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Automatic detection of sow
posture and estrus based on
convolutional neural network

Hongxiang Xue1,2, Jinxin Chen1,2, Qi’an Ding1,2, Yuwen Sun1,2,
Mingxia Shen2,3*, Longshen Liu2,3, Xudong Chen4 and
Junyi Zhou4

1School of Engineering, Nanjing Agricultural University, Nanjing, China, 2Key Laboratory of Breeding
Equipment, Ministry of Agriculture and Rural Affairs, Nanjing, China, 3School of Artificial Intelligence,
Nanjing Agricultural University, Nanjing, China, 4Sheyang County Bureau of Agriculture and Rural
Affairs, Yancheng, China

Estrus detection is an essential operation in the breeding of sows, and accurate

estrus detection is immensely important to maintain the productivity and

reproductive performance of sow. However, traditional sow estrus detection

relies on the manually back-pressure test, which is time-consuming and labor-

intensive. This study aimed to develop an automatic method to detect estrus. In

this study, a model based on the optimized yolov5s algorithm was constructed

to detect the four sow postures of standing, sitting, sternum, lateral, and

calculated the frequency of posture change in sows. Based on this, we

studied the behavior of sows before and after estrus. The method

embedded a convolutional block attention module into the backbone

network to improve the feature extraction capability of the model. In

addition, the object box judgment module was used to avoid interference

fromother sows in the detection region. Accelerate the optimizedmodel on the

TensorRT platform, ensuring that the embedded graphics card can run the

model with lower latency. The result shows that the precision of estrus

detection is 97.1%, and the accuracy of estrus detection is 94.1%. The

processing time of a single image on the embedded graphics card is 74.

4 ms, and this method could better meet the estrus detection demand in

sow production.

KEYWORDS

sow, posture, estrus, machine vision, YOLOv5

1 Introduction

Estrus detection is an important link in reproductive management of sows, and the

accuracy and timeliness of estrus detection directly affect the judgments of swine farm

workers on ovulation time in post-weaning sows [1]. Behavioral expression of sow is a

reflection of dynamic changes of hormone levels [2]. In estrus, sow rest time decreased,

frequency and duration of activity, and standing time increased. Real-time detection of the

sow posture helps to automatically monitor their estrus status and health status [3].

OPEN ACCESS

EDITED BY

Leizi Jiao,
Beijing Academy of Agriculture and
Forestry Sciences, China

REVIEWED BY

Huaibo Song,
Northwest A&F University, China
Guofeng Han,
Jiangsu Academy of Agricultural
Sciences (JAAS), China

*CORRESPONDENCE

Mingxia Shen,
mingxia@njau.edu.cn

SPECIALTY SECTION

This article was submitted to Optics and
Photonics,
a section of the journal
Frontiers in Physics

RECEIVED 05 September 2022
ACCEPTED 26 September 2022
PUBLISHED 11 October 2022

CITATION

Xue H, Chen J, Ding Q, Sun Y, Shen M,
Liu L, Chen X and Zhou J (2022),
Automatic detection of sow posture and
estrus based on convolutional
neural network.
Front. Phys. 10:1037129.
doi: 10.3389/fphy.2022.1037129

COPYRIGHT

© 2022 Xue, Chen, Ding, Sun, Shen, Liu,
Chen and Zhou. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 11 October 2022
DOI 10.3389/fphy.2022.1037129

5

https://www.frontiersin.org/articles/10.3389/fphy.2022.1037129/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1037129/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1037129/full
http://openaccess.thecvf.com/content_ECCV_2018/html/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.html
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1037129&domain=pdf&date_stamp=2022-10-11
mailto:mingxia@njau.edu.cn
https://doi.org/10.3389/fphy.2022.1037129
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1037129


Some scholars have done some studies about sow’s visits to

boars or bionic boars. Houwers 1988) [4] used a ‘ticket-window’

to monitor the frequency of boar visits, and the results showed

that when sows were estrus, the frequency of sow visits gradually

increased significantly. However, when multiple sows were

present in the detection area, the system could not detect the

estrus status of the sows. In order to solve the above problems,

Bressers et al 1995) improved the ‘ticket-window’ and divided the

data into subsets according to time, the accuracy rate of the

proposed method was over 90%, and the false negative rate was

less than 5% [5]. On this basis, Korthals 1999) comprehensively

considered the sow’s behavior of visiting boars and the activity of

individual sows. The sensitivity and accuracy of the model were

further improved, but the response time of the system was slow

[6]. To reduce response time and the number of false alarms,

Ostersen et al (2010) modeled separately the duration and

frequency of sow visits, and then fused the two models. The

results showed that the model was more specific than this

previous study [7]. The above studies are all based on the

‘ticket window’ of boars, but few studies have been reported

based on the ‘contact window’ of bionic boars. Lei et al (2021)

used bionic boar and image acquisition device to detect estrus in

sows. The results showed that the interaction frequencies during

the estrus period was significantly higher than that of sows

during the non-estrus period [8]. In summary, the use of

boars or bionic boars to detect estrus is an effective method.

However, in recent years, with the outbreak of African swine

fever, large-scale pig farms have begun to reduce the use of boars.

In order to solve the problemmentioned above, many scholars

began to try to find some reliable alternative methods. Bressers

1993) used an accelerometer and set activity thresholds to detect

estrus in sows. Findings showed that the acceleration change range

of sows during the estrus period was significantly higher than that

of sows during the non-estrus period [9]. However, due to some

factors such as service life, wearable sensors cannot be popularized

and applied in large-scale pig farms. Freson et al 1998) used infra-

red sensor to continuously monitor the body activity of the sows.

According to the results, when using the daily body activity of sows

as themodel parameters, the accuracy rate of the estrus of sows was

86% [10]. This study is the first published literature on estrus

detection in individually housed sows. Jeong et al (2013) used the

wireless sensor network to measure the activity in real time, and

found that sows in estrus increase in activity [11]. Wang et al

(2020) put posture sensors on the neck of the sows to collect the

posture data, the results showed that when the recognition time of

estrus behavior was 30 min, the recognition error rate was 13.43%,

the recall rate was 90.63%, and the specificity was 81.63% [12].

However, the device used in this study needs to be worn on the

neck of the sow and cannot work for long periods of time.

According to the above, it is feasible to predict the estrus time

of a sow through detecting the frequency of posture change in sows.

With the development of the deep learning theories and

edge-computing device, the convolutional neural network

(CNN) has been widely applied in image classification,

image segmentation, object detection [13]. However, most

traditional CNN is limited by hardware resource, and made

it difficult to be deployed in the edge device or mobile terminal.

Lightweight design is the major Frontier to improve the

detection speed and minimize expenditures [14, 15]. At

present, lightweight CNN has been gradually applied in

space target detection, unmanned aerial systems (UAS) and

so on [16].

In modern sow production, estrus detection in sows still rely

largely on workers’ experience. After stimulation of the ribs,

abdomen and vulva, the estrus state is determined according to

the back-pressure test. However, this method is often time-

consuming and laborious and mainly depend on the

experience of the breeders, which is difficult to meet the needs

of real-time detection of sows in modern large-scale sow

production.

In response to the above problems, this paper proposes an

automatic estrus detection method based on lightweight CNN,

and deploy it on a low-cost embedded GPU. This research

approach is highly automated, contactless. The main

contributions of this paper are presented as follows.

1) The YOLOv5s model was used as the base models, and added

a convolutional block attention module (CBAM) for feature

fusion.

2) The estrus status of sows was analyzed according to the

frequency of posture change in sows.

3) The posture change characteristics of different types of

abnormal estrus sows was further explored.

2 Materials and methods

All experimental design and procedures of this study were

approved by the Animal Care and Use Committee of Nanjing

Agricultural University, in compliance with the Regulations for

the Administration of Affairs Concerning Experimental Animals

of China (Certification No. SYXK [Su]2011-0036).

2.1 Animals, housing, data acquisition

The data were collected at the Shangbao pig farm, Yancheng

City, Jiangsu Province, from 15 September 2021 to 12 January

2022.72 sows (Yorkshire × Landrace). We used 72 empty sows

(Yorkshire × Landrace) that were second or third parity sows.

They were transferred to gestation crates (2.2 m × 0.8 m × 0.7 m)

after lactation. House temperature was maintained at 24–27 °C,

and the relative humidity was 66–82%.

The video acquisition system was mainly composed of three

parts: the camera, the wireless, the embedded graphics card

(GPU). The system designed for this study is shown in
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Figure 1. The RGB camera (DS-2CD3346WD-I, HIKVISION,

Hangzhou, China) was installed 2.3 m above the gestation crate.

Each camera was connected to an embedded GPU (Jetson Nano

4 GB Developer Kit, Navidia, America) via an ethernet cable. For

the image acquisition device, the acquisition frequency was set to

1,500 fps, and the resolution was 2,560 (horizontal

resolution) ×1,440 (Vertical resolution). The wireless is used

for data transmission, and the embedded GPU is used for data

processing. During the experiment, the estrus of sows was

detected by artificial estrus check and hormone determination.

FIGURE 1
Sketch of video acquisition.

TABLE 1 Definition of different sow postures.

Posture Definition Sample

Lateral The limbs are fully extended and the breast region is clearly visible

Sternum The limbs are hidden under the body, and the breast area is not visible

Sit The head region is significantly higher than the tail region

Stand There is no contact between the abdomen and the ground, and there is no extrusion deformation of the body
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The estrus frequency was checked twice a day, at 9:00 a.m. and 3:

00 p.m.

2.2 Data set realization

Compared with the sows in non-estrus, most sows in estrus

are more active. In order to compare the activity of sows in estrus

and non-estrus, the postures were divided into four categories,

including lateral, sternum, sit, stand. The definition of each

posture is shown in Table 1.

In order to improve the generalization ability of the model

and ensure that the dataset could cover different times,

6,000 pictures were selected as data samples. Furthermore, the

images with high similarity were removed, and a total of

5,863 pictures were saved. In these pictures, sows in four

different postures (stand, sit, sternum, lateral) were annotated

using LabelImg software. The dataset is randomly partitioned

into three subsets: 80% of them as the training set, 10% as the

validation set, and the remaining 10% as the testing set.

2.3 Model building

This study developed a new method for estrus detection in

sows. The flow of the estrus detection algorithm is presented in

Figure 2. First, the images of the sows were captured regularly

using an embedded GPU. Second, use the optimized

yolov5 algorithm to detect the posture of the sow. Third, the

object box judgment module determines the coordinates of the

sow to be tested and outputs the posture with the highest

confidence. Fourth, according to the results of sow posture

detection, the frequency of posture transition before and after

the sow estrus and the activity characteristics of abnormal estrus

sows were analyzed. There are four types of abnormal estrus sows

studied in this paper, namely silent estrus, persistent estrus,

repeating estrus and postpartum anestrus. The silent estrus

sows are reduced feed intake and restlessness, but no

significant changes in vulva color and shape. The persistent

estrus sows remain depressed or excited, and their estrus go

exceeded the normal period, even for more than 10 days. The

estrus duration of repeating estrus sows is short, and it heat up

again a few days later. The postpartum anestrus sows have no

change in feed intake, no estrus symptoms, and no estrus within

10 days after weaning.

2.3.1 Program environment and training
parameter

The model of this paper relies on the Pytorch1.6 deep

learning framework. The processor model of the test platform

is Intel® CoreTM i7 - 11700 k, the graphics card model is

NVIDIA GTX3090, and the graphics card memory is 24G.

The deep learning environments such as Python3.8,

CUDA11.4, and Opencv4.5.1 are configured on the

Ubuntu18.04. Optimized model applied to embedded GPU.

The number of epochs was set to 300 to allow adequate time

for model convergence.

2.3.2 Basic model
YOLOv5 was selected to work as the base model in this study.

According to different network depth and width, YOLOv5 can be

divided into four basic network structures: YOLOv5s,

YOLOv5m, YOLOv5l and YOLOv5x [17]. The model is

mainly composed of four modules: the input module, the

backbone module, the neck module, the prediction module.

The input module is used to input the image of sow posture,

the backbone module for sow posture image feature extraction,

the neck module for sow posture image feature fusion, and the

prediction module for sow position prediction [18].

In input module, to improve generalization of the model,

image mosaic is used to enhance the datasets [19]. In backbone

module, it mainly includes the focus structure and the cross stage

partial Network (CSPNet). Among them, the focus structure is

mainly used to complete the slice operation, to extract the

posture features more fully, and effectively to reduce the loss

of data in the down-sampling process. The CSPNet is mainly

used to reduce the computational bottleneck and memory

overhead. Optimizing the core network with CSPNet can

improve the model detection performance, enhance the

FIGURE 2
The flow of the estrus detection algorithm.
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learning ability of CNN, and fully reduce the computation and

inference time. In neck module, it mainly includes the feature

pyramid network (FPN) and the path augmentation network

(PAN). Among them, FPN uses a top-down architecture to fuse

the feature of high-level layers. Conversely, PAN uses a down-top

architecture to transfer strong location features. In prediction

module, to improve location precision and recognition accuracy,

we used the generalized intersection over union (GIoU _loss) as

the loss foundation [20].

The performance evaluation indicators of the sow posture

classification model mainly include model size, precision, recall,

f1score, detection speed, parameters, The calculation method of

precision is shown in Eq. 1, the calculation method of recall is

shown in Eq. 2, and the calculation method of f1score is shown in

Eq. 3.

Precison � TP

TP + FP
, (1)

Recall � TP

TP + FN
, (2)

F1score � 2 ×
Precision × Recall

Precision + Recall
. (3)

2.3.3 The object box judgment module
The accurate detection of sow posture to be tested is the basis

of analyzing sow estrus status. Since multiple sows appear in the

region to be tested, we set a rectangular bounding box

surrounded by four pixels [150,350], [2,380,350] [150,1,020],

and [2380,1020]. Furthermore, due to the existence of transition

posture, a single sow has multiple output results. To solve this

issue, a judgment module was added after the prediction module,

and this ensured that the output is the highest degree of

confidence score.

2.3.4 CBAM module
Due to the influence of sow body pollution and poor light

conditions, it is difficult to extract the characteristics of limbs,

breast region and abdominal areas. Using the attentionmechanism

can suppress the redundant background information, enhance the

feature representation of the sow limb parts in the image, and

improve the recognition performance of the posture detection

model. The channel attention and spatial attention are combined

in the reverse residual block to highlight the target features in the

feature graph generated by the deep convolution and improve the

recognition performance of the model [21, 22]. The output feature

map of the CBAMmodule acting on the deep convolution. CBAM

is a simple and efficient attention module for feed-forward CNN,

which takes a given feature map in turn along the channel

attention module (CAM) and the spatial attention module

(SAM). CBAM can assist the sow posture detection model to

locate the region of interest and suppress useless information. The

overall flow of the CBAM module is shown in Figure 3.

In Figure 3, MC represents channel attention in the

Convolutional Block Attention Model, and MS represents

spatial attention model. The Mc calculation formula is shown

as in Eq. 4, The MS calculation formula is shown as in Eq. 5.

Mc(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F))),
� σ(W1(W0(Fc

avg)) +W1(W0(F c
max ))),

(4)

Ms(F) � σ(f7×7([AvgPool(F);MaxPool(F)])),
� σ(f7×7([Fs

avg;F
s
max ])).

(5)

In Eq. 4, MLP is a Multi-Layer Perceptron Neural network

[23], Avg pool () represents the module averaging pooling of the

feature graph, Max pool () means the module maximizing

pooling of the feature graph, and Fc
avg ,F c

max represent the

global average pooling and the maximum average pooling of

the channel attention mechanism [24], respectively.

FS � σ(Conv(Cat(Favg, F max))) ⊗ FX,

� σ(f7×7([Fs
avg, F

s
max ])).

(6)

In Eq. 6: Cat represents the connection operation, f7×7 is a

convolution of 7 × 7, and Fs
avg , F

s
max represent the global average

pooling and the maximum average pooling operations of the

spatial attention mechanism, respectively. YOLOv5s has no

attention preference during feature extraction, and uses the

same weighting method for features of different degrees of

importance. In this study, we solve the problem of no

attention preference in the original network by introducing

CBAM modules respectively after three CSP modules,

enabling the network to pay more attention to the target of

interest during the detection process.

2.3.5 Model lightweight
To achieve rapid inference of the posture classification

model, the CNN model was optimized. First, to ensure that

the embedding can run this model with higher throughput and

FIGURE 3
CBAM structure.
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lower latency, we remove the useless output layer in the model.

Second, to achieve the vertical integration of the network

structure, the three layers of CONV, BN, and Leaky Relu were

integrated into one CBL layer. Third, to achieve a horizontal

combination of the network structures, the three 1 × 1 CBL layers

were fused into one 1 × 1 CBL layer. Fourth, to reduce the

transmission throughput, the contact layers in the network

structure were removed. After completing the above steps, the

model was deployed to the embedded GPU. The model

lightweight procedure is shown in Figure 4.

FIGURE 4
The lightweight process of the model.

FIGURE 5
Training and test results for the sow posture detection model. (A) Loss curve (B) Evaluate metrics curve.
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2.3.6 Contrast models
In order to select the optimal model, this study compared the

detection performance of different size YOLOv5 models

(YOLOv5x, YOLOv5l, YOLOv5m, YOLOv5s), multiple

attention mechanisms, including CAM, efficient channel

attention module (ECA), and squeeze and excitation module

(SE) [25, 26]. In addition, this study compared the optimization

effect of the bidirectional feature pyramid network and the

attention mechanism. Furthermore, we compared the

proposed model with some representative lightweight object

detection models, including MobileDets, NanoDet. MobileDets

is a model based on the extended search space series, which can

achieve a better balance between delay and accuracy on mobile

devices [27]. NanoDet is an ultra-fast and lightweight mobile

Anchor-free object detection model, and it is also convenient for

training and transplantation [28, 29].

3 Results and Discussion

In Section 3.1, this study analyzes the training and testing

results of the model. In Section 3.2, Section 3.3 and Section 3.4,

the sow posture detection performance of different models is

compared. In Section 3.5, the detection performance of the model

on night and daytime data is tested. In Section 3.6, the

characteristics of the frequency of posture change in empty

sows before and after estrus are analyzed and tested. In

Section 3.7, the characteristics of the frequency of posture

change in abnormal estrus sows were explored. In Section 3.8,

The shortcomings of the study are analyzed.

3.1 Training and testing results

The loss curve for posture detection model is shown in

Figure 5A. Train/Box_loss, Train/Obj_loss, Train/Cls_loss

represent the position coordinate prediction loss, confidence

prediction loss, and category prediction loss of the training

dataset, respectively. Val/Box_loss, Val/Obj_loss, Train/

Cls_loss represent the position coordinate prediction loss,

confidence prediction loss, and category prediction loss of the

validation dataset set, respectively. In the initial stage, the loss

value decreases rapidly, and then gradually stabilizes, which

means that the model gradually converges.

FIGURE 6
P-R curve.
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Figure 5B shows the test results of the sow posture detection

model. Where mAP 0.5 is the mean average precision (mAP) of

IoU (Intersection over Union) at 0.5, mAP 0.5:0.95 is the average

of IoU in the threshold range [0.5,0.95] (the average precision is

calculated every 0.05). As can be seen from the four curves, the

model can converge quickly and has high detection performance.

To evaluate the detection performance of the model, we

plotted and analyzed the PR curve, The PR curve is formed by the

precision and recall rate of the model. Among them, the recall (R)

is the x-axis, and the precision (P) is the y-axis. It can be seen

from Figure 6 that as the recall continues Increase, precision

gradually decreases, and gradually reaches a balance point. At

this time, recall and precision are both above 95%, which shows

that the model has better performance for sow posture detection.

3.2 Results of YOLOv5

Test results for different sizes of YOLOv5 are shown in

Table 2. YOLOv5s is the network with the smallest depth and

the smallest width of the feature map in the YOLOv5 series.

Although the detection accuracy is slightly lower than YOLOv5l,

and the recall rate is slightly lower than that of YOLOv5m, it still

can maintain a high F1score, and the number of parameters and

the detection times are greatly reduced. The model size is only

14.4 MB, which can meet the deployment and use of embedded

GPU. Therefore, YOLOv5s is selected for further optimization in

this paper.

3.3 Results of optimization methods

The test results of different optimization methods are

shown in Table 3. The Bi-FPN network has the best effect

on improving the precision of model detection, but with slightly

lower recall. Among the optimization methods based on

attention mechanism, ECA module has the best effect on

improving the precision of the model, and SE module has

the best effect on improving the precision of the model.

Based on different evaluation indexes, CBAM module has

the best comprehensive improvement effect on sow posture

detection.

TABLE 2 Experimental results of YOLOv5 with different sizes.

Model Size (MB) Precision (%) Recall (%) F1score (%) Speed (ms) Parameters

YOLOv5s 14.4 96.8 94.9 95.8 7.6 7.03×106

YOLOv5m 42.2 96.1 95.7 95.9 8.8 2.09×107

YOLOv5l 92.8 98.4 93.9 96.1 10.3 4.61×107

YOLOv5x 173.1 96.3 94.7 95.5 12.8 8.62×107

TABLE 3 Experimental results of different optimization methods.

Model Size (MB) Precision (%) Recall (%) F1score (%) Parameters

YOLOv5s 14.4 96.8 94.9 95.8 7.03×106

YOLOv5s + Bi-FPN 15.5 97.3 93.1 95.2 7.09×106

YOLOv5s + CA 14.8 95.1 96.1 95.6 7.22×106

YOLOv5s + ECA 14.7 97.2 95.2 96.2 7.20×106

YOLOv5s + SE 14.8 94.9 97.6 96.2 7.23×106

YOLOv5s + CBAM 14.8 97.1 96.1 96.6 7.23×106

TABLE 4 Experimental results of different lightweight models.

Model Size (MB) Precision (%) Recall (%) F1 score (%) Speed (ms)

YOLOv5s + CBAM 14.8 97.1 96.1 96.6 10.4

MobileDets 16.0 95.3 89.9 92.5 8.2

Nanodet 17.1 97.5 91.4 94.3 10.0
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3.4 Contrast model

The test results of different lightweight models are

shown in Table 4. Compared with the optimized model,

MobileDets can achieve faster detection of sow posture, but

precision and recall are lower than the optimized model.

The precision and detection speed of Nanodet model are

slightly faster than that of the optimized model, but the

recall is far lower than that of the optimized model.

Combining precision, recall, f1score and detection speed,

the optimized model has the best detection performance.

The test results show that the processing time of a single

picture on the embedded GPU is 74.4 ms, which can meet

the needs of real-time detection.

3.5 Model testing

To further test the performance of the model for sow posture

detection, 100 images of each of the four postures were selected

and tested. Among them, there are 50 images collected at night

and 50 during the day, for a total of 400 images. The detection

results of different sow posture are shown in Figure 7. Below the

white segmentation line is the manually marked sow posture

(blue line), and above the white segmentation line is the model

automatic detection result (orange line), the night image

annotation and identification results are gray background

area, and the daytime image annotation and identification

results are white background area. According to Figure 7, The

model classified stand, sit and lateral postures more well, but a

FIGURE 7
Different sow posture detection results.

FIGURE 8
The frequency of posture change in sow (sow-2) within 7 days after lactation.
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little inferior for sternum, that is because the inter class gap

between sternum and the others is smaller than that between

stand, lateral, and sit. Furthermore, there are a few missed

detections, which is caused by changes in light. Overall, the

model is able to accurately detect daytime and nighttime sow

posture.

3.6 Estrus analysis

To explore the daily patterns of empty sow behavior, this

study analyzed the frequency of posture change in 52 empty

sows within 7 days after lactation. The study selected the

remaining 20 sows as test samples. For a fifth day estrus sow

(sow-2), the statistical results are shown in Figure 8. The study

divides a day into three time periods: Time-1, Time-2, and

Time-3. Time-1 is 0–5 am, Time-1 is 6 am-6 pm, and Time-3 is

the remaining time.

The frequency of posture change in sow-2 on the first day

remained high after lactation, which is caused by the stress of

transfer group. At time-1, the average frequency of posture

change in sow was up to 6.98 times per hour. When sows

changed from stress to proestrus, the frequency of posture

change was significantly reduced, with the average frequency

of posture change in the sow decreased to 1.43 times per hour.

When the sow was in estrus, its frequency of posture change in

the sow increased significantly. With the average frequency of

posture change in sows up to 6.14 times per hour, which

generally increased 3-4 times compared with proestrus. When

the sow ends in the estrus period, its average PTF will gradually

increase, with the average frequency of posture change in sows

decreasing to 5.69 times per hour, generally down by

FIGURE 9
The time of each posture at 1–6 days after the end of the stress phase.

FIGURE 10
The frequency of posture change in different types of sows.
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0.2–0.3 from the estrus period. However, this trend is not

statistically significant for time-2 or time-3. The study further

analyzed the time of each posture after stress, and the results are

shown in Figure 9. It can be seen that when an empty sow is

estrus, the stand and sternum time increases and the lateral time

decreases. This is consistent with the conclusion of Lee et al [30].

Based on the above conclusions, the remaining 20 sows were

selected for testing in this study. Among the 20 sows, including

3 with abnormal estrus sows and 17 with normal estrus sows. The

test results showed that among the remaining 17 sows, only one

with estrus was wrongly detected, and 94.1% of estrus sows could

be accurately detected.

3.7 Abnormal estrus analysis

Due to nutrition, disease, sow house environment and other

factors, some sows are unable to estrus and ovulate normally after

weaning [31]. Abnormal estrus sows were placed into five main

categories: silent estrus, persistent estrus, repeating estrus and

postpartum anestrus, accounting for 12.5% of the experimental

sows. The frequency of posture change of different types of empty

sows is shown in Figure 10. Sow-1 is normal estrus sow, sow-2 is

silent estrus sow, sow-3 is persistent estrus sows, sow-4 is

repeating estrus sow, and sow-5 is postpartum anestrus sow.

For silent estrus (sow-2) or postpartum anestrus sow (sow-5), the

frequency of posture change remained relatively low. In the

Time-1, the average frequency of posture change of two kinds

of sows is less than 1.63 times per hour. For persistent estrus sows

(sow-3), the frequency of posture change is at high levels. In the

time-1, the average frequency of posture change of this kind of

sows is higher than 11.74 times per hour, significantly lower than

those in normal estrus. However, for postpartum anestrus sows,

the average frequency of posture change of this kind of sows

fluctuates up and down irregularly, which is usually caused by

sow malnutrition or ovarian dysfunction.

3.8 Current deficiencies and subsequent
studies

For this study, although the preliminary method for

detection of estrus had been achieved, there are still

shortcomings in this study. It was found that the light

condition had some influence on the sow posture detection.

The feature map of the five light conditions, including normal

light, nighttime light, uneven light, overexposure,

underexposure, were visualized, and class activation maps

(CAM) were generated, as shown in Figure 11. In normal

light, nighttime, overexposure, the model can accurately

identify the sow object and classify its postures. However, in

uneven light, the model can accurately predict sow position, but

there is some false detection of posture. Through testing, it was

found that due to the dim light in the breast area of some sow

FIGURE 11
Detection results in different light.
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images, the model could not accurately distinguish between the

lateral and sternum. In uneven light, the model had difficulty in

identifying sows. In the next phase of the study, we will synthesize

the dynamic detection results of the video data to further

improve the posture detection precision of the model.

4 Conclusion

In this past study, we proposed an algorithm for sow posture

detection based on optimized YOLOv5s and used it for activity

analysis of sows in estrus. It could be concluded from the testing

results and discussions that:

1) Combining a CBAM module with the YOLOv5 model

helped in the detection of sow postures. This method

could be used to continuously and automatically monitor

sow behavior.

2) The study found that when empty sows reached in estrus, the

frequency of posture change in most sows increased. The

standing and sternum time of sows increased, and the lateral

time decreased compared with the non-estrus period.

3) This study compared the frequency of posture change in

abnormal estrus abnormal estrus sows. In the follow-up

study, the testing range of abnormal estrus sows will be

further expanded
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Netted melons are welcomed for their soft and sweet pulp and strong aroma

during the best-tasting period. The best-tasting period was highly correlated

with its soluble solid content (SSC). However, the SSC of the intact melon was

difficult to determine due to the low relationship between the hardness, color,

or appearance of fruit peel and its SSC. Consequently, a rapid, accurate, and

non-destructive method to determine the SSC of netted melons was the key to

determining the best-tasting period. A hyperspectral model was constructed to

estimate the SSC of intact netted melons. The combination of continuous

wavelet transform and partial least squares or random forest algorithm was

employed to improve the estimation accuracy of the hyperspectral model.

Specifically, the hyperspectra of the diffuse reflection and SSC of 261 fruit

samples were collected. The sensitivity band was screened based on the

correlation analysis and continuous wavelet transform decomposition. The

correlation coefficient and RMSE of the random forest regression model

decomposed by the continuous wavelet transform were 0.72 and 0.98%,

respectively. The decomposition of the continuous wavelet transform

improved the correlation coefficient by 5 and 1.178 times at 754 and

880 nm, respectively. The random forest regression model enhanced the

determination coefficient by at least 56.5% than the partial least squares

regression model, and the continuous wavelet transform decomposition

further enhanced the determination coefficient of the random forest

regression model by 4.34%. Meanwhile, the RMSE of the random forest

regression model was reduced. Therefore, the decomposition of the

continuous wavelet transform improved the stability and prediction ability of

the random forest regression model.

KEYWORDS

netted melon, soluble solid content, hyperspectra, continuous wavelet transform,
random forest

OPEN ACCESS

EDITED BY

Kun Wang,
Aerospace Information Research
Institute (CAS), China

REVIEWED BY

Ye Liu,
Beijing Technology and Business
University, China
Chifang Peng,
Jiangnan University, China

*CORRESPONDENCE

Xiaohe Gu,
guxh@nercita.org.cn

SPECIALTY SECTION

This article was submitted to Optics and
Photonics,
a section of the journal
Frontiers in Physics

RECEIVED 02 September 2022
ACCEPTED 29 September 2022
PUBLISHED 14 October 2022

CITATION

Zhang C, Shi Y, Wei Z, Wang R, Li T,
Wang Y, Zhao X and Gu X (2022),
Hyperspectral estimation of the soluble
solid content of intact netted melons
decomposed by continuous
wavelet transform.
Front. Phys. 10:1034982.
doi: 10.3389/fphy.2022.1034982

COPYRIGHT

© 2022 Zhang, Shi, Wei, Wang, Li, Wang,
Zhao and Gu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 14 October 2022
DOI 10.3389/fphy.2022.1034982

18

https://www.frontiersin.org/articles/10.3389/fphy.2022.1034982/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1034982/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1034982/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1034982/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1034982&domain=pdf&date_stamp=2022-10-14
mailto:guxh@nercita.org.cn
https://doi.org/10.3389/fphy.2022.1034982
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1034982


1 Introduction

Netted melon (Cucumis melo L. var. reticulatus Naud.) is a

member of the genus Cucumis, subtribe Cucumerinae. Netted

melon shows soft and sweet pulp and strong aroma for only

3–5 days which is known as the best-tasting period [1, 2]. The

best-tasting period of netted melons is highly correlated with

their soluble solid content (SSC). Specifically, the SSC increased

slowly when the pulp of fruit was hard with low sweetness and

weak aroma in the expansion stage of the fruit. The SSC reached a

certain threshold which remained for about 3–5 days when the

fruit showed a soft and sweet pulp and strong aroma. After the

best-tasting period, the SSC increased quickly with the obvious

drip loss and fibrosis of the pulp. Consequently, the SSC showed a

plateau for about 3–5 days during the whole growth period [3].

However, the plateau of the SSC was not related to the hardness,

color, or appearance of the fruit peel [1]. Therefore, the SSC was

the key to determining the best-tasting period of netted melons.

Hyperspectra was a non-destructive method for the internal

quality of intact fruit, which had determined the SSC of apple,

pear, pineapple, and jujube successfully based on the spectral

responses of the reflectance, transmission, or diffuse reflection of

fruit [4–10]. The peel of the netted melon was about 1.0 cm

which was thicker than that of apple, pear, pineapple, and jujube,

which was an obstacle to the acquisition of the transmission of

spectral [11]. Moreover, the chemical ingredient of the peel was

not related to the variation of the SSC. Consequently, the

reflectance of the peel would not reflect the variation of the

SSC. The diffuse reflection came from the muti-reflection in the

peel and edge pulp of the fruit. Therefore, the spectra of the

diffuse reflection showed the potential to include the SSC

information of fruit. However, the diffuse reflection had not

been used to construct the estimation model of intact netted

melons.

The diffuse reflection collected information on each ingredient

of the fruit, including the moisture, SSC, pectin, cellulose, and even

pollutants on the surface of the peel [12]. The SSC was relatively

low which led to a relatively weak spectral response [5]. Therefore,

an effective decomposition of the spectrum could improve the

estimation accuracy of the SSC. Spectral analysis techniques such

as mathematical transformation, principal component analysis,

and spectral absorption characteristic analysis had been used to

decompose the spectra to explore the SSC of fruit and enhance its

spectral sensitivity. Moreover, partial least squares (PLS), neural

networks, random forest (RF), and deep learning methods have

been used to acquire higher precision regressionmodels of the SSC

[8–10, 13, 14]. However, recent studies focused on the

enhancement of the sensitivity of spectral information of the

SSC, rather than finding the directions of different spectral

information in depth. Exploring an efficient spectrum

transformation to decompose the weak sensitive information

would improve the estimation accuracy of the SSC of the intact

netted melon.

A hyperspectral regression model was constructed to

estimate the SSC of intact netted melons in the current study.

The combination of continuous wavelet transform (CWT) and

PLS or RF was used to extract weak useful information and

improve the estimation accuracy of the SSC of intact netted

melon. Specifically, the spectra of the diffuse reflection and SSC

of 261 fruit samples were collected. The diffuse reflection was

collected based on the optimization of the incidence angle and

intensity of the light source, and acquisition times of the

spectrometer. The CWT algorithm was used to extract high-

and low-frequency detailed information at multiple

decompositional scales. Sensitive wavelet coefficients with the

SSC of the fruit were selected. Finally, an estimation model was

constructed to predict the SSC of the intact netted melon by the

PLS or RF.

2 Materials and methods

2.1 Sample preparation

A total of 261 netted melons (Cucumis melo L. var. reticulatus

Naud.) were harvested in June and July 2021 in Beijing Tongzhou

District International Seed Industry Science and Technology

Park (Tongzhou District, Beijing). During the best-tasting

period, the fruit was nearly round and light green with a light

yellow net. The fruit was around 1.50 kg per fruit with an SSC of 6

%–11%. Specifically, the melon was colonized on 5 February

2021 and pollinated on 2 April 2021. The random fruit was

harvested on June 2, June 12, June 22, and 2 July 2021,

FIGURE 1
Sketch of the spectrometer. 1: bracket; 2: LED-mounting
groove; 3: light source; 4: annular silicone buffer washer; and 5:
integrating sphere mounting hole.
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respectively. The harvested fruit was transported to the

laboratory immediately. The SSC and hyperspectra of the

diffuse reflection of the fruit were recorded.

2.2 Measurement of the hyperspectra of
the diffuse reflection

The hyperspectra of the diffuse reflection of fruit samples

were collected by a self-made spectrometer whose sketch was

shown in Figure 1. The sketch was 3D printed by the

Acrylonitrile Butadiene Styrene resin. The LED lights and

integrating spheres were mounted in a hemispherical frame. A

total of four LED lights with a color temperature of 6,500 K, light

flus of 210 Lux, and power of 3 W were mounted in the frame as

the light source (Guanghong HG-SG1XHH-F-3W, Guangzhou

Hengguang Light Co. Ltd., Guangzhou, China). The integrating

sphere was mounted on the bottom of the hemispherical frame

and connected to a spectral sensor. The spectral sensor collected

the spectrum ranging from 650 to 950 nm with a resolution of

2.5 nm based on the previous studies [7, 11]. The annular silicone

buffer washer was mounted on the grooves of the LED lights and

integrating sphere, which ensured the well fit of the fruit and

hemispherical frame. Specifically, the netted melon was placed on

the frame and ensured the well contact between the fruit surface

and the buffer washers. The LED light sent the light signal when

the spectral sensor collected the spectrum of the diffuse reflection

of fruit for 60 ms. A total of 30 hyperspectral were collected and

averaged as the sample spectrum. The surface of the fruit

contacted with the buffer washer on the integrating sphere

was marked for the SSC analysis.

2.3 Measurement of the soluble solid
content

After the measurement of the hyperspectra, a circle with a

radius of 1.0 cm was drawn with a marked point as the center on

the fruit surface. The cylinder of the fruit was cut. The edge pulp

with 1.0–2.0 cm from the exocarp of the cylinder was used for the

measurement of the SSC. The SSC of samples was measured by a

digital refractometer (PAL-α, ATAGO Company Ltd., Japan) at

room temperature with water as blank.

2.4 Screening of the sensitivity band

The sensitivity band was screened based on the correlation

analysis and CWT decomposition. The CWT is a signal

processing technology derived from the fourier transform. It

analyzes in the field of time and frequency at the same time,

which is helpful to extract the effective information in the signal

[15]. Specifically, the spectrum of the fruit was processed based

on the mexh wavelet base written in MATLAB language. The

original spectrum was decomposed by 10 layers of wavelet to

generate a series of wavelet coefficients (Eq. 1 and Eq. 2).

Ψa,b � 1��
a

√ Ψ(
λ − b

a
), (1)

where a is the expansion factor, b is the translation factor and λ Is

the number of bands of spectral data.

Wf (a, b) � (f,Ψa,b) � ∫
+∞

−∞
f(λ)Ψa,b (λ)dy, (2)

where f(λ) is the spectral reflectance, and the wavelet

coefficients include two dimensions, including wavelength

(650–950 nm) and decomposition scale (1, 2, 3,..., and 10).

The wavelet coefficient is the number of scales, and the list is

the matrix of the number of wavelengths.

2.5 Establishment and validation of the
regression model

The spectral estimationmodels were prepared by the PLS and

RF, respectively. Specifically, the sensitivity bands based on the

correlation analysis and CWT were used as the independent

variables with the SSC as the dependent variables.

A training set and testing set were prepared with a sample

number of 3:1. In order to ensure the uniform distribution of

each set, all samples were sorted from large to small according to

the SSC of the fruit. The samples with the number of multiples of

four were nominated as the testing set (66 samples), and the

others were nominated as the training set (195 samples). The

testing set of 66 samples was used to validate the determination

coefficient (R2) (Eq. 3) and root mean squared error (RMSE) (Eq.

