration in the Equatorial Pacific, they also
highlight potential weaknesses and avenues for improvements.
The skill of the forecasting system relies as previously mentioned
on the bias in the model’s representation of physical and
biogeochemical processes in the oceans, and the uncertainties
in the forcing and assimilation data used. To further improve
the forecasting system, each of these sources of bias and
uncertainties needs to be assessed individually for weaknesses
and possibilities for improvements. The range of applications of
such a forecasting system, once properly set, can be extended for
other variables. Applications include but are not limited to the
prediction of Harmful Algal Blooms, fisheries, hypoxia/anoxia
events, oil spills or the dispersal of pollutants. Prediction of
temperature, ocean currents and velocities have for example been
used for monitoring fisheries success, transport and spread of
fish larvae, as well as seasonal fish migration (Johnson et al.,
2005; Hobday and Hartmann, 2006; Bonhommeau et al., 2009).
While the use of physical variables such as temperature, salinity
and currents have been successfully used as covariates to explain
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FIGURE 6 | Anomaly correlation coefficient between the forecasted chlorophyll at 1-month lead and S-NPP VIIRS chlorophyll for the period 2012–2015. White

indicates that the correlation was not significant (p > 0.05).

FIGURE 7 | (A) Chlorophyll concentration anomaly (December 2015 minus March 2015, µg chl L−1) from the March 2015 forecast for December 2015 and

(B) chlorophyll concentration from S-NPP VIIRS (µg chl L−1).

distribution and catch rates of various species (e.g., Herron
et al., 1989; Cole, 1999; Zagaglia et al., 2004; Bigelow and
Maunder, 2007; Kaplan et al., 2016), these relationships can
be limited since the behavior and recruitment of fish relies on
changes in their prey concentration and composition. Accurate
forecasts of the resources on which fish populations rely could
provide the potential for strategic rather than reactive marine
resource management during El Niño events for example. In
the Equatorial Pacific, forecast of the effects of ENSO events
on the physical conditions have been the subject of several
studies starting in the 1980s (Cane et al., 1986). In the last
two decades we have witnessed the development of two major
El Niño events that had considerable impacts on both land
and ocean conditions. The 1997-98 El Niño was particularly
devastating for the ocean resources and led to the collapse of
several fisheries and dramatic socio-economical repercussions
for countries such as Peru. Anchovies, as well as other fisheries
collapsed during both the 1982-83 and 1997-98 El Niño events.
Forecasts such as the one presented here could therefore provide
a framework to improve our management of resources during
these events. Furthermore, the forecasting system presented
here may provide a basis to expand the forecast from total
chlorophyll to specific species including Harmful Algal Blooms.
This could provide support for the management of many areas
that need to monitor closely any development of harmful species
in their waters. In the regions prone to Harmful Algal Blooms,
such a forecast could also be used to improve the strategies to

detect and manage most efficiently these events to minimize
the repercussion on the human population and the associated
economy.
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The U.S. National Oceanic and Atmospheric Administration’s (NOAA) Coral Reef

Watch (CRW) operates a global 4-Month Coral Bleaching Outlook system for shallow-

water coral reefs in collaboration with NOAA’s National Centers for Environmental

Prediction (NCEP). The Outlooks are generated by applying the algorithm used in CRW’s

operational satellite coral bleaching heat stress monitoring, with slight modifications,

to the sea surface temperature (SST) predictions from NCEP’s operational Climate

Forecast System Version 2 (CFSv2). Once a week, the probability of heat stress

capable of causing mass coral bleaching is predicted for 4-months in advance. Each

day, CFSv2 generates an ensemble of 16 forecasts, with nine runs out to 45-days,

three runs out to 3-months, and four runs out to 9-months. This results in 28–112

ensemble members produced each week. A composite for each predicted week is

derived from daily predictions within each ensemble member. The probability of each

of four heat stress ranges (Watch and higher, Warning and higher, Alert Level 1 and

higher, and Alert Level 2) is determined from all the available ensemble members for

the week to form the weekly probabilistic Outlook. The probabilistic 4-Month Outlook

is the highest weekly probability predicted among all the weekly Outlooks during a

4-month period for each of the stress ranges. An initial qualitative skill analysis of

the Outlooks for 2011–2015, compared with CRW’s satellite-based coral bleaching

heat stress products, indicated the Outlook has performed well with high hit rates

and low miss rates for most coral reef areas. Regions identified with high false alarm

rates will guide future improvements. This Outlook system, as the first and only freely

available global coral bleaching prediction system, has been providing critical early

warning to marine resource managers, scientists, and decision makers around the

world to guide management, protection, and monitoring of coral reefs since 2012.
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This has been especially valuable during the third global coral bleaching event that

started in mid-2014 and extended into mid-2017. The Outlook system is an integrated

component of CRW’s global decision support system for coral bleaching. Recent

management actions taken in light of this system are discussed.

Keywords: coral, coral bleaching, sea surface temperature, thermal stress, heat stress, outlook, prediction, Coral

Reef Watch

INTRODUCTION

Mass coral bleaching due to anomalously warm water
temperatures has occurred with increasing frequency and
severity in recent decades (Eakin et al., 2010; Heron et al.,
2016a; Hughes et al., 2018). It is now the most significant
single contributor to the decline of coral reef ecosystems on
a global scale (Wilkinson, 2008; Spalding and Brown, 2015).
Coral bleaching occurs when the symbiotic relationship between
corals and the microscopic algae (zooxanthellae) living in their
tissues breaks down due to environmental stress (Jaap, 1979;
Jokiel and Coles, 1990). After most zooxanthellae are expelled,
the underlying white calcium carbonate coral skeleton becomes
visible through the transparent coral tissue; this phenomenon
is known as bleaching. Heat stress that persists for several
weeks, with ambient water temperatures as little as 1–2◦C above
a coral’s tolerance level, has been shown to cause bleaching
(Glynn and D’Croz, 1990; Berkelmans and Willis, 1999).
While bleached corals can die due to lack of food produced by
symbiotic zooxanthellae if the stress is severe or long lasting,
more frequently, death results when weakened corals are infected
with subsequent disease (Miller et al., 2009; Rogers et al., 2009;
Eakin et al., 2010). Extensive bleaching events have dramatic,
long-term, ecological, economic, and social impacts (Baker
et al., 2008; Munday et al., 2008; Doshi et al., 2012). Even under
favorable conditions, it can take decades or longer for severely
bleached reefs to recover, and if they do, it is usually with reduced
species diversity and a loss of important reef-building species
(Wilkinson, 2008).

The U.S. National Oceanic and Atmospheric Administration’s
(NOAA) Coral ReefWatch (CRW) program has provided critical
information to coral reef managers and scientists based on near
real-time satellite monitoring of the heat stress that can cause
mass coral bleaching since 1997 (Liu et al., 2006, 2013). As many
actions laid out in bleaching preparedness or response plans are
expensive and require significant planning (Maynard et al., 2009),
marine resource managers have long requested information on
the likelihood of bleaching months in advance to prepare for
upcoming events (e.g., Tommasi et al., 2017). In 2008, CRW
partnered with NOAA’s Earth System Research Laboratory to
release the world’s first global prediction tool for mass coral
bleaching heat stress weeks-to-months in advance (Liu et al.,
2009). It was based on weekly predictions from a statistical global
sea surface temperature (SST) forecast system using the Linear
Inverse Modeling (LIM) approach (Penland and Matrosova,
1998) and observed data (1◦ weekly Optimum Interpolation SST
(OISST); Reynolds et al., 2002). This pioneer tool was limited to a
single, deterministic forecast of the heat stress that can cause coral

bleaching with a coarse spatial resolution of 2◦. Subsequently,
researchers at the Australian Bureau of Meteorology (BoM)
developed a probabilistic bleaching forecast system focused on
the Great Barrier Reef based on the Predictive OceanAtmosphere

Model for Australia (POAMA) developed by BoM and the
Commonwealth Scientific and Industrial Research Organisation
(CSIRO; Spillman et al., 2011, 2013).

Through partnership with the NOAA National Centers for
Environmental Prediction (NCEP), in July 2012, CRW released
its first probabilistic global subseasonal-to-seasonal-scale Coral
Bleaching Outlook system (Eakin et al., 2012). It was based
on 9-month SST predictions from NCEP’s operational Climate
Forecast System Version 1 (CFSv1) (Saha et al., 2006). CFSv1,
implemented in August 2004, was NCEP’s first quasi-global, fully
coupled atmosphere–ocean–land model for seasonal prediction.
CFSv1 was a dynamical modeling system that, for the first time in
the history of U.S. operational seasonal prediction, demonstrated
a level of skill in many predicted fields that was comparable to
the skill of the statistical methods used by the NCEP (Saha et al.,
2006). Saha et al. (2006) indicated that the CFS had an acceptably
low bias in tropical SST prediction and a level of skill in
forecasting Niño-3.4 SST better than persistence and comparable
to statistical methods used operationally at NCEP and was
a large improvement over the previous operational coupled
model at NCEP. Barnston et al. (2012) also concluded that
the current generation of dynamical seasonal forecast systems,
including CFSv2, has a skill better than the statistical seasonal
forecast system in predicting Niño-3.4 SST. CRW’s probabilistic
Bleaching Outlook Version 1 was at a spatial resolution of 1◦

and updated weekly. This version of the Outlook also used the
1◦ weekly OISST (Reynolds et al., 2002), which NCEP utilized
for initial conditions and skill analysis of the CFS (Saha et al.,
2006, 2010, 2014), to calculate accumulated stress at short lead-
times.

After the CFS Version 2 (CFSv2) became available in March
2011 (Saha et al., 2014), CRW upgraded its Outlook system.
Evaluation of the CFSv2 hindcasts by Saha et al. (2014) showed
that CFSv2 significantly improved global SST forecasts over
CFSv1 on the seasonal and subseasonal scales, with relatively
higher skill in the tropical Pacific than the rest of the globe.
CRW’s probabilistic Outlook Version 2, released in December
2012, used the CFSv2 9-month SST predictions but maintained
the same 1◦ spatial resolution. The Outlook Version 3, released
in February 2015, matched the native spatial resolution of the
CFSv2 (0.5◦) and used the daily OISST Version 2 (dOISSTv2) at
0.25◦ resolution (Reynolds et al., 2007; Banzon et al., 2016) for
short lead-times. The Outlook Version 4, released in May 2017,
subsequently incorporated three daily runs of 90-day predictions
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and nine daily runs of 45-day predictions, which quadrupled the
number of model runs used in the short-term ensembles.

The third, longest, andmost widespread global coral bleaching
event on record started in the Commonwealth of the Northern
Mariana Islands (CNMI) and Guam in June 2014 (Heron et al.,
2016b; Eakin et al., 2017). It continuously affected coral reefs
around the world until May 2017, when it appeared the global
extent of the event had ended (Eakin et al., 2017). Reported
impacts to reefs worldwide have been greater than from any
previously documented global bleaching event (Eakin et al., 2017;
Hughes et al., 2017). CRW’s Outlooks, along with its near real-
time satellite monitoring, provided critical guidance to coral
reef managers, scientists, and other stakeholders throughout the
tropics leading up to and during this event (e.g., Eakin et al., 2017;
Hughes et al., 2017; Tommasi et al., 2017).

In this article, CRW’s probabilistic 4-Month Coral Bleaching
Outlook Version 3 system is detailed, as are enhancements in
the newest Outlook Version 4. Initial results from the Outlook
skill analysis performed on Version 3 are also discussed. Finally,
applications of the Outlook by users during the third global
bleaching event are demonstrated.

DATA

Climate Forecast System Version 2 SST
CRW’s probabilistic 4-Month Outlook Versions 3 and 4 use
SST predictions from NCEP’s CFSv2, a global, fully coupled
atmosphere-ocean-sea ice-land, dynamical, seasonal prediction
system made operational in March 2011 (Saha et al., 2010, 2014).

CFSv2’s ocean component has global coverage. Its meridional
resolution is 0.25◦ between 10◦S and 10◦N, gradually increasing
poleward to 0.5◦ at 30◦S and 30◦N; its zonal resolution is 0.5◦

globally. CRW interpolates the SST predictions to a uniform 0.5◦

resolution before ingesting them into the Outlook system. The
ocean model has 40 vertical layers, with 27 layers in the upper
400m and a bottom depth of approximately 4.5 km. Its vertical
resolution is 10m from the surface to 240m depth, gradually
increasing to about 500m in the bottom layer. Predicted
temperatures of the top layer (top 10m) are used as the predicted
SST in CRW’s Outlook system. The predicted SST represents the
daily averaged value through both day and night.

The near real-time operational CFSv2 has 16 runs daily: four
producing daily predictions out to 9-months; three out to one
season (between about 90 and 120-days); and nine out to 45-
days. All predictions are initialized using ocean, atmosphere, and
land conditions from the operational Climate Data Assimilation
System Version 2 (CDASv2; Saha et al., 2014). The four 9-month
runs are control runs and are based on initial conditions at 0000,
0600, 1200, and 1800 UTC. The remaining 12 runs are initialized
with perturbed initial conditions (X. Wu, pers. comm.), such that
the three 3-month runs begin at 0000 UTC, and the nine 45-day
runs begin at 0600, 1200, and 1800 UTC (three runs at each time).
CRW’sOutlookVersion 3 used only the predictions from the four
9-month runs; the Outlook Version 4 uses all 16 runs to increase
the number of ensemble members for the near-term Outlook.

The CFSv2 SST hindcasts were used to derive the Outlook’s
climatologies. The hindcasts contained daily predictions from

four 9-month runs initialized at 0000, 0600, 1200, and 1800 UTC
on every fifth day, based on the regular calendar year, starting on
January 1 each year, from 1982 to 2010 (see Table B1 of Saha et al.,
2014). Thus, the hindcasts were run on the same calendar dates
every year; February 29 in a leap year was ignored. The initial
conditions were from the Climate Forecast System Reanalysis
(CFSR) (Saha et al., 2014).

Daily OISST Version 2
For each predicted day, CRW’s Outlook requires daily SST values
from the 12-weeks leading up to the predicted day (see the
Methods section). Hence, predicting heat stress for any day
within 12-weeks of the initial condition day needs historical SST
values; the daily SST from the dOISSTv2 (Reynolds et al., 2007;
Banzon et al., 2016) is used. This widely used dOISSTv2 dataset,
an operational near real-time NOAA/National Environmental
Satellite, Data, and Information Service (NESDIS) SST analysis,
combines satellite and in situ measurements to produce a day-
night blended SST analysis. CRW’s Outlook utilizes the version of
dOISSTv2 that is based on satellite data from only the Advanced
Very High Resolution Radiometer (AVHRR) satellite sensors.

Complementing the near real-time dOISSTv2, NESDIS
produces a reprocessed version in a 14-day delaymode, providing
a long-term data record (1981-present). For its Outlook system,
CRW used the reprocessed dOISSTv2 to develop the climatology
required for deriving the historical heat stress variables for the
initial condition day, and earlier days, of each near real-time
CFSv2 run.

METHODS

The Outlook was developed to emulate, with minor
modifications, the algorithm used in CRW’s near real-time
operational satellite coral bleaching heat stress monitoring (Liu
et al., 2013, 2014). From the CFSv2 SST predictions, the Outlook
system generates model-based versions of CRW’s daily satellite
Coral Bleaching HotSpot, Degree Heating Week (DHW), and
Bleaching Alert Area variables.

The first two of the following four subsections (i.e.,
Climatology and Bleaching Heat Stress Metrics) describe how
the Outlook algorithm was developed based on CRW’s satellite
algorithm. In each, a concise overview of the relevant satellite
algorithm is given as background, followed by details on the
development of the corresponding Outlook algorithm. A detailed
description of CRW’s satellite algorithm can be found in Liu
et al. (2014). The algorithm for constructing the probabilistic
Outlook and the product availability are presented in the last two
subsections.

Climatology
CRW’s satellite-based heat stress detection algorithm is based
on positive SST anomalies and therefore requires an accurate
climatology (historical reference temperature) from which the
anomaly is determined. The algorithm for developing the
climatology used in CRW’s satellite monitoring was described by
Liu et al. (2014), Liu et al. (2013), and Heron et al. (2015) and
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is summarized in the first subsection below. It was adapted to
develop the model-based climatologies described herein.

Climatology Used in CRW’s Satellite Monitoring
CRW’s satellite monitoring uses the maximum of the monthly
mean (MMM) SST climatology as the threshold, above which
corals experience heat stress known to cause bleaching. The
MMM climatology for any given grid cell is the maximum
value among the 12 monthly mean SST climatologies at the
grid cell. This value represents the long-term mean SST of the
climatologically warmest calendar month. To avoid any potential
bias, the climatology should be derived from the same SST dataset
used for observations. When that is not possible, a compatible
dataset with similar characteristics can be substituted.

In CRW’s original satellite monitoring, the baseline time
period of the climatology was 1985–1990 and 1993 (i.e., centered
at 1988.3, with 1991–1992 omitted due to contamination by
volcanic aerosols from Mt. Pinatubo). This was due to the
limited availability of high-quality historical SST data at the time
(Heron et al., 2014). The interpretation of CRW’s original satellite
products developed from that climatology was thus referenced
to that time period (Liu et al., 2013). For climatologies used
in newer, higher-resolution satellite products, CRW developed
methodologies to maintain this reference time period, even
when using longer datasets (Heron et al., 2014, 2015). For
the Outlook, MMM climatologies were derived from 1985 to
2006 CFSv2 daily SST hindcasts, then time-centered to 1988.3
(following the original CRW satellite climatology; see section
CFSv2 SST Climatology for details). The time-centered MMM
is used as a threshold in the Outlook system to identify
heat stress.

dOISSTv2 SST Climatology
In the Outlook Versions 3 and 4, the dOISSTv2 is used as needed
to produce a consecutive 12-week time series (part observed, part
predicted), for predicting daily accumulated heat stress within
12-weeks of the run date (i.e., initial condition date). Values of the
reprocessed dOISSTv2 from 1985 to 2006 were used to derive the
climatology for calculating dOISSTv2-based heat stress, following
Heron et al. (2014). The followingmethod was applied to develop
a climatology for each grid cell independently. Firstly, the mean
of each calendar month of each year was calculated as the average
of all daily dOISSTv2 values within the month. The climatology
for each calendar month was then derived as the average of all
means for that month during 1985–2006. Each of the resulting 12
monthly mean climatologies was then re-centered from 1995.5
(the mid-point of 1985–2006) back to 1988.3 (the center of the
original CRW reference time period), based on the linear SST
trend determined from the means of that month from 1985 to
2006. The dOISSTv2 MMM climatology is the maximum of the
re-centered 12 monthly mean climatologies. The process was
repeated for each grid cell.

While the processing algorithms used in the near real-
time and reprocessed dOISSTv2 datasets are identical, the daily
values of the near real-time version used in CRW’s Outlook
may differ slightly from the reprocessed values used to derive
the climatology. This has similarities with the satellite system

in that the satellite climatology had to be developed from a
dataset distinct from the near real-time satellite SST data, which
therefore required that the difference (bias) between these be
accounted for (Heron et al., 2014, 2015). An in-depth analysis
to characterize systematic bias between the two versions of
dOISSTv2 over a sufficient comparison period was not possible,
as the near real-time data are not archived by NESDIS. However,
long-term averaging of daily values applied in deriving the
climatology should significantly reduce any daily difference.With
this in mind, no bias adjustment was needed and the climatology
was used to derive accumulated heat stress, which is needed to
derive the Outlook prediction.

CFSv2 SST Climatology
The 1985–2006 CFSv2 daily SST hindcasts up to 9-months
were used to derive a set of lead-time dependent MMM
climatologies for Outlook Versions 3 and 4. To reduce lead-time
and initialization date dependent biases usually present in model
forecasts (Stockdale, 1997; Saha et al., 2006; Hudson et al., 2010;
Spillman et al., 2011; Fučkar et al., 2014), an MMM climatology
was constructed for each of the lead-times ranging from 1 to
270-days.

In CRW’s Outlook systems, lead-time for a predicted day is
defined as the number of days between the initial condition day
of a forecast run and the predicted day. The prediction for the day
after the initial condition day has a lead-time of 1-day.

First, a monthly mean climatology for each calendar month
had to be derived, which required calculation of the mean
for every month of every year from 1985 to 2006. Daily SST
predictions of a model run were required for all days in a month
to calculate the monthly mean of that run. For instance, for a run
initialized on either the first or the last day of a calendar month,
the earliest month for which a monthly mean could be derived
was the following month. As each hindcast run produced daily
predictions out to 9-months, this included eight entire months
and one incomplete month that contained the initial condition
day. Multiple runs in a day were averaged to produce daily values.
The lead-time for the monthly mean for each entire month in
the prediction was set as the number of days between the initial
condition date and the 15th day of that month. As the hindcasts
were run only every fifth day, beginning with January 1 each
year, lead-times also were produced with 5-day intervals. Hence,
the minimum lead-time for a monthly mean varied by month
from 15 to 19-days. Similarly, the maximum possible lead-time
for a monthly mean produced directly from daily hindcasts was
<270-days. From 1985 to 2006, 22 means were produced for
each calendar month with a distinct lead-time and initialized on
a specific date each year. For example, an August mean with a
lead-time of 76-days was always initialized on May 31 of each
year. These 22means were then averaged to generate the monthly
mean climatology of the lead-time for the month, which is both
lead-time and initialization date dependent. We calculated the
linear trend of these 22 means over 1985–2006 and re-centered
the climatology of the month from the center of the 22 years
(i.e., 1995.5) back to the CRW reference time point (i.e., 1988.3)
based on the linear trend. This process was repeated for each
grid cell.

Frontiers in Marine Science | www.frontiersin.org March 2018 | Volume 5 | Article 5734

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Liu et al. NOAA’s Coral Reef Bleaching Outlook

As the CFSv2 daily SST hindcasts were run every 5-days, the
CFSv2 monthly mean climatologies were produced with lead-
times at 5-day intervals (i.e., 4-day gaps in lead-time). Lead-
time gaps were filled by applying linear interpolation between
the previously produced, re-centered climatologies of the lead-
times at the ends of each gap. For lead-times of 1-day to less
than the minimum lead-time that was produced directly from
the hindcasts (described earlier), the climatology of theminimum
lead-time was used. The same methodology was applied to lead-
times greater than the maximum lead-time and up to 270-
days by using the maximum lead-time produced. The impact
of the change in climatology in the initial and final periods
cannot be evaluated but is not expected to be significant. This
completed development of the set of 12 re-centered monthly
mean climatologies for each lead-time (1–270-days).

Finally, the CFSv2 MMM climatology for each lead-time (1–
270-days) was extracted as the maximum of the 12 re-centered
CFSv2 monthly mean climatologies of that lead-time and used
as a reference to predict heat stress (see details in section
Model Prediction Metrics). This process preserved the lead-
time and initialization date dependences of the monthly mean
climatologies in the resulting MMM.

Bleaching Heat Stress Metrics
Satellite Monitoring Metrics
In CRW’s satellite algorithm, the Coral Bleaching HotSpot is
a positive-only anomaly registering the departure of satellite-
observed SST above the corresponding MMM climatology,
measuring the magnitude of daily heat stress that can lead to
coral bleaching. Since both intensity and duration of heat stress
contribute to the occurrence and severity of bleaching, especially
mass coral bleaching, CRW’s daily satellite DHW (expressed in
the unit ◦C-weeks) accumulates all daily HotSpot values that are
at least 1◦C, over a 12-week period (84-days). The DHW thereby
nowcasts the occurrence and potential severity of bleaching
events (Glynn and D’Croz, 1990; Liu et al., 2003, 2013, 2014;
Eakin et al., 2010; Heron et al., 2016a). Based on the finding
that temperatures exceeding 1◦C above the usual summertime
maximum are sufficient to cause bleaching in corals (Glynn and
D’Croz, 1990), the temperature of MMM+1◦C (i.e., HotSpot =
1◦C) was set as a high-pass filter threshold for accumulating the
daily heat stress, measured by the HotSpot, into the DHW.

CRW’s satellite Bleaching Alert Area identifies locations where

bleaching heat stress reaches various risk levels based on the
HotSpot andDHWvalues (Table 1). At Alert Level 1, ecologically
significant bleaching is likely and at Alert Level 2, widespread
bleaching with significant mortality is likely. The Bleaching
Alert Area is extremely useful in management applications as it
provides a single, convenient tool for describing critical levels of
heat stress that can negatively impact coral health.

Model Prediction Metrics
CRW’s Outlook systems (including Versions 3 and 4) first
generate daily predictions of HotSpot and DHW at each lead-
time ranging from 1-day (the day after the initial condition day)
to 270-days, using daily CFSv2 SST predictions of eachmodel run
(ensemble member).

As in the satellite monitoring, the HotSpot prediction at
a given grid cell on a particular day is calculated as the
(positive) difference between the daily CFSv2 SST prediction
and the Outlook MMM (re-centered MMM described in
section CFSv2 SST Climatology) at the corresponding lead-
time. The DHW prediction for the day accumulates 84
consecutive daily HotSpot predictions ending on the predicted
date. The method of using the lead-time dependent MMM
climatology to calculate HotSpots from the CFSv2 daily
SST predictions of corresponding lead-times is consistent
with the systematic error correction applied by Saha et al.
(2014) and Zhang and van den Dool (2012) on the CFSv2
predictions.

For a daily DHW prediction with lead-times of up to 83-
days, the DHW is computed as described above but using
a combination of dOISSTv2-based and predicted HotSpots.
The dOISSTv2-based daily HotSpot is the observed HotSpot,
calculated as the anomaly between the dOISSTv2 and the
dOISSTv2-based MMM (described in section dOISSTv2 SST
Climatology); hence, the predicted daily DHW for lead-times
<84-days accumulates both observed HotSpots and predicted
HotSpots. The accumulation of dOISSTv2-based HotSpots into
the DHW prediction applies CRW’s satellite algorithm.

A modification from the satellite algorithm is required to
account for differences between the model and satellite SSTs.
Variability of the daily CFSv2 SST forecast within the top 10m
layer of the ocean was observed to be smaller than the variability
in the top 1m (X. Wu, pers. comm.), against which the satellite
SST analysis is calibrated. Also, the upper meter of the ocean
usually experiences significant diel variation during the low wind
and clear sky conditions often present during bleaching events.
The differences between the 10 and 1m SST values can result in
dampened daily SST excursion above the corresponding Outlook
MMM climatologies. If the same high-pass filter (threshold) of
1◦C, used in the satellite monitoring, were applied to filter daily
HotSpot predictions at all lead-times, fewer predicted HotSpots
at longer lead-times would be accumulated and the predicted
DHW would be smaller than the observed satellite DHW. To
relate the predicted DHW value to a bleaching risk level using
the same classifications as in CRW’s satellite algorithm (Table 1),
while preserving the satellite HotSpot algorithm in calculating
the predicted HotSpot, a HotSpot threshold that is <1◦C is
necessary for any predicted daily HotSpot. This is the approach
applied in the previous and current versions of CRW’s Outlook
systems.

A lead-time dependent HotSpot threshold was originally
developed for CRW’s LIM-based, statistical seasonal Coral
Bleaching Outlook system (Liu et al., 2009) and then
adapted for the CFSv1-based Outlook Version 1 (Eakin
et al., 2012). It was based on experiments that predicted spatial
distributions and magnitudes of heat stress and compared
those to CRW’s satellite monitoring during various confirmed
mass bleaching events, including the 2005 Caribbean-wide
and the 2010 global bleaching events. Applying a uniform
HotSpot threshold of 0◦C caused overestimation in the
DHW prediction for shorter lead-times, while a HotSpot
threshold of 0◦C was required for predicting sufficient
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TABLE 1 | Bleaching heat stress levels defined for CRW’s satellite Bleaching Alert Area product, based on CRW’s satellite HotSpot and DHW products, and CRW’s

Outlook Versions 3 and 4.

Stress Level Definition Effect

Satellite Monitoring Outlook

No Stress HotSpot ≤ 0◦C HotSpot ≤ 0◦C No stress

Bleaching Watch 0◦C < HotSpot < 1◦C 0◦C < HotSpot and

DHW < DHWthreshold

Presence of low-level

heat stress

Bleaching Warning 1◦C ≤ HotSpot and

0◦C-week < DHW < 4◦C-weeks

HotSpotthreshold ≤ HotSpot and

DHWthreshold ≤ DHW < 4◦C-weeks

Possible bleaching

Alert Level 1 1◦C ≤ HotSpot and

4◦C-weeks ≤ DHW < 8◦C-weeks

HotSpotthreshold≤ HotSpot and

4◦C-weeks ≤ DHW < 8◦C-weeks

Bleaching likely

Alert Level 2 1◦C ≤ HotSpot and

8◦C-weeks ≤ DHW

HotSpotthreshold ≤ HotSpot and

8◦C-weeks ≤ DHW

Mortality likely

heat stress for longer lead-times. The lead-time dependent
HotSpot threshold used with the LIM-based outlook was
hence adapted for Outlook Versions 3 and 4, with a minor
adjustment.

Outlook Versions 3 and 4 apply a HotSpot threshold
(HotSpotthreshold) that decreases linearly from 1◦C at the lead-
time of 0-days (i.e., the initial condition day) to 0◦C at lead-
times of 70-days (Day 70; i.e., the end of 10-weeks) and beyond
(Figure 1; Table 1). This formula was chosen after testing various
slopes with 1-week increments for a few known major bleaching
events. For a predicted date, if the predicted HotSpot value
reach the HotSpotthreshold for the corresponding lead-time, the
HotSpot value is accumulated into the DHW prediction. Such
conditions initiate at least a predicted Bleaching Warning for
the date in question. However, modifying the HotSpot threshold
required a lead-time dependent DHW threshold for categorizing
heat stress as well. As the HotSpotthreshold decreases to zero
by Day 70, any subsequent positive HotSpot value results in
a DHW accumulation. If the satellite-based stress classification
(Table 1) had been applied directly for those days, the Bleaching
Watch level would have been skipped and the stress would
have jumped directly from No Stress to Bleaching Warning. To
prevent this from occurring, a linearly varying DHW threshold,
DHWthreshold, was introduced (Figure 1). It started with 0◦C-
weeks at Day 0 and increased linearly to 2◦C-weeks at Day 70
to maintain the BleachingWatch level throughout the lead-times
included in the Outlook. Note that the linear change in the
HotSpot threshold over lead-times of 1–70-days was developed
to allow sufficient daily predicted HotSpots to be accumulated
into the DHW prediction while preventing too much DHW
accumulation. This is not related to the DHW accumulation
time period of 84-days. Other approaches may produce Outlook
values with good or better matches with observed heat stress and
will be tested for future versions.

Our most recent examinations, based on predictions made for
the 2015 bleaching event in the Main Hawaiian Islands (MHI)
and 2016 bleaching event in the northern Great Barrier Reef
(GBR), further verified the application of lead-time dependent
HotSpot and DHW thresholds. Note that published analyses of
the CFSv2 (e.g., Xue et al., 2013; Saha et al., 2014) did not evaluate

FIGURE 1 | Schematic of lead-time dependent HotSpot threshold

(HotSpotthreshold, purple) and Degree Heating Week (DHW) threshold

(DHWthreshold, red) used in the algorithm for Outlook Versions 3 and 4.

changes in variability of the CFSv2 SST over lead-times on daily
or weekly bases.

Mass bleaching of corals across a reef usually takes weeks
of stressful conditions to develop. CRW’s Outlook, updated
once a week, is not designed to provide guidance on the daily
development of heat stress. Therefore, weekly predictions are
derived from the daily predictions before further processing.
Given that the HotSpot and DHW are positive-only variables,
the medians of seven daily values of the HotSpot and DHW
over a calendar week are used as the predictions for that week.
The weekly Bleaching Alert Area prediction of an ensemble
member is then determined from the weekly HotSpot and DHW
predictions of that member, based on the stress classifications
provided in Table 1. The weekly predictions are calculated for
each ensemble member separately.

In CRW’s Outlook system, a weekly time period covers
Monday–Sunday and is tracked by Sunday’s date. A weekly
prediction with a lead-time of 1-week is for the week immediately
following the initial condition week (defined below); weekly
predictions are produced out to approximately 4-months.
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Probabilistic Bleaching Outlook
Weekly Outlook
The weekly probabilistic Outlook for a week is constructed based
on the weekly Bleaching Alert Area predictions from all the
available ensemble members for the week. The Outlook Version
4 has been developed and replaced Version 3 in May 2017. The
difference between the two versions is the number of CFSv2 daily
runs used in the probabilistic Outlook, as described below.

Weekly Outlook Version 3
The probability of predicted stress was determined from the
ensemble of model runs each week. In the Outlook Version 3, the
28 Bleaching Alert Area values (i.e., four runs per day over 7-days
of the initial condition week), derived from the four 9-month
CFSv2 SST runs daily, were pooled for each predicted week. A
probabilistic forecast was then produced for each predicted week
by determining the heat stress levels reached or exceeded by
10 specified percentages of ensemble members at each grid cell.

The 10 pre-set probabilistic levels range from 10 to 100%, in
increments of 10%. For example, the 90% probabilistic Outlook
for a predicted week at a grid cell would be the stress level
(Table 1) that 26 of the 28 ensemble members met or exceeded.
The probability of each of four bleaching heat stress ranges
(Watch and higher, Warning and higher, Alert Level 1 and
higher, and Alert Level 2) also was determined from all available
ensemble members for the week to form a full set of weekly
probabilistic Outlook products.

Weekly Outlook Version 4
In the Outlook Version 4, all 16 daily runs, including the four 9-
month runs used in the Outlook Version 3, as well as the other
12 daily runs with shorter forecast ranges, are incorporated. All
45-day and one-season runs initialized over a calendar week can
consistently predict for at least 5 and 12-weeks, respectively, into
the future. Pooling all available members for each week, the first
5-weeks in the prediction have 112 ensemble members; weeks 6–
12 have 49 members; and weeks 13–37 have 28 members. The
same algorithm used in the Version 3 is used to generate Version
4 of the probabilistic weekly Outlooks. The only difference comes
from the varying number of ensemble members over the course
of the 4-month time period. As in Version 3, for each predicted
week, heat stress levels are determined for 10 pre-set probabilistic
levels (from 10 to 100%, in increments of 10%) at each grid cell,
along with the probabilities for the four stress ranges.

Although the Outlook Version 4 uses more ensemble
members than the Outlook Version 3, initial comparisons have
revealed that they are remarkably similar (not shown). This may
indicate that the four 9-month control runs capture most of the
variability found in the full set of runs. Versions 3 and 4 of the
weekly Outlooks are identical forWeek 13 and longer lead-times.

Four-Month Outlook
CRW’s probabilistic 4-Month Outlook is constructed from the
weekly Outlooks described above. A period of 4-months is the
approximate length of a bleaching season (warm season) on most
coral reefs. The 4-month period of the Outlook starts with the
second predicted week (lead-time of 2-weeks), and Sunday’s date

determines the first month. The Outlook period ends on the last
Sunday of the fourth month. Weekly Outlooks ranging from a
lead-time of 2-weeks to at least 15-weeks and up to 20-weeks
(depending on the lead-time of the last Sunday in the fourth
month) are used to derive the 4-Month Outlook. The weekly
Outlook with 1-week lead-time is excluded, as the 4-Month
Outlook is updated weekly in the middle of that week.

For each of the 10 predetermined probabilistic levels (from 10
to 100%, in increments of 10%) used in the weekly Outlooks,
the maximum temporal composite over the 4-month period
is created by extracting the maximum values from all of the
weekly Outlooks with the corresponding probabilistic level. The
resulting 10 4-month maximum composites are the probabilistic
4-Month Outlooks for the corresponding probabilistic levels. For
each of the four stress ranges, the probabilistic 4-Month Outlook
provides the highest weekly probability predicted among all of
the weekly Outlooks during a 4-month period.

Product Availability
Global and regional maps of the most recent update of the
probabilistic 4-Month Outlook at 90% and 60% probabilities
(Figures 2A,B for Version 3, respectively) are posted on CRW’s
website at https://coralreefwatch.noaa.gov. These are updated
weekly, along with the weekly Outlooks of the corresponding
probabilities. Four probabilistic maps showing the percentage of
ensemble members reaching the four heat stress ranges (Alert
Level 2, Alert Level 1 and higher, Bleaching Warning and
higher, and Bleaching Watch and higher) also are displayed
(Figures 2C–F for Version 3, respectively).

Given that the daily runs need to be collected over a
calendar week to form an ensemble system, the Outlook
is run and products are updated weekly. This occurs every
Tuesday at approximately 19:00 Z, when all of the daily
CFSv2 SST predictions produced during the previous week
(through Sunday) become available to CRW. The Outlooks are
publicly available via CRW’s website: https://coralreefwatch.noaa.
gov.

The very first runs of the CFSv2 SST forecast were run
using initial conditions from April 1, 2011, so the earliest week
producing a complete set of 7-day CFSv2 runs was the week
ending on April 10, 2011. Thus, the first predicted week ended
on April 17, 2011 and the earliest 4-Month Outlook Versions 3
and 4 were for the period April-July 2011.

PERFORMANCE OF OUTLOOK VERSION 3

CFSv2 SST Skill
The skill analysis of the CFSv2 SST was discussed by Saha
et al. (2014), Xue et al. (2013), and Zhang and van den Dool
(2012), among others. A set of CFSv2 SST skill maps showing
the correlation and Root Mean Square Error (RMSE) of the
SST hindcasts, as compared with the dOISSTv2 SST (Reynolds
et al., 2002), is accessible at: http://www.cpc.ncep.noaa.gov/
products/people/mchen/CFSv2HCST/metrics/rmseCorl.html. A
subset of the correlation maps that are relevant to CRW’s
Outlook is reproduced in Figure 3 using the matching color
scale. The correlation maps are for the daily SST hindcasts
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FIGURE 2 | CRW’s probabilistic 4-Month Coral Bleaching Outlook Version 3 issued on July 7, 2015 for July–October 2015: stress levels with (A) 90% and (B) 60%

probabilities; probabilities for (C) Alert Level 2, (D) Alert Level 1 and higher, (E) Warning and higher, and (F) Watch and higher. Note that the Outlook was derived for

each grid cell in the maps regardless of the existence of shallow-water coral reefs at that specified grid cell.

of 1982–2009. The maps of 0-month lead-time are for the
3-month period immediately after the initial condition month;
the maps of 1-month lead-time are for the 3-month period
starting with the second month after the initial condition
month. Given that CRW’s Outlook covers a period of up to
four months, only the lead-times of 0- and 1-month, together
covering four months after the initial condition month, are
relevant. The CFSv2 SST skill depends on both the month
predicted and lead-time. The skill for most of the global tropical
oceans, particularly areas where corals live (Figure 4A), was
high (correlation > 0.7 and RMSE < 0.6◦C; see the CFSv2
SST skill website mentioned above for RMSE) for both lead-
times of 0- and 1-month. As a result, it was expected that

for most of the global tropical regions, the daily CFSv2 SST
predictions would produce a skillful 4-Month Coral Bleaching
Outlook.

