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The climate is warming much faster than the global average at the northern mid–high latitudes, leading to intensified hydrological cycles. However, it is unclear whether the response of streamflow to climate change is uniform across river basins with areas of 104–105 km2. In this study, monthly streamflow data from five river basins (Bol’shoy Patom, Chara, Olekma, Timpton, and Uchur) and gridded monthly temperature and precipitation data from the Russian South Yakutia at 53.5–61.5°N were analysed to investigate changes in their annual streamflow from 1934 to 2019 and their responses to climate warming. The results showed significant increasing trends in air temperature for all five basins at rates of 0.20°C–0.22°C/decade (p < 0.001), with faster warming after the 1980s. Apart from the Uchur River Basin, increasing trends in annual precipitation were observed in the other four river basins at rates of 9.3–15.7 mm/decade (p < 0.01). However, temporal changes in streamflow were much more complex than those in air temperature and precipitation among the five basins. Only two of the five basins showed significant increasing trends in annual streamflow with change rates of 17.1 mm/decade (p < 0.001) for the Chara River and 7.7 mm/decade (p < 0.05) for the Olekma River. Although the other three basins showed slightly increasing trends in annual streamflow (1.8–4.0 mm/decade), these trends did not pass significance tests (p > 0.05). By analysing the temperature-precipitation-streamflow relationships, we determined that the annual streamflow positively responds to precipitation, while winter streamflow is most sensitive to temperature. With climate warming, the streamflow during the winter period (October-April) increased significantly in four of the five river basins at rates of 1.4–3.1 mm/decade (p < 0.001), suggesting that warming-induced permafrost thawing increases baseflow. Although the streamflow response of large Siberian rivers to climate change is consistent, our results suggest that the streamflow response to climate change in relatively small river basins (104–105 km2) is much more complex.
Keywords: streamflow, climate warming, permafrost degradation, Siberia, precipitation
1 INTRODUCTION
Climate warming is accelerating global water cycles (Huntington, 2006; Oki and Kanae, 2006). In the high latitudes of the Northern Hemisphere, the rate of temperature warming is greater than the global average, which is known as Arctic amplification (Francis et al., 2017; Dai et al., 2019; Previdi et al., 2020; England et al., 2021). Recent studies have detected that Arctic temperatures increased four times faster than the global mean during the first two decades of the 21st century (Chylek et al., 2022), which is considerably more rapid than previous studies have shown. As a result of climate warming, the streamflow of Arctic rivers has increased significantly during the past decades (Peterson et al., 2002; Feng et al., 2021; Shiklomanov et al., 2021). In particular, the streamflow of the Lena River in eastern Siberia, one of the largest Arctic rivers, increased by approximately 22% during the period of 1936–2019 (Wang et al., 2021a).
Increases in river streamflow in Arctic river basins are strongly associated with increased precipitation and enhanced snow melting (Yang et al., 2002). Other studies have shown that the intensification of precipitation due to a warming climate was the main contributor to streamflow increases in permafrost-dominated basins (Wang et al., 2021a). Recent studies have found that the rates of increase in both air temperature and precipitation were greater in permafrost areas than in non-permafrost areas (Wang et al., 2021b; Wang et al., 2022a). Furthermore, the contribution of groundwater from thawing permafrost to streamflow in permafrost-dominated basins is likely to increase in the context of global warming (Lamontagne-Hallé et al., 2018; Jin et al., 2022; Liu et al., 2022). Therefore, the streamflow response to climate warming in permafrost-dominated basins will be more pronounced (Wang et al., 2021a).
Yakutia in eastern Siberia (Russia) has an extreme and severe climate, and the region is largely covered by continuous permafrost. During the period 1966–2016, the air temperature at 26 meteorological stations in Yakutia increased at rates of 0.3°C–0.6°C per decade, with a maximum warming rate in winter and a minimum warming rate in summer (Gorokhov and Fedorov, 2018). Additionally, the annual precipitation in this region also increased during 1966–2016, which was likely associated with the rise in air temperature (Gorokhov and Fedorov, 2018). As noted by Mekonnen et al. (2021), increases in precipitation and rises in surface air temperature comparably contribute to permafrost degradation in a warmer climate, leading to increases in the groundwater discharge to streamflow from the thawing permafrost (Wang et al., 2021a). Other studies also indicated that this region has experienced rapid climate warming since the late 1980s, leading to fast thermokarst processes (Pestryakova et al., 2012; Tarasenko, 2013) and notable increases in streamflow (Shpakova, 2021).
However, precipitation in Yakutia shows spatially complex trends. The greatest increases in precipitation were in the mountain-taiga regions of southern Yakutia, while the precipitation in the tundra landscapes of Yakutia showed negative trends (Gorokhov and Fedorov, 2018). Moreover, permafrost temperature and active-layer thickness in Yakutia also vary considerably in space and are dominated by the climatic gradient and soil type distribution (Beer et al., 2013). How streamflow in permafrost-dominated river basins responds to changes in temperature and precipitation along a climatic gradient is not fully understood. In addition, recent studies have found that the winter streamflow increased much faster than the annual streamflow in the permafrost-dominated upper river basins of Siberia (Panyushkina et al., 2021). Liu et al. (2022) further revealed uneven increases in streamflow during early, mid- and late winter across four large Arctic river basins. Winter streamflow in permafrost-dominated river basins is primarily recharged by the groundwater (Wang et al., 2021a; Liu et al., 2022), therefore, recent increases in winter streamflow likely reflect permafrost degradation under climate warming. Nevertheless, it remains unclear how the fast changes in winter streamflow and the changes in climate affect winter streamflow variations in relatively small, permafrost-dominated river basins (104–105 km2).
To address the above-mentioned issues, we selected five river basins with areas ranging from 2.76 × 104 km2 to 11.5 × 104 km2 along a climatic gradient (i.e., air temperature and precipitation gradients) from west to east in the Russian South Yakutia (Figure 1). The objectives of this study were to 1) detect the temporal changes in climate and streamflow across the five river basins in the Russian South Yakutia during the past several decades, and 2) reveal the various responses of annual and winter streamflow in permafrost-dominated river basins to changes in temperature and precipitation along a climatic gradient.
[image: Figure 1]FIGURE 1 | Locations of the five eastern Russian river basins (i.e., Bol’shoy Patom, Chara, Olekma, Timpton, and Uchur from west to east) along with permafrost (upper-left) (Brown et al., 2002) and elevation (low-right) (USGS, 1996) maps.
2 MATERIALS AND METHODS
2.1 Study area
Five river basins in South Yakutia, Russia, including Bol’shoy Patom, Chara, Olekma, Timpton, and Uchur, were selected for investigation in this study. The Bol’shoy Patom is the 11th longest tributary of the Lena River and has a length of approximately 570 km and a drainage basin area of 2.76 × 104 km2 (Smith et al., 2007). The Chara is a tributary that flows into the Lena River; it is 850 km long and has a drainage basin area of 6.25 × 104 km2 (Barinova et al., 2018). The Olekma, where the Kudu-Kyuel hydrological station is located, is one of the major tributaries of the Lena River in eastern Siberia (Tananaev et al., 2016). The Olekma is approximately 1,436 km long and has a drainage basin area of 11.5 × 104 km2. The Timpton River is a right tributary of the Aldan River in the Lena Basin and has a length of 644 km and a drainage area of 4.37 × 104 km2 (Nogovitsyn et al., 2013). The Uchur River is another right tributary of the Aldan River of the Lena Basin and has a length of 812 km and a drainage area of 10.8 × 104 km2 (Vinogradov et al., 2011). The characteristics of these five river basins are listed in Table 1.
TABLE 1 | Average annual temperature (T), precipitation (P), potential evapotranspiration (PET), and streamflow (Q) for the five river basins in South Yakutia, Russia.
[image: Table 1]2.2 Data sources
Long-term monthly river discharge (Q) data at five hydrological stations (Table 1) were obtained from the Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet, https://www.meteorf.gov.ru/). The river discharge data for the Bol’shoy Patom, Chara, and Olekma Rivers spanned from 1934 to 2019, and such data for the Timpton and Uchur Rivers spanned from 1953 to 2019.
Monthly average temperature (T) data on a 0.5° × 0.5° grid (period: 1934–2019; https://crudata.uea.ac.uk/cru/data/hrg/) were obtained from the Climate Research Unit time series (CRU TS) v. 4.05 (Harris et al., 2020). Monthly precipitation (P) data from 1934 to 2019 with a 0.25° grid resolution were acquired from the Global Precipitation Climatology Center (GPCC; https://psl.noaa.gov/data/gridded/data.gpcc.html) (Schneider et al., 2020). The monthly gridded temperature data from the CRU and precipitation data from the GPCC were previously validated by Wang et al. (2021a) with observed data from the 167 meteorological stations located across the Siberian river basins. Additionally, potential evapotranspiration (PET) from the CRU (Harris et al., 2020), which is calculated using the Penman‒Monteith formula (Allen et al., 1998), was used for estimating the amount of evapotranspiration that would occur if a sufficient water source were available.
The permafrost distribution was taken from the Circum-Arctic Map of Permafrost and Ground-Ice Conditions (Version 2) (Brown et al., 2002). Digital elevation model (DEM) data were obtained from the global 30 arc-second elevation (GTOPO30) by the United States Geological Survey (USGS, 1996).
2.3 Method
Following the methods of Risbey and Entekhabi (1996) and Fu et al. (2007), the annual departures for streamflow ([image: image]), precipitation ([image: image]), and air temperature ([image: image]) are calculated for a specific basin. Here, [image: image], [image: image], and [image: image] are the long-term mean annual streamflow, precipitation and temperature, respectively. A linear regression approach is applied to quantify the response of streamflow to changes in precipitation and temperature, which is described as:
[image: image]
where a is the intercept of the regression line, and [image: image] and [image: image] are the estimated regression coefficients for dT and [image: image], respectively.
As proposed by Wang et al. (2021a), the precipitation and temperature departures are divided by their corresponding standard deviations for comparing equivalent streamflow–precipitation–temperature relationships among different basins. Then, the results of the above-mentioned calculations are plotted on a precipitation-temperature plane to demonstrate the streamflow–precipitation–temperature relationship. This approach can be applied to identify streamflow responses to climate change during particular periods (e.g., winter season, low flow periods) (Liu et al., 2022).
A simple linear regression model is used to examine the multiyear trends in Q, T, P, and PET with time, and p value thresholds for claiming statistical significance of 0.05, 0.01, and 0.001 are calculated to determine the significance level of the regression result using a t-test (Köhne and Pigeot, 1995). Additionally, breakpoints in a time series of Q, T, P, and PET are detected by the Pettitt test, which relies on the non-parametric Mann-Whitney U-test (Pettitt, 1979).
3 RESULTS AND DISCUSSION
3.1 Changes in climate
The average annual air temperatures in the five basins of Bol’shoy Patom, Chara, Olekma, Timpton, and Uchur were −8.7°C, −8.2°C, −7.4°C, −8.2°C, and −9.7°C, respectively, during the 1934–2019 period. The maximum monthly air temperature occurs in July, while the minimum values occur in January (Figure 2A). During the months of October to the following April, the multiyear average monthly air temperature is less than 0°C, which can be considered the winter period. During the months from May to September, the multiyear average monthly air temperature is greater than 0°C, which can be considered the non-winter period.
[image: Figure 2]FIGURE 2 | Multiyear monthly (A) temperature (T), (B) precipitation (P), (C) potential evapotranspiration (PET), and (D) streamflow (Q) in the Bol’shoy Patom, Chara, Olekma, Timpton, and Uchur river basins.
As shown in Figure 3A and Table 2, all five river basins experienced notable warming trends over the past 86 years (1934–2019), with temperature change rates of 0.20°C–0.22°C/decade (p < 0.001). These change rates are slightly lower than the rate of change in temperature for the entire Lena River Basin from 1936 to 2019 (0.25°C/decade), as estimated by Wang et al. (2021a). This result probably occurs because all five subbasins are in the southern Lena River Basin, where the average annual temperature is higher than the average temperature of the entire Lena River Basin. According to the hypothesis that “the colder the place is, the faster the warming” (Wang et al., 2022a), the warming rates in these five basins are slightly slower than that for the entire Lena River Basin.
[image: Figure 3]FIGURE 3 | Time series of (A) temperature (T), (B) precipitation (P), (C) potential evapotranspiration (PET), and (D) streamflow (Q) in the Bol’shoy Patom, Chara, Olekma, Timpton, and Uchur river basins.
TABLE 2 | Pettitt breakpoint test (Pettitt, 1979) and statistical characteristics of climatic and hydrological components.
[image: Table 2]A single change point in the annual air temperature based on Pettitt (1979) breakpoint detection was found in 1981 for the Olekma River Basin, and another was found in 1988 for the other four river basins. Prior to the change point, the annual air temperatures did not show notable trends, while afterwards, they started to increase. During the last three decades, the air temperature warmed by 0.5°C–0.7°C in the five selected river basins. This result is consistent with the global temperature change pattern; that is, global temperatures began to warm significantly in the 1980s (Hansen et al., 2006). However, the climate warming was not uniform, and faster warming was observed in the colder regions, for example, the Arctic has warmed nearly four times faster than the globe over 1979–2021 (Rantanen et al., 2022).
The multiyear average annual precipitation values were different among the five river basins. The Chara River Basin had the least annual precipitation (377 mm), while the Timpton River Basin had the greatest annual precipitation (534 mm). The multiyear average annual precipitation in the Bol’shoy Patom, Olekma, and Uchur river basins were 423, 463, and 466 mm, respectively. Seasonally, the maximum monthly precipitation in the five river basins occurred in July-August and the minimum monthly precipitation occurred in February-March (Figure 2B). The maximum monthly precipitation in July occurred in four river basins (Bol’shoy Patom, Chara, Olekma, and Timpton), and the maximum monthly precipitation in August occurred in the Uchur River Basin. Two river basins, namely, Bol’shoy Patom and Chara, had the lowest monthly precipitation in March, while the other three basins of Olekma, Timpton and Uchur had the lowest monthly precipitation in February.
Precipitation during the warm period (May-September) in the five river basins accounted for more than 2/3 of the annual precipitation. Although the precipitation during the non-winter period in the Bol’shoy Patom River basin was less than that in the other four river basins, the opposite was true during the cool period, especially from November to March (Figure 2B). Except for the Uchur River Basin, the other four river basins showed notable increasing trends in annual precipitation during 1934–2019 (Figure 3B). The Timpton River Basin had the fastest rate of increase at approximately 15.7 mm/decade, followed by the Bol’shoy Patom, Olekma, and Chara river basins, with change rates of 13.7 mm/decade, 10.1 mm/decade, and 9.3 mm/decade, respectively (Table 2). The annual precipitation in the Uchur River Basin did not show a significant change trend (p > 0.05). Different from the air temperature, the change points in annual precipitation amounts for the five river basins occurred between 1971 and 2004 (Table 2). This result indicated that temperature warming is consistent across Siberia (Wang et al., 2022a), while the changes in precipitation are more complex (Wang et al., 2021b).
The multiyear average PET values in the five basins were quite close, ranging from 436 to 457 mm. The monthly distribution of PET during the year was similar to that of temperature, with the maximum values of PET occurring in June-July and the minimum values occurring in December-January (Figure 2C). PET during the non-winter periods accounted for more than 80% of the annual PET. A previous study (Tang and Tang, 2021) observed that PET increased in the Lena River Basin from 1975 to 2014; this occurrence was mainly attributed to changes in meteorological variables such as air temperature, net radiation, wind speed, and vapor pressure deficit. At the subbasin scales of the Lena River Basins, only the Bol’shoy Patom, Chara, and Olekma river basins experienced increasing trends in PET during 1934–2019, while the remaining two river basins did not show significant changes in PET (p > 0.05) (Figure 3C; Table 2).
3.2 Changes in streamflow
The multiyear average annual streamflow varies significantly among the five river basins. The Bol’shoy Patom River Basin has the highest annual streamflow of 414 mm, followed by the Timpton, Chara, Uchur, and Olekma river basins, with annual streamflow of 392, 364, 360, and 293 mm, respectively. The annual streamflow in the Chara and Olekma river basins showed increasing trends with rates of 17.1 mm/decade (p < 0.001) and 7.7 mm/decade (p < 0.05), respectively, while the other three river basins did not show significant changes in annual streamflow (p > 0.05) (Figure 3D; Table 2). It is worth noting, however, that the Timpton River Basin, which has the highest annual precipitation (534 mm) and the fastest increase in precipitation (15.7 mm/decade), does not have the largest annual streamflow and a significant increase in annual streamflow (p > 0.05). In contrast, the Chara River Basin, which has the least precipitation (377 mm), has the fastest increase in annual streamflow (17.1 mm/decade).
The streamflow during the warm period (May-September) in the five river basins accounts for more than 80% of the total annual streamflow (Figure 2D), especially in the Olekma, Timpton, and Uchur river basins, where the warm period streamflow accounts for more than 90% of the annual streamflow. The maximum streamflow during the non-winter periods is 366 mm in the Timpton River, followed by the Uchur, Bol’shoy Patom, and Chara rivers with 333, 332, and 324 mm, respectively. The Olekma River has the smallest streamflow of approximately 265 mm during the warm period. Streamflow during the winter period (October-April) in the Bol’shoy Patom, Chara, Olekma, Timpton, and Uchur rivers are 76, 42, 29, 28, and 30 mm, respectively (Table 3).
TABLE 3 | Statistical characteristics of winter and non-winter period streamflow for the five eastern Russian river basins.
[image: Table 3]Although the streamflow during cold winter seasons accounts for only 7%–19% of the annual streamflow, winter streamflow in four of the five river basins shows increasing trends with rates of 1.4–2.6 mm/decade (p < 0.001). This result is consistent with those of previous studies, which found that cold season low-flow increases over most of the pan-Arctic rivers (Rennermalm et al., 2010). In contrast, during the warm non-winter period, streamflow in only two of five river basins show increasing trends with a significance level of p < 0.05. As noted by Walvoord et al. (2012) and Liu et al. (2022), streamflow during cold winter seasons is derived mainly from baseflow due to climate-driven permafrost thaw.
Increased winter streamflow reveals that baseflow is increasing under a warming climate. Recent studies have indicated that accelerated permafrost warming and widespread forest fires in South Siberia are the two major drivers for increasing winter streamflow (Panyushkina et al., 2021). In continuous permafrost-dominated river basins, permafrost thaw is altering terrestrial hydrological processes by increasing the active-layer thickness and extending recession flow durations (Feng et al., 2022). Additionally, climate warming is leading to a notable shift towards early spring high-flow events on permafrost-dominated Siberian rivers (Gautier et al., 2018; Melnikov et al., 2019; Song et al., 2020). Furthermore, the frequency and magnitude of extremely high streamflow in the permafrost-dominated river basins will be significantly increased under a warming climate (Gusev et al., 2019).
3.3 Response of streamflow to climate change
Our results show that changes in Q are highly sensitive to changes in P but less sensitive to changes in T in the Bol’shoy Patom, Olekma, Timpton, and Uchur river basins (Figures 4A,G,J,M). In particular, for the Chara and Olekma river basins, a 1% increases in precipitation would result in an approximately 1.5% increase in annual streamflow (Table 4). In contrast, changes in winter streamflow (Qwin) are sensitive to changes in both P and T for these permafrost-dominated river basins (Figures 4B,E,H,K,N), which indicates that winter streamflow is particularly sensitive to climate warming in basins with permafrost. As shown in Table 4, a 1°C increase in temperature will likely lead to a 0.1%–0.16% increase in winter streamflow, except in the Bol’shoy Patom River Basin. In addition, as the winter baseflow in permafrost-dominated regions is dominated by groundwater (St. Jacques and Sauchyn, 2009), streamflow during low flow periods from February to March (Q low flow) is even more sensitive to changes in T for the Bol’shoy Patom, Timpton, and Uchur river basins (Figures 4C,L,O; Table 4), which can be attributed to the enhanced groundwater recharge to rivers via permafrost thawing (Brabets and Walvoord, 2009; Evans et al., 2020; O'Donnell et al., 2012). For the Chara River basin, the responses of Q, Qwin, and Q low flow to changes in T and P are quite similar (Figures 4 D‐F).
[image: Figure 4]FIGURE 4 | Contour plots of annual changes in annual streamflow (Q), winter streamflow (Qwin), and baseflow-dominated low flow (Q low flow) as functions of annual changes in precipitation (P) and temperature (T) for the Bol’shoy Patom (A–C), Chara (D–F), Olekma (G–I), Timpton (J–L) and Uchur (M–O) river basins, respectively. The “×” symbols represent the observed streamflow on a precipitation-temperature plane, based on which the contour lines are constructed by the Kriging interpolation method (Oliver and Webster, 1990). Q is the observed annual streamflow, and [image: image] and Qlow flow are calculated based on streamflow during the winter season (October-April) and low flow period (February-March). dT is the temperature departure from the average annual temperature and dT/std (dT) is the standardized anomaly of dT; △P is the relative changes in annual precipitation to the mean annual precipitation and △P/std (△P) is the standardized anomaly of △P; △Q, △Q win and △Q low flow are the relative changes in annual Q, [image: image], and Q low flow to their mean annual values, respectively.
TABLE 4 | Impacts of climate change on the streamflow estimated by Eq. 1.
[image: Table 4]Previous studies indicated that intensified precipitation is a predominant contributor to increased annual streamflow for Siberian rivers. However, at sub-basin scales, we note that the rate of increase in streamflow (17.1 mm/decade) was much greater than the rate of increase in precipitation (9.3 mm/decade) for the Chara River basin. These results suggest that increase in permafrost thawing-induced baseflow are likely the other important contributor to increased streamflow in permafrost-dominated river basins (Song et al., 2020; Wang et al., 2021a; Jin et al., 2022). Therefore, in addition to precipitation, annual streamflow in the Chara River Basin also increases with increased temperature (Figure 4D) at a rate of 0.06%/°C (Table 4).
Furthermore, despite the lowest annual Qwin (<30 mm) in the Olekma and Timpton river basins among these basins, the groundwater-dominated Qlow flow exhibits significant changes with temperature, which is even more notable than changes in Q with precipitation (Figures 4G,I,J,L). The differences in the warming impacts on low flows are likely related to the basin conditions, e.g., permafrost extent, groundwater recharge, and hydrological connectivity (Liu et al., 2022). In addition, changes in vegetation caused by climate change and permafrost degradation (Jin et al., 2021; Shi et al., 2021; Wang et al., 2022b; Shi et al., 2022) and a decrease in the thickness of ice cover in small and medium rivers (Dzhamalov et al., 2012) may be other important factors contributing to differences in streamflow response among the five river basins to climate change. Notably, the warming in permafrost regions is faster than that in the non-permafrost regions (Wang et al., 2022a). Thus, the response of winter streamflow in permafrost-dominated regions to climate warming is likely to become stronger in the future. To improve our ability to predict the response of streamflow to climate warming in permafrost-dominated regions, more efforts such as conducting long-term field monitoring and developing flexible permafrost hydrology models are required (Walvoord and Kurylyk, 2016; Gao et al., 2021).
4 CONCLUSION
In this study, we examined the changes in the annual, winter and low-flow streamflow of five river basins with areas of 104–105 km2 in the Russian South Yakutia from 1934 to 2019. Furthermore, we attempted to assess the potential impacts of climate change on streamflow in such permafrost-dominated river basins. Although streamflow for large Siberian rivers has experienced significant increasing trends over the past decades (Wang et al., 2021a), our results revealed that the annual streamflow for only two of the five river basins showed increasing trends during the past several decades. This indicated that changes in streamflow for relatively small river basins (from 104 to 105 km2) were more complex. As noted by Han and Menzel (2022), precipitation likely plays a predominant role in controlling the water availability in southern Siberian basins at the decadal scale. Our analysis of the temperature-precipitation-streamflow relationships confirmed that changes in annual streamflow are strongly associated with precipitation, which varies widely in space and time. Particularly, precipitation was positively correlated with streamflow with a lag of 0–2 months during the summer months in the Siberian Lena River Basin (Yang et al., 2002).
Furthermore, all the river basins experienced uniform climate warming at rates of 0.20°C–0.22°C/decade during the past 86 years. Climate warming is accelerating permafrost thawing, which leads to an increased baseflow via enhanced, deeper subsurface flow paths and intensified surface water-groundwater interactions (St. Jacques and Sauchyn, 2009). This is evidenced by the increasing trends in streamflow during winter periods from October to April. In addition, degradation of continuous permafrost sustains a water-rich surface condition and leads to a prominent shift from a snow-fed runoff regime to a snow-rainfall-fed regime during the rainy season (Han and Menzel, 2022). Conversely, in lake-rich cold regions, permafrost thaw is leading to a widespread surface water decline (Webb et al., 2022). Therefore, the impact of permafrost degradation on streamflow is extremely complex. Under a warm climate, permafrost is thawing globally (Biskaborn et al., 2019; Smith et al., 2022), which drives progressively deeper subsurface flow paths. As noted by McKenzie et al. (2021), groundwater processes in permafrost-dominated regions are becoming increasingly important catalysts of hydrological and environmental changes.
It is worthy to note, in addition to climate, many other factors, such as changes in vegetation, surface water–groundwater interactions, wildfire, and human intervention are also responsible for changes in streamflow (Loiselle et al., 2020; Han and Menzel, 2022; Shi et al., 2022). Therefore, further observations of climate, permafrost, vegetation and hydrology in sparsely monitored regions is needed to fully understand the responses of streamflow to climate and environmental changes. In addition to field observations, more effort should be focused on developing mathematical models of nonlinear freeze-thaw processes under different climate and permafrost conditions (Lamontagne-Hallé et al., 2020; Gao et al., 2022; Guo et al., 2022).
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Approximate entropy (ApEn) can measure the regularity and complexity of a nonlinear system. We find that the results of ApEn are relatively stable when the sample size of a time series exceeds 100, which indicates that the estimation results of the ApEn algorithm are robust to small sample data. In this study, the complexity of the daily precipitation records in China from 1961 to 2015 was first analyzed by using ApEn, and then we further investigated the spatial and temporal variability of the dynamical characteristics of precipitation. The results show that the ApEn values of daily precipitation in China during 1961–2015 present the following characteristics: larger in southern and eastern China and smaller in northern and western China. In addition, ApEn in Northwest China and the Tibetan Plateau has been increasing since 1961. However, since the 1970s, ApEn in the south of the middle and lower reaches of the Yangtze River shows a gradual decrease. The temporal instances of abrupt ApEn changes in daily precipitation occur from region to region. The number of stations with an abrupt ApEn shift has a statistically significant increase since 1984 at a significant level of α = 0.01, which means the complexity characteristic of daily precipitation in China has been more prone to abrupt shifts since 1984 than in the previous period.
Keywords: approximate entropy, daily precipitation, abrupt change, complexity, moving t-test
INTRODUCTION
In recent years, with the development of nonlinear science, various exponents from the nonlinear dynamic field were applied to describe the underlying dynamical characteristics of a time series, including correlation dimension (CD), Lyapunov characteristic exponent, and Kolmogorov entropy (Grassberger and Procaccia, 1983a; Wang et al., 1984; Wang and Yang, 2002). CD can be used to quantitatively characterize the minimal effective state variables needed to accurately describe a complex system. Grassberger and Procaccia (1983b) presented a classical method for estimating CD of a time series using the Grassberger−Procaccia algorithm (GPA). GPA is also commonly used to calculate the Kolmogorov entropy of a time series. However, the estimation of GPA is heavily dependent on parameters, such as sample sizes, time delay, and embedding dimension in phase space reconstruction (Rosenstein et al., 1993). The Lyapunov exponent is a physical quantity that measures the rate of separation or approach of infinitesimally close trajectories in the phase space of a dynamical system (Lyapunov, 1966). The Lyapunov exponent is a valuable indicator of whether the dynamical behavior of a dynamical system is chaotic or not. However, it is well known that how to obtain an accurate Lyapunov exponent is also a very difficult problem. Approximate entropy (ApEn) can measure the regularity and complexity of a time series, which is related to the Kolmogorov entropy and the rate of generation of new information (Pincus, 1991, 1992, 1995). Based on the ApEn method, He et al. (2011) developed a moving cut data-approximate entropy (MC-ApEn) technique to detect an abrupt change in the complexity of a time series. Jin et al. (2012a, 2012b) found that the detection results of MC-ApEn are little affected by the periodical trend, linear trend, nonlinear trend, random spikes, and Gaussian white noise and demonstrated the robustness of the detection performance of MC-ApEn for identifying the complexity of a time series.
Climate systems are complex dynamical systems, which are not only subjected to external forcing but also have complex internal nonlinear dissipation. The complexity of the climate systems is mainly due to the complexity of the temporal and spatial evolution of different meteorological elements, such as temperature, precipitation, wind speed, wind direction, humidity, and air pressure. By analyzing the observational records of different meteorological elements, the nonlinearity and complexity properties of the climate system can be revealed to a certain extent. Precipitation has an important influence on social and economic development in China. Therefore, the variability in precipitation in China has attracted much attention. Some studies showed that there were no statistically significant trends in annual total precipitation in China (Karl et al., 1995; Zhai et al., 1999). However, Liu et al. (2005) found that precipitation in China increased by 2% from 1960 to 2000, while the frequency of precipitation events decreased by 10%. The annual mean precipitation increased in southwestern, northwestern, and East China while decreasing in North China and central-northern China (Liu et al., 2005; Wang and Zhou, 2005). The frequency of precipitation shows an increasing trend in northwestern China, but the opposite is true in the rest of China during 1960–2000 (Liu et al., 2005). The increasing trends of precipitation occurred in all four seasons for Northwest China and only in summer for East China (Gemmer et al., 2004; Wang and Zhou, 2005). In summer, rainfall increased in the middle and lower reaches of the Yangtze River valley, while it presented a reduced characteristic in northern China (Gong and Ho, 2003; Zhai et al., 2005; Wang et al., 2013). Furthermore, summer rainfall in East China experienced four inter-decadal abrupt changes, occurring in 1979, 1983, 1993, and 1999, during 1958–2009 (Liu et al., 2011). However, does the complexity of precipitation in China also follow a decadal shift? That remains an open question.
The ApEn algorithm has been applied to study the dynamical characteristics of the climate system in China (He et al., 2009; 2012). Wang and Zhang (2008) found that ApEn can reflect the territorial difference in dynamic structures of the climate system in China, and abrupt climate changes occurred between the 1970s and 1980s. However, most of the former studies only analyzed ApEn for daily precipitation from a few representative stations. Spatial and temporal variations in ApEn for daily precipitation in China have still not been systematically investigated. In this study, we first describe the data used in this study and briefly outline the ApEn method and moving t-test technique (MTT). Then, the results of ApEn and MTT are shown to discover the spatial and temporal variations in the complexity of daily precipitation in China. A brief discussion as well as conclusion following Results is given.
DATA AND METHODS
Data
Observed daily precipitation data are provided by the National Meteorological Information Center of China Meteorological Administration. The observational data includes daily precipitation from 1 January 1960 to 31 December 2015 for 1781 stations in China. The meteorological stations are more concentrated in the central and eastern parts of China than in western China (Figure 1).
[image: Figure 1]FIGURE 1 | Spatial distribution of the 1781 meteorological stations in China.
ApEn methods
ApEn can quantify the changing complexity of chaotic and stochastic processes (Pincus, 1991, 1995; Pincus and Goldberger, 1994). ApEn has been extensively studied and applied in many fields (Ocak, 2009; Yentes et al., 2013). The ApEn algorithm is briefly described as follows: first, a sequence of vectors x (1), x (2),…, x (N-m+1) are constructed from a time series {u(i), i = 1,2, ..., N} in the m-dimensional space.
[image: image]
Next, the distance (d [x(i),x(j)]) between the vectors x(i) and x(j) is calculated following Takens (1983):
[image: image]
A positive real number r is defined as a filter. For each i (1 ≤ i ≤ N-m+1), the number of j such that d [x(i) and x(j)]≤r is counted as W. Also, the ratio is defined by the following equation:
[image: image]
Based on [image: image], the parameter [image: image] can be defined by Eq 4 as follows:
[image: image]
Thus, the estimated value of ApEn is defined as follows:
[image: image]
Yentes et al. (2013) demonstrated that ApEn is sensitive to parameter choices and suggested using N larger than 200, an m of 2, and examined several r values before selecting parameters. Pincus (1991) pointed out that for m = 2 and N = 100, r ranges from 0.1 to 0.2 standard deviation (SD of the original time series {u(i), i = 1,2, ..., N}). In this study, m is 2, and r is 0.15 SD (He et al., 2011). The regularity of the time series is associated with the ApEn value (Yan and Gao, 2007). The greater the regularity is, the lower the ApEn value is. A low value of ApEn denotes a high degree of regularity and low complexity of a dynamical system; thus, the system is more predictable than one with a relatively larger ApEn value. Therefore, based on the ApEn algorithm, we can identify the variations of dynamical characteristics by evaluating the regularity and unpredictability of a system.
The influence of data length on the ApEn results
ApEn has potential applications in relatively short (greater than 100 points) and noisy datasets (Pincus, 1995). However, Richman et al. (2000) found that the ApEn results are heavily dependent on the record length and are uniformly lower than the expectation for short records. To quantitatively estimate the effect of the sample size on the ApEn results, we performed two sets of independent tests.
In the first test, solutions of the Lorenz model are used to test the sensitivity of the sample size. The Lorenz model (Lorenz, 1963) is defined by Eq 6:
[image: image]
Here, the parameter [image: image] is the Prandtl number. The parameter r is the ratio of the Rayleigh number divided by the critical Rayleigh number. The parameter b is related to the horizontal wave number of the system. The values of [image: image], r, and b are 10.0, 28, and 8/3 in this study, respectively. Eq. 6 is solved by the four-order Runge–Kutta method, and the integration step is taken as 0.01. The ApEn results of the classic Lorenz model show that the difference between the result and true value is less than 0.1 when the sample size exceeds 100 (Figure 2).
[image: Figure 2]FIGURE 2 | ApEn results of the classical Lorenz model with the data length increasing from 50 to 20000 on (A) the variable x, (B) the variable y, and (C) the variable z.
In the second test, the ApEn result of the daily precipitation of the Jinan station in Shandong Province was calculated when the length of the daily precipitation increased continuously from 30 to 19650 (Figure 3). The difference between the ApEn result and true value is less than 0.1 when the data length exceeds 240. Moreover, the difference is less than 0.05 for data lengths larger than 300. In general, ApEn has a relatively stable value when the data length increases to 2,000, which is the case for both the classical Lorenz model and observed daily precipitation at the Jinan station.
[image: Figure 3]FIGURE 3 | ApEn of daily precipitation at the Jinan station with the data length increasing from 30 to 19650.
MTT methods
The moving t-test (MTT) technique is used to test the difference between the mean values of two subsamples before and after one point with an equivalent subsample size. If the difference exceeds a given significance level, then an abrupt change is considered to occur at the point.
For a time series {xi, i = 1, 2, … , n}, a sample is selected by moving a cutting point to obtain two subsets (x1 and x2) before and after this point. Then, the t-statistic is estimated as follows:
[image: image]
where n1 and n2 are the subsample sizes and n1 = n2. [image: image] and [image: image] are the mean values and S1 and S2 are the variances for the two subsamples. Given a significance level α, if [image: image], then abrupt changes occur at the point with n-2 degrees of freedom.
RESULTS
The decadal variations of ApEn for daily precipitation in China
The ApEn results of daily precipitation in China from 1961 to 2015 show the characteristics of large in the south and little in the north, especially in Northwest China (Figure 4A). ApEn of daily precipitation is less than 0.6 in Southern Xinjiang, western Inner Mongolia, and western Qinghai Province, which is much smaller than that in other areas in China. The minimum value of ApEn is 0.1, which occurred at Ejinaqi, western Inner Mongolia. The annual precipitation in the coastal areas of Southeast China is the biggest in China. ApEn ranges from 0.8 to 1.0 in these areas, which is less than those in Sichuan, eastern Tibet, and the most part of the areas in the south of the Yangtze River. In northeastern Sichuan and Zhejiang provinces, ApEn is bigger than 1.1. The ApEn value of daily precipitation in Gongshan, Yunnan, is 1.33, which is the maximum in China. The values of ApEn of daily precipitation in China range from 0.1 to 1.33, and about 90% of the values are between 0.5 and 1.1 (Figure 5), and the percentage of ApEn between 1.0 and 1.1 is bigger than that of the others.
[image: Figure 4]FIGURE 4 | ApEn of daily precipitation in China during (A) 1961–2015 and the ApEn anomaly of daily precipitation in China during (B) 1961–1970, (C) 1971−1980, (D) 1981−1990, (E) 1991−2000, and (F) 2001−2010.
[image: Figure 5]FIGURE 5 | Histogram of ApEn of daily precipitation in China during 1961–2015.
To demonstrate the decadal variability of daily precipitation in China, we calculate the ApEn of daily precipitation for five different decades and further obtain the ApEn anomaly for each decade by subtracting the average ApEn of the five decades. During 1961–1970, the ApEn of daily precipitation was weaker than the average in most parts of China except for the central regions between the Yangtze River and the Yellow River (Figure 4B). In the next decade, the ApEn anomaly was bigger than 0.01 in the south of the middle and lower reaches of the Yangtze River, most of Northeast China, Shandong Province, and Jiangsu Province, especially in some areas of southern Tibet (Figure 4C). The ApEn anomaly remains negative in most of Northwest China and Inner Mongolia. During 1981−1990, the ApEn value was bigger than the multi-year average value in most parts of China except Sichuan and Shandong provinces (Figure 4D). The ApEn anomalies in Northwest China and northeastern Inner Mongolia have been positive since 1991 (Figures 4E,F). The ApEn values in the south of the middle and lower reaches of the Yangtze River are less than the average during 2001–2010 (Figure 4F). The spatial pattern of the ApEn anomaly was positive both in 1971–1980 and 1981−1990 in the southern middle and lower reaches of the Yangtze River. However, it was negative during 1961–1970 and 2001−2010. The variance of daily precipitation in China in each decade also shows a decreasing trend in southeastern China while an increasing trend in northern Xinjiang and southern Tibet, consistent with the ApEn analysis. In general, ApEn in Northwest China and the Tibetan Plateau has grown larger since the 1960s, while that in the south of the middle and lower reaches of the Yangtze River has become smaller since the 1970s.
Trends of ApEn for daily precipitation in China
ApEn of daily precipitation in China shows increasing trends in most parts of Northwest China, Tibetan Plateau, central Northeast China, and eastern Inner Mongolia (Figure 6). The increasing trends are significant at the 90% confidence level in western Xinjiang, southern and eastern Qinghai, central Northeast China, and local parts of eastern Inner Mongolia. Trends of the ApEn are negative in most parts of central and eastern China, especially in Shannxi, northern Henan, Yunnan, Guizhou, and northwestern Guangxi provinces.
[image: Figure 6]FIGURE 6 | Trends of ApEn for daily precipitation in China during 1961–2015.
Abrupt changes in daily precipitation in China
As an example of detecting abrupt ApEn changes in daily precipitation records, the daily precipitation records of the Wutaishan station in Shanxi Province and Wushaoling station in Gansu Province were selected (Figures 7A,B). Figures 7C,D represent the yearly ApEn results of daily precipitation in Wutaishan and Wushaoling stations, respectively. For the Wutaishan station, the ApEn value changed greatly at the end of the 1980s (Figure 7C). For the Wushaoling station, there was an abrupt mean shift in the ApEn values in the late 1970s and early 1980s (Figures 7D). To quantitatively identify the change point of the ApEn value, the MTT method was used with a significance level of α = 0.01, and the subseries n1 = n2 = 10 was used. Figure 7E shows an apparent abrupt change in the ApEn value of daily precipitation in 1988 at the Wustaishan station. At the Wushaoling station, an abrupt mean shift of the ApEn value of daily precipitation occurred in 1979 (Figure 7F).
[image: Figure 7]FIGURE 7 | Daily precipitation series from 1961 to 2015 from the Wutaishan station in Shanxi Province and Wushaoling station in Gansu Province, and the ApEn results and the corresponding MTT results are shown. Daily precipitation records at the Wutaishan station (A) and at the Wushaoling station /(B); (C) ApEn results for the precipitation records shown in (A); (D) same as (C), but for the precipitation records shown in (B); (E) MTT analysis of the ApEn results shown in (C) with the subseries n1 = n2 = 10; (F) same as (E), but for the ApEn results shown in (D).
During 1961−2015, the abrupt changes in ApEn for daily precipitation in China occurred in most of central and eastern China, western Xinjiang Province, and eastern Qinghai Province (Figure 8). The stations with abrupt ApEn changes that occurred during 1970–1979 are mainly located in central and eastern China, especially in North China and central Inner Mongolia. During the period of 1980–1989, the stations with abrupt ApEn changes were mainly located in central and western China, especially in northern Xinjiang and eastern Southwest China. During 1990−1999, abrupt ApEn changes in daily precipitation mainly occurred in the northern part of China, especially in central Inner Mongolia. Since 2000, the distribution of stations with abrupt ApEn variations in daily precipitation has been almost even in China. These results indicate that the temporal instances of abrupt ApEn changes in daily precipitation occur from region to region.
[image: Figure 8]FIGURE 8 | Spatial distributions of meteorological stations where abrupt ApEn changes of daily precipitation occurred during 1961–2015.
Figure 9 shows the time evolution of the numbers of stations where the ApEn of daily precipitation shows the significant abrupt change at a significant level of α = 0.01. Four peaks occurred in 1971, 1986, 1992, and 2002, with 20, 16, 12, and 15 stations, respectively. The time evolution of the number of stations with abrupt ApEn changes has a noticeable inter-decadal variation in 1984. Although the maximum number of stations with abrupt changes occurred in 1971, the total number of stations with abrupt changes before 1984 was considerably smaller than that after 1984. This means that the complexity of daily precipitation in China has been more prone to abrupt changes since 1984 than in previous periods.
[image: Figure 9]FIGURE 9 | Time variations of the number of stations where the ApEn values have an abrupt change.
CONCLUSION AND DISCUSSION
To investigate the dependence of the ApEn results on the length of a time series, two sets of experiments were designed. It is shown that the ApEn value becomes relatively stable when the length of the time series exceeds 100. Then, ApEn was applied to analyze the complexity of the daily precipitation in China during 1961–2015.
The ApEn value of daily precipitation in China is larger than 0.8 in most of southern China, especially in eastern Sichuan Province. However, the ApEn values in southern Xinjiang, western Inner Mongolia, western Qinhai Province, North China, and the southeastern part of Northeast China are below 0.6. During the period of 1961–2015, the ApEn value increased in most of Northwest China, central-eastern Inner Mongolia, and most of Northeast China. The time instants for an abrupt ApEn shift vary from region to region. The number of stations with abrupt ApEn changes in daily precipitation during the period of 1984–2015 is larger than that in the previous period.
Precipitation in China is affected by both internal natural factors of the climate systems and external forces such as anthropogenic influences. Following the Mount Pinatubo eruption in 1991, precipitation over the global land experienced a significant reduction (Trenberth and Dai, 2007). The East Asian summer monsoon (EASM) has the principal influence on precipitation in China. A stronger EASM corresponds to more rainfall over northern China, whereas a weaker EASM leads to additional rainfall over the Yangtze−Huai River Valley (Zhang, 2015). During the second half of the 20th century, a significant weakening of EASM happened (Wang, 2001), which led to northward moisture transport and convergence weakening and precipitation in North China decreased (Ding et al., 2010). Precipitation in northwestern China increased significantly from 1960 to 2010, which was associated with the strengthening of the West Pacific subtropical high and the North American subtropical high (Li et al., 2016). Thus, ApEn of daily precipitation can be quantified that helps reveal the variability of dynamical features of the climate systems in China (Flesisher et al., 1993, Zhao et al., 2008).
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The aerosol observations in Xi’an (34.25°N, 108.983°E), a typical urban site in Northwest China, were conducted using a sky-radiometer from January 2015 to March 2018. Multi-year variations of aerosol optical properties (AOPs) and lidar ratios (LRs) were simultaneously analyzed and calculated. In particular, LRs in 340 nm were compared and validated using the UV-Raman lidar (RL) measurements. During the study period, aerosol optical depth at 500 nm (AOD500) had significant seasonal variation, with a maximum value of 0.68 in winter and a minimum value of 0.59 in autumn. Ångström exponent (AE) exhibited different seasonal variation patterns, and the minimum (0.81) and maximum (1.06) values appeared in spring and summer, respectively. The spectral difference between AE400–675 and AE675–870 indicated that high AOD675 values (>1.0) were affected by accidental factors (e.g., dust weather in spring and winter) and the accumulation of fine particle aerosols across all seasons. The relationship between AOD500 and AE400–870 was used to distinguish different aerosol types. Overall, mixed aerosols (MX) accounted for the largest contribution (ranging from 40.14% in autumn to 69.9% in spring), followed by biomass-burning or urban/industrial aerosols (BB/UI) (with the smallest value of 19.9% in spring, and the largest value of 43.66% in winter). Single-scattering albedo (SSAs) experienced weak seasonal variation, with a minimum in winter and a maximum in spring. The seasonal aerosol volume size distributions (VSDs) generally exhibited the trimodal patterns. The particle radius (R) of less than 0.5 μm is considered as fine mode, the coarse mode is R greater than 2.5 μm, and the middle mode is located somewhere in between them. The real CRI were ∼1.41–1.43, with no significant difference among different seasons. Besides, the LRs derived by combining sky-radiometer with Mie-scattering theory changed greatly with weather from 49.95 ± 8.89 in summer to 63.95 ± 6.77 in autumn, which were validated by RL with the errors within a certain height range of less than 10%. We confirmed the feasibility of using the LR of UV band from sky-radiometer as a reference value for the Fernald or Klett method.
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1 INTRODUCTION
Aerosols can affect the radiation balance of the Earth-atmosphere system by directly absorbing and scattering shortwave and longwave radiation (Charlson et al., 1992; Eck et al., 2005; IPCC, 2013), and also indirectly modify cloud microphysical properties and hence cloud radiation properties, number and cloud lifetime, thereby affecting climate (Twomey et al., 1984; Albrecht, 1989). At present, the impact of aerosols on global and regional climate remains a high research priority (Ramanathan et al., 2008; IPCC, 2013). Despite the contribution of numerous investigations toward the understanding of aerosols and their climate effects, there are still huge uncertainties in related studies due to the differences of temporal and spatial distributions and the interactions between aerosols and other atmospheric processes (Dubovik et al., 2002; Nakajima et al., 2003; Ramanathan et al., 2005; Li et al., 2011). Therefore, it is critical to quantify the aerosol optical properties (AOPs) in different regions, especially for urban areas in Northwest China, which are affected by both high anthropogenic pollution and long-distance transportation.
In general, ground-based active and passive remote sensing instruments provide reliable vertical profiles and column integrated aerosol optical properties. Their long-term continuous observations can improve our understanding of global and regional AOPs and their impact on the Earth’s climate (Holben et al., 2001; Kaufman et al., 2002; Sanap and Pandithurai, 2014). The sun-photometer or sky-radiometer has been confirmed to be the best-suited passive methods for measuring aerosols (Dubovik et al., 2000). Therefore, different observation networks have been established around the world, e.g., AERONET (Holben et al., 1998; Dubovik et al., 2000), SKYNET (Nakajima et al., 2020) established by United States and Japan, respectively, and CARSNET (Che et al., 2009; Che H. Z. et al., 2015), CSHNET (Xin et al., 2007) and SONET (Li et al., 2018) developed by China. Therefore, with the global and regional development of monitoring network, AOPs of many areas in China and around the world have been studied and reported (Hsu et al., 1999; Torres et al., 2002; Xia et al., 2004; Eck et al., 2005; Tripathi et al., 2005; Kim et al., 2007; Bi et al., 2013; Wang et al., 2014; Che H. et al., 2015; Ma et al., 2016; Xin et al., 2016; Su et al., 2018).
In addition, active lidar is commonly used due to its advantages of detecting the vertical distribution of aerosols. Lidar observation networks have been established in Europe (EARLINET) and Asia (AD-NET) for long-term continuous observation of aerosols, thereby advancing our knowledge of aerosols and their influence on climate (Murayama et al., 2001; Ansmann et al., 2003). However, the lidar ratio (LR) can affect the accuracy of optical parameters derived from active elastic lidar. Thus, the accurate LRs of different aerosol types (e.g., urban/industrial, marine, desert dust and biomass-burning) are important to ensure the accurate inversion of extinction coefficient and backscattering for elastic lidar (Ansmann, 2006). So, LRs of different aerosol types based on observations with sun-sky radiometer at different source regions around the globe have been presented (Shin et al., 2018). Nevertheless, the results of these methods need further verification and confirmation (Holben et al., 2001; Shin et al., 2018). Raman lidar (RL) has the advantage of independently retrieving the extinction and backscattering coefficients without assuming the LR. So, the LRs of all the aerosol types can be extracted directly from RL measurement, which are essential for verifying LRs obtained by sky-radiometer. For example, Müller et al. (2004), Müller et al. (2007) reported that the LRs of Saharan dust aerosols retrieved by AERONET was larger than that measured directly by lidar (Schuster et al., 2012). presented the LRs in the dust source regions of the northern Africa and the Arabian Peninsula by combining AERONET and CALIPSO observations, and indicated that the results were consistent with the Raman lidar observations (Tesche et al., 2009; Mamouri et al., 2013). However, direct measurements and studies of AOPs (especially for LR) were rarely conducted using RL and sky-radiometer in Northwest China, especially in heavy polluted urban regions (Cao et al., 2012; Su et al., 2018). Besides, LR is highly sensitive to regions and aerosol sources (Shin et al., 2018).
This paper presents some results of long-term AOPs including LR collected at Xi’an using a ground-based sky-radiometer and LR validated by simultaneous measurements of a RL system through several case studies. Section 2 briefly describes the study site, instrument and inversion method used in this paper. The statistical analysis of the AOPs and LR, and the comparison with the RL are presented in Section 3. Some discussions and conclusions are given in Section 4.
2 MEASUREMENTS AND METHODOLOGY
2.1 Site description
Xi’an, the capital of Shaanxi Province and the largest city in Northwest China, has a population of about 12.9 million and a population density of 1,282 person/km2. It is located in the middle of the Guanzhong Plain, adjacent to the Loess Plateau to the north, and the Qinling Mountains to the south. It belongs to the warm temperate, semi-humid continental monsoon climate, and the northeast wind prevails all year round. The rapid development of industry, urbanization and tourism in recent years has caused a dramatic increase in anthropogenic emissions, resulting in frequent occurrence of haze weather and poor diffusion of pollutants coupled with the unique topographical environment and climatic conditions in this region (Su et al., 2018). In addition, due to the prevailing monsoonal winds, it is often affected by dust storms transported from the western and northwestern Chinese deserts (Cao et al., 2005). Therefore, Xi’an can be considered as a typical city in Northwest China with significant air pollution problems influenced by both anthropogenic and natural aerosol sources (Zhang et al., 2002).
2.2 Sky-radiometer
The sky-radiometer (POM-02) was installed at the Jinhua schoolyard Xi’an University of Technology (XAUT) in January 2015. It is located at the East 2nd ring road of Xi’an city in Shaanxi Province in the northwestern China (34.25°N, 108.98°E; 396.9 m above sea level). It was manufactured by PREDE Co. Ltd. In Japan. The spectral observations of the direct Sun and diffuse sky radiances are set at 315 nm, 340 nm, 380 nm, 400 nm, 500 nm, 675 nm, 870 nm, 940 nm, 1,020 nm, 1,627 nm and 2200 nm. Among them, the 315 nm and 940 nm channels can be used to calculate the total ozone column content (Khatri et al., 2014) and water vapor column content (Campanelli et al., 2014), respectively. The 1627nm and 2200 nm channels can be applied to obtain the optical characteristics of the cloud, while the remaining channels can be utilized to provide aerosol optical parameters. The installation has been operational since January 2015. The calibration and validation were performed using the traditional Langley method, the improve Langley method and the integrating sphere (Campanelli et al., 2004). Depending on the wavelength, the accuracy of the method ranged 1–2.5%. The Skyrad package (Version4.2; Nakijima et al., 1996) was used to process and analyze the POM-02 measurements. And, the cloud screening algorithm developed by Khatri et al. (2014) was carried out in this manuscript, which mainly includes three steps: test with irradiance data, spectral variability test, and statistical analyses test, respectively. The uncertainty of optical properties retrieved have also been reported (Che et al., 2008; Nakajima et al., 2020). The absolute uncertainty of retrieved aerosol optical depth (AOD) was estimated to be about 0.01–0.02 for λ ≥ 500 nm and a larger value of about 0.03 for shorter wavelengths. Mean values of SSA retrieved from the PREDE sky-radiometer were significantly larger than those from the Cimel Sun photometer, with differences between 0.03 and 0.07, and the difference of real parts of RI obtained using the two instruments does not exceed 2.6%. The clear sky observations of POM-02 from January 2015 to March 2018 were selected and the observation details (i.e., daily or monthly atmospheric conditions) are shown in Table 1. Notably, the observation days in September, October, and November were so few, which could not fully represent the properties of aerosols in autumn over Xi’an region. Nonetheless, all available data would be discussed and findings for these months should be handled with care. Here the daily average of AOPs are calculated when the number of effective aerosol observations per day is more than three, and then the monthly average and seasonal average are obtained.
TABLE 1 | Effective observation days and measurements per month using sky-radiometer in Xi’an.
[image: Table 1]2.3 Raman lidar
Figure 1 shows a schematic diagram of a RL system developed by XAUT, which is used to measure the vertical profile and LR of aerosols at 354.7 nm in study. The detection principle is that an Nd:YAG laser after triple frequency emits light into the atmosphere with an eye-safe wavelength of 354.7 nm. The returned lidar signal interacting with the clouds and aerosols in the atmosphere is received by a telescope with a diameter of 250 mm and redirected into new lidar spectroscopy system. The system employs a dichroic mirror (DM) as the main spectroscopic device to reduce the influence of solar background radiation, and uses the filters (Fs) with a bandwidth of 1 nm and a peak rejection ratio of 65% to obtain the wavelength of interest and suppress strong elastic signals. The combination of DM and Fs can achieve high-efficiency signal extraction and acquire a 108 of rejection rate of elastic Mie-Rayleigh signals. The returned signal is divided into three signals. The first is the Mie-scattering signal obtained by reflection from DM1 and then by the F1 filter with the center wavelength of 354.7 nm, which is used to monitor the backscattering signals of molecular and aerosol. The second is that the signal emitted by DM1 is reflected by DM2 and filtered by F2 to obtain a Raman signal with a central wavelength of 386.7 nm for nitrogen molecules. Finally, the combination of DM2 and F3 is used for the Raman signal detection of water vapor molecules with a wavelength of 407 nm. Besides, SHG, THG, and PMT in Figure 1 represent second harmonic generation, third harmonic generation and photomultiplier tube, respectively.
[image: Figure 1]FIGURE 1 | A schematic diagram of Raman lidar system.
2.4 Lidar ratio
2.4.1 Lidar ratios retrieved from sky-radiometer
LR (S) is defined as the ratio of aerosol extinction (σa) and backscatter coefficient (βa), which is given by:
[image: image]
The scattering and extinction of light by a single aerosol particle is determined by the parameter r and refractive index m (RI). The overall optical properties of a particle system are determined by the individual particle optical properties as a set of particle spectral distributions:
[image: image]
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where rm and rM represent the minimum and maximum aerosol particle radiuses, respectively; Qext and Qb represent the extinction and backscatter efficiencies, respectively. dN(r)/dlnr represents the aerosol number spectrum, which has a relationship with the aerosol volume spectrum distribution (VSD) dV(r)/dlnr. The latter can be expressed as:
[image: image]
Aerosol extinction coefficient and backscatter coefficient are calculated based on Eqs 2–4 by combining Mie-scattering theory and aerosol VSD and RI derived from sky-radiometer. So, LR can be retrieved by sky-radiometer and Mie-scattering theory using Eq. 1.
2.4.2 Lidar ratios retrieved from Raman lidar
Raman lidar can obtain the extinction and backscattering coefficients of aerosols without assuming LRs derived from the received elastic scattering [P (λL,z)] and N2 vibrational Raman signals [P (λR,z)], which are expressed as:
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Where λL and λR represent the received wavelengths of the Mie channel (354.7 nm) and the N2 vibrational Raman channel (386.7 nm), respectively; CR and CM represent the system constant of Raman and Mie channels; [image: image] represents the number density of N2 molecules calculated by the United States Standard Atmospheric; [image: image] is the backscattering cross section of N2 molecules; αm and αa are the molecular and aerosol extinction coefficients, respectively; βm and βa are the molecular and aerosol backscattering coefficients, respectively.
Based on Eq. 5, the aerosol extinction coefficient αa can be retrieved:
[image: image]
where k is the aerosol wavelength exponent, and k is generally assume to be 1 for the tropospheric aerosol.
The aerosol backscattering coefficient βa can be retrieved by combining Eqs 6–7, which is given by:
[image: image]
Where zc is the reference height.
To this end, LR can be derived using RL measurements by combining Eqs 7-8. Specifically, the LR derived from RL observations is limited while the sky-radiometer can obtain a large amount of LR data. Therefore, LRs from sky-radiometer are verified and analyzed by comparing with RL-derived results over the Xi’an area in this paper. This would provide a reference value for the inversion of extinction coefficient and backscatter profiles for elastic backscatter lidar which require an a priori estimate.
3 RESULTS
Here we investigate and analyze the variations and characteristics of AOPs (e.g., AOD, AE (Ångström exponent), VSD, SSA (single-scattering albedo), ASY (asymmetry factor), RI and LR) derived from sky-radiometer observation data over the XAUT site during 2015–2018. Moreover, the accuracy of the sky-radiometer-derived LRs is validated and evaluated using inversion results of the RL system.
3.1 AOD and angström exponent
Figure 2 shows the monthly and seasonal averages of AOD and AE at XAUT site from January 2015 to February 2018 and Figure 3 shows the frequency distribution of AOD and AE during this period. Higher values of AOD500 occurred in October 2016 (0.87) and March 2018 (0.81), while lower values happened in May (0.35) and November (0.32) 2017. The average AOD500 in winter was about 0.68 ± 0.36, slightly higher than those in other seasons (spring: 0.6 ± 0.36; summer: 0.59 ± 0.33; autumn: 0.62 ± 0.4). The 3-year average AOD400 in Xi’an was about 0.75 ± 0.42, comparable to the values of other economic regions, such as 0.71 in Beijing (Yu et al., 2017) and 0.74 in Shanghai (Cheng et al., 2015). The high AOD in Xi’an indicates the heavy overall aerosol loading and frequent weather pollution in this region. As the largest city in Northwest China, industrial and human activities (e.g., industrial pollution, traffic emissions and residential heating) are the main reasons for high AOD values and severe pollution. Secondly, long-distance transport of dust aerosols from the Loess Plateau may also lead to an increase in atmospheric AOD. Thirdly, in the harvest seasons (such as summer and autumn), a large amount of straw is often burned from nearby farmland, resulting in frequent occurrence of haze conditions (Xia et al., 2013). The 3-year average AE value was about 0.94 ± 0.34, close to the results of Beijing (Li et al., 2018), indicating the dominance of fine-mode particles in the Xi’an area. The higher values of the monthly mean of AE occurred in July 2015 (1.18), and July 2017 (1.20), while the lower values were in April 2017 (0.77) and February 2016 (0.7). On the seasonal average, the AE values were the lowest in spring (0.81), but higher in summer (1.06) and autumn (1.03). It is known that a high AE indicates the dominance of fine particles, while a low AE value indicates that coarse particles are dominant. The low AE value in spring in Xi’an could be related to the long-distance transport of dust aerosols from the northern and northwestern China (Su et al., 2018).
[image: Figure 2]FIGURE 2 | The monthly (A) and seasonal averages (B, C) AOD and AE during 2015 and 2018.
[image: Figure 3]FIGURE 3 | The frequency distribution AOD (A) and AE (B).
Figure 4 shows the dependence of the daily mean values of AOD on wavelength, where the average, maximum and minimum values are marked with different symbols, respectively. It reveals that daily mean values of AOD decreased with the increase of wavelength. For example, the AOD340 daily average varied from 0.08 to 2.66 with a mean of 0.72; and the AOD500 daily average ranged from 0.07 to 1.99 with a mean of 0.54. This is consistent with the changing characteristics of AOD in other continental urban areas, mainly because anthropogenic emissions are the main source of aerosols in urban areas (Che H. Z. et al., 2015).
[image: Figure 4]FIGURE 4 | AOD at different wavelengths in XAUT during 2015–2018. The horizontal line in the middle of the box represents the median, while the upper and lower horizontal lines represent the 25th and 75th percentiles, respectively. The diamond represents the mean; the uppermost and lowest short lines represent the maximum and minimum values; and the asterisks represent the 1–99% range.
Some studies have demonstrated the feasibility of using optical and microphysical properties under different wavelengths to differentiate aerosol types (e.g. Dubovik et al., 2002). Currently, the most common and widely used method is the combination of AOD and aerosol size to distinguish different aerosol types (Pace et al., 2006; Kaskaoutis et al., 2007; Patel and Kumar, 2015, 2016). Specifically, different cluster regions can be categorized using the scatter plots of AOD500 and AE400-870. They are based on different thresholds selected according to physically aerosol parameters, and different regions represent different aerosol types (Kaskaoutis et al., 2011; Kumar et al., 2015). The selection of thresholds could differ in different study areas due to differences in aerosol loadings, meteorological conditions and emission sources. Since Xi’an is a densely populated and highly industrialized region, the AOD500 is quite high even without heavy pollution. Therefore, the thresholds chosen for the clean continental (CC) aerosols representing the background state over Xi’an are AOD500 < 0.3 and AE400-870 > 0.9, while long-distance transported desert dust (DD) aerosols corresponds to AOD500 > 0.7 and AE400–870 < 0.7. Cases that do not belong to any of the above categories are called mixed type (MX). Figure 5 shows the scatter plots of the AOD500 and AE400–870 for all seasons. Apparently, the range of ordinate AE varied greatly, indicating that the aerosol characteristics in Xi’an area can vary greatly, and the aerosol in the atmosphere can experience several different types of mixing. Table 2 displays the contributions of various aerosol types in different seasons. The MX aerosols accounted for the largest contribution over XAUT site which ranged from 40.14% (in autumn) to 69.9% (in spring), followed by BB/UI aerosols with wide range from19.9% (in spring) to 43.66% (in winter). In addition, CC aerosol holds a considerable proportion in the study region that peaked in summer (21.24%), indicating the relatively clean atmosphere and good air quality in Xi’an in summer. DD aerosol occurred mainly in spring (3.08%) and winter (6.63%). It is worth noting that the proportion of aerosol types in autumn is highly uncertain due to a limited observation data. Overall, these results suggest that the aerosols produced by local production, biomass burning, or transportation pollution in the Xi’an area are the dominant aerosols in the whole year, followed by dust aerosol.
[image: Figure 5]FIGURE 5 | Different aerosol types (green: CC; blue: DD; red: BB/UI; purple: MX) were discrimination based on the relationships of AOD500 and AE400-870 in different seasons (Spring (A), Summer (B), Autumn (C), Winter (D)).
TABLE 2 | Proportions of aerosol types in different seasons.
[image: Table 2]In addition, the size of fine aerosols and their contribution to AOD were analyzed using the graphical method (developed by Gobbi et al. (2007), which can be used to analyze the mixture of polluting aerosols and dust and distinguish the hygroscopic growth of aerosols from cloud contamination. In Figure 6, different colors indicate different AOD675 ranges. The solid black lines represent the size (Rf) of the fine mode in the aerosol size distribution, and the dashed blue lines represent the contribution (η) of the fine-mode aerosol to the total AOD675. δAE denotes the difference between AE400-675 and AE675-870, which is more sensitive to Rf than the η curves. δAE∼0 indicates the presence of cloud contamination or the contribution of coarse aerosols to total AOD of above 90%. Conversely, it represents an increase in fine-mode aerosol (Rf) and the percentage of fine-mode aerosol to total AOD675 (Gobbi et al., 2007). The relatively high AOD675 value (>1.0) in spring (see Figure 5A) was mainly related to the coarse particles (δAE>0, AE<0.3, η< 30%) and fine particles (δAE<0, AE>0.8,η>70%) in some typical examples, which was mainly driven by the dust event in spring and the hygroscopic growth of fine particles. However, in summer, the contribution of fine particles increased (Rf ∼ 0.15–0.25 μm, η>80%), and the high AOD675 value was primarily affected by the hygroscopic growth of fine particles which was weaker in autumn compared with summer (Figure 5C), mainly due to the relatively low water vapor content in atmospheric in autumn. The particle size range corresponding to higher AOD values mostly concentrated in 0.15–0.20 μm and η was around 70%–90%. Meanwhile, it is found that the AODs were affected by coarse and fine particles growth in winter. The relationship of AOD and relative humidity from 2015 to 2018 is also shown in Figure 7, which show the positive dependencies of AOD on relative humidity. In summary, the high value of AOD in Xi’an was affected by accidental factors, e.g., dust weather in spring and winter, and the accumulation of fine particle aerosols, which has been found in all seasons and was related with the hygroscopic growth of fine mode aerosols in summer and autumn, and aerosols growth in stable weather in winter. This finding further validates the results shown in Table 2 and Figure 5.
[image: Figure 6]FIGURE 6 | Seasonal (Spring (A), Summer (B), Autumn (C), Winter (D)) means Ångström exponent differences, δAE = AE400-675-AE675-870 as a function of AE400-870 and AOD675. Different colored dots indicate different AOD ranges.
[image: Figure 7]FIGURE 7 | The relationship of AOD and relative humidity from 2015 to 2018. AOD are averaged for seven relative humidity bins ranging from 20% to 90%, and the vertical lines indicate standard deviation.
3.2 Aerosol volume size distributions
The VSD is closely related to atmospheric conditions, and directly determines the properties of parameters (e.g., aerosol effective radius, optical depth, etc.) (Eck et al., 2010; Sinha et al., 2012). In a sense, aerosol VSD is also an important parameter in models and observations. Earlier studies suggested that the uncertainty of VSD is about 15% (Kaskaoutis et al., 2013). Figure 8 presents the seasonal average of VSDs in Xi’an and the vertical bars indicating the standard deviation of VSD. The figure shows some complex patterns and typical seasonal distribution differences. The overall VSD can be divided into two modes, i.e., fine mode (particle size (R) < 0.6 μm) and coarse mode (R > 0.6 μm), similar to those obtained by others in different situations (Dubovik et al., 2002; Singh et al., 2004; Alam et al., 2011, 2012; Adesina et al., 2014, 2017; Wang et al., 2014; Patel et al., 2017). The more subdivided results show that there was a typical bimodal distribution in winter, and a trimodal distribution in spring, summer and autumn. The peak radiuses of fine-mode and coarse-mode particles in the bimodal distribution in winter were centered with the dominance of coarse particles, at 0.25 μm and 5μm, respectively. The trimodal distribution in other seasons was a fine mode with R < 0.6μm, an intermediate mode located between 0.6 μm and 2.5μm, and a coarse mode with R > 2.5 μm. The summer VSD in the fine mode was higher than other seasons, indicating the relatively high fine-particle aerosols in summer compared with those in other seasons. This could be related to the enhanced chemical reaction of the atmosphere (Song et al., 2002) promoting the formation of ultrafine and fine particles, and the increase of the relative humidity in summer accompanied by the growth in number of particles with a radius >0.1 μm (Liu et al., 2011). Under the coarse mode, there was a characteristic of being higher in spring and winter than other two seasons. The main reasons could be due to the transportation of relatively large size dust particles in spring (Wang et al., 2010), serious weather pollution in Xi’an area during winter, resulting in large aerosol particles. It is worth noting that the particle radius is greater than 10 μm occurred in every season, which probably related to cloud contamination (Kudo et al., 2021).
[image: Figure 8]FIGURE 8 | Seasonal mean aerosol volume size distributions for spring (red), summer (blue), autumn (green) and winter (black) at XAUT station.
3.3 CRI, single-scattering albedo and ASY
Generally speaking, the real and imaginary parts of CRI represent the scattering and absorption effects of aerosol particles, respectively. Figure 9A displays the change of real CRI as a function of wavelength in different seasons, revealing that the real CRI exhibited significant seasonal variations, and the spectral dependence of real CRI was less obvious. There was a weak growth trend in the 400–870 nm, mainly due to the strong scattering of coarse particles in the near-infrared band (Wang et al., 2014). The average values of real CRI at 500 nm were 1.45 ± 0.04, 1.42 ± 0.06, 1.48 ± 0.05, and 1.45 ± 0.04 from spring to winter, respectively. Especially, lower values in summer indicate the presence of fine-mode absorbing particles (Alam et al., 2011, 2012; Che et al., 2013).
[image: Figure 9]FIGURE 9 | Seasonal averaged of real (A) and imaginary of RI (B), SSA (C), and ASY (D) at seven wavelength.
Seasonal mean values and the change of the imaginary CRI as a function of wavelength are shown in Figure 9B. Relative to the results in Figure 9C, its imaginary CRI and SSA experienced opposite trends as wavelength (in line with the theoretical basis). Similar to Wang et al. (2014), the imaginary CRIs were highly sensitive to the wavelength, which declined rapidly at 400–675 nm and started to increase from 870 nm to 1020 nm. The average values of imaginary CRI500 in the four seasons were 0.0050 ± 0.0021, 0.0045 ± 0.0011, 0.0056 ± 0.0031, and 0.0074 ± 0.0025, respectively. Similar seasonal variation has also been observed in Beijing (Yu et al., 2017; Su et al., 2018). The higher values of the imaginary CRI could be related to the large amount of absorbing aerosols produced by central heating in winter, while the lower value confirms the existence of scattering aerosols in the atmosphere in spring (Singh et al., 2004; Adesina et al., 2017).
SSA is defined as the ratio of scattering and extinction of aerosol particles, and is often used to reflect the scattering and absorption characteristics of particles in terms of cooling or warming. Different aerosol particles contain different spectral variation of SSA (Alam et al., 2012; Patel et al., 2017). For instance, sulfate aerosols are pure scattering aerosols, while black carbon aerosols are absorption-dominant aerosols. Spectral variation in SSA differed substantially during different seasons, revealing the changing seasonal characteristics of SSA under different wavelengths. SSAs (Figure 9C) in Xi’an area were relatively high during spring and summer, mainly attributed to fine pollution aerosols and high water vapor content in the atmosphere besides dust aerosol transportation in spring (similar to Singh et al. (2004)). The low SSA winter was mainly caused by the large number of carbonaceous particles brought by centralized heating and anthropogenic activities. The standard deviations of SSA in autumn is significantly larger than other reason, which are probably related to the limited observation data. Meanwhile, the variation of SSA with wavelength also exhibited a significant seasonal variation. The overall trend increased with wavelength, indicating stronger scattering in the visible and near-infrared spectrum (Dubovik et al., 2002). In detail, SSAs continued to increase from 400 nm to 870 nm in spring, summer and winter, indicating the presence of aerosol particles with high scattering effect from visible to the near-infrared spectrum (Sokolik and Toon, 1999). After that, they declined slightly from 870 nm to 1020 nm across different seasons (Wang et al., 2014). In addition, the SSA value reached the lowest level in winter from 340 nm to 675 nm, mainly caused by the strong absorption capacity and wavelength dependence of carbonaceous aerosols which made the absorption cross-section to drop significantly from UV to VIS (Kirchstetter et al., 2004; Feng et al., 2013). Similar to previous observations in the Yangtze River Delta of China (Liu et al., 2012), the difference in autumn is that SSAs increased with wavelength in the range 400–675 nm, and declined with wavelength in the range 675–1020 nm.
Figure 10 shows the seasonal average of real RI, imaginary RI, and SSA at 500 nm for BB/UI and DD aerosol, based on the classification in Figure 5. Compared with BB/UI, the real RIs of DD are larger, but the imaginary RIs have smaller values in spring, summer, and winter, indicating that DD has stronger scattering and weaker absorption. The imaginary RIs and SSAs of BB/UI have strong seasonal variation. Especially for summer, the imaginary RI is weak and the SSA is larger than 0.95. The high SSA values observed in the BB/UI aerosols were possibly related to the aging of smoke plume during transport and hygroscopic growth (Yu et al., 2013).
[image: Figure 10]FIGURE 10 | Seasonal averages of real RI (A), imaginary RI (B), and SSA (C) at 500 nm for BB/UI and DD aerosols.
The ASY represents the first-order moment of the scattering phase function, which describes the scattering direction of light after interacting with aerosol particles. It is related to particle size and composition, and is a key parameter that determines aerosol radiative forcing. ASYs range from 0.1 in very clean conditions to 0.75 in polluted and cloud-free atmosphere (Zege et al., 1991). Figure 9D shows the variation of ASY with wavelength in different seasons, decreasing from a maximum value of 0.74 for short wavelengths to a minimum value of 0.62 for long wavelengths, which exhibited the same change trend for all seasons with a continuous downward trend in the visible band and a slight upward trend after 870 nm. The peak values of ASY in summer and spring occurred at 340–500 nm and 500–1,020 nm, respectively. The significant decline of ASY in summer and autumn indicates suggesting that absorbing anthropogenic aerosols are dominant (Alam et al., 2011, 2012; Bibi et al., 2017). However, lower decrease in spring and winter suggests the presence of coarse-mode scattering aerosols (mainly dust) in fine-mode absorbing aerosols (Alam et al., 2012).
3.4 Lidar ratio
Using the aerosol VSD and CRI inversion of the sky-radiometer, combined with the Mie-scattering theory, the daily aerosol LRs in Xi’an area from 2015 to 2018 are retrieved. To compare with the results of 355 nm Raman lidar, the closest wavelength of sky-radiometer to the lidar system (340 nm) is selected in this paper. Figure 11A displays a monthly change of aerosol LRs in 340 nm over Xi’an region. It reveals the large fluctuation of aerosol LRs in Xi’an at different time, indicating the huge changes in the monthly aerosol composition and microphysical characteristics in Xi’an. Among them, the higher values occurred in September (85.35 ± 26.48) and January (69.88 ± 13.25), while the lowest value happened in May (41.40 ± 8.61). Figure 11B illustrates the seasonal variation distribution of the aerosol LRs in 340 nm. It shows the aerosol LRs in different seasons at averages of 57.41 ± 6.00, 49.95 ± 8.89, 63.95 ± 6.77, and 63.24 ± 20.15, respectively. The reason why the aerosol LR bottomed in spring might be related to the frequent dust weather occurrence in Xi’an accompanied by the mixing of a large amount of dust aerosol in the air. Besides, previous studies have confirmed that the LR of large DD is generally lower than other aerosols (Franke et al., 2001; Ansmann et al., 2005). The higher aerosol LRs in autumn and winter could be due to the increased concentration of small carbon-containing aerosol particles in the air mainly from concentrated heating with high absorption (Franke et al., 2001; Ansmann et al., 2005). However, the LRs in autumn need to be further validated and analyzed due to so few effective observation data. Figure 11C shows the annual distribution of the 340 nm LRs in Xi’an during 2015–2018. We would like to point out the effective measurements of 2 months (i.e., February and March) in 2018. It can be seen that the highest aerosol LR in 2017 was 60.22 ± 14.54, and the results for the other 3 years differed little, which were 51.57 ± 13.64 (2015), 52.38 ± 14.15 (2016), and 55.73 ± 9.74 (2018), respectively. The reason why the LR in 2017 was relatively high might be related to the serious air pollution and the complicated types of aerosols in that year (Su et al., 2018). Figure 11D shows the spectral variations of LRs, and the average values from 36.55 ± 13.40 at 870 nm to 61.16 ± 25.92 at 340 nm, with the characteristics of LRs of overall decline at shorter wavelengths (340–870 nm) and increase at longer wavelengths (870–1,020 nm).
[image: Figure 11]FIGURE 11 | Monthly (A), seasonally (B), yearly mean (C) and spectral variations of lidar ratios (D).
Furthermore, according to the method of classifying aerosols based on AOD and AE, the average aerosol LRs of different types are obtained. Here we emphasize more on the effects of nonsphericity of mineral dust which cannot be taken into account in the calculation of LR of dust aerosol (owing to Mie-scatter theory used in this paper is only suitable to spherical particles). The results reveal that the average value of the LRs was 45.57 ± 17.48 for clean aerosol. The LR of BB/UI aerosol was 60.87 ± 12.18, close to the LR of 62 detected in Balis et al. (2000). Besides, the LR of DD and MX were 52.24 ± 14.30 and 47.06 ± 11.21, respectively.
3.5 Case study: Comparative analysis of lidar ratios
In this paper, the LRs and their errors inverted by the sky-radiometer are compared and analyzed with the LRs (355 nm) derived from Raman lidar system. There is negligible difference in extinction and backscatter between the two wavelengths. Figure 12 shows the distribution of aerosol backscatter, extinction coefficient and LR profiles at 355 nm with different measurement time, respectively. To realize collaborative observation and comparison of sky-radiometer and lidar, the observation time interval of two instruments is kept within 6 min (see Table 3). We think that uniform atmosphere condition can be observed by the two instruments when the difference in measurement time is small. Overall, the effective detection height of backscatter coefficient can exceed 8km, while the extinction coefficient can only reach about 3 km. Figure 11A shows the backscatter coefficients at Feb. 02, 2018 with a loft layer within the height of 2.0–3.0 km. It can be seen that the profile of the aerosol backscatter coefficient had a certain fluctuation within the height of 5–6 km at Mar. 27, 2018, and a maximum value near 5.2 km. Figure 11B shows that extinction coefficients at 355 nm were highly variable which varied from 0.2km−1 to 0.4 km−1 in the lofted particle layer. The maximum values still occurred at around 2.5 km height and displayed the lofted layer in 2.0 km and 3.0 km with extinction coefficients of 0.4 km−1 and 0.3 km−1 at 15:44 and 15:59 27 Mar. 2018, respectively. They showed the tendency of the lofted layer to rise and fall with time. Figure 12C shows the comparison of the LR from 355 nm RL measurements with the column-averaged of the sky-radiometer at three different measurement times. The LR from sky-radiometer was determined according to Eqs 1–5 which indicate different aerosol characteristics. Ansmann et al. (2005) showed that LR decreases with particle size and increases with relative contribution of absorption to total extinction. Moreover, LR is generally lower for larger particles with lower light absorption (roughly 20–30 sr), and larger for small particles with highly absorbing urban aerosol (about 70–100 sr) (Franke et al., 2001). Similar phenomenon can be seen in Figure 12C, where LRs increase at the range of 50–100 sr as extinction coefficient increases from lofted layer. In detail, the column averaged LRs of 67.63 sr, 64.75 sr and 56.42 sr were obtained from the three lidar measurements. The column averaged LRs from sky-radiometer are 53.61, 60.84 and 62.8 sr for the spherical particle model, respectively. Table 3 shows the relative error between the average value in the observation altitude range of Raman lidar and the LR derived from sky-radiometer, and the height ranges that the relative errors of the two detection methods are less than 10% and 20% at different times. It can be seen that the average LRs within the effective detection height of RL inversion at different times are large than the LR of sky-radiometer inversion, and the relative errors are within 6%–20%. This finding is consistent with theory and other studies (Ferrareet al., 2001; Müller et al., 2004; Müller et al., 2007). The main reason is that the aerosol LRs of the entire atmosphere are inverted using sky-radiometer, while RL detects aerosol information from lower and middle atmosphere. Besides, errors of VSD and CRI probably enter into the calculation of the LR in the case of the sky-radiometer data. Overall, the relative error between the LR of the sky-radiometer and the Raman lidar inversion is generally less than 20% at an altitude of approximately 1–2 km. Therefore, the LRs at this altitude from the sky-radiometer inversion can be used as the hypothetical value for the inversion parameters of the lidar Fernald method.
[image: Figure 12]FIGURE 12 | Backscatter coefficients (A), extinction coefficients (B), and lidar ratios (C) derived from Raman-Mie lidar on Feb. 04 13:57 (red dotted line),Mar. 27 15:44 (green dotted line), and Mar. 27 15:59 (blue dotted line), 2018. Red, green and blue solid lines denote the column-averaged lidar ratio from sky-radiometer at different times corresponding to lidar.
TABLE 3 | The average lidar ratios and relative errors inverted using two detection methods.
[image: Table 3]4 DISCUSSIONS AND CONCLUSIONS
Based on sky-radiometer, this study derived and analyzed aerosol micro-physics parameters (AOD, AE, SSA, VSD, VOL, CRI, and LR) in Xi’an region during 2015–2018. By combining the aerosol VSD and CRI inversion of the sky-radiometer and the Mie-scattering theory, we retrieved the daily aerosol LRs in Xi’an area from 2015 to 2018. The characteristics of the aerosol LR were analyzed statistically, and the results were used for comparison and analysis with RL.