4), and Line y = x of the prediction spectral model, respectively.

R2 �
∑N

i�1(PSSCi − ASSC)
2

∑N
i�1(ASSCi − ASSC)

2, (3)

RMSE �
������������������
∑N

i�1(ASSCi − PSSCi)2
N

√

, (4)

where ASSCi and PSSCi represent the actual and predicted SSC

of fruit i, respectively;N represents the number of validation

samples; and ASSCi represents the average measured value

of SSC.

Specifically, R2 is used to characterize the stability of the

model. The closer it is to 1, the more stable and better fitting the

model is. RMSE is used to detect the prediction ability of the

model. The smaller the RMSE is, the better the prediction ability

of the model is. Line y = x represents the deviation of the point

composed of the measured value and the predicted value from in

the Line y = x.
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3 Results and discussion

3.1 Hyperspectra and SSC of netted
melons

The hyperspectra and SSC of 261 fruit were collected. The

SSC covered a relatively wide range from 3.8% to 9.6% with the

average value and standard deviation of 6.93% and 1.60%,

respectively. The samples were divided into high-SSC, middle-

SSC, and low-SSC groups based on the SSC. Specifically, the

SSC of the high-SSC, middle-SSC, and low-SSC groups was

6.9%–9.6%, 5.8%–6.9%, and 3.8%–5.8%, respectively. The

hyperspectra of the three groups were averaged and shown

in Figure 2. The relative intensity of the hyperspectra

decreased sharply at 690–750 nm, remained relatively

constant at 770–830 nm, and increased at 850–950 nm. The

relative intensity of the hyperspectra was negatively related to

the SSC. The fruit of the high SSC group showed the weakest

relative intensity, while that of the low SSC group showed the

strongest relative intensity. Being different from our results,

the spectra with the wavelength of 750–950 nm were used to

estimate the SSC of melon [11]. The narrow range of the

spectra possibly missed the sensitivity band of the SSC

information.

3.2 Screening the sensitivity band of the
hyperspectra

The sensitivity band was screened based on the correlation

analysis and CWT decomposition, respectively. The profile of the

correlation coefficient between the SSC and relative intensity of

the hyperspectra of netted melons is shown in Figure 3, which is

based on 301 points due to the resolution of 2.5 nm of the

spectrometer. A positive correlation was shown in 724–739 and

800–810 nm, while a negative correlation was shown in the other

bands. The correlation coefficient ranged from -0.49 to 0.08. The

absolute value of the correlation coefficient reached the highest at

826 nm with a correlation coefficient of −0.49. Therefore, the

band of 826 nm was the sensitivity band based on the correlation

analysis.

CWT served as a time-frequency window with shorter time-

window width for higher frequencies and wider time-window

width for lower frequencies. Consequently, CWT possibly raised

the spectral response of useful information and removed the

noise of the spectra [15, 16]. Figure 4 showed the spectra

decomposed by the CWT on a 10 scale. The decomposed

spectra of Scale 1-6 showed a large variety smoothly, while

FIGURE 2
Spectral profiles of netted melons.

FIGURE 3
Correlation coefficient between the SSC and relative intensity
of the hyperspectra of netted melons.

FIGURE 4
Decomposed spectra of netted melons by CWT.

FIGURE 5
Correlation coefficient matrix between the relative intensity
of CWT decomposed spectra and SSC of netted melons.
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those of Scale 7–10 were relatively flat but jagged. The CWT

decomposition amplified and highlighted the features of the

original spectra. Consequently, the spectra decomposed by

CWT provided more efficient information on the feature band.

The correlation coefficient between the relative intensity of

CWT decomposed spectra and SSC of netted melons was shown

in Figure 5. The red represented the high correlation band, while

the blue represented the low correlation band. The spectral

effective information is mainly presented in the 700–800 nm

of the scale 1–6, while no spectral effective information is

presented in the scale 7–10. The correlation coefficient

reached the highest at 754 nm of scale 5 with a correlation

coefficient of 0.60.

The red light band (670–760 nm) and near-infrared band

(761–950 nm) represent the sample feathers in a different

dimension [17]. Consequently, the sensitivity band was

selected in the red light band and near-infrared band based

on the correlation coefficient respectively. The correlation

coefficient matrix reached the highest in the 754 nm of scale

5 with the correlation coefficient of 0.60 in the red light band,

while that in the 880 nm of the scale 5 with the correlation

coefficient of -0.53 in the near-infrared band. Therefore, the

bands of 754 and 880 nm were the sensitivity bands based on the

CWT decomposition.

The absolute value of the correlation coefficient of 754 and

880 nm in the CWT decomposition was 5 and 1.178 times that

without CWT decomposition. The CWT decomposition

improved the correlation coefficient of the selected sensitivity

bands. Therefore, the bands of 754 and 880 nm were selected as

the sensitivity bands for the estimation model. Similar to our

results, the CWT decomposition significantly improved the

estimation accuracy of chicory leaf Cu content when the best

decomposition scales were Scale 3, 4, and 5 [18].

3.3 Modeling and validation of the
regression models

PLS and RF were employed to construct the estimation

model of the SSC of intact netted melons. The PLS regression

model has related the independent variables (e.g., spectra) to an

integer that designates the class of the sample [19], while RF is

integrated several classifiers to achieve better performance than a

single classifier and is especially good for resolving two-class

problems based on a bootstrap aggregating algorithm [14]. PLS

has been used to construct the estimation model of the SSC

successfully [6, 12, 20, 21]. Specifically, the relative intensities of

sensitivity bands (754 and 880 nm) with or without CWT

decomposition were employed to construct the estimation

model by the PLS and RF regression respectively. The R2 and

RMSE of the models were measured respectively (Table 1). The

R2 of the training set of the RF regression model was raised by

64.3% without CWT decomposition and 56.5% with CWT

decomposition than that of the PLS regression model,

respectively. The R2 of the testing set of the RF regression

model was raised by −4.87% without CWT decomposition

and 9.30% with the CWT decomposition than that of the PLS

regressionmodel, respectively. The R2 of the training set of the RF

regression model was 50% higher than that of the PLS regression

model. Being different from our results, the PLS and lambda-

lambda r2 regression models were used to analyze the

relationships between leaf Cu content and the hyperspectral

reflectance. They demonstrated the better feasibility of the

CWT and PLS algorithms for estimating the Cu status of

chicory [18]. This phenomenon resulted from the different

hyperspectral reflectance data and different estimating objects.

Moreover, the RF constructed many classification and regression

trees, which integrated several classifiers to achieve better

performance than a single classifier. The hyperspectra

provided more classifiers rather than a single one [14].

Therefore, the RF regression model showed higher stability

than the PLS regression model.

The R2 of the training set and testing set of the RF regression

model were raised by 4.34% and 20.5% by the CWT

decomposition. The RMSE of the RF regression model

decreased by 6.12% based on the CWT decomposition.

Moreover, the R2 of the training set and testing set of the PLS

model was raised by 9.52% and 4.88% based on the CWT

decomposition. The RMSE of the RF regression model

decreased by 1.37% based on the CWT decomposition.

Consequently, the CWT decomposition raised R2 and

decreased the RMSE of both models. Therefore, the CWT

decomposition improved the stability and estimation ability of

the model. Being consistent with our result, the spectral model

denoised by the CWT decomposition was better to predict the Vc

content of navel orange than that by 11 different decomposition

approaches [22]. The improvement of the predicting capacity

was a possible result of the noise removal ability of CWT

decomposition on the spectra [16]. Remarkably, the R2 and

RMSE of the competitive adaptive reweighted sampling-PLS

model for the SSC of melon were 0.83 and 0.73, respectively

[11]. This difference resulted from the different algorithms and

number of the samples.

Figure 6 compared the estimation profile of the regression

models with Line y = x. The Line y = x reflected the deviation of

TABLE 1Determination coefficient and rootmean squared error of the
estimation models.

Model R2 of the training
set

R2 of the testing
set

RMSE/%

RF 0.69 0.39 1.04

RF/CWT 0.72 0.47 0.98

PLS 0.42 0.41 0.74

PLS/CWT 0.46 0.43 0.73
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the point composed of the measured value and the predicted

value. The points of each model are distributed along the Line y =

x. Remarkably, the points of the training set of the RF/CWT and

PLS models are evenly distributed around the Line y = x, while

that of the RF and PLS/CWT is biased toward the high-value

session of the Line y = x. The points of the testing set of the RF,

RF/CWT, and PLS are evenly distributed around the Line y = x,

while that of the PLS/CWT is biased towards the high-value

session of the Line y = x. These phenomena possibly resulted

from the overestimate of the RF and PLS/CWT models.

The RF regression model enhanced the R2 by at least 56.5%

more than the PLS model, and the CWT decomposition further

enhanced the R2 of the RF regression model by 4.34%.

Meanwhile, the RMSE of the RF/CWT model was reduced.

Consequently, the stability and estimation ability of the RF/

CWT model was significantly improved.

4 Conclusion

The combination of CWT and PLS or RF algorithm was

employed to improve the estimation accuracy of the

hyperspectral model. Specifically, the SSC and hyperspectra of

the diffuse reflection of 261 fruit samples were collected to

construct the hyperspectral estimation model. The SSC covered a

relatively wide range from 3.8% to 9.6% with the average value and

standard deviation of 6.93% and 1.60%, respectively. The relative

intensity of the spectra was negatively related to the SSC. The

sensitivity band was screened based on the correlation analysis

and CWT decomposition. The correlation coefficient reached the

highest in the 754 nm of the scale 5, being 0.60 by the CWT

decomposition, while that was −0.53 in the 880 nm of the scale 5.

The absolute value of the correlation coefficient of 754 and 880 nm

with the CWT decomposition was 5 and 1.178 times of those

without CWT decomposition. The PLS and RF algorithm were

employed to construct the estimation model of the SSC of intact

netted melons. The RF regression model enhanced the R2 by at least

56.5% than the PLS model, and the CWT decomposition further

enhanced the R2 by 4.34%. Meanwhile, the RMSE of the RF/CWT

model was reduced. The points of the testing set of the RF, RF/CWT,

and PLS are evenly distributed around the line y = x, while that of the

PLS/CWT is biased towards the high-value session of the line y = x.

Consequently, the stability and estimation ability of the RF/CWT

regression model were improved significantly. The RF/CWT

regression model had the potential to estimate the SSC of the

intact netted melons in the industry.
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Detection of NH3 in poultry
housing based on tunable diode
laser absorption spectroscopy
combined with a micro circular
absorption cell
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Accurate monitoring of ammonia has decisive significance for the environmental

control of poultry housing. Existing sensors based on semiconductor or

electrochemistry have the defects of short life, severe baseline drift and

delayed response when facing the harsh environment of poultry housing. In

this work, we developed a portable sensor based on tunable diode laser

absorption spectroscopy with a micro circular absorption cell for sensitive

detection of ammonia in poultry housing. The micro circular absorption cell

has a volume of only 25ml, but the effective absorption path is up to 5m, which

allows the sensor to achieve the ability of less than 15 s response time and

0.2 ppmmeasurement accuracy. The results of continuousmonitoring for 6 days

showed that the ammonia concentration in the range of 0–6 ppmwas accurately

detected in a poultry house with 36 roosters. Through analyzing dynamic

changes in ammonia concentration, we successfully identified some abnormal

activity causedby humans orweather. Therefore, our sensor has performances of

accurate, stable, real-time measurement of ammonia and can provide strong

technical support for environmental control of poultry housing.

KEYWORDS

tunable diode laser absorption spectroscopy, circular absorption cell, ammonia,
environment, poultry housing

Introduction

With the development of the economy, the poultry breeding mode has changed from

free-ranging to intensive farming mode. However, in intensive farming, fecal

decomposition, animal respiration and padding decay produce large quantities of

harmful gases such as ammonia [1–3]. Especially during the winter, farmers often

close their poultry housing to ensure the proper temperature for the growth of

poultry. Ammonia (NH3) concentration in the housing remains high due to the lack
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of air circulation, and poultry exposed to such high ammonia

levels for a long time can become ill or die [4–6]. Livestock

farming is the primary source of ammonia emissions. Ammonia

diffused from the livestock to the atmosphere will harm the

health of breeders and surrounding residents, and induce various

respiratory diseases [7–9]. Therefore, quick and accurate

detection of ammonia concentration in poultry housing to

timely guide ventilation and deodorization is not only the

health needs of poultries and people but also the urgent needs

of environmental protection and food safety.

Detectionmethods of ammonia in poultry housing are divided

into laboratory methods and sensor methods [10]. The laboratory

methods usually use Fourier transform infrared spectrometer,

photoacoustic spectrometer and mass spectrometry to detect

harmful gas concentration in livestock with a sub-ppm

accuracy [11–14]. These instruments have the advantages of

qualitative and quantitative accuracy, high sensitivity and multi-

component measurement simultaneously, they are generally large,

costly and complex in operation, making them difficult to use in

the field for long-term monitoring. The sensor methods often

integrated semiconductor or electrochemical gas sensors to detect

ammonia in poultry housing. Compared with laboratory methods,

these sensors have advantages of small size, low cost and easy

operation [15–19]. However, these sensors have poor sensitivity,

severe baseline drift, cross interference and short lifetime when

used in poor poultry housing environments. This is why these

sensors are not widely used for long-term monitoring of ammonia

in poultry houses.

Tunable diode laser absorption spectroscopy (TDLAS) uses a

tunable distributed feedback (DFB) laser which has a narrow

band wavelength corresponding to the gas absorption line to

detect gas concentration specifically and sensitively. In recent

years, TDLAS has been widely used to monitor harmful gases in

industry [20–22]. However, existing commercial TDLAS sensors

used for industrial gas monitoring usually have a high detection

limit and large size with a heavy frontal absorption cell, which

makes them unsuitable for high-precision, on-site measurement

of trace ammonia in poultry houses. In this paper, we aimed to

develop a portable TDLAS sensor for monitoring trace ammonia

in poultry houses. For this, a unique and micro circular

absorption cell was designed. In addition, the sensor also

integrated temperature, humidity, total volatile organic

compounds (TVOC), dust and carbon dioxide (CO2) sensors

to obtain parameters related to air quality in poultry houses.

Structure of the sensor and circular
absorption cell

Measurement principle

TDLAS mainly uses the property of tunable semiconductor

lasers that the narrowband wavelength of the laser change with

the injection current and temperature to achieve a high-

resolution quantitative analysis of gas concentration. After

passing through the gas to be measured, the laser intensity

has a specific attenuation. However, direct analysis of the

change of laser intensity is easy to be affected by various

noises in the environment and equipment, and the

measurement accuracy cannot meet the actual needs.

Therefore, wavelength modulation spectroscopy (WMS)

improves the sensor’s measurement accuracy.

The principle of WMS is summarized as follows: Based on

the Lamber-Beer law, when the laser passes through the

measured gas, the relationship between the transmitted and

incident light intensities at a specific wavenumber is:

I(t) � I0 exp [−α(v)], (1)

Where I(t) is the transmitted light intensity and I0 is the incident

light intensity, α(v) is the spectral absorption coefficient,

α(v) � PLXS(T)φ, where P is pressure, L is the optical path,

X is the concentration of the measured gas, S(T) and φ are the

transition line strength and line shape function. The selected

peak of detect gas is in the near infrared band, and the spectral

absorption coefficient is small. Therefore, the formula can be

expressed as:

I(t) � I0 [1 − PLXS(T)φ], (2)

WMS is to transfer the detection object of the absorption

spectrum from the low-frequency signal to the relatively

high-frequency signal. The reason is that the noise in the

system, such as 1/f noise or mechanical noise, has a greater

impact on the low-frequency signal, while the high-

frequency signal is not easily affected. By modulating the

injection current of the tunable semiconductor laser, the

wavelength and intensity of the output laser can be

modulated at high frequency. When the high-frequency

sine wave modulates the laser frequency, the

instantaneous frequency and intensity of the incident laser

can be expressed as:

v(t) � v0 + a cos (ωt), (3)
I(t) � I0 [1 + i1 cos(ωt + ψ1 ) + i2 cos(ωt + ψ2 )], (4)

Where a is the modulation depth, i1 and i2 are the intensity

modulation coefficient, ψ1 and ψ2 are the intensity modulation

phase shift. Expand the spectral absorption coefficient α(v) at
central frequency v0 in Fourier cosine series, the Fourier

coefficients Hk can be shown as follows:

Hk(v0, a) � PLX
2π

2π ∫
π

−π
∑ S(T)φ[v0 + acos(ωt)] cos(kωt)dωt,

(5)

The amplitude of second harmonic signal extracted by lock-

in amplifier can be expressed as:
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X2f � GI0
2

[H2 + i1
2
(H1 +H3) cosψ1 + i2(H0 + H4

2
) cosψ2],

(6)

Where G is the optical-electrical gain of the detection system. At

the condition of low absorption and constant parameters such as

optical path, pressure and temperature in the measurement

environment, the concentration of the measured gas is

proportional to the amplitude of second harmonic signal. The

harmonic signal is proportional to the measured gas

concentration using the lock-in amplifier to demodulate the

high-frequency signal. WMS can detect trace gas by extracting

weak signals and has a strong anti-interference ability.

Structure of the sensor

According to the HITRAN database [23] and commercially

available lasers, we selected a tunable laser with the spectral line

of 1,512 nm from Wuhan 69 Sensor Technology Co. LTD for

specific and sensitive detection of NH3 gas. The structure of the

sensor is shown in Figure 1. The 1,512 nm tunable laser works at

a constant temperature by a temperature controller. The working

temperature is 25°C, and the current scan range is 55–65 mA. Its

spectral line will be scanned by a drive circuit combined a high-

frequency and small amplitude sine wave superimposed on a

low-frequency and large amplitude sawtooth wave. The

frequency of the sawtooth wave is 5 Hz, and the sine wave is

5 kHz. This scanning method is usually called wavelength

modulation spectroscopy which can extract weak absorption

signals from the strong background noise. When the NH3 gas

was pumped into the circular absorption cell, the laser beam was

absorbed and detected by the photodetector. The type of

photodetector is g10899-01k from Hamamatsu Photonics

(China) Co. LTD. Then the second harmonic signal for

concentration inversion was demodulated by the lock-in

amplifier and collected by the microcontroller (MCU). The

type of MCU is STM32F103. According to Beer-Lambert law

[24], the gas concentration is proportional to the second

harmonic amplitude, absorption line strength, optical path

and pressure. At normal temperature and pressure, the

absorption line strength, optical path and pressure are known

and constant. Therefore, the ammonia concentration has a

positive proportional relationship with the second harmonic

amplitude.

In addition, TVOC, CO2, temperature, humidity and dust

sensors are also integrated into our sensor system to obtain

parameters related to air quality in poultry houses. Various

sensor modules integrated into the system have their

measurement accuracy, and the system adopted the all-in-one

sensor module PTQS1005A from Beijing Planttower Co. LTD.

Among them, the temperature range is between −10–55°C, the

resolution is 0.1°C; The humidity measurement range is 0–99%,

the resolution is 0.1%; The TVOC range is 0–10 ppm, the

resolution is 0.01 ppm; The minimum detection limit of dust

sensor is 1ppb; The range of CO2 sensor is 400–3000 ppm. The

data transmitted through the communication module is the value

of the gas content in the environment obtained at the

FIGURE 1
Schematic diagram of the sensor for monitoring NH3 gas based on the TDLAS technology and other environmental parameters in the poultry
housing.
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FIGURE 2
The micro circular absorption cell: (A) Optical path structure diagram; (B) Photograph.

FIGURE 3
(A) Photograph ofmeasuring standard ammonia; (B)Monitoring data for 2 ppm ammonia within 24 h; (C)Monitoring data for 50 ppm ammonia
within 24 h; (D) Repeat measurement of 50 ppm ammonia.

Frontiers in Physics frontiersin.org04

Wang et al. 10.3389/fphy.2022.1051719

28

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1051719


corresponding time, which will be transmitted to the mobile app

in real time and automatically saved in the Excel table for the

measurement personnel to view and analyze.

Design of the circular absorption cell

The measurement principle of TDLAS is based on Beer-

Lambert law [24]. The detection sensitivity is often improved by

increasing the effective absorption path at the same absorption

line. However, the volume of the absorption cell with a long

optical path is usually large. This results in a long response time

and inapplicability to develop compact and portable TDLAS

sensors [25]. With the trend of miniaturization of TDLAS

sensors, more and more attention has been paid to the micro

absorption cell with a long optical path [26]. Absorption cells

based on several structures have developed to satisfy different

application situations [27]. In this paper, by borrowing from

published technologies [28–30], we designed a micro circular

absorption cell for ammonia detection in poultry housing, just as

shown in Figure 2. Compared to the circular absorption cell made

up of many small reflectors in the Ref. [31], our cell used an

integral ring reflector with the diameter of 60 mm and height of

10 mm to make it easy to install and has a better stability. The

ring reflector was coated with an enhanced silver metal film with

a reflectivity of more than 99% within the spectral region of

800–2000 nm. Using a cylindrical mirror, the incident beam with

a diameter of 1.5 mm was shined on the ring reflector and

reflected about 70 times. Therefore, the cell could reach up to

a 5 m optical path only within a volume of 30 ml, which ensures

high sensitivity and fast response time for NH3 detection.

Sensor performance and application
in poultry housing

Sensor performance

Ammonia concentration in poultry housing is regulated to

protect worker health and animal productivity in countries and

regions worldwide. The European Union limits ammonia in

poultry to 20 ppm, America allows a weighted average

exposure limit of 50 ppm for humans for 8 h, and The United

Egg Producers state indicates that ammonia levels in chicken

houses should ideally be less than 10 ppm and not more than

25 ppm [32–34]. We fit the second harmonic peak obtained by

measuring standard ammonia according to the variation range of

ammonia concentration in poultry housing. The harmonic peak

has an excellent linear relationship with the low ammonia

concentration in poultry housing.

As shown in Figure 3A, we continuously measured the

standard gas to verify the sensor performance and conducted

it under laboratory conditions to ensure accuracy. As shown in

Figure 3B,C, the standard gas concentration of 2 ppm and

50 ppm were continuously measured at 24 h with intervals of

3 min. The data fluctuated by 0.2 ppm during measured

FIGURE 4
(A) Photograph from field measurement at the broiler house; (B) NH3, TVOC and temperature monitoring data in 6 days.
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ammonia concentration of 2 ppm and fluctuated by 0.1 ppm

when measured ammonia concentration of 50 ppm. The time-

corresponding concentration data in Figures 3B–D is obtained

by using Origin to draw the data from the mobile

app. Prolonged monitoring observed that the signal baseline

had no drift, and the measurement of low concentration

ammonia also had excellent precision and stability. The

response time and recovery time are also essential

performance metrics. To demonstrate the reversibility of the

sensor, we measured the standard gas several times. Figure 3D

shows the signal response when switching from air to 50 ppm

ammonia three times. As a result, the sensor response time and

recovery time remain within 15 s, and measurements can be

quickly restored to air levels, meaning the sensor has excellent

reversibility. The data indicated that the sensor could be used to

monitor the dynamic changes at low concentrations of

ammonia to meet the need for ammonia monitoring in

poultry housing.

Application in poultry housing

We used the sensor to monitor the broiler chicken house

environment on the farm for 6 days. There are 36 mature roosters

in the monitoring field, staff regularly clean up and sanitize, and

fewer external factors influence the data. As shown in Figure 4A,

the sensor was placed in the broiler house on September 3 at 10:

00 a.m., measurements were taken at intervals of 5 min, and

normal production activities continued in the house.

Figure 4B shows that ammonia concentration in the broiler

house varied over time. In 6 days, the staff grabbed 16 chickens

from the house (grey shadow) and cleaned up manure twice

(brown shadow). As the manure accumulated, ammonia

concentration continued to rise in the house and cleaning the

manure caused a precipitous drop in ammonia concentration.

The data confirmed that manure is the main source of ammonia

in poultry housing [35]. Ammonia evaporated rapidly while

cleaning manure, which caused the ammonia concentration to

fluctuate significantly in a short period [36]. The concentration

curve in Figure 4B is obtained using Origin to draw the data from

the mobile app.

Similarly, measurements changed when some chickens were

grabbed because of fluctuation in ammonia concentration by

shaking the coop. The rapid rise and fall of ammonia caused by

human activities demonstrated the rapid response of the sensor

to monitor ammonia change in poultry housing. According to

the Environmental Quality Standard For The Livestock And

Poultry Farm of the People’s Republic of China, the

concentration of ammonia in adult poultry housing is less

than 15 ppm, and the measurement results meet the standards.

The environmental requirements of modern poultry housing

are not limited to harmful gas concentration but also include

temperature and humidity, dust and CO2 concentration.

Abnormal temperature, humidity and other environmental

factors affect the development of animals. The TVOC

concentration and temperature in Figure 4B reflect the broiler

house environment from the side. TVOC levels suddenly

increased when cleaning the house and grabbing chickens,

similar to the change in ammonia concentration. The

temperature changed with the day and night rule and never

exceeded 30°C. Upon completion of the measurement, the device

was re-measured for standard ammonia and found to be

unchanged, indicating that the measured concentration in the

broiler house was accurate.

Conclusion

The experimental data shows a good ability to monitor the

ammonia of the sensor in poultry housing. The performance of

this sensor and some previous sensors is shown in Table 1. The

volume of this sensor in Table 1 only includes the part of measure

ammonia, excluding other integrated sensor modules. The sensor

designed in this paper can quickly measure ammonia. As the

volume is reduced, the accuracy remains at an excellent level.

Based on the TDLAS and circular absorption cell, the

portable sensor of low monitor concentration of ammonia

was studied. WMS reduces environmental noise interference

and detects fainter signals. The sensor has an incredible

increase in performance using the circular absorption cell. The

small size of the absorption cell makes the chamber highly

efficient for gas exchange at a fixed velocity. The low exposure

TABLE 1 Comparison of different ammonia sensors.

Volume Sensor Response object Time LoD References

On-chip Semiconductors Sensor Non-specificity 7 s 1ppm [37]

On-chip Electrochemical Sensor Non-specificity 18 min 2ppm [38]

/ TDLAS-based Sensor NH3 778.4 s 0.5ppm [39]

31.4 × 13 × 13.5 cm3 TDLAS-based Sensor NH3 38 s 3.95ppb [40]

43 × 18 × 16 cm3 TDLAS-based Sensor NH3 184 s 0.16ppm [25]

15 × 8 × 6 cm3 TDLAS-based Sensor NH3 15 s 0.2ppm This work
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area reduces ammonia memory effects on the inner surface.

Experimental data shows that the sensor has the advantages of

high sensitivity, high stability and fast response time in long-term

monitoring. The system realized the multiple component

measurement in a complex environment using integrated

sensor modules. As an effective low concentration ammonia

monitoring system, the sensor has considerable application

potential in poultry housing.
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Introduction: The flavor deterioration blocks the development of melon juice.

Methods: The e�ects of ultra-high temperature (UHT) and high pressure (HP)

treatments on the aromatic compound concentrations ofmelon juice and their

mechanisms were explored with fresh juice as the control.

Results: A total of 57 volatile compounds were identified by gas

chromatography-tandemmass spectrometry analysis. β-ionone was shown to

be the major aromatic component of melon juice for the first time. The HP at

200 MPa for 20min increased the total volatile concentration of melon juice

by 1.54 and 3.77 times the control and UHT, respectively. Moreover, the sum

concentration of a major aromatic component in the HP treatment was 1.49

and 5.94 times higher than that of the control and UHT, respectively.

Discussion: The HP treatment raised the concentration of volatile and

aromatic components of melon juice by reducing their surface tension.

KEYWORDS

melon juice, high pressure treatment, GC-MS analysis, β-ionone, surface tension,

weight loss rate

Introduction

Melons (Cucumis melo L.) are favored by people worldwide for their distinctive

aroma and sweetness. However, commercialized production of melon juice is hard to

realize due to the unsolved obstacle of flavor deterioration (1). Ultra-high temperature

(UHT) is the most widely used juice sterilization technology. However, the UHT also

leads to serious flavor deterioration. The UHT treatment of sea buckthorn juice resulted

in a decrease of 3.48 and 14.60% in total volatiles and esters at 140◦C for 2 s and a sharp

decrease of 6.90% at 140◦C in alcohol contents (2).

Moreover, the UHT also caused an unacceptable cooked off-flavor odor similar to

mature pumpkin in melon juice. Dimethyl sulfide, methional, methanethiol, dimethyl

trisulfide, dimethyl disulfide, and acetaldehyde have been identified as the off-flavors (3).

The formation of volatile sulfur compounds has been inhibited by reducing the pH of

melon juice to 2.0 or adding epicatechin (4). However, this method was difficult to use in

commercialized production.
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High-pressure (HP) technology is a non-thermal process

that applies high hydrostatic pressure to the foodmatrix through

a specific liquid transfer medium (5). Compared with the

thermal treatment, the HP had a lower impact on the nutrition

and flavor of foods due to its better control of the temperature

during processing (6, 7). For foods with high moisture content,

the temperature increased to∼3◦C per 100 MPa. Therefore, HP

processing led to better flavor retention for fruit juice. Recent

studies showed that the HP treatment (500 MPa for 10min)

of kiwifruit juice maintained the retention rate of characteristic

aromas from esters and alcohols (8). Similar results were also

demonstrated in the pineapple juice (9). Despite most studies

focusing on flavor retention, the effects of HP processing on

the concentrations of melon juice flavor and their mechanism

were ignored.

This study explored the effect of the UHT and HP

treatments on the aromatic compounds of melon juice and their

potential mechanism. Specifically, the concentration of volatile

components of the UHT and HP treatments was measured

by the GC-MS analysis with the fresh juice as the control.

The major aromatic compounds were compared to determine

the optimal HP parameters. The physical properties of the

optimal HP and UHT treatments were compared to discover the

potential mechanism.

Materials and methods

Experiment design

The UHT and HP treatments were compared with the

fresh melon juice as the control. Melon was purchased from

Guoxiangsiyi Fruit Supermarket in June 2021 in Haidian

District, Beijing. The melon (C. melo L. var. Xizhoumi No. 25)

was oval and light gray with a shallow net and weighed about

1.2–2.5 kg per fruit. The flesh of the fruits was light orange and

crispy, with a soluble solid concentration of 9.5%−13%.

Control

The surface of the fruits was washed in an icy sodium

hypochlorite solution (100 mg/L) and flushed two times with icy

water. The peel and seeds were removed in a sanitary processing

workshop. The flesh was cut into cubes and smashed in a Philips

juicer for 5min (HR1861, Philips Ltd., Beijing, China). After

quickly removing the top foam, the mixture was sealed in an

aluminum foil bag of 200mL and stored in a refrigerator at

−4◦C for subsequent sample determination.

UHT

The fresh melon juice was sterilized in the ultra-high

temperature unit (FT74X-40-44-A, Armfield Ltd.) at room

temperature. Then, 1.5 L of juice were poured into the UHT

equipment’s feeder and heated at 135◦C for 15 s. For the

subsequent analysis, the sterilized sample was quickly sealed and

cooled in an icy bath in a 200-ml aluminum foil bag.

HP

The fresh melon juice was processed in the ultra-high

pressure unit (BDS200-FL, Stansted Fluid Power Ltd., England)

at room temperature. The melon juice sealed in the 200-mL

aluminum foil bag was subjected to six kinds of treatments:

(1) 200 MPa for 10min; (2) 200 MPa for 20min; (3) 400

MPa for 10min; (4) 400 MPa for 20min; (5) 600 MPa for

10min; and (6) 600 MPa for 20min. They were nominated as

HP2-1, HP2-2, HP4-1, HP4-2, HP6-1, and HP6-2, respectively.

The holding time did not include the time to increase and

release the pressure. After reaching the pressure holding time,

the system automatically released the pressure within 10–20 s.

The pressured sample was cooled in an icy bath quickly for

subsequent analysis.

Analysis of volatile compounds

The volatile compounds were detected by using a headspace

solid-phase microextraction tandem gas chromatography-mass

spectrometer (GC-MS) method, as described by Luo et al. (10),

with a fewmodifications. The sample (6.0 g) was transferred into

20-ml headspace glass vials containing 2.0 g of sodium chloride

and 10 µl of octanol (30µg/ml) as an inner standard. The

sample was stirred at 100 rpm, and its volatile compounds in

the headspace were extracted and absorbed by an SPME fiber

(57329-U PDMS/DVB/CAR, Sigma-Aldrich Company, USA) at

50◦C for 30min. After being absorbed, the absorbed compounds

were thermally desorbed at 250◦C for 3min in a splitless

mode by a GC-MS system (6890N/5977B, Agilent Technologies

Company, USA). Volatile compounds were separated on a DB-

5MS elastic capillary column (30m × 0.25mm × 0.25µm;

Agilent Technologies, USA). Helium was used as a carrier gas

with a constant flow rate of 1.0 ml/min. The initial temperature

in the oven was set at 35◦C for 5min and increased at a

rate of 4◦C/min to 150◦C, held for 3min, and increased at a

rate of 8◦C/min to 190◦C, again held for 1min, and ramped

to 250◦C at 30◦C/min, and held at 250◦C for an additional

5min. The full scan mode was adopted to collect signals at

a scan speed of 1,562 u/s. The mass detector was operated

in electron impact mode (70 eV). The ion source temperature

was 230◦C, the transmission line temperature was 250◦C, and

the quadrupole temperature was 150◦C. The detected volatile

compounds were identified by comparing the mass spectra with

those in mass spectral libraries (NIST17). An MS match index

of ≥80% was listed and verified manually, point by point. The

concentration of each aromatic compound was calculated based

on the peak areas of 1-octanol, an internal standard with a
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known concentration (Equation 1):

mx =
Ci × Vi × Ax

ms × Ai
× 1, 000 (1)

where Ci refers to the mass concentration of the standard

internal compound and the unit was µg/ml; Vi refers to the

additional amount of the internal standard in the sample, 10

µl; ms refers to the sample mass of 6 g; Ax and Ai refer to the

peak areas of the target compound and the standard internal

compound, respectively. mx refers to the concentration of the

target compound, expressed in µg/kg fresh weight (FW).

Calculation of odor activity values

The odor activity values (OAV) were the ratio of the

concentration to their corresponding odor threshold in

water (11) and were calculated according to Equation (2).

Normally, compounds with OAVs of no <1.0 were potential

flavoring agents:

OAVi =
Ci

Oi
(2)

where Ci is the concentration of the compound, andOi is the

odor threshold of the compound.

Surface tension analysis

The juice sample of 50ml was put into the glass container

of the surface tension tester (K100C-MK2, KRUSS, Germany).

The surface tension was tested with the platinum tablet plate

at 25◦C. The instrument was calibrated with water. The testing

parameters were set as follows: the measurement speed was 10

mm/min, the immersion depth was 2.00mm, the maximum

measurement time was 60 s, and the deviation value was 0.1

mN/m. The result was the average of five measured values with

a stable measurement of less than the deviation value. The

platinum tablet plate was thoroughly cleaned and flame-dried

before each measurement.

Thermogravimetric analysis

The thermogravimetric differential thermal synchronous

analyzer (TGA/DSC 1, Mettler Toledo, Switzerland) was

preheated for half an hour. The crucibles were heated at 500◦C

before the test. The heating chamber was preheated to 60◦C in

advance. The 25-µL sample was then loaded into the crucibles

and placed isothermally in the chamber at 60◦C for 20min, with

distilled water serving as the control. The weight loss rate was the

mass loss caused by sample evaporation, which was determined

in an area with constant temperature and varied linearly with

time (12). The curve of the weight loss rate in Figure 6A was

calculated after the original quality data was normalized. The

curve in Figure 6B is named Y
′

, which indicates the normalized

data of melon juice samples minus the water sample.

Statistical analysis

All the measurements were repeated three times. A one-way

analysis of variance was conducted on different groups using

SPSS Statistics 26.0. The results were shown as mean± standard

deviation at a significance level of a P-value of< 0.05. The graphs

were all plotted using Origin 2021. The profile of the mechanism

was prepared with PowerPoint.

Results and discussion

Identification of volatile compounds in
melon juice

A total of 57 volatile components were detected in control,

UHT treatment, and HP treatment, including 20 esters, 15

alcohols, 14 aldehydes, and eight ketones (Table 1). The volatile

component number of the control, UHT, HP2-1, HP2-2, HP4-1,

HP4-2, HP6-1, and HP6-2, was 16, 37, 19, 20, 25, 29, 25, and 26,

respectively. The UHT included more volatile components than

the other treatments. The composition of volatile compounds in

the control and HP groups was similar, such as ethyl acetate and

nonanal. There were clear differences between the control and

UHT treatment. In addition, with the increase of HP parameters

between HP groups, the same components as those in the UHT

group appear in the HP4-1, HP4-2, HP6-1, and HP6-2 groups,

such as (Z)-3-hexenyl acetate and decyl aldehyde. These volatile

components were combined to form the final flavor of melon

juice.

The total volatile concentration of melon juice was highest

(532.27 µg/kg) in the HP2-2 group, which was 1.54 and 3.77

times that of the control and UHT, respectively. The HP2-

2 increased the concentration of total volatile components in

melon juice, while the UHT treatment significantly reduced it.

β-Ionone was detected in each melon juice for the first

time. β-Ionone was produced by the cleavage at the C9 and

C10 keys from the β-Carotene metabolic pathways (13), which

was a common aromatic volatile compound that existed in

a variety of fruits, including raspberry juice (14) and apple

juice (15), but had not been reported in melons before. The

concentration of β-ionone was highest (4.12 µg/kg) in the HP2-

2, which was 1.66 and 1.45 times that of the control and the UHT

treatment, respectively.
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TABLE 1 Identification and concentrations of volatile components of melon juice.