A map of global tropical coral reef locations is provided
in Figure 4A as a reference for discussing CFSv2 SST and
Outlook skills. Global coral reef locations were compiled by
CRW from several data sources (Heron et al., 2016b); the
multi-source compilation by the United Nations Environment
Programme–World Conservation Monitoring Centre (UNEP-
WCMC) and the WorldFish Centre, in collaboration with the
World Resources Institute (WRI) and The Nature Conservancy
(TNC) (UNEP-WCMC WorldFish Centre, 2010), includes the
Millennium Coral Reef Mapping Project and the World Atlas
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FIGURE 3 | Correlations between 1982–2009 daily CFSv2 SST hindcasts and dOISSTv2 SSTs for 12 initial condition months (rows, January–December) and

lead-times of 0- (left column) and 1-month (right column). I: initial condition month; P: predicted 3-month period. Images reproduced from NOAA’s CFSv2 website.
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FIGURE 4 | (A) Map of tropical coral reef locations; (B) Numbers of observed bleaching events identified by CRW’s 50 km satellite monitoring during the comparison

time period of August 1, 2011–December 27, 2015.

of Coral Reefs. This was augmented using other local marine
atlases (e.g., UNEP/IUCN, 1988a,b) and direct communication
with researchers (i.e., where reef observation surveys had been
reported).

We further examined SST skill for the bleaching season of
major coral reef regions globally. For example, the SST hindcasts
initialized in June were high in skill (r > 0.7) for predicting both
the July-August-September (0-month lead-time) and August-
September-October (1-month lead-time) periods for most of the
tropical oceans. These months are during the bleaching season
for reefs of the Hawaiian archipelago, the Marshall Islands,
Japan, the Caribbean, and Florida (Heron et al., 2016a), among
other regions. The SST hindcasts initialized in February, March
and April were high in skill (r > 0.7) for predicting 1-month
lead time periods of April-May-June, May-June-July, and June-
July-August, respectively, which are the bleaching seasons in
Indonesia, Malaysia, Thailand, Guam and the CNMI (Heron
et al., 2016a), among other coral reef areas. However, the skill of
SST hindcasts for the Great Barrier Reef (GBR)’s peak bleaching
season (February-March-April) did not reach 0.7 for most of the
region. The reason for relatively lower SST prediction skill in the
GBR will require further investigation.

Outlook Skill
A limited analysis of the Outlook’s performance was carried
out by comparing predicted bleaching events with heat stress
events identified by CRW’s operational 50 km satellite bleaching
heat stress monitoring (Liu et al., 2013; https://coralreefwatch.
noaa.gov). The 50 km satellite products started in late 2000 (Liu

et al., 2013) and continued until January 2016, when the original
satellite SST analysis was discontinued and replaced (see Heron
et al., 2014). Hence, the satellite data available for the evaluation
were for 2001–2015. A more complete evaluation is planned
using CRW’s new CoralTemp 5 km dataset from 1985-present
once available in 2018.

The skill analysis discussed here is for the Outlook Version 3
only. It was based on weekly Outlooks with lead-times ranging
from two to at least 15-weeks and up to 20-weeks. Hence, the
analyses were conducted on the weekly Outlooks for lead-times
of 3, 5, 9, 13, and 17-weeks; these approximate to the beginning
weeks of the half, one, two, three, and 4-months into the future.
As noted above, the earliest available initial condition week for
Version 3 was April 10, 2011; therefore, the first predicted weeks
available for the five lead-times were May 1, May 15, June 12, July
10, and August 7, 2011, respectively. The common predicted time
period by all five lead-times was chosen for the skill analysis; i.e.,
August 1, 2011 (the Monday of the week ending on August 7)
through December 27, 2015 (the last Sunday of 2015). For each
specified lead-time, all of its weekly Outlooks were extracted
to form a time series. Then, in each of the five time series,
predicted bleaching events (see the definition of bleaching event
below) were compared with bleaching events observed by satellite
monitoring over the same period to produce hit, miss, and false
alarm analyses.

Although both the satellite Bleaching Alert Area and modeled
Outlook had the same spatial resolution, their grid cell layouts
were a half grid cell off in both zonal and meridional directions.
As a result, both were resized to a 0.25◦ grid cell layout by
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dividing every original 0.5◦ grid cell uniformly into four 0.25◦

grid cells that were assigned the same value as the original grid
cell; the comparison was carried out at co-located 0.25◦ grid cells.

Two types of events were defined for this analysis: heat stress
events and bleaching events. A bleaching event was recorded
as the presence of Alert Levels 1 and/or 2, both of which

are associated with at least significant bleaching (Table 1). A
heat stress event was recorded as the presence of stress at or
greater than Bleaching Warning. Hence, any bleaching event was
contained in a heat stress event, but a heat stress event did not
necessarily contain a bleaching event. The beginning day of a
heat stress event was set on the first day on which a Bleaching

FIGURE 5 | Numbers of bleaching events identified by CRW’s weekly Outlooks (Version 3) of 60% probability during the comparison time period of August 1,

2011–December 27, 2015 for lead-times of: (A) 3-weeks, (B) 5-weeks, (C) 9-weeks, (D) 13-weeks, and (E) 17-weeks.
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Warning appeared; the beginning day of a bleaching event was
set on the first day on which Alert Level 1 or 2 appeared. A
heat stress event ended when the stress decreased to a level
below Bleaching Warning (i.e., No Stress or Bleaching Watch)
and remained there for at least 84-days. The ending day of a
bleaching event was set on the last day when Alert Level 1 or 2
was experiencedwithin a heat stress event. 84-days is the duration
of the DHW accumulation. CRW’s satellite data indicated that
at some equatorial locations, in some years, heat stress did not
decrease to a level of No Stress or did not remain at No Stress
for up to 84-days before a new bleaching event started. Also, a
grid cell could have a long period of time experiencing heat stress
at the Bleaching Warning level with only a short burst of Alert
Level 1 or 2, as short as one twice-weekly period. This still would
be classified as a bleaching event. Similar situations occurred in
the Outlook. In cases when a heat stress event and/or bleaching
event existed on the first day of an examined time period, the
corresponding event beginning date was recorded as of that
day, although the event may have started well before the first
predicted week. The predicted bleaching events (not heat stress
events) were compared with satellite detected bleaching events.
Hereafter, a bleaching event identified by the satellite monitoring
is referred to as an observed bleaching event or observed event.
As this is a test of the skill in predicting the heat stress that
causes bleaching, the Outlook is only compared with heat stress
data and not field observations of bleaching. Finally, CRW uses
the Outlook of 60% probability to issue warnings of impending
bleaching; therefore, the performance of the 60% probability
Outlook is discussed herein.

The temporal resolution of the 50 km satellite Bleaching
Alert Area was twice-a-week, based on a repeated Monday–
Wednesday (3-days) and Thursday–Sunday (4-days) SST analysis
cycle. The beginning and end dates of an event were the
first and last date of the corresponding twice-a-week periods,
respectively. The Outlook had a weekly temporal resolution
(Monday–Sunday), so the beginning and end dates of a predicted
event were the Monday and Sunday of the corresponding
weeks, respectively. Given that the heat stress level is based
on accumulated stress over 84 consecutive days, any potential
offset by half a week in the event beginning and end
dates between the satellite monitoring and Outlook can be
ignored.

Hits, misses, and false alarms by the Outlook were counted
at each grid cell, and compared with observed bleaching events
(determined by their beginning and end dates), for each of
the five lead-times over the same comparison time period. For
each observed event, overlapping predicted events were searched
for, regardless of event duration and the relative beginning and
end dates. Any predicted event that overlapped an observed
event was a hit. If an observed event was not overlapped
by a predicted event, a miss was counted. If a predicted
event did not overlap any observed event, a false alarm was
registered.

The number of observed events identified for each grid cell
for the comparison time period is plotted in Figure 4B; the
corresponding numbers of predicted events for examined lead-
times are plotted in Figure 5. Among all the grid cells, the
maximum number of observed events was six, and the maximum
numbers of predicted events were six, eight, seven, seven, and
eight for the lead-times of 3, 5, 9, 13, and 17-weeks, respectively
(Table 2).

Given that there were at most six observed events at a grid
cell (Table 2) and a good percentage of grid cells did not have
any observed events, calculating rates of hit, miss, and false alarm
could not provide normally-distributed data to quantitatively
analyze skill. A longer time series of Outlook data (beyond
2011–2015) will be needed to conduct a fully quantitative skill
analysis. Hence, hit, miss, and false alarm counts, instead of
their rates and other derived skill indices, are presented in
Figures 6–8, respectively. The maximum counts of hit, miss,
and false alarm among all grid cells for each of the five lead-
times are provided in Table 2. For regions with a count of
zero for hit, miss, and false alarm, the Outlook was successful
in not predicting a bleaching event at the corresponding lead-
times.

Figures 6 (hit), 7 (miss) show that throughout the lead-times,
the Outlook performed well in predicting observed bleaching
events for most coral reef regions for up to 4-months into
the future. Exceptions to this were areas such as the northern
Philippines, South China Sea, and Timor Sea, where miss
counts were mostly up to four, especially at longer lead-times
(Figure 7). At the 17-week lead-time, the Outlook missed some
observed events in the Northwestern Hawaiian Islands (NWHI)
and in the eastern Caribbean (Figure 7E). Numbers of misses

TABLE 2 | The maximum numbers of observed and predicted bleaching events, their shortest and longest event durations, and the maximum counts of hits, misses, and

false alarms of the Outlook, among all grid cells, for lead-times of 3, 5, 9, 13, and 17-weeks, during the comparison time period of August 1, 2011–December 27, 2015.

Maximum #

of events

Shortest

duration (days)

Longest duration

(days)

Maximum #

of hits

Maximum #

of misses

Maximum # of

false alarms

Observed 6 3 689 - - -

3-week lead-time 6 7 756 5 5 6

5-week lead-time 8 7 742 6 5 8

9-week lead-time 7 7 595 6 5 7

13-week lead-time 7 7 756 6 5 7

17-week lead-time 8 7 1,169 6 5 7
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FIGURE 6 | Numbers of hits by CRW’s weekly Outlooks (Version 3) of 60% probability during the comparison time period of August 1, 2011–December 27, 2015 for

lead-times of: (A) 3-weeks, (B) 5-weeks, (C) 9-weeks, (D) 13-weeks, and (E) 17-weeks.

at each lead-time were low across most equatorial regions
(Figure 7).

The false alarm is another critical aspect of the skill
analysis. At short lead-times of 3 and 5-weeks, the false
alarm count was relatively high in the eastern equatorial
Pacific, southeastern Caribbean, off the Northern Territory of

Australia, in parts of southern Indonesia, and in the central
Indian Ocean (Figures 8A,B). Areas with higher false alarm
counts expanded spatially at the longer lead-time of 9-weeks
to include portions of the western equatorial Pacific Ocean
(Figures 8C,D). At the lead-time of 17-weeks, the false alarm
count decreased in the eastern Indian Ocean and the Caribbean
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FIGURE 7 | Numbers of misses by CRW’s weekly Outlooks (Version 3) of 60% probability during the comparison time period of August 1, 2011–December 27, 2015

for lead-times of: (A) 3-weeks, (B) 5-weeks, (C) 9-weeks, (D) 13-weeks, and (E) 17-weeks.

but increased in the central and western equatorial Pacific
Ocean and western Indian Ocean (Figure 8E). Over-prediction
may have been caused by highly variable and short-lived
weather events, especially tropical storms and shifts in the
monsoon, which are not predictable by seasonal-scale climate
forecast systems. Tropical storms can relieve heat stress that

otherwise would have caused severe bleaching (Manzello et al.,
2007; Hughes et al., 2017). Detailed discussion of extreme
weather event impacts is outside the scope of this paper.
The decrease in the HotSpot threshold with increasing lead-
time may have contributed to some false alarms. Regions
identified with relatively high miss and false alarm counts will
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FIGURE 8 | Numbers of false alarms by CRW’s weekly Outlooks (Version 3) of 60% probability during the comparison time period of August 1, 2011–December 27,

2015 for lead-times of: (A) 3-weeks, (B) 5-weeks, (C) 9-weeks, (D) 13-weeks, and (E) 17-weeks.

be investigated further once longer time series of satellite and
modeled data are available for an appropriate comparison. For
the regions with a tendency toward false alarm, prediction
of upcoming bleaching events, especially at longer lead-times,
should be treated cautiously in making management decisions.
The predictions may be useful to guide early preparation but

should be further informed by viewing CRW’s near real-time
satellite monitoring.

In this evaluation, counts of hit, miss, and false alarm did
not take into account the duration of the bleaching event, only
the presence and absence of overlaps between observed and
predicted events. Multiple observed events may have overlapped
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one predicted event, and vice versa. Refined analyses taking
into account event duration will be conducted when a longer
data time series becomes available. As an example, maps of
the shortest and longest durations of the predicted bleaching
events for the 5-week lead-time and the corresponding observed
bleaching events are provided in Figure 9 to demonstrate that
the Outlook was compatible with the satellite observations
in terms of spatial distribution and range of event duration.
Table 2 also lists the ranges of event duration for the five lead-
times.

As the hindcasts were run on 1-day out of every five (as
described earlier) and the real-time version of the CFSv2 runs
every day, the ensemble system has to be revised to accommodate
the lower number of weekly ensemble members in the hindcast.
Given that the focus of this manuscript is on the algorithm, we

plan to analyze the Outlook hindcast results and associated skill
analysis for publication in a separate article.

APPLICATION OF CRW’S OUTLOOK IN

PREDICTING THE THIRD GLOBAL CORAL

BLEACHING EVENT

The third global coral bleaching event started in the CNMI and
Guam in June 2014 and was declared global in its extent by
NOAA in October 2015 after widespread bleaching had been
reported in the Pacific, Atlantic, and IndianOcean basins (NOAA
News Release, 2015; Eakin et al., 2017). The extremely strong
2015–2016 El Niño further spread and worsened the global event
in 2016 (Normile, 2016; Eakin et al., 2017). By February 2016, it

FIGURE 9 | The shortest (A) and longest (B) event durations identified by CRW’s 50 km satellite monitoring and the shortest (C) and longest (D) event durations

predicted by CRW’s weekly Outlooks (Version 3) of 60% probability with a lead-time of 5-weeks during August 1, 2011–December 27, 2015.
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FIGURE 10 | Maximum composite of CRW’s daily global 5 km satellite Bleaching Alert Area (Version 3) for June 2014–May 2017. Major bleaching has been reported

to CRW by resource managers, scientists, and the public in the coral reef regions outlined by ellipses.

FIGURE 11 | CRW’s (A) 4-Month Outlook (Version 3) of 60% probability issued on June 24, 2014 for July–October 2014, predicting Alert Level 1 in the

Commonwealth of the Northern Mariana Islands (CNMI), Guam, and the Main Hawaiian Islands (MHI), and the (B) monthly maximum 50 km satellite Bleaching Alert

Area for July 2014, observing Alert Levels 1 and 2 in the CNMI.
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was the longest global event ever recorded (NOAANews Release,
2016a) and in June 2016 was projected to become a continuous
3-year event (NOAA News Release, 2016b). This event affected
more reefs in the U.S. and worldwide than either previously
documented global bleaching event (1998 and 2010; Eakin et al.,
2017). It has been the worst ever in some locations [e.g., the
northern GBR (Hughes et al., 2017), Kiritimati Island (The
Washington Post, 2016), Jarvis Island (Brainard et al., 2018), and
the NWHI (Couch et al., 2017)]. Some reefs bleached extensively
for the first time on record (e.g., the northern GBR; Hughes
et al., 2017), and some reefs were affected in consecutive years
[e.g., Hawaii, the Florida Keys (Eakin et al., 2017), and the CNMI
(Heron et al., 2016b)].

CRW’s Outlook and its near real-time satellite products
predicted, monitored, and tracked this multi-year global
bleaching event starting well before it began. They were used
for management preparedness and response: e.g., governmental
closures of major dive sites in anticipation of extensive coral
bleaching (e.g., The Guardian, 2016) and changes in location
and resource allocation for in-water monitoring and ecological

impact surveys (e.g., Heron et al., 2016b; Eakin et al., 2017).
Figure 10, based on CRW’s daily global 5 km satellite monitoring
(Liu et al., 2014; https://coralreefwatch.noaa.gov), shows the
highest heat stress levels reached during June 2014–May 2017.
The 5 km products are CRW’s next-generation satellite products;
in early 2016, they replaced CRW’s heritage 50 km products as
the core component of CRW’s decision support system for coral
bleaching management (Heron et al., 2016b; Liu et al., 2017). In
the figure, ellipses outline those reef regions where CRW’s 5 km
products indicated bleaching should be occurring and where
field partners and users had reported extensive bleaching. CRW
is still actively collating observations of coral bleaching and
no bleaching from the field. Analysis of this global bleaching
event and the performance of CRW’s satellite and Outlook
products during the event will be conducted and published
soon.

Following the timeline of the third global bleaching event,
the application of CRW’s Outlook to predict some key phases
of the event is described herein. The Outlook issued on June 24,
2014 (Figure 11A) predicted imminent bleaching in the CNMI

FIGURE 12 | CRW’s (A) 4-Month Outlook (Version 3) of 60% probability issued on August 26, 2014 for September–December 2014, predicting Alert Levels 1 and 2 in

the Northwestern Hawaiian Islands (NWHI), and the (B) monthly maximum 50 km satellite Bleaching Alert Area for September 2014, observing Alert Levels 1 and 2 in

the NWHI and the CNMI.
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FIGURE 13 | CRW’s (A) 4-Month Outlook (Version 3) of 60% probability issued on July 7, 2015 for July–October 2015, predicting Alert Level 2 at the southeast end of

the NWHI and in the Main Hawaiian Islands (MHI) during summer/fall 2015, and the (B) monthly maximum 50 km satellite Bleaching Alert Area for September 2015,

observing Alert Level 2 in the same region.

and Guam that would start early that month (weekly Outlooks
are not shown but are accessible on the CRW website). This
marked the onset of the third global bleaching event. Subsequent
Outlooks (accessible on the CRW website), updated weekly,
continued to predict the presence of Alert Level 1 or 2 in the
region until late September 2014. This was confirmed by CRW’s
satellite monitoring at 50 km and 5 km resolutions. The 50 km
satellite monitoring, for example, showed that Alert Levels 1
and 2 occurred in the region from early July (Figures 11B, 12B)
through late September 2014, as confirmed by field observations
(Heron et al., 2016b).

Four-Month Outlooks issued in June (Figure 11A), August
(Figure 12A), and September 2014 (not shown) indicated the
potential for Alert Levels 1 and 2 across theHawaiian archipelago,
especially in the NWHI in late 2014. These were confirmed by
CRW’s satellite monitoring (Figure 12B) and field observations,
indicating widespread bleaching, with the middle section of the
NWHI experiencing unprecedented mass bleaching (Bahr et al.,
2015; Couch et al., 2017; Eakin et al., 2017).

As early as June 23, 2015, CRW predicted potential mass
bleaching (https://coralreefwatch.noaa.gov) that later occurred
in the MHI in summer/fall 2015; the Outlook issued on July
7, 2015 (Figure 13A) showed the spatial extent of Alert Level 2
that would be realized. CRW’s satellite monitoring pinpointed
the bleaching event in the Hawaiian archipelago, especially in the
MHI, as lasting from August through October 2015 (Figure 13B)
– as predicted by the Outlook. Concerned over CRW’s Outlooks
and near real-time satellite monitoring, the “Eyes of the Reef”
volunteer reporting network held its first state-wide Bleach
Watch “Bleachapalooza” monitoring event on October 3, 2015
(Hawaii Department of Land and Natural Resources, 2015)1;
this is the critical first tier of the Hawaii Department of Land
and Natural Resources’ Rapid Response Contingency Plan. It
turned out to be an unprecedented, widespread, severe bleaching
event in the MHI (Eakin et al., 2017). Based on CRW’s
Outlook, the Hawaii Division of Aquatic Resources collected

1http://dlnr.hawaii.gov/blog/2015/09/25/nr15-148 (Accessed Nov 29, 2016).
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specimens of rare corals to preserve them in onshore nurseries
in case the mortality was severe. One of these species can no
longer be found living on the reefs in Oahu; its genotypes
are now found only in the nursery specimens (D. Gulko, pers.
comm.).

In October 2015, NOAA officially declared the third
global coral bleaching event (NOAA News Release, 2015),
based on CRW’s satellite monitoring and reported bleaching
throughout the Pacific, Indian, and Atlantic Oceans. Based on
CRW’s Outlook of October 6, 2015 for October 2015–January
2016 (https://coralreefwatch.noaa.gov), the news release further
indicated that the event would continue in the weeks and months
ahead, affecting at least the Caribbean and central equatorial
Pacific Ocean.

As early as December 1, 2015, CRW’s Outlook predicted a
mass bleaching event on the GBR during its summer season
(February–April) 2016 (Figure 14A). That event turned out to
be the worst in the GBR’s history, especially in the northernmost
portion of the GBR, where severe and widespread coral die-off

was observed (e.g., Hughes et al., 2017). The December 1, 2015
Outlook also predicted the bimodal distribution of warm water
(both in the northern GBR and New South Wales) that was
eventually observed. Severe bleaching also was reported in and
around Sydney Harbor (The ABC, 2016). Prior to peak bleaching,
Thailand used CRW’s prediction of severe heat stress to close
numerous coral reefs to tourism as a way to reduce further stress
to the reefs (The Guardian, 2016).

Kiritimati and Jarvis Islands, among other isolated islands
and atolls in the central equatorial Pacific Ocean, were at the
epicenter of the extremely strong 2015-16 El Niño. As predicted
by CRW’s Outlook (Figures 13–15) and confirmed by CRW’s
5 km and 50 km satellite monitoring (Figures 10, 13, 14), Alert
Level 2 bleaching heat stress lasted from May 2015 through
May 2016 at some reef locations in the region. Once among the
world’s lushest coral reef ecosystems, the third global bleaching
event killed most corals on these reefs (Associated Press, 2016a,b;
NOAA Fisheries News Release, 2016; The Washington Post,
2016).

FIGURE 14 | CRW’s (A) 4-Month Outlook (Version 3) of 60% probability issued on December 1, 2015 for December 2015–March 2016, predicting Alert Levels 1 and

2 on the Great Barrier Reef (GBR) and in the waters off southeast Australia during the region’s 2016 summer, and the (B) monthly maximum 50 km satellite Bleaching

Alert Area for March 2015, observing Alert Levels 1 and 2 in the regions.
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FIGURE 15 | CRW’s 4-Month Outlook (Version 3) of 60% probability (A) issued on March 3, 2015 for March-June 2015 and (B) on February 2, 2016 for

February–May 2016. Long-lasting, continuous Alert Level 2 heat stress was predicted over islands and atolls in the central equatorial Pacific Ocean, including Kiritimati

and Jarvis Islands, located at the epicenter of the extremely strong 2015-16 El Niño.

When the third global bleaching event ended its second year in
mid-2016, NOAA again used CRW’s Outlook to project the third
year of the global event (NOAANews Release, 2016b). The global
event continued into mid-2017 with bleaching predicted by
CRW’s Outlook (https://coralreefwatch.noaa.gov) and observed
in-water in Fiji, Niue, American Samoa, and at scattered locations
along the GBR (i.e., Eakin et al., 2017; The Guardian, 2017).

CONCLUDING REMARKS

CRW’s probabilistic 4-Month Coral Bleaching Outlook system
(https://coralreefwatch.noaa.gov) is the first and only freely
available global system for predicting the heat stress that leads
to mass coral bleaching.

As with any model predictions, improving forecast skill
is always a challenge and remains a focus of CRW’s ongoing
development efforts. While we anticipate that improved
versions of NOAA’s CFS will become available within the
next few years to enhance CRW’s Outlook system and
benefit the global coral reef community, CRW also will
continue to work on refining the Outlook algorithm to
enhance prediction skill across the global tropical oceans. The
analysis presented in this study will guide future quantitative
analyses and development and improvement of the Outlook
system.

The recent release of Version 3 of CRW’s daily, global 5 km
satellite coral bleaching heat stress monitoring product suite
significantly improved near real-time monitoring accuracy (C.M.
Eakin, and G. Liu, pers. comm.). This version of the daily satellite
HotSpot will replace dOISSTv2-based HotSpots in the Outlook

system Version 5. Any advance in the satellite monitoring
algorithm also will be applied in future versions of the Outlook.

A longer time series of Outlook hindcasts will be developed
from the 1982–2010 CFSv2 SST hindcast run for a more complete
and in-depth skill analysis. The results will be used to improve
the Outlook algorithm and for guiding regional application of
the Outlook. In addition, a new, longer CRW SST dataset,
CoralTemp, will be released shortly. This 1985-present 5 km
dataset will be instrumental in conducting a full skill analysis of
the Outlook.

The CFSv2 SST exhibits low prediction skills for longer lead-
times in many regions, as shown earlier. This contributes to the
significantly varying skills in the Outlook. We will evaluate the
feasibility of improving Outlook performance at regional scales.
Furthermore, recent research has demonstrated the potential
of using multi-model ensembles (MME) to improve seasonal
prediction (e.g., Kirtman et al., 2014). The use of such MMEs in
the Outlook also will be explored.

The Outlook already has provided critical warning to
coral reef managers, scientists, and decision makers around

the world to guide the management, monitoring, and
protection of coral reefs. As an integrated component of
CRW’s global decision support system for coral bleaching
management, the Outlook, together with CRW’s satellite
coral bleaching heat stress monitoring, has been extremely
useful in forecasting and nowcasting the progression
of the third global bleaching event from June 2014–
May 2017. These CRW products have been incorporated
into numerous bleaching preparedness and response
plans, bleaching conditions bulletins and newsletters, and
other documents and outreach materials established and
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distributed by coral reef managers and scientists around the
globe.
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The fishery for American lobster is currently the highest-valued commercial fishery in the

United States, worth over US$620 million in dockside value in 2015. During a marine

heat wave in 2012, the fishery was disrupted by the early warming of spring ocean

temperatures and subsequent influx of lobster landings. This situation resulted in a price

collapse, as the supply chain was not prepared for the early and abundant landings of

lobsters. Motivated by this series of events, we have developed a forecast of when the

Maine (USA) lobster fishery will shift into its high volume summer landings period. The

forecast uses a regression approach to relate spring ocean temperatures derived from

four NERACOOS buoys along the coast of Maine to the start day of the high landings

period of the fishery. Tested against conditions in past years, the forecast is able to predict

the start day to within 1 week of the actual start, and the forecast can be issued 3–4

months prior to the onset of the high-landings period, providing valuable lead-time for

the fishery and its associated supply chain to prepare for the upcoming season. Forecast

results are conveyed in a probabilistic manner and are updated weekly over a 6-week

forecasting period so that users can assess the certainty and consistency of the forecast

and factor the uncertainty into their use of the information in a given year. By focusing on

the timing of events, this type of seasonal forecast provides climate-relevant information

to users at time scales that are meaningful for operational decisions. As climate change

alters seasonal phenology and reduces the reliability of past experience as a guide for

future expectations, this type of forecast can enable fishing industry participants to better

adjust to and prepare for operating in the context of climate change.

Keywords: seasonal forecast, temperature, fishery landings, lobster fishery, climate variability

INTRODUCTION

Societies have long been structured around typical seasonal and interannual cycles. The ability
to anticipate the types, timing, and magnitude of variability—even in an intuitive manner—has
afforded the ability to plan activities in ways that are compatible with environmental conditions.
For example, farming relies on timing activities such as tilling, planting, growth, and harvesting of
crops to typical annual rainfall and temperature cycles. However, this tight link between human
activities and seasonal cycles can also disrupt societies when large, abrupt events or unexpected
changes occur. Climate change is now pushing environments beyond conditions that have come
to be intuitively expected based on personal experiences. As such, shifts in the timing of seasonal
events and magnitudes of extremes (Mora et al., 2013; Poloczanska et al., 2013; Thomas et al., 2017;
Alexander et al., in press) can pose substantial challenges for and require adaptation of coupled
ecological and social systems (Mills et al., 2013; Alexander et al., 2017).
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While climate change will require new capacities to adapt to
changing environmental conditions, societies are becomingmore
prepared and capable of confronting these challenges. Increases
in observational and computing power are greatly expanding
our ability to understand and predict changes in environmental
conditions as well as their effects on ecosystem features and
human activities. Indeed, forecasting—in a variety of forms
and at multiple time scales—has become an essential part of
modern life. The ability to accurately predict weather conditions
days in advance has improved daily life, generating over US$30
billion in benefits to weather forecast users in the United States
alone (Lazo et al., 2009). Seasonal climate forecasts support
decision-making and help avoid major disruptions across many
natural resources sectors, such as agriculture (Hansen et al., 2011;
Ramírez-Rodrigues et al., 2016) and water resources (Hamlet
et al., 2002; Kwon et al., 2009). In addition, long-term projections
enable the consideration of environmental change over a range
of decisions. For example, projecting the consequences of
anthropogenic carbon dioxide emissions allows communities to
plan for expected impacts of warming and sea level rise and to
weigh the costs and benefits of different adaptation strategies
(Shepard et al., 2012).

Forecasts have long been central to the operation and
management of marine fisheries. The quota-setting process at the
heart of fisheries management involves projecting the expected
performance of the stock and the yield that can be obtained
from it. Similarly, longer-term projections of the growth of stocks
that are at low biomass levels are used to determine rebuilding
plans and timelines. While environmental variability has been
recognized as exerting a substantial influence on the recruitment
and productivity of fish stocks (Vert-pre et al., 2013; Szuwalski
et al., 2014), this information has not been widely incorporated
into fish population models and projections. However, recent
examples have demonstrated that population projections used to
set catch quotas and rebuilding plans can be more reliable for
some stocks if environmental factors, particularly temperature,
are considered in projections (Jacobson and McClatchie, 2013;
Hill et al., 2014; Pershing et al., 2015; Tommasi et al., 2017).

These types of stock projections establish the general harvest
constraints under which fisheries are prosecuted, and within this
context, fishing industry participants make a variety of shorter-
term operational decisions. Fishermen decide on a day-to-day
basis when and where to fish, which species to target given their
suite of permits and gear, and how to manage their operational
costs. Dealers face decisions about which species to purchase
given storage options, transportation capacity, and supply chain
demand. And processors determine the type, amount, and timing
of products to produce as well as how to adjust factory operations
for different production activities. Forecasting efforts that are
directed at industry-based operating decisions on seasonal or
shorter time scales are now emerging; for example, Hobday
et al. (2016) showcase several seasonal forecasts that support
operations in both wild harvest fisheries and aquaculture.

Our interest in seasonal forecasting to support fisheries
decision-making was motivated by the experience of the Maine
lobster fishery during a marine heat wave in 2012 (Mills et al.,
2013). American lobster supports the most valuable commercial

fishery in the United States at present (>US$620 million in 2015;
National Marine Fisheries Service, 2016), and over 80% of its
landings occur in the state of Maine. The Maine lobster fishery
is highly seasonal, with low landings rates during the winter and
spring, followed by an abrupt shift into a high landings period
in early summer. The high landings period is driven by lobsters
migrating into nearshore waters where they become accessible
to the large small-boat fleet, becoming more active and entering
traps, and molting into a harvestable size class. These three
processes are all tightly related to water temperature (Cooper
and Uzmann, 1971; Aiken, 1973; Aiken andWaddy, 1975; Ennis,
1984; Crossin et al., 1998). During 2012, sea surface temperatures
(SST) on the northeast U. S. continental shelf were 1–3◦Cwarmer
than the 1982–2011 average, the highest documented in 150 years
of measurements (Friedland, pers. comm.) and on par with the
mean SST change that climate models project for the region by
the end of the century (Mills et al., 2013). The heatwave led
to spring temperatures warming 3 weeks ahead of the typical
schedule, and lobster landings also rose sharply 3 weeks earlier
than normal. The supply chain was not prepared for the rapid
uptick and high volume of landings, which outstripped holding,
transportation, and processing capacity as well as market demand
(Mills et al., 2013). While record high landings volume was
reported in 2012 (National Marine Fisheries Service, 2016), an
ensuing price collapse left many fishermen struggling to break
even.

The events of 2012 highlighted the potential usefulness of
seasonal forecasts to support decision-making at multiple points
in the supply chain. Prior to 2012, the entire production process
for American lobster—from harvest to processing to tables—
was based on a historically reliable and intuitively understood
seasonal cycle. Advance notice that the high landings period
would begin much earlier than usual may have enabled dealers
to increase storage and transportation capacity, processors to
prepare equipment and hire seasonal staff, and marketers to
intensify efforts to expand markets for the product. Alternatively,
a forecast of an early season could have enabled harvesters or
managers to adopt strategies that better aligned supply with
demand, with a goal of avoiding a price collapse. While the
2012 heat wave demonstrated weaknesses of relying on past
experiences, the chain of events that occurred also showcased
the tight and lagged coupling between water temperature and the
Maine lobster fishery.

At the request of members of Maine’s lobster fishery, we
set out to develop a forecast system to provide advanced
warning of unusual conditions in the seasonality of the Maine
lobster fishery. The forecast focuses on the timing of when
the fishery shifts into its high-landings summer period, and it
is based on real-time temperature measurements provided by
NERACOOS (Northeastern Regional Association of Coastal and
Ocean Observing Systems), the regional contribution to the U.S.
Integrated Ocean Observing System. Our results demonstrate the
potential for using a simple process to forecast features of the
human system (i.e., fishery landings) from temperature months
in advance. Similar forecasts that are targeted to inform specific
decisions faced by users will become increasingly valuable as
climate change inhibits reliance on familiar past patterns and
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as multiple actors in a range of fishing industries seek to adapt
to unfamiliar extremes and new levels of variability that are
associated with climate change.

METHODS

The goal of our analysis is to assess the potential to predict
the phenology of the Maine lobster fishery using temperature
data. Our approach involves characterizing seasonal patterns of
lobster landings and then developing statistical models to explain
changes in landing rates as a function of temperature. Results
are conveyed through a probabilistic forecast of when the rate of
landings is expected to increase. This forecast is updated weekly
from early March through mid-April and is served via a public
website to interested users.

Temperature Data
Temperature data are accessed from buoys B, E, F, and I of
the Northeastern Regional Association of Coastal and Ocean
Observing Systems (NERACOOS; www.neracoos.org, Pettigrew
et al., 2011). These buoys are all located in coastal waters of the
Gulf of Maine, USA. Buoy B is representative of the Western
Maine Shelf; Buoy E is representative of the Central Maine Shelf;
Buoy F is located at the mouth of Penobscot Bay; and Buoy
I is representative of the Eastern Maine Shelf (Figure 1). All
four buoys became active during July 2001 and record water
temperature on an hourly basis at the surface (1m), 2, 20,

and 50m. Temperatures for 2002–2016 were used for analyses
presented herein.

FIGURE 1 | Site map of NERACOOS buoys from which water temperatures at

50m depth were derived. Buoys B, E, and I are representative of the Western,

Central, and Eastern Maine Shelf, respectively. Buoy F, at the mouth of

Penobscot Bay, is influenced by river outflow.

To process the temperature data, a daily average is first
computed, and then an 8-day centeredmoving average is applied.
When data are missing at depth (0.1–3.2% of the data points at
each buoy) and available at the surface, a linear regression is used
to fill the gaps in the temperature record at depth, by using the 8-
day smoothed surface temperature as the independent variable.
This generates smoothed time series of temperatures at 50m for
each of the four buoys.

For each buoy, a mean annual temperature cycle is generated
by averaging daily temperatures between 2002 and 2011. This
mean annual cycle is then subtracted from the smoothed
daily temperatures (2002–2016) to produce a daily temperature
anomaly time series for each buoy. These are also averaged
over the four buoys to produce one time series of region-wide
anomalies. For simplicity, we will only present models built using
data from the 50m sensors. This depth provides the best available
approximation to bottom temperatures for Maine’s coastal waters
where the bulk of the lobster fishery occurs. Models built using
data from other depths produce similar results.

We assess temperature persistence at the four buoys and for
the 4-buoy average to understand its potential influence on the
forecast. This analysis is conducted by computing the Pearson
product moment correlation between temperatures at 50m on
the forecast day and daily 50m temperatures for the remainder
of the year. For this analysis, we use only direct temperature
measurements, not those derived from surface-depth regressions.

Lobster Landings Phenology
Although regulations enable the Maine lobster fishery to remain
open year-round, for practical purposes there is a strong
seasonality to its operation. Landing rates are low during the
winter but increase abruptly in the early summer as lobsters
move into nearshore waters, become more active, and molt to
larger sizes. The annual cumulative landings show a sharp change
in slope between late June and mid-July (Figure 2). We define
the day when this change occurs as the “start day” for the
high-landings period.

Statewide landings data are provided by the Maine
Department of Marine Resources. From 1990 to 2007, they
are reported as monthly totals; from 2008 to 2016, they are
available as daily totals. Because daily data are not available
prior to 2008, we use a procedure to find the start day using
only monthly data. For years in which only monthly data are
available, the cumulative landings over the year are computed to
obtain the total biomass of landings at the end of each month.
We then linearly interpolate between months to approximate
daily cumulative landings, whereby we implicitly assume that the
landing rate is constant within each month. For 2008–2016, we
compared the start days defined by the monthly vs. daily landings
and found a tight correlation (Pearson’s product moment: r =
0.985, p < 0.01). Subsequently, we apply a standard procedure
across all years that uses the daily interpolation of monthly
landings to determine the start day.

To define the start day for each year, piecewise linear
regression is used to fit two lines to the cumulative daily landings.
The first portion incorporates data from March 31 to day d; the
second piece uses data from day d to October 2 (Figure 2). The
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FIGURE 2 | Cumulative landings (103 metric tons) in 2009, demonstrating the

piecewise regression method for defining start day. Landings data between

day-of-year 90 and day-of-year 275 are split into two pieces. These are fitted

by simple linear regression, shown by the gray and black dashed lines, and

their intersection defines the start day, shown by the vertical dotted line.

Landings in 2009 would indicate a start day on day-of-year 188 (July 7).

model fitting procedure is repeated for values of d betweenMarch
31 and October 2. We quantify the performance of the model for
each break day d by taking the weighted average of the R2-values
of the two linear components.

R1
2
∗ n1 + R2

2
∗ n2

n1 + n2
(1)

where n1 is the number of days betweenMarch 31 and d, n2 is the
number of days between d and October 2, and R1

2 and R2
2 are

the R2-values of the corresponding linear models. The piecewise
regressionmodel with the highest weighted average R2 is selected,
and the date on which the two lines intersect is recorded as the
start day for that year. Similar methods have been employed to
identify transition dates in studies of vegetation phenology (e.g.,
Zhang et al., 2013; Sweet et al., 2015).

Temperature-Start Day Relationships
After the annual start days are specified, their relationship
to temperature can be investigated. Through this analysis, we
determine if statistical relationships exist between the start
day and 8-day smoothed 50m water temperature anomalies,
and if so, a time period in which these relationships are the
strongest. We fit linear models relating the annual time series
of temperature on a particular day (also termed the “forecast
day”) to the start day time series. Models were developed for
temperatures from each buoy and for the region-wide average (a
total of five temperature time series) for dates between January
1 and June 30. The performance of these models was compared
using their R2 statistics to identify a time window during which
statistically reliable forecasts may be possible and that we would
use as the forecasting period.