AOD500 has a pronounced seasonal variation and the averaged AOD500 in winter was slightly higher than those in other seasons. The 3-year averaged AE value indicates the dominance of fine-mode particles in the Xi’an area and the lowest value occurred in spring. The MX aerosols accounted for the largest contribution over XAUT site, followed by BB/UI aerosols. CC aerosol held a considerable proportion which peaked in summer. The high AOD in Xi’an indicates the heavy overall aerosol loading and frequent weather pollution in this region, mainly driven by accidental factors (e.g., dust weather in spring and winter) and accumulation of fine particle aerosols across all seasons. There were a bimodal distribution in winter, and a trimodal distribution in other seasons. The summer VSD in the fine mode was higher than other seasons, and there was a characteristic of being higher in spring and winter compared to other two seasons under the coarse mode. Difference with the real CRI showed significant seasonal variations, and the imaginary CRIs were highly sensitive to the wavelength.
The cause of the lowest aerosol LR in spring might be due to the frequent dust weather occurrence in Xi’an. The higher aerosol LRs in autumn and winter could be due to the increased concentration of small carbon-containing aerosol particles in the air mainly from concentrated heating with high absorption. There was some error between the LR of the Raman lidar and sky-radiometer inversion, about 6%–20%. This could be that the observation wavelength of the Raman lidar is 355nm, while the wavelength of the sky-radiometer is 340 nm. Previous studies pointed out that the aerosol LRs correspond to different wavelengths differently. Raman lidar detects low- and mid-level atmosphere, while the sky-radiometer observes the entire layer atmosphere. Hence, some bias could be introduced in the sky-radiometer retrievals because cloudy days (thus, comparatively high aerosol water content) are underrepresented. During the inversion of the aerosol optical-physical parameters using the sky-radiometer, inaccurate calibration results of the instrument, VSD and CRI reverse errors can lead to an error of LR. Similarly, inaccurately derived extinction and backscatter coefficients can also result in an error of LR.
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Detrended fluctuation analysis (DFA) can quantify long-range correlation (LRC) and fractal scaling behavior of signal. We compared the results of variant DFA methods by varying the order of the polynomial and found that the order of 6 was relatively better than the others when both the accuracy and computational cost were taken into account. An alternative DFA method is proposed to quantify the LRC exponent by using best-fit polynomial algorithm in each segment instead of the polynomial of the same order in all of segments. In this study, the best-fit polynomial algorithm with the maximum order of 6 is used to fit the local trend in each segment to detrend the trend of a time series, and then the revised DFA is used to quantify the LRC in the time series. A series of numerical studies demonstrate that the best-fit DFA performs better than regular DFA, especially for the time series with scaling exponent smaller than 0.5. This may be attributed to the improvement of the fitted trend at the end of each segment. The estimation results of variant DFA methods reach stable when the time series length is greater than 1,000.
Keywords: detrended fluctuation analysis, scaling exponent, long-range correlation, bestfit polynomial, Fourier-filtering method
INTRODUCTION
In various systems in nature, a broad variety of signals present complex behaviour that can exhibit long-term persistence, such as DNA sequences, human gait, and weather records (Chianca et al., 2005). Long-term persistence is also commonly referred to as long-range correlation (LRC), which implies that there is non-negligible dependence between the present and all points in the past (Timothy et al., 2017). Many climatic observations show LRC (Jiang et al., 2015), which means past climate has a long-term effect on the future evolutionary trend of the climate system (Bartos and Jánosi, 2006). Quantifying the LRC is crucial for understanding the dynamics of the systems. If a time series is characterized by LRC, then its autocorrelation function decays by a power law, as [image: image], where n is the lag time and C(n) is the autocorrelation (Kantelhardt et al., 2001). Scaling exponent can be used to quantitatively describe the strength of LRC of a time series, which can be estimated by various methods, such as fluctuation analysis (FA), detrended fluctuation analysis (DFA) and rescaled range (R/S) analysis (Hurst, 1951; Peng et al., 1992; Peng et al., 1994).
Most signals from complex physical and biological systems are nonstationary and are embedded in various trends, which leads to difficulties in quantifying the LRCs of the signals. R/S and power spectral analysis can only be used for stationary time series. DFA shows an advantage over the conventional methods. DFA can systematically eliminate nonstationary trends by changing the order of polynomial fitting, and avoids the spurious detection of apparent self-similarities which may be an artefact of extrinsic trends (Kantelhardt et al., 2002). DFA has been widely applied in climate research, such as quantifying the LRC of climate systems (Zhao et al., 2017), evaluating the dynamic characteristics of climate system models (Blender and Fraedrich, 2003), and further the performance of climate system model. Zhao et al. (2021) investigated the LRC characteristics of global air temperature of 8 models from CMIP5, and indicated that four models perform better than the others over most regions of the global ocean. However, the nonlinear filtering properties involved with detrending in the DFA method may induce instabilities in the scaling exponent estimation (Kiyono and Tsujimoto, 2016).
Many studies managed to improve the DFA method by introducing different detrending techniques, such as the centered moving average (CMA) method (Ramirez et al., 2005), the modified detrended fluctuation analysis (MDFA) (Kiyono et al., 2005), detrended moving average (DMA) method (Arianos and Carbone, 2007), and orthogonal detrended fluctuation analysis (Govindan, 2020). Different methods show various advantages and limitations (Chen et al., 2005; He et al., 2011). DFA analysis based on empirical mode decomposition (EMD) performs better than the classic DFA when the time series is strongly anticorrelated (Qian et al., 2011). CMA performance is slightly superior to DFA (Shao et al., 2012). DMA method performs better than DFA for signals with scaling exponent between 0.2 and 0.8, while DFA performs better when the scaling exponent exceeding 0.8 (Xu et al., 2005). Numerical analysis shows traditional DFA still has advantages in some situations (Grech and Mazur, 2005; Bashan et al., 2008).
In this study, the traditional DFA and its modification were used to estimate the scaling exponents of LRC of time series produced by FFM. DFA methods are described and then the results of DFA with different polynomial order are presented. Next, the results of regular DFA and the alternative method are systematically compared. And then, the influence of time series length on the calculated results is investigated. In the end, the main conclusion of this study and a brief discussion are presented.
METHODS
Detrended fluctuation analysis
DFA can be used to estimate the strength of the LRC in a time series (Peng et al., 1994; Hu et al., 2001). DFA is performed using the following steps:
(1) The anomalies of a time series {x(i), i = 1, 2, …, N} are first calculated, and then gradually accumulate to form a new time series {Y(i), i = 1, 2, …, N}.
(2) The profile Y(i) is separated into non-overlapping segments with equal length [image: image]. Considering statistical reliability, τ varies from 10 to N/4 (Kantelhardt et al., 2002) with the interval of 1 in this study.
(3) In each segment, the polynomial trend of order p is calculated and then eliminated from the segment to obtain the fluctuation time series. When p = 2, a 2nd-order polynomial function is used to fit the profile (DFA-2). DFA-6 uses a 6nd-order polynomial function. DFA-2 is used the most frequently among different DFA-n methods.
(4) The variance of all the fluctuation time series is averaged to obtain the mean variance fluctuation function [image: image]. If there is a power law relationship between [image: image] and [image: image], then
[image: image]
here, α is the scaling exponent. If α = 0.5, the time series is a random sequence without long-term persistence. If 0.5<α<1.0, the time series has long-term persistence. If 0<α<0.5, an anti-correlation exists in the time series.
Best-fit polynomial
We propose to use best-fit polynomial in step (3). In each non-overlapping segment, the trend of the time series is calculated by best-fit polynomial functions with the maximum order varying from 2 to k. Then the best-fit degree of a polynomial fit is selected by minimizing the chi-square method. However, there is a problem in determining the value of k. We performed two independent sets of tests to show the effect of polynomial order on the DFA results. In each group, 2000 time series with length of 20,000 were generated by Fourier-filtering method (Peng et al., 1991). The actual scaling exponents are 0.3 and 0.8, respectively. The box charts of the scaling exponents calculated by different DFA-n are shown in Figure 1.
[image: Figure 1]FIGURE 1 | The box chart for DFA-n tests and the actual scaling exponents of the time series is 0.3 (A) and 0.8 (B).
For both group tests, the range of calculated scaling exponents decreases with polynomial order (Figures 1A,B). The minimum value of DFA-n results for time series of 0.3 increased apparently while the maximum value basically unchanged (Figure 1A). The median value of DFA-n results also showed an increasing trend with the order of polynomial functions in Figure 1A. In Figure 1B, the maximum value of DFA-n results decreased while the minimum value increased. Thus, the median value of DFA-n results varied little with order for time series with scaling exponents of 0.8. The median value error is more apparent for signals of 0.3 than those of 0.8 with the increase of n-order. In general, the range and median value of DFA-n results vary little for order varying from 6 to 8. Considering computational cost, the maximum order of the best-fit polynomial can be set to 6, and the minimum order is set to 1. DFA based on best-fit polynomial with the maximum order of 6 is described as DFA-BEST6 in this study.
RESULTS
Comparison of DFA-2, DFA-6 and DFA-BEST6
The LRC exponents calculated by DFA-2, DFA-6 and DFA-BEST6 were compared in Figure 2. The actual scaling exponent of time series varies from 0.3 to 0.9 with an increment of 0.1 from test 1 to test 7. The 10,000 time series generated by the FFM method is used in each test. The sample size is 20,000 in each time series. The box chart shows the median, maximum, minimum and interquartile value of the estimated exponents for 10,000 time series (Figure 2). Results of DFA-2, DFA-6, and DFA-BEST6 can all characterize the LRC reliably. The range of scaling exponents calculated by the three DFA methods increases with the actual value. The range of the DFA-2 results are greater than those from DFA-6 and DFA-BEST6. The range of scaling exponents obtained by DFA-BEST6 is the smallest among the three methods. The median values of DFA-2 and DFA-6 are close to the actual values when the scaling exponent is greater than 0.5, while larger than the actual values when it is smaller than 0.5. For DFA-BEST6, the computed scaling exponents are close to the actual values in all tests, especially when the actual value is smaller than 0.5.
[image: Figure 2]FIGURE 2 | The box chart for results of DFA-2, DFA-6 and DFA-BEST6 methods for 10,000 time series.
Further comparison of the results from DFA-6 and DFA-BEST6 were shown in histograms (Figures 3A,B). The scaling exponents from DFA-BEST6 varied from 0.26 to 0.36, while the results from DFA-6 varied from 0.27 to 0.37. The percentage of scaling exponents from 0.29 to 0.32 calculated by DFA-BEST6 is 82.9%, while that calculated by DFA-6 is 70.5%. Results of DFA-BEST6 centred around 0.31 while those of DFA-6 centred around 0.32 (Figure 3A). For time series of 0.9, distributions of the results of DFA-6 and DFA-BEST6 are consistent and concentrated around the actual value, which shows better performance than the time series of 0.3 (Figure 3B). The percentage of scaling exponents between 0.86 and 0.92 from DFA-BEST6 is 83%, and that from DFA-6 is 82.6%. In general, the results of DFA-BEST6 are more concentrated around the actual value than DFA-6, which indicates better performance.
[image: Figure 3]FIGURE 3 | The histograms of scaling exponents simulated by DFA-6 and DFA-BEST6 for time series with actual scaling exponents of 0.3 (A) and 0.9 (B), respectively.
Traditional DFA and the alternative methods presented above all can successfully detect LRCs in signals well. DFA-BEST6 shows better performance than the other two methods statistically. In Figure 4 we show an example of a time series produced by FFM with a scaling exponent of 0.7. The result of DFA-BEST6 is equal to the actual value. However, the scaling exponent calculated by DFA-2 and DFA-6 are both 0.74, which is larger than the actual value. Both DFA-2 and DFA-6 have larger values of the root mean square fluctuation functions than DFA-BEST6, which indicates the variance of the results of DFA-BEST6 is smaller than those of DFA-2 and DFA-6.
[image: Figure 4]FIGURE 4 | Fluctuation Function [image: image] from the DFA-2, DFA-6, and DFA-BEST6 for time series with scaling exponent of 0.7. The black squares denote the results of DFA-2, blue circles denote DFA-6, and red triangles denote DFA-BEST6.
The 20,000 samples of time series used in Figure 4 are shown in Figure 5A, showing the stochastic character. In Figure 5B, the estimated trend Ys(i) (red lines) in DFA-2 shows discontinuous jumps at the end points of each window. For DFA-6, the estimated trend Ys(i) also shows discontinuous jumps at the end of each window (Figure 5C). However, the deviation of fitted trend from the cumulative anomaly in Figure 5C is smaller than that in Figure 5B. In contrast, the estimated trend in DFA-BEST6 shows continuous behaviour (Figure 5D). The deviation of fitted trend from the cumulative anomaly in DFA-BEST6 is the smallest among the three methods, which is consistent with the results in Figure 4.
[image: Figure 5]FIGURE 5 | (A) time series with the length of 20,000, and the profiles Y(s) (black lines) and the fitted profiles Ys(i) (red lines) calculated by (B) DFA-2, (C) DFA-6, and (D) DFA-BEST6 method. The box size s = 200.
Influence of time series length
For time series with scaling exponent of 0.3, the scaling exponents calculated by DFA-2, DFA-6, and DFA-BEST6 are stable when the time series length approaches 1,000 (Figure 6A). The variance range of results of DFA-6 is smaller than those of DFA-2 and DFA-BEST6 when the time series length is greater than 1,000, and vice versa. For the time series of 0.9, the effect of the data length is less pronounced compared to the time series of 0.3. The calculated scaling exponents are stable when the time series reaches 500 (Figure 6B). The performance of DFA-BEST6 is better than those of DFA-2 and DFA-6 as the length of the time series increases.
[image: Figure 6]FIGURE 6 | The box chart for results of DFA-2, DFA-6 and DFA-BEST6 tests for 2000 samples with data length varied from 300 to 10,000 and scaling exponents of (A) 0.3, (B) 0.9.
To quantify the degree of bias in the median exponents estimated from DFA-2, DFA-6 and DFA-BEST6. Relative error is calculated as follows: [image: image], where [image: image] is the median exponent estimated by three methods and [image: image] is the actual exponent of the long-range correlated data used in the analysis. E takes on a value zero if an approximation correctly characterizes the exponent. In Figure 7, we show the variation of E as a function of actual scaling exponent for DFA-2, DFA-6, and DFA-BEST6. For the short dataset containing 3,000 samples, the relative error of exponents estimated is about 6.9%, 14.7% and 6.2% for DAF-2, DFA-6 and DFA-BEST6, respectively (Figure 7A). For 20,000 samples, the exponents estimated form DAF-2 show a relative error of about 3.7% and those from DFA-BEST6 show a relative error of about 3.2%, whereas those from DFA-6 show a relative error of about 5.5% (Figure 7B). The relative error for the 20,000 samples is smaller than that for 3,000 samples, and results estimated from DFA-BEST6 are relatively more stable than other two methods.
[image: Figure 7]FIGURE 7 | Relative error: the biases of the median of estimated exponents from the actual ones are shown for DFA-2, DFA-6 and DFA-BEST6 in (A) for 3,000 samples and in (B) for 20,000 samples.
CONCLUSION AND DISCUSSION
In this paper, we introduce a variant of the DFA method using best-fit polynomial to characterize long-range correlations. By systematically comparing with the results of DFA-n (n = 2, 3,..., 8), we found the result of DFA-n with high order is better than that of low order when the scaling exponents is larger than 0.5. However, the improvement is slight when the order exceeds 6. Then the order of 6 is chosen as the highest order of the best-fit polynomial. The detrending procedure using n-order polynomial results in discontinuous jumps at the end points of each window, a property that may induce an increase in the estimation error.
A modification to the DFA is proposed in this study, which uses best-fit polynomial to detrend local trend in each segment. Numerical studies have shown that best-fit polynomial can effectively improve the bias at the end of each window. The proposed method performs as well as the traditional DFA method in estimating the scaling exponent when the exponents of the time series exceed 0.5. DFA-BEST6 characterizes the long-range correlations better than the original approach when scaling exponents are below 0.5. DFA-BEST6 can eliminate the external linearing trend as well as DFA-2 (see Supplementary Material). The estimation of the LRC reaches a stable state when the data length is larger than 1,000. The data length has a stronger effect on signals of smaller scaling exponents. DFA-BEST6 quantifies the LRC exponent with a relative error of about 6.2% for short datasets (3,000 samples) and a relative error of about 3.2% for long datasets (20,000 samples).
The results of this study have shown that a methodological improvement in DFA by modifying the detrending algorithm. Although DFA-BEST6 is able to improve the estimation of the scaling exponent, there is an overfitting phenomenon in the results, especially for signals with strong LRC. Moreover, this approach would require a considerably larger computational cost than regular DFA. These need further studies to improve the method.
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This study evaluates changes to the number, intensity and path of tropical cyclones (TC) in the 21st century under the 1.5°C “never-exceed” (NE), 1.5°C overshoot (OS), and 2.0°C “never-exceed” (NE) limited warming scenarios, compared to the historical experiments of the Community Earth System Model Large Ensemble Project (CESM-LE). The large amount of data generated by the model makes it impossible to manually extract TC activity. A tracking algorithm was developed to detect and track TC activity. The results show that the algorithm has good stability and high accuracy, and it is suitable for grid data with spatial resolutions finer than 2.0° × 2.0°. The analysis shows that changes of sea surface temperature and wind shear are responsible for the increment in the TC mean intensity under warmer scenarios. Under the 1.5°C OS scenario, the annual mean number of TCs and mean TC energy increase the most. The power dissipation index (PDI) of TCs under three scenarios were projected significantly increased. Under the 1.5degNE and 2.0degNE scenarios, more TCs move to the northeast part of China over time. Under the 1.5degOS scenario, more TCs will land in Southeast China in the end of this century. The coastal areas of northern China may gradually become another area of dense TC landing.
Keywords: tropical cyclone, detecting and tracking, projection, climate change, algorithm
1 INTRODUCTION
The coast of Northwest Pacific is the most densely populated area in the world. The social and economic development can be significantly affected by climate change and meteorological disasters. Projection of the future changes in tropical cyclones can provide a scientific basis for policy-makers to formulate strategies for climate change adaption and mitigation.
Previous studies have indicated the presence of a connection between global warming and altered tropical cyclone (TC) activities (Chan and Liu 2004; Webster et al., 2005; Knutson et al., 2008; Zhang et al., 2011; Li et al., 2013). Many studies of TCs in the climate change scenarios were based on global climate models (GCMs) (Chauvin et al., 2006; Ying et al., 2012). The early version of GCMs have resolutions usually between 100 and 400 km, which are too coarse to simulate the intensity and frequency of TCs reasonably. With the development of high performance computer (HPC), GCMs with an finer resolution [such as HighResMIP (Haarsma et al., 2016)] could reach the requirement (Zhao et al., 2012). The other studies of TCs have used regional climate models (RCMs), which have finer spatial and temporal resolution compared to GCMs (Wu et al., 2022). Studies of TCs in climate change scenarios mainly use the two approaches of RCM or GCM.
In the RCM approach, several features of TCs such as route, intensity and frequency have been well-simulated with a relatively high resolution. For example, Nguyen and Walsh (2001) used a RCM to downscale the impact of global warming on TCs for interannual and decadal timescales. Gao et al. (2003) used the nested global ocean-atmosphere coupled model, Regional Climate Model version 2 (RegCM2) to investigate changes of TCs under the scenario of doubling carbon dioxide, and found that the frequency of TCs landing in China would increase and the TC routes would move northwards. Although several studies based on RCMs found similar results (Su et al., 2010; Wu and Yu 2011), the limited high-performance computing resources restricted simulation domains, durations, resolutions and number of scenarios that could be studied.
The GCM method focused on assessing the large-scale atmospheric background impellent for the generation and activity of TCs. Many studies have indicated that atmospheric conditions over the Northwest Pacific Ocean affect the frequency, intensity and route of tropical cyclones (Wang et al., 2006; Wang et al., 2007). The changes of large-scale meteorological fields in the climate change scenarios were used as proxies for changes of TC activity (Chan et al., 2001; Wang et al., 2006; Fan 2007; Lang and Wang 2008). For example, Vecchi and Soden (2007) analyzed 18 coupled models from the A1B scenario of Coupled Model Intercomparison Project Phase three (CMIP3) and found that increased vertical shear of zonal wind would restrain TC activities. However, Zhang and Wang (2010) found that changes of meteorological elements under global warming could induce more TC activities, based on the analysis of sea surface temperature (SST), precipitation and vertical shear of zonal wind from 18 GCMs in CMIP3. A recent study (Knutson et al., 2020) based on CMIP6 model showed that under the 2°C anthropogenic global warming, TC frequency at global scale will decrease, while mean intensity and rain rate will increase. Most studies based on GCM ensembles involved uncertainties in the consistency of the results between different models. It was difficult to obtain quantitatively comprehensive information about the frequency, intensity and route of TCs using this indirect method.
There were some approaches used in previous studies for tracking TCs. The classic one, which was called “the standard approach” (Blender et al., 1997), used pressure field in a certain height level or geopotential-height field at certain pressure level, with a threshold of minimum geopotential-height gradient (Bell and Bosart 1989; Blender et al., 1997; Blender and Schubert 2000). Some studies involved more elements, for example, Camargo and Zebiak (2002) used relative vorticity, the maximum surface wind speed, sea level pressure and temperature anomaly threshold to find the vortex. Tory et al. (2013) introduced a new quantity based on Okubo-Weiss parameter called Okubo-Weiss-Zeta (OWZ). Their approach can be adapted to data at different resolutions. They applied it to ERA-interim and reached 85% hit rate. Several recent studies (Bell et al., 2018; Bell et al., 2019b) used this approach to track TCs in reanalysis and model outputs.
The approaches described above have their shortcomings. Blender et al. (1997) only applied their method to T106 resolution data, and their method requires TCs covering 3 × 3 grid points, which brings too strict resolution constraints on the input data. The paper does not give clear test results of the tracking performance, either. Camargo and Zebiak (2002)’s method used different thresholds for different kinds of input data. This gives an impression that the method does not have broad applicability. In addition, the method does not perform well in WNP. Tory et al. (2013)’s method performs well after fine-tuning the threshold, but they only fine-tuned for ERA-Interim reanalysis and no other reanalysis was tested. The false alarm rate of their method is also relatively high, which reached nearly 50% if hit rate is 85%.
In this study, we have developed a TC detection and tracking algorithm over the Northwest Pacific Ocean, which has been successfully used to identify and track TCs. This new method was expected to performed more effective and accurate compared with the previous. Then, the method was applied to calculate changes of TC in the low warming scenario from a set of climate projections produced by a high resolution GCM.
The paper was organized as follows: In Section 2, the dataset and methods were introduced. In Section 3, the model performance was evaluated through a comparison of historical simulations with observations. Future changes in the atmospheric background and TCs under the 1.5°C and 2°C warming targets were discussed in Section 3. We summarized our results and made conclusions in Section 4.
2 DATA AND METHODOLOGY
2.1 Data and method
We used data from the Community Earth System Model Large Ensemble Project (CESM-LE: Kay et al., 2015) and limited warming simulations (Sanderson et al., 2017) to assess climate changes in scenarios with different end-of-century warming. The following data was used: Firstly, 30 ensemble members from the CESM-LE historical experiment with well-mixed greenhouse gases (GHGs), short-lived gases, aerosols and ozone; 5 ensemble members from the “never-exceed” 1.5°C warming from pre-industrial scenario (1.5degNE); 5 ensemble members from the “overshoot” 1.5°C warming scenario (1.5degOS) and 5 ensemble members from the “never-exceed” 2.0°C warming scenario (2.0degNE).
Carbon emissions in the 1.5degNE scenario follow emissions from the Representative Concentration Pathway (RCP) with 8.5 Wm−2 end-of-century radiative forcing (RCP8.5) until 2017, then decrease over 10 years to 50% of the level in 2017. The emissions continue to decrease, and carbon neutral is reached at 2038. In this scenario, the rise in global surface temperature anomaly will slow in the last 10 years of this century and slowly approach 1.5°C.
Carbon emissions in the 1.5degOS scenario also follow emissions from RCP8.5 until 2017, but their subsequent decline is slower than that in 1.5degNE, decreasing over 15 years to 50% of the level in 2017. Carbon neutrality is reached at 2046. In this scenario, the rise in global surface temperature anomaly will exceed 1.5°C in 2030, reach a peak in 2050, then slowly decline back to the 1.5°C goal.
In the 2.0degNE scenario, the decline in carbon emissions is the slowest. After 2017, emissions decreasing over 25 years to 50% of the level in 2017. Carbon neutrality is reached at 2078. The rise in global surface temperature anomaly will reach 2.0°C in 2075 and remain stable until the end of the century.
In these low-emission scenarios, only well-mixed greenhouse gas concentrations were different between scenarios, while all other forcings followed Kay et al. (2015) from 2006 to 2100. The horizontal resolution of CESM-LE is 1.25° × 0.94°. The research domain was the Northwest Pacific (−5°S—45°N, 90°E—160°W). The historical period was defined to be 1976–2005 and climate change scenario 2006–2100.
We used Japan Meteorological Agency (JMA) TC best track data as the standard for historical TCs, which contains detailed TC track and intensity information. The credibility of this dataset has greatly improved over the past 30 years, due to improvements in observation methods.
We used the Japanese 55-year Reanalysis (JRA55, special resolution: 1.25°×1.25°) (Kobayashi et al., 2015) full-layer wind field, sea-level pressure field, and full-layer temperature field during the period of 1979–2018 to further obtain detailed information about background fields and TCs. In addition, we used this data together with the best track data to verify the accuracy of the tracking algorithm.
We used the European Center for Medium-Range Weather Forecast (ECMWF) Reanalysis version 5 (ERA5) (Hersbach et al., 2020) 850-hPa wind field reanalysis data during the period of 1979–2018 to verify the stability of the tracking algorithm for different spatial resolution data. The data time period was the same as that used from the JRA55, and various resolutions (0.25°, 0.5°, 0.75°, 1.0°, 1.25°, 1.5°, 1.75°, and 2.0°) were used.
2.2 Methods of identifying TCs
2.2.1 Discussion on the feasibility of using a single variable for identification
The methods in previous studies used at least two variables for vortex identification. In this section, we discussed if it was feasible to use only one variable for TC tracking.
In low-resolution model outputs or reanalysis data, the most obvious feature of TCs that distinguishes them from the other synoptic systems is their large relative vorticity. The size of TCs varies greatly from one individual to another, but even the largest tropical cyclone is too small for its structure to be clearly shown in the low-resolution data. The warm-core of cyclones cannot be clearly seen in most cases. In addition, low pressure or strong cyclonic wind cannot be regarded as a typical characteristic of a cyclone. It can be generally observed in the research data that the wind speed of the low-level jet is comparable to, or even larger than the maximum wind speed of the cyclone in the same layer, which will interfere with TC identification. The pressure of some common precipitation systems can be lower than the pressure at the center of a weak cyclone. Extratropical cyclones which also have large relative vorticity can be eliminated with simple methods (Section 2.3). The large relative vorticity can also be detected in the peripheral circulation field of the cyclone. Therefore, regardless of the strength of a cyclone, the surrounding circulation field can be used to indicate the location of the cyclone. In all, the temperature, wind and pressure field characteristics of TCs are not unique enough to differentiate TCs from low-level jets or precipitation systems. The relative vorticity field is a much better choice, because almost no other type of synoptic system has relative vorticity as strong as TCs. Blender et al. (1997) pointed out the relative vorticity field in a high-resolution dataset was too detailed and noisy. It was confirmed that when a TC develops vigorously, the areas with the high relative vorticity showed a spiral structure, as well as had long tails. In addition, the areas with the large relative vorticity over the continents and oceans in the high latitudes showed a banded structure. The interpolation could effectively eliminate the most of the banded area of large relative vorticity. We involved the interpolation function in the algorithm to handle the data in different resolutions.
2.2.2 Relative vorticity calculation method
The relative vorticity is calculated using the central finite difference method, which was developed by Bluestein (Bluestein 1992):
[image: image]
where [image: image] is the relative vorticity and [image: image] is the radius of the Earth. [image: image] and [image: image] are the horizontal coordinates, while [image: image] and [image: image] are the zonal and meridional components of the horizontal velocity. The last term is the Coriolis correction term for the relative vorticity, where [image: image] is the latitude. The vorticity value of the boundary grid points is calculated by the one-sided difference method.
2.2.3 Interpolation method
Before identifying vortexes in 2D vorticity field, the corresponding u and v field was regridded to 1.25° × 1.25° using the bilinear interpolation. It should be noted that directly interpolating the original relative vorticity field could not eliminate the noise mentioned in Section 2.2.1.
2.2.4 TC positions calculation method
The Dvorak technique is widely used in diagnosing TC intensity. The approach uses satellite images to fix the center of a TC from the location of the lowest sea level pressure. However, the TC center cannot be directly determined in this method with the data in a low spatial resolution because this way would not produce smooth tracking path. Here, we used the mean position of all grid points within the range of a TC to represent the center.
2.2.5 Track to track comparison method
Blender and Schubert (2000) developed a track to track comparison method which could match the TCs in the real world and the “TCs” identified by the algorithm. They defined a new variable of distance “[image: image]” which combined spatial distances and temporal steps between two tracks. While the distances [image: image], which was between track [image: image] ([image: image]: real TC tracks) and track [image: image] ([image: image]: tracks detected by the tracking algorithm), was smaller than any [image: image] ([image: image] and [image: image]), then [image: image] and [image: image] were considered in the same TC. However, the weights of spatial and temporal steps were difficult to select.
So we developed a new track to track comparison method, which included two tracks [image: image] and [image: image] ([image: image]: real TC tracks, [image: image]: tracks detected by the tracking algorithm). Their positions were marked as ([image: image]; [image: image]), ([image: image]; [image: image]) and their time period were [image: image]–[image: image], [image: image]–[image: image], respectively. If [image: image]–[image: image] and [image: image]–[image: image] had no overlapping part, then they were not marked as the same TC. If [image: image]–[image: image] and [image: image]–[image: image] had overlapping parts [image: image], [image: image], … [image: image], then the Haversine formula was used to calculate the great-circle distances (units: km, marked as [image: image]) at every point in time of [image: image], [image: image], …, [image: image] and the average value:
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Finally, we calculated all [image: image] [image: image] and found out the minimum [image: image]. If its value was less than the threshold distance, then the corresponding [image: image] and [image: image] were considered the same TC.
The distance threshold was 388.5 km (3.5° of latitude) (Bell et al., 2018). This method well performed in identifying different TC tracks.
2.3 Description of tropical cyclone identification algorithm
A TC identification algorithm has been developed, which can directly read reanalysis or model outputs in the different spatial and temporal resolutions. The algorithm follows the following principle:
The vertical structure of the TC is not considered. The program uses only data from one vertical height to reduce the computation expense. The relative vorticity field at 850 hPa is used by default.
The threshold parameters considered by the algorithm are:
No. 1 TMTN (Today_Max_TC_Number), the maximum number of TCs that algorithm detects in a day;
No. 2 RMR (Recursion_Min_Relative_vorticity: this variable is used in a recursive function), the relative vorticity at the boundary of TC, at 850 hPa;
No. 3 LTMD (Link_TC_Max_Dist) (unit: kilometers), the longest distance that a TC may move in 1 hour.
TMTN and LTMD are determined by experience and actual situation. For example, no more than 4 typhoons exist at the same time in NWP according to the best track data. In order to decrease noise in the algorithm, we assign TMTN as an integer between 4 and 8.
RMR is calculated in the following method: The shape of histogram in terms of the relative vorticity looks like a normal distribution curve with the positive skewness. We assume that the histogram is approximately symmetric if TC and extratropical cyclone (and some other noises) do not exist. Based on this assumption, the minimum values of 2D relative vorticity field in each time step are marked as [image: image], [image: image], …, [image: image], then
[image: image]
The whole tracking process is followed by four steps:
1 Prepossessing: interpolate original data which was described in Section 2.2.3.
2 Identify all the vortexes in each 2D relative vorticity fields with the threshold TMTN. Each vortex is represented as a “clump” of grid points (Tory et al., 2013). The grid points in one clump is found by recursive function. With one grid point as input, the recursive function searches adjacent grid points and outputs the points which reach threshold RMR.
3 Construct TC tracks by nearest-neighbor-search which was used in many studies (Blender et al., 1997; Blender and Schubert 2000; Tory et al., 2013).
4 Remove noise: remove the tracks that obviously do not have the characteristics of TC activity. 1) The tracks which start on land; 2) The tracks which start in non-tropical regions; 3) The tracks with an average latitude less than 5°N; 4) The tracks whose lifetime is less than 2 days; 5) The tracks which always move eastward (extratropical cyclone).
2.4 Calculation of the intensity of TC
Emanuel (2005) defined the power dissipation index (PDI) to represent the intensity of damage induced by a TC. It is defined as the time integral of the maximum wind speed cubed of the cyclone over its lifespan:
[image: image]
where [image: image] is the maximum wind speed within the range of the TC at 10 m, and [image: image] is the lifespan of the TC.
3 EVALUATION OF MODEL PERFORMANCE
3.1 Evaluation of TC climatology in the western Pacific Ocean
The South China Sea and the low-latitude seas east of the Philippines have warm SSTs (Figures 1A,B). The equatorial central and eastern Pacific Ocean has slightly lower SSTs due to cold currents, which can be clearly seen in JRA-55 and CESM data. The bulge northward of the isotherm at the western boundary of the ocean in CESM is probably due to the Kuroshio (Zhang et al., 2017). The area where SST is greater than 28°C in JRA-55 is slightly larger than that in CESM, extending to near 27°N. The area where SST is greater than 29°C is smaller in CESM, hence the number and intensity of TCs produced by CESM are relatively smaller in 1979–2005.
[image: Figure 1]FIGURE 1 | June-to-October mean sea surface temperature (°C) for the period of 1979–2005, derived from (A) JRA-55 and (B) CESM. (C) is the difference between (A) and (B). (D–F), (G–I), (J–L) show means of the same period but for sea level pressure (hPa), zonal wind shear (m/s), and total precipitation rate (mm/day), respectively.
Pressure is high over the central part of the North Pacific (Figures 1D,E), while pressure on the Asian continent and low-latitude ocean surface is relatively low. There is higher pressure over central Pacific in CESM, with the 1,015 hPa isobaric line extending to 150°E. Nonetheless, the pressure patterns are very similar between the two datasets.
There are two minima in the wind shear (defined as the absolute value of the difference between zonal winds at 200 hPa and 850 hPa) field over the Northwest Pacific (Figures 1G,H); one is a band over the low-latitudes of central and western Pacific, while the other is an area east of Taiwan and the Philippines. The area of minimum wind shear is larger in JRA-55, with 6 m s−1 contour extending to the central Pacific. Appropriate wind shear has an important effect on the generation and rapid intensification of TCs. The biases were potentially suggested that the total number and intensity of TCs from the model were underestimated compared to the reanalysis results.
The location and shape of the precipitation belts are relatively similar between the two datasets (Figures 1J,K), but the precipitation intensity is very different. Precipitation did not exceed 12 mm day−1 over the sea in CESM, and near-equatorial precipitation is less than 8 mm day−1 from 115 °E to 120 °E. Both features indicate that the water vapor in CESM is lower than the reality. The root mean square error (RMSE) (Anthes 1983; Lo et al., 2008) is often used to calculate the difference between model simulation and reality (the third column of Figure 1). The results showed that there are high consistencies between model results and reanalysis in terms of SST and SLP.
In summary, JRA-55 and CESM were compared during the same time period. Although CESM has lower SST and stronger wind shear compared to JRA-55, the shape of the Pacific Warm Pool, the locations of high pressure, and the locations of the minimum wind shear are in good agreement with JRA-55; CESM simulated credible climatological conditions (Figures 1C,F,I,L).
After extensive testing, we found that the combination of TMTN = 5 and LTMD = 56.67 km/h produced good accuracy in identifying TCs. Table 1 shows the comparison result between best track data and the results obtained by using the algorithm on JRA-55 and ERA5 in the various spatial resolutions. Most of the sensitivity [Hit/(Hit + Miss)] is over 80%, most of the false alarm rate [False Alarm/(False Alarm + Hit)] is below 25% and all tracking results have significant correlation coefficients, indicating good performance of the tracking algorithm when the spatial resolution is finer than 2.0° × 2.0°.
TABLE 1 | Comparison between tracking result and JMA best track data. First three columns of data represent hit, miss and false alarm number of TCs. The last column of data is the correlation coefficient. An asterisk indicates that the data is significant with a significance level of 95%.
[image: Table 1]It was noted that a relatively high false rate induced by is the algorithm in the high resolution was related to the low correlation coefficient. The high false rate was indicated that there were many vortexes which were not real TCs in the recognition results. It was probably due to the interpolation method does not eliminate all the high frequency signals, and some non-TC systems with high relative vorticity were still left in the interpolated data. As a result, some of them were identified as TCs by the tracking algorithm.
3.2 Projection of west Pacific TC
3.2.1 Changes of background field
To understand TC changes in the 21st century, we will compare the background fields between the end (2091–2100) and the start (2011–2020) of this century. Figure 2 shows the difference in the background fields between the end and the beginning of the 21st century. SSTs increase by more than 0.8°C in the equatorial and low-latitude Pacific regions under the 2.0degNE scenario. Warm SSTs are conducive to the generation and development of TCs, and the main area of TC generation and development is located in the 30°C Pacific Warm Pool, hence the mean TC intensity under the 2.0degNE scenario may be higher than under other scenarios.
[image: Figure 2]FIGURE 2 | Changes of June-to-October monthly mean sea surface temperature (°C) in the end of 21st century, defined as the 2011–2020 mean subtracted from the 2091–2100 mean, under the (A) 1.5degNE, (B) 1.5degOS, and (C) 2.0degNE scenarios. (D–F), (G–I), (J–L) show similar calculations but for sea level pressure (hPa), zonal wind shear (m/s), and total precipitation rate (mm/day), respectively. The area covered by the points passed the 95% significance test.
As the magnitude of global warming increases, the range and amplitude of high sea level pressure regions over northwest China and the low latitudes increases, while the low SLP regions over the mid-latitudes gradually extend to Japan and the coastal areas of China. This shows that global warming may strengthen the high- and low-pressure systems. The low SLP field along the coast may promote TC intensification before landfall.
The reductions in range and magnitude of wind shear over the midwestern North Pacific are greater under the 1.5degOS and 2.0degNE scenarios. As the magnitude of global warming increases, the areas of dense TC generation and rapid intensification may move more eastward, hence TCs have more time to develop before landfall and the mean TC intensity at landfall increases.
Changes in precipitation rate show a trend consistent with global warming. Under the 2.0degNE scenario, the mid-latitude rain belt extends to the central North Pacific, while the drier area in the subtropical zone shrinks. Hence more places experience increase than decrease of precipitation.
3.2.2 Changes of the numbers of TC and PDI
We performed linear regression on data from different ensemble members and plotted the 9-year moving mean of the number of TCs. The result is shown in Figures 3, 4. Due to the coarse spatial resolution of the model, the absolute numbers of TCs are not comparable with reality. The interannual fluctuations of TCs under different scenarios are very large. Regression analysis shows that the number of TCs under each scenario increases with time, and the number of TCs in the 1.5degNE, 1.5degOS and 2.0degNE increased by 0.43, 0.59, 0.19 in 95 years, respectively. The mean number of TCs over 95 years is about 0.1 higher under the 1.5degNE and 1.5degOS scenarios compared to the 2.0degNE scenario. It is noted that the results of 1.5degOS scenario passed the 95% significance test.
[image: Figure 3]FIGURE 3 | Annual numbers of tropical cyclones identified by the algorithm from simulations under the (A) 1.5degNE, (B) 1.5degOS, and (C) 2.0degNE scenarios. 9-Year moving means are taken from 2006 to 2100. The shaded area represents the ensemble range, the black solid line the ensemble mean, and the black dotted line result of linear regression. (D) Ensemble means of the annual number of tropical cyclones from averaged values in the 1.5degNE (blue), 1.5degOS (green), and 2.0degNE (red) scenarios.
[image: Figure 4]FIGURE 4 | The annual mean Power Dissipation Index (PDI) of tropical cyclones from 2006 to 2100, calculated from simulations under (A) 1.5degNE, (B) 1.5degOS, (C) 2.0degNE scenarios. The shaded area represents the ensemble range, the black solid line the ensemble mean, and the black dotted line the result of linear regression. (D) Ensemble means of the annual mean (PDI) in the 1.5degNE (blue), 1.5degOS (green), 2.0degNE (red) scenarios.
The power dissipation index (PDI) increases under the three scenarios (Figure 4), the maximum is under the 1.5degOS scenario. The increase in 2.0degNE scenario is slightly less than that of the1.5degOS. At the end of the 21st century, the maximum averaged PDI is under the 2.0degNE scenario and the minimum is under the 1.5degOS scenario. The results in all scenarios passed the 95% significance test.
It is concluded that the annual number of TCs may not have a significant growth under the 1.5degNE and 2.0degNE scenarios, however, the mean energy of a single TC will increase significantly, and the potentially destructive impact of each TC may be greater.
3.2.3 Changes of TC paths
We use a TC activity frequency chart to evaluate the changes to TC paths over time. Due to the limited and discrete cyclone location points in TC path data, we consider the entire area covered by each TC. This is a clump of grid-points near the path grid-point, and is extracted by our algorithm. The frequency of TC activity at these grid-points is calculated as follows:
Assuming that the discretized center of a TC is located at a certain time on the grid-point with indices (m, n), then the activity frequency at this grid point is defined to be 1, the activity frequency at the 4 grid-points directly adjacent to (m, n) is defined to be 1/2, the activity frequency at the 4 grid-points diagonally adjacent to (m, n) is defined to be [image: image], and so on with the activity frequency inversely proportional to the distance from the center grid-point (Figure 5).
[image: Figure 5]FIGURE 5 | Relative vorticity field at 1979-7-29 12:00 UTC. The yellow and red grids in the center of the figure indicate the scope of the vortex. The green numbers indicate TC activity frequencies.
The TC activity frequency plot described above is totally different from the TC tracking density plot. The TC tracking density generally defined as “individual TCs entering or forming within a grid box” (Bell et al., 2019a; Bell et al., 2019b), which only considers one grid point for each typhoon in one time. The method in this study considers the size of TCs, so the plots more realistically depict the impact in different regions.
The 10-year accumulated activity at the beginning and end of the 21st century is shown in Figure 6. Regardless of the time period, the southern part of the South China Sea and the Pacific Ocean to the east of the Philippines are the areas of dense TC track. At the end of the 21st century, the frequency of TC occurrence is higher in the low latitudes closer to the equatorial Pacific Ocean than at the beginning of the 21st century. Under the 1.5degNE and the 2.0degNE scenarios, more TCs move northeast instead of moving west to make landing on the southeast China. Dense landing areas are not found in northern China or Japan in these two scenarios, but the number of TCs landing in northern China significantly increases, especially under the 2.0degNE scenario.
[image: Figure 6]FIGURE 6 | 10-year accumulated activity frequency of tropical cyclones in the 1.5degNE scenario, for the periods of (A) 2011–2020 and (B) 2091–2,100. (C) is the difference between (A) and (B). (D–F), (G–I) show the same variable for the 1.5degOS and 2.0degNE scenarios, respectively. The area that passed the 95% significance test is covered by the meshes.
4 CONCLUSION AND DISCUSSION
CESM simulations from the Community Earth System Model Large Ensemble Project and limited warming simulations (Sanderson et al., 2017) were evaluated in terms of climatological background fields and changes to TC activity in the Northwest Pacific over the past 35 years and the next 95 years.
(1) Under the three temperature rise targets (1.5degNE, 1.5degOS, 2.0degNE), there are certain changes to the background fields. The sign of the changes is the same in theory, but under all scenarios, the increases in sea surface temperature and precipitation rate are not as high as that simulated by other GCMs.
(2) The model data shows that the number of TCs in the 21st century shows a fluctuating upward trend (0.43, 0.59, 0.19 in 95 years under 1.5degNE, 1.5degOS, and 2.0degNE, respectively). The annual number of TCs and the average PDI increases faster over time under the 1.5degOS scenario. Therefore, the total energy of TCs is greater and the impact on human society is greater.
(3) The changes to TC paths common to all three scenarios are as follows: Near 5°N in the South China Sea is an area where TCs are frequently occur; The major paths of TCs generated in the Northwest Pacific are: 1) Pass between Taiwan and the Philippines then landing on Hainan Island; 2) Landing on Taiwan Island or the Yangtze River Delta region. There are slight differences in major TC paths between different scenarios. In the 1.5degNE and 2.0degNE scenarios, TCs tend to turn to the east of Taiwan Island rather than land on mainland China.
Our TC identification algorithm shows good performance, but there are situations where it fails. This problem can be solved by changing the algorithm’s threshold parameters. Although all datasets were interpolated to the same spatial resolution, there may still be slight differences in the optimal parameters for different data.
The time spent in the data preprocessing stage (the interpolation) of our tracking algorithm accounts for a considerable part of total running time, which also requires large memory space. This problem may be solved by using artificial neural networks (ANNs) which is a kind of the machine learning model. As mentioned in Section 2.2.2, there is a clear difference between the shape of vortex (round or spiral) and the shape of noise (banded). Figure 7 shows part of the relative vorticity fields of TCs and noise captured from ERA5. ANNs may easily learn these two features and produce a better result, while significantly speeding up the tracking process and reducing the memory requirement.
[image: Figure 7]FIGURE 7 | Some relative vorticity fields of TCs (left) and noise (right), which was captured during running the tracking algorithm.
This study is based on the ensemble members of a single model. The conclusion obtained will have biases, but the algorithm can be used with other model data. We believe the results obtained after using this algorithm on multiple models will be closer to reality.
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In present study, the diversity of summertime Northwest Pacific (NWP) atmospheric circulation anomalies following El Niño-Southern Oscillation is investigated by performing the inter-case empirical orthogonal function (EOF) analysis among 33 El Niño cases and 36 La Niña cases, respectively. Although an anomalous anticyclone is observed over the NWP for all El Niño cases’ composite, the circulation anomalies there vary from one case to another for each case. The EOF1 mode of NWP circulation anomalies explains 39.8% of inter-case variance, and its positive phase features an anomalous anticyclone and cyclone at south and north of 25°N, respectively. Therefore, the positive first principal component (PC1) corresponds to the anomalous NWP anticyclone, while the anticyclone shifts more northeastward and a cyclone appears at its south side for negative PC1. The PC1-related NWP circulation anomalies are largely controlled by the pronounced central and eastern Pacific sea surface temperature cooling, which indicates the diverse El Niño decay rate. Furthermore, four categories are obtained according to the El Niño decay rate by the nonlinear k-means cluster analysis, and the results further confirm that the close relationship between NWP circulation anomalies and El Niño decay rate. The PC1-regressed land rainfall anomalies highly resembles the composite results in the key areas of Asian monsoon region: the central China and South Asia, indicating variable rainfall anomalies in these areas during post-El Niño summer. The conclusion obtained from La Niña cases are generally same to El Niño.
Keywords: post-ENSO summer, ENSO decay rate, Northwest Pacific circulation, k-means cluster analysis, Asian monsoon rainfall
1 INTRODUCTION
El Niño-Southern Oscillation (ENSO) is a dominant mode of tropical interannual variability and exerts great influence on global climate (e.g., Lau and Nath 1996; Webster et al., 1998; Trenberth et al., 2002). During El Niño/La Niña decaying summer, an anomalous lower-tropospheric anticyclone/cyclone often appears over the Northwest Pacific (NWP; Fu and Ye 1988; Lau 1992; Zhang et al., 1996), and strongly influences the climate of Asian monsoon region, where accounts for more than half of the world’s population. Specifically, the El Niño-induced anomalous NWP anticyclone (NWPAC) weakens NWP summer monsoon by suppressing local convection (Wang et al., 2000; Wu et al., 2010; Xiang et al., 2013), enhancing dry anomalies and anomalous downward vertical motions, which reduce the NWP tropical cyclone number (Du et al., 2011) and lead to the extreme warm summer in southern China (Hu et al., 2011; Hu et al., 2012). While the moisture transport from tropics to East Asia is strengthened, rainfall over the mountainous central China is significantly enhanced due to orographic lifting (Wu et al., 2003; Hu et al., 2017; Hu et al., 2020). Moreover, a tripole pattern of precipitation anomalies over the South Asian region can be observed when the anomalous anticyclone extends westward to the North Indian Ocean (Mishra et al., 2012; Chowdary et al., 2016a; Srinivas et al., 2018; Chowdary et al., 2019; Liu and Huang 2019; Tang et al., 2022b), characterizing a prolonged hot pre-monsoon period and a delay of the South Asian summer monsoon onset (Zhou et al., 2019). These climate responses are nearly reversed during La Niña, although the asymmetry exists between El Niño and La Niña (e.g., Hoerling et al., 1997; Hoerling et al., 2001; Zhang et al., 2014; Tao et al., 2017; Wang et al., 2021b; Wang et al., 2022). Thus, the anomalous atmospheric circulation over the NWP plays a crucial role in linking ENSO and Asian climate.
During the summer following El Niño, the NWPAC is maintained by local cooling via a positive thermodynamic feedback between SST and circulation anomalies (Wang et al., 2000; Wang and Zhang 2002; Wang et al., 2013; Xiang et al., 2013; Gong et al., 2018a) and remote tropical Indian Ocean warming (TIO) via Kelvin wave induced Ekman divergence mechanism (Yang et al., 2007; Wu et al., 2009; Xie et al., 2009; Yang et al., 2010; Hu et al., 2014; Tao et al., 2015). The NWP cooling and TIO warming can serve as the Indo-western Pacific Ocean capacitor (IPOC) mode to anchor the NWPAC (Xie et al., 2016; Xie and Zhou 2017; Hu et al., 2019). However, the response of summertime NWP circulation following ENSO is not stable. It varies from one ENSO case to another (Chowdary et al., 2016a; Chowdary et al., 2016b; Chen et al., 2016; Chen et al., 2017; Tao et al., 2017; Wang et al., 2017; Tao et al., 2018; Jiang et al., 2019; Li et al., 2019; Tao et al., 2019), and is subject to ENSO-unrelated (internal) variability (Kosaka et al., 2013; Li et al., 2016; Gong et al., 2018b; Wang et al., 2018; Zhou et al., 2018; Wang et al., 2020b; Chen et al., 2020; Wang et al., 2020c). As a result, a robust rainfall response to ENSO has not been fully recognized outside the Asian monsoon researchers, as shown by the schematic diagrams of ENSO impacts on the web pages of National Oceanic and Atmospheric Administration (NOAA), International Research Institute for Climate and Society (IRI), Met Office, and so on. The pronounced rainfall anomalies in summer seem to develop only after a strong ENSO (Wang et al., 2017), leading to the most severe forecast errors during ENSO decay phase (Ham et al., 2019; Wang et al., 2020a). In present study, the diversity of NWP circulation anomalies during post-ENSO summer is explored by using inter-case empirical orthogonal function (EOF) analysis, founding that the diverse circulation anomalies tend to cause the variable rainfall response in the key areas of East and South Asia, i.e., the mountainous central China (Hu et al., 2017; Hu et al., 2020) and western India (Chowdary et al., 2019). The rest of the paper is organized as follows. Section 2 describes the data and methods. The main results are presented in Section 3, followed by the conclusion and discussion in Section 4.
2 DATA AND METHODS
The atmospheric variables are derived by averaging two merged reanalysis datasets, one from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and the other from the European Centre for Medium-Range Weather Forecasts (ECMWF). The NOAA-Cooperative Institute for Research in Environmental Sciences Twentieth Century Reanalysis V2c (20CR; Compo et al., 2011) and NCEP-US Department of Energy Atmospheric Model Inter-comparison Project II reanalysis (NCEP2; Kanamitsu et al., 2002) are combined into a merged NCEP dataset. The merged ECMWF dataset is made from ECMWF twentieth century reanalysis (ERA20C; Poli et al., 2016) and fifth generation reanalysis (ERA5; Hersbach et al., 2020). To ensure temporal consistency, the mean states of 20CR (ERA20C) and NCEP2 (ERA5) are calibrated by removing their differences during the overlap period 1979–2015 (1979–2010). The monthly mean SST dataset used is made by averaging the Hadley Centre Sea ICE and SST (HadISST; Rayner and Coauthors, 2003) and NOAA Extended Reconstructed SST (ERSST; Smith and Reynolds, 2003) V5 datasets. The monthly mean land precipitation dataset is merged by the Climatic Research Unit (CRU) TS4.01 (Harris et al., 2014) and Global Precipitation Climatology Centre (GPCC) V7 (Schneider et al., 2014) datasets. The above merged datasets are used to get long-term and reliable data record, and the period from 1901 to 2017 are selected for analysis.
The monthly mean climatology is first calculated for the 1901–2017 period, and monthly anomalies are then computed as the departure from the climatology. Besides, the linear trend has been removed from all datasets. The Niño3.4 index is defined as SST anomalies averaged over the central and eastern equatorial Pacific (CEP, 5°S–5°N, 170°–120°W). Hereafter, any month in ENSO onset and decay year is denoted by the suffix (0) and (1), respectively. Consistent with Wang et al. (2019) and Wang et al. (2020a), an El Niño (La Niña) year is identified as that the Niño3.4 index during October-November-December(0)-January-February(1) is greater (less) than or equals to 0.6°C (−0.5°C). As a result, 33 El Niño cases and 36 La Niña cases are identified. Only the results of El Niño are shown in the main text, and the results of La Niña are given in the supplemental material and briefly discussed in last section. EOF, regression, correlation, k-means cluster, and composite analysis are used, and the confidence level is estimated based on the standard two-tailed Student’s t-test. The k-means cluster analysis is introduced on the first occasion that it is used.
3 RESULTS
3.1 Inter-case EOF of NWPAC during post-ENSO summer
Figure 1A shows the composite SST, 850-hPa winds, and land precipitation during post-El Niño summer for 33 El Niño cases. The most significant feature of atmospheric circulation anomalies averaged for all cases is an anomalous anticyclone over the NWP, and the easterly wind anomalies at the south flank of NWPAC extend westward to the north Indian Ocean (Figure 1A). As that the El Niño-related CEP warming gradually decays, the NWPAC is mainly anchored by IPOC mode with TIO warming and NWP cooling (Xie et al., 2016; Xie and Zhou 2017).
[image: Figure 1]FIGURE 1 | (A) Composite anomalies of SST (shaded over the ocean; °C), 850-hPa winds (vectors; m s−1), and precipitation (shaded over the land; mm) during post El Niño summer for 33 El Niño cases. (B) Regression of SST (shaded over the ocean; °C), 850-hPa winds (vectors; m s−1), and precipitation (shaded over the land; mm) with respect to (C) the standardized PC1 of 850-hPa wind anomalies over the NWP (0°–40°N, 100°E–180°) during post El Niño summer for 33 El Niño cases. Green lattices and black vectors indicate that the confidence level reaches 90%. The EOF1 explained variance fractions are given at the top right of (B) and (C).
The NWP circulation anomalies during post-El Niño summer vary from one case to another (Supplementary Figure S1). To reveal the possible factor responsible for the diversity of NWP circulation anomalies among 33 El Niño cases, an inter-case EOF analysis is applied to the 850-hPa wind anomalies over the NWP region (0°–40°N, 100°E–180°). EOF1 mode explains 39.8% of total inter-case variance and is well separated with other modes (Figures 1B,C). The positive EOF1 phase is characterized by a meridional dipole pattern of circulation anomalies with an anomalous anticyclone and cyclone located at south and north of 25°N over the NWP, respectively (Figure 1B). Therefore, the positive first principal component (PC1) value corresponds to the NWPAC, while the anticyclone shifts more northeastward and an anomalous cyclone appears over the NWP for negative PC1 value.
Furthermore, PC1 has a close relationship with the intensity (Figure 2A), meridional (Figure 2B), and zonal location (Figures 2C,D) of NWPAC. The intensity of NWP circulation anomalies is defined as the difference of 850 hPa zonal winds between a southern region (5°–15°N, 90°–30°E) and a northern region (22.5°–32.5°N, 110°–140°E) following Wang and Fan (1999), and the NWPAC intensity is negative. If the NWPAC shifts northeastward and an anomalous cyclone appears at its South side, a positive value will appear for instead. Thus, the intensity of NWP circulation anomalies reflects the location of NWPAC indirectly. The meridional wind anomalies over the Indian subcontinent and southern China are used to represent the zonal location of NWPAC due to its east-west flat shape, which is in favor of the conversion of kinetic energy from the mean flow to perturbations (Hu et al., 2019; Wang et al., 2021a; Tang et al., 2022a). Therefore, the EOF1 mode indicates diverse location of NWPACs in 33 El Niño cases, the NWPAC shifts more northeastward as a decrease of PC1 value.
[image: Figure 2]FIGURE 2 | Scatter diagram of standardized PC1 and (A) NWPAC intensity, (B) meridional location of NWPAC center, (C) 850-hPa meridional wind anomalies over the southern China (15°–30°N, 100°–110°E), and (D) 850-hPa meridional wind anomalies over the India subcontinent (15°–30°N, 80°–90°E) in 33 El Niño cases. The meridional location of NWPAC center is determined by the maximum value of anomalous 850-hPa stream function over the NWP (10°–45°N, 100°–170°E) as shown by red dots in Supplementary Figure S1. The red lines denote the best fit lines for 33 El Niño cases, and the correlation coefficients are on the top-right corner of each figure.
3.2 Diverse ENSO decay pace
Pronounced CEP cooling and western Pacific warming are observed in PC1-regressed SST anomalies, and the PC1-related NWPAC is a direct Rossby wave response to CEP cooling (Figure 1B; Fan et al., 2013; Wang et al., 2013; Chen et al., 2017; Tao et al., 2017; Dong et al., 2018; Tao et al., 2021). The dipole SST pattern in Pacific indicates the diverse decay pace among 33 El Niño cases. Figure 3A presents the PC1-regressed SST anomalies, averaged over 5°S–5°N as a function of longitude and calendar month. The discrepancy of CEP SST anomalies during the decay phase of 33 El Niño cases gradually increases and stabilizes after August (Figure 3A). The SST anomalies averaged over the CEP (5°S–5°N, 150°–130°W) during SON(1) season are defined as El Niño decay rate, which are highly correlated with PC1 at −0.86 reaching 99% confidence level (Figure 3B). Besides, the El Niño decay rate is significantly correlated with NWPAC intensity, central latitude, meridional wind anomalies over the southern China and Indian subcontinent at 0.55, 0.48, −0.52, and −0.69, respectively (Supplementary Figure S2), indicating that the contribution of diverse El Niño decay pace to the variable NWP circulation response.
[image: Figure 3]FIGURE 3 | (A) Regression of SST (°C) with respect to the standardized PC1, averaged over 5°S–5°N as a function of longitude and calendar month. Green lattices indicate that the confidence level reaches 90%. (B) Scatter diagram of standardized PC1 and El Niño decay rate in 33 El Niño cases. El Niño decay rate is defined as the SST anomalies over the CEP (5°S–5°N, 150°–130°W) during SON(1).
Above study is analyzed from the perspective of circulation diversity, and the following analysis is conducted from the perspective of SST diversity to further confirm the importance of El Niño decay pace by an objective method: nonlinear k-means cluster analysis, which is more objective than directly using the El Niño decay rate with some subjective criterions. The 33 El Niño cases can be divided into four categories by a nonlinear k-means cluster analysis of the equatorial SST anomalies averaged between 5°S and 5°N over the Pacific from October(0) to October(1), following Wang et al. (2020a). The results of k-means cluster analysis depend on the number, k, of clusters chosen. [image: image] is used based on physical consideration, and other solutions of the k from two to six have been tested. The four clusters are well separated with each other according to the corresponding silhouette values (Supplementary Figure S3A), representing early decay, late decay, slow decay, and continuing cluster. Early and late decay cluster feature a fast transition to La Niña in spring and summer, respectively (Supplementary Figures S3B,C), and slow decay cluster reaches a neutral condition in subsequent winter (Supplementary Figure S3D). For continuing cluster, the CEP warming persists, and an El Niño event re-emerges in the following year (Supplementary Figure S3E). The main ocean dynamical processes for four clusters have been explored in detail by Wang et al. (2020a) through heat budget analysis.
Figure 4 shows the composite anomalies during JJA(1) for four clusters of 33 El Niño cases. Distinctive SST anomalies are observed in four types of El Niño decay, leading to the different NWP circulation response. The NWPAC in early decay cluster is maintained by a combined effect of TIO warming and CEP cooling, which trigger an eastward Kelvin wave and a westward Rossby wave, respectively (Figure 4A; Chen et al., 2016; Hu et al., 2020). In late decay cluster, the CEP cooling is not well established during JJA(1), and the NWPAC is anchored by IPOC mode, which corresponds to the zonal SST dipole with the TIO warming and NWP cooling (Figure 4B; Wang et al., 2013; Xie et al., 2016; Xie and Zhou 2017). For slow decay cluster, the CEP warming is persistent, with the NWPAC shifted northeastward and cyclonic wind anomalies appearing at the southwest side of the anticyclone (Figure 4C; Chen et al., 2017; Tao et al., 2017; Jiang et al., 2019). The dipole pattern of circulation anomalies is more distinct in continuing cluster, and the NWPAC is displaced further northeastward (Figure 4D). The CEP warming forces the cyclonic wind anomalies over the western Pacific as a Rossby wave response, leading to the lower-level divergence and suppressing the convection around the NWP. The resultant dry anomalies further trigger and maintain the NWPAC through the Rossby wave-induced convergence mechanism or local meridional circulation (Chen et al., 2017; Tao et al., 2017; Jiang et al., 2019). Thus, the results depicted by the four clusters confirm that the NWP circulation anomalies are largely controlled by El Niño decay pace, and the NWPAC tends to shift northeastward (southwestward) in response to slow (fast) decay rate.
[image: Figure 4]FIGURE 4 | Composite anomalies of SST (shaded over the ocean; °C), 850-hPa winds (vectors; m s−1), and precipitation (shaded over the land; mm) during post El Niño summer for (A) early decay cluster, (B) late decay cluster, (C) slow decay cluster, and (D) continuing cluster of 33 El Niño cases. Green lattices and black vectors indicate that the confidence level reaches 90%.
3.3 Variable rainfall response in the key areas
A natural question arises, how does Asian monsoon rainfall respond to the diverse NWP circulation anomalies? Previous studies find that the enhanced rainfall over the mountainous central China (Wu et al., 2003; Hu et al., 2017; Hu et al., 2020) and a tripole rainfall pattern over the South Asian region (Mishra et al., 2012; Chowdary et al., 2016a; Srinivas et al., 2018; Chowdary et al., 2019) are induced during post-El Niño summer, as confirmed in Figure 1A. The PC1-regressed land rainfall anomalies over the Asian monsoon region highly resemble the composite anomalies, especially in the central China and South Asia (Figure 1B), and the result indicates variable rainfall response in the above-mentioned key areas. Note that the positive regressed rainfall anomalies over the central China and western India cover larger areas than the composite anomalies, and extend to the northern China and the southwest side of Tibetan Plateau, respectively.
The composite results in the four clusters further confirm the variable rainfall response to the diverse NWP circulation anomalies. The positive rainfall anomalies appear over the northern China in early decay cluster (Figure 4A). In late decay cluster, pronounced wet anomalies can be seen over the central China (Figure 4B), and the wet anomalies weaken in slow decay cluster (Figure 4C). The rainfall anomalies in continuing cluster exhibit a dipole pattern corresponding with dry and wet anomalies in the North and South of central China, respectively (Figure 4D). The tripole rainfall pattern over the South Asian region is gradually reversed from early decay cluster to continuing cluster, especially for the rainfall anomalies over the western India (Figures 4A–D). Furthermore, Figure 5 shows the scatter diagram of PC1/El Niño decay rate and rainfall anomalies in the key areas: the central China (27.5°–37.5°N, 105°–115°E) and western India (8°–32°N, 70°–80°E). Indeed, PC1 and El Niño decay rate are significantly correlated with rainfall anomalies, documenting that the diversity of El Niño decay pace leads to the variable rainfall response in the key areas of Asian monsoon region through diverse NWPAC.
[image: Figure 5]FIGURE 5 | Scatter diagram of standardized PC1 and precipitation anomalies over (A) the central China (27.5°–37.5°N, 105°–115°E) and (B) the western India (8°–32°N, 70°–80°E). (C) and (D) are as (A) and (B), but for El Niño decay rate and precipitation anomalies. The yellow dot and number represent the case is not used in calculating the best fit lines and correlation coefficients.
4 CONCLUSION AND DISCUSSION
The diversity of summertime NWP circulation anomalies in response to ENSO decay pace is investigated in present study. For post-El Niño summer, the NWP circulation anomalies vary from one case to another, and an anomalous anticyclone is observed for all cases’ composite. The EOF1 mode of NWP circulation anomalies following 33 El Niño cases, explaining 39.8% of total inter-case variance, features an anomalous anticyclone and cyclone at south and north of 25°N, respectively. Therefore, the positive PC1 value corresponds to the NWPAC, while the anticyclone shifts more northeastward and an anomalous cyclone appears over the NWP for negative PC1 value.
The PC1-regressed SST anomalies show a pronounced CEP cooling during El Niño decay phase, which triggers the PC1-related NWPAC as a Rossby wave response. The CEP cooling lasts from March through August and beyond, and indicates the diverse El Niño decay rate among individual cases. A nonlinear k-means cluster analysis reveals that the NWP circulation anomalies are largely controlled by El Niño decay pace, and the NWPAC tends to shift northeastward (southwestward) in response to slow (fast) decay rate. The land rainfall anomalies respond to the diverse NWP circulation anomalies highly resemble the composite rainfall anomalies in the key areas of Asian monsoon region: the central China and South Asia, indicating variable rainfall response in these areas.
An inter-case EOF analysis is also performed for NWP circulation anomalies in 36 La Niña cases (Supplementary Figure S4). The conclusion obtained from La Niña cases are generally same to El Niño (Supplementary Figures S4–S8), and the slow (fast) decay rate corresponds to the northeastward (southwestward) shift of NWP cyclone. The PC1-regressed CEP warming pattern and its center for La Niña cases are slightly more westward than CEP cooling for El Niño cases, as well as the circulation anomalies (Figures 1B, 3A; Supplementary Figures S4B, S6A). As a result, the rainfall response is more variable and covers larger areas over the central China and India.
The present study emphasizes the crucial role of ENSO decay rate to the diversity of NWP circulation anomalies and variable rainfall response, but it does not mean the lack of influence of SST anomalies in the other basins, i.e., the TIO and NWP. As shown in Figure 4 and Supplementary Figure S7, the NWP circulation anomalies in the four clusters are often maintained by the combined effect of SST anomalies in several basins. Besides, the ENSO decay rate is an important factor modulating Asian monsoon rainfall following ENSO. However, there are still large uncertainties in the prediction of ENSO, especially during its decay phase (Tippett et al., 2012; Wang et al., 2020a), and much work deserves to be done to improve ENSO forecasts.
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The Pliocene epoch from about 5.3 million to about 2.6 million years before present is the most recent period of sustained global warmth similar to the near future projections. The restriction of the Indonesian Passages, the closure of the Panama Seaway and declining atmospheric CO2-concentration are suggested to have caused the global climate evolution to the present-day condition. Here, we present the Pliocene sea surface temperature (SST) reconstructions along with sensitivity experimental results from a coupled General Circulation Model. We find that, in terms of SST, simulated model sensitivity to CO2 is in good agreement with the Pliocene reconstructions in most regions except the North Atlantic and Arctic. This suggests the necessity for improved boundary conditions and a possible underestimation of internal climate feedback at the high-latitudes. The responses of East Asian Summer Monsoon (EASM) to the oceanic gateway and CO2 are investigated. Influences of declining CO2 on the EASM are more prominent. An intensification of the intensity of EASM by ∼50% is simulated in response to the declining CO2, which is largely attributed to the strengthened land-ocean thermal contrast, while the precipitation decreases by ∼4.8%. In contrast, the restriction of two seaway changes only drives relatively weak changes with respect to wind speed and precipitation. A water vapor budget analysis suggests that the reduced atmospheric moisture content due to decreasing CO2 significantly contributes to precipitation response.
Keywords: Panama seaway, Indonesian Passages, mid-Pliocene, East Asian summer monsoon, atmospheric CO2
1 INTRODUCTION
The Pliocene epoch, from 5.3 to 2.6 million years ago (Ma), was characterized as a period of global cooling and evolving towards present-day climate. Paleo-geochemical proxies indicate an atmospheric CO2-concentration similar to the present-day values, with concentrations amounting to ∼405 p.p.m. (parts per million; Haywood et al., 2011). Specifically, the global mean temperature during the mid-Pliocene (∼3.3–3 Ma) was 2–3°C warmer, global sea level 25 m higher than today (Dowsett et al., 2016). The Northern Hemisphere continental ice sheet extensively developed, especially over Greenland, in the late Pliocene around 3 Ma (e.g., Lisiecki and Raymo, 2005; Rohling et al., 2014).
During the Pliocene, a number of significant changes in oceanic gateway created the modern ocean geometry and had profound effects on global and regional climate evolution (e.g., Haug and Tiedemann, 1998; Cane and Molnar, 2001). The closure of the Panama Seaway that connected the tropical Atlantic to the Pacific has been one of the predominant seaway changes. The tectonic evolution of the Panama Seaway is complex and long-lasting for millions of years since early Miocene (23–25 Ma; Farris et al., 2011). From an oceanographic perspective, a critical threshold is the constriction of deep-water flow. Montes et al. (2015) suggests that deep and intermediate water mass exchange between both basins had already vanished at ∼15 Ma. However, ocean records indicate the existence of upper-ocean connections between the Caribbean Sea and the Pacific until the Pliocene (Haug et al., 2001). Notably, palaeoceanographic data indicate that the final closure of the Panama Seaway between ∼4.8–4 Ma were still sufficient to influence the ocean circulation and global climate (Steph et al., 2010). Numerical modelling studies show that the final closure enhances the Atlantic Meridional Overturning Circulation (AMOC), by differing magnitudes depending on the configuration of the seaway and the selection of climate models (Zhang X. et al., 2012), as the closure of seaway enhances the salinity contrast between the Pacific and Atlantic. Enhanced AMOC is also suggested to have caused the shoaling of thermocline depth in the east equatorial Pacific (Steph et al., 2010), which is supported by model results (Zhang X. et al., 2012). The shoaled thermocline depth may have preconditioned the modern Pacific cold tongue and favoured the development of ENSO. On the other hand, the warmer SSTs in the North Atlantic associated with strengthened AMOC would have increased the precipitation and presumably glaciation over Greenland (Haug and Tiedemann, 1998). However, paleoclimate reconstructions suggest gradual cooling in the North Atlantic at the same period (Lawrence et al., 2010). Furthermore, climate model experiments suggest the glaciation over Greenland is controlled by declining CO2 but not increased precipitation (Lunt et al., 2008).
The constriction of the Indonesian Passages is due to the collision between Australia and Southeast Asia. Since the earliest Miocene (∼25 Ma) Australia has been moving northward slowly and converging with Asia. Following the final closure of the Panama Seaway (∼4.8–4 Ma), the restriction of the Indonesian Passages (∼4–3 Ma) played a prominent role in constraining warm and salty water entering the Indian Ocean from the Pacific (e.g., Karas et al., 2009; Karas et al., 2017). Karas et al. (2017) further suggested that the constriction of the Indonesian Passages might have weakened the AMOC by reducing the salinity transport into the Atlantic Ocean from the Indian Ocean. Such change is suggested to have preconditioned the onset of Northern Hemisphere Glaciation and influenced global climate, including the aridification of East Africa (Cane and Molnar, 2001). However, Jochum et al. (2009) found rather weak global climate impact of an altered Indonesian Passages with coupled climate model simulations. The simulated climatic impact is observed only in the equatorial Pacific and the properties of ENSO. Additionally, Krebs et al. (2011) found that the restricted Indonesian Passages could explain the aridification of north-western Australia during the Plio–Pleistocene.
The East Asian Summer Monsoon (EASM) is one major component in the global climate system and provides fresh water resources for the most populated regions in the world. The EASM is mainly driven by the land-ocean thermal contrast. Due to the different thermal capacity of land and ocean, a warm low-pressure system over the East Asia continent drives southerly winds and brings precipitation into East Asia during boreal summer (June-July-August, JJA). Multiple geological evidence for surface air temperature and precipitation revealed the EASM evolution since the Pliocene. Biological and geochemical records indicate drying climate and weakening EASM trend from 4.5 to 2.7 Ma on the Chinese Loess Plateau (e.g., Wang et al., 2006; Ge et al., 2013). However, recent magnetic proxies contradict these records, which revealed a cooling and wetting climate at the same period (Nie et al., 2014). Furthermore, by extending the rock magnetic parameter record to ∼4.8–4.3 Ma, Nie et al. (2014) suggests a link between the final closure of the Panama Seaway and enhanced precipitation associated with intensified EASM. The idea is that the closure of Panama Seaway strengthened the high-pressure centre over the North Pacific, enhancing Southerly winds, which in turn intensify the precipitation brought by EASM (Nie et al., 2014). A group of proxy data with a decent age control ranging from 3.0 to 3.3 Ma, which indicates relatively reliable cooling temperature and/or decreasing precipitation, suggests a weakening trend of EASM since the mid-Pliocene. Atmospheric CO2-concentration could also modulate the EASM. Modelling studies show a weakening trend of EASM under global warming (Li et al., 2010).
In this study, we investigate the sensitivity of mean climate to external changes during the Pliocene, forced by changes in atmospheric CO2 and ocean geometry. Special attention is given to the influence of final closure of the Panama Seaway (∼4.8–4 Ma) and the restricted of Indonesian Passages, and to the EASM response. The structure is as follows. In Section 2, we describe the coupled model and the experimental design. The validation of model results, responses of mean climate and EASM are presented in Section 3. We conclude with a brief summary and a discussion of the main results in Section 4.
2 MODEL, EXPERIMENTAL SETUP AND METHODS
The Kiel Climate Model (KCM, Park et al., 2009) is used in this study. The KCM consists of the ECHAM5 as the atmosphere model (Roeckner et al., 2003) running on a T31 (3.75 ° × 3.75 °) horizontal resolution, with 19 vertical levels up to 10 hPa. It is coupled to the NEMO ocean-sea ice component (Madec, 2008) running on a 2°Mercator mesh, with 31 vertical levels, through the OASIS3 coupler (Valcke, 2006). The meridional resolution for the ocean component enhances towards lower latitudes, with ∼0.5° in the equatorial region. The ocean and the atmosphere component are coupled once per day without employing any form of flux correction.
Four experiments are conducted (Table 1) aiming to separate the model sensitivity of lowering atmospheric CO2, constriction of the Indonesian Passages and closure of the Panama Seaway. The experiment Pre-industrial is simulated with low-CO2 (286 p.p.m.) and modern Indonesian Passages and modern Panama Seaway. This experiment is integrated for 3,200 years starting from the Levitus climatology of temperature and salinity, which serves as a control simulation. Experiment Plio differs from experiment Pre-industrial only in the CO2-concentration which is higher (405 p.p.m.). Plio serves as sensitivity run for the high-CO2 experiments. The other two experiments, which investigate the effects of two seaway changes, are initialized with the output from Plio and integrated for 1,800 years. The last 300-year monthly output from each experiment is used for analysis.
TABLE 1 | Experimental setup for the coupled experiments.
[image: Table 1]The geometry for the Indonesian Passages and the Panama Seaway during the Pliocene are the same as in Song et al. (2017). Cane and Molnar (2001) suggested the deeper and wider geometry of the Indonesian Passages during the Early Pliocene. The passages between Sulawesi and New Guinea are 1,000 m deeper relative to the modern bathymetry. The northern coast of New Guinea is located 2° south due to the missing of the northern part. Additionally, the passage between Timor and Australia is also wider and deeper by removing part of Timor. An open Panama Seaway is represented in the model by replacing four land grids by ocean grids between North and South America at ∼8°N. We employ a depth of 106 m representing an open Panama Seaway to simulate the final stage of the shoaling process between 4.8 and 4.0 Ma (Haug et al., 2001).
We compare the simulated SST with the reconstructions from various types of proxies for the mid-Pliocene. The reconstructed dataset, which consists of 95 globally distributed sites, is from the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project (Dowsett et al., 2016). The estimates for SST are averaged over the time period between 3.264 and 3.025 Ma. The foraminifera based proxies, which are widely distributed in the low- and mid-latitudes, are of relatively higher confidence compared with other types (Dowsett et al., 2016). The Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) is used for the observed SST. The HadISST is on a global 1 ° × 1 ° grid covering 1870–2017. Only a sub-period (1870–1930) average is employed to represent the pre-industrial climatological mean.
3 RESULTS
3.1 Mean climate
In this section, we address the responses of mean state to CO2 and seaway changes (Table 2). Decreasing atmospheric CO2 concentration alters the radiation balance at the top of the atmosphere and hence the poleward heat transport. The constrictions of both seaways allows for the reorganization of large-scale ocean and atmosphere circulation, which redistributes heat and salt. Furthermore, the surface temperature and hydrological cycle also respond to these changes. Lower atmospheric CO2 in Pre-industrial dominates the global averaged SST and 2 m-air-temperature response, which amount to -2.33 K and −3.12 K, while the constriction of Indonesian Passages and the Panama Seaway lead to a slight warming of SST and 2 m-air-temperature amounting to less than 0.5 K (Table 2). The global averaged SST response to decreasing CO2 is within the range (∼2–3°C) estimated from proxies, suggesting the dominant role of CO2 on the surface temperature evolution from the Pliocene to the pre-industrial. Both the Arctic and Antarctic sea ice extent illustrates significant increase at lower CO2 (Table 2). In contrast, the constriction of both seaways reduces the Arctic and Antarctic sea ice with respect to the volume but not the extent. Additionally, lower CO2 significantly enhances the averaged ice sheet accumulation rate by 45.8 mm/yr (∼44%). The constriction of both oceanic gateways slightly slows down the glaciation over Greenland (Table 2). The relative change, however, is less than 10%. Cane and Molnar (2001) and Haug and Tiedemann (1998) hypothesized that both the restriction of the Indonesian Passages and the closure of the Panama Seaway contribute to the Northern Hemisphere Glaciation. Contradictory to their hypothesis, our result suggests that the Northern Hemisphere Glaciation during the late Pliocene may not be attributed to the changes in the oceanic gateways. Despite the enhanced precipitation over Greenland due to both seaway changes, the warmer temperature increases the melting of ice sheet at lower topography. An overall effect of the constriction of both seaways reduces the accumulation of Greenland ice sheet (not shown).
TABLE 2 | Global mean statistics for all experiments. Response to decreasing CO2 is defined as the difference between the Pre-industrial and Plio. Response to the restricted Indo. Passages is defined as the difference between the Plio and Indo. Passages. Response to the closed Panama Seaway is defined as the difference between the Plio and Panama Seaway.
[image: Table 2]Next we examine the responses of zonal mean variables (Figure 1). Lower CO2 cools the zonal mean temperature by ∼2 K, while the impacts of seaway changes hardly show up. Additionally, the precipitation between 10°S and 10°N is suppressed from 5.23 mm/day in Plio to 4.66 mm/day in Pre-industrial, in response to low CO2 (Figure 1). The constriction of Indonesian Passages and the Panama Seaway slightly enhances the precipitation by 0.15 mm/day and 0.19 mm/day over the tropics between 10°S and 10°N relative to Plio (Figure 1B). Increased cloud cover in Pre-industrial strengthens the reemission of radiation, which is consistent with the temperature response (Figure 1C). According to the Clausius-Clapeyron relation, a cooler atmosphere holds less water vapor. As shown in Figure 1D, lower CO2 in Pre-industrial significantly reduces the column integrated water vapor by ∼10 kg/m2 in the tropics (10°S-10°N). The closure of Panama Seaway increases the water vapor content by ∼3 kg/m2 over the tropics, which is stronger than the constriction of the Indonesian Passages (Figure 1D). The influences of both seaway changes barely reach the extratropical region.
[image: Figure 1]FIGURE 1 | (A) Zonally averaged 2 m air temperature (K). (B) Zonally averaged precipitation, evaporation and total freshwater balance (defined as precipitation minus evaporation plus river runoff, in mm/day). (C) Zonally averaged cloud cover. (D) Zonally averaged column integrated water vapor.