ID Volatile

components1
CAS Molecular

formula

Control

(µg/kg)2
UHT

(µg/kg)2
HP2-1

(µg/kg)2
HP2-2

(µg/kg)2
HP4-1

(µg/kg)2
HP4-2

(µg/kg)2
HP6-1

(µg/kg)2
HP6-2

(µg/kg)2

Ester

1 Diisobutyl phthalate 84-69-5 C16H22O4 – – – – – 0.42± 0.02 – –

2 Butyl-octyl phthalate 84-78-6 C20H30O4 8.50± 2.12 0.43± 0.01 – – – –

3 2-Methyl-1-butyl acetate 624-41-9 C7H14O2 – 0.84± 0.02 8.19± 0.12 9.76± 0.50 9.22± 0.32 7.08± 1.20 3.45± 0.24 3.11± 0.32

4 Isoamyl acetate 123-92-2 C7H14O2 – – – – – 0.73± 0.11 – –

5 2,2,4-Trimethyl-1,3-

pentanediol

diisobutyrate

6846-50-0 C16H30O4 – 0.95± 0.23 – – – – – –

6 2,4-Pentanediol,2,4-

diacetate

7371-86-0 C9H16O4 – 0.62± 0.12 – – 0.75± 0.04 – – –

4 1-(Benzoyloxy)-2,5-

pyrrolidinedione

23405-15-4 C11H9NO4 – 0.61± 0.11 – 2.31± 0.02 1.44±0.11 – – –

8 2-Methylacetic

acid-2-alkenyl ester

33425-30-8 C5H10O·C2H4O2 – – – – 0.52± 0.01 0.40± 0.03 – –

9 (Z)-3-Hexenyl acetate 3681-71-8 C8H14O2 – 1.97± 0.22 – – – – 0.95± 0.01 0.88± 0.02

10 2-Ethylhexyl acetate 103-09-3 C10H20O2 – – – – – – 0.66± 0.05

11 Phenethyl acetate 103-45-7 C10H12O2 – 1.13± 0.01 – – – – – –

12 Butyl acetate 123-86-4 C6H12O2 1.44± 0.25 0.29± 0.06 1.75± 0.25 2.40± 0.26 2.45± 0.18 2.47± 0.15 1.32± 0.13 1.25± 0.01

13 (Z)-non-3-enyl ester

acetic acid

13049-88-2 C11H20O2 – 0.32± 0.03 – – – – – –

14 Benzyl acetate 140-11-4 C9H10O2 – 31.09± 2.23 – – 4.55± 0.54 3.71± 0.25 0.86± 0.11 1.08± 0.32

15 2,4-Dimethylbenzoate 55000-43-6 C18H20O2 – 1.82± 0.02 – – – – – –

16 Ethyl acetate 141-78-6 C4H8O2 21.06± 2.24 2.38± 0.21 18.68± 2.12 21.59± 2.42 22.98± 2.54 16.59± 2.01 10.59± 1.58 5.54± 1.01

17 Isobutyl acetate 110-19-0 C6H12O2 8.14± 1.52 1.39± 0.23 9.17± 1.15 12.25± 1.65 10.90± 1.12 9.91± 1.14 5.33± 1.25 4.74± 0.52

18 Isopulegol acetate 57576-09-7 C12H20O2 – – – – – 0.44± 0.02 – –

19 n-Propyl acetate 109-60-4 C5H10O2 – – – – – – – 0.54± 0.12

20 Propanoic acid,

2-methyl-, 3-hydroxy-

2,2,4-trimethylpentyl

ester

77-68-9 C12H24O3 – 0.37± 0.03 – – – – – –

Alcohol

1 (Z)-6-nonen-1-ol 35854-86-5 C9H18O – 3.05± 0.52 – – – – 0.91± 0.23 –

2 1-Hexanol 111-27-3 C6H14O – – – – – – 0.36± 0.15 –

(Continued)
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TABLE 1 (Continued)

ID Volatile

components1
CAS Molecular

formula

Control

(µg/kg)2
UHT

(µg/kg)2
HP2-1

(µg/kg)2
HP2-2

(µg/kg)2
HP4-1

(µg/kg)2
HP4-2

(µg/kg)2
HP6-1

(µg/kg)2
HP6-2

(µg/kg)2

3 2-Ethylhexanol 104-76-7 C8H18O 8.71± 2.23 2.61± 0.56 9.12± 2.52 13.55± 2.65 7.92± 1.25 8.30±1.34 4.38± 0.98 4.36± 1.25

4 1-Nonanol 143-08-8 C9H20O 24.49± 3.65 9.67± 2.54 23.88± 5.65 25.14± 4.25 1.68± 0.35 1.73± 0.52 4.17± 0.87

5 1-Octen-3-ol 3391-86-4 C8H16O – – – – 0.41± 0.02 0.56± 0.08 0.25± 0.03 0.30± 0.01

6 2,2,4-Trimethyl-1,3-

pentanediol

diisobutyrate

6846-50-0 C16H30O4 – 0.95± 0.05 – – – – – –

7 2-Ethylhex-2-enol 50639-00-4 C8H16O – – – – – 0.45± 0.02 – –

8 2-Nonen-1-ol 22104-79-6 C9H18O 2.31± 0.25 – 1.81± 0.12 2.52± 0.23 – – – –

9 (E,Z)-3,6-Nonadien-1-ol 56805-23-3 C9H16O 32.84± 5.65 13.54± 2.56 32.60± 4.25 51.68± 5.89 16.26± 2.25 15.82± 1.12 7.22± 2.23 5.80± 1.13

10 (E)-3-Hepten-1-ol 2108-05-06 C7H14O – – – 1.24± 0.23 – – – –

11 (Z)-3-Nonen-1-ol 10340-23-5 C9H18O 127.55± 12.25 33.26± 8.23 120.96± 12.25 183.21± 16.25 46.21± 4.32 40.75± 6.25 15.02± 3.25 12.96± 3.52

12 1-Methyl-4-(1-

methylethenyl)-

Cyclohexanol

138-87-4 C10H18O – – – – 0.43± 0.03 – – –

13 3,5-

Dimethylcyclohexanol

5441-52-1 C8H16O – – – – – 0.37± 0.05 – –

14 1,8-Oxido-p-

menthane(Cineole)

470-82-6 C10H18O – 0.42± 0.04 – – – – – –

15 2-Phenylethanol 60-12-8 C8H10O – 1.01± 0.12 – – – – – –

Aldehyde

1 2,6,6-Trimethyl-1-

Cyclohexene-1-

acetaldehyde

472-66-2 C11H18O – 1.27± 0.23 1.67± 0.21 2.55± 0.25 2.74± 0.35 2.98± 0.36 1.46± 0.15 1.62± 0.14

2 2,6,6-Trimethyl-1-

cyclohexene-1-

carboxaldehyde

(β-Cyclocitral)

432-25-7 C10H16O – 2.54± 0.53 – – – – – –

3 2,4-Decadienal 25152-84-5 C10H16O – 0.39± 0.12 – – 0.45± 0.08 – 0.25± 0.04 0.29± 0.02

4 (E)-2-Heptenal 18829-55-5 C7H12O – – 10.36± 3.59 18.69± 2.85 – – – –

5 (E)-2-Nonenal 18829-56-6 C9H16O – – – – – 13.01± 1.25 2.26± 0.25 1.64± 0.52

6 (E)-6-Nonenal 2277-20-5 C9H16O 11.70± 1.23 – – – – – – –

7 (Z)-7-Tetradecenal 65128-96-3 C14H26O – 3.97± 0.23 – – – – – –

8 Phenylacetaldehyde 122-78-1 C8H8O – 2.76± 0.27 1.62± 0.12 – – 1.00± 0.26 – 0.69± 0.02

9 Decyl aldehyde 112-31-2 C10H20O – 0.52± 0.15 – – – 0.80± 0.02 – 1.05± 0.01

(Continued)
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TABLE 1 (Continued)

ID Volatile

components1
CAS Molecular

formula

Control

(µg/kg)2
UHT

(µg/kg)2
HP2-1

(µg/kg)2
HP2-2

(µg/kg)2
HP4-1

(µg/kg)2
HP4-2

(µg/kg)2
HP6-1

(µg/kg)2
HP6-2

(µg/kg)2

10 Heptaldehyde 111-71-7 C7H14O – – – – 1.43± 0.55 2.12± 0.25 1.12± 0.23 2.81± 0.01

11 Hexanal 66-25-1 C6H12O 0.94± 0.23 – – – – – – –

12 Nonanal 124-19-6 C9H18O 20.95± 2.56 4.26± 0.87 27.10± 2.25 42.18± 5.58 8.52± 1.23 7.21± 2.21 1.79± 0.05 2.19± 0.04

13 Octanal 124-13-0 C8H16O 60.85± 9.58 – 68.69± 14.22 96.87±13.13 76.81± 11.02 71.80± 5.89 0.79± 0.01 0.65± 0.01

14 Acetal 105-57-7 C6H14O2 7.50± 2.13 2.76± 0.12 8.30± 1.23 10.59± 2.45 8.81± 1.23 9.76± 2.96 4.24± 0.12 3.33± 0.02

Ketone

1 2,6-Bis(1,1-

dimethylethyl)-4-

hydroxy-4-methyl-2,5-

Cyclohexadien-1-one

10396-80-2 C15H24O2 6.65± 1.12 – – 15.12± 2.23 12.53± 4.02 12.39± 1.23 5.44± 1.01 4.08± 0.25

2 Octahydro-1,1,8a-

trimethyl-(E)-2,6-

Naphthalenedione

57289-17-5 - – 1.30± 0.05 0.76± 0.05 1.08± 0.54 – – – –

3 4-(2,2,6-trimethyl-7-

oxabicyclo[4.1.0]hept-1-

yl)-3-Buten-2-one

23267-57-4 C13H20O2 – – – – 0.43± 0.25 0.60± 0.02 0.29± 0.01 0.33± 0.02

4 4-Hydroxy-3-

methylacetophenone

876-02-8 C9H10O2 – 0.32± 0.02 – – – – – –

5 6,10-Dimethylundeca-

5,9-dien-2-one

3796-70-1 C13H22O – 8.74± 1.12 6.48± 1.12 15.45± 2.89 45.62± 4.25 50.84± 2.02 25.81± 0.03 29.04± 1.25

6 6-Methyl-5-hepten-2-

one

110-93-0 C8H14O – 0.75± 0.23 – – 2.20± 0.01 2.68± 0.02 1.36± 0.24 1.54± 0.54

7 1,1,3-Trimethyl-3-

cyclohexene-5-one

78-59-1 C9H14O – – 0.63± 0.04 – – – – –

8 (E)-4-(2,6,6-Trimethyl-

1-cyclohexen-1-yl)-3-

buten-2-one

(β-Ionone)

79-77-6 C13H20O 2.48± 1.02 2.83± 0.25 3.27± 0.42 4.12± 1.54 4.44± 1.12 3.71± 0.25 1.82± 0.56 2.08± 0.01

All ester 39.14 ± 6.13 44.20 ± 3.53 37.79 ± 3.64 48.31 ± 4.85 52.81 ± 4.84 41.74 ± 4.91 22.51 ± 2.32 17.78 ± 2.37

All alcohol 195.89 ± 30.01 64.51 ± 14.62 188.36 ± 24.79 277.34 ± 36.63 72.89 ± 8.22 67.98 ± 9.38 32.31 ± 7.74 23.42 ± 5.91

All aldehyde 101.94 ± 13.73 18.45 ± 2.52 117.72 ± 21.62 170.87 ± 24.26 98.76 ± 14.46 108.66 ± 13.30 11.90 ± 0.85 14.25 ± 0.79

All ketone 9.13 ± 2.14 13.95 ± 1.67 11.14 ± 1.63 35.76 ± 7.20 64.21 ± 9.65 70.22 ± 2.54 34.72 ± 1.85 37.07 ± 2.07

Total 346.09 ± 52.01 141.11 ± 22.34 355.01 ± 51.68 532.27 ± 72.94 288.67 ± 37.17 288.59 ± 30.13 101.44 ± 12.76 92.51 ± 11.14

1Volatile components detected by the GC-MS compared with the standard mass spectrum in the NIST 17 library.
2Each value is the mean of triplicate biological samples.

“–” is not detected.
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TABLE 2 Threshold and odor activity values of aromatic compounds of melon juice.

ID Aromatic compounds Threshold (µg/kg) OAV1

Control UHT HP2-1 HP2-2 HP4-1 HP4-2 HP6-1 HP6-2

1 2-Methyl-1-butyl acetate 8 1.06 0.48 1.02 1.22 1.15 0.89 0.43 0.39

2 Ethyl acetate 5 4.21 0.48 3.74 4.32 4.60 3.32 2.12 1.11

3 (E,Z)-3,6-Nonadien-1-ol 3 10.95 4.51 10.87 17.23 5.42 5.27 2.41 1.93

4 (Z)-3-Nonen-1-ol 1 127.55 33.26 120.96 183.21 46.21 40.75 15.02 12.96

5 Acetal 4.9 1.53 – 1.69 2.16 1.80 1.99 0.87 0.68

6 Nonanal 1.1 19.04 3.87 13.26 38.34 7.74 6.56 1.63 1.99

7 Octanal 0.587 103.66 – 117.01 165.02 130.85 122.31 1.34 1.10

8 β-Ionone 0.007 353.98 404.70 467.51 587.87 491.79 530.64 259.38 296.50

Total 621.99 447.30 736.06 999.37 689.55 711.72 283.20 316.66

aEach value is the mean of triplicate biological samples.

“–”is not detected.

Screen of major aromatic components
and flavor di�erence analysis

The odor activity values (OAV) reasonably assess aroma

effectiveness based on the balance between food substrate and

air (16). The OAV was the ratio of aromatic component

concentration to the aroma threshold value. When the

OAV was >1.0, the aromatic component contributed to

its aroma. The greater the OAV, the greater the aromatic

component’s contribution to the overall aroma. A total of eight

major aromatic components were screened from 57 volatile

components based on the OAV calculation (Table 2). The major

aromatic components included 2-methyl-1-butyl acetate and

ethyl acetate. (E, Z)-3,6-nonadien-1-ol, (Z)-3-nonen-1-ol, acetal,

nonanal, octanal, and β-ionone.

Ester was a key component in the flavor of melon juice (17).

2-Methyl-1-butyl acetate was a branched chain ester showing

apple aroma and fragrance (18). Ethyl acetate was not only

the major aromatic component of melon but also the origin of

most fruit aromas (13, 19). (E, Z)-3,6-nonadien-1-ol showed a

strong aroma of cucumber (20). (Z)-3-nonen-1-ol was the major

aromatic component of melon, showing a grassy aroma (21).

The C6–C9 aldehydes were the key component providing the

main flavor for melon juice (22). Acetal and nonanal showed an

orange aroma and grassy aroma (14). Octanal had an immature

orange aroma (19, 23).

The total OAV of the HP2-2 was 1.61 and 2.23 times that

of the control and UHT, respectively (Table 2). The HP2-2

significantly enhanced the flavor of the aromatic components of

the melon juice. Moreover, the effect of treatments on the OAV

value of aromatic components is shown in Figure 1. Y value

represents the times of the OAV value of aromatic components

to that of the control. The positive value meant an increase

in the components, while the negative value meant a decrease

in them. The Y values of the major aromatic components of

all treatments were negative, except for that of the HP2-2. The

UHT, HP6-1, and HP6-2 reduced the Y value significantly. The

Y value of all aromatic components in the HP2-2 was positive.

Therefore, the HP2-2 significantly enhanced the content of the

major aromatic components of the melon juice. However, the Y

values of the HP6-1 and HP6-2 were similar to that of the UHT.

This phenomenon indicated that the excess pressure of the HP

treatment led to the deterioration of the aroma. Similar results

were reported in the mango juice (24). Therefore, the optimum

parameters of the HP processing were 200 MPa for 20min for

the melon juice.

The cluster analysis was used to find the flavor difference

between treatments (Figure 2). The composition of aromatic

components from the HP2-1, HP2-2, HP4-1, and HP4-2 was

similar to those of the control, with that of the HP2-2 being

the most similar. This phenomenon was consistent with the

result of the OAV evaluation. Similar results were also reported

in cloudy pomegranate juice (25), strawberry juice (26), and

mulberry juice (27). The UHT was similar to the HP6-1 and

HP6-2. The reason for this was the significant change in the

flavor of melon juice due to the temperature change caused by

the excessive pressure.

Therefore, the HP2-2 enhanced the aromatic components of

melon juice.

E�ects of treatments on the
concentration of major aromatic
components of melon juice

Figure 3 shows the effect of treatments on the concentration

of major aromatic components of melon juice. The UHT

significantly reduced the concentration of eight aromatic

components in all treatments. The total concentration of

eight aromatic components in the HP2-2 group was highest,
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FIGURE 1

Changes of aromatic components in UHT and HP treatments with the control as a reference. Y = Qi/Qc – 1, Qi was the OAV values of aromatic

components of the di�erent treatments; Qc was the OAV values of aromatic components of the control.

FIGURE 2

Cluster analysis of the eight major aromatic compounds in the control, UHT and HP.
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FIGURE 3

The concentration of eight major aromatic compounds of melon juice. Each value is the mean of triplicate biological samples.

FIGURE 4

The mechanism profile of the UHT and HP2-2 on aromatic components of melon juice. The blue ball refers to the aromatic components in

melon juice.

which was 1.49 and 6.99 times that of the control and UHT,

respectively.

The concentrations of 2-methyl-1-butyl acetate and

ethyl acetate were significantly decreased by the UHT. This

phenomenon was probably because the thermal treatment of

the UHT was more intensive than the non-thermal treatment of

the HP (28).

The HP2-2 increased the concentration of (E, Z)-3,6-

nonadien-1-ol and (Z)-3-nonen-1-ol in each treatment. This

phenomenon was possible because the proper pressure activated

the activity of certain glycosidases and released glycoside-bound

alcohols in fruit juices (8).

The UHT reduced acetal, nonanal, and octanal

concentrations to a very low level. The high temperature

had the greatest effect on aldehydes. Consistent with our results,

the aldehydes showed the highest thermal sensitivity and the

lowest thermal stability in melon juice, so the high temperature

significantly reduced the odor intensity (19).
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β-Ionone was the only flavor compound whose

concentration was increased by the UHT. The first-order

kinetics of β-carotene degradation products can only be

produced after long-term exposure to high temperatures, which

also promotes the formation of β-ionone (29). The HP2-2

increased the concentration of β-ionone to the maximum, 1.66

and 1.45 times the control and UHT, respectively.

Interestingly, the HP6-1 and HP6-2 reduced the

concentrations of major aromatic components, and some

of them were reduced to an undetectable level, which resulted

from the fact that the excessive pressure destroyed the structure

FIGURE 5

Surface tension of the melon juice. Each value is the mean of

triplicate biological samples. The di�erent letters in control,

UHT, HP2-2 indicate significant di�erences (P < 0.05).

of aromatic compounds. A similar phenomenon was also

reported: the HP treatment of 200–400 MPa maintained the

volatile components of pumpkin, while the excessive pressure

reduced them (30).

Possible mechanisms of the HP treatment

The aromatic components of melon juice were mostly C6

and C9 aldehydes and their corresponding alcohols, which

were mainly products of the fatty acid metabolism catalyzed

by the related enzymes (22). Remarkably, the HP treatment

would inactivate the enzymes and terminate the synthesis of

aromatic components (31–33). However, the concentration of

aromatic components in the HP2-2 was significantly higher than

that of the control, as indicated by the GC-MS results in our

study. These phenomena proved that the enhancement of the

aromatic components of the HP2-2 did not result from the

catalysis of the related enzymes in the fatty acid metabolism.

Research showed that the HP treatment enhanced van der

Waals interaction by reducing the C–C bond lengths, which led

to molecular aggregation (34, 35). The molecular aggregation

reduced the surface tension of the liquid (36, 37), thus enhancing

the volatilization (38, 39).

Consequently, the surface tension was an important factor

affecting the aromatic components of the melon juice. The

surface tension reduction would raise the liquid volatilization of

the juice. The liquid volatilization could be expressed through

weight loss. Hence, the surface tension and weight loss of melon

juice were evaluated (Figure 4).

The surface tension of the UHT treatment was the highest,

which was 1.23 times and 1.20 times that of the control and

FIGURE 6

(A)Weight loss rate of melon juice and water. (B) Weight loss rate of melon juice samples minus water weight loss rate respectively. Each value is

the mean of triplicate biological samples. Y
′

is the quality of melon juice samples minus water during evaporation after normalization.
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HP2-2, respectively (Figure 5). The surface tension of the HP2-

2 was similar to that of the control. Research showed that

the reduced surface tension would promote evaporation and

recoiling properties (40). The reduction of surface tension

will make the aromatic components more volatile. The HP2-

2 reduced the surface tension between aromatic components

and the water matrix, thereby enhancing the volatilization of

aromatic components. Similar results also proved that a pressure

higher than 150 MPa would reduce the molecular force between

aromatic components and the water matrix (41).

In Figure 6A, the weight loss rate of the melon juice

decreased, while that of the water was held constant. The

decrease resulted from the evaporation of moisture in the juice

and the increase in melon juice concentration. On the one hand,

the energy required to evaporate the same amount of water

per unit of time was increased (42). Since the temperature of

the TGA/DSC analysis was isothermal at 60◦C and the energy

provided was constant, the evaporation flux was reduced, and

the weight loss rate was also reduced accordingly.

Meanwhile, the increase in melon juice concentration led to

an increase in viscosity, which reduced the transfer coefficient

in the liquid phase (43). Increasing the solution’s viscosity

improved the resistance to mass transfer in the liquid phase

(44). Consequently, the melon juice showed a polarization effect

and induced a lower driving force. The cross point met by the

weight loss rate profiles of the control sample, and the water

suggested the moment when the evaporation flux of the two

samples was the same (Figure 6A). The concentration of melon

juice corresponding to this point was 49.66%. Similar to our

results, the energy efficiency, specific water removal rate, and

exergy efficiency reached maximum values at about 30% total

soluble solid content during the concentration of pomegranate

juice. Those decreased in the further concentration process (42).

The weight loss rate between the treatments was different

after deducting the effect of water evaporation (Figure 6B). The

weight loss rate of the HP2-2 treatment was the highest, while

that of the UHT treatment was the lowest. The HP reduced the

surface tension between the aromatic components and the water

matrix in the HP2-2, thus enhancing the volatilization of the

aromatic components. The results further confirmed the results

of the surface tension analysis.

The results of the surface tension and weight loss rate of

the melon juice confirmed our prediction. Therefore, reducing

the surface tension might be one of the reasons that the

HP treatment enhanced the concentration of the total volatile

components of melon juice.

Conclusions

A total of 57 volatile compounds were identified from

melon juice by GC-MS analysis. Among them, eight major

aromatic components were identified: 2-methyl-1-butyl acetate,

ethyl acetate, (E, Z)-3,6-nonadien-1-ol, (Z)-3-nonen-1-ol, acetal,

nonanal, octanal, and β-ionone. β-Ionone was detected as the

major aromatic component in melon juice for the first time. Its

OAV value was as high as 587.87 in the HP2-2. The total volatile

concentration of melon juice was highest (532.27 µg/kg) in the

HP2-2 group, which was 1.54 and 3.77 times that of the control

and the UHT treatment, respectively. Meanwhile, the total

concentration of 8 aromatic components in the HP2-2 group

was highest, which was 1.49 and 6.99 times that of the control

and UHT, respectively. Hence, the HP2-2 was considered the

optimal parameter of the HP treatment.

The potential mechanism of the HP treatment was

explored by measuring the surface tension and the

weight loss rate. The HP2-2 reduced the surface tension

between aromatic components and the water matrix and

enhanced the weight loss rate of the melon juice, thereby

enhancing the volatilization of aromatic components. This

result provided more explicit evidence for the HP flavor

retention technology.
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Respiratory rate is an indicator of a broilers’ stress and health status, thus, it is

essential to detect respiratory rate contactless and stress-freely. This study

proposed an estimation method of broiler respiratory rate by deep learning and

machine vision. Experiments were performed at New Hope (Shandong

Province, P. R. China) and Wen’s group (Guangdong Province, P. R. China),

and a total of 300min of video data were collected. By separating video frames,

a data set of 3,000 images was made, and two semantic segmentation models

were trained. The single-channel Euler video magnification algorithm was used

to amplify the belly fluctuation of the broiler, which saved 55% operation time

compared with the traditional Eulerian video magnification algorithm. The

contour features significantly related to respiration were used to obtain the

signals that could estimate broilers’ respiratory rate. Detrending and band-pass

filtering eliminated the influence of broiler posture conversion and motion on

the signal. The mean absolute error, root mean square error, average accuracy

of the proposed respiratory rate estimation technique for broilers were 3.72%,

16.92%, and 92.19%, respectively.

KEYWORDS

broiler, respiration rate, computer vision, semantic segmentation, Euler video
magnification

1 Introduction

According to the United Nations (UN) prediction, the global population will exceed

nine billion by 2050, thus, food security has become a challenging factor [1,2].

Alexandratos and Bruinsma [3] estimated that the demand for animal-derived food

could increase by 70% between 2005 and 2050 and that poultry meat production is crucial.

Additionally, meat consumption is notably dominant, especially in countries with

significant Gross Domestic Product (GDP) growth. Broilers are an essential source of
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protein, and according to the prediction, the demand for broilers

will further increase in the next decade [4].

Regarding animal welfare and productivity (economics)

in broilers production systems, some aspects still need

attention. In particular, broilers’ respiratory rate (RR) is

related to health and feeding environment [5]. The RR of

broilers provides farmers with the basis for diagnosing

respiratory-related diseases and stress [6]. In the current

commercial broiler husbandry, farmers judge the disease

and stress of broilers by manually observing the RR and

listening to their abnormal respiratory sounds. However,

this is laborious, objective, and has low accuracy.

Therefore, an effective accurate and automatic estimation

of broiler RR is of significant importance in reducing diseases

and improving animal welfare.

Several studies have reported on the detection of RR in

animals. Xie et al. [7] developed a method by computer vision

to detect the RR of pigs. This method extracted the maximum

curvature radius of the pig’s back contour in each frame and

constructed the respiratory waveform according to the extracted

curvature radius. The average relative error between the method

and manual count results was 2.28%. Stewart et al. [8] reported

on detecting cows RR by infrared thermal imaging technology. A

thermal infrared camera was used to monitor the air temperature

near the nostrils of cattle and detect breathing. Zhao et al. [9]

applied the Horn-Schunck optical flow method to calculate the

periodic change of optical flow direction of abdominal

fluctuation of dairy cows, which obtained their RR at a

detection accuracy of 95.68%. Song et al. [10] proposed a

Lucas Kanade sparse optical flow algorithm to calculate the

optical flow of cow plaque boundary. According to the change

law of average optical flow of plaque boundary in video sequence

frame, the detection of cow respiratory behavior was obtained,

and the average accuracy was 98.58%. Presently, RR monitoring

in animals focuses on those of larger size, such as pigs and dairy

cows. Due to poultry, such as broilers, being smaller, contactless

estimation of RR in poultry has not been studied.

Due to a large number of broilers in the broiler house, it is

unfeasible to detect broiler RR using the equipment mentioned

before, including radar and depth camera, for their high cost. In

contrast, computer vision technology is contactless and stress-

free for broilers. It is an ideal means to realize non-contact

detection of broiler RR. At present, some scholars use machine

vision and artificial intelligence to realize chicken disease early

warning and recognition. Okinda et al. [11] used the feature

variables which were extracted based on 2D posture shape

descriptors (circle variance, elongation, convexity, complexity,

and eccentricity) and mobility feature (walk speed) achieved the

early diagnosis of Newcastle disease virus infection in broiler

chickens. Wang et al. [12] realized the recognition and

classification of abnormal feces by using deep learning and

machine vision, so as to achieve the purpose of monitoring

digestive diseases of broilers. However, presently, no research

has reported on the use of computer vision technology to detect

the RR of broilers.

In this context, this paper presents a novel approach to

broiler RR estimation based on semantic segmentation,

contour feature, and video magnification. The main objective

of this study is to estimate the RR of broilers without contact and

stress, and achieve the estimation with movement and multiple

postures of broilers in actual farm environment. This introduced

technique will significantly improve automation and could be

considered a new tool in the field of precision livestock farming to

improve animal welfare and production efficiency.

2 Materials and methods

2.1 Experiment design and data collection

Two experiments were conducted in this study. At NewHope

broiler farm, Weifang, Shandong Province, P. R. China, in

October 2019, and at Wen’s research farm, Yunfu,

Guangdong Province, P. R. China in September 2021. A total

of 30 15 to 35-day-old Arbor Acres broilers were used in the

experiment. The farmer randomly selected the birds with average

body shape and good health. The temperature, humidity, and

light setting were kept up with the broiler production during the

experiment. With the increase of broiler age, the internal

temperature decreased from 28°C to 22°C, and the humidity

decreased between 80% and 50%, gradually. The floor was litter

(50% sphagnum and 50% wood shavings). The illumination was

DC adjustable light in the breeding house, and the light intensity

varied between 30 and 50lx.

An experimental broiler pen of 1 m (length) by 1 m (width)

by 0.5 m (height) was built with a carton board (the color was

close to the fence in the broiler house), and the pen hosted one

FIGURE 1
Experimental arrangement schematic (1. Computer. 2.
Camera).
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broiler at a time. The pens were set up in the broiler house (in the

aisles of the broiler house) and in this way the experimental

conditions were kept consistent with the production. Before the

broilers were brought into the pen, a camera (SARGO A8,

1,920 × 1,080) was pre-installed in the front and center of the

pen 0.2 m away from the ground shown in Figure 1. The camera

was connected to an Intel Core i5-4,500 u CPU, 4 GHz, 16 GB

physical memory Microsoft Windows 10 PC via USB port and

the SARGO software. The data was stored to a 500 GB drive

(SSD) installed in the PC for subsequent analysis.

The experimental broilers were placed in the chamber, one at

a time. When the birds were quiet (no stress), the computer-

controlled camera began to record the video for 10 min for every

broiler. In total, 200 min of videos were captured in New Hope

farm and 100 min in Wen’s research farm.

The proposed methods mainly include image segmentation,

feature extraction, posture conversion and motion influence

elimination, and RR estimation. To improve the algorithm’s

accuracy, a method of video motion amplification before

feature extraction was proposed.

2.2 Data labeling

An expert visual manual count was used as a gold standard

for RR measurement. An experienced veterinarian manually

labelled the captured videos and the broiler was considered

breathed once as the belly fluctuated once. The respiratory

times were recorded every 10 s, then multiplied by 6, the RR

of broilers (times/minute). Each 1-min video had six values (RR).

2.3 Image preprocessing and semantic
segmentation

The conditions during the data acquisition environment

were consistent with the actual farm environment. However,

the video background was complex and could not be processed

directly. Therefore, it was necessary to preprocess the image to

remove the background.

2.4 Image preprocessing

To obtain the image object, a variety of traditional image

processing methods were tested, including the OTSU [13]

algorithm, watershed algorithm [14], and edge detection

algorithm [15]. However, they were not satisfactory enough to

remove the background. Moreover, these methods had poor

performance on the images due to the interferents such as

light, broiler feathers, and dust in the broiler house, leading to

wrong or missing segmentation.

2.5 Semantic segmentation

In this study, two semantic segmentation algorithms based

on deep learning were used to locate and segment broiler

individuals, i.e., the Mask R-CNN [16] and YOLAC [17].

2.5.1 Mask R-CNN
Mask R-CNN follows the framework of Fast R-CNN and

adds a fully connected segmentation subnet after the primary

feature network to realize the new function of segmentation in

addition to classification and regression. It is a two-stage

framework [16]. In the first stage, the suggestion box is

scanned and generated, and in the second stage, the

suggestion box is classified, and the boundary box and mask

are formed [16]. Figure 2A shows the frame diagram of Mask

R-CNN. The convolution layer down sampling is realized

through the cross-layer connection of the residual network

(RESNET) [16]. Combined with the feature pyramid network

(FPN), the feature maps obtained from different sampling layers

are fused and transmitted to the next operation [16].

The regional recommendation network (RPN) obtains

several anchor boxes and adjusts them to fit the target better.

If multiple anchor boxes overlap, the optimal anchor box is

selected for transmission according to the score for the prospect,

and the ROI alignment improved by ROI pooling is given for

pooling [16]. Finally, boundary box and mask prediction are

realized through the fully connected network [16].

2.5.2 YOLACT
YOLACT is a one-stage instance segmentation method that

adds mask branches to the target detection network. However,

unlike the standard serial way, this method abandons the step of

feature location. It divides the instance segmentation task into

two parallel subtasks to improve efficiency: prototype mask and

target detection. The former uses the network results of the

complete convolutional network (FCN) to generate a series of

prototype masks that can cover the whole image [17], while the

latter predicts the masking coefficient based on the detection

branch to obtain the coordinate position of the instance in the

image and non-maximum suppression (NMS) screening [17].

The final prediction results are obtained by the linear

combination of the two branches.

Figure 2B shows the frame diagram of YOACT. Similar to

other networks, this method also performs feature extraction

through the backbone network and FPN. One part of the multi-

layer FPN is used to generate the prototype mask in the prototype

mask branch, and the other part is used to calculate the

information such as detection and positioning and mask

coefficient through the prediction head network, and then

screened through NMS [17]. The processing result is

combined with the generated prototype mask, and the final

result is obtained.
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2.5.3 Semantic segmentation model
development

The images were labeled by the open-source image

annotation software Labelme. A data set containing

3,000 groups of data was obtained, in which the labeled data

were randomly divided into the training set, verification set, and

test set, according to 8:1:1.

In this study, Mask R-CNN used a resnet101 network

structure. The learning rate of the first 20 epochs was 0.001,

and that of the last 40 epochs was 0.0001. There were

1,000 iterations per epoch, 60,000 iterations in total.

YOACT used resnet50 network structure, trained

60,000 iterations, and the initial learning rate was 0.001. It

was attenuated in the 20,000 and 40,000 iterations,

respectively, and the attenuation was 10% of the current

learning rate.

2.6 Video magnification algorithm

Because broilers are small, their belly fluctuates slightly

during breathing. To improve the detection accuracy of

broilers’ RR, a video magnification algorithm was used to

amplify the micromotion of broilers. The Euler video

magnification (EVM) algorithm was proposed by Wu et al.

[18]. The EVM method mainly includes color space

conversion, spatial decomposition, time-domain filtering,

linear amplification, and video reconstruction. Spatial

decomposition is a multi-spatial resolution image that

decomposes the video sequence through the image pyramid.

Time-domain filtering filters the images of different scales

obtained by spatial decomposition in the frequency domain to

obtain the frequency band of interest. Linear amplification

linearly amplifies the bandpass filtered signal and adds it to

the original signal. Video reconstruction is used to pyramid

reconstruct the processed multi-scale image to obtain the

enlarged image and then rebuild the video. For example, if a

one-dimensional (1D) signal is in the following form[19] as in

Eq. 1.

I(x, t) � f(x + δ(t)) (1)
Where I(x, t) is the value of position x in the signal at time t and

δ(t) is the displacement function.

If the first-order Taylor series expansion can express the

signal, it can be approximately described as by Eq. 2.

I(x, t) ≈ f(s) + δ(t) zf(x)
zx

(2)

When bandpass filtering is performed on all positions x in

signal I(x, t), and B(x, t) represents the filtered signal, assuming

that the translation movement δ(t) is in the band of the bandpass
filter, then the filtered signal can be determined by Eq. 3.

B(x, t) � δ(t) zf(x)
zx

(3)

FIGURE 2
Semantic segmentation models structure. (A) Mask R-CNN framework diagram. (B) YOLACT framework diagram.
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Then the signal is amplified by α and added back to I(x, t)
(Eq. 4):

~I(x, t) � I(x, t) + αB(x, t) (4)

Adding Eqs 1–3 gives Eq. 5.

~I(x, t) ≈ f(x) + (1 + α)δ(t) zf(x)
zx

(5)

Assuming that the amplified motion (1 + α)δ(t) also satisfies
the first-order Taylor series, the band-pass filter in the time

domain can be connected with motion amplification. The

processed output can be obtained by Eq. 6.

~I(x, t) ≈ f(x + (1 + α)δ(t)) (6)

Thus, the band of interest is extracted by a bandpass filter,

multiplied by a specific magnification factor, and added back to

the original signal to achieve motion amplification. The

magnification factor α had a limiting condition (Eq. 7).

(1 + α)δ(t)< λ

8
(7)

Where λ was the spatial wavelength of the signal.

The EVM algorithm is based on the YIQ color space of the

image. Before processing, the video image should be converted

from RGB space to YIQ space and then back to RGB space. In the

process of magnification, however, the information of three-color

channels is processed simultaneously, which is time-consuming.

It was found that the abdominal fluctuation of broilers in the

video is mainly the change of pixel brightness value. Therefore,

the RR estimate did not demand the image’s color information to

improve the processing speed, so the image was transferred from

RGB to grayscale. The conversion speed was considerably

enhanced since the gray image was a single-channel image.

2.7 Contours feature extraction

To associate the changes of broiler image with broiler

respiration, it is necessary to extract the correlated features.

Two 1-min videos were randomly selected, which the broiler

images were extracted by the semantic segmentation algorithm.

At the same time, we had manually checked the video frame by

frame according to the time axis and judged that the frame was in

the broiler inspiratory or expiratory state according to the

fluctuation state of the broiler belly. By recording these states

as the parameter “Breath,” the inspiratory process was set as “1”

and the expiratory as “0.” A total of 3,000 frames were obtained,

so the parameter “Breath” obtains a total of 3,000 data. Some

image contour features were extracted for the segmented broiler

images, shown in Table 1.

Using the software SPSS, the Pearson correlation analysis was

carried out between each feature and “Breath.”

2.8 Estimation of respiratory rate based on
signal power spectral density

The feature which significantly correlated with “Breath” was

regard as a time-dependent signal. Then, the signal was transformed

into a frequency domain by fast Fourier transform (FFT) [20], and

its power spectral density (PSD) [21] was analyzed. After PSD

analysis, the frequency with the maximum power density results

being the RR estimated by the feature signal.

2.9 Evaluation methods

When evaluating the performance of the semantic

segmentation algorithm, the accuracy P and intersection over

union (IoU) were used (Eq. 14 and Eq. 15).

P � TP

TP + FP
× 100% (14)

IoU � TP

TP + FP + FN
× 100% (15)

Where TP is the total number of correctly segmented pixels,

the total number of incorrectly segmented pixels, and the total

number of missed pixels.

We used three indicators, mean absolute error (RRme), root

mean squared error (RMSE), average accuracy (RRacc), to evaluate

the effects of the broiler RR estimation models (Eqs 16–18).

RRme � 1
N
∑N

I�1|RRD(i) − RRm(i)| (16)

RMSE �
�������������������
1
N
∑N

I
[RRD − RRm(i)]2

√
(17)

RRacc � (1 − 1
N
∑N

I�1
|RRD(i) − RRm(i)|

RRm(i) ) × 100% (18)

Where RRD is the RR detected by RR-D and RR-D-EVM, RRm is

the RR observed manually. N is the number of tested videos.