Paired data on NERACOOS buoy temperatures and lobster
fishery start days are available for 2002 through 2016. In order
to test the predictive power of the forecast, we used data from
this full time series to evaluate how well the forecast may perform
if future years are similar to the range of experiences in the
past. Theoretical forecasts were simulated for each year using a
leave-one-out approach, whereby the data from the year being
predicted were excluded (i.e., a theoretical forecast for 2002 was
generated using the data from 2003 to 2016). Due to the relatively
small sample size and the presence of at least one “extreme”
data point (2012), 95% prediction intervals were found to be too
wide to be useful for communication and application. Instead,
the forecast is constructed using a modified Monte Carlo (mMC)
approach in order tomore clearly represent the uncertainty in the
forecast and the spread of the predictions based on the variance
in the dataset. The mMC approach fits a series of temperature-
start day linear regression models using a random sample of the
available years. From the 13 years of data available to use for
each forecast, the mMC simulation randomly selects 9, performs
a univariate linear regression, and then uses the temperature
from the forecast year to predict the start day. For each of the
five temperature time series, 3,000 mMC simulations are run to
ensure that repeated forecasts would be appropriately stable.

Forecast Communication
The forecast is made available to the public in the form
of a graphical histogram showing the proportion of mMC
simulations that falls into each of seven 1-week bins. The
“normal” bin is bounded by June 30th and July 7th, and is
centered on the mean start day for 2002–2011 (July 3rd), a period
of years that aligns with the temperature baseline. Seven bins
were required in order to keep the forecast image symmetrical
while encompassing the range of observed start days. The bins
are shaded according to the proportion of mMC simulations they
contain, which we interpret as the likelihood of the start day being
observed in that bin.

We updated the forecast weekly during the forecasting
period. Results were served via a website (www.gmri.org/lobster-
forecast) that delivers the forecast for the week as well as the
series of forecasts produced for the season so that changes
can be viewed over the forecasting period. In addition, the
website provides interpretive information that (1) contextualizes
temperature patterns that are shaping the forecast and (2)
provides a comparison of the current forecast to comparable
years in the past.

RESULTS

Between 2002 and 2016, the spring (March, April, May)
temperature range spanned ∼3◦C, from negative anomalies of
−1.45◦C in May 2004 to positive anomalies of 1.73◦C in March
2012. The strength and direction of temperature anomalies in
most years persisted over the spring months, with patterns in
March, April, and May exhibiting tight relationships to one
another. Strong negative anomalies (< −1.0◦C in March, April
or May) were observed in 2003 and 2004, while strong positive
temperature anomalies (>1.0◦C) were experienced in 2002, 2006,
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2012, 2013, and 2016 (Figure 3). An analysis of temperature
persistence at the buoys used for this analysis indicates that 50m
water temperature on April 1 serves as a good indicator of 50m
temperature through early to mid-October for Buoys B, E, and F
and through the end of the year for Buoy I (Figure 4).

The mean start day of the fishery between 2002 and 2011,
as defined by our two-part linear procedure, was July 3. Over
the entire study period, the start day varied by ∼40 days, from
a season that began more than 20 days earlier than the mean
(negative anomaly) in 2012 to one that started 16 days later than
the mean (positive anomaly) in 2003. Positive start day anomalies
of more than 5 days, reflecting a late start to the season, were
characteristic of 2003, 2004, 2005, and 2014. The start day defined
for 2012 was the earliest in the time series, but start day anomalies
in 2002, 2006, 2010, 2013, and 2016 were also more than 5
days early. A general negative association was observed between
temperature anomalies and start day anomalies (Figure 3).

The strength of the relationship between 8-day smoothed
50m temperature and start day increases from January 1 to
early spring, becoming statistically significant (p < 0.05) by late
January. The average coefficient of determination (R2) over all
models exceeds 0.7 from March 6 through May 3, and it exceeds
0.75 from March 8 through April 20 (Figure 5). Buoy F 50m
temperatures and the 4-buoy 50m temperature average appear to
have higher capacity for predicting the start day than other buoys
through March and April. The predictive capacity of Buoy B,
F, and the 4-buoy average 50-m temperatures remains relatively
stable through March and April. The predictive capacity of
temperatures at Buoy I peaks in late March and Buoy E peaks in
early April (Figure 5). Based on these results, we definedMarch 6
through May 3 as the forecasting period, as temperatures during
this span of time provide a strong indication of the timing of the
fishery 3–4 months in the future.

We used April 1 as the forecast date for display purposes in
this paper since R2 values over all models were high through
this date (Figure 5). We can evaluate the forecast by considering
how the likelihood of predicted fishery start days compares
to the “observed” start day defined by the stepwise regression
analysis. Across conditions experienced in all years since 2002,
the sign of the deviation of predicted start days from the center
of the “normal” bin was consistent with the observed start days
(Figure 6). Further, for conditions in most years, the actual start
days would have been within or adjacent to the bin that was
predicted to have the highest likelihood of containing the start
day (Figure 6). For 10 of the 15 years, more than half of the
mMC simulations predicted a start day within a 7-day window
centered on the observed start day (Figure 6). The forecast model
performed well for conditions in 2005, 2008, 2009, and 2012,
with a greater than 33% likelihood of the predicted start days
falling within a 3-day window centered on the observed start day.
Conversely, the model performed poorly under 2006 conditions,
with ∼4% likelihood of predicting the start day within a 7-day
window of the date defined as the actual start. Even for 2006
conditions though, the model would have correctly forecasted
the direction of deviation from the “normal” bin by predicting an
early start of the high landings period. There is no obvious bias
between skill in forecasting early years as opposed to late years,

and the skill in an extremely early year like 2012 is similar to the
skill in years with more normal temperature conditions, such as
2008 or 2009 (Figure 6).

Demonstrating the forecast for 2012 conditions, the 4-buoy
averagemodel built with data from 2002 to 2016 (excluding 2012)
would have given advanced warning of an extremely early start to
the summer season based on conditions on April 1 (R2 = 0.86;
Figure 7). The temperature-start day regression model would
have predicted a start day of 166 (June 15), while the actual start
occurred even a few days earlier than that, on day 163 (June 12;
Figure 7). The forecast would have been for an extremely early
start to the season (>75% likelihood), and it would have been
stable as the spring progressed (Figure 8).

DISCUSSION

As seasonal cycles that cue ecological events and human activities
change in ways that move beyond typical past experiences,
decision-making under variable environmental conditions will
increasingly benefit from forward-looking information about
resources of interest at appropriate temporal and spatial
scales. We have demonstrated the technical capacity to
forecast the timing of the seasonal increase in statewide
landing rates in the Maine lobster fishery from buoy-based
temperature observations. Using 50m water temperatures from
four NERACOOS buoys that span the coast of Maine, we are
able to forecast the start day of the fishery to within 1 week
of the actual start under conditions experienced in most test
years. Further, we can issue this forecast 3–4 months prior to the
typical shift into the high-landings period, providing important
advance notice of major shifts in the timing of the fishery. The
forecast performed well under conditions experienced during
an extremely warm year in which the high-landings period
began very early (i.e., 2012), indicating its potential reliability as
climate change progresses and pushes conditions beyond those
experienced in the past.

Seasonal forecasts of marine resources based on temperature
have proven useful for a variety of purposes (Hobday et al., 2016).
These resource-focused forecasts typically rely on an underlying
forecast of temperature, but the skill of temperature forecasts is
weak in coastal waters of the Northeast U.S. (Stock et al., 2015). In
this forecast for the Maine lobster fishery, our predictive capacity
is likely derived in part from temperature persistence. Over
the Northeast U. S. large marine ecosystem, April sea surface
temperatures are strongly correlated with temperatures 2 months
in the future, and weaker correlation signals are maintained
for 5 months (Stock et al., 2015). An analysis of temperature
persistence at the buoys used for this analysis provides similar
results for temperatures at 50m depth (Figure 4).

The predictive skill of the Maine lobster fishery forecast is also
likely attributable to lagged biological responses to temperature
and a tight biological-social link that initiates the rise in landings
rates. The annual landings cycle of the fishery is driven by the
migration andmolting cycle of the lobster population. The small-
boat fleet (∼80% of all vessels) relies on lobsters migrating into
shallow nearshore waters, molting into legal size classes, and

Frontiers in Marine Science | www.frontiersin.org November 2017 | Volume 4 | Article 33758

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Mills et al. Forecasting Timing of Lobster Fishery

FIGURE 3 | Spring temperatures and start days, 2002–2016. Bars show the monthly temperature anomalies for March, April, and May. The black line plots the start

day anomaly from the 2002–2011 mean. The start day anomaly is generally anti-correlated with the spring temperature anomaly.

FIGURE 4 | Persistence of correlation to April 1 temperature. Correlation of 50-m temperatures at four buoys on April 1 to temperatures on subsequent days of the

year. Statistically significant correlations persist through early to mid-October at Buoys B, E, and F; through mid-November for the 4-buoy average; and through the

end of the year for Buoy I.

becomingmore active so that they move into traps. Both seasonal
migration and smaller-scale movement behaviors are cued by
temperature (Cooper and Uzmann, 1971; Ennis, 1984; Crossin
et al., 1998). Temperature has been shown to be an important
factor in the initiation and progression of molting (Aiken, 1973;
Aiken and Waddy, 1975; Kelly, 1993), a critical process that
creates a tight biological-social link since 85% of landings in
the fishery are of lobsters that have recently molted into a legal
size class (Atlantic States Marine Fisheries Commission, 2015).
It has been proposed that early stages of the molting process are
triggered when a temperature of 5–6◦C is reached, after which the

ambient temperature determines the number of days to molting
(Kelly, 1993). The fact that a temperature threshold appears
to initiate the molting process provides a possible mechanism
connecting April temperatures to molt timing and an uptick in
fishery landings in June or July. Preliminary analyses indicate
correlations between (1) the April 1 temperature anomaly and
day when the 8-day smoothed 5◦C temperature threshold is
reached (r = −0.85 for 4-buoy average) and (2) the temperature
threshold date and fishery start day (r= 0.80 for 4-buoy average).
This threshold trigger for molting may also explain why the
predictive skill of the forecast declines in May, rather than
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FIGURE 5 | Temperature and start day correlations. Temperatures on January 1 through June 30 at each buoy and for the 4-buoy average were used to predict the

start day of the fishery. Results show the R2-value of these regression models by day. The model average R2-values exceeded 0.75 from March 8 through April 20

(light gray rectangle) and were above 0.7 for March 6 through May 3 (dark gray rectangle).

FIGURE 6 | Past performance of forecast. An April 1 forecast is run for each year 2002–2016, using all available data except the year being tested. In the left panel,

the boxes represent 7-day windows, centered on a “normal” start day bin that encompasses June 30-July 7. Bins are shaded according to the percentage of

simulations that predict a start day in the week represented by the bin (legend shown below panel). The observed start day is plotted as a star. In the right panel, the

stacked bar plot shows the proportion of mMC simulations predicting a start day inside a 3-, 5-, and 7-day window centered on the observed start day.
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FIGURE 7 | Simple linear regression between start day and April 1

temperature anomaly. Start days from 2002 to 2016 are plotted against the

April 1 (4-buoy average) temperature anomaly from the same year. Treating

2012 as an out-of-sample test, the linear regression fits well (R2 = 0.86) and

would predict a start day of 166 (June 16). The observed start day in 2012

was 163 (June 12).

FIGURE 8 | 2012 forecast series. A forecast is run on five dates in 2012, using

data available from 2002 to 2016. The boxes, representing 7-day bins, are

shaded according to the proportion of mMC simulations that predict a start

day in that bin (legend shown below panel), and the proportion (rounded to the

nearest percent) is displayed in each box. Based on spring temperatures in

2012, a high likelihood for an extremely early start to the high landings period

would have been predicted by a forecast issued as early as March 15, and this

prediction remained stable through May 1.

steadily improving as the start day draws closer (Figure 5).
Further investigation is needed to fully evaluate this potential
mechanism and to understand how a temperature threshold that
initiates molting vs. subsequent temperatures that control the
speed of that process may affect the forecast of the start day,
which inherently integrates both types of temperature influences.

Grounding this forecast in a mechanistic framework is an
important step in its future development. At present, the forecast
model is empirical and effectively amounts to a hypothesis

that temperatures in the spring trigger a chain of events that
leads to inshore movement and molting of lobsters, causing the
fishery to shift into its high landings summer mode. Empirical
models such as this have a poor track record in fisheries
(Myers, 1998) and their reliance on historical data is inherently
limiting when they are applied to novel conditions. As extreme
events like the 2012 heat wave are overlaid on rising mean
trends, conditions will move beyond historical analogs, and
forward-looking information streams that are not bounded by
past conditions will be needed to provide insights that shape
operational and management decisions in fisheries (Mills et al.,
in review). The empirical nature of the current forecast maymake
it less accurate in future years in which temperature patterns
deviate from those encountered during the study period; this
is particularly likely for years in which the temperature cycle
deviates substantially from a sinusoidal shape. More importantly,
the dependent variable—the timing of landings—is complex and
combines influences of lobster biology with the behavior of
fishermen. The latter can be strongly impacted by changes in
economic conditions or regulations.

Our motivation to develop this forecast stemmed from a
need expressed by leaders within the Maine lobster industry
and management system following the 2012 Northwest Atlantic
marine heat wave (Mills et al., 2013), and we have now
demonstrated the technical capacity to issue a forecast of the
seasonal timing of the lobster fishery. Since we have started
providing the forecast, initial conversations with industry users
indicate that they have applied the forecast information to
guide decisions as diverse as scheduling seasonal maintenance
and operations, setting debt payment dates, and planning for
transportation needs to distribute the lobsters to processors
or retail outlets. We anticipate that the forecast will enhance
preparedness of the industry, supply chain, and managers for the
start of the season, particularly in extremely early years in the
future. This awareness should help align production capacities,
marketing initiatives, and other operations to ensure a smooth
flow of lobsters from the water to tables across the globe. This
continuity may help optimize economic value derived from the
resource during a period when lobster productivity is increasing
in the state (Atlantic States Marine Fisheries Commission, 2015).
In contrast to the situation in Maine, substantial temperature-
related lobster population declines have decimated the fishery
in more southern regions of New England USA (Atlantic States
Marine Fisheries Commission, 2015). Operating the fishery and
its supply chain in ways that maximize economic benefits may
prove critical for buffering impacts of any future climate-related
productivity declines that may occur in Maine. Given the state’s
high dependence on the lobster resource (i.e., 85% of the value
of all fishery landings), forward-looking forecast information
can improve near-term operational decisions and longer-term
planning efforts to help sustain the fishery, its associated industry,
and coastal communities.

While we have developed the technical capacity to issue a
forecast that we anticipate will provide valuable information to
users, real-world application of forecasts has proven challenging
in a variety of situations (Hobday et al., 2016), and we anticipate
similar challenges to uptake of the forecast information.
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Although it appears that we could have provided a reliable
forecast of the early start to the 2012 season, sudden provision
of this forecast in 2012 may not have helped the situation on the
ground at that time. End-users need time to become familiar with
a forecast and develop their own sense of its reliability and how
to use it before they are likely to act on the information. Issuing
the forecast even in years when major impacts to the landings
cycle are not expected provides potential users with opportunities
to relate the information to their own operations, which may be
particularly valuable if another major disruption is predicted in
the future. Longer-term familiarity with and confidence in the
forecast may spur forward-looking planning, which will enhance
resilience of individual operators and of this integrated industry
to future disruptions.

Further development of the forecast will also benefit
from additional end-user engagement. Hobday et al. (2016)
recommended systematic engagement of stakeholders in the
forecasting process to ensure the applicability and usability of
the information in real-world decision-making contexts. This
three-stage process begins by assessing needs of the end users,
including relevant temporal and spatial scales. A forecast can
then be developed to target these information needs. Finally, the
implementation stage entails delivering the forecast, supporting
and educating users, applying information to a decision, and
gathering feedback to improve the product (Hobday et al., 2016).
Initial input from users has indicated that developing the forecast
at smaller spatial scales (e.g., for coastal regions or lobster
management zones) would make the information more relevant
and useful. In addition, benefits may be gained by targeting
communication strategies and formats to specific user groups.
We view the forecast that we describe herein as a pilot stage
from which we can work toward a future product that is shaped
by more deliberate and focused stakeholder input so that it can
support a range of applications by end users.

The impacts of climate change are being felt by fisheries
in many marine ecosystems. While climate-related forecast
information tends to focus on gradual environmental trends

over 50- to 100-year time horizons, fishing industry participants
face decisions on much more immediate time scales. These
decisions may be affected not just by the magnitude of
environmental conditions but also by their timing, as evidenced
by the experience of the Maine lobster fishery during the
2012 ocean heat wave (Mills et al., 2013). Providing forward-
looking information relevant to the scales at which decisions
are made is a critical step, and seasonal forecasts offer one
avenue toward achieving this alignment. As shifts in the timing
of warming and cooling occur in marine ecosystems (Burrows
et al., 2011; Thomas et al., 2017), the phenology of life events
in organisms, operations and outcomes of fisheries targeting
those species, and effectiveness of fishery management efforts
may all be affected (Mundy and Evenson, 2011; Peer and
Miller, 2014). Seasonal forecast information directed toward the
phenology of important events can provide a longer planning
horizon than weather forecasts and bring climate information
to bear on fisheries at a time scale that is meaningful for
operational and management decisions made throughout the
fishing industry.
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Since the open-ocean subpolar Atlantic is amongst the most predictable regions in

the world, our results hold promise for predicting the general production to seabird

populations over a large geographical region adjacent to the northern North Atlantic

and the Arctic Mediterranean. Colonies of black-legged kittiwakes Rissa tridactyla in the

North Atlantic have declined markedly since the mid-1990s, partly due to repeatedly

failing breeding seasons. We show a close link between the breeding success of a

kittiwake colony in the Faroe Islands and the subpolar gyre index. Successful breeding

follows winters with an expanded subpolar gyre and, by inference, increased zooplankton

abundances southwest of Iceland. The environmental conditions in the northwestern

Atlantic during the non-breeding and pre-breeding seasons might therefore be important.

Furthermore, the subpolar gyre dynamics might influence the local food abundance on

the Faroe shelf during the breeding season.

Keywords: North Atlantic subpolar gyre, predictability, seabirds, breeding success, oceanic front, Calanus

finmarchicus, sub-decadal variability

INTRODUCTION

The populations of black-legged kittiwakes Rissa tridactyla (hereafter kittiwake), terns, and auks
have declined markedly in the Northeastern (NE) Atlantic and adjacent shelf seas during the last 25
years. This is partly due to large declines in chick production, also referred to as the breeding success
(Frederiksen et al., 2007a; Descamps et al., 2017, in press). There is a broad consensus that the
decline must be driven by large-scale changes in the climate (Frederiksen, 2010). Climatic changes
are often proxied simply as temperature changes (Frederiksen et al., 2007b), while the physical
processes responsible have largely remained elusive. The advent of geolocators has revealed that
many seabird species from the NE Atlantic occupy northwestern (NW) Atlantic waters during the
non-breeding period, likely due to better food availability during winter (Frederiksen et al., 2012).
Processes impacting the food abundance in the NW overwintering region (Bogdanova et al., 2011)
could therefore have a profound impact on several seabird populations due to “carry-over effects”
on the breeding success during the following summer, and also due to the high mortality during
the non-breeding season (Harris et al., 2005).

The marked 1990s reduction in the size of kittiwake and Brünnich’s guillemots colonies have
previously been linked to the dynamics of the subpolar gyre (SPG; Descamps et al., 2013, 2017, in
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press; Fluhr et al., 2017), although only qualitatively. The SPG is a
large body of cold and low-saline subarctic water, which circulates
counterclockwise south of Greenland and Iceland (Figure 1).
The size and circulation strength of the SPG declined abruptly
after the mid-1990s, inducing rapid warming and salinification
(Hátún et al., 2005) as well as a major ecosystem shift in the
NE Atlantic (Hátún et al., 2009). These changes were initiated
by weaker atmospheric forcing and shallower winter convection
in the NW Atlantic (Häkkinen and Rhines, 2004). The variable
shape and circulation strength of the SPG is intimately related
to the morphology of main oceanic fronts (Thierry et al., 2008;
Hátún et al., 2016). Such fronts are highly biologically productive
and have been identified as feeding hotspots ofmigratory seabirds
while occupying the high seas during the non-breeding period
(Edwards et al., 2013; Scales et al., 2014).

During years when the winter mixed layer is anomalously
deep in the Labrador-Irminger Sea, the subpolar gyre expands,
and the productive subarctic front west of the Reykjanes Ridge
(Figure 1) shifts toward Iceland (Hátún et al., 2016). Such years
result in increased abundance of the ecologically most important
zooplankton species, Calanus finmarchicus, both within the
Irminger Sea and on the south Iceland shelf (“Z” in Figure 1;
Hátún et al., 2016). The zooplankton concentration southwest of
Iceland thus exhibits strong inter-annual variability.

In March, after the kittiwakes return from the NW Atlantic to
Europeanwaters, many birdsmake yet another exodus westwards
just prior to breeding, along strikingly similar paths (Bogdanova
et al., 2011). The westward route follows the Icelandic shelf,
from where Hátún et al. (2016) presented long-term on-shelf
zooplankton data. In the west the birds gather in a region between

FIGURE 1 | Map of the northeastern Atlantic Ocean. The subpolar gyre is illustrated in gray, and the pre-breeding kittiwake feeding excursion is shown with the

gray arrows. The Faroe kittiwake breeding success is sampled at site “K,” and the Icelandic zooplankton record is sampled at site “Z.”

29◦ and 36◦W (Bogdanova et al., 2011), which roughly coincides
with the highly productive subarctic front west of the Reykjanes
Ridge (Pedchenko, 2005; Hátún et al., 2016).

Environmental conditions both in non-breeding and breeding
regions must be significant drivers of the demographic
processes of the seabirds. The relative importance of such
remote and regional drivers has for example been investigated
for the adult kittiwake survival rates in northern Norway
(Reiertsen et al., 2014). A large percentage of the variation
in adult kittiwake survival rates in northern Norway was
explained as a combination of zooplankton variability in
the SPG region and the state of a fish stock in the
Barents Sea.

The breeding success of kittiwakes on the Faroe shelf (“K”
in Figure 1) has, so far, only been compared to the regional
food abundances. Significant correlations were identified to
the average length of the local O-group sandeel population
(r2 = 0.41), and even higher correlations were found when
compared to a sandeel biomass index (r2 = 0.56; Eliasen,
2013). Several key ecosystem records from the Faroe shelf
are, however, characterized by “high-or-low” variability (Gaard
et al., 2002) comparable the zooplankton abundance southwest
of Iceland (Hátún et al., 2016). Since the geolocators reveal
occupancy of these western waters immediately prior to
breeding (Bogdanova et al., 2011), an additional carry-over
effect is possible. Acknowledging the importance of local food
abundance, we here want to test if food availability in the
Icelandic feeding hotspots during the non-breeding/pre-breeding
period also might impact the breeding success of the Faroe
kittiwakes.
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MATERIALS AND METHODS

Food Proxy for the SPG
The gyre index is the principal component obtained from
an Empirical Orthogonal Function (EOF; Preisendorfer, 1988)
analysis of the sea surface height (SSH) field over the entire North
Atlantic Ocean (30◦–60◦N; Häkkinen and Rhines, 2004; Hátún
et al., 2005, 2016; Larsen et al., 2012). The high-pass filtered gyre
index has previously been used as a metric for the lateral position
of the subarctic front (the Frontal position) and the intensity
of vertical winter mixing (Hátún et al., 2016). It has previously
been demonstrated that the Frontal position (the detrended gyre
index) is highly correlated with the zooplankton biomass on the
south Iceland shelf (r = 0.80, p < 10−8 for 1970–2011), and
the abundance of C. finmarchicus within the SPG—abundance
increases when the front shifts toward Iceland (Hátún et al.,
2016).

A new version of Ssalto/DUACS altimetry products (SSH) was
released in April 2014—the so-calledDUACS 2014. This included
a change of reference period (now 1993–2012 instead of 1993–
1999), and a new Cartesian 1/4◦ resolution is used instead of the
1/3◦ Mercator grid, which has had a strong impact on the physical
information in these data. The spatial resolution improved below
41.5◦N, but the grid is now coarser north of this latitude. In
order to emphasize the SPG, where the kittiwakes overwinter
(Frederiksen et al., 2012), an EOF analysis was applied to the
DUACS 2014 data for a more limited domain encompassing
the SPG (Figure S1). The obtained new gyre index is more
“linear” than the previous one from Larsen et al. (2012), and the
important interannual fluctuation associated with deep winter
convection (Hátún et al., 2016) have now diminished (Figure 2).
Especially, the peak entailing the convection event during winter
1999–2000 is much less evident in the presently used DUACS
2014–based gyre index. The detrended DUACS 2014–based gyre

FIGURE 2 | Altimetry-based gyre indices, calculated from the new

(gray) and the old AVISO data versions (dashed, Larsen et al., 2012),

respectively.

index has been utilized as our updated Frontal position. The
model-based Frontal position index from Hátún et al. (2016) is
used for the pre-altimetry period (before 1993).

The Ssalto/Duacs altimeter products were produced and
distributed by the Copernicus Marine and Environment
Monitoring Service (CMEMS; http://marine.copernicus.eu/).

Zooplankton Data on the Iceland Shelf
Zooplankton data were collected during late May and early June
1971–2013 at five stations along a transect extending from the
coast and beyond the shelf edge south of Iceland (Figure 1).
From 1970 to 1991, the samples were collected with a standard
Hensen net (0.42 m2 mouth area, 200 µm mesh size), whereas
after that all the samples were collected using a WP2 net
(0.25 m2 mouth area, 200 µm mesh size). The volume of water
filtered was measured with HydroBios flowmeters fitted in the
mouth of the net. For the present analysis, data on zooplankton
dry weight biomass standardized per m3 averaged across all
stations have been used. Until 2001, the volume of zooplankton
samples was measured at sea and the dry weight calculated
using a conversion factor from Matthews and Heimdal (1980).
From 2002 onwards the samples were deep frozen at sea and
dried and weighed on shore (Postel et al., 2000). The copepod
C. finmarchicus usually constitutes the dominant component
of mesozooplankton biomass in the samples (Astthorsson and
Gislason, 1995).

Faroe Kittiwake Breeding Success
The kittiwake data are from the island Skúvoy (61◦47′N and
6◦51′W), which is one of the largest seabird colonies in the
Faroe Islands. The west facing part of the island is a 5 km long
steep seabird cliff, reaching a high of 394m and holding∼12,000
breeding pairs of kittiwakes in 2008 and 2009. The studied
colony, Høvdin, is the northernmost colony on the island. It
is about 200m wide and 130m high, and kittiwakes have been
breeding here for generations. The number of nests fluctuates,
but since 2001 the average number of nests has been 2,624
(1,149–4,525).

The counting unit is the number of chicks/nest late in the
breeding season when most of the chicks are ready to fly. The
start date of counting depends on when the chicks are large
enough, and it is determined based on regular visits to the colony
before start of the counting. The number is based on a maximum
number of fledged chicks as some of the smaller chicks may not
survive. Prior to 2000, subsamples at an average of 1,050 (200–
1,736) nests were counted, but since 2001 all the nests and chicks
have been counted. All the countings but one (in 1990), have been
done by the same counter, so inter-counter differences do not
impact the results.

The predation in the colony has been rather stable. There
are no ground predators on the island like house mouse (Mus
musculus), brown rat (Rattus norvegicus), and cat (Felis catus),
which do populate many of the other islands. The most common
predator of eggs, chicks, and adult kittiwakes is the great skua
(Stercorarius skua), however, herring gull (Larus argentatus),
great black-backed gull (Larus marinus), raven (Corvus corax
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varius), and crow (Corvus corone cornix) are also seen preying
on the colony although in a lesser extent.

Therefore, the large fluctuation in chick production in the
studied colony most likely reflect the adult kittiwake’s ability
to find food for their chicks. As these fluctuations occur
simultaneously in most of the Faroese kittiwake colonies, it is
a good proxy for the production in the total Faroese kittiwake
population.

RESULTS

Recent Convection and Zooplankton
Increase
The gyre index, and thus the Frontal position metric, increased
markedly in 2014 and 2015 (Figure 3A). This reflects the
increased convection in the Labrador Sea during winter 2013–
2014, and an even deeper mixing during winter 2014–2015,

FIGURE 3 | Synchrony between east and west. The Faroe kittiwakes

breeding success with full line in all three panels. This is compared to (A) the

detrended observed (gray) and simulated (dashed) gyre index, (B) the number

of nests in the colony (dashed) and (C) the south Iceland zooplankton

abundances (gray). Cold periods with deep convection are associated peaks

in the gyre index. The year with peaks in breeding success (1994–1995,

2000–2001, 2009, 2012, and 2016) are highlighted with open circles.

which also involved the Irminger Sea (de Jong and de Steur,
2016; Yashayaev and Loder, 2016). The previously established
link between the Frontal position and the zooplankton abundance
on the south Iceland shelf still holds (r= 0.70, p< 0.001 for 1993–
2015, c.f. Figures 3A,B), and the forecasted zooplankton increase
during 2014 (Hátún et al., 2016) indeed did occur.

Western Food Resource and the Kittiwake
Breeding Success
The breeding success of the Faroe kittiwakes is significantly
correlated to the pre-breeding food abundance southwest of
Iceland, proxied by the Frontal position (r = 0.71, p < 0.001 for
1993–2013, Figure 3A). The breeding success is highly variable,
and the peaks in 1994–1995, 2000–2001, 2009, and 2012 are
all associated with deep convection events. The intensified
convection during the winters 2013–2015, and the associated
increased Frontal position value did not, however, result in the
expected increased breeding success. The reaction came in 2016,
with a great increase in breeding success. A lag of 1.5 years
between deep winter convection and increased chick production,
like the event in 2008–2009 (Figure 3A), can be expected (Hátún
et al., 2016), but not 2.5 years. When 2014 and 2015 are included,
the Frontal position—breeding success correlation drops to 0.58
(which is still significant on a 0.5% level).

The co-variability between the south Iceland zooplankton
record and the Faroe kittiwake breeding success was also tight
until the years 2005–2008 when no fledlings were produced
(Figure 3B). The linkage is much less clear thereafter, but despite
the misfit during 2014 the overall correlation is still significant
(r = 0.75, p < 0.001 for 1988–2014).

DISCUSSION

In migratory birds, environmental conditions in both breeding
and non-breeding areas may affect breeding success and
hence be significant drivers of demographic processes. The
kittiwakes occupy the western central SPG during the mid-
winter non-breeding season where food is available on the surface
(Frederiksen et al., 2012). The gyre index represents the size and
circulation strength of the SPG (Hátún et al., 2005), which in
turn is inherently associated with the winter convection. When
convection is strong, the abundance of C. finmarchicus increases
within the SPG (Hátún et al., 2016), and here we show that these
years also coincide with increased kittiwake breeding success
(Figure 3). This supports previous suggestions that the dynamics
of the SPG will impact seabirds in the NE Atlantic, although this
inference is still qualitative (Descamps et al., 2013, 2017, in press;
Fluhr et al., 2017).

A stronger tie between east and west appears from that fact
that the kittiwakes can make a second westward exodus, after
having entered the colonies along northwest European shores
during spring (Bogdanova et al., 2011). Without a description of
the main oceanographic structures, it could not be explained why
the birds follow the south Iceland slope on their strikingly parallel
westward route. The food production on the south Iceland shelf
is much higher than in the adjacent Iceland Basin, which becomes
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a nutrient depleted “desert” during summer, avoided by e.g., the
westward food migrating mackerel stock (Pacariz et al., 2016).
Having circumvented the Iceland Basin, the kittiwakes settle
in a region between 29◦ and 36◦W (Bogdanova et al., 2011),
which is on and just west of the Reykjanes Ridge (Figure 1).
This is the location of the subarctic front, which is one of the
most productive regions in the North Atlantic (Pedchenko, 2005;
Hátún et al., 2016). The metrics presented by Hátún et al. (2016)
connect themixed layer depth and theC. finmarchicus abundance
in the Irminger Sea, lateral shifts of the subarctic front, and the
zooplankton abundance on the south Iceland shelf. Here, we
show that the Faroe kittiwake breeding success co-varies closely
with the south Iceland zooplankton abundance, the position
of the subarctic front and the C. finmarchicus concentrations
within the SPG (not shown, see Hátún et al., 2016). Additionally,
since the pre-breeding round-trip takes place as late as March, a
carry-over effect to the subsequent summer is likely.

Understanding how the marine climate in the SPG regulates
the food production and availability, thus likely holds a
common key to understanding the demography of several seabird
populations. Furthermore, the potential predictability of the
marine climate within the SPG could be utilized to project
the general conditions for the seabirds in the near-future.
The strongest predictability is likely associated with the highly
variable depth of winter convection in the Labrador-Irminger
Seas (Hátún et al., 2016). A very strong winter might boost
biological production the following season (∼0.5 year horizon),
and might even precondition the subsequent winter’s convection
(∼1.5 year horizon). The more gradual hydrographic changes
in the subpolar Atlantic ascribed to shifts in horizontal gyre
circulations (Hátún et al., 2005; Lohmann et al., 2009a) or the
strength of the Atlantic Meridional Overturning Circulation
(AMOC) (Lohmann et al., 2009b; Robson et al., 2012) has
received more attention in the literature, than the more erratic
convection-related signal. The subpolar Atlantic is suggested to
hold particularly strong decadal-scale prediction potential (Matei
et al., 2012a), likely associated with the gyre and/or AMOC
circulation dynamics (Matei et al., 2012b). A remaining question
is if the strong convection signal in the northwestern Atlantic
will disrupt the decadal-scale predictability there—e.g., a strong
winter will reset a large part of the “memory” in the horizontally
advected water masses.

Strong winter cooling over the Labrador-Irminger Seas in
winters 2013–2015 resulted in exceptional deep convection (de
Jong and de Steur, 2016; Yashayaev and Loder, 2016) and
induced a large “cold blob,” which was widely discussed in the
media during 2015. As suggested by Hátún et al. (2016), this
should have led to increased production in several ecosystem
components during 2014, 2015, and maybe even 2016. There was
a marked increase in the south Iceland zooplankton abundance
(Figure 3B), the breeding success of the Atlantic puffins
(Fratercula arctica) and the Arctic terns (Sterna paradisaea) in
Faroese colonies (Unpublished data, Bergur Olsen), as well as the
kittiwake breeding success in 16 Shetland colonies during 2014
(Pers. Comm. Martin Heubeck). The poor breeding performance
of the Faroe kittiwakes in 2014 and 2015 therefore at first appears
as a conundrum.

One issue which could disturb predictability is that the general
intensity of winter convection has weakened over the last 25 years
(Hátún et al., 2016), and the nutrient concentrations over the
entire subpolar North Atlantic have declined markedly during
the same period (Hátún et al., Submitted). This trend is likely
to impact the phytoplankton community composition and thus
higher trophic levels and food quality over large spatial scales.
No fledged chicks were observed in 2005–2008 at the studied
Faroese colony (Figure 3) and a similar breeding failure was also
observed in Britain between 2001 and 2008 (Coulson, 2011). One
could thus speculate if the general food productivity in both
the non-breeding and breeding waters has reached critically low
levels for sustaining the kittiwake population. If this is correct, it
may disturb the demographic processes and thus the identified
predictability of the breeding succes.

Summer Feeding Conditions on the Faroe
Shelf
Kittiwake chicks are fledged late in July and early August and
crave food during this period. After just a few days of food
shortage, chicks will starve, and die (Coulson, 2011). The local
food availability is therefore also very important. The O-group
from the local stock of sandeel (Ammodytes marinus) is a
principal food item for the kittiwake chicks (Eliasen, 2013).
Sandeel lay demersal eggs between November and January, and
their planktonic larvae are present in the water column from late
January to May (Eliasen, 2013). Sandeel prey on younger stages
and eggs of zooplankton and obtain as much energy as fast as
possible (refs in Eliasen, 2013), thereby becoming a favorable prey
to numerous higher trophic level species.

It has previously been suggested, that variable influx of C.
finmarchicus from core gyre regions to adjacent shelves regions
around the subpolar Atlantic might regulate the on-shelf biomass
of this species (Gislason and Astthorsson, 2000; Harms et al.,
2000; Sundby, 2000) and intermittent northward expansions of
the SPG do result in higher zooplankton abundances on the
south Iceland shelf (Hátún et al., 2016). We here tentatively
suggest that SPG-related processes might also regulate the influx
of ecologically important zooplankton products onto the Faroe
shelf. Additional work is required to investigate this suggestion.

The on-shelf primary production must, however, also be
important, which is supported by the positive correlation
between the Faroe shelf primary production and the abundance
of sandeel (Eliasen et al., 2011). The early phase of the on-
shelf spring bloom, which mainly consists of large fast-growing
diatoms, becomes silicate limited during late May-early June
(Eliasen et al., in press). Furthermore, winters with deep
convection increase the pre-bloom silicate content in the North
Atlantic Ocean (Hátún et al., submitted), and all years with
a strong gyre (high Frontal position index, 1994–1995, 2000–
2001, and 2008–2009, Figure 3A) coincide with elevated Faroe
shelf primary production (see Eliasen et al., 2011). The strong-
gyre years 2014 and 2015 also resulted in very high chlorophyll
concentrations on the shelf, but the blooms were much delayed
compared to the previous years (Eliasen et al., 2017). Productive
years have typically been characterized by high chlorophyll
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concentrations in May, but the blooms in 2014 and 2015 were
initiated during mid-June and early July, respectively, and such
late blooms have not been observed before.

The Atlantic puffins and the Arctic terns were apparently
able to adapt to this marked shift in bloom timing (phenology),
and were able to produce fledlings in 2014 and 2015 (Pers.
Comm. Bergur Olsen). The kittiwakes are less phenologically
flexible. They build their nests and decide whether or not to start
breeding during May, and collectively lay their eggs during late
May (Coulson, 2011). An investigation of daily pictures of the
kittiwake colony reveals increased nest building and numbers of
chicks during both 2014 and 2015 (not shown), but most of the
chicks suddenly died during their most food craving period these
years.We interpret this as sign of good conditions during the pre-
breeding phase, but that local food shortage, possibly caused by
the anomalously late blooms, acted as a severe “bottle neck.” The
causes underlying the recent delay of the spring bloom are not
well-understood and require further attention.

CONCLUSIONS

In conclusion, the dynamics of the North Atlantic subpolar
gyre likely impacts the feeding conditions for the black-
legged kittiwakes (Rissa tridactyla) in the northwest Atlantic
overwintering regions during the non-breeding and pre-breeding
seasons. A winter with deep convection and an intensifying
gyre increases the zooplankton food availability and improves
the physical condition of the birds, which in turn could have a
positive carry-over effect on the breeding success the subsequent
summer. Gyre-related oceanic dynamics could, furthermore,
influence the Faroe shelf food availability during early summer
through onto-shelf influxes of oceanic zooplankton species
Calanus finmarchicus and their eggs nauplii, and/or nutrients
which can boost the on-shelf primary production. The promising
predictability of the marine climate adjacent to the subpolar
gyre could thus carry over into the general production of
seabird populations surrounding the northern North Atlantic
Ocean. The less predictable conditions around the nesting sites
of individual populations might, however, act as a “bottle-
neck” for making realistic forecasts of the kittiwake breeding
success. Over the next century, climate models predict global
declines in nutrients and thus in primary production, due to

shallower winter mixing, with a particularly strong imprint on
the North Atlantic (Groeger et al., 2013). If correct, this would
change seabird life in the subpolar regions from what is known
today.
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Observations (1978–1991) of distributions of pelagic juvenile Northeast Arctic cod (Gadus

morhua L.) show that up to 1/3 of the year class are dispersed off the continental shelf

and into the deep Norwegian Sea while on the way from the spring-spawning areas along

the Norwegian coast to the autumn-settlement areas in the Barents Sea. The fate of this

variable fraction of pelagic juveniles off-shelf has been an open question ever since Johan

Hjort’s (1914) seminal work. We have examined both the mechanisms causing offspring

off-shelf transport, and their subsequent destiny using an individual-based biophysical

model applied to quantify growth and dispersal. Our results show, consistently with the

observations, that total off-shelf transport is highly variable between years and may be

up to 27.4%. Offspring from spawning grounds around Lofoten have a higher chance

of being displaced off the shelf. The off-shelf transport is dominated by episodic events

where frequencies and dates vary between years. Northeasterly wind conditions over a

3–7-day period prior to the off-shelf events are a good proxy for dispersal of offspring

off the shelf. Offspring transported into the open ocean are on average carried along

three following routes: back onto the adjacent eastern shelves and into the Barents

Sea (36.9%), recirculating within the Lofoten Basin (60.7%), or drifting northwest to

the northeast Greenland shelf (2.4%). For the latter fraction the transport may exceed

12% depending on year. Recent investigations have discovered distributions of young

cod on the northeast Greenland shelf indicating that conditions may support survival for

Northeast Arctic cod offspring.