The impacts of CO2 and seaway changes on the SST are not spatially homogeneous (Figure 2), indicating the reorganization of large-scale circulation. In response to lower CO2, relatively weaker cooling occurred in the western boundary current regions in the Northern Hemisphere, especially over the Kuroshio and Gulf Stream region (Figure 2A). Both could be attributed to the enhanced heat transport associated with the strengthened North Equatorial Current (NEC), which is driven by the enhanced trade winds (Wang et al., 2006; Duan et al., 2017). The Indonesian Throughflow (ITF) also strengthens from 14.75 Sv in Plio to 15.0 Sv in Pre-industrial, which contributes to the stronger cooling in the Pacific warm pool than the equatorial Indian Ocean. Weaker cooling in the high latitudes is attributed to the increased sea ice extent (Table 2) that hinders the ocean-atmosphere heat exchange. The impacts of two seaway changes are similar, with the closure of the Panama Seaway illustrating stronger effect (Figures 2B,C). The constriction of Indonesian Passages warms the equatorial Pacific and cools the Indian due to a weakening of the ITF by ∼2.7 Sv. Reduced heat transport associated with the ITF further cools the southern Indian and Atlantic Ocean. The closure of Panama Seaway prevented the water exchange amounting to ∼6.5 Sv between the Pacific and the Atlantic. The SST response is asymmetric between two hemispheres, with general warming in the Northern Hemisphere and cooling in the Southern Hemisphere except the Bellingshausen Sea and the Amundsen Sea (Figure 2C).
[image: Figure 2]FIGURE 2 | SST (°C) responses to (A) decreasing CO2, (B) the constriction of Indonesian Passages and (C) the final closure of Panama Seaway. Stippling indicates the differences are significant at the 95% confidence level using Student’s t-test.
3.2 Validation against proxy data
Next we compare the modeled SST with the SST reconstructions from the PRISM project. There are 95 marine locations in total, which are distributed globally (Figure 3A). The re-constructions in low- and northern mid-latitudes are generally of high confidence, while the high- and southern mid-latitude reconstructions are of relatively low confidence, due to the limitations of reconstruction method or a low temporal resolution between 3.264 and 3.025 Ma (Dowsett et al., 2016). We first compare the simulated climatological mean SST with the proxies, and then the simulated SST difference between the Plio and Pre-industrial with the observed difference. Here the observed SST difference between the Plio and Pre-industrial is estimated by subtracting the interpolated HadISST from the PRISM dataset at each proxy location.
[image: Figure 3]FIGURE 3 | Model-data comparison. (A) Mean annual SST from PRISM dataset at 95 sites. (B) SST proxies superimposed on zonally averaged annual mean SST from three high-CO2 simulations. (C) Scatter plot showing the comparison between PRISM3 SSTs and the simulated annual mean SSTs in Plio. The Plio SSTs are interpolated to each proxy site.
To assess the model performance, we first compare the simulated zonally averaged annual mean SST. The high-CO2 experiments with different seaway configurations are generally in good agreement with reconstructions in the Southern Hemisphere, while models substantially underestimate the polar amplification in the Northern Hemisphere (Figure 3B). The model-proxy discrepancy over the northern mid- and high-latitudes amounts to a maximum of ∼10°C, especially over the North Atlantic and Arctic region (not shown). Neither of the tropical seaway changes helps to reduce this discrepancy. A pointwise comparison is further shown in Figure 3C by interpolating the simulated SST in Plio to each proxy site. The annual mean interpolated SST in Plio is 15.13°C, in comparison to an average of 17.67°C for the proxies. Additionally, various types of proxies confirmed the underestimated warming in the Northern Hemisphere.
Apart from the northern mid- and high-latitudes, the SSTs over California and Peru coastal upwelling regions significantly cool down, in comparison to the mid-Pliocene (Figure 4A). On the contrary, the SSTs over the Atlantic upwelling region remain quite stable (Figure 4A). Considering the model bias for the KCM to reproduce pre-industrial mean climate, we calculate the difference between Plio and Pre-industrial to cancel the model errors. The SST changes in the tropics are relatively modest, ranging from −2 to 2°C as suggested by the observations (red symbols in Figure 4B). However, the simulated difference between Plio and Pre-industrial is quite uniform in signs, amounting to ∼2–3°C. This suggests the missing of negative feedbacks or the inaccuracy of boundary conditions in Plio. The southern ocean is still in generally good agreement with the observed SST difference. On the other hand, the model-data discrepancy in the Northern Hemisphere remains quite large, with the simulated SST difference ranging from less than ∼2°C and the observation amounting to ∼9°C. By far, no climate models could fully reproduce the warming during the mid-Pliocene as suggested by the proxies. This may provide new sights into the mid-Pliocene boundary conditions or even the predictive abilities of the climate model.
[image: Figure 4]FIGURE 4 | (A) Observed difference between PRISM SST dataset and HadISST dataset (averaged between 1870 and 1900) showing the observed SST change between the mid-Pliocene and the pre-industrial. (B) Scatter plot showing the simulated SST difference between Plio and Pre-industrial and the observed SST difference.
3.3 East Asian summer monsoon
In this section, we investigate the responses of EASM to seaway and CO2 changes. Figure 2.10 shows the JJA mean responses of sea level pressure (SLP). While the surface cooling due to decreasing CO2 is globally ubiquitous (not shown), an enhanced land-ocean SLP contrast between the Pacific and East Asia is simulated (Figure 5A). There is a large SLP decrease of about 1.2 hPa over East China (red box in Figure 5). The SLP over the Tibetan Plateau decreases by ∼3.6 h Pa, while there is a weaker positive SLP response over the west Pacific (Figure 5A). In contrast, the restriction of the Indonesian Passages and the Panama Seaway reduces the land–ocean SLP contrast (Figures 5B,C). The seaway changes increase SLP over east China by ∼0.4 hPa and ∼0.6 hPa (green boxes in Figures 5B,C). The impacts of seaway changes on the west Pacific is modest.
[image: Figure 5]FIGURE 5 | Responses (shading) of JJA mean sea level pressure to (A) decreasing CO2, (B) the constriction of the Indonesian Passages and (C) the closure of the Panama Seaway. Contours depict the JJA mean SLP for Plio. Green boxes indicate the range of EASM (20°N–40°N, 100°E–140°E).
Following Yang et al. (2002), we define the intensities of EASM as the JJA mean 850 hPa meridional wind averaged over 20°N–40°N and 100°E–140°E (red boxes in Figure 6). Consis-tent with the SLP response to lower CO2, enhanced land–ocean thermal contrast strengthens the EASM from ∼1.1 m/s in Plio to ∼1.65 m/s in Pre-industrial (Figure 6B). As opposed to the impact of lower CO2, the constriction of Indonesian Passages and the Panama Seaway weakens the EASM intensity to a lesser extent, by ∼0.2 m/s and ∼0.3 m/s, respectively (Figures 6C,D). The SLP response is the dominant driver for the EASM response to seaway changes.
[image: Figure 6]FIGURE 6 | Climatological June-July-August (JJA) mean 850 hPa winds for (A) Plio, and its responses to (B) decreasing CO2, (C) the constriction of the Indonesian Passages and (D) the closure of the Panama Seaway. Red boxes indicate the range of EASM (20°N-40°N, 100°E-140°E). Wind vector scales (Unit: m/s) are shown in the upper right corner of each panel. Stippling indicates the differences for meridional wind are significant at the 95% confidence level using Student’s t-test.
The impact of lower CO2 on modulating the precipitation is stronger than that of seaway changes. Despite the enhanced EASM in Pre-industrial, the JJA mean precipitation averaged over the monsoon region decreases to 5.78 mm/day in Pre-industrial, in comparison to 6.20 mm/day in Plio. There is a large decrease of precipitation over the west Pacific (20°N-40°N, 130°E-150°E) amounting to 1.0 mm/day. The precipitation response to lower CO2 over east China is a dipole pattern, with wetter condition in the north and drought in the north (Figure 7A). Both seaway changes induce contradictory precipitation response between east China and the west Pacific (Figures 7B,C). The precipitation over land decreases while increases over the ocean. The overall JJA mean precipitation over the monsoon region slightly reduces by 0.13 mm/day and 0.01 mm/day, in response to the constriction of the Indonesian Passages and the Panama Seaway. The reduced precipitation response over land is associated with the weakened EASM (Figures 6C,D).
[image: Figure 7]FIGURE 7 | Responses (shading) of JJA mean precipitation to (A) decreasing CO2, (B) the constriction of the Indonesian Passages and (C) the closure of the Panama Seaway. Contours depict the JJA mean precipitation for Plio. Green box indicates the range of EASM (20°N–40°N, 100°E–140°E). Stippling indicates the differences for precipitation are significant at the 95% confidence level using Student’s t-test.
3.4 Possible mechanisms for the precipitation change
In order to account for the precipitation response to CO2 and seaway changes, water vapor budgets are analyzed with the following decomposition by Huang (2015). The precipitation is decomposed into
[image: image]
where P, ω and q are the precipitation, atmospheric vertical velocity (measured as the Lagrangian pressure tendency) and surface specific humidity, respectively. The overbar and ∆ represent the Plio JJA climatology and responses to CO2 and seaway changes. The two terms on the right hand side represent the thermodynamic and dynamic component, respectively. The positive vertical velocity represents ascending motion and vice versa. The underlying assumption for Eq. 1 is that the precipitation is produced by air that is transported from the boundary layer up to the mid-troposphere, where the water vapor condenses to become precipitation. This decomposition enables to separate the relative importance of the thermodynamic and dynamic contribution to precipitation response. The decomposition results are shown in Figure 8. The water vapor budget (Figures 8G–I) generally reproduces the responses of precipitation to CO2 and seaway changes, in comparison to Figure 7. The local contribution of thermodynamic component (Figures 8A–C) is weaker compared to that of the dynamic component (Figures 8D–F). Lower CO2 in Pre-industrial largely reduces the thermodynamic contributions by 5.62 Pa/day to precipitation averaged over monsoon region (black box in Figure 8A). Vertical profile of the corresponding specific humidity suggests that the response is robust and consistent throughout the troposphere to 300 hPa (Figures 9A,C). The restriction of the Indonesian Passages and Panama Seaway slightly increases the water vapor content, and thermodynamic contribution by 0.45 Pa/day (Figure 8B) and 1.20 Pa/day (Figure 8C), respectively. Student’s t-test shows that the response is statistically significant over most of the monsoon region (stippling in Figures 8B,C), albeit much weaker change compared to that of lower CO2. The dynamic component illustrates stronger local contribution to precipitation (Figures 8D–F). Lower CO2 generally enhances the precipitation associated with the vertical pressure velocity over East China, while weakens the dynamic contribution in the west Pacific. However, the averaged contribution over the monsoon region amounts to ∼0.38 Pa/day. It is much weaker than the thermodynamic component, which is mainly due to the compensation within the monsoon region. The vertical profile of the vertical velocity suggests that the lower troposphere is more sensitive to decreased CO2 in Pre-industrial (Figures 9B,D). The con-striction of both seaways weakens the ascending motion over East China and strengthens over west Pacific. The averaged contributions of dynamic component over monsoon region amount to −2.08 Pa/day and −0.51 Pa/day, respectively. Using Student’s t-test, we find that the significance is not as widely distributed as that of specific humidity, albeit the much stronger contribution of the dynamic component.
[image: Figure 8]FIGURE 8 | Decomposition of precipitation change as determined from the water vapor budget. Refer to the text for more details. (A) thermodynamic component in response to lower CO2, (B) the constriction of the Indonesian Passages and (C) the closure of the Panama Seaway. Stippling indicates the differences for surface specific humidity are significant at the 95% confidence level using Student’s t-test. (D–F) same as in (A–C) but for dynamic component. Stippling indicates the differences for vertical velocity are significant at the 95% confidence level using Student’s t-test. (G–I) summation of thermodynamic and dynamic component. The unit is Pa/day.
[image: Figure 9]FIGURE 9 | Vertical profile of JJA mean (A) specific humidity and (B) vertical pressure velocity averaged over the monsoon region (20°N–40°N, 100°E–140°E). Vertical profile of response of JJA mean (C) specific humidity and (D) vertical pressure velocity over the monsoon region to CO2 and seaway changes.
4 SUMMARY AND DISCUSSION
This study investigates the KCM sensitivity to changes in the atmospheric CO2 concentration, the Indonesian Passages and the Panama Seaway on the large-scale features of the Pliocene climate. In particular, we have compared the model sensitivity with the Pliocene SST reconstructions and EASM in a set of four sensitivity simulations with the KCM, which differ in the geometry of atmospheric CO2 concentration and the aforementioned passages. We studied the effect of decreasing CO2-concentration, the restriction of the Indonesian Passages and the closure of the Panama Seaway individually.
Model results show that global mean surface temperature anomalies are dominated by the atmospheric CO2 concentration. Decreasing CO2 cools global mean SST and 2 m-air-temperature by 2.33 K and 3.12 K, respectively (Table 2), which is consistent with surface temperature change (∼2–3 K), estimated from the proxies during the Pliocene. In comparison to the results from Pliocene Model Intercomparison Project (PlioMIP), the simulated 2 m-air-temperautre difference between Preindustrial and Plio is within the range (∼1.86–3.60 K) of coupled climate model ensembles (Haywood et al., 2013). The constriction of Indonesian Passages and the Panama Seaway warms the global mean 2 m-air-temperature barely, which amounts to ∼0.16 K and ∼0.32 K, respectively. Additionally, we observe a significantly increased ice sheet accumulation rate by ∼44% at low CO2 in Preindustrial compared to Plio. In contrast, the constriction of seaway changes slightly slows down the ice sheet accumulation by ∼7.2% and ∼9.1%. It is the melting of ice sheet associated with surface temperature that dominates the glaciation over Greenland in the KCM. Our results support the notion by Lunt et al. (2008) that the Northern Hemisphere Glaciation during the late Pliocene is con-trolled by the decline of atmospheric CO2. The influences of seaway changes, however, are of minor importance.
Although the simulated the global mean surface temperature change between Plio and Pre-industrial agrees reasonably well with the proxies, large model-data discrepancies exist in multiple regions. A comparison with proxy data shows that the model sensitivity agrees well with the SST changes in the southern oceans (Figure 4); however, it substantially underestimate the polar amplification by up to 9°C in the Northern Hemisphere, especially over the North Atlantic and Arctic region (Figure 4). Additionally, the simulated low-latitude temperature responses to CO2 are uniform in signs, in contrast to diverse responses estimated from proxies over the Caribbean Sea, Arabian Sea and the South China Sea (Figure 4). So far, no climate models could capture the strong polar amplification, or the diverse SST response in the tropics suggested by the proxies during the Pliocene (Dowsett et al., 2016). The reasons may be twofold. First, this suggests the necessity for improved boundary conditions and better representation of climate feedbacks for the Pliocene. Several possible tectonic changes, such as retreated Antarctic ice sheet, a closed Bering Strait and/or a deeper Greenland-Scotland- Ridge are not included in our study (Hill, 2015; Hill et al., 2017; Otto-Bliesner et al., 2017; Song et al., 2018). Burls and Fedorov (2014) further highlight the importance of an reduced meridional gradient of the cloud albedo in maintaining weak the zonal and meridional temperature gradient. Additionally, better representation of climate feedbacks over high latitudes, such as the water vapor and sea ice feedback, in the coupled models may be underestimated. Second, this discrepancy also highlights the need for improved proxy interpretation (Schneider et al., 2010) and reduced uncertainties in temperature estimates from geological proxies (Haywood et al., 2013). For instance, Stewart et al. (2004) shows that well-preserved foraminifera reveal lower tropical SSTs than previously stated. A proxy-proxy comparison over the Benguela upwelling region suggests that the Mg/Ca and alkenone SST proxies are strongly skewed toward cold and warm seasons, respectively (Leduc et al., 2014).
The EASM response to CO2 and seaway changes is investigated. Lower CO2 in Pre-industrial strengthens the EASM by 0.56 m/s, in relative to Plio. This is in contrast to the results of PlioMIP (Table 3). Seven out of eight PlioMIP members simulate weaker EASM in pre-industrial experiment by a range from 0.12 m/s to 1.2 m/s, and only one stronger EASM in pre-industrial experiment by 0.30 m/s, in composition to mid-Pliocene simulation (Zhang R. et al., 2013). JJA mean precipitation over the monsoon region decreases from 6.20 mm/day in Plio to 5.78 mm/day in Pre-industrial, albeit stronger EASM in Pre-industrial. The simulated precipitation response is larger than ensemble mean of PlioMIP amounting to 0.25 mm/day, but within the range from −0.51 mm/day to 0.75 mm/day among individual models. The simulated response to lower CO2 is consistent with the proxies (Ding et al., 2001; Wan et al., 2007), which suggests a wetter and warmer monsoon region during the Pliocene. The constraint of two tropical seaways both weakens the EASM (Figure 6). The restriction of Indonesian Passages and the Panama Seaway weakens the EASM by 0.28 m/s and 0.20 m/s, respectively. Accordingly, JJA mean precipitation over the monsoon region in response to both seaway changes decreases by 0.11 mm/day and 0.01 mm/day, respectively.
TABLE 3 | The response (defined as the difference between Pre-indurial and Plio) of the intensity of East Asian summer monsoon (EASM) and JJA mean precipitation over the monsoon region (20°N-40°N, 100°E-140°E) in the KCM and the PlioMIP experiments (Zhang R. et al., 2013).
[image: Table 3]In order to account for the precipitation responses, a water vapor budget analysis is con-ducted by decomposing the precipitation into thermodynamic and dynamic component. In general, the local contribution of dynamic component to precipitation is stronger than the thermodynamic component. The water vapor budget generally agrees well with the precipitation response. Reduced precipitation over monsoon region in Preindustrial is mainly attributed to thermodynamic component (−5.62 Pa/day). The dynamic component amounting to ∼0.38 Pa/day compensates the reduced precipitation slightly. The precipitation response to the restricted Indonesian Passages is owing to the compensation of the thermodynamic (0.45 Pa/day) and dynamic component (−2.08 Pa/day). The impact of closed Panama Seaway is rather weak over the monsoon region, which is consistent with ∼0.01 mm/day precipitation change.
Multiple geological evidences for temperature and humidity ranging from ∼3.3 to 3.0 Ma suggest cooling and drying monsoon region since the mid-Pliocene (Ma et al., 2005; Wu et al., 2007; Jiang and Ding, 2008; Wu et al., 2011; Cai et al., 2012). Our result indicates that the EASM response is largely attributed to the declining CO2. The impact of seaway changes is much weaker, in comparison to low CO2. On the other hand, model results do not support the hypothesis by Nie et al. (2014), in which they proposed that the final closure of the Panama Seaway may have intensified the EASM from 4.8 to 2.7 Ma. We find that the closed Panama Seaway barely weakens the EASM. Instead, declining CO2 could explain the cooling and wetting trend over the proxy site. Additionally, the impacts of orography changes over the Himalayan Mountains and the Tibetan Plateau may be of greater importance (An et al., 2001; Zhang R. et al., 2012).
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Warm-sector heavy rainfall in South China is a frequent type of precipitation in summer in the Pearl River Delta region. The complexity of the mechanisms involved in the triggering of convection, especially the effects of urbanization, has greatly increased the uncertainty of numerical simulations of warm-sector heavy rainfall. In this study, five new surface parameters with five new anthropogenic heat (AH) parameters were constructed and coupled with the urban canopy model (UCM) of the Weather Research and Forecasting model, version 4.1, based on the local climate zone system over the Pearl River Delta Urban Agglomeration (PRDUA). Taking a typical warm-sector heavy rainfall process that occurred in the PRDUA on 20 April 2019 as an example, five groups of experiments involving different schemes were compared and analyzed, revealing that the precipitation simulated using the localized UCM with the new AH parameters was the best (closest to observations). The localized UCM successfully simulated the increase in 2 m temperature and sensible heat flux and the resultant thermal forcing in urban areas, which promoted the convergence of low-level southerly winds with water vapor and the lifting of the lower-layer warm and humid water vapor to the upper layers in the urban center, leading to a significant increase of precipitation. The improved AH parameters enhanced the anthropogenic heat and its vertical conduction in urban areas, but contributed only marginally to the convergence of 10 m winds. Compared with observations from wind profile radar, it was found that the localized UCM enhanced the accuracy of the simulated horizontal wind field convergence at upper and lower levels, while the improved AH parameters enhanced the accuracy of the simulated low-level jet intensity and vertical movement, which are important drivers for the spatial variation in warm-sector heavy rainfall over the PRDUA. The current findings will be helpful for improving the model skill in simulating warm-sector heavy rainfall over high-density urban areas, as well as enhancing understanding of the impact mechanism of urbanization on the occurrence and development of warm-sector heavy rainfall.
Keywords: urban canopy model, anthropogenic heat, warm-sector heavy rainfall, weather research and forecasting model, pearl delta urban agglomeration
1 INTRODUCTION
With rapid urbanization, the altered urban underlying surface modulates the processes of radiation, energy balance, turbulent motion and water budget, which have a significant impact on the weather and climate over the city and its surrounding areas (Oke et al., 2017). In particular, the effects of urbanization play essential roles in precipitation (Luo et al., 2016; Lin et al., 2020; Li W. et al., 2021). The Pearl River Delta (PRD) region, located in the tropics and subtropics and supplied in the south with abundant water vapor from the tropical ocean, has become one of the largest urban agglomerations in China. Under the action of the Asian monsoon, the western Pacific subtropical high, and thermodynamic forcing of the Qinghai–Tibet Plateau, the region is one of the areas in China with the highest incidence of heavy precipitation (Zhou et al., 2008; Zhang et al., 2010).
During the April–June pre-flood period in the PRD region, many heavy rainfall events occur in the warm sector in front of a cold front, termed “warm-sector heavy rainfall” (Huang et al., 1986). In detail, warm-sector heavy rainfall generally refers to heavy rainfall on the side of the warm area 200–300 km from the surface front, or heavy rainfall processes that occur in the converging southwestly and southeastly winds, or even in the southwestly flow without shear, and are not controlled by tropical systems such as typhoons (Huang et al., 1986). This type of rainstorm is usually generated under high temperatures, high humidity, and unstable conditions, with highly intense and sudden precipitation (Jiang et al., 2017; Li W. et al., 2021) that brings urban flooding and thus a serious threat to the lives and property of local people. Due to the lack of forcing from synoptic-scale baroclinic systems such as fronts, shear or low vortices, the warm-sector heavy rainfall of South China has long been a challenging forecasting issue (Chen et al., 2015; Luo et al., 2020; Wu et al., 2020).
In recent years, with the rapid development of modern meteorological detection methods and high-resolution mesoscale models, considerable progress has been made in studying the mesoscale characteristics, occurrence and development mechanisms, and predictability of warm-sector heavy rainfall (Huang et al., 1986; Lin et al., 2006; Chen et al., 2012; He et al., 2016; Li W. et al., 2021). In terms of the mechanism triggering the development of warm-sector heavy rainfall in South China, it has been found that low-level jets (LLJs) in this region are prone to convergent upward motion and the triggering of convective generation over the “trumpet” topography of the PRD region (Wu and Luo, 2016; Chen et al., 2017; Li M. et al., 2020), in which the boundary layer jet rapids are closely related to the appearance and maintenance of warm-sector heavy rainfall in coastal South China (Du and Chen, 2018; Zeng et al., 2019). Before the occurrence of warm-sector heavy rainfall in South China, strong convection and strengthening of radial winds in the Bay of Bengal (Li et al., 2015) and sea surface temperature anomalies in the eastern equatorial Pacific Ocean often occur (Li Z. et al., 2020). In particular, the urban heat island effect, linked with the size of the city, will also affect the intensity and fall area of warm-sector heavy rainfall over the PRDUA (Du and Chen, 2019).
To more accurately describe the impact of urbanization in numerical modeling, the main approach now is to couple an urban canopy model (UCM) with the numerical model (Ching, 2013). Currently, the UCM in the Weather Research and Forecasting (WRF) model divides cities into four types (low-density residential areas, high-density residential areas, commercial areas, and industrial areas), but WRF does not provide information on these four types of cities, except for cities in the United States. To solve the problem of classifying the urban underlying surface, Stewart and Oke (2012) proposed the concept of Local Climate Zones (LCZs), which divides cities into 10 categories according to building height, density, and land use/land cover (Stewart and Oke, 2012). Since the LCZ system was proposed, more than 130 cities around the world have established corresponding categorical data, most of which are European and Asian (Jiang et al., 2020; Li N. et al., 2021; Yang et al., 2022). Since 2018, LCZ data have been introduced into the WRF model, and studies have been conducted on urban climate, urban heat islands, urban air pollution, urban extreme high temperatures, and urban extreme precipitation (Tse et al., 2018; Molnár et al., 2019; Mughal et al., 2019; Wong et al., 2019; Yang et al., 2022; Zong et al., 2021). After the introduction of LCZ classification with its 10 categories of urban underlying surface, the simulation results in cities and their surrounding areas are generally improved, especially in terms of the spatial distribution of meteorological fields (Mu et al., 2019; Patel et al., 2020).
Based on the LCZ classification system, this study divided the urban underlying surface of the PRDUA into five main categories with a horizontal resolution of 100 m. Then, it was introduced and updated in the UCM of WRF, version 4.1 (WRF4.1). In addition, a new and improved anthropogenic heat (AH) parameters was coupled with the UCM of WRF4.1 over the PRDUA. Taking a typical warm-sector heavy rainfall process in the PRDUA on 20 April 2019 as an example, five groups of experiments with different schemes were conducted to explore the influence of the thermodynamic vertical structure and the urbanization within the boundary layer on the simulation of this rainfall process and its causes. Section 2 describes the urban surface parameters and AH settings for the PRDUA in the UCM, and the design of the five groups of experiments. Section 3 analyzes the improvement of the underlying surface parameters, urbanization, and the effects of AH on warm-sector heavy rainfall. Concluding remarks are given in Section 5.
2 DATA AND METHODS
2.1 Localized urban canopy model and building-energy model
Based on the types of urban construction and planning in the PRDUA, the underlying urban surface was classified into five categories using the LCZ classification system: high-rise, mid-rise, low-rise, large low-rise, and heavy industry. Firstly, Landsat satellite remote sensing data in summer 2014 and building height inversion data were used to establish an urban underlying surface classification dataset in the PRDUA with a 100 m horizontal resolution (Figure 1B) (Li N. et al., 2021). Secondly, instead of the default one-type urban surface in the UCM of WRF4.1, these five classifications of urban underlying surface were introduced, and the data on the proportion of urban built-up area were also updated by using Landsat satellite measurements (Figure 1D), replacing the default single value of 0.9 (i.e., 90% of the grid was built-up area; Figure 1C). Then, the building forms and road information corresponding to the underlying surfaces of five types of cities were introduced into WRF; specifically, the probability distributions of building height, building width, and road width (Figure 2). Finally, in combination with census data for China (Zheng et al., 2017), the air conditioning and energy consumption parameters were updated in the building-energy model (Table 1), replacing the default in WRF based on the parameters of air conditioning in Europe and the United States. The proportions of waste heat in the form of sensible heat or water vapor emissions from air conditioning were also changed; the air conditioning switch times of commercial and residential areas were set from 0,800 to 1800 or from 1800 to 0,800 the next day (LST, local standard time), respectively.
[image: Figure 1]FIGURE 1 | (A) Spatial distribution (red frame) and terrain height distribution (shaded; unit: m) of the WRF mesoscale numerical model. (B) Spatial distribution of localized urban land types in the third, finest-scale grid area, along with other land types. (C) Proportion of built-up area in the default urban canopy. (D) Proportion of built-up area in the localized urban canopy. The black line in (D) is the location of the vertical cross section shown in Figures 10, 11. The red triangles indicate the locations of three wind profiler radar (LG: Luogang, ZC: Zengcheng, XH: Xinhui).
[image: Figure 2]FIGURE 2 | Urban form parameters of the (A) default urban canopy and (B) localized urban canopy. Bars represent the probability distributions of building height (unit: m); circles and asterisks represent street width (unit: m) and building width (unit: m), respectively.
TABLE 1 | Candidates residing under the WRF Default 1 category and Localized 5 Categories (candidates) of urban underlying surface and their corresponding building air-conditioning use and energy consumption parameters.
[image: Table 1]The urban underlying surface classification dataset considered the localized urban information of the PRDUA, which could then be used by the single-layer UCM, multi-layer UCM, and multi-layer building-energy model in WRF4.1. This process of updating and localizing the urban underlying surface dataset made the urban underlying surface and AH emissions in the model more realistic and detailed, which was conducive to improving its ability to simulate the urban meteorology.
2.2 Data
Observational data obtained by various methods were used to verify and compare with the simulation results over the PRDUA. These data included hourly precipitation data from a high-density network of 1,180 automatic weather stations and hourly wind field data from wind profiler radars in the areas of Luogang, Zengcheng and Jiangmen Xinhui in Guangdong Province. The P-band tropospheric type-I wind profile radar in Luogang can provide horizontal and vertical wind field information from 150 to 16,230 m, with a vertical resolution of 120 m below 2,670 and 240 m above 2,670 m. The boundary layer wind profile radars in Zengcheng and Jiangmen Xinhui can provide horizontal and vertical wind field information from 100 to 5,980 m above the radar altitude, with a vertical resolution of 60 m. Wind profiler radar data can provide multiple types of long-distance atmospheric turbulence information with high spatial and temporal resolution and a high degree of accuracy (He, 2006). The ECMWF Reanalysis (ERA5; 0.25° × 0.25°; 37 vertical layers; hourly) to analyze synoptic situation for the rainfall event. The ERA5 data is also used to generate the initial and lateral boundary conditions for the numerical simulations.
2.3 Experimental design
The mesoscale numerical model WRF4.1 was selected and three two-way nested domains were adopted. The first and coarsest mesh had a horizontal resolution of 9 km and covered the whole of East Asia; the second, finer-scale mesh had a resolution of 3 km and covered the whole of South China Sea and part of the South China Sea; and the third, even finer-scale mesh had a nested resolution of 1 km and covered the whole of the PRD region, with 378 × 378 grid points (Figure 1A). Each domain had 45 vertical layers and 12 vertical layers within 1 km from the ground. The initialization time was 0000 UTC 19 April 2019 and the forecast time was 1200 UTC 21 April, with a model output at 1 h intervals. The WRF double-moment 7-class scheme (Thompson et al., 2008), The NoAH-MP land surface process parameterization scheme (Niu et al., 2011) the RRTMG longwave and shortwave radiation schemes (Iacono et al., 2008), the BouLac boundary layer parameterization scheme (Bougeault and Lacarrere, 1989), and the revised MM5 similarity surface layer scheme, were used for the three domains. The Grell 3D cumulus convection scheme (Grell and Dévényi, 2002) was used for the first, coarsest domain. The initial and boundary conditions were provided by ERA5 with horizontal resolution of 0.25° × 0.25° and a time interval of 1 h.
In order to understand the influence of the urban canopy and AH change on the simulation results of the WRF model, four groups of urban (control) experiments and one rural experiment were designed, as listed in Table 2.
TABLE 2 | The five groups of experiments and their urban canopy and anthropogenic heat settings.
[image: Table 2]3 RESULTS AND DISCUSSION
3.1 Synoptic analysis of a warm-sector heavy rainfall event
A warm-sector heavy rainfall event that occurred from 0800 LST to 2000 LST 20 April 2019 in the PRDUA was selected as an example. The main study area was the PRDUA and its surrounding areas. The 0.25 ° × 0.25 ° hourly ERA5 reanalysis product was used to analyze the case. Figure 3 shows the horizontal divergence of velocity at 950 hPa, the water vapor flux dispersion at 950 hPa, the pseudo-relative potential temperature at 850 hPa, the relative vorticity at 850 hPa, and the geopotential height at 500 hPa at 0700 LST 20 April 2019. Figure 3A shows that the western Pacific subtropical high reached close to 14°N and 104°E, and the ridge of the subtropical high was over the northern part of the South China Sea. Southern Guangdong was influenced by the subtropical high as well as the southwest monsoon. At 500 hPa, the coastal areas of South China were dominated by westerly winds whilst simultaneously being affected by the cold air brought by the East Asian trough over the Tibetan Plateau. Figures 3B–D show that southerly winds controlled the South China coast and delivered sufficient warm, moist air to the area at 850 hPa and 950 hPa. A negative center of water vapor flux dispersion (Figure 3E) appeared at the lower levels in the PRDUA, indicating that there was a convergence of water vapor, which provided positive water vapor conditions for precipitation. At 950 hPa (Figure 3D), wind speeds decreased significantly when the southly winds reached the PRDUA, while the southwestly winds at 850 hPa increased significantly, indicating that low-level winds converged and the horizontal wind direction rotated clockwise in urban areas. Figure 3B shows that the pseudo-relative potential temperature in the PRDUA was higher than in the surrounding areas at 850 hPa, indicating that the PRDUA was in a warm and humid environment. The low-level southerly winds transported the warm and humid air of the ocean to the urban area, which was thermodynamically uplifted in the urban area, where it then met the cold air from the north and triggered this warm-sector heavy rainfall event in the PRDUA in South China. Precipitation first appeared in the northwest of Guangdong, and cold air from the north continued to invade the Guangdong under the action of the strong northwestly winds, thereby forming a southwest–northeast-oriented rainband. At 1200 LST 20 April 2019, the rainband arrived at the PRDUA and warm-sector heavy rainfall occurred, with a maximum cumulative precipitation of 82 mm in 3 h and a maximum precipitation intensity of 72.7 mm/h. The rainband then moved southwards over the ocean and disappeared. The precipitation process can be divided into two stages: during 0,800–1200 LST, the rainband had not reached the urban area; and during 1,200–2000 LST, precipitation occurred over the PRDUA. This paper focuses on analyzing the changes in meteorological elements in the urban area during the first stage, before the occurrence of precipitation.
[image: Figure 3]FIGURE 3 | The (A) geopotential height (red contours; unit: gpm) at 500 hPa, (B) pseudo-phase temperature (color shading; unit: K) and horizontal wind (arrows; unit: m·s−1) at 850 hPa, (C) 850 hPa relative vorticity field (color shading; unit: s−1), (D) 950 hPa horizontal wind (arrows; unit: m·s−1) and horizontal divergence of velocity field (color shading; unit: s−1), and (E) 950 hPa water vapor flux divergence field (color shading; unit:10 g·cm−1 s−1 hPa−1) at 0700 LST 20 April 2019.
3.2 Comparison of observed and simulated precipitation
Figure 4A shows the distribution of 12-h cumulative precipitation observed by the high-density network of automatic weather stations in Guangdong. There were three main heavy precipitation centers, which were the northwest–southeast-oriented heavy precipitation rainband in the Luogang area of Guangzhou, the northeastern part of Guangzhou, and the Hong Kong area, respectively. The maximum 12-h cumulative precipitation in all three areas exceeded 70 mm. Among them, Guangzhou’s Luogang area had the most extensive rainband and the greatest intensity of precipitation. In all five experimental groups, the heavy precipitation rainband in the Luogang area of Guangzhou could be simulated, but the heavy precipitation areas were shifted to the south compared with the observed precipitation distribution. Compared with the other four groups, the Urb5w_5ah experimental group, with the addition of new urban surfaces and AH, simulated the largest area of intense precipitation in the Luogang area of Guangzhou, which is more practical. In addition, Urb5w_5ah also simulated the area of intense precipitation in northeastern Guangzhou and the intensity of precipitation in the Luogang area of Guangzhou well (Figure 4E). The rainband pattern simulated by the Urb5w experimental group in the Luogang area of Guangzhou was closer to the actual precipitation distribution, but the intensity of precipitation in urban areas was underestimated (Figure 4D). In the rural experiment, due to the lack of urban thermal uplift, and although a certain amount of precipitation in urban areas was simulated, the precipitation range and precipitation intensity were smaller than observed (Figure 4F).
[image: Figure 4]FIGURE 4 | Distribution of 12-h cumulative precipitation (unit: mm) during 0,800–2000 LST 20 April in (A) automatic weather station observations, (B) Urb1w, (C) Urb1w_1ah, (D) Urb5w, (E) Urb5w_5ah, and (F) Rural (red box: precipitation bias in the simulations).
In order to quantitatively assess the simulation results of this warm-sector heavy rainfall in the five experimental groups, three evaluation indices—bias (Bias), mean absolute error (MAE), and root-mean-square error (RMSE)—were selected, and the results are shown in Table 3. Since the precipitation area was relatively wide, in order to evaluate the model’s performance in simulating the heavy precipitation, hourly observations based on 50 automatic weather stations in three chosen regions of South China, with high spatiotemporal density, were employed. The precipitation on the grid was matched to the vicinity of the site. Two methods—matching the nearest grid point and averaging the nine surrounding grid points—were selected, and the former was found to be more reasonable. After coupling the new UCM and adding AH, all evaluation indices showed a significant improvement in the accuracy of the simulated precipitation. The RMSE of the Urb5w_5ah experimental group improved by 8.8% compared with the original scheme, Urb1w_1ah. The RMSE improved by 5.9% in the Urb5w-5ah experimental group compared with the Rural experimental group. With AH only, the RMSE of the Urb5w_5ah experimental group improved by 15.8% over the Urb5w experimental group.
TABLE 3 | Assessment of model-simulated precipitation.
[image: Table 3]Meanwhile, Figure 4 shows that the five experimental groups all overestimated the rainfall over the region (22°40′ N to 23°N, 113°N to 114°N) in this simulation case. This might be because that the precipitation in the southwest coastal region (red box in Figure 4A: 22°15′ N to 22°35′ N, 113°30′ N to 114°30′ N) was shifted to the northeast (red box in Figures 4B–F) in the simulations, which was enhanced by the urbanization effect. The shifted simulation bias might be that the simulated precipitation usually has a wet bias with a large area or a dry bias with a small in these five experiment groups, which is probaby related to the selected cloud microphysical scheme and the boundary layer parameterization scheme (Wan et al., 2017). More studies are needed, however, this is beyond the scope of this study.
To reduce the impact of simulated precipitation errors on the evaluation results, the stations in urban areas with heavy precipitation (22°55′ N to 23°41′ N, 112°32′ E to 114°24′ E) were selected to evaluate simulation results, which is outside of the region with large simulation biases (22°40′ N to 23°N, 113°N to 114°N). Table 3 shows that the urb5w_5ah slightly overestimates precipitation and the urb1w_1ah underestimates precipitation in this area. Table 3 shows that the precipitation bias of the urb5w_5ah is 2.17 mm/h while that of the urb1w_1ah is -9.64 mm/h in the area. Figure 5 shows the distribution of 08–12 LST, 08–16 LST and 08–20 LST cumulative precipitation. It can be found that precipitation pattern simulated by the Urb5w_5ah is more consistent with the observation in urban areas (inside the black box) during 08–16 LST, indicating that the urb5w_5ah scheme can improve the precipitation simulation in urban area. Impacts of the localized UCM and improved AH parameters.
[image: Figure 5]FIGURE 5 | Distribution of 4-h cumulative precipitation (unit: mm) during 0,800–2000 LST 20 April (black box: urban areas with heavy precipitation).
In order to evaluated the simulation of 2 m temperature and 10 m wind field in the PRDUA, the study compared the results of the Observation with the two experimental groups (Urb5w_5ah and Urb1w_1ah) (Figure 6). Considering the deviations in precipitation location and intensity after the improvement of the subsurface, the cumulative precipitation in the Urb5w_5ah and Urb1w_1ah experimental groups was compared to reveal the effect of the new urban canopy on the precipitation. Results showed that the intensity of precipitation in the PRDUA was significantly enhanced after adopting the new urban surface parameters (Figure 7A). Different schemes for the underlying surface will affect the atmospheric circulation, convection, and precipitation by influencing the urban heat and momentum as well as the water vapor exchange. Next, we analyze the influence of the new surface parameters on this warm-sector heavy rainfall by comparing several meteorological elements including the 2 m temperature, sensible heat flux, latent heat flux, 10 m wind, and 2 m specific humidity in the five experimental groups.
[image: Figure 6]FIGURE 6 | Comparison between observations and two sets of model-simulated meteorological elements from 0,800 to 1000 LST 20 April: (A1) observations of 2 m temperature (unit: °C); (A2) Urb1w_1ah simulated 2 m temperature (unit: °C); (A3) Urb5w_5ah simulated 2 m temperature (unit: °C); (B1) observations of 10 m wind speed (unit: m·s−1); (B2) Urb1w_1ah simulated 10 m wind speed (unit: m·s−1); (B3) Urb5w_5ah simulated 10 m wind speed (unit: m·s−1). (The black box represents the precipitation centers in urban areas, the cyan arrows represent the locations where the horizontal wind speed decreases in urban areas).
[image: Figure 7]FIGURE 7 | Difference between the urb5w_5ah and urb1w_1ah experimental groups in their simulation of meteorological elements from 0,800 to 2000 LST 20 April: (A) cumulative precipitation (unit: mm); (B) average 2 m temperature (unit: °C); (C) average 2 m specific humidity (unit: g·kg−1); (D) average horizontal wind (unit: m·s−1) (in the figure, the stronger the north wind in urban areas, the larger the urban deceleration and convergence effect); (E) average surface upward sensible heat flux (unit: W·m−2); (F) average surface upward latent heat flux (unit: W·m−2).
Figure 6A1 shows the observed 2 m temperature distribution, from which it can be seen that, during this precipitation process, the urban area of Guangzhou was warmer compared with the surrounding areas and the higher-temperature areas were mainly located near the PRD. Both experimental groups broadly simulated the high-temperature areas (Figures 6A2, 6A3), with only some deviation at the highest temperatures. Considering the 10 m horizontal wind (Figure 6B1), southly winds were dominant in the PRD region. The suburban areas had strong wind speeds because of the sparsity of the buildings and their low height, and the 10 m wind decelerated significantly when reaching the urban area of Guangzhou. After adopting the new urban canopy (Figures 6A3, 6B3), the 2 m temperature increased in the urban area, the horizontal wind was southeastly in the upwind area of the city and southly in the downwind area, and the wind speed decreased in the urban area of Guangzhou. The wind speed was more consistent with the observation in urban areas. The Urb5w_5ah experimental group had a more pronounced deceleration than the Urb1w_1ah experimental group when the 10 m horizontal wind speed blew across the urban area (Figures 6B1, 6B2), which was more consistent with the observation. However, high-speed 10 m horizontal winds appeared in the southwest of Guangzhou, which were not accurately simulated by both experimental groups.
After adopting the new urban surface parameters, there was a reduction in 2 m temperature in the PRDUA (Figure 7B). The main reason for this may be that the new surface consists of buildings of different heights and, during the day, shortwave radiation is absorbed when it reaches tall buildings and partially reflected back to the atmosphere, preventing it from reaching the ground and low buildings, resulting in shade effects in the PRDUA. In Figure 7E, the change in sensible heat flux is consistent with the 2 m temperature. For the PRDUA, after adopting the new UCM, the direction of sensible heat flux in urban areas shifted to downwards. This may be due to the fact that tall buildings in the new scheme block most of the solar energy, causing heat to gather at a height and preventing it from being transmitted downwards. The latent heat flux at the surface represents the potential heating of the atmosphere by the surface and the exchange of water vapor between the surface and the atmosphere. After adding the new UCM (Figure 7F), the upward latent heat flux in the PRDUA was generally enhanced. The reason may be that the improved urban surface scheme has a stronger effect on the deceleration of low-level winds, resulting in more water vapor converging in the PRDUA and stronger water vapor heat exchange, thus forming a stronger latent heat flux. Adequate water vapor is a necessary condition for precipitation to occur. The effect of the improved urban ground surface scheme (Figure 7C) on the 2 m specific humidity was mainly reflected in the southern Guangzhou urban agglomeration, in which the weakening of near-surface heating due to urban buildings of different heights led to a decrease in surface evaporation, resulting in a certain increase in the 2 m specific humidity in this area. From Figure 7D, it can be seen that southern Guangzhou was dominated by southerly winds and the winds weakened in the urban area. If northly winds appeared in Figure 7D, meaning the new urban surface has a more obvious deceleration effect on the near-surface southerly winds. From Figure 7D, stronger northly winds appears in the urban area and the surrounding horizontal winds were generally weaker. This indicates that the surface building design in the Urb5w_5ah experimental group had a stronger blocking effect on the 10 m horizontal wind in the urban center. The low-level southerly winds carried warm and humid air, which converged in this area and was lifted to the upper levels where it strengthened the southwesterly wind. This high–low wind configuration was conducive to triggering atmospheric instability and enhancing precipitation in the PRDUA.
3.3 Roles of urbanization effects and anthropogenic heat
Due to the accelerated urbanization process, the expansion of the urban area and the increasing number of buildings in the city, the surface roughness, albedo, and vegetation coverage in the urban area have changed dramatically, thus leading to continuous changes in the thermodynamic characteristics of the urban canopy, and the changes in the heat transport and wind field have greatly affected the precipitation in the urban area (Miao et al., 2011; Zhong et al., 2015). By comparing the results of the Urb5w_5ah and Rural experimental groups, the effect of urbanization on precipitation over the PRDUA can be analyzed. By calculating the difference between the precipitation of the two schemes (Figure 8A), it can be seen that the difference is mainly located in the urban area of Guangzhou. Comparing the 2 m temperature distribution before precipitation (Figure 8B), the release of AH in Guangzhou led to an average temperature that was 1.5°C higher in the Urb5w_5ah experimental group than in the Rural experimental group, with the temperature increase in the northwest of Guangzhou even exceeding 3°C. Meanwhile, the heat island effect in the PRDUA was strengthened in the Urb5w_5ah experimental group, resulting in a general increase in upward sensible heat flux in Guangzhou (Figure 8E). The rural surface is mainly covered with vegetation and soil, which has a higher capacity to store water vapor, and therefore has a stronger upward latent heat flux near the surface relative to the impermeable surface in the PRDUA (Figure 8F). At the same time, because the surface temperature is not as high as in urban areas, the heating and lifting effect of water vapor is weak; the 2 m humidity over the rural surface was higher than in the urban area (Figure 8C). Over the rural surface (Figure 8D), due to the reduced roughness of the vegetated surface, the land had a weaker deceleration effect on the southerly winds from the sea. The urban surface, meanwhile, had a convergent lifting effect on the southerly winds near the surface, so the 10 m horizontal wind difference between the Urb5w_5ah and Rural experimental groups was the largest. Due to the differences in the types of surface and their thermal characteristics between the urban and rural areas, the near-surface temperature increased in the urban areas and the southerly winds from the sea, which carried large quantities of warm and humid water vapor converges, heated and lifted in the PRDUA, resulting in stronger precipitation.
[image: Figure 8]FIGURE 8 | Similar to Figure 7 but for the difference between the Urb5w-5ah and Rural experimental groups.
In recent years, the PRDUA has seen a large increase in AH (e.g., vehicle emissions, air conditioning emissions, the release of heat from factory waste), due to the population explosion and growth of industry. AH is a key part of the near-surface energy balance equation and can affect the distribution and intensity of rainfall in urban areas by increasing the upward heat flux, changing the free convection height, and lifting the condensation height and the height of the planetary boundary layer. To clarify the urbanization effect, it is necessary to further quantify the effect of AH as an independent factor affecting precipitation in the PRDUA, especially on precipitation in warm areas dominated by thermal factors. By comparing the precipitation distribution of Urb5w-5ah and Urb5w (Figure 9A), it was found that the precipitation difference in the PRDUA after the addition of AH was mainly distributed in the southern part of Guangzhou, and the overall precipitation area shifted southwards, while the other two areas of heavy precipitation were mainly manifested as an increase in precipitation intensity, and the location of precipitation was basically unchanged. With the addition of new AH, the AH in urban areas led to an increase in 2 m temperature (Figure 9B), which triggered turbulent motion upwards in the vertical direction. The more the 2 m temperature increased, the stronger the updraft and the more unstable the atmosphere became, accelerating the onset of convection and precipitation. At the same time, with the addition of AH (Figure 9E), there was a significant upward sensible heat flux in all urban areas. The central difference of the strong sensible heat flux reached 100 W/m2, while there was no significant change in the surrounding non-urban areas. The center of upward latent heat flux after the addition of AH was mainly in the eastern part of Guangzhou and at the 2 m temperature maximum (Figure 9F), with a maximum latent heat flux difference of 150 W/m2. By comparing the spatial distribution of 2 m specific humidity (Figure 9C), it is apparent that there were lower values in the urban areas with higher temperatures due to the enhanced heating capacity of the ground surface, which made the lower-level water vapor conduct upwards to form precipitation at higher altitudes. The 10 m wind fields of the two experimental groups differed (Figure 9D) and there were no areas with higher wind speeds, indicating that the simulated 10 m wind fields of the two experimental groups were basically the same throughout the PRDUA. By quantifying the effect of AH on precipitation in the warm area of the PRD region, it can be seen that the near-surface temperature and upward heat flux in the urban area increased significantly after the addition of AH; plus, the water vapor near the surface was lifted rapidly, leading to an increase in precipitation intensity and a shift in precipitation location to the southeast. The effect on the 10 m wind field, meanwhile, was negligible.
[image: Figure 9]FIGURE 9 | Similar to Figure 7 but for the difference between the Urb5w-5ah and Urb5w experimental groups.
3.4 Modulation of vertical thermodynamic structures
To study the influence of the UCM and AH on the local circulation, latitude–height sections (22.50°–24.00°N) over the PRDUA (113.5°E) at 1200 LST 20 April of the wind and air temperature as well as the potential pseudo-relative temperature were analyzed (Figures 10, 11). Figures 10A–E shows that all of five experimental groups produced higher temperatures over the PRDUA, especially the experimental groups with AH parameters (Figures 10B,D). The area with relatively high temperatures was accompanied by a strong updraft caused by the convergence and uplifting of low-level southerly winds over the PRDUA. The warm and humid air from the ocean was lifted to the upper level, which was conducive to rainfall. It can be seen from Figures 10B,D that the vertical updraft in the Urb1w_1ah experimental group was mainly in the south of Guangzhou city (23.00°N), while in the Urb5w_5ah experimental group it was mainly over Guangzhou city (23.17°N). The Urb5w_5ah experimental group improved the location of the simulated temperature and updraft relative to the Urb1w_1ah experimental group, indicating the Urb5w_5ah experimental group better simulated the effect of urban heat emissions. The original model with a single underlying surface applied in the Urb1w_1ah experimental group was unable to precisely simulate the effect of urban heat emissions, leading to the precipitation center shifting in the south (Figure 7A). This shows that the newly constructed model with five types of underlying surface and AH applied in the Urb5w_5ah experimental group produced results that were closer to reality.
[image: Figure 10]FIGURE 10 | Latitude–height sections (22.50°–24.00°N; black line in Figure 1D) over the PRDUA (113.5°E) at 1200 LST 20 April of the wind (arrows; unit: m·s−1) and air temperature (color shading; unit: °C) in the (A) Urb1w, (B) Urb1w_1ah, (C) Urb5w, (D) Urb5w_5ah and (E) Rural experimental group, respectively. The red frame represents the PRDUA. For clarity, the vertical velocity is multiplied by 10.
[image: Figure 11]FIGURE 11 | As in Figure 10 except for the wind and pseudo-relative potential temperature.
Figures 11A–E shows that the low-level air over the PRDUA in all five experimental groups was warm and humid, which was conductive to the generation of unstable atmospheric conditions and the triggering of convection. The five experimental groups yielded different areas of unstable atmosphere over the PRDUA. Comparing Figures 11B,D, the maximum potential pseudo-relative temperature simulated by the Urb1w_1ah experimental group was 347 K, while in the Urb5w_5ah experimental group it was 354 K, indicating the atmospheric conditions simulated by the Urb5w_5ah experimental group, which applied the newly constructed five types of underlying surface, were more unstable. Compared to the Urb1w_1ah experimental group without the AH parameters (Figure 11C), the Urb5w_5ah experimental group with the AH parameters produced a strong updraft over the PRDUA and the low-level high potential pseudo-relative temperatures extended higher. The unstable, warm and humid air was conducive to rainfall.
In short, the Urb5w_5ah experimental group simulated the strong unstable atmosphere and the high-temperature area over the PRDUA before rainfall. This changed the simulated intensity and falling area of the precipitation over the PRDUA.
3.5 Modulation of horizontal wind structures
The structure of the horizontal wind field is an important factor affecting precipitation. Based on the wind profile radar measurements at Xinhui (Figures 12A1–A6), Luogang (Figures 12B1–B6) and Zengcheng (Figures 12C1–C6) stations, the simulated wind fields in the five experimental groups were evaluated. Luogang and Zengcheng stations are at approximately the same latitude, while Luogang and Xinhui stations are at approximately the same longitude. Figure 12 shows time–height sections of the horizontal winds at the three stations. The precipitation began at 1055 LST 20 April and reached a maximum of 32 mm/h at 1200 LST 20 April in the Luogang area. Before the occurrence of precipitation at Luogang Station (1000 LST 20 April), the low-level southerly winds within 1–2 km reached a maximum of 12 m s−1 (Figure 12B1). Strong westerly winds blew above 2 km and the maximum wind speed exceeded 13 m s−1 at 3 km. At this moment, the wind direction changed clockwise from south to southwest and, according to the principle of thermal wind, there would have been strong warm advection below 2.5 km. When the strongest precipitation occurred at Luogang Station (1200 LST 20 April), there were northwesterly winds below 2 km and the wind speed reduced to 8 m s−1 compared to the previous southerly winds at 1100 LST. The southerly wind blew mainly above 2.5 km and rose in height with the intensification of precipitation. At 1300 LST, the wind direction changed counterclockwise from northwest to west within 1–6 km, indicating cold advection in this zone along with a relatively stable atmosphere and a gradual weakening of precipitation. The strong southerly winds turned into westerly winds above 3 km during 1,200–1300 LST 20 April and the area of wind speeds exceeding 12 m s−1 extended to lower levels. The results of the horizontal wind field simulated by the five experimental groups showed that the simulation effect of the horizontal wind structure was good during the precipitation process in the Luogang area. In order to study the effect of AH on the horizontal wind, comparing Figures 12B2,B3 with Figure 12B4,B5 shows that the simulated southerly winds below 2 km were consistent at 1100 LST. However, at 1200 LST, only Urb5w_5ah (Figure 12B2) and Urb1w_1ah (Figure 12B4) simulated the strong northwesterly winds in a consistent manner with the observed wind field at 1 km and there were southerly winds within 3–4 km that were able to reach a maximum of 12 m s−1, and the upper westerly winds produced strong vertical shear of the horizontal winds. With the inclusion of the localized UCM (compare Figures 12B3–B5), the southerly winds simulated in the Urb5w experimental group below 2 km converged and lifted in the urban area and turned clockwise into the southwesterly winds during 1,200–1300 LST 20 April (Figure 12B3). There were no strong southerly winds below 2 km; only a strong southwesterly jet formed within 2–5 km at 1200 LST (Figure 12B3). However, the southerly winds simulated in the Urb1w experimental group were still presented, and the wind speeds of the southwesterly winds were smaller than those in the Urb5w experimental group within 2–5 km at 1200 LST (Figure 12B3). In order to explore the variation of the horizontal wind field in Luogang and surrounding areas during the precipitation process, Xinhui Station to the south of Luogang Station, and Zengcheng to the east of Luogang Station, were selected for analysis. Precipitation in the Xinhui area started at 1300 LST 20 April, and in the Zengcheng area it started at 1100 LST 20 April. The area of Xinhui is less urbanized than Luogang, and the level of urban construction is relatively low. The southerly wind speeds were not as strong as at Luogang station before the rainfall occurred at Xinhui station below 2 km at 1200 LST (Figure 12A1). Southerly winds continued to exist at 1–3 km during 1,300–2000 LST (Figure 12A1). It was found that the urban canopy had a weaker convergence effect on the low-level winds in the Xinhui area. Zengcheng and Luogang stations are located in the center of the city, and Zengcheng Station is located downwind of Luogang Station. During the precipitation process, the structure of the horizontal wind field was the same as that at Luogang station within 0–6 km. However, the westerly jet above 3 km in Zengcheng was stronger than that in Luogang (Figure 12C1), indicating that the urban canopy had a strengthening effect on the westerly winds. Under the influence of AH, the warm advection was strengthened and the downstream precipitation increased with the enhancement of warm advection at 0.5–3 km and cold advection above the warm advection. The UCM enhanced the convergence of the southerly and southwesterly winds during the precipitation process.
[image: Figure 12]FIGURE 12 | Time–height sections of horizontal wind direction (arrows) and wind speed (color shading) from 0,800 to 2000 LST 20 April at (A) Xinhui Station, (B) Luogang Station, and (C) Zengcheng Station.
This study has only assessed one typical warm-sector heavy rainfall event in South China. The newly constructed underlying-surface and corresponding AH parameters improved the simulated patterns of precipitation and meteorological elements, but deficiencies remain, such as stronger precipitation and inaccurate high-level wind fields prior to the precipitation. Further assessment and analysis with more precipitation events is needed.
4 CONCLUSION
In this study, localized urban surface parameters with a new and improved AH parameters were updated in the UCM of WRF4.1 based on the LCZ system over the PRDUA. Taking a typical warm-sector heavy rainfall process in the PRDUA on 20 April 2019 as an example, five experimental groups of different schemes were designed to explore the simulation of warm-sector heavy rainfall based on the localized UCM. In addition, the effects of the type of urban surface and various AH parameters and their relative contributions to the thermodynamic mechanism of the precipitation were investigated. The main conclusions can be summarized as follows.
1) All five experimental groups simulated several heavy precipitation centers on 20 April 2019. However, there were obvious differences in precipitation intensity as well as their fall areas. Comparatively, the simulated heavy precipitation in the Urb5w_5ah experimental group was closest to the observed results, showing an RMSE index improvement of 8.8% and indicating that the new localized surface and AH parameters in the UCM of WRF4.1 led to better simulation of this warm-sector heavy rainfall event in the PRDUA. Compared with observations from wind profile radar, the localized UCM enhanced the accuracy of the simulated horizontal wind field convergence at high and low levels in the urban area, leading to better simulation of the spatial pattern and intensity of precipitation in urban downtown areas relative to other schemes. In contrast, improved AH enhanced the accuracy of the simulated intensity of LLJs and vertical movement, resulting in significantly stronger precipitation in the downwind-direction zone in southeastern Guangzhou.
2) By comparing the observed and simulated wind fields in urban areas (Luogang and Zengcheng) and suburban areas (Xinhui), it was found that the low-level southerly winds rotated clockwise with the upper-level westerly convergence before precipitation at both urban sites, and since Zengcheng is located to the east of Luogang, a stronger westerly rush band was formed after the wind field convergence in the upwind Luogang area. Xinhui is located in a rural area and to the south of Luogang. There were marginal changes in the directions of wind fields at the high and low levels in the rural area, with prevailing southwesterly winds. Over the urban areas, the AH forced the low-level southerly winds to be stronger, while the northwesterly winds that occurred at 1 km from the precipitation occurrence time forced the precipitation to move towards the southeast of the city.
3) With the updates provided by the localized UCM, the complex canopy structure forced the low-level southerly winds to change faster in the direction of the wind during upward transmission in the urban areas, and the unstable energy near the ground was more easily conducted to the upper layer, thereby promoting precipitation in the urban area. The improved AH parameters was important in enhancing the simulated precipitation in the downwind-direction zone of the urban areas.
Generally, our findings are helpful for us to improve the simulating skill of warm-sector heavy rainfall over high-density urban areas, as well as to enhance the understanding of the impact mechanism of urbanization on warm-sector heavy rainfall. More case studies will be conducted in the future.
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Focusing on the key air pollution regions in China by using hourly automatic weather data, ground-based and high-altitude meteorological sounding data, and near-surface O3 monitoring data, here, we try to quantify the relationship between boundary layer meteorological condition and near-surface O3 concentrations. The key meteorological element includes changes in solar zenith angle, cloud height, atmospheric condensation rate, and the associated change in the boundary layer height. We also try to better understand the mechanisms by which meteorological conditions affect near-surface O3 concentrations, and it is found that the exponential increase in near-surface O3 concentrations after sunrise (called the O3 concentration entrainment, EZ) is meaningfully associated with exceeding the threshold of a water vapor condensation rate (fc) that is often closely linked to a significant rise in the pollution boundary layer and that this proves to be diagnostically important for understanding the O3 EZ. Diurnal variations in solar zenith angle and boundary layer height are key meteorological factors influencing the large increase in near-surface O3 concentration entrainment.
Keywords: entrainment ozone (EZ) effect, solar zenith angle changes, height of pollution mixing layer (H_PML), O3 growth by power exponential law, the conversion of precursor of O3
HIGHLIGHTS

• Threshold of fc for driving to the increments of O3 in the entrainment ozone (EZ) effect
• Combined spike of LCL and pollution mixing layers after sunrise favors the EZ effect
• Power exponential conversion is a favorable meteorological condition for O3 growth
1 INTRODUCTION
With the continuous reduction of fine particle concentrations, the air quality during heavy pollution in winter has improved significantly; however, the heavy pollution events of ozone (O3) in summer have gradually increased, causing widespread concern among the scientific and technological community, government, and the public. It is well-known that O3 is driven by photochemical reactions triggered by both direct and indirect solar radiation. Nevertheless, in most cases, there is some uncertainty in the calculation of the chemical mechanism compared to the actual O3 observations. Based on the long-term observational data during 2015–2022 in three representative regions, namely, Beijing, Hangzhou, and Guangzhou, this study attempts to discuss the influence of meteorological conditions on O3.
In recent years, surface O3 pollution has tended to increase. Some progress has been made with regard to the effects of meteorological conditions on O3 concentrations near the ground (Andreas and Jochen, 2004).
With rapid economic growth, increase in O3 in the troposphere is an evident trend. Air quality observations in 74 cities of China, in recent years, linked the rise in regional O3 concentrations to weather and climate factors. Under global warming, a high O3 concentration in the lower atmosphere becomes a frequent event in the North China, Yangtze, and Pearl River deltas. In the summer of 2017, the air temperature was higher than normal across most of China. Under the persistent high temperature, O3 pollution occurred in north, northeast, and northwest of China from 17–19 July. Particularly, it lasted longer over Beijing. Based on the data from the Beijing Environmental Protection Monitoring Center starting from May 2017, O3 concentration began to increase from between 08:00 and 09:00 a.m. in the Beijing–Tianjin–Hebei region, and sometimes it continued to increase even till 12:00 p.m. lasting for about a month from 1 July, the primary pollutant over Beijing was O3. At 14:00 on 25 June 2022, the O3 concentration increased as high as 297 μg/m3, which has been achieving record O3 concentration in June for the past 10 years. The “excessively high O3 readings” became a new focus of concern. Some studies claimed that sometimes PM2.5 concentration decreases with increasing O3 concentration at the same time. Although this assertion has given some food for thought, it still lacks in-depth studies and common understanding.
Therefore, the commonality interaction of the influence of atmospheric physical processes and photochemical reactions on ozone has made some progress. Recently, some studies on the contribution of meteorological conditions to O3 concentration increase apart from chemical processes have been recognized. Using meteorological data from the period of June 2004 to July 2004 from the national park of the Tunisian coast, it is found that O3 concentration variation in summer is closely related to weather elements such as air temperature, rainfall, and wind over the coastal region. Their experimental study suggested that the local environment and meteorological conditions significantly influence temporal and spatial variations in O3 distribution (Mechergui et al., 2009). Alghamdi et al. investigated the effects of relevant meteorological variables on frequently high NO2 and O3 concentrations in the coastal cities of Saudi Arabia in 2012–2013. They discussed the influence of seasonal variations under meteorological conditions on the O3 concentration and indicated that O3 concentration values peak in the summer and drop in the winter (Andreas and Jochen 2004). In recent years, observations and calculations of heavy O3 pollution in Hangzhou in YRD, Guangzhou in PRD, Chengdu in Sichuan, and Beijing in the North China Plain have shown the importance of meteorological conditions (Wang and Chai, 2002; Li CH. et al., 2015; Li J. et al., 2015; Hu YT. et al., 2016). Using data from two observing stations in the vicinity of Hong Kong (the stations represent an inland area and an offshore sea.), Wang et al. conducted an observational study on the concentrations of major air pollutants and secondary substances (O3, NO, NO2, and SO2) on a synchronous basis.
On the basis of further studies of the composite PLAM (parameter linking air-quality to meteorological condition) index of meteorological conditions for O3 pollution and via observational data analyses, we focused on the contribution of meteorological conditions to O3 pollution in four pollution-sensitive areas: YRD, PRD, North China Plain, and Sichuan, which are frequently exposed to pollution caused by high O3 concentrations, and investigated their commonalities and influence mechanisms, and an objective description of the regional and seasonal condition was given. Recently, this study explored how meteorological conditions contributed to O3 pollution in all seasons on the basis of further studies of the PLAM index (Wang et al., 2019). Although some progress has been made in investigating the influences of meteorological conditions on air quality, in recent years, it remains in the qualitative analysis stage; model-based studies are found lacking in the objective description of the possible mechanism of meteorological contributions to O3 pollution. It is particularly noteworthy that the mechanism of the influence of atmospheric microphysical processes on near-ground ozone needs to be further explored. In recent years, it has been necessary to analyze and study the influence of high-resolution atmospheric detection information on ozone concentration.
In densely populated areas with rapid economic growth, many hydrocarbons and nitrogen oxides are emitted into the atmosphere. As a strong oxidizing agent, O3 plays an important role in several processes of atmospheric chemistry. There are many research findings about the mechanism of O3 genesis from the perspective of atmospheric chemistry, making much progress in this aspect. For example, previous reports have linked O3 to the decomposition and oxidation of organic compounds, oxidation of SO2, and transformation of NO2. However, when NO2 exists in the troposphere, it is easy to observe O3 genesis under certain atmospheric conditions (Webb and Steven, 1986). Although the impacts of clouds and aerosols on the climate have been studied for decades, it remains a complex and unsolved problem. The aerosol effect on enhancing cloud albedo is often called the first aerosol indirect effect. For climate patterns with uncertainties, the impact of atmospheric clouds is important because it is difficult to exclude the influence of different surface fluxes on turbulence dynamics, including the impact of cloud characteristics on the O3 concentrations; therefore, the influence of meteorological conditions on atmospheric surface O3 concentrations needs to be carefully studied and diagnosed (Wang and McFarquhar, 2008).
From the perspective of the traditional photochemistry-based description of O3 generation mechanism, it is well-known that O3 is driven by photochemical reactions initiated by solar radiation (for sure including direct and indirect solar radiation). Most studies with a relatively higher citation rate suggest that the discussions on photo-dissociation dynamics based on solar radiation and diurnal variation of the O3 peak value in the lower atmosphere are closely related to specific values of volatile organic compounds (VOCs) and nitrogen oxides (NOX). The solar radiation causes photo-dissociation of NO2, which is the initial reaction to form haze. A steady-state concentration of O3 is expressed as follows (Eq. 1) (Madronich and Flocke, 1999; Textor et al., 2006):
[image: image]
where j is the photolysis frequency of NO2, k is the rate coefficient for the NO reaction, and the brackets denote the concentrations of O3, NO2, and NO. The aforementioned relationship of NO, NO2, and O3 is called a steady-state relationship. Its dynamic equation is also given by Eq. 2 (Tang et al., 2006), which shows the solar radiation causes photo-dissociation of NO2, which is the initial reaction to form smog. Its dynamic equation is given also as follows (Tang et al., 2006):
[image: image]
Here, the basic photochemical cycle of NO2, NO, and O3 is the fundamental source for O3 genesis; k1 and k2 are the constants of transformation efficiency in chemical reactions; [image: image] = 0.01 × 10–6 can also be expressed as α = [image: image] ≈ 0.01 × 10–6 to describe the aforementioned transformation efficiency coefficient.
Nevertheless, recent findings show that the observed concentration of O3 transformed from NO2 is much larger than that given in Eq. 2. This allows us to speculate that some other factors beyond photochemistry in the troposphere may contribute to the high O3 concentration.
As mentioned previously, the chemical mechanism of O3 is an approximation. Values j or k and α depend on molecular parameters (absorption cross sections and photo-dissociation quantum yields) that are specific to the photo-reaction of interest, and on the availability of solar radiation at any specific location in the atmosphere (Tang et al., 2006).
Therefore, influenced by solar radiation, the diurnal change of the atmosphere is one of the important characteristics of the influence of meteorological conditions on the spatio-temporal redistribution of aerosols. The effect of the diurnal change of the solar zenith angle on the O3 generation efficiency of light radiation in a specific region is the influence of the regional solar zenith angle diurnal meteorological conditions.
It is worth noting that Wallace and Hobbs proposed for the first time in their second edition of < Atmospheric Science > that during the destruction of the temperature inversion layer before and after sunrise, a consistency concept that the atmospheric lifting condensation level (LCL) variation in line with the height of the boundary layer (the height of the pollution mixing layer) can be increased rapidly as the solar zenith angle changes to a particular stage. They pointed out why it is closely related to the entrained O3 layer (EZ) and the height of this polluting mixed layer (Wallace and Hobbs, 2006; Wang et al., 2017). However, research and observational information in this area are very scarce.
The intensity of solar ultraviolet radiation, the atmospheric channel of sunlight, and especially the impact of near-surface atmospheric meteorological conditions are extremely important factors affecting the troposphere O3. When the solar zenith angle changes, the reflection path length of solar radiation passing through clouds with different structures naturally changes, which affects the O3 content in the atmosphere (Browning, 1973; Bohn et al., 2008). Changes in cloud structure and solar zenith angles have superimposed and feedback effects on O3 concentration. It not only drives the height change of the mixed pollution layer before and after sunrise but could also likely accompany the “EZ” process to further update the spatio-temporal distribution and change of O3 concentrations. However, there is also a lack of data and research on these aspects.
In this study, we aim to explore the relationship between cloud height, atmospheric condensation rate, and solar zenith angle change based on the analysis of high-resolution information and calculation and explore the height change of the mixed layer of atmospheric pollution and its influence on the distribution of the surface O3 concentration.
2 DATA METHODOLOGY
2.1 Data
This study uses hourly resolution automatic weather station (AWS) data, ground and high-altitude observation data from the National Information Center (CMA) of the China Meteorological Administration, and atmospheric composition observations (http://www.zhb.gov.cn/hjzl/) of the Ministry of Ecology and Environment. In order to further study the spatio-temporal distribution of large-scale, persistent aerosol pollution, the parameters linking air-quality to meteorological conditions are discussed to indicate the spatial and temporal objective distribution of aerosol pollution (Wang et al., 2017). The parameters and calculation methods in this article are as follows.
2.2 Height of the pollution mixing layer
Hu et al. pointed out that while planetary boundary layer (PBL) parameterization is critical for air quality studies, constrained air quality simulations by PBL parametric schemes are not well-quantified under heavy fog pollution boundary layer conditions (Hu M. et al., 2016).
Currently, the way the boundary layer describes the effects of air pollution can be easily copied and can be confusing. For example, the PBL usually refers to the large-scale Ekman dynamic boundary layer. The concept of the PBL is simply used to assess the characteristics of air pollution associated with the near-surface boundary layer that may not be rigorous enough. For the measurement of heavy haze pollution, one of the selected functions of the parameterization scheme is to determine whether the air mass at a specific location meets the wet static stable state of “high humidity” but “rain is difficult to form” (Wallace and Hobbs, 2006; Wang et al., 2017). According to the definition of the wet potential temperature θe in Eq. 3, when the property in a particular layer (expressed by P coordinate) of the atmosphere reaches saturation, the saturation mixing ratio is W (W=Ws). Since Rd/Cp (0.288) is a constant in Eq. 3, under this height of the particular layer (expressed by P), it is very conducive for the continuous mixing of pollution when the condensation function fc reaches the critical value of condensation. It should be noted that this is the threshold that needs to be captured, under the condition that the raindrops are yet to be formed.
That is, one of the functions of the air pollution meteorological conditions index is to indicate whether the local air masses are “stationary” with little variability. θe is an important parameter to characterize air mass properties (Holmboe et al., 1952; Yang et al., 1982): 
[image: image]
where Cp, L, ws, and Rd are the meteorological parameters of specific heat with constant pressure, latent heat of water vapor condensation, saturation mixing ratio, and gas constant of the dry air, respectively.
The processes and structures of the atmospheric micro-scale flow field, condensation, and mechanisms of clouds and precipitation are intrinsically linked. Much progress has been achieved in these aspects associated with air pollution contributions, as well as the emission disturbance changes under different meteorological conditions (Gao and Zhou, 2005; Wang et al., 2012). When the fc reaches the critical value of condensation, but without raindrop formation, the atmosphere is very favorable for the continuation of pollution mixing, for the wetting of particles, and accelerating the formation of new particles for the generation of secondary pollution (Kulmala et al., 2004; Shen et al., 2016). At this time, it is necessary to pay attention to capturing “the threshold” related to humidity for a value that is high enough, but not too high. At this atmospheric layer height, the height of pollution mixing layer (H_PML), a precursor signal of air pollution, will appear (Wang et al., 2017).
[image: image]
where es is the saturation water vapor pressure, that is, the capturing and calculation of the precursory signal of atmospheric pollution mixing layer height.
Wallace and Hobbes proposed first in their second edition of < Atmospheric Science > that during the period before and after sunrise, destruction of the inversion layer due to warming of the strata near the atmosphere results in an increase in atmospheric lifting condensation levels (LCLs), which causes the height of the LCL and the boundary layer and the height of the pollution mixing layer to converge to the same height. The height of the pollution mixing layer increases rapidly again as the solar zenith angle changes. This illustrates why the efficiency of the EZ is closely related to the height of the contaminated mixed layer (Wallace and Hobbs, 2006; Wang et al., 2017).
Trousdell et al. (2016) pointed out that the photochemical productivity of O3 is closely related to the EZ rate of polluting mixed layers. EZ velocity is the parametric rate at which free tropospheric air is incorporated into the atmospheric boundary layer (ABL).
2.3 Atmospheric condensation and super-saturation
Zhang et al. (2005) discussed typical cases of heavy fog–haze processes and boundary layer characteristics in Beijing in 2001. The results showed that the threshold of condensation rate before and after the thick haze had a significant effect on the aerosol pollution of NO2 and SO2 concentration (see Figure 1).
[image: Figure 1]FIGURE 1 | Evolution of the hourly condensation function fc and NO2 during the severe fog–haze process in Beijing in February 2001, “[image: FX 1]” represents the solar zenith angle for the local time (Zhang et al., 2005).
The threshold of condensation rate was captured by the decrease of NOx as the O3 precursor in the hourly resolution observations. As shown in Figure 1, from Beijing local time of 02:00 on February 20 to 08:00 on February 22 in 2001, after a period of continuous elevation of the fc for 48 h, severe haze appeared, and at 13:00 on 21 February 2002, when the solar zenith angle peaked, NO2 was as high as 650, and fc continued to increase to a threshold of up to 1.11. Subsequently, it quickly dropped to the lowest. This so called threshold value was high enough, but yet not too high (Zhang et al., 2005).
The expression of the condensation function (condensation rate) mentioned previously is given by Eq. 5 (Zhang et al., 2005):
[image: image]
where [image: image] is the dry insulation rate (C°m−1) and Cp, L, qs, and [image: image] are the meteorological parameters of the specific heat with constant pressure, latent heat of water vapor condensation, saturation specific humidity, and dry air condensation rate, respectively. The condensation function is a function of super-saturation (S). The super-saturation degree is a physical quantity that is expressed in percentage (Wang et al., 2017).
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where e and es are the water vapor pressure and saturated water vapor pressure, respectively. That is, for the nature of air quality, under the condition of large-scale processes, with “uniformity” and “static” (iso-θe), and associated with the microphysical process of atmospheric condensation described by the appropriate fc (threshold), the clouds, haze, and other weather conditions would occur differently. These parameters also coordinate with each other, creating a relationship of interdependence and mutual constraints (Wang et al., 2017). The studies have also suggested that the atmospheric condensation rate fc, as a wet driver of micro-meteorological conditions, can accelerate and catalyze O3 precursors to form secondary pollution. This power exponential conversion law describes changes in O3 concentrations due to special micro-scale meteorological processes that is given as (Wang et al., 2019)
[image: image]
χ represents the O3 precursor of NOx or VOCs, etc., ß is the condensation function (fc), and α ≈ 10.0×103
3 RESULTS AND DISCUSSION
3.1 Characteristics of polluted weather and H_PML in Beijing, North China, from February 11 to 13, 2022
Figure 2A shows the observed distribution of an hour-by-hour O3 in February 2022 and the hour-by-hour fluctuation in the pollution boundary layer height H_PML calculated by Eq. 4, and Figure 2B shows the observed distribution of hour-by-hour O3 and the amplified detailed distribution of the H_PML fluctuations of the pollution boundary layer in Figure 2A from February 10 to 11. Figure 2C shows a weather map of the surface at 14:00 (BJT) on February 11. The figures indicate that
1) there was a significant daily change in the H_PML (red line), that is, the H_PML increased during the day and decreased at night. The peaks of the diurnal variation corresponded to the peaks of the O3 concentration observed (green line).
[image: Figure 2]FIGURE 2 | (A) Hour-by-hour O3 and H_PML changes in February 2022 in Beijing, (B) hour-by-hour detailed distribution of O3 and the height of H_PML fluctuations from December 10–11 in (A), and (C) ground weather map at 14:00 (BJT) on February 11 in Beijing.
As shown in Figure 2A, during the period February 10–15 and February 24–28, 2022, Beijing experienced two cases of smog (see the haze weather symbol at the bottom of Figure 2A), in which O3 and PM2.5 concentrations increased. There were two significantly polluted weather processes in February 2022 in Beijing, where the air quality dropped significantly. At 15:00 on 10 February 2022, an O3 concentration of 96 μg/m3 was observed, and at 14:00 on 11 February 2022, an O3 concentration of 98 μg/m3 was observed (see Figure 2B), and PM10 increased significantly. From February 8 to 13, the intermittent fog–haze weather in Beijing lasted for 120 h, and drifting snow was observed (large area of haze or snow weather occurred in and around Beijing) (see the surface weather map of Figure 2B). Beijing’s fog–haze, gloomy low-visibility conditions affected the official schedule of some of the Winter Olympics events. At that time, the schedule of some events, including the women’s U-shaped ski competition, was affected and got appropriately delayed.
2) In February 2022, in addition to the significant daily changes in the height of the boundary layer (H_PML), a long period of continuous increase was noted. For example, at 05:00 on 10 February 2022, the peak with the H_PML continued to increase from 2,400 m to 2,900 m till 15:00 on February 10. Also, from 05:00–14:00 on February 11, it increased again to 3,252 m (see the dotted line arrow in Figure 2A).
3) It can be seen from Figure 2B that from the afternoon to evening the pollution developed rapidly and the air quality dropped significantly. In Figure 2B, the detailed distribution of day-to-day fluctuations in the H_PML of the pollution boundary layer from February 10 to 11 can be seen, and pollution developed rapidly from afternoon to evening, deteriorating the air quality significantly. On February 10, at 15:00, the O3 concentration was observed to be 96 μg/m3, and from 0:00 to 10:00 on February 10, Beijing experienced continuous haze for 10 h. On February 11, from 4:00 to 23:00, the haze weather continued for nearly 20 h, the O3 concentration observed at 14:00 was 98 μg/m3 (see the weather symbol note at the bottom of Figure 2B and the haze weather symbol note at the bottom of Figure 2C, the ground weather map), the haze weather in Beijing and North China continued, and the sky conditions were obscure.
3.2 Analysis and calculation of the entrained ozone (EZ) rate and its associated increase in O3 concentration by H_PML changes before and after sunrise
Studies indicated that during daytime over continents, when near-surface ozone (O3) usually peaks, the convective thermal energy generated by surface heating rises and penetrates into the stable layer, which divides the interface attachment between the turbulent atmospheric boundary layer (ABL), or the so-called pollution mixing layer (PML), and the free troposphere (FT) (its height is so-called LFC) above it. The continuous action of these heats permeates the laminar-covered air and falls back to the pollution boundary layer, producing an irreversible mixing process that causes the layer to grow with the layers of LFC, i.e., the H_PWL is consistent with the height of the free troposphere (LFC). The whole process is called entrainment. When the two layers contain different amounts of any scalar quantities (e.g., ozone concentration, water vapor, and entropy), this mixture is often an important contributor to scalar PWL budgets (Albrecht et al., 2016).
Lenschow et al. argued that calculating the change in mixed layer height (zi) before and after sunrise can derive the entrainment velocity of increasing O3, considering the relationship between the observed local ABL lifting rate and the average vertical velocity at the height of temperature inversion (Angevine, 1997; Lenschow et al., 1999). The aircraft-based study shows that ABL budgeting can help check regional emission rates and photochemical production rates. However, for the O3 budget, a detailed comparison with the photochemical model reveals the obvious weaknesses in the current model, including an indication about whether the difficulty lies in the kinetics (transmission) or in the chemical aspects of numerical work. Evaluation of detection accuracy and associated huge cost are also among the constraints. However, as Wallace et al. mentioned previously, during the destruction of the temperature inversion layer around sunrise, the LCL variation in line with the height of the boundary layer and the height of the pollution mixing layer increases rapidly with a change in the solar zenith angle. It is convenient and reasonable to calculate the height changes of this polluting mixed layer. Eq. 4 (for calculating the H_PML) can be used to link with the entrainment velocity of O3 growth. By using Eq.7, the increasing O3 driven by the threshold fc before and after sunrise can be calculated so that it can also be reasonable to calculate the EZ rate of polluting mixed layers, which is associated with the increased O3 concentration.