TABLE 1 The extracted feature variables.

Extracted features Defining equations

Centroid X X � ∑P_i xi

∑ Pi

(Eq. 8)

Centroid Y Y � ∑ P_i yi
∑ Pi

(Eq. 9)

Area S � ∑
x
∑
y
v(x, y) (Eq. 10)

Aspect Ration AR � W
H

(Eq. 11)

Extent EX � Sc
SB

(Eq. 12)

Solidity SO � SC
SH

(Eq. 13)

Where, Xi and Yi are the pixel coordinates, and Pi is the pixel’s value. v(x,y) is the gray

value of the point (x, y). W and H are the width and height of the contour. SC and SB are

the contour area and bounding rectangle area. SC and SH are the contours and convex

hull areas.
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3 Results and discussions

3.1 Semantic segmentation algorithm

The two semantic segmentation models have been evaluated

with the test dataset. Table 2 shows the segmentation results of

Mask R-CNN and YOACT models in this study. The average

accuracy of the YOLACT results is 95%, and the average IoU is

94%; the average accuracy of Mask R-CNN is 95%, and the

average IoU is 90%.

3.2 Feature acquisition

The results of Pearson correlation analysis between contours

features and “Breath” are shown in Table 3. It can be found that

the feature “Centroid Y” is significantly correlated with “Breath”

(p > 0.4), while “Centroid X” is weakly correlated (0.1 < |P| < 0.2)

and the feature “Area,” “Aspect Ratio,” “Extent,” “Solidity” is not

significantly correlated (|P| < 0.1). Therefore, this study applied

“Centroid Y” as the feature for RR estimation.

According to Eq. 9, the “Centroid Y” is affected by the height

of the broiler contour in the image and the different postures

influenced the height of the broiler contour, thus, it is necessary

to eliminate the impact of these different poses. Based on manual

observation and ethograms by [22,23], the broiler postures were

divided as standing, lying, and hanging their heads.

During the posture transformation of broilers, the “Centroid

Y” changes considerably. As shown in Figure 3, “Centroid Y”

suddenly increases due to the changes of broilers from lying to

standing posture. Considering that this study regarded the

“Centroid Y” as a time-dependent signal, then the broilers’

posture changes will influence the signal trend. Because the

signal is assumed to be stable in power spectral density (PSD),

hence, it is necessary to eliminate the signal trend caused by

posture changes.

TABLE 2 The semantic segmentation algorithm output.

Model Image ID Input Output Mask

Mask R-CNN 58

173

255

YOLACT 58

173

255
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The smoot priors approach (SPA) by Tarvainen et al. [24] is an

effective nonlinear signal detrending method and is often used to

process human ECG signals. The SPA algorithm was used to

detrend the “Centroid Y” signal. Figure 4 shows the “Centroid

Y” signal obtained from a 10-s video. Due to the changes in broiler

posture from standing to lying, the “Centroid Y” signal has an

apparent trend change. After the processing with the detrend

algorithm, the signal trend caused by posture change was

eliminated, as shown in Figure 4.

It was also observed that the broilers frequently movements,

i.e., flipping of wings and walking. These movements lead to the

change in the “Centroid Y,” as shown in Figure 5, where the

broiler flipping of wings caused the signal to change.

A band-pass filter was used to filter the noise caused by the

movement of broilers. As shown in Figure 6, the signal fluctuated

due to the wing shaking of the broiler. After band-pass filtering,

the processed signal filter the noise and eliminate the influence of

wing shaking.

3.3 Respiratory rate estimation

According to “Broiler production,” the RR of broilers are

different at different ages [25]. The RR of young broilers is

higher, reaching up to 65 times per minute on average. After

21 days of age, the RR of broilers decreases to about 45 times per

minute. Besides, stress influences the RR significantly. RR

reaches 130 times per minute or even more when the broiler

suffers from thermal stress. Therefore, considering the

influence of age and stress on RR, the range of broiler RR

was set as 25–150.

In this study, two RR estimation techniques were explored,

i.e., without video magnification algorithm (RR-D), and with

video magnification algorithm (RR-D-EVMGS). Fifty 10-s videos

were randomly selected from the dataset to test the two methods’

performance. The test result is shown in Figure 7.

The evaluation results of the two models are shown in

Table 4.

TABLE 3 Correlation analysis between the extracted features and breath.

Centroid X Centroid Y Area Aspect ration Extent Solidity

Breath Pearson Correlation(P) 0.166 0.417 −0.048 0.024 0.026 0.048

Sig. (2-tailed) 0.001 0.011 0.062 0.364 0.325 0.065

FIGURE 3
Posture conversion causes signal Centroid Y to change.
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3.4 Euler video magnification based on
grayscale

The speed of the EVM algorithm based on grayscale had been

improved. Table 5 shows the time consumed by two algorithms for

processing the same five videos on the same computer (CPU 4500 u,

4 GHZ). In this study, the speed of EVM based on grayscale was

improved by more than 55% compared with EVM.

3.5 Performance evaluation

To test the non-contact broiler RR estimation method

proposed in this paper, it is necessary to compare the results

obtained by this method and the reference standard (expert

visual manual count). To keep the consistency between the

proposed method and the reference standard, the Bland-

Altman way [26] was used to evaluate the consistency

FIGURE 4
Comparison between before and after signal detrend.

FIGURE 5
Centroid Y signal changes due to broiler movements.
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between the results of RR-D, RR-D-EVMGS, and expert visual

manual count.

As shown in Figure 8, the x-axis is the mean of the RR

estimated by RR-D, RR-D-EVMGS, and expert visual

manual count, and the y-axis is the difference between

them. The 95% consistency interval for RR-D and RR-D-

EVMGS between expert visual manual count is (−10.57,

13.45) and (−9.27, 11.48), respectively. It can be observed

that most of the RR data measured by the two methods are

FIGURE 6
Comparsion before and after signal filtering.

FIGURE 7
RR estimation result.

TABLE 4 Test results of RR-D and RR-D-EVMGS.

RRme (times/minute) RMSE (times/minute) RRacc (%)

RR-D 4.56 21.26 90.52

RR-D-EVMGS 3.72 16.92 92.19

TABLE 5 EVM and EVM based grayscale processing time.

Video ID EVM(s) EVM based on grayscale(s)

1 70.22 30.18

2 93.41 37.23

3 95.67 38.10

4 102.84 41.71

5 107.29 43.11
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within the confidence interval, indicating that the

consistency between RR-D, RR-D-EVMGS, and the expert

visual manual count is good.

3.6 Influence of factors that affects the
estimation of respiratory rate

Due to the broiler farming environment being complex and

dynamic, in addition to the broiler moving frequently, there is

numerous interferences affecting the performance of the broiler

RR estimation. Therefore, these interference factors were

analyzed to verify the effectiveness of the proposed method.

3.6.1 Effects of the angles between broiler and
camera on the estimation of respiratory rate

Because the camera was fixed and the broiler would move

freely, there were different angles between the broiler and the

camera. According to the angle of Broiler in the video, we

divided the data into three kinds: frontal, lateral, and back.

Five 1-min videos were selected from each of the three kinds

and tested with RR-D-EVMGS. The results are shown in

Table 6. It can be seen that the estimation of frontal

performance is worst. We suspect that this is because the

bird’s head is stable, so when the front of the broiler faces the

camera, the respiratory body movement is less evident than

that of the back and lateral.

FIGURE 8
Bland-Altman plot. (A) Bland-Altman plot of RR-D. (B) Bland-Altman plot of RR-D-EVMGS.
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3.6.2 Influence of breathing rate perturbation on
the estimation of respiratory rate

Because the RR of broilers is affected by age, health, and

environment, the RR varies greatly. Since our data were

obtained when the broiler were calm and no stress, their RR

was stable. To verify the estimation effect of the proposed

method in the case of fluctuation of RR, we randomly

selected ten 1-min videos, twice accelerated the first and last

250 frames, and kept the other frames unchanged, to simulate

the fluctuation of broiler RR, and then estimated it with the

method we proposed. The RR estimation results are shown in

Table 7. It can be seen from the table that the method proposed

in this paper performed well on the accelerated video; accuracy

was reduced by less than 1%. We deem that is because we

extract each frame of the video, the sampling frequency is much

greater than twice the upper limit of RR, which meets

Shannon’s sampling theorem. Therefore, the method

proposed in this paper can be used to estimate the RR of

broiler under special conditions, such as heat stress.

3.6.3 Analysis on the causes of poor estimation
effect

According to the test result, Figure 7, it could be found that

the estimation results of videos 12 and 13 were the worst, and the

error reached 37.5%. By checking the original video, it was found

that the broiler was too close to the camera, resulting in the

broiler’s body occupying almost the whole image. RR-D and RR-

D-EVMGS had poor performance on video 33, with an error of

30%. Checking the original video, it emerged that part of the body

walked out of the camera due to the movement of the broiler, and

the complete image of the broiler could not be extracted.

Therefore, the main factors affecting the estimation accuracy

of the two methods were the distance between the broiler and the

camera and whether the complete body contour of the broiler

could be extracted. The method proposed in this study realizes

the estimation of RR of broilers without contact and stress. It can

be used to remotely diagnose respiratory-related diseases and

monitor the stress of broiler (such as heat stress). The method

used in this study is portable and can be extended to different

objects, such as ducks, geese, etc. And we will also try to verify the

performance of this method on other objects in the future.

4 Conclusion

A non-stressful, contactless approach of RR estimate for broilers

is presented in this research. Compared to the animal respiration rate

detectionmethods proposed by Xie et al. [7] and Stewart et al. [8] and

others, this study was aimed at a smaller subject with more complex

applying environment, which means it was much more challenging

to achieve respiration rate estimation. This results in a lack of contact-

free RR estimate techniques for tiny birds like broilers. Using the

semantic segmentation technique, the broiler pictures could be

successfully retrieved from the complicated backdrop, with an

extraction accuracy of 95%. We came to the conclusion that

“Centroid Y” would be the ideal way to estimate broiler

respiration and presented the RR-D-EVMGS and RR-D

approaches. The performance of the two methods was compared

in 50 videos, and in RRme, RMSE, and RRacc, RR-D-EVMGS

performed better than RR-D. Through the Consistency evaluation

with the manual measures, the results of the two methods were

consistent with the manually measured results. The method

proposed in this study can be applied to farming robots, such as

the poultry health monitoring robot developed by Nanjing

Agricultural University. And the method proposed in this study

can be generalised to other small-sized birds for contactless RR

estimation, such as ducks and geese. Because this study was still

preliminary, there were some problems that needed to be further

solved. For example, although this study used a single-channel Euler

video magnification algorithm to improve the computing speed, it

still took much longer time to achieve real-time detection. To

address this matter, the algorithm requires further optimisation

TABLE 6 The test result of different angles between broiler and camera.

RRme (times/minute) RMSE (times/minute) RRacc (%)

Frontal 6.6 24.5 88.16

Back 4 13.6 93.67

Lateral 3.6 8.2 93.35

TABLE 7 The test result of the accelerated and original video.

RRme (times/minute) RMSE (times/minute) RRacc (%)

Original video test result 3.4 6.3 94.35

Accelerated video test result 4.5 10.75 93.85
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in the future. Although the results obtained are still preliminary, we

believe that this contactless detection of broiler RR has a promising

prospect. It can provide technical support for broilers’ respiratory

diseases and heat stress monitoring.
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Owing to iron chlorosis, pear trees are some of the most severely impacted by iron

deficiency, and they suffer significant losses every year. While it is possible to

determine the iron content of leaves using laboratory-standard analytical

techniques, the sampling and analysis process is time-consuming and labor-

intensive, and it does not quickly and accurately identify the physiological state

of iron-deficient leaves. Therefore, it is crucial to find a precise and quick

visualization approach for metabolites linked to leaf iron to comprehend the

mechanism of iron deficiency and create management strategies for pear-tree

planting. In this paper, we propose a micro-Raman spectral imaging method for

non-destructive, rapid, and precise visual characterization of iron-deficiency-

related metabolites in pear leaves. According to our findings, iron deficiency

significantly decreased the Raman peak intensities of chlorophylls and lipids in

leaves. The spatial distributions of chlorophylls and lipids in the leaves changed

significantly as the symptoms of iron insufficiency worsened. The technique offers

a new, prospective tool for rapid recognition of iron deficiency in pear trees

because it is capable of visual detection of plant physiological metabolites induced

by iron deficiency.

KEYWORDS

iron deficiency, pear tree, Raman spectroscopy, spectral imaging, chlorosis
1 Introduction

By the middle of this century, there will be significant food shortages as the world’s

population expands. To meet rising demands for food, agricultural yields must be increased

(Pretty et al., 2010). Meanwhile, 30% of the global population suffers from iron-deficiency

anemia, which is induced by inadequate iron consumption and low iron bioavailability

(Kassebaum et al., 2014). Iron is a crucial trace metal for plants and is necessary for both
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photosynthesis and chlorophylls synthesis. A substantial decline in

fruit productivity and quality will be caused by iron deficiency

because it will cause chlorosis, lower photosynthesis and respiration

rates, and inefficient water use (Larbi et al., 2006). Pear trees are some

of the most severely affected by iron deficiency, and large losses occur

each year because of chlorosis (Sanz et al., 1993; Therby-Vale et al.,

2022). Therefore, timely detection of iron deficiency in pear trees is

crucial for improving the healthy growth of pear trees, fruit quality,

and planting efficiency.

The standard approaches for the detection of iron content in

leaves, atomic absorption spectroscopy and inductively coupled

plasma-emission spectrometry, can accurately measure the total

iron content in leaves, but these operations are complicated, time-

consuming, and labor-intensive (Kucukbay and Kuyumcu, 2014;

Elango et al., 2021). Furthermore, there are limitations to using the

total iron content of leaves to discriminate the iron deficiency status of

plants. Studies have shown that iron-deficient leaves with intervein

chlorosis have total iron contents similar to those of iron-sufficient

leaves, which is known as the “chlorosis paradox” (Morales et al.,

1998; Romheld, 1998; Jimenez et al., 2009). Therefore, using the total

iron content to determine whether leaves are iron deficient

is inaccurate.

A chlorotic effect is caused by changes in metabolites, such as

pigments in the veins and leaf mesophyll, which are driven by iron

deficiency. As a result, occurrences of leaf iron deficiency can be quickly

determined using the quantity of chlorophylls and other leaf

metabolites (Li et al., 2006). Therefore, some researchers have

investigated the use of spectral reflectance to assess the

concentrations of leaf metabolites in plants. They discovered that

plant chlorosis is more strongly related to active iron content than

total iron content (Basayigit et al., 2015). Although reflectance

spectroscopy may identify iron deficiency in plant leaves quickly, the

wavelength band used is in the visible–near-infrared range. Molecular

compounds like chlorophylls have no fingerprints in this spectral range.

Therefore, this technology cannot specifically identify molecules such

as chlorophylls; instead, it relies on stoichiometric algorithms for

modeling and identification, which are low-migration and imprecise.

As a next-generation detection technology for agricultural

applications, Raman spectroscopy is advantageous because it allows

specific, multi-component analysis, is non-destructive, and rapidly

detects molecular compounds (Lew et al., 2020). Obvious

physiological changes caused by iron deficiency are significant

decreases in the content of leaf metabolites, such as chlorophylls

and lipids (Morales et al., 1991). The water-insensitive nature of

Raman spectroscopy enables the detection of these metabolites

without pre-processing in plant leaves. More importantly, Raman

spectroscopy can be integrated with a microscope to form a micro-

Raman spectrometer, which can generate maps of relative content

distributions of relevant leaf metabolites at a microscopic scale

(Baranski et al., 2005; Gierlinger et al., 2008; Heiner et al., 2018;

Zhang et al., 2020; Sasani et al., 2021).

In this paper, we conducted micro-Raman spectroscopy on iron-

deficient pear leaves. The variation of metabolites, including

chlorophylls and Lipids, in leaves affected by iron-deficiency was

studied, providing a novel approach for revealing patterns of spatio-

temporal variation and mechanisms of changes in metabolites

accompanying iron deficiency.
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2 Materials and methods

2.1 Materials and instruments

In North China, we discovered that a high-quality pear cultivar

(Pynus bretschneideri Rehd.) grafted to quince A (Hardy as

interstock) suffered from iron deficiency chlorosis in calcareous soil

in early spring, and that the condition was even worse in late spring to

early summer. As a result, a high-density training system has been

developed in Beijing research and demonstration pear orchard since

2016. This orchard is located in Beijing, China, 40 meters above sea

level in the continental monsoon climate zone. The annual average

temperature is 10°C, and rainfall occurs mainly from July to

September, with an annual average precipitation of 550 mm. The

soil is a silt loam consisting of clay, silt, and sand in proportions of

5.4%, 64.7%, and 29.9%, respectively (Zhao et al., 2020).

When iron fertilizer is sprayed on the leaves of yellow pear trees, the

leaves can partially return to green, indicating that the yellow

symptoms are caused by iron deficiency. To test the feasibility of

Raman spectroscopy for visual characterization of iron-deficient leaf

metabolites, basal leaves, young leaves, and apical leaves were picked

from the same branch of Huangguan (Pyrus bretschneideri Rehd) pears

with iron-deficiency symptoms, representing healthy, mildly iron-

deficient, and severely iron-deficient leaves, respectively (Rustioni

et al., 2018). This is because the degree of leaf iron deficiency varies

at different positions on a branch, with iron deficiency first occurring

on the youngest leaves at the top (Bertamini et al., 2002; Tremblay et al.,

2012). The experiment included three groups of biological repetitions,

totaling nine leaf samples.

Chlorophylls content within plant leaves is often characterized by

soil–plant analysis development (SPAD) values. We used a handheld

SPADmeter (SPAD-502, Konica Minolta Sensing, Inc., Osaka, Japan)

to measure the SPAD values of healthy, mildly iron-deficient, and

severely iron-deficient leaves to provide a reference for the analysis of

the Raman spectral results. SPAD was measured three times per leaf.

The micro-Raman spectrometer (HORIBA HR Evolution,

Horiba, Japan) can acquire high-resolution Raman spectra from

leaves, because of its 800-mm focal length. During the experiment,

a 532-nm continuous laser (100-mW power) was the excitation light

source, the grating was set to 600 l/mm, the ND filter was set to 3.2%,

the single-point integration time was set to 0.5 s, and the single-point

accumulation number was set to 1. For the mapping, an area of

500mm by 500mm and 25mm steps were chosen, and every pixel

corresponds to one scan. These settings ensure non-destructive

Raman spectroscopic measurements of plant leaves.
2.2 Data acquisition and analysis methods

The Raman spectroscopic measurement process for pear leaves is

shown in Figure 1. Leaves picked from the pear orchard were placed in a

portable refrigerator and sent to the laboratory for micro-Raman

spectroscopic analysis within 1 hour. Two regions, the midrib and

vein, were selected for Raman spectral imaging in each of the healthy,

mildly iron-deficient, and severely iron-deficient leaves. Through the

displacement of the x-axis and y-axis of the object platform, the Raman

hyperspectral data were acquired for the leaf regions. Using a simple
frontiersin.org
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characteristic band-spectral imaging method, pseudo-color maps of the

content distributions of specific substances in leaves can be obtained

quickly. All spectral data were processed using Python. The resulting

graph was drawn with origin software and PowerPoint (PPT).

To analyze the Raman spectra, cosmic rays were removed firstly.

Because the leaf is a complex matrix, it contains many fluorescent

substances. Therefore, under the excitation by visible light (532 nm),

interference by fluorescence signals caused a baseline shift of the

Raman spectrum of the leaves. For data analysis, we used adaptively

iteratively reweighted penalized least squares (airPLS) for baseline

correction (Zhang et al., 2010). The corrected Raman spectra were

then filtered using the Savitzky-Golay filter method with an order of

1 and a number of points of 3. The relative concentration analysis

was based on baseline-corrected, smoothed spectra. All spectrum

was maximum normalized. In order to evaluate the variability in

intensity of the Raman features of the spectra of the leaves (healthy,

mildly iron-deficient and severely iron-deficient), pseudo-color

maps based on the intensity of the Raman band was generated

using Python. Statistical analysis was carried out with Excel.

ANOVA was used to compare individual peaks between iron-

deficient and healthy leaves.
3 Results

3.1 Raman spectral characteristics of
metabolites in leaves with different degrees
of iron deficiency

Figure 2A depicts the phenotype of the tested leaves. The healthy

leaves are dark green in color and have white veins. Iron-deficient

leaves are yellow–green in color overall and greenish near the veins.

The chlorophylls pigment in leaves gradually decreased as iron

deficiency worsened, and the leaves gradually changed from

yellowish green to yellow, exhibiting severe symptoms of iron

deficiency and chlorosis. Changes in leaf chlorophylls contents

caused by iron deficiency were also confirmed by SPAD

measurements (Figure 2B). The figure shows that the SPAD values

of healthy, mildly iron-deficient, and severely iron-deficient leaves

were approximately 35, 17, and 5, respectively. The results showed
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that as iron deficiency worsened, the SPAD value of leaves decreased

gradually, as did leaf chlorophylls contents (Yamamoto et al., 2002).

Figure 2C depicts the characteristic peaks analysis of the leaf Raman

spectra. We found four spectral peaks in the average Raman spectrum of

leaves: 1286cm−1,1353cm−1, 1266cm−1, and 1444cm−1. Table 1 shows the

attribution of peaks. The Raman peaks at 1286 cm−1 and 1353 cm−1 were

assigned to chlorophylls (Cai et al., 2002; Mandrile et al., 2019), while

those at 1266 cm−1 and 1444 cm−1 were assigned to lipids (Czamara et al.,

2015). The intensities of the Raman peaks at 1286 cm−1 and 1353 cm−1

decreased sequentially in healthy, mildly iron-deficient, and severely iron-

deficient leaves, as shown in Figure 2C, indicating that relative leaf

chlorophylls content gradually decreased as the degree of iron-deficiency

worsened. This result is consistent with the SPAD values shown in

Figure 2B. Furthermore, the intensities of the Raman peaks at 1266 cm−1

and 1444 cm−1 gradually decreased with increasing severity of iron

deficiency. This suggests that iron deficiency causes decreases in both

chlorophylls and lipids. This is because iron deficiency reduces the

soluble lipids content of the epidermis and also lipids in the vesicle

membranes. The variations in characteristic chlorophylls and lipids peaks

detected by Raman spectroscopy were correlated with the degree of iron

deficiency in leaves according to cross-analyses with leaf phenotypes and

SPAD values. Finally, Raman spectroscopy could detect physiological

changes caused by iron deficiency in pear trees in a non-destructive and

timely manner.
3.2 Spatial distribution of metabolites
around the leaf midrib at different levels of
iron deficiency

Figure 3 depicts the Raman spectral imaging results of metabolites in

the regions near the midribs of leaves with varying degrees of iron

deficiency. In mildly and severely iron-deficient leaves, the intervein was

chlorotic, whereas the area near the midrib and the veins remained green,

as seen in the microscopic images. This is consistent with symptoms of

interveinal chlorosis associated with iron deficiency (Bertamini et al., 2002).

Based on the characteristic Raman peak of chlorophylls at 1353cm−1,

pseudo-color maps of relative chlorophylls content distributions near the

midribs were generated. In Figure 3C, the chlorophylls content in the

mesophyll region of healthy leaves is higher than in the region near the

midrib. As a result, the midrib and mesophyll regions can be

distinguished by chlorophylls distribution maps. When compared with

healthy leaves, mildly and severely iron-deficient leaves had lower

chlorophylls contents on the pseudo-color maps, making it more

difficult to identify the positions of the midribs. Because of the

difficulty of iron-ion transfer (Rustioni et al., 2018), the iron contents

in venous regions of iron-deficient plant leaves are higher than in the

inter-vein regions (Osório et al., 2014). This results in greater decreases in

chlorophylls contents in the intervein regions because they are more

susceptible to iron-deficiency stress than the midribs. In healthy leaves,

the chlorophylls contents between veins are higher than those of the

midrib and vein regions; iron deficiency causes lower chlorophylls

contents between the veins. Consequently, chlorophylls distribution is

uniform in Raman hyperspectral images, and veins cannot be identified.

The advantage of Raman spectroscopy is that it allows for single-

spectrum, multi-component analysis. Simultaneously, a distribution

map of the relative lipids content near the midrib was generated based
FIGURE 1

Schematic diagram of spectral-imaging measurement principles of the
micro-Raman spectrometer used for pear leaves.
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on the characteristic lipids peak at 1444cm−1. Iron deficiency can

cause a decrease in leaf lipids content, as shown in Figure 3D. There

are two main reasons for this: iron stress reduces the soluble lipids

content of the epidermis (Fernández et al., 2008); however, it also

reduces the lipids content of the thylakoid membrane. Furthermore,

the lipids content of the midrib was much lower than that of the

mesophyll region. This could be because there are no chloroplasts in

the midrib, resulting in reduced lipids contribution from thylakoid

membranes. Consequently, in Figure 3D, there is a clear difference in

lipids contents between the midrib and the mesophyll. This results in
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the pseudo-color map of lipids exhibiting relatively consistent

venation distribution in the visible light image in Figure 2B.

3.3 Spatial distribution of metabolites in the
leaf-vein region

Figure 4 depicts the results of a similar pseudo-color map analysis of

the area near the leaf veins. Like the midrib region, healthy leaves had

higher chlorophylls contents in the mesophyll and lower contents in the

veins. Because of differences in chlorophylls content distributions, it is
A B

C

FIGURE 2

Phenotypes, SPAD values, and Raman spectra of pear leaves with different levels of iron deficiency: (A) phenotypes of healthy, mildly iron-deficient, and
severely iron-deficient leaves; (B) SPAD values of leaves; (C) Raman spectra of leaves.
TABLE 1 Vibrational Bands and Their Assignments for Pear Leaf Samples.

band vibrational assignment

1266 d(=CH) (lipids)(Czamara et al., 2015)

1286 d(phenyl−OH) (phenolics)(Gill et al., 1970) + −d(CH)·n(CN) (chlorophylls)(Cai et al., 2002)

1353 undefined (chlorophylls)(Cai et al., 2002; Mandrile et al., 2019)

1444 a(CH2/CH3) (lipids)
(Czamara et al., 2015)
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possible to see similar structural textures of the leaf in Figure 4C as in

Figure 4B, allowing a clear distinction between the veins and mesophyll

regions. In Figure 4C, the chlorophylls content of the mesophyll gradually

decreases with the degree of iron deficiency in mildly and severely iron-

deficient leaves. The difference in chlorophylls contents between mesophyll

and veins in leaves was reduced as the degree of iron deficiency increased,

resulting in an unclear chlorophylls distribution profile in Figure 4C.

Consequently, a leaf texture structure similar to that shown in Figure 4B is

not visible. Similarly, Figure 4D depicts the lipids content distribution in the

vein-mapping region. The lipids content distributions in the vein-mapping

areas of the three types of leaves were more uniform than in the midrib-

mapping area. This could be because the veins are smaller in size, resulting

in a higher proportion of mesophyll.
3.4 Normalized intensities of chlorophylls
and lipids within the mapping area

The results of the preceding analyses show that micro-Raman

maps can visualize the metabolites (detected chlorophylls and
Frontiers in Plant Science 63
lipids) in leaves with varying degrees of iron deficiency. The

average normalized intensities of chlorophylls and lipids in the

mapping areas in Figures 3, 4 were calculated to more clearly

quantify changes in the relative contents of chlorophylls and

lipids with respect to the degree of iron deficiency in the mapping

area; these results are shown in Figure 5. In iron-deficient leaves,

including mildly and severely iron-deficient ones, the two

substances in the midrib and vein decreased significantly

compared with those in healthy leaves.

The mapping method was also found to be more stable than the

single-point acquisition method. The RSD of spectral characteristic

peak intensity of all single points in each leaf scanning area represents

the inaccuracy of single-point acquisition method. At the same time,

the RSD of the characteristic peak intensity of the average spectrum of

the scanning areas of the three samples in each category (healthy,

mildly iron-deficient, and severely iron-deficient) represents the

inaccuracy of mapping method. As shown in the Table 2, the RSD

of mapping is much smaller than that of single-point acquisition

measurement, so mapping method can improve the accuracy and

consistency of the results.
A B DC

FIGURE 3

Visible light images and Raman spectral images of midrib components in leaves with differing degrees of iron deficiency. (A)Visible light images of healthy
and iron-deficient leaves; (B) Microscopic visible light images of the midrib-mapping regions; (C) Pseudo-color maps of chlorophylls spatial distribution
in the midrib-mapping regions; and (D) Pseudo-color maps of lipids spatial distribution in the midrib-mapping regions.
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4 Discussion

In this paper, the feasibility of using the micro-Raman spectral

imaging method for detecting metabolites in iron-deficient leaves was

preliminarily explored, and visual detection of changes in the

distribution of leaf metabolites caused by iron deficiency was

discussed. Although the Raman spectral characteristics of

chlorophylls and lipids were not robust, we could still identify them

and relate temporal and spatial variations of their relative contents

with the degree of iron deficiency by Raman spectroscopy. We found

that iron deficiency resulted in decreased chlorophylls and lipids

contents in leaves, which was more pronounced in the

mesophyll regions.

Iron deficiency in pear trees can result in significant yield

reductions and even death. As a result, it is critical to determine the

physiological state of iron deficiency in pear leaves accurately and

precisely. Existing measurement methods primarily focus on

measurement of total iron content in leaves and reflectance

spectroscopy. The “chlorosis paradox” suggests, however, that total

iron content in leaves cannot accurately reflect the physiological state
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of iron deficiency in plants, and the reflectance spectrum cannot

specifically identify changes in leaf metabolites caused by iron

deficiency. Compared with ICP-ES, the Raman spectral imaging

method proposed in this paper can visualize the physiological state

of iron deficiency in pear leaves with greater accuracy. It provides a

method for visual characterization of specific substances for studying

the mechanisms of plant responses to iron deficiency. Furthermore,

the ability to recognize temporal and spatial variations in metabolite

contents is expected to make different nutritional stresses

distinguishable. Plant nutrients such as nitrogen, magnesium, and

iron can cause leaf chlorosis, but there are subtle differences. The

distribution of chlorophylls in leaves is expected to distinguish stress

because of iron deficiency, magnesium deficiency, and nitrogen

deficiency (Bertamini et al., 2002; Tremblay et al., 2012; Rustioni

et al., 2018). These distinctions provide an opportunity for using

Raman spectroscopy for nutrient stress discrimination. Future

research will be focused on the use of Raman spectroscopy to

diagnose specific nutrient stresses in plants.

Plants also contain many fluorescent chromophores. The weak

Raman characteristics of many iron-deficiency-related substances
A B DC

FIGURE 4

Visible light images and Raman spectral images of vein-region components of leaves with differing degrees of iron deficiency. (A) Visible light images of
healthy and iron-deficient leaves; (B) Microscopic visible light images of the vein-mapping regions; (C) Pseudo-color maps of chlorophylls spatial
distribution in the vein-mapping regions; (D) Pseudo-color maps of lipids spatial distribution in the vein-mapping regions.
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may be obscured because of strong background interference by

fluorescence in leaf Raman spectra. Fortunately, we can detect

changes in chlorophylls and lipids contents in pear leaves caused by

iron deficiency. However, in the study of iron-deficiency mechanisms

in leaves, providing only temporal and spatial variation of these two

metabolites is insufficient; detection of variation in trace substances is

also required. Determining how to reduce the strong fluorescence

background and investigate high-resolution and high-sensitivity

Raman mapping technology for iron-deficiency-related metabolite

content maps is a critical and difficult task. In future work, shifted

excitation Raman difference spectroscopy (SERDS) can be used to
Frontiers in Plant Science 65
remove fluorescence interference by changing the acquisition method

(Theurer et al., 2021); a Fourier-transform Raman spectrometer

excited by near-infrared light at 1064 nm or an ultraviolet micro-

Raman spectrometer can also be employed to avoid fluorescence

background interference (Gallimore et al., 2018; Nazari and Holtz,

2018). However, increasing the spectral resolution of the micro-

Raman spectrometer can improve its ability to detect more

substances in one measurement. In terms of operation time,

existing micro-Raman spectroscopy relies on the point-scanning

mapping mode, which takes a long time. More advanced Raman

techniques could be used to solve this problem. The spectral imaging
A B

FIGURE 5

The average normalized intensity of chlorophylls and lipids in the mapping regions: (A) chlorophylls; (B) lipids. *, p ≤ 0.05. H, healthy leaves; ID-M, mildly
iron-deficient leaves; ID-S, severely iron-deficient leaves.
TABLE 2 The RSD calculated in the single-point and mapping acquisition methods.

Method Single-point Mapping
RSD

Sample 1 Sample 2 Sample 3
Category

C
h
l
o
r
o
p
h
y
l
l
s

Healthy 0.521133 0.265841 0.237239 0.061481

Mildly 0.668272 0.428599 0.546086 0.263762

iron-deficient

Severely iron-deficient 0.435153 0.383717 0.412524 0.120858

L
i
p
i
d
s

Healthy 0.343743 0.416906 0.361109 0.038703

Mildly

iron-deficient 0.356453 0.337559 0.343417 0.077702

Severely

iron-deficient 0.334797 0.141416 0.500061 0.009228
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properties of coherent anti-Stokes Raman spectroscopy (CARS) and

stimulated Raman spectroscopy are excellent (Hu et al., 2019; Xu

et al., 2022). CARS is used to study anti-Stokes scattering, which not

only reduces integration time but also significantly reduces the

influence of fluorescence, improving mapping quality and speed.

Similarly, because of the two-photon resonance effect, stimulated

Raman spectroscopy increases the cross-section of Raman scattering

and excitation efficiency, which can significantly improve the signal-

to-noise ratio (SNR) and avoid fluorescence interference. High SNR

means faster mapping speed, which is desirable when scanning larger

areas. Using the techniques described above, it should be possible to

detect more iron-deficiency-related metabolites in addition to

chlorophylls and lipids and to fully utilize Raman single-spectrum,

multi-component analysis.

5 Conclusion

Pear trees are grown widely and are valuable economic crops.

Because the trees are iron-sensitive, iron deficiency is a common

problem in pear cultivation, particularly in calcareous soils. Existing

methods for determining iron deficiency in plants are destructive,

necessitate complicated sample-preparation procedures, and do not

accurately reflect the physiological state of plants suffering from iron

deficiency. The Raman spectral imaging detection method proposed

in this paper can detect iron deficiency on a microscopic scale without

pre-processing and can accurately, non-destructively, and rapidly

visualize changes in the relative content distributions of

chlorophylls and lipids in pear leaves. To the best of our

knowledge, this is the first use of Raman spectroscopy to investigate

iron deficiency in pear trees. We have developed a new method of

microscopic spectral image characterization for the study of

physiological changes in pear leaves during iron deficiency. In the

future, Raman spectroscopy could be used to study iron deficiency in

other plant species. Additional characteristic peaks on the Raman

spectrum for characterizing other substances will be mined with the

advantage of single-spectrum, multi-component analysis. The

metabolite-specific changes caused by iron deficiency in plants will

then be studied in significant detail on a microscopic scale. It will be

helpful to understand the mechanisms of plant responses to

iron deficiency.
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Extraction of 3D distribution of
potato plant CWSI based on
thermal infrared image and
binocular stereovision system

Liuyang Wang1, Yanlong Miao2, Yuxiao Han1, Han Li1*,
Man Zhang2 and Cheng Peng1

1Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and
Rural Affairs, China Agricultural University, Beijing, China, 2Key Laboratory of Smart Agriculture
System Integration Research, Ministry of Education, China Agricultural University, Beijing, China
As the largest component of crops, water has an important impact on the

growth and development of crops. Timely, rapid, continuous, and non-

destructive detection of crop water stress status is crucial for crop water-

saving irrigation, production, and breeding. Indices based on leaf or canopy

temperature acquired by thermal imaging are widely used for crop water stress

diagnosis. However, most studies fail to achieve high-throughput, continuous

water stress detection and mostly focus on two-dimension measurements.

This study developed a low-cost three-dimension (3D) motion robotic system,

which is equipped with a designed 3D imaging system to automatically collect

potato plant data, including thermal and binocular RGB data. A method is

developed to obtain 3D plant fusion point cloud with depth, temperature, and

RGB color information using the acquired thermal and binocular RGB data.

Firstly, the developed system is used to automatically collect the data of the

potato plants in the scene. Secondly, the collected data was processed, and the

green canopy was extracted from the color image, which is convenient for the

speeded-up robust features algorithm to detect more effective matching

features. Photogrammetry combined with structural similarity index was

applied to calculate the optimal homography transform matrix between

thermal and color images and used for image registration. Thirdly, based on

the registration of the two images, 3D reconstruction was carried out using

binocular stereo vision technology to generate the original 3D point cloud with

temperature information. The original 3D point cloud data were further

processed through canopy extraction, denoising, and k-means based

temperature clustering steps to optimize the data. Finally, the crop water

stress index (CWSI) of each point and average CWSI in the canopy were

calculated, and its daily variation and influencing factors were analyzed in

combination with environmental parameters. The developed system and the

proposed method can effectively detect the water stress status of potato plants

in 3D, which can provide support for analyzing the differences in the three-

dimensional distribution and spatial and temporal variation patterns of CWSI

in potato.
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1 Introduction

Global climate change and water scarcity lead to a severe

negative impact on crop yield. Among the increasing research on

crop precision irrigation, water stress detection has attracted

increasing attention. Potato is the fourth most important food

crop in the world after wheat, rice, and maize (FAOSTAT, 2020).

Due to the relatively shallow root-zone depth coupled with the

low to medium soil field capacity of the coarse-textured soils

commonly used for their cultivation (Rud et al., 2014), the

potato plant has a high sensitivity to water stress, which affects

its growth and, in turn, its yield and quality. Therefore, it is

crucial to improve potato yield and quality by effectively water

stress status monitoring.

The immediate response of crop to water stress is to close

leaf stomata, resulting in increasing canopy temperature.

Stomatal conductance is a vital indicator of plant water stress,

and canopy temperature is a surrogate indicator for stomatal

conductance (Prashar and Jones, 2016). Idso et al. (1981)

proposed the crop water stress index (CWSI) based on crop

canopy temperature, which has been proved to effectively reflect

the water stress status of the crop since it was proposed. This

indicator can be calculated by three methods: empirical

approach (Idso et al., 1981), analytical approach (Jackson

et al., 1981), and direct approach (Jones, 1999). The CWSI

calculated by the three methods can be abbreviated as CWSIe,

CWSIa, and CWSId, respectively (Maes and Steppe, 2012).