Keywords: connectivity, pelagic juvenile, cross-shelf, spawning ground, nursery ground, forecast, northeast arctic

cod, recruitment

INTRODUCTION

The Northeast Arctic (NEA) cod, the historically largest stock of Atlantic cod (Gadus morhua L.)
(Yaragina et al., 2011), has its feeding area in the Barents Sea and undertakes spawning migration
southwards along the Norwegian coast during winter, partly far outside its feeding habitat (Bergstad
et al., 1987). After spawning in March and April (Ellertsen et al., 1989) from Møre (62◦ N) to the
Finnmark coast (71◦ N) (Sundby and Nakken, 2008) the offspring returns to the Barents Sea by
pelagic drift in the Norwegian Coastal Current (NCC) on the shelf and in part in the more offshore
Norwegian Atlantic Slope Current (NASC) that runs parallel to the NCC (Vikebø et al., 2005).
En route toward the Barents Sea, they drift in the upper mixed layer where shifting winds due
to passing weather systems significantly affects strength and direction of the flow, making them
vulnerable to the variable meteorological conditions (Vikebø et al., 2007). By October, when the
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pelagic juveniles have reached a typical length of more than 8 cm,
they gradually migrate out of the pelagic layer (Yaragina et al.,
2011) and become associated with depths closer to the bottom,
which in the Barents Sea ranges from 150 to more than 350m
depth. From that stage, they are distributed over their natural
habitat at the shelf region in the Barents Sea (Figure 1).

Similarly, cod stocks across the North Atlantic have their
habitats confined to the continental shelves fringing the North
Atlantic proper (Sundby, 2000). The pelagic eggs, larvae and
free-drifting early juveniles that happen to become advected by
variable currents out over the deep ocean have generally been
considered lost for recruitment to the stock (e.g., Werner et al.,
1993, 1997). This idea, i.e., that drift of pelagic offspring to
unfavorable regions might cause recruitment loss, was already
suggested by Hjort (1914), and later defined by Sinclair et al.
(1985) as Hjort’s second recruitment hypothesis.

Based on the post-larval (hereafter denoted pelagic juvenile)
surveys conducted by the Institute of Marine Research (IMR)
during the period 1977–1991 (sampled in June/July at an average
age of ∼70 days) it became evident that a variable portion, and
in some years, a quite considerable one, of the new year class
of cod was, indeed, found off the shelf in the Norwegian Sea
(Bjørke and Sundby, 1987; Sundby et al., 1989). In the year 1988,
which had the largest number of observed larvae offshore among
these years, 35% of the year class of cod as pelagic juveniles
was found in the deep-sea region off the shelf to the west of
the NASC (Suthers and Sundby, 1993). Moreover, analysis of
length, condition factor, and age (based on counts of daily otolith
rings) discovered that this “stray” portion of the 1988 year-
class consisted of larger individuals in better condition than the
portion of the year class than was “on the right track” toward the
Barents Sea. Suthers and Sundby (1993) ascribed this to higher
accumulated ambient temperature, and hypothesized that higher
zooplankton food abundances in the Norwegian Sea could be a
second factor causing the increased growth as the Norwegian Sea
proper is the core region for abundance of the main prey species
Calanus finmarchicus (Sundby, 2000).

Similar to the off-shelf observations from pelagic juvenile
surveys, the subsequent 0-group stage, observed during August
and September by IMR-surveys, have years when the 0-group
is partly found to the west of the shelf edge outside the natural
habitat in the Barents Sea, apparently also in high concentrations
(see maps of distributions in Eriksen and Prozorkevich, 2011).
However, since the 0-group survey only covers a small area
outside the western fringe of the Barents Sea it is not possible to
quantify how large portion of the year class that exists outside the
natural habitat at this stage.

Although such considerable portions of pelagic juvenile cod
have repeatedly been observed off the prevailing current paths
to the Barents Sea habitat, the destinies of these individuals have
never been explored in further detail, most probably because
the prevailing view has been dominated by Hjort’s second
recruitment hypothesis which posits that they might simply
be lost for recruitment. However, for the NEA cod there are
alternative scenarios. Johan Hjort (1914) himself pointed to one
such alternative following his recruitment hypotheses: “During
the first cruise of the “Michael Sars” in the Norwegian Sea,

I encountered great numbers of young cod fry drifting in the
water above the great depression in this region. It is possible that
many individuals perish during such drift movements; nothing is,
however, definitely known as to this. It would be especially desirable
to ascertain the extent of such movement, and how far the young
fry is able to return, of their own volition, to such localities as offer
favorable conditions for their further growth.” In other words, as a
second alternative, if the pelagic juveniles in this western region
attain a systematic and sustained swimming behavior toward the
east they might return to the water masses that flow into the
Barents Sea (e.g., Staaterman and Paris, 2013).

A third alternative is that the pelagic juveniles are successfully
transported with the currents either back onto the eastern shelves
or onto the large northeastern Greenland shelf where they might
settle and grow up as a geographically separated component of
NEA cod. Independent of this reasoning, a traditional folklore
opinion in some Norwegian coastal fishing communities has
been that Greenland cod occasionally spawn in Norwegian
waters. This opinion might possibly be based on fishermen
visiting Greenland waters observing specific morphometric
(phenotypic) characteristics of the cod growing up in Greenland
waters that they recognize in Norwegian spawning sites. In a
possible support, of considering the northeastern Greenland shelf
as being a distant part of NEA cod habitat, are recent findings of
adult cod in the area (Christiansen et al., 2016), see Figure 1.

In this current study, we address the impacts of advection
and dispersion of the offspring from the spawning area to the
areas of subsequent settlement about half a year later. More
specifically, we focus on the third alternative and address four
main research questions related to the above outline by applying
a state-of the-art biophysical model coupled with in-situ data. (1)
What fraction of the NEA cod spawned along the Norwegian
coast is advected westward off the continental shelf, and how
large is the variability in this off-shelf drift within and between
years? (2) Which spawning grounds have the highest probability
for off-shelf drift of cod offspring? (3) What are the mechanisms
and forcing causing the off-shelf transport? (4) Where do the
observed off-shelf pelagic juveniles finally end up, and what is the
relative number of individuals following the alternative transport
routes?

MATERIALS AND METHODS

Firstly, we modeled transport for the years 1978–2015 with
particles initiated as eggs at 10 well-known spawning sites
for NEA cod along the Norwegian coast (Figure 1; Sundby
and Nakken, 2008) investigating questions 1–3. Particles are
being transported by an individual-based particle tracking model
(IBM) utilizing daily 3D oceanic currents from an ocean
model archive resulting from simulations with the Regional
Ocean Modeling System (ROMS) model1 (Shchepetkin and
McWilliams, 2005; Lien et al., 2014, 2016). Since transportation
off the shelf and shelf circulation above complex topography
might be significantly influenced by small-scale dynamics, this
part of the study was done with two different ocean model

1www.myroms.org
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FIGURE 1 | Circles with numbers indicate the 10 spawning grounds where particles representing eggs are initiated. The orange square indicates the location from

where winds are correlated with off-shelf transport of particles and ocean currents perpendicular to the shelf edge. The thin black line shows the 500m isobath (here;

the shelf edge). The thick black trajectory shows the 2009 drifter with arrival at the Greenland shelf as commented in section Connectivity Studies on Atlantic Cod.

Locations of observed cod on Greenland are marked with green dots (taken from Christiansen et al., 2016). Currents are marked as NCC (green arrow), AW/NASC

(red arrow), and Arctic water (blue arrow). Dashed area is the average long-term spatial extent of the NEA cod’s feeding area, and modeled distribution areas (drift

routes) are indicated with A, B, and C, see section Transport Pattern of Pelagic Juveniles Off the Shelf Edge for explanation.

archives; both the daily mean 3D circulation archive, and an
hourly mean 3D archive with an even finer grid resolution.

The weighted (see section Individual-Based Model) model
distributions from known spawning grounds were evaluated
against observed pelagic juveniles (see section Pelagic Juvenile
Observations). For each observation location, the weighted
model distribution of pelagic juveniles was summarized across
the nearest four by four grid cells, still less than the distance
between observations, and compared to the observations. A
match is accomplished when both or neither observed and
modeled pelagic juveniles are present. However, results must be
interpreted with care as the biophysical model do not include
natural mortality. Furthermore, the transportation of NEA cod
juveniles off the shelf was correlated with NORA10 wind (see
section Ocean Model and Atmospheric Forcing). In addition,
we correlated the wind forcing against the modeled current
component perpendicular to the shelf edge at different depth
intervals in order to evaluate the potential for transportation off

the shelf.
Secondly, investigating question 4, we initialized particles

according to the annual observed distributions of pelagic juvenile

NEA cod off the continental shelf and followed their free pelagic
drift toward nursery grounds for years with observations (1978–
1991). The aim of this exercise was to investigate alternative drifts
routes and new potential nursery habitats.

Ocean Model
The main ROMS model applications used here is the 4 by 4
km resolved horizontal grid covering the Nordic Seas and the
Barents Sea for the period 1958–2015 with 32 vertical sigma
layers forced by the Simple Ocean Data Assimilation data set
(SODA; Carton and Giese, 2008) on the lateral boundaries
and regional downscaled European Centre for Medium-Range
Weather Forecasts (ECMWF) re-analysis (ERA-40; Uppala et al.,
2005) combined with previous prognostic runs to a grid with
10 by 10 km resolution (hereafter denoted NORA10) at the
sea surface (hereafter denoted SVIM, see Lien et al., 2014). In
the vertical, the spatio-temporal eddy diffusivity terms from the
local turbulence closure scheme were used (a Generic Length
Scale mixing scheme with k-ω setup) in ROMS (Umlauf and
Burchard, 2003; Umlauf et al., 2003). See Warner et al. (2005)
for a thorough evaluation comparing different mixing schemes.
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The ocean model archive, SVIM, has proven to reproduce many
observed oceanographic features in the area (Lien et al., 2014,
2016) motivating its use for investigating intra- and inter-annual
variations in drift trajectories from observed spawning grounds.
In addition, we have used an 800 by 800m horizontal resolution
application with 35 sigma layers covering the entire Norwegian
coast from the Skagerrak and the northern North Sea to the
Barents Sea extending from the fjords out into the deep basin
off the shelf edge (Albretsen et al., 2011, hereafter denoted the
NorKyst800). The NorKyst800 hindcast covers the period 2005–
2015 and has lateral boundary forcing from SVIM.

Atmospheric Forcing
Atmospheric forcing for the two ROMS applications were taken
from NORA10 (Reistad et al., 2011), providing 6-hourly winds,
temperature, pressure, humidity, cloud cover, and accumulated
precipitation, while radiative forcing is computed internally in
ROMS.

Individual-Based Model
Egg, larvae and pelagic juvenile drift are reproduced by
particles advected by simulated currents in the IBM model
“Lagrangian Diffusion Model” (Ådlandsvik and Sundby, 1994).
The “Lagrangian Diffusion Model” is a simple particle-tracking
model with a 4th order Runge-Kutta advection scheme and a
sub-module handling individual physiological and behavioral
responses to environmental forcing. It implies that the variable
physical environment is included in the biological sub-module,
but the variability in prey and predator field is uncertain and
not known to a sufficient degree in relevant spatial and temporal
scales to estimate the mortality and, hence, not included. Due to
the horizontal resolution of the SVIM-archive (4 km), mesoscale
vorticity is underestimated (Isachsen et al., 2012). Therefore,
a horizontal eddy diffusive term (with turbulent diffusion
coefficient K = 1 m2 s−1, chosen after testing different values)
is included to compensate for the lack of resolving mesoscale
processes. The same was included when using the NorKyst800 as
forcing for particle dispersal. Vertical distribution of eggs is based
on individual egg size and density (Sundby, 1983), modeled ocean
densities and levels of turbulence in the water column at the
individual time-varying location of each egg (based on Thygesen
and Ådlandsvik, 2007; utilized in e.g., Opdal et al., 2011; Röhrs
et al., 2014). The larval and juvenile growth function is taken
from Folkvord (2005) and based on laboratory experiments for
a range of temperatures under constant satiated feeding of the
offspring. Vertical migration is included as a diel migration
between upper and lower limits depending on light conditions
and swimming capability (5–30m during night and 10–40m
during day, with night defined as light levels below 1.0micromole
photons per m2s−1, see Opdal et al., 2011). A well-known
challenge in Lagrangian particle-tracking models is the handling
of particles advected near land.We tested different land-handling
schemes to avoid abnormal stranding along the irregular coast.
We decided to implement a solution where particles were only
moved in the direction of the offshore velocity component if they
were to be moved onto land in the next time step. The IBM
was run with two different setups, one with particles initiated at
well-known spawning grounds along the Norwegian coast for the

years 1978–2015, and another with particles initiated according
to observed offshore pelagic juveniles for the years 1978–1991.
For both setups, the particles are initiated at 5m depth.

When initiating eggs at the spawning grounds, we released 200
particles at each site every day during the known spawning period
from March 1st until April 30th and followed each particle for
200 days to analyze dispersal. The model results were adjusted by
weighting the importance of each particle to reflect a Gaussian
spawning intensity in time with peak spawning at April 1st
and by considering the yearly geographically distribution across
spawning grounds using observations from egg surveys (Ellertsen
et al., 1987; Sundby and Bratland, 1987; Sjølingstad, 2007; Sundby
and Nakken, 2008) and observations on abundance of spawning
NEA cod (see the supplementary section for complete references
1978–2004, and data from IMR’s spawning migration cruises
2005–2015 held at IMR fish database). The particles are initiated
as eggs and continue as hatched larvae after about 2–3 weeks
depending on ambient temperatures.

To initiate the model with the observed distributions of
pelagic juveniles we released 500 particles at each offshore station
with observed NEA cod at the mid-date of the year-specific
survey (Table 1) and followed each particle for 120 days until
November when NEA cod reach the stage of settling to the
bottom in the Barents Sea, i.e., their transition from a pelagic to a
demersal habitat (Ottersen et al., 2014).

Pelagic Juvenile Observations
During the years 1977–1991 scientific surveys2 covered year-
specific observational grids towing trawls of various sizes at a
speed of 2–3 knots (Bjørke and Sundby, 1984, 1987; Suthers
and Sundby, 1993, 1996). The number of stations, geographic
coverage and duration of the surveys varied between years
(Table 1). The median spatial resolution between each station
was 26 km. The surveys lasted from 16 to 49 days within the
period June 18th to August 5th, with mid-date for offshore
stations between June 28th and July 26th. The sampling gear used
started with a pelagic meshed midwater trawl with an opening of
4 × 10m in 1977, 18 × 18m from 1978 until 1984, and finally a
29 × 29m trawl opening from 1985 and onwards. Here, we have
omitted the first year, 1977, since this is considered a test survey
where the trawl used was too small. All trawls had diminishing
mesh sizes toward the cod end and a 4m long net with amesh size
of 4 mm (stretched) at the inner part of the cod end. During 1978
through 1984 two hauls were made at each station; one haul with
the headline at 40 and 20m depth, and a towing time of 15 min in
each depth interval, and the second haul at the surface with five
big floats on the headline and a towing time of 30min. From 1985
through 1991 the depths were the same as the previous years, but
the towing time at each depth interval was halved (Bjørke and
Sundby, 1987).

General Circulation Features
The circulation features of the northeastern North Atlantic are
governed by the two-branched northward flow of warm and
salty Atlantic Water (AW) across the Faeroe-Shetland Channel
(Hansen and Østerhus, 2007; Eldevik et al., 2009) along the

2http://www.emodnet-biology.eu/data-catalog?module=dataset&dasid=4443
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TABLE 1 | NEA cod pelagic juvenile survey details between 1978 and 1991 and corresponding modeling.

Observation information Simulation information

Year Number of stations in

total/offshore with/offshore

without presence of juveniles

Observed mean length in

total/off-shelf [mm]

Start date [dd.mm] Particles released Area A [%] Area B [%] Area C [%]

1978 120/22/34 28.7/28.8 09.07 11,000 24.7 75.3 0.0

1979 160/15/45 23.0/20.9 29.06 7,500 52.0 48.0 0.0

1980 127/1/35 20.6/22.0 28.06 500 99.0 1.0 0.0

1981 193/31/35 24.5/27.5 11.07 15,500 24.0 75.2 1.9

1982 155/8/7 27.2/33.3 21.07 4,000 35.8 63.6 0.6

1983 100/5/5 32.2/44.9 11.07 2,500 32.4 60.3 7.3

1984 145/29/3 34.4/40.0 14.07 14,500 41.4 56.6 1.9

1985 129/30/10 24.3/26.8 08.07 15,000 30.2 66.5 3.3

1986 197/16/30 27.0/29.3 13.07 8,000 21.6 66.3 12.1

1987 217/48/23 27.8/30.0 16.07 24,000 30.1 69.0 0.8

1988 242/41/57 34.8/38.5 17.07 20,500 22.1 77.8 0.1

1989 242/21/71 34.1/34.7 14.07 10,500 37.6 59.7 3.0

1990 111/35/8 47.3/57.7 26.07 17,500 35.8 64.2 0.0

1991 163/26/32 36.0/41.1 12.07 13,000 30.8 66.9 2.3

Left side: Total number of survey stations per year, number of stations offshore with and without observed presence of cod juveniles, and mean juvenile length offshore compared to all

observations. Right side: Start-date for simulations, number of particles released (500 times per offshore station with observed pelagic juveniles), and the spatial distribution of juveniles

per November 1st in the three areas (A–C), see explanation in text.

eastern continental slope, the NASC, and a second branch farther
off the shelf. Eddy shedding brings AW off the upper shelf slope
and into the Lofoten Basin (Rossby et al., 2009; Søiland et al.,
2016) where it either recirculates or flows along the Mohn Ridge
toward the Jan Mayen area (Isachsen and Nøst, 2012). Farther
north the AW bifurcates at the entrance to the Barents Sea
with one branch flowing to the northwest of Svalbard and the
other entering the Barents Sea. Northwest of Svalbard AW either
carries on northeast and east along the shelf north of Svalbard or
eddy shedding brings it out into the Fram Strait and southwest
along the Greenland Shelf (Hattermann et al., 2016). Figure 1
shows the geographical extent of our study area including the
main circulation features.

Predominant Wind Directions and Shelf
Edge Orientation
The focus area of the present study is between 67.0 and
70.0◦ N, where the continental shelf is largely oriented to the
northeast (42◦ from east). Therefore, wind sectors coming from
the northerly-easterly/southerly-westerly (NE/SW), within the
directional sector of ± 45◦ of the shelf edge orientation, gives
opposite wind sectors against/with the predominating currents.
For NE wind, it has the potential to create instability and/or
Ekman transport off the shelf edge. We have defined off-shelf
areas to include waters deeper than the 500-meter isobath (here
named the “shelf edge”). To investigate this further, winds are
extracted from NORA10 at a point location at the shelf edge
outside Lofoten (69◦ N, 12◦ E, see Figure 1). Directions of wind
with strength <5m/s are not considered anticipating that such
wind is insufficient to cause significant perturbations to the
predominant along-shelf currents. The main period chosen is

March through July since by then about 70% of the cod offspring
have passed the area of interest (by then) according to the model
mean.

RESULTS

Origin of the Pelagic Juveniles Off the Shelf
Edge
Figure 2A shows the fractions of particles transported off the
shelf by mid-September (based on SVIM) from each of the
10 spawning areas for the years 1978–2015. The mean off-
shelf transport for these years is 11.5% with a minimum
in 2002, and a maximum in 2008. Figure 2B is similar to
Figure 2A, but here the particles are weighted according to
observed spawning intensity in time and space (inter- and intra-
annual, see section Individual-based Model). The mean off-
shelf transport of NEA cod offspring then increases to 14.7%.
The inter-annual variability also increases, reflecting the high
weights added to the offspring originating from the Lofoten
region (spawning sites 3–5 in Figure 1). In summary, Figure 2A
illustrates the potential off-shelf transport from each spawning
area, while Figure 2B shows the off-shelf transport based on
the actual year-specific weighted spawning intensity from each
spawning area. Increasing horizontal resolution in the ocean
model (from SVIM to NorKyst800) for the years 2005–2015
resulted in a decreased mean off-shelf transport from 11.5 to
5.6%. However, the variations between the years have similar
features between NorKyst800 and SVIM, with highest off-shelf
transport in 2008 (2012) without (with) adding weights to the
spawning grounds. According to Suthers and Sundby (1993), the
fraction of pelagic juveniles found off shelf in mid-July 1988 was
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FIGURE 2 | Fraction (%) of particles initiated at the 10 spawning grounds along the Norwegian coast that are transported off the shelf edge (>500 m) per September

16th for the years 1978–2015. Particles are released between March 1st and April 31st. (B) is identical with (A) except that particles are weighting according to

observed spawning intensity in space and time. Each bar differentiates between particles originating from the different spawning grounds, see colorbar and Figure 1.

Gray shading indicates years with available pelagic juvenile observations.

35%. From our weighted simulations, the 1988 off-shelf transport
was estimated to be 16.7%, about half of what was calculated
from field observations, but close to the simulated average in our
simulations. When averaged over all years, Table 2 shows that
the weighted model distributions of pelagic juveniles compare
with observations in 62.4% of the observational stations, varying
yearly between 40 and 79%.

Mechanisms Causing Off-Shelf Transport
Here, we propose two major causes of off-shelf flows; (1)
mesoscale eddies related to baroclinic instability of the along-
shelf flow, and (2) a larger-scale interior Ekman transport related
to wind forcing (Brink, 2016). Since we have used either a model
with horizontal resolution of 4 by 4 km, not properly resolving
mesoscale variability (Isachsen et al., 2012), or a finer-resolved
grid where the lateral boundary off shelf is close to the shelf edge,
we focus on the effects of periodic wind forcing.

Figure 3 shows the number of particles (from non-weighted
spawning grounds) displaced off the shelf edge per day for three
sample years (1987–1989) between March 1st and July 31st. Here
we have investigated the non-weighted model results since the
focus is on understanding the physical forcing. The time series
show that off-shelf transport is dominated by episodic events and
that frequencies and timing varies significantly between years. In
the area between 67 and 70◦ N (black line in Figure 3), 1987 has
two main events (one late March and one mid-June; Figure 3A),

1988 has several events between late April to mid-June with
a maximum at May 20th (Figure 3B), while in 1989 there are
several small events from May to August (Figure 3C).

It seems that changing wind directions have amajor impact on
off-shelf transport of eggs, larvae and juveniles. Having identified
off-shelf events (Figure 3), we correlated these events in the area
between 67 and 70◦ N with the occurrence of two opposite
wind sectors (the NE and SW sectors as described in section
Predominant Wind Directions and Shelf Edge Orientation) for
the period between March 1st and July 31st. Events are defined
as days when the number of particles crossing the shelf edge is
higher than one standard deviation of the variability for the year-
specific period (see Figure 3). Figure 4 shows the correlation
between the frequency of such events and the NE and SW winds.
There is a significant (p = 0.003) positive (negative) correlation
with NE (SW) wind sector of R2 = 0.22 (0.23).

A similar procedure is done correlating the frequency of
winds directly against the modeled ocean currents at different
depths. The correlation between NE (SW) wind sector and the
current component perpendicular to the shelf edge (at the 500m
isobath), when the current component is above one standard
deviation for the year-specific period, is R2 = 0.67 (0.45) with
significance for the surface current (Table 3). Corresponding
correlations for currents in the depth intervals 5–10m and
5–40m are R2 = 0.48 (0.28) and R2 = 0.20 (0.06, though
not significant), respectively. These depths are relevant because
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TABLE 2 | Coinciding presence or absence of pelagic juveniles in modeled and observed data at the year-specific observation locations.

Year [19-] 78 79 80 81 82 83 84 85 86 87 88 89 90 91 Mean

Match [%] 71 58 64 68 53 40 72 73 50 49 57 75 65 79 62.4

Match (%) between the weighted model distributions and observations occur if both show presence or absence of pelagic juveniles within an area of four grid cells.

FIGURE 3 | Number of particles (from non-weighted spawning grounds) transported off shelf per day between March 1st and July 31st for the years 1987 (A), 1988

(B), and 1989 (C), differentiating between off-shelf transport occurring in the whole model area (gray) and between 67 and 70◦ N (black). The black dashed horizontal

line indicates one standard deviation of variability.

eggs are distributed with increasing concentrations toward the
surface, while larvae avoid the surface layers and occupy the
depths between 5 and 40m (Ellertsen et al., 1984; Kristiansen
et al., 2014) depending on various cues such as prey, predators,
and light. Further analysis shows that 83.0% of the daily cross-
shelf flow events coincides with the occurrence of NE wind (>5
m/s) during the previous 24 h. Comparing events of stronger
cross-shelf currents and winds, show that NE winds above 7m/s
coincide with 90.3 or 97.6% of the cross-shelf currents above 11
or 20 cm/s.

On average for all years, 64.6% of the off-shelf (particle) events

between March 1st and July 31st have mean winds coming from

NE during the three prior days before each event (Figure 5). This

result is even strengthened by comparing with winds preceding
such events by 5–7 days (68.2–70.6% respectively). In particular,
the years 1985, 1987, 1995, 2004, and 2014 have co-occurring
mean 3-day NE winds in >80% of the events.

Transport Pattern of Pelagic Juveniles Off
the Shelf Edge
Observations from the pelagic juvenile surveys (1978–1991)
show that pelagic juveniles are variably present all years off the
shelf and that the individual juveniles are larger than those on
the shelf, except for the year 1979 (Table 1). Modeled dispersal
of particles representing pelagic juvenile drift from the time of
observations during summer to November 1st shows large inter-
annual variations in distribution, but also characteristic features
that are repeated between years (Figure 6). Pelagic juveniles drift
with near-surface currents largely by the following main routes:
back onto the adjacent eastern shelves and into the Barents Sea
(south of Svalbard and in the Bear Island Trough), to the west
and north of Svalbard with a fair chance of eventually ending
up in the Barents Sea, west toward Jan Mayen, northwest toward
the Greenland shelf, or recirculating within the Lofoten Basin.
Separating particles by their position at November 1st into three
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FIGURE 4 | Scatterplot of percentage wind in sectors NE (A) and SW (B) against number of events where transport of particles exceeds one standard deviation of

variability from March 1st to July 31st between 67 and 70◦ N for the years 1978–2015. Years are marked with stars, where the linear regression lines are shown as

solid black lines. The years discussed explicitly in the text are labeled.

TABLE 3 | The correlation (R2) and significance (P) between wind sectors

(northeastern NE or southwestern SW) and current components at three different

depth intervals perpendicular to the shelf edge.

Depth R2/P (NE) R2/P (SW)

Current at top layer (3 m) 0.67/0.000 0.45/0.000

Current between 5 and 10m 0.48/0.000 0.28/0.001

Current at 5–40m 0.20/0.005 0.06/0.140

(A-C) areas enables quantification of inter-annual variability in
the destiny of the pelagic juveniles off-shelf (Figure 1);

(A) The Barents Sea with depths shallower than 500 m.
(B) Deep ocean with depths deeper than 500m, (depth> 500m,

lon > 2◦E and lat > 73.5◦N) | (depth > 500m and lat <

73.5◦N).
(C) Crossing the Fram Strait to northeastern Greenland (<2◦ E

and >73.5◦ N).

Table 1 shows that on average 36.9% of the off-shelf juveniles
are advected back onto the eastern shelf into the Barents Sea
habitat (A), 60.7% remain in the open ocean (B), and 2.4%
head toward the northeastern Greenland shelf (C). Inter-annual
variation is large, especially for area C. The fraction of pelagic
juveniles transported into C varies between 0.0 and 12.1%. NEA
cod offspring advected off the shelf edge have a chance of being
transported back onto the shelf (A) where the main nursery
grounds are located (Olsen et al., 2010) without performing
directional swimming, varying between 21.6 and 52.0% (except
1980, but this year only has a single observation of pelagic
juveniles off-shelf and, hence, few particles are initiated for
dispersal simulation).

DISCUSSION

A characteristic attribute of the NEA cod is that the mature part

of the populationmigrates out of its feeding habitat in the Barents

Sea to spawn along the Norwegian coast during spring. During
the subsequent period from March until September, the pelagic

offspring are transported northward by the NCC (and partly by

the NASC) toward their feeding habitat in the Barents Sea. The

present study has focused on the portion of this pelagic offspring

that become advected off the shelf into the Norwegian Sea, and

traditionally assumed to be lost for recruitment (defined asHjort’s
2nd hypothesis by Sinclair et al., 1985). We have investigated

the origin of such juvenile loss, the driving mechanisms of this
transport, and challengedHjort’s 2nd hypothesis with exploration
of alternative fates of these individuals.

Our results show that off-shelf transport has strong inter-
annual variations varying between 7.2 and 27.4% with an average
of 14.7% during the years 1978–2015. Spawning grounds around
Lofoten, especially the one located near the shelf edge (spawning
site 5 in Figure 1) used by spawning cod in some years, contribute
the most to off-shelf transport. The continental shelf is at its
narrowest immediately downstream of this area (about 10 km
wide at 69.5 ◦N), resulting in closer dynamic interactions between
theNCC and theNASC branchesmanifested by enhancedmixing
and current instabilities.

According to field observations (Suthers and Sundby, 1993),
the fraction of pelagic juveniles found off shelf in mid-July
1988 was 35%. From our weighted simulation, the 1988 off-
shelf transport was estimated to be 16.7%, about half of
the field observation, and close to the simulated average
of 14.7%. This indicate that our estimations of off-shelf
transport might be an underestimation compared to what is
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FIGURE 5 | Match between events where transport of particles off-shelf exceeds one standard deviation of variability from March 1st to July 31st between 67 and

70◦ N and occurrences of mean NE wind situations during the three proceeding days before each event.

FIGURE 6 | Normalized concentrations of NEA cod pelagic juveniles per November 1st for years 1987 (A), 1988 (B), and 1989 (C) when originating from the

year-specific observed pelagic juvenile distribution during summer (red stars). The years 1987–1989 have approximately an equal number of trawl stations during the

pelagic juvenile cruises, here illustrated by red and blue stars indicating with and without cod in the trawl. Survey stations taken on the continental shelf is not included.

Note that the modeled distributions are smoothed across 5 by 5 grid cells.

transported into the Norwegian Sea each year. It should be
emphasized that not only advectional mechanisms may cause
such differences between observed and modeled distributions.

Offspring mortality differs substantially in time and space (e.g.,
Langangen et al., 2014) and will contribute to changes in spatial
distributions. As demonstrated by Suthers and Sundby (1993)
the main portion of the observed pelagic juveniles in 1988
originated from a spawning window 2 weeks after peak spawning
implying an offspring mortality that differs substantially in
time. Moreover, the fact that observed off-shelf juveniles in
1988 (Suthers and Sundby, 1993) were larger than those at the
shelf they likely also had higher survival rates as they have
outgrown some of their natural predators. Since mortality is
not included in the biophysical model used here, this explains
parts of the difference between modeled and observed off-shelf
abundances.

Daily off-shelf advection of pelagic NEA cod offspring is
dominated by episodic events where frequencies and timing
varies between years. One important drivingmechanism for these

events are here shown to be fluctuating wind regimes, where
northeasterly winds, especially winds blowing steadily over a
period of several days (3–7 days), favor off-shelf transport. The
correlation between NE winds and near-surface ocean currents
weakens with depth down to 40 m, the depth-interval relevant
for cod eggs and larvae drift, showing the importance of vertical
placement of NEA cod offspring for off-shelf transport.

Based on observations of pelagic juvenile NEA cod in the
Norwegian Sea we simulated the potential onward drift to explore
possibilities of reaching other favorable destinations than the
Barents Sea habitat, i.e., other shelf areas in the North Atlantic.
An average of 36.9% are advected back onto the shelves of the
Barents Sea by November 1st and thereby given the opportunity
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to re-enter the NEA cod stock in its natural habitat. This includes
juveniles following AW north of Svalbard. Most pelagic juveniles
(average of 60.7%) remain in the deep Norwegian Sea, thus
not reaching areas where it is possible to bottom-settle due to
the depths (>2,000 m). Hence, this portion of the offspring is
confirming the destiny suggested by Hjort’s second recruitment
hypothesis. However, within the investigated period up to 12.1%
(average of 2.4%) heads toward the northeastern Greenland
shelf, pre-conditioning bottom-settlement if the conditions are
otherwise good.

Connectivity Studies on Atlantic Cod
A recent model study (Myksvoll et al., 2014) indicates that
exchange of pelagic offspring between Norwegian coastal cod
and NEA cod may occur to a limited extent. However, the study
indicates that exchange is dominated by export of offspring from
the coastal cod populations to the NEA cod population (Myksvoll
et al., 2011).

Connectivity studies over a larger geographical area were
undertaken by researchers on Iceland in the 1970s (e.g., Jamieson
and Jónsson, 1971). They found aWest Greenland component of
the spawning cod at Iceland from tagging experiments implying
that connections between neighboring shelves are possible. Also
here, the dominating exchange was from the Icelandic cod
population to theWest Greenland cod population. This is a result
of the general circulation patterns where the pelagic offspring are
advected downstream. Export the other way must be caused by
active migration of the mature fish back to their origins of birth,
i.e., natal homing.

During the previous warm period (1920s and 1930s) there was
an increase of Atlantic cod in western Greenland. Cod appeared
at the offshore banks and expanded their habitat northwards.
This is believed to be caused by increased transport of larvae
from Iceland as well as better survival due to higher abundance
of zooplankton (Drinkwater, 2006).

Observational and modeling studies at Georges Bank in the
northwestern Atlantic Ocean (e.g., Lough et al., 1994; Lough and
O’Brien, 2012) showed that wind conditions leading to off-shelf
Ekman transport is detrimental for survival in early life stages of
cod. The Gulf stream is located just south of Georges Bank, and
cod transported off the bank will be transported out in the large
North Atlantic basin and become lost for recruitment, making
this a straightforward example of Hjort’s 2nd hypothesis.

Our results show similarities with the Greenland-Iceland
study where most juveniles advected off-shelf are lost, but where
a minor fraction may get back onto a shelf—either into the
well-known nursery grounds or a new location. During the
previous warm period in our focus area (the 1930s), Iversen
(1934) summarized observations indicating cod could spawn as
far north as west of Svalbard. If this re-occurs during the current
or future warm periods, there is an even shorter distance from
spawning grounds to potential nursery areas at the Greenland
shelf.

From the Global Drifter Program3, one drifter (id = 78758)
from 2009 showed similar transport characteristics as here shown
for young NEA cod pelagic juveniles reaching the northeastern

3http://www.aoml.noaa.gov/envids/gld/krig/parttrk_id_temporal.php

Greenland shelf (see Figure 1). This drifter consisted of a surface
buoy, a transmitter, a temperature sensor and a subsurface
drogue of 15m depth (Koszalka et al., 2011) representing a
drift in the upper ocean comparable with NEA cod offspring
(vertical migration between about 5 and 30 m). The drifter
crossed the Norwegian continental shelf edge at February 8th
2009, and arrived at the northeastern Greenland shelf July 27th
2009, a journey of ∼6 months. This is well within the period
when cod should locate the seabed and become stationary (the
Greenland shelf has approximately the same depth as the Barents
Sea ∼300 m). This observed drifter’s trajectory is demonstrating
the potential for drift of NEA cod pelagic juveniles to the
northeastern Greenland shelf.

Growth, Predation, and Survival Conditions
In this study, we have not investigated food availability along
alternative drift routes for pelagic juveniles drifting off the shelf
edge from late summer and through fall. However, zooplankton
studies in the Fram Strait confirm that the region is rich in
arctic and arcto-boreal copepods in summer (Smith, 1988) as well
as during early autumn (Svensen et al., 2011). These copepod
species have been identified as the key size groups of prey for
pelagic juvenile cod during the spring and summer (Sysoeva
and Degtereva, 1965; Sundby, 1995). During late summer the
growing juvenile cod switches to larger prey (Sundby, 1995) such
as krill. These species are also abundant in the Fram Strait region
(e.g., Hop et al., 2006). Consequently, there is a good reason to
assume that there are suitable and sufficient prey items for pelagic
juvenile cod to survive during summer and early autumn. Hence,
the recent observations of immature cod at the northeastern
Greenland shelf (Christiansen et al., 2016), coinciding spatially
with the present modeled entering region of pelagic juveniles,
support the conclusion that cod may be transported, in good
condition, from spawning areas along the coast of North Norway.

We have focused on the physical processes affecting the young
NEA cod offspring, only including simple biological behavior
such as a diurnal vertical migration, growth dependent only on
temperature and year-specific choice of spawning grounds (both
in time and space). If we also had includedmortality as a function
of prey and predator availability, the estimate of the percentage of
off-shelf transport would likely change. e.g., if individuals located
on the shelf are more subject to predation, in addition to being
smaller (Suthers and Sundby, 1993), this would lead to higher
mortality on-shelf than off-shelf, and the off-shelf percentage
would increase. As outlined in the introduction of the Discussion
above it is also possible that the larger juveniles off the shelf
would be in a better situation to resist and survive potential harsh
conditions on their way across the Norwegian Sea. An inclusion
of mortality in the model is also expected to change the match
between modeled and observed juvenile distributions (Table 2)
since observations are formed by the sum of transport, dispersion
and site-specific mortality.

Homing from Northeastern Greenland to
Norway?
What may happen to NEA cod arriving at the northeastern
Greenland shelf? One possibility is that the shelf will function
as a distant part of the NEA cod nursery habitat, while the
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Norwegian coast still is the preferred spawning habitat. This
suggestion implies the occurrence of long-distance homing. The
other possibility would be that the NEA cod settle along the
eastern coast of Greenland, forming a separate sub-population.
We will here focus on the first possibility, the long-distance
homing strategy.

The Greenland shelf is large, with approximately the same
depth as the Barents Sea (∼300 m), but much of the shelf area is
covered with colder water masses resulting in slower growth and
possibly also being exposed to waters of less prey productivity.
Keeping in mind that high latitudes have experienced recent
warming, with a subsequent northward shift in boreal species
(Fossheim et al., 2015), there are reasons to believe that the
northeastern Greenland shelf might get increased productivity if
the warming trend continues.