3.2.1 Correlation characteristics between O3 pollution and H_PML in Beijing in February 2022
Figure 3A is a comprehensive analysis of an hour-based resolution of daily-evolution of O3 in the local time, as well as H_PML in February 2022 in Beijing, while Figure 3B shows the correlation between hourly O3 and H_PML in February 2022 in Beijing. From Figure 3, we can see the following:
1) in the winter of February 2022, the comprehensive correlation analysis of daily local-time hourly O3 and H_PML shows that as the change of the solar zenith angle has a remarkable and instant effect on the O3 concentration, H_PML increased from 2,500 m (positive anomaly 500 m, for average 2000 m) at 7:00 a.m. to 3,200 m (i.e., positive anomaly 1,200 m) at 12:00 noon (indicated by a blue dot in Figure 3A), with increase in the solar zenith angle during sunrise. Accordingly, O3 concentrations increased from 65 μg/m3 at 7:00 to 80 μg/m3 at 12:00 p.m. Peaks at nearly 100 μg/m3 were reached at 14:00 p.m. Such an O3 concentration value is not common in Beijing in February during winter. It was shown that the EZ effect contributed significantly to the increase in O3 concentrations with the sharp rise of the pollution mixing layer after sunrise.
2) Correlation analysis of H_PML and O3 concentrations in an hourly resolution in February (Figure 3B) shows that H_PML significantly positively correlated with O3 concentrations. The correlation coefficient (R2) was 0.44, which was significant at 0.001. A direct influence of the EZ effect on O3 concentrations was further confirmed by the sharp rise of the concomitant pollution mixing layer after sunrise (Figure 3A).
[image: Figure 3]FIGURE 3 | (A) Comprehensive analysis of O3 and δH_PML at hourly resolution in Beijing in February 2022, where the δH-PML is the anomaly labeled as the average value of 2000 m. (B) Analysis of O3 and H_PML with hourly resolution in Beijing in February 2022.
3.2.2 Correlation characteristics between O3 pollution and H_PML in Beijing in June 2022
Figure 4A shows the hourly variations of O3 in June 2022 and the daytime fluctuations in the H_PML calculated by Eq. 4, as well as the hourly change in PM2.5. Figure 4B shows the comprehensive analysis between hourly O3 and δH_PML in June 2022 with the left ordinate being δH-PML, where the δH-PML is the anomaly labeled as the average value of 1000 m. Figure 4C is a correlation analysis of O3 and H_PML based on the hourly resolution in local time in June 2022. Figure 4 indicates that
1) the solar altitude angle changed considerably with local time daily in the summer of June 2022. O3 concentrations increased during the day and decreased at night.
2) For the typical month of heavy O3 pollution in summer, the relevant comprehensive analysis of the daily local-time hourly resolution of O3 and H_PML in June 2022 showed that the daily change of the solar zenith angle had a significant effect on the O3 concentration than those in winter. H_PML of 1,600 m at 7:00 a.m. (600 m for the positive anomaly, the average value is for 1,000 m) reached 4,200 m (namely, 3,200 m for the positive anomaly) at 12:00 noon (Figure 4A blue dot), which was 1,000 m higher than that in February, and it further rose to 4,800 m again after 3 h. During sunrise, with the change in the solar zenith angle, the height of the pollution mixing layer H_PML sharply increased, which was calculated according to Eq. 4.
3) Correspondingly, O3 concentrations increased from 150 μg/m3 at 7:00 a.m. to 220 μg/m3 at 12:00 p.m. A peak at nearly 300 μg/m3 was observed at 20:00 p.m. This O3 concentration value is rare, in recent years, in Beijing in June. It was shown that in summer, with the sharp rise of the pollution mixing layer after sunrise, the EZ effect contributed significantly to the increase in O3 concentrations.
4) Correlation analysis of H_PML and hourly O3 concentrations in June (Figure 4C) shows that H_PML significantly positively correlated with O3 concentrations. The correlation coefficient (R2) was 0.14, and it was significant at level 0.01. It is further confirmed that (Figures 4A,B) there is a sharp rise in the height of the sewage mixed layer after sunrise in summer.
5) The superimposed effect of the EZ contribution on the O3 concentrations, driven by the changes in the local solar zenith angle, is an important reason for the ultra-high O3 concentration in the summer of 2022. In Figure 4A, the increase in O3 concentration driven by the change in solar zenith angle is synchronized with the increase in O3 concentration due to the sharp rise in H_PML, and the proliferation of O3 concentration is superimposed during the second half of June. At 14:00 on June 24, at the peak moment of the solar zenith angle, the H_PML sharply rose to 3,861 m, and 24 h later, at 14:00 on June 25, the O3 concentration increased as high as 297 μg/m3, achieving the record high O3 concentration in June in the past 10 years.
[image: Figure 4]FIGURE 4 | (A) Observed distribution of hour-by-hour O3 in June 2022 in Beijing and daytime fluctuations in the pollution boundary layer height H-PML calculated by Eq. 4, as well as hourly changes of PM2.5. (B) Comprehensive analysis of O3 and δH_PML at the local time of hourly resolution in June 2022 in Beijing, The ordinate (left) is for δH-PML, where the δH-PML is the anomaly labeled as the average value of 1000 m. (C) Correlation between the hourly O3 and H_PML in June 2022 in Beijing.
3.2.3 Seasonal and regional characteristics of the contribution of EZ effect and solar zenith angle to the increase in O3 concentration
To explore the universal significance of the contribution of the EZ effect on the enhancement of O3 concentrations by solar zenith angle change to the height change of the pollution mixed layer, this section discusses the contribution characteristics of the EZ effect of each season at selected stations at Beijing, Hangzhou, Guangzhou, and Chengdu, which are representatives of the four typical polluted areas, i.e., North China, Yangtze River Delta, the Pearl River Delta, and Sichuan Basin. Figure 5A shows a comprehensive analysis of O3 and δNO2 in Beijing in February 2022 at local hourly resolution. The contents in Figures 5B–D are the same, showing haze in Guangzhou in the winter of 2015, Chengdu in December 2015, and the transition season (autumn) in Hangzhou in September 2015. Figure 5 shows
1) the mega-cities such as Beijing, Hangzhou, Guangzhou, and Chengdu are densely populated and are representative stations of typical areas of air pollution in China, including O3 pollution (Zhang et al., 2012). Figure 5 shows that the effects of the solar zenith angle diurnal changes to the height change of the pollution mixing layer on O3 concentration hyperplasia are common in these four typical areas. The red dot indicates the O3 concentration, and the high value appeared 3–5 h after the peak of the solar zenith angle.
2) O3 concentration as high as 100 μg/m3 in Beijing, North China, was observed in early spring and February, and in the typical winter of December 2015, O3 pollution was heavier in Chengdu Basin area, reaching 140 μg/m3 and in the Pearl River Delta reaching 90 μg/m3.
[image: Figure 5]FIGURE 5 | (A)Correlation comprehensive analysis of O3 and δNO2 in February 2022 hourly resolution local time in February 2022 in Beijing, (B) content is the same as (A), the place and time of the shift is Hangzhou, September 2015, (C) content is the same, but the place and time are Guangzhou, December 2015, and (D) content is the same as (A), the place and time are Chengdu in December 2015.
However, in the autumn, the concentration of O3 in the Hangzhou region of the Yangtze River Delta reached 300 μg/m3.
3) An important common feature during the temperature inversion at night is that as the NO2 concentration decreases, the O3 concentration gradually increases, and during the peak period of the solar zenith angle (at 12:00 local time), the temperature inversion is destroyed, the O3 jump is extremely rapid, and the peak of the O3 appears at 15:00–17:00 p.m. This explains the link between the high degree of the pollution mixing layer and the solar zenith angle change.
The contribution of EZ effect to the increase of O3 concentration due to the change of H_PML in the above-mentioned major impact regions of China (North China Plain, Yangtze River Delta, Pearl River Delta and Sichuan Basin), including the increase magnitude and lag time, is consistent with the variation of solar zenith angle. Thus, the meteorological impact has universal characteristics.
3.3 Correlation analysis of the power-exponential increase in O3 concentration driven by the condensation function threshold
3.3.1 Contribution of NO2 as an O3 precursor on the power-exponential growth of O3 concentration and the threshold of condensation function fc
As mentioned previously, previous studies showed that solar radiation causes photo-dissociation of NO2. However, thorough understanding on how NO2 is influenced by meteorological conditions to generate O3, the power exponent law of NO2 conversion to O3, and the driving mechanism of the fc threshold is very important.
As given in Figure 5, an increase in O3 concentration is caused within a few hours after sunrise. According to an analysis of the meteorological conditions after sunrise, the initial decrease and subsequent increase in NO2 versus O3 concentration satisfy the law of exponent power rule, according to which seasonal and regional differences in coastal and inland areas depend on coefficients α and β (Wang et al., 2019).
3.3.2 The driving mechanism of meteorological conditions for the EZ effect on the power-exponential growth of O3 concentration
As can be seen from the discussion in Sections 3.3 and 3.3.1, the power exponential increase in O3 concentration is due to the decrease of NO2 as a precursor, that is, the EZ effect that occurs near the boundary layer under the corresponding meteorological conditions. To further reveal the contribution mechanism of the EZ effect and explore the driving factors of meteorological condition, Figure 6A shows the correlation analysis of hourly O3 and pre-6 h NO2 concentration in February 2022 in Beijing, and Figure 6B shows the correlation analysis between hourly O3 and fc in February 2022 in Beijing. Figure 6 shows the following:
1) Figure 6A shows that February is the winter representative month. As an O3 precursor, NO2 showed a significant power exponent negative correlation with O3 concentration, and the correlation coefficient (R2) reached 0.33, with a significance level exceeding 0.001, that is, the low value of NO2 corresponded to the increase in O3 concentrations after 6 h, which coincides with the period of rise in the height of the mixed layer after sunrise (Figure 6). This implies that the EZ value-added effect is closely related to the exponential increase of O3 supported by the reduction of NO2 concentrations.
2) The correlation analysis of the February 2022 hourly resolution O3 and the fc observed synchronously (Figure 6B) shows that O3 increase and fc positively correlated with the e-exponent, with correlation coefficient (R2) 0.15, and significance level exceeding 0.01. The threshold (lowest value) of the fc was 0.7, which coincides with the increase in the O3 concentration as calculated in Figure 6A, and the decrease in the concentration of the precursor NO2, whose power exponent value was 0.73. Comparison of Figures 6A,B shows that, the threshold of fc 0.7 is the key value of the O3 precursor NO2 to the O3 concentration, that is, to support the value-added EZ effects.
3) As shown in Figure 6C, June is the summer representative month. It is well-known that summer is characterized by a high value of O3 concentrations everywhere. In June 2022 in Beijing, the O3 precursor NO2 was still inextricably bound to the O3 concentration, the correlation coefficient (R2) was 0.05, and the level of significance was lower than that in winter. The period of increase in the height of its mixed layer after sunrise also appeared consistently after 6 h. This shows that in summer, even if the O3 concentration increases considerably, the value-added effect of EZ and the power-exponential growth law of O3 supported by the reduction of NO2 concentration still have distinct consistent characteristics.
4) As shown in Figure 6D, the threshold (lowest value) of the fc in June was 1.85, which is more consistent with the increase in the O3 concentration calculated in Figure 6C and the decrease in the concentration of the precursor NO2, and its power exponent value of 0.21 is also more consistent. It shows that the summer threshold of fc was 1.85 in the hot, high-temperature, and high-humidity summer in Beijing, which is the key value of the O3 precursor NO2 to the O3 concentration and supports the value-added effect of EZ.
[image: Figure 6]FIGURE 6 | (A) Correlation analysis of the hourly resolution O3 and NO2 before 6H in Beijing in February 2022, (B) correlation analysis between the hourly resolution O3 and condensation function (fc) in February 2022, (C) content is the same as (A), but the time is June 2022 in Beijing, and (D) content is the same as (B), but the time is June 2022 in Beijing.
Comparative analysis of winter and summer confirmed that the contribution of O3 precursor NO2 to the power-exponential increase of the O3 concentration, as well as the fc threshold of the adhesion function of the pollution boundary layer, were of great significance in supporting the value-added effect of EZ (Figures 6, 7).
[image: Figure 7]FIGURE 7 | Comprehensive physical images of key meteorological factors affecting large increases in the near-surface O3 concentration entrainment (O3 EZ) due to variations in solar zenith angle and boundary layer height serve.
4 CONCLUSIONS
The preliminary findings of the current study are as follows.
In this study, the relationships among cloud height and atmospheric condensation rate and solar zenith angle change were discussed by the analysis of information based on the hourly resolution and calculation, and the height change of the mixed layer of atmospheric pollution and its influence on the distribution of the tropospheric O3 concentration was explored.
1) The results showed that the contribution of O3 precursor NO2 to the power-exponential growth of the O3 concentration is driven by the threshold of fc growth, due to the lifting of the pollution boundary layer, which has a significant impact on the value-added effect of supporting the EZ.
2) The local day–day cycle change of the height (H_PML) of the atmospheric low-altitude pollution mixing layer and the change during the solar zenith angle contributed significantly to the sharp increase in the surface O3 concentration. This is the process of photochemical O3 generation and the cross-effect with the influence of meteorological conditions, resulting in an increase in O3 concentrations.
3) Another finding of this study provided insight about the development and mechanism of the increase in O3 concentrations, that is, with the sharp increase in the height of the pollution mixing layer after sunrise, the contribution of the EZ effect (the entrained O3 layer) to O3 deposition is actually driven by the high condensation rate (fc) threshold, which helps the humidification process of O3 precursors (NOx), resulting in an enhanced O3 concentration by the power-exponent law. As shown in the graphical abstract, the process can be summarized as follows: ① atmospheric lifting condensation level (LCL) variation in line with the height of the pollution mixing layer (H_PML) increases rapidly as the solar zenith angle changes. ② As the height of the H_PML increases after sunrise (due to the change of solar zenith angle) and the increase in the rate of atmospheric condensation fc, the EZ effect is supported, resulting in the appreciation of O3.
4) The analysis of information during spring, summer, autumn, and winter seasons of the representative stations of Beijing, Hangzhou, Guangzhou, and Sichuan Basin in China further confirmed that with the daytime change of the solar zenith angle, the effect of the micro-physical processes (including the condensation rate threshold drive and the EZ effect) near the pollution mixed-boundary layer (H_PML) on the O3 concentration increases, thereby indicating its universal significance.
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The hydrological processes in the Three-River Headwaters Region (TRHR), which is located in the Qinghai-Tibetan Plateau and includes the Yangtze River Headwater Region (YARHR), the Yellow River Headwater Region (YERHR), and the Lantsang River Headwater Region (LARHR), have changed under climate warming. Based on multi-source data, the spatial and temporal changes in precipitation, evapotranspiration, soil water storage, glacier melt, snowmelt and runoff in the Three-River Headwaters Region from 1982 to 2014 were comprehensively analysed. The annual precipitation data for the Three-River Headwaters Region from ERA5-Land, the Climatic Research Unit, the China Meteorological Forcing Dataset and the Global Land Data Assimilation System (GLDAS) all showed an increasing trend; the annual evapotranspiration data from ERA5-Land, Global Land Data Assimilation System, Global Land Evaporation Amsterdam Model (GLEAM) and Terrestrial Evapotranspiration Dataset across China (TEDC) all showed an increasing trend; and the annual soil water storage data from ERA5-Land, Global Land Data Assimilation System and Global Land Evaporation Amsterdam Model all showed an increasing trend. The annual snowmelt data from ERA5-Land, Global Land Data Assimilation System and SMT-Y datasets all showed a decreasing trend. The annual glacier melt increased in the Yangtze River Headwater Region and Yellow River Headwater Region and decreased in the Lantsang River Headwater Region. The increases in precipitation, evapotranspiration, soil water content and glacial melt, and the decreases in snowfall and snowmelt indicate an accelerated hydrological cycle in the Three-River Headwaters Region over the 1982 to 2014 period. The significant increase in precipitation is the main reason for the significant increase in runoff in the Yangtze River Headwater Region. The increase in precipitation in the Yellow River Headwater Region was less than the sum of the increase in evapotranspiration and soil water storage, resulting in a decreasing trend of runoff in the Yellow River Headwater Region. The increase in precipitation in the Lantsang River Headwater Region was slightly larger than the sum of that in evapotranspiration and soil water storage, and there was an insignificant increase in the runoff in the Lantsang River Headwater Region.
Keywords: Three-River Headwaters Region, global warming, hydrological cycle, runoff, multi-source dataset, acceleration
1 INTRODUCTION
Climate warming is changing the hydrological cycle, which poses significant challenges to ecosystems, the environment and human society (Held and Soden, 2006; Zika et al., 2018). Understanding the changes in the water cycle under global warming is critical to mitigating the impact of climate change (Sohail et al., 2022). Due to its unique high altitude and topography, the Qinghai-Tibetan Plateau is considered to be an “initiator” and “amplifier” of climate change (Meng et al., 2022). From 1980 to 2018, the Qinghai-Tibetan Plateau warmed at 0.42°C per decade, twice the global average rate, and marked atmospheric warming has changed the hydrological cycle of this so-called Asian water tower (Yao et al., 2022). The Three-River Headwaters Region (TRHR), in the hinterland of the Qinghai-Tibetan Plateau in China, includes three separate headwater regions, namely, the Yellow River Headwater Region (YERHR), the Yangtze River Headwater Region (YARHR) and Lantsang River Headwater Region (LARHR). Changes in the water cycle of the TRHR under climate warming will directly affect the freshwater supply of China and its surrounding regions.
The TRHR has experienced clear climate changes over the past few decades (Chu et al., 2019; Tang and Cao, 2021), and many studies have reported trends in hydro-climatic indicators based on in-situ observation data. Observation data obtained from 20 meteorological stations inside the TRHR revealed that the spatial averaged warming rate was 0.37°C/(10a) from 1961 to 2019, which was above the global average, and also significantly higher than that at the same latitude and in China (Jin et al., 2021). Shi et al. (2016) analysed precipitation data from 29 meteorological stations inside and around the TRHR from 1961 to 2014, and found that the annual precipitation of 26 stations showed an increasing trend, with 16 stations showing a statistically significant change. Evapotranspiration is one of the most important components of the hydrological cycle. Due to the lack of actual evapotranspiration observations in conventional observation data from meteorological stations, only pan evaporation has been observed. Qi et al. (2015) studied pan evaporation at 14 meteorological stations in the TRHR and found that annual pan evaporation showed a significant upward trend from 1964 to 2013. Using the Penman-Monteith formula, Wen et al. (2020) calculated potential evapotranspiration at 14 meteorological stations in the TRHR and found an increasing trend from 2000 to 2018. In recent years, many studies based on data from hydrological stations, have reported runoff changing trends in the TRHR. The annual runoff from 1960 to 2009 showed a decrease trend in the YERHR and LARHR and an increase trend in the YARHR (Mao et al., 2016). In-situ observation data demonstrate the changes in the hydrological processes in the TRHR. However, most of the meteorological stations in the TRHR are located in low-elevation areas in the lower reaches of the YERHR in the northeastern part of the region (Jin et al., 2021). Due to the lack of high-elevation meteorological stations, in-situ observation data may not represent the overall hydrological changes of the entire TRHR. To better understand the temporal and spatial changes in hydrological processes in the TRHR, gridded hydrometeorological data have been used.
The gridded hydrometeorological data in the TRHR are mainly obtained by interpolation of meteorological station observation data, and various data products come from reanalysis, remote sensing, data assimilation or hydrological models. Yi et al. (2013) used the spline method to interpolate the precipitation data from 12 meteorological stations into the TRHR to analyse the precipitation changes, and found that the annual and seasonal precipitation in the TRHR increased from 1961 to 2010, but the summer precipitation in the LARHR and the autumn precipitation in the YARHR decreased. Based on the reference evapotranspiration calculated at 25 meteorological stations, Wang et al. (2020) used the inverse distance weighting method to generate a 0.5° × 0.5° gridded reference evapotranspiration dataset in the TRHR for 1961 to 2016, and found a statistically significant increase for most grid cells and a decreased for only a few grid cells located at the southern and northern edges of the TRHR. Using the GSMaP remote sensing products and ERA5 reanalysis data, Meng et al. (2022) analysed the spatial and temporal variability of precipitation from 2001 to 2019, and concluded that the annual precipitation decreased slightly in the north and west and increased slightly in the east and south parts of the TRHR. Xu et al. (2018) used soil moisture data from the Global Land Data Assimilation System (GLDAS) to analyse the spatial and temporal variability of soil water, and found that soil water increased mainly appeared in the peripheral regions of the TRHR, but decreased for most parts of the TRHR from 2003 to 2014. However, these studies focused on the spatiotemporal variation in individual water cycle elements. The four fundamental variables of the watershed hydrological cycle, precipitation, evapotranspiration, soil water storage and runoff (Masuda et al., 2001), have seldom been simultaneously considered for the TRHR. In addition, most previous studies were based on only one dataset. Comprehensive analysis of multiple data sets can narrow down uncertainties and better capture the temporal and spatial variations of hydrometeorological variables (Gusain et al., 2020; Shang et al., 2021).
Due to its high elevation and low temperature, cryospheric elements such as glaciers, snow, permafrost and seasonal frozen ground are found across the TRHR throughout the year. With the accelerated warming in the region, the cryospheric elements have changed, affecting the regional hydrological processes (Li et al., 2021b). According to Landsat Thematic Mapper/Operational Land Imager data, from 2000 to 2018, the number of glaciers in the TRHR region decreased by 69, and the glacier area decreased by 271.95 km2 (Zhang et al., 2022a). Under the conditions of rapid regional warming, the glacier runoff in the three basins all present an obvious increasing trend from 1961 to 2012 (Jiang et al., 2016). The observation data from 19 meteorological stations show that the mean annual snowfall in the TRHR was 146.5 mm from 1961 to 2019, and snowfall has decreased by 14.8 mm per 10 years (Liu et al., 2022). Due to the decrease in snowfall, the contribution of snowmelt water to the total streamflow decreased from 1971 to 2017 among the three basins, and the rate of decrease was highest over the LARHR, at 0.24%/year (Li et al., 2021a). Permafrost degradation in the TRHR also affects hydrological processes, which may lead to an increase in the proportion of winter discharge contribution to total annual flow and a decreased recession coefficient (Wang et al., 2017).
The aim of this study was to systematically and comprehensively analyse the changes in the hydrological cycle in the TRHR due to climate warming based on multi-source hydrometeorological data, to 1) investigate the spatiotemporal variation of hydrological variables in the TRHR, 2) analyse the changes of glacier melt and snowmelt in the TRHR and 3) explore the differences in changes in the hydrological cycles of the three sub-basins of the TRHR. The results reveal the characteristics of the hydrological cycle in the region and provide a reference for understanding the changes in hydrological processes in the Qinghai-Tibetan Plateau and other cold regions against the background of climate warming.
2 MATERIALS AND METHODS
2.1 Study area
The Three-River Headwaters Region (TRHR), is located in the hinterland of the Qinghai-Tibetan Plateau. Previous studies of the region have used slightly different study areas. Some researchers have chosen the Sanjiangyuan National Nature Reserve as the research area (Ding et al., 2018; Wang et al., 2020), while others have chosen the three watershed basins area controlled by three hydrological sections as their research object (Chu et al., 2019; Li et al., 2021b). In this paper, the study area is a synthesis of the above two areas (31.02°N–37.14°N and 89.40°E–103.41°E), with an area of about 42.60 × 104 km2 (Figure 1). The topography of the TRHR is mainly mountainous, and the elevation in the TRHR ranges widely from 2000 to 6,580 m, with an average elevation of 4,430 m. The TRHR has a typical plateau continental climate, with alternating hot and cold seasons, distinct wet and dry seasons (Jiang et al., 2017). In 2008, the TRHR contained 1,555 glaciers distributed in the northwest, southwest, central, and eastern parts of the region and covering an area of 2,297.93 km2 (Chen et al., 2022). Alpine meadows and alpine grasslands are the main vegetation types in the TRHR (Liu et al., 2008). The three sub-basins, the YERHR, YARHR and LARHR, are controlled by Tangnaihai, Zhimenda and Changdu hydrological stations, respectively, which are 12.3 × 104 km2, 13.9 × 104 km2 and 5.4 × 104 km2 in size, respectively.
[image: Figure 1]FIGURE 1 | Distribution of hydrological stations and three sub-basins in the Three-River Headwaters Region.
2.2 Data collection
In this study, multi-source hydrometeorological datasets were selected to comprehensively analyse the hydrological process changes in the TRHR. To unify the timescale of the spatiotemporal changes, all data except glacier area were collected for the 1982 to 2014 period. The basic information about the collected datasets is shown in Table 1. The soil water storage data were derived from the soil water content data of each dataset and unified as the total water content of the 200 cm thick soil layer, without considering groundwater.
TABLE 1 | Summary of datasets used in this study.
[image: Table 1]2.2.1 ERA5-Land
The ERA5-Land dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF) replays the land component of ERA5 climate reanalysis. It is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. Data are available hourly or monthly and can be downloaded on a regular latitude/longitude grid of 0.1° × 0.1° (Muñoz-Sabater et al., 2021). In this study, multiple ERA5-Land data including air temperature, precipitation, snowfall, snowmelt and soil water data were collected for the TRHR.
2.2.2 CRU TS v4.05
Gridded Climatic Research Unit (CRU) Time-Series (TS) version 4.05 data, with a spatial resolution of 0.5° × 0.5°, were produced by CRU at the University of East Anglia and funded by the UK National Centre for Atmospheric Science. The data were produced using angular-distance weighting interpolation for the 1901–2020 period (Harris et al., 2020). In this study, two CRU data including air temperature and precipitation were collected for the TRHR.
2.2.3 China meteorological forcing dataset
As a high spatial-temporal resolution gridded near-surface meteorological dataset, the China Meteorological Forcing Dataset (CMFD) was made by fusing remote sensing products, reanalysis dataset and in-situ observation data at meteorological stations. With a spatial resolution of 0.1° × 0.1°, the CMFD was developed specifically for studies of land surface processes in China (He et al., 2020). In this study, two CMFD data including air temperature and precipitation were collected for the TRHR.
2.2.4 GLDAS Noah Land Surface Model V2.0
The Global Land Data Assimilation System (GLDAS) is a global land surface data assimilation system jointly developed by National Aeronautics and Space Administration and National Oceanic and Atmospheric Administration (Rodell et al., 2004). The GLDAS includes multiple land surface models, and the air temperature, precipitation, soil water, snowfall and snowmelt data from the Noah Land Surface Model were selected for this study.
2.2.5 GLEAM V3.6a
With a spatial resolution of 0.25° × 0.25°, the Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms dedicated to the estimation of terrestrial evapotranspiration and soil moisture from satellite data (Martens et al., 2017). The GLEAM evapotranspiration and soil water data were used in this study.
2.2.6 Terrestrial evapotranspiration dataset across China
The Terrestrial Evapotranspiration Dataset across China (TEDC) dataset (version 1.5) is derived from a calibration-free nonlinear complementary relationship model. The inputs of the model are from CMFD, ERA5-Land and global land surface satellite (GLASS) products and National Centers for Environmental Prediction (NCEP) data. The spatial resolution of this dataset is 0.1° × 0.1° (Ma et al., 2019).
2.2.7 Monthly snowmelt dataset in China
Based on high spatial resolution precipitation and temperature data, Yang et al. (2022a) produced a monthly snowmelt dataset for China (SMT-Y) using a simple temperature index model. Because snowmelt is difficult to measure directly, the calculated snowmelt was verified using snowfall, snow depth, snow cover extent and snow water equivalent data, which indicated that is reliable (Yang et al., 2022b). The spatial resolution of this data is 0.5′ × 0.5′.
2.2.8 Glacier area and glacier melt in the TRHR
In the first Chinese glacier inventories (CGI) (Li et al., 2008; Wu and Li, 2011), the aerial photographs and topographic maps were used to establish glacier distributions in the TRHR in 1966, 1967, 1969, 1970, 1971 and 1974. In this study, the data from CGI are taken as the glacier areas in 1970s in the TRHR. Based on ASTER GDEM and Landsat TM/OLI images acquired, Zhang et al. (2022b) used the band ratio method combined with manual revision to obtain the outlines of glaciers in the TRHR in 2000, 2010, and 2019. In this study, the change in glacier areas in the TRHR were analysed for four periods: the 1970s, 2000, 2010 and 2019. The glacier melt data in the TRHR from 1982 to 2014 were collected from the published paper (Zhao et al., 2019).
2.2.9 River runoff in the TRHR
Monthly runoff data from three hydrological gauging stations including Tangnaihai, Zhimenda and Changdu were obtained from the Hydrographic Yearbooks of the People’s Republic of China.
2.3 Trend analysis
In this study, the non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975) was used to examine the trend and significance level of the hydrometeorological variables from 1982 to 2014. The standard normal statistic Z was calculated as follows:
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where n is the number of datasets, m is the number of tied groups and ti denotes the number of ties of extent i, and xj and xk are the data values in time series j and k, respectively. A tied group is a set of sample data having the same value. A positive value of Z indicates an increasing trend, and a negative value indicates a decreasing trend. Testing trends is done at the specific α significance level. If [image: image], the series trend is statistically significant; otherwise, the series trend is not statistically significant. In this study, significance levels of α = 0.05 were applied (95% confidence level).
Sen’s slope method (Sen, 1968) was used to analyse the slope of the variation:
[image: image]
where β > 0 represents an increase in the trend, and β < 0 represents a decrease in the trend. The value of β indicates the steepness of the trend.
3 RESULTS
3.1 Spatial and temporal variability in hydrometeorological variables
3.1.1 Air temperature
Four different datasets—ERA5-Land, CRU, CMFD and GLDAS—were used to analyse the spatial and temporal variability in air temperature. These multi-source datasets firmly support a strong warming trend in the TRHR. The mean annual air temperature in the TRHR from 1982 to 2014 according to ERA5-Land, CRU, CMFD and GLDAS was −5.29°C, −3.04°C, −3.51°C and −2.77°C, respectively. The mean annual air temperatures from the different datasets show similar spatial distribution characteristics, gradually increasing from the west to the east (Figures 2A,D,G,J). The Sen’s slopes for the four datasets show that the annual temperature increased from 1982 to 2014 in almost all grids (Figures 2B, E,H,K). The annual temperatures only decreased in a few areas in the northeastern TRHR according to the GLDAS data (Figure 2K), but the decrease was not statistically significant (Figure 2L). There were spatial differences in the statistically significance of the temperature increases indicated by the four datasets. The Mann-Kendall test showed that the ERA5-Land dataset identified the smallest area with a significant increasing trend in temperature from 1982 to 2014, and this area was distributed in the eastern part of the TRHR, that is, the downstream region of the YERHR; in contrast, the area with a significant increasing trend identified by CMFD dataset covered almost the whole of the TRHR. The CRU and GLDAS datasets showed similar spatial distributions of significant temperature change, mainly in the YARHR, LARHR and the upstream region of the YERHR (Figures 2C, F,I,L). From 1982 to 2014, the linear trends of annual air temperature increases in the TRHR according to the ERA5-Land, CRU, CMFD and GLDAS were 0.23°C, 0.27°C, 0.66°C, and 0.26°C per decade, respectively (Figure 3A). Only the temperature change indicated by the ERA5-Land data was not statistically significant.
[image: Figure 2]FIGURE 2 | Spatial distribution of mean annual air temperature (A,D,G,J), Sen’s slope of the annual air temperature (B,E,H,K) and trends in annual air temperature based on the Mann-Kendall method (C,F,I,L) in the TRHR using ERA5-Land, CRU, CMFD and GLDAS data for the 1982–2014 period.
[image: Figure 3]FIGURE 3 | Interannual variability in the air temperature (A), precipitation (B), evapotranspiration (C) and soil water storage (D) from different data sources in the TRHR from 1982 to 2014.
3.1.2 Precipitation
Like air temperature, the spatiotemporal variability in precipitation in the TRHR was analysed using the ERA5-Land, CRU, CMFD and GLDAS datasets. From 1982 to 2014, the mean annual precipitation in the TRHR according to ERA5-Land data was significantly higher than that indicated by the other three datasets, followed by the CMFD, while the mean annual precipitation data from the CRU and GLDAS showed little difference. According to the ERA5-Land, CRU, CMFD and GLDAS data, the mean annual precipitation in the TRHR was 698.5, 332.3, 459.4 or 336.4 mm, respectively. Although there were differences in the mean annual precipitation among the four datasets, their spatial patterns were similar. The mean annual precipitation in the TRHR decreased from southeast to northwest and was mainly concentrated in the YERHR and LARHR (Figures 4A,D,G,J). From 1982 to 2014, the Sen’s slopes from the four datasets show the annual precipitation indicated by the CRU and GLDAS data increased in almost all areas, while the ERA5-Land and CMFD data show that it increased in most areas, but decreased in a few areas in the eastern TRHR (Figures 4B,E,H,K). The Mann-Kendall test showed that the areas with a significant increasing trend in annual precipitation from 1982 to 2014 were mainly distributed in the western and northern TRHR. The annual precipitation in the northwestern YARHR increased significantly according to all four datasets. The annual precipitation data from the CRU and CMFD showed a significant increase in some areas of the YERHR. Only CMFD data showed that annual precipitation increased significantly in some areas of the LARHR (Figures 4C,F,I,L). From 1982 to 2014, the linear trends of annual precipitation increases in the TRHR according to the ERA5-Land, CRU, CMFD and GLDAS were 13.5, 12.9, 46.3 and 14.0 mm per decade, respectively (Figure 3B). Only the precipitation change indicated by the ERA5-Land data was not statistically significant.
[image: Figure 4]FIGURE 4 | Spatial distribution of mean annual precipitation (A,D,G,J), Sen’s slope of the annual precipitation (B,E,H,K) and trends in annual precipitation based on the Mann-Kendall method (C,F,I,L) in the TRHR using ERA5-Land, CRU, CMFD and GLDAS data for the 1982–2014 period.
3.1.3 Evapotranspiration
The ERA5-Land, GLDAS, GLEAM and TEDC datasets were used to analyse the spatial and temporal variability in evapotranspiration in the TRHR. Among these four datasets, the values of mean annual evapotranspiration from 1982 to 2014 from ERA5-Land and TEDC were significantly higher than those from the GLDAS and GLEAM. According to the ERA5-Land, GLDAS, GLEAM and TEDC data, mean annual evapotranspiration in the TRHR was 413.1, 265.4, 253.3 or 423.8 mm, respectively. The spatial distribution characteristics of the mean annual evapotranspiration from the four different datasets were similar, increasing gradually from northwest to the southeast (Figures 5A,D,G,J). From 1982 to 2014, the Sen’s slopes show the annual evapotranspiration from the GLDAS and GLEAM both increased in almost all areas in the TRHR, while according to the ERA5-Land, annual evapotranspiration increased in most areas but decreased in a few areas of the LARHR. According to the TEDC, annual evapotranspiration decreased in the southern, central and northern areas of the TRHR and increased in the other areas (Figures 5B,E,H,K). The Mann-Kendall test showed that annual evapotranspiration according to the ERA5-Land, GLDAS and GLEAM data increased significantly from 1982 to 2014 in many areas of the TRHR. The areas with a significant increasing trend based on ERA5-Land and GLEAM data were mainly distributed in the YARHR and YERHR, while the areas with a significant increasing trend based on GLDAS data were mainly distributed in the YARHR, YERHR and LARHR. The Mann-Kendall test based on the TEDC showed that annual evapotranspiration increased significantly in the northeastern TRHR, but decreased significantly in a few areas in the southern and northern TRHR (Figures 5C,F,I,L). From 1982 to 2014, the linear trends of annual evapotranspiration from the ERA5-Land, GLDAS, GLEAM and TEDC in the TRHR were 10.5, 10.6, 10.3, and 4.2 mm per decade, respectively (Figure 3C). Only the change in evapotranspiration indicated by the TEDC data was not statistically significant.
[image: Figure 5]FIGURE 5 | Spatial distribution of mean annual evapotranspiration (A,D,G,J), Sen’s slope of the an-nual precipitation (B,E,H,K) and trends in annual precipitation based on the Mann-Kendall method (C,F,I,L) in the TRHR using ERA5-Land, GLDAS, GLEAM and TEDC data for the 1982–2014 period.
3.1.4 Soil water storage
The ERA5-Land, GLDAS and GLEAM datasets were used to analyse the spatial and temporal variability in soil water storage in the TRHR. Among these three datasets, the mean annual soil water storage from 1982 to 2014 from the ERA5-Land data was significantly higher than that indicated by the GLDAS and GLEAM data, at 830.5, 459.0, and 503.5 mm, respectively. The spatial distribution characteristics of the soil water storage indicated by the ERA5-Land data were different from those derived from the GLDAS and GLEAM. The high value areas of soil water storage from the ERA5-Land were mainly located in the middle of the TRHR, while GLDAS and GLEAM data showed the opposite pattern (Figures 6A,D,G). From 1982 to 2014, the Sen’s slopes show that soil water storage from the ERA5-Land increased in the northern and southern TRHR, but decreased in the central and northeastern TRHR. The soil water storage indicated by the GLDAS and GLEAM data increased in most areas in the TRHR, while data from the GLDAS indicated a decrease in the southeastern TRHR and those from the GLEAM indicated a decrease in the southern and southeastern TRHR (Figures 6B,E,H). The Mann-Kendall test showed that the soil water storage from the GLDAS and GLEAM increased significantly from 1982 to 2014 in many areas of the TRHR, mainly in the north. The area with a significant increasing trend of soil water storage according to ERA5-Land data was smaller than those based on the GLDAS and GLEAM data, and the ERA5-Land data indicated that soil water storage decreased significantly in some parts of the TRHR, mainly in the central and northeastern areas (Figures 6C,F,I). From 1982 to 2014, the linear trends of soil water storage in the TRHR according to the ERA5-Land, GLDAS and GLEAM data were 0.3, 9.4 and 8.8 mm per decade, respectively (Figure 3D). Only the change in soil water storage indicated by ERA5-Land data was not statistically significant.
[image: Figure 6]FIGURE 6 | Spatial distribution of mean annual soil water storage (A,D,G), Sen’s slope of the annual soil water storage (B,E,H) and trends in annual soil water storage based on the Mann-Kendall method (C,F,I) in the TRHR using ERA5-Land, GLDAS and GLEAM data for the 1982–2014 period.
3.2 Spatial and temporal variability in glacier melt and snowmelt
3.2.1 Glacier area and glacier melt
Glaciers in the TRHR receded from the 1970s to 2019 (Figure 7A). Compared with the 1970s, the glacier areas in the YARHR, YERHR and LARHR in 2019 had decreased by 39.4%, 27.4% and 61.4%, respectively. The fastest area loss was in the LARHR and the slowest was in the YERHR. The total glacier area of the three sub-basins decreased by 868.1 km2, accounting for about 41.6% of the area in the 1970s. From 1982 to 2014, the mean annual glacier melts in the YARHR, YERHR and LARHR were 4.7, 0.7 and 1.8 × 108 m3, respectively. The linear trends of annual glacier melt in the YARHR, YERHR and LARHR were 0.84 × 108 m3, 0.07 × 108 m3 and −0.02 × 108 m3 per decade. The change trend of glacier melt in the YARHR was statistically significant (Figure 7B).
[image: Figure 7]FIGURE 7 | Glacier areas in different periods (A) and interannual variability in the glacier melt in the TRHR from 1982 to 2014 (B) (YARHR, YERHR and LARHR are the Yangtze River Headwater Region, Yellow River Headwater Region and Lantsang River Headwater Region, respectively. 3R stands for the synthesis of YARHR, YERHR and LARHR).
3.2.2 Snowfall and snowmelt
The ERA5-Land and GLDAS data were used to analyse the spatial and temporal variability in snowfall in the TRHR. The mean annual snowfall from 1982 to 2014 indicated by ERA5-Land data, with a value of 281.7 mm, was significantly higher than that indicated by the GLDAS, with a value of 53.5 mm. Although the mean annual snowfall in the TRHR indicated by the two datasets is different, their spatial distributions show similar patterns (Figures 8A,D). The areas with high mean annual snowfall are generally located in the high-elevation areas, glacial areas, and the watersheds of the three sub-basins. From 1982 to 2014, the Sen’s slopes show the snowfall indicated by the ERA5-Land data increased in the northwestern TRHR and decreased in the other areas of the region. The snowfall indicated by the GLDAS data increased in the eastern TRHR and the central YARHR, and decreased in the remaining areas (Figures 8B,E). The Mann-Kendall test showed that the snowfall indicated by the ERA5-Land data decreased significantly in the eastern and central TRHR, and that indicated by the GLDAS data decreased significantly in the southern TRHR and in a few areas in the upstream region of the YERHR. No areas had a significant increasing trend in snowfall for either dataset (Figures 8C,F). From 1982 to 2014, the linear trends of the snowfall from the ERA5-Land and GLDAS data in the TRHR were −10.7 and −1.8 mm per decade, respectively, with a statistically significant decreasing trend in the former (Figure 9A).
[image: Figure 8]FIGURE 8 | Spatial distribution of mean annual snowfall (A,D), Sen’s slope of the annual snowfall (B,E) and trends in annual snowfall based on the Mann-Kendall method (C,F) in the TRHR using ERA5-Land and GLDAS data for the 1982–2014 period.
[image: Figure 9]FIGURE 9 | Interannual variability in the snowfall (A) and snowmelt (B) from ERA5-Land, GLDAS and SMT-Y data sources in the TRHR from 1982 to 2014.
The ERA5-Land, GLDAS and SMT-Y data were used to analyse the spatial and temporal variability in snowmelt in the TRHR. From 1982 to 2014, the mean annual snowmelt in the TRHR was 218.2, 12.6 and 58.2 mm, according to the ERA5-Land, GLDAS and SMT-Y, respectively. The spatial distribution of snowmelt from the three data showed similar patterns, similar to the spatial pattern of snowfall. The areas with high snowmelt are generally located in the high-elevation areas, glacial areas and the watersheds of the three sub-basins (Figures 10A,D,G). From 1982 to 2014, the Sen’s slopes showed the snowmelt indicated by the ERA5-Land data increased in the northwestern TRHR and a few areas in the southeastern TRHR, and decreased in the remaining areas. The snowmelt indicated by the GLDAS data increased in the eastern TRHR and the central YARHR, while according to the SMT-Y data snowmelt increased in the northeastern, southern and southeastern TRHR and in the central YARHR (Figures 10B,E,H). The Mann-Kendall test showed that the areas with a significant decreasing trend of snowmelt from 1982 to 2014 based on the ERA5-Land data were mainly distributed in the northeastern TRHR and the central YARHR, and no areas with a significant increasing trend in snowmelt were identified. The snowmelt change trends according to the GLDAS data were not statistically significant in most areas of the TRHR. The snowmelt indicated by the SMT-Y decreased significantly in the northwestern TRHR, and increased significantly in some areas in the southern and southeastern TRHR (Figures 10C,F,I). From 1982 to 2014, the linear trends of the annual snowmelt in the TRHR according to the ERA5-Land, GLDAS and SMT-Y data were −9.9, −0.3 and −0.6 mm per decade, respectively (Figure 9B). Only the decreasing trend indicated by the ERA5-Land was statistically significant.
[image: Figure 10]FIGURE 10 | Spatial distribution of mean annual snowmelt (A,D,G), Sen’s slope of the annual snowmelt (B,E,H) and trends in annual snowmelt based on the Mann-Kendall method (C,F,I) in the TRHR using ERA5-Land, GLDAS and SMT-Y data for the 1982–2014 period.
3.3 Variation in hydrological variables in three sub-basins
The observation data from the Zhimenda, Tangnaihai and Changdu hydrological stations from 1982 to 2014 show that the mean annual runoff in the YARHR, YERHR and LARHR was 1.37 × 1010 m3, 1.97 × 1010 m3 and 1.50 × 1010 m3, respectively. The annual runoff in the YARHR and LARHR showed an increasing trend, while the annual runoff in YERHR showed a decreasing trend. From 1982 to 2014, the linear trends of the annual runoff in the YARHR, YERHR and LARHR were 0.14 × 1010 m3, −0.10 × 1010 m3 and 0.11 × 1010 m3 per decade, respectively. Only the runoff change trend in the YARHR was statistically significant (Figure 11).
[image: Figure 11]FIGURE 11 | Interannual variability in the observed annual runoff at three hydrological stations in the TRHR from 1982 to 2014.
To analyse the changes of hydrological variables in the three sub-basins, the data collection period (1982–2014) was divided into two 16-year periods (1982–1997 and 1999–2014). Compared with the 1982–1997 period, the mean annual values of precipitation during the 1999–2014 period in the YARHR, YERHR and LARHR increased by 14.6%, 6.8% and 7.7%, respectively, the mean annual values of evapotranspiration increased by 6.0%, 5.7% and 3.2%, respectively, and the mean annual values of soil water storage increased by 3.1%, 2.0% and 2.7%, respectively (Figure 12). The mean annual values for snowmelt in all three sub-basins during the 1999–2014 period were smaller than those during the 1999–2014 period, and the change ratios in the YARHR, YERHR and LARHR were −1.8%, −4.9% and −4.3%, respectively. Compared with the 1982–1997 period, the mean annual values of glacier melt during the 1999–2014 period in the YARHR and YERHR increased by 36.8% and 16.1%, respectively, while that in the LARHR decreased by 2.4%. Compared with the 1982–1997 period, the mean annual values of runoff during the 1999–2014 period in the YARHR and LARHR increased by 25.1% and 14.2%, respectively, and that in the YERHR decreased by 5.8%.
[image: Figure 12]FIGURE 12 | Change ratios of the mean annual values of hydrological variables during the 1999–2014 period compared with those during the 1982–1997 period in the three sub-basins in the TRHR.
4 DISCUSSION
4.1 Comparisons between previous studies and this study
Table 2 shows the comparisons of changes in hydrological variables in the TRHR from published studies and this study. Overall, the trends of hydrological variables in this study are largely consistent with the previous studies. For example, the previous studies and this study all show an increasing trend in precipitation in the TRHR. Only few studies show different trends in hydrological variables, most notably because of the different study periods. For example, the changes of runoff observation from hydrological stations show opposite trends in different statistical periods. In addition, different data sources may result in different trends being presented. Take the trend of evapotranspiration in the TRHR as example, using evapotranspiration data delivered by using surface energy balance system algorithm and MODIS satellite data, Xu et al. (2018) reported that the evapotranspiration showed a decreasing trend from 2003 to 2014, while using the calculation results by the annual evapotranspiration model, Li et al. (2012) reported that the evapotranspiration showed an increasing trend from 1980 to 2000. Due to the differences in trend changes that may be caused by different data sources, this study selected multi-Source data to reduce their uncertainties. In addition, this study analyzed the trends of glacier melt, snowmelt and the four fundamental variables of the watershed hydrological cycle in the TRHR, which have not been studied simultaneously in the previous studies.
TABLE 2 | Comparisons of changes in hydrological variables in the TRHR from published studies and this study.
[image: Table 2]4.2 Acceleration of the hydrological cycle in the TRHR
In this study, the different data sources all indicate that the TRHR became warmer from 1982 to 2014. Under this background of warming, as the input term of hydrological cycle, the precipitation in the TRHR increased significantly (Figures 2B, 4), as reported by previous studies. Xi et al. (2018) reported there was a significant upward trend in precipitation of more than 13.3 mm per decade in many parts of the TRHR during the 1961–2015 period. The increased precipitation is possibly related to enhanced water vapor transport from the South China Sea and tropical oceans caused by the anomalous cyclone in the Maritime Continent and anomalous anticyclone in the western North Pacific (Shang et al., 2021). Deng et al. (2019) found that a significant positive correlation between soil moisture and precipitation in most areas of the TRHR. The data examined in this study also show an increasing trend of soil water storage with increasing precipitation in the TRHR (Figures 3D, 6). More soil water means more water is available for evapotranspiration, and the increase in temperature has led to an increase in potential evapotranspiration in the TRHR (Wang et al., 2020). More soil water and higher potential evapotranspiration has led to greater actual evapotranspiration in the TRHR. All of the evapotranspiration data collected in this study validate the increasing trend of evapotranspiration in the region (Figures 3C, 5). The increases in precipitation, soil water and actual evapotranspiration indicate an acceleration of hydrological cycle in the TRHR.
In a warming climate, the glaciers in the TRHR are retreating and the glacier areas in the YARHR, YERHR and LARHR are all shrinking (Figure 7A). Although the glacier melt in the LARHR decreased slightly (not significantly), the overall glacier melt in the TRHR increased significantly (Figure 7B), suggesting that more solid water was transformed into liquid water and accelerated into the hydrological cycle. Although precipitation increased, snowfall in the TRHR showed a decreasing trend (Figures 8, 9A), because the snowfall/precipitation ratio became smaller due to the warming climate (Berghuijs et al., 2014). Snowfall is solid water that can temporarily accumulate on the land surface. Rainfall infiltrates the soil and generates runoff more quickly than snowfall, and a reduction in snowfall means more rainfall and a faster hydrological cycle. In addition, climate warming results in an earlier onset of snowmelt (Barnhart et al., 2020), further accelerating the hydrological cycle. Overall, changes in cryospheric elements such as glaciers and snow in the TRHR under climate warming have further accelerated the hydrological cycle in this region.
4.3 Differences in hydrological cycle in the three sub-basins
The annual runoff in the three sub-basins of the TRHR showed different trends from 1982 to 2014 (Figure 11). The annual runoff in the YARHR and LARHR showed an increasing trend while the runoff in the YERHR was slightly reduced. According to the basin-scale water balance, runoff is equal to precipitation minus evapotranspiration and minus the change in soil water storage (Masuda et al., 2001). Although the precipitation, evapotranspiration and soil water storage in the three sub-basins all showed an increasing trend, there were differences in the ratio of increase, resulting in runoff showing different changes. In the YARHR and LARHR, the increasing ratio of precipitation was greater than the sum of the increasing ratio of evapotranspiration and the increasing ratio of soil water storage, which leads to an increase of runoff in these two sub-basins. The increasing ratio of precipitation in the YARHR was significantly greater than that in the LARHR (Figure 12), and only the runoff change trend in the YARHR was statistically significant. Although precipitation also showed an increasing trend in the YERHR, the increasing ratio was less than the sum of the increasing ratio of evapotranspiration and the increasing ratio of soil water storage, which may be the reason for the decrease in runoff in the YERHR.
The annual glacier melts in the YARHR and YERHR showed an increasing trend while that in the LARHR showed a decreasing trend (Figures 7B, 12). In a warming climate, glacier melt is expected to increase in an unstable trend that may reverse when glaciers continuously retreat (Zhang et al., 2013). Glacier melt will begin to decline when increasing melting rates due to rising temperatures fail to compensate for the negative impact of decreasing glacier area on glacial melt. Zhao et al. (2019) concluded that the glacier melt in the YARHR will increase for at least the 2020s (2021–2030), while the that in the LARHR had exceeded its tipping point at the beginning of the 21st century. Glacier melts account for 4.7%, 0.7%, and 1.8% of the runoff during the 1982–2014 period in the YARHR, YERHR and LARHR, respectively. The significant increase in glacier melt in the YARHR may have contributed to the increase in runoff. All three sub-basins showed a decreasing trend in snowmelt. The ratio of snowmelt reduction was the largest for the YERHR, followed by the LARHR and YARHR. Because snowmelt is more effective at generating runoff than rainfall (Li et al., 2017; Jenicek and Ledvinka, 2020), the relatively large reduction in snowmelt in the YERHR may also be responsible for the decline in runoff.
4.4 Uncertainties and limitations
Due to the high elevations and complex topography of the TRHR, the accuracy of collected gridded hydrometeorological data may be uncertain, which may bring uncertainty to this study. Indeed, the values of hydrometeorological variables in the TRHR from different data sources are different. For example, ERA5-Land reports higher precipitation and lower temperature than the other datasets (Figure 3). Li et al. (2022) used the observation data of 28 meteorological stations to evaluate the CMFD and ERA5-Land data in the Qilian Mountains, Qinghai-Tibetan Plateau, and found that both datasets underestimated the temperature, and the amount of precipitation was overestimated by ERA5-Land. Qi et al. (2018) used gauge-based data and a hydrological model to evaluate the GLDAS data for the Qinghai-Tibetan Plateau, and found that the precipitation from GLDAS had high uncertainty. Huang et al. (2021) concluded that the accuracy of the ERA5-Land and GLDAS decreases with increasing elevation, and suggested that caution was needed when using those data for mountainous regions with complex terrain. Nevertheless, although the values of the hydrometeorological variables may be uncertain in the high-elevation areas, some studies suggest that they still reflect the spatial pattern and reproduce the seasonal variation (Chen et al., 2021; Li et al., 2022). This study mainly focuses on the spatial pattern and temporal variation trends of hydrological variables in the TRHR, and the comprehensive analysis from multiple different data sources reduces the uncertainty.
Permafrost is widespread in the TRHR, and in the eastern part permafrost is sporadic and the seasonally frozen ground is found at low elevations (Hu et al., 2022). The changes in permafrost and seasonal frozen soil under the background of climate warming have affected the hydrological process and runoff changes in the region (Zheng et al., 2018; Song et al., 2021). Unfortunately, due to the complexity of frozen soil changes, there is still a lack of accurate and continuous data about frozen soil changes in the TRHR, and the changes in the permafrost and seasonal frozen soil and their impact on the hydrological cycle are not considered in this study. In addition, the variability of other hydrological elements such as lakes and groundwater are not considered in this study, although they have also changed under climate warming in the TRHR (Xu et al., 2018; Fan, 2021).
5 CONCLUSION
This study focuses on the spatial and temporal variability of hydrological variables in the TRHR from 1982 to 2014 based on multi-source datasets, and analyses the changes in the hydrological cycle under climate warming. The air temperature data from the ERA5-Land, CRU, CMFD and GLDAS data show an increasing trend in the annual temperature of the TRHR from 1982 to 2014, with only the increasing trend in the ERA5-Land data being statistically insignificant. The annual precipitation in the TRHR indicated by the ERA5-Land, CRU, CMFD and GLDAS data increased from 1982 to 2014, and only the increasing trend indicated by the ERA5-Land data was statistically insignificant. The annual evapotranspiration in the TRHR indicated by the ERA5-Land, GLDAS, GLEAM and TEDC data increased from 1982 to 2014, and only the increasing trend in the TEDC data was statistically insignificant. The annual soil water storage indicated by the ERA5-Land, GLDAS and GLEAM data increased from 1982 to 2014, and only the increasing trend in the ERA5-Land data was statistically insignificant. From 1982 to 2014, the annual glacier melt increased in the YARHR and YERHR and decreased in the LARHR. The annual snowmelt indicated by the ERA5-Land, GLDAS and SMT-Y data decreased from 1982 to 2014, but only the decreasing trend in the ERA5-Land data was statistically significant.
Overall, precipitation, evapotranspiration, soil water content and glacial melt increased, while snowfall and snow melt water decreased, indicating that the hydrological cycle in the TRHR has accelerated. Although the precipitation showed an increasing trend in all three sub-basins, the precipitation in the YARHR increased the most, which was the main reason for the significant increase in the runoff in the YARHR. The sum of the increases in evapotranspiration and soil water storage in the YERHR was greater than the increase in precipitation, resulting in a decrease in runoff in the YERHR. The increase in precipitation in the LARHR, which was between that in the YARHR and in the YERHR, was slightly larger than the sum of the increase in evapotranspiration and soil water storage, and the runoff in the LARHR showed an insignificant increasing trend. As the climate continues to warm, the hydrological cycle in the TRHR may be further accelerate, posing a challenge to the utilization of water resources in the TRHR and its downstream. Future work should focus on the future changes in the water cycle of the TRHR, which will be more helpful for planning water resources management under climate change.
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Most studies of the effects of urbanisation on local climate have been based on ground observation data. In contrast, we used observation data from a boundary layer radar wind profiler, radio-acoustic sounding system, and automatic meteorological station located at Shenzhen Bao’an International Airport to analyse changes in wind and virtual temperature in the upper level atmosphere, with a top height of 1,200 m, over the Pearl River Estuary between 2011 and 2020. Our results show that during the decade evaluated, the wind speed and virtual temperature of the upper level atmosphere over the Pearl River Estuary changed very significantly and faster than the changes observed at ground level. During the study period, the linear warming rate of the virtual temperature of the upper level atmosphere reached 0.24°C/a, whereas that on the land surface was 0.17°C/a. The mean decreases in the upper level atmosphere and land surface wind speeds were −0.12 and −0.05 m/s·a, respectively. Additionally, the rate of change in the upper level climate was faster in winter than in summer for both wind speed and virtual temperature. These changes in the climate of the upper level atmosphere over the Pearl River Estuary may be related to the rapid increase in the number of high-rise buildings in the region during that decade, which generally negatively affected the atmospheric environment.
Keywords: atmospheric boundary layer, local climate, urban climate, pearl river delta, radar wind profiler
1 INTRODUCTION
The Pearl River Delta (PRD) was among the fastest developing and urbanising regions in China over the past 4 decades (Hui et al., 2020). This rapid urbanisation has notably altered the physical attributes of the region’s land surface and, together with anthropogenic heat and pollution emissions, has led to profound changes in the regional climate and atmospheric environment of the PRD. The three key features of climate change in the PRD are the increase of surface air temperature (Chan et al., 2012), the rapidly decrease of surface wind speed (Peng et al., 2018), and the initially decreasing and subsequently increasing relative humidity (Li et al., 2021a; Zhang et al., 2022). Compared with other climate elements, the researches on temperature and wind speed in the field of urbanization effect on climate have received more attention, for the changes of thermophysical properties and the increase of roughness of the Earth surface caused by urbanization have the most direct impacts on temperature and wind speed. In the PRD region, the average warming rate has been about 0.19°C/decade since 1971 (Li et al., 2021). However, in the region with the most rapid urbanization process in the PRD, the warming rate has reached as high as 0.36°C/decade, and the contribution of the urbanization effect to the warming rate can amazingly reach 81.4%–85.1% (Li et al., 2015). The statistics also show that the annual mean wind speed showed an oscillatory downward trend since 1970s, the decade-average wind speed of the GBA during the period of 2011–2020 is 2.25 m/s, which is 0.22 m/s lower than the value during the period of 1971–1980.
In addition to the regional climate, the atmospheric environment of the PRD has also undergone significant changes over the past 4 decades. Because of the region’s dense network of factories and transportation routes, large volumes of pollutants are emitted into the atmosphere, leading to poor air quality. Particularly, fine particulate matter (PM2.5) pollution was a severe problem in the PRD in the mid-2000s, seriously affecting visibility in the region (Yang et al., 2020; Song et al., 2021). The emerging city of Shenzhen recorded 187 days of “haze” in 2004. After regional air pollution control measures were implemented and several rounds of industrial upgrades were performed, the PM2.5 in the PRD has decreased rapidly since the mid-2000s, although ozone (O3) pollution has increased (Zhang et al., 2018; Li et al., 2020; Li et al., 2022).
The regional climate and the atmospheric environment are scientific issues closely related to each other. For example, as the urban surface roughness increases, the near-surface wind speed decreases (Lin et al., 2014), thus the advective transport of pollutants is reduced and the accumulation of these pollutants becomes to be easier than before. Circulation caused by strong thermal processes in urban areas interacts with the background wind field, increasing the structural complexity of the near-surface flow field at different spatial scales. These factors create challenges in assessing and predicting pollutant meteorological conditions in urban areas (Wang et al., 2019). In recent years, O3 concentration in the PRD region has gradually increased, which is related to higher temperatures (Wang et al., 2021). As such, the impact of urbanisation on the regional climate is gradually expanding to the atmospheric environment.
In the vertical direction, changes in the structure of the atmospheric boundary layer caused by urbanization also have a significant impact on the atmospheric environment in the PRD region. Fan et al. (2007, 2011) pointed out that the structure of the atmospheric boundary layer of PRD is jointly affected by the warm and wet airflow from the south, the dry and cold north airflow across the Nanling Mountains, the urban cluster in the region and the peripheral circulation of tropical cyclones, which is an important reason for the deterioration of atmospheric environment quality in PRD region. Fan et al. (2018) found that there are strip or cellular vortex structures inside the cities, and the strip structures could cause the convergence and accumulation of pollutants around the strip, resulting in a local high pollution zone. Some case studies have confirmed that the interaction between urban heat island and sea land breeze will lead to small-scale convergence and local high pollution (Wei et al., 2019).
Although progress has been made in studies of the effects of urbanisation on climate and boundary layer structure in the PRD and in the ability to use this information to adopt measures for adjusting to urban climates, further improvements are needed in this field. Particularly, almost all previous studies of the effects of urbanisation on climate in the region are based on surface meteorological observations; thus, the validity of the conclusions is limited to the atmospheric subdivision closest to Earth’s land surface. On the other hand, the researches on the vertical structure of the boundary layer in this region are generally focused on individual cases, and lacks the understanding of the climate characteristics of the boundary layer based on long-term observational data. While to analyse the effects of long-term changes in climatic conditions on the atmospheric environment, meteorological conditions must be considered vertically across the whole atmospheric boundary layer, as the transport, diffusion, and chemical reactions of pollutants are not limited to the land surface (Shi et al., 2019; 2020). As a result, research should be extended to at least the top of the daytime boundary layer at a typical height of at least 1,000 m above the land surface in PRD region. However, obtaining vertical data is difficult, and meteorological administration departments did not require these data to be collected among operational observations for a long time. Thus, climate change across the vertical boundary layer has not been widely examined.
Shenzhen is one of the main cities in the PRD region. In less than 40 years, Shenzhen has developed from a small city to a megacity with a population of over 10 million (Zhang et al., 2018). Shenzhen also has the densest meteorological observation network in the PRD region. Additionally, at Shenzhen’s Bao’an International Airport, a boundary layer radar wind profiler has been installed and has been operational since around 2011, gathering observation data for more than a decade. Using these data, we analysed changes in the climate of the upper level atmosphere with a maximum top height of 1,500 m, in the Pearl River Estuary (PRE) region over a 10-year period, which is undoubtedly a progress when compared with the past studies on climate effect of urbanisation only based on the ground level observation.
2 DATA AND METHODS
The data obtained by the Vaisala LAP®-3000 wind profiler at Shenzhen Bao’an International Airport (location is shown in Figure 1) were used in this study. The lowest height at which the wind speed and direction are detected is 110 m, and the vertical resolution below 1,500 m is approximately 60 m. The radio-acoustic sounding system (RASS) attached to the radar has a virtual temperature measurement function, with a minimum detection height of 180 m and vertical resolution of approximately 60 m. We also used the wind speed, air temperature, relative humidity, and air pressure data obtained by an automatic meteorological station located at the airport. To maintain consistency with the RASS observations, the air temperature, relative humidity, and air pressure data were used to calculate the near-surface virtual temperatures. Through this conversion, the thermal environment at the ground level and that at upper level are comparable. Additionally, to cover observation blind spots below 110 and 180 m, linear interpolation was conducted using observation data from the automatic station and data obtained at the lowest height from the wind profiler, which provided information between the land surface and lowest detection height. The data used in this study were collected from 1 January 2011 to 30 December 2020, with a data collection frequency of 1 h.
[image: Figure 1]FIGURE 1 | Location (A,B) and view (C) of radar wind profiler.
To ensure the accuracy of the observation data, the sensitivity, dynamic range, and speed of the wind profiler were calibrated monthly. Further quality controls were conducted prior to statistical analysis. Based on historical climate records where the observation equipment is located, wind speeds exceeding 70 m/s were considered as questionable and excluded from further analysis. Virtual temperature observations below −30°C and above 60°C were also treated as erroneous data. When more than 50% of the data for a particular time were erroneous or missing, the data of that time were not included in the analysis. When less than 50% of the data that should have been available for a period were erroneous or missing, linear interpolation or extrapolation was conducted.
In statistical analysis, we focused on the annual and monthly mean virtual temperatures and wind speeds at various heights and evaluated their inter-annual changes. Previous studies confirmed that low-level jets (LLJ) in this region significantly influence O3 pollution; thus, we also analysed changes in LLJ (Yang et al., 2022).
3 RESULTS AND DISCUSSION
3.1 Virtual temperature
Urbanisation has the most notable climatic effect on virtual temperature. According to Li et al. (2021a), the warming rate between 1971 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area, where the PRE is located, was approximately 0.2°C/decade. In cities with particularly rapid urbanisation, such as Shenzhen, the rate of warming was even higher, as a remarkable 80% of warming is caused by urbanisation. Using the data from the wind profiler to analyse changes in the upper level virtual temperature at the 10-year scale can improve the understanding of how urbanisation influences thermal environment in the vertical direction. Notably, because the elements observed by the RASS module of the wind profiler are virtual temperatures, our analysis was performed based on virtual temperatures. We added a correction term for specific humidity, causing virtual temperature to be slightly higher than the original air temperature.
3.1.1 Mean annual values
Changes in the mean annual virtual temperature in the upper level based on the wind profiler observation data are shown in Figure 2. The mean annual virtual temperature increased throughout the upper level below 1,200 m. Notably, the part of the upper level atmosphere where the mean annual virtual temperature was above 26°C constantly increased. In 2011, no part of the upper level atmosphere had a mean annual virtual temperature of 26°C, whereas by 2020, the part of the upper level atmosphere with a mean annual virtual temperature of 26°C extended from the ground level to above 400 m. Previous studies of warming in the PRD region were almost exclusively ground-based (Chan et al., 2012); however, our wind profiler data suggest that warming in this region can be detected throughout the upper level atmosphere. In another study, Li et al. (2015) analysed warming of the surface air temperature in Shenzhen based on data from the Shenzhen Caiwuwei Meteorological Station from 1968 to 2013 and showed that previously rapid temperature increases slowed during the mid-2000s as the structure of the urban built-up area became more settled. In contrast, our results indicate that local warming has very significantly increased on the 10-year scale (between 2011 and 2020).
[image: Figure 2]FIGURE 2 | Changes in mean annual virtual temperature in the upper level atmosphere below 1,200 m over the Pearl River Estuary (PRE) in 2011–2020.
3.1.2 Mean monthly values
Changes in the mean monthly virtual temperatures in the upper level during the 10-year study period are shown below (Figure 3). A special coloured isoline design was used in the figure to intuitively illustrate the intervals and changes between cold and warm virtual temperatures. Shades of blue indicate virtual temperatures below 18°C, whereas shades of red represent virtual temperatures above 20°C. Before 2017, cool isolines are shown throughout the upper level atmosphere at certain times of the year, typically from November to February. However, after 2017, this was no longer the case, and the heights reached by the cooler colours decreased, reflecting continuous and considerable increases in the virtual temperature of the upper level atmosphere in winter. Warming also occurred in summer, which is reflected by continuous upward expansion of dark red isolines. Thus, warming of the upper level atmosphere is evident in almost all months of the year, though to a lesser degree in summer.
[image: Figure 3]FIGURE 3 | Changes in mean monthly virtual temperature in the upper level atmosphere below 1,200 m over the Pearl River Estuary in 2011–2020.
3.1.3 Warming rate
Changes in the mean virtual temperature at the ground level and in the upper level above the land surface between 2011 and 2020 are shown in Figure 4. The mean value for the whole upper level atmosphere was determined as the mean value between 200 and 800 m, where the original observed data is the most complete in the whole upper level atmosphere, and the surface level value is the observation data obtained by the automatic meteorological station at the airport. The annual mean warming rate of the upper level atmosphere (0.24 °C/a) was higher than that of the land surface (0.17°C/a). Figure 4 also shows changes in the mean virtual temperature in different seasons, with January and December of a given year representing winter and June and July representing summer. Comparative analysis indicated that the warming rate of the mean virtual temperature of the upper level atmosphere (0.10°C/a) was similar to that of the land surface virtual temperature (0.09°C/a) in summer. Unexpectedly, in winter, the mean virtual temperature of the upper level atmosphere increased rapidly at a rate of 0.70°C/a, which was much higher than that at ground level (0.47°C/a). Rapid warming of the upper level atmosphere in winter demonstrates that temperature inversions are more common in winter than in other seasons in the PRE region.
[image: Figure 4]FIGURE 4 | Comparison of changes in mean values of land surface virtual temperature and mean virtual temperature in the upper level atmosphere. (A) Whole year; (B) Summer; (C) winter.
Furthermore, it should be noted that both on the ground and in the upper level atmosphere, the increase rate of virtual temperature calculated in the current study is much higher than that of the pure air temperature provided in previous studies (Chan et al., 2012; Li et al., 2021a). This may be related to the increasing relative humidity in the region over the past decade (Zhang et al., 2022). Since the virtual temperature is equal to the sum of the air temperature and a correction term related to the relative humidity, the rapidly increasing relative humidity undoubtedly has a significantly positive contribution in the increase of the virtual temperature. However, due to the lack of long-term relative humidity observation data in the vertical direction, it is impossible to quantify the contribution of the increase of relative humidity to the increase of virtual temperature, which needs further research in the future.
3.2 Wind speed
3.2.1 Mean annual values
Changes in the mean annual wind speed recorded by the radar wind profiler between 2011 and 2020 are shown in Figure 5. Although the mean annual wind speed varied in three-to-four-year cycles, there was an overall decrease in wind speed across the upper level atmosphere. The weak wind layer (WWL), which has a mean annual wind speed below 2.0 m/s, increased during the study period. Before 2016, the wind speed of the whole upper level atmosphere almost always exceeded 2.0 m/s, with the ground-based automatic meteorological station only occasionally recording a mean annual wind speed below 2.0 m/s. After 2016, however, the WWL began to appear at ground level and gradually increased in size, reaching a height of approximately 200 m by 2018.
[image: Figure 5]FIGURE 5 | Changes in mean annual wind speed in the upper level atmosphere below 1,500 m over the Pearl River Estuary in 2011–2020.
3.2.2 Mean monthly values
Changes in the mean monthly wind speed in the upper level are shown in Figure 6. The inter-month fluctuations were caused by specific weather processes in each month. When typhoons, strong cold air, strong monsoons, and other climatic events that cause strong winds occurred, the mean monthly wind speed notably increased. Moreover, the PRE region’s subtropical monsoon climate led to higher mean wind speeds in summer than in winter, as shown in Figure 6.Regardless of the inter-month fluctuations, the WWL increased overall. Before 2016, the WWL typically only appeared for a few months of each year, whereas after 2016, the WWL appeared more frequently and its height fluctuated upwards. In the winter of 2018–2019, the WWL reached a height of approximately 400 m.
[image: Figure 6]FIGURE 6 | Changes in mean monthly wind speed in the upper level atmosphere below 1,500 m over the Pearl River Estuary in 2011–2020.
3.2.3 Decreasing wind speed
Changes in the mean annual wind speed at the ground level and throughout the upper level (mean wind speed of the upper level is the mean value between 50 and 1,000 m) between 2011 and 2020 as well as their fitted linear trends are shown in Figure 7. The wind speed at both the land surface and in the upper level fluctuated downwards. The interannual fluctuations in the land surface wind speed were minor, with a decrease of −0.05 m/s a. In contrast, interannual fluctuations in the wind speed in the upper level were more severe, and the downward trend was more notable, reaching −0.12 m/s a; Figure 7 also shows the mean wind speeds in winter (January and December of each year) and summer (June and July), during which the decrease in wind speed was more significant in winter than in summer. The decreases in the surface and upper level wind speeds in winter were −0.07 and −0.19 m/s·a, respectively. In summer, the decrease in wind speeds were −0.04 m/s a at both the surface and upper level atmosphere.
[image: Figure 7]FIGURE 7 | Comparison of changes in ground-level wind speed and mean wind speed in the upper level atmosphere. (A) Whole year; (B) Summer; (C) winter.
The decrease in wind speed in the upper level and rising WWL reveal the influence of urbanisation on the wind speed. Between 2011 and 2020, because of the increase in high-rise buildings in the PRE, surface roughness continuously increased, leading to the loss of kinetic energy of wind in the upper level and a continuous decrease in the wind speed. Crucially, this effect was not limited to the near surface but rather occurred throughout the upper level atmosphere. Unexpectedly, the impact on the overall wind speed in the upper level atmosphere was greater than that on the land surface.
3.2.4 LLJ
Recent studies showed that LLJ influence the atmospheric environment in the PRD (Yang et al., 2022). Particularly at night, turbulent vertical mixing associated with LLJ can alter the structure of the residual layer, leading to abnormally high O3 concentrations at night at ground level. Thus, we also analysed changes in LLJ.
Based on a previous study by Whiteman et al. (1997), we calculated the frequencies of three different intensities of LLJ based on the criteria shown in Table 1, the results of which are shown in Figure 8. Between 2011 and 2020, LLJ of various intensities decreased overall in the PRE. Comparison of winter and summer months showed that the decrease in LLJ was more notable in winter than in summer. This result is consistent with the trends observed for urbanisation-induced warming, which were also more notable in winter. LLJ typically require stable temperature stratification. During the decade of the study period, the rapid rise in winter virtual temperatures throughout the upper level atmosphere over the PRE destabilized the temperature stratification in winter, preventing the occurrence of LLJ.
TABLE 1 | Criteria for evaluating low-level jets.
[image: Table 1][image: Figure 8]FIGURE 8 | Changes in the frequency of low-level jets. (A) Cold season; (B) Warm season; (C) All seasons.
3.3 Possible causes of climate change in the upper level atmosphere
Based on the above analysis, several urbanisation-related factors influenced the climate in the upper level atmosphere over the PRE: 1) virtual temperature increases, particularly in winter; 2) greater warming in the upper level than that at the ground level; 3) a significant decrease in wind speed and an increase in the height of the WWL; and 4) a decrease in the LLJ frequency, particularly in winter.
Following 30 years of extremely rapid urbanisation, the overall structure of the built-up area of the PRE became relatively settled in the period 2010–2020. Li et al. (2022) demonstrated that the built-up area in Shenzhen has expanded very little since 2010. Nevertheless, the climate of the region’s upper level atmosphere has changed significantly since 2010, which is somewhat unexpected. Studies of the region’s urban development can explain this discrepancy to some extent. Data from statistical yearbooks reveals that the urban population of Shenzhen, where the radar wind profiler is located, continued to increase rapidly after 2010 by 7.2618 million residents, or approximately 70%, between 2010 and 2020. Furthermore, the Shenzhen Basic Ecological Control Line was introduced in around 2006 to prevent the built-up urban area from encroaching on ecological spaces. As a result of this regulation, expansion of Shenzhen’s built-up area was negligible between 2010 and 2020. To accommodate the growing population and required development space, the city grew vertically. According to local news media, Shenzhen had 158 skyscrapers above 200 m as of October 2021, which is more than in any other city worldwide. In 2018, local media reported that Shenzhen had just 96 skyscrapers of this size. Although these data were from non-governmental sources, they confirm the rapid growth in the number of high-rise buildings in Shenzhen. The construction of large numbers of high-rise buildings significantly increased the roughness of the region and anthropogenic heat emitted into the upper level atmosphere, resulting in a rapid increase in the air temperature of the upper level over the 10-year study period and rapid decrease in the mean wind speed.
When trying to explain the causes of climate change in the vertical direction by using the increase of skyscrapers, another problem arises, namely, why the impact of the increase of the number of skyscrapers is more obvious in the higher elevation? While this can be explained by the footprint theory of flux observation (Zhang et al., 2015). According to the footprint theory on atmospheric observation, the higher the observation height, the larger the range represented by the observational data. In the current study, the data observed by ground level automatic weather station (AWS) only represent local information, while the data detected at high altitude usually have a larger range of representativeness. In this study, the AWS is located in an airport. In order to ensure the safety of aircrafts taking off and landing, there are strict restrictions on the height of buildings around the airport. Therefore, the data observed by the AWS mainly reflects the local climate characteristics of low-density built-up areas similar to the suburbs. While at high altitudes, the observational data are representative in a much larger range due to the advection transportation and turbulent mixing of energy and mass. Under such conditions, the impact of high-rise buildings in urban built-up areas far away from the airport may gradually emerge. This is possibly the reason why the impact of the increase of the number of skyscrapers is more obvious in the higher elevation.
3.4 Potential impact on the atmospheric environment
These changes in the climate of the upper level atmosphere will clearly impact regional pollution and meteorological conditions. Based on previous studies, we can infer the following. 1) Warmer environment will lead to the production of O3, and gradually rising virtual temperatures in the region will create more favourable conditions for O3 production. Particularly, the increase in the virtual temperature throughout the upper level atmosphere increases the vertical area suitable for O3 production. 2) The dominant wind direction in winter in the PRE is northerly, which causes inflow of inland pollutants or precursors to the PRE, and the rapid increase in winter virtual temperatures may adversely affect O3 pollution in the PRE. 3) In winter, the virtual temperature increases more in the upper level atmosphere than at the ground level, thereby enhancing the temperature inversion and hindering the diffusion of pollutants. 4) The rapid decrease in the upper level wind speed and continuous rise in the WWL hinders the dilution and diffusion of pollutants, leading to deterioration of the atmospheric environment. The overall mean wind speed in winter is lower than that in summer in the PRE, and the greater decrease in wind speed in winter is unfavorable to the atmospheric environment. 5) A reduction in the LLJ frequency may reduce the probability of O3 pollution at night.
4 CONCLUSIONS AND DISCUSSION
We used observation data from a boundary layer radar wind profiler, RASS, and automatic meteorological station at Shenzhen Bao’an International Airport to analyse changes in the wind speed and virtual temperature in the upper level over the PRE between 2011 and 2020. The climate of the upper level atmosphere over the PRE is undergoing large and rapid changes.
At the decadal scale, the virtual temperature and wind speed in the upper level atmosphere over the PRE changed significantly and to a greater extent than those at ground level. Between 2011 and 2020, the linear warming rate of the mean virtual temperature in the upper level atmosphere was 0.24°C/a, whereas the land surface warming rate was 0.17°C/a. Furthermore, the mean wind speed decreased by −0.12 and −0.05 m/s a throughout the upper level atmosphere and at ground level, respectively. Comparison of different seasons showed that both wind speed and virtual temperature in the upper level atmosphere changed more quickly in winter than in summer.
Climate change in the upper level atmosphere over the PRE may affect the region’s atmospheric environment. A rapid increase in the virtual temperature in the upper level atmosphere creates an environment conducive to O3 production, whereas a decrease in the wind speed reduces the dilution and diffusion of pollutants, which negatively affects the atmospheric environment. Particularly, in winter, the rapid increase in virtual temperature causes more pronounced temperature inversions, which together with a notable decrease in the wind speed worsen the atmosphere’s diffusion capability. The probability of LLJ in the upper level atmosphere is also reduced by warming and increased ground roughness, leading to decreased O3 pollution at night.
These findings improve the understanding of the effects of rapid urbanisation on the climate in the upper level above ground and can guide urban planning, management, and development models.
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Observations indicate that the winter precipitation over Southeast Asia (SEAP) shows significantly increased trends from 1979 to 2014, which can be partly reproduced under the historical all-forcing simulations from the 12 Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models. By analyzing separate external forcings run with the Detection and Attribution experiments, we find that the effects of anthropogenic forcing rather than natural variation play a primary role in driving the increasing of SEAP trends simulated in the historical all-forcing experiments. Further analysis indicate that the observed increasing trend is closely associated with the decadal shift of the Southeast Asian precipitation after the mid-1990s, which could be also driven by anthropogenic forcing to some extent. Anthropogenic forcing can favor a La Niña-like pattern of sea surface temperature (SST) warming in the tropical Pacific and result in the decadal increase of SEAP via the enhanced zonal SST gradient and the Pacific Walker circulation. This study thus provides some evidence of the impacts of anthropogenic forcing to drive recent changes in the winter SEAP.
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1 INTRODUCTION
Over the past several decades, prominent changes have been observed in global climate under global warming (e.g., Hoerling et al., 2010; Zhang et al., 2013; Li et al., 2015; Donat et al., 2016; Lu et al., 2020; Guo et al., 2022). In such, human-induced precipitation changes are among the most intuitive and serious impacts of climate changes, with potential effects on water resources, human society, infrastructure, agriculture, and ecosystems in most areas around the world (e.g., Liu et al., 2013; Polson et al., 2014; Lewis and Karoly, 2015; Li et al., 2017; Mukherjee et al., 2018; IPCC, 2021; Zhao et al., 2022). For example, Zhang et al. (2013) indicated that anthropogenic forcing has contributed to the strengthening of extreme precipitation over the land areas of the North Hemisphere during 1951–2005. They estimated that anthropogenic forcing strengthens the annual maximum 1 day precipitation in sampled North Hemisphere areas by 3.3% averagely. Hence, improving the knowledge of anthropogenic contribution to precipitation changes is a crucial issue of climate science. It can advance our understanding on the causes for climate changes in the observation, and is necessary and vital for decision makers to help guide their adaptation and mitigation strategies.