Among them, CWSIe and CWSIa rely on meteorological

information such as ambient temperature, humidity, wind

speed, etc. In the measurement process, CWSId only needs a

thermal infrared image to simultaneously acquire the

temperatures of the dry and wet reference surfaces (Tdry and

Twet), and the temperature of crop canopy or leaf (Tc). Tdry

represents the temperature of a non-transpiring leaf with

completely closed stomata, and Twet represents the leaf

temperature when stomata are fully open (undisturbed

transpiring leaf). Due to the application of artificial reference

surfaces (Poirier-Pocovi et al., 2020), the measurement based on

thermal infrared images is further simplified. Moreover, the

CWSId index showed a good correlation with stomatal

conductance (Maes et al., 2016), leaf water potential (Rud

et al., 2014), and stem water potential (Garcia-Tejero

et al., 2017).

With the development of thermal imaging technology,

especially the decrease in high-performance online thermal

camera price, thermal infrared image has become increasingly

widely used in the agricultural field (Qiu et al., 2018). CWSI

(CWSId) calculation using the direct approach has become

widely used. In addition to non-destructive temperature

measurement, thermal infrared images can also be obtained

continuously, online, and rapidly in high-resolution. Therefore,

compared with other indicators such as stomatal conductance,
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leaf water potential, and stem water potential, the CWSI

calculation using the direct approach has the potential for

high-throughput water stress detection, and can be applied to

precise irrigation planning and drought resistance breeding

(Prashar et al., 2013). Thermal image captured by thermal

imaging equipment usually contains canopy temperature and

background temperature. It is a vital issue to eliminate the

background noise of thermal images. One method is to

separate the canopy based on the temperature difference

between the canopy and background. For example, Obidiegwu

et al. (2015) assessed water stress by extracting the crop canopy

in thermal images around noon under solar illumination.

Because the pixel resolution of the thermal camera is very low,

and a single pixel can detect thermal radiation from soil and leaf,

a threshold based on temperature alone may create a high degree

of uncertainty in estimating Tc. The other method is to collect

thermal and color images of the canopy simultaneously for

alignment and geometric registration, and then the canopy

area can be extracted based on segmentation algorithms of

color image processing (Amogi et al., 2020; Cucho-Padin et al.,

2020; Elsherbiny et al., 2021). This method requires pre-

calibration based on multiple sets of images from the thermal

camera and color camera, to determine the horizontal and

vertical displacement vectors between the two cameras.

Manual selection of the relevant control points in the two

images is often needed. Gan et al. (2018) proposed a

photogrammetry-based multi-modal image registration

method, which achieved an average accuracy of 3 pixels on

citrus canopy images.

With the development of technology, high-throughput

phenotyping methods using advanced sensors and robotic

platforms have shown increasing efficiency over traditional

manual phenotyping methods. Studies have shown that high-

throughput phenotyping techniques have achieved good results

in detecting and monitoring plant health, water and nutritional

status using multi-sensor data (Pereyra-Irujo et al., 2012; Kipp

et al., 2014). There are many high-throughput phenotyping

platforms developed by organizations and institutions which

are in use today (e.g., Scanalyzer Discovery platform, LemnaTec,

Germany; Phenomobile, High Resolution Plant Phenomics

Centre, Australia). However, these commercial platforms are

expensive and unsuitable for large-scale deployment. Therefore,

there is a need to develop a low-cost and lightweight system that

can meet specific crop phenotyping needs. Zhang et al. (2016)

developed a three-dimension (3D) motion robotic system for

automated high-throughput phenotyping of cereal crops, which

can extract 20 features from data acquired by onboard thermal

and multispectral cameras. Precision irrigation and drought

resistance breeding also require the large-scale automatic

collection of crop water stress data.

The current methods for crop CWSI calculation is often

based on temperature of random canopy parts or the entire
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canopy, obtained on two-dimension (2D) thermal image.

However, it fails to verify whether the water stress status of

crops is affected by different leaf positions or different detection

positions. Studies have shown that for potato plants, there are

differences in different leaf positions of plants due to the

transferability of chlorophyll. For example, Sun et al. (2018)

took Atlantic cultivars at the flowering stage as the research

object, drew a visual distribution map of chlorophyll in isolated

potato leaves at different leaf positions, and found that the

chlorophyll content increased from bottom to top. Also, Sun

et al. (2019) analyzed the two-dimensional distribution of water

content in isolated potato leaves by hyperspectral imaging, and

found that water stress increased, and the leaves started to lose

water from the edge and gradually spread to the middle of the

leaves. The above research shows that the water stress status of

potato plants may be affected by the leaf position and detection

position, which reflects the necessity of studying the differences

of potato CWSI in the 3D distribution. In general, there are

many ways to acquire 3D point cloud data (PCD) of a plant. It

has been reported that Narvaez et al. (2016) obtained thermal

distribution of pear trees in 3D using LiDAR and thermal

camera. However, the price of LiDAR is generally high. Rossi

et al. (2022) proposed an algorithm to automatically collect plant

structural parameters based on a phenotyping platform and

structure-from-motion (SFM) method, and applied the

algorithm to monitor the dynamic response of the plant to

early water stress. The SFM is an offline algorithm for 3D

reconstruction of a series of disordered images, which limits

its commercial use. 3D reconstruction based on stereo vision

technology, an image-based 3D information acquisition method,

has low cost and simple equipment, and is one of the most

commonly used reconstruction methods. Laguela et al. (2012)
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used image matching and fusion techniques to combine thermal

imaging and metric information to acquire 3D thermal models.

Yang et al. (2018) developed an imaging system consisting of two

smartphones and a low-cost thermal infrared camera, and the

images captured by it were fused for 3D thermal model reconstruction.

This study aims to extract 3D distribution of potato plant

CWSI at low cost using a thermal and a binocular camera.

Firstly, a 3D motion robotic system integrated with a 3D thermal

imaging system was developed for automated high throughput

acquisition of potato plant thermal image, binocular images (a

pair of color images), and temperature data. Then, specific

methods for generating a 3D thermal model of the potato

plant canopy were developed. The objectives of this study are

to: (1) develop a low-cost 3D platform and an image acquisition

control system, which has the function of positioning the image

acquisition module at predefined position and triggering the

control system to acquire images; (2) propose a method for fast

pixel-level registration of thermal and color images, and (3)

acquire the 3D CWSI distributions of the potato plant, and

analyze its variation characteristics and influencing factors in

time series.
2 Material and methods

2.1 3D motion robotic system

As shown in Figure 1A, the hardware of the 3D motion

robotic system adopted a modular design, consisting of a 3D

platform, an image acquisition module, and a host controller.

The 3D platform consists of an XYZ three-axis gantry

aluminum frame, three stepper drive control integrated
A

B

C

FIGURE 1

Equipment and apparatus used for experiments in this study: (A) overall experimental platform, (B) image acquisition module, and (C) host
controller.
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motors, and a single-chip microcomputer. The platform was

designed as 1.8 m×1.8 m×1.5 m (L×W×H) in dimension. The

sliders are driven by motors to move along the three axes. The

single-chip microcomputer is a development board integrated

with the STM32F103RCT6 (ST, Geneva, Switzerland) chip,

which sends control signals to the motor. The maximum

payload of the Z-axis for carrying the image acquisition

module is 10 kg. The “Home” position or coordinate origin of

the 3D plat form is at one of the corners of the

platform (Figure 1A).

The image acquisition module consists of a thermal camera

(Wuhan Guide Infrared Co., Ltd, Wuhan, China) with a model

of IPT384 and a binocular USB camera (Pixel XYZ, Wuhan,

China). The thermal camera can capture thermal pseudo-color

images with a resolution of 384×288 pixels, and save the

temperature of each pixel (measurement resolution is 0.1°C)

into a text file. The baseline of this binocular USB3.0 camera is

60 mm, and the left and right cameras can both capture color

images in 1280×720-pixel resolution. As shown in Figure 1A, the

image acquisition module was fixed on the slider of the Z-axis

(indicated by Z in Figure 1A) of the 3D platform. For ease of

installation, a camera frame was designed and 3D printed to

mount the two cameras (Figure 1B).

The host controller is a Jetson Nano (NVIDIA Corporation,

California, USA) running Ubuntu 18.04 system. The host

controller sends commands to the single-chip microcomputer

through the interface to control the 3D platform to move in

three directions. Furthermore, the host controller controls the

capturing of images of crop canopy by the cameras through

communications with the image acquisition module. As shown

in Figure 1A, the host controller and power module were fixed

above the image acquisition module. To facilitate installation, a

frame was designed and 3D printed to mount the host

controller (Figure 1C).

The host controller uses the Robot Operating System (ROS)

software architecture to write each functional module in the

form of nodes, which are divided into “AxisMoveNode” (AMN),

“IrCaramIpt384NodeV2016” (IrCN), and “RGBCaramNode”

(RGBCN). Communication between the nodes is implemented

in the form of publish/subscribe messages. The workflow of the

3D motion robotic system is shown in Figure 2. In the initial

stage, the AMN controls the motors to drive the sliders to move

to the origin position and return the coordinates to zero. Then,

the AMN controls the motor to drive the slider to move to the

preset target position, and judges whether the slider has reached

the target position through the position coordinate information

fed back in real-time. After reaching the target position, the

IrCN and the RGBCN receive the message of reaching the target

position published by the AMN, and then control the image

acquisition module to capture the images of the crop canopy and

the temperature data to the local folder, and publish the status
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message of the folder at the same time. The AMN determines

whether to go to the next target location by judging whether all

images and temperature data are newly added to the folders.

Until all the target positions are traversed, the AMN controls the

motors to drive the sliders to move to the origin position. Hence,

a round of inspection is completed.
2.2 Data collection

In the period from April 24th to May 1st (7 days), 2022, a

water stress experiment on potato plants (Netherlands 15) was

conducted in the No.9 greenhouse facilities of the National

Precision Agriculture Research Base, Beijing, China (40◦18′N,
116◦45′E). Potatoes are grown in pots, with peat and coconut

bran (at a volume ratio of 3:1) as the substrate, covered with a

black plastic. There were two experimental groups (control and

treatment groups, each has four potato plants), and the two

groups were treated with the same irrigation from planting to the

beginning of the experiment. After the first day of the

experiment, the control group was fully irrigated, and the

treatment group was not irrigated (Gerhards et al., 2016).

In this study, a wet reference surface was built following the

steps proposed by Meron et al. (2013). The CWSI can be

calculated by function (1) (Jones et al., 2002).

 CWSI ¼  
Tc  � Twet

Tdry  � Twet  
(1)

where Tc, Twet, and Tdry are the potato plant canopy

temperature, dry and wet reference surface temperatures,

respectively. Tdry was replaced by air temperature Tair plus 7°C

(Rud et al., 2014). The CWSI values are in the range of 0-1, and

the larger the value, the greater the water shortage pressure.

In this experiment, the cameras acquired plant data

perpendicular to the ground at a height of approximately

1.2m to 1.5m every day. The next day, the collection height

were readjusted according to the natural growth of the potato

to ensure that the entire canopy is included in the image as

much as possible. When collecting thermal images, Tair and

illumination were measured by LoRa sensors (IntelliFuture,

Hebei, China). The real-time Tair and illumination were

uploaded to the cloud platform through the LoRa

communication gateway. From April 24th to May 1st, 20-25

datasets were collected from 8:00 to 17:00 every day, and the

collected thermal data and images were stored in the onboard

SD card of the host controller.

Using Visual studio 2019 as the platform, the point cloud

library PCL1.10.0 and the computer vision library OpenCV3.1.0

(Open Source Computer Vision Library) were installed, and the

C++ language for software programming was used to realize

data processing.
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FIGURE 2

Workflow chart of the 3D robot system.
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2.3 Data processing

2.3.1 Stereo-calibration of thermal and
binocular cameras

Photogrammetry-based registration of thermal and

binocular cameras requires stereo-calibration of the

two cameras.

The checkerboard grid (Gan et al., 2018), was used in the

experiment for stereo-calibration. The size of each square is 30 ×

30mm, as shown in Figure 3A. The resolutions and filed of views

of the color and thermal images are different. First, the

checkerboard in the color image was resized to be the same as

that in the thermal image by applying the bicubic interpolation

algorithm, and then the color image was cropped to the same

resolution as the thermal image to facilitate subsequent

registration. The results are shown in Figures 3B, C. Next,

stereo-calibration was implemented using the Stereo Camera

Calibrator toolbox in MATLAB 2018a. The stereo-calibration

gets two sets of parameters, the first set of parameters are the

elements of interior orientation of the cameras (Wolf et al.,

2014). The second set of parameters is named relative

orientation between cameras (between the left and right

cameras of the binocular camera; between the left color and

the thermal cameras) (Gan et al., 2018). The calibrated

parameters were saved for subsequent use. Finally, the interior

orientation and relative orientation parameters of the left and

right cameras of the binocular camera were loaded and the stereo

rectification was applied, so that the left and right color images

were aligned in parallel without distortion.
Frontiers in Plant Science 06
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2.3.2 Coarse registration of thermal and
color images

The registration between thermal and color images requires

finding the geometric transformation relationship between

them. This requires groups of homonymy points to be found

correctly in two images. The process is shown in Figure 4A, and

Figure 5 shows a specific example.

First, to quickly select the homonymy points as many as

possible on the potato plants, the Laplacian algorithm was used

to sharpen the left and right color images to enhance the

contours/edges of the image (Ma et al., 2014). Then the

sharpened images were converted into the HSV (Hue,

Saturation, Value) color space. Compared with the RGB (Red,

Green, Blue) model, the HSV model can express the brightness,

hue, and saturation of the color very intuitively, and can

effectively use the color space for segmentation (Hamuda

et al., 2017). The mask parameters were obtained by setting

the upper and lower thresholds of the H channel [HL, HU], S

channel [SL, SU], and V channel [VL, VU] to extract the target

image, which was the green channel image, through the ‘and’

operation (Li et al., 2020).

Second, speeded-up robust features (SURF) features were

detected on the two target images and their descriptors were

established. Then, the detected feature points were matched

using the nearest neighbor distance ratio strategy and the

matching results were displayed on the original images. Some

mismatched points in the matching results may negatively

affect the regis trat ion, fi l tered out using epipolar

geometry constraints.
A

B C

FIGURE 3

Images pre-processing and Checkerboard. (A) Checkerboard for stereo-calibration, (B) thermal image of the potato plant, (C) cropped and
resized color image of the potato plant.
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Third, the filtered feature point pairs were extracted, and the

interior direction and relative direction parameters of the left

and right cameras of the binocular camera were loaded. The

triangulation principle was used for these point pairs to calculate

the world coordinates. Back-projection was applied using

function (2) to project those world coordinates onto the

thermal image.

Lastly, taking the feature points in the left color image and

the back-projected points on the thermal image as the input,

Random Sample Consensus (RANSAC) algorithm was

applied to compute the homography transformation that

best describes the relationship between these point pairs.

The calculation result of the RANSAC algorithm is the

optimal solution in the sense of least squares error. The
Frontiers in Plant Science 07
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thermal image was transformed using the resulting

transformation matrix.

S ñCoordinatesthermal  ¼  K ñ 
R T

0T 1

" #
ñCoordinatesworld (2)

where, S is a non-zero scale factor, which is the z-component

of the world coordinates, Coordinatesthermal are the

homogeneous coordinates of the back-projection points on the

thermal image, and Coordinatesworld are the homogeneous

coordinates of the world points. K, R, and T are the intrinsic

matrix of the thermal camera, the rotation matrix, and the

translation matrix of the thermal camera relative to the left

camera of the binocular camera, respectively.
A

B

FIGURE 4

Workflow of the (A) coarse registration method and (B) fine registration method.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1104390
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1104390
2.3.3 Fine registration of thermal and
color images

The premise of applying the coarse registration method to

accurately register color and thermal images is that the

photographed object is close to the plane. However, the

surface structure of the potato plant canopy is complex and

the depth varies greatly. Moreover, the error of the coarse

registration is relatively large due to the error brought by the

camera calibration. Therefore, when the coarse registration

cannot meet the registration accuracy requirements, further
Frontiers in Plant Science 08
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fine registration is required. The specific process is shown

in Figure 4B.

Firstly, for any filtered feature point in the color image, its

corresponding point in the thermal image can be obtained by

applying the coarse registration method. For instance, if the

coordinates of a feature point in the color image were (x0, y0 ), the

corresponding projection point coordinates in the thermal image

were calculated by back-projection as (x0_pro_thermal, y0_pro_thermal) .

Secondly, it was assumed that (x0_pro_thermal, y0_pro_thermal ) and the

coordinates of the true corresponding points in the thermal image
FIGURE 5

Example of coarse registration of color and thermal images.
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(x0_thermal, y0_thermal ) had a small position difference (Δx, Δy) , which

had an initial value (0, 0 ). Thirdly, the filtered feature points in the

color image and the position-compensated corresponding points in

the thermal image (x0_pro_thermal+Δx, y0_pro_thermal+Δy ) were retaken

as input, and the RANSAC algorithm was used to calculate the

homography matrix that can best describe the transformation

relationship between them, and the original thermal image was

transformed. Fourthly, the structural similarity (SSIM) index was

used to measure the similarities between the transformed thermal

image and the color image. The two images were first constrained to

co-aligned regions by cropping and then used as input for

measurement (Dandrifosse et al., 2021). Lastly, repeated the

previous four steps by increasing the values (Δx, Δy ). Because the

SSIM possesses the property of maximum uniqueness, the

transformation with the largest SSIM value was chosen as the

optimal transformation. The temperature matrix was acquired

simultaneously with the thermal image was also transformed using

the optimal homography transformation for subsequent use.

2.3.4 Generation of potato plant PCD
with temperature

3D reconstruction based on stereo vision technology is one

of the most commonly used reconstruction methods. Stereo

matching technology based on image information to acquire

depth information is a popular research topic in stereo vision. It

is the process of finding the homonymy points in two images,

then calculating the disparity value to acquire the depth

information of the point in the three-dimensional space.

In this study, stereo vision technology was used to

reconstruct the canopies of potato plants in 3D to generate

point clouds. Based on the similar triangle principle, the depth of

the world coordinate point can be calculated by the following

function:

D  ¼  
B ∙ f

xl � xr
(3)

where D is the depth value. B is the baseline, which is the

distance between the principal points of the two cameras of the

binocular camera. f is equal to the focal length multiplied by a

coefficient representing the number of pixels per millimeter on

the imaging plane. d=xl-xr is called disparity, which is the

difference between the x coordinates of the two corresponding

pixels on the left and right images.

First, a variant of the semi-global matching algorithm

(SGM), the semi-global block matching algorithm (SGBM)

was applied, using the left and right color images with stereo

rectification in section 2.3.1 to calculate the disparity map.

Next, due to occlusion or uneven illumination, some disparity

values in the disparity map are unreliable, and median filtering

was used to filter out isolated noise points caused by

mismatching. After removing false matches, the removed

pixels will cause holes of invalid values, and the method of
Frontiers in Plant Science 09
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multi-level mean filtering was used to fill the voids iteratively.

Multi-level mean filtering is a variant of mean filtering, which

is an algorithm that fills holes multiple times by changing the

filter window size and using the integral map of the disparity

map. It first performs mean filtering with a larger initial

window and assigns values to the holes in a large area. Then

in the subsequent filtering, the window size was reduced to half

of the original size, and the original integral graph was used to

filter again and assign values to the smaller holes (overwrite the

original values). These steps were repeated until the window

size became 3× 3, then the filtering stopped and the final result

was obtained. Then, the similar triangle principle was applied

using function (3) to calculate the depth value of a point in

space, and the three-dimensional coordinate information of

the point was calculated in combination with function (4)

(Huang et al., 2020; Xie et al., 2020). Finally, based on the

homography transformation between the color and thermal

images in section 2.3.3, a new point cloud data type was defined

by using the PCL library, which integrated the three-

dimensional coordinate information, RGB color value, and

temperature information of the potato plant canopy together.

Thus, the original 3D points cloud data of the potato canopy

containing both color information and temperature

information has been generated.

Z  ¼ D

X  ¼   x � x0
f

Än D

Y  ¼   y � y0
f

Än D

8>>><
>>>:

(4)

where (x, y) are the pixel coordinates of the image, and

(x0, y0) are the pixel coordinates of the principal point.

2.3.5 Optimization of PCD and extraction of
3D distribution of CWSI

In section 2.3.4, the original PCD of the potato plant were

acquired through stereo vision technology. The original PCD

not only contained potato plant but also background point

clouds such as soil and flower pots. The quality of PCD is not

high due to the influence of environmental factors (e.g.

illumination, wind speed) and image registration errors. Some

methods need to be taken to optimize the original PCD to

extract the potato plant canopy information. The specific steps

are as follows.

Step one: the PCD of the canopy of the potato plant were

extracted. Color is one of the most important features for

distinguishing crops and backgrounds in a greenhouse

environment (Tkalcic and Tasic, 2003). Philipp and Rath

(2002) found that the HSV color space is one of the most

reliable color spaces for distinguishing plant from the

background. In order to extract the green canopy area of

potato plant, a color model based on the HSV color space was

used to segment the original PCD.
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Step two: the scatter points were removed. The produced

scatter points due to factors such as random measurement error

and external environment when acquiring PCD was removed by

using the statistical filtering algorithm.

Step three: the abnormal temperature points of the canopy

were removed. Some ground areas were incorrectly matched to

some of the leaves due to the registration errors of the thermal

and color images, resulting in higher temperature values o4f the

leaves than their true surface temperatures. To remove such

incorrectly matched points, the k-means algorithm was used to

classify all points into two classes according to their temperature,

and the class with more points was saved as the optimized PCD

of the potato plant canopy (Qiu et al., 2021).

Step four: the CWSI value of each point of the potato plant

canopy was calculated and its 3D distribution was acquired. The

temperature of the wet reference surface was acquired from the

original PCD, and the temperature of the dry reference surface

was replaced by the air temperature plus 7 °C. The CWSI of each

point in the canopy can be obtained with these data through

function (1) and the distributions of CWSI in 3D were obtained.
2.4 Performance evaluation

Evaluation of registration performance was conducted for

thermal and color images. Because the true coordinates of the

matching points on the thermal image corresponding to the

color image cannot be determined, the accurate matching error

between these point pairs cannot be calculated. However, the

thermal image after the optimal homography transformation

can be overlaid with the color image to show the performance of

the registration. At the same time, the homography

transformation errors between the matching feature points on

the color image and transformed thermal image were calculated.

Second, registration performance was also measured by

computing the average distance between control points

(control point error) on the color and thermal images

(Dandrifosse et al., 2021). The control points were visually

selected by a human operator on the potato plant. The points

had to be selected on recognizable pixels (all locations of the

canopy and leaves).
3 Results

3.1 Feature detection and matching
results of the left and right color images

The image processing shows that illumination affect the

specific settings of H, S, V thresholds, especially in the

saturation, that is, the parameter S. When the sunlight hits the

crop surface directly, it affects the color and brightness of the

image, and the SL of the green reference color varies from 30 to
Frontiers in Plant Science 10
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40. The SL of the green reference color varies from 45 to 65 when

there is no direct sunlight. The images obtained at different times

of the day were analyzed and compared, as shown in Figure 6.

Figures 6A, B show the images when the sunlight directly on the

surface of tomato plants. At this time, the effect is best when the

SL is 35. Figures 6C, D show images of tomato plants in shadow

or without direct sunlight. At this point, the best result is when

the SL is 60. In the experiment, in order to reduce the

interference of background such as soil, a black plastic was

covered on the soil surface (Figure 1A). Under these conditions,

the values of HU and HL were set to 100 and 35, respectively.

The feature detection results on the green channel image

were compared with the feature detection results on the original

color image. The number of good matching points acquired by

filtering before and after extracting the canopy was used to

characterize the comparison results (the feature detection,

matching and filtering algorithms and parameter settings used

before and after the canopy extraction remain the same), as

shown in Figure 7. In this study, a total of 30 potato plant

samples from different collection periods were randomly

selected for verification, the results are shown in Table 1. It

can be seen that the number of matching point pairs filtered

from the extracted canopy images is 48% more than the number

of point pairs filtered from the original images on average.
3.2 Results of registration for thermal
and color images

The registration of thermal and color images was finished

according to the procedures described in sections 2.3.2 and 2.3.3.

The example in Figure 8 shows the performance of the proposed

image registration method and it can be seen that even though

some potato plants have a complex canopy structure and a wide

range of depths, their color and thermal images can be well

registered. Image registration performance was evaluated with

the same set of randomly selected 30 potato plant samples. The

homography transformation error and control point error of

each potato plant sample was recorded. The statistical results are

shown in Tables 2 and 3. The registered control point error is 2.8

pixels on average, indicating that the proposed SURF feature

detection on the extracted canopy images and photogrammetry-

based methods can effectively register the color and thermal

images of potato plants.
3.3 Extraction of 3D distribution of
potato plant CWSI

3.3.1 Results of generation and optimization of
the PCD

When using the disparity map calculated by stereo matching

for 3D reconstruction, the quality of the generated PCD is often
frontiersin.org

https://doi.org/10.3389/fpls.2022.1104390
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1104390
not high due to the low quality of the disparity map. Therefore,

some disparity refines operations can be performed to improve

the quality of the disparity map. In this study, the SGBM

algorithm used, in addition to its sub-pixel fitting and

consistency check and other strategies to refine the disparity

map, median filtering and multi-level mean filtering algorithms

were also adopted to refine the disparity map further.

Experiments show that setting the initial window size to 4× 4

not only ensures that the holes were filled, but also ensures that

the image is not over-smoothed.

The PCD were generated from the stereo-rectified left and

right color images and the registration results of the color and

thermal images, and contains both color information and

temperature information. Firstly, a method based on HSV

color space segmentation was used to extract the green canopy

of the potato plant, and then only the canopy PCD were

operated. However, the resulting PCD also contained many

scatter points, which was filtered out by applying a statistical

filtering algorithm. In this study, the number of neighbors
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selected for statistical analysis was 50, and the threshold for

identifying outliers was set to 0.5. Besides, the temperature

values of some regions were much higher than the real surface

temperature of the potato plant, mainly due to the miss

matching of the canopy partial PCD and the ground caused by

the image registration error. The difference between the

temperature of the potato plant and the ground was

significant. A clustering algorithm based on k-means was used

to filter out abnormal temperature points caused by image

registration errors, and the optimized PCD of the potato plant

canopy were retained. The PCD of four potato plant samples

(two well-watered and two water-stressed) of different sizes and

qualities were selected from the treatment and control groups to

demonstrate the results of this method. As the black circles

shown in Figure 9, it can be seen that the temperatures in some

edge regions of the canopy were significantly higher than that of

other regions before the k-means clustering algorithm was

adopted. Through the above treatments, the canopy PCD of

the potato plant were relatively intact, as shown in Figure 10.
A B

DC

FIGURE 6

Image processing results under different sunlight and SL thresholds. (A) Direct sunlight, SL=35; (B) direct sunlight, SL=60; (C) no direct sunlight,
SL=35; (D) no direct sunlight, SL=60.
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3.3.2 Extraction of plant CWSI in 3D
distribution-a case study

In this study, the PCD and temperature data of the potato

plant were combined basing color and thermal images

registration. The direct approach was used to calculate the

CWSI value of each point of the potato plant canopy, and the

3D distributions of the CWSI were obtained.

After extraction of 3D distribution of CWSI, one potato

plant sample was selected from each of the data of treatment and

control acquired on April 26 (partly cloudy), and the PCD

generated from 11:00-15:00 were processed to obtain their

distributions of the temperature and 3D CWSI, and the results

are shown in Figures 11A–C. It can be seen from the figure that

the potato petiole and the area around the vein respond quickly

to water stress, the temperatures were significantly higher than

that of other areas, and the difference under different irrigation

treatments was very large, which can provide a reference for the

selection of the measurement position of potato plant water

stress state. At the same time, the change curve of their average

CWSI values of canopy were plotted, as shown in Figure 11D. It

can be seen from the figure that each two peaks appeared in the

CWSI (CWSI_well and CWSI_stress) of the potato plants under

two different moisture treatments, and each time appeared at the

same time. The first peak appeared at 11:30. At this time, the

temperature in the greenhouse was 29.54 °C, which was in the

rising stage, and the illumination intensity was the maximum

value of 72.4 klx. The second peak appeared at 13:00. At this

time, the CWSI of the potato plant under two different water

treatments reached the maximum value, the temperature in the

greenhouse was 31.05°C, which was the highest value in a day,

and the illumination intensity was 69.4 klx. From the above

statistical results, it can be seen that the water stress state of the

potato plant was jointly affected by air temperature and
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illumination intensity. The water stress degree of potato plant

can be comprehensively evaluated in combination with soil

moisture and environmental parameters.
4 Discussion

4.1 Feature detection and matching of
the left and right color images

To quickly find the set of points that best represent the

geometric transformation between color and thermal images,

and to select these points from the potato plant canopy as much

as possible. The RGB color space was converted to HSV color

space and extracted the green channel image, by setting the

upper and lower thresholds of the H, S, and V values,

respectively. The purpose of this is to reduce the interference

of background points when computing the homography

transformation using the RANSAC algorithm. The results

show that the method of feature detection by extracting the

canopy provides more and effective candidate matches for

computing the optimal homography transformation between

color and thermal images.
4.2 Registration of thermal and
color images

Although the method of extracting the canopy from the

color image and then performing the SURF feature detection

can provide more candidate matches for image registration,

the thermal image after homography transformation

sometimes cannot be well registered with the color image.
FIGURE 7

Comparison of the number of feature points obtained by detection, matching and filtering before and after canopy extraction.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1104390
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1104390
In this study, a similarity index was selected to evaluate the

structural similarity between images, and the optimal

homography transformation matrix that could ensure more

canopy pixel overlap was obtained by finding its maximum

value. Nonetheless, some areas in the potato plant canopy
Frontiers in Plant Science 13
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were less affected by the homography transformation because

no feature points were detected in these areas due to the

influence of illumination changes and the weak texture of the

canopy surface, as the blue circles shown in Figure 12A. It was

also because even if feature points were detected in this part of
TABLE 1 Comparison of the results of feature detection before and after canopy extraction in ten samples.

Sample No. Amounts of feature points

Before canopy extraction After canopy extraction Increase (%)

1 41 65 58.5

2 51 55 7.8

3 32 61 90.6

4 26 61 134.6

5 20 34 70

6 33 54 63.6

7 42 68 61.9

8 10 28 180

9 71 78 9.9

10 26 35 34.6

11 48 68 41.7

12 60 81 35.0

13 42 63 50.0

14 47 79 68.1

15 24 60 150.0

16 35 71 100.0

17 41 52 26.8

18 28 65 132.1

19 34 67 97.1

20 38 65 71.1

21 28 42 50.0

22 21 40 90.5

23 46 38 -17.4

24 29 35 66.7

25 66 81 22.7

26 47 66 40.4

27 34 49 44.1

28 75 89 18.7

29 31 42 35.5

30 51 49 -3.9

average 39.2 58.0 48.0
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the region, they will finally be filtered out by the RANSAC

algorithm due to their low quality, which also caused this part

of the region to be less affected by the homography

transformation, as the blue circles shown in Figure 12B.
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These situations resulted in some regions cannot be

perfectly aligned, increasing the registration error.

As the blue circles shown in Figure 12C, it can be seen that

some regions in the color and thermal images have large
FIGURE 8

Registration results of the thermal and color images of potato plant.
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differences in shape, and some edge regions are not absolutely

overlapping. One reason for the differences was that the different

resolutions of the thermal and color cameras resulted in the

cropped color image not being exactly the same size as the potato

plant in the thermal image. The other reason was that the

thermal and binocular camera were fixed at different positions

of the image acquisition module resulting in the potato plant in

the captured images having different shape characteristics in

some areas. Lastly, although the experiments were conducted in

a relatively closed greenhouse environment, ventilation was

applied during the day, causing the leaves of the potato plant

to swing in the wind sometimes. The differences in the shape of

the potato plants in the two images caused by all these factors

lead to inevitable registration errors.
4.3 Extraction and analysis of 3D
distribution of potato plant CWSI

When filtering out abnormal temperature points caused by

thermal image and color image registration errors, the k-means

algorithm sometimes clustered leaves and soil background points

into one class, resulting in false segmentation of some leaves point

clouds. This was most likely to occur in the near-ground leaves of

potato plants under water stress. The near-ground potato plant

leaves under water stress conditions were affected by high-

temperature radiation from the soil, and their temperatures were

close to or even the same as the ground temperature. When the

temperature clustering method based on k-means was applied, this
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part of the point clouds and the soil point clouds will be clustered

into one class, resulting in the false segmentation of canopy point

clouds. In this case, the method of accurately extracting the canopy

point clouds needs further improvement.

The experimental period of this study was the seedling

stage of potato, which was mainly the period for stem and leaf

growth and root system development, and the growing

amount accounted for about 1/5 of the whole growth period.

Most of the leaves in this period were in the early stage of

function, and various physiological activities were very

vigorous. Therefore, the detection of water stress status in

this period can be considered using the entire canopy.

However, at the stage of tuber expansion, the growth of

shoots and leaves on the ground stopped, and the growth of

tuber volume and weight were the main factors. At this time,

the potato is most sensitive to water and needs the most water,

and the water demand accounts for more than 50% of the

water demand in the whole growth period. Therefore, accurate

detection of water stress status during this period directly

determines tuber size and yield. During this period, the plant

canopy size was large, and the leaves at different depths

responded differently to water stress due to the difference in

chlorophyll content and the length of the functional period.

To analyze the water status of potato plant more accurately,

some point clouds segmentation techniques to extract a single

leaf from the PCD of the potato plant canopy can be

considered. A leaf-scale-based water stress status analysis

method based on the 3D motion robotic system proposed in

this study will be further studied in the future.
TABLE 2 Homography transformation errors between color image and transformed thermal image.

Images No. 1 2 3 4 5 6 7 8 9 10

Error (pixel) 0.4 0.5 1.0 0.3 0.3 0.5 0.3 0.8 0.9 0.5

Images No. 11 12 13 14 15 16 17 18 19 20

Error (pixel) 0.3 0.6 0.7 1.0 0.7 0.5 0.4 0.3 0.6 0.6

Images No. 21 22 23 24 25 26 27 28 29 30

Error (pixel) 0.4 0.5 0.3 0.3 0.4 0.6 0.5 0.5 0.3 0.7

Bold values represent image sequences.
frontiersin
TABLE 3 Control Points Error between color image and transformed thermal image.

Images No. 1 2 3 4 5 6 7 8 9 10

Control Points Error (pixel) 3.3 2.8 3.5 2.1 2.7 1.9 2.0 3.1 3.3 2.2

Images No. 11 12 13 14 15 16 17 18 19 20

Control Points Error (pixel) 1.8 3.3 3.7 3.3 4.2 2.7 4.0 2.6 2.4 1.9

Images No. 21 22 23 24 25 26 27 28 29 30

Control Points Error (pixel) 4.5 2.2 3.5 2.8 3.1 2.6 3.4 2.5 2.2 2.3

Bold values represent image sequences.
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5 Conclusion

A low-cost 3D motion robotic system for automated high-

throughput phenotyping detection of potato plant was

developed and demonstrated in this study. The system can

continuously acquire potato plant canopy image and thermal

data through timing triggering, providing data support for

potato plant water status analysis in both space and time scale.

The efficiency of data collection using this system was much

higher than that done manually.
Frontiers in Plant Science 16
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With the help of this 3D motion robotic system platform, a

cost-effective method was proposed to realize the detection of

potato plant CWSI in 3D. The green canopy was extracted from

a color image of potato plant based on the HSV color space, and the

thermal and color images were registered using the SURF algorithm

and photogrammetry. The results show that extracting the green

canopy from the color image and then performing feature detection

can provide more candidate point pairs for computing the

homography transformation. The filtered feature points on the

color images were projected as world coordinate points, and back-

projected onto the thermal image, and then accuracy of these back-
FIGURE 9

Four examples of the processed PCD of potato plant. PCD of potato plant before the k-means and the PCD of potato after the k-means. (unit: °C).
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projected points was improved to through position-compensated

method. Finally, taking the points on the thermal and left color

images as input, the optimal homography transformation for each

set of images was calculated by the RANSAC algorithm. The

average error of the homography transformation was 0.52 pixels,

and the average error of the registered control points was 2.8 pixels,

indicating that the used method was suitable for registering thermal

and color images of potato plants. In addition, the temperature

clustering method based on k-means can effectively eliminate the
Frontiers in Plant Science 17
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interference of background point clouds. However, for the accurate

extraction of point cloud of potato plant canopy under partial water

stress, the k-means algorithm needs to be further optimized to

improve the segmentation accuracy.

This paper also provided a case study for 3D distribution

extraction of CWSI analysis based on the provided 3D motion

robotic system. By analyzing the diurnal variation and influencing

factors of CWSI, data support can be provided for accurate

detection of potato water stress. In the future, the performance of
A B

D

C

FIGURE 11

At the conditions of under well-watered and water stress, the distributions of the (A) color, (B) temperature, (C) CWSI of two potato samples in
3D,and (D) variation curves of air temperature, illumination intensity, and CWSI of two potato samples.
FIGURE 10

Two examples of the optimized PCD of potato plant. (unit: mm).
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the proposed method will be verified in different growth stages of

potato. And the changing of the CWSI 3D distribution in both leaf

scale and canopy scale with the continuous changing time under

different water stress levels will be studied, which will provide data

support for precision irrigation strategy making both in the field

and in the greenhouse.
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FIGURE 12

Three examples of potato plants that were not perfectly registered. (A) No feature points can be detected in the blue circled area, (B) feature
points with low intensity in the blue circled region are filtered out, and (C) different plant sizes in the blue circled area..
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Application of deep learning
methods in behavior recognition
of laying hens

Fujie Wang, Jiquan Cui, Yingying Xiong and Huishan Lu*

School of Mechanical Engineering, North University of China, Taiyuan, China

Poultry behaviors reflect the health status of poultry. For four behaviors of laying
hens, such as standing, lying, feeding, and grooming, four deep learning methods
for recognition were compared in this paper, as Efficientnet-YoloV3, YoloV4-Tiny,
YoloV5, and Faster-RCNN. First, the behavior detection dataset was produced
based on the monitoring video data. Then, four algorithms, Efficientnet-YoloV3,
YoloV4-Tiny, YoloV5, and Faster-RCNN, were used for training respectively.
Finally, using the validation set for recognition, we got the mAP values for the
four algorithms: Efficientnet-YoloV3 had mAP values of 81.82% (standing), 88.36%
(lying), 98.20% (feeding), 77.30% (grooming), and its FPS values were 9.83 in order;
YoloV4-Tiny had mAP values of 65.50% (standing), 78.40% (lying), 94.51%
(feeding), 62.70% (grooming), and their FPS values were 14.73 successively;
YoloV5 had mAP values of 97.24% (standing), 98.61% (lying), 97.43% (feeding),
92.33% (grooming), and their FPS values were 55.55 successively; Faster-RCNN
had mAP values were 95.40% (standing), 98.50% (lying), 99.10% (feeding), and
85.40% (grooming), and their FPS values were 3.54 respectively. The results
showed that the YoloV5 algorithm was the optimal algorithm among the four
algorithms and could meet the requirements for real-time recognition of laying
hens’ behavior.