Tagging experiments have already shown that NEA cod tends
to return to the same spawning locations along the Norwegian
coast where it was tagged, and that cod from different spawning
locations occupies different areas of the Barents Sea (Godø,
1984). As mentioned in the introduction, a traditional folklore
opinion in some fishing communities says that Greenland cod
occasionally spawn in Norwegian waters. The hypothesis is that
the Norwegian fishermen are recognizing specific phenotypic
traits of the cod which are characteristic for cod growing up in
Greenland waters, suggesting a long-distance homing strategy.
Considering distances for such amigration pattern, the cod could
either take a route directly across the Norwegian Sea (∼1,000
km), or crossing the Fram Strait following the continental shelf
edge (against the NASC) toward Lofoten (∼1,500 km). Both
routes are within the distance range of observed migration from
the Barents Sea to the spawning sites along the Norwegian
coast (Sundby and Nakken, 2008; Yaragina et al., 2011). As
mentioned in section Connectivity Studies on Atlantic Cod,
Jamieson and Jónsson (1971) found that connectivity (homing)
between neighboring shelves are possible, and already happening
between southwestern Greenland to spawning grounds at
Iceland. The difference between our suggested migration and
the one described by Jamieson and Jónsson (1971) is that cod
from Greenland to Norway need to migrate over deep waters
(deeper than 2,000 m). To our knowledge, there is no literature
describing deep ocean migration of NEA cod or other cod
populations, making our suggested migration unique. A recent
study, however, discusses observations of cod in deep waters of
the Fram Strait feeding on a mesopelagic layer, demonstrating its
highly adaptive capacity (Ingvaldsen et al., 2017).

Model Uncertainties
In general, the ROMS model setup applied to produce the
SVIM seems to overestimate topographic steering above steep
slopes. Lien et al. (2014) reported extraordinary strong horizontal
gradients in hydrography along the continental shelf slope
and AW with a limited westward distribution as compared
to observations. This is likely the reason for less stratification
on the shelf and the shelf slope as compared to observations,
and in turn a different vertical impact of wind stress than in
reality. We believe this also affects the ability of the model to
replicate eddies shedding off the shelf (Isachsen et al., 2012).

Surprisingly, a higher horizontal grid resolution in NorKyst800, a
comparable ROMS setup, did not improve the off-shelf transport,
but instead reduced the percentage as compared to observations.
Since NorKyst800 applies SVIM-results as forcing along its open
boundaries and is thus highly affected by the density field in
the coarser model, our results from both model runs are thus
limited by the intense horizontal gradients in hydrography. We
expect that utilizing forcing fields with improved stratification
would give more accurate results. In comparison, the study by
Hattermann et al. (2016) successfully quantified eddy-induced
westward transport of AWacross the Fram Strait and emphasized
the need for high horizontal resolution in the ocean model. Their
model setup was comparable to the ROMS setup in NorKyst800
but limited to the western shelf of Svalbard. In light of the results
by Hattermann et al. (2016), showing that ROMS is capable of
replicating eddy shedding, we expect that the relative intra- and
inter-annual variation reported in our study are representative
for the frequency of off-shelf transport but that the strengths are
underestimated as compared to reality. Furthermore, if waves
were included in the ocean circulation model, the wave-induced
drift could lead to higher retention toward the coast for the cod
juveniles (Röhrs et al., 2014). Also looking at ocean dynamics
with time scales less than daily, tides would likely change the
transport pathways in Vestfjorden implying a slightly different
spread of cod eggs and larvae (Lynge et al., 2010).

If there are any errors in the setup of the biophysical model
this could lead to systematic errors in the drift. For example,
correlation between wind forcing and modeled ocean currents
perpendicular to the shelf edge at three different depth intervals
demonstrated that the vertical distribution of NEA offspring and
their vertical migration affect the chance of being displaced off
the shelf. The higher up in the water column, the higher chance of
being transported off-shelf. We performed a sensitivity test, with
particles drifting without any vertical movement but kept at fixed
depths; surface, 5 and 40 m. Results from this showed that pelagic
juveniles drifting close to the surface have a more dispersed
horizontal distribution, while the deeper drift pattern was more
trapped along topographic features following the Norwegian
coast more closely. This is in accordance with Vikebø et al. (2005,
2007) and shows the importance of accurate description of the
vertical placement of NEA cod to obtain correct pelagic drift
pattern. Important factors to be determined are egg buoyancy
(Sundby and Kristiansen, 2015), and realistic vertical migration
of the larvae and juveniles (Kristiansen et al., 2014) as well as
correct vertical current profile.

The number of observation sites, and observations with and
without pelagic juveniles present varied a lot between years.
Hence, the number of particles initiated at spawning grounds
and dispersed until the time of observations should not introduce
a bias in the comparison between model and observations. In
contrast, if the stations were dominated by observations with
(without) pelagic juveniles, a high (low) number of modeled
particles would be beneficial for match. As expected, in years with
a high number of observations, there is an increasing number of
observations without presence of pelagic juveniles in the trawl,
as the survey also covers areas beyond the extent of distribution
of cod.
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There are uncertainties associated with the origin of pelagic
NEA cod juveniles, mainly due to observational limitations. In
our study, we defined 10 different spawning grounds along the
coast of Norway, and investigated dispersal of NEA cod offspring
with and without weighted spawning grounds (Figure 2). The
weighting is a continuation of Table 3.1 by Sjølingstad (2007)
which divided NEA cod spawning into six spawning grounds.
We refined these further into 10 spawning grounds and expanded
the table until 2015 using available egg-survey observations
(references described in Material and Methods). Four main
considerations were done in accordance with Sundby and
Nakken (2008); (1) spawning outside Møre decreases with time,
(2) a northward shift in spawning locations from the early
1980s have been quantified, (3) for all years, we added highest
weights to the spawning grounds around Lofoten, in accordance
with well-established knowledge (Sundby and Bratland, 1987;
Ottersen et al., 2014), (4) the spawning ground outside Lofoten,
close to the shelf edge, only occurs occasionally (Sundby and
Nakken, 2008), but increased spawning has been observed here
during the recent decade, similar to the observations in the
1980s (Sundby and Bratland, 1987). The effect of weighting
changed the estimatedmean off-shelf amount from 11.5 to 14.7%.
Any inaccurate quantification of the weighting would affect this
estimation.

Recommendations for Future Work
Both observations and a biophysical model indicate that a

significant part of the NEA cod offspring may be advected off-

shelf away from the typical drift routes from the spawning

grounds along the Norwegian coast toward the nursery grounds

in the Barents Sea. Our modeling approach focuses mainly on

the physical processes, but to investigate the fate of the off-
shelf drifting offspring in a more biological context, it may
be necessary to explore the capability and need for horizontal
swimming to re-enter the nursery areas in the Barents Sea shelf
area. This may be done in a combined effort including in-situ
observations and biophysical models (Staaterman and Paris,
2013).

Furthermore, it is essential to determine the prey availability
for offspring that are advected off-shelf. Is it sufficient for survival
during pelagic free drift for durations up to several months?
This may be studied through combined in-situ observations,
biophysical models and remote sensing. Egg, larval and pelagic
juvenile mortality involves the enigma of the recruitment
problem. The main challenge of predicting the fate of the
offspring is still on larval growth and survival basically involving
food abundance and the distribution of predators. Site-specific
mortality will clearly contribute to the variability in distribution
of offspring in addition to the physical advection.

A current warming trend and subsequent northward shift in
boreal species (Fossheim et al., 2015) give reasons to believe that
NEA cod offspring transported off-shelf toward other shelf areas,
specifically northeastern Greenland shelf, may successfully settle
at the shelf. If this part of the NEA cod would be able to migrate
back to its well-known habitat it will contribute to even higher
recruitment to the stock if this warming trend continues. The
other possibility would be that the NEA cod settle along the
eastern coast of Greenland, not returning to the Norwegian coast
to spawn. Observational cruises to the northeastern Greenland
shelf together with tagging experiments may give better insight
into this issue.

Finally, ongoing work in assimilating in-situ observations in
local ocean model setups show promising features with respect
to replicating vertical stratification of the upper ocean inhabited
byNEA cod offspring (Sperrevik et al., 2017).We believe this may
improve predictive capabilities for dispersal modeling of eggs,
larvae and pelagic juveniles on their critical journey toward the
favorable nursery grounds in the Barents Sea.
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Concern over incidental catches in commercial fisheries has been increasing, and

while simple mitigation strategies have been effective, few effective mitigation strategies

have been established for more complex species interactions. Incidental catches of

alewife (Alosa pseudoharengus) and blueback herring (A. aestivalis) in the commercial

Atlantic herring (Clupea harengus) fishery have received substantial attention on the

Northeast U.S. continental shelf, despite an existing bycatch avoidance program.

This study evaluates the utility of existing species distribution forecasts to predict

river herring catches in the southern New England small mesh bottom trawl Atlantic

herring fishery, with the ultimate goal of incorporating incidental catch forecasts into the

bycatch avoidance program. Commercial Atlantic herring bottom trawl vessels assisted

with field-based evaluation of alewife, blueback herring, and Atlantic herring species

distribution forecast models. Vessels were equipped with conductivity, temperature, and

depth probes, and sampling occurred throughout the fishery season (January–March).

Locations of expected low and high forecasted incidental catches were sampled, as well

as locations the captain expected to find low and high incidental catches. This allowed

us to sample within the spatial area the fishery occurs, and to evaluate the forecasted

conditions, and predictions, at the spatial scale of the fishery. Catch differences between

high and low probability stations were small and variable, as were differences in modeled

probability of species presence. No differences were observed between observations at

model-predicted stations and captain-selected stations. The sampling provided a better

understanding of the potential effectiveness of distribution forecasts for further reducing

incidental catches. Existing models have limited use at the spatial scale of this fishery, but

could be improved by developing models with fishery-dependent data. Collaborations

between researchers, managers, and the Atlantic herring commercial fleet have improved

relationships between the groups, and continued collaboration in the development and

evaluation of incidental catch reduction tools is key for further reducing incidental catches.

Keywords: cooperative research, species distribution models, bycatch avoidance, river herring, oceanographic

forecast
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INTRODUCTION

Flexible management strategies and cooperative research are
becoming common tools in fisheries management, and can
increase compliance and improve the economic and ecological
efficiency of fisheries (Cox et al., 2007; O’Keefe et al., 2013).
Flexible management strategies have become more widespread,
especially over the last decade, and are facilitated by technology
advancements (Gilman et al., 2006; Lewison et al., 2015;
Little et al., 2015). While flexible strategies, such as “move-on
rules,” generally need to be combined with some broader scale
management plan, these tools can allow fisheries to reduce their
non-target catches, while minimizing the economic impacts on
the fleet (Dunn et al., 2013; O’Keefe et al., 2013; Little et al., 2015).
Many flexible strategies, especially those intended to reduce non-
target catches, require regular communications between actively
fishing vessels and scientists (Bethoney et al., 2013; O’Keefe
et al., 2013; Lewison et al., 2015). A good relationship between
managers and industry is key to a successful fleet communication
program because of the need for regular communications
of detailed information regarding fishing locations and catch
compositions as well as high participation levels (O’Keefe et al.,
2013; Lewison et al., 2015).

Cooperative research has been used in the development of
a variety of tools for improving financial benefits and reducing
ecological impacts, such as using industry to test new or modified
fishing gear, or to develop and test tools to avoid catching non-
target species (Johnson and van Densen, 2007; Lewison et al.,
2015). When industry is included in the early stages of research
projects, management changes, and policy development, they
can contribute critical ideas and information that may have
been overlooked by scientists and managers, improving the
effectiveness (Hartley and Robertson, 2006; Johnson and van
Densen, 2007). This collaboration can also increase industry buy-
in for modifying gear or changing their fishing strategy, which
drastically improves the success of new policies (Hartley and
Robertson, 2006; Johnson and van Densen, 2007).

Recent advances in environmental forecast model accuracy
and species distribution modeling have facilitated a shift in
dynamic oceanmanagement techniques, from “reactive” systems,

where catches are regularly summarized and reported back
to vessels, to “proactive” forecasting systems (Hobday and
Hartmann, 2006; Manderson et al., 2011; O’Keefe et al.,
2013; Eveson et al., 2015; Lewison et al., 2015). Species
distribution models provide the foundation for most proactive
dynamic management systems, as species distributions are
directly or indirectly related to environmental conditions (Mann,
1993). Environmental forecasts can be combined with species
distribution models to predict over relatively short (i.e., days
to months) time scales to inform fisheries (Hartog et al., 2011;
Eveson et al., 2015; Kaplan et al., 2016), or over longer (i.e.,
decadal) time scales to predict shifts in distributions related to
climate change (Hare et al., 2010; Lynch et al., 2015).

In the Northeast U.S., the River Herring Bycatch Avoidance
Program, a collaboration involving the Massachusetts Division
of Marine Fisheries, the University of Massachusetts School
for Marine Science and Technology, and the Atlantic herring

(Clupea harengus) and Atlantic mackerel (Scomber scrombus)
fisheries, has been operating since 2010 (Bethoney et al., 2013).
The program began because of growing concern over incidental
catches of river herring (alewife, Alosa pseudoharengus, and
blueback herring, A. aestivalis) in the Atlantic herring and
Atlantic mackerel fisheries (Bethoney et al., 2013). Participation
in the program is voluntary, yet has grown to all of the mid-
water fleet (11 vessels) and most of the bottom trawl fleet (6 of
8 vessels) since the implementation of river herring catch caps
for all fishing areas (US DOC, 2015). The overall river herring
catch cap is the weighted mean river herring catch estimate,
with proportions specified for regions and gear types (US DOC,
2015). Many of the small mesh bottom trawl vessels are also part
of the NOAA Northeast Fisheries Science Center’s Cooperative
Research Study Fleet (NEFSC Study Fleet), facilitating detailed
data collection on catch composition and locations (Palmer et al.,
2007). Preliminary analyses suggest that the Bycatch Avoidance
Program has reduced river herring catches as a result of vessels
avoiding areas with reported high river herring catches (NEFMC,
2014). The next step in further reducing incidental river herring
catches is to develop a nowcast or forecast tool to inform industry
of areas where higher river herring catches are likely, along with
information on where they have been observed.

We previously developed and evaluated species’ distribution
models using fishery-independent data (Turner et al., 2015),
which we then coupled with an ocean forecast model (FVCOM;
Chen et al., 2006) and evaluated its accuracy using newly
collected fishery-independent data (Turner et al., 2017). Species’
distribution forecasts correctly predicted presence for 68–69%
of fishery-independent observations, but given the substantially
different spatial scales of the trawl survey used for model
development and initial testing and the fishery, fishery-
dependent evaluations were necessary. The goal of developing
species’ distribution forecasts is to create a product that can be
incorporated into the existing River Herring Bycatch Avoidance
Program to further reduce incidental catches of alewife and
blueback herring. The next step in the development of a proactive
tool is testing using the designed collection of fishery-dependent
data. We contracted three commercial Atlantic herring bottom
trawl vessels (members of the NEFSC Study Fleet) to perform
directed sampling of the species’ distribution forecasts. Our
objectives were:

1) To evaluate the accuracy of the species’ distribution forecasts
over the spatial and temporal scales of the commercial
Atlantic herring bottom trawl fishery; and

2) Compare the species’ distribution forecasts with the captains’
“mental models.”

METHODS

Study Area
Species’ distribution forecasts were previously developed and
evaluated with fishery-independent data (Turner et al., 2015,
2017) for alewife, blueback herring, Atlantic herring, and Atlantic
mackerel (not included in this study), encompassing most of
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the Northeast U.S. continental shelf (Figure 1). The spatial scale
of this study (41.15–41.50◦N, −71.86–−71.40◦W; Figure 1) was
substantially smaller than for initial model development and
evaluation because the vessels used by the Atlantic herring
small mesh bottom trawl in this study typically only take 1
day trips because of limited carrying capacity. All three study
species overwinter in Southern New England continental shelf
habitats (Fay et al., 1983; Stevenson and Scott, 2005) and
alewife and blueback herring are regularly caught by small
mesh bottom trawl vessels targeting Atlantic herring during
the winter; this study encompassed the fleets’ fishing grounds
(Bethoney et al., 2013; Cournane et al., 2013). The FVCOM

forecast model domain completely encompasses the study area
(Figure 2).

Directed Sampling
The dates selected for directed model sampling were days the
vessels were not commercially fishing with favorable weather;
a total of 10 trips were taken for this study (two vessels
were contracted for 3 fishing days each, and one vessel was
contracted for 4 fishing days). We aimed for one sampling
trip each week, to sample most of the fishery season (January–
March). Two ports in southern Rhode Island were used for all
trips (Figure 1). Oceanographic forecasts coupled with species

FIGURE 1 | Map of the study area, with Rhode Island state waters indicated with the black line and the spatial limits of the study indicated by the

dashed line. Circles indicate model-selected high and low probability stations, triangles indicate captain-selected high and low probability stations; stars indicate the

ports.
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FIGURE 2 | Map of the finite-volume community ocean model (FVCOM)

forecast grid; points indicate the forecast nodes, with distances

between nodes varying by physical environment complexity (distance

between nodes ranges from 0.3 to 15 km).

distribution models were used to select stations with high and
low probability of catching alewife and/or blueback herring;
ranges for high and low probability stations were dependent
on the available ranges of probabilities on a given day. The
area was restricted based on vessel capabilities (day boats) and
permit allowances, depths greater than 18 meters, and areas with
substrate suitable for trawling (Figure 1). Four station types were
sampled: a model-based high probability station, a model-based
low probability station, a captain-predicted high probability
station, and a captain-predicted low probability station. Five
sampling stations were the target for each trip, one of each
type and a repeat of one of the two model-predicted stations
(dependent on location relative to returning to port; see Figure 1)
and this was achieved on most trips. Captains could select
stations anywhere within the study region they would expect to
see high or low river herring incidental catches. All sampling
occurred on dedicated research trips, and was covered by a
Scientific Research Permit issued by the NOAA Greater Atlantic
Regional Fisheries Office Sustainable Fisheries Division; catches
were not subject to fishery regulations (i.e., were excluded from
quotas). This work was conducted as part of commercial fishing
operations and all rules and regulations were followed under an
Experimental Fishing Permit (no ethics approval was required as
per institutional and national guidelines).

Three captains participated in the project; all are part of
the NEFSC Study Fleet. For model selected stations, captains
fished as close as safely possible to the coordinates provided (i.e.,
avoid locations that will damage their gear). Captains selected
their fishing locations using their “mental models” of where they
thought incidental catch would be high and low. At each station,
a 20-min tow (beginning when proper door spread was achieved)
was conducted, and a conductivity, temperature, and depth probe
(CTD) was attached to the net for each trip to compare the
forecasted conditions with those observed. A scientist sorted and
weighed (in pounds) all fish caught in each tow to estimate catch

composition; when the hail exceeded 1,000 pounds a subsample
was taken and extrapolated. Atlantic herring were caught in all
tows except one (49 of 50), alewife were caught in 48 of 50 tows,
and blueback herring were caught in 40 of 50 tows (Figure 3; see
Supplementary Table 1 for catch weights by tow). Other species
caught were American shad (A. sapidissima; 31 tows), Atlantic
mackerel (19 tows), Atlantic menhaden (Brevoortia tyrannus;
18 tows), butterfish (Peprilus triacanthus; 2 tows), silver hake
(Merluccius bilinearis; 1 tow), and long-finned squid (Doryteuthis
pealeii; 1 tow).

Evaluation and Analyses
While the FVCOM model has been thoroughly evaluated,
evaluation of temperature and salinity errors at the spatial and
temporal scales of the study was deemed useful. Forecasted and
observed temperature and salinity were compared using paired
t-tests. CTD data were limited to when the net was on the
bottom based on the pressure, following protocols established
for other bottom trawl surveys, by omitting data where the
pressure is<15 decibars and where the rate of change exceeds 0.3
decibars/10 s (measurements were recorded at 10 s intervals). The
mean observed temperature and salinity for each tow were used
to predict the probability of species’ presence for comparison
with forecasted probabilities. FVCOM forecasts predict up to 2
days in advance, and 1 or 2 day advance forecasts were used for
station selection depending on how far in advance a fishing day
was scheduled (previous work found no significant differences
in conditions from 1 or 2 day forecasts; Turner et al., 2017).
The forecasted conditions used for evaluations were the FVCOM
model forecast node nearest to the start of the tow. Linear models
were used to test if the relationships between the forecasted and
observed conditions were correlated with the distance between
the FVCOM forecast node and the coordinates for the trawling
start.

Generalized additive models for the habitat associations of
alewife, blueback herring, and Atlantic herring, based on fishery-
independent data, were previously developed using the R package
“mgcv” v. 1.8-6 (Hastie and Tibshirani, 1990; Wood, 2006;
Politis et al., 2014; R Development Core Team, 2014; Turner
et al., 2015). Species’ presence was the response variable, using
a binomial link function, and all models included smooth
functions of bottom temperature, bottom salinity, and depth,
a tensor product smooth of solar azimuth and solar elevation,
and region as a factor variable (Turner et al., 2015). Model
probabilities of species presence using forecasted and observed
conditions were evaluated for all three species using paired t-
tests. Linear models were used to test if the relationships between
the forecasted and observed predictions were correlated with the
distance between the FVCOM forecast node and the coordinates
for the trawling start. Model predictions were compared with
observed catches by calculating the ratio of alewife or blueback
herring weight to Atlantic herring weight (i.e., weight of
alewife/weight of Atlantic herring). The differences in model
probabilities and catch proportions at high and low probability
stations for each day (repeat tows were excluded) were then
calculated for alewife and blueback herring to understand how
the differences in modeled probabilities compare with observed
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FIGURE 3 | Summary of the observed catches (in pounds) during directed sampling; histogram of the log-transformed alewife catch (upper left),

histogram of the log-transformed blueback herring catch (upper right), histogram of the log-transformed Atlantic herring catch (lower left), and a

scatterplot of log-transformed alewife (red), and blueback herring (blue) catches against the log-transformed Atlantic herring catch.

catch differences. Relationships between model probabilities
and catch proportions were examined using FVCOM modeled
fields and CTD measurement, for model and captain predicted
stations.

To examine one potential discrepancy between catch
and forecasted species distribution, we examined how the
probabilities changed over the course of the tow track. The vessel
records the GPS location every 20 s, and these coordinates were
matched to the nearest temporal CTD conditions. Similarly,
the closest FVCOM node was matched to each coordinate
recorded throughout each tow. The probability of each species’
presence was modeled for each observation within each transect
using the observed and forecasted conditions, to identify if

any substantial changes in the probability of species’ presence
occurred.

RESULTS

Deviations between forecasted and observed conditions, as
well as the probabilities of species’ presence based on the
forecasted and observed conditions, were quantified to evaluate
the ocean forecasts and species distribution forecasts. The
differences between the forecasted and observed temperatures
and salinities were significant (paired t-tests: t = −9.9 and 10.1,
respectively; d.f. = 49; p < 0.0001; Figure 4). The correlation
between the temperature deviation (forecasted–observed) and
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the distance between the FVCOM forecast node and the start
location of each trawling station was marginally significant
(d.f. = 48; p = 0.0599). The correlation between the salinity
deviation and the distance between forecast and trawl stations
was significant (d.f. = 48; p = 0.0144). Conversely, the
correlation between the species’ distribution model deviations
and the distance between the FVCOM forecast node and the
trawl start locations were not significant (d.f. = 48; p >

0.2). We also evaluated the differences in species distribution
model probabilities derived using observed and forecasted
conditions. Deviations between forecasted and observed species
distribution model probabilities were significant for alewife
and Atlantic herring (t < −5; d.f. = 49; p < 0.0001;
Figure 5).

The differences were relatively small (average 0.06) between
model probabilities of alewife or blueback herring presence
for high and low probability stations using forecasted and
observed conditions (Tables 1, 2).The differences in the catch
proportions of alewife to Atlantic herring and blueback herring
to Atlantic herring were generally small for each day (mean
difference in proportion alewife = 0.27, mean difference in
proportion blueback herring = 0.05; Tables 1, 2; Figure 6).
There were weak correlations between the log-transformed
alewife and blueback herring catches and the Atlantic herring
catches (Figure 3). For 3 fishing days, the proportion of
alewife to Atlantic herring catch was lower at the high
probability station; the forecasted probability differences for
these days ranged from 0.05 to 0.14. The observed condition
probability differences on these days did not exceed 0.04
(Table 1; Figures 7, 8). The proportion of blueback herring
to Atlantic herring catch was also lower at high probability
stations for three fishing days (Table 2; Figures 7, 8). The
blueback herring forecasted probability difference was small
(<0.02) for all 3 of these days and negative (−0.01) for one.
The observed probability differences for these days were similar
(Table 2).

There were minimal differences in the skill of the forecast
model compared to the captains’ mental models of where
high and low catches of river herring would be encountered.
There was one exception where the difference for the captain-
predicted stations was very large (Figures 7, 8). There was a
weak, non-significant, correlation between the catch proportions
and forecast model predictions (i.e., alewife probability/Atlantic
herring probability; alewife r = 0.25; blueback herring r =

0.20; Figure 9). No significant trends were identified between
the differences in model probability and catch proportions
between high and low probability stations for model or captain
selected stations, using either FVCOM or CTD conditions
(Figures 7, 8).

The differences in forecasted and observed model
probabilities for all species across each transect were relatively
small (all < 0.1) and the median observed probability ranges
were all below 0.03 and the median forecasted probability ranges
were less than 0.02 (Figure 10). Most tows did not show strong
trends in the probability of alewife or blueback herring presence
from the start to the end (Supplementary Figures 1, 2).

DISCUSSION

Real-time spatial management (dynamic management) strategies
have been demonstrated to be more effective than static time and
area closures in a wide variety of fisheries (Lewison et al., 2015;
Little et al., 2015; Dunn et al., 2016). Real-time management can
now be taken a step further, as advancements in oceanographic
forecasting permit forecasting species’ distributions based on
species’ habitat associations (Eveson et al., 2015; Kaplan et al.,
2016). This study illustrates how to integrate cooperative research
for evaluating a potential real-time bycatch forecasting tool. We
tested the potential for coupling ocean forecast models and
species’ distribution models to predict the likelihood of non-
target catches of alewife and blueback herring in the winter
Atlantic herring bottom trawl fishery at spatial and temporal
scales relevant to the fishery. Our test showed little to no skill in
our ability to predict high or low occurrence of river herring in
the wintertime, small-mesh Atlantic herring bottom trawl fishery.
However, the contrast between modeled high and low probability
stations was also relatively small (<20%).

Model Evaluations
Forecasted temperature and salinity differed significantly from
the observed conditions, but both deviations were related to
the distance between the FVCOM forecast node and the trawl
starting location. Thus, small spatial scale heterogeneity in
conditions likely influences these deviations. The deviations
observed here were similar to the deviations observed during
fishery-independent model evaluations in Turner et al. (2017)
for Southern New England. Forecasted and observed alewife
and blueback herring distribution probabilities also differed
significantly, but the differences were not related to the
distances between FVCOM nodes and trawl start locations.
Some additional improvements might be made through higher
resolution numerical circulation models. However, the modeled
probability of river herring occurrence was little affected by
using forecast model based temperature and salinity or CTD-
based temperature and salinity. This supports the conclusion
of Turner et al. (2017) that much of the error in the model
occurrence derives from the species distribution model and not
the oceanographic forecasting model: it is the biology not the
physics, where the majority of the uncertainty lies.

One weakness in our test of the models skill in predicting
high and low incidental catches was the lack of contrast across
the model domain. On any given day, the difference between
modeled high and low probabilities never exceeded 0.25 and
was 0.06 on average. This suggests that probabilities of alewife
and blueback herring are relatively consistent within the study
area (i.e., at the spatial scale of this fishery; Figure 1) on a given
day. Sampling stations for the fishery-independent survey used
for initial model development and testing are an average of
12 km apart and cover most of the Northeast U.S. continental
shelf; probabilities of species presence at that spatial scale had
ranges from 0.5 to 1.0. Despite small differences in probabilities
and catches, weak positive correlations, albeit non-significant,
were observed between the overall modeled probabilities of both
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FIGURE 4 | Scatterplots of the forecasted against the observed temperature (left) and salinity (right) for each tow. The dashed line is the 1:1 line.

FIGURE 5 | Scatterplots of the model probability of species presence using observed (CTD) conditions against model probabilities using forecasted

(FVCOM) conditions for alewife (upper left), blueback herring (upper right), and Atlantic herring (lower left).
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TABLE 1 | Summary of the differences between high and low model

probability stations for alewife based on forecasted and observed

conditions, and observed difference in the proportion of alewife to

Atlantic herring catch for each sampling trip.

Date Forecast condition

probability

differences

Observed condition

probability

differences

Proportion of

Atlantic herring

catch differences

12/30/2015 0.0549 0.0339 −0.5610

1/6/2016 0.1391 0.0400 −0.2156

1/12/2016 0.0519 −0.0259 0.3599

1/21/2016 0.0809 0.0474 0.0331

1/28/2016 0.0598 0.0112 −0.0370

2/10/2016 0.0835 0.0370 0.5510

2/18/2016 0.1682 0.0931 1.7594

2/22/2016 −0.2223 −0.1656 0.0000

3/1/2016 0.0847 0.1226 0.5119

TABLE 2 | Summary of the differences between high and low model

probability stations for blueback herring based on forecasted and

observed conditions, and observed difference in the proportion of

blueback herring to Atlantic herring catch for each sampling trip.

Date Forecast condition

probability

differences

Observed condition

probability

differences

Proportion of

Atlantic herring

catch differences

12/30/2015 0.0008 −0.0017 −0.1442

1/6/2016 −0.0099 −0.0172 −0.2845

1/12/2016 −0.0200 −0.0074 0.0000

1/21/2016 0.0188 0.0117 −0.0486

1/28/2016 0.0148 0.0016 0.0032

2/10/2016 0.0225 −0.0146 0.0073

2/18/2016 0.0238 −0.0102 0.8895

2/22/2016 −0.0246 0.0007 0.0000

3/1/2016 −0.0079 −0.0131 0.0258

species’ presence and the proportion of the Atlantic herring catch
for alewife and blueback herring.

Environmental forecast models have been used to
predict species’ distributions and habitat overlap with other
commercially valuable species months in advance for southern
bluefin tuna, Thunnus maccoyii (Hartog et al., 2011; Eveson et al.,
2015). These models have longer temporal accuracy than those
used here, but the spatial resolution is coarser; also, the study
species’ thermal associations are more distinct than observed for
Atlantic herring, alewife, and blueback herring (Hartog et al.,
2011; Turner et al., 2015). The difference between the spatial
scales of the fishery-independent trawl survey (roughly 20 km
or more between stations) that was used for model development
and the Atlantic herring small-mesh bottom trawl fishery (total
area of roughly 60 by 40 km) may further complicate our model
evaluations. When species distribution forecasts were evaluated
with fishery-independent data, the forecast model skill ranged
from 0.68 to 0.69 for Atlantic herring, alewife, and blueback
herring (Turner et al., 2017). At the scale of the small mesh
bottom trawl fishery, habitat associations could be dependent

on variables not included in models, or relationships with some
variables might vary between the spatial scale of the trawl survey
compared with the fishery (Hirzel and Le Lay, 2008).

Conditions, and therefore probability of species’ presence,
changed during the course of each tow, and while the changes
in probability were relatively small and generally lacked trends,
the ranges observed within tows were similar to the differences
observed between high and low probability stations. This
heterogeneity in environmental conditions within tows likely
affects species distributions, but occurs at a scale finer than the
species distribution models and potentially the ocean forecast
models as well. Given the relatively small range of probabilities
observed within and between tows, and that tow durations for
this study were short relative to regular fishing trips (20 min vs. 2
h), species mixing may occur at spatial scales finer than sampled
here. Interestingly, the species distribution forecast models and
the captains’ “mental models” had fairly similar accuracy. This
suggests that small-scale physical heterogeneity is not driving
differences in catch; which raises the importance of small-scale
unresolved aspects of the biological distribution.

Implications and Next Steps
Models developed using fishery-dependent data, as opposed
to fishery-independent data might provide greater skill for
predicting incidental catch in commercial fisheries. Fishery-
dependent models could be developed by deploying CTD probes
on commercial small mesh bottom trawl and mid-water trawl
vessels. These oceanographic data could be used to further
evaluate the accuracy of FVCOM forecasts. Previously collected
tow-by-tow catch data can also be used by coupling with FVCOM
hindcast data. Tow-by-tow data on catch composition only began
being regularly collected within the past decade, thus further
limiting the amount of existing data (Bethoney et al., 2013).
These data could then be used to generate species distribution
models, which could then be tested similar to the test reported
here.

Themodels, in their current form, have limited applicability to
the winter small mesh bottom trawl Atlantic herring fishery, but
they were useful at the broader scale of the Northeast Fisheries
Science Center fishery-independent bottom trawl survey (Turner
et al., 2015, 2017). Therefore, we hypothesize that model
accuracy is confounded by spatial scale differences in habitat
associations, and can be improved for commercial fisheries
by developing models using fishery-dependent data. If fishery-
dependent models have predictive skill, the next step would be to
collaborate with the River Herring Bycatch Avoidance Program
to incorporate the forecast models into the program. Given that
the existing Bycatch Avoidance Program uses an ∼5′ latitude by
10′ longitude grid (roughly 5 nautical miles by 8 nautical miles)
for reporting, the forecasts will likely need to be adapted to the
same scale to facilitate integrating forecasts models with current
bycatch avoidance updates (Bethoney et al., 2013). While a lot of
work remains, this tool has the potential to further reduce the
ecological impacts of the fishery without large economic losses.

This study also paves the way for using oceanographic
forecasting models to support fishery management in near-
real time. While substantial work remains, the architecture of
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FIGURE 6 | Histograms of the log-transformed proportion of alewife/Atlantic herring catch in pounds (left) and blueback herring to Atlantic herring

catch in pounds (right).

FIGURE 7 | Scatterplots of the observed difference in catch (in pounds) at high and low probability stations against the difference in FVCOM

forecasted model probability of species presence for model-selected stations for alewife (upper left) and blueback herring (upper right) and for

captain-selected stations for alewife (lower left) and blueback herring (lower right).
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FIGURE 8 | Scatterplots of the observed difference in catch (in pounds) at high and low probability stations against the difference in observed (CTD)

model probability of species presence for model-selected stations for alewife (upper left) and blueback herring (upper right) and for captain-selected

stations for alewife (lower left) and blueback herring (lower right).

FIGURE 9 | Scatterplots of the proportion of model probability overlap against the catch proportion for alewife (left) and blueback herring (right).
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FIGURE 10 | Histograms of the ranges in model probabilities of each

species observed within each tow. The upper panel shows the ranges for

probabilities derived using observed (CTD probe) data, and the lower panel

shows the ranges for probabilities derived using forecast model (FVCOM) data.

Red bars represent ranges of alewife (AW) model probability, green bars

represent blueback herring (BB) model probability, and blue bars represent

Atlantic herring (AH) model probability.

coupling circulation models with species distribution models,
and providing the output to fishermen in near-real time has
been developed. Continued involvement of multiple stakeholders

is needed to improve upon this idea. There are numerous
by-catch and incidental catch issues in the Northeast region
where this approach may contribute to meeting the goals of
reducing incidental catch in a cooperative framework, and is
a relatively inexpensive method of sampling that could inform
stock assessments.

AUTHOR CONTRIBUTIONS

All authors contributed to the study design. CS performed data
collection, and analyses were performed by ST and JH. The
initial draft was drafted by ST and JH with input and critical
feedback from all other coauthors. All authors approve the final
submission.

ACKNOWLEDGMENTS

This work was funded by the NOAA Greater Atlantic Regional
Fisheries Office. Data used for model development and
evaluation were collected by the NEFSC Ecosystems Survey
Branch. Acknowledgement of the above groups does not imply
their endorsement of this work. The views expressed herein are
solely those of the authors and do not necessarily reflect those of
NOAA or any of its sub-agencies. Many thanks to the captains
and crews of the Darana R (Bobby Ruhle), Heather Lynn (Steve
Follett), and Sea Breeze Too (Jason Sawyer) for their support and
assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmars.
2017.00116/full#supplementary-material

REFERENCES

Bethoney, N. D., Schondelmeier, B. P., Stokesbury, K. D. E., and Hoffman, W.

S. (2013). Developing a fine scale system to address river herring (Alosa

pseudoharengus, A. aestivalis) and American shad (A. sapidissima) bycatch in

the U.S. Northwest Atlantic mid-water trawl fishery. Fish. Res. 141, 79–87.

doi: 10.1016/j.fishres.2012.09.003

Chen, C., Cowles, G., and Beardsley, R. C. (2006). An Unstructured Grid, Finite

Volume Coastal Ocean Model: FVCOMUser Manual, 2 Edn. SMAST/UMASSD

Technical Report-06-0602, 315.

Cournane, J. M., Kritzer, J. P., and Correia, S. J. (2013). Spatial and temporal

patterns of anadromous alosine bycatch in the US Atlantic herring fishery. Fish.

Res. 141, 88–94. doi: 10.1016/j.fishres.2012.08.001

Cox, T. M., Lewiston, R. L., Žydelis, R., Crowder, L. B., Safina, C., and Read, A.

J. (2007). Comparing effectiveness of experimental and implemented bycatch

reduction measures: the ideal and the real. Conserv. Biol. 21, 1155–1164.

doi: 10.1111/j.1523-1739.2007.00772.x

Dunn, D. C., Boustany, A. M., Roberts, J. J., Brazer, E., Sanderson, M., Gardner,

B., et al. (2013). Empirical move-on rules to inform fishing strategies: a New

England case study. Fish Fish. 15, 359–375. doi: 10.1111/faf.12019

Dunn, D. C., Maxwell, S. M., Boustany, A. M., and Halpin, P. N. (2016).

Dynamic ocean management increases the efficiency and efficacy

of fisheries management. Proc. Nat. Acad. Sci. U.S.A. 113, 668–673.

doi: 10.1073/pnas.1513626113

Eveson, J. P., Hobday, A. J., Hartog, J. R., Spillman, C.M., and Rough, K.M. (2015).

Seasonal forecasting of tuna habitat in the Great Australian Bight. Fish. Res. 170,

39–49. doi: 10.1016/j.fishres.2015.05.008

Fay, C. W., Neves, R. J., and Pardue, G. B. (1983). Species Profiles: Life Histories

and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-

Atlantic) – Alewife/Blueback Herring. U.S. Fish and Wildlife Service; Division

of Biological Services; FWS/OBS-82111.9. U.S. Army Corps of Engineers; TR

EL-82-4, 25.

Gilman, E. L., Dalzell, P., and Martin, S. (2006). Fleet communication to abate

fisheries bycatch.Mar. Policy 30, 360–366. doi: 10.1016/j.marpol.2005.06.003

Hare, J. A., Alexander, M. A., Fogarty, M. J., Williams, E. H., and Scott, J. D.

(2010). Forecasting the dynamics of a coastal fishery species using a coupled

climate-population model. Ecol. Appl. 20, 452–464. doi: 10.1890/08-1863.1

Hartley, T. W., and Robertson, R. A. (2006). Emergence of multi-stakeholder-

driven cooperative research in the Northwest Atlantic: the case of the Northeast

Consortium.Mar. Policy 30, 580–592. doi: 10.1016/j.marpol.2005.09.006

Hartog, J. R., Hobday, A. J., Matear, R., and Feng, M. (2011). Habitat overlap

between southern bluefin tuna and yellowfin tuna in the east coast longline

fishery – implications for present and future spatial management.Deep Sea Res.