At present, a large number of studies have been denoted to examine the human-driven precipitation changes in many regions of the world, including East Asia (e.g., Li et al., 2017; Lu et al., 2020; Guo et al., 2022), India (Mukherjee et al., 2018; Singh et al., 2019), South America (Vera and Díaz, 2015), Europe (Peña-Angulo et al., 2020; Tabari et al., 2020), United States (Mascioli et al., 2016), Australia (Lewis and Karoly, 2015), and so on. For example, Zhao et al. (2021) suggested that the anthropogenic effect induced warming can reduce the land-sea thermal contrast. It then weakens the precipitation trends over the East Asian transitional climate zone via the weakening of Asian summer monsoon and moisture transport. However, there is still insufficient knowledge of impacts of anthropogenic forcing on regional precipitation changes in tropical developing countries such as Southeast Asia.
Southeast Asia, located in the Indo-Pacific sector, has an obvious monsoon climate with the most abundant precipitation occurred in boreal winter (e.g., Chang et al., 2005; Juneng and Tangang, 2005; Yang and Wu, 2019; Yang et al., 2020; Dong et al., 2021). Previous studies indicated that the Southeast Asian precipitation (SEAP) in boreal winter usually exerts remarkable influences on both the tropical and extratropical climate. On the one hand, precipitation is a primary water source for the socioeconomic development in most of the agriculture-based Southeast Asian countries (Kripalani and Kulkarni, 1997; 1998; Lau and Yang, 1997; Dong et al., 2021). On the other hand, the precipitation anomalies can induce large diabatic heating in the tropical regions, which further result in significant climate anomalies over the extratropical regions such as East Asia and North America via the excited atmospheric Rossby waves (e.g., Lau and Yang, 1997; Jia et al., 2015; Yang et al., 2019; Dong and Wang, 2022). Thus, investigating the variations and causes of the winter SEAP is an important issue for hydrological cycle and climate changes.
Many studies suggested that the spatial-temporal characteristics and variations of SEAP in boreal winter could be driven by the effects of internal variability such as the El Niño–Southern Oscillation (ENSO; e.g., Hamada et al., 2002; Aldrian and Susanto, 2003; Lau and Nath, 2003; Chen et al., 2013; Jia et al., 2016), the East Asian winter monsoon (EAWM; e.g., Wang and Chen, 2010; Huang et al., 2012; Jia and Ge, 2017), and the intra-seasonal oscillation (e.g., Hidayat and Kizu, 2010; Xavier et al., 2014; Dong et al., 2022). For instance, the negative phase of ENSO (i.e., La Niña) often leads to more winter SEAP via enhancing the Pacific Walker circulation and exciting convective activities over Southeast Asia and vice versa (Juneng and Tangang, 2005; Feng et al., 2010). In addition, a stronger EAWM is usually accompanied by enhanced northeasterly winds along the coast of East Asia and more cold air intrusion to the tropics, facilitating more-than-normal SEAP in boreal winter (Wang and Chen, 2010; Dong et al., 2021). Despite these extensive studies mentioned above, the role of human activity on the observed changes of the winter SEAP and the possible causes are still not fully understood.
One way to investigate the effects of anthropogenic forcing on the winter SEAP is by climate models, through which the precipitation changes simulated in a real world are compared with those in a counterfactual world (e.g., Polson et al., 2014; Mukherjee et al., 2018; Lu et al., 2020; Tabari et al., 2020; Zhao et al., 2021). For example, based on the 17 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models with 105 realizations in the Detection and Attribution Model Intercomparison Project (DAMIP) experiments, Song et al. (2014) found that the weakened trends of the East Asian summer monsoon circulation in the lower troposphere during 1958–2001 are primarily driven by anthropogenic aerosol forcing, which can reduce the land-sea thermal contrast and result in a higher sea level pressure (SLP) in northern China. Here, we use the DAMIP experiments that participate in CMIP6 (Eyring et al., 2016) to perform the detection and attribution analyses. The basic questions we address here are: 1) How does the winter SEAP change during recent decades? 2) Does anthropogenic forcing contribute to the observed changes? 3) If so, what are the possible causes for the changes? Section 2 describes the data and methodology. Section 3 illustrates the observed changes in winter SEAP and elucidates the anthropogenic effects in shaping these changes and analyzes the possible causes. Finally, the summary and discussion are provided in section 4.
2 DATA AND METHODS
The gridded monthly mean precipitation datasets are used from two sources, including the Global Precipitation Climatology Project (GPCP) combined precipitation dataset, version 2.3 (Adler et al., 2003) and the NOAA Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP; Xie and Arkin, 1997), both of which have a horizontal resolution of 2.5° × 2.5° and cover the period from 1979 to the present. Monthly mean skin temperature and SLP data are from the fifth generation of the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5; Hersbach et al., 2020) dataset that spans the period since 1959 and was downloaded with a horizontal resolution of 1.0°× 1.0°.
The simulation data from outputs of 12 CMIP6 climate models (Eyring et al., 2016), including a total of 58 realizations in historical all-forcing and a total of 58 realizations in historical natural forcing runs (Table 1), are used to analyze the relative contributions of natural and anthropogenic forcing on the changes of the winter SEAP. The historical simulation (named as Hist-all) is forced by both natural (solar variability and volcanic aerosols) and anthropogenic forcing (greenhouse gas and anthropogenic aerosols) (Vera and Díaz, 2015; Konapala et al., 2017; Li et al., 2017). The historical natural experiments (named as Hist-Nat) are the same as the historical all-forcing simulations except that they are forced by the natural variations only. In the study, the response of anthropogenic forcing (named as Hist-Ant) is computed as the difference between the all-forcing and the natural-forcing runs (Taylor et al., 2012; Song et al., 2014; Zhao et al., 2021). To better compare the observation with simulation, both observational and model data are bilinearly interpreted into the horizontal resolution of 2.5° × 2.5°. The simulated results are presented based on the multi-model ensemble mean (MME), which is calculated by averaging a variable over all 58 realizations with equal weighting.
TABLE 1 | List of the 12 climate models that contributed historical simulations to CMIP6. These simulations include Hist-all (natural plus anthropogenic forcing) and Hist-Nat (natural forcing) runs that cover the period from 1979 to 2014. The number of ensemble members in each experiment is indicated in the bracket.
[image: Table 1]This study focuses on boreal winter (December, January, and February; DJF), in which the SEAP usually reaches a peak in a year (Dong et al., 2021). Since the CMIP6 historical simulations finish in 2014, results are displayed for winters from 1979 to 2014, where the 1979 winter denotes 1979/1980 and so on. The monthly anomaly of a variable is defined as the deviation of its monthly value from the climatological mean during 1981–2010. The linear trends of a climate variable are calculated by the least-squares regression analysis, and their confidence levels are evaluated with the two-tailed Student’s t-test.
3 RESULTS
3.1 Observed and simulated changes in winter SEAP
The performance of the CMIP6 Hist-all runs in simulating the climatological mean winter precipitation over Southeast Asia during 1979–2014 is first investigated (Figure 1). In the observation, the distribution of the winter SEAP displays a south-north dipole structure, with more (less) precipitation located east of the Philippines, west of Borneo, over the Indonesia and over the Sumatra (over the Indochina Peninsula and over the northern Philippines) (Figures 1A, B). The CMAP shows a similar pattern to GPCP but with larger (smaller) amount over the eastern Indonesia (east of the Philippines). The spatial correlation between GPCP and CMAP is 0.89 (significant at the 99% confidence level). The Hist-all MME reproduces well the dominant features of the observed SEAP, while the precipitation amount over the eastern Maritime Continent in the model is larger than that in the observation (Figure 1C). The pattern correlation coefficients between the observation in GPCP and CMAP and historical MME simulation over Southeast Asia (10°S–20°N, 90°–140°E) are .85 and .86, respectively, both of which exceed the 99% confidence levels based on the two-tailed Student’s t-test. It indicates that the Hist-all MME can simulate the observed SEAP climatology reasonably.
[image: Figure 1]FIGURE 1 | Spatial distribution of climatological mean winter precipitation (shadding, unit: mm day−1) over Southeast Asia during 1979–2014 in (A) GPCP, (B) CMAP, and (C) Hist-all MME, respectively.
The distribution of precipitation trends over Southeast Asia during 1979–2014 derived from the observation and simulations is presented in Figure 2. In the observation, significantly positive trends of winter precipitation are observed over most areas of Southeast Asia. They are primarily located around the Philippines, over the South China Sea, the eastern Indochina Peninsula, the Malay Peninsula and the northwestern Sumatra, whereas negative trends are distributed over the southern Indonesia (Figures 2A, B). The precipitation trends are consistent between GPCP and CMAP with the pattern correlation coefficient 99% significant at 0.49. However, there is a conflict of precipitation trends around the Sulawesi between these two gridded datasets. It is a negative trend in GPCP and a positive trend in CMAP. Although the Hist-all MME simulates smaller magnitude of the precipitation trends over Southeast Asia compared with the observations, the spatial pattern of the SEAP trends is well reproduced in the models (Figure 2C). The spatial correlations between the MME simulation and observations are 0.34 and 0.41 for GPCP and CMAP, respectively, both of which are 95% significant even if the effective degrees of freedom are considered (Bretherton et al., 1999). It seems that the historical all-forcing MME simulates a larger reproducibility of the SEAP characteristics in CMAP than those in GPCP. In addition, there are 29 out of 58 realizations (50%) of the Hist-all runs show the same trend pattern over Southeast Asia as those in the historical MME with the spatial correlations exceeding the 90% significance levels, indicating the reliability of precipitation trends simulated in historical all-forcing experiments.
[image: Figure 2]FIGURE 2 | Spatial distribution of winter precipitation trends [shading, shading interval (SI) = .08 mm day−1 decade−1] from 1979 to 2014 over Southeast Asia in (A) GPCP, (B) CMAP, and (C) Hist-all MME, respectively. Values exceeding the 90% confidence levels based on the two-tailed Student’s t-test are drawn with black dots.
3.2 Effects of anthropogenic forcing on SEAP changes
To identify the relative contribution of nature and anthropogenic forcing to the winter precipitation trends over Southeast Asia, the simulated trends in response to Hist-Nat and Hist-Ant forcing are respectively shown in Figure 3. No significant precipitation trends are simulated over the most areas of Southeast Asia in Hist-Nat MME except those significantly negative trends over the southern Indonesia (Figure 3A). In contrast, the Hist-Ant forced pattern, largely resembling that in response to Hist-all forcing (Figure 2C), is characterized by significant increases of precipitation trends over the South China Sea, the eastern Indochina Peninsula and the northwestern Sumatra, east of the Philippines, around the Java Sea and the Sulawesi (Figure 3B). The spatial correlation of the SEAP trends between Hist-Ant (Hist-Nat) and Hist-all MME is 95% significant (insignificant) at .80 (.26). Hence, it can be inferred that the observed and simulated precipitation trends over Southeast Asia during 1979–2014 are markedly affected by anthropogenic forcing. The same analyses were also performed in each of the 12 CMIP6 models (not shown), and the results are basically consistent with those in MME that the effects of anthropogenic forcing are more important than natural variation to drive the historical SEAP trends, indicating the model-independency of such a conclusion. Previous studies suggested that the anthropogenic forcings including the greenhouse gas and anthropogenic aerosols both contribute to the changes in regional precipitation (e.g., Hoerling et al., 2010; Polson et al., 2014; Guo et al., 2022). Thus, we further analyze the relative roles of anthropogenic greenhouse gas and aerosols on human-induced precipitation trends over Southeast Asia. Here, the historical greenhouse gas experiments (named as Hist-GHG) that forced by well-mixed greenhouse gas changes with the same ensemble members as Hist-Nat are used, and the response of aerosol forcing (named as Hist-Aer) is calculated as the difference between the anthropogenic forcing and the greenhouse gas runs (Taylor et al., 2012; Song et al., 2014). It can be found that the Hist-GHG MME explains the human-forced positive precipitation trends primarily over the southern Borneo and the Sulawesi (Figure 3C). While those in the Hist-Aer MME are mainly located over the eastern Indochina Peninsula, east of the Philippines, the South China Sea, and the northern Sumatra (Figure 3D). It indicates that both the greenhouse gas and anthropogenic aerosols contribute to some SEAP trends in Hist-Ant MME. However, the spatial correlation between the Hist-GHG (Hist-Aer) and the Hist-Ant MME is insignificant (significant) at –0.05 (0.77) over the whole of Southeast Asia. As a result, the effects of aerosols forcing are more important than greenhouse gas to contribute to the human-forced SEAP trends during 1979–2014.
[image: Figure 3]FIGURE 3 | Same as Figure 2C, but for (A) Hist-Nat, (B) Hist-Ant, (C) Hist-GHG, and (D) Hist-Aer MME, respectively.
In order to obtain a clearer image of the SEAP trends, Figure 4 shows the area-mean trends over Southeast Asia (10°S–20°N, 90°–140°E) during 1979–2014 in the observations and in the simulations. As shown, GPCP displays a significant positive trend over Southeast Asia, with the magnitude at 0.16 mm day−1 decade−1. The trend in CMAP is slightly higher than that in GPCP, with the magnitude 90% significant at 0.26 mm day−1 decade−1. The results are consistent with their spatial distributions as shown in Figures 2A, B. The increasing of precipitation trends over Southeast Asia is partly reproduced by Hist-all MME, whereas its magnitude is smaller than those in the observations, approximately 0.03 mm day−1 decade−1 exceeding the 90% confidence level. It suggests that the SEAP trends simulated in Hist-all MME could explain about 18.8% and 11.5% of the observed trends in GPCP and CMAP, respectively. The Hist-Ant MME accounts for most of the positive SEAP trends (.04 mm day−1 decade−1) modelled in Hist-all MME. On the contrary, the trend in Hist-Nat MME is insignificant and negative (–.01 mm day−1 decade−1). Hence, it reveals that anthropogenic forcing plays a primary role in driving the increasing of the SEAP trend from 1979 to 2014. Further, a separation of anthropogenic forcing indicates that the anthropogenic aerosols rather than the greenhouse gas forcing explain most of the anthropogenic forced SEAP trends, indicating the importance of anthropogenic aerosols forcing. However, these results of separated anthropogenic forcing may have some uncertainties because we adopt the linear assumption to investigate the roles of different external forcings. Whether the responses of climate system in a real world to external forcing, especially the anthropogenic forcings, are strictly linear remains unknown (Song et al., 2014). Since the primary purpose of the study is to distinguish the impacts of anthropogenic forcing and natural variation on the SEAP changes instead of the different roles of anthropogenic contributions, in the following analysis, we only focus on the historical outputs including the Hist-Nat and Hist-Ant simulations. Furthermore, the above results still provide evidence that the anthropogenic forcing definitely impacts the precipitation changes over Southeast Asia.
[image: Figure 4]FIGURE 4 | Linear trends of winter precipitation (unit: mm day−1 decade−1) averaged over Southeast Asia (10°S–20°N, 90°–140°E) from 1979 to 2014 in GPCP (red), CMAP (blue), Hist-all (gray), Hist-Nat (green), Hist-Ant (orange), Hist-GHG (light-blue), and Hist-Aer (pink) MME, respectively. The inner numbers indicate the corresponding trends. The oblique line indicates the difference between the area-mean trend and zero exceeding the 90% confidence level based on the single sample t-test.
To evaluate the reliability of the results, the probability density functions (PDF) of area-mean precipitation trends over Southeast Asia (10°S–20°N, 90°–140°E) from the realizations of historical all, natural, and anthropogenic forcings are compared (Figure 5). The observed SEAP trends in GPCP and CMAP (red and blue lines) can possibly happen in an all-forcing world (Figure 5A), and about 15 out of the 58 realizations (25.9%) from Hist-all runs show comparable trend (>.10 mm day−1 decade−1) with the observations. In addition, the observed SEAP trend for GPCP falls inside the 5%–95% confidence interval range (–.147–0.211 mm day−1 decade−1) in a real world simulation. It implies that the increased SEAP trend in the observation can be partly reproduced in Hist-all forcing. On the contrast, the PDF of Hist-Nat simulations can hardly capture the observed trends (Figure 5B), and only three out of 58 realizations (5.2%) displays comparable trend (>.10 mm day−1 decade−1) with the observations. Furthermore, the 5%–95% confidence interval level of SEAP trends in Hist-Nat ranges from –.163 to 0.085 mm day−1 decade−1, and does not contain any observations. The results imply that the positive SEAP trends in the observation is impossible to happen without anthropogenic forcing. The PDF of precipitation trends from Hist-Ant simulations as well as the 5%–95% range (–.196–.210 mm day−1 decade−1) present consistent features with those from Hist-all simulations (Figure 5C), and there are 18 out of 58 realizations (31.0%) showing comparable trend with the observations (>.10 mm day−1 decade−1). The Kolmogorov-Smirnov test shows that the PDF of the area-mean precipitation trends in Hist-all and in Hist-Ant (Hist-Nat) are from the same (different) distribution, statistically significant at the 95% confidence level. Hence, it is suggested that the effect of anthropogenic forcing on the observed SEAP trends is recognizable.
[image: Figure 5]FIGURE 5 | The probability density functions (PDF) of winter precipitation trends (shading, unit: mm day−1 decade−1) averaged over Southeast Asia (10°S–20°N, 90°–140°E) derived from 58 (A) Hist-all, (B) Hist-Nat, and (C) Hist-Ant runs, respectively. The red and blue lines denote the observed trends from GPCP and CMAP, respectively. The black dots indicate the ensemble mean in each experiment, and the horizontal black lines indicate a range of 5–95% from the corresponding distribution. The PDFs are estimated by the kernel-smoothing.
Figure 6 shows the 5-year running mean of the winter precipitation anomalies averaged over Southeast Asia (10°S–20°N, 90°–140°E) during 1979–2014. In the observation, the regional mean SEAP in GPCP (red line) and in CMAP (blue line) both show an increasing trend (Figure 6A), with the increasing rate 95% significant at .17 and .27 mm day−1 decade−1, respectively. The Hist-all MME (black line) simulates the similar precipitation evolution over Southeast Asia to the observations, with an increasing rate 95% significant at .03 mm day−1 decade−1. The correlation coefficients of the SEAP series between the Hist-all forcing and observations in GPCP and CMAP are .66 and .70, respectively, both of which exceeding the 99% confidence levels based on the two-tailed Student’s t-test. The precipitation evolutions simulated in Hist-Nat and Hist-Ant MME show comparable relations with that in Hist-all MME (Figure 6B), and their correlation coefficients are .46 and .49, respectively, exceeding the 95% confidence levels. However, the increased SEAP trend in Hist-Nat MME is near zero during 1979–2014, and that in Hist-Ant MME is 95% significant at .03 mm day−1 decade−1. As a result, the increasing of the winter SEAP trend during 1979–2014 is primarily dominated by anthropogenic forcing. In addition, a close inspection on these historically simulated SEAP series reveals that the Hist-all simulated SEAP evolution before the 1990s and after the 2000s can be well captured by Hist-Ant MME, and their correlation is 95% significant at .72 during the period 1979–1990 combined with 2001–2013, larger than that in Hist-Nat MME with the insignificant correlation coefficient at .22. Nevertheless, Hist-Nat MME presents better simulation of SEAP evolution in Hist-all MME during the 1990s, and their correlation coefficient is .90 for 1991–2000, above the 95% confidence level, while that for Hist-Ant is −.50 below the 90% confidence level. These results imply that the historical evolution of the winter SEAP from 1979 to 2014 simulated in Hist-all MME could be caused by both the natural forcing and anthropogenic activity. Although the effect of anthropogenic forcing may be more important, the contribution of natural forcing to the SEAP evolution should not be ignored.
[image: Figure 6]FIGURE 6 | The 5-year running mean of the winter precipitation anomalies (unit: mm day−1) averaged over Southeast Asia (10°S–20°N, 90°–140°E) during 1979–2014. (A) GPCP (left y-axis), CMAP (left y-axis), and Hist-all MME (right y-axis) are indicated by the red, blue, and black lines, and (B) Hist-Nat (left y-axis) and Hist-Ant (left y-axis) MME are indicated by the green and orange lines, respectively. The dashed dark-green and purple lines in (A) denote the mean value of precipitation anomalies during 1979–1994 and 1995–2013 for GPCP and CMAP, respectively.
3.3 Possible causes for human-induced SEAP changes
As shown in Figure 6A in the observation, there is a notable decadal shift of the mean SEAP that occurred after the mid-1990s, in accord with that reported in Dong et al. (2021). A moving Student’s t-test with a 9-year window applied to the observed and simulated SEAP series confirms the decadal shift, and the shift points are detected in 1995 for GPCP and CMAP (Figures 7A, B) and in 1994 for Hist-all MME (Figure 7C), respectively. To better quantify the decadal shift, the whole period 1979–2014 was divided into two sub-periods, 1979–1994 and 1995–2013, to represent negative and positive phases of the winter SEAP, respectively. In the observation, the mean SEAP during 1979–1994 in GPCP (CMAP) is –.168 (–.279) mm day−1, while that during 1995–2013 is .234 (.365) mm day−1. These in Hist-all MME during the two sub-periods are –.032 and .029 mm day−1, which can be well simulated by Hist-Ant MME (–.021 and .024 mm day−1). The differences of their mean values between these two sub-periods for observations, Hist-all, and Hist-Ant MME are 90% statistically significant based on the two-tailed Student’s t-test. In contrast, the Hist-Nat MME fails to simulate the decadal shift of the winter SEAP, and its mean values for 1979–1994 and 1995–2013 are –.011 and .005 mm day−1, respectively, with the difference of mean values below the 90% confidence level. These results indicated that the decadal shift of the winter precipitation over Southeast Asia that transforming from a negative to a positive phase after the mid-1990s causes the significantly increased precipitation trend during 1979–2014, which could be partly reproduced by anthropogenic forcing. To validate the result, the winter precipitation differences between 1995–2013 and 1979–1994 over Southeast Asia in observations and in historical simulations are further shown in Figure 8, and they present a large similarity to those in Figures 2, 3A, B. The spatial correlation between the decadal difference and the linear trend of SEAP in each pair is above .80, exceeding the 99% confidence level based on the two-tailed Student′s t-test, indicating a close relation between the SEAP trend and the precipitation decadal variation. The Hist-all MME (Figure 8C) well reproduces the decadal features of the winter SEAP in the observations (Figures 8A, B), with the spatial correlations 95% significant at .39 and .42 for GPCP and CMAP, respectively. In addition, the decadal increasing of precipitation over Southeast Asia can be mostly captured by anthropogenic forcing (Figure 8E), while natural forcing only captures the decadal increases of precipitation southeast of the Philippines and over the southern Thailand (Figure 8D). Hence, these results highlight the dominance of anthropogenic activity on the decadal changes of the winter SEAP during 1979–2014.
[image: Figure 7]FIGURE 7 | The moving Student’s t-test of the area-mean precipitation anomalies over Southeast Asia, as illustrated in Figure 6A, with a 9-year window in (A) GPCP, (B) CMAP, and (C) Hist-all MME, respectively. The dashed red lines indicate the 90% confidence levels based on the two-tailed Student’s t-test.
[image: Figure 8]FIGURE 8 | The differences of precipitation anomalies (shading, SI = 0.16 mm day−1) over Southeast Asia between 1995–2013 and 1979–1994 in (A) GPCP, (B) CMAP, (C) Hist-all, (D) Hist-Nat, and (E) Hist-Ant MME, respectively. Values exceeding the 90% confidence levels based on the two-tailed Student’s t-test are drawn with black dots.
Early studies suggested that the Pacific sea surface temperature (SST) pattern such as ENSO is the most crucial factor in modulating the winter precipitation over Southeast Asia via the Pacific Walker circulation and anomalous ascending/descending motions over the Maritime Continent (Feng et al., 2010; Dong et al., 2021). Hence, to examine the possible causes for the decadal increasing of SEAP during 1979–2014, the role of SST should be investigated. Figure 9 shows the linear trends of skin temperature over ocean from the ERA5 reanalysis data and the historical simulation with different external forcings. In the observation, a warming trend with a La Niña–like pattern has been identified in the Pacific (Figure 9A). The SST warming shows a typical pattern of a horseshoe–like structure, with faster warming in the tropical western Pacific than that in the tropical eastern Pacific, indicating the zonal SST gradient in the tropical Pacific to be stronger (An et al., 2012; Yeh et al., 2012). In the North Pacific, there are some SST signals similar to the Victoria mode, which is the second dominant mode of the North Pacific variability and is closely associated with the ENSO (Bond et al., 2003). The results are consistent with previous studies (e.g., Hua et al., 2018; Luo et al., 2018; Jiang and Zhu, 2020; Zhang et al., 2021), in which a La Niña–like warming pattern in the tropical Pacific and the strengthening trends of Victoria mode over the North Pacific (Bond et al., 2003; Ding et al., 2015) have been observed during recent decades. This non-synchronous warming trend of the Pacific SST has been well reproduced by the Hist-all MME and the Hist-Ant MME in spite of their smaller magnitudes (Figures 9B, D). The spatial correlation of the SST trends between Hist-all and observation (Hist-Ant) is .41 (.95), exceeding the 95% confidence level based on the two-tailed Student’s t-test. In contrast, these features of the SST trends hardly happen in a natural forcing world (Figure 9C). The composite difference of the SST anomalies between 1995–2013 and 1979–1994 (not shown) shows consistent results with those in linear trends. Thus, it is indicated that anthropogenic forcing can facilitate a La Niña–like SST warming pattern in the Pacific during 1979–2014. Previous studies have found that the fast warming in the tropical Indian ocean (e.g., Luo et al., 2012; Zhang et al., 2019; Zhang et al., 2021) and the Atlantic ocean (e.g., McGregor et al., 2014; Li et al., 2016), which could be driven by anthropogenic greenhouse gases forcing and aerosol forcing (Booth et al., 2012; Myhre et al., 2013; Hua et al., 2018), respectively, may contribute to the recent La Niña–like pattern in the Pacific via the strengthening of Pacific trade winds and the equatorial upwelling. In addition, the anthropogenic greenhouse forcing could also weaken the ENSO amplitude directly, which in turn causes a La Niña–like mean state in the Pacific (Kohyama et al., 2017). As a result, the view concluded in the paper that anthropogenic forcing facilitates a La Niña–like SST warming can be supported by the above studies.
[image: Figure 9]FIGURE 9 | Spatial distribution of winter skin temperature trends (shading, SI = 0.03 K decade−1) from 1979 to 2014 in (A) ERA5, (B) Hist-all, (C) Hist-Nat, and (D) Hist-Ant MME, respectively. Values exceeding the 90% confidence levels based on the two-tailed Student’s t-test are drawn.
In the observation, the zonal SST gradient in the tropical Pacific associated with the La Niña–like SST warming can result in the SLP trends to present a structure of the enhanced east-west pressure gradient during 1979–2014 (Figure 10A), indicating the strengthening of the Pacific Walker circulation. The SST induced SLP trends in the observation can be partly reproduced by Hist-all MME (Figure 10B), and is dominated by anthropogenic forcing (Figure 10D). The spatial correlation of SLP trends in the tropical Pacific between Hist-all and observation (Hist-Ant) is 95% significant at .56 (.96). However, natural forcing plays an unimportant role on the changes in SLP trends (Figure 10C). Therefore, the results indicate that anthropogenic forcing can facilitate the decadal increases of the winter SEAP from 1979 to 2014 via the induced Pacific La Niña–like SST warming and the resultant strengthening of the Pacific Walker circulation.
[image: Figure 10]FIGURE 10 | Spatial distribution of winter SLP trends (shading, SI = 3 Pa decade−1) from 1979 to 2014 in (A) ERA5, (B) Hist-all, (C) Hist-Nat, and (D) Hist-Ant MME, respectively. Values exceeding the 90% confidence levels based on the two-tailed Student’s t-test are drawn.
4 CONCLUSION AND DISCUSSION
In the study, we investigate the effects of anthropogenic forcing on the increasing of the winter precipitation over Southeast Asia during 1979–2014 by analyzing the DAMIP experiments from the 12 CMIP6 models. Results show that the observed climatology and linear trends of SEAP can be partly reproduced under historical all-forcing experiments. A comparison of separate external forcings between Hist-Nat and Hist-Ant MME indicates that the anthropogenic forcing plays a primary role in the increased precipitation over Southeast Asia that simulated in the Hist-all forcing. In addition, anthropogenic forcing contributes to a decadal shift of the winter SEAP from a negative to a positive phase since the mid-1990s, which is strongly associated with the strengthening of SEAP trends from 1979 to 2014. Further analysis indicate that anthropogenic forcing can drive a La Niña–like pattern of SST warming trend in the Pacific, and thus leads to the decadal increase of precipitation over Southeast Asia via the enhanced zonal SST gradient and the Pacific Walker circulation.
It should be noted that the increased precipitation trends over Southeast Asia under different forcing experiments are weaker than those in the observations, as also evident in SST and SLP trends. Dong et al. (2021) indicated that the internal climate variability such as the Interdecadal Pacific Oscillation, the Arctic sea ice, and the EAWM can influence the decadal variations of the winter SEAP. In this study, we find that the increased precipitation trends over Southeast Asia are closely associated with the decadal shift of SEAP. As a result, the observed increasing trend of the winter SEAP could be driven by both the internal climate variability and external forcing. The analyses presented in the paper are based on MME, which can largely remove the internal climate variability. Hence, the discrepancy between simulations and observation indicates that the internal variability may play a dominant role in the decadal increasing of SEAP, while the anthropogenic forcing plays a secondary role. To detect the relative contribution of internal variability and external forcings in driving the SEAP changes is a crucial issue and deserves further study. Last but not least, this study only uses 12 CMIP6 models with a total of 58 realizations in each historical experiment and may not fully estimate and quantify the simulated results due to the model uncertainty. Using more climate models and more realizations may be helpful to nearer the observation. The analysis with more CMIP6 data is planned for the near future.
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Based on the hourly temperature and precipitation data from China national meteorological stations and regional automatic weather stations in Shenyang, the relationship between extreme hourly precipitation (ExHP) and urban heat island Intensity (UHII) is analyzed. Results show that the UHII is higher at night and in the early morning. The ExHP events mostly occur at night in summer when the UHII is relatively high. The spatial distribution of UHII in Shenyang is consistent with the economic development and the transportation density. Denser population and transportation, and high-rise buildings in the urban center contribute to higher UHII. There are three types of ExHP, namely the abrupt-type ExHP, the growing-type ExHP and the continuous-type ExHP. The overall variation characteristics of the three types of ExHP are relatively consistent. Their UHII values are positive and relatively stable in 6–12 h before the start of ExHP. The UHII begins to increase dramatically about 6 h before the ExHP, but decreases obviously and turn negative after the precipitation begins. Before the abrupt ExHP, the UHII is relatively high and can rapidly return to positive after the ending of ExHP. The UHII of the abrupt-type ExHP is remarkably larger than that of the growing-type and continuous-type ExHP. The UHII before and after the abrupt-type ExHP differs greatly. Before the abrupt ExHP, the UHII is high in the center and low at both ends, and the high-value areas of UHII are mainly located in the urban area. After the abrupt-type EXHP, the UHII drops and turn negative in the whole area. The UHII is obviously increasing with urbanization. The diurnal variation of UHII is enormous, which is higher at night than during the daytime. The increasing UHII can cause abnormal air pressure in cities and villages. The air in the lower atmospheric layer of the city can be heated and expanded, hence resulting in lower local air pressure. Then, the lower air pressure can promote the convergence and upward movement of air, hence facilitating the establishment of UHII circulation. This phenomenon is particularly distinct at night, which is conducive to the occurrence of ExHP events.
Keywords: extreme hourly precipitation, urban heat island intensity, cause analysis, sumer, Shenyang
1 INTRODUCTION
In the context of global warming, extreme weather and climate events such as heavy rainfall, high temperatures and typhoons occur frequently. As an important part of the earth ecosystem, city has a growing impact on climate change and ecological environment. The urbanization in China is accelerating with the development of human society. The urbanization has not only changed the underlying surface of the city, but also produced a large number of pollutants and anthropogenic heat. It leads to the change of near-surface atmospheric structure, forming a local climate dominated by urbanization (Seaman et al., 1989). Shenyang City is severely impacted by climate change, and its warming rate is much higher than the global and Chinese averages. Its urbanization level and development speed have always been among the best in China. By the end of 2010, the resident population of Shenyang reached 8.106 million, including 6.24 million urban population, and the urbanization rate reached 77%. By the end of 2015, its urbanization rate increased to 80.55%, 13.2% higher than the average in China. By the end of 2020, the urbanization rate exceeded 85% (Statistical Center of Liaoning, 2021). The most obvious climate feature brought about by rapid urbanization is the enhancement of the urban heat island (UHI) effect, which leads to frequent extreme climate events and increases the vulnerability of the urban ecological environment. Therefore, it is of great significance to analyze the relationship between the variation of urban regional precipitation.
As early as in the 19th century, the possible impact of urbanization on precipitation was raised. In 1968, Changnon (1968) proposed to launch and implement the Metropolitan Meteorological Experiment (1976) and found that the impact of urbanization on precipitation mainly manifests in much more precipitation in its downwind area than in other areas. Based on the long-term precipitation data of the City of Saint Louis in the United States, Huff et al. (1972) found that the precipitation frequency over the city and its downwind area is much higher than that in the surrounding non-urban areas, especially in summer, and this phenomenon shows a trend of enhancement with urbanization. Based on the analysis of the observation data and numerical simulation in the Metropolitan Meteorological Experiment, Changnon et al. (1976; 1978; 1979; 1991) pointed out that the precipitation enhancement of urbanization on the convective precipitation with moderate or higher intensity in summer is particularly obvious, and they put forward three hypothetical mechanisms for urbanization to enhance precipitation and affect its distribution. The first mechanism is the UHI effect; the second is the friction effect of the urban underlying surface and canopy; the third is the urban condensation nuclear effect.
Daniel (2000) suggested that urbanization and industrial pollution will increase rainfall and snowfall in downwind areas. Jong et al. (2001) applied a numerical model to simulate the impact of UHII on precipitation and found a high-value precipitation center in the downwind area of the city. Yang et al. (2013; 2017; 2019) revealed that the short-term heavy precipitation has an increasing trend in recent years, which is closely related to the UHII. Wu et al. (2019) analyzed the relationship between extreme hourly precipitation (ExHP) and urbanization in the coastal areas of South China. They indicated that the strong UHII should largely enhance precipitation, especially in the inland areas of urban agglomerations with an evident UHI effect. Dou et al. (2015) showed that when the UHI effect is weak in summer, the convective systems are mainly blocked by buildings and they flow around the buildings, so there is a negative-anomaly center of precipitation in the city center and positive-anomaly centers on both sides of the city and downstream areas. Conversely, when the UHI effect is strong the thermal effect of the city stimulates or strengthens the convective system, thus causing the positive-anomaly center of precipitation in the city center.
Past studies have revealed the impact of urbanization on precipitation at different spatial and temporal scales from different perspectives. Nevertheless, most studies have analyzed precipitation processes at temporal scales longer than daily scale. There are few studies on precipitation processes at the hourly scale. Besides, past studies mainly focused on developed countries, or the Yangtze River Delta and Beijing-Tianjin-Hebei area of China, while those on the urbanization effect in Shenyang are rarely-seen, especially the urbanization impact on the ExHP of Shenyang.
In this study, the night light data, socio-economic data, urban area data and other multi-source data are used to extract the urban threshold and select the urban stations and rural stations. Based on the hourly temperature and precipitation data from national meteorological stations during 1974–2020 and from regional automatic weather stations during 2005–2020 in Shenyang, the spatio-temporal variation characteristics of UHII in Shenyang are analyzed by the urban-rural comparison method. Moreover, the relationship between ExHP and UHII is revealed, and the causes of ExHP are discussed. The conclusions have important scientific reference value for reducing the UHI effect, mitigating urban waterlogging and promoting rational urban planning. Meanwhile, it also provides a demonstration for global urban regional disaster prevention and mitigation and sustainable development.
2 MATERIALS AND METHODS
2.1 Study area
Shenyang is a high-density mega city covering about 1.3 million square kilometers, which is located in the central part of Liaoning Province of Northeast China. The rainfalls in Shenyang are mainly concentrated in summer. Shenyang has a larger temperature difference and obvious seasonal characteristics including hot-humid summer and cold-dry winter. Shenyang includes Liaozhong District, Xinmin City, Faku County, Kangping County and the municipal district of Shenyang. Because of urban expansion, population and economic in Shenyang grow rapidly, over half of the population lives in the municipal district of Shenyang. Sub-regions of Shenyang present different urbanization patterns with the varied densities of city population and buildings as well.
2.2 Research data
This study includes five types of research data (Table 1). First, the hourly temperature and precipitation data have been applied to fix artificial error by quality control procedures such as consistency tests and climatic extreme value. The data of seven national meteorological stations are long-term continuous, and the data of 237 regional automatic weather stations are effective supplement to the data of national station (Figure 1). Second, the nighttime light data are developed specifically for the geographical characteristics of Asia, eliminating the interference of light saturation and provided convenient conditions for the analysis of urban heat island intensity in Asia (Su et al., 2011). Third, The Liaoning Statistics Yearbook records the urban land area of each city in detail for each year (Statistical Center of Liaoning, 2021). Fourth, the gross domestic product (GDP) data reflect the detailed spatial distribution of GDP in Liaoning Province, which are 1 km raster data, and each raster represents the total GDP output value within the grid range (1 square kilometer). Fifth, the spatial analysis function of geographic information system is used to construct the spatial distribution model of population, so as to generate 1 km × 1 km spatial population density data.
TABLE 1 | Data used to analyze the relationship between extreme hourly precipitation and urban heat island.
[image: Table 1][image: Figure 1]FIGURE 1 | The spatial distribution of national meteorological stations and regional automatic weather stations in Shenyang.
2.3 Methodology
2.3.1 Division of urban and rural stations
By comparing with the statistical data, the spatial information of urban land-use in Liaoning Province is extracted based on the DMSP/OLS nighttime light data (He et al., 2006; Su et al., 2011; Ao et al., 2020a). This method is mainly based on the following two basic assumptions to extract the information. First of all, The urban land area of Shenyang extracted from DMSP/OLS data should be close to the statistical yearbook data as far as possible, because the real urban land area of Shenyang can be accurately reflected in it; Next, since the 1990s, the urban land area of Shenyang has been increasing continuously, and the urban grid points will not be reduced, which can be retained from the previous period to the next period. Based on these two assumptions, different dynamic thresholds of Shenyang were set, and the dichotomous method was adopted to constantly change the thresholds, and we calculated the urban area under each dynamic threshold. The calculated results were compared with the statistical yearbook, and the threshold value was the best one for Shenyang until the urban area value calculated by using the satellite nighttime light data was close enough to the statistical yearbook. After the optimal threshold is determined, we calculated the average value of the gray value of night light within the radius of 7 KM of each site. We considered this station to be a city station if the calculated value is greater than the threshold value (Ao et al., 2020b; Ao et al., 2022).
We found the gray value of Shenyang and some areas of Liaozhong increased from 1993 to 2003 from DMSP/OLS satellite nighttime light gray value spatial distribution map, and urbanization was obvious (Figure 2). We also found that the urbanization process of Kangping County, Faku County and Xinmin City was relatively weak combined with the data of population density and land average GDP (Figure 3). So we selected the national meteorological stations and regional automatic stations in Shenyang and Liaozhong to represent urban stations, the remaining stations represent rural stations.
[image: Figure 2]FIGURE 2 | Spatial distributions of satellite nighttime light gray values in Shenyang in 1993 (A), 2003 (B), and 2013 (C) (yellow dots represent urban stations and blue dots represent rural station).
[image: Figure 3]FIGURE 3 | Spatial distributions of (A) population density and (B) gross domestic product per unit area in Shenyang.
2.3.2 Identification and classification of extreme hourly precipitation events
In this study, the percentile method is used to determine the threshold of ExHP. The hourly precipitation data of each station from 1974 to 2020 are sorted from the weakest to the strongest. If the hourly precipitation in the 99th percentile is greater than the minimum threshold of hourly heavy precipitation defined by the National Meteorological Center (20 mm h−1), the precipitation in this percentile is defined as the threshold of ExHP at this station, otherwise, 20 mm h−1 is selected as the threshold of ExHP (Wu et al., 2019; Ao et al., 2022).
The frequency of ExHP is defined as the number of occurrences or hours of the hourly precipitation exceeding the above defined threshold. For example, the ExHP frequency is X if hourly precipitation continuously exceeds the threshold in X hours.
The intensity of ExHP is defined as the ratio of the total amount of ExHP at each station to the frequency of the ExHP. For example, the threshold of ExHP at a station is 30 mm h−1. If the hourly precipitation at a station in a certain period of time is 40 mm and 50 mm respectively, the frequency of ExHP at the station is two times, the total amount of ExHP is 90 mm, and the intensity of ExHP is 45 mm. Similarly, the same statistics were performed on 244 stations.
Based on the relationships of the hourly precipitation 3 h before the occurrence of ExHP (R−1, R−2, R−3) with the ExHP (R0), the ExHP events from 1974 to 2020 are classified into the abrupt type, growing type and continuous type (Wu et al., 2019). The classification criteria are shown in Table 2.
TABLE 2 | Classification criteria of different types of ExHP events.
[image: Table 2]In this paper, The linear trend estimation is used for analysis. When the regression coefficient b > 0, it means that climate variable x shows an upward trend with the increase in time t. When the b < 0, it means that x shows a downward trend with the increase in time t. The magnitude of b reflects the changing rate (Wei, 2007).
2.3.3 Definition of urban heat island intensity
The calculation formula of UHII defined in this study is as follows (Oke, 1982):
[image: image]
In Eq. 1, where Tu and Tr (°C) are the average hourly temperature at urban and rural stations, respectively.
3 RESULTS
3.1 Diurnal variations of urban heat island intensity
Figure 4 shows the diurnal variation curves of annual averaged, monthly averaged and seasonal averaged UHII from 2005 to 2020. The monthly, seasonal and annual distributions of UHII are similar. As can be seen, all the UHII values are positive, with higher values at night and in the morning (from 19:00 local standard time (LST) to 07:00 LST) and lower values during the daytime (07:00–19:00 LST). This conclusion is consistent with the previous research results on the diurnal variations of the UHII (Wu, 2019; Yang et al., 2019). In terms of the monthly variation, the average UHII is the largest in September (0.63°C), followed by August (0.62°C), July (0.58°C) and June (0.46°C). The difference between the average UHII in June and in September is 0.17°C, and the average UHII from June to September is 0.57°C. In terms of seasonal variation, the average UHII is the largest in winter (0.85°C), followed by autumn (0.77°C), spring (0.71°C) and summer (0.55°C). The maximum UHII in winter appears in the morning (06:00 LST), reaching 1.26°C. The maximum UHII in autumn also appears in the morning (05:00 LST), reaching 1.17°C. The maximum UHII in spring appears in the early morning (04:00 LST), reaching 1.13°C. The maximum UHII in summer appears in the morning (06:00 LST), reaching 0.73°C. Overall, the maximum UHII appears earlier in spring and autumn than in winter and summer. The annual averaged UHII in Shenyang is 0.71°C, with the maximum value of 1.07°C in the early morning (06:00 LST). During the high UHII period (between 20:00 and 07:00 LST), the average UHII is 0.93°C, which is 0.42°C higher than the low UHII period. Therefore, the annual averaged UHII (0.71°C) is set as the threshold. When the UHII is greater than 0.71°C, the UHII is considered to be strong; when the UHII is less than 0.71°C, the UHII is considered to be weak. At 6 h before the EXHP event, if more than half of UHIIs are greater than 0.71°C, the precipitation is deemed to be affected by a strong UHI, and it is a strong UHI event. Conversely, it is regarded as a weak UHI event. Combined with the diurnal variations of the frequency and intensity of ExHP in Figure 5, it can be found that ExHP events mostly occur at night in summer (21:00 LST) when the corresponding UHII is relatively strong. In Singapore, it is found that 20%–30% of the precipitation occured at night is caused by the UHI effect by numerical model at 300 m resolution (Doan et al., 2021).
[image: Figure 4]FIGURE 4 | Diurnal variations of annual averaged (C), monthly averaged (A) and seasonal averaged (B) urban heat island (UHI) intensity (UHII) from 2005 to 2020.
[image: Figure 5]FIGURE 5 | Diurnal variations of averaged frequency and intensity of extreme hourly precipitation (ExHP) in urban stations in Shenyang.
3.2 Spatial distributions of urban heat island intensity
Figure 6 shows the spatial distributions of UHII in the municipal district of Shenyang. As can be seen, the spatial distribution of UHII is relatively consistent with the economic development level, transportation density and population density. In the urban areas, dense population and traffic, as well as high-rise buildings, jointly lead to higher UHII. Conversely, the UHII decreases with the increasing distance from the city center. The strong UHI areas are mainly located in the central urban area, and the UHII range from 0.71°C to 1.25°C. The maximum value appears at the regional station near the Experimental Primary School in Shenhe District. The UHII values in the south of Sujiatun and the northeast of Shenbei New District are negative, but the magnitude is relatively small.
[image: Figure 6]FIGURE 6 | Spatial distributions of UHII in the municipal district of Shenyang averaged from 2005 to 2020.
3.3 The occurrence and development of extreme hourly precipitation and urban heat island
Figure 7 shows the diurnal variation curves of UHII from 12 h before to 12 h after the beginning of the three types of ExHP. It can be seen that the overall variation characteristics for the three types of ExHP are relatively consistent. Twelve to 6 h before the beginning of precipitation, the UHII value is relatively stable and keeps positive. The UHII value increases dramatically from 6 h before the beginning of precipitation while decreases obviously when the precipitation begins (falling below 0°C). The UHII value remains negative 4 h after the beginning of precipitation and then gradually increase with time. However, there are still some differences among the three types of ExHP. The UHII of the abrupt-type of ExHP is the highest 1 h before the beginning of precipitation, which is evidently higher than that of continuous-type and growing-type, reaching 1.17°C. It is a strong UHII. Besides, the UHII shows a steady upward trend from 12 h before the precipitation to the beginning of precipitation. When the precipitation begins, the UHII decreases rapidly, reaching the lowest value 1 h after the beginning of precipitation (−0.71°C). The UHII remains negative for 4 h after the beginning of precipitation, and then it increases quickly, maintaining at about 0.50°C. For the growing-type ExHP, a strong UHII appears from eight to 3 h before the beginning of precipitation. The UHII is the highest (1.05°C) four to 3 h before the beginning of precipitation, which is obviously higher than that of the continuous-type ExHP. Unlike the abrupt-type ExHP, the UHII of the growing-type ExHP begins to decline three to 2 h before the beginning of precipitation, and reaches the lowest value (−0.52°C) at the beginning of precipitation. The UHII remains negative for 6 h after the beginning of precipitation and then turns positive with a stable value of about 0.50°C. For the continuous-type ExHP, a weak UHII appears from 12 h before the precipitation to the beginning of precipitation. The UHII shows a steady upward trend twelve to 4 h before the beginning of precipitation. The UHII reaches the maximum value of 0.69°C at 4 h before the beginning of precipitation, which is much lower than the other two types. Unlike the abrupt-type of ExHP, the UHII of the continuous-type begins to decline 4 h before the beginning of precipitation and reaches the minimum value of −0.63°C just 1 h after the beginning of precipitation. Besides, the UHII continues to be negative after the beginning of precipitation. Although it increases slowly, it remains stable below 0°C. In general, the UHII is relatively large before the abrupt-type ExHP starts, and quickly returns to a positive value after the precipitation begins. Moreover, the UHII of the abrupt-type ExHP is much higher than that of the other two types of ExHP.
[image: Figure 7]FIGURE 7 | Diurnal variation curves of UHII from 12 h before to 12 h after the beginning of three types of EXHP.
Figure 8 shows the spatial distributions of UHII at 6 hours, 3 h and 1 h before and after the beginning of the abrupt-type ExHP. It can be seen that the difference of UHII before and after the precipitation is obvious. The UHII high-value areas at 6 h before the precipitation are mainly located in the central urban area (Shenhe District and Heping District), and the UHII values are within 0.71°C–1.26°C. As the distance from the city center grows, the UHII decreases. Negative UHII values are observed in the south of Sujiatun and the northeast of Shenbei New District. The UHII at 3 h before the precipitation is higher than that at 6 h before the precipitation, and the strong UHII area further increases. Shenhe District, Heping District, Yuhong District, Huanggu District, Dadong District, Tiexi District and the west of Hunnan District are all located in the strong UHII area, and the UHII values are within 0.71°C–1.31°C. The UHII values in southern Sujiatun and a small part of Shenbei New District are still negative. The UHII reaches the maximum at 1 h before the precipitation, and the strong UHII area further increases. Except for the Shenbei New Disctrict, the east of Hunnan District, the southeast of Sujiatun and the north of Yuhong District, the other areas of Shenyang is under the strong UHI effect. The UHII values range from 0.71°C to 1.42°C, with the maximum value in Shenhe District. One hour after the precipitation begins, the UHII values in the municipal district of Shenyang are negative, ranging from −0.53°C to −1.31°C. The UHII values in the central and eastern municipal district are relatively high, and the low-value areas of UHII are located in the Yuhong District, the southeast of Sujiatun and the northeast of Shenbei New District. Three hours after the precipitation, the UHII values in the whole municipal district are still negative, ranging from−0.11°C to −0.98°C. The UHII values are larger than those at 1 hour after the precipitation. The UHII values in Sujiatun, Hunnan District and the city center are relatively high, and those in Shenbei New District and Yuhong District are the lowest. The spatial distributions of UHII at 6 h after the precipitation and 3 h after the precipitation are relatively similar. The UHII values in most areas are negative, while those in the city center, the southeast of Sujiatun and the south of Hunnan District are positive, ranging from 0.01°C to 0.29°C. The lowest UHII is in Shenbei New District. In general, the spatial distributions of UHII at 6, 3, and 1 h before the precipitation are relatively consistent, showing a distribution of “high in the center and low at both ends”. After the precipitation, the UHII values decrease rapidly, turning negative in the whole area, with the lowest UHII in Shenbei New District.
[image: Figure 8]FIGURE 8 | Spatial distributions of UHII at (A) 6 h, (B) 3 h, (C) 1 h before the abrupt-type ExHP and (D) 6 h, (E) 3 h and (F) 1 hour after the abrupt type ExHP.
3.4 Analysis of a typical extreme hourly precipitation case in Shenyang
At 19:00 on 11 July 2007, sporadic precipitation began to appear in the municipal district of Shenyang. The hourly precipitation at Shenyang station was 6.9 mm. At 20:00, the hourly precipitation increased rapidly, reaching 53.8 mm, and then it began to decrease. The hourly precipitation was 4.8 mm at 21:00 and 0.9 mm at 22:00. At 23:00, the precipitation ended. This precipitation process lasted for 4 h, which was a typical growing-type ExHP. The heavy precipitation was mainly concentrated in Hunnan District and Shenhe District. As shown in Figure 9, the temperature decreased dramatically, and the relative humidity increased in the usual strong UHI areas (the municipal district of Shenyang and Liaozhong County) from the beginning of the ExHP. Short-term ExHP events in the municipal district of Shenyang are closely related to the urbanization of Shenyang. The expansion of the city, the change in the underlying surface, human life and disordered activities (including various kinds of transportation) aggravate the energy exchange between the urban surface and the atmosphere, causing more complex atmospheric boundary layer movement and more intense convection in urban areas. Furthermore, the strong UHII leads to more convective weather in urban areas, increasing the frequency of ExHP. In recent years, many studies have also shown that urbanization has played a certain role in enhancing the frequency and intensity of ExHP (Tan et al., 2015; Yang et al., 2017; Wu, 2019).
[image: Figure 9]FIGURE 9 | Spatial distributions of (A) precipitation and (B) temperature at 20:00 on 11 July 2007.
Figure 10 shows the distributions of convective available potential energy, 500 hPa height field and 850 hPa wind field at 20:00 on 11 July 2007. As can be seen, the impact system of this case is a high-level trough. In terms of energy, the convective available potential energy over Shenyang reached 1124 J kg−1, indicating a favorable energy condition. The 500 hPa 588-iosline was located near the Bohai Sea, close to the south of Dalian. At 850 hPa, the shear line at 850 hPa was obvious, and the southwesterly wind was relatively strong at 850 hPa, which transports much water vapor to Shenyang.
[image: Figure 10]FIGURE 10 | The distributions of (A) convective available potential energy, and (B) 500 hPa geopotential height and 850 hPa wind at 20:00 on 11 July 2007.
Figure 11 shows the radar echo maps of Shenyang station on 11 July 2007. A strong echo appeared in Shenyang at about 19:00 LST that day, with a maximum value of about 35–40 dBZ. Before 19:00 LST, there were no obvious echoes in the upstream areas of Shenyang. So, the echo was locally initiated, and it gradually dissipated after 20:00 LST.
[image: Figure 11]FIGURE 11 | Radar echo maps of Shenyang station at (A) 19:32 LST and (B) 19:55 LST on 11 July 2007.
Figure 12 shows the spatial distribution of UHII in the municipal district of Shenyang at 16:00 LST on 11 July 2007. As can be seen, the high-value areas of UHII corresponded to the areas where the ExHP occurred. The areas with a small amount of precipitation, such as Shenbei New District and Sujiatun, were also within the range of strong UHII. The temperature of most national and regional stations with precipitation reached the maximum at 16:00 LST. There are often high temperature, high humidity and strong UHI effect in urban areas before the ExHP events.
[image: Figure 12]FIGURE 12 | Spatial distributions of UHII in the municipal district of Shenyang at 16:00 LST on 11 July 2007.
Figure 13 shows the diurnal variations of UHII from 12 h before to 12 h after the beginning of the ExHP at Shenyang station. As can be seen, the positive UHII values were relatively stable from 12 h to 6 h before the beginning of the precipitation, with the UHII values greater than 0.5°C. Since 6 h before the beginning of the precipitation, the UHII increased obviously. Shenyang station was in the strong UHII, and the UHII reached a maximum of 0.91°C at 4 h before the precipitation. This precipitation process belonged to the growing-type ExHP, and there was sporadic precipitation before the beginning of the ExHP. Therefore, the UHII began to decline at 3 h before the precipitation and fell below 0°C at 1 hour before the precipitation. When the ExHP began, the UHII reached the minimum value of −1.9°C, and the UHII values turned negative at 4 h after the beginning of precipitation. With time going, they gradually increased and stabilized at about 0.5°C.
[image: Figure 13]FIGURE 13 | Diurnal variations of UHII from 12 h before to 12 h after the beginning of the ExHP at Shenyang station.
The above analyses show that before the ExHP, there were favorable precipitation conditions in Shenyang. The UHII caused the uneven heating of the ground surface, and further led to local temperature difference. Thus, the local vertical circulation was established and the ExHP event occurred. In previous research, it was found that the influence of cities on precipitation is related to the strength of weather system through the study of precipitation in Beijing (Li et al., 2011a). The influence of cities is more significant when the large-scale precipitation system is weak or the local precipitation system is strong. Jiang et al. (2020, 2021) find that the thermal low pressure is formed near the surface of the city to strengthen the rising movement through the Urban Heat Island effect, which induces convective and finally produces heavy precipitation. It is consistent with the research in this paper.
3.5 Preliminary discussion on the causes of extreme hourly precipitation in Shenyang
Figure 14 shows the spatial distributions of the average temperature in Shenyang from 1974 to 1990 and from 1991 to 2020. It can be seen that the temperature in the municipal district of Shenyang is much higher than that in other areas in both periods. The temperature gradient in the urban area is unobvious from 1974 to 1990 (Figure 14A), while that between the urban areas of Shenyang and other areas increases after 1991 (Figure 14B), indicating that the difference in thermal conditions between the urban area and suburbs becomes more and more distinct. Figure 15 shows the annual variation of the daily maximum temperature of ExHP events. The daily maximum temperature of ExHP events at both urban and rural stations shows an increasing trend. The trend at urban stations (0.34°C/10a) is more obvious than at rural stations (0.15°C/10a). Before 1995, the difference between urban and rural stations is unobvious. After 1995, due to the influence of the urban underlying surface, the urban area has higher temperature on ExHP days. With sufficient water vapor, the higher temperature strengthens the water storage capacity of the air, hence intensifying the potential precipitation. With urbanization, the UHII in the municipal district of Shenyang has also gradually enhanced. Various factors such as human activities intensify the energy exchange between the urban surface and the atmosphere. The atmospheric boundary layer movement becomes more complex, hence the more intense convection in the municipal district of Shenyang. Strong UHII leads to the increase of convective weather in urban areas, and the frequency of ExHP events increases.
[image: Figure 14]FIGURE 14 | Spatial distributions of average temperature in Shenyang (A) from 1974 to 1990 and (B) from 1991 to 2020.
[image: Figure 15]FIGURE 15 | Variations of maximum temperature at urban and rural stations on the ExHP days.
Past studies revealed that both the frequency and intensity of ExHP at urban stations are much higher than those at rural stations, and the peak values of ExHP at urban and rural stations mainly occur at night. To further explain this phenomenon, the 6-h resolution temperature and pressure data are used to analyze the pressure anomaly caused by the diurnal variation of the UHI effect. The UHI effect has obvious diurnal variation characteristics, with the highest UHII at night and in the early morning, but the lowest UHII at morning and noon. The atmospheric pressure anomaly caused by the diurnal variation of UHII presents similar variation characteristics.
Figure 16 shows the variations of UHII and urban-rural pressure difference from 1974 to 2020. As can be seen, the UHII has an evident increasing trend from 1974 to 2020, reaching 0.17°C/10a which has passed the significance test at 95% confidence level. Especially, with rapid urbanization, the UHII exceeds 0.6°C after the 21st century. Moreover, the diurnal variation characteristics of UHII become increasingly obvious. In the early days, when urban development was relatively slow, there were no obvious diurnal variation characteristics of UHII. However, since the 1990s, the diurnal variation of UHII has become more distinct. After 2003, the diurnal UHII range could reach more than 0.5°C. The increasing UHII will cause local pressure changes in urban areas, as shown in Figure 16B. When the urbanization is slow, the pressure difference between urban and other areas fluctuates around zero, and there is no obvious diurnal variation feature. However, corresponding to the sharp increase of UHII, the pressure difference between urban and rural areas has also increased sharply since 1995. The pressure in urban areas has begun to be much lower than in rural areas, especially in the 21st century. Its diurnal range changes with the diurnal UHII range.
[image: Figure 16]FIGURE 16 | Variations of (A) UHII and (B) urban-rural pressure difference from 1974 to 2020.
Therefore, the more ExHP events in urban areas than in rural areas from late afternoon to late night can be explained. From afternoon to night, the UHII increases, which means the temperature difference in urban and rural areas will increase. Then, the urban-rural pressure difference gets larger when the temperature difference reaches the maximum at night. In the low pressure in urban areas, the airflow will converge and ascend. Meanwhile, the pressure in rural areas is relatively high, thus forming an urban-rural thermal circulation. The circulation is the strongest from nightfall to midnight. The low level atmosphere becomes unstable due to the strong UHI effect. With sufficient water vapor, the ExHP event is likely to occur in urban. Moreover, the circulation characteristics caused by the UHI effect in the Shenyang municipal district are also seen in Beijing, Shanghai, Jiangshu and other areas (Zhang, 2012; Zhu et al., 2018; Hou et al., 2019).
Besides UHI, urban canopy and aerosol are also essential factors in the occurrence and development of ExHP. The UHI can enhance the near-surface temperature disturbance and trigger deep wet convection, thus increasing the intensity and frequency of ExHP in urban area and its downwind area. The urban canopy makes the surface rougher, disturbing the boundary layer water vapor and energy processes and blocking the movement of the precipitation system. Therefore, the precipitation events are prolonged and the precipitation intensity is increased (Zhang et al., 2014). In addition, by increasing the surface friction, the urban canopy can cause the convergence of near surface wind, triggering the high-intensity convective precipitation (Miao et al., 2011). On the other hand, the enhanced human activities bring more aerosols in urban areas, which can promote the occurrence of ExHP in the rain season through increasing condensation nuclei, lengthening the retention time of cloud droplets in the air, inhibiting the downdraft, and enhancing the upward motion by the latent heat release in the ice phase processes (Khain et al., 2005; Qian et al., 2009; Li et al., 2011b).
4 DISCUSSION
Based on the multi-source meteorological and socio-economic data, urban and rural stations are classified by the satellite remote sensing classification method. The UHII diurnal variation in Shenyang and the relationship between ExHP and UHII are analyzed, Moreover, the causes of ExHP are discussed.
Our analysis in this paper shows that the process of urbanization influencing ExHP is often accompanied by the UHI effect, which has a feedback effect with it. Generally, there is a strong UHII 1–6 h before the start of ExHP. The UHI increases the air temperature near the surface and makes the stratification more unstable. The heat island circulation generated by UHI causes convection, which promotes the formation and movement of precipitation. The energy change caused by precipitation also affects the urban thermal environment. Shepherd et al. (2002) used TRMM satellite precipitation data to study urbanization precipitation, and they pointed out that the UHI circulation make the air flow to downwind areas and generate convective clouds. Through the study of precipitation in large coastal cities, it is found that the interaction of sea-land breeze, topography, urban environment and atmosphere affects precipitation together, but UHI is the main reason for the increase of precipitation (Shepherd et al., 2003). Sun et al. (2007) studied the influence of UHII on precipitation in winter and summer by using the observation data from 1975 to 2004 in Beijing. The results showed that southerly airflow is prevalent in Beijing in summer, the UHII has been strengthened, and the precipitation process in the north has an increasing tended. In terms of Shenyang, the influence of UHI on the abrupt-type ExHP is relatively clear. The strong UHII before the abrupt-type ExHP enhances the vertical shear in the urban boundary layer, which intensifies low-level convergence and makes the ExHP center prone to appear in the urban or suburban area. However, other changes brought about by urbanization, such as the change of land types, the increase of surface roughness, and the decrease of in water vapor mixing ratio, also have important effects on ExHP. By changing land use types, urbanization causes low surface albedo, strong UHII, high surface roughness and low surface permeability. As a result, the surface-air flux exchange, water cycle and energy cycle may change accordingly, thus affecting the radiative forcing and ExHP (Zhang et al., 2009; Wang et al., 2012). Shi et al. (2012) made attribution analysis on the spatial distribution characteristics of precipitation in Beijing from June to September during 2006–2010. The study pointed out that when the UHI is strong, the precipitation is mainly distributed in the urban and suburban areas, and the maximum rainfall intensity occurres in the downwind side of the city. When there is no UHI effect, the distribution of precipitation is only affected by topography. The relevant conclusions were also been found by Li et al. (2011a) in their research.
This study found that ExHP events mostly occur at night in summer when the corresponding UHII is strong. The strong nighttime UHII caused by rapid urbanization of Shenyang, combined with the slowdown of the movement of the weather system by buildings and the increase of condensation nuclei, have enhanced nighttime precipitation. Dixon et al. (2003) studied the types and causes of precipitation caused by urban heat island effect in Atlanta, and found that the most precipitation events caused by the urban heat island were in July, with local precipitation peaked in the nighttime. This is mainly due to low level moisture and urban heat island effect.
The spatial span of the municipal district of Shenyang is relatively small, and the center of the municipal district is highly developed. Therefore, whether the increase in surface roughness brought about by urbanization will strengthen local convergence (Changnon et al., 1981), increase sensible heat flux (Bornstein et al., 2000) and the instability of the boundary layer (Shepherd et al., 2002)? Whether these problems may cause the variations of ExHP? These questions need to be further investigated. In the future, remote sensing, numerical simulation and other analysis means are to be used to carry out long-series and high-resolution simulation research on the climate effect of urbanization, so as to clarify the consistency and difference of urbanization effect between various urban agglomerations and various climatic regions. These studies can further improve and enrich the research on ExHP variation and its relationship with urbanization.
5 CONCLUSION
The distributions of monthly averaged, seasonal averaged and annual averaged UHII in Shenyang are similar. The UHII values in Shenyang are basically positive, higher at night and in the morning but lower in the daytime. ExHP events mostly occur at night (21:00 LST) in summer when the UHII is relatively strong. The spatial distribution of UHII is relatively consistent with the economic development level and the transportation and population density. Dense population and transportation, as well as high-rise buildings, in the city center lead to higher UHII. Conversely, the UHII decreases with the distance from the city center.
The overall UHII variation characteristics for the three types of ExHP are relatively consistent. The UHII values are relatively stable and positive from 12 h to 6 h before the beginning of precipitation. The UHII values have increased evidently since 6 h before the beginning of precipitation. However, they decline dramatically from the beginning of precipitation (falling below 0°C). The UHII values remain negative for 4 h after the beginning of precipitation and gradually increase with time. For the abrupt-type ExHP, the UHII is relatively large before the precipitation, and the UHII can quickly return to a positive value after the precipitation ends. The UHII of abrupt-type ExHP is much higher than that of the growing-type and continuous-type ExHP.
The difference of UHII between before and after the abrupt-type ExHP is large. The spatial distributions of UHII values at 6 h, 3 h and 1 h before the precipitation are relatively consistent, showing a distribution of “high in the center and low at both ends”. The high-value areas of UHII are mainly located in the central urban area. After the beginning of the precipitation, the UHII values decrease rapidly, turning negative in the whole area, with the lowest value in Shenbei New District.
When a certain level of urbanization is reached, the temperature on ExHP days in urban areas is higher than that in rural areas, and ExHP events are more likely to occur. It may be caused by the UHI effect. The UHII shows an obvious increasing trend with urbanization, and there is obvious diurnal UHII range. The UHII at night is higher than that during the daytime. The increasing UHII can cause abnormal air pressure in urban and rural areas. The heating in the lower layer of the urban area can lower the local air pressure, causing the air to converge and rise and forming the urban and rural thermal circulation. This phenomenon is particularly evident at night, which is conducive to the occurrence of ExHP events (Principal Investigators of Project METROMEX, 1976; Yang et al., 2011; Yang et al., 2014).
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High air pollutions of PM2.5 concentrations have become a serious environmental problem in China during recent decades, causing significant influences on urban air quality and human health. In the study, we investigate the variations of the December PM2.5 in Eastern China and the possible causes during 2000–2020. The empirical orthogonal function (EOF) analysis is employed to reveal the dominant patterns of PM2.5 variability in Eastern China. The EOF1 shows a consistent variability in the whole of the Eastern China, which reflects a consistent emission pattern in Eastern China in past two decades. The EOF2 exhibits a North-South dipole pattern, which is closely tied to the changes of atmospheric circulations. The increase of PM2.5 in the North Eastern China is mainly related to the decrease of wind speed, the decrease of boundary layer height and the increase of inversion temperature, while the decrease of PM2.5 in the South Eastern China is affected by the increase of local precipitation. Two atmospheric wave trains are identified that affect the dipole distribution of PM2.5 in Eastern China. The southern one is affected by ENSO, and the northern one is jointly affected by ENSO, sea surface temperature of Labrador Sea and sea ice concentration near Kara Sea. Finally, we reconstructed a comprehensive atmospheric external forcing index based on these factors. We find that the comprehensive index can well reproduce the North-South dipole distribution of PM2.5 in Eastern China, indicating the plausible effects of the atmospheric external forcings and the prediction potential for the variations of PM2.5 in Eastern China.
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1 INTRODUCTION
In recent decades, particulate pollution featured by high concentrations of PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 µm) has become a serious environmental problem in China, exerting great effects on visibility impairment, urban air quality, and human health (Pui et al., 2014; Li et al., 2015; Li G. et al., 2016; Chen Z. et al., 2020). For example, in January 2013, a hazardous dense haze covered 1.4 million km2 of China and affected more than 800 million people (Xu et al., 2013). As the most densely populated region in China, the Eastern China usually experiences the severest particulate pollution in the past decades (Zhang et al., 2015; Wang and Chen, 2016; Zhang et al., 2020). Therefore, understanding the mechanisms responsible for the occurrence and variation of particulate pollution in Eastern China is of great importance on social and scientific development.
As indicated by previous studies, the high-PM2.5 events in China are usually associated with local meteorological conditions such as the changes of East Asian winter monsoon (EAWM). For example, low-level southerly anomalies associated with the weakened East Asian winter monsoon (EAWM), higher humidity, enhanced low-level static stability, and deficient precipitation are usually conducive to the formation of haze pollution (Zhang et al., 2014; Li Q. et al., 2016; Gong et al., 2018; Cheng et al., 2021). The EAWM variability is closely tied to the changes of large-scale atmospheric circulation, such as atmospheric teleconnections over mid- and high latitudes of Northern Hemisphere (e.g., Gong et al., 2019a; 2019b; 2019c). Apart from the direct atmospheric circulation factors, the atmospheric external forcings also have great impacts on PM2.5 pollution in Eastern China. It is well known that the El Niño–Southern Oscillation (ENSO) is the most prominent atmosphere-ocean coupled climate phenomena in the tropics on the interannual timescales. It has the strongest impacts on Eastern China in winter than in other seasons (e.g., Gong et al., 2014; 2015). Previous studies have shown that ENSO may have different impacts on the interannual variations of haze pollution over the Beijing–Tianjin–Hebei (BTH) in early winter (November–December) and late winter (January–February) (Zhao et al., 2022). ENSO can induce the southerly wind anomaly, which is responsible for more haze days over North China by generating an anomalous anticyclone over the North eastern Asia (He et al., 2019; Yu et al., 2020). In addition, He et al. (2019) found that ENSO had negative influence on the winter haze days on southern China by inducing the deficient (excessive) precipitation during La Niña (El Niño) events. Other factors such as the Arctic Sea Ice (ASI), the Pacific Decadal Oscillation (PDO), and the Eurasian snowpack may also be conducive to the variations of the PM2.5 pollution in China (Zhao et al., 2016; Zou et al., 2017; Yin et al., 2019).
However, the above studies mostly concentrated on the haze pollution in BTH, which experienced the most serious haze pollution in China due to the high anthropogenic emissions associated with rapid industrialization and urbanization (Zhang et al., 2017; Dang and Liao, 2019; Wang et al., 2019). There is little attention paid to air pollution over the whole of Eastern China. In addition, most previous works are conducted based on the atmospheric visibility data. For example, some scholars studied the air pollution by defining a winter haze days (WHD) index which is derived from observations of visibility (Wang and Chen, 2016; Mao et al., 2018; He et al., 2019). Other studies calculated the dry extinction coefficient (DEC) based on the observational visibility data to objectively describe haze pollution (Guo et al., 2017; Chen S. et al., 2020; Zhao et al., 2022). Nevertheless, the researches directly based on PM2.5 concentration data are very limited due to the deficiency of long-term PM2.5 observation data. In this study, the new published reconstructed high-quality PM2.5 data are used to study the spatiotemporal variations of PM2.5 in December over Eastern China and the possible causes.
The rest of this analysis is structured as follows. The data and methods utilized in the study are described in Section 2. Section 3 demonstrates the spatiotemporal characteristics of PM2.5 in December over Eastern China. The possible mechanisms associated with the variations of PM2.5 in Eastern China are also investigated. Finally, the summary and discussions are provided in Section 4.
2 DATA AND METHODS
2.1 Data
In this study, PM2.5 data were obtained from the Tracking Air Pollution (TAP), which is provided by Tsinghua University (Xiao et al., 2021a; 2021b; 2022; Geng et al., 2021), with a horizontal resolution of 0.1 × 0.1 covering the period from 2000 to present. Monthly atmospheric reanalysis data including the zonal and meridional winds, the air temperature, the geopotential height (HGT), the sea level pressure (SLP) and the boundary layer height (BLH), were obtained from the ERA5 dataset with a horizontal resolution of 1.0 × 1.0 covering the period from 1959 to present (Hersbach et al., 2020), which is the latest reanalysis product provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The monthly sea ice concentration (SIC) data was obtained from the Met Office Hadley Centre, whose horizontal resolution is 1.0 × 1.0 globally (HadISST, Rayner et al., 2003). The sea surface temperature (SST) data were obtained from the NOAA Extended Reconstructed SST (ERSST) dataset, version 5 (Huang et al., 2017). The monthly precipitation data was obtained from the Global Precipitation Climatology Project (GPCP), which was gridded by 2.5 × 2.5 in latitude and longitude (Adler et al., 2003). In the study, we focus on the period from 2000 to 2020, which is covered by the TAP dataset and is overlapped among other datasets.
2.2 Methods
Our study focuses on December because haze pollution in winter especially in December over Eastern China is usually the most serious, and the influencing mechanisms might be different between December and other months. The empirical orthogonal function (EOF) method is used in the study, and its significance test is estimated by the North test (Hirsch et al., 1982), which can determine whether the EOF mode can be significantly separated from other modes. In order to examine the atmospheric Rossby wave pathway, the horizontal wave activity flux (or T-N flux) is applied that was derived from the conservation of wave-activity momentum defined by Takaya and Nakamura (2001). The meridional and zonal components of the T-N wave activity flux can be written as:
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where ψ is the geostrophic stream function which is defined as Φ⁄f (Φ and f is the seasonal mean geopotential height anomaly and Coriolis parameter, respectively); U and V represent the mean zonal and meridional climatological winds, respectively; and |U| is the magnitude of the mean horizontal winds. The overbars represent the basic states and primes represent perturbations.
3 RESULTS
Figure 1A presents the spatial distribution of PM2.5 climatology in Eastern China in December during 2000–2020. There are evident regional differences of the climatology, and the PM2.5 concentration was the highest in North China Plain (NCP) with more than 100 μg/m3 concentration. Figure 1B shows the time series of the area-mean PM2.5 concentration in Eastern China. It is clear that the PM2.5 concentration is featured by remarkable interannual variations, reaching a peak (70.9 μg/m3) in 2007, and decreased significantly since 2013. Such a decrease of PM2.5 concentration may attribute to the Clean Air Action and the Blue Sky Protection Campaigns in China (Zhang et al., 2019). Figure 2 shows the first two EOF modes of the PM2.5 concentration in Eastern China. These two modes can be significantly separated from each other via the North Test. The first EOF pattern, explaining 59.05% of the total variance, indicates the consistent spatial characteristics of PM2.5 in the whole of Eastern China. The highest PM2.5 is located in the NCP, indicating that the PM2.5 variability in this region is the largest. Figure 2B shows the normalized principal component (PC1) time series corresponding to EOF1, and the correlation coefficient of PC1 with the area-averaged PM2.5 time series (Figure 1B) is 0.98, exceeding the 99% confidence level. Therefore, EOF1 mainly shows a consistent spatial variability of PM2.5 in Eastern China, and reflects the consistent anthropogenic emission in the whole region. The second EOF pattern and its time series are shown in Figures 2C, D, and the percentage contributions of PC2 to the total variance is 13.82%. EOF2 presents a North-South dipole pattern of PM2.5 in the Eastern China (Figure 2C), and it reflects the opposite variability characteristics of PM2.5 in the North and South of Eastern China, which may be related to different impacts of large-scale atmospheric circulations on the North Eastern and South Eastern China.
[image: Figure 1]FIGURE 1 | (A) Spatial distribution of PM2.5 climatology in Eastern China in December during 2000–2020. (B) Area-mean time series of PM2.5 in Eastern China during 2000–2020.
[image: Figure 2]FIGURE 2 | (A) The first EOF spatial pattern of PM2.5 over Eastern China in December, (B) the PC1 corresponding to (A) EOF1. (C, D) As in (A, B), but for EOF2 and PC2, respectively.
In order to study the influence of atmospheric circulation on PM2.5 in Eastern China, we primarily focus on the EOF2 pattern with the North-South dipole distribution in the following analysis. Figure 3 presents the regression patterns of atmospheric circulation onto the normalized PC2. Significant anomalies of local meteorological conditions associated with the positive phase of PC2 can be observed in the Eastern China. The positive PM2.5 concentrations in the North China are associated with the weakened surface wind speed, the decreased boundary layer height (BLH), and the increased inversion of air temperature (Figures 3A–C). The weak wind speed and the decreased BLH suppress the horizontal and vertical dispersion of the pollutants (Han et al., 2017; Wang et al., 2018). Temperature inversion in the lower troposphere usually increases the atmospheric stability and suppresses the vertical diffusion of pollutant, which finally results in more-than-normal PM2.5 pollution accumulated in the North Eastern China. In contrast, in the South Eastern China, the increased precipitation is conducive to PM2.5 dispersion by wet deposition (Figure 3D). Although BLH decreased slightly and temperature inversion increased over South Eastern China (Figures 3B, C), these meteorological variables are unfavorable for haze pollution over South Eastern China compared with precipitation (He et al., 2019). Hence, these results indicate that the local meteorological conditions favorable for the variations of PM2.5 pollution are completely different in the South Eastern China and in the North Eastern China.
[image: Figure 3]FIGURE 3 | Anomalies for (A) wind speed at 925 hPa (WSD925), (B) boundary layer height (BLH), (C) vertical differences of air temperature between 850 and 925 hPa (T_invers), (D) precipitation (PRE) obtained by regression upon the normalized PC2. Stippling regions indicate the significance at the 90% confidence level.
The spatial patterns of atmospheric circulation anomalies related to the PC2 show an equivalent barotropic structure from the lower troposphere to the upper troposphere (Figures 4, 5). The 850-hPa wind presents a strong anticyclonic anomaly over the North Eastern China, accompanied with a prominent southerly anomaly over the East China (Figure 4). The southerly anomalies reduce the climatological mean northerly (Supplementary Figure S9), and result in the decreased surface wind speed (Figure 3A) and suppress the horizontal dispersion of the pollutants, thus causing more serious PM2.5 pollution in the North Eastern China. Figure 5A shows the results of 250-hPa geopotential height and T-N wave flux regressed onto the normalized PC2 index during 2000–2020. An atmospheric wave train is evidently observed extending from the Atlantic to the Eurasia. When the wave train arrives the Eastern Europe, it splits into two branches. The north wave train passes through the Ural Mountains arriving at the North Eastern China, while the South wave train propagates through the northern Indian toward the Eastern China. These two wave trains converge in Eastern China, and are in favor of the formation of an anticyclone in the North and a weak cyclone in the South of Eastern China, respectively, consistent with the North-South dipole pattern of the PM2.5 concentrations (Figure 2C).
[image: Figure 4]FIGURE 4 | As in Figure 3, but for (A) sea level pressure (SLP, shading) and 850-hPa winds (UV850, vectors), (B) geopotential height at 500 hPa (HGT500). Stippling regions indicate the significance at the 90% confidence level.
[image: Figure 5]FIGURE 5 | As in Figure 3, but for (A) geopotential height at 250hpa (HGT250, shading) and corresponding wave activity flux (WAF250, vectors), (B) sea surface temperature (SST). Stippling regions indicate the significance at the 90% confidence level.
In order to explore the formation mechanism of the North wave train and the South wave train, the simultaneous sea surface temperature (SST) are further regressed onto the normalized PC2 index during 2000–2020 (Figure 5B). It is clear that there are obvious SST anomalies (SSTAs) in the central and eastern equatorial Pacific, presenting the most significantly positive SSTAs similar to ENSO. It indicates that the ENSO may have the possibility to affect the dipole distribution of PM2.5 concentration in Eastern China. In order to investigate the possible effects of ENSO, the Niño-3.4 index is calculated as the area-mean SSTAs over 5°S-5°N, 120°-170°W. The correlation coefficient between the Niño-3.4 index and the PC2 was 0.52 above the 95% significance level. It indicates that ENSO can explain about 27.0% of the total variance of the PC2. Figure 6 displays the geopotential height and wave activity fluxes at 250-hPa obtained by regression upon the Niño-3.4 index. It should be noted that the regression results of the South wave train are similar with that regressed by the normalized PC2 (Figure 5A), but the North wave train is weaker compared with PC2 regressed ones. The results indicate that ENSO contribute greatly to the formation of the South wave train, and can also partly lead to the formation of the North wave train. Actually, according to previous studies, ENSO may induce a wave train that splits into two branches in Eurasia or cause a strong wave train to spread from mid-high latitudes to eastern China (Sun et al., 2019; An et al., 2022). Ma et al. (2022) pointed out that ENSO can induce significant precipitation anomalies in the eastern Indian Ocean/western Pacific through the double Walker circulation, which in turn affects the atmospheric circulations and results in a wave train similar to the South wave train in the upper troposphere. However, ENSO may indirectly have an effect on the North wave train because ENSO can affect the SST over the remote North Atlantic through the effects of atmospheric bridge, which in turn spreads its influences on the East Asian climate. Hence, to confirm the effects of ENSO on the PM2.5 in Eastern China, Figure 7 shows the local meteorological elements associated with the Niño-3.4 index, which displays a large resemblance to those in Figure 3. For example, the decreased wind speed and the BLH and the increased inversion temperature emerge in the North of Eastern China. The increased precipitation anomalies occur in the South of Eastern China. The results suggest that ENSO can affect the dipole distribution of PM2.5 in Eastern China by affecting the atmospheric wave train. The North wave train may also be affected by other atmospheric external forcing signals other than ENSO because of the weaker North wave train related to ENSO.