KEYWORDS

behavior detection, deep learning, poultry behaviors, faster-RCNN, YoloV5

1 Introduction

With the increasing demand for poultry meat and eggs, the poultry farming industry is
rapidly developing towards industrialization and scale. The information level of modern
poultry breeding has been continuously improved and enhanced [1]. The welfare level of
poultry under large-scale breeding has gradually attracted the attention of various countries
[2], and standardized farming conditions have been proposed in various countries to
improve the welfare level of poultry breeding [3]. There are many factors affecting the
welfare breeding of poultry. The significant issue is the factor of the breeding environment
[4], and the behavioral information of poultry can be a good reflection of the welfare level
and health status of poultry.

Traditional manual observation and statistics of poultry behavior are easily
influenced by farmers’ experience, time-consuming, and easy to miss detection. With
the development of science and technology, artificial intelligence breeding and non-
invasive precision breeding technology have gradually emerged [5, 6]. Artificial
intelligence breeding has good potential in solving poultry behavior detection. The
combination of sensor and AI model-driven to well detect poultry behavior [5], and
sensor monitoring for harmless sensing of poultry behavior, image monitoring, and
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sound monitoring technologies are also widely used in the poultry
breeding industry [6]. The application of the Internet of Things
and data analysis in monitoring the welfare of chickens on poultry
farms was studied using radio frequency identification (RFID)
technology [7]. RFID transponders were attached to chicken legs
to compose feedback with weighing sensors to establish an
automatic monitoring system for identifying poultry roosting
behavior [8]. It is difficult to assess behavioral changes in
chickens when humans are present, and the use of an Internet-
based camera to monitor and record chicken behavior can be
effective in assessing the level of chicken welfare [9]. The
monitoring adaptability of different vision systems and image
processing algorithms for poultry activity on breeding farms was
tested [10]. The study proposed machine vision to test broiler
health, which allows early warning and prediction of broiler
disease [11]. The sound of poultry eating has obvious
differences from normal vocalization and based on the analysis
of the combination of timbre and time change, there are proposed
3 types of poultry feeding vocal networks, which were
experimentally tested for a high recognition rate [12].
Researchers experimented on the relationship between animal
vocalization and body weight, and the results showed that the
method can be used for early warning [13]. The monitoring
analysis of nocturnal vocalizations of poultry can provide a
practical method for poultry abnormal status judgment [14].
With the development of the computer vision method of
Convolutional Neural Network (CNN), deep learning computer
vision analysis has been continuously used for behavior detection
of animals to improve the welfare level of rural animals [15]. The
pose analysis of broilers is the basis of poultry behavior prediction.
The deep neural network is used for pose research, and the Naive
Bayes model (NBM) is used to classify and identify the pose of
broilers. The experimental method has a high recognition
accuracy for the pose of broilers [16]. Deep learning models of
convolutional neural networks (CNN) were used to identify
rumination behavior in cattle [17]. The researchers used a
convolutional neural network (CNN) to extract the feeding
features of pigs, used an image processing algorithm to
determine the situation of pigs and the feeding areas, and
identify the feeding time of single pigs [18]. The researchers
proposed the use of convolutional neural networks to identify
three important activities in sheep and demonstrate the
importance of the method in the case of data capture, and data
tagging [19]. Experts used a deep convolutional neural network to
detect the walking key points of broilers, and the extracted key
point information is input into the model for classification, and
the model provided an effective detection method for the clinical
symptoms of claudication in poultry [20]. The Kinect sensor
combined with the convolutional neural network approach was
effective in identifying the behavior of chickens [21]. Yolo
detection models are also commonly used in animal behavior
recognition. The researchers used the deep learning model
YoloV3 to identify six behaviors of laying hens and analyzed
the frequency of each behavior [22]. Comparison of the training
detection of the deep learning model YoloV4 with
YoloV5 provided data support for poultry embryo detection
[23]. Researchers trained and tested the YoloV5 deep learning
model to identify domesticated chickens, using the Kalman filter

principle to propose a model to track multiple chickens, and thus
improve the welfare level of chickens in animal breeding [24].

In order to achieve the real-time accurate identification of the
behavior of the laying layer, this paper analyzed and compared
through different first-and second-order target detection algorithms,
which better verified the applicability of the target detection
algorithm for poultry behavior identification and provided
experimental support for further real-time monitoring of poultry
health.

2 Materials and methods

2.1 Experimental environment

The experiment was conducted at Huixin Breeding Co., LTD.,
Lingqiu County, Datong City, Shanxi Province. The white-green-
shell laying hens in the chicken house were pure white, 7 weeks of
age, and their body weight was 750 g–1100 g. During the
experiment, two 100 cm × 120 cm × 150 cm wire mesh fences
were built in the chicken house. The feed trough was fixed on
the long side of the fence, and 1/3 of the trough was for drinking and
the remaining 2/3 was for feeding. The fence is 15 cm above the
ground to facilitate the cleaning of manure on the ground, and a
webcam is installed 200 cm from the center of the fence. The camera
is connected to the hard disk video recorder to record and save
experimental videos, and a monitor is connected to facilitate
observation. Ten white-green-shelled hens are placed in each
enclosure. The laying hens are kept with natural lighting inside,
with vents and a temperature and hygrometer inside, to keep the
chicken house comfortable. The structure diagram of the
experimental field is shown in Figure 1.

2.2 Data processing and labeling

The experiment was recorded by Hikvision webcam with an
image resolution of 1920 × 1,080 and a frame rate of 25 fps. The
recording time was set at 7:00–22:00 per day, the experiment was
conducted for 15 days, and the video files in the hard disk video
recorder were sorted and saved daily. After the experiment,
VSPlayer software was used to intercept the content in the video
to obtain suitable single-frame pictures, and 1,500 pictures with
different light intensities were selected. The selected images were
labeled using the LabelImg software to generate files in XML format.
Four behaviors were labeled as eating, standing, lying, and
grooming. After the labeling was completed: eating (2,800), lying
(5,000), standing (3,000), and grooming (600) were obtained. The
data set was divided into validation sets and training sets in a 1:
9 ratio.

The computer system used for this experiment was Windows
10 Home Edition system Intel (R) Core (TM) i7-10750H CPU @
2.60 GHz 2.59 GHz processor with 16G RAM and NVIDIAGeForce
GTX 1650Ti graphics card. Installed the Anaconda3 version loaded
with Python 3.7 environment, trained and predicted the algorithm
on PyCharm integrated development environment. The epoch of all
four object detection algorithms was 300, and the optimal training
weight in each algorithm was finally selected for prediction. Both
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Efficientnet-YoloV3 and YoloV4-tiny algorithms were trained
100 times, with an uninterrupted training process, the batch size
is 8, and the thawing training batch size is 4, using 4 threads. The
Faster-RCNN algorithm is complex and occupies large memory, the
epoch of freezing training is set to 50, batch size to 4, and the batch
size of thawing training is 2, trained using 2 threads. The batch size
of the YoloV5 algorithm was set to 4 and 4 threads are used for
training.

2.3 Algorithmic network structure

In this paper, four target detection algorithms are used, and
three first-order target detection algorithms, namely, Efficientnet-
YoloV3, YoloV4-tiny, and YoloV5. The second-order target
detection algorithm is Faster-RCNN. The first-order algorithm
directly locates the target border to do regression processing,
while the second-order algorithm generates sample candidate
frames for convolution classification processing. Among the two
algorithms, the first-order algorithm has the advantage of high
detection speed, while the second-order algorithm has high
detection accuracy. In this paper, in order to realize real-time
detection of laying hens’ behavior, a faster algorithm is needed,
so a variety of first-order algorithms are selected; at the same time,
second-order algorithms are selected to compare and verify the
detection accuracy of first-order algorithms.

2.3.1 Efficientnet-YoloV3
The YoloV3 algorithm has made some improvements on the basis

of YoloV1 and YoloV2, which in turn improves its detection speed and
has an outstanding performance in small object detection [25]. The
backbone feature extraction network of YoloV3 is Darknet53, which
contains a residual structure. The convolution of multiple residual
structures in the Darknet53 network deepens the network and
improves detection accuracy. The FPN (Feature Pyramid) structure
strengthens the feature extraction of the three feature layers after the

convolution of the backbone feature network to obtain these three
effective feature layers, and finally predict the three effective feature
layers. In the Efficientnet-YoloV3 detection algorithm, the main
purpose is to change the backbone feature extraction network to the
Efficientnet model. Efficient net is an efficient and small-parameter
model proposed by Google, which improves the efficiency of detection
while retaining detection accuracy. The Efficientnet model consists of
the Stem part for preliminary feature extraction, the Blocks part for
further extraction, and the classification head. The Efficientnet-YoloV3
network structure is shown in Figure 2.

2.3.2 YoloV4-tiny
The YoloV4 target detection algorithm is improved based on

YoloV3 [26]. The main improvements are: the backbone feature
extraction network YoloV4 uses the CSPDarkNet53 structure, the
activation function in the backbone network is replaced by the Mish
function from YoloV3’s LeakyReLU, while the CSPnet structure is
also used in the backbone network to optimize the residual structure.
The feature pyramid uses the SPP and PANet structures, The SPP
structure performs the maximum pooling operation on the features
extracted from the backbone at four different scales to increase the
perceptual field, and the PANet structure extracts the features from
top to bottom after SPP processing to achieve iterative feature,
boosted and enhanced the feature structure of the feature layer. The
YoloV4-tiny is simplified based on the YoloV4 structure, and the
partial structure is deleted to improve the detection speed of the
target detection algorithm. In the YoloV4-tiny structure, the deleted
CSPDarkNet53-tiny structure is used to replace the activation
function with LeakyReLU to increase the operation speed. Firstly,
we perform the second convolution to compress the image, obtain
the effective feature layer through the Resblock-body residual
structure, and finally obtain the effective feature layer of two
arrays, and use a feature pyramid structure for the effective
features extracted by the backbone after convolution, the last
sample is convolved with the last array. The CSPnet network
structure is shown in Figure 3.

FIGURE 1
Structure diagram of the experimental field.
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2.3.3 YoloV5
In this paper, version 6.0 of YoloV5 is used for training and

prediction during the experiments [27]. The network results of
YoloV5 mainly consist of four structures: the input side,
Backbone, Neck, and Prediction. The input side, like YoloV4,
uses the data enhancement function, which can be adjusted by
modifying program parameters. The data enhancement is
mainly to re-stitch the randomly scaled, cropped, or arranged

images to improve the robustness and generalization of the
network training. Meanwhile, the input side of
YoloV5 integrates the initial anchor frame algorithm directly
into the program to realize adaptive calculation. The YoloV5’s
Backbone (backbone network) consists of the Focus structure
and the CSP structure while using the more effective SiLU
activation function. The Focus structure mainly performs a
slicing operation on the input picture, compressing the length
and width of the picture to increase the number of channels. The
CSP structure is also used in YoloV5, one is the CSP1_X
structure in the Backbone, and the other is the CSP2_X
structure in the Neck. The FPN + PAN structure is used in
constructing the construction feature pyramid structure, while
the SPP structure used in YoloV4 is directly applied to the
backbone feature extraction network. The YoloV5 network
structure is shown in Figure 4.

2.3.4 Faster-RCNN
The second-order algorithm has high detection accuracy and has

a good effect on small target detection. The Faster-RCNN in the
second-order algorithm is selected for training and testing to
compare with the test results of various Yolo algorithms [28].
The Faster-RCNN algorithm consists of four parts: conv layers
(backbone feature extraction), RPN network, ROI Pooling
structure, and Classification and regression (classification and
regression). Faster-RCNN has multiple backbone feature
extraction networks, and this paper uses Resnet50 as the
backbone network, which contains two residual structure blocks,
Conv Block and dentity Block. The common feature layer acquired
by the backbone feature network has two functions. One is to
generate a check box after the RPN structure, and the other is to
act on the ROI Pooling structure to obtain the feature layer of the
same size and send the results to the full connected layer for
classification and regression. The Faster-RCNN network structure
is shown in Figure 5.

FIGURE 2
Efficientnet-YoloV3 network structure.

FIGURE 3
CSPnet network structure.
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3 Results

After the training of this experiment, the optimal weight value in
each algorithm is selected to obtain the evaluation index of the
algorithm. Precision (precision), Recall (recall), mAP (average
accuracy), and IOU (The full name of IOU is Intersection over
Union, which is a standard for measuring the accuracy of detecting

corresponding objects in a specific data set. IOU is a simple
measurement standard that can be used to measure any task with
a forecast range in the output.) are selected as the evaluation
indicators of this experiment. The calculation methods are as
follows:

Precision � TP

TP + FP
(1)

FIGURE 4
YoloV5 network structure.

FIGURE 5
Faster-RCNN network structure.
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Recall � TP

TP + FN
(2)

Accuracy � TP + TN

TP + FN + FP + TN
(3)

F1socre � 2 × Pr ecision × Recall
Pr ecision + Recall

(4)

In the formula, TP (True Positives) means that the sample is
determined as positive and correct, TN (True Negatives) means
that the sample is determined as negative and correct, and FP
(False Positives) means that the sample is determined as positive
but incorrect. FN (False Negatives) means that the sample is
judged negative but incorrect. Precision refers to the ratio of the
number of correctly determined positive samples to the total
number of determined positive samples, Recall (recall) refers to
the ratio of the number of correctly determined positive samples
to the total number of determined positive samples, the average
of mAP (mean Average Precision), the calculation method uses
the difference average, that is, the area under the Precision-Recall
curve.

After the experimental training, the evaluation file was
generated, and the nms_iou used for non-maximum inhibition
was set to 0.5 to obtain the evaluation indexes of the four

algorithms. The following Figure 6 shows the results diagram of
the various algorithms at mAP@0.5, and the detailed data analysis is
shown in Table 1.

The following Figure 7 and Table 2 show the comparison of the
Precision of the four different algorithms. Which shows the
detection accuracy of each type of algorithm after training under
different behaviors of laying hens.

The following Figure 8 and Table 3 show the comparison of the
four different algorithms Recall (recall).

After the comparison of the evaluation indicators, the
pictures of the layers in two different environments of day
and night were selected and verified by different target
detection algorithms, and the results are shown in Figure 9.
Figure (A) to Figure (D) verifies the behavior of a laying hen
in the daytime environment using YoloV3, YoloV4, YoloV5, and
Faster-RCNN respectively, and Figure (E) to Figure (H) identify a
picture of a laying hen in the night environment. The
identification accuracy of all kinds of algorithms can be seen
in the figure below.

The experiment also compared the FPS values of various
algorithms. The video images were intercepted to obtain 9 s of
test video and tested using different target detection algorithms.
Figure 10 shows the real-time FPS values of the different target
detection algorithms, where (A) to (D) are the FPS values when
detected using YoloV3, YoloV4, YoloV5, and Faster-RCNN,
respectively. The results are shown in Figure 11.

4 Discussion

In this paper, four target detection algorithms of YoloV3,
YoloV4, YoloV5, and Faster-RCNN were selected for the training
and detection of four behaviors of laying hens. From the analysis
of the three evaluation indexes selected, the YoloV5 target
detection algorithm has a very good detection effect in this

FIGURE 6
Map comparison diagram of different behaviors.

TABLE 1 Comparison of Map values of different algorithms.

Behavior Feed Lie Stand Embellish

Algorithm

Efficientnet-YoloV3 0.982 0.8836 0.8182 0.773

YoloV4-Tiny 0.9451 0.784 0.655 0.627

YoloV5 0.9743 0.9861 0.9724 0.9233

Faster-RCNN 0.991 0.985 0.954 0.854
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FIGURE 7
Comparison of the different algorithm Precision s for different behaviors.

TABLE 2 Comparison of Precision values of different algorithms.

Behavior Feed Lie Stand Embellish

Algorithm

Efficientnet-YoloV3 0.9769 0.8891 0.7994 0.823

YoloV4-Tiny 0.9554 0.8289 0.6298 0.719

YoloV5 0.9612 0.9134 0.8697 0.9778

Faster-RCNN 0.9561 0.9251 0.8363 0.9524

FIGURE 8
Comparison of the different algorithm Recall s for different behaviors.

TABLE 3 Comparison of Recall values of different algorithms.

Behavior Feed Lie Stand Embellish

Algorithm

Efficientnet-YoloV3 0.9221 0.8369 0.7972 0.7362

YoloV4-Tiny 0.8 0.7194 0.6806 0.5463

YoloV5 0.9821 0.9815 0.9412 0.8645

Faster-RCNN 0.9778 0.9542 0.932 0.8337
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experiment. From Figure 6, the Map value of YoloV5 is
significantly higher than that of YoloV3 and YoloV4, and it is
better than the Map value of Faster-RCNN. In particular, the
modification (Embellish) behavior of laying hens has a Map value
of 92.33%. In Figures 7, 8, the precision and recall values of

YoloV5 are 91.34% and 98.15%, respectively, higher than the
tested values of the other three detection algorithms for this
behavior of lying. Experiments with the same size data set and
experimental equipment showed that YoloV5 and Faster-RCNN
were able to accurately identify various types of laying hens’

FIGURE 9
Detection effect of various algorithms in different environments (A) YoloV3 Day; (B) YoloV4 Day; (C) YoloV5 Day; (D) Faster-RCNN Day; (E) YoloV3
Night; (F) YoloV4 Night; (G) Faster-RCNN Night; (H) YoloV5 Night.

FIGURE 10
Video detection of the FPS values of various algorithms (A) YoloV3 FPS; (B) YoloV4 FPS; (C) Faster-RCNN FPS; (D) YoloV5 FPS.
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behaviors, while YoloV3 and YoloV4 had lower detection effects
and there were missing detection and judgment errors.
Meanwhile, two environments of day and night were selected
for detection in this paper. From Figure 9, the detection
confidence of YoloV3, YoloV4, YoloV5, and Faster-RCNN in
the behavior of stand in the daytime environment is 91%, 91%,
96%, 100%, and in the dark environment, its detection confidence
is 81%, 77%, 93%, and 99%. In the day and night environment, we
can see that the detection confidence of YoloV5 and Faster-
RCNN was very high, in particular, Faster-RCNN, which reached
100% in the detection of the day environment, while YoloV3 and
YoloV4 found a reduced detection accuracy obviously in the
night environment. In Figures 10, 11, we can analyze that
YoloV5 has a better detection speed under the same hardware
conditions and its FPS value can reach 55, while the Faster-
RCNN FPS is 3.54, YoloV5 can fully meet the needs of real-time
detection of farms. In subsequent studies, the YoloV5 detection
accuracy can be further improved by increasing the training data
set and enhancing the data effect.

5 Conclusion

The comparative experimental results of four different target
detection algorithms show that the detection accuracy and
detection speed of the YoloV5 are better than YoloV3 and
YoloV4. Faster-RCNN and YoloV5 detection accuracy are
similar, but Faster-RCNN has a low detection speed and
occupies more memory. The precision values of the
YoloV5 target detection algorithm were 96.12%, 91.34%,
86.97%, and 97.78% for the four behaviors: feed, stand, lie,
and embellish, respectively; the recall values were 98.21%,
98.15%, 94.12%, and 86.45%, respectively. YoloV5 can
effectively identify four different behaviors of laying hen in a
day and night environment, and its detection speed is fast enough
to meet the needs of real-time detection. It can be used to realize

the real-time detection of laying hens’ behavior in breeding farms
and provide data support for the health assessment of laying
hens. Its characteristics of high detection accuracy and fast
detection speed are easy to be deployed in the embedded
intelligent front-end detection equipment, In the experimental
link of this paper, the breeding density of the experimental
environment needs to be improved. In the future, we will
strengthen the research on the breeding farm to improve the
breeding density.
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FIGURE 11
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Non-destructive prediction and
visualization of anthocyanin
content in mulberry fruits using
hyperspectral imaging

Xunlan Li, Zhaoxin Wei, Fangfang Peng, Jianfei Liu
and Guohui Han*

Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
Being rich in anthocyanin is one of the most important physiological traits of

mulberry fruits. Efficient and non-destructive detection of anthocyanin content

and distribution in fruits is important for the breeding, cultivation, harvesting and

selling of them. This study aims at building a fast, non-destructive, and high-

precision method for detecting and visualizing anthocyanin content of mulberry

fruit by using hyperspectral imaging. Visible near-infrared hyperspectral images

of the fruits of two varieties at three maturity stages are collected. Successive

projections algorithm (SPA), competitive adaptive reweighted sampling (CARS)

and stacked auto-encoder (SAE) are used to reduce the dimension of high-

dimensional hyperspectral data. The least squares-support vector machine and

extreme learning machine (ELM) are used to build models for predicting the

anthocyanin content of mulberry fruit. And genetic algorithm (GA) is used to

optimize the major parameters of models. The results show that the higher the

anthocyanin content is, the lower the spectral reflectance is. 15, 7 and 13

characteristic variables are extracted by applying CARS, SPA and SAE

respectively. The model based on SAE-GA-ELM achieved the best

performance with R2 of 0.97 and the RMSE of 0.22 mg/g in both the training

set and testing set, and it is applied to retrieve the distribution of anthocyanin

content in mulberry fruits. By applying SAE-GA-ELM model to each pixel of the

mulberry fruit images, distribution maps are created to visualize the changes in

anthocyanin content of mulberry fruits at three maturity stages. The overall

results indicate that hyperspectral imaging, in combination with SAE-GA-ELM,

can help achieve rapid, non-destructive and high-precision detection and

visualization of anthocyanin content in mulberry fruits.
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frontiersin.org0198

https://www.frontiersin.org/articles/10.3389/fpls.2023.1137198/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1137198/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1137198/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1137198/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1137198&domain=pdf&date_stamp=2023-03-27
mailto:hghui2007@126.com
https://doi.org/10.3389/fpls.2023.1137198
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1137198
https://www.frontiersin.org/journals/plant-science


Li et al. 10.3389/fpls.2023.1137198
1 Introduction

Mulberry (Morus L.) is widely planted around the world.

Tender, juicy and delicious mulberry fruits have long been used

as traditional medicine as well as edible fruits in countries such as

China, India and Turkey (Jan et al., 2021). Modern researches show

that black and red mulberry fruits are rich in anthocyanins, which,

with the properties of antioxidant, anti-inflammatory and chemical

protection, play a positive role in reducing the risk of cardiovascular

diseases and cancers (Chen et al., 2006; Krishna et al., 2018).

Anthocyanins are considered to be one of the most important

indicators for mulberry fruits of good quality by researchers

and consumers.

Anthocyanin contents are usually determined by adopting wet

chemical methods, such as spectrophotometry (Jiang and Nie,

2015) and high-performance liquid chromatography (Zou et al.,

2012). The samples need to be ground and extracted with the use of

chemical reagents such as ethanol or acetone. These methods are

destructive and will produce chemical residues. And only a small

number of samples can be analyzed at a time. It is difficult to detect

anthocyanin content in mulberry fruits on a large scale by applying

the existing time-consuming and inefficient detecting methods. For

efficient agricultural management and production, it is necessary to

find a reliable, fast and non-destructive method for anthocyanin

content detection.

Hyperspectral imaging (HSI) can obtain the spectral data of

each pixel in the sample image simultaneously. This is of potential

value in non-destructive detection of uneven distribution of quality

indicators. There are reports about visualizing anthocyanin

contents of purple sweet potato (Liu et al., 2017), lychee pericarp

(Yang et al., 2015), and grape (Chen et al., 2015) by using HSI. The

research by Huang et al. (2017) has shown that 400-1000nm and

900-1700nm HSI, in combination with least squares support vector

machine (LS-SVM), has great potential in evaluating total

anthocyanin content and antioxidant activity of mulberry fruits.

This is the only study on determining anthocyanin of mulberry by

using HSI. And further research endeavors to visualize anthocyanin

content of mulberry fruit have not been reported yet.

The variable selection is an essential step for modeling. From

previous researches, variable selection methods, such as interval

partial least square, successive projections algorithm (SPA) and

competitive adaptive reweighted sampling (CARS) are often used to

reduce the number of input variables before modeling (Zhu et al.,

2017; Silva and Melo-Pinto, 2021). When using these variable

selection methods, the average spectrum of all pixels in the

hyperspectral image is applied, while efficient big data analysis of

each pixel spectrum is ignored. Depth feature extraction and

dimension reduction can be conducted by using the stacked auto-

encoder (SAE), a nonlinear unsupervised neural network, which is

capable of effectively analyzing the spectral data of all pixels of the

hyperspectral image and then select variables (Yu et al., 2018). In

terms of modeling, the LS-SVM has been shown to be of good

potential in non-destructive detection. Research reports show that

the extreme learning machine (ELM), a single hidden layer
Frontiers in Plant Science 0299
feedforward neural network model, is able to achieve similar or

much better performance at a much faster learning speed than

traditional LS-SVM (Huang et al., 2011; Zheng et al., 2014).

This study is meant for developing a rapid, non-destructive,

high-precision method to detect and visualize the anthocyanin

content of mulberry fruit. The main research objects are as

follows: (1) analyzing the differences in anthocyanin content and

corresponding spectral data between two mulberry varieties at

different maturity stages; (2) reducing the dimension of high-

dimensional spectral data by using SPA, CARS and SAE, and

selecting the most effective feature variables; (3) using LS-SVM

and ELM to build the models for predicting mulberry anthocyanin

and selecting the best prediction model so as to achieve rapid, non-

destructive and high-precision prediction of the anthocyanin

content of mulberry fruit; (4) mapping distribution of

anthocyanin content in mulberry fruit.
2 Materials and methods

2.1 Materials

The sampled varieties, Dashi (Morus nigra L.) and Siji

(Morus nigra L.) were collected from the mulberry resource

conservation nursery of Chongqing Academy of Agricultural

Sciences on April 23, 2020. Disease-free fruits at three maturity

stages (S1: red maturity, S2: red to purple maturity and S3: full

maturity) were randomly picked, then stored in ice boxes. They

were brought back to the laboratory for hyperspectral image

collection and anthocyanin content detection (Figure 1). Six

fruits at the same maturity stage were randomly selected as one

sample for anthocyanin content detection. A total of 180 samples

were obtained, and the numbers of Dashi and Siji were 90

respectively. The samples were randomly divided into the

training set and the testing set at a ratio of 7:3.
2.2 Collection and calibration
hyperspectral images

The hyperspectral imaging systemwas used to collect hyperspectral

images of mulberry fruits (Figure 2). The hyperspectral imaging system

consists of a spectrograph (ImSpector V10E, SPECIM, Finland), an

EMCCD camera (DL-604E, Andor Technology plc., N. Ireland), two

halogen light sources (150 W/21 V halogen lamp, Illuminator

Technologies, Inc, USA), an electric mobile platform and controller

(SC30021A, Zolix, China), and a laptop. The wavelength range of the

spectrum collected was 305-1 090 nm. The two light sources were at an

angle of 45° with the mobile platform respectively. The camera

exposure time was 60 ms. The spectral resolution was 2.8 nm. The

platform moving speed was 1.87 mm/s. The distance between the

objective lens and the platform was 40 cm. After preheating for half an

hour by the light source, the mulberry fruits were placed on the black

cardboard for hyperspectral image collection.
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B

A

FIGURE 1

Fruit images of Dashi (A) and Siji (B) at three maturity stages: (S1) red maturity; (S2) red to purple maturity; (S3) full maturity.
FIGURE 2

The hyperspectral imaging system.
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The collected hyperspectral images need to be calibrated so as to

avoid the effect caused by uneven light source intensity distribution

and dark current during the image collecting process. Under the

same conditions as the sample images were collected, the white

reference image W was obtained by scanning the standard white

reference panels. The dark reference image D was obtained by

scanning with the lens covered. And the image calibration was

completed on the basis of formula (1),

Rl =
Il − Dl

Wl − Dl
(1)

where Rl is the calibrated image, Il is the raw image, Wl is the

white reference image, and Dl is the dark reference image.
2.3 Anthocyanin content extraction

Anthocyanin content was detected by pH-differential

spectrophotometry (Lee et al., 2005). 0.5 ± 0.001 g of grinded

fresh mulberry fruits was added to 10 ml of acidified ethanol (95%

ethanol and 1% concentrated hydrochloric acid, the volume ratio of

ethanol to hydrochloric acid was 60:40) for 1 h ultrasound

extraction and 2 min centrifugation at 8000 r•min-1. 1 ml of

supernatant was taken and the volume was fixed to 25 ml by

adding buffer solutions of pH 1.0 and pH 4.5 respectively. The

absorbance was measured at 520 nm and 700 nm after letting it

stand for 15 min with an ultra-violet-visible spectrophotometer

(UV-6000PC ShanhaiMetash. Co. Ltd, China). The anthocyanin

content was calculated by the formula (2) and (3).

A = (A520nm − A700nm)   at   PH   1:0 − (A520nm

− A700nm)   at   PH   4:5 (2)

Total   anthocyanin   content(mg=g)

= (A*MW*DF*V)=(ϵ*1*M) (3)

Where is the absorbance, A520nm and A700nm are the absorbance

at the 520 nm and 700 nm respectively. MW (molecular weight) =

449.2 g/mol for cyanidin-3-glucoside (cyd-3-glu). DF (Dilution

factor) = 25. V is the original volume of 10 ml. The molar

extinction coefficient ϵ=26900. M is the weight of the sample.
2.4 Region of interest and spectral
data extraction

In this study, the whole fruit with the fruit stalk removed was

treated as the region of interest (ROI). The whole mulberry fruit and

the collection background plate were segmented at 800 nm, with the

reflectance of 0.2 as the minimum value. The petiole was removed

from the whole fruit at 550 nm and 670 nm, with the difference

value of 0.04 as the maximum value. Then the ROI was obtained by

conducting mask processing. The average spectrum of ROI at each

wavelength was calculated for subsequent SPA and CARS feature

wavelength extraction. To create a data set for deep learning, 400
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pixels (20 * 20) corresponding to spectral data were randomly

selected from the ROI of each sample, totaling 72,000, for

SAE training.
2.5 Spectral data processing

2.5.1 Spectral data pretreatment
Owing to the existence of strong noises in the beginning and

ending bands of the raw spectral data, spectral data within the range

of 450-1050 nm, a total of 379 variables were selected for

subsequent analysis. In this study, standard normal variate

transform (SNV) was used to preprocess the spectral data, to

eliminate the scattering caused by uneven particle distribution

and different particle sizes, and the influence of optical path

change on the spectral data.
2.5.2 Feature extraction
Successive projections algorithm(SPA), Competitive adaptive

reweighted sampling(CARS) and Stacked auto-encoder (SAE) were

respectively used in this study to extract spectral data features for

the purpose of reducing the number of input variables, improving

model efficiency, eliminating redundant information of spectral

data, and improving the prediction accuracy of the model.

Successive projections algorithm (SPA) is a forward variable

selection algorithm. By this method, the cycle of forward is

conducted with a wavelength initially selected and the projection

value of the remaining wavelength calculated. Then the projection

vector is combined with the wavelength corresponding to the

maximum projection value until the cycle ends. The minimum

variable group can be effectively obtained by calculating the band

projection value, thus minimizing the collinearity between variables

(Araújo et al., 2001).

Competitive adaptive reweighted sampling (CARS) is a method

based on Monte Carlo sampling and the PLS regression coefficient.

By this method, characteristic variables are primarily screened out

by using the PLS regression coefficient in combination with the

exponential decline function. Then the initially selected

characteristic variables are competitively screened out by using

adaptive reweighted sampling. And the final characteristic

variables are screened out from the wavelength combinations

according to the cross-validation root mean square error. The

detailed algorithm of CARS can be found in reference (Li et al.,

2009). In this study, the number of CARS samples was set to 50, and

the ten-fold cross-validation method was used.

Stacked auto-encoder (SAE) is a deep neural network consisting

of multilayer auto-encoders (AE), by which better feature extraction

is obtained with the hidden layers added to the simple auto-

encoders. AE consists of encoders and decoders. The input layers

map the input data to the hidden layers through the activation

function to obtain the encoding features, which is called encoding.

Through the same steps, the encoding features are mapped to the

output layers by using the activation function to obtain the

decoding features, which is called decoding. In terms of SAE,

the decoding features of the previous AE are used as the input of
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the next hidden layer of AE, and code and decode the next layer of

AE. By analogy, these hidden input layers are connected to form

SAE (Xu et al., 2022).

2.5.3 Model construction and evaluation
Least squares support vector machine (LS-SVM) is a machine

learning algorithm based on SVM, boasting good generalization

ability and nonlinear regression processing ability (Suykens and

Vandewalle, 1999). The fitting ability of LS-SVM mainly depends

on the selection of kernel parameters (C and g). Kernel parameter C

affects the fitting accuracy and generalization ability of the model,

and kernel parameter g directly determines the calculation amount

and efficiency of the model.

Extreme learning machine (ELM) is a feedforward neural

network with a single hidden layer, which has a fast learning

ability and strong nonlinear approximation ability (Huang et al.,

2006). Compared with traditional neural network learning

algorithms, such as back propagation neural network, ELM

presents the advantages of strong generalization ability and fast

calculation speed (Ye et al., 2022). Over-fitting is liable to occur,

since the weight and offset of ELM are randomly determined.

Genetic algorithm (GA) is a search algorithm for obtaining the

global optimal solution based on the biological evolution

mechanism of “survival of the fittest” (Mirjalili, 2019). In this

study, GA is used to optimize the important parameters of the

RBF kernel function and the offset and weight of ELM. In this case,

the value ranges of kernel parameters (C and g) were set to 0.01-100,
the population size was set to 20, and the number of maximum

evolution times was set to 200. When GA was used to optimize

ELM, the population size was set to 20, the maximum number of

evolutions was set to 300, and the number of neurons in the hidden

layer of ELM was set to 90.

The training set determination coefficient (R2c), testing set

determination coefficient (R2p), training set root mean square

error (RMSEC), and testing set root mean square error (RMSEP)

were used as indicators to evaluate the performance of models. The

closer to 1 the determination coefficient (R2) is, the better the model
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fitting effect is. And the smaller RMSEC and RMSEP are, the higher

the precision of the model is.

The hyperspectral image calibration in this study was

completed by the software of the hyperspectral image acquisition

system. ROI segmentation, spectral data extraction and processing

were completed by using MATLAB 2022a, with SPA, CARS, GA,

SAE, and LS-SVM realized by using SPA_GUI, Lib PLS1.98,

GATBX, Deep Learning toolbox, and LS-SVMlab v1.8 toolbox.

The overall flow is shown in Figure 3.
3 Results and analysis

3.1 Anthocyanin content and spectral
characteristics of mulberry fruits

The anthocyanin contents of two mulberry varieties at three

maturity stages were analyzed and measured, and the mean

anthocyanin content and corresponding spectral reflectance of two

mulberry varieties at different maturity stages were calculated

(Figure 4). It was shown in Figure 4A that the higher the maturity

of mulberry fruits was, the higher the anthocyanin content was,

which followed the description of the report of Saracoglu (Saracoglu,

2018). The anthocyanin content of Dashi was higher than that of Siji

at the same maturity stage. Anthocyanins are the main reasons why

mulberry has red and purple (Li et al., 2020). From the analysis of the

spectrum reflection curve of mulberry fruit, it can be seen that the

spectral reflection value in the range from 500 to 700 nm was very

low. According to qin and Lu (Qin and Lu, 2008), the maximum

absorbance of anthocyanin pigments is about 535 nm. However, the

difference between the mulberry fruits of different maturity was not

obvious at 535 nm in Figure 4B. This may be because the black

substances have strong absorption in the visible light area, and the

reflectance value is not attributed to a single compound, the spectra

are the sum of the major mulberry fruit composition spectra

(Cozzolino et al., 2004). A small reflective valley could be seen near

680 nm in red maturity fruits, which is related to the existence of
B C DA

FIGURE 3

Overall flow chart. (A) Acquisition of data; (B) hyperspectral image processing; (C) analysis of spectral data; (D) visualization of anthocyanin content.
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chlorophyll. The spectral reflectance was lower with the increase of

maturity and anthocyanin content within the range of 590-800 nm.

The two varieties showed obvious absorption peaks near 970 nm and

840 nm. This is speculated to be related to water and sugar absorption

(ElMasry et al., 2008; Zheng et al., 2008). The differences in spectral

characteristics of the mulberry fruits above show that hyperspectral

imaging has the potential to distinguish the mulberry fruits of

different anthocyanin contents.
3.2 The results of feature extraction

When hyperspectral imaging is used to detect the anthocyanin

contents of mulberry fruits, the redundant information is often

eliminated and the amount of calculation is compressed by

screening out the characteristic wavelengths to improve the

accuracy and robustness of the diagnostic models. In this paper,

SPA, CARS and SAE were used to extract feature variables from the

379 variables.

SPA was used to screen characteristic wavelengths from spectral

data of SNV pretreatment in 450-1,050 nm region, and the results

were shown in Figure 5. It can be seen from Figure 5A that when the

number of characteristic wavelengths increased from 1 to 7, the

value of RMSE decreased in a ladder shape and then leveled off. And

7 characteristic wavelengths at 684.88, 703.98, 747.15, 798.58,

842.15, 923.11 and 962.05 nm were obtained.

The process of screening wavelengths by using CARS was

shown in Figure 6. With the increase in sampling times, the

number of selected wavelengths decreased gradually at the speed

from fast to slow. This reflected the two stages, preliminary

screening and fine screening, of using CARS to screen out key

variables. With the increase in sampling times, the root mean

squares error of cross-validation (RMSECV) value gradually

decreased. And the RMSECV value obtained was the lowest when

the 31st sampling was conducted. This is an indication that some

irrelevant variables are removed during the sampling process. After

the 31st sampling, the RMSECV value presented a stepwise

progression, indicating the removal of some key information.