II 58, 746–752. doi: 10.1016/j.dsr2.2010.06.005

Hastie, T., and Tibshirani, R. (1990). Generalized Additive Models. London:

Chapman & Hall.

Hirzel, A. H., and Le Lay, G. (2008). Habitat suitability modeling and niche theory.

J. Appl. Ecol. 45, 1372–1381. doi: 10.1111/j.1365-2664.2008.01524.x

Frontiers in Marine Science | www.frontiersin.org May 2017 | Volume 4 | Article 11695

http://journal.frontiersin.org/article/10.3389/fmars.2017.00116/full#supplementary-material
https://doi.org/10.1016/j.fishres.2012.09.003
https://doi.org/10.1016/j.fishres.2012.08.001
https://doi.org/10.1111/j.1523-1739.2007.00772.x
https://doi.org/10.1111/faf.12019
https://doi.org/10.1073/pnas.1513626113
https://doi.org/10.1016/j.fishres.2015.05.008
https://doi.org/10.1016/j.marpol.2005.06.003
https://doi.org/10.1890/08-1863.1
https://doi.org/10.1016/j.marpol.2005.09.006
https://doi.org/10.1016/j.dsr2.2010.06.005
https://doi.org/10.1111/j.1365-2664.2008.01524.x
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Turner et al. Evaluation of an Incidental Catch Distribution Forecast

Hobday, A. J., and Hartmann, K. (2006). Near real-time spatial management based

on habitat predictions for a longline bycatch species. Fish. Manage. Ecol. 13,

365–380. doi: 10.1111/j.1365-2400.2006.00515.x

Johnson, T. R., and van Densen, W. L. (2007). Benefits and organization of

cooperative research for fisheries management. ICES J. Mar. Sci. 64, 834–840.

doi: 10.1093/icesjms/fsm014

Kaplan, I. C., Williams, G. D., Bond, N. A., Hermann, A. J., and Siedlecki,

S. A. (2016). Cloudy with a chance of sardines: forecasting sardine

distributions using regional climate models. Fish. Oceanogr. 25, 15–27.

doi: 10.1111/fog.12131

Lewison, R., Hobday, A. J., Maxwell, S., Hazen, E., Hartog, J. R., Dunn, D. C.,

et al. (2015). Dynamic ocean management: identifying the critical ingredients

of dynamic approaches to ocean resource management. Bioscience 65, 486–498.

doi: 10.1093/biosci/biv018

Little, A. S., Needle, C. L., Hilborn, R., Holland, D., and Marshall, C. T. (2015).

Real-time spatial management approaches to reduce bycatch and discards:

experiences from Europe and the United States. Fish Fish. 16, 576–602.

doi: 10.11111/faf.12080

Lynch, P. D., Nye, J. A., Hare, J. A., Stock, C. A., Alexander, M. A., Scott, J. D.,

et al. (2015). Projected ocean warming creates a conservation challenge for river

herring populations. ICES J. Mar. Sci. 72, 374–387. doi: 10.1093/icesjms/fsu134

Manderson, J., Palamara, L., Kohut, J., and Oliver, M. J. (2011). Ocean observatory

data are useful for regional habitat modeling of species with different vertical

habitat preferences.Mar. Ecol. Prog. Ser. 438, 1–17. doi: 10.3354/meps09308

Mann, K. H. (1993). Physical oceanography, food chains, and fish stocks: a review.

ICES J. Mar. Sci. 50, 105–119. doi: 10.1006/jmsc.1993.1013

O’Keefe, C. E., Cadrin, S. X., and Stokesbury, K. D. E. (2013). Evaluating

effectiveness of time/area closures, quotas/caps, and fleet communications

to reduce fisheries bycatch. ICES J. Mar. Sci. 71, 1286–1297.

doi: 10.1093/icesjms/fst063

Palmer, M. C., Wigley, S. E., Hoey, J. J., and Palmer, J. E. (2007). An Evaluation

of the Northeast Region’s Study Fleet Pilot Program and Electronic Logbook

System: Phases I and II. US Dept Commer; Northeast Fish Sci Cent Technical

Memorandum NMFS-NE-204.

Politis, P. J., Galbraith, J. K., Kostovick, P., and Brown, R. W. (2014). Northeast

Fisheries Science Center Bottom Trawl Survey Protocols for the NOAA Ship

Henry B. Bigelow. US Dept Commer; Northeast Fish Sci Cent Ref Doc.

14-06, 138.

R Development Core Team (2014). R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing. Available online

at: http://www.R-project.org/

Stevenson, D. K., and Scott, M. L. (2005). Essential Fish Habitat Source Document:

Atlantic Herring, ClupeaHarengus, Life History andHabitat Characteristics , 2nd

Edn. NOAA Tech Memo NMFS NE 192, 84.

Turner, S. M., Hare, J. A., Manderson, J. P., Richardson, D. E., and Hoey, J.

J. (2017). Evaluation of species distribution forecasts: a potential predictive

tool for reducing incidental catch in pelagic fisheries. Can. J. Fish. Aquat. Sci.

doi: 10.1139/cjfas-2016-0274

Turner, S. M., Manderson, J. P., Richardson, D. E., Hoey, J. J., and Hare, J.

A. (2015). Using habitat association models to predict Alewife and Blueback

Herring marine distributions and overlap with Atlantic Herring and Atlantic

Mackerel: can incidental catches be avoided? ICES J. Mar. Sci. 73, 1912–1924.

doi: 10.1093/icesjms/fsv166

US Department of Commerce (US DOC), National Oceanic and Atmospheric

Administration (NOAA), and National Marine Fisheries Service (NMFS)

(2015). Standardized Bycatch Reporting Methodology: An Omnibus Amendment

to the Fishery Management Plans of the Mid-Atlantic and New England Regional

Fishery Management Councils. 50 CFR 648 Federal Register, 80, 37182–37199.

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Boca

Raton, FL: CRC Press.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Turner, Hare, Manderson, Hoey, Richardson, Sarro and Silva.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Marine Science | www.frontiersin.org May 2017 | Volume 4 | Article 11696

https://doi.org/10.1111/j.1365-2400.2006.00515.x
https://doi.org/10.1093/icesjms/fsm014
https://doi.org/10.1111/fog.12131
https://doi.org/10.1093/biosci/biv018
https://doi.org/10.11111/faf.12080
https://doi.org/10.1093/icesjms/fsu134
https://doi.org/10.3354/meps09308
https://doi.org/10.1006/jmsc.1993.1013
https://doi.org/10.1093/icesjms/fst063
http://www.R-project.org/
https://doi.org/10.1139/cjfas-2016-0274
https://doi.org/10.1093/icesjms/fsv166
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


METHODS
published: 23 April 2018

doi: 10.3389/fmars.2018.00137

Frontiers in Marine Science | www.frontiersin.org April 2018 | Volume 5 | Article 137

Edited by:

Carlos M. Duarte,

King Abdullah University of Science

and Technology, Saudi Arabia

Reviewed by:

Guillem Chust,

Centro Tecnológico Experto en

Innovación Marina y Alimentaria

(AZTI), Spain

Nova Mieszkowska,

Marine Biological Association of the

United Kingdom, United Kingdom

*Correspondence:

Alistair J. Hobday

alistair.hobday@csiro.au

Specialty section:

This article was submitted to

Global Change and the Future Ocean,

a section of the journal

Frontiers in Marine Science

Received: 17 November 2017

Accepted: 05 April 2018

Published: 23 April 2018

Citation:

Hobday AJ, Spillman CM, Eveson JP,

Hartog JR, Zhang X and Brodie S

(2018) A Framework for Combining

Seasonal Forecasts and Climate

Projections to Aid Risk Management

for Fisheries and Aquaculture.

Front. Mar. Sci. 5:137.

doi: 10.3389/fmars.2018.00137

A Framework for Combining
Seasonal Forecasts and Climate
Projections to Aid Risk Management
for Fisheries and Aquaculture

Alistair J. Hobday 1*, Claire M. Spillman 2, J. Paige Eveson 1, Jason R. Hartog 1,

Xuebin Zhang 1 and Stephanie Brodie 3,4

1Commonwealth Scientific and Industrial Research Organisation, Oceans and Atmosphere, Hobart, TAS, Australia, 2 Bureau

of Meteorology, Melbourne, VIC, Australia, 3 School of Biological, Earth and Environmental Sciences, University of New

South Wales, Sydney, NSW, Australia, 4 Institute of Marine Science, University of California, Santa Cruz, Santa Cruz, CA,

United States

A changing climate, in particular a warming ocean, is likely to impact marine industries

in a variety of ways. For example, aquaculture businesses may not be able to maintain

production in their current location into the future, or area-restricted fisheries may need

to follow the fish as they change distribution. Preparation for these potential climate

impacts can be improved with information about the future. Such information can

support a risk-based management strategy for industries exposed to both short-term

environmental variability and long-term change. In southern Australia, adverse climate

impacts on valuable seafood industries have occurred, and they are now seeking

advice about future environmental conditions. We introduce a decision tree to explain

the potential use of long-term climate projections and seasonal forecasts by these

industries. Climate projections provide insight into the likely time in the future when

current locations will no longer be suitable for growing or catching particular species.

Until this time, seasonal forecasting is beneficial in helping industries plan ahead to

reduce impacts in poor years and maximize opportunities in good years. Use of seasonal

forecasting can extend the period of time in which industries can cope in a location as

environmental suitability declines due to climate change. While a range of short-term

forecasting approaches exist, including persistence and climatological forecasts, only

dynamic model forecasts provide a viable option for managing environmental risk for

marine industries in regions where climate change is reducing environmental suitability

and creating novel conditions.

Keywords: climate risk management, emergence time, climate variability, climate change, ACCESS-S, climate-

proofing

INTRODUCTION

Marine industries such as fisheries and aquaculture have historically coped with interannual and
seasonal environmental variability that affects the presence, growth, and survival of many species
(Callaway et al., 2012; Hobday et al., 2016; Salinger et al., 2016). Optimal conditions for catching
and farming fish are not always present at the desired time and location (Callaway et al., 2012; Bell
et al., 2013; Brander, 2013), which has required development of skills and approaches to cope with
environmental variability. For example, interannual changes in species distribution in response to
climate drivers such as ENSO have required fishers to temporarily move to new grounds to access
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fish (e.g., Lehodey et al., 2006), or to delay aquaculture activities
in that season (Spillman et al., 2015). However, under long-term
climate change, new conditions will be encountered, and past
experience may no longer be as useful in managing businesses
(Hobday et al., 2016). Thus, new approaches to cope with future
environmental conditions may be needed.

Information about future environmental conditions can be
used to manage risk in environmentally-exposed industries
(Chang et al., 2013; Little et al., 2015). Seasonal forecasting
applications in Australia and elsewhere have been developed
for a range of marine resource segments, including salmon and
prawn aquaculture (Spillman and Hobday, 2014; Spillman et al.,
2015), commercial tuna (Hobday et al., 2011; Eveson et al.,
2015) and sardine fisheries (Kaplan et al., 2016), and recreational
fisheries (Brodie et al., 2017). Depending on the application,
these forecasting applications have delivered information on both
environmental conditions, such as water temperature, rainfall,
and air temperature, and habitat distribution, at lead times of
up to 3 months (Hobday et al., 2016), helping managers and
fishers to plan activities based on predicted conditions (Eveson
et al., 2015; Spillman et al., 2015). These marine industries are
thus in a position to make improved management decisions and
perform better than those without information about the future
environment.

In contrast, longer-term projections of environmental change
that will impact the distribution and abundance of marine
species, such as tuna (Hobday, 2010; Lehodey et al., 2010;
Hartog et al., 2011; Dell et al., 2015; Robinson et al., 2015),
have not been as useful to seafood businesses. While policy
and management discussions can be informed by projections
at long time scales (Bell et al., 2013; Brander, 2013), there are
few operational business decisions made at time scales matching
climate scale projections. Thus, while many highly cited papers
describe changes in marine species distribution and abundance
for the year 2100 (e.g., Cheung et al., 2010; Hobday, 2010;
Lehodey et al., 2010), the timescale of these studies is less relevant
for marine industries currently facing challenging environmental
conditions (Spillman andHobday, 2014). The goal of this paper is
to propose one approach to help these industries manage climate
variability in the short-term and adapt to climate change in the
long-term.

Somemarine industries are spatially restricted, includingmost
ocean-based aquaculture businesses largely due to infrastructure
associated with holding the farmed species, and so are
particularly vulnerable to changing environmental conditions
(e.g., Callaway et al., 2012). Likewise, coastal fisheries may have
a restricted operating range from a port due to the vessel
size, fishing technique, management restrictions, or product
shipping requirements (e.g. access to road or air freight). Here
we introduce a conceptual framework to help climate-proof these
marine industries by using a combination of climate and seasonal
forecasting that recognizes the influence of both long-term trends
and short-term environmental variability. In this regard, we
define climate-proofing as the development of strategies that
can equip businesses with skills or information to manage or
reduce the risk from climate change. This approach builds on
recent development and application of seasonal forecasting tools,

which represent one risk-based approach used by the marine
resource sector to manage future uncertainty (Battaglene et al.,
2008; Hobday et al., 2016; Payne et al., 2017).

We illustrate this framework using long-term climate
projections and seasonal forecast examples from southern
Australia, where marine-based industries are worth more than
A$10B per annum (Bennett et al., 2016). Economically important
aquaculture industries worth close to A$1B per annum include
salmon, tuna, abalone, oyster, and mussel and are all exposed
to environmental change (Savage and Hobsbawn, 2015). This
region is experiencing rapid change in terms of ocean warming
(Hobday and Pecl, 2014) as well as in the number of extreme
events such as marine heatwaves (Oliver et al., 2017), both
of which are projected to continue (Oliver et al., 2014).
Thus, there is growing interest in forecasting applications to
help marine industries in this region (Hobday et al., 2016).
Here we focus on forecasts of sea surface temperature (SST),
a primary environmental variable that is changing and is
influential on aquaculture production via direct impacts on
growth and survival and indirect impacts through disease, pests,
and equipment fouling (Hobday et al., 2016), and on fisheries
through changes in distribution and abundance of the target
species (e.g., Madin et al., 2012; Frusher et al., 2016).

THE APPROACH TO CLIMATE-PROOFING

To understand the potential environmental conditions at
seasonal and long-term time scales, information from seasonal-
scale and climate-scale models, respectively, is needed. We first
provide a brief description of a seasonal-scale and climate-scale
model used in Australia, with a focus on SST, whilst noting
that each model provides a range of other projected variables
that may be useful for different situations and species. We then
describe a novel framework that uses information from these
two forecasting time scales to support decision makers seeking
to manage risk under both climate variability and change.

To generate illustrative long-term projections, we use output
from the CSIRO Ocean Downscaling Project (hereafter CSIRO-
Downscaling). A global high-resolution (0.1◦) ocean general
circulation model (OGCM) is used to dynamically downscale
climate changes in the twenty-first century derived from Coupled
Model Intercomparison Project Phase 5 (CMIP5) climate models
(Taylor et al., 2012). The OGCM is the Ocean Forecasting
Australia Model Version 3 (OFAM3, Oke et al., 2013), based
on version 4p1d of the GFDL Modular Ocean Model (Griffies,
2009), which is configured to have 0.1◦ grid spacing for all
longitudes between 75◦S and 75◦N, and 51 vertical layers.
The global OGCM is integrated over the historical period
(1979–2014) driven by 3-h Japanese 55-year Reanalysis (JRA-
55, Kobayashi et al., 2015) through bulk formula. Details about
model set-up of this historical experiment and validation with
observations are provided in Zhang et al. (2016). The model
is further integrated from 2006 to 2101, driven by merged
atmospheric forcings which include a high-frequency (daily to
interannual) part from current-day JRA-55 reanalysis and a
long-term climate change part from the ensemble of 17 CMIP5
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models under a high emission scenario (RCP8.5) (Zhang et al.,
2017). High-resolution (0.1◦) model results provide downscaled
climate change projections in the twenty-first century for all
common ocean state variables including sea level, temperature,
and currents.

Example seasonal forecasts are derived here using the new
ACCESS-S1 (the seasonal prediction version of the Australian
Community Climate and Earth-System Simulator; version 1)
seasonal prediction system, developed by the Australian Bureau
of Meteorology in collaboration with the UK Met Office
(UKMO), CSIRO and universities. ACCESS-S1 is a coupled
ocean-atmosphere prediction system comprising the UKMO
coupled model GC2, which consists of the latest UKMO
atmospheric model, European ocean model NEMO (Nucleus
for European Modeling of the Ocean) and sea-ice model CICE
(Los Alamos sea ice model), together with land surface model
JULES (Joint UK Land Environment Simulator; Lim et al., 2016;
Hudson et al., 2017). ACCESS-S1 has considerable enhancements
compared to its operational predecessor POAMA-2 (Spillman
and Hobday, 2014), including higher ocean grid resolution
of 25 km compared to 100–200 km. This marked increase in
resolution means that impacts of local weather and climate of
narrow features of coastal currents such as the East Australian
Current could be resolved and may provide new opportunities
for coastal forecasting applications. Example SST forecast skill as
a measure of predictive performance for this seasonal model is
illustrated here.

Both climate- and seasonal-scale information can be used
to manage future environmental risk (Figure 1). Climate
projections can help to assess regional suitability from the present
time to many decades into the future. For example, given a
desired SST range for a farmed or fished species, climate models
can give an indication as to if and when SST in a particular
region will become unsuitable. If environmental conditions in
the region are suitable now and remain so in future, then
managing for climate variability with accurate seasonal forecasts
will suffice. However if the current region is not suitable now,
or will become unsuitable in future, it may be necessary to
relocate to a new region based on climate projections, or develop
other adaptation strategies (e.g., develop a genetically-adapted
lineage if sufficient time exists until the site becomes unsuitable;
investigate ways to modify the environment to make it suitable;
switch to farming/catching a different species).

In southern Australia, SST is projected to warm rapidly
over the next 60-80 years, particularly in south-east Australia
(Figure 2), which is consistent with climate projections reported
in previous studies (Hobday and Lough, 2011; Hobday and Pecl,
2014; Popova et al., 2016). These climate projections indicate
that seafood industries across southern Australia will need
to consider climate-proofing strategies. For example, eastern
Tasmania is already warming rapidly (Hobday and Pecl, 2014),
with warming projected to continue (Figure 2; Popova et al.,
2016). The upper limit of a representative temperature (e.g.,
13–18◦C, representing typical maximum summer and winter
temperatures) for an indicative species fished or farmed in this
region is currently regularly exceeded in north-east Tasmania
(Zone 4, Figure 3). To compare between regions, we use as a

measure “time of exceedance,” analogous to “time of emergence”
used in climate studies (Hawkins and Sutton, 2012; Lyu et al.,
2014). While summer temperatures receive attention, cooler
temperatures in winter are important for recruitment of some
wild species, and can also prevent disease persisting year round
in cultured species, thus warmer winters may bring challenges,
just as do warm summers. For regions to the south, climate
projections indicate the year of first exceedance of unsuitable
summer (winter) conditions increases from north (Zone 3) to
south (Zone 1): 2018 (2010), 2024 (2030), and 2037 (2032),
respectively (Figure 3—middle column). In each region, even
as the average SST for a month exceeds a threshold, there
will still be areas that may be cooler (Figure 3—right two
columns). The time of permanent exceedance (all subsequent
summers above the threshold) is 30–45 years later than the
year of first exceedance for the summer threshold, and 14–30
years later for the winter threshold, depending on location
(Figure 3). If the particular aquaculture or fishing operation
needs to have both summer and winter temperatures below these
example thresholds, then the time period of suitable conditions
is abbreviated. These results should be considered indicative, as
they are the results from a single model run with no estimate
of uncertainty (Stock et al., 2011), but they illustrate how
the time between first and permanent exceedance represents a
window in which to use seasonal forecasting, whilst developing
a solution for when conditions become permanently unsuitable
(Figure 1).

Future sites can be assessed by considering their suitability
under future conditions. For example, as the most northern
region (Zone 4) warms, suitable locations based on SST
conditions can be found to the south (Figure 3). Thus, in 2048,
when the average conditions become permanently unsuitable
(outside the range 13–18◦C) in Zone 3, there are still some
locations within Zone 3 that are suitable, and there are more
areas with suitable conditions further to the south. If only a
small southward relocation distance is selected by a fishing or
aquaculture business, it will likely be necessary to relocate again
in future, while a move too far south may be premature for best
conditions.

BENEFIT OF SEASONAL FORECASTING

AS THE CLIMATE CHANGES

Seasonal forecasts can be used to manage risk due to
environmental variability both when the current location is
expected to remain suitable in future and when it is expected to
become unsuitable (Figure 1). In the first case the main objective
is to use short-term forecasts to improve efficiency and increase
profits, while in the second case the aim is more to minimize
costs and increase the time period over which the current region
remains viable for the fishing or farming activity while developing
long-term adaptation options.

Specifically, in areas where the environmental suitability
for the focal species is good, profits are high relative to
costs (Figure 4). If conditions are always suitable (e.g., always
between the upper and lower SST threshold), the benefits

Frontiers in Marine Science | www.frontiersin.org April 2018 | Volume 5 | Article 13799

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Hobday et al. Climate Risk Management for Fisheries and Aquaculture

FIGURE 1 | Decision tree to guide climate-proofing approach by aquaculture businesses. Figure numbers refer to subsequent figures.

FIGURE 2 | Projected SST change over the period 2081-2100 relative to 1986-2005 for southern Australia based on output from the CSIRO-Downscaling project

described in the text. Box shows the area considered in Figure 3.

from seasonal forecasting might not be significant. However, if
environmental variability sometimes exceeds the suitable range,
even if there is no long-term trend, seasonal forecasts will
be beneficial. If the environmental suitability at a location
is predicted to decline over time under climate change,
operational costs are expected to increase and profits decrease,
until business would not be viable. Seasonal forecasts can
provide information on upcoming environmental conditions so
individual businesses have increased potential to reduce costs
and increase profits, relative to no forecast (Hobday et al.,
2016). This can allow these businesses to implement proactive
response options to remain viable during periods when less

suitable environmental conditions occur, even if there is no
significant climate change trend (e.g., Spillman and Hobday,
2014; Spillman et al., 2015). Depending on the business, these
options might include modifying the environment, changing
the fishing or harvesting schedule, increasing or decreasing the
production volume, or adjusting the maintenance schedule. As
climate change continues, major business change is likely needed
(e.g., transformational adaptation; Kates et al., 2012), such as
relocation or selection of a species for which the environmental
conditions are more suited (Figure 4). Previous work has shown
that provision of seasonal forecasts to seafood businesses have
led operators to make different decisions on the basis of the
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FIGURE 3 | First column: Model sea surface temperature (SST) in eastern Tasmania for February 2016. Middle column: Monthly SST time series for the period

2006-2101 (black line) for the four zones with example warm (18◦C) and cold thresholds (13◦C) in horizontal black lines, corresponding to maximum tolerances for a

hypothetical species in summer and winter, and the average SST for February (Austral summer, red line) and September (Austral winter, blue line), typically the

warmest and coldest month respectively. The first and permanent exceedance times for the summer (red dots) and winter (blue dots) are shown for each zone, and

provided on each panel (red and blue text), along with the period between first and permanent exceedance. Final two columns: February and September SST maps

for the year of first exceedance, showing that in each region, there are pixels where SST is below the threshold values for summer and winter (shaded). Color scale is

the same in all maps. Data are from modeling experiments run by the CSIRO-downscaling project.

forecasts. For example, tuna fishers in the Great Australia Bight
adjusted the timing of their fishing activity based on forecasts
of environmental conditions in the upcoming season (Eveson
et al., 2015), while prawn farmers in Queensland changed their
stocking times based on seasonal rainfall forecasts (Spillman
et al., 2015). Thus, seasonal forecasting will be most useful
to businesses after the environmental conditions first exceed
a threshold (first exceedance time) and before conditions are
permanently unsuitable (permanent exceedance time; Figure 3).
Over this period, there will be good and bad seasons, and
information on the likely conditions at these short time scales can
help minimize costs.

A seasonal forecast system can only be useful if it produces
reliable and accurate forecasts. For example, in southern
Australia, model forecast skill, persistence forecast skill, and SST
variability all vary across the region (Figure 5). Model skill here
is quantified using Pearson’s correlation, correlating monthly
model and observed SST anomalies (i.e. deviations from the
long-term monthly model/observed mean), where the observed
dataset is Reynolds OISST v2 SST (Reynolds and Smith, 1994;
Reynolds et al., 2002). A persistence forecast uses the current
observed anomaly conditions as a predictor of future conditions;
e.g., for a forecast beginning on 1 February 1990, the SST anomaly
for January 1990 is used as the forecast and persisted for the
duration of the forecast period (Spillman and Alves, 2009).
In this example, persistence skill is quantified using Pearson’s
correlation, as per model skill. The performance of persistence

forecasts is generally higher in areas of low intra-annual SST
variability, i.e., where SST conditions vary little from month to
month. For areas of low inter-annual monthly SST variability,
i.e., SST for a particular month varies little from year to year, a
climatological forecast (long-term monthly mean) can be useful.

In the locations where inter-annual SST variability is low,
such as during July in the inshore Great Australia Bight (∼130–
137◦E) (Figure 5), a forecast may not be necessary (Case 1,
Table 1). The most challenging case is when SST variability is
high, and persistence and model skill is low. In these situations,
forecasting may be very hard (Case 2, Table 1), such as in January
off the Bonney Coast (∼140◦E), and real-time monitoring and
rapid responses should be developed. If the persistence skill
is high and model skill is low in a region (Case 3, Table 1),
such as in July off south-west Western Australia (∼115◦E), real-
time observations can also be used and future planning at a
seasonal time scale based on the assumption that anomalous
conditions will continue. These approaches (Cases 1–3, Table 1)
are not climate-proof, as they do not account for trends in a
changing environment. If model forecast skill is high (such as
around Tasmania ∼150◦E in winter or in the Great Australian
Bight ∼130–137◦E in summer), then a model forecast can be
used in preference to a persistence forecast (whether high or
low persistence skill and regardless of SST variability; Case 4
and Case 5, Table 1), since a dynamic model (e.g., ACCESS-S1)
can account for trends in the changing environment and thus
provides a climate-proof approach.
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FIGURE 4 | Benefit of seasonal forecasting under changing environmental

suitability. In areas where the environmental suitability for the species under

consideration is good, profits are high relative to costs. If the environmental

suitability at a location declines over time under climate change, costs are

expected to increase and profits decrease until a time at which a business

would not be profitable (t1). Using seasonal forecasts to provide information on

upcoming conditions, businesses should be able to reduce costs and increase

profits, relative to no forecast such that they can remain profitable under less

suitable environmental conditions for longer (until t2). Beyond this point,

conditions are such that relocation (or another adaptation option) is necessary.

RISK MANAGEMENT FOR

CLIMATE-EXPOSED SEAFOOD

BUSINESSES

Marine industries, particularly seafood businesses, are exposed
to environmental variability and long-term climate change, such
that the future carries risks to production. While the focus here
is on fisheries and aquaculture, this approach may also be useful
for other applications: guiding external investment decisions in
thesemarine industries; the insurance industry; and international
seafood supply businesses that seek products from many regions
who might be managing production risks across many locations
in the same way that large agricultural companies manage supply
chain risk.

Decision makers in aquaculture or marine management
agencies often require information from a range of time scales
in their decision making (Hobday et al., 2016; Tommasi et al.,
2017). Fisheries managers can use forecast information to plan
distribution of fishing effort, as has been proposed for the
Californian sardine fishery based on forecasts with a downscaled
regional ocean model (Kaplan et al., 2016). Aquaculture
managers might be charged with managing production and
harvest schedules, which can be informed by knowledge of likely
(and unlikely) conditions over the coming months (i.e., seasonal
forecasts). At longer time scales, they may use climate-scale
forecasts to assess the need to seek new sites, and if necessary,

to negotiate with coastal planning agencies for access to new
regions. In the same way, coastal management agencies may use
long-term climate projections to develop zoning plans.

While more mobile than aquaculture, fisheries are
still relatively site attached with regard to access to fixed
infrastructure such as ports, product transport and processing
plants; thus, information on future environmental conditions at
a local scale is still important for short and long-term planning.
For example, the southern bluefin tuna (SBT) fishery in the
Great Australia Bight currently utilizes seasonal forecasts to
plan the timing and location of fishing operations, workforce
management, and equipment deployment (Eveson et al., 2015).
This fishery is more site-attached than most in that captured fish
are towed back to farm sites near Port Lincoln, South Australia,
for grow-out in cages (Ellis and Kiessling, 2016). If climate
change results in conditions at the current catch locations
becoming unsuitable for SBT, fish may move too far from the
farm sites for this system to be viable. Alternatively, conditions
at the farm sites could become unsuitable. In both cases, climate
forecasts could be used to assess future viability of alternative
farm sites, with seasonal forecasts used in the interim to manage
risks due to changing fish distribution or unsuitable grow-out
conditions.

For marine industries provided with environmental
information about the future, such as warming waters in the
examples presented here, there are a range of risk management
options. Most simplistic is a movement to new regions that
meet the required environmental conditions. Given the long-
term persistence of climate change (e.g., many centuries of
temperature and sea level rise; Meehl et al., 2012), industries
may have to relocate more than once in the future to stay within
an environmental suitability envelope. If the changes are such
that relocation is not possible or not cost-effective, an adaptation
response could be to change the focal species of the fishery
or aquaculture operation. For example, in eastern Tasmania,
SST conditions may begin to suit other species for farming or
wild fisheries, such as kingfish (Seriola lalandi). This species is
currently exploited by aquaculture and fishery industries further
north in Australia, and its distribution is already expanding
further south (Stuart-Smith et al., 2016).

Here we have focused on SST as a dominant driver of
marine production, but the same approach could be used for
other critical variables such as upwelling strength, eddy activity,
oxygen concentration or primary production. In order to deliver
information for variables that have greater spatial variability and
projection uncertainty, seasonal and climate models will need
to improve and be validated. Thus, any decisions made on the
basis of climate forecasts available today may need to be revisited
with revised forecasts over the coming years, as predictive skill
improves. While we have considered just a single set of climate
projections and a single variable (SST), other studies show that
the uncertainty of climate scale forecasts can be relatively large,
and this uncertainty increases further into the future (Payne
et al., 2017). Thus, a business may need to deal with the case
where the upper temperature threshold for their species/situation
is expected to be permanently exceeded anywhere from, say,
2040 to 2060. This is where the power of considering seasonal
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FIGURE 5 | Skill of alternative seasonal forecast approaches in summer (January) and winter (July), illustrated for southern Australia. Row 1: skill for ACCESS-S1

forecasts issued 1 November and 1 May; Row 2: skill for persistence forecasts issued 1 November and 1 May; Row 3: inter-annual SST variability for January and

July (standard deviation for January or July across 1991–2012). In all cases, values were calculated over the time period 1990–2012.

TABLE 1 | Managing environmental variability at the present location is possible with several different approaches, depending on the historical environmental variability (in

this case SST), the skill of a persistence forecast, and the skill of the dynamic model forecast.

Case Inter-annual SST

variability

Persistence

forecast skill

Model forecast skill

(ACCESS-S1)

Best approach at this time Climate-proof?

1 Low NR NR May not need a forecast. Use climatology to

infer conditions for the near future.

No

2 High Low Low Difficult—this is an uncertain environment for

businesses. Develop rapid responses to

real-time monitoring.

No

3 Low/High High Low Use real-time observations. If above average at

the current time, assume will be above average

for the near future.

No

4 Low/High Low High Use dynamic model forecast. Yes

5 Low/High High High Either dynamic model or persistence forecast

useful, but dynamic model forecast more

robust under climate change.

Yes

Not all these approaches will be climate-proof. NR indicates “not relevant” to decision process.

forecasting at the same time is demonstrated. The risk due
to uncertainty with long-term projections (i.e., conditions will
become unsuitable, but when?) can be reduced with information
on shorter time scales.

Additional research is needed to evaluate the cost-benefit of
future climate-proofing, such as examining the risk of following
a new strategy too soon. For example, a pre-emptive move

from warming conditions may result in a better environment
for the activity, but may result in a business being too far
from existing infrastructure. Integrated responses to climate
risk are needed, with strong engagement across the range of
stakeholders involved, from the primary fishers to the managers
and policy makers. All these groups should work together to
consider the appropriate responses to future climate risk, how
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it can be reduced with future information, and how to plan for
transitions to new ways of doing business. Providing information
for regional planning agencies is particularly important, as
many government agencies have not yet begun to recognize the
need for changes in the regional marine industries. Long-term
projections can help with development of parallel responses.
Thus, a combination of seasonal and long-term forecasting tools
will allow entire regions to undergo spatial planning at time scales
previously considered separately.
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Climate-related shifts in marine mammal range and distribution have been observed

in some populations; however, the nature and magnitude of future responses are

uncertain in novel environments projected under climate change. This poses a

challenge for agencies charged with management and conservation of these species.

Specialized diets, restricted ranges, or reliance on specific substrates or sites (e.g.,

for pupping) make many marine mammal populations particularly vulnerable to

climate change. High-latitude, predominantly ice-obligate, species have experienced

some of the largest changes in habitat and distribution and these are expected to

continue. Efforts to predict and project marine mammal distributions to date have

emphasized data-driven statistical habitat models. These have proven successful for

short time-scale (e.g., seasonal) management activities, but confidence that such

relationships will hold for multi-decade projections and novel environments is limited.

Recent advances in mechanistic modeling of marine mammals (i.e., models that rely

on robust physiological and ecological principles expected to hold under climate

change) may address this limitation. The success of such approaches rests on

continued advances in marine mammal ecology, behavior, and physiology together

with improved regional climate projections. The broad scope of this challenge

suggests initial priorities be placed on vulnerable species or populations (those already

experiencing declines or projected to undergo ecological shifts resulting from climate
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changes that are consistent across climate projections) and species or populations for

which ample data already exist (with the hope that these may inform climate change

sensitivities in less well observed species or populations elsewhere). The sustained

monitoring networks, novel observations, and modeling advances required to more

confidently project marine mammal distributions in a changing climate will ultimately

benefit management decisions across time-scales, further promoting the resilience of

marine mammal populations.

Keywords: marine mammal distribution and abundance, climate-change, marine ecosystems, predicting and

forecasting, Marine mammal conservation

INTRODUCTION

Marine mammals are exposed to a variety of threats and
habitat perturbations from human activities (e.g., by-catch
incidental to commercial fisheries, industrial noise, ship-strike)
on regional and global scales. Human activities can lead to
changes in marine mammal distribution, such as extirpation due
to whaling or hunting [e.g., southern right whales (Eubalaena
australis) in New Zealand Patenaude et al., 1998; Carroll
et al., 2014] and temporary abandonment of portions of
a range [e.g., gray whales (Eschrichtius robustus) in Laguna
Guerrero Negro, Baja California, Mexico Bryant et al., 1984].
Alteration of oceanographic conditions and processes due to
anthropogenic global climate change are expected to profoundly
influence ecosystems (i.e., ocean warming, acidification, and
deoxygenation) (Burrows et al., 2011; IPCC, 2014) and, in
turn, marine mammal distributions in the foreseeable future
(Learmonth et al., 2006; Schumann et al., 2013; Laidre et al.,
2015). While the full nature and scope of climate-driven impacts
on marine mammals are unclear, changes in population ranges
and regional abundance are expected (Learmonth et al., 2006).

Shifting ranges of various marine species have been observed
across all ocean regions (Poloczanska et al., 2016). Integration of
long time series and modeling studies have demonstrated climate
change-associated distributional changes in numerous marine
fish and invertebrate populations (e.g., Perry et al., 2005; Nye
et al., 2009; Pinsky et al., 2013; Poloczanska et al., 2013; Walsh
et al., 2015), including commercially important North Atlantic
Ocean species in multi-billion dollar fishing industries (NMFS,
2016). Additional shifts in these taxa, as well as the potential for
accelerated rates of change, are expected as warming continues
(Hazen et al., 2013; Lynch et al., 2015; Hare et al., 2016).

Shifts have included important prey items for marine
mammals. Rising temperatures in the Gulf ofMaine, for example,
have prompted Calanus finmarchicus, a major food source for
herring, mackerel, and North Atlantic right whales (Eubalaena
glacialis), to prematurely exit winter dormancy, denying key
predators a lipid rich food source in spring and summer (Runge
et al., 2015). Such changes in the quality, timing, and abundance
of key zooplankton and forage fish species may confound efficient
transfer of marine primary and secondary production to higher
trophic levels with corresponding cascading implications for
food webs (Peterson, 2009; Lauria et al., 2012; Sydeman et al.,
2015), including those involving marine mammals (Trathan
et al., 2007; Moore and Huntington, 2008).

Range shifts associated with climate change have been
observed in some marine mammal populations (e.g., Kovacs
et al., 2011; Clarke et al., 2013; Hamilton et al., 2015). Substantive
shifts in the distribution of marine mammals and other large
marine vertebrates have been predicted (e.g., IWC, 2010; Gilles
et al., 2011; Becker et al., 2012; Hezel et al., 2012; Keller et al.,
2012; Gregr et al., 2013; Hazen et al., 2013; Mannocci et al.,
2014). As such shifts occur in novel environments expected
under climate change, protective measures for marine mammals
will need to be adapted. However, capabilities available to
managers to anticipate and react to such changes are currently
limited.

MARINE MAMMAL
MANAGEMENT–AUTHORITIES AND
MANDATES

Conservation of marine mammals and their habitats is
generally the responsibility of federal, state, and provincial
governments, in some cases working with co-management
partners. Anthropogenic threats to marine mammal populations
are largely managed in the United States through policies and
conservation activities developed under the Marine Mammal
Protection Act (MMPA) and Endangered Species Act (ESA) and
in other nations through similar statutes (e.g., Canada’s Species
at Risk Act; Australia’s Environment Protection and Biodiversity
Conservation Act). Under these statutes, agencies are required
to develop programs to assess and permit various ocean-
use activities (e.g., oil and gas development and production,
renewable energy facility siting, and development), minimize
threats to marine mammal habitat, engage in endangered
species recovery planning, and assess global climate change
as it impacts the ecology and health of marine mammal
populations. In addition, marine mammals can be large
consumers of commercially important fish species, and any
shifts in their distribution may therefore be of concern to
fisheries management programs that also will need to adapt
to such changes. Moreover, marine mammals are integral
parts of their ecosystems—as both predators and prey—and
ecosystem-based fishery management will need to take into
account any changes in marine mammal distribution, abundance
and predator-prey relationships. Agencies involved in marine
mammal management and conservation, as well as those engaged
inmanaging subsistence harvests, will increasingly needmeans to
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anticipate shifts in marine mammal distribution and abundance
resulting from climate change (e.g., Laidre et al., 2015).