[image: Figure 6]FIGURE 6 | As in Figure 5A, but for Nino-3.4 index. Stippling regions indicate the significance at the 90% confidence level.
[image: Figure 7]FIGURE 7 | Anomalies for (A) wind speed at 925 hPa (WSD925), (B) boundary layer height (BLH), (C) vertical differences of air temperature between 850 and 925 hPa (T_invers), (D), precipitation (PRE) obtained by regression upon normalized Nino-3.4 index. Stippling regions in (A–D) indicate the significance at the 90% confidence level.
In order to study the influence of other atmospheric external forcing signals rather than ENSO on the North wave train, we use the partial regression method to eliminate the ENSO signal from the PC2, the SST and the SIC fields. Figure 8A displays anomalies of simultaneous SST obtained by regression upon the normalized PC2 after removing the ENSO signals. It is clear that there are still significant cold SSTAs in the Labrador Sea of the North Atlantic. Hence, we further define the Labrador Sea SST index (LSI) as the spatially weighted SST anomalies over the North Atlantic (50°–62°N, 60°–47°W). Figure 9A shows the regression patterns of the geopotential height and wave activity fluxes at 250-hPa upon the LSI. A North wave train that originates from the Atlantic and propagates eastward toward the Eastern China can be clearly found when the Labrador SST was warm. Similarly; Figure 8B shows the regression patterns of November SIC upon the normalized PC2 after eliminating ENSO signals. It is found that there is a significant sea ice reduction anomaly near the Kara Sea. As a result, the Kara Sea ice index (KSI) is then defined as the spatially weighted SIC over 78°–85°N and 90°–114°E. The 250-hPa geopotential height and T-N wave flux associated with the decreased KSI (Figure 9B) present a similar North wave train propagating toward North of the Eastern China. These results indicate that besides ENSO, the Labrador Sea SST and preceding Kara Sea ice can also affect the formation of the North wave train and may contribute to the variations of PM2.5 in Eastern China. This is consistent with the previous studies (Ma et al., 2021).
[image: Figure 8]FIGURE 8 | Regression maps of (A) SST in the North Atlantic in December and (B) sea ice concentration (SIC) in November onto the PC2 time series after removing ENSO signal. Stippling regions indicate the significance at the 90% confidence level.
[image: Figure 9]FIGURE 9 | As in Figure 6, but for (A) LSI index and (B) KSI index, respectively. Stippling regions indicate the significance at the 90% confidence level.
The above analysis shows that the ENSO, the Labrador Sea SST and the Kara Sea ice all can affect the dipole pattern of PM2.5 in Eastern China. To comprehensively characterize the effect of these atmospheric external forcing signals on the dipole structure of the PM2.5 concentrations in Eastern China, we define a reconstructed index (REC), REC= (r1* Niño-3.4 + r2*LSI + r3*KSI)/(|r1|+|r2|+|r3|), where r1, r2, and r3 are the correlation coefficients of Niño-3.4, LSI, and KSI with the PC2 (Niño-3.4, LSI, and KSI are independent of each other). Figure 10A shows that the correlation coefficient between the REC and PC2 can reach 0.72 exceeding the 99% significance test; Figures 10B, C show the anomalous patterns of the sea level pressure, 850-hPa wind, 250-hPa geopotential height and T-N wave flux regressed upon the normalized REC index during 2000–2020. During the positive phase of the REC index, an anticyclonic circulation and the southerly anomaly are significant in the North China (Figure 10B). In addition, the North and South wave trains regressed by the REC index (Figure 10C) are also similar to those onto the PC2 index (Figure 4A; Figure 5A). These atmospheric circulations facilitate the PM2.5 anomalies in Eastern China to present a North-South dipoles pattern. Hence, the reconstruction index defined in the study can better explain the EOF2 pattern of the PM2.5 in Eastern China, and may provide the prediction potential for the PM2.5 in Eastern China in December.
[image: Figure 10]FIGURE 10 | (A) Time series of reconstructed index (REC) based on multiple climate factors (red line) and PC2 (blue line) during 2000–2020. (B) Anomalies of SLP and 850-hPa winds (UV850) obtained by regression upon the REC. (C, D) As in (B), but for HGT and WAF at 250hPa, and PM2.5 in Eastern China, respectively. Stippling regions in (B, D) indicate the significance at the 90% confidence level.
4 CONCLUSION AND DISCUSSIONS
In this study, we used the latest PM2.5 data provided by Tsinghua University to study the temporal-spatial distribution and mechanism of PM2.5 over Eastern China in December. Our study found that during 2000–2020, the PM2.5 climatology in Eastern China displays significant regional differences, with the maximum values located in the North China Plain. The area-mean PM2.5 index in Eastern China presents obvious interannual variations, and also experiences a significantly decadal decline after 2013, which may be closely related to national emission reduction policy in recent years. Then, an EOF method is used to investigate the leading temporal and spatial modes of the PM2.5 in Eastern China. Two significant and separated EOF modes are obtained. The EOF1 shows a consistent variability in the whole of the Eastern China, and explains about 59.05% of the total variance. The correlation coefficient between the PC1 and the original area-mean PM2.5 index is 0.98, indicating that the first pattern mainly reveals the emission trend of PM2.5 in Eastern China. The EOF2 presents a North-South dipole pattern in Eastern China, which reflects the opposite influence of atmospheric circulations on PM2.5 in the North and South of Eastern China.
To explore the formation mechanism of the North-South dipole pattern in Eastern China, the atmospheric variables, sea surface temperature, and sea ice are regressed upon the normalized PC2 index. Results show that the increase of PM2.5 concentrations in the North of Eastern China is related to the decrease of surface wind speed, the decrease of boundary layer height and the increase of inversion temperature. In contrast, the decrease of PM2.5 concentrations in the South of Eastern China is associated with the increase of precipitation. There are two atmospheric wave trains in the upper troposphere affecting the North-South dipole pattern of PM2.5 concentrations in Eastern China. The North wave train induces an anticyclone formed in the North China, and the South wave train induces a cyclone in the South China. The South wave train is mainly affected by the precipitation anomaly in the eastern Indian Ocean/western Pacific through a double Walker circulation induced by ENSO, which is helpful to the formation of the South wave train (Ma et al., 2022). The North wave train is jointly affected by ENSO, the sea surface temperature over the Labrador Sea and the preceding sea ice over the Kara Sea. In order to comprehensively characterize the influence of atmospheric external forcing signals on the South and North wave trains, we use the Niño-3.4, LSI, KSI index to define a reconstructed index, The correlation coefficient between the REC and PC2 can reach 0.72, exceeding the 99% confidence level. In addition, the regression patterns of the atmospheric circulations and PM2.5 concentrations onto the normalized REC index present a large similarity to those regressed onto the PC2 index. We perform a parallel analysis using atmospheric circulation data from JRA-55 and SST data from HadISST in the period 2000–2020. The results are basically consistent with those based on ERA5 and ERSST data (Supplementary Figures S1S8). Hence, it suggests that the variations of the dipole pattern of PM2.5 in Eastern China can be attributed to these atmospheric external forcing signals, which may provide some prediction potential. However, there is no particularly in-depth analysis of the sources of each external signal, which deserves a further study in the future.
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Weather forecasting has been playing an important role in socio-economics. However, operational numerical weather prediction (NWP) is insufficiently accurate in terms of precipitation forecasting, especially for heavy rainfalls. Previous works on NWP bias correction utilizing deep learning (DL) methods mostly focused on a local region, and the China-wide precipitation forecast correction had not been attempted. Meanwhile, earlier studies imposed no particular focus on strong rainfalls despite their severe catastrophic impacts. In this study, we propose a DL model called weighted U-Net (WU-Net) that incorporates sample weights for various precipitation events to improve the forecasts of intensive precipitation in China. It is found that WU-Net can further improve the forecasting skill of heaviest rainfall comparing with the ordinary U-Net and ECMWF-IFS. Further analysis shows that this improvement increases with growing lead time, and distributes mainly in the eastern parts of China. This study suggests that a DL model considering the imbalance of the meteorological data could further improve the precipitation forecasting generated by numerical weather prediction.
Keywords: bias correction, deep learning, extremely heavy rainfall, imbalanced data, ECMWF, Henan
1 INTRODUCTION
Weather forecast has been playing an important role in socio-economics, covering many areas such as agriculture, transportation, business and energy management. Accurate weather forecast, especially rainfall prediction, is essential to the well-operation of society. Precipitation exerts significant impacts on socio-economics, for example, extreme precipitation events usually induce severe disasters such as floods and mudslides (Easterling et al., 2000; Changnon et al., 2000; Wang and Yuan, 2018; Tao et al., 2020; Wang et al., 2021). However, current operational weather forecast and seasonal prediction of precipitation is not satisfying yet (Wang and Yuan, 2018; Cloke and Pappenberger, 2009; Siddique et al., 2015; Kobold and Sušelj, 2005). There is intrinsic uncertainty in operational weather forecast based mainly on numerical weather prediction (NWP) models, due to the approximation in representing atmospheric dynamics and physics (Buizza et al., 1999; Palmer, 2000; Slingo and Palmer, 2011). Post-processing methods to correct NWP have been found to be effective in improving the forecast skill for decades (e.g., Glahn and Lowry, 1972; Wilks, 2009).
Model output statistics (MOS) method, as a traditional post-processing method, is highly utilized to promote forecast skills by establishing a linear relationship between model outputs and predictands (Glahn and Lowry, 1972; Wilks, 2009; Marzban et al., 2006). The Kalman filter approach is another bias correction method, which is able to update the real-time correction, while MOS is not (Homleid, 1995). Moreover, Robertson et al. (2013) utilized a Bayesian joint probability model approach, which joined the predictands and the model predictors into a joint probability distribution, to generate predicted probability distributions from the NWP of rainfall by Bayesian inference. However, most of these approaches are specific to individual observation stations.
Recently, deep learning (DL) techniques have been successfully applied in atmospheric and environmental research, owing to explosive computing resource and increasing amounts of meteorological datasets (Shen, 2018; Boukabara et al., 2019). DL is a kind of data-driven approaches that can extract features from big data on its own, for example, detecting spatial structures in grided data automatically, which is difficult to do with traditional methods. Furthermore, DL models are comprised of much more parameters than traditional ones, leading to more sophisticated results. Convolutional neural network (CNN) is widely used in meteorological and climatological applications for its capacity in processing images, which is a lot in common with processing grided data (e.g., Ham et al., 2019; Lagerquist et al., 2019; Wen et al., 2019; Weyn et al., 2020). Ham et al. (2019) constructed a statistical forecast model using CNN, which produced skillful ENSO forecast. Lagerquist et al. (2019) employed a CNN to identify Synoptic-Scale Fronts. Weyn et al. (2020) designed CNNs operating on cubed sphere to improve data-driven global weather prediction.
CNN-based architectures, together with other DL approaches, are also utilized in the post-processing of NWP (Rasp and Lerch, 2018; Han et al., 2021; Hu et al., 2021). U-Net is a CNN-based architecture first proposed for biomedical segmentation, and has acquired some achievements in the estimate of weather factors (Ronneberger et al., 2015; Larraondo et al., 2019). In this study, we will further explore its application in forecast correction of precipitation.
This paper demonstrates a deep learning method to correct grided precipitation forecast data from NWP using U-Net models. We selected a domain covering the whole of China, which has not been studied on in existing work, as previous researches usually focused on local regions (Han et al., 2021; Han et al., 2022). NWP data from the European Center for Medium-range Weather Forecast Integrated Forecasting System (ECMWF-IFS) was adopted to be corrected, and the ECMWF Fifth-generation Reanalysis (ERA-5) was used as the ground truth. Notably, DL is essentially a statistical approach so that its performance is highly dependent on sample sizes. As precipitation is subject to skewed distribution with a long tail at the big end, the amount of large precipitation sample would be considerably smaller than that of tiny small precipitation, which could influence the performance of DL on extreme rainfalls (Tan et al., 2021; Yang et al., 2022; Fu et al., 2022). Therefore, we adopted a strategy of assigning heavier weights to larger precipitation grids, and investigated its improvement in forecasting heavy rainfalls.
The remainder of this paper is as follows. Section 2 introduces the employed dataset and methodology. Section 3 presents the experiment results, and finally, Section 4 concludes this work.
2 DATA AND METHODS
2.1 Dataset
In this study, we employed the NWP data from the ECMWF-IFS in the range of 2017–2022, at a resolution of 0.25° × 0.25°. The forecast issued twice a day at 0000 UTC and 1200 UTC, respectively, with a lead time from 6 to 72 h. The ground truth used in supervised learning is the ERA-5 dataset, which is often seen as the actual condition in bias correction. Additionally, elevation data from the ETOPO1 is also involved as correction factor. These data can be downloaded from https://www.ecmwf.int and https://www.ncei.noaa.gov/products/etopo-global-relief-model (Hersbach et al., 2020; Amante and Eakins, 2009). The study domain is located at 15°–54.75°N, 70°–134.75°E, which covers the whole of China.
This study used 16,000 instances from the ECMWF-IFS and the ERA-5, which were split into training (12000 instances) and testing datasets (4000 instances). The models are trained with data in all lead times to increase the sample size. Nevertheless, the sample size is somewhat small due to data incompleteness. The limited data size may affect our evaluation of models, but does not affect our cross-sectional comparison of WU-Net and U-Net performance. The inputs of the correction models include forecasted precipitation, 2 m-temperature, 10 m-wind, 500 hPa-geopotential height, sea-level pressure and relative humidity from the ECMWF-IFS, precipitation at the issue time, land-sea distribution, lake cover, high vegetation cover and low vegetation cover from the ERA-5 and elevation from the ETOPO1. The variables involved have been listed in Table 1. The original precipitation data has been converted to 6 h cumulative precipitation, and divided into five levels as shown in Table 2.
TABLE 1 | The input variables of the correction model.
[image: Table 1]TABLE 2 | The gradation of precipitation. Unit: mm.
[image: Table 2]2.2 Models
We applied U-Net (Figure 1) to realize the mapping from the input variables to the output correction field (Ronneberger et al., 2015). U-Net is a deep learning architecture consisting of a down-sampling encoder and a symmetrical up-sampling decoder. The encoder uses convolution and max-pooling layers to extract features at different levels, while the decoder is a reverse process using the same layers besides up-sampling layers to decode the features into correction fields. Recently, U-Net has been utilized in atmospheric science and proved to be effective and promising in weather prediction (Larraondo et al., 2019; Han et al., 2021; Hu et al., 2021).
[image: Figure 1]FIGURE 1 | The architecture of the U-Net using in this study.
Figure 1 illustrates the structure of the U-Net utilized in this investigation. The blue arrows depict the flow within the encoder and the decoder. The red arrows represent skip connections, which concatenate features from different levels of the encoder to the decoder counterpart, providing detailed information of different resolution. In this paper, the input is consisted of 13 2D-fields concatenated along channel, which are listed in Table 1, and the models would output a single-channel 2D-field of precipitation level. We blended all the lead time from 6 to 72 h together in the dataset, so there would not be the problem of cumulative errors generated from iteration.
2.3 Metrics
We mainly adopted Threat Score (TS) to evaluate the model results, which can be calculated as follows:
[image: image]
and False Alarm Rate (FAR) was also used, for comprehensive knowledge, which is defined as:
[image: image]
where [image: image], [image: image], and [image: image] are determined by the confusion matrix (Table 3). To distinguish whether the observation and the prediction are True or not, we chose 0.1, 2.5, 10, and 20 mm as thresholds, according to the gradation in Table 2. Model with high TS and low FAR would be considered as well-performed.
TABLE 3 | Confusion matrix to calculate metrics. True or False is determined by the chosen thresholds of 0.1, 2.5, 10, and 20 mm.
[image: Table 3]2.4 The precipitation weights
Given the fact that precipitation quantity is not normally distributed, with severe rainfall comprising a small proportion of all sample points (Figure 2), ordinary models are unable to effectively distill signals about heavy rainfalls, which are of interest to us. Thus, we assigned a weight to each sample point according to its precipitation level when training the model. The weights were calculated by the formula:
[image: image]
where [image: image] is the number of all the sample points, [image: image] is the number of levels and [image: image] is the number of the sample points of level [image: image]. The loss function correspondingly turns into the following form:
[image: image]
[image: Figure 2]FIGURE 2 | The occurrence of each precipitation level in the dataset.
Among which [image: image] represents each component of probability vector, and [image: image] means the weight gets [image: image] when the ground truth of the instance is in class [image: image]. The model is then referred as weighted U-Net (WU-Net).
3 IMPROVING THE HEAVY RAIN PREDICTION
Figure 3 displays the relative quantile error (RQE) of the ECMWF-IFS relative to the ERA-5, using
[image: image]
where [image: image] and [image: image] are the quantiles calculated on NWP and ground true, respectively, D = 25, corresponding to the percentiles from 75% to 99% with an interval of 1% (Pathak et al., 2022; Bi et al., 2022). It is evident that NWP’s ability to forecast heavy rainfall is still deficient, as it tends to underestimate the intensity of large precipitation. Similar limitations exist in the results of deep learning models, which are primarily attributable to the small number of extreme weather samples (e.g., Pathak et al., 2022). This section will demonstrate how the WU-Net could improve the heavy rainfall prediction.
[image: Figure 3]FIGURE 3 | Relative quantile error (RQE) of the ECMWF-IFS.
Figure 4A presents the TS of the ECMWF-IFS, U-Net and WU-Net, respectively. The TS rapidly decreases as the threshold increases for the ECMWF-IFS, from 0.65 to 0.18, indicating its limitation in heavy rainfall forecast. Compared to the NWP model, the two deep learning models outperform it at all precipitation levels. The U-Net model improves the forecast for each gradation by greater than 0.1, particularly for that with a threshold of 20 mm, whose TS increases from 0.18 to 0.34. By considering the sample weights, WU-Net further improves the heavy rainfall forecast relative to U-Net, with a TS of 0.53, which is a 194.4% improvement over the ECMWF-IFS and a 55.9% improvement over U-Net. Note that the TS of WU-Net model is marginally inferior to U-Net at forecasting light precipitation. This difference is mostly due to the reduced weight of light precipitation which has large sample sizes. FAR is similar to TS, as shown in Figure 4B. U-Net performs better than the ECMWF-IFS under all the four thresholds. WU-Net, though beaten by U-Net at the first three precipitation level, achieves a maximum improvement under threshold 20 mm, with a 62.5% reduction over ECMWF-IFS and a 41.3% reduction over U-Net. Overall, the results illustrate that adding a higher weight on the large precipitation events which seldom happen can make a great improvement on the forecast skill of them.
[image: Figure 4]FIGURE 4 | (A) TS and (B) FAR of the ECMWF-IFS, U-Net and WU-Net, respectively, under the thresholds of 0.1, 2.5, 10, and 20 mm. The orange, green, and blue represent the ECMWF-IFS, U-Net and WU-Net, respectively.
This improvement can also be seen in different seasons (Figure 5). For TS, WU-Net and U-Net both do better than NWP model at all rainfall levels in all seasons. WU-Net gets even higher scores for stronger rainfall (under thresholds 10 and 20 mm), but a slightly lower score for light rain relative to U-Net. The biggest change happens in spring, with improvements of 25.9%, 54.1%, 87.0%, and 112.5% for U-Net and 19.0%, 51.4%, 130.4%, and 256.3% for WU-Net compared to the ECMWF-IFS under thresholds 0.1, 2.5, 10, and 20 mm, respectively. As to FAR, WU-Net makes the greatest improvement for the highest precipitation level in all seasons, reaching 37.0%, 68.6%, 67.6%, and 64.1% for winter, spring, summer, autumn, respectively.
[image: Figure 5]FIGURE 5 | (A) TS and (B) FAR as Figure 4, but for different seasons.
In addition to the improvement in different seasons throughout a year, the two deep learning models have significantly enhanced the forecasting skill on daily scale (Figure 6). For the maximum level of rainfall, the highest TS occurs at 0 and 6 o’clock, generated by WU-Net, 0.39 points higher than the ECMWF-IFS and 0.21 points higher than U-Net. The lowest FAR also occurs at 0 o’clock, achieving 0.22.
[image: Figure 6]FIGURE 6 | (A) TS and (B) FAR as Figure 4, but for different time.
Figure 7A shows the variation of TS over increasing lead time. The forecast skill of the ECMWF-IFS diminishes rapidly as lead time increases, due to the chaotic effect of the atmosphere. In contrast, the other two deep learning models exhibit a less pronounced decreasing trend and higher TS. Comparison of the two suggests that WU-Net outperforms U-Net for all lead time when the threshold is greater than 2.5 mm, but receives a slightly lower score when the threshold is less than 2.5 mm. The comparison is generally consistent with Figure 4, which suggests that WU-Net has a better forecast skill for heavier rainfall, but a slightly lower skill for lighter rainfall. Figure 7B shows the TS improvement of WU-Net and U-Net on the ECMWF-IFS. The enhancement in forecasting skill of the two deep learning models relative to the ECMWF-IFS does not diminish as lead time grows, but rather increases gradually, especially for WU-Net. This increase suggests that WU-Net and U-Net can not only enhance the overall forecast performance, but also the upper forecast limit.
[image: Figure 7]FIGURE 7 | (A) The variation of TS for the ECMWF-IFS, U-Net and WU-Net, from top to bottom: thresholds 0.1, 2.5, 10, and 20 mm. (B) The TS improvement of U-Net and WU-Net on the ECMWF-IFS as percentage, from top to bottom: thresholds 0.1, 2.5, 10, and 20 mm. The orange, green and blue represent the ECMWF-IFS, U-Net and WU-Net, respectively.
Figure 8 displays the horizontal distribution of TS. For small precipitation, all three models have better forecasts in East China, North China, and South China, and inferior forecasts for Northwest China, which may be related to the sparse observations there. For stronger precipitation, the forecast skill is higher in eastern China than in western China, which may be related to more observations in the East and more complex and large topography (e.g., Tibetan Plateau) in the West. Compared with the ECMWF-IFS, WU-Net and U-Net have a substantial improvement in overall light rain forecast. For stronger precipitation, the greater improvement of the deep learning models is distributed in the eastern parts of China. As the threshold rises, Northwest China gets great improvement under thresholds 0.1 and 2.5 mm, but misses value for heavier rainfall. It may be because that precipitation above 10 mm per 6 h rarely happens in these areas.
[image: Figure 8]FIGURE 8 | (A) TS distribution, from top to bottom: the ECMWF-IFS, U-Net and WU-Net, and from left to right: thresholds 0.1, 2.5, 10, and 20 mm. (B) Spatial improvement of TS as percentage, from top to bottom: U-Net on the ECMWF-IFS, WU-Net on the ECMWF-IFS and WU-Net on U-Net, and from left to right: thresholds 0.1, 2.5, 10, and 20 mm. The blank areas derive from the denominator of zero when calculating the TS, due to all the samples on the grids are True Negative (to see in Table 3). The areas out of China have been masked out.
Figure 9 provides three cases from the validation dataset, and case 1 occurred during the process of the severe rainstorm disaster in Henan province on July 21, 2021. The ERA-5 precipitation field, the ECMWF-IFS output, the U-Net and WU-Net correction are presented sequentially. In these cases, the distribution and intensity accuracy are enhanced after correction. More specifically, for light rainfall, both the U-Net and the WU-Net correction fields are more related to the ERA-5 than the ECMWF-IFS, but WU-Net tends to extend the precipitation areas, which is consistent with the relatively high FAR on light rainfall for WU-Net. For heavy rainfall, WU-Net outperforms other models, as the distribution of “heavy rain” and “rainstorm” is very close to those in ERA-5.
[image: Figure 9]FIGURE 9 | Examples of precipitation forecasts by different models. (A) 21/07/2021 0000 UTC, lead time 48 h. (B) 13/08/2018 0600 UTC, lead time 42 h. (C) 27/07/2021 1200 UTC, lead time 36 h.
4 CONCLUSION
In this paper, we used U-Net based models to correct the ECMWF-IFS forecast for 6 h cumulative precipitation, and evaluated their performance. Via assigning larger weights to heavier rainfall events, we partly solved the problem of imbalanced data distribution.
The results present that both U-Net and WU-Net can improve the ECMWF-IFS forecast significantly, while WU-Net outperforms U-Net with regarding to intensive precipitation, by considering the sample weights. Specifically, U-Net improves the forecast for each gradation by greater than 0.1 in TS, particularly for heavy rainfall. The WU-Net model does even better on the heaviest precipitation level, as is triple the ECMWF-IF and 55.9% higher than the ordinary U-Net. Moreover, the improvement increases with growing lead time, indicating an extended upper forecast limit.
The quantitative results in the article should be treated with caution due to sample limitations, but this does not prevent the conclusion that WU-Net has the potential to enhance heavy rainfall forecasting skills. The capacity of WU-Net should be further validated in the future using a more complete and larger dataset.
Considering the normalcy, integrity, and accessibility of the data, the study uses the reanalysis dataset as the ground truth which is common in previous studies (e.g., Larraondo et al., 2019; Han et al., 2021; Hu et al., 2021). Given that there are still discrepancies between the reanalyzed precipitation data and observations, we will employ the observed data for additional testing and modeling in the future. Moreover, it is worthwhile to investigate how to integrate two deep learning models (U-Net and WU-Net) to further improve forecasting skill.
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The seasonal prediction of sea-ice concentration (SIC), especially sudden loss events, is always challenging. Weddell Sea SIC experienced two unprecedented decline events, falling from 2.21% in the austral winter of 2015 to 0.02% in the austral summer of 2016 and then falling to −2.32% in the austral spring of 2017. This study proposes several statistical prediction models for Weddell Sea SIC and performs them for a period that includes the sudden decline events. We identified six potential oceanic and atmospheric factors at different leading times that relate to the variability of the Weddell Sea SIC, including the Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), Niño12 sea surface temperature (SST), Southeastern Indian Ocean (SEIO) SST, Antarctic sea level pressure (SLP), and Weddell Sea surface air temperature (SAT). Multiple linear regression models were employed to establish equations to simulate the variation of Weddell Sea SIC under three groups of climate factors for 1979–2012. These models could effectively reproduce the low-frequency variation of SIC in the Weddell Sea during the simulation period and the high-frequency values through two kinds of error-correction methods developed in this study. After applying these error correction methods, the correlation coefficients (absolute errors) of these models were enhanced (decreased) during the simulation period. In the prediction period of 2013–2018, the corrected models generally predicted well the sudden losses of Weddell Sea SIC. The possible primary factors influencing these sudden losses were the PDO, Niño12 SST, Southern Annular Mode (SAM), and SAT during 2015–2016 and the AMO, PDO, Niño12 SST, SAM, and SAT during 2016–2017.
Keywords: Weddell Sea, sea-ice concentration, sudden loss, multiple linear regression, seasonal prediction
1 INTRODUCTION
The Antarctic, one of the planet’s main heat sinks, retains a crucial place in both the southern hemisphere and the overall climate system (Mayewski et al., 2009), having profound effects on atmospheric and oceanic circulation and global energy transport (King and Turner, 1997). Antarctica is covered in ice all year round and is surrounded by sea-ice, which has great potential to contribute to climate variability and change (Bintanja et al., 2013) and exhibits strong interannual variability due to the absence of encircling land (King and Turner, 1997). Sea ice plays a variety of roles in processes involving radiation, energy, and mass transfer, including changing the upper ocean’s albedo, obstructing the exchange of heat and water vapor between the ocean and atmosphere (Turner et al., 2017), changing ocean salinity, and influencing the Antarctic bottom waters due to global ocean circulation (Ohshima et al., 2013; Kitade et al., 2014; Haumann et al., 2016). It can affect the climate system on various time scales. Moreover, sea-ice is a crucial component of the Antarctic ecosystem, providing a habitat for seals, penguins, and krill (Meyer et al., 2017; Jenouvrier et al., 2021) and is essential to the continent’s biogeochemical processes.
Since the first satellite observations in 1979, quantitative descriptions and understanding of sea-ice variability have emerged. In contrast to the rapid decline of sea-ice in the Arctic (Serreze and Stroeve, 2015), Antarctic sea-ice extent (SIE) had been on a slow but significant upward trend with remarkable regionality (Parkinson and DiGirolamo, 2016; Comiso et al., 2017). The Antarctic SIE continued to set new records for the highest value in September 2012–2014, reaching 12.8 million km2 (Turner et al., 2015), which ran counter to the concept that sea-ice will melt under a global warming scenario; its failure to do so is known as the “Antarctic paradox” (King, 2014). However, there has been a noticeable change in recent years. The Antarctic SIE of nearly all oceans reduced, reaching a minimum record of 2.07 million km2 in 2017 (Turner and Comiso, 2017; Schlosser et al., 2018). The SIE in the Weddell Sea has the greatest decline, with a loss of 1 million km2 since 2013. Nevertheless, this decline was absent from several areas of the western Ross Sea and the Indian Ocean (Parkinson, 2019; Eayrs et al., 2021). Thereafter, the Antarctic SIE slowly rebounded (Li et al., 2021).
There have been numerous studies on the origins of the recent decline of Antarctic sea-ice. In terms of atmospheric circulation, the northerly wind anomaly induced by pre-austral spring zonal wave 3 (ZW3) provided a precondition for sea-ice reduction in the summer of 2016 (Schlosser et al., 2018; Wang et al., 2019), which has also been confirmed in simulation experiments (Kusahara et al., 2018). The weakening ZW3 and Southern Annular Mode (SAM) in negative phase together led to sea-ice reduction, which was associated with the downward transmission of the Madden–Julian Oscillation (MJO) and stratospheric polar vortex anomaly signals (Seo and Son, 2012; Kidston et al., 2015). Frequent cyclone activity was another reason for the decrease in Weddell Sea sea-ice (Jones and Simmonds, 1993; Turner et al., 2020). In terms of the ocean, the El Niño–Southern Oscillation (ENSO) can usually influence the variability of Antarctic sea-ice through atmospheric bridges like the Pacific South American (PSA) pattern (Mo and Paegle, 2001; Kwok and Comiso, 2002; Stuecker et al., 2015; Stuecker et al., 2017). However, the relationship between ENSO and Antarctic sea-ice weakened after 2002 (Dou and Zhang, 2022), and experiments with actual sea surface temperature (SST) anomalies forcing flat ocean coupled models suggested that the contribution of El Niño was not significant (Purich and England, 2019); thus, the contribution from ENSO to sea-ice loss would require additional model validations. The tropical Indian Ocean played a more important role than the Pacific Ocean, and a strong negative phase of the Indian Ocean Dipole (IOD) occurring in the spring of 2016 inspired a ZW3-like circulation anomaly (Meehl et al., 2019; Purich and England, 2019; Wang et al., 2019). In addition, the warm spring polar ocean was also conducive to sea-ice reduction (Lecomte et al., 2017; Meehl et al., 2019). The occurrence of large interglacial lakes in summer was an important cause of sea-ice reduction in the Weddell Sea (Swart et al., 2018; Turner et al., 2020).
Numerical model simulations are also useful methods for enhancing our understanding of sea-ice. Its interaction with the ocean and atmosphere provides the physical basis for simulating and predicting sea-ice variation. The predictability of Arctic sea-ice on various time scales in different seasons has been extensively explored (Guemas et al., 2016; Mohammadi-Aragh et al., 2018; Cruz-García et al., 2019). In addition, statistical models have been used to predict sea-ice variation. Wang et al. (2018) compared the weekly prediction effects of the Markov chain model and vector autoregressive model on sea-ice in the Arctic. Yuan et al. (2016) established the Markov chain model at a seasonal to intra-seasonal scale. Machine learning, particularly deep learning, has also been recently used to predict sea-ice variation to tackle non-linear interaction issues (Kim et al., 2020; Liu et al., 2021a). Liu et al. (2021b) trained convolutional long short-term memory (ConvLSTM) networks to predict SIC at weather to sub-seasonal scales in the Barents Sea. Whereas the prediction of Antarctic sea-ice has only recently received widespread international attention, it has received relatively little research. Chen and Yuan (2004) built Markov chain models to provide one of the first explorations of seasonal predictions of sea-ice variation in the Antarctic. Holland et al. (2013) evaluated the initial-value predictability of Antarctic sea-ice in the Community Climate System Model 3. Coupled climate models are also major tools for simulating sea-ice evolution. Hosking et al. (2013) used the CMIP5 model to conduct a preliminary assessment of SIE prediction. Polvani and Smith (2013) used this model to demonstrate how natural variability contributes to Antarctic sea-ice change more than anthropogenic factors. Shu et al. (2020) employed CMIP5 and CMIP6 models to reproduce the seasonal changes of SIE, although their simulation ability was limited.
The loss of the Weddell Sea SIC was the largest contributor to total Antarctic sea-ice reduction since 2015, accounting for 34%, with the negative anomaly continuing until 2020. This study aims to investigate the variation of Weddell Sea SIC and the following questions. Are the atmospheric and oceanic factors prior to the variation of Weddell Sea SIC? Can the models established by those potential predictors simulate the variation of Weddell Sea SIC during past decades? Can those seasonal prediction models predict the sudden decrease of Weddell Sea SIC in recent years? Which potential predictors are the main contributing factors to the sudden decrease of Weddell Sea SIC? With these questions in mind, we identified six potential influence factors of the variation of Weddell Sea SIC, established three seasonal prediction models of Weddell Sea SIC according to multiple linear regression equations, performed prediction during the period 2013–2018, and explored the main contributions and influences of factors in the decline of Weddell Sea SIC. The paper is organized as follows: the methods and datasets are described in Section 2. The declines of SIC in the Weddell Sea are shown in Section 3. The potential oceanic and atmospheric predictors are identified in Section 4. Three seasonal prediction models are established in Section 5, and two error correction methods are developed in Section 6. The predictions of sudden losses of Weddell Sea SIC are shown in Section 7. The possible causes of recent sudden losses of Weddell Sea SIC are revealed in Section 8, and summary and discussion are given in Section 9.
2 DATA AND METHODS
2.1 Data
Four types of datasets and three indices were used in this study. The sea-ice data were obtained from the National Snow and Ice Data Center (NSIDC), which provided a Climate Data Record (CDR) of sea-ice concentration from Passive Microwave Data version 3 (Peng et al., 2013; Meier et al., 2017). This work only focused on the southern hemisphere and built 168 seasonal samples based on monthly merged SIC datasets from 1978 to 2020 on a 25 km × 25 km grid (https://nsidc.org/data/g02202/versions/3).
The second dataset was the monthly median Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) from the Met Office Marine Data Bank with 1 × 1° resolution from 1975 to 2018 (Rayner, 2003) (https://www.metoffice.gov.uk/hadobs/hadisst). In addition, this study used a Hadley Centre and the fifth Climatic Research Unit at the University of East Anglia temperature (HadCRUT5) gridded dataset of global historical surface air temperature (SAT) monthly anomalies relative to the reference period of 1961–1990 (Morice et al., 2021). The dataset was on a 5° grid from 1975 to 2018 and was a collaborative production of the Met Office Hadley Centre and the Climatic Research Unit at the University of East Anglia (https://www.metoffice.gov.uk/hadobs/hadcrut5).
The fourth dataset was the fifth-generation ECMWF reanalysis (ERA5) mean sea level pressure (SLP) dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020). We took monthly data from the 1975–2018 range on a 1 × 1° grid (https://cds.climate.copernicus.eu).
We also used the Pacific Decadal Oscillation (PDO) index, Atlantic Multidecadal Oscillation (AMO) index, and Niño12 SST index for 1975–2018. The PDO is defined as the leading mode of monthly SST anomalies in the North Pacific poleward of 20°N (Mantua et al., 1997). Its positive (negative) phase manifests positive (negative) SST anomalies in the eastern North Pacific and negative (positive) SST anomalies in the central and western North Pacific. The AMO is identified as the large-scale multidecadal fluctuations of the detrend low-pass filtered average SST anomalies in the North Atlantic Ocean typically over 0–80°N (Enfield et al., 2001). The Niño12 SST index is also one of the indices used to monitor SST anomalies averaged across a given region in the tropical Pacific. It usually represents El Niño conditions in coastal South America (0–10°S, 80°–90°W).
This paper employed the austral seasonal mean variables averaged from monthly data and divided per year into austral spring (previous September–October–November, SON), summer (previous December–current January–February, DJF), autumn (current March–April–May, MAM), and winter (current June–July–August, JJA). The analyses of this paper were based on the austral seasons.
2.2 Method
Multiple linear regression refers to a statistical technique that is used to predict the outcome of a variable based on the value of two or more variables (Xiao et al., 2021). Linear regression attempts to establish the relationship between the variables along a straight line. This study used a multiple linear regression model to simulate and predict the SIC anomaly in the Weddell Sea. The multiple linear regression equation is as follows.
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where [image: image] is the predicted value of the dependent variable, b0 is the intercept, X1 through Xp are independent variables or predictors, b1 through bp are the regression coefficients for X1 through Xp, and respectively represent the change in Y relative to a one-unit change in X. The significance of the equation can be judged by the magnitude of the variance test or the complex correlation coefficient. If significant, the equation is considered statistically significant, and the independent variable X has an effect on the dependent variable Y. A t-test is used to check the significance of individual regression coefficients.
In addition, the jackknife method (Efron, 1979) was used to check the stability of the prediction model. The jackknife is based on the following steps. During the fitting period, the entire time series excludes one group of data at a time, and the regression model is rebuilt with the remaining data. The statistical indicators such as the complex correlation coefficient (R2), the coefficient of complex determination after adjustment for degrees of freedom (Radj2), the F-test value, and the significance level (p-value) are calculated (Huang, 2004). Then, a group of data is excluded year by year, and the aforementioned steps are repeated to obtain multiple sets of statistical indicators. If the statistical indicators are close to the results of the original regression model, including all years of the fitting period, and the range of variation is minimal, the regression model is stable and reliable (Liu et al., 2013).
The significance tests of the correlation coefficient in this work were all calculated based on the effective degrees of freedom (Pyper and Peterman, 1998).
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where N is the number of samples and k represents the time lag value. r1 and r2 are the autocorrelation coefficient with lagging k of two sequences. If not stated, all two-sided t-tests in this study were based on the effective degrees of freedom.
This study evaluated the model performance by following three accuracy metrics: the anomaly correlation coefficient (ACC), root-mean-square error (RMSE), and mean absolute error (MAE). The ACC is a skill score metric to assess the similarity quality of the prediction model, and its value is between −1 and 1. The RMSE is used to measure the deviation of the predicted value from the observed value. The MAE can accurately depict the actual situation of the prediction error (Kim et al., 2020). The calculation formulas are as follows.
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3 DECLINES OF WEDDELL SEA SIC IN RECENT YEARS
The trend of Antarctic SIC from 2014 to 2020 is shown in Figure 1. It can be seen that the most significant fall was on the eastern edge of multi-year ice in the western and in southeast corner of the Weddell Sea, where the downward trend in most areas surpassed 0.006% per season, and the maximal domain significantly exceeded 0.012% per season. Other regions with declining tendencies were along the outer edge of East Antarctica and in the northern Bellingshausen and Amundsen Seas. While increased SIC was located in the southern Bellingshausen and Amundsen Seas and part of the Indian Ocean near Antarctica, the increasing trends in all regions failed to pass the significance test. Therefore, we focused on the changes of SIC over the Weddell Sea and chose the region of 60°–80°S and 60°W–0° as the research domain in this study.
[image: Figure 1]FIGURE 1 | Trend of Antarctic SIC during 2014–2020 (unit: % per season). The bold dots denote statistically significant change at 95% confidence level.
As shown in Figure 2, the time series of Weddell Sea SIC had risen insignificantly throughout the past four decades. SIC in the Weddell Sea declined in the 1980s and increased until the mid-1990s and then underwent another temporary fall for about 5 years. At the beginning of the 21st century, it began to gradually increase again and reached a record-breaking peak value of 2.42% in 2014. However, there were two significant sharp declines of the Weddell Sea SIC anomaly after 2014, as the anomaly dropped from 2.21% in the austral winter of 2015% to 0.02% in the austral summer of 2016 and from 0.42% in the austral autumn of 2016% to −2.32% the next spring. The positive anomaly first dropped close to zero and then dropped to a negative value, reaching the lowest on record for SIC in the Weddell Sea before rebounding after 2018. It had recovered to positive by 2020. SIC in the Weddell Sea had significant periods of one to two decades based on the wavelet analysis (not shown), which were similar to that of PDO. Therefore, we suspected that the PDO and even the global ocean might be potential factors affecting the change of sea-ice. In other words, Weddell Sea SIC experienced an unprecedented reduction from 2015 to 2018 and contributed the most in the following overall significant decline in Antarctic sea-ice in the spring of 2016 (Turner et al., 2017). Therefore, the variation of the Weddell Sea SIC is the key to understanding the variation of Antarctic SIC.
[image: Figure 2]FIGURE 2 | Time series of Weddell Sea averaged SIC anomaly 1979–2020 (unit: %). The blue line represents the averaged seasonal anomaly, and the red line denotes the nine-season running average of the SIC anomaly.
The spatial evolution of the SIC anomaly in the Weddell Sea in the austral summer from 2015 to 2018 is shown in Figure 3. The SIC anomaly in the summer of 2015 was positive, exceeding 0.3% mainly in the northwest and southeast Weddell Sea (Figure 3A). There was no discernible changing trend in the western multi-year ice region. The SIC anomaly thence decreased in 2016. Only the northeastern and southeastern parts of the Weddell Sea still exhibited positive anomalies, but the extent was much reduced (Figure 3B). The SIC anomaly in the northwestern Weddell Sea was negative but was only around 0.15%. The SIC anomaly in the eastern boundary of the multi-year ice in the western Weddell Sea remained positive in the summer of 2017. After the second dip, the SIC anomaly in the other regions was negative, except in the western Weddell Sea; those in the northwest and southeast reached −0.3% (Figure 3C). Thereafter, the SIC anomaly began to recover and increased at a slower rate; the positive anomaly center was more than 0.25% in the northwest, but the negative anomalies still remained in the large area of the east, while the largest anomaly was observed in the southeast in 2018 (Figure 3D).
[image: Figure 3]FIGURE 3 | Anomaly of Weddell Sea SIC in austral summer of 2015 (A), 2016 (B), 2017 (C), and 2018 (D) based on the climatology of 1979–2020 (unit: %).
4 POTENTIAL OCEANIC AND ATMOSPHERIC PREDICTORS
We calculated the Pearson correlation coefficients between the SST, SLP, and SAT variables at different leading times and Weddell Sea SIC and selected the correlation maps shown in Figure 4 with maximal significant grids. The significant correlation between Weddell Sea SIC and ten-season ahead SST was mainly distributed in the 20°N poleward of the Pacific Ocean, showing negative correlations along the western coast of North America and positive correlations in the region from the Sea of Japan to the central North Pacific. This pattern was similar to that of the PDO negative phase. There were also insignificant positive and significant negative correlations in the South Pacific and East Pacific, respectively. The distribution of correlation in the Pacific Ocean seemingly assembled the negative phase of the Interdecadal Pacific Oscillation (IPO). We also calculated the correlation coefficients between the Weddell Sea SIC and simultaneous and ten-season leading IPO, respectively. The former was insignificant while the latter was less than with PDO. In addition, the correlation between SST in the South Pacific Ocean and the mid-East Pacific Ocean and the Weddell Sea SIC was insignificant (Figure 4A). Therefore, the PDO (IPO) was (not) identified as a potential predictor of Weddell Sea SIC. The convective heating anomalies caused by the SST anomaly in the Pacific Ocean have contributed to the Amundsen Sea Low and the development of sea-ice through the abnormal Rossby wave response (Meehl et al., 2016). There were also significantly negative correlations along the western coast of northern South America, with the maximal value exceeding 0.25 (Figure 4B). This region (82°–98°W, 10°–18°S) was quite close to the Niño12 region, so we calculated the correlation coefficient between them with the 168 samples. It was 0.79 and indicated their intimate relationship. Accordingly, we selected the SST anomaly in this area as a new index as the deputy of the well-known Niño12 SST, which can represent the role of ENSO to some extent. On one hand, ENSO can excite an anomalous Rossby wave response in the mid-high latitudes of the southern hemisphere to affect the intensity of the Amundsen Sea Low. The resulting meridian anomaly in the southern hemisphere can influence the dynamic transport and the heat flux between atmosphere and ocean, thus changing the distribution of sea-ice in the Antarctic (Liu et al., 2002; Purich and England, 2019). On the other hand, ENSO can also influence Antarctic sea-ice by affecting the Peruvian cold current and other ocean processes. In the Indian Ocean, there was a significantly positive correlation in the southeastern Indian Ocean and to the south of Australia (Figure 4C). Since the Indian Ocean Dipole (IOD) has contributed to the decline of sea-ice in Antarctic (Wang et al., 2019), we also calculated the correlation between Weddell Sea SIC and the IOD mode index (Saji et al., 1999), which was not significant. Therefore, the SST anomaly in this area (110°–140°E, 35°–45°S) was considered a potential influencing factor and defined as the Southeastern Indian Ocean (SEIO) SST. The tropical convection over the Indian Ocean can excite the abnormal Rossby wave following the waveguide of the high-latitude westerly jet eastward across the Southern Ocean. The Rossby wave contributes to increased cyclone–anticyclone anomalies in the southwestern and southeastern South America and the ZW3 anomaly pattern and thus changes the variability of sea-ice (Wang et al., 2019). Furthermore, Weddell Sea SIC was closely related to North Atlantic SST. There were positive correlations in the northern and tropical North Atlantic Ocean, with significant maximal correlation in the former exceeding 0.3 and insignificant correlation in the latter (Figure 4D). Such spatial patterns of correlation in the Atlantic Ocean were similar to those of AMO. Xiao et al. (2014) chose the SST anomaly in the northernmost and southernmost parts of the North Atlantic Ocean as a new index, which was highly correlated with the AMO index; this new index essentially represented the variation of the AMO. Therefore, the sum of half of the SST anomalies in these two regions (55°–15°W, 50°–62°N and 50°–20°W, 5°–20°N) was defined as a new index to represent the AMO variation in this study. The warming SST associated with the AMO can reduce the surface level pressure of the Amundsen Sea Low and result in the redistribution of dipole-like sea-ice between the Ross Sea and the Amundsen–Bellingshausen–Weddell Sea and the warmer Antarctic Peninsula (Li et al., 2014). In summary, according to the analysis of global SST anomalies, the PDO, AMO, Niño12, and SEIO SSTs, associated with the Weddell Sea SIC variation, were identified as potential oceanic predictors of Weddell Sea SIC.
[image: Figure 4]FIGURE 4 | Correlation coefficients between Weddell Sea SIC and SST (A–D), SLP (E) and SAT (F) at different leading times. The leading times are indicated on the left of each panel. The key oceanic regions related to the Weddell Sea SIC shown in the black boxes. The stippling in all the panels denotes the 95% confidence level based on the two-sided student t-test.
In addition, we also took into account the contribution of atmospheric predictors from the relationship between SLP and Weddell Sea SIC. There was a positive correlation around Antarctica (Figure 4E), indicating that Weddell Sea SIC tended to increase when SLP in Antarctica was positive. The Southern Annular Mode is the zonal pressure difference between the 40°S and 65°S latitudes, and its negative phase corresponds to higher SLP anomalies over the Antarctic and lower ones along the belt of 30°–50°S latitude (Nan and Li, 2003). The correlation pattern in Figure 4E assembled the negative phase of SAM, especially in high latitudes. The correlation between Antarctic SLP (65°–85°S) and the SAM index was −0.82, exceeding the 99.9% confidence level, suggesting that the Antarctic SLP anomaly could represent the variation of the negative SAM index. The correlation coefficient between the SAM index at the three-season leading time and Weddell Sea SIC was −0.14, which was smaller than that between SLP and SIC of 0.24. Therefore, we used the negative Antarctic SLP anomaly to represent the SAM index in this study, and we considered the new SAM index as a potential influencing factor of Weddell Sea SIC. The negative phase of SAM can weaken the near-surface circumpolar west wind and produce a positive wind stress curl and southward Ekman transport. The warmer surface water is transported south and results in increased SST (Meehl et al., 2019). There was significant negative correlation between SIC and the simultaneous SAT over the Weddell Sea, which indicated that the higher the SAT, the less Weddell Sea SIC there is (Figure 4F). The simultaneous Weddell Sea SAT cannot be used as a predictor of Weddell Sea SIC. If the reliable Weddell Sea SAT is used a dependent variable in the prediction model of Weddell Sea SIC, it is helpful to learn the maximal improvement of the prediction model under the situation of a perfect prediction of Weddell Sea SAT. Consequently, the Weddell Sea SAT was considered a simultaneous influencing factor of Weddell Sea SIC. The increased air temperature inhibits the development of sea-ice. Therefore, we identified the PDO, AMO, Nino12 and SEIO SSTs, SAM, and SAT as potential predictors of Weddell Sea SIC.
Figure 5 depicts the leading–lagged correlation coefficients between Weddell Sea SIC and the aforementioned six potential predictors. It was found that both SEIO and Niño12 SSTs led the changes of Weddell Sea SIC by five seasons, AMO by eleven, PDO by ten, and SAM by three seasons—all of which had passed a two-sided t-test with the 95% confidence level. The most significant correlation coefficient was between SAT and SIC in the same period. The influence of ocean factors (such as PDO, AMO, SEIO, and Niño12 SSTs) on Weddell Sea SIC was ahead of these of atmospheric factors for at least more than 1 year. This might be explained by the ocean’s slow motion and long-term memory compared to relatively quick atmospheric changes. Only the atmosphere above Antarctica and the global oceans in both the northern and southern hemisphere potentially influenced the variation of the Weddell Sea SIC. The leading times of the ocean variables in the southern hemisphere (Niño12 and SEIO SSTs) were five seasons, which were shorter than the leading times of the ocean factors in the northern hemisphere (PDO and AMO) of ten seasons. The relationships between oceanic and atmospheric factors at different leading times and Weddell Sea SIC were significant. These leading oceanic and atmospheric factors could be used to predict the variability of Weddell Sea SIC in advance.
[image: Figure 5]FIGURE 5 | Leading–lagged correlation coefficients between Weddell Sea SIC and various climate predictors listed on the right of the panel. Positive abscissa value indicates that the predictor is ahead of Weddell Sea SIC, and negative value indicates that the factor lags behind Weddell Sea SIC. The maximum correlation is identified by a vertical line of corresponding color. The black dashed lines denote correlation coefficients passed the two-sided t-test with the 95% confidence level using the effective degrees of freedom.
5 ESTABLISHING SEASONAL PREDICTION MODELS
This section employed the aforementioned six factors at individual leading times to establish the seasonal prediction equations of Weddell Sea SIC based on the multiple linear regression models. We first used data sets in the fitting period 1979–2012 to build models to simulate variations of Weddell Sea SIC and then examined the performance of the model during the predicting period 2013–2018.
In order to explore the contributions of atmospheric and oceanic predictors to changes in the Weddell Sea SIC, we divided the aforementioned six predictors into three groups (Table 1 to explore the independent influence of the oceanic factors (including the PDO, AMO, SEIO, and Niño12 SSTs), the combined effects of the aforementioned oceanic factors and SAM, and the joint effects of oceanic factors, SAM, and Weddell Sea SAT. The third group of potential influencing factors (including the leading PDO, AMO, SAM, SEIO, and Niño12 SSTs and simultaneous Weddell Sea SAT) can help us understand the best simulation we can achieve with the precise prediction of Weddell Sea SAT. According to the three groups of potential influencing factors, three equations were established based on the multiple linear regression models:
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TABLE 1 | Three groups of six predictors for the seasonal prediction models.
[image: Table 1]These prediction models aimed to investigate the contribution of only leading oceanic factors (Eq. (6)), joint contributions of leading oceanic factors and SAM (Eq. 7), joint contributions of leading oceanic factors, SAM, and a perfect prediction of simultaneous Weddell Sea SAT (Eq. 8) to the variations in Weddell Sea SIC. The Radj2 of the three models were respectively 0.117, 0.177, and 0.319. All these prediction models were credible and reasonable because they were statistically significant after F-testing at the 99.9% confidence level. Furthermore, the stabilities of Eqs (6)–(8) were examined by the jackknife method, with the results of Eq. (8) shown in Table 2. The R2 of the equation with all predictors was 0.349, the Radj2 was 0.319, and the F-test value was 11.537, which passed the significance test at the 99.9% confidence level (p < 0.001). The average R2, Radj2, and F-test value by jackknife were, respectively, 0.349, 0.319, and 11.461: close to the original values of Eq. (8). The relative deviation of the average R2 by the jackknife method was 0.06%, with a variation range of −5.3%–6%, and the Radj2 was 0.07%, with a range of −6.2%–6.7% within the bounds of reason. Therefore, both the F- and jackknife tests supported the high stability of these three seasonal prediction models.
TABLE 2 | Statistical parameters for the model including SST, SAM, and SAT and the test results of the jackknife method.
[image: Table 2]Figure 6 shows the simulated and observed variations and observed running mean of Weddell Sea SIC. All three prediction models generally reproduced low-frequency variability, although they were smaller extreme values of Weddell Sea SIC. The correlation coefficients between observed (seven-season running mean) Weddell Sea SIC and simulations by the models with factors in Groups 1, 2, and 3 were 0.38, 0.46, and 0.59 (0.50, 0.44, and 0.38) respectively. All the correlation coefficients passed the significant test at the 99% confidence level, suggesting that these models had generally effectively simulated the variation of Weddell Sea SIC during 1979–2012. The correlation coefficient between the observed seven-season running mean Weddell Sea SIC and the simulations with only oceanic factors (Eq. (6)) was the smallest and decreased after atmospheric factors contained in the prediction models (Eq.(7); (8). These facts implied that the simulation ability of the prediction models on the low frequency of Weddell Sea SIC decreased after consideration of the high-frequency atmospheric signals. Similarly, the simulations of Weddell Sea SIC were improved in the prediction models (Eq.(7); (8) by adding the atmospheric factors, suggesting better simulation ability on the low frequency of Weddell Sea SIC in the prediction model with only leading oceanic factors. This considered that the correlation coefficients between the simulated Weddell Sea SIC and the low-frequency (seven-season running mean) observed one decline after employing the atmospheric factors, that is, the improvements of the correlation coefficients between observed and simulated Weddell Sea SIC in Eqs.(7); (8) resulted from the better performance of these predictor models on high-frequency variability after using the atmospheric factors. Furthermore, the RMSE (MAE) of the three models were 0.75 (83.48), 0.72 (80.20), and 0.65 (71.39) (Table 3. These results imply that the declines of the errors resulted from better simulation of high-frequency variation of Weddell Sea SIC after adding the atmospheric factors, which supported the aforementioned conclusion. Compared with the curves of those observed, simulated Weddell Sea SIC was close to it during the periods 1980–1993 and 1996–2000 and showed a relatively large difference with that observed in 1987, 1993–1995, and 2002. Generally, simulated Weddell Sea SIC effectively reproduced the observed low-frequency variation. However, the simulated high-frequency variation of Weddell Sea SIC was not good for the low-frequency one during 1979–2012. Therefore, it is necessary to modify the models in order to improve the simulation results because there are system errors between the simulations and the observations.
[image: Figure 6]FIGURE 6 | Weddell Sea SIC anomaly observation, seven-season running average of observation, and simulation by multivariate linear regression equations using three groups of predictors shown in Formulas 6, 7, and 8 in fitting period (unit: %). ACCs of those three models are indicated on the panel’s left.
TABLE 3 | Evaluations of simulated and corrected Weddell Sea SIC anomaly in the whole fitting period (1979–2012).
[image: Table 3]6 ERROR CORRECTION METHODS FOR THE PREDICTION MODELS
We first analyzed the characteristics of errors in the whole fitting period. As shown in Figure 7, the errors were generally positive (negative) when the observations were positive (negative). The in-phase rate of the errors and observations was 81.6%. The errors were negative during 1981–1991 and 1996–2002 and positive during 1993–1995 and 2003–2012. The values of the errors were generally half of the observations since 2003. During the fitting period, the ratio of the errors to the observations was about 0.27, so the observed values were about 1.37 times those of simulated ones. Therefore, we developed a method to correct the high-frequency simulation, shown in Eq. (9). This error correction method enhanced the simulated Weddell Sea SIC anomaly in which the absolute values of the simulations were greater than or equal to 0.63 with 1.37 times amplification, with the others kept unchanged. We tried to set the threshold values to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 to find the changes of ACC, RMSE, and MAE. The threshold values were 0.63, corresponding to the maximal improvement of the aforementioned evaluating indicator. Therefore, we chose threshold values of 0.63 in Eq. (9).
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[image: Figure 7]FIGURE 7 | Observation, simulation by the model with Group 3 factors, and two corrections of Weddell Sea SIC anomaly in fitting period (unit: %). Correction1 represents the first error correction method shown in Eq. 9, and Correction2 represents the second method from Eq. 10. The blue and red histograms represent the positive and negative errors, respectively, between observation and simulation of SIC. The abscissa denotes the calendar year.
The simulated Weddell Sea SIC anomalies were improved after the aforementioned error correction method for 1981, 1983, 1996, 1999, 2003, 2008, and 2012, which could be found visually. The ACC, RMSE, and MAE of the three prediction models were shown in the right part of Table 3. By the correction in Eq. (9), the ACCs of these three models all increased from 0.38, 0.46, and 0.59 to 0.43, 0.50, and 0.60, respectively. The RMSEs and MAEs all decreased, except the RMSE of the prediction model under the SST, SAM, and SAT, which remained unchanged. These results suggested that this error correction method effectively improved these three prediction models. Therefore, considering only extreme values corrected by Eq. (9), the improvements of the corrected prediction models resulted from the decline errors of the extreme values.
Furthermore, considering that the observed Weddell Sea SIC anomalies were almost positive and the positive errors between the observed and simulated Weddell Sea SIC anomalies by the model with all factors were approximately half of the observations during 2003–2012, we developed the second method to correct the models in Eq. (10):
[image: image]
The ratio of the errors to the observations was about 0.365, so the second error correction method was to enhance the simulated Weddell Sea SIC anomaly 1.869 times when the absolute values of the simulations were greater than or equal to 0.1 and to keep the others unchanged. The in-phase rate of the errors and observations was 87.5% larger than that during the whole fitting period. The ACC of the model with the factors in Group 1 increased from 0.29 to 0.31, while the other two in Groups 2 and 3 remained 0.65 and 0.64 (Table 4. The RMSEs and MAEs all decreased. These results suggested that this error correction method was also effective for improving the models. As shown in Figure 7, the second corrected Weddell Sea SIC anomalies were larger than the first and reproduced the positive observations better, such as in 2003, 2005, 2008, and 2010. In comparison, the second error correction method shown in Eq. (10) was better for enhancing the simulated extreme values during 2003–2012. The period 2003–2012 was adjacent to the predicting period. The rhythm of the errors might persist in the prediction period of 2013–2018. Therefore, this correction method was used in the next section's prediction period.
TABLE 4 | Evaluations of simulated and corrected Weddell Sea SIC anomaly during 2003–2012.
[image: Table 4]7 PREDICTIONS OF SUDDEN LOSSES OF WEDDELL SEA SIC
The observations, predictions, and corrections for the Weddell Sea SIC anomaly in the prediction period are shown in Figure 8. The observed Weddell Sea SIC anomalies experienced a phase reversal from positive to negative over 2015–2017, which contained two sudden loss events. The first decrease of observed Weddell Sea SIC anomaly was from the peak of the austral autumn of 2015 to the average state in the austral summer of 2016, and the second decline was from the austral autumn of 2016 to the following spring. The predictions of these three models all generally reproduced the phase reversal and captured the low-frequency variability of the Weddell Sea SIC anomaly similar to the fitting period. But all the models failed to predict the time of phase reversal. The zero value of the predicted Weddell Sea SIC anomaly by the model with oceanic predictors in Group 1 lagged the observed one by two seasons and the other two by the models in Groups 2 and 3 led it by one season. The observed Weddell Sea SIC anomaly reached a peak value of 2.42% in the austral summer of 2014 and a maximum value of 2.21% in the autumn of 2015, but the amplitudes of predictions by all models were smaller and lagged the observations by one season. The observed minimum value of the Weddell Sea SIC anomaly was −2.32% in the austral spring of 2017. The predicted minimum value of the Weddell Sea SIC anomaly by the models with all factors was −1.19% synchronously and those by the other two models both were smaller and lagged the observations by one season. The models captured the extreme value in 2014, but it was smaller than the observation. The models reproduced the extreme value in 2015 and the subsequent decline and had a good performance of the recordable minimum value in 2017. The prediction ability weakened after 2018, which might be related to the length of the predictive validity. The ACCs of the three models were, respectively, 0.71, 0.68, and 0.79—shown in the left of Table 5—which all exceeded the significance test at a 99% confidence level. The RMSEs (MAEs) were, respectively, 1.05 (17.53), 1.07 (17.97), and 0.91 (15.63). Among all these models, that with all factors was the best model with oceanic factors, and SAM was worse than the one with only oceanic factors. These results indicated that Weddell Sea SAT was indispensable and could help effectively predict the sudden loss of Weddell Sea SIC during 2016–2017. As for the predicted Weddell Sea SIC anomaly by the model with all factors, the first decrease took one season from the peak value 1.03% in the austral winter of 2015, and the second decline took three seasons from the austral summer of 2016. In general, the predicted first decline of Weddell Sea SIC by the model with all factors was faster than was observed, although lagging those observed by one season. The second decline was slower and led that observed by one season. The observed and predicted Weddell Sea SIC anomaly by all models both recovered to near the average state in austral autumn of 2017.
[image: Figure 8]FIGURE 8 | Observed, predicted, and corrected Weddell Sea SIC anomaly in prediction period (unit: %). The predicted Weddell Sea SIC anomaly refers to these predictions according to Eqs. 6–8, and the corrected ones represent the correction of Weddell Sea SIC anomaly according to Eq. 10. The colorful solid lines represent the predictions, and the dashed lines represent the corrections. The abscissa denotes the austral seasons.
TABLE 5 | Evaluations of predicted and corrected Weddell Sea SIC anomaly in the prediction period (2013–2018).
[image: Table 5]By the error correction method according to Eq. (10), the predicted Weddell Sea SIC anomalies were improved and reproduced the high-frequency variability of the observations, such as the peak values in the austral autumn of 2014 and the winter of 2015 and the minimum value in the spring of 2017. The predicted Weddell Sea SIC anomaly by the model with all factors was −2.21% in the spring of 2017 and almost perfectly predicted the variability. As shown in Table 5, the ACCs all remained unchanged and the RMSEs and the MAEs decreased after correcting. The correction models all could better predict the variability of Weddell Sea SIC. Compared with the first error correction method in Eq. (9), the second in Eq. (10) showed more effective improvement in the predicting period. Therefore, the sudden losses of Weddell Sea SIC during 2015–2017 were significantly improved by the second error correction method.
8 POSSIBLE CAUSES OF RECENT SUDDEN LOSSES OF WEDDELL SEA SIC
A new regime shift occurred in 2013/14 (Xiao and Ren, 2023), which preceded the sudden losses of Weddell Sea SIC and might have influenced it. However, the PDO could not capture this regime shift. To better represent the signals of regime shift in the 2013/14 North Pacific SST, we employed the average of SST anomalies over the northern North Pacific (180°E−130°W, 50°–60°N), the eastern North Pacific (120°–135°W, 20°–50°N), and the northern Tropical Middle and East Pacific (110°–170°W, 10°–20°N) (according to Figure 1 of their study) to represent the PDO index in Figure 9. We also used the averaged SST anomalies to represent the PDO index in the prediction and correction models. The coefficient, ACC, RMSE, and MAE of the prediction models were very similar (not shown). Therefore, it was reasonable that the averaged SST anomalies in the North Pacific were used to indicate the PDO index in this section.
[image: Figure 9]FIGURE 9 | Changes of Weddell Sea SIC in austral summer and the predictors at corresponding lead time of 2015–2017 compared with their values over the previous year. For example, the symbol “2015 minus 2014” of SIC indicates the difference of Weddell Sea SIC between 2015 and 2014. The symbol “2015 minus 2014” of AMO indicates the difference of the AMO index at the season leading 11 seasons of 2015 summer and that of 2014. White diagonal markers indicate positive contributions.
Figure 9 shows the difference in the Weddell Sea SIC anomaly in the austral summer between the neighboring years and the potential factors at individual leading times before it. The difference in the SIC anomaly between 2015 and 2014 showed a negative anomaly of 0.5%. The PDO, AMO, Niño12, and SEIO SST anomalies also reduced, while the SAM and Weddell Sea SAT anomalies increased. Considering the positive and negative relationships between them and Weddell Sea SIC, this suggested that the AMO, SEIO SST, and SAT made positive contributions to the decrease of the Weddell Sea SIC anomaly. Regarding the difference between 2016 and 2015, the Weddell Sea SIC anomaly sharply reduced by up to 1.9, and the PDO, AMO, Niño12, and SEIO SSTs and Weddell Sea SAT anomalies increased while the SAM anomaly decreased. These facts implied that the positive contributions of declining Weddell Sea SIC in 2016 were from the PDO, Niño12 SST, SAM, and SAT and that the negative contributions were from the other factors. The PDO anomaly had the largest positive change. In terms of the difference between 2017 and 2016, the Weddell Sea SIC anomaly decreased by 1.5%. The AMO, PDO, Niño12 SST, SAM, and Weddell Sea SAT showed positive contributions from decreased Weddell Sea SIC in 2017. However, the SEIO SST provided a negative contribution. According to the aforementioned findings, the main factors influencing the sudden losses of Weddell Sea SIC in 2016 (2017) were the PDO, Niño12 SST, SAM, and SAT (AMO, PDO, Niño12 SST, SAM, SAT). The SAT was the consistently positive contributor during 2015–2017. The PDO, Niño12 SST, SAM, and SAT were the common factors which positively contributed to the two sudden losses of Weddell Sea SIC in 2016 and 2017. The AMO contributed negatively to the sudden loss of Weddell Sea SIC in 2016 but made a stronger positive contribution in 2017.
9 CONCLUSION AND DISCUSSION
This study focused on recent sudden declines of SIC in the Weddell Sea. We noted that sea-ice in the Antarctic has reduced in recent years and that the Weddell Sea was the primary area of this. The Weddell Sea SIC anomaly was in a long-term increasing trend, but after reaching peak in 2014, it was on a record-breaking downward trend, falling from 2.21% to −2.32%. The Weddell Sea SIC anomaly was positive until 2014 and then almost entirely negative in 2017.
We explored the potential contributions of the leading atmospheric and oceanic factors to these losses in Weddell Sea sea-ice. Six potential influencing factors were identified by calculating the leading–lagged correlation coefficients. The AMO led Weddell Sea SIC by eleven seasons, the PDO by ten, the Niño12 and SEIO SSTs by five, the SAM by three seasons, and the SAT over the Weddell Sea most significantly correlated with the SIC simultaneously.
These six factors were divided into three groups to establish the multiple linear regression models during the fitting period 1979–2012. The groups of potential predictors aimed to explore the effects of the leading oceanic factors (including the PDO, AMO, SEIO, and Niño12 SSTs), the combination of the aforementioned leading oceanic and an atmospheric factor (SAM), and a leading oceanic factor, SAM, and simultaneous Weddell Sea SAT. These three groups of potential factors were employed to establish each prediction model for 1979–2012, which exceeded the 99.9% confidence level of F- and jackknife tests. All these three prediction models effectively reproduced the low-frequency variation of the Weddell Sea SIC anomaly. We developed two error correction methods to improve the simulated extreme values of Weddell Sea SIC. The ACC, RMSE, and MAE were obviously improved after correcting. The second error correction method had better performance in improving the models' accuracy.
We examined the predicted Weddell Sea SIC anomaly during the prediction period 2013–2018. The three models captured the phase reversal and low-frequency variability of Weddell Sea SIC anomalies. The models all predicted the sudden losses of sea-ice in the Weddell Sea, and the model with all factors had the best performance. The predicted Weddell Sea SIC anomalies were improved through the second error correction method, with the ACCs remaining unchanged and the RMSEs and the MAEs decreasing.
The models captured the variability of Weddell Sea SIC anomalies, especially after correction, and the six factors we selected had an important influence on the losses of Weddell Sea SIC. The AMO, SEIO SST, and SAT made positive contributions to the decline of the Weddell Sea SIC anomaly during 2014–2015. In 2015–2016, the positive contributions were from the PDO, Niño12 SST, SAM, and SAT. In 2016–2017, all the factors except the SEIO SST had a jointly positive influence on the decline of Weddell Sea SIC. The Weddell Sea SAT was the most primary factor and positive contributor.
The Weddell Sea SIC anomaly increased in the early 1990s and reached the maximum value of 1.07% in the austral winter of 1995. It then experienced a rapid and sharp decline, approaching the climatic average of −0.03% in the austral summer of 1996 and a low value of −1.81% in the austral spring of 1996. When Weddell Sea SIC decreased dramatically, the PDO and SAT increased, the Niño12 SST was almost unchanged, and the AMO, SEIO SST, and SAM decreased. Considering the positive and negative relationships between them and Weddell Sea SIC, it suggested that all factors except Nino12 SST made positive contributions to the decrease of Weddell Sea SIC.
The two error correction methods used in this study statistically enhanced the high values of predictions in the prediction period based on the characteristics of errors in the fitting period. There are many other effective post-processing methods to revise the results produced by the prediction models, such as machine learning. Using other efficient post-processing methods may result in higher accuracy.
Sudden recent decreases of sea-ice in the Weddell Sea and even the entire Antarctic occurred after a hiatus in global warming. It is not yet known whether there is a clear connection between the two events or only a coincidence. The link between the changes in sea-ice and in the global climate system still needs to be explored.
Moreover, although these factors can predict the losses of Weddell Sea SIC to some extent, we still do not understand that how they affect sea-ice, at which time scale, whether they are influenced directly or indirectly by other factors, or how long the effects would last. More discussion and analysis is needed regarding the interactions between sea-ice and predictors. In addition to the six predictors selected in this study, there may be further related factors in the internal climate system and external factors that play an important role in Antarctic sea-ice decrease. These considerations merit further and deeper research.
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Under the background of global warming, interaction between heat waves (HWs) and urban heat island (UHI) has led to trends of increase in the intensity, frequency, and duration of extreme heat events in urban areas, seriously threatening the health of urban populations. Taking Guangzhou (a tropical megacity in China) as an example, this study used automatic weather station data and ERA5 reanalysis data to explore the interaction between HWs and UHI, and to elucidate the effects of wind speed and local climate zones (LCZs) on such interaction. Results revealed obvious HWs–UHI interaction in Guangzhou, whereby HWs induces an amplification effect on UHI intensity (UHII) that was most significant at night. In the main urban area, UHII and HWs both weakened with increasing wind speed, indicating that low wind speeds contribute to increased occurrence of HWs and enhancement of UHII. Differently, in some areas peripheral to the main urban area, the UHII at medium wind speeds was stronger than that at low wind speeds, which reflect the impact of heat advection from the urban center. For different LCZs in the main urban area, the strongest UHII, highest risk of HW occurrence, and most significant HWs–UHI interaction were found in the compact mid-rise buildings and compact low-rise buildings (LCZ2 and LCZ3, respectively), followed by the compact high-rise buildings (LCZ1), which was mainly affected by the shading effect of high-rise buildings. The weakest UHII and lowest risk of HW occurrence were found in open high-rise buildings and open mid-rise buildings (LCZ4 and LCZ5, respectively), which generally have good ventilation conditions. Our findings will help to understand urban warming and its association with UHI and HW events in tropical urban regions, which has implications for rational improvement of the urban thermal environment in other tropical urban regions globally.
Keywords: urban heat island, heat waves, wind speed, local climate zones, ventilation, urban warming
1 INTRODUCTION
Heat waves (HWs) show trends of increase in intensity, frequency, and duration under the background of global warming (Meehl and Tebaldi, 2004; You et al., 2017; Wang and Yan, 2021). Persistent HWs bring considerable harm to human health and extreme HWs are the leading cause of increased weather-related human mortality (Basu and Samet, 2002; Tan et al., 2007). An HW event is a period of intense heat that persists for days or weeks that is usually accompanied by a high-pressure synoptic system (e.g., an anticyclone) (Zong et al., 2022), and is affected by multiple factors such as soil desiccation, climate variability, urbanization, and urban heat island (UHI). (Perkins, 2015; Yang et al., 2017; Liao et al., 2018; Luo et al., 2020; Luo & Lau, 2021).
The UHI refers to the phenomenon whereby the center of an urban or metropolitan area is warmer than surrounding rural areas owing to changes in the surface energy balance attributable to urbanization (Oke, 1982). Earlier studies showed that the combined effect of HWs and UHI is greater than the sum of their individual effects (Li and Bou-Zeid, 2013; Sun et al., 2017). In other words, when an HW event occurs, the increased urban heat stress will be even greater than that attributable to the sum of the background UHI effect and background HW effect (Li and Bou-Zeid, 2013). Interaction between HWs and UHI is mainly reflected in the strong impact that HW occurrence imparts on the spatiotemporal characteristics of UHI intensity (UHII), which is modulated mainly by changes in the radiation budget, differences in turbulent heat fluxes, and changes in cloud cover and wind conditions (Li et al., 2016; Zhong et al., 2017; Kong et al., 2021). Additionally, HWs further increase temperatures in urban areas (Li and Bou-Zeid, 2013; Kong et al., 2021). Moreover, continued urbanization leads to intensification of HWs and UHI (especially at night), while enhanced UHI increases the risk and duration of extreme heat events (Ren et al., 2008; Yang et al., 2017; Shi et al., 2021). Previous studies showed that HWs–UHI interaction is largely attributable to the contrasting responses of urban and rural surface energy budgets to HWs (Li et al., 2015) and changes in wind speed (Li et al., 2016; Yang et al., 2022).
The interaction between HWs and UHI remains a controversial topic. On the one hand, many studies have demonstrated amplification of UHII by HWs, although the degree of amplification and the characteristics of UHII vary between different cities (Ramamurthy and Bou-Zeid, 2016; Ao et al., 2019; Jiang et al., 2019; Ngarambe et al., 2020; Zong et al., 2021). On the other hand, some studies have observed a steady or even declining trend in UHII during HW periods, which imply that climate differences or changes in soil moisture have certain impact on HWs–UHI interaction (Chew et al., 2020; Richard et al., 2021) because differences in the background climate contribute significantly to changes in UHII (Zhao et al., 2014).
In addition to the influence of background climate differences, local climate zones (LCZs) also have important impact on the spatiotemporal distribution of UHII (Stewart and Oke, 2012; Ngarambe et al., 2020; Chen et al., 2021; Zong et al., 2021). Generally, that climate change at the surface and boundary layers is driven by the surface energy balance. Studies have considered differences in turbulent heat fluxes to be the main cause of temperature differences between urban and rural areas (Khan et al., 2020). Generally, LCZs are clustered by their approximate ability to modify the local surface climates by their fabric, land cover, structure, and metabolism, which are factors defined to better express the physical properties that control the climatic responses at a particular station (Stewart and Oke, 2012; Mu et al., 2020). Based on LCZs classification, the potential impact of the surface properties at each station on the UHI and various elements of the surface energy balance can be described more effectively (Oke et al., 2017). Therefore, it is of great importance to investigate the change of UHII for different LCZs and its relationship with HWs.
Guangzhou, a megacity, located on the subtropical coast of China, has a marine subtropical monsoon climate. The total built-up area in 2020 was 1,350.95 km2, and the permanent population comprised 18.68 million people. The annual average temperature in Guangzhou has risen continuously since 1953, the change rates from 1953 to 2009, 1973 to 2009, and 1983 to 2009 were 0.22°C/10a, 0.38°C/10a, 0.49°C/10a, respectively. The rise in temperature over the past 30 years has been consistent with the urbanization process. Urbanization factors are positively correlated with the annual average temperature, with the correlation coefficients higher than 0.80 (Feng and Pan, 2011). In Guangzhou, UHI classified at the level of strong or above mainly occurs in the central area of the city, the daytime UHI in the main urban area is particularly serious in summer and autumn, and more than 95% of the city blocks have different degrees of UHI effect (Deng et al., 2018). Additionally, previous studies have found interaction between HWs and UHI in Guangzhou. For example, the nighttime maximum UHII in Guangzhou was enhanced by 0.8°C ± 0.20°C during HWs, and the surface solar radiation during HWs was approximately 1.5 times greater than the normal level (Jiang et al., 2019). However, the effects of different LCZs and of urban ventilation conditions on HWs and UHI in Guangzhou and their interactions remain unclear.
Using both hourly observations of temperature and wind speed recorded from automatic weather stations in the warm season (May–September) in Guangzhou during 2013–2018 and corresponding ERA5 reanalysis data, this study aims to investigate the influencing and modulating effects of different wind speed conditions and LCZs on HWs and UHI in Guangzhou. The findings will help improve understanding and awareness of the causes of extreme heat stress and climate change in tropical megacities.
2 DATA AND METHODS
Considering that the heat wave events in Guangzhou in recent decades are concentrated from May to September, this study used hourly observations of temperature, wind speed, and wind direction data (http://data.cma.cn/en) recorded by automatic weather stations in this warm period in Guangzhou during 2013–2018. In studies of HWs and UHI, abnormal temperature data are generally considered as missing, and missing temperature data are replaced using the linear interpolation method. Among the 126 weather stations in Guangzhou, data from 10 urban stations (including one national station) and 5 rural stations (including two national stations) were selected in this study. As shown in Figure 1 (source: Google Earth), the urban stations are distributed in the southern, central and northern parts of the main built-up area. The rural stations are all located outside the built-up area in regions where the coverage of surrounding vegetation is greater.
[image: Figure 1]FIGURE 1 | (A) Geographical locations of the urban and rural stations in Guangzhou, and; (B) Google Earth images of the locations of the urban stations.
Previous studies show that heat waves were related to both large-scale weather system and local urbanization (Perkins, 2015; Liao et al., 2018; Luo et al., 2020). For studying urbanization effects, five rural stations were selected as background stations, which can reflect the modulation of large-scale weather background with marginal impacts of human activity. Figure 2. Shows the heat waves and daily maximum temperatures averaged by rural stations, which are lower than those of urban stations. Here we mainly study the contribution of the diversity of complex urban underlying surfaces to UHI and HWs. Therefore, we can compare the temperature at urban and rural station to extract the impacts of local urbanization effects under certain large-scale weather conditions (e.g., heat wave context), especially for checking the contributions of the LCZs within the city and to UHI and HWs.
[image: Figure 2]FIGURE 2 | (A) Average daily maximum temperature at urban and rural stations during study period, and (B) average number of Heat Waves and UHII at urban and rural stations during study period.
When choosing a rural station for study of UHI, it is important to note the direction of the local prevailing wind. Generally, rural stations located downwind of built-up urban areas are not considered to avoid the influence of heat advection, which lead to large errors in the calculation of UHII. The classification of LCZs, as defined by Steward and Oke (2012), combines local floor heights and regional building densities. Stations near water bodies or at high elevations were also avoided. The classification of each station into the LCZs is shown in Table 1. The urban stations consisted of three compact types (LCZ1, LCZ2, and LCZ3) and two open types (LCZ4 and LCZ5). The characteristics of the vegetation at the rural stations comprised dense trees (LCZA), bush and scrub (LCZC), and low plants (LCZD).
TABLE 1 | Geographical location and classification of each of the urban and rural stations.
[image: Table 1]This study also used contemporaneous ERA5 reanalysis data that comprised boundary layer height (BLH) data and surface solar radiation (downward) data (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview) with 0.25 × 0.25 grid resolution. In this study, we selected three grid points (23°00′N, 113°15′E, 23°15′N, 113°15′E, and 23°30′N, 113°15′E) for which the BLH and surface solar radiation data were positioned reasonably close to the overall built-up area of Guangzhou. This study focused on the canopy layer UHII, which is defined as the near-surface air temperature at each urban station minus the average air temperature at all rural stations (Oke et al., 2017; An et al., 2020). The definition of HWs used in different studies varies (You et al., 2017). This study considered the definition of a high-temperature day given by the China Meteorological Administration, and defined an HW event as when the daily maximum temperature exceeded 35°C for three or more days consecutively.