Therefore, the wavelengths obtained at the 31st sampling were
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the characteristic wavelengths. Fifteen characteristic wavelengths,

450.08, 451.59, 601.16, 703.98, 707.17, 708.77, 743.95, 795.36,

796.97, 798.58, 832.45, 963.67, 965.29, 1038.29 and 1046.39 nm,

were screened out by using CARS.

Based on the analysis of the characteristic wavelengths, the

positions and numbers of characteristic wavelengths screened out

by using SPA and CARS were found to be different. And the

wavelength positions are concentrated within the ranges of 703-

835 nm and 963-1046 nm.

The feature variables of SAE screening are shown in Figure 7.

When it comes to SAE, it is not necessarily the case that the more

hidden layers are, the better the effect is. In this study, 379-300-150-

h-150-300-379 was set to be the basic network. h denotes the

number of neurons in the last coding layer, and it is also the

number of feature variables extracted. Based on experience and

many previous attempts, sigmod was set as the activation function,

iterate was set to 40 times, the batch size was set to 200, the initial

learning rate was set to 0.001, and h was set to 13. From the results

shown in Figure 7A, the reconstructed spectral reflectance curve is

highly coincident with the original spectral curve, indicating that

the original spectral data can be perfectly reconstructed by using

SAE. The last coding layer was extracted as the spectral feature

variables (Figure 7B). It can be seen that the corresponding values of

the 13 feature variables of samples at different maturity stages are

obviously different.
3.3 The results of modeling

All wavelengths and feature variables extracted by using SPA,

CARS and SAE were used as the model inputs. Regression models of

mulberry anthocyanin contents were built based on GA-LS-SVM

and GA-ELM respectively. And the regression results were

evaluated (Figure 8). Models were constructed by using the two

non-linear regression methods that achieved good performance, R2

values of the training sets and those of the testing sets of GA-LS-

SVM and GA-ELM models built on the basis of full wavelengths

and variables extracted by using SPA, CARS and SAE were greater

than 0.90, RMSE was less than 0.38 mg/g. The models based on
BA

FIGURE 4

The anthocyanin content (A) and average spectra (B) of mulberry fruit at three maturity stages. Values with the same letter (i.e. a, b, c or d) are not
significantly different (p<0.05).
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variables selected by SPA, CARS and SAE achieved better

performances than those based on full-band spectral data,

indicating that SPA, CARS and SAE can reduce the redundancy

of model input variables and help improve the accuracy of the

model. Many researches show that ELM has the advantages of fast
Frontiers in Plant Science 07104
learning speed and good generalization ability (Wong et al., 2013;

Huang et al., 2014). In this study, The SAE-GA-ELM models,

requiring only 13 input variables, has achieved the best predictive

performance, with the values of R2c and R2p reaching 0.97, and

RMSEC and RMSEP being only 0.22 mg/g, obtained.
B

A

FIGURE 5

The characteristic wavelengths selected by SPA. (A) Variation of RMSE with the number of variables, (B) the selected wavelengths.
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3.4 Visualization of anthocyanin content

The visualization of anthocyanin content distribution in

mulberry fruits is needed for more intuitively observing the

changes in anthocyanin contents of mulberry fruits at different
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maturity levels. One of the advantages of hyperspectral imaging is

that spectral data of each pixel can be obtained by using hyperspectral

imaging. This makes it possible for the prediction about each pixel to

be made, thus helping create distribution prediction maps. The

visualization can be achieved with the average spectra applied for
B

A

FIGURE 6

The process (A) and result (B) of characteristic wavelength selection by CARS.
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modeling and all of the single-pixel spectra in the hyperspectral image

used for the best prediction model (Sun et al., 2019; Xiao et al., 2020).

In this study, SAE-GA-ELM, the best model for anthocyanin content

detection, was applied to visualize anthocyanin content distribution.

All the single-pixel spectrum was processed by the same treatment

used in the modeling. Figure 9 shows the visualization maps of
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eighteen samples representing different maturity levels of two

varieties. we can see from Figure 9 that the higher the maturity

level of mulberry fruits is, the higher the anthocyanin content is, and

that the anthocyanin content of Dashi is higher than that of Siji at the

same maturity stage, which is consistent with the results shown in

Figure 4A. It can be seen that the distribution of anthocyanin content
B

A

FIGURE 7

The training results of SAE. (A) Original SNV spectrum and reconstructed SNV spectrum; (B) deep spectral features of Dashi and Siji.
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of the mulberry fruits at the red maturity stage is not consistent with

that of the content of the mulberry fruits at the red to purple maturity

stage, which is speculated to be the result of the uneven distribution of

such anthocyanin synthesis regulators as sugars and hormones in the

fruits (Aramwit et al., 2010; Mo et al., 2022).
4 Conclusions

In this study, with Dashi and Siji mulberry varieties selected

as research objects, and SPA, CARS and deep learning methods
Frontiers in Plant Science 10107
SAE used to screen out feature variables, models for predicting

anthocyanin content in mulberry fruits are built based on GA-

LS-SVM and GA-ELM. The SAE-GA-ELM has achieved the best

performance with R2c and R2p reaching the value of 0.97 under

the condition of RMSEC and RMSEP being only 0.22 mg/g. By

applying this best model to each pixel of the mulberry fruit

images, distribution maps are created for visualizing the

changes in anthocyanin content of mulberry fruits at three

maturity stages. The results indicate that the hyperspectral

imaging, in combination with SAE-GA-ELM could realize the

fast , non-destructive, and high-precision detection of
FIGURE 8

Diagnosis results of anthocyanin content in the training set and testing set by GA-ELM and GA-LS-SVM models based on all-band and feature
variables.
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anthocyanin content of mulberry fruits, which means a new

reference for rapid and nondestructive evaluation of

physiological traits for the breeding, cultivation, harvesting

and selling of the fruits.
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Rapid, non-destructive and reliable detection of the oil content of corn seeds is

important for development of high-oil corn. However, determination of the oil

content is difficult using traditional methods for seed composition analysis. In this

study, a hand-held Raman spectrometer was used with a spectral peak

decomposition algorithm to determine the oil contents of corn seeds. Mature

and waxy Zhengdan 958 corn seeds and mature Jingke 968 corn seeds were

analyzed. Raman spectra were obtained in four regions of interest in the embryo

of the seed. After analysis of the spectra, a characteristic spectral peak for the oil

content was identified. A Gaussian curve fitting spectral peak decomposition

algorithm was used to decompose the characteristic spectral peak of oil at 1657

cm−1. This peak was used to determine the Raman spectral peak intensity for the

oil content in the embryo and differences in the oil contents among seeds of

varying maturity and different varieties. This method is feasible and effective for

detection of corn seed oil.

KEYWORDS

Raman spectroscopy, spectral peak decomposition, Gaussian curve fitting, corn seed,
oil content
1 Introduction

Corn is a leading food crop in China. Corn kernel is mainly composed of seed coat,

endosperm and embryo, which contains starch, oil, protein, cellulose, lignin, and soluble

sugar (Chen, 2009). Corn is a major source of human food, animal feed, and industrial raw

materials (Abbassian, 2006). Corn oil is extracted from the germ of the corn kernel and is

rich in unsaturated fatty acids and vitamin E, which are essential in the human body (Aksoz

et al., 2020; Zhao et al., 2020). This oil is a popular, high-quality edible oil. The oil content

of common corn is approximately 4%, while the oil content of high-oil corn is greater than
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8% (Barrera-Arellano et al., 2019). Therefore, increasing the oil

content and quality in corn is crucial for improving its value. At the

same time, determining the oil content in corn is important for

selective breeding of high-oil corn and transgenic engineering

(Barrera-Arellano et al., 2019). However, traditional analytical

methods (Matthäus et al., 2001), such as solvent extraction,

accelerated solvent extraction, supercritical fluid extraction,

microwave-assisted extraction, and Soxtherm extraction, are

destructive, time-consuming, labor-intensive and use many

chemical reagents. These methods are not suitable for rapid and

non-destructive quality evaluation of mass-produced corn seeds.

Consequently, it is necessary to develop rapid and non-destructive

techniques for quality evaluation of corn seeds.

Spectroscopy is a rapid and non-destructive detection method

(Huang et al., 2015), and has been successfully applied to the quality

evaluation of agricultural products. Among them, near infrared

spectroscopy (NIR) is an absorption spectrum that has been used to

rapidly determine the compositions of grain seeds, including the oil

content (Fassio et al., 2015), total starch content of corn seeds (Liu

et al., 2020), and protein content of cowpeas (Weng et al., 2017).

However, NIR is mainly related to frequency doubling and

combined vibrations of hydrogen-containing chemical groups

(e.g., C-H, O-H, and N-H) in organic molecules (Beć et al., 2020).

Consequently, this technique suffers from serious overlap of

spectral peaks, low sensitivity, and is susceptible to interference

from water. It is difficult to directly analyze the chemical

compositions of seeds using the absorption peak characteristics of

a NIR spectrum, and this has resulted in a dependence on

chemometrics for analysis.

Raman spectroscopy is an analytical technique that is based

on Raman scattering, which originates from the vibration and

rotation of molecules (Jones et al., 2019).The positions, intensities

and shapes of the spectral peaks can reflect the characteristic

fundamental frequency vibrations of the functional groups or

chemical bonds in molecule of the target substance. Compared

with NIR, Raman spectroscopy has high sensitivity, produces

clear and sharp spectral peaks, and provides strong recognition

ability, which makes the analysis of chemical composition

more intuitive and concise. Wu X. et al. (2022) established a

quantitative model based on Raman spectra and one-dimensional

convolutional neural network (1D CNN) to identify the amount of

olive oil in a corn-olive oil blend, providing a new analytical method

for the quantitative identification of vegetable oils. Yang et al. (2018)

showed that characteristic peaks related to corn starch, an oil–

starch mixture, zeaxanthin, lignin, and oil were located at 477, 1443,

1522, 1596, and 1654 cm−1, respectively. They realized rapid visual

detection of the chemical composition of corn seeds using a line-

scanning Raman hyperspectral imaging system. These studies

indicate that Raman spectroscopy can be used to analyze the

composition of corn seeds.

In recent years, because of continuous improvement in the

performance of optical devices and other components, hand-held

Raman spectrometers, which are small, flexible to use, simple to

operate, and provide stable performance, have been favored by
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researchers. Farber and Kurouski (2018) analyzed the Raman

spectra of corn seeds before and after pathogen infection using a

hand-held Raman spectrometer. After infection, a peak at 1633 cm–1

for C=C vibration in the aromatic ring of lignin disappeared, which

indicating that the lignin degraded. Furthermore, a peak at 1658 cm–1

belonging to the protein amide I band became stronger, which

showed that growth of the pathogen was closely related to

deposition of protein in corn. Additionally, spectral peaks related to

the -C=C-plane vibration of carotenoid shifted and increased in

intensity. Therefore, the growth of pathogens may be related to

degradation and breaking of bonds in carotenoid. These studies show

that a hand-held Raman spectrometer may be feasible for seed

composition analysis. Although Raman spectroscopy can be used

simultaneous measurement of various compositions of seeds, the

Raman characteristic peaks of oil in corn seeds suffer from

interference from starch, protein, lignin, and other compositions

(Yang et al., 2018). To overcome this issue, Raman spectroscopy

could be combined with a spectral peak decomposition algorithm to

realize the identification, classification, and quantification of

composition (Postnikov et al., 2021). Sadat and Joye (2020) uaed a

peak decomposition method based on the second derivative of the

original spectrum and the curve fitting of the Voigt function to

identify, separate and quantify hidden peaks of the amide I band in

the infrared and Raman spectra of globular proteins, hydrated zein

and gluten proteins. Wu T. et al. (2022) proposed an optimal multi-

peak fitting model for the first-order and second-order Raman

spectra of high-strength carbon fibers (T-series) and high-strength

and high-modulus carbon fibers (MJ series), and quantitatively

analyzed the structure of the carbon fiber.

The primary aim of this study was to realize the oil content

analysis of corn seeds using a hand-held Raman spectroscopy

combined with a peak decomposition algorithm. The Raman

spectral characteristics of the corn seed embryo were studied, and

spectral information for the oil content in the corn seeds was

extracted and analyzed using a spectral peak decomposition

algorithm. Differences in the oil content for corn seeds of

different varieties and maturities were compared and analyzed.
2 Materials and methods

2.1 Experimental materials

Corn seeds of the Zhengdan 958 and Jingke 968 varieties were

obtained from a seed company in Beijing, China. Fifty seeds of the

Zhengdan 958 variety were selected and divided into two groups

according to the milk line of endosperm. 25 of the seeds were

mature and the others were waxy. For the Jingke 968 variety, 25

mature seeds were selected. Standard samples, including corn starch

(reagent grade, Aladdin Reagent Co., Ltd., Shanghai, China), corn

oil (reagent grade, Aladdin Reagent Co., Ltd., Shanghai, China),

cellulose (reagent grade, Aladdin Reagent Co., Ltd., Shanghai,

China), and corn hulls, were obtained for analyzing the Raman

characteristics of the corn seeds.
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2.2 Instruments

Raman spectra of the standard samples were collected using a

high-resolution benchtop Raman spectrometer (DXR Smart Raman

System, Thermo Fisher Scientific). The spectrometer was equipped

with a 780 nm diode laser with a maximum power of 150 mW. The

spectral resolution was 3.0-4.1 cm–1, and the spectral range was 50-

1800 cm–1. The optical power was 100 mW and the integration time

was 10 s.

Raman spectra of the corn seeds were collected using a hand-

held Raman spectrometer (785 hand-held Raman spectrometer,

Beijing Yunduan Optical Technology Co., Ltd.). The hand-held

Raman spectrometer was equipped with a 785 nm laser. The laser

power was continuously adjustable from 1 to 500 mW. The spectral

resolution was approximately 8.0 cm–1, and the spectral range is

200-1800 cm–1. The optical power was 150 mW and the integration

time was 10 s.
2.3 Spectral data acquisition

Standard samples (corn starch, corn oil, cellulose, and hulls) were

placed on a quartz plate, which was set on the sampling platform of

DXR Smart Raman System for spectral acquisition. For the Zhengdan

958 seeds, the mature seeds were labeled as group D1 and the waxy

seeds as group D2. The Jingke 968 seeds were labeled as group D3.

Four regions of interest (ROIs) for detection (P1, P2, P3, and P4) were

set from the top to bottom along the midline of the embryo of the

corn seed (Figure 1A). The Raman spectra of the ROIs were collected

by the acquisition system shown in Figure 1B. The acquisition system

consisted of a hand-held Raman spectrometer, a movable platform, a

sample rack, and an optical breadboard. The hand-held Raman

spectrometer was placed horizontally on the left of the mobile

platform. The seed sample was placed vertically on the right of the

mobile platform, with the P1 end of the seed facing down and the tip

of the embryo facing up. The embryonic surface of the seed faced the

Raman probe. First, the laser was focused on P1 and Raman spectral

data were collected. Then, the movable platform was adjusted to

move the sample downward, and spectral data were collected at P2.

This process was repeated for P3 and P4. During spectral collection,

the four ROIs of each seed were as similar as possible. The spectra of

the standard samples were used as reference data for the spectral

analysis of the seeds.
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2.4 Spectral data preprocessing

Firstly, the Savitzky–Golay smoothing algorithm was used to

remove noise from the original Raman spectra of the corn seeds

(Schafer, 2011). Then, the smooth Raman spectra were corrected

using the airPLS algorithm to remove fluorescent background

interference (Zhang et al., 2010). The corrected Raman spectral

data were used for subsequent spectral peak decomposition and

spectral information extraction. The preprocessing of all raw

Raman spectra was performed in Visual Studio Code (Microsoft

Corporation, Redmond, WA, United States).
2.5 Spectral peak decomposition

Decomposition of overlapping spectral peaks can be used for

separation and extraction of effective spectral information. Previous

studies have shown that curve fitting is an effective spectral peak

decomposition method. It is based on statistical principles, which

aims to find a reliable function to fit a set of data points and

minimize the error between the function and the data point. And

the least square method is a common functional form. In this study,

curve fitting based on nonlinear least square method was selected

for spectral peak decomposition, and the Gaussian linear function

was selected as the fitting model. The expression of the Gaussian

function is shown in Equation 1:

y = ae−
(x−m)2

2s2 (1)

where a is the peak intensity, m is the peak position, and s is the

full width at half maximum. With three overlapping spectral peaks,

the original spectral peaks were regarded as a ternary Gaussian

linear distribution, and a function expression was constructed as

shown in Equation 2:

y = a1e
−(x−m1)

2

2s2
1 + a2e

−(x−m2)
2

2s2
2 + a3e

−
(x−m3)

2

2s2
3 (2)

According to Equation 2, the original overlapping spectral

peaks were iteratively analyzed by curve fitting to obtain the

values of the Gaussian parameters a1, m1, s1, a2, m2, s2, a3, m3,
and s3. Then, three Gaussian spectral peaks a1e −

(x−m1)
2

2s 2
1

, a2e −
(x−m2)2
2s2

2
, a3e −

(x−m3)
2

2s 2
3

were obtained by decomposition of the

overlapping peaks and used for information extraction. All
FIGURE 1

Schematic diagram of the Raman spectrum acquisition. (A) Locations of the four regions of interest in the embryo for detection, and (B) the
acquisition system for the Raman spectra of the corn seeds.
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overlapping peaks of Raman spectra were decomposed in Visual

Studio Code.
3 Results and discussion

3.1 Analysis of Raman spectral
characteristics of oil in corn seeds

Corn oil is mainly stored in the embryo of the seed. To analyze

the Raman spectral characteristics of oil in the corn seeds, the

standard spectra of corn oil, corn starch, cellulose, and hulls

collected by the DXR Smart Raman system were regarded as the

reference spectra and compared with the Raman spectra of the

embryo collected by the hand-held Raman (Figure 2). Prominent

characteristic peaks in the standard corn oil sample were located at

1656, 1439, 1301, and 1267 cm–1, which are attributed to C=C

stretching, CH2 or CH3 deformation vibrations, CH2 twisting, and

=C-H bending, respectively (Gelder et al., 2007; Anna et al., 2017).

The 1656 cm–1 spectral peak in the seed embryo spectrum

overlapped with spectral peaks at 1600 and 1632 cm–1, which

were attributed to C-H stretching of the aromatic ring and C=C

stretching in coniferyl aldehyde, respectively, derived from lignin

in the hull (Lupoi and Smith, 2012; Zeng et al., 2016). In the

spectrum of the seed embryo, there was serious overlapping

between the 1439 cm–1 peak of corn oil and the band located at

approximately 1460 cm–1 for CH2 bending of starch (Liu et al.,

2004). Furthermore, the spectral peaks of corn oil located at 1301

and 1267 cm–1 overlapped with a peak at 1263 cm–1 related to

starch (Kizil et al., 2002) and peaks at 1336 and 1379 cm–1 related to

cellulose (Wiley and Atalla, 1987; Kryeziu et al., 2022). Compared

with the standard spectrum of corn oil, the spectrum of the seed

embryo had a very different ratio between the peaks at 1301 and

1267 cm–1. These results indicate that the 1656 cm–1 peak is the
Frontiers in Plant Science 04113
most suitable among the characteristic peaks for the spectral

analysis of oil in corn seeds.
3.2 Raman peak decomposition analysis of
oil in corn seeds

A Raman spectrum of the P1 ROI was selected from each group

(D1, D2, and D3) of corn seeds, and the 1560–1680 cm–1 region was

selected for spectral peak decomposition analysis to extraction

information about the oil content. There were multiple

overlapping peaks in the 1560–1680 cm–1 region (Figure 2). The

original spectral peaks were regarded as a distribution of three

Gaussian spectral peaks. A function expression was constructed as

shown in Equation 2, and decomposition of the spectral peaks was

carried out. The fitting parameters a1, m1, s1, a2, m2, s2, a3, m3, and
s3 for the three Gaussian spectral peaks (A, B, and C) were

calculated (Table 1). The decomposition results for the

overlapping peaks are shown in Figures 3A–C. There were slight

differences in the positions of the peaks among the three groups of

the seeds. Peaks A and B were consistent with lignin, and peak C

could be used to determine the oil content. Our results showed that

the overlapping spectral peaks were successfully decomposed into

three Gaussian spectral peaks for each group of corn seeds. The

relative errors between the fitted and original spectra were 8.68%,

7.71%, and 12.72% for D1, D2, and D3, respectively. The relative

error was obtained by subtracting the fitting value from the original

value, dividing by the original value, then taking the absolute value

of the result, adding all the absolute values, and dividing by the total

number of data points. The Raman peak for the oil content was

successfully separated from any overlapping spectral peaks using

the peak decomposition algorithm (Figure 3D). The spectra of the

mature seeds (groups D1 and D3) were similar, whereas that of the

waxy seeds (group D2) was very different.
FIGURE 2

Analysis of the Raman spectral characteristics of oil in corn seeds. Characteristic peaks of corn embryo located at 1267, 1301, 1439, 1656 cm–1 are
related to standard corn oil sample, 1334, 1380 cm–1 are related to standard cellulose sample, and 1600, 1632 cm–1 are related to hull. At the same
time, 1267, 1301, 1334, 1380, 1439 cm–1 are affected by the peaks of starch.
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3.3 Analysis of the oil content in the
embryos of different corn seeds

To analyze the Raman characteristics of the oil content in the

embryos of different corn seeds, the Raman spectra of the different

groups (D1, D2, and D3; 25 seeds for each group) were decomposed

using the Gaussian curve fitting algorithm in the 1560–1680 cm–1

region. The maximum intensity of the decomposed peak C for oil

was extracted for analysis. To analyze the different ROIs (P1, P2, P3,

and P4) in the embryos, scatter plots of the maximum intensities of

peak C were constructed (Figures 4A–C). The maximum intensities

of peak C in the P1, P2, and P3 ROIs were scattered throughout the

same region of the plots and these ROIs could not be clearly

distinguished. By contrast, all data points for the P4 ROI were

located at the bottom of the scatter plots and clearly separated from

the data points for the P1, P2, and P3 ROIs.
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To analyze the differences in the Raman intensities in the four

ROIs, the mean intensities of peak C for the four ROIs for the 25

seeds in each group were calculated. The distribution of mean

intensities and the corresponding standard deviations for the three

groups of seeds are shown in Figure 4D. There were slight

differences in the mean spectral intensities of peak C for the P1,

P2, and P3 ROIs in the embryos of the three groups of corn seeds.

However, the mean intensity of peak C for the P4 ROI was

significantly lower than in the P1, P2, and P3 ROIs. This

difference is consistent with the fact that corn oil is mainly

distributed in the germ (Moreau and Hicks, 2005) and shows that

the Raman peak at 1657 cm–1 can be used to characterize the oil

content. To better characterize the oil content in the seeds and

improve the stability and reliability of detection, the mean

maximum intensity of the 1657 cm–1 peak in the P1, P2 and P3

ROIs was selected.
TABLE 1 Fitting parameters for spectral peak decomposition in the 1560-1680 cm–1 region for corn seed spectra.

Seed
Fitting parameters of spectral peak Decomposition spectral peaks

Relative error
a1 m1 s1 a2 m2 s2 a3 m3 s3 Peak A Peak B Peak C

D1 1028 1599 15 661 1632 8 702 1657 10 1028� e−
(x−1599)2

450 661� e−
(x−1632)2

128 702� e−
(x−1657)2

200 8.68%

D2 642 1598 15 292 1630 6 408 1654 13 642� e−
(x−1598)2

450 292� e−
(x−1630)2

72 408� e−
(x−1654)2

338 7.71%

D3 618 1599 15 449 1631 8 705 1657 10 618� e−
(x−1599)2

450 449� e−
(x−1631)2

128 705� e−
(x−1657)2

200 12.72%
A B

DC

FIGURE 3

Spectral peak decomposition analysis of different kinds of corn seeds in the 1560-1680 cm–1 region: group D1 (mature Zhengdan 958) seeds (A),
group D2 (waxy Zhengdan 958) seeds (B), and group D3 (Jingke 968) seeds (C). Comparative analysis of the separated spectral peak for oil in the
three groups of seeds (D).
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To analyze the difference in the oil content between the groups

of corn seeds, the oil characterization value was calculated for every

individual seed in each group. The characterization values of the 25

seeds in each group were arranged in ascending order (Figure 5A).

The characteristic values of the seeds in groups D1 and D2 fluctuate

greatly with the number of seeds, while those of the D3 seeds are

relatively stable. The characteristic values of the seeds in groups D1
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and D2 were spread over a wider range than those for the D3 seeds.

These results showed that the oil content of individual seed in the

D1 and D2 groups is significantly different, and the oil content in

the D3 group has little difference among individual seeds. To

analyze the differences in the oil contents among the three groups

of corn seeds, the mean oil characterization values of all 25 seeds in

each group were calculated to characterize the overall oil content of
A B
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FIGURE 4

Spectral intensity analysis of peak C in the four regions of interest (P1-Point 1, P2-Point 2, P3-Point 3 and P4-Point 4 of embryo) in the three groups
of seeds: mature Zhengdan 958 D1 (A), waxy Zhengdan 958 D2 (B) and Jingke 968 D3 (C). The mean spectral intensities in the P1, P2, P3, and P4
regions of interest in the embryo of three groups seeds (D).
A B

FIGURE 5

Oil content characterization values (the mean intensity of peak C in the embryo) of individual seeds in the three groups (D1-mature Zhengdan 958,
D2-waxy Zhengdan 958, and D3-Jingke 968) (A), and the mean oil content characterization value for each group (B).
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each group (Figure 5B). The seeds in group D2 had the lowest mean

value (474.6). The seeds in group D1 had a mean value of 566.3,

which was significantly higher than that of the seeds in group D2

and not significantly different from that of the seeds in group D3

(557.7). The seeds in group D1 and group D2 were the same variety

(Zhengdan 958). For seeds of the same variety, the relative oil

content was correlated with the seed maturity, with the oil content

of mature seeds being higher than that of waxy seeds. Among

different varieties, the oil content in the Jingke 968 (D3 group) was

similar to that in the Zhengdan 958 variety; the results for the Jingke

968 variety showed less variation among the individual seeds in the

group than was observed for the Zhengdan 958 variety.
4 Conclusions

The feasibility of detecting the oil content of corn seeds using a

hand-held Raman spectrometer with a spectral peak decomposition

algorithm was explored. The Raman peak at 1657 cm–1 for the oil

content was successfully separated from overlapping spectral peaks

using a Gaussian curve fitting peak decomposition algorithm. The

intensity distribution characteristics of the 1657 cm–1 spectral peak

in different ROIs of the embryo showed that the oil content of the

corn seed was mainly distributed in the germ. The oil content for

individual seeds was characterized using the maximum intensity of

the 1657 cm–1 peak. For the same variety of corn seeds, the oil

content was positively correlated with seed maturity, with the oil

content of mature seeds being higher than that of waxy seeds. For

different varieties of corn seeds, the oil content of Jingke 968 variety

was similar to that of Zhengdan 958 variety, but the oil contents of

individual seeds of the Jingke 968 variety showed less variation

within the group than was observed for the Zhengdan 958 variety.

Our results show that a hand-held Raman spectrometer combined

with spectral peak decomposition can provide rapid and non-

destructive determination of the oil content of corn seeds. This

study provides a basis for the quantitative detection of oil in corn or

other varieties of grain. This method could be used to rapidly

identify and select corn seeds with high oil contents for

selective breeding.
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Novel candidate genes for
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through genome-wide
association study of naturally
varying Populus trichocarpa
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Chang Geun Yoo3, Timothy J. Tschaplinski2, Yunqiao Pu2
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1Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville,
TN, United States, 2Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National
Laboratory, Oak Ridge, TN, United States, 3Department of Chemical Engineering, State University of
New York College of Environmental Science and Forestry, Syracuse, NY, United States, 4Center for
Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute
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Populus is a promising lignocellulosic feedstock for biofuels and bioproducts.

However, the cell wall biopolymer lignin is a major barrier in conversion of

biomass to biofuels. To investigate the variability and underlying genetic basis of

thecomplex structureof lignin, a populationof409 three-year-old, naturally varying

Populus trichocarpa genotypes were characterized by heteronuclear single

quantum coherence (HSQC) nuclear magnetic resonance (NMR). A subsequent

genome-wide association study (GWAS) was conducted using approximately 8.3

million single nucleotide polymorphisms (SNPs), which identified 756 genes that

were significantly associated (−log10(p-value)>6) with at least one lignin phenotype.

Several promising candidate genes were identified, many of which have not

previously been reported to be associated with lignin or cell wall biosynthesis.

These results provide a resource for gaining insights into themolecularmechanisms

of lignin biosynthesis and new targets for future genetic improvement in poplar.

KEYWORDS

genome-wide association studies (GWAS), Populus, nuclear magnetic resonance (NMR)
analysis, lignin, p-hydroxybenzoate
1 Introduction

Poplar (Populus sp.) is a promising lignocellulosic biomass feedstock due to its fast

growth, ability to grow on marginal land, high cellulose content, and relatively low lignin

content (Sannigrahi et al., 2010; Bryant et al., 2020). However, lignocellulosic biomass

exhibits tremendous variability in cell wall traits, such as composition and structure. Cell
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wall structure and composition depend on factors such as

environmental conditions (i.e., drought, cold stresses), biomass

type (i.e., woody vs. herbaceous), tissue (i.e., stem vs. leaf), and

genetic variations. One cell wall component that demonstrates a

high degree of variability is lignin. Lignin is a complex and

heterogeneous biopolymer that accounts for 18–32% (dry weight)

of Populus (Sannigrahi et al., 2010; Li et al., 2016). It serves several

important biological functions, including water transport,

providing mechanical strength, and response to environmental

stresses (Liu et al., 2018). However, since it acts as a natural

barrier against pathogens, it is one of the main factors

contributing to biomass recalcitrance to biological conversion to

biofuels. Lignin is typically comprised of three primary monomers

synthesized through the general phenylpropanoid and monolignol

specific pathways: sinapyl alcohol, coniferyl alcohol, and p-

coumaryl alcohol. When exported to the apoplast, these

monolignols are oxidized by laccases and/or peroxidases, and

then undergo radical cross-coupling reactions. Once coupled into

the lignin polymer, these alcohols are identified as syringyl (S),

guaiacyl (G), and p-hydroxyphenyl (H) units, respectively (Bose

et al., 2009). It has also been shown that lignin demonstrates

plasticity by incorporating non-canonical monolignols into the

polymer, such as p-hydroxybenzoates (PB) (del Riıó et al., 2020).

These units are incorporated into the lignin polymer via a variety of

interunit bonds, such as aryl ether (b-O-4), resinol (b-b), and
phenylcoumaran (b-5), among others. The structure of lignin has

potential bioenergy implications, as evidenced by the lignin S/G

ratio association with biomass digestibility and conversion to

biofuels (Li et al., 2016). Lignin structure can also influence lignin

valorization. For instance, acetaminophen, the active ingredient in

Tylenol, can be synthesized from the PB moiety (Ralph et al., 2019).

The formation of the secondary cell wall requires coordination

of many metabolic pathways (Zhang et al., 2018a), presenting

challenges in linking phenotypes to genetic mutations.

Additionally, complex traits such as lignin are often controlled by

several multigenic families. Genome-wide association studies

(GWAS) are powerful tools for identifying polymorphic loci that

contribute to phenotypic variation and sometimes trace-back to the

genes or biological mechanisms involved. Due to the large sample

size required for GWAS, high throughput techniques are typically

utilized to analyze lignin traits. However, high throughput methods

such as pyrolysis molecular beam mass spectroscopy (Py-MBMS)

or near-infrared (NIR) spectroscopy provide limited information

on lignin composition. These methods are generally used to

estimate only the relative lignin to sugars ratio within the cell

walls, or the S/G ratio for lignin itself. Genomic association

mapping has been successfully employed on Populus for

bioenergy traits including lignin content and S/G ratio (Porth

et al., 2013; Fahrenkrog et al., 2017), biomass yield (Allwright

et al., 2016), and cell wall sugars (Guerra et al., 2013).

Consequently, the genetic basis of most lignin traits remains

understudied by GWAS, and new methods for characterization of

lignin phenotypes are urgently required. In comparison to Py-

MBMS or NIR, the analytical technique heteronuclear single

quantum coherence (HSQC) NMR, is more time and labor
Frontiers in Plant Science 02119
intensive, but has the potential to provide substantially more

information on lignin structure.

In this study, we performed a deep phenotyping of the lignin

polymer of 409 P. trichocarpa genotypes by HSQC NMR. By

performing a detailed phenotyping of twelve lignin traits in a

large population of poplar trees, we found that the lignin

composition is highly variable across individuals, with evidence of

incorporation of non-canonical monolignols into the polymer of

lignin. Subsequently, a GWAS analysis enabled the identification of

novel candidate genes that could explain the diversity in lignin

composition. Most of the candidate genes identified were not

previously reported to be associated with lignin or cell wall

biosynthesis. This provides a resource for gaining insights into

the molecular mechanisms of lignin biosynthesis and new targets

for future genetic improvement in poplar.
2 Materials and methods

2.1 Biomass preparation

Wood samples for this study were collected from three-year-old

Populus trichocarpa grown in a common garden in Corvallis, OR

(44°34′14.81″N 123°16′33.59″W). Site establishment and

management practices were previously described by Muchero

et al. (Muchero et al., 2015). One-centimeter-diameter increment

cores were collected at breast height for the 409 genotypes in

January 2013. Cores were stored in zip-lock bags at −20°C before

processing. Wood cores were air dried at room temperature before

they were ground using Wiley Mini-Mills (Swedesboro, NJ) with a

20-mesh screen. Ground samples were stored in glass vials at

room temperature.
2.2 Lignin sample preparation

Each sample was Soxhlet extracted using toluene/ethanol (2:1, v:

v) for at least eight hours and subsequently air-dried for at 24 hours.

Approximately 500 mg of each extractives-free sample was ball-

milled for two hours at 600 RPM (at five-minute intervals) on a

Retsch planetary ball mill. The ball-milled biomass was then

subjected to enzymatic hydrolysis with cellulase (Sigma-Aldrich)

in a sodium acetate buffer at 37°C and 200 RPM for 48 hours. The

solid lignin enriched residues were then separated via centrifugation

and lyophilized for 48 hours for NMR analysis.
2.3 NMR analysis

Lignin structure was analyzed by 2D HSQC NMR with a Bruker

Avance II 500-MHz spectrometer. Approximately 40 mg of lignin

enriched residue was dissolved in 0.5 mL of DMSO-d6 in a 5 mm

NMR tube and sonicated for one hour. The Bruker pulse sequence

hsqcetgpsip2.2 was utilized on a N2 cryoprobe with the following

parameters: spectra width of 12 ppm in the 1H dimension with 1024
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data points; spectra width of 220 ppm in the 13C dimension with

256 increments and 32 scans. The HSQC spectra were analyzed

with Bruker TopSpin 3.5pl6 software. The DMSO-d6 solvent peak

(dC/dH at 39.5/2.49) was used to calibrate the chemical shifts. At

least annually, the repeatability and experimental error of the

HSQC measurement are quantified by analyzing a standard

Populus sample. Lignin was isolated from the standard Populus

sample per the method described above, and three separate samples

were analyzed by the same pulse sequence. For this most recent

analysis, the standard deviation of the three samples ranged from

0.1 (for H unit) to 1.4 (b-O-4 linkage). The coefficient of variation

(CV) may be considered a better measurement of variability, since it

is defined as the ratio of the standard deviation to the mean

expressed as a percentage. The CVs of the standard Populus

samples ranged from 1.4% (S unit) to 18.9% (b-5 linkage). A

study utilizing 1H NMR for biomarker analysis identified that

larger peaks exhibited a CV of 5–10%, whereas smaller peaks had

CV in the 15–30% range (Wang et al., 2013), which is consistent

with our observed measurements.
2.4 Genome-wide association study

Whole genome resequencing, single nucleotide polymorphism

(SNPs)/nucleotide insertions and deletions (indels) calling and

SnpEff analysis for the 917 individuals of this Populus GWAS

population was previously described by Zhang et al. (2018b). The

P. trichocarpa Nisqually-1 reference genome v3.1 was used for read

alignment and variant calling. The resulting SNP and indel dataset

is available at http://bioenergycenter.org/besc/gwas/. This study

utilized genotypic data for a subset of 409 genotypes from this

dataset. To assess genetic control, we used the GEMMA software to

calculate kinship for the Populus GWAS population as the

correction factor for genetic background effects (Zhang et al.,

2018b). Genotype-to-phenotype associations were performed

using 8,301,860 SNP and indel variants with minor allele

frequencies > 0.05. The HSQC spectra from 2D HSQC NMR

were used as phenotypes. Statistical significance of associations

was evaluated using the Storey’s Q-value threshold. Deviation of

p-values from normality was assessed using quantile-quantile

(Q-Q) plots. Candidate gene identification and RNAseq mapping

for co-expression analysis were performed using the P. trichocarpa

v3.1 reference genome. RNAseq of xylem tissue of 378 Populus

trichocarpa transgenics plants knockdown or overexpressing

monolignol genes and transcription factors involved in the

regulation of cell wall biosynthesis were downloaded from the

Sequence Read Achieve (SRA; accession: PRJNA314500)

(Matthews et al., 2021). Library quality was assessed using

FastQC (v0.11.9; https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/), residual adapters and low-quality reads were

trimmed using Trimmomatic v0.39 (Bolger et al., 2014) reads

were mapped to the reference genome using STAR v 2.7.6a

(default parameters and –outFilterMultimapNmax 100 (Dobin

et al., 2013) and transcript per million (TPM) values were

extracted for all annotated genes using Stringtie (Pertea et al.,
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2015) 18 samples with low mapping rates (<80% of mapped

reads) were excluded for the subsequent analysis. Co-expression

of candidate genes with 86 phenylpropanoids and lignin-related

genes (Table SI 3) was estimated by calculating pairwise Pearson

correlation coefficient (PCC) across 360 samples using the function

rcorr() from the Hmisc R package (Shi et al., 2010; Sundell et al.,

2017). For each potential candidate gene, multiple individual scores

were calculated: (a) significance threshold of −log10(p-value)=6, 7,

and 8 were assigned an individual score of 1, 2, and 3, respectively;

(b) connectivity with SNPs was scored according to log10(number of

connected SNPs); (c) connectivity of the SNPs with phenotypes;

number and average value of significant co-expression associations

(|PCC| ≥ 0.5, FDR < 0.001) with lignin-related genes. All individual

scores were scaled to obtain values ranging from 0 to 1. These

individual scores were summed to obtain a final overall score, which

was utilized to prioritize candidate genes for consideration (higher

scoring genes were considered best candidates).
3 Results

3.1 Lignin chemistry

409 unique poplar genotypes were analyzed by HSQC NMR to

elucidate structural information for twelve lignin phenotypes,

including S units, G units, H unit, PB units, S/G ratio, cinnamyl

alcohol end groups (Ia, Ib), cinnamyl aldehyde end groups (Jb), b-
O-4 aryl ether linkages, b-5 phenylcoumaran linkages, b-b resinol

linkages, and b-1/a-O-a spirodienone linkages. with results

summarized in Figure 1. As expected, the lignin of the P.

trichocarpa population is comprised primarily of S and G units,

with an average of approximately 72.0 and 27.2 units per 100

S+G+H units, respectively. As expected, H units were the least

abundant monolignol, averaging 0.8 units per 100 S+G+H units.