While most agencies have broad authority to reduce
anthropogenic threats (e.g., those arising from commercial,
industrial, or military activities), agencies charged with
management do not currently have the ability to regulate
greenhouse gases, the primary driver of global climate change
(IPCC, 2014). Thus, limited resources, regulatory inertia, and
lack of public consensus constrain many agencies’ abilities to
react with appropriate protective measures to climate-driven
changes in marine mammal distribution. In addition, as centers
of abundance or areas of aggregation shift when existing habitats
undergo change, existing threat-reductionmeasures may become
obsolete or require modification asmarinemammal distributions
shift. For example, the location of a renewable energy or other
industrial facility may be selected based on an assessment that
its effects on marine mammal populations are anticipated to
be relatively low. However, if the composition and regional
abundance of those populations change, the facility may have
greater overall impact than originally expected, and permitting
of the facility may need to be re-assessed with a substantial
investment of time and resources and lost opportunities to
protect key species. Marine Protected Areas (including for
marine mammals; Hoyt, 2011) and critical habitats are also
established based on the existing occurrence of marine taxa; but
these areas would have little conservation value if key species
undergo shifts in distribution. An ability to track and anticipate
such changes would aid in the protection of those species.

In rapidly changing ecosystems, including those in high-
latitudes (Forcada et al., 2006; Laidre et al., 2008, 2015; Ragen
et al., 2008), or in instances where populations are already in
decline (e.g., Shelden et al., 2015), managers face a heightened
need to respond with appropriate protective measures. Near-
and long-term conservation planning would be enhanced by
increased capacity to anticipate marine mammal response to
changes in habitats brought about by climate change. Long-term
planning may be particularly important given the long lifespans,
long maturation periods, and low recruitment rates of many
marine mammal species and will be important for those with
complex social structures.

Conservation and planning actions occur on various spatial
scales and temporal planning horizons (Figure 1), motivating
marine mammal distribution and abundance predictions across
a similar range of space and time-scales. These may include
nowcasts and short-term (<1 week) forecasts (Hazen et al.,
2016), to seasonal predictions up to 6 months in the future,
to multi-year forecasts, increasing to decadal or century-scale
projections. In the United States for example, endangered species
recovery plans are updated on 5-year cycles, while permitting
for industrial activities, such as the siting or construction of
offshore renewable energy facilities and oil and gas exploration
and development activities, tends to be on the order of decades
(BOEM, 2016; Figure 1). On even longer time scales, designation
of endangered status often necessitates evaluation of species
persistence on the order of a century (e.g., Angliss et al., 2002).
Conversely, measures developed to reduce the risk of whales
being struck by ships (e.g., Silber et al., 2012) or limit marine
mammal exposure tomilitary operations (e.g., NOAA, 2015)may

be established in finite areas and be implemented only for seasons
to a few years (NOAA, 2013). While the emphasis here is meeting
the challenge of projecting marine mammal distributions in a
changing climate on multi-decadal to century time-scales, we
note that decisions across multiple time-scales can contribute to
the long-term resilience of marine mammal populations. We will
thus discuss and contrast approaches across time-scales.

MARINE MAMMAL ECOLOGY AND
CLIMATE CHANGE

Marine mammals have unique ecologies with complex life cycles
that make predicting responses to climate change more difficult
and, in some cases, make the species especially vulnerable to
climate change impacts. Perhaps most notable amongst these
traits in the context of climate change is endothermy, which
provides for a broader range of temperature tolerance in marine
mammals relative to fish. This could be a mechanism that adds
resilience in marine mammal populations, but also makes for less
predictable responses relative to fish or invertebrates that show
isotherm-following behaviors (Pinsky et al., 2013).

Endothermy also elevates the importance of predicting
changes in food resources relative to warming signals. While
progress has been made in projecting large-scale prey resource
changes (e.g., Stock et al., 2014; Lefort et al., 2015), marine
mammal species such as blue whales (Balaenoptera musculus)
show tight coupling to smaller scale oceanographic features
(Fiedler et al., 1998; Moore et al., 2002; Croll et al., 2005)
associated with high euphausiid (krill) abundance (Santora et al.,
2011). Similar relations have been exhibited by bowhead whales
(Balaena mysticetus) across the Arctic (Laidre et al., 2007; Citta
et al., 2015; George et al., 2015) and North Atlantic right whales
(Baumgartner et al., 2003; Baumgartner and Mate, 2005). Such
aggregations remain poorly resolved in even high-resolution
models andmay exhibit climate change responses that differ from
large-scale changes.

Other common traits are long lifespan, low birth rate, and
long generation time. These traits are not conducive to rapid
evolutionary adaptation (Trathan et al., 2007), making behavioral
flexibility critical for adaptation to changing climatologies.
Fortunately, some marine mammals have exhibited substantial
behavioral and prey selection flexibility (Palacios et al., 2013). For
example, humpback whales (Megaptera novaeangliae) remained
abundant and were suspected to adapt foraging behavior to
new prey species when climate conditions were unfavorable
to common target prey species (Benson et al., 2002; Fleming
et al., 2016). Failure to account for such flexibility could lead to
unrealistically pessimistic projections.

Alternatively, many marine mammal species exhibit strong
dependence on habitat types or oceanographic features that
may be highly vulnerable to climate change, or high fidelity to
particular sites or migration routes. For example, ringed seals
(Pusa hispida) rely on sea ice habitat for pupping and sufficient
snow to hide young from predators (Smith and Stirling, 1975;
Laidre et al., 2008; Kovacs et al., 2011; NOAA, 2012). Hawaiian
monk seals (Neomonachus schauinslandi) may lose haul-out sites
to sea level rise; thus, understanding the climate-related threats to
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FIGURE 1 | Various examples of national and international management activities mapped conceptually along generalized temporal and spatial (both granularity and

extent) scales. Management and research objectives on appropriate spatial/temporal scales will dictate model type selection and data requirements. AUS, Australia;

BiOp, Biological Opinions; CFP, Common Fisheries Policy; CCAMLR, Commission for the Conservation of Antarctic Marine Living Resources; ESA, Endangered

Species Act; EIA, Environmental Impact Assessments; EPBCA, Environment Protection and Biodiversity Conservation Act; EU, European Union; FMP, Fishery

Management Plans; IFMP, Integrated Fisheries Management Plans; IMMA, Important Marine Mammal Areas; Int, International; IUCN, International Union for

Conservation of Nature; NMS, National Marine Sanctuaries; RFMO, Regional Fishery Management Organizations; SAC, Special Areas of Conservation; SARA,

Species at Risk Act; UK, United Kingdom; UNCLOS, United Nations Convention of the Law of the Sea.

this species might require a different type of model (e.g., dynamic
shoreline evolution) for forecasting its distribution (Baker et al.,
2006). Failure to account for unique vulnerabilities arising from
such life-cycle strategies may result in unrealistically optimistic
projections.

Lastly, some marine mammals are near the top of marine food
webs, introducing a potentially strong dependence on integrated
food web effects (Doney et al., 2012; Sydeman et al., 2015). Recent
studies suggest robust amplification of productivity changes at
higher trophic levels (Chust et al., 2014; Stock et al., 2014, 2017;
Lefort et al., 2015). This potential sensitivity is further heightened
by mid-trophic level fishing (Forcada et al., 2012), motivating
work to analyzemarinemammal responses in a food web context.

CURRENT APPROACHES FOR
PREDICTING AND PROJECTING MARINE
MAMMAL OCCURRENCE AND
DISTRIBUTION

Two components are essential for predicting marine mammal
occurrence and distribution. The first is a model capable

of estimating marine mammal distribution and/or abundance
given a set of physical and/or ecological variables (e.g., ocean
temperature, food resources). The second is the capability to
project the states of the relevant physical and ecological variables
at the time and space scales of interest. Models are designed
to address a variety of research questions (Guisan and Thuiller,
2005), and a range of model types have been used for the first
component (Gregr et al., 2013; Palacios et al., 2013). Early efforts
employed simple visual mapping to describe marine mammal
seasonal occurrence. For example, Winn et al. (1986) used
North Atlantic right whale sighting records to develop a simple
conceptual model of the species’ seasonal distribution.

Statistical habitat models use environmental data and species

occurrence data to generate predictions of the distribution of the
species. The environmental predictors chosen for these models

usually pertain to biological mechanisms (e.g., temperature is

an important physiological constraint; chlorophyll-a has often
proved to be a meaningful proxy for ocean productivity and
food resources), which helps to avoid spurious correlations.
For example, Baumgartner and Mate (2005) used water depth,
depth gradient, bottom hydrographic properties, sea surface
temperature (SST), chlorophyll concentration, and other features
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to characterize North Atlantic right whale habitat. Becker et al.
(2016) developed predictive habitat-based models of cetacean
density and distribution for a number of species in the California
Current System using a variety of dynamic environmental
variables, including temperature, salinity, sea surface height, and
mixed layer depth. Models used to predict distribution patterns,
given observed environmental variables, may also be used to
project a species’ distribution using expected future values of the
environmental variables (Becker et al., 2012).

In Panels 1 and 2, we highlight two examples of such statistical
models in detail. Case study 1 describes “nowcasts” (i.e., estimates
of the current ocean state) and seasonal predictions for 11 marine
mammal species in the California Current based on habitat-based
density models (Becker et al., 2016). Case study 2 applies similar
empirically-driven approaches to assess potential challenges for
ringed seal pup survival related to sea-ice and snowpack changes
projected over the next century due to global warming (Hezel
et al., 2012).

There are several limitations associated with statistical
correlative models when used in a predictive context (Elith
and Graham, 2009; Monahan, 2009; Webber et al., 2011). First,
the relationships inferred from field data may not adequately
describe the critical factors determining species distributions.
Existing data on species distributions reflect the realized
rather than potential habitat (i.e., the area where the intrinsic
rate of population growth is >0; Araujo and Guisan, 2006;
Soberon and Nakamura, 2009). This realized habitat implicitly
reflects interactions with predators, prey species, and barriers
to movement and comprises a level of structural detail not
generally included in sets of climate predictors or even present
in climate change projections. Predictions and projections
based on realized niches thus presume that the impacts of
these implicit factors act to maintain present realized habitat
boundaries.

A second limitation is that, although the mechanisms by
which environmental conditions affect biology and species
distributions are considered, these relationships are empirically-
defined from available data on past conditions and may not
represent future conditions. Stationarity of these relationships
is assumed when such models are used in a predictive context.
This is clearly reasonable when predicting for conditions that
have analogs in the historical record, but becomes less reliable for
responses to extreme events or for the novel conditions expected
under climate change (Williams et al., 2007; Hothorn et al.,
2011).

Relatively recent advances in observational data collection
and access to large marine environmental databases (e.g.,
the National Oceanographic Data Center; NCEI, 2017 or the
Southwest Fisheries Science Center’s ERDDAP site, SWFSC,
2017) provide an improved foundation for statistical habitat
models, but would not address structural uncertainties in models
that arise from incomplete understanding of species interactions
and physiological thresholds. This level of knowledge would
instead require a shift from reliance on correlations between
marine mammals and their environment toward models that
more clearly establish functional relationships with the physical
and biological underpinnings of habitat utilization (Gregr et al.,

2013; Cribb et al., 2015). These relationships enable development
of process-based models that yield robust predictions of species
distributions rooted in ecological understanding (Palacios et al.,
2013). While such models have been traditionally developed
for a broad range of zooplankton and higher trophic level
species, including forage fish (e.g., Ito et al., 2015; Rose et al.,
2015), migratory predators (e.g., Lehodey et al., 2008) and
other commercially and ecologically important species (e.g.,
Cury et al., 2008; Fiechter et al., 2015), marine mammal case
studies are also starting to appear. For example, California
sea lion (Zalophus californianus) foraging patterns and feeding
success were simulated using sub-models for biogeochemical
processes, regional ocean circulation, and forage fish abundance
(Fiechter et al., 2016). The parameterization of more mechanistic
models is challenging, but will also benefit from data collection
advances referenced above. In data-poor situations, mechanistic
models informed by general principles can help define the
scope of potential marine mammal responses by testing the
implications of general principles drawn from theory or data-rich
regions (Friedrichs et al., 2007). While such exercises inevitably
lead to large uncertainty bounds, they can help prioritize
future observations on quantities or processes within existing
uncertainty bounds (Plaganyi et al., 2011).

Predictions and projections for future states of drivers
of marine resource abundance and distribution are generally
derived from global climate and earth system models (Stock
et al., 2011; Hobday et al., 2016; Tommasi et al., 2017a).
Several characteristics of global climate and earth system models
have shaped their application in projecting marine mammal
distribution and abundance under climate change (Stock et al.,
2011). The coarse resolution of global climate models (often
1–2◦, or 100–200 km ocean grids in past assessments of the
Intergovernmental Panel on Climate Change, IPCC) can generate
significant coastal biases (Scales et al., 2017). Large inter-
model differences in regional climate change projections limit
confidence in scenarios for the future states of drivers of
marine resource distribution and abundance (Hawkins and
Sutton, 2009; Frölicher et al., 2016). Limited resolution of
marine food webs in most earth system models may under-
estimate the potential amplification of climate change effects for
higher trophic levels, particularly at regional scales (Chust et al.,
2014; Stock et al., 2014, 2017; Lefort et al., 2015). As a result
of these limitations, confidence in predicting the magnitude
and direction of climate change trends that are capable of
altering marine resource distributions is generally greatest at
ocean-basin spatial scales and multi-decadal to century time-
scales. In the absence of refined resolution via downscaling or
high-resolution global models (see below), regional inferences
must focus on the magnitude and direction of changes due
to large-scale greenhouse gas accumulation, and include the
caveat that unresolved regional responses may significantly
modify these trends (e.g., Hare et al., 2012; Lynch et al.,
2015).

Global climate model configurations similar to those used
for long-term climate change projections are also applied to
short-term predictions on seasonal to multi-annual scales that
have proven valuable for a range of marine resource applications
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(Hobday et al., 2016; Tommasi et al., 2017a). Analysis to date has
suggested that skillful seasonal and, in some cases, multi-annual
sea surface temperature predictions are possible for many regions
despite coarse model resolution (Stock et al., 2015; Tommasi
et al., 2017b). Seasonal to multi-annual predictions of ocean
productivity, oxygen and other potential factors important to
marine resource distributions and abundance have provided
some cause for optimism (Séférian et al., 2014; Gehlen et al.,
2015), but have not been assessed with the same rigor as ocean
temperatures, in part due to the sparsity of data with which
to robustly characterize the model skill. The use of short-term
forecasts in dynamic management approaches (Maxwell et al.,
2015; Dunn et al., 2016; Tommasi et al., 2017b) may also
contribute to building long-term resilience (Hobday et al., 2016;
Tommasi et al., 2017a).

IMPROVING MARINE MAMMAL
DISTRIBUTION PROJECTIONS

Uncertainty in projected marine mammal distributions
ultimately reflects the integration of uncertainties in climate,
food resources and marine mammal ecology, physiology and
behavior (Cheung et al., 2016; Payne et al., 2016). Each of these
components is likely to make a significant contribution to the
combined uncertainty. The complexity of marine mammal
ecology, physiology and behavior (see “Marine Mammal Ecology
and Climate Change”), however, suggests that marine mammal
responses to changing habitat and prey distributions may be a
dominant uncertainty source for climate change projections.
This suggests the importance of: (a) better understanding
marine mammal behavior in order to improve the ecological
and mechanistic underpinning of statistical habitat models;
and (b) continued development and application of mechanistic
population models as critical steps to increasing confidence in
marine mammal projections under climate change. Confidence
in physical climate change projections rests in large part on the
foundation of climate models on robust physical principles that
are expected to hold as climate changes (Randall et al., 2007).
Solidifying the ecological and physiological principles upon
which marine resource projections are based is equally critical
(Stock et al., 2011).

Key requirements for credible mechanistic models are
observations that provide the understanding and constraints
necessary to build and validate such models. To support
modeling efforts, research plans are needed that extend beyond
the collection and dissemination of marine mammal occurrence
and environmental correlate data, particularly where critical
management needs exist or where correlative modeling studies
are already underway. For example, improved understanding of
how prey resources drive marine mammal distribution as well as
the underlying physical and biological features that dictate prey
occurrence (Fiedler et al., 1998; Croll et al., 2005; Santora et al.,
2013; Schroeder et al., 2014) will likely lead to advances in marine
mammal distribution modeling.

Monitoring of marine mammals and their habitats has
become increasingly sophisticated, yet despite the broad

distribution of many species well outside continental shelves,
most monitoring programs are largely focused in coastal
and nearshore areas, where most anthropogenic activities are
concentrated. As a result, validating models and detecting
changes in distribution and regional abundance of many
species may be difficult. Monitoring networks are needed
that incorporate additional assets outside areas where marine
mammals are traditionally studied. Research vessel surveys allow
the collection of broad-scale data on marine mammals and their
environment, but such surveys are costly and often limited by
ship-time availability. Technologies such as passive acoustics,
satellite telemetry, remote sensing, and autonomous underwater
vehicles (AUVs) are also well-suited for collecting data onmarine
mammal occurrence and important physical and oceanographic
data and may provide cost-effective alternatives, especially in
remote areas. As such, long-term planning for data collection
and monitoring is needed, accompanied by fiscal planning
for access to appropriate platforms for gathering priority
data.

Another critical challenge in projecting marine mammal
responses to climate change is uncertainty in regional climate
and earth system projections (Hawkins and Sutton, 2009;
Frölicher et al., 2016). Improved resolution of regional climate
processes is a focal point of current climate research (Xie
et al., 2015). Refined resolution in global climate models has
allowed them to better resolve coastal processes and, in some
cases, to reduce regional model biases (Saba et al., 2016).
Dynamical downscaling offers a second means of improving
coastal process resolution (e.g., Hermann et al., 2016; Holt
et al., 2016), but the underlying global climate models are
still subject to biases that propagate through regional model
boundaries (e.g., Meier et al., 2006). Lastly, climate variability,
which present-day models suggest has limited predictability
beyond a year for all but a few regions of the ocean (Meehl
et al., 2014), will continue to contribute uncertainty to future
climate states (e.g., Deser et al., 2012). These results suggest that
some gains in the accuracy and precision of regional climate
change projections are likely, but progress will be difficult.
Future marine mammal projections at regional scales must thus
prioritize using a range of climate projections to ensure the
best possible estimate of the range of potential marine mammal
responses.

To be effective, future modeling efforts must involve
researchers from diverse disciplines, including climate science,
ecology, physical oceanography, marine mammal biology,
and marine resource management. These multidisciplinary
research efforts will be essential to identify how ongoing
marine mammal modeling studies might be refined, better
characterized to reduce the uncertainties in projections on
different time and spatial scales, and build their value in
informing pressing management decisions—both relating to
marine mammals directly as well as for other interacting
ecosystem components. Thus, marine mammal populations of
highest concern, settings where protective measures are needed
most, and the temporal and spatial scales for management
actions need to be identified. In addition, biological and climate
change modelers must provide feedback on the limits of
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modeling efforts and describe likely levels of uncertainty inmodel
outputs.

PRIORITY ACTIONS AND EXEMPLAR
SPECIES

The broad scope of the challenges identified above (“Current
Approaches for Predicting and Projecting Marine Mammal
Occurrence and Distribution”) and the limited resources
available to meet these challenges suggests initial prioritization
of species/populations that represent a high management need
and represent a high suitability to be modeled. Species that
represent high management need are: (a) depleted or currently
undergoing declines in abundance; (b) exposed to multiple (and
perhaps compounding) anthropogenic threats; or (c) occur in
high latitudes or other regions undergoing rapid change. Species
with a high modeling suitability may: (a) already have multiple
aspects of their ecology quantified; or (b) occur in ecosystems
modeled by previous or ongoing efforts. In contrast, it may be
of relatively limited value to devote resources to populations
that are abundant and increasing in number [e.g., sperm whales
(Physeter macrocephalus)] or of relatively low management
priority, or for which modeling suitability may be limited
(Figure 2).

Some marine mammal populations with limited ranges are
exhibiting slow population growth or undergoing declines in
abundance, such as the Cook Inlet beluga whale (Delphinapterus
leucas) and vaquita (Phocoena sinus) (NMFS, 2016; Jaramillo-
Legorreta et al., 2017). Note that for these species, fisheries
bycatch and other factors may be the proximal cause for the
severe depletion or extinction. However, given their highly-
limited ranges, vulnerability to climate change is heightened as
habitat and ecosystem perturbations become added stressors.
Other species or populations with limited ranges, specialized
diets, or similarly limiting ecological features may also be
particularly vulnerable to habitat perturbations or large-scale
ecological shifts. These populations, in addition to those exposed
to the effects of various human activities such as bycatch
in fisheries, underwater industrial noise, or competition for
commercially valuable fish species, are high-priority candidates
for refining forecast modeling studies. Ongoing efforts are
focused on developing approaches to identify which protected
marine vertebrates (i.e., pinnipeds, cetaceans, and turtles) are
likely to be vulnerable to climate change and the attributes that
make them vulnerable (Link et al., 2015), using an approach
similar to that used for commercial fisheries (Pecl et al., 2014;
Morrison et al., 2015; Hare et al., 2016). Such vulnerability
assessments can inform decisions regarding priorities for
assessing future impacts on marine mammals.

High-latitude marine systems are among the regions
responding most rapidly to climate change (e.g., Doney et al.,
2012; Hobday and Pecl, 2014; Thomas et al., 2016). As a result,
marine mammal populations in these regions are likely to
undergo range expansions/contractions or changes in local
abundance sooner and perhaps more profoundly than in other
regions, particularly those at lower latitudes (e.g., Laidre et al.,

FIGURE 2 | The range of increasing modeling suitability and management

need for some illustrative marine mammal populations. Species and their

relative positions are provided for illustration purposes and may not indicate an

official agency prioritization.

2008; Moore and Huntington, 2008; Gilg et al., 2012). These
changes may lead to novel species interactions (Doney et al.,
2012). Shifts in occurrence or availability of key prey species
may also be expected in these high-latitude areas (McBride
et al., 2014; Thomas et al., 2016). Ice-obligate species that use
ice as a platform for raising young (e.g., ringed seal pupping
lairs) (NOAA, 2012) or for hunting (e.g., for polar bears, Ursus
maritimus), or whose prey species are closely or directly linked
to ice [e.g., Antarctic fur seals (Arctocephalus gazella) (Forcada
et al., 2008)] may be particularly vulnerable to declines in the
extent of seasonal and multi-year ice. While some forecasting
work has already been done for polar bears, ice seals, and
walruses (Odobenus rosmarus) in the context of endangered
species determinations under the ESA (Jay et al., 2011; Regehr
et al., 2016), additional work is required to develop and refine
models for species residing or occurring seasonally in high
latitudes.

Forecast uncertainties will be less in cases where the species’
ecology is relatively well understood and plentiful occurrence and
environmental data exist than for data-poor populations. Thus,
modeling populations about which much is already known is of
particular importance because such studies may help elucidate
potential climate change sensitivities that can strategically guide
conservation and management efforts for less well observed
regions.

Given the level of effort that has been devoted to
characterizing their marine mammal populations and physical
and biological components, the California Current and Bering
Sea ecosystems are particularly important areas for such
modeling efforts (Moore, 2008; Friday et al., 2013; Redfern et al.,
2013; Dransfield et al., 2014; Becker et al., 2016). Continuation of
these studies should be encouraged because ample environmental
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and species distribution data already exist, linkages between
species occurrence and their environmental drivers have been
explored, and these systems have been extensively modeled.
Modeling studies of multiple trophic levels, species complexes,
and well-understood systems (predator-prey relationships in
particular) are a means to capitalize on interdisciplinary work
already underway, represent cost-effective ways to maximize
use of limited analytical resources, and provide opportunities
for model validation with application to other taxa. They also
help foster collaborative work with other modeling studies (e.g.,
fisheries, ecosystem) in the region studied. This will be most
effective in regions where species interactions and relations
to the physical environment are already well known. Thus,
candidates for exploratory study of species complexes might
include biogeographic provinces such as along shelf breaks, and
portions of Bering Sea, Gulf Stream, and Antarctic ecosystems.

Therefore, key candidate marine mammal populations for
future modeling studies are those particularly vulnerable to
climate change, with high management priorities, and/or for
which ecological data already exist. Among these are ice
seal species [e.g., ringed seals and bearded seals (Erignathus
barbatus)], Arctic odontocetes [beluga, narwhal (Monodon
monoceros), and killer whales (Orcinus orca)], bowhead whales,
North Pacific right whales (Eubalaena japonica), North Atlantic
right whales, and cetacean species occurring in the Bering
Sea [e.g., humpback and gray whales or California Current
ecosystems [gray, fin (Balaenoptera physalus), and blue whales];
Figure 2].

CONCLUSIONS

Climate change presents unprecedented challenges for managers
responsible for developing and implementing conservation
measures for marine mammals. As marine mammals respond
to climate change, protective measures must be developed
that are responsive to provide adequate protection, which
requires the ability to anticipate changes in occurrence,
distribution, phenology, and relative abundance of populations.
A range of models, varying in levels of complexity and
with varying informational and computational requirements,
have been developed to project climate change impacts on
marine organisms. These models can be adjusted to appropriate
temporal and spatial scales and use new and existing species-
related data (e.g., life history, distributional ecology, behavioral
responses, and population dynamics) to be more effective under
projected climate conditions. Ongoing modeling studies can be
strengthened by improving predictive capacities, increasing data

available for marine mammals and their habitats, particularly in
areas poorly-sampled in the past.

Marine resource managers and modelers need to work
together to identify priority management needs and the strengths
and weaknesses inherent in modeling studies. Agencies should
engage in long-term fiscal planning to equip scientists and
managers with tools and resources needed to increase data
collection, enhance ongoing studies, and refine current models,
particularly as they pertain to appropriate temporal and spatial
scales relevant to conservation/management actions in settings
where needs are greatest. Given the global scale and complexity of
both climate change impacts and marine mammal distributions,
multidisciplinary collaborations are necessary to develop new,
and improve existing, models to better address conservation of
living marine resources in an uncertain future.
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APPENDIX: PANEL

Case study 1. Modeling Cetacean Density
in the Pacific Ocean
Predictive habitat-based density models were developed for
11 marine mammal species or species assemblages in the
California Current Ecosystem, eastern tropical Pacific, and
central Pacific Ocean (Figure A1). Models used a generalized
additive modeling framework at ecosystem-dependent scales (2–
120 km) and extensive line-transect survey data (e.g., Ferguson
et al., 2006; Redfern et al., 2008; Forney et al., 2012; Becker
et al., 2016). This approach has enabled comparisons of modeling
framework effectiveness, evaluation of predictor variables at
differing spatial and temporal resolutions, development of
methods to characterize uncertainty in model predictions, and
model validation (Barlow et al., 2009; Becker et al., 2010, 2014;
Forney et al., 2015).

Dynamic environmental covariates included sea surface
temperature (SST), salinity (SSS) and height (SSH), chlorophyll
concentration (CHL),thermocline depth and strength, andmixed
layer depth (MLD) collected in situ during transect surveys
and sensed remotely. In addition, dynamic variables (including

SST, SSS, MLD, and SSH) from ocean models have been used
as potential predictors in habitat models (Becker et al., 2016).
Habitat predictors from ocean circulation models all served as
proxies for unmeasured underlying ecological processes linking
cetaceans to their prey, and they provide opportunities for
dynamic predictions.

Models have successfully captured variability in cetacean
density and distribution at seasonal and interannual time scales
(e.g., Figure A2, Forney et al., 2012; Becker et al., 2014, 2016),
but they only reflect historical data and the variation therein
and do not take into account current or future conditions.
Becker et al. (2012) demonstrated that advanced satellite data
and forecasts from ocean models allow “nowcasts” of marine
mammal distributions on time scales of days to weeks and
forecasts on time scales of 3–4 months. Ocean circulation models
provide robust predictive models of cetacean distributions
(Becker et al., 2016), showing promise for future predictions of
marine mammal distributions in a changing climate. However,
these models rely on proxy variables, and future forecasts
can fail if the proxy relationships change; likewise, modeling

marine mammal distribution in one area may not be readily
transferable (i.e., may perform poorly) to other locations. Future
steps require additional model validation, particularly at different
spatial resolutions and longer temporal scales.

Case Study 2. Projecting Ringed Seal
Distributions
In the context of a biological review regarding the listing of
the ringed seal as threatened or endangered under the ESA,
ringed seal distributions were projected through the twenty-first
century using a highly-simplified definition of habitat required
by the species for the critical life history functions of whelping,
nursing, and weaning pups. These functions occur in spring, a
period when the pups are highly vulnerable to predation and
hypothermia if there is insufficient snow cover for mothers to
construct and maintain lairs on top of the ice. Studies of lair
construction indicated that accumulated snow depths of at least
20 cm are required for drifts to form that are sufficiently deep
(50–65 cm) for adequate birth lairs (NOAA, 2012). Therefore,
ringed seal habitat and breeding distribution were assumed to
be those areas of the Arctic where at least 20 cm of snow depth
could be expected in the month of April. Output from global
climate models predicts that although precipitation in the Arctic
is expected to increase, much of it will fall as rain. Delayed
autumn ice formation will mean that some of the snow that does
fall will fall into open water rather than accumulating on the ice
surface. Consequently, the area with snow depths above 20 cm
in April was projected to decline under a broad range of plausible
greenhouse gas emission scenarios, with the greatest decline up to
70% by the end of the twenty-first century under one emissions
scenario (Hezel et al., 2012). This would result in a substantial
loss of ringed seal reproductive habitat.

One strength of this approach is that it is built on climate
projections that are, qualitatively at least, broadly agreed to
represent the best available science and project robust large-scale
trends in Arctic sea ice. A significant limitation of this method
for ringed seal habitat projection is that the species’ habitat has
been reduced to just two dimensions (sea ice extent and snow
accumulation), a drastic oversimplification. Another limitation
is that regional and finer scale variability may not be adequately
reflected in the coarse resolution of the global circulation models
used for the climate projections (Stock et al., 2011).
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FIGURE A1 | (Case study 1) Transect coverage for surveys conducted by SWFSC between 1986 and 2006 in three broad study areas in the eastern North Pacific.

Modified from Hamilton et al. (2009).

FIGURE A2 | (Case study 1) Model-based estimates of fin whale summer/fall density (animals/km–2 ) and distribution for six different years, 1991–2009, in the

California Current Ecosystem. Black dots show actual sighting locations during ship surveys conducted in each year. (Details provided in Becker et al., 2016).
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Recent years have seen a rapid expansion in the ability of earth system models to

describe and predict the physical state of the ocean. Skilful forecasts ranging from

seasonal (3 months) to decadal (5–10 years) time scales are now a reality. With the

advance of these forecasts of ocean physics, the first generation of marine ecological

forecasts has started to emerge. Such forecasts are potentially of great value in the

management of living marine resources and for all of those who are dependent on the

ocean for both nutrition and their livelihood; however, this is still a field in its infancy. We

review the state of the art in this emerging field and identify the lessons that can be

learnt and carried forward from these pioneering efforts. The majority of this first wave of

products are forecasts of spatial distributions, possibly reflecting the inherent suitability

of this response variable to the task of forecasting. Promising developments are also

seen in forecasting fish-stock recruitment where, despite well-recognized challenges

in understanding and predicting this response, new process knowledge and model

approaches that could form a basis for forecasting are becoming available. Forecasts of

phenology and coral-bleaching events are also being applied to monitoring and industry

decisions. Moving marine ecological forecasting forward will require striking a balance

between what is feasible and what is useful. We propose here a set of criteria to quickly

identify “low-hanging fruit” that can potentially be predicted; however, ensuring the

usefulness of forecast products also requires close collaboration with actively engaged

end-users. Realizing the full potential of marine ecological forecasting will require bridging

the gaps between marine ecology and climatology on the one-hand, and between

science and end-users on the other. Nevertheless, the successes seen thus far and

the potential to develop further products suggest that the field of marine ecological

forecasting can be expected to flourish in the coming years.

Keywords: ecological forecasting, seasonal-to-decadal-forecasting, spatial distribution, recruitment, Phenology,

marine ecological forecasting, ecological prediction
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INTRODUCTION

Rapid recent advances in observing and modeling the earth
system have driven a quiet revolution in our ability to forecast
the evolution of our planet’s weather and climate (Bauer et al.,
2015). Some of the most impressive results have been seen in the
oceanic domain (Meehl et al., 2014), where the slow dynamics
and long memory of the ocean readily lend themselves to forecast
timescales dramatically longer than in the atmosphere. Skilful
forecasts on the annual and even decadal scale of sea surface
temperature (SST) and upper ocean heat and salt content (Smith
et al., 2007; Keenlyside et al., 2008; Doblas-Reyes et al., 2011;
Corti et al., 2012;Matei et al., 2012b; van Oldenborgh et al., 2012),
the Atlantic Meridional Overturning Circulation (e.g., Matei
et al., 2012a), net primary productivity (e.g., Séférian et al., 2014),
the north Atlantic sub-polar gyre (e.g., Wouters et al., 2013), and
the uptake of CO2 from the atmosphere (e.g., Li et al., 2016)
have all been demonstrated thus far, and this list is expected to
continue to grow.

This newfound predictive skill of the ocean represents a
tremendous opportunity for society as a whole, and particularly
for the parts of it that are most closely linked to the ocean. The
high variability of living marine resources is widely recognized as
arising in part from interactions with the physical environment
(e.g., temperature, salinity, currents) (Drinkwater et al., 2010;
Hollowed et al., 2013; Petitgas et al., 2013). This variability
manifests itself not just in terms of productivity (e.g., yield
of fisheries) but also in terms of spatial distribution (e.g.,
shifts of fish into new jurisdictions) and the timing of key
events (e.g., migrations, spawning), and even propagates further
into the human systems dependent on the ocean (e.g., fishing
practices, community revenue, and employment associated
with commercial and recreational fisheries). In principle, the
predictability of the physical system could allow much of this
variability to be foreseen: such predictions could be used to
both adapt to and mitigate the worst impacts of variability
for individual stakeholders and society alike, and to optimize
monitoring, exploitation, and management of these resources
(Hobday et al., 2016; Tommasi et al., 2017a).

Unfortunately, generating such forecasts of biological systems

is not entirely straightforward. Most climate models only
produce forecasts of physical variables, such as temperature,
salinity, and ocean currents, rather than the variables of
direct interest to marine resource management and ecosystem
applications. An intermediate “translation” step is therefore
usually required, where biological models convert forecasts of the
physical environment to forecasts of the biological environment.
However, the biological knowledge required to make this linkage
is often either poor, or entirely absent; fisheries scientists,
for example, have been trying to generate environmentally-
driven predictions of fish stock recruitment for close to a
century now with little success (e.g., Myers, 1998). In fact,
just 15 out of 1,250 fish stocks globally (<2%) incorporate
any form of environmental information in the generation of
their tactical advice and management (Skern-Mauritzen et al.,
2016). Nevertheless, the first generation of forecast products
for applications to marine living resources is now appearing,

starting in Australia nearly a decade ago (Hobday et al., 2011;
Eveson et al., 2015) and more recently in North America
(Table 1).

Here we take stock of the progress made thus far in applied
forecasting of marine ecological quantities, with a view toward
the next steps. We focus our review away from the predictability
of the physical components of the system, for which the reader
is referred to numerous reviews already covering the topic
(Meehl et al., 2014; Bauer et al., 2015; Stock et al., 2015) and
thus do not comment on the improvements needed for the
physical side of marine prediction models. We also restrict
our focus to applications of relevance to the management and
exploitation of living marine resources and therefore exclude
human-health related forecasts (e.g., of harmful algal blooms
(e.g., NOAA, 2016), outbreaks ofVibrio sp.) andmarine pathogen
outbreaks (e.g., Constantin de Magny et al., 2009; Maynard
et al., 2016). Instead, we focus here on examples of forecast
products relating to living marine resources, covering their
productivity, spatial distribution and phenology and associated
human systems in turn. The strengths, weaknesses, lessons
learned, and future prospects of each of these types of forecasts
are examined. We then synthesize these experiences into a set
of recommendations to facilitate the field’s future advancement,
including the identification of research priorities. Through this
review, we lay out a roadmap for the future development of this
new and promising field.

WHAT FORECAST PRODUCTS EXIST?

As a starting point for this review, we have collated and
summarized currently available forecast products relating to
living marine resources (Table 1, Figure 1). We collected forecast
products that the authors were familiar with, and complemented
this with a brief literature search: while this is by no means
an exhaustive list, we believe that it nevertheless covers the
majority of products available today. We restricted the results
to examples of products that are currently being produced
and updated regularly and that are publicly available. Long-
term biological responses to a changing climate were excluded

as they are projections rather the predictions: instead the
focus was on nowcast-to-decadal scale forecasts. We also
only focus on products where environmental or ecological
factors outside the system of interest drive the forecast,
thereby excluding persistence forecasts and projections based
on population dynamics (as is common in e.g., fisheries
management). Similarly, we restrict the focus to situations where
there are specific ecological forecasts made. As a result, some
examples of environmentally-informed fisheries management
in which the management might be informed based on
relationships between a physical variable and a biological
response (eg., Skern-Mauritzen et al., 2016), but where these
relationships are not (yet) used in forecasting stock dynamics,
are excluded.

The results provide several clear insights into the current state
of forecasting of livingmarine resources. Firstly, there are distinct
spatial patterns in the distribution of these forecast products,

Frontiers in Marine Science | www.frontiersin.org September 2017 | Volume 4 | Article 289121

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Payne et al. Marine Ecological Forecast Products

TABLE 1 | Overview of operational nowcast and forecast ecological products for application in the management of living marine resources found by the authors.

Key Forecast product Basis for forecast How far into the future is the

forecast made?

1. Name/forecasted variable 1. which physical variables are used?

2. URL (if appropriate) 2. how are they generated/forecast?

3. References 3. how are physics and biology linked?

PRODUCTIVITY

1 Returns of Salmon along US West Coast

http://www.nwfsc.noaa.gov/research/divisions/fe/

estuarine/oeip/g-forecast.cfm

(Burke et al., 2013; Pacific Fishery Management Council,

2016)

1. Ensemble of ecosystem indicators combined using

PCA.

2. Observations

3. Empirical relationship between returns and

environment indicators

∼1 year

SPATIAL DISTRIBUTIONS

2 WhaleWatch—distribution and numbers of blue whales

in California current

http://www.westcoast.fisheries.noaa.gov/whalewatch/

(Hazen et al., in press)

1. SST, chlorophyll-a, SSHa standard deviation,

bathymetry, standard deviation of bathymetry

2. Satellite data observations

3. Satellite-telemetry-based habitat model

Near real-time

3 TurtleWatch—spatial areas where there is a high risk of

loggerhead turtles bycatch

http://www.pifsc.noaa.gov/eod/turtlewatch.php

(Howell et al., 2008, 2015)

1. SST

2. Satellite data observations

3. Empirical model

Near real-time

4 Great Australian Bight tuna distributions

http://www.cmar.csiro.au/gab-forecasts/

(Eveson et al., 2015)

1. SST

2. Satellite data

3. Empirical model

Forecast from 0 to 3 months ahead

5 SE Australia long-line tuna fishery

http://www.afma.gov.au/fisheries-services/sbt-zones/

(Hobday et al., 2011)

1. SST and Temperature at depth

2. Satellite and ocean model data

3. Empirical model

Forecast from 0 to 3 months ahead

6 California Sardine distribution

http://www.nanoos.org/products/j-scope/forecasts.php

(Kaplan et al., 2016; Siedlecki et al., 2016)

1. SST, salinity, chlorophyll

2. Dynamical biogeochemical downscaling of global

forecast system

3. Empirical habitat model

Skilful up to a 5-month lead time

PHENOLOGY

7 Timing of Gulf of Maine lobster landings

http://www.gmri.org/lobster-forecast

(Mills et al., in review)

1. 50-m ocean temperature

2. Observations from coastal buoys in NERACOOS

network

3. Empirical model

Landings forecast based on

temperatures 3–4 months prior

8 Columbia river salmon run timing

http://www.cbr.washington.edu/inseason

(Anderson and Beer, 2009)

1. Oceanic upwelling, Columbia river flows, timing of

juvenile arrival

2. Observations

3. Empirical regression model of timing

Up to 3 months ahead, updated daily

during run

OTHER

9 Coral Reef Watch’s Heat Stress Outlook

http://coralreefwatch.noaa.gov

(Liu et al., in review)

1. Global daily SST forecast up to 9 months.

2. Accumulated heat stress conducive to mass coral

bleaching is predicted and bleaching risk is forecasted

based on an established relationship between the

amount of accumulated heat stress and severity of coral

bleaching

3. Anomalously warm temperatures above coral’s

tolerance level cause heat stress potentially leading to

mass coral bleaching

Weekly and composite forecast up to

4 months; updated weekly

The geographical location of these products is mapped in Figure 1 using the number in the “Key” column. Products are grouped into broad categories reflecting the response variable

being forecast.

with themajority occurring in North America (Figure 1). Models
also tended to be almost exclusively empirical (correlative) in
nature: a notable exception are the forecasts of the intensity and
spatial distribution of coral bleaching (forecast product 9), which
have a strong mechanistic underpinning. Variables predicted
could otherwise be grouped into predictions of productivity,
spatial distribution or phenology: of these, forecasts of spatial
distributions were clearly the most common. We examine these
products in more detail below.