When considering the effect of wind speed, the distributions among the various stations of days with high wind speeds and days with low wind speeds are heterogenous. For example, some stations have very few days with high wind speeds, resulting in fewer UHII data, which will cause large errors in some statistical results. To reduce such influence, wind speed data from two national stations (59,287 and 59,481, as national stations with representative observation environment) were regarded as the background prevailing wind. The study used k-means clustering to classify the daily average wind speed data of the two national stations. We obtained three grades of wind speed: low wind speed (0–1.34 m/s), medium wind speed (1.34–2.34 m/s), and high wind speed (2.34–6.70 m/s). The characteristics of HWs and UHII at each station under the three wind speeds were evaluated based on this standard.
Additionally, the urban surface transport index (USTI) was introduced to supplement the effect of wind direction HWs–UHI interaction. The USTI is defined as follows: 
[image: image]
where Ws, u, v, and n represent the wind speed, zonal wind speed, meridional wind speed, and number of samples, respectively (Berkovic, 2016). The USTI indicates the consistency and stability of the local wind direction. When the USTI value is large (close to 1), the wind direction is broadly consistent; conversely, when the USTI value is small, the wind direction is more chaotic. In the analysis of wind speed, n was set to the total number of wind speed data at each station, thereby the clutter in wind direction for each single station over the 6-year study period was calculated.
The significance of any differences between the mean UHII under different wind speeds and the LCZs was determined using analysis of variance (at a 0.001 confidence level) and Tukey’s test.
3 RESULTS
3.1 Temporal characteristics of HWs and UHII
The various temporal-scale characteristics of air temperature and HW events in the Guangzhou area during 2013–2018 are shown in Figure 3. Generally, the average temperature at the urban stations in Guangzhou was approximately 1.00°C higher than that at the rural stations (Figure 3A). The overall average UHII in 2017 was higher than in other years (red line in Figure 3B), reaching 1.12°C, which was approximately 0.2°C higher than in the years with the lowest UHII (2013 and 2018). During the study period, HW events were concentrated in May–August (Figure 3C). The highest total number of HWs (114) was in 2014, with average duration of 53 days per station. The lowest total number of HWs (46) was in 2018, with average duration of 23 days per station (the “average duration” refers to the sum of heat wave duration of all stations divided by ten). In other years, there were approximately 60 HW events with average duration at a single station of approximately 30 days. It can also be seen from Figure 3B that the interannual fluctuation of high temperature (yellow line in Figure 3B) and UHII changes greatly, suggesting that HWs with high temperature might interact with UHI.
[image: Figure 3]FIGURE 3 | (A) Diurnal variation of temperature at the urban and rural stations in Guangzhou during 2013–2018 (BJT: Beijing time), (B) line graph of the annual average UHII (red) and annual average high temperature (yellow), where high temperature (Th) refers to temperatures no lower than 35°C, and (C) the general situation of HW events in Guangzhou during 2013–2018. The time resolution of calendar chart is daily. The color scale of the calendar graph represents the number of stations with HW events on a given day, and the bar graph represents the sum of HW events that occurred at all urban stations each year.
3.2 Differences in UHII between HW and non-HW (NHW) periods
The diurnal variation of UHII during 2013–2018 is shown in Figure 4, where the red and blue lines represent the diurnal variation of UHII during HW and non-HW (NHW) periods. It can be seen that the overall diurnal variation of UHII in Guangzhou was unimodal, and that the UHII at night was significantly stronger than that during daytime, consistent with the findings of Jiang et al. (2019). This is the typical diurnal variation of UHII. The range of the 6-year average UHII in HW and NHW periods was −0.28 –3.80 and −1.30°C–3.05°C, respectively, and the average values were 1.76°C and 0.87°C, respectively. Compared with NHW periods in each year, UHII in HW periods increased by 0.58°C–1.33°C (77%–176%), 0.37°C–1.16°C (44%–137%), 0.11°C–1.12°C (14%–148%), 0.18°C–0.89°C (25%–124%), 0.49°C–1.26°C (47%–121%), 0.46°C–1.18°C (47%–120%), respectively (Here we used the hourly average UHII of each year in the HW and NHW periods to calculate the magnification and get their upper and lower limits). HWs amplified UHII by nearly 0.9°C on the whole, and the 6-year average UHII was increased by 103%. The overall amplification effect (calculated as the average UHII of the HW period minus the average UHII of the NHW period) was relatively strong in both 2013 and 2017, reaching 1.08°C and 1.04°C, respectively. Conversely, the amplification effect in both 2015 and 2016 was relatively weak at 0.72°C and 0.76°C, respectively.
[image: Figure 4]FIGURE 4 | Diurnal variation in UHII in Guangzhou during HW and NHW periods during 2013–2018 (BJT: Beijing time). The red and blue shaded areas represent the annual standard deviation of HW and NHW periods, respectively.
Figure 5, produced using the differences in diurnal variation of UHII in HW and NHW periods during 2013–2018, shows that the ΔUHII was W-shaped and almost always positive with a clear peak at night (form approximately 20:00 to 06:00 Beijing time (BJT) on the following day). Larger ΔUHII also appeared during daytime (09:00–17:00 BJT), which indicates that the HW occurrence had strong amplification effect on UHI.
[image: Figure 5]FIGURE 5 | Diurnal variation in UHII difference (ΔUHII) between HW and NHW periods in Guangzhou during 2013–2018 (BJT: Beijing time).
3.3 Influence of wind speed on HWs and UHII
To evaluate the role of wind speed, the characteristic of HW events and UHII under three different wind speed conditions were obtained by applying k-means clustering to the of wind speeds recorded at the two national stations considered in this study. First, the total duration of HW events at each urban station under the conditions of the three wind speeds was determined. At each of the urban station, the total number of HW days at low wind speeds was higher than that at medium and high wind speeds (Figure 6A). The most significant differences under the different wind speed conditions were observed at stations 713,222 (LCZ2), 713,224 (LCZ3), and 713,108 (LCZ3), i.e., the number of HW days at low wind speeds was more than 100 days longer than that at medium and high wind speeds. Boxplots of the daily average UHII for different wind speeds at each urban station are shown in Figure 6B. Generally, higher values of UHII were found to correlate with lower wind speeds. The average value of UHII at high, medium, and low wind speeds were 0.46, 1.02, and 1.11°C, respectively.
[image: Figure 6]FIGURE 6 | (A) Duration of HWs at each urban station under different wind speeds, and (B) UHII at each urban station under different wind speed conditions.
Comparison of Figures 6A, B reveals that the HW and UHII characteristics at each station under different wind speeds had strong consistency. The higher the number of HW days at a certain station, the higher the UHII; however, both decreased with the increasing wind speed, which again confirms the effect of HWs–UHI interaction. Results of the analysis of variance and Tukey’s test showed that the mean UHII at each station under three wind speeds was significantly different (p < 0.001).
Certain abnormalities were evident at individual stations, e.g., station 711,006 (LCZ2), which showed that the average UHII at medium wind speeds was slightly higher than that at low wind speeds (Figure 6B) with an average difference of 0.03°C–0.04°C. Statistics showed that the 6-year prevailing wind direction at this station is mainly 190°–270°, i.e., from southwest direction (Figure 7A), and that the number of days on which the wind direction within a 24-h period was entirely from this quadrant accounted for more than 57% of the total number of days. Considering that this station is located at the northeastern edge of the built-up area, we considered the wind direction to be from the southwest and observed the variation of the daily average UHII at the station (Figure 7B). It was found that when the wind speed increased, the UHII increased significantly within a certain range of wind speed, which indicated certain impact of the local prevailing wind on the energy balance in peripheral urban areas. At moderate wind speeds, heat from the warmer urban center could be transported downwind to peripheral areas, causing them to warm to some extent.
[image: Figure 7]FIGURE 7 | (A) Rose diagram of wind direction at station 711,006 (LCZ2), and (B) relationship between daily average UHII and wind speed at station 711,006 (LCZ2) (range: 190°–270°; when the wind direction was from within this range for 16 h or more within a 24-h period, it was considered that the wind was from the southwest all day). All wind vectors in the interval were uniformly projected to the direction of 225° to obtain the projected wind speed.
3.4 Modulation of HWs and UHII by LCZs
The frequency of HW events and the overall level of UHII at each urban station are shown in Figures 8A, B, respectively. Stations in LCZ2 and LCZ3, especially 713,222 (LCZ2) and 713,224 (LCZ3) located in the central urban area of Guangzhou, had the highest number of HW events (Figure 8A) and the strongest UHII (Figure 8B), i.e., the frequency of occurrence of HW events was 59 and 55 times and the average UHII was 1.66°C and 1.47°C at stations 713,222 (LCZ2) and 713,224 (LCZ3), respectively. Despite all being classified as type LCZ3, the frequency of occurrence of HW events and the strength of the UHII at station 711,015 (located in the southern urban area), station 711,059 (located in the northern urban area) were not as great as at station 713,224 (located in the central urban area). The frequency of occurrence of HW events and the strength of the UHII at station 711,006 (LCZ2) were weaker than at most of the other stations, i.e., the average UHII was only approximately 0.35°C, much lower than that at station 713,222 (LCZ2) and 713,224 (LCZ3) in the urban center, mainly because station 711,006 (LCZ2) is located at the periphery of the built-up area close to the mountains. LCZ4 and LCZ5 (three stations in total as shown in Figure 8) are open building zones for which the strength of the UHII was lower than that of LCZ1, 2, and 3 (Figure 8B), i.e., the average UHII of stations classified as type LCZ4 or LCZ5 were 1.09, 0.82°C and 0.60°C, respectively, and the average number of HWs was approximately 35. Remarkably, in the central urban area, the frequency of occurrence of HW events (28 times) and the strength of the UHII (average: 1.23°C) at station 711,001 (LCZ1) were inferior to those in nearby areas, e.g., at stations 713,222 (LCZ2) and 713,224 (LCZ3). Statistical results showed that the overall average temperature at station 711,001 (LCZ1) was approximately 0.4°C lower than that at station 713,222 (LCZ2) and 713,224 (LCZ3), even though all three stations are located in the city center. The temperature difference increased sharply after 07:00–08:00 BJT, and the maximum difference could reach approximately 1°C. The temperature difference decreased slightly at noon and then decreased rapidly after 17:00 BJT (Figure 9). For more robust results, we made statistics on more ground stations with 31 urban stations and 6 rural stations in Guangzhou (as shown in Figure 8C), that there were significant differences among UHII groups in different LCZs. The differences in HW between the same LCZ types caused by the various geographical environment near the urban stations with different location.
[image: Figure 8]FIGURE 8 | (A) Frequency of HW events for each urban station and LCZ, and (B) overall UHII level for each urban station and LCZ, and (C) number of HWs and averaged UHII in different LCZs with 31 urban and 6 rural stations in total.
[image: Figure 9]FIGURE 9 | Diurnal variation of temperature at stations 711,001 (LCZ1), 713,222 (LCZ2), and 713,224 (LCZ3) (BJT: Beijing time).
The analysis of variance and Tukey’s test showed that the mean UHII at each LCZ station was significantly different (p < 0.001).
4 DISCUSSION
About research in Guangzhou, namely Jiang et al. (2019), they mainly focused the diurnal variation of UHII during heat waves and the contribution of solar radiation to UHII. In contrast, our present work aims to reveal the influence of different local climate and environment on the UHII under the large-scale heat wave weather system, that is, the contribution of LCZ and ventilation are also considered on a local scale. More importantly, we introduced the urban surface transport index (USTI) to explore the effect of wind direction HWs–UHI interaction. At the local scale in the urban area, particularly, the integrated influence of ventilation, heat advection and different underlying surface has important impacts on local UHII.
4.1 Potential effect of HWs on the UHI
By comparing the differences in UHII between HW and NHW periods, this study analyzed the interaction between HWs and UHI in Guangzhou. Results confirmed that HWs–UHI interaction occurred in Guangzhou, and that the occurrence of HWs resulted in significant enhancement of UHII during both daytime and nighttime (but stronger at night). Generally, open and exposed surfaces have higher rates of heating and cooling (unless the soil is very wet), meaning that rural areas gain heat quickly in the morning and lose it quickly in the evening. Conversely, the high thermal admittance of urban materials and local shadow blocking mean that the temperature response in urban areas is not so fast and thus the UHII in urban areas exhibits abrupt change in the morning and evening (Yow, 2007; Oke et al., 2017). Rural areas have larger vegetation coverage and more abundant water resources, and heat is mainly exchanged in the form of latent heat (Kong et al., 2021). Previous research showed that the average temperature of vegetated surfaces is generally lower than that of impervious surfaces (Sun et al., 2012; Song et al., 2014; Estoque et al., 2016). However, the unique radiative properties of urban materials cause urban areas to have greater heat storage capacity during daytime than rural areas, and this heat is released at night in the form of sensible heat that becomes confined in the near-surface layer owing to the presence of the stable nocturnal boundary layer and reduced vertical mixing, contributing to the peak of UHII at night (Ramamurthy et al., 2014). This process is further enhanced when an HW occurs. Studies have shown that HW occurrence is usually accompanied by a persistent high pressure anticyclone system, as well as enhanced solar radiation, lower cloud cover, and lower wind speed (Hong et al., 2019; Ngarambe et al., 2020). Figure 10A shows that the solar radiation at noon generally was increases by about 1.4 times during HW periods with respect to NHW periods. During daytime, especially at noon, the increased shortwave radiation and decreased wind speed resulted in increased heat storage when an HW event occurs (Sun et al., 2017), while high air temperatures lead to the release of more anthropogenic heat from sources such as air conditioning. This may explain why ΔUHII has a peak at noon. The BLH data partly support this because an elevated urban boundary layer is observed during daytime when an HW occurs (Figure 10B), indicating enhancement of near-surface thermal effects. At night, the high value of ΔUHII means that the amplification effect of UHII during an HW period is more severe than that during the day because more heat stored in the urban surfaces is released at night. When an HW occurs, a stable anticyclonic system and lower wind speeds reduce the effect of advective cooling (Ngarambe et al., 2020; Kong et al., 2021). Furthermore, suppression of boundary layer development by descending air (Figure 10B) further weakens vertical mixing.
[image: Figure 10]FIGURE 10 | (A) Diurnal variation of surface solar radiation (downward), and (B) diurnal variation of average boundary layer height (BLH). The criterion for determining HW is that at least 6 or more stations are in HW period on that day. (BJT: Beijing time).
4.2 Effects of ventilation condition on HWs–UHI interaction
Given that weather and surface conditions are important factors that affect UHII (Memon et al., 2008; Tzavali, 2015), this study explored the effects of wind speed and LCZs on the HWs–UHI interaction. Results showed that lower wind speeds and high-density building clusters contributed to more frequent and stronger HW events and higher UHII. Generally, wind can largely mitigate the UHI effect (Kim and Baik, 2005; Yow, 2007) both by introducing cooler air that mixes with the urban hot air, resulting in a drop in the urban temperature, and by the stirring effect of wind to that can dissipate urban heat (He, 2018). Lower wind speeds that mean less advective cooling and increased surface roughness that blocks the natural wind flow are both conducive to restricted ventilation and heat dissipation. The wind speed data from each station in Guangzhou were analyzed according to the definition of WsR used by Liu et al. (2022), where WsR represents the ratio of the average wind speed at each urban station to the average wind speed at all rural stations, which can effectively reflect the ventilation capacity. It can be seen from Figure 11 that UHII and WsR are inversely proportional. It indicates that urbanization reduces the near-surface wind speed at some stations (WsR <1), which is accompanied by an increase in UHII; when the wind speed increases, UHII decreases accordingly. It can also be seen that the slope of the fitting line at 14:00 BJT is slightly greater than that at 02:00 BJT, which to a certain extent means that the ventilation effect during daytime has greater impact on UHII than that at night. The relationship between wind speed and USTI at each station is shown in Figure 12. It can be seen that the UHII at each station decreased with the increase of wind speed and USTI, excepting for station 713,224 (the red dot in the lower right corner of Figure 12, this may be due to local traffic emission sources and ventilation corridor effect), indicating that a higher wind speed and a more uniform wind direction are beneficial to reduction of UHII. Generally, when the wind speed is low and the wind direction is disordered, the ventilation effect is weak, which is not conducive to mitigation of the UHI effect.
[image: Figure 11]FIGURE 11 | Relationship between UHII and WsR at each urban station. The straight line in the figure represents the linear trend of each time.
[image: Figure 12]FIGURE 12 | Relationship between USTI, wind speed (Ws), and UHII at each urban station (The dots in the figure represent each station and darker blue(red) dots indicate weaker(stronger) UHII).
At the periphery of the built-up area, e.g., station 711,006 (LCZ2), we found that when the wind speed increased to a certain extent, the UHII actually increased. Note that the average wind speed at station 711,006 was 1.48 m/s, second only to that at station 59,284 (LCZ5), and that the USTI value was 0.56. Referring to analysis of heat advection in earlier studies (Heaviside et al., 2014; Bassett et al., 2016; Dinda and Chatterjee, 2022), and considering the influence of wind sources on UHI (He, 2018), this station had been influenced by upstream heat advection. However, when the wind speed continued to increase and reached a higher level, the UHII decreased significantly (Figure 7B), indicating that the ventilation and cooling effects exceeded the effect of advected heat. It should be noted that we did not consider the influence of factors such as precipitation and clouds, which represents an obvious shortcoming of this study.
4.3 Impact of LCZs on HWs–UHI interaction
Considering the differences between LCZ types, it is recognized that building density and the canyon aspect ratio have substantial impact on radiant energy interception and heat storage (Oke et al., 2017), while building form and spatial pattern can cause obstruction and disturbance to wind (Mou et al., 2017). Previous studies have shown that LCZ2 and LCZ3 are relatively warm areas in some cities (Geletič et al., 2016; Zhou et al., 2021), and as areas with dense mid-rise buildings and dense low-rise buildings, respectively, both have high areas of impervious surfaces, and compact arrangement of buildings. High-density buildings and tall buildings upwind hinder ventilation downwind, resulting in relatively high surface temperatures (Yang et al., 2019), implying increased surface heat storage. Dense building groups are also conductive to intercepting more shortwave radiation energy. Therefore, in comparison with other LCZs in Guangzhou, the UHII of LCZ2 and LCZ3 is stronger and the frequency of HW occurrence is higher (Figure 8).
The air temperature at 02:00 BJT at all urban stations during HW and NHW periods was also investigated in this study. To reduce the temperature difference caused by different months, temperature samples of each month were calculated separately. Results showed that in the first third of the high-temperature descending sequence, station 713,222 (LCZ2), 713,224 (LCZ3), 713,108 (LCZ3), and 711,001 (LCZ1) appeared more frequently, accounting for 15%, 14%, 13%, and 14%, respectively, and indicating that LCZ1, LCZ2, and LCZ3 (Especially stations in the central area of Guangzhou) contributed more to HWs and UHI and their interaction. Meanwhile, the UHII of these four stations increased by 46%, 71%, 42%, and 55%, respectively, during HW periods. LCZ4 and LCZ5, as open high-rise building zones and open mid-rise building zones, respectively, have lower building density and smaller canyon aspect ratios, which reduce the effect of blocking of the natural wind flow and reduce the interception of shortwave radiation by buildings. One effect of reduction in impervious area and increase in vegetation coverage is increased latent heat flux, which is beneficial to cooling of the near-surface atmosphere (Oke et al., 2017); however, the specific local environment still has an impact. For example, the four urban stations of classified as LCZ3 show certain inherent differences attributable to their urban characteristics at different geographical location.
Tall and compact buildings can weaken the ventilation effect; thus, for LCZ1 in particular, the increase in air temperature may have been limited owing to the possible shading effect (Oke, 1982; Bourbia and Awbi, 2004). Therefore, the frequency, intensity, of HW events and the strength of UHII in LCZ1 with a higher building group were lower than in LCZ2 and LCZ3 with lower buildings, especially regarding the limitation of the maximum daily temperature that greatly affected the determination of HWs. Statistical results also showed that LCZ1 did not warm as much as LCZ2 (station 713,222) and LCZ3 (station 713,224) in the morning (Figure 9), and that the overall average temperature was also slightly lower.
5 CONCLUSION
In this study, the interaction between HWs and UHI was explored in combination with consideration of LCZs and wind speed conditions using hourly data recorded by automatic weather stations in Guangzhou during 2013–2018. The main conclusions derived can be summarized as follows.
The interaction between HWs and UHI in Guangzhou was obvious, which amplifies urban warming. HWs can amplify the intensity of UHI and the amplification effect was more significant at night. The average UHII during HW and NHW periods was 1.76°C and 0.87°C, respectively. The occurrence of HWs caused the overall UHII to be amplified by approximately 0.9°C.
HWs–UHI interaction was strongly influenced by urban ventilation conditions. For the entire main urban area, the number of HW days with low wind speeds was higher than that with medium and high wind speeds, and the difference between them in some areas was >100 days. The UHII under low wind speed conditions was also higher than that under medium and high wind speed conditions. It shows that lower wind speed is conducive to strengthening of HWs and UHI and their interaction, whereas higher wind speed conditions have a mitigating effect on HWs, UHI and their interaction. However, urban heat advection from the urban center that leads to a certain degree of warming in peripheral areas. Overall, HWs, UHI, and their interaction were found correlated negatively with wind speed.
For various LCZs, The UHII was highest in the compact mid-rise buildings (LCZ2) and compact low-rise buildings (LCZ3), and both the highest risk of HW occurrence and the most significant HWs–UHI interaction were found in such areas. Especially at stations 713,222 (LCZ2) and 713,224 (LCZ3) located in the urban center of Guangzhou. The UHII and risk of HW occurrence in the compact high-rise buildings (LCZ1) were second highest. This was mainly attributable to the shading effect of high-rise buildings. The UHII and risk of HWs in open high-rise buildings (LCZ4) and open mid-rise buildings (LCZ5) were smaller, mainly attributable to better urban ventilation conditions. Generally, the compact built-up zones (LCZ1, LCZ2, and LCZ3) contributed more to HWs and UHII, whereas the contributions by open high-rise buildings and open mid-rise buildings (LCZ4 and LCZ5, respectively) were smallest.
In summary, our present work provided a convinced evidence that urban warming amplified by HWs–UHI interaction were mainly modulated by both urban ventilation conditions and LCZs in the tropical Guangzhou mega city. Our findings will help improve understanding of the changes and causes of UHI and HWs in tropical urban regions, and support rational improvement of the urban thermal environment in other tropical urban regions globally.
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With the improved accuracy and high spatiotemporal resolution, satellite remote sensing has provided an alternative way for monitoring the variations of CO2 in remote areas where field observations are inadequately sampled but the emissions of CO2 are increasing rapidly. Based on CO2 estimates from satellite remote sensing and the atmospheric tracer transport model, this study assessed the spatiotemporal patterns of atmospheric CO2 and its driving forces across China. Results show a consistent increase in CO2 at all levels of the troposphere, with the growth rate exceeding 2.1 ppm/year. Among them, the near surface witnessed obvious spatial heterogeneity with the highest concentrations of CO2 occurring in East China and the lowest in Northwest China. This strong spatial differentiation disappeared with increase in altitude and is replaced by a distinct south–north gradient difference at the upper troposphere. With regard to vertical variations, the concentration and growth rates of CO2 at the lower troposphere are generally higher than those at the upper troposphere. The driving mechanism analysis indicates that the variation of CO2 at the near surface is primarily caused by anthropogenic and biogenic activities, while air motion dominates the distribution of CO2 at the upper troposphere. The findings of the present study could provide a valuable reference for understanding regional carbon cycles and formulating carbon emission reduction strategies on a national scale.
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1 INTRODUCTION
Carbon dioxide (CO2) is the main greenhouse gas causing global warming. It contributes more than 60% of the total radiative forcing and has a lifespan of more than 120 years in the atmosphere (Stocker et al., 2013). Due to massive fossil fuel combustion and dramatic land use changes, the level of global average atmospheric CO2 has increased by 140% relative to pre-industrial levels and reached 414.72 ppm in 2021 (Peters et al., 2011; WMO, 2012). The increasing concentrations of CO2 have led to a positive energy imbalance of 0.53 ± 0.11 W/m2 from 2003 to 2018, causing an increase in atmospheric temperature and sea level (Kramer et al., 2021), which in turn led to a series of meteorological disasters such as the melting of polar glaciers and frequent drought and flood events (IPCC, 2014). The continuous increase in the concentration of atmospheric CO2 has attracted a significant attention from the international community and organizations. Accurately and comprehensively assessing the spatial and temporal distribution of atmospheric CO2 can provide a foundation for understanding the global carbon cycle and will aid in the formulation of policies aimed at reducing carbon emissions (Umezawa et al., 2018).
For this purpose, the long-term measurement of atmospheric CO2 concentrations in different regions of the world has been established and gradually evolved into a global network of CO2 observation. Currently, there are more than 300 sites worldwide, where greenhouse gas levels are measured by the World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) (WMO, 2012; Fang et al., 2014). The integrated carbon observation system provides a reliable dataset for assessing long-term changes of atmospheric CO2 at the global and regional scales and plays an important role in the early research on carbon sources and sinks. However, restricted to the level of socioeconomic development and topographic factors, the GAW ground-based observations are sparse and unevenly distributed, with most of them located in developed countries or plain areas (Mustafa et al., 2020). In addition, the discontinuities and inconsistencies in multi-sources of observational data further complicate the availability of data, making the spatiotemporal distribution studies of atmospheric CO2 uncertain and challenging (Fang et al., 2014; Basu et al., 2013).
The development of satellite remote sensing technology has provided an alternative method for monitoring the spatiotemporal distribution of CO2 on a global scale. By combining various satellite sensors and high-precision inversion algorithms, CO2 products are generated based on the characteristics of its absorption spectrum at the thermal and near-infrared bands (Schneising, 2008). To date, three satellite projects dedicated to CO2 observation have been launched, i.e., the Greenhouse Gases Observing Satellite (GOSAT) (Yokota et al., 2009), the Orbiting Carbon Observatory (OCO) (Crisp, 2015), and the Chinese carbon dioxide observation satellite mission (TanSat) (Liu et al., 2018). Compared with the field observation, satellite CO2 estimates are not subject to topographical factors and can achieve a stable and continuous observation of atmospheric CO2 at the regional and global scales with high spatiotemporal resolution (Zeng et al., 2013). With a large spatial coverage from near surface to the troposphere and a long temporal period (2009–present), the GOSAT has been widely applied in research studies of carbon sources and sinks and the transport of atmospheric CO2 (Basu et al., 2013; Mustafa et al., 2020). In general, the progressive development of space-borne sensors and inversion algorithms has made satellite remote sensing the main method of monitoring atmospheric CO2 variations and has enhanced our understanding of regional and global carbon cycles.
By integrating ground-based and satellite remote sensing observation data, numerous studies have been conducted to explore the spatiotemporal differentiation of CO2 and the associated driving forces (Cao et al., 2019; Kong et al., 2019; Yang et al., 2021). However, most of the studies focused on Western Europe and the United States. Northeastern Asia, a densely populated region with high CO2 emissions, has not been adequately explored. As a matter of fact, China has witnessed rapid economic development over the last three decades, and the rapid increase in fossil fuel carbon emissions has made China the leading contributor of global CO2 emissions (Le Quéré et al., 2012; Du et al., 2017). In this regard, China has implemented a number of programs aimed at reducing carbon emissions and conserving energy and has committed to achieving carbon peak by 2030 and carbon neutrality by 2060. Therefore, it is important to evaluate the spatiotemporal variation of CO2 and explore the driving mechanism, as this could provide valuable information for understanding the carbon cycle and constraining carbon emissions on a national scale (Hammerling et al., 2012; Fang et al., 2014).
To assess the characteristics of CO2 variations and investigate its driving forces on a national scale, we chose a fast-economic growth and high carbon emission area, i.e., China, as the study region and obtained CO2 estimates from satellite remote sensing (GOSAT) and an atmospheric tracer transport model (Carbon Tracker). Meanwhile, the data of leaf area index (LAI), fossil fuel carbon emissions, and the 3D wind field were also collected. In particular, we aimed to (1) analyze the spatial and temporal variation of CO2 at different time scales across China, (2) explore the dominant factors affecting the regional concentrations of CO2, and (3) examine the relationship between local CO2 and LAI, fossil fuel carbon emissions, and regional air motion.
2 MATERIALS AND METHODS
2.1 Study area
As one of the largest countries in the world, China covers a vast territory (9.6 × 106 km2) with heterogeneities in climatic conditions, complex topographies, and ecological environments, which have caused strong variations in economic development and population growth. A combination of climatic diversity and human activity has resulted in a unique pattern of local carbon budgets with obvious spatial differences in CO2 concentrations (Fang et al., 2014; Du et al., 2017). To address this issue, six sub-regions characterized by different climatic conditions and socioeconomic backgrounds were delineated in this study, and the detailed zonal information is illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | Geographic location and the six sub-regions of China. (NW is Northwest China, SW is Southwest China, N is North China, MS is Middle and South China, NE is Northeast China, and E is East China).
2.2 Materials
Four types of datasets are used in this study, namely, in situ observations, satellite remote sensing, model simulations, and reanalysis. As part of the validation process for gridded CO2 products, the in situ observation data from WDCGG were utilized, and the satellite and modeled CO2 products were used to study the spatiotemporal variation of CO2 at different altitude. A driving mechanism analysis was conducted using gridded data from the LAI and CDIAC, as well as ERA5 reanalysis data. Supplementary Table S1 provides a brief overview of all datasets used in this study.
2.2.1 WDCGG
The World Data Centre for Greenhouse Gases (WDCGG) has been operated by the Japan Meteorological Agency (JMA) since 1990 as part of the WMO/GAW program. As the only World Data Centre (WDC) specializing in greenhouse gases, it serves to collect, archive, and distribute greenhouse gas data from ground-, ship-, aircraft-, and satellite-based observations, contributed by organizations and individual researchers worldwide (WMO, 2012). The objective of the WDCGG is to support the monitoring of climate change and facilitate policy development, thereby helping reduce the risks associated with environmental degradation. In this study, the in situ observation data from the WDCGG were used to evaluate the performance of GOSAT and CT CO2 products in China.
2.2.2 GOSAT
GOSAT is the world’s first satellite dedicated to monitoring greenhouse gases from space, which was launched on 23 January 2009 and is jointly developed by the Ministry of Environment (MOE), the Japan Aerospace Exploration Agency (JAXA), and the Japan National Institute for Environmental Studies (NIES). GOSAT is a Sun-synchronous orbit at an altitude of 666 km, with an approximate 10.5 km diameter at nadir and a revisit cycle of 3 days (Yokota et al., 2009; Suto et al., 2021). A total of two observation instruments are onboard the satellite, the Thermal and Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) and the TANSO-Cloud and Aerosol Imager (TANSO-CAI), which are designed to detect the three-dimensional distribution of greenhouse gases as well as clouds and aerosols. Both of them are equipped with four bands, and the three SWIR (0.76, 1.6, and 2.0 um) and the wide TIR (5.5–14.3 um) bands of TANSO-FTS are responsible for retrieving the column concentrations and vertical profiles of CO2 (Imasu et al., 2008). While the spectral channel of TANSO-CAI is used to capture the cloud cover and aerosol properties (Deng et al., 2016), the cloud-contaminated footprints are screened out according to this information. Based on these observations, the CO2 retrieval algorithms have been extensively developed, including NIES (Yoshida et al., 2013), ACOS (Kulawik et al., 2019), and UOL-FP (Oshchepkov et al., 2013), and the operational CO2 products are widely used in estimating the global and regional CO2 concentrations and fluxes.
In this study, we used the L4B global CO2 distribution dataset, which was developed by the Japan National Institute for Environmental Studies using the NIES-FP inversion algorithm. The latest version of this dataset is updated to V02.07 and can be freely accessed through www.gosat.nies.go.jp. It covers the period from June 2009 to October 2019, with a spatial resolution of 2.5 × 2.5 and a temporal resolution of 6 h over 17 vertical levels from the surface to 10 hPa. In order to obtain the atmospheric CO2 concentrations at different levels and time scales, the original netCDF format dataset was converted to raster images in the R programming environment, and then the daily, monthly, and annual average CO2 concentrations were aggregated from the hourly observations.
2.2.3 CarbonTracker
CarbonTracker (CT) is a data assimilation system for CO2 developed by NOAA ESRL. It incorporates a two-way nested offline atmospheric tracer transport model, known as transport model 5 (TM5), to simulate the surface fluxes and the distribution of atmospheric CO2 (Krol et al., 2005; Peters et al., 2007). CT separately estimates the surface CO2 exchange originating from fossil fuel emissions, terrestrial biosphere impacts, biomass burning, and ocean fluxes. In addition to in situ observations from tall towers, flask samples collected by NOAA’s cooperative air sampling network, and continuous measurements taken by partners, CarbonTracker assimilates more than 100 datasets around the world. By utilizing the technology of an ensemble Kalman filter, the differences between observations and model forecasts are reduced (Peters et al., 2005; Babenhauserheide et al., 2015). The model provides global 3D CO2 distribution at 25 levels with 3 × 2 (longitude × latitude) spatial resolution and 3 h temporal resolution. In this study, CarbonTracker data of version CT 2019B were collected for evaluating the impacts of anthropogenic, biogenic, wildfire, and oceanic sources on the concentrations of atmospheric CO2.
2.2.4 LAI and CDIAC
It is acknowledged that human activity and the biophysical process of vegetation play an indispensable role in affecting near-surface CO2 concentrations (Cao et al., 2019; Yang et al., 2021). Therefore, the leaf area index (LAI) and fossil fuel carbon emissions were employed to investigate the relationship between local CO2 and anthropogenic and biogenic factors. The LAI is defined as the one-sided green leaf area per ground surface and is a useful indicator in reflecting the canopy and functions of the vegetation community (Bréda, 2003). According to the study of Berterretche et al. (2005), the LAI shows a linear correlation with the primary production in terrestrial ecosystems, and the capacity of vegetation in carbon sequestration increases with the growing LAI. In this study, the LAI data were obtained from the Climate Data Record (CDR) developed by the National Centers for Environmental Information, which produced a daily LAI dataset on a 0.05 × 0.05-grid based on data derived from Advanced Very High Resolution Radiometer (AVHRR) sensors from 1981 onward. In order to minimize cloud contamination and atmospheric variability, this study employed a maximum value composite (MVC) procedure to generate monthly LAI.
The Carbon Dioxide Information Analysis Center (CDIAC), operated by the United States Department of Energy, is designed to provide global warming data and analysis to the U.S. government and research community (Andres et al., 2014). The primary mission of the CDIAC is committed to obtaining, evaluating, and distributing data related to greenhouse gas emissions and climate change. On the basis of monthly energy consumption data, the CDIAC divides the global total emissions into different sectors, such as fossil fuel emissions, industrial processes, and land use emissions (Oda et al., 2018). The monthly fossil fuel CO2 emissions of V2016, with a spatial resolution of 1 × 1 for 2009–2013, were selected in the present study.
2.2.5 ERA5
ERA5 is the latest fifth-generation reanalysis dataset developed by the European Centre for Medium-Range Weather Forecasts (ECMWF) (https://www.ecmwf.int) and contains a series of improvements relative to its predecessor, ERA-Interim. The dataset employs an advanced data assimilation and modeling system with additional historical in situ and satellite observations to provide a more accurate representation of atmospheric conditions (Karl and Michela. 2019; Jiang et al., 2021). The spatial resolution of the data is 0.25°×0.25° on 37 vertical levels from the surface up to 1 hPa. It covers the period from 1959 to the present and is updated daily with a latency of 5 days. In this study, the monthly wind data of the reanalysis from 2009 to 2019 were used to derive the mean states of zonal and vertical movement of the atmosphere.
2.3 Methods
Due to the possibility that different datasets may differ in terms of their spatial and temporal references, all datasets were projected to the GCS_WGS_1984 geographic coordinate system and converted to local time of Beijing to maintain consistency. Additionally, to make the datasets comparable and facilitate the following analysis, the products of CT, LAI, and CDIAC were aggregated or resampled to a 2.5 × 2.5 regular grid by using the spatial information of GOSAT as a standard.
Prior to applying the estimated CO2 in the following analysis, the accuracy of GOSAT and CT in China was evaluated through comparison with WDCGG observations. Stations used for validation were screened based on the following criteria: (1) falling within the study area, (2) not being assimilated in generating the products of GOSAT and CT, and (3) having less than 20% of missing observations. For a gauge station, we first identified the grid cell in which that station was located in the spatial dataset of a satellite product. Then, the values of grid data were directly extracted and the Pearson linear correlation coefficient (R) and the root mean square error (RMSE) were used to measure the strength of the linear association and the magnitude of the deviation between observations and estimates. The formula is as follows:
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where Pe and Po are the estimated and observed CO2, respectively; n is the sample size; δ is the standard deviation; and cov() is the covariance between the two variables.
In addition, the Pearson correlation method was also used to study the impacts of anthropogenic and biogenic activities on surface CO2 concentrations by calculating the correlation coefficients between LAI, fossil fuel carbon emissions, and local CO2 concentrations.
The interannual variation of CO2 was evaluated using linear trend fit as expressed in Eq. 3. The slope and statistical significance of the trends were estimated using the ordinary least squares method and the two-tailed Student’s t-test, respectively. In this study, a trend was considered statistically significant when it is at the 95% confidence level. In addition, the coefficient of variation (CV) was used to quantify the seasonal variation of CO2, and it was defined as the ratio of the standard deviation to the mean in Eq. 4.
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where y is the time series of CO2 concentrations; a and b are the corresponding trend and the intercept, respectively; t represents the year; and ε is the regression error. s and‾x are the standard deviation and the mean of CO2, respectively.
As the concentration of CO2 exhibits a strong seasonal variation, it is thus essential to calculate the seasonal indexes and remove the seasonal factor from the time series when studying the multi-year monthly average CO2 concentrations and conducting the correlation analysis with fossil fuel carbon emissions and LAI (Dettinger and Ghil, 1998). In this study, the ts and decompose functions in R were used to deseasonalize the interannual variation of CO2, and the original time series were divided into three components: the trend component, the seasonal component, and the random component. After that, the seasonal component was subtracted from the time series and was treated as an input to the subsequent analysis.
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where tsactual is the actual value of the dataset and tstrend, tsseason, and tsrandom are the trend component, seasonal component, and random component, respectively, of the time series.
3 RESULTS AND DISCUSSION
3.1 Accuracy evaluation
After conducting the screening process, only the stations of LLN and HKO were considered to meet the criteria in China. The scatterplots between the observations and estimates are presented in Figures 2A, B. Generally, the CO2 estimates from GOSAT and CT agreed well with observations, with averaged correlation coefficients of 0.96 and 0.85 for LLN and HKO stations, respectively. The HKO station exhibited a slightly higher RMSE (6.88 ppm) than that in the LLN station (4.44 ppm). Both of the products had a CO2 estimation accuracy lower than 2%, meeting the requirements for precision described in Rayner and O'Brien (2001). In addition, the general pattern of intra-annual variations in CO2 can be well-captured by GOSAT and CT, which peaks in winter and reaches its lowest level in summer (Figures 2C, D). In light of the high accuracy and good stability of GOSAT and CT, the estimated CO2 products can be used to study the spatiotemporal patterns of CO2 in China.
[image: Figure 2]FIGURE 2 | Scatterplots (A, B) and the comparison of time series (C, D) between in situ measurements and GOSAT and CT.
In order to study the spatiotemporal variations of CO2 concentrations at different heights of the atmosphere, three typical layers, namely, the 975 hPa, 500 hPa, and 100 hPa, were selected to represent the mean state of CO2 at the near surface, the middle, and the upper troposphere. The annual, seasonal, and diurnal variations of CO2 concentrations were analyzed at these three levels if there is no further specification.
3.2 Annual variations
The spatial pattern and magnitude of CO2 concentrations varied among different heights of the atmosphere. A declining trend was observed with increasing atmospheric height, with a mean CO2 concentration of 400.25 ppm at near surface decreasing to 398.41 ppm and 393.76 ppm at the middle and upper troposphere, respectively (Supplementary Table S2). Among them, the near surface witnessed a strong spatial heterogeneity with the highest concentrations of CO2 occurring in East China and the lowest in Northwest China (Figure 3A). This pattern is consistent with the spatial distribution of China’s population and economy, indicating a considerable impact of local carbon emissions on near-surface CO2. In contrast, CO2 concentrations at the middle troposphere showed much less variation, with a standard deviation of only 0.23 (Figure 3C). The insignificant variations may be associated with horizontal and vertical winds, which transport near-surface CO2 to the atmosphere and then sufficiently mixed, resulting in a uniform spatial pattern of CO2 concentrations (Cao et al., 2019; Al-Bayati et al., 2020). In the upper levels of the atmosphere, a distinct gradient of CO2 concentrations was observed from south to north (Figure 3E). High values of CO2 are concentrated in the area of low latitudes, while low CO2 values are observed at high latitudes. Such a phenomenon may be the result of large-scale circulation in the upper troposphere (Sohn et al., 2019).
[image: Figure 3]FIGURE 3 | Spatial patterns of the annual mean (A, C, and E) and the change rates (B, D, and F) of CO2. It is to be noted that the grid cells filled with black dots indicate that the change rates are significant at the 95% level.
A general increasing trend with a magnitude higher than 2.1 ppm/year was detected for all the three typical layers (Figure 4), and almost all the data points passed the significance test at the 0.05 level (Figures 3B, D, F). Similar to the variation of CO2 concentrations, the annual change rate was significant at the near surface (2.38 ppm/year), where the high values of annual CO2 growth were found in part of East and North China. The middle troposphere witnessed a stable increasing trend at about 2.34 ppm/year. When it comes to the upper troposphere, the annual increase of CO2 shows large discrepancies across China, with high values in the Mid–South and low values in Northeast China. Based on the decreasing change rates from the lower to upper troposphere, it appears that the intensified anthropogenic activities tend to cause significant increase in CO2 at near surface.
[image: Figure 4]FIGURE 4 | Interannual changes of CO2 concentrations during the period 2009–2019.
3.3 Seasonal variations
In order to study the intra-annual variation of CO2, the linear regression method was used to remove the annual growth rate, and then the monthly CO2 concentrations were derived by calculating the multi-year averages. At near surface, all the six regions exhibited a unimodal fluctuation pattern, with the peak value of CO2 concentrations occurring in April, followed by a decline, and reaching its trough in August (Figure 5A). This may be the result of the combined effect of anthropogenic and biogenic activities (WMO, 2017; Buchwitz et al., 2018). The increased photosynthesis of vegetation in summer is responsible for a higher uptake of CO2 from the atmosphere (Yang et al., 2021), while the intensified anthropogenic heating emissions and plant respiration lead to a higher level of CO2 in early spring (Liu et al., 2012). The amplitude of the seasonal variation is found to be largest in Northeast and lowest in East, and the differences between the peak and the trough are 24.14 and 12.80 ppm, respectively. In Northeast China, there is a strong seasonal difference in anthropogenic heating emissions and vegetation activity, while the anthropogenic CO2 is almost constant throughout the year in East; combined with the reduced seasonal variation in vegetation, the amplitude of seasonal variation of CO2 at East is smaller than that in Northeast China (Fang et al., 2014). A similar trend of CO2 seasonal variation was observed in the middle troposphere, with a high value in April and a low value in August (Figure 5B). The discrepancies among the six regions, however, are generally reduced, indicating the strong dilution effect of CO2 by vertical wind. In contrast, the CO2 variations at the upper troposphere exhibited an opposite trend, with the maximum CO2 concentrations observed in summer and the minimum CO2 concentrations in winter (Figure 5C). Such anomalies indicate that the upper troposphere CO2 was less affected by anthropogenic and biogenic activities. In addition, it was also found that CO2 concentrations in North China were generally higher than those in South China throughout the entire year. This may relate to the large-scale atmospheric circulation in the upper troposphere (Dargaville et al., 2000; Wang et al., 2011; Cao et al., 2019).
[image: Figure 5]FIGURE 5 | Monthly means of CO2 for the three typical layers over the period 2009–2019.
The seasonal variations of CO2 were found largest at the near surface, with a high value in spring and winter and a low value in summer and autumn (Figure 6). In particular, an apparent east–west difference in CO2 was observed across China, and the CO2 concentrations in the coastal provinces of Southeast China were generally higher than those in Northwest China throughout the year. At the middle troposphere, however, such spatial differences almost disappeared, while the temporal variations remained consistent with the lower troposphere. When it comes to the upper troposphere at 100 hPa, both the spatial and temporal variations of CO2 were the smallest among the three levels. The seasonal variation of the different levels was also reflected in the coefficient of variation, as shown in Supplementary Figure S1, with the largest CV of 1.45 found at 975 hPa and decreased to 0.79 and 0.36 at 500 hPa and 100 hPa, respectively. It is likely that the decreasing trend of CV is associated with the distance to the carbon sources and sinks at near surface. Therefore, we conclude that anthropogenic and vegetation activities are the main factors affecting the vertical distribution of CO2.
[image: Figure 6]FIGURE 6 | Spatial patterns of CO2 concentrations at four seasons for the three typical layers.
3.4 Diurnal variations
The mean diurnal amplitudes of CO2 variations at different levels and seasons are shown in Supplementary Table S3. In terms of vertical differences, the amplitude of the diurnal variation decreases from the near surface to the upper troposphere. The largest peak-to-trough diurnal amplitudes (8.90 ± 6.98 ppm) were found at the near surface, while the middle and the upper levels of the troposphere exhibited a smaller diurnal variability, with an amplitude of 0.88 ± 0.72 ppm and 0.44 ± 0.32 ppm, respectively. Such differences can be attributed to the transportation and dilution effects of the upper atmosphere, which make the diurnal cycles of CO2 at the middle and upper levels less affected by local sources and sinks.
As for the smallest amplitudes of diurnal variation of CO2 at the middle and upper troposphere, we are primarily interested in regional differences of daily CO2 variation at the near surface. Overall, a uniform diurnal cycle of CO2 was observed across the four seasons, with the trough occurring in the afternoon around 15:00, then turns to accumulate during nighttime and reaching its maximum at about 06:00 the next morning (Figure 7). It is possible that the obvious diurnal variations in CO2 throughout the whole year may be caused by active photosynthetic/respiratory fluxes in local vegetation (Li et al., 2004). As compared with spring and winter, summer and autumn witnessed relatively large amplitudes of CO2 variation. As for the regional differences in diurnal variations of CO2, Northwest and Southwest China exhibit an overall smaller amplitude than East China and other subregions, and there is almost no clear diurnal cycle during winter, which could be related to weak human and vegetation activities at high altitudes in western China (Shi et al., 2020; Lin et al., 2021).
[image: Figure 7]FIGURE 7 | Diurnal cycles of CO2 for the six sub-regions across China.
3.5 Vertical variations
Figure 8 illustrates the spatial distribution of the multi-year average atmospheric CO2 concentrations at different heights in China. CO2 concentrations at the near surface are generally higher than those at the top levels. CO2 concentrations exhibit a strong spatial heterogeneity at the height of 850 hPa and below, with high values observed in eastern China and lower values in western regions, probably caused by the local emissions of human activity. This east–west spatial difference gradually decreases with height and disappears at 150 hPa, a phenomenon that may be explained by the dilution and mixing effects of vertical wind. At the height of 100 hPa and above, there is a distinct south–north difference in the spatial distribution of CO2, with high CO2 concentrated at low latitudes and vice versa. This discrepancy may be attributed to the large-scale atmospheric circulation at the top troposphere.
[image: Figure 8]FIGURE 8 | Spatial distribution of atmospheric CO2 over China at different height
In order to explore the regional differences of CO2 at different heights, the vertical profiles of CO2 for the six regions are shown in Figure 9A. The near surface (levels 1–5) witnessed the greatest discrepancy among the six regions, and then it decreased to 0 at the middle troposphere (levels 6–11). Smaller differences were observed at the upper troposphere (levels 12–17). The dilution effect of vertical wind allows local CO2 emissions to move upward with an increase in convective PBL, explaining the linear decrease in lower tropospheric CO2 in East and Mid–South China (Newman et al., 2013). When it comes to the middle troposphere, the mixing effect of zonal and vertical winds is the dominant factor, which makes the CO2 fully mixed and results in a small variation, whereas the continuous and regular atmospheric circulation contributes most to the smaller regional differences of CO2 at the upper troposphere (Dargaville et al., 2000; Sohn et al., 2019).
[image: Figure 9]FIGURE 9 | Vertical profiles (A) and the seasonal variation (B) of atmospheric CO2 over China.
To better understand the seasonal variation of CO2 at different heights, the linear regression method was used to remove the annual change rate from the calculation of the monthly mean CO2 concentration. As shown in Figure 9B, the seasonal fluctuations are gradually diminishing with increasing height. The peak-to-trough seasonal amplitude can be reached to 14.36 ppm at the height of 975 hPa, but it is reduced to less than 1 ppm above 50 hPa. In addition, a unimodal pattern of CO2 variation was observed below 500 hPa, with a peak value occurring in April and a trough in August. Nevertheless, at 400 hPa or higher, the peak and trough of CO2 occur 1 or 2 months later than at near surface. This further indicates that CO2 in the middle troposphere is transported by ground emissions.
3.6 Driving forces of CO2 variation at near surface
According to the model results of CT, we evaluated the influence of anthropogenic, biogenic, oceanic, and fire sources in each of the six regions. It is to be noted that the biogenic and oceanic modules act as a carbon sink, a capability that has gradually strengthened over the past decade (Figures 10A, D). While the anthropogenic and fire activities exert a positive effect on local CO2 and shows an increasing trend as well (Figures 10B, C), in particular, the biogenic CO2 shows a similar pattern across the six regions, with maximum carbon sequestration occurring in September and the minimum occurring in May. The only difference is that there is another trough of carbon sequestration in January in the Northeast and the North, which is likely due to the inactive photosynthesis of vegetation in the cold season at high latitudes (Li et al., 2004). However, the regional differences in biogenic CO2 are much smaller than those of anthropogenic CO2. Carbon emissions from fossil fuels in the East and Mid-South are higher than those in the Northwest and Southwest throughout the year. The maximum difference of anthropogenic CO2 can reach 15 ppm in winter. Furthermore, a gentle flat variation of seasonal fossil fuel CO2 was also observed in western China. Contrary to the variation pattern of anthropogenic and biogenic CO2, the fire and oceanic CO2 exhibit the least regional differences with almost no seasonal variation, indicating that these two tracers of CO2 in China are transported by wildfire emissions and oceanic absorption in other places.
[image: Figure 10]FIGURE 10 | Simulated CO2 from biogenic (A), anthropogenic (B), fire (C), and oceanic (D) modules in CT at near surface
Because of the large differences of simulated anthropogenic and biogenic CO2 among the six regions, a completely independent dataset was used to verify the correlation between CO2 concentrations and the fossil fuel emissions and the vegetation activity and to explore the spatial differentiation of this relationship. According to the results of correlation analysis, the near-surface CO2 is significantly correlated with fossil fuel emissions on a national scale, with a correlation coefficient of 0.66 (Figure 11B). As for the grid scale, except for some sparsely populated areas such as desert, Gobi, and high mountains, where the correlation coefficient is negative, other areas show significant positive correlations (Figure 11A). Especially in parts of the Northwest and Southwest, the correlation coefficient is as high as 0.9, which indicates that fossil fuel emissions are the dominant factor affecting near-surface CO2 in less developed regions. However, this strong correlation appears to be declining in the East and Mid-South (R ≈ 0.7), which can be partly explained by the intensive land use change and the massive cement production (Gregg et al., 2008; Herzog, 2009).
[image: Figure 11]FIGURE 11 | Correlation analysis between CO2 and fossil fuel carbon emissions on the grid (A) and national scale (B) at near surface. It is to be noted that the grid cells filled with black dots indicate that the correlation is significant at the 95% level.
Although a general positive correlation was observed between near-surface CO2 and fossil fuel emissions, however, there is no evidence to support that this is the cause of seasonal fluctuation in CO2. According to the study of Fung et al. (1997) and Van Der Velde et al., 2013, the flux of δ13C in the process of carbon exchange between the atmosphere and biosphere is evidently greater than that between the atmosphere and ocean. In order to study the influence of terrestrial ecosystems on seasonal variation of near surface CO2, the LAI was used to conduct a correlation analysis. As shown in Figures 12A, B, a completely opposite trend was observed between the near-surface CO2 and LAI, with a negative correlation coefficient being as high as −0.85. Photosynthesis of vegetation removes a relatively small amount of CO2 before March. From April onward, the LAI increases gradually and leads to a decrease in CO2, with the largest photosynthesis CO2 sequestration observed in August. Then, the monthly mean CO2 increases with a decrease in the LAI from autumn to early spring of the following year. In terms of spatial distribution, approximately 96% of the grid cells show a negative correlation, with strong correlation mainly distributed in eastern China and weak correlation in part of western provinces (Figure 12A). This east–west spatial difference may relate to the patterns of land use and land cover in China (Liu et al., 2008; Lin et al., 2021). The seasonal variation of CO2 is highly dependent on the LAI in areas where forestland, grassland, and cropland are concentrated, while showing a weak or even positive correlation in sparse vegetation and bare land.
[image: Figure 12]FIGURE 12 | Correlation analysis between CO2 and LAI on the grid (A) and national scale (B) at near surface. It is to be noted that the grid cells filled with black dots indicate that the correlation is significant at the 95% level.
3.7 Driving forces of CO2 variation at the middle and upper levels of the troposphere
A similar approach was used to investigate whether fossil fuel carbon emissions and vegetation activity in China may have affected the CO2 concentrations at the middle and upper troposphere. As shown in Figure 13A, a completely opposite trend was observed between the middle tropospheric CO2 and LAI, with a negative correlation of −0.57. The variations of CO2 are lagged by 4 months on average relative to the LAI. Our results are consistent with those reported in the Northern Hemisphere, where the shortest lag phase was observed in the low latitudes and the longest in the region between 30°N and 40°N (Cao et al., 2019). When it comes to the upper levels of troposphere, the variation of CO2 exhibits a uniform pattern with the LAI (R = 0.92). It appears that vegetation carbon sequestration does not have an evident impact on upper tropospheric CO2. However, further research is required to determine why there is a strong correlation between CO2 at high altitudes and surface vegetation. The strong influence of fossil-fuel CO2 emissions on near-surface CO2 tends to weaken at higher levels of the troposphere, with a correlation coefficient decreasing to 0.47 and 0.23, respectively, for the middle and upper troposphere (Figures 13B, C). The reduced correlation indicates a dissipating effect of local carbon emissions on atmospheric CO2 with increasing altitude. As a result, we can conclude that the upper levels of atmospheric CO2 are less affected by local carbon sources and sinks; it is therefore important to take into account the influence of regional atmospheric circulation when conducting the driving force analysis (Sohn et al., 2019; Al-Bayati et al., 2020).
[image: Figure 13]FIGURE 13 | Interannual variability of LAI and CO2 (A) and the correlation analysis between CO2 and fossil fuel emissions (B, C) at the middle (500 hPa) and upper (100 hPa) levels of the troposphere.
Based on the wind data generated by ERA5, this study further explored the effects of atmospheric circulation in modulating the distribution of CO2 at the upper atmosphere. The wind field was decomposed into zonal and vertical winds, and then their influence on CO2 concentration at different heights was evaluated. At the height of 500 hPa, satellite observations indicate lower concentrations of CO2 in the northwest and southwest of China. These areas have low CO2 emission values and are dominated by the wind from the west and the southwest; the relatively low CO2 concentrations from upstream countries, such as India, Pakistan, and Central Asia, have less impact on western China (Figure 14B). In addition, the frequent air motion in the upward and downward directions facilitates the mixing of the upper and lower air (Figure 14A), which assists in CO2 dispersal. While the upward airflow was most prevalent in the Mid-south and eastern China, high CO2 concentrations from the ground were carried to the upper levels, in combination with the westerly wind, resulting in high CO2 concentrations in eastern China. Accordingly, the spatial distribution of CO2 at the middle of the troposphere is the result of a combination of near-surface carbon emissions and zonal and vertical air motions (Cao et al., 2019). At the height of 100 hPa, an obviously zonal circulation stratification is observed with a uniform westerly wind, whereas the vertical airflow is weak (Figures 14C, D). The distinct differentiation of CO2 from north to south reflects the zonal average distribution of atmospheric circulation at the global scale. Therefore, the spatial patterns of CO2 at the upper levels of the troposphere may largely be explained by zonal winds (Dargaville et al., 2000).
[image: Figure 14]FIGURE 14 | Multi-year average climatology of tropospheric circulation at the middle (500 hPa) and upper (100 hPa) troposphere, with (A, C) for the vertical wind velocity, and (B, D) for the zonal wind and the annual mean CO2 concentration.
3.8 Comparison of this study with prior studies
Our results indicate an obvious increase in CO2 at the near surface and the middle troposphere at 2.38 ppm/year and 2.34 ppm/year, respectively, over the period from 2009 to 2019. The growth rate of CO2 at both levels is higher than the rate averaged for global areas (2.20 ppm/year and 2.34 ppm/year, respectively, for the near surface and middle troposphere) and Central Asia (Supplementary Table S4). As a result of the rapid development of China’s economy, such a trend is in accordance with the study of Peters et al. (2011), who reported a strong increment of atmospheric CO2 well above the global mean in the 21st century. It should be noted that the rate derived from satellite products is much lower than the rate obtained from in situ measurements at the regional scale (Fang et al., 2014; Cao et al., 2017). This difference may be the results of different sampling points used in the studies. As traditional in situ observation systems are not able to obtain the data in complex terrain regions, where the concentrations of CO2 are relatively low, using the values derived from satellite remote sensing may lower the regional averages. In addition, the different periods used may also have contributed to the differences. The growth rate of the study period including 2015, for example, is generally higher than that of the study period excluding 2015. Because the year 2015 is a typical El Niño–Southern Oscillation (ENSO) year, the growth rate of atmospheric CO2 is expected to increase due to the anomalous sea surface warming, and covering the analysis period in that year may have yielded a higher rate of annual growth of CO2 (Schwalm et al., 2011; Kim et al., 2016).
4 CONCLUSION
The improved accuracy of satellite CO2 products has created new opportunities for studying the spatiotemporal variations of CO2 in areas where field observations are inadequately sampled. In this study, the annual, seasonal, and diurnal variations of CO2 at different heights across six sub-regions of China were examined. The results show consistently increasing of CO2 with a magnitude higher than 2.1 ppm/year for all levels of the troposphere, and the seasonal cycles of CO2 at the near surface and the middle troposphere are similar, with a high value in the early spring and a low value in summer, which exhibit an opposite trend to the upper troposphere. An obvious spatial heterogeneity was observed at the near surface, with the highest concentration of CO2 occurring in East China and the lowest in Northwest China. This strong spatial heterogeneity, however, disappeared as the height increased and was replaced by a distinct south–north gradient difference at the upper troposphere. The diurnal variation of CO2 was found to be the largest in eastern China, whereas the western part exhibits a smaller variation. In terms of vertical variation, the concentrations of CO2 at the lower troposphere are generally higher than the values at the upper troposphere. Similar trends were also found in both the annual and seasonal variations of CO2. According to the driving mechanism analysis, the variation of CO2 at the near surface is mainly affected by the anthropogenic and biogenic activities, whereas the regional atmospheric circulation dominates the spatial distribution of CO2 at the upper troposphere.
Continuous monitoring of CO2 is the foundation for understanding the spatial distribution of carbon sources and sinks and for studying the regional carbon cycle (Dettinger and Ghil, 1998; Hammerling et al., 2012; Peters et al., 2012). This study presented a comprehensive analysis of the spatiotemporal patterns of atmospheric CO2. The results show a large discrepancy of CO2 concentrations and driving mechanisms among the six subregions of China. Thus, it is necessary to take the background concentration and the distinctive driving forces into consideration when formulating strategies for reducing carbon emissions (Zeng et al., 2013; Lin et al., 2021). Although the coarser temporal and spatial resolution of GOSAT may limit the representativeness of CO2 at fine scale, it contributes to understanding the spatiotemporal pattern and the variability of CO2 in China. With a more extensive CO2 observation network established and the continuous improvements in the technology of numerical simulation, future studies should integrate multi-source datasets from in situ and remote sensing measurements and model forecast to conduct a further in-depth assessment of atmospheric CO2 in China.
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Most of the countries along the Belt and Road are still developing, with their carbon emissions yet to peak. There is a lack of comprehensive analysis and research to judge these countries' current carbon peak state and quantify key driving factors contributing to their carbon emissions. This study aims to fill this gap.A new method for judging a country's peak carbon status based on a time series of carbon emissions is developed. We divide the status of all countries along the Belt and Road into four categories: reached the peak, peak plateau period 1 (the downward trend is not significant), peak plateau period 2 (obvious recession), and not reached the peak. LMDI factorization is used to decompose the change in carbon emissions of energy consumption into multiple factors: carbon intensity, energy intensity, economic output, and population size, based on Kaya's identity theory. The carbon emission and socioeconomic databases from 2000 to 2019 are utilized for this analysis. The main positive driving factor of the three countries (Hungary, Romania, Czech Republic) that have reached the peak is GDP PPP per population, while other driving factors make negative contributions to carbon emissions. In some years, these countries briefly experienced a negative contribution of GDP PPP per population to carbon emissions. The driving factors of carbon emissions for countries in the peak plateau period are not stable, with contributions of GDP PPP per population, energy intensity, and carbon intensity fluctuating periodically. In countries that have not reached the peak of carbon emissions, population growth and economic growth are significant positive contributors, while the effect of driving factors that negatively contribute to carbon emissions is less obvious.The study's findings provide valuable insights into the carbon emission peak status and driving factors of countries along the Belt and Road, which can be used to guide policymaking and future research in addressing climate change and promoting sustainable development in these regions.
Keywords: the Belt and Road initiative, carbon emission, LMDI decomposition analysis, carbon peak, Kaya identity
1 INTRODUCTION
The increase in carbon dioxide emissions is one of the most important causes of global climate change (Rehman et al., 2021; Sovacool et al., 2021; Qader et al., 2022). This situation is a major and urgent global challenge facing humanity. In 2013, proposed the cooperation initiative of building the “New Silk Road Economic Belt” and the “21st Century Maritime Silk Road” (referred to as “the Belt and Road”) (Hong, 2016). Green development and green investment are important components of the Belt and Road Initiative (Yin, 2019; Xue et al., 2021; Fan et al., 2022). The total carbon emissions of countries along the Belt and Road account for approximately 35% worldwide (Shi et al., 2022). With the advancement of urbanization and industrialization, carbon emissions in these countries may continue to rise (Hou et al., 2020). Therefore, the changes in carbon emissions of countries along the Belt and Road will affect the progress of global carbon emission reduction.
Current research on carbon emission pathways and peaking mainly includes the following three categories: The first category judges whether a region has reached its carbon peak based on long-term emission data. This type of research generally sets goals and judgment standards first and then directly judges whether carbon has reached the peak target or predicts the peak year based on carbon emission levels or historical trajectories. For example, only when the carbon emission peak has reached the highest level compared with the latest period and a long enough period of time has passed can it be determined if regional carbon emissions have reached the peak. Within a period after carbon peaking, regional carbon emissions must be reduced to a certain level or remain stable to rule out false peaks due to other factors (Wu and Xu, 2022; Wang and Yang, 2018; Riah et al., 2021). The advantage of this type of method is that it is more accurate in judging whether carbon dioxide has historically peaked, but it cannot predict the situation of carbon peaking in the future.
The second category analyzes the influencing factors of carbon emissions based on a comprehensive model to judge the trend of carbon emissions or predict the peak year based on the changing trend of the main influencing factors. Examples include the STIRPAT model method (Ulucak et al., 2021), Kaya formula (Yamaji et al., 1991), Tapio decoupling coefficient method (Shi, 2020), LMDI decomposition model (Ang, 2004) and input‒output model (Minx et al., 2009). These studies judge and predict the future trend or peak of carbon emissions based on changes in major factors such as population, GDP, energy intensity, and technological progress. The advantage of this type of method is that it can well judge the influencing factors of carbon emissions. However, the judgment of the carbon peak may not be accurate enough.
The third category is to judge the future trajectory of urban emissions based on a certain evolution law of emissions in a certain country or region. For example, Churkina (2008) used the urban evolution model to predict the carbon emission evolution trend of a single city in the ideal state and obtained the carbon emissions under the future baseline scenario. Wang et al. (2019) used the survival model to analyze the factors affecting the timing of the carbon emission peak and predicted the conditional probability of achieving the carbon emission peak. Chou et al. (2022) used the carbon Kuznets curve (CKC) model to test national carbon emission peaks. The advantage of this type of method is that for regions with stable development, the reliability of the predicted peak time of carbon emissions is relatively high. However, it is impossible to accurately assess the influencing factors of carbon emissions, and it is not suitable for regions with large fluctuations in development.
Contemporary scholars have been conducting research on the carbon emissions of countries along the Belt and Road. Zhang and Han (2022) found that the production-type carbon emissions of these countries are significantly higher than the consumption-type carbon emissions. Moreover, the growth rate of production-type carbon emissions is faster than that of consumption-type carbon emissions. This suggests that policies aimed at reducing carbon emissions in these countries need to target production-side measures, such as improving energy efficiency in industrial processes and promoting renewable energy sources. Wang et al. (2021) divided the countries along the Belt and Road into seven regions and studied the spillover effects of carbon emissions in these countries and their feedback effects. They found that the intraregional effect is greater than the interregional effect in the 7 regions, and the spillover effect is greater than the feedback effect. These findings indicate that policies to reduce carbon emissions in the Belt and Road region should prioritize regional cooperation and collaboration to address cross-border spillover effects. Chen et al. (2020) focused on changes in capacity utilization in Belt and Road countries and evaluated carbon emission reduction as an important factor. They suggest that improving capacity utilization and reducing carbon emissions can be achieved simultaneously through the adoption of more sustainable production processes and the development of low-carbon industries. Some scholars (Han et al., 2018; Lu et al., 2020) have studied the transfer of carbon emissions in Belt and Road countries from the perspective of embodied carbon emissions. Their findings highlight the importance of taking into account the full life cycle of products and services when evaluating carbon emissions. Finally, Chou et al. (2022) used the CKC model to predict the peak situation of different country groups in the Belt and Road region. Their study suggests that while some countries in the region have already reached their peak carbon emissions, others are expected to peak in the coming years. This highlights the need for tailored policy measures that take into account the varying stages of development and emissions profiles of different countries along the Belt and Road.
Research on the countries along the Belt and Road has become a popular topic. Most of these studies used the second or third methods to evaluate the carbon emission path and peak research. The use of the first type of method is still relatively small and represents the current research gap. Moreover, current research often ignores the heterogeneity among countries at different peak stages. To fill the research gap, this paper attempts to make new contributions in the following ways. First, this paper proposes a clear carbon peak judgment model based on the first type of method and classifies the current status of all countries along the Belt and Road into three categories: not reached peak, reached peak, and plateau. Then, based on the Kaya identity in the second type of method, the LMDI decomposition model is used to study the driving factors of carbon emission changes in countries along the Belt and Road at different stages. When the reasons for peaking or not peaking in different countries are identified, policy recommendations can be made as evidence. The research question that this paper hopes to solve is what kind of peak state currently defines countries along the Belt and Road? What are the driving factors that cause them to form such a state? Only by answering these scientific questions can the green development of the Belt and Road Initiative be effectively guaranteed. Policy recommendations can then be made for potential solutions for the low-carbon development of the Belt and Road.
2 MATERIALS AND METHODS
2.1 Study area and data sources
China’s official list of countries along the Belt and Road currently comprises 65 countries (People’s Daily Online, 2017). The specific list of countries can be found in the Appendix. Considering the availability and completeness of data, this paper excludes some countries with severe data loss, and the actual number of countries studied is 53. These countries are mainly distributed in Asia and Europe, except for some Central and Eastern European countries and Singapore, most of which are developing countries.
The carbon emission-related research data used in this paper come from greenhouse gas emissions from energy (IEA, 2021a) and world energy balances (IEA, 2021b) released by the World Energy Agency (IEA). The dataset comprises diverse categories of information pertaining to carbon emissions and energy consumption at the national level. This includes national annual total carbon emissions, national carbon emissions categorized by industry and energy, as well as national fossil energy consumption statistics. The dataset also incorporates national population and national annual GDP PPP per population figures sourced from the World Bank (2022). The temporal scope of all the data presented in the dataset spans from 2000 to 2019.
2.2 Carbon peak judgment
The process of judging whether carbon mission in an area reaches the peak is shown in Figure 1. The first judgment standard is to judge whether the time observation window after the carbon peak point or inflection point appears is sufficient. Within the time scale of the study, a country’s CO2 emissions will have a maximum at one time, but this time point may not be the peak or inflection point of carbon emissions (Chou et al., 2022). If the amount of data n < 5 after the maximum year, the country is considered not to have reached the peak. The reason for this is due to the fact that after a region reaches its peak carbon emissions, a considerable period of observation is still required to confirm the onset of a decline, rather than a mere reduction over a few years (Chen et al., 2021). Moreover, if the volume of data is limited, it becomes impractical to conduct trend testing.
[image: Figure 1]FIGURE 1 | Carbon peak judgment flow chart.
The second judgment standard is to judge whether the decline in carbon emissions is due to an economic recession. The ideal reduction in carbon emissions should be caused by measures such as industrial upgrading or energy substitution. However, in reality, it may also be caused by economic recession resulting from national turmoil (Copley, 2022; Jiang & Stern, 2021. From the numerical point of view, such countries may have already completed carbon peaking. However, if such countries recover, their carbon emissions may still rise. Therefore, it cannot be considered that such countries have completed their carbon peak; they should be classified as in a plateau period.
The third judgment criterion is to judge whether the carbon emission decline trend of the countries reaching the peak or inflection point is significant in the following time. This article uses the M-K (Mann-Kendall) trend test method proposed by Mann (1945); Hussain & Mahmud (2019). The advantage is that the M-K test does not require the data to be normally distributed, nor does it require the change trend to be linear (Karmeshu, 2012). If the country’s CO2 emissions after the maximum year have a significant downward trend, the country is considered to have reached its peak; if there is no significant trend, the country is considered to be in the plateau period. The calculation principle is as follows:
For a time series Xt = (x1,x2,…xn), the calculation principle of the statistic S of the MK trend test is as follows:
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Among them, f is the test function:
[image: image]
Then, calculate the variance Var and Z statistics:
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Finally, the data were tested with a two-sided test. When -Z1-a ≤ Zs ≤ Z1-a, the sequence has a significant change trend; otherwise, the trend is not significant. Since this article only needs to explore whether the downward trend is significant, Z1-a values less than −1.28, −1.96, and −2.32 correspond to a significant downward trend at the 90%, 95%, and 99% confidence levels, respectively.
2.3 LMDI decomposition based on Kaya identity
Decomposition analysis is used to quantify changes in various variables over time. There are two widely discussed techniques for conducting decomposition analysis, which are extensively elaborated upon in the literature. These methodologies are known as Structural Decomposition Analysis (SDA) and Exponential Decomposition Analysis (IDA). These techniques were developed independently and are commonly used to analyze changes in energy consumption and CO2 emissions (Mikayilov et al., 2020). In energy and environmental research, IDA is the most commonly used analytical method to better understand the drivers of changes in carbon emissions. The LMDI method is the most widely employed technique within the IDA framework. Here, this paper adopts the LMDI decomposition method based on the Kaya identity.
The establishment of the Kaya identity is to decompose the CO2 emissions into factors, which can be specifically expressed as:
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Among these factors, CO2, EN, GDP, and POP represent carbon dioxide emissions, primary energy consumption, gross domestic product, and total domestic population, respectively. The Kaya equation reveals the driving forces affecting CO2 emissions:
Ci represents the amount of CO2 emitted per unit of energy consumption, which can be further extended to “carbon intensity”, that is, different types of energy determine the amount of CO2 emitted per unit of energy consumption; Ei represents the amount of energy consumed per unit of GDP, that is, “energy intensity”. The higher the energy intensity is, the higher the amount of CO2 produced per unit of GDP; Yi represents the average social living standard and macroeconomic performance reflected by GDP per capita. For developing countries, the higher the GDP per capita is, the higher the CO2 emissions caused by the high-carbon consumption pattern; Pi represents the total population. With the acceleration of urbanization, the sharp increase in the urban population leads to a substantial increase in CO2 emissions.
Let ΔCO2 be the total amount of CO2 change from 0 to t within the total span change time period. Cef, Eef, Yef, and Pef represent the four influencing factors of Ci, Ei, Yi, and Pi, respectively. The decomposition value of ΔCO2 is based on the specific steps of the LMDI factor decomposition method proposed by Ang (2003). In this study, the improved Kaya identity is subjected to additive decomposition to obtain the following results:
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In the time period ranging from 0 to t, the differential operator is applied to both sides of the formula. Subsequently, the calculation formula for the contribution rate of each item is obtained as follows:
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3 RESULTS
3.1 Judgment of peak status in countries along the Belt and Road
According to the judgment flow chart in Figure 1, this paper determines the peak status of countries along the Belt and Road. The list is shown in Table 1. Among them, peak plateau period 1 refers to countries that have already seen an inflection point but a downward trend. Peak plateau period 2 refers to countries that have completed their carbon emission peak but are experiencing significant economic recession. The indicator for judging economic recession in this paper is the Tapio decoupling coefficient between carbon emissions and economic development. These data come from the authors’ previous research (Chou et al., 2022).
TABLE 1 | List of countries with different peak status.
[image: Table 1]The spatial distribution of countries with different peak states is shown in Figure 2. Most of the countries along the Belt and Road have not reached peak carbon emissions. They are mainly distributed in Asia. Most of these countries are still developing and comprise the majority of countries along the Belt and Road. The countries that have reached peak carbon emissions are all distributed in Europe, but Europe is not the only country that has reached peak carbon emissions. Central European countries have basically reached their carbon dioxide peaks. However, some countries in southern and eastern Europe are still in the peak plateau period. Uzbekistan, Serbia, the Russian Federation, and Belarus are currently at the inflection point of carbon peaks, but their downward trends are not significant. On the other hand, according to their emissions data, Moldova, Greece, and Ukraine have already peaked; however, their economies have declined significantly. According to the research results of Declercq et al. (2011), the decline in carbon emissions caused by this economic recession is very likely to reverse with economic recovery in the future. Therefore, this category of countries is still judged as being in the plateau period of the carbon peak.
[image: Figure 2]FIGURE 2 | Country distribution map of different peak states.
The carbon emission trends of all countries along the Belt and Road are shown in Figure 3. Since the level of carbon emissions in different countries is very different, directly expressing the total amount may affect the graphic effect. Therefore, in Figure 3, the emissions of each country in 2000 are set as the benchmark value of 100. The emissions of subsequent years are measured based on the emissions of 2000 so that we can better see the trends and changes of these countries in the past 2 decades. Countries that have not reached the peak have mostly shown a significant upward trend in carbon emissions. Countries in the peak plateau period 1 (with no significant downward trend) have fluctuating and unstable carbon emissions. Countries in the peak plateau period 2 (with obvious recession) have carbon emissions that are fluctuating and decreasing. Countries that have reached the peak have shown a stable downward trend in carbon emissions after reaching the inflection point.
[image: Figure 3]FIGURE 3 | The trend of carbon emissions in countries along the Belt and Road. (A) Reached the peak; (B) Peak plateau period1 (the downward trend is not significant); (C) Peak plateau period2 (obvious recession); (D) Not reached the peak.
Table 2 shows the downward trend determined by the M-K trend test. Countries not listed in the table are on an upward trend or have not seen an inflection point. Although the carbon emissions of Uzbekistan, Serbia, the Russian Federation, and Belarus in the first column have reached an inflection point, their downward trend is not significant. Due to the fact that their corresponding Z values exceed −1.28, Z values lower than −1.28, −1.96, and −2.32 indicate a significant descending trend at the 90%, 95%, and 99% confidence intervals, respectively. Hence, said countries fall into the category of “peak plateau period 1″countries.
TABLE 2 | M-K test of whether the downward trend is significant.
[image: Table 2]3.2 Decomposition results of carbon emissions
Due to the large number of countries along the Belt and Road, this paper selects some representative countries from each category for the following research as follows: reached the peak: Hungary, Romania, Czech Republic; peak plateau period 1 (the downward trend is not significant): Russian Federation; peak plateau period 2 (obvious recession): Greece, Ukraine; and not reached the peak: Saudi Arabia, Vietnam, Pakistan. The time changes of their driving factors are shown in Figure 4. All driving factors take the data of 2000 as the benchmark value of 100; the values of subsequent years are first divided by the data of 2000 and then multiplied by 100. Different countries show different characteristics in the driving factors of carbon emissions. Except for Greece, the GDP PPP of most countries is growing. The population growth of countries that have not yet reached the peak is relatively significant, while the population of other countries remains roughly unchanged or slightly decreased. The energy density of most countries has been decreasing over the past 20 years (except for Saudi Arabia). The carbon intensity of Saudi Arabia and Vietnam has increased significantly, while the energy density of other countries has not changed significantly.
[image: Figure 4]FIGURE 4 | The carbon emissions drivers in countries along the Belt and Road. (A) Hungary; (B) Romania; (C) Czech Republic; (D) Greece; (E) Ukraine; (F) Russian Federation; (G) Saudi Arabia; (H) Pakistan. (I) Vietnam.
Figure 5. The decomposition results of the driving factors of carbon emission changes in these nine countries are shown, and the results are calculated for one period per year. The positive value of the driving factor indicates that it has made a positive contribution to carbon emissions during this time period. Conversely, a negative value for the driving factor indicates a negative contribution to carbon emissions during this time period. Figure 5 shows that in the three countries that have reached their peaks (Hungary, Romania, Czech Republic), the main driving factor of positive contribution is GDP PPP per population, while other driving factors make negative contributions to carbon emissions. However, this situation does not always exist. Due to the European debt crisis in 2008-2010, these countries briefly experienced a situation where GDP PPP per population made a negative contribution to carbon emissions. This situation is even more pronounced in Greece. Before 2008, its situation was similar to that of the previous three countries. However, after 2008, its GDP PPP per population made a large negative contribution to carbon emissions, while energy intensity became a large positive contributor to carbon emissions. Drivers of carbon emissions in Ukraine have fluctuated widely over a 20-year period. The contributions of GDP PPP per population, energy intensity and carbon intensity fluctuate periodically, sometimes positively and sometimes negatively. The energy intensity and carbon intensity of the Russian Federation were the main negative contributors to carbon emissions in the first decade, but these were offset by the rapid growth of GDP PPP per population. Over the next 10 years, the values of both positive and negative contributors decreased. Compared with the above six countries, the three countries that have not reached the peak of carbon emissions reflect completely different characteristics. The first is that population growth is a very significant positive contributor to carbon emissions, which is very obvious in Saudi Arabia and Pakistan. The second feature is that there are few drivers that contribute negatively to carbon emissions; Vietnam in particular has only experienced declines in energy intensity in individual years. The rest of the time, all drivers are positive contributors to carbon emissions.
[image: Figure 5]FIGURE 5 | Decomposition results of driving factors for carbon emission changes in nine countries. (A) Hungary; (B) Romania; (C) Czech Republic; (D) Greece; (E) Ukraine; (F) Russian Federation; (G) Saudi Arabia; (H) Pakistan. (I) Vietnam.
Table 3 shows the total contribution of the nine countries’ carbon emission drivers from 2000 to 2019. Changes in carbon intensity are positive in Vietnam and Pakistan and negative in all other countries. Energy intensity has a positive contribution in Saudi Arabia and a negative contribution in other countries. GDP PPP per population is a positive contribution in all countries. Population has a positive contribution in Hungary, Romania, Greece, Ukraine, and the Russian Federation and a negative contribution in the Czech Republic, Saudi Arabia, Vietnam, and Pakistan.
TABLE 3 | Total contribution of carbon emission drivers in 2000–2019 for 9 countries.
[image: Table 3]From the perspective of different stages of carbon peaking, different types of countries show different characteristics. The increase in GDP PPP per population in countries that have peaked carbon emissions is the only positive driver of carbon emissions, but this effect is mainly offset and exceeded by the decline in carbon intensity and energy intensity. The reduction in population has a certain negative effect on carbon emissions, but this effect is not obvious. The increase in GDP PPP per population of the Russian Federation in peak plateau period 1 (the downward trend is not significant) is also the only positive driver of carbon emissions. The carbon emission reduction effect brought by several other driving factors is not enough to offset the positive contribution of GDP PPP per population. Greece and Ukraine, which are in peak plateau period 2 (obvious recession), present a different situation. The main reason for the reduction in Greece’s carbon emissions is that the GDP PPP per population has grown very little. The main reason for the reduction in Ukraine’s carbon emissions is the decline in energy intensity. In countries where carbon emissions have not peaked, population growth has made a positive contribution to carbon emissions. Saudi Arabia is characterized by an increase in energy intensity over 2 decades, which suggests that its economic structure is still very energy-dependent and that this situation has not improved. Although the energy intensity of Vietnam and Pakistan has made a certain negative contribution to carbon emissions, the growth of carbon intensity, GDP PPP per population, and population has offset and exceeded such emission reduction effects. Therefore, carbon emissions in these countries continue to increase and have not yet reached their carbon peak.