The quantity of S units was measured to be as low as 58.4% and as

high as 82.8%. Similarly, G units ranged from 15.5% to 41.2%. This

resulted in a population average S/G of 2.70, though values ranged

from 1.42 to 4.96. The next most abundant phenotype was PB.

While PB content averaged 4.87%, levels across the population

varied significantly ranging from near background (0.39%) to a

non-trivial 18.4% – approximately the lower limit of G unit

content. However, within ±0.1 of the average S/G ratio (i.e.,

2.60–2.80), PB content ranges from near background levels

(1.33%) to 14.6%. To further explore this relationship, the

samples were subdivided into a low S/G ratio fraction (<2.70)

and a high S/G fraction (>2.70), as shown in Figure 2 (right). In the

low S/G ratio sample fraction, the correlation between PB and S/G

ratio remains statistically significant, with an average PB content of

5.5%. However, in the high S/G ratio sample fraction, this

correlation does not hold, and the average PB content is slightly

lower at 4.0%. Additionally, 21 of 24 high PB outliers (i.e., PB

>11.3%) appeared in the lower range of S/G ratios, with no high PB

outlier coming from a sample with an S/G ratio above 2.77. It was

confirmed that the H unit constituted only a minor fraction of the

lignin polymer, averaging just 0.91%. However, like PB, H unit
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levels were highly variable, ranging from nondetectable to as high

as 11.5%. The b-O-4 aryl ether linkage was by far the most

abundant interunit linkage, averaging approximately 62 per 100

aromatic units. It was also the most variable linkage, measuring as

high as 85.1% and as low as 51.7%. The b-b resinol linkages were

shown to make up a minority of interunit linkages, averaging 7 per

100 aromatic units, with an upper limit of 11.8% and a lower limit

of 1.11%. On the other hand, b-5 phenylcoumaran, which averaged

2.48%, ranged from as low as 0.77% to as high as 7.10%. The

spirodienone (b-1/a-O-a) linkage was present in small but

detectable quantities, averaging 1.47%, but not exceeding 2.07%.

The population statistics for these phenotypes are summarized in

Table 1. The data is also displayed in box plot form in Figure 1 for a

visual comparison. Altogether, the large variations observed in

both the subunit content and the type linkages, suggest that a
Frontiers in Plant Science 04121
number of polymorphisms segregating within the population can

drastically affect the structure of the polymer of lignin.
3.2 Genome-wide association study
(GWAS) of phenotypic variation

To identify the genomic loci controlling lignin phenotypes

described above, we performed a GWAS using 409 unrelated P.

trichocarpa accessions that had genotypic information represented

in a panel of > 8.3 million single nucleotide polymorphisms (SNPs)

and nucleotide insertions and deletions (indels) as described in the

materials and methods. Associations with the phenotypes b-O-4, b-
b, b-5, b-1/a-O-a, S, G, H, I, PB, and S/G ratio were tested in this

analysis. The GWAS was conducted at increasing significance
FIGURE 1

Box plot diagrams for the distributions of lignin phenotypes as measured by HSQC NMR – [Top left] syringyl (S), guaiacyl (G), and aryl ether linkages
(b-O-4); [Top right] p-hydroxypehnyl (H), p-hydroxybenzoate (PB), syringyl:guaiacyl ratio (S/G), resinol linkages(b-b), and phenylcoumaran linkages
(b-5); [Bottom left] cinnamyl aldehyde end groups (Jb), cinnamyl alcohol end groups (Ia/Ib), and spirodienone linkages (b-1/a-O-a). Bottom right:
descriptive population statistics of each lignin phenotype.
FIGURE 2

The PB and S/G ratio phenotypes have an overall negative correlation (left). This negative correlation is significantly stronger when the S/G ratio <
2.7, and significantly weaker when the S/G ratio is >2.7 (right).
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TABLE 1 Summary of a select subset of candidate genes from GWAS results.

Phenotype Gene ID p-
value

Connectivity
with SNPs

Average co-expression with
phenylpropanoid genes Annotation (Arabidopsis alias)

H Potri.006G169600
8.89E-
11

17 0.63 4-coumarate:CoA ligase 2 (4CL2)

H Potri.001G045100
3.63E-
08

2 0.62 cinnamoyl CoA reductase 1 (CCR1)

b-5 Potri.003G059200
8.74E-
07

28 0.67 lysophospholipase 2 (CSE)

S

Potri.008G155500

1.16E-
07

16 0.58 20S proteasome beta subunit D1 (PBD1)G
3.69E-
09

S/G
5.46E-
08

S

Potri.006G176600

1.06E-
09

27 –
XB3 ortholog 2 in Arabidopsis thaliana

(XBAT32)
G

7.88E-
09

S/G
4.52E-
07

PB Potri.T017000
7.88E-
08

1 0.58 glutamine dumper 1 (GDU1)

PB Potri.T017100
7.88E-
08

1 – glutamine dumper 2 (GDU2)

b-b

Potri.004G077700

7.75E-
08

4 0.64
P-loop containing nucleoside triphosphate

hydrolases superfamily protein
b-O-4

1.11E-
24

H Potri.015G082700
3.32E-
08

1 0.66 PtrMYB074 (AtMYB50)

b-b Potri.019G040900
3.72E-
08

4 0.57 MYB domain protein 105

PB Potri.004G073900
7.97E-
07

1 – Pectin lyase-like superfamily protein

PB Potri.008G099300
8.78E-
07

1 0.66
S-adenosylmethionine synthetase family protein

(MAT4)

H Potri.010G064000
1.51E-
07

4 0.59 MYB domain protein 79

b-O-4 Potri.004G174200
5.18E-
08

2 0.61 proteasome alpha subunit D2 (PAD2)

b-O-4 Potri.008G011100
1.99E-
07

1 –
Plant invertase/pectin methylesterase inhibitor

superfamily

PB Potri.014G142000
3.75E-
07

1 0.51 galacturonosyltransferase 15 (GAUT15)

Ib Potri.005G163900
1.91E-
07

9 –

S-adenosyl-L-methionine-dependent
methyltransferases superfamily protein (OSU1)
F
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 Science
 05122
The full list of genes identified by GWAS can be found in the Supplementary Information.
Genes are selected based on criteria such as putative cell wall or lignin biosynthesis function, strength of association, connectivity with SNPs, and co-expression with phenylpropanoid genes.
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thresholds (i.e, −log10(p-value)=6, 7, & 8) to differentiate the strength

of the associations. At the threshold of −log10(p-value)>6, the GWAS

identified 756 genes that were significantly associated with at least

one phenotype. The Manhattan plots and associated QQ plots for

each lignin phenotype are displayed in Figure 3.

At the lowest threshold (−log10(p-value)=6), a total of 907 unique

genes were detected in the vicinity or overlapping with the significant

SNPs associated with at least one phenotype. A gene ontology (GO)

analysis was performed to detect any enrichment in specific biological

function among these candidate genes. A significant enrichment in

cell wall related GO terms was detected for the highest significance

thresholds (−log10(p-value)=7 and −log10(p-value)=8) (Supplementary

Figure SI 4). The enrichment in cell wall related genes (relative to total

number of genes) identified at each of these levels were 1.52, 1.87, and

2.48, respectively, when considering Poplar gene annotations. When

considering Arabidopsis gene annotations, a similar trend was

observed with the enrichment increasing from 2.70 to 5.79 between

the −log10(p-value) = 6 and −log10(p-value) = 8 thresholds. The

increase in enrichment for specific GO terms for higher GWAS

significance thresholds provides evidence that the approach is

successful at capturing the most likely causal genes for phenotyping

variations in lignin composition, as opposed to a simple random

sampling of genes from the genome. At the −log10(p-value)=6

threshold, 32 of the 756 genes identified by GWAS have previously

been associated with cell wall biosynthesis in Populus or Arabidopsis.

The GWAS identified several genes (Potri.006G169600,

Potri.001G045100 and Potri.003G059200), which are predicted to

encode key enzymes of the phenylpropanoids pathway: 4-coumarate:

CoA ligase 2 (4CL2), cinnamoyl CoA reductase 1 (CCR1), and caffeoyl

shikimate esterase (CSE), respectively. In addition, possible homologs

of AtTRA2 (Potri.003G161900) and AtMAT4 (Potri.008G099300)

were found associated with H-lignin and PB content (Table SI 4). In

previous studies, perturbations in these two genes induced drastic

changes in lignin content and structure in Arabidopsis (Shen et al.,

2002; de Vries et al., 2018). In addition to effector genes directly

involved in metabolic pathways, the GWAS highlighted higher level

regulators as potential candidates, including major transcriptional

regulators. PtrMYB074 (Potri.015G082700), strongly associated with

H-lignin content in our GWAS, is a master regulator of secondary cell

wall formation in poplar, and was shown to directly regulate the

biosynthesis of lignin in wood forming tissues of mutant P. trichocarpa

(Chen et al., 2019). Potri.001G346600 encoding a possible homolog of

AtMYB21 was also found strongly associated with H-lignin content. In

Arabidopsis AtMYB21 promotes flavonol biosynthesis through the

regulation of FLS1, and was related to stress response and hormonal

signaling (Zhang et al., 2021).

Interestingly, numerous candidate genes highlighted by this

approach are predicted to be involved in the biosynthesis of cell wall

polysaccharides, such as Potri.002G135500, a possible homolog of

ATRAB6A involved in cellulose biosynthesis (He et al., 2018).

Additionally, Potri.013G082200 and Potri.003G074600 are

predicted to be a cellulose synthase (AtCSLD3) and a pectin lyase

(AtQRT3), respectively. This GWAS approach also identified a

significant association with Potri.001G248700, the closest putative

ortholog of the Arabidopsis LACCASE 4, shown to be directly

involved in lignin polymerization (Berthet et al., 2011).
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The GWAS pointed to several other genes (Figure SI 4; Table

SI4) which have not been previously associated with lignin or cell

wall biosynthesis. To highlight top candidates, all genes were scored

based on criteria such as strength of association (p-value of nearby

SNPs), connectivity with SNPs, and co-expression with

phenylpropanoid genes computed from external datasets

(Figure 4; Supplemental Table 1). One of the highest scored

candidate genes was Potri.008G155500, which is annotated as 20S

proteasome beta subunit D1 (PBD1). This candidate gene was

highly associated with 16 SNPs across the S, G, and S/G

phenotypes (Figure SI 4). Another highly scored candidate gene

was Potri.006G176600, which is annotated as XBAT32. The

XBAT32 associations are peculiar in that this gene exhibits strong

associations with the S and G phenotypes, but is not strongly

associated with the S/G ratio, as presented in the Manhattan plots

in Supplementary Figure SI 4. Together with major regulators such

as PtrMYB074, and possible homologs of key biosynthetic enzymes

such as AtMAT4 and AtTRA2, as mentioned previously, other

candidate genes were found strongly co-expressed with lignin

biosynthesis genes across transcriptomes of lignin perturbed

poplar transgenic plants (Figure 4) (Wang et al., 2018). Notably,

this approach highlighted candidates for the formation of PB.

Glutamine dumper 1 (GDU1; Potri.T017000), associated with the

PB phenotype, was found to be co-expressed with CAld5H3, a key

gene in the lignin biosynthesis pathway that is known to influence

S/G ratio (Figure 4). Among the other candidates associated with

the PB phenotype, Potri.005G145500 was found negatively co-

expressed with PtrCOMT2 and two CSE-encoding genes,

involved in lignin biosynthesis in poplar. Potri.005G145500 is a

potential ortholog of a group of LBD transcription factors

AtLBD37/38/39 that were shown to regulate anthocyanin

biosynthesis in Arabidopsis (Rubin et al., 2009). The candidate

genes reported here, as well as other potential candidate genes of

interest, are summarized in Table 1. All together, these results

demonstrate that the GWAS performed highlighted multiple classes

of candidate genes for the biosynthesis of the different moieties and

linkages that constitute the lignin polymer.
4 Discussion

An advantage of analyzing 409 P. trichocarpa samples by HSQC

is that the variation of lignin phenotypes, even those difficult to

elucidate by other analytical methods or present at low levels, across

the entire population can be better understood. The population

statistics of the PB phenotype from this GWAS population was

unique as it was the only phenotype which did not conform to a

normal (or approximately normal) distribution. Populus is one of

the few species which contain PB – a free phenolic pendant unit

which has been shown to be conjugated to the g-position of syringyl

units (Stewart et al., 2009; Ralph et al., 2012). The abundance of PB

could be of special interest to biorefinery considerations, either by

utilizing PB derivatives as value-added products (Ralph et al., 2019)

or as a method of improving biomass deconstruction by increasing

the number of ester-linked phenolics (Sibout et al., 2016). While the

biological function and biosynthesis remain largely unknown,
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FIGURE 3

GWAS Manhattan plots below display correlations between SNPs and the specified lignin phenotype. Chromosome 8 is highlighted green for the S,
G, and S/G phenotypes to indicate a significant association of 20S proteasome beta subunit D1 (PBD1) was observed for each of these phenotypes.
Chromosome 6 is highlighted green for the S and G phenotypes to indicate that XB3 ortholog 2 (XBAT32) was significantly associated with these
phenotypes. However, Chromosome 6 is not highlighted green for the S/G phenotype to indicate a lack of significant association of XBAT32 with
this phenotype.
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FIGURE 4

Visual representation of the network analysis connecting phenotypes, SNPs, flanking genes, and phenylpropanoid/lignin biosynthesis genes. Genes
involved in lignin biosynthesis in Populus are named according to Shi et al. (2010). For candidate genes co-expressed with lignin biosynthesis genes,
the Populus accession number is provided, with the gene alias of the closest Arabidopsis match in brackets.
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recent work has identified an acyltransferase (Potri.001G44800)

which was shown to control p-hydroxybenzoylation (de Vries et al.,

2021; Zhao et al., 2021). This acyltransferase is co-expressed with

lignin biosynthesis genes ferulate 5-hydroxylase/coniferaldehyde 5-

hydroxylase (F5H/CAld5H), which have been shown to influence

lignin S/G ratio (Baucher et al., 1999; Al-Haddad et al., 2009), which

would support an observed relationship between PB and S/G ratio.

However, these studies observed changes in PB content without an

associated impact on S/G ratio (and other lignin phenotypes),

demonstrating that the two can be delineated. Further

understanding of PB biosynthesis and its relationship with S/G

ratio could provide valuable insight towards engineering lignin for

biorefinery applications. For the 409 genotypes considered in this

study, PB is negatively correlated with S/G ratio (Figure 2, left),

which is consistent with previous observations (Stewart et al., 2009;

Yoo et al., 2018). More recently, a similar negative correlation was

observed in a collection of 316 P. trichocarpa analyzed by

saponification and HPLC (Mottiar & Mansfield, 2022). It has

previously been hypothesized that PB (and other acylated units)

are produced as a method of promoting syringyl-rich lignin.

However, a negative correlation between PB and S units suggests

this is not the case. Indeed, PB is a non-canonical monolignol that

remains poorly understood. Therefore, GWAS associations related

to PB may be considered especially interesting and shed new light

underlying the genetic mechanisms underlying PB biosynthesis. As

previously mentioned, one of the highest scored candidate genes

associated with PB is GDU1. This is due, in part, to its co-expression

to CAld5H3, which is known to catalyze a key reaction step in the

lignin biosynthesis pathway and therefore heavily influence the S/G

ratio. Because there is a clear correlation between PB and S/G, one

may attribute this to being an artifact of CAld5H3 expression,

rather than GDU1. However, manipulation of CAld5H3 in rice did

not impact p-coumarate (the analogous PB ester in grasses) (Takeda

et al., 2017). It has previously been shown that GDU1 is localized at

the plasma membrane and is involved with nonselective amino acid

export from plant cells into the apoplast (Réjane Pratelli et al.,

2012). Export of amino acids (including phenylalanine) increased

when GDU genes were overexpressed in Arabidopsis (Pratelli et al.,

2009). However, the transport mechanism(s) by which lignin

monomers are transferred from the cytosol to the apoplast

remain unresolved (Perkins et al., 2019). Additionally, the

association of glutamine synthesis with ammonia removal

following phenylalanine and tyrosine conversion to trans-

cinnamic acid and p-coumaric acid, respectively, early in the

lignin pathway, has recently been reported in Brachypodium

distachyon (Barros et al., 2022). Given such, GDU1 may play a

role in preventing excessive accumulation of glutamine associated

with the synthesis of lignin precursors. As another point of

emphasis, glutamine dumper 2 (Potri.T017100) was also

associated with the PB phenotype. Based on these factors, GDU1

could be further evaluated for potential impacts of PB incorporation

into the lignin polymer.

The S/G ratio is perhaps the most well-studied lignin trait. Yet,

the GWAS analyses identified strong associations with several genes
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which have not been previously linked to lignin biosynthesis. This is

not entirely surprising, as the formation of the secondary cell wall

requires coordination of many metabolic pathways (Zhang et al.,

2018a), and as previously mentioned, one highly associated candidate

gene is the 20S proteasome gene PBD1. This candidate gene, located

on chromosome 8, is strongly associated with the S, G, and S/G ratio.

The 20S proteasome has been shown to degrade client proteins to

amino-acid residues (Tanaka, 2009). It is also the proteolytic core of

the 26S proteasome, which mediates proteolysis and plays a key role

in the regulation of critical cellular processes, such as transcriptional

control, cell cycle progression, and stress response. Staszczak et al.

(Staszczak, 2007), using in vivo blocking of proteasome function,

indicated that the proteasomal pathway is involved in the regulation

of activity of some ligninolytic enzymes (such as laccase) under

nutrient deprivation in lignin-degrading Basidiomycete Phlebia

radiata. The 26S proteasome pathway has been implicated in

aspects of secondary cell wall biosynthesis, such as in cotton fiber

development (Feng et al., 2018). Transgenic lines exhibited

differences in expression of both cellulose and lignin biosynthesis

genes, resulting in increased levels of lignin or lignin-like phenolics

(Feng et al., 2018). Another strong association identified by the

GWAS analysis was XBAT32. The association of XBAT32 is

interesting, as it was observed to be associated with the S and G

phenotypes independently, but was not observed to be associated

with the S/G ratio. This is quite peculiar since the S/G ratio is quite

literally the quotient of the S and G unit measurements. Of the three

primary monolignols found in poplar, H units are typically present in

low abundance (approximately 1%), and as a result, the ratio of S and

G units tend to vary proportionally. XBAT32 was initially identified

as a regulator of lateral root development in Arabidopsis plants with

an XBAT32 mutation (Nodzon et al., 2004). It was later shown that

XBAT 32 mutants produced increased levels of ethylene (Prasad

et al., 2010) and therefore, by extension, plays a role in abiotic stresses

response (Prasad & Stone, 2010). Another XBAT protein, XBAT35,

has also been shown to be involved in ethylene signaling (Carvalho

et al., 2012). A similar gene identified in cotton, GhXB32A, was also

shown to function in response to stress (Ge et al., 2021). It is well-

documented that stress can induce changes to lignin properties

(Moura et al., 2010). It is therefore quite reasonable to implicate

the stress related XBAT32 gene could be influencing lignin structure.

In conclusion, the lignin of 409 unique, natural variant P.

trichocarpa genotypes were analyzed by HSQC NMR. A subsequent

GWAS analysis identified 756 SNPs significantly associated among the

twelve lignin phenotypes. The GWAS results include putative lignin

and cell wall biosynthesis related genes. Subsequent gene ontology

analyses show that cell wall related term enrichment increases with

GWAS significance levels. These results provide evidence that the

GWAS analyses identified causal genes, rather than randomly

sampling the genome. Several candidate genes not previously

associated with lignin or cell wall biosynthesis were identified by

GWAS, including GDU1, PBD1, and XBAT32. These GWAS results

can be used as targets for future work investigating lignin structure, and

the functional characterization of these genes may reveal novel genetic

mechanisms controlling lignin biosynthesis.
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Ca, Mg, as the main components in water, are not only essential nutrients for life
but are also an important index of water hardness. Rapid detection of the element
content is of great significance for water quality evaluation and nutrient balance in
planting and breeding water. Traditional laboratory analysis methods are time
consuming and involve complex procedures. Ion cross sensitivity and response
drift also limit the application of online sensors. These disadvantages are not in line
with the precise control and rapid response required for practical applications.
Here, we propose a rapid automatic Ca, Mg ion concentration detection method
using Laser-induced breakdown spectroscopy. Based on a cation exchange
membrane, an automatic control system integrating water sampling, hybrid
reacting, attachment drying and spectra measuring was constructed. The
testing time for one sample could be compressed to 5 min. Consequently, it
met the requirements of accuracy and timeliness of water element regulation. The
proposed system can provide new technical means for large-scale aquaculture,
soilless cultivation of facilities and other scenarios aiming at accurate
measurement and control of elements in water body.

KEYWORDS

laser-induced breakdown spectroscopy (LIBS), automatic detecting system, water
hardness, cation exchange membrane (CEM), precise control

1 Introduction

Water is the source of all living beings, Ca and Mg are important elements of the water
body [1]. The concentration and proportion of these elements have different impacts on
water quality, and these influences affect every aspect of human activity through
environmental water circulation [2, 3]. For drinking water, the concentration of Ca and
Mg ions is an important evaluation index for water hardness. They not only affect the water
taste and aroma, but also the heavy metal toxicity in water. Moreover, subacute health effects
such as cardiovascular disease (CVD) and muscle spasms have been proved to be associated
with water hardness [1, 4]. Particularly, in aquaculture, Ca and Mg are vital components of
shrimp and crab bones, scales and carapaces, and the supplement of Ca and Mg during a
critical period plays an important role for assurance of survival rate and yield [5]. As the
single source of soilless culture, a slight change of nutrient solution element type and
concentration has an obvious effect on crop growth, and crops will quickly show symptoms
of deficiency and poisoning [6, 7]. Therefore, in terms of both long-term and short-term
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effects, timely detection of Ca and Mg content in water bodies has
important practical value for production and daily life.

Atomic Emission Spectroscopy [8] is regarded as an effective
tool for trace metal detection in aqueous solutions. Laboratory
analysis methods including Atomic Absorption Spectroscopy
(AAS) [9], Inductively Coupled Plasma-Atomic Emission
Spectroscopy (ICP-AES) [10], and Inductively Coupled Plasma-
Mass Spectrum (ICP-MS) [11]have also been widely used. The
methods above have the advantages of high detection accuracy
and comprehensive indicators. However, requirements for
professional operation and a complex process lead to time-
consuming detection cycles which cannot satisfy the necessary
fast response for practical applications. An electronical
conductivity (EC) sensor combined with a pH sensor can be
used for online detection of ions in aqueous solution [12, 13].
However, EC values can only reflect the total ion concentration
of soluble salt and cannot distinguish the type of ions. As a result,
precise composition control cannot be achieved based on EC and
pH alone [14]. As an alternative, an ion-selective electrode (ISE) has
good selectivity, and it can be used for specific ion detection in
solution. Due to the limitations of measurement principle and
electrode material, cross-sensitivity and response drift constitute
the major obstacle for Ion-selective electrode widely range
application [15]. Therefore, a method that can realize the
identification of multiple components and meet the requirements
of rapid detection is of great importance for the development of
water quality monitoring and regulation technology.

Laser-induced breakdown spectroscopy (LIBS) [16, 17], as a
spectral detection technology [18-21], uses a high energy laser to
ablate the sample surface and the constituent elements are excited
into a high-energy plasma. Element type and content are determined
by measuring the emission line of the plasma deexcitation. LIBS has
the advantage of non-sample pretreatment and multi-component in
situ rapid detection [22, 23], and it has been widely used in geology
[24, 25], industry [26, 27], food [28, 29], biomedicine [30, 31] and
other fields, which provides the possibility for the realization of rapid
detection of water elements [32]. To avoid water sputtering and
absorption of laser energy, researchers made good progress toward
overcoming these obstacles by converting water to a jet flow, droplet
and spray [33, 34], but the measurement stability could not be
guaranteed. Although liquid-solid conversion can significantly
improve the stability of the measurements, electrospray
deposition (ESD) [35], solid-phase extraction (SPE) [36], and
solid-phase microextraction (SPME) [37] have also been
demonstrated to improve the limit of detection (LOD), the
experimental equipment is complicated and not suitable for
practical applications. The combination of LIBS and advanced
materials including nano-particles [38, 39], graphene [37], and
metal-organic frame (MOF) [40, 41] have been demonstrated for
the improvement of water trace element detection sensitivity. The
selectivity of specific elements can be further realized by material
surface modification. Although the above method can realize highly
sensitive detection of water elements, it cannot realize online
detection, so it cannot meet the application scenarios which are
sensitive to changes of water element content (such as aquaculture,
or soilless cultivation in facilities).

Herein, we propose a new water Ca2+ and Mg2+ online detection
system using LIBS combined with cation exchange membranes

(CEM). The integration and automatic control of sampling,
reacting, attachment moving, drying, and spectrum measuring
procedure was realized and the quantity calibration curves for
these two elements were also established. The system can provide
technical support for automatic and precise control of water quality
in practical production.

2 Materials and methods

2.1 Experimental samples

The sample solutions used in the experiment were CaCl2 and
MgCl2 solutions, the concentration of Ca2+ was 160 mg/L and Mg2+

was 48 mg/L. CEM CMI-7000 S (Membrane International Inc.,
American) was used as an adsorbent with a thickness of 0.42mm,
its exchange group was SO3-Na, exchange capacity was 1.6 meq/g,
and it was applicable in solution with pH 1–14. Ion exchange is the
process of substituting ions between an insoluble solid with
exchangeable ions and ions of the same charge in a solution. In
this way, CEM can extract other cations from the solution and
convert the target ions from liquid to solid state. Therefore, CEM
was used as both an adsorbent and spectral-detecting matrix. To
ensure the effectiveness of the CEM, it was saturated in 1 mol/L HCl
for 24 h and rinsed with deionized water until pH = 7 before it was
used. Considering the upper limit of the exchange capacity of CEM,
we used 3 cm2 CEM each time to prevent it from reaching the limit
during the exchange of Ca2+ and Mg2+.

2.2 Design of automatic measuring system

An automatic device was designed for sample handling and
detecting. As shown in Figure 1, the device consisted of an
automatic sampling component, an element ion extraction
component, a sample cleaning and drying component, and a
LIBS spectroscopy measuring system. The workflow of the device
is shown in Figure 2. First, the automatic sampling module
injected the sample solution directly into the container after
the CEM was installed with fixture and started the device. A
magnetic stirring device at the bottom of the container ensured
that Ca2+ and Mg2+ were uniformly and fully exchanged on the
surface of the CEM. Next, the two-dimensional mobile
component held the CEM with a fixture in the sample
container. After stirring the sample solution for the set time of
the program, the two-dimensional mobile component
automatically moved the CEM to the cleaning and drying
component successively so that the residuals on the CEM
surface can be removed and the moisture interference can be
minimized. Deionized water was used for CEM cleaning. The
target object Ca2+, Mg2+ were absorbed on the CEM surface
through covalent bonding which was strong enough that it
could not be broken under the water cleaning condition.
Therefore, there was no analyte loss during the water cleaning
process. At last, the CEM was taken to the detecting position
which was precisely the focal plane of the laser. At this point, the
LIBS system measured the Ca2+ and Mg2+ on the CEM and the
results were displayed on the screen of the control module. The
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CEM exposed area is round, and the position of the CEM surface
coincides precisely with the laser focal plane. The spectral
intensity of each sample was obtained by averaging five spectra

collected at different positions on the CEM surface. The position
switching was realized by the stepper motor to control the vertical
movement of CEM in the laser focal plane position.

FIGURE 1
General structure of the automatic measuring system.

FIGURE 2
Workflow of the system.
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FIGURE 3
Characteristic spectral lines for element (A) Mg. (B) Ca.

FIGURE 4
Effect of magnetic stirring speed on LIBS spectral intensity of Mg2+ and Ca2+ (CEM exchange at 3 min) (A). Mg2+ on spectral intensity of Mg II
279.5 nm. (B). Ca2+ on spectral intensity of Ca II 393.3 nm.

FIGURE 5
Effect of different exchange time on LIBS spectral intensity ofMg2+ andCa2+ (magnetic stirring speed of 600rpm) (A). Mg2+ on spectral intensity ofMg
II 279.5 nm. (B). Ca2+ on spectral intensity of Ca II 393.3 nm.
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The LIBS measuring system, as shown in Figure 1, mainly
included a laser, spectrometer and control board. The laser source
was a diode pumped solid state laser (LD201B, Lemeng Company,
China) with wavelength 1,064 nm, maximum output energy
50 mJ, pulse width 8 ns, and repetition rate 1 Hz. The
spectrometer was a USB2000 + fiber optic spectrometer
(Ocean Optics, America), which had a spectral response range
of 200–1,100 nm, spectral resolution of 0.2 nm, and signal to
noise ratio 250:1. In order to obtain the best spectral, the laser
energy was set to 50 mJ, the spectrometer CCD integration gate
width was set to 1 ms and the detector sampling delay was set to
1 us. The LIBS system worked in paraxial mode, the laser focused
on the CEM surface through a focusing lens, and the optic lens
collected laser plasma emission spectra from the 45 °direction.
The focal length of the laser focusing lens is 30 mm. For the

collection of laser plasma, we installed an optical collimator at
one end of the optical fiber, and the other end of the optical fiber
was connected to the spectrometer. The spectral intensity of each
sample was obtained by averaging five spectra collected at
different positions on the CEM surface. The position switching
was realized by a stepper motor to control the CEM vertical
movement in the laser focal plane position.

3 Results and discussion

3.1 LIBS characteristic spectra for Ca and Mg

First, we used the device to detect Ca2+ and Mg2+ in solution and
the spectrums are shown in Figure 3. According to the NIST
spectrum library, Ca II 393.3 nm and Mg II 279.5 nm were
selected for the characteristic peak of Ca and Mg for further
analysis. Figure 3 showed that no spectral signal of Ca2+ and
Mg2+ elements could be observed on blank CEM. However, when
CEM was used for Ca2+ and Mg2+ elements detection, there was no
spectral interference near the characteristic peak of Ca and Mg
elements. Consequently, it was feasible to use CEM combined with
LIBS for Ca and Mg ions determination in solution.

FIGURE 6
Quantification of the system for Mg2+ and Ca2+ detection. (A) and (B) Averaged LIBS spectra for different concentration of Mg2+ and the
corresponding calibration curve (0–48 mg/L). (C) and (D) Averaged LIBS spectra for different concentration of Ca2+ and the corresponding calibration
curve (0–160 mg/L).

TABLE 1 Parameters of the quantitative model.

Element Detection range (mg/L) R2 RMSEC

Mg 6–48 0.99 1.84

Ca 20–160 0.98 7.61
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3.2 Experimental parameter optimization

The ion extraction of CEM in solutionwas affected bymany factors,
including the CEM dosage (size), solution volume, ion concentration,
stirring speed and time. In this study, the sample volume was set to
20 mL and CEM size was 3 cm2. In order to achieve optimal working
condition, we mainly investigated the effects of magnetic stirring speed
and adsorption time on spectral signals. As shown in Figure 4, the
spectral intensity of Mg2+ and Ca2+ increased first and then slowly
decreased with the stirring speed increased. It indicated that within a
certain range of magnetic stirring speed, high speed led to high
exchange efficiency between ions on CEM surface and in solution.
However, when the magnetic stirring speed exceeded the range, the
exchange efficiency reduced. The reason was that excessive speed led to
unstable ion exchange reaction and there was not enough time for Ca2+

and Mg2+ formatting stable chemical bonding with CEM matrix. The
inadequate reaction also led to weak spectral intensity. Based on above,
we chose the magnetic stirring speed of 600 rpm to get good spectrum.

We further investigated the effect of time on spectral intensity.
Figure 5 shows that the spectral intensity of Mg2+ and Ca2+ increased at
first and then stabilized gradually with time. It illustrates that the
reaction between the exchange group of CEM and theMg2+ and Ca2+ in
the solution progressed gradually from a rapid reaction to a dynamic
equilibrium state.Moreover, the exchange efficiency ofMg2+ in different
concentrations kept stable from 1–3 min and 3–6 min. In contrast, the
CEM exchange efficiency of Ca2+ with different concentrations was high
from 1 to 3 min and gradually decreased after 3 min. Within 3–6 min,
the Ca2+ exchange reaction rate decreased and was in the transition
stage from rapid exchange to exchange equilibrium. After 6 min, the ion
exchange reaction reached equilibrium and the spectral intensity kept in
a certain range. To achieve quantitative analysis, 3 min was selected as
the adsorption time for rapid determination. This time point was in the
linear range of ion exchange reaction and the CEM could be prevented
from reaching adsorption saturation state at the same time.

3.3 Calibration curve construction for
element Mg and Ca

Aiming to verify the detection ability of the automatic device for Ca
and Mg in solution, the quantification model was established using
characteristic spectral lines of Mg II at 279.5 nm and Ca II at 393.6 nm
with C I 247.8 nm as the internal standard. The spectrums and
calibration curves are shown in Figure 6. The spectral intensity
increased with the increase of the Mg2+ and Ca2+ concentrations, but
the trend is nonlinear. Inflection points turn out at Mg 5 mg/L and Ca

20 mg/L, and the whole range can be divided into two parts, in which
the signal intensity shows linear variety with the concentration gradient
change separately. Moreover, the slope in the low concentration part
(Mg2+ 0–5 mg/L and Ca2+ 0–20 mg/L) is obviously high than that in
high concentration. The reason might be that the ion exchange speed
was high in high concentration difference between target ions and
exchange groups in the CEM matrix under certain setup parameters
including stirring speed and time. Meanwhile, the other part of the
curve also shows linear after the inflection point and does not appear
nonlinear caused by the self-adsorption effect.

In the calibration curve, the signal intensity is not zero when the
Ca2+ and Mg2+ analyte concentrations are zero, which is probably
due to the interference of other element lines emitted close to the
wavelength. Meanwhile, in the real water sample, the emitted lines
intensity of Ca and Mg are much higher than that of interferential
element on the CEMmatrix, so it does not represent to be a problem
for real sample quantitative analysis. Moreover, the purpose of the
device and method is to meet the detection needs of Ca2+ and Mg2+

concentrations in the real water sample, and their concentrations are
mainly in the linear range of the second part of the calibration curve.
Therefore, we choose the second part of the calibration curve for
quantitative analysis, and the correlation coefficient R2 for Mg is
0.99 and Ca is 0.98.

We also investigated a new definition for the LOD of a given
element in a univariate calibration. We used the linear part of the
calibration curve at low concentrations to calculate the LOD by Eqs
1, 2, [42]. The LOD of Mg is 1.63 mg/L and that of Ca is 3.62 mg/L.
Then, in the second part of the calibration curve, root-mean-square
error (RMSE) was calculated using Eq. 3, and more detailed
parameters of the quantitative model are shown in Table.1.
Furthermore, we verified the prediction ability of the established
mode by calculating the standard recovery rate of samples with and
without interfering cations. The results are shown in Table 2. The
results demonstrate that the device is applicable for the automatic
rapid detection of Mg2+ and Ca2+ in solution.

LOD �
3.3σy/x

���������
1 + �C2

Ci− �C( )2
√

b
(1)

σy/x �
��������
Ii − Îi( )

2
√

N
(2)

In Eqs 1, 2, N represents the number of points in the calibration
curve, b is the slope of calibration curve. Ii are spectral signal, I

�
i are the

value predicted by the calibration curve.Ci are the concentrations of the
standards, �C is the average of these concentrations.

TABLE 2 Determination of Ca2+ and Mg2+ in spiked samples with and without interfering ions.

Sample
number

Ion type and concentration
(mg/L)

Mg2+ predictive value
(mg/L)

Mg2+

recovery (%)
Ca2+ predictive value

(mg/L)
Ca2+

recovery (%)

#1 Mg2+ 16 Ca2+ 70 (Mn2+ 60 Cu2+ 60) 17.5 ± 0.8 109.38 64.5 ± 5.7 92.17

#2 Mg2+ 16 Ca2+ 70 15.4 ± 0.7 96.25 63.4 ± 6.1 90.57

#3 Mg2+ 21 Ca2+ 90 (K+ 180 Fe3 +

60 Cu2+ 60)
22.6 ± 1.1 107.62 88.6 ± 9.1 98.44

#4 Mg2+ 21 Ca2+ 90 20.3 ± 0.9 96.67 88.9 ± 8.6 98.77
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RMSEC �
����������
Yi − Ypre

i( )2

n

√

(3)

In Equation 3, n is the number of points in the calibration curve.
Yi are the concentrations of the standards, Ypre

i are the predicted
value of the concentrations.

4 Conclusion

In this study, an automatic and rapid system for measuring
calcium and magnesium in water was developed based on LIBS. The
system realized the automation of the detection process through
integration of sampling, elements adsorption, attachment moving,
and spectrum detection. The system also achieved automatic
enrichment and spectral measurement of calcium and
magnesium in water within 5 min. Moreover, we analyzed the
quantitative ability of this system for Ca and Mg elements. The
results showed that there was a good linear relationship between
spectrum intensity and concentration of the two elements. In
general, a rapid measuring system for calcium and magnesium in
water based on LIBS technology is proposed. Errors introduced by
manual operation were significantly reduced through establishing
standard sample operating process. Furthermore, the combination
of LIBS rapid detecting technique and an automatic control system
is expected to provide equipment and technology support for Ca and
Mg detection in water bodies under large-scale production modes,
such as aquaculture and factory farming.
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