PREDICTING PRODUCTIVITY CHANGES

Changes in the productivity of fisheries result from changes in

all processes that affect current and future exploitable biomass

and fishery yields (e.g., growth, survival, and reproduction).

The relative importance of these factors is strongly linked to
the life-history and fishery of the stock. For long-lived and
late-maturing species that have fisheries targeting many age-
groups (e.g., temperate-boreal gadoids and flatfishes), changes in
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FIGURE 1 | Map of known examples of marine ecological nowcast and forecast products listed in Table 1. Details of these products are given in this table for the

corresponding number. Note that the Coral Reef Watch forecast product (number 9, blue circle) covers the globe between 45◦N and 45◦S (dotted blue box).

growth and mortality of fish currently in the water are critical:
in these cases young fish are recruited to the fishery at age 2 or
later, and their impact on yield therefore occurs 1–2+ generations
into the future (Basson, 1999; Brander, 2003; Planque et al.,
2003; Tommasi et al., 2017a), while recruitment forecasts do
not become useful until 5–10+ years into the future (Basson,
1999; Brander, 2003; Planque et al., 2003). Forecasting changes
in growth and natural mortality 1–5 years ahead would be of
more immediate benefit to the management of such species. For
shorter-lived species, and those captured at young ages (e.g.,
sardine, anchovy, sprat, sandeel, and capelin), however, the need
for predictability is reversed: fisheries for these stocks often
depend on a very small number of age groups (e.g., 1–2) and large
inter-annual variations in year-class strength are more important
for the future fishery yields than changes in growth andmortality.

Recruitment forecasting, however, has been, and still is, a
major challenge in fisheries oceanography and management
(Houde, 2008; Hare, 2014). Numerous published relationships
between recruitment and environmental variables have broken
down when updated with new data (Myers, 1998), and
few such relationships are used in operational fisheries
management (Skern-Mauritzen et al., 2016). However, links
between recruitment and the environment are nevertheless
well-recognized: for example, environmental variability has
been shown to be more influential in the recruitment of
many fish stocks than spawner biomass (Szuwalski et al.,
2015), and explains more variation in productivity than either
density-dependent or random processes (Vert-pre et al., 2013).
Advances in recruitment process modeling also demonstrate the
sensitivity of recruitment to oceanographic variability, including
how environmental conditions affect larval food resources and
mortality rates (Daewel et al., 2015).

In addition, there are (at least) two broad patterns
in recruitment-environment relationships that could provide
potential avenues for future forecasting attempts. First, some
of the published relationships re-evaluated by Myers (1998)
continued to be valid with updated data: those cases tended to
be stocks located near limits of species ranges where recruitment
processes for those stocks might be particularly sensitive to
environmental variations (Myers, 1998). Subsequent updates of
previously published relationships for stocks near range limits
have also remained valid (Lindegren et al., 2010; Margonski et al.,
2010; MacKenzie et al., 2012). Second, biogeographic patterns
in the recruitment-environment (temperature) relationship
for stocks throughout a species range indicate increases in
recruitment for stocks located in cold regions and decreases
for stocks in warm regions when temperatures rise (Brander,
2000; Mueter, 2002; MacKenzie and Köster, 2004; Mantzouni
and Mackenzie, 2010). Both of these patterns demonstrate some
persistent environmental impacts on recruitment and suggest
that there may be forecast potential for recruitment in some
stocks. Moreover, as recruitment process knowledge increases,
this potential is likely to increase in the future.

The future sustainability of all fisheries depends on successful
recruitment: clearly, a prolonged decline or downward shift
in production of recruits will eventually erode the basis for
a fishery and require fishery management actions to prevent
local collapse or extinction. Multiple fishery management
decisions and strategies such as short-term yield forecasts,
fishery, and biomass reference points, recovery plans, and long-
term climate change impacts on yields, therefore depend on
assumptions (expectations) of future recruitment. Several stocks
recognize this fact in their management, and while they do
not forecast recruitment directly, exploitation is nevertheless
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adjusted according to the state of the environment: see (Skern-
Mauritzen et al., 2016) for an overview of these stocks. The
management of such stocks is therefore potentially amenable
to forecast information: for example, the harvest guideline for
Pacific sardine, already influenced by sea surface temperature
(SST), has been shown to be more effective when informed
by short-term recruitment forecasts driven by seasonal SST
predictions (Tommasi et al., 2017b). Improvements in the
reliability and timing of forecasts of recruitment could therefore
have major impacts on different aspects of fishery management
across the diverse spectrum of time scales and life-histories
(Tommasi et al., 2017a).

While recruitment forecasts would be a key component in
forecasting productivity changes, forecasted changes in growth or
mortality rates would also be beneficial for fishery management.
Changes in biological parameters depend on changes in the
biota, not only the abiotic properties of the oceans. For example
variations in growth, condition, fecundity, and recruitment can
all be influenced by availability of prey and predators, how
the prey and predators overlap in time and space (Neuenfeldt
and Beyer, 2006) and the relative size distributions of the prey
and predators (Golet et al., 2015). New operational forecast
models that link the spatial distributions of interacting species
(competitors, prey-predators) and use these distributions to
forecast feeding, growth and mortality rates could thereby
generate forecasts of productivity changes. Indeed, existing
multispecies assessment models (e.g., ICES, 2017) contain all of
these elements and could therefore be extended into the future
to predict productivity changes. Such a step would represent a
major scientific advance toward developing and implementing
integrated ecosystem-based approaches to management.

In summary, developing productivity forecasts requires
identification of the relevant scales and life-histories where
predictive skill is needed and available. For example, a
zooplankton abundance or a mean temperature averaged over
a specific depth range in a specific place and time may be
more relevant for larval fish mortality or juvenile growth rates
than averaged over some other (e.g., larger) scale. Acquiring
the scale-relevant knowledge will require process-oriented field,
experimental, and modeling studies. However, recognizing and
exploiting the (rare) situations where predictive skill is needed
and available and linking them to fishery management systems
may lead to valuable new marine ecological forecast products.

PREDICTING SPATIAL DISTRIBUTION
CHANGES

Within fisheries management, questions around the productivity
(and thus quotas and sustainability) of a fish stock typically
gather substantial attention and energy, both from the scientific
community and the general public. However, the distribution of
the resource in both time and space ultimately sets the framework
within which fisheries operate and is thus a second question of
critical importance to both fishers and managers.

The first wave of marine ecological forecast products to
become fully operationalised has been strongly biased toward
prediction of spatial distributions. Seasonal forecasts of the

spatial distribution of southern bluefin tuna in the Great
Australian Bight (Eveson et al., 2015) have been used to support
the strategic planning of fisheries in this region for nearly
a decade (Hobday et al., 2016) and were amongst the very
first such forecast products to become operational. Distribution
forecasts are also actively used in this region in a dynamic
management context to close areas with the aim of avoiding by-
catch (Hobday et al., 2011). In the United States, nowcasts of sea
turtle distributions in the Pacific Ocean north of the Hawaiian
Islands were amongst the first dynamic spatial management
applications (Howell et al., 2008), and forecasts of the spatial
distribution of sardines and blue whales in the California Current
ecosystem have recently followed (Kaplan et al., 2016; Hazen
et al., in press).

The relative success of spatial distribution forecasts most
likely reflects a number of features that make this response
variable well-suited to prediction. Spatial distribution studies
typically have access to a relative wealth of observational
data from scientific surveys, fisheries and other sources (e.g.,
Eveson et al., 2015 used tagging data) that allow relationships
between the environment and the organism to be well-
characterized. In contrast, recruitment studies are limited to
one realization per year, with a typical time series being
<30 years (Ricard et al., 2012). Furthermore, many living
marine resources actively respond to environmental variability by
shifting their distribution, either to avoid unfavorable conditions
(e.g., temperatures that are too warm/cold) or to seek out optimal
conditions (e.g., to reproduce or feed). In many cases, these
constraints have a physiological basis (e.g., thermal or salinity
tolerances) making for particularly robust and mechanistically-
rooted links between the environment and the distribution.
Finally, at least some, although not all, of the variables by which
organisms sense and modulate their spatial distributions, such as
temperature and salinity, are also the variables that are predicted
directly by forecast systems, simplifying the “translation” from
physics to biology tremendously.

Nevertheless, the ability to forecast spatial distributions is
also subject to several important limitations. While we observe
and are interested in distribution (where the organisms actually
are), current forecasting systems are centered on the idea of
habitat or ecological niche (where they could potentially be).
However, these concepts are not interchangeable, and many
processes (often outside of the modeling framework) govern the
subset of potential habitats that are utilized and thereby yield
the distribution (Dormann, 2007; Araújo and Peterson, 2012;
Urban et al., 2016). For example, the dynamics of movement and
migration can be important or even dominating: inter-annual
shifts in the distribution of herring in the NE Atlantic of up to
several thousand kilometers have been shown to be driven by the
peculiarities of schooling dynamics (Huse et al., 2010). Similarly,
two regions of space that are environmentally comparable may
both offer suitable habitat, but one may be inaccessible due to
the presence of environmental or physical barriers or extreme
distances (Briscoe et al., 2017). Life-history dynamics are also
critical to consider (Petitgas et al., 2013), as distributions at
a given time point are strongly determined by both what has
gone before and the need to close the life-cycle. Furthermore,
not all of the variables that are potentially important in
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shaping distributions are currently measured or forecasted: the
distributions of relevant predators, prey, and competitors are also
critical (Elith and Leathwick, 2009). Correlative niche models
using definitions of habitat based on the variables that we can
observe and forecast are therefore inherently weakened by their
narrow view of the processes shaping distribution (Warren, 2012,
2013; McInerny and Etienne, 2013).

Future research can help improve upon these early products.
An important step in this direction is moving toward more
mechanistic representations of distribution by increasing the
biological realism of themodels (Urban et al., 2016) e.g., explicitly
incorporating movement and life-cycle with the limitations
imposed by habitat. Suitable frameworks for this type of work
already exist within the marine community (Lehodey et al., 2008;
Ito et al., 2013) and operational applications are now being
developed (Gehlen et al., 2015). Such a transition from empirical
towardmoremechanistic models would parallel the development
pathway seen in terrestrial distribution modeling (Guisan and
Zimmermann, 2000; Pearson et al., 2014).

Realizing the full potential of spatial distribution forecasts,
will require close collaboration between developers and end-
users. Spatial forecasts are already being used for dynamic spatial
management (Hobday et al., 2011) based on close interaction
with managers and fishers (Hobday et al., 2016). The use of
forecast information to design monitoring programmes is also a
particularly obvious application, as there are few barriers between
the forecast developers and the scientists performing the surveys.
However, the most important application will likely continue
to be in direct collaborations with the fishing and shipping
industries to forecast the distribution of both target and non-
target/protected species. In these cases, where forecast users have
an economic incentive to increase their effectiveness, a high
degree of flexibility to use such information, and in some cases
a legal imperative, it is not unreasonable to expect substantial
growth in the number, and variety of spatial forecast products in
the near future.

PREDICTING PHENOLOGICAL CHANGES

Physical forcing of ecosystem dynamics, particularly in high
latitude environments, varies seasonally, and animal populations
have adapted their phenology (i.e., the timing of life history
events) to follow peaks in the seasonal cycles of physical drivers
(e.g., temperature) and prey abundance. Variability in phenology
affects the reproductive success of marine species (Hjort, 1914;
Cushing, 1990; Platt et al., 2003; Durant et al., 2007) and
influences their availability to fisheries.

Several examples of phenological forecasts now exist. For
instance, the availability of lobsters to the Maine fishery varies
between years following temperature-driven changes in their
molting and inshore migration phenology (Mills et al., 2013).
In 2012, during a marine heatwave, temperatures warmed 3
weeks earlier than normal, and lobster landings subsequently
also increased sharply 3 weeks early, leading to a large influx
of lobster, and a subsequent drop in price and economic
challenges for the fishers (Mills et al., 2013). This event motivated
the development of a forecast for the timing of the lobster
fishery, which has been provided to the industry since 2015

to improve their operational planning and climate-readiness
(Mills et al., in review). Timing forecasts of anadromous fish
migration are also available (Anderson and Beer, 2009; Burke
et al., 2013; Pacific Fishery Management Council, 2016). Other
types of forecasts can also have a strong temporal element
without being explicit forecasts of phenology, e.g., forecasts of
seasonally-dependent high mortality conditions such as disease
outbreaks (Maynard et al., 2016) or coral-bleaching risk (Liu
et al., in review).

A successfully adopted ecological forecast is one that clearly
addresses stakeholders’ needs (Hobday et al., 2016). Phenological
processes are non-linear, and subtle changes in climate drivers
can lead to marked changes in the timing of management- and
industry-relevant biological events. Since stakeholders are aware
of and affected by the timing of certain ecological events at
short time scales, phenological forecasts may be more easily
adopted as compared to other types of ecological forecasts. On
the other hand, because phenological events are discrete and non-
linear, forecast errors are more evident. Binning the forecast into
longer temporal bins (e.g., weekly instead of daily) and using
probabilistic predictions can help reduce this problem (Mills
et al., in review).

A forecast also needs to be skilful in order to be considered
successful (Murphy, 1993). Seasonal forecasts of SST have skill
in some regions at the coastal scales relevant to stakeholders’
needs (Stock et al., 2015), but seasonal prediction skill of
other phenologically-relevant physical variables (e.g., onset of
upwelling) has not been adequately assessed (Tommasi et al.,
2017a). Furthermore, biogeochemical forecasts (e.g., nutrients,
chlorophyll, primary production) are still experimental but show
some potential (Séférian et al., 2014; Li et al., 2016; Siedlecki
et al., 2016). Thus, phenological forecasts that depend on
temperature-driven physiological mechanisms (e.g., Liu et al.,
in review) may more quickly be operationalized than those
requiring predictions of prey conditions.

Another challenge in the development of phenological
forecasts is the limited availability of long time series
of high-temporal-resolution data needed to quantify
phenological changes. Integration of phenological forecasts
into fisheries opening/closure decisions, survey planning, coastal
management, or industry operations will require maintenance
and expansion of observing systems for continuous-high
resolution climate and biological data. Ensuring spatial
constancy is also critical in this context, to allow spatial and
temporal shifts to be separated from each other (de Keyzer
et al., 2017). In addition, an improved process understanding
of the drivers of phenological changes, assessment of physical
prediction skill with a phenology focus (i.e., timing of specific
events), and development of seasonal biogeochemical forecast
capabilities will all represent valuable advances.

PREDICTING THE HUMAN PART OF THE
SYSTEM

While our survey of existing marine ecological forecast
products revealed examples of forecasts of species distribution,
productivity, and phenology, it did not reveal any examples of
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forecasts of the human part of the system. However, without an
understanding of the human responses to changes in a system,
unanticipated consequences can occur, such as shifts in fishing
effort following declaration of marine protected areas (e.g., Ward
et al., 2001; Abbott and Haynie, 2012), concentration of fishing
effort in particular areas (e.g., Parnell et al., 2010), changes
in illegal behavior (Österblom and Bodin, 2012), and quota
shifts (Emery et al., 2014). Here we examine the potential for
developing such forecasts.

Unfortunately, even defining the human component is
challenging, which partly explains why exploration of future
human behaviors and responses has received considerably
less attention than biological responses. The human part of
the marine system may include direct participants in marine
activities (e.g., fishers, tourists), downstream participants (e.g.,
fish processors), resource managers, and policy makers. The
human system may also include the economic market (e.g.,
Mullon et al., 2017), or non-consumptive actors (Sanchirico et al.,
2013; e.g., Tracey et al., 2013). Defining the relevant human
sub-system is the first challenge.

Including humans is seen as an important challenge when
modeling marine systems (e.g., Fulton, 2010), and this will
increase further in importance when forecasting ecosystem
changes. Managers of marine systems may be interested in
a range of issues that involve humans, including trade-offs
in ecosystem-based fisheries management (EBFM) as a result
of environmental change, planning for infrastructure (e.g., in
locations where fish are projected to move, fisheries and the
necessary infrastructure will need to adjust), and minimizing
unanticipated consequences (e.g., that can result from ignoring
the people). Social and economic sustainability are now seen
as central goals alongside ecological sustainability, and forecasts
may provide valuable new insights into how ecosystem changes
and management actions will differentially affect multiple
objectives (Fulton et al., 2014; Jennings et al., 2016).

In constructing models of human systems, there are several
advantages compared to the “biological” part of the system.
Humans can talk and be observed (e.g., via observer and vessel
monitoring systems), they are relatively easy to sample and
census, and extensive historical data are often available (e.g.,
price, employment, catch, effort) to condition and test models.
At times control groups of vessels or fleets are available that allow
controlled studies to be performed (e.g., Essington, 2010; Abbott
et al., 2015). On the negative side, humans can be deliberately
or accidently unreliable or strategic in describing their behavior.
They may have preferences which are not revealed until a
situation actually occurs, particularly for problems that result
from a combination of physics (ocean change), biology (dynamic
species responses), and humans (behavioral responses). As a
result, there are considerable challenges in buildingmathematical
descriptions of human behavior, and gathering information on
people in a systematic way such that it can be included in marine
models (Fulton, 2010). For example, in a study of the eastern
Bering Sea ecosystem and the response of extensive commercial
fishery and subsistence harvests, Haynie and Huntington (2016)
found the influence of ecosystem conditions on the outcomes of
human activities was weaker than anticipated. They attributed

this loose coupling to the ability of fishers and hunters to adjust
to variable conditions, and the role of social systems, the market
economy, and management in moderating the direct effects of
changes in the ecosystem.

Development of predictive models of human behavior has
thus been considered challenging, with marine examples to date
consisting mostly of models that characterize fleet behavior (e.g.,
Eales and Wilen, 1986; Michael et al., 2017) or that assess
outcomes of conservation or resource management decisions
(Fulton et al., 2015). These modeling tools allow a range of
options to be explored, and support evaluation of alternative
interventions under differing conditions. Model results can
be presented at multiple spatial and temporal scales, and
relative to ecological, economic, and social objectives. Results
can also reveal potential “surprises”, such as bottlenecks in
human responses (Fulton et al., 2015). Predicting how fleets
will respond to changes in management such as catch shares is
particularly challenging, as the observed behavior is a response
to environmental, market, and management conditions and
changes (e.g., Abbott et al., 2015; Reimer et al., 2017).

HOW TO GO FORWARD

While marine ecological forecasting is clearly still a field
in its infancy, it is also extremely diverse in the range of
issues considered. Although each of the response variables and
associated forecast products described has their own strengths
and weaknesses, there are also clear trends and commonalities
between them. Here we synthesize these lessons with the aim of
highlighting the way forward on a broad scale.

Firstly, it is important to remember that it may not be
necessary to invoke the complex machinery of a fully-coupled
climate model to produce useful forecasts. Many physical,
biological and social systems have inherent lags that can
be exploited to produce useful forecasts based on observed
(rather than forecasted) environmental conditions, an approach
used by the Gulf of Maine lobster and Pacific salmon return
forecasts (Table 1). Similarly, the influence of environmental
factors on year-class strength of a fish stock typically occurs
very early in life (Hjort, 1914; Houde, 2008) but in many
cases it can take several years before these individuals become
important for the fishery. Fraser River salmon forecasts and
Gulf of Maine lobster timing have both used this approach
to give appreciable forecast horizons without the need for a
climate model.

Similarly, the long-term memory of the ocean and its slow
dynamics can also be exploited. Statistical forecasts of the
physical environment can be produced by assuming persistence
of either absolute values, of anomalies or of a trend (e.g., climate
warming) into the future. For example, in the North Sea, anomaly
persistence forecasts of SST readily give appreciable skill at a
one-year lead time (Stock et al., 2015). This approach is implicit
in several of the examples noted previously, where exploitation
of the fishery is adjusted to the local environmental regime
e.g., Pacific sardine management. While such forecasts may
not have the elegance or technical bravado of applying a fully
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coupled climate model, the important question from an end-
user’s perspective is the presence (or absence) of useful skill,
rather than how the forecast is generated.

Where such simple approaches are insufficient and fully
coupled climate models are required, a good place to start is by
focusing on the predictability of major modes of variability in
the ocean, and their biological consequences. Much of the skill
of seasonal and, in part, multi-year forecasts at management-
relevant local scales arises from the ability of the forecast systems
to capture the evolution of predictable basin-scale patterns (e.g.,
associated with the El Niño-Southern Oscillation, ENSO) and
their regional imprints (Goddard et al., 2001; Stock et al., 2015).
Thus, some of these types of events may be more predictable
than average conditions. For example, in the California Current,
skill of seasonal SST predictions is higher during El Niño events
(Jacox et al., 2016). This is beneficial for fisheries managers
and industry stakeholders, as El Niño events can have dramatic
impacts on the California Current ecosystem (Chavez et al., 2002;
Jacox et al., 2016). Similarly, there is evidence that the strong
and abrupt contraction of the North Atlantic sub-polar gyre
in the mid-1990s could have been foreseen with a sub-decadal
lead time (Yeager et al., 2012; Wouters et al., 2013; Msadek
et al., 2014). These oceanographic changes also have had well-
documented effects on the ecosystems of the North Atlantic
(Hátún et al., 2009a,b). In both cases, a valuable first step may
be to build simple conditional ecological forecast systems (so-
called “if-then” forecasts or “forecasts by analogy”) whereby a
list of ecosystem responses seen in prior analogous events can
be produced: a forecast need not be quantitative in nature to be
valuable.

While these simplistic approaches can quickly yield useful
forecasts in some situations, the most comprehensive results
will ultimately require coupling of biological models to physical
forecast systems. In developing such forecast products, it is
tempting to focus on a specific response variable or species,
driven by the nexus of commercial and academic interests,
together with available funding. However, there is no guarantee
that such an approach will lead to forecast systems that are both
skilful and useful. Instead, we propose that the question should
be reversed: rather than asking “how do we predict a particular
variable”, it is useful to consider asking “what can we predict?”
We propose three concepts that we believe can be valuable in
identifying systems and variables that can be predicted skilfully.

Firstly, mechanistic understanding, where available, is clearly
favored over empirically derived models when building forecasts
(Levins, 1966; Urban et al., 2016). This is not to say that
useful forecasts cannot be built upon empirical knowledge:
indeed nearly all of the products highlighted here are based
on correlations between physical variables in the ocean
and biological responses. However, mechanistic knowledge is
generally regarded as providing a strong footing for forecasting
both biological (Guisan and Zimmermann, 2000; Dickey-Collas
et al., 2014) and economic (e.g., Haynie and Pfeiffer, 2012) aspects
of marine systems, particularly in cases where extrapolation
beyond the range of conditions seen in the training set
(e.g., under climate change) is required. Nevertheless, it is
important to note that there is often little choice but to employ

correlative approaches: while the difficulties of predicting fish-
stock recruitment based on empirical relationships with the
environment have long been recognized (e.g., Myers, 1998),
skilful mechanistic solutions to this problem still appear far off.

Secondly, it is necessary to focus on developing biological
forecast products around physical variables that can themselves
be predicted. A forecast system based on SST, which can readily
be predicted on seasonal and even decadal time scales in many
marine ecosystems (Kirtman et al., 2014; Meehl et al., 2014;
Stock et al., 2015), is much more likely to yield success than
one that requires estimates of food abundance, which at the
moment cannot be forecasted skilfully. Similarly, it is important
to recognize that the spatial forecast skill of a given variable
differs across space (Figure 2) and across time scales (Figure 3).
For example, while there is multi-annual SST forecast skill in
the North Atlantic (Matei et al., 2012b; Meehl et al., 2014),
prediction skill at a multi-annual scale is low over the Pacific
Ocean (Figure 3). This contrasts with the seasonal scale, where
ENSO provides high seasonal forecast skill to the eastern tropical
Pacific Ocean (Figure 2). A full assessment of the predictability of
the physical-system at biologically-relevant spatial and temporal
scales (Stock et al., 2015) could eliminate areas where forecasts
are not possible and is therefore a critical first step in narrowing
down the range of skilfully-predictable biological quantities.

Thirdly, researchers should focus on biological responses
where there is a high proximity between the biological
response and the physical driver, i.e., tight cause-and-effect
relationships. For example, a large body of knowledge exists
about correlations between large-scale climate indices, such as
the North Atlantic Oscillation (NAO) and Atlantic Multidecadal
Oscillation (AMO), and biological responses (Ottersen et al.,
2001; Stenseth et al., 2003; Alheit et al., 2014; Nye et al., 2014).
However, while these indices can potentially be well-predicted by
coupled forecast systems (García-Serrano et al., 2012), it seems
unlikely that they can be used to build skilful predictive systems
of the marine environment due to the large number of steps
between the predictor and the response, each of which adds
noise to the predictive process. Similarly, biological responses
to physical processes that are filtered through multiple processes
and trophic levels (e.g., from upwelling to nutrient concentration
to primary productivity to secondary productivity to survival of
juvenile fish) seem less likely to yield skilful predictions than
situations where there is a direct response to the physical driver
(e.g., egg mortality due to low salinity, avoidance of waters that
are too cold).

However, and most importantly, while these three concepts
can help focus on identifying “low-hanging fruit” that it may
be possible to predict skilfully, there is no guarantee that these
quantities will be useful to end-users. The ultimate value and
success of a forecast is determined by whether it is (actively)
used by end-users in their decision making process and whether
its use results in economic or other benefits (Murphy, 1993).
Active engagement with the end-users of the predictions from
the very start of the project to co-develop forecast products is
therefore key to ensure that their potential value to the end-user is
realized (Hobday et al., 2016). While this may necessarily entail
a deviation from the approach given above, worsen the forecast
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FIGURE 2 | Seasonal-scale sea surface temperature (SST) forecast skill. Skill is shown here for the North American Multi-model Ensemble (NMME) as the correlation

coefficient (as a percentage) between observed and forecast seasonal anomalies for a 1 month forecast lead time. Correlation coefficients are shown for temperature

anomalies averaged over each of four seasons. Top-left: December, January, February (DJF). Top-right: March, April, May (MAM). Bottom-left: June, July, August

(JJA). Bottom-right: September, October, November (SON). Modified from (Becker et al., 2014). © 2014 American Meteorological Society. Used with permission.

skill, or complicate the development process, a forecast product
without an end-user is ultimately a waste of effort. Striking the
balance between what is feasible and what is useful will therefore
be essential to push marine ecological forecasting forward in the
future.

FUTURE NEEDS

While the forecast products highlighted here have successfully
shown that forecasting of marine ecological variables is possible,
realizing the full potential of this field will require more than
just coupling existing biological or socio-economic knowledge to
existing climate forecast systems. Developing the next generation
of forecast products that moves beyond these initial proof-
of-concept examples necessitates further developments in both
research and management, as we discuss here.

Perhaps the greatest factor limiting the development of
marine ecological forecast products is the gap between the
climate modeling and marine science communities. This gap is
multidimensional in its nature. Climate modelers and marine
scientists, for example, are rarely employed at the same institute
and have very different educations and ways of thinking and
working. The nature of climate model output is a particularly
challenging aspect of this disjoint; while climate scientists
routinely work with extremely large data sets on large computing
clusters, many analyses and datasets in marine science have
historically not required the use of a formal programming

language and are stored in a spreadsheet (Berx et al., 2011).
Bridging this gap is challenging, and the main linkage between
the two disciplines is currently in the form of relatively
few individuals that are capable of moving between them.
Fortunately, climate-model and climate-data literacy can be
learned. The development of training courses to increase the
proficiency of both marine biological researchers and students in
the use and application of climate-model data should therefore
be seen as a simple but high priority action to help bring
these two fields closer together. Similarly, the climate data
needs in marine science can be better communicated to climate
scientists so they can provide output that facilitates the uptake
of climate information into marine ecological forecasts. Overall,
large projects that bring together researchers across disciplines
for sustained periods of time should be encouraged as they
facilitate the exchange of expertise in both directions (e.g., Van
Pelt et al., 2016).

A second key factor limiting the development and eventual
uptake of climate-model forecasts in fisheries andmarine science,
even for those that are adept with climate-data, is access to
forecast data. Getting access to such data for marine scientists
typically requires establishing close collaborations with climate
modelers directly: on the one hand, this brings new and critical
expertise into the project, but on the other hand is not an option
available to all. Availability of climate-forecast data on both
the seasonal and decadal timescales, including both hindcasts
and routine delivery of updated forecasts, is nevertheless critical
for the continued development and production of marine

Frontiers in Marine Science | www.frontiersin.org September 2017 | Volume 4 | Article 289128

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Payne et al. Marine Ecological Forecast Products

FIGURE 3 | Decadal-scale sea surface temperature (SST) forecast skill. Skill is

shown as the temperature predictability beyond the global warming trend for

the ECHAM5/Max Planck Institute Ocean Model (MPI-OM) coupled model

with initial conditions provided by the NCEP reanalysis. Correlation coefficients

between linearly-detrended observations and forecasts are shown for forecast

lead times of (a) 2–5 years and (b) 6–10 years. Only the significant correlations

(at the 5% level) are plotted. Modified from (Matei et al., 2012b). © 2012

American Meteorological Society. Used with permission.

ecological forecast products. Fortunately, this problem has been
well-recognized for some time now in the climate-modeling
community and initiatives aimed at improving access (e.g., the
WCRP Grand Challenge on Near Term Climate Predictions) are
starting to deliver results. Seasonal scale forecasts are available
from the North American Multi-Model Ensemble (NMME:
Kirtman et al., 2014) and analogous projects are currently in
progress in Europe (e.g., Copernicus C3S). Some decadal forecast
products are also openly available e.g., via CMIP5 (IPCC, 2013)
and can be used to develop products, although given that most
of the models stop around 2005, these cannot be used to produce
regularly updated predictions.

From a biological point of view, there is a continuing need
to improve the quality of our biological models. Marine science
has been limited for many years by its focus on describing,
rather than predicting, systems. Expanding our knowledge
beyond the empirical toward the mechanistic can be expected
to greatly improve the quality of our understanding and our
predictive capability (Dickey-Collas et al., 2014; Urban et al.,
2016). Incorporating behavior, allowing for adaptive responses,

and modeling organisms in terms of their full life-cycle are
all key elements that can be expected to be seen in the
next generation of models and deliver gains in predictive
skill, challenges in parameterising such models notwithstanding
(Urban et al., 2016). Similarly, the importance of social science
in understanding the marine system is gaining increasing
recognition and can be expected to drive important modeling
developments in the future as well as to inform the features that
make a management system effective (Fulton, 2010; Bundy et al.,
2017).

For economics and social sciences, modeling, and data
collection are expanding significantly but the integration of these
models with biophysical models is nascent. Economic models
are both structural and empirical, but even when predictions
can be made about how fish populations and market conditions
will change, the ability to predict what will occur across large
policy changes that alter fishers’ incentives is limited (Reimer
et al., 2017). However, as more research is conducted and the
lessons learned integrated across management systems, better
assumptions will be able to be made about the combined impacts
of environmental, market, and policy variability and change.

Improvements in applying this knowledge are also needed
to take advantage of the potential offered by marine ecological
forecasts. Foremost amongst this is the need to further develop
frameworks to assess and quantify the value of forecast
knowledge. Potential applications of forecast information could
be run through a simulation procedure, similar to a Management
Strategy Evaluation (MSE) to quantify both the benefits and risks
associated with the forecast product. Importantly, the level of
forecast skill required of the forecast product to “break-even”
(i.e., where the benefits outweigh the risks) can be established
within such a framework and used to determine when the
procedure should be adopted, modified or potentially rejected.
Examples of such analyses can be found in the literature already
(e.g., Basson, 1999) and at least one example of the analysis of a
forecast system, for themanagement of the Pacific sardine fishery,
has emerged (Tommasi et al., 2017b).

Finally, the role of stakeholders in the development of
these forecast products is often easy to overlook, but is also
critical (Hobday et al., 2016). Stakeholder participation is crucial
at all phases of developing forecast products, and should be
involved all the way from the scoping of the project through
its development to its evaluation and into operational delivery
(e.g., Liu et al., in review). Support to train stakeholders on
how to interpret and use this forecast information is therefore
also essential: engaged and informed stakeholders will ultimately
both inspire the development of new forecast products that the
scientific community cannot foresee and ensure their success.
Efforts to increase and support stakeholder engagement are
therefore expected to yield large dividends.

DISCUSSION AND CONCLUSIONS

This review of the current state of the marine ecological forecast
products shows a field that is developing quickly. Within the last
5 years, many products have come online and are now being
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produced in an operational manner, with many more still under
development. A number of these products are quite mature, and
have been in operation for close to a decade: it therefore seems
safe to say that the field hasmoved beyond the “proof-of-concept”
phase and is now preparing to roll-out the technology on a much
larger scale.

Realizing the full potential offered by marine ecological
forecasting can, however, seem like a daunting task, currently
available forecast products notwithstanding. The underlying
complexity of biological systems and the difficultly of observing
life in the ocean are particularly challenging obstacles.
Nevertheless, it is worth remembering the tremendous progress
that has been made in other fields: meteorology, in particular,
makes for a particularly inspirational example. Starting from the
early numerical experiments of Lorenz in the 1950s, weather
forecasting has progressed steadily and surely to the point where
reliable 5 and 7 day forecasts are now a reality (Figure 4), a
situation that was pure fantasy just a few decades ago (Bauer
et al., 2015). These advances have occurred in spite of challenging
observational difficulties and the inherent complexity and
chaotic nature of weather systems. Marine biological science
faces many similar problems today. While it is tempting to
despair of the complexity of ecosystems, the lessons from the
history of numerical weather prediction teach us that useful
products can be developed in the face of complexity.

The pathway followed by marine ecological forecasting,
however, will likely be different from the incremental progress
of numerical weather prediction (Figure 4). We expect the
next few years to exhibit a form of “Cambrian explosion” in
the number and variety of such forecast products, as marine

researchers become aware of the potential of forecasting and start
to populate the “niche.” We expect that this second generation
of products will be dominated by direct use of the available
model outputs: this is the approach advocated in the section
“How to go forward.” However, once the initial “low-hanging
fruit” products have come online, progress can be expected to
be more incremental in nature, as the joint development of
forecast systems between physical modelers andmarine scientists
starts to address the more challenging problems; indeed, such
collaborations are already starting to emerge e.g., the J-SCOPE
forecasting system in the California Current (Kaplan et al., 2016;
Siedlecki et al., 2016).

The marine ecological forecast products that have emerged
thus far are by no means distributed uniformly across the globe,
or even across the developed world. While Australia has clearly
been the pioneer, with multiple mature operational products,
and the United States has also seen rapid development of
operational products within the last few years, Europe has yet to
see the first such products emerge. Counterintuitively, the waters
surrounding Europe have some of the longest forecast horizons in
the world (Figure 3), particularly in the North Atlantic sub-polar
gyre region where decadal-scale forecasts are a reality (Matei
et al., 2012b; Meehl et al., 2014), but also in its shelf seas (Stock
et al., 2015). Moreover, many of its seas have a long history of
scientific investigation and some of the key hypotheses about fish
stock productivity were inspired by variations in European stocks
(Hjort, 1914; Paasche et al., 2015). We postulate two potential
explanations for this discrepancy. Firstly, while local fisheries in
Australia and the USA essentially are governed by one national
agency, management of European fisheries needs to balance the

FIGURE 4 | Development of weather forecast skill since 1981 for 3, 5, 7, and 10 day lead times for the northern (NH) and southern hemispheres (SH). Forecasts are

regarded as being useful if they exceed a skill of 60%, while >80% is considered to be of high accuracy. Forecast skill is the correlation between the forecasts and the

verifying analysis of the height of the 500-hPa level, expressed as the anomaly with respect to the climatological height. The collapse of the curves in the late 1990s is

due to advances in incorporating satellite observations into forecast models. Reprinted by permission from Macmillan Publishers Ltd, Nature (Bauer et al., 2015)

copyright 2015.
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interests of many nations at the same time, and therefore may
be less flexible and slower to respond to new opportunities.
Secondly, both Australia and the USA border the Pacific Ocean
and their waters are influenced by strong and regular variability
in the form of both ENSO and the Pacific Decadal Oscillation
(PDO). Furthermore, many of the first seasonal forecasts of
the ocean (for ENSO) were developed in this area more than
a decade ago, while the dominate mode of variability in the
North Atlantic (the NAO) has until recently been thought to be
unpredictable (Scaife et al., 2014; Smith et al., 2016), again giving
the Pacific a natural advantage in this respect. Nevertheless, the
high predictability of the front doorstep of Europe represents a
tremendous potential that we expect to see tapped in the future.

As marine forecasts become more common, we can
also expect to see both dramatic failures and unintended
consequences emerge. These negative outcomes may result
if a forecast fails in a technical sense, but they will also
arise if forecasts are not used or interpreted properly. As the
technical potential for forecasting in marine systems becomes
more tangible, the need is rising for systematic processes to
engage end-users in designing forecasts that can effectively
support their specific decision-making requirements. In addition,
information that is understandable to stakeholders about what
the forecast provides, temporal and spatial scales at which it is
relevant, its associated levels of uncertainty and its limitations
is also critical. In many cases, successful use of a forecast
will require that stakeholders beyond the immediate users are
capable of interpreting the forecast correctly, so as not to
disrupt highly connected systems in which actors may have
competing interests, such as fishery governance systems and
seafood supply chains. Active engagement with end-users to
communicate the limitations and assumptions inherent in these
forecasts is therefore critical to minimize the problems created
when forecasts inevitably fail or are misused.

In conclusion, we have reviewed and highlighted the lessons
learned so far from this first generation of forecast products.
While the recommendations made here will not guarantee the
successful development of other popular prediction systems in
the future, they can nevertheless be used to increase the rate of
development, identify “low-hanging fruits” where there is a good
chance of developing forecast systems and ensure the relevance
of the products to end-users. Following such an approach will,

we believe, lead to a rapid blooming of forecast products that
can close the gap between the potential and the reality of marine
ecological forecasting.
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