3.3 Carbon emission driving factor analysis
3.3.1 Carbon intensity
The lower the carbon emissions produced by a unit of energy in a country is, the healthier the country’s energy structure will be. The change in carbon intensity is caused by the different types of energy; that is, the different types of energy determine the amount of CO2 emitted per unit of energy consumption. Figure 6 shows the proportion of carbon emissions produced by various fossil energy sources in nine countries. Coal, oil, and natural gas are still the main sources of emissions (more than 90%). Figure 6 shows the proportion of carbon emissions produced by various fossil energy sources in nine countries. Coal, oil, and natural gas are still the main sources of emissions (more than 90%). The countries with a marked decline in carbon intensity are Hungary and Romania, which are characterized by a significant decline in the share of emissions from coal. In contrast, Vietnam is increasingly dependent on coal for energy, making it a very large contributor to its carbon intensity. The nations of Hungary and Romania have demonstrated a notable reduction in carbon intensity, which can be attributed to a significant decrease in the proportion of carbon emissions originating from coal. The proportion of carbon emissions generated by coal in Hungary has decreased from 27% to 17%, and in Romania it has decreased from 71% to 60%. Conversely, Vietnam’s carbon intensity has experienced a surge, primarily due to an increasing dependence on coal as a primary energy source, resulting in a substantial contribution to its carbon intensity. The proportion of carbon emissions generated by coal in Vietnam has increased from 8% to 21%.
[image: Figure 6]FIGURE 6 | The share of carbon emissions produced by different types of fossil energy in nine countries. (A) Hungary; (B) Romania; (C) Czech Republic; (D) Greece; (E) Ukraine; (F) Russian Federation; (G) Saudi Arabia; (H) Pakistan. (I) Vietnam.
3.3.2 Energy intensity
The significance of energy intensity is to measure whether a country’s development is green and healthy. Changes in energy intensity are mainly caused by changes in the country’s industrial structure. If a country’s carbon dioxide emissions per unit of GDP decline while its economy grows, it means that the country has achieved a low-carbon development model. Figure 7 shows the share of carbon emissions generated by each sector for nine countries. Power generation produces the most carbon emissions in all countries. Among the three countries that have reached their carbon peaks, the carbon emissions generated by power generation continue to decline because their power generation efficiency and clean energy proportion are increasing. The shares of several countries in the peak plateau period did not change much. The share of carbon emissions produced by power generation in countries that have not reached their carbon peak is still increasing, which may be caused by new urbanization and industrialization. The other large emitters are industry and transport, whose shares have changed little in the three countries that have already peaked. Shares even fell in recessionary countries such as Ukraine. However, in countries that have not reached the peak, there is a trend that shares continue to increase.
[image: Figure 7]FIGURE 7 | Share of carbon emissions generated by each sector in nine countries. (A) Hungary; (B) Romania; (C) Czech Republic; (D) Greece; (E) Ukraine; (F) Russian Federation; (G) Saudi Arabia; (H) Pakistan. (I) Vietnam.
3.3.3 Economic and population
Reviewing the results of Figures 4, 5, we find that economic growth and population increase are the main positive drivers of carbon emissions most of the time. Seen from the underlying reasons, economic growth is a necessary condition to meet the basic needs of people’s material life and development. Energy consumption is the basic input to maintain economic operation, and carbon emissions are a direct byproduct of energy consumption. Population growth directly determines the scale of human social activities. Specifically, economic growth is a positive driver of carbon emissions most of the time, except for Greece and Ukraine, which are in the peak plateau period2 (obvious recession), showing certain negative effects. The populations in the three countries that have not reached the peak have grown rapidly in the past 2 decades, hence, population has become a very important positive driver of their carbon emissions.
4 CONCLUSION AND DISCUSSION
This study develops a new method for judging the peak carbon status of a country based on the time series of carbon emissions. We divide the status of all countries along the Belt and Road into four categories: reached the peak, peak plateau period 1 (the downward trend is not significant), peak plateau period 2 (obvious recession), and not reached the peak. In addition, this study uses the carbon emission database and socioeconomic database of countries along the Belt and Road from 2000 to 2019 to measure the driving factors of carbon emission changes in these countries. To this end, based on the theory of Kaya’s identity, we use LMDI factorization to decompose the change in carbon emissions of energy consumption into multiple factors: carbon intensity, energy intensity, economic output, and population size. Our research found the following:
(1) Most of the countries along the Belt and Road have carbon emissions that have not reached their peak. These countries are mainly developing ones in Asia, and they also comprise the majority of countries along the Belt and Road. The countries that have reached peak carbon emissions are all distributed in Europe, but Europe is not the only region that has reached peak carbon emissions. Central European countries have basically reached their carbon dioxide peaks. However, some countries in southern and eastern Europe are still in the peak plateau period.
(2) The carbon emission driving factors of countries in different carbon peak stages reflect different characteristics. The main driving factor of the positive contribution of the three countries that have reached the peak is GDP PPP per population, while other driving factors have made negative contributions to carbon emissions. However, in some years, these countries briefly experienced the negative contribution of GDP PPP per population to carbon emissions. The driving factors of the country’s carbon emissions in the peak plateau period are not stable. The contributions of GDP PPP per population, energy intensity and carbon intensity fluctuate periodically, sometimes positively and sometimes negatively. In countries that have not reached the peak of carbon emissions, population growth and economic growth are very significant positive contributors to carbon emissions, and the effect of driving factors that negatively contribute to carbon emissions is not so obvious.
(3) The reason for peaking in countries that have already reached their carbon intensity is that improvements in their energy and industrial structures have resulted in significant declines in their carbon intensity and energy intensity. The main problem of countries in the peak plateau period1 is that their “carbon peak” is largely caused by economic recession, rather than an improvement in energy and industrial structures. The main problem of countries in the peak plateau period2 is that the carbon emission reduction measures are not strong enough, resulting in an insignificant reduction in carbon emissions. The main problem for countries that have not peaked their carbon emissions is the growth in carbon emissions resulting from rapid population and economic growth. At the same time, their energy and industrial structures have not been improved, or the improvement is not enough to offset such growth.
However, this study still has certain limitations. Since the Kaya identity involves multiple variables, the estimation results may be affected by interactions and uncertainties among these variables. For example, energy emission intensity can be influenced by the choice of different energy sources and improvements in production processes. Economic structural factors may also differ due to specific economic development patterns in different countries or regions. Despite the uncertainty of the Kaya identity method, it is still a useful tool to help us understand the impact of different factors on CO2 emissions and develop corresponding emission reduction strategies.
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APPENDIX: LIST OF 65 COUNTRIES AND REGIONS ALONG THE BELT AND ROAD INITIATIVE (PEOPLE’S DAILY ONLINE, 2017):
East Asia: Mongolia.
ASEAN 10 countries: Singapore, Malaysia, Indonesia, Myanmar, Thailand, Laos, Cambodia, Vietnam, Brunei, and the Philippines.
West Asia 18 countries: Iran, Iraq, Turkey, Syria, Jordan, Lebanon, Israel, Palestine, Saudi Arabia, Yemen, Oman, United Arab Emirates, Qatar, Kuwait, Bahrain, Greece, Cyprus, and Egypt’s Sinai Peninsula.
South Asia 8 countries: India, Pakistan, Bangladesh, Afghanistan, Sri Lanka, Maldives, Nepal, and Bhutan.
Central Asia 5 countries: Kazakhstan, Uzbekistan, Turkmenistan, Tajikistan, and Kyrgyzstan.
Commonwealth of Independent States, Commonwealth of Independent States (CIS) 7 countries: Russia, Ukraine, Belarus, Georgia, Azerbaijan, Armenia, and Moldova.
Central and Eastern Europe 16 countries: Poland, Lithuania, Estonia, Latvia, Czech Republic, Slovakia, Hungary, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Serbia, Albania, Romania, Bulgaria, and North Macedonia.
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The characteristics and related mechanisms of the interannual variability of late summer (August) extreme precipitation in West China (WC) were investigated from 1961 to 2021. Precipitation and extreme precipitation (defined as the 99th percentile) generally decreased in the southeast-northwest direction, with a maximum in the Sichuan Basin. The non-linear trends in extreme precipitation have increased since the 1980s. Therefore, we further found that the interannual increase in extreme precipitation in the WC was significantly related to the eastward-strengthened South Asian high, western-stretched Western Pacific Subtropical high, enhanced westerly jet, anomalous cyclone in Mongolia, and anomalous anticyclone in the western Pacific. The anti-cyclonic anomaly is a Gill-type response to increase the sea surface temperature in the western Pacific. A mid-high latitude barotropic Rossby-wave train can be induced and has essential effects on the above key circulation patterns, further cooperating with the strong updrafts rather than strengthening and maintaining extreme precipitation in the WC.
Keywords: extreme precipitation, West China, West Pacific SST, South Asian High, western Pacific subtropical high
1 INTRODUCTION
The East Asian summer monsoon (EASM) affects four precipitation peaks in China through its northward advance (Ding and Chan, 2005; Wang and Ding, 2008; Ullah et al., 2023). The main rain belts successively move through South China, the Yangtze River Valley, and North China (Wang and Ding, 2008; Ding et al., 2010; Sun et al., 2017), with precipitation mainly concentrated in summer (He et al., 2007; Shi et al., 2020). In West China (WC, referring to 28–36°N and 100−108°E), the autumn rain phenomenon is the most common after summer precipitation, known as the West China autumn Rain, which is the last rain belt accompanied by the retreating EASM (Bai and Dong, 2004; Wang and Ding, 2008; Zhou et al., 2021). Yuan and Liu (2013) defined the start (August) and end (October) dates of the West China autumn Rain using the transition time of the wind direction from summer to winter. Many studies have shown that late summer precipitation significantly impacts the duration and intensity of autumn rain in WC (Yuan and Liu, 2013; Wei et al., 2018a; Wang and Zhou, 2019).
In recent decades, China has experienced significant changes in precipitation characteristics and intensity because of global warming (Aihaiti et al., 2021; Herzschuh et al., 2019; Xu et al., 2021). Late summer precipitation in the WC has become more diverse and intense because of the influence of the Indian, East Asian, and Tibetan Plateau monsoons, which may lead to floods, landslides, and debris flows and have a significant impact on human society and the economy (Zhai et al., 2005; Wang et al., 2015; Ma et al., 2022; Qian et al., 2022). Wang et al. (2015) demonstrated that precipitation in WC decreased before the 1990s and increased after the 2000s, emphasizing increased precipitation intensity (Zhang et al., 2019; Nie and Sun, 2021).
In addition, there have been frequent extreme precipitation events in WC that have caused flooding disasters in recent years, such as in the late summer of 2017, which affected more than 6 million people and resulted in direct economic losses of 121 billion Chinese Yuan (Hartfield et al., 2018; Zhou J. et al., 2019). In July 2019, an extreme precipitation event triggered a catastrophic landslide causing more than 50 casualties (Fan et al., 2020). The most recent extreme precipitation event occurred in August 2020, with an average 24-h precipitation anomaly that broke historical records since 1960 (Qian et al., 2022). This rare extreme precipitation has become one of the top 10 weather and climate events in 2020, affecting more than 8.523 million people and causing direct economic losses of 60.93 billion Chinese Yuan (http://news.weather.com.cn/2020/12/3427356.shtml). Therefore, it is crucial to investigate the characteristics and causes of late summer extreme precipitation in the WC to enhance disaster prevention and management capabilities.
Previous studies have analyzed the factors that influence precipitation in WC. The EASM significantly impacts thermal, dynamic, and hydrological processes (Yasui and Watanabe, 2010; Wang et al., 2015; Yuan and Yang, 2020). Wei et al. (2018b) found that the northward shifting and strengthening of the East Asian jet stream (EAJS) could adjust abnormal ascending branches and influence precipitation in the WC. When the western Pacific subtropical high (WPSH) extends westward and strengthens, more precipitation occurs in the WC because of abundant moisture (Zhu and Yu, 2003; Ma et al., 2022). The strengthened WPSH, combined with the northward EAJS, benefits water vapor transportation from the Bay of Bengal, South China Sea, and western Pacific to the WC, leading to increased precipitation (Wei et al., 2018b; Zhou B. et al., 2019; Ullah et al., 2023). Monsoons from the Bay of Bengal and the South China Sea also significantly impact the increasing of precipitation by the moisture transportation (Wang and Ding, 2008). The anomalous South Asian High (SAH) is closely related to summer precipitation in the WC because of enhanced upward movement and water vapor transport (Chen et al., 2016). The role of the sea surface temperature (SST) has also been studied. Xu et al. (2016) found that the possible cooperative impacts of the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) have significant effects on anomalous lower-level anticyclones over the western North Pacific and the southward shift of the strengthened EAJS, which further increases precipitation in the WC. The Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) have also been shown to influence the interdecadal variation of precipitation in WC (Gao et al., 2017; Wei et al., 2018a; Yang et al., 2019). Additionally, the variability in precipitation in the WC is positively correlated with the austral winter sea ice concentration in the southern Indian and Pacific Oceans (Zhou et al., 2021). Surface conditions over the Tibetan Plateau are also considered vital factors (Huo et al., 2014). Most previous studies have examined autumn precipitation changes and identified key factors (Yuan and Liu, 2013; Wang et al., 2015; Xu et al., 2016; Nie and Sun, 2021). However, the recurrent circulation conditions for extreme precipitation events in WC, which have become more frequent and violent in late summer, remain unclear.
This study aimed to understand better the physical mechanisms of late summer extreme precipitation in WC and answer the associated questions. The remainder of this paper is organized as follows: Section 2 introduces the data and methods used in the study. Section 3 describes the characteristics of late summer extreme precipitation in WC. In addition, the circulation mechanisms, the relationship with SST in the western Pacific, and the physical mechanism behind their linkage are discussed. Finally, Section 5 presents a brief conclusion and discussion.
2 DATA AND METHODS
2.1 Data
Observed daily precipitation datasets were supplied by the National Meteorological Information Center of the China Meteorological Administration (CMA). A total of 250 stations in WC (28˚–36˚N, 100˚–108˚E, Figure 1) were selected in late summer (August) from 1961 to 2021, in which the missing stations with less than 5% of the total missing time series were estimated using the inverse distance method (Eischeid et al., 2000). The ERA5 atmospheric reanalysis data used in this study, including potential height, temperature, horizontal winds, vertical velocity, and specific humidity, were provided by the European Center for Medium-Range Weather Forecasting (Bell et al., 2021). The horizontal resolution of the variables was 0.25° × 0.25°, and the vertical layer was 1000–1 hPa with 37 layers. To investigate the combined effects of SST anomalies on the interannual variability of extreme precipitation in WC, global monthly SST data with a 1° × 1 ° horizontal resolution obtained from the Met Office Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) (Rayner et al., 2003) were also used. Notably, linear trends in all datasets were removed before analysis.
[image: Figure 1]FIGURE 1 | Topographic profile and distribution of 250 meteorological stations (dark dots) in WC.
2.2 Methods
Extreme precipitation indices were provided by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI; http://etccdi.pacificclimate.org/list_27_indices.shtml). In this study, the 99% percentile of wet days in August was selected as extreme precipitation. The total precipitation accumulation with daily precipitation exceeding the 99th percentile was defined as R99TOT, and the number of occurrences was R99FRE. The Generalized Extreme Value (GEV) distribution was applied to describe the distribution of extreme values, and the return period used to investigate the occurrence of particular extreme events was calculated using the GEV. Empirical Orthogonal Function (EOF) analysis (Lorenz, 1956) was proposed to exhibit the leading mode of variability of extreme precipitation in August over WC from 1961 to 2021. The interannual variability of extreme precipitation was calculated by removing the 9-year running mean from the original time series. Consequently, linear regression and Pearson correlation were used for statistical analysis, and statistical significance was determined using Student’s t-test.
The wave activity fluxes (WAFs) were calculated according to Takaya and Nakamura (2001) as follows:
[image: image]
where [image: image] denotes the stream function, [image: image] means the horizontal wind, and [image: image] represents the two-dimensional Rossby WAFs. The barotropic Rossby-wave source (RWS) was formulated by Sardeshmukh and Hoskins (1988):33
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where [image: image] and [image: image] are the divergence wind and absolute vorticity, respectively.
The vertically integrated water vapor transport flux (WVT) was defined by Trenberth (1991). The vertical integrated < [image: image] > was calculated from 1000 to 300 hPa following:
[image: image]
3 RESULTS
3.1 Basic characteristics of late summer extreme precipitation in WC
The climatological spatiotemporal characteristics of late summer precipitation and extreme precipitation in WC during 1961–2021 are shown in Figure 2. Both precipitation (Figure 2A) and extreme precipitation (Figure 2B) exhibited an inhomogeneous spatial distribution, which increased from the northwest to the southeast, and the values were higher in the western Sichuan Basin. Spatial distributions are influenced by the orography and altitude of the WC (Nie and Sun, 2021). As shown in Figure 2C, the R99FRE exceeded 10 times by more than 97% of the stations, and the stations in southeastern WC largely reached 18 times. Apart from southeastern Sichuan, increasing precipitation trends prevailed in southern Gansu, southwestern Shaanxi, and the Sichuan Basin (Figure 2D). Compared with precipitation, R99TOT and R99FRE occurred more frequently in most WC, except in the southeastern regions (Figures 2E, F).
[image: Figure 2]FIGURE 2 | Spatial distributions of (A) precipitation, (B) R99TOT, (Unit: mm), and (C) R95FRE (Unit: times), with units of mm and times, as well as the linear trend of (D) precipitation, (E) R99TOT (Unit: mm/year), and (F) R95FRE (Unit: times/year) in WC during late summer from 1961 to 2021. The dotted stations indicate significant values at the 95% confidence level based on the Student’s t-test. The time series of regional (G) precipitation, (H) R99TOT, and (I) R95FRE in WC are plotted in black lines. The solid gray line in (G) represents the average precipitation. The red and blue dotted lines in (H) and (I) represent linear and non-linear trends, respectively.
The regional precipitation, R99TOT, and R99FRE in WC and the eastern regions during late summer are further discussed. There were no significant trends or decadal changes in precipitation and extreme precipitation indices (Figures 2G–I). However, the non-linear trends of R99TOT and R99FRE showed a transition around 2000 from a decreasing to an indistinctive increasing trend (Figures 2H, I), further implying that the variability of extreme precipitation in WC has different features.
Under the background of a slightly linear increasing trend in WC at a rate of 0.01 mm decade−1. The observed rainfall in August 2020 in WC was a rare event, occurring with a return period of 60 years, based on the GEV fits (Figure 3A). The intensity reached 2.46 standard deviations (Qian et al., 2022). Furthermore, comparisons between the R99TOT anomalies reconstructed from different periods suggest that climate change is likely to increase the occurrence of extreme precipitation events, especially in recent decades (Figure 3B). In addition, the KS test in Figure 3A suggests that the observed extreme precipitation in August 2020 was not an outlier and can be explained within the context of historical records. Therefore, an in-depth understanding of extreme precipitation from large-scale circulation is crucial for predicting and mitigating disasters.
[image: Figure 3]FIGURE 3 | (A) Return period (blue line) fitted with the GEV distribution at 95% confidence intervals. (B) The GEV distribution fits the seven different periods: 1961–1970 (gray), 1971–1980 (red), 1981–1990 (blue), 1991–2000 (yellow), 2001–2010 (green), 2011–2021 (pink), and 1961–2021 (black).
The first EOF mode of R99TOT displayed a dipole pattern with an increase in the northwestern WC and a decrease in the southeastern WC, accounting for 22.12% of the total variance (Figure 4A). The maximum positive values were located in the western Sichuan Basin and southeastern Gansu Province. PC1, which corresponds to the first mode, as shown in Figure 4B, presents an asymmetrical oscillation. The interannual and interdecadal components accounted for 88% and 12%, respectively, of the total variance in PC1. Therefore, this study further explored the atmospheric processes associated with the interannual variability in late summer extreme precipitation.
[image: Figure 4]FIGURE 4 | (A) Spatial pattern and (B) the principal component (PC, black line) of the first EOF mode of late summer extreme precipitation in WC from 1961 to 2021. The red and blue lines in (B) are the interannual and interdecadal components of PC1, respectively.
3.2 Circulation patterns associated with late summer extreme precipitation in WC
Changes in interannual late summer extreme precipitation in WC were closely linked to consistent changes in atmospheric circulation. Thus, Figure 5 illustrates the anomalous atmospheric circulation patterns regressed onto the interannual PC1 component from 1961 to 2021.
[image: Figure 5]FIGURE 5 | Regressed (A) geopotential height at 200 hPa (Shading, Unit: gpm; the dashed and solid brown lines represent the 12,500 gpm isoline in the climatological and regressed mean, respectively), (B) the zonal wind at 200 hPa (Shading, Unit: m·s−1; the dashed and solid green lines represent the 30 ms−1 isolines in the climatological and regressed mean, respectively), (C) the geopotential height at 500 hPa (Shading, Unit: gpm; the dashed and solid brown lines are the same as (A) but for 5,880 isolines). (D) The geopotential height at 850 hPa (Shading, Unit: gpm) and wind fields (Vectors, Unit: m·s−1). (E) The WVT (Vectors, Unit: kg·m−1·s−1) and its divergence (Shading, Unit: kg·m−2·s−1), and (F) the height-longitude profile of vertical velocity along the latitudes 30°–36°N (Shading, Unit: 10−1 Pa·s−1) in late summer onto the interannual component of PC1 from 1961 to 2021, respectively. Dotted areas are statistically significant at the 95% confidence level.
There are three notable anti-cyclonic systems in the Western Siberian Plain, Iranian Plateau, and Korean Peninsula from 200 hPa (Figure 5A) to 500 hPa (Figure 5C). Simultaneously, three cyclonic systems were located over the Caspian Sea, Mongolia, and the Chersky Mountains. The cyclonic system over Mongolia stretched southward, and the WC was sandwiched between two high-pressure centers at 500 hPa (Figure 5C). It is worth noting that the 12,500 gpm at 200 hPa and 5,880 gpm at 500 hPa isolines abnormally strengthened. Ma et al. (2022) emphasized that the eastward SAH and westward WPSH provided favorable conditions for extreme events in August 2022. Furthermore, the westerly jet at 200 hPa was also strengthened, and the WC was located on its south side (Figure 5B). In the lower troposphere, the cyclonic system over Mongolia further stretched southward, and an anti-cyclonic system over the western Pacific caused the WC to be affected by the low-pressure trough and southerly water vapor (Figure 5D). As shown in Figure 5E, abundant anomalous southerly water vapor was transported to WC and mainly converged along 30°–36°N, 104°–106°E, which is consistent with the maximum R99TOT. In addition, the regressed vertical motion enhanced significant upward vertical motion and sustained extreme precipitation in WC (Figure 5F).
Under these atmospheric circulation patterns, the SAH and WPSH tended to extend further east and west, respectively. This favored the formation of an upper-level divergence. The enhanced jet stream shifted northward, and the cyclonic system over Mongolia stretched southward, providing beneficial dynamic conditions (Yokoyama et al., 2017). Correspondingly, the anti-cyclonic system over the western Pacific guaranteed sufficient water vapor. Finally, a high R99TOT occurred in cooperation with enhanced updrafts.
3.3 SST anomalies associated with late summer extreme precipitation in WC
To illustrate the formation of quasi-barotropic circulation anomalies, summer SST fields associated with the interannual component of PC1 are plotted in Figure 6. Figure 6A shows the SST regression of the interannual component of PC1. A significant positive SST anomaly was observed in the western Pacific Ocean. The areas with the highest relevance (at the 95% confidence level) were selected as key SST regions. The SST index (SSTI) is defined as the year-to-year regionally averaged SST over 0°–25°N, 110°–150°E. In Figure 6B, the SSTI significantly increased with 0.014°C/year (at the 99% confidence level), and the correlation coefficients with the interannual component of PC1 reached 0.48 (at the 99% confidence level). In addition, the SSTI experienced significant interdecadal changes around the mid-1980s.
[image: Figure 6]FIGURE 6 | (A) Regressed SST maps in summer onto the interannual component of PC1 from 1961 to 2021, and (B) the standardized SSTI series and its linear trend during 1961–2021. The two black rectangular frames in (A) represent locations of WC and pass the 95% significance level, respectively. The black rectangular boxes in (A) represent locations of WC and pass the 95% significance level, respectively.
To validate the speculation that increasing SST could influence interannual R99TOT by adjusting atmospheric teleconnections. Figure 7 shows the regressed circulation and precipitation against the SSTI. Figure 7A shows the regressed zonal wind at 200 hPa, the strengthened westerly jet stream, and the southern WC. At 500 hPa, three notable anti-cyclonic systems were centered over the Western Siberian Plain, the Indian peninsula, and southeast China (Figure 7B). Against the backdrop of increasing SST in the western Pacific, the SAH and WPSH also tended to strengthen. The cyclonic system over Mongolia stretched southward and placed the WC between two high-pressure centers. The anomalously strengthened anticyclone over the western Pacific at 850 hPa continuously transported water vapor into WC (Figure 7C). Simultaneously, the strong upward vertical velocity further enhanced precipitation (Figure 7D). In Figures 7E, F, the significantly increased precipitation and R99TOT further prove that the warming of the western Pacific might be closely related to precipitation and extreme precipitation in WC.
[image: Figure 7]FIGURE 7 | Regressed (A) zonal wind at 200 hPa (Shading, Unit: m·s−1), (B) geopotential height at 500 hPa (Shading, Unit: gpm), (C) geopotential height (Shading, Unit: gpm) and wind fields (Vectors, Unit: m·s−1) at 850hPa, (D) vertical velocity height-longitude profile (Shading, Unit: m·s−1), (E) later summer precipitation and (F) R99TOT in WC (Dots, Unit: mm) onto the SSTI from 1961 to 2021, respectively. Dotted areas and red starts are statistically significant at the 95% confidence level.
Figure 8 shows the responses of WAFs and RWS to interannual R99TOT and increased SSTI. In Figure 8A, the regressed WAF with respect to the interannual components of PC1 originated from the West Pacific, was transmitted across the Atlantic, and was enhanced over Europe before arriving and converging in the WC. Figure 8B shows the SSTI regressed WAFs and RWS. It is clear that the WAFs separated from the western Pacific, and an obvious wave train crossed the mid-high latitudes, strengthened over western Europe, and converged in the WC, which further proved that the stationary Rossby-wave train was derived from the Pacific.
[image: Figure 8]FIGURE 8 | WAFs (Vectors; Unit: m2·s−2) and RWS (Shading; Unit: 10–10 m2·s−1) at 200 hPa regressed onto the (A) interannual component of PC1 and (B) SSTI from 1961–2021, respectively.
In summary, the warming SST in the western Pacific could induce a barotropic Rossby-wave train, which provides beneficial conditions for extreme precipitation in WC.
4 CONCLUSIONS AND DISCUSSIONS
The characteristics and related mechanisms of the interannual variability of late summer extreme precipitation in the WC were investigated based on meteorological station observations. Late summer precipitation, R99TOT, and R99FRE generally decreased in a southeast-northwest direction. Relatively high values are observed in the Sichuan Basin. Precipitation decreased before 2020, and heavy precipitation in 2020 was rare. In turn, the non-linear trends of R99TOT and R99FRE have increased since the 1980s, which indicates that these trends were enveloped by variability (Nie and Sun, 2021; Qian et al., 2022). Extreme precipitation events have become increasingly frequent and heavy in recent decades. Therefore, a detailed understanding of the dynamic origins of extreme precipitation in WC is important.
Thus, the related atmospheric circulation and fundamental physical processes were further investigated. The interannual components of R99TOT account for 88% of the total variance from 1961 to 2021. The eastward-strengthened SAH and western-stretched WPSH played key roles in increasing R99TOT in WC, especially along 30˚–36˚N, 104˚–106˚E. Furthermore, the enhanced westerly jet stream located on the northern side of the WC provides beneficial dynamic conditions for extreme precipitation (Yokoyama et al., 2017). The increased SSTI promoted convection and induced diabatic heating, which triggered an anti-cyclonic anomaly in the western Pacific that transported abundant water vapor to the WC. These anomalous circulation patterns were unusually strong in 2020 (Ma et al., 2022). In addition, anomalously strong updrafts further strengthened and maintained extreme precipitation events.
Notably, high-value areas where extreme precipitation frequently occurs, located on the southeastern side of the Tibetan Plateau, cause more severe floods and landslides. Thermal anomalies over the Tibetan Plateau can affect extreme precipitation events in this area via favoring ascending motion (Li et al., 2020). However, high precipitation is closely related to the topography. The contribution of topography to extreme precipitation requires further investigation (Shi et al., 2008). Moreover, Wang et al. (2008) reported that the surface temperatures on the Tibetan Plateau increased more than 1.8°C during the past 50 years, which deformed the WPSH and adjusted SAH. Our study also found the influence of the SAH on extreme precipitation in WC. Previous research also emphasized that more extreme precipitation occurs in WC, followed by eastward-extended SAH (Chen et al., 2019; Nie and Sun, 2021; Ma et al., 2022). However, the links between these mechanisms require further in-depth studies. In addition, increasing western Pacific SST via the WPSH has influenced the Mei-Yu Belt and extreme precipitation in China (Qian and Shi, 2017; Chen et al., 2018). Zhu et al. (2020) reported that the Gill-type response to diabatic cooling in the Pacific Ocean could adjust two barotropic Rossby-wave trains, which may influence precipitation in the WC.
The 2020/22 anomalous La Niña event led to a super Mei-Yu event in 2020. The specific influencing mechanism needs further investigation to determine whether SST warming anomalies over the western Pacific Ocean are enriched and related to La Niña influencing extreme precipitation in the WC (Ren et al., 2016; Qiao et al., 2021). In addition, the influence of global warming on extreme precipitation in WC requires further investigation.
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The supergeostrophic flow remains seldomly reported from an observational perspective. Here, 1 year record of radar wind profiler measurements and ERA-5 reanalysis collected at Beijing observatory station are used to characterize the vertical structures of supergeostrophic wind and Ekman spirals in the lower troposphere. It is found that supergeostrophic flow shows significant diurnal variation, with lowest frequency for the supergeostrophic wind forming during daytime under clear-sky conditions, largely due to strong turbulent mixing and friction in the daytime. By comparison, the planetary boundary layer at night is stably stratified, the supergeostrophic wind occurs more frequently due to friction-induced decoupling from the ground surface. Furthermore, the presence of cloud makes the supergeostrophic wind occur more often in the daytime. Also, the geostrophic wind deviation within 1 km of atmosphere is found to be more negatively associated with the difference between surface temperature and 2-m air temperature compared with that in the altitude range of 1–3 km, indicating that the supergeostrophic wind near ground surface is more subject to the influence of heat flux. Intriguingly, most of the vertical wind profiles in the PBL are found not to follow Ekman spiral under neutral atmospheric conditions. The supergeostrophic winds contribute significantly to the magnitude of Ekman spirals in the upper mixed layer. Overall, the profiles and evolution features of the supergeostrophic wind and Ekman spirals observed in the lower troposphere in Beijing are much complicated than expected. The findings lay a solid foundation for better elucidating the low-level atmospheric dynamics in Beijing.
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1 INTRODUCTION
Geostrophic winds are parallel to the isobar, resulting from a balance between the Coriolis effect induced by the Earth’s rotation and the pressure gradient force (Jeffreys, 1926; Holton and Hakim, 2013). This balance is also called geostrophic equilibrium and is hardly seen in the planetary boundary layer (PBL), due largely to mechanical friction from the ground. Therefore, Ekman spirals dominate the upper part of PBL, particularly under the condition of neutral stratification (Ekman and Kullenberg, 1905). Theoretically, the large-scale horizontal winds in the upper atmosphere well above the PBL tend to be geostrophic in mid- and high-latitude regions. The spatial and temporal pattern of the geostrophic wind field is key to characterizing the dynamics and chemistry of the middle atmosphere (Garratt, 1985, 1994; Riese et al., 1999). The supergeostrophic wind occurs occasionally during daytime in the presence of convective storms and occurs frequently at night that is often referred to as the nocturnal low-level jet (NLLJ), which was observed late at night in the lowest few hundred meters above ground (Bonner, 1968; Takle et al., 2014). At night, the surface cools down, resulting in a thermal inversion, and the stably stratified PBL decouples from the aloft free atmosphere (Stull, 1988). The friction disappears and thus cause a NLLJ, which is also referred to as supergeostrophic wind. Besides, the inertia oscillation, synoptic-scale baroclinicity and sloping terrain are among the factors causing supergeostrophic wind or low-level jet (LLJ) (Davies, 2006; Kidston et al., 2010). Also, it has been long recognized that the supergeostrophic flow is oftentimes associated with the interaction between gravity wave and mesoscale convective systems (Zhang and Fritsch, 1987; Orlanski and Chang, 1993; He et al., 2022). The LLJ, or the low-level supergeostrophic wind, exhibits obvious diurnal variation, which usually occurs at night and in the early morning (Bonner, 1968; Wei et al., 2014; Miao et al., 2018). This significant diurnal variation can be explained by the well-established inertial oscillation theory proposed by Blackadar (1957).
The geostrophic flow is subject to the impact of various factors such as PBL height, shear and steering profile, and surface friction velocity (Baas et al., 2010; Falasca et al., 2016; Howland et al., 2020). Supergeostrophic wind represents the observed wind speed being greater than the geostrophic wind speed and is generally observed within a few kilometers of the low troposphere (Bonner, 1968; Stull, 1988). This is generally caused by the mechanically generated turbulence near the ground surface or large-scale forcing in the daytime. Normally, the ageostrophic motion in the atmosphere can be rapidly adjusted to the geostrophic wind through the dispersion effect of inertial gravity waves. However, during the transition period around dusk, it is generally assumed an ageostrophic wind profile in the lower troposphere owing to the disappearance of frictional constraint. This ageostrophic wind tends to undergo an inertial oscillation, which is closely connected to supergeostrophic wind several hours later (Thorpe and Guymer, 1977; Van de Wiel et al., 2010). The LLJ or supergeostrophic wind is well featured with the occurrence of significant geostrophic deviation (Akiyama, 1973), and tightly connected with the exchanges of heat, momentum, and air mass between surface and free atmosphere (Banta et al., 2002), thereby being linked to the occurrence of convective storms (Rife et al., 2010; Saggiorato et al., 2020).
With the advent of the state-of-the-art satellite-borne temperature measurements, our understanding of the geostrophic wind in the stratosphere and mesosphere has been steadily improved in recent years (e.g., Oberheide et al., 2002). By comparison, the knowledge remains limited concerning whether the geostrophic balance exists in the lower troposphere, especially in the PBL. Most of the previous studies are focused on theoretical analyses and numerical simulations (Cammas and Ramond, 1989; Howland et al., 2020). Russell and Takle (1985) found that above the LLJ, there existed a significant supergeostrophic flow, whose magnitude and lifetime were highly dependent on ageostrophic wind shear, by using a multilevel model that explicitly represented vertical gradients of the geostrophic wind. Few prior observational studies investigated the features of superstrophic winds due to the lack of wind profile observations. As an alternative, high-precision barometer measurements were used to compile a climatological record of near-surface geostrophic wind in Denmark (Kristensen and Jensen, 1999). Also, airborne radar altimeter measurements have been used to conduct analyses on the geostrophic winds at a given altitude (Parish et al., 1988) or the ageostrophic wind within a jet stream system near the tropopause (Shapiro and Kennedy, 1981). Nevertheless, few prior studies are heavily relying on the profiling observation of winds. The presence of cloud further complicates the evolution of wind profile (Koning et al., 2021).
The observational network of Radar wind profiler (RWP) in China came into operation as early as 2008 by the China Meteorological Administration, and is composed of more than 170 station at the time of writing this manuscript (Liu et al., 2020; Guo et al., 2021). This motivates us to further figure out the geostrophic wind in the lower troposphere and Ekman spirals in the PBL from an observational perspective. The remainder of this paper proceeds as follows: Section 2 describes the measurement, data and methods used in this study. In Section 3, we conduct a comprehensive observational analysis on the supergeostrophic wind and Ekman spirals in terms of its vertical structure, under both clear-sky and cloudy conditions in Beijing. The potential influential factors and mechanisms are discussed as well. It ends with several key findings summarized in Section 4.
2 DATA AND METHODS
2.1 RWP measurements
In this study, the RWP data collected at Beijing observatory station (116.47°E, 39.80°N) was used to derive the climatology of vertical wind profile in the lower troposphere. The observational site of RWP is shown in Figure 1. Liu et al. (2020) reported that the RWP can provide wind profile with a vertical resolution of 120 m starting from the ground surface all the way up to a mean height of about 5 km above ground level (AGL), covering the period from January to December 2020. Prior to formal analysis, we have conducted data quality control to ensure that these wind profiling measurements are good enough to be used to characterize the geostrophic wind in Beijing (Liu et al., 2020). Noteworthy is that if more than 20% of the data below 3 km AGL are discarded or lost, the entire profile averaged during a given hour will be discarded. As a result, 7,194 valid hourly wind profiles were collected in Beijing.
[image: Figure 1]FIGURE 1 | Topographical map surrounding Beijing observatory station (blue dot), at which the surface temperature, 2 m air temperature, surface pressure, rainfall, and wind profiles are measured.
To minimize the potential influence of rainfall, all the wind profile measurements from RWP analyzed here are constrained to those samples belonging to the non-rainy periods, which are screened using the 1-min rain gauge measurements at Beijing Observatory station shown in Figure 1. In addition, hourly measurements of ground surface temperature (Ts), air temperature at 2 m (Ta), and cloud fraction are obtained from the same weather station. All these meteorological datasets are subjected to strict data-quality control by the National Meteorological Information Center (NMIC) of the China Meteorological Administration; http://data.cma.cn/data/online.html?t=1) and have been used extensively in previous weather and climatological studies (Yu et al., 2010; Zhang and Zhai, 2011; Luo et al., 2016; Chen et al., 2018). All-day averaged cloud fraction and rain gauge data are used to discriminate between clear-sky and cloudy conditions. The clear-sky condition refers to those days with cloud fraction being below 20%, whereas cloudy condition refer to those non-rainy days with cloud fraction being above 80% (CMA 2003). In this way, we get 116 clear-sky days and 28 cloudy days, contributing 34.6% and 8.4% of the total number of days.
2.2 ERA-5 reanalysis
ERA-5, the fifth generation of global atmospheric reanalysis produced at the European Centre for Medium-Range Weather Forecasts (ECMWF), is the successor of ERA-interim. It exhibits significant improvements over previous reanalysis, due largely to the updated parameterization schemes and more observations assimilated, which lead to its capability of public access within 5 days behind real time in operational mode. Meanwhile, ERA-5 reanalysis provides a spatial resolution of 0.25° × 0.25 ° and a temporal resolution of 1-h. Particularly, the accuracy and performance have been well demonstrated in reproducing the variation of temperature, rainfall, wind, surface energy balance (Hersbach et al., 2020). Currently, it covers the period from 1950 to the present (Bell et al., 2021). Here we only use the pressure dataset at the grid centered at Beijing observatory station.
2.3 Calculation of geostrophic wind
We define the wind speed observed by the RWP (Vobs) minus geostrophic wind speed calculated from the ERA-5 reanalysis (Vgeo) as geostrophic velocity deviation (VD). When the VD is greater than 0 (less than 0), the actual observed wind is manifested as supergeostrophic (subgeostrophic) flow, which is usually used to indicate the occurrence of low-level jet (Blackadar, 1957; Nagata and Ogura, 1991; Baas et al., 2009). It has been recognized that VD plays an important role in the production and transformation of atmospheric kinetic energy and mass redistribution.
Based on the pressure data from ERA-5, the geostrophic wind speed is derived by.
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where [image: image] is a reference air density, [image: image] denotes the Coriolis frequency calculated, with Ω being the angular velocity of the Earth with the value of 7.292 × 10−5 rad/s, [image: image] is the latitude of Beijing, [image: image] is pressure. ug and vg represent the components of the zonal and meridional directions for the geostrophic flow, which can be derived from the following equations:
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where [image: image] represents the Earth’s radius, and [image: image] is longitude. Note that this does not necessary suggest that the wind above the boundary layer is in geostrophic balance.
The isobaric coordinate from ERA-5 reanalysis has to be converted to the geometric height, in order to match the RWP measurements with ERA-5 reanalysis, according to the following barometric formula:
[image: image]
where [image: image] represents the air constant, T is average temperature, g is the gravitational acceleration, and p0 is the surface pressure.
To better tease out the physical mechanisms behind the supergeostrophic wind observed in the study area, our analysis will be conducted on the daytime and nighttime samples separately. Unless otherwise noted, the daytime refers to the hours from 0900 BJT to 1700 BJT, and the nighttime refers to those from 2100 BJT to 0600 BJT.
2.4 Lower tropospheric stability
In the PBL, pressure gradient force is balanced by Coriolis force and internal frictional force, and the frictional force is of crucial importance in keeping the wind from being geostrophic flow. The PBL can be divided into surface layer and Ekman layer, and the wind distribution in the Ekman layer can be ideally described from a mathematical view of point as description of Ekman spiral (Ellison, 1955). This is generally valid under the assumption of neutral atmospheric static condition.
To reveal how the Ekman spiral evolves with height, we determine the static stability of the PBL by using the metric of lower tropospheric stability (LTS). Following previous studies (e.g., Klein and Hartmann, 1993; Guo et al., 2018), LTS is formulated as follow:
[image: image]
Where θ denotes the potential temperature that is estimated from hourly ERA-5 reanalysis. All the LTS samples are divided into three subsets, each of which has the same number of samples. As shown in Figure 2, the neutral atmosphere conditions in this study correspond to the second tercile of LTS, which ranges from 10.6 K to 15.6 K.
[image: Figure 2]FIGURE 2 | Histogram showing the occurrence frequency of lower tropospheric stability (LTS) over Beijing observatory station, which is calculated using 1-year potential temperature dataset from ERA-5 reanalysis.
3 RESULTS AND DISCUSSION
3.1 Vertical profile of low-level wind speed
Figure 3 shows the normalized contoured frequency by altitude diagram (NCFAD) of VD at the lower troposphere under clear-sky and cloudy conditions in the daytime and nighttime, respectively. The vertical structures of VD in the PBL and aloft free troposphere exhibit frequent variations. In the daytime, the NCFAD of VD shows a similar pattern for both clear-sky and cloudy conditions: Below about 1.5 km AGL, subgeostrophic flow dominates since most negative VD samples occur in this altitude range. The Vobs is equal to Vgeo at about 1.5 km AGL, indicating quasi-geostrophic phenomenon occurs at this height. This also suggests that the daytime averaged PBL height can be reached up to 1.5 km AGL, well consistent with the PBL height as observed by the RWP in Beijing (Solanki et al., 2021). By comparison, VD is a small positive value above 1.5 km AGL, indicating supergeostrophic wind is observed albeit not obvious (Figures 3A,B). Under normal condition, stronger turbulence tends to occur in the PBL as compared with that in the free atmosphere, especially in the daytime, due to the stronger land-atmosphere exchanges induced by the solar radiation reaching the ground surface (Baas et al., 2009). This generally tends to result in more homogenous variation of Vobs with height in the daytime, as compared with the vertical variation at night.
[image: Figure 3]FIGURE 3 | Normalized contoured frequency by altitude diagram (NCFAD) of the wind speed observed by the RWP (Vobs) minus the geostrophic wind speed calculated from the ERA-5 reanalysis (Vgeo) during daytime (A–B) and nighttime (C–D). Also shown are the NCFADs for (A–C) clear-sky and (B–D) cloudy conditions. Note that the white vertical curves represent 50th percentile.
As shown in Figures 3C,D, the occurrence frequency of VD in the nighttime is biased towards positive above 0.5 km AGL under the both clear-sky and cloudy conditions. A close look at Figure 3 shows that at night the altitude where VD changes from negative to positive in the vertical drops sharply from 1.5 to 0.5 km AGL relative to that at daytime. Notably, the frequency of supergeostrophic wind at night reaches a maximum at around 1.5 km AGL and then descends with height, much larger than that at daytime. This means that supergeostrophic wind tends to occur more frequently at night compared with in daytime. This is because the stable boundary layer (SBL) formed by the combined effects of surface cooling and strong radiative cooling of the air induce a rapid decay of both turbulence and stress divergence (Kumar et al., 2006; Kallistratova and Kouznetsov, 2012), making the air in the residual layer suddenly or in the free troposphere have no friction force.
3.2 Diurnal variability of low-level supergeostrophic wind
As shown in Figure 4A, the subgeostrophic wind under clear-sky condition only occurs below 0.5 km AGL for the period 0800 to 2,200 BJT with maximum wind from 1,200 to 1800 BJT. And during the hours after sunset, the supergeostrophic wind speed increases gradually above 0.5 km after 1800 BJT, the supergeostrophic wind speed reaches a maximum between 0000BJT and 0400 BJT at the height range of 1.5–2.25 km, then the speed gradually decreases at heights above 2.25 km AGL, which means that the supergeostrophy phenomenon is caused by the rapid increase of wind speed at the level of maximum jet flow at night. In contrast, the supergeostrophic wind under the cloudy condition can be found above 1 km AGL all day, but below 0.5 km AGL the wind speed is lower and the supergeostrophic wind cannot be easily found (Figure 4B). The supergeostrophic wind in the daytime under cloudy conditions is more obvious than that under the clear-sky conditions. This indicates that the diurnal variability of the supergeostrophic wind speed is also significantly influenced by clouds.
[image: Figure 4]FIGURE 4 | Diurnal variability of height-resolved geostrophic deviation (color shading) at Beijing observatory station under (A) clear-sky and (B) cloudy conditions, which is indicated by the wind observed by the RWP minus geostrophic wind as calculated from ERA-5 reanalysis.
The diurnal variation of the supergeostrophy wind observed here can be explained by inertial oscillation theory proposed by Blackadar (1957), in which inertial oscillations of important ageostrophic components are found to play an important role in the development of LLJ. As such, the wind is subgeostrophic within the PBL in the daytime. The wind component continues to develop overnight, triggered by decoupling of surface friction at sunset. The nocturnal wind profile presents an oscillation around the geostrophic wind vector with a period of 2π/f (f is the Coriolis parameter). As a result, the vertical profile of the horizontal wind takes on the common “nose” shape. This is generally consistent with previous LLJ observations at low levels (Kalapureddy et al., 2007; Wei et al., 2014). Apart from the well-established inertial oscillation theory, several other mechanisms could at least partly account for the formation of supergeostrophic LLJ, including the block effect by the mountains (Wexler, 1961), the baroclinicity associated with diurnal heating and cooling changes over sloping terrain (Holton, 1967), a secondary circulation beneath the exit region of an upper-level jet streak (Uccellini, 1980), and the land-sea thermal property difference (Beardsley et al., 1987).
Figure 5 shows the comparison analysis of diurnal variability of supergeostrophic winds within lowest 1 km of the atmosphere between daytime and nighttime in the year of 2020 at Beijing observatory station. Under clear-sky conditions, strong turbulent mixing and friction in the daytime tend to homogenize the wind profile in the lower troposphere, making it difficult to form supergeostrophic wind (Figure 5A). Noteworthy is that the occurrence frequency of supergeostrophic wind shows a gradual decreasing trend from sunrise to sunset, irrespective of clear-sky and cloudy conditions. During daytime, the frequency of supergeostrophic flow in the presence of cloud is higher than that under clear-sky conditions, most likely due to the stronger convective or entrainment activities caused by clouds in daytime. In contrast, the frequency of nighttime supergeostrophic wind increases gradually with time, and more frequent supergeostrophic wind tends to occur under clear-sky conditions than under cloudy conditions. In this case, the PBL is well decoupled from the underlying surface, and NLLJ or supergeostrophic wind tends to occur just above the SBL (Kalnay et al., 1996), particularly during clear-sky nighttime (Figure 5B). The impact of cloud on the diurnal cycle of supergeostrophic wind occurrence at night seems contrary to that as observed in the daytime.
[image: Figure 5]FIGURE 5 | Comparison analysis of diurnal variability of supergeostrophic winds as calculated with the combination of RWP and ERA-5 reanalysis for (A) daytime averaged within lowest 1 km of the atmosphere, and (B) nighttime averaged within lowest 0.5 km of the atmosphere in the year of 2020 at Beijing observatory station. Note that the blue curves represent clear-sky conditions, whilst the red curves represent the cloudy conditions, which refer to cloud fraction being greater than 80%.
Besides the effect induced by the mechanical turbulent mixing in the PBL, the near-surface turbulent sensible heat flux is an importantenergy source driving the variation of air motion in the PBL, thereby affecting the profile of wind (Shen and Masahide, 2007; Zhou and Huang, 2010). Here, since recent studies (Cava et al., 2006; Liao et al., 2019) suggest that the difference between Ts and Ta basically reflects the variation characteristics of near-surface sensible heat flux, we here use Ts–Ta as an indicator for sensible heat flux to analyze its potential impact on supergeostrophic flow. When Ts–Ta is negative, it means that the radiative cooling effect dominates near the ground surface, and a downward sensible heat flux can be seen from the atmosphere to the ground surface. When Ts–Ta is positive, a upward sensible heat flux is typically observed. As illustrated in Figure 6A, the magnitude of Ts–Ta shows a unimodal distribution during daytime, reaching a maximum around 1300 BJT when being under strong influence of solar radiation heating. Interestingly, Ts–Ta remains always positive (particularly for the clear-sky conditions) during daytime, as opposed to the negative magnitude at night (Figure 6B) when surface radiative cooling effect dominates. Furthermore, the magnitude of Ts–Ta during nighttime is found to be much lower under cloudy conditions, compared with clear-sky nighttime. This could be mainly owing to the strong radiative warming effect of cloud at night, making a much weaker stratified SBL.
[image: Figure 6]FIGURE 6 | The same as Figure 4 but for the ground-surface temperature (Ts) minus air temperature at 2 m (Ta).
Figure 7 shows the VD as observed by the RWP at the Beijing observatory station as a function of Ts–Ta during the daytime. It is found that VD, overall, decreases significantly with the increase of the magnitude of Ts–Ta for the altitudes of 1 km and 2–3 km AGL. As expected, a much steeper regression slop is observed for the lowest atmosphere (within 1 km), as compared with high atmosphere (two to three km). This indicates that surface forcing can be much easily detected in the atmospheric layer that is closest to the ground surface.
[image: Figure 7]FIGURE 7 | VD as observed by the RWP at the Beijing observatory station as a function of Ts minus Ta during the daytime. All samples are evenly divided into five bins, and the triangle (square) represents the samples belonging to the height of 1–3 km AGL (below 1 km AGL).
3.3 Ekman spirals observed in the PBL
Figure 8 presents the joint probability distribution of u/ug and v/vg as observed by the RWP at Beijing observatory station at 0.35 km, 0.57 km, 0.79 km and 1.02 km AGL, respectively. Also shown are the Ekman spiral distributions at the corresponding height. Theoretically, the wind direction rotates clockwise with height in the PBL if the dominant forces acting on the air mass, such as Coriolis force and pressure gradient force, are not in equilibrium. Especially under neutral condition, most of the joint pairs of u/ug and v/vg are expected to be concentrated within the first quadrant of Figure 8. Nevertheless, most of samples in Figure 8 are clustered at the regions with u/ug and v/vg being less than one at low altitudes like 0.35 and 0.57 km AGL. Near the top of PBL such as 1.02 km AGL, a large fraction of samples can be observed with the values of u/ug and v/vg being greater than 1. This suggests that the wind speed observed by the RWP is found to increase with height, and the occurrence frequency of supergeostrophic wind could be likely increased with the increasing altitude.
[image: Figure 8]FIGURE 8 | Joint probability distribution of u/ug versus v/vg at four different altitudes: (A) 0.35 km, (B) 0.57 km, (C) 0.79 km and (D) 1.02 km above ground level, in which u and v are obtained from the RWP measurements, and ug and vg are calculated from the ERA-5 reanalysis. Also shown is the hodograph of the wind components in the Ekman spirals. The arrow in each panel denotes the wind velocity at the above-mentioned four altitudes. The two numbers in the parenthesis represent the percentages which meet the criteria used to determine the first quadrant containing the Ekman spiral for all times and nighttime for a given day. It should be noted that all the results shown here are under neutral atmospheric condition, corresponding to the LTS values ranging from 10.6 to 15.6 K (c.f., Figure 2).
As shown in Figure 8, the probability for the occurrence of Ekman spiral tends to decrease with altitude in the PBL, even though the maximum percentage during all day (nighttime) is less than 20% (7%), which is generally consistent with previous findings (e.g., Lenn and Chereskin, 2009). This indicates that most of the observed winds in the PBL deviate substantially from the spiral pattern even in steady state barotropic situations with near neutral static stability, which generally agrees with previous studies (Holton and Hakim, 2013). The low probability of Ekman spiral observed in the upper altitude could means that the wind profiles near the top of PBL could be dramatically affected by the large pressure-driven flows, such as tides, internal waves, and the geostrophic currents (Lenn and Chereskin, 2009).
4 CONCLUDING REMARKS
In this study, 1 year record of radar wind profiler measurements and ERA-5 reanalysis collected at Beijing observatory station were used to characterize the vertical structures of supergeostrophic wind and Ekman spirals in the lower troposphere. It is found that supergeostrophic wind is more likely to occur in the nighttime than in the daytime. The altitude where supergeostrophic wind oftentimes occurs generally corresponds to the height where the horizontal maximum wind speed of LLJ that is mainly caused by inertial oscillations. Overall, geostrophic flow shows significant diurnal variation in the vertical. In particular, the subgeostrophic wind in the daytime is mainly present within the PBL, whereas supergeostrophic wind tends to occur in the free troposphere (higher than 1.5 km AGL). By comparison, during the nighttime, supergeostrophic flow tends to occur more frequently, and the maximum occurrence frequency extends down to the altitudes below 0.5 km AGL.
The cloud impact on geostrophic wind is investigated as well. It is hard for the supergeostrophic wind to be formed during daytime under clear-sky conditions due to strong turbulent mixing and friction in the daytime. The presence of cloud makes the supergeostrophic wind occur more often in the daytime, probably owing the strong convective instability caused by clouds. By comparison, the nighttime supergeostrophic wind is found to occur more frequently than in the daytime. This could be due to the much weaker surface cooling by the aloft cloud cover, resulting in not well decoupled PBL from the ground surface. The PBL at night, nevertheless, is stably stratified, and the LLJ is more likely to occur at night due to friction decoupling, and supergeostrophic wind occurs more often. This in turn leads to frequent supergeostrophic wind occurring above the PBL. Besides, the supergeostrophic wind at 1 km AGL and below is more subject to the influence of ground surface heat flux, compared with higher atmosphere (one to three km AGL).
Overall, most of the vertical wind profiles in the PBL are found not to follow Ekman spiral under neutral atmospheric conditions. The joint probability distributions of u/ug and v/vg indicate that less than 20% of the all-day wind observations lie in the first quadrant of Figure 8 (i.e., Ekman spiral distribution), no matter the altitudes are 0.35 km, 0.57 km, 0.79 km or 1.02 km AGL. The nighttime observations have less probability to follow Ekman spiral pattern in the PBL. The wind direction rotates clockwise with height, and the higher probability of u/ug and v/vg occurrence is concentrated in the first quadrant. The occurrence frequency of Ekman spirals gradually decreases, but the occurrence rate of Ekman spirals at night gradually increases with altitude, and at 1.02 km, the frequency of supergeostrophic wind increased. It shows that there is inertial oscillation in the boundary layer and the supergeostrophic winds can contribute significantly to the magnitude of Ekman spirals in the upper mixed layer.
In conclusion, we present observational results of the supergeostrophic wind and Ekman spirals in the lower troposphere in Beijing. Their vertical and diurnal variation is much complicated than expected. More importantly, the driving forcings and underlying mechanism are myriad and deserve more observational analyses and numerical experiments based on large eddy simulation.
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Our knowledge of sea breeze remains poor in the coastal area of East China, due largely to the high terrain heterogeneity. Five–year (2016–2020) consecutive wind observations from a 10-m wind tower and radar wind profiler are used to characterize the sea–land breeze at Qingdao, a coastal city in East China. The sea surface temperatures at the nearby buoy station in the Yellow Sea are further used to elucidate the land–sea thermal contrast. First of all, three types of sea breeze are determined according to the temporal evolution of wind direction, including pure sea breeze (PSB), corkscrew sea breeze (CSB) and backdoor sea breeze (BSB). Statistically, there are 522 days experiencing sea breezes, of which 61 days belong to pure sea breeze, 40 days witness corkscrew sea breeze, and only 2 days see the backdoor sea breeze. The occurrence of sea breeze is found to peak from April to September and the average wind speed lies at 3–5 m s−1. This suggests a salient seasonality of sea breeze at Qingdao, which is likely caused by the seasonal dependence of land–sea thermal contrast. In terms of the diurnal variability, the sea breezes tend to occur more frequently and have more intensity in the afternoon compared with in the morning, irrespective of sea breeze types. Interestingly, the backdoor sea breeze is merely observed in autumn, whereas corkscrew sea breeze and pure sea breeze can be found year round. Among all types of sea breeze, the pure sea breeze has the highest intensity and most frequency throughout the daytime, same in the seasons of spring, summer and autumn. Further analyses are conduced of the atmospheric circulation, lower troposphere stability and bulk Richard number (Ri) for three types of sea breeze. Both pure sea breeze and corkscrew sea breeze in Qingdao are characterized by prevailing westerlies at 500 hPa. In contrast, the backdoor sea breeze is generally accompanied with easterlies at 850 hPa. Meanwhile, the backdoor sea breeze has the lowest lower troposphere stability, in sharp contrast to the highest lower troposphere stability for the pure sea breeze. This indicates that the backdoor sea breeze (pure sea breeze) tends to occur in an unstable (stable) lower troposphere. The findings obtained here highlight the importance of typing sea breeze.
Keywords: Qingdao, sea breeze, sea breeze classification, lower tropospheric stability, bulk Richard number (Ri), wind profile
1 INTRODUCTION
Offshore wind is one of the most important sources of renewable energy. The global offshore wind report 2021 released by the Global Wind Energy Council (GWEC) pointed out that the global offshore wind power installation has maintained a stable growth momentum in the past year. From now to 2050, offshore wind energy will become the focus of global decarbonization. Wind power has been affected by the re-cent drop observed in near–surface wind speed, which is mainly attributed to global warming (Tian et al., 2019). Nevertheless, the efficient utilization of sea–land breeze can to some ex-tent fill up the gap of wind power generation caused by the reduction of surface wind speed. The sea–land breeze circulation is a mesoscale atmospheric circulation phenomenon (Fisher, 1960; Zhu and Lin, 2000; Fujibe and Fumiaki, 1985) at the junction of sea and land in the lower atmosphere due to the land–sea thermal contrast. There are many previous studies devoted to the field of sea–land breeze, which can be summarized into three categories: observational analyses (Ma et al., 2021; Zhao et al., 2022), theoretical calculation (Jeffreys, 1922) and numerical simulation (Pearce, 1955). In the early phase, meteorological balloons and ships were the main instruments used for observational research (Fisher, 1960; Feit, 1969; Simpson et al., 1977; Kozo, 1982; Kraus et al., 1990; Kingsmill, 1995; Laird et al., 1995). Later on, it developed into a complex numerical simulation after the 1950s (Pearce, 1955; Rani et al., 2010; Lin et al., 2019).
As a unique mesoscale and microscale circulation system in coastal areas, sea–land breeze will affect the distribution of local temperature (Pokhrel and Lee, 2011; Naor et al.,. 2017), humidity and wind field (Zhuang et al., 2005; Gao et al., 2013), thus affecting the local climate and ecological environment (Garrett and Zhao, 2006; Garrett et al., 2010; Ryu and Baik, 2013; Ganbat et al., 2015; Yang et al., 2018). In addition, sea–land breeze circulation is recognized to dramatically affect the diffusion and transport of aerosols, which further interact with strong convective clouds, thereby bringing about various meteorological disasters to coastal areas (Guo et al., 2016; Meng and Tang, 2019; Li et al., 2019) and cause damage to people, urban buildings and economy (Phan and Manomaiphiboon, 2012). Huang and Chan (2011, 2012) showed that the interaction between southwest monsoon and East Asian continental sea–land breeze contributes to the formation of morning and afternoon convection in the South China Sea. Sheng et al. (2009) and Huang and Wang (2014) found that the sea–land breeze system can promote the formation of precipitation. As one of the pioneer study, Adams (1997) identified and defined three main types of sea breeze: pure sea breeze (PSB), corkscrew sea breeze (CSB) and backdoor sea breeze (BSB). A brief de-scription is given here, and a detailed explanation will be given in Section 2.3. The PSB has the largest gradient wind component, and the direction is perpendicular to the coast. The arrival of CSB(BSB) indicates that the wind direction gradually deflects counterclockwise (clockwise). In order to reflect the wind energy utilization of different types of sea–land breeze, Xia et al. (2021) analyzed the sea breeze on the northeast coast of the United States. The simulation shows that the power output related to CSB is almost 3 to 4 times that of PSB and BSB. The result highlights the importance of correctly predicting different types of sea breeze for wind energy application. Different types of sea breeze generally show different characteristics, but few previous studies paid attention to this. The analysis of different types of sea–land breeze is conducive to the rational development and utilization of climate resources. Therefore, it is imperative to conduct observational analysis by taking the sea breeze types into account. The results of this paper could provide refined scientific support for the application of wind energy resources and provide a useful reference for understanding the local circulation in Qingdao.
Then we use a variety of observation data (automatic weather station data, buoy data, wind profile data) to analyze the sea–land breeze in Qingdao and classifies the sea–land breeze. The synoptic chart and several typical thermodynamic variables, including lower tropospheric stability (LTS) and bulk Richard number (Ri), for each type of sea breeze have been analyzed as well in attempt to figure out the favorable atmospheric environment for the occurrence of each specific sea breeze. The rest of this paper proceeds as follows. Data and methodology are presented in Section 2. Section 3 introduces the monthly variation and seasonally variation of sea breeze and land breeze at Qingdao. The diurnal statistical characteristics of the four seasons of the three main sea breeze types and upper air conditions are also introduced. Section 4 illustrates the evolution process of three typical sea breezes. This study ends with summaries and conclusions in Section 5.
2 DATA AND METHODS
2.1 Data
In order to ensure the data quality of surface observational station and reduce the impact of topographic changes on it, we choose the national meteorological station in Qingdao and the altitude of station belongs to the plain altitude range (altitude<200 m). Adopt the principle of proximity, we select a buoy station (Changmenyan buoy station) with high data quality as the sea surface station for calculating the land-sea thermal contrast. The nearby coastline runs from northeast to southwest, and the location of the station is also identified on the map (Figure 1A). Figures 1B, C show the topo-graphic map, showing relatively homogenous terrain surrounding Qingdao weather station. The data used in this study is the surface observation data of Qingdao national meteorological station (Station number: 54,857, 120.33°E, 36.07°N) of 2016–2020 which comes from the observation of China Meteorological Administration (CMA), including surface wind (hourly data of 2-min average wind direction and speed) and temperature, with a time resolution of 1 h. Sea surface temperature data from Changmenyan buoy station (Station number: 54,859, 120.22°E, 36.18°N), with a time resolution of 1 h. The radar data comes from the product data file on the real–time sampling height of Qingdao wind profile radar station (120.2°E, 36.3°N, at 12 m height), including sampling height, horizontal wind direction, horizontal wind speed, vertical wind speed and other elements. The time in the data format is expressed in universal time with a time resolution of 6 min. The spatial resolution below 840 m height is 60 m and above 840 m the resolution is 120 m. According to the research content of this study and other scholars, the height range is 60–1,560 m in this paper. All these data obtaining from National Meteorological Information Center of CMA were quality controlled and released for operational usage. In order to obtain more reliable and accurate data, the original data will be screened and processed. We also use ERA–5 data to explore the atmospheric environment of sea breezes. The time was chosen from 2016 to 2020 with a time resolution of 1 h and a spatial resolution of 0.25°*0.25°. The calculation data of LTS and Ri only use the grid point of Qingdao station.
[image: Figure 1]FIGURE 1 | (A) Schematic of sea breeze classification, superimposed by the coastline of Qingdao city. The corkscrew sea breeze (CSB) is dominated by counterclockwise wind and shaded by the light red, the backdoor sea breeze (BSB) is dominated by clockwise wind and shaded by the light blue, and the pure sea breeze (PSB) dominated by the wind flowing perpendicular to the coastal line and shaded in light yellow. The red dot represents Qingdao national meteorological station and the star represents Changmenyan buoy station. (B) Topographic map near the station. (C) Photos of instrument monitoring.
Quality control of hourly data of selected station: if the missing data in a day (0000–2,300 local standard time, LST) reaches 7 h or more, it will not participate in the diurnal average statistics. Otherwise, the hours (less than 7) with missing observations are excluded for further analysis except for the remaining hours with valid observations. The number of samples at the station is the total number of remaining hours after eliminating the missing hours. Missing date has been eliminated in this study. Sea-land breeze refers to the breeze blowing from the sea to the land during the daytime in coastal areas. In this paper, the selection of data only includes the period from sunrise to sunset, and the nighttime data is ignored.
2.2 Calculation methodology
Sea-land breeze is mainly a thermal circulation unique to coastal areas, which caused by the thermal contrast between sea and land. We define the land-sea thermal contrast as ∆T, ∆T = Tland–Tsea > 0, which meets the criteria for occurrence of sea-land breeze. The Tland represents the diurnal average temperature of the land surface during the daytime from sunrise to sunset. The Tsea represents the diurnal average temperature of the sea surface during the daytime.
In order to better exhibit the atmospheric environment of sea breezes, the LTS and Ri are given. The data used for the calculation includes the grid points where the station is located. The LTS is calculated by Eq.:
[image: image]
LTS defined by the differences in potential temperature at 700 ([image: image] ) and 1,000 ( [image: image]) hPa, is widely used as an indicator to describe the static stability of the lower troposphere (Guo et al., 2016). Typically, the LTS values are higher, the lower troposphere is more stable (Guo et al., 2021).
Ri is a dimensionless meteorological variable and can be calculated as the ratio of buoyance produced turbulence and shear-induced turbulence. A low Ri value is generally used to indicate weak instability and/or strong vertical shear. The Ri is calculated by Eq.:
[image: image]
Where [image: image] represents the height above the ground, [image: image] represents the surface, [image: image] represents the acceleration of gravity, [image: image] represents the virtual potential temperature, [image: image] and [image: image] represent the wind speed components, and [image: image] represents the surface fric-tion velocity. [image: image] can be neglected here because it is much smaller in magnitude compared to the bulk wind shear term in the denominator (Vogelezang and Holtslag, 1996).
2.3 Determination of sea–land breeze
On the one hand, we select the day when thermal contrast is greater than zero (∆T = Tland–Tsea > 0, Furberg et al., 2002). Tland is 39 sunrise to sunset on the land–surface and Tsea is the diurnal average temperature from sunrise to sunset on the sea–surface. On the other hand, when the wind speed before the onset of sea breeze is less than 1.5 m s−1 and the maximum wind speed during the day is less than 10 m s−1, the day under investigation is deemed as a day with sea breeze. As such, this criterion taken from previous studies (Steyn and Faulkner, 1986;Furberg et al., 2002), to some extent, can eliminate the influence of large–scale synoptic system. Next, we will discuss the sea breeze days in two scenarios.
Scenario 1: sea and land breeze alternate throughout the day. It is specified that 0100–0800 LST is the land breeze period, 0900–1200 LST is the land breeze to sea breeze conversion period, 1,300–2000 LST is the sea breeze period, and 2,100–2,400 LST is the sea breeze to land breeze conversion period (Zhang et al., 2015; Xun et al., 2017).
(1) During the land breeze period in 0100–0800 LST, the land breeze occurs more than 4 times, the sea breeze occurs less than twice;
(2) During the sea breeze period in 1,300–2,000 LST, the sea breeze occurs more than 4 times, the land breeze occurs less than twice;
(3) After sunrise, there are significant changes in wind direction and speed, and the wind direction mutation angle is greater than 30°; when the sea breeze has been established, the wind direction tends to be more stable towards the shore (Wang et al., 2016). The wind speed of sea breeze is greater than or equal to 0.5 m s−1;
(4) If the wind speed is high before the sea breeze starts, it cannot satisfy the limit value of 1.5 m s−1 specified in precondition, but the mutation angle is obvious when the wind direction changes from offshore to onshore (Wang et al., 2018).
Scenario 2: if the whole day is a sea breeze day and the wind speed is significantly increased and lasts for more than or equal to 3 h (Wang et al., 2016).
Criteria for identifying the ending of sea breeze time periods:
(1) At the te time, the wind direction is within the angle range of the sea breeze, while at the te+1 time the wind direction is not, it is decided that the sea breeze ends at the te;
(2) The wind speed at te time is less than te-1 or te+1, or the wind speed at te time is less than or equal to 0.5 m s−1, it is decided that the sea breeze ends at the te.
2.4 Classification of sea breeze
Adams (1997) divided the sea breeze into four categories: PSB, CSB, BSB and synoptic sea breeze (SSB). Miller et al., 2003 only elaborated on the first three types of sea breezes. The PSB occurs under the condition of weak prevailing wind. The sea breeze circulation has the largest gradient wind component, and the direction is perpendicular to the coast. The CSB occurs when the prevailing wind has both coastal and cross shore components. It is assumed that the coastal wind component blows a south wind on the east coast of the continent in the northern hemisphere. According to the baric wind law, the south wind means low pressure on land and high pressure on the sea. There is a low–level divergence area near the coast, and the upper air sinks into the divergence area and assists in the occurrence of sea breeze. The arrival of CSB indicates that the wind gradually turns from southwest to southeast with a counterclockwise rotation. The BSB occurs when the prevailing wind has both coastal and cross shore components. It is assumed that the coastal wind component blows a north wind on the east coast of the continent in the northern hemisphere. According to the baric wind law, it means that there is a high pressure on land and a low pressure on the sea surface. Low level convergence occurs near the coast, which hinders the sinking of upper air and inhibits the movement of sea breeze to land. The arrival of the BSB indicates that the wind gradually turns from northwest to northeast with a clockwise rotation. This paper focuses on the analysis of the first three types of sea breeze.
According to the special coastline of the coastal area where Qingdao station is located and the angle classification method of Lin (2018), the types of sea–land breezes at Qingdao station are classified, and the diurnal variations and case analysis are carried out. Based on the spatial shape of coastline (Figure 1), the prevailing wind blowing from the direction 45°–225° is thought to be sea breeze, whereas those from 0° to 45° and 225°–360° are land breeze. As shown in Figure 1, the PSB starts from the land breeze angle of 292.5°–337.5° which is almost perpendicular to the coastline before the sea breeze starts, and then turns to the sea breeze angle of 112.5°–157.5° which is almost perpendicular to the coastline. The CSB starts from the land breeze angle of 225°–270° before the sea breeze starts, then rotates counterclockwise, and the wind direction turns to the sea breeze angle of 180°–225°. The BSB starts from the land breeze angle of 0°–45° before the sea breeze starts, then rotates clockwise, and the wind direction turns to the sea breeze angle of 45°–90°. If two of the first 3 h after the occurrence of a sea breeze belong to a particular sea breeze, and the subsequent changes meet the criteria for changes in that type of sea breeze, it is defined as that type of sea breeze occurring on that day.
3 TEMPORAL VARIATIONS OF SEA–LAND BREEZE
3.1 Monthly variations of sea-land breeze
According to the identification method of sea breeze days defined by wind and temperature elements in this paper, it is calculated that there are 522 days with sea breeze from 2016 to 2020, which is 28.73% of the total number of days (1,817 days) in the study period.
As shown in Figure 2A, the black solid line is the annual average of the monthly number of sea breeze days in the study period and the red and blue solid lines represent the annual average of the sea breeze and land breeze speed (hourly mean wind speed) in the daytime of the sea breeze day. The results show that the number of days with sea breeze for the period from April to September is more than 11 days. This suggests that this season corresponds to a period of high sea breeze occurrence, and the intensity of sea breeze is greater than that of land breeze. In particular, there are 14.6 days of sea breeze in September, which is the most in the whole year. In winter, there are relatively few from December to the followed January, of which only 1.2 days of sea breeze occurred in December. The highest speed of sea breeze occurs in March which was 3.31 m s−1 and the lowest value occurs in December which was only 1.36 m s−1. The maximum value of land breeze speed in August is 2.75 m s−1 and the minimum value in December is 1.76 m s−1. One of the potential causes leading to temporal difference of sea breeze frequency between September and December is the different land–sea thermal contrast, which is calculated by the Tland minus Tsea. As expected, in September, thermal contrast is more than 0°C (Figure 2C), which is favorable for the dominance of sea breeze. While the thermal contrast in December is negative and well below 0°C, which does not meets the criterion for the determination of one sea breeze event as described in Section 2, so the occurrence frequency is very low.
[image: Figure 2]FIGURE 2 | (A) Monthly variations of annual mean sea breeze days (Days, black solid line), sea breeze speed (Sea breeze, red solid line) and land breeze speed (Land breeze, blue solid line) during 2016–2020. (B) Monthly variations of annual mean sea breeze sea breeze (Sea breeze) and land breeze (Land breeze) hours. (C) Annual mean Tsea, Tland and ∆T during the daytime in September and December (the red solid line is the median, the blue dotted line is the average, and the red dot is the outlier). (D) Cumulative frequency of sea breeze occurring during daytime hours in July and September (the red (black) dotted and dashed lines, respectively indicate the sunrise (sunset) times in July and September).
Figure 2B shows the annual average hours of sea and land breeze during the day-time on the sea breeze day of each month, from which we can see that the hours of sea breeze and land breeze vary greatly, especially in the summer half year. The maximum number of hours experiencing sea breeze is 140.2 in July, as compared with 55.6 h with land breeze occurrence in September. In order to explore the anomaly of sea breeze days and hours in July and September in Figures 2A, B, the cumulative frequency of sea breeze during the daytime in July and September is calculated, respective, which is shown in Figure 2D. The reasons for these seasonal variations could be twofold: 1) the sunrise and sunset time in July are 1 h longer than those in September, resulting in longer daytime; 2) the increase in occurrence frequency of sea breeze during daytime is higher in July than in September.
On the days when the land–sea thermal contrast is greater than zero, sea breeze occurs more frequently. While the days when the land–sea thermal contrast is less than zero, the sea breeze only appears in a few days. This situation is consistent with the description of sea breezes on Sardinia by Furberg et al., 2002. Meanwhile, it seems that there exists the largest land–sea thermal contrast in September in our study area, leading to most frequently occurring sea breeze in this month (Figure 2C). By comparison, the largest land–sea thermal contrast was found in May over the region of Sardinia (Furberg et al., 2002). Interestingly, Jiangsu province (Huang et al., 2016), located in the eastern coastal region of China, witnessed the most frequent sea breeze events in summer except for a few in autumn and winter. This could be because summer monsoon that frequently appeared as on-shore wind tended to favor the formation of sea breeze. Likewise, over Hainan Island in southern China, Zhang et al. (2014) revealed the maximum frequency of sea breeze in summer (49%) and the minimum frequency in autumn (29%). All these results indicate that the occurrence of sea breeze exhibits strong seasonal and spatial dependence.
3.2 Seasonal variations of sea–land breeze
Figure 3 shows the percentage of wind speed in each section of sea breeze, with the highest percentage of moderate wind speed section of 3–4 and 4–5 m s−1, a slightly lower percentage of wind speed section of 2–3 m s−1, followed by the 5–6 m s−1. Wind speed below 2 m s−1 rarely occurs. The sea breeze direction is mainly concentrated in east–southeast to south wind. The south wind component in spring is the largest and exceeds 40%. The wind in the other three seasons accounts for about 30%. The results of land breeze (Figure S1) show that the largest fraction of the wind speed is 1–4 m s−1 and the wind direction is mainly concentrated in northwest to northeast. The northwest wind component in spring accounts for the largest 30%. The comparison of the two figures shows that the sea breeze is stronger than the land breeze.
[image: Figure 3]FIGURE 3 | Wind rose plots for the seasonal (A–D) and annual (E) averaged sea breeze observed for the period 2016 to 2020 in Qingdao, China (the axis label of the wind rose diagram indicate the wind direction and the legend label indicate the wind speed range).
3.3 Seasonal variations of three types of sea breeze
Simple statistical analysis show that the number of PSB, CSB and BSB days is 61, 40, and 2, respectively. PSB occurs more frequently from April to September for more than 5 days per month. The CSB occurs in May, June, and September for 5 days or more per month. As shown in Figures 4, 5, it shows the occurrence frequency and speed of the sea breeze from sunrise to sunset in different seasons (only the sea breeze is considered, and the land breeze is not included in the statistics). In spring, PSB and CSB appear continuously in the daytime. The two types of sea breeze occur at the same time and the frequency increase gradually reaching the maximum frequency at 1,500 LST. PSB occurs more frequently than CSB. In summer, only PSB and CSB occur frequently. The frequency in the morning is low and gradually increases afterwards. At 1,500 LST, the frequency of the two sea breezes reach the maximum which is the highest in the whole year. The frequency of the PSB is close to 5.0%, which is nearly twice of the CSB. In autumn, three types of sea breeze occur simultaneously, and PSB and BSB have a breakpoint at 0700 LST. The PSB and CSB have obvious growth trend, while the BSB has almost no change. The frequency of PSB is the highest among the three. In winter, the frequency of PSB and CSB is low, and the maximum frequency is below 2.5%. The change is not obvious. The PSB is still slightly higher than CSB. The PSB in winter occurs 2 h later than the CSB. The change of sea breeze speed in the four seasons is similar to the trend of frequency. The wind speed in the morning is low and in the afternoon increases gradually. There are significant variations in spring, summer and autumn. The maximum speed of sea breeze occurs in summer and varies only slightly in winter. The PSB reaches the maximum speed at 1,500 LST in spring, at 1,400 LST in summer, at 1,600 LST in autumn and at 1,700 LST in winter. The CSB reaches the maximum speed at 1,400 LST in spring, at 1,700 LST in summer, at 1,600 LST in autumn and at 1,600 LST in winter. The speed of PSB is stronger than that of CSB, and the time to reaches the maximum wind speed is earlier than CSB. The BSB is rarely observed and the speed is low.
[image: Figure 4]FIGURE 4 | Hourly variations of the occurrence frequency of three types of sea breeze: PSB (in black), CSB (in red) and BSB (in blue) during the daytime for fours seasons: (A) spring (MAM), (B) summer (JJA), (C) autumn (SON) and (D) winter (DJF) during the period 2016 to 2020 in Qingdao, China.
[image: Figure 5]FIGURE 5 | Hourly variations of the intensity of three types of sea breeze: PSB (in black), CSB (in red) and BSB (in blue) during the daytime for fours seasons: (A) spring (MAM), (B) summer (JJA), (C) autumn (SON) and (D) winter (DJF) during the period 2016 to 2020 in Qingdao, China.
It can be seen that the sea breeze occurs within 2 h after sunrise and the peak of the sea breeze development is from 1,200 LST to 1,600 LST. In winter, the sea breeze is less frequent, discontinuous, low in intensity, and the wind speed fluctuation is not obvious. In spring, summer and autumn, the frequency of sea breeze increases with good consistency and the speed increases obviously, especially the PSB. The frequency and speed in summer are the highest in the whole year and the PSB intensity is the strongest among the three. In conclusion, the sea breeze from afternoon to night in Qingdao is in a good condition, especially at 1,300–1,700 LST, which is more conducive to wind turbine power generation. In addition, the sea breeze lasts for a long time and the effective utilization period increased.
3.4 Favorable atmospheric environment for three types of sea breeze
As BSB only appeared in autumn, the atmospheric circulation of three types of sea breeze in autumn is plotted using ERA–5 data (Figure 6). The geopotential height of the three types of sea breeze has no obvious trough and ridge, and the large–scale circulation background was stable, which is consistent with the conditions for the occurrence of sea breeze. However, the BSB is the least stable of the three due to the uneven distribution of contours at middle and low latitudes and the presence of multiple synoptic systems at low altitudes that causes vertical and horizontal movements of air masses, which is also verified later in Figure 7 using LTS and Ri. The wind convergence line of PSB is around 35°N and a high pressure appears in southeastern part of Shandong and 40°N sea surface. A weak wind shear line exists coastal waters. The wind convergence line of CSB is also around 35°N and a high pressure appears in the southwestern part of Shandong. A wind shear line exists in the far sea area. Qingdao station is in the eastern periphery of the high pressure at 850 hPa when the two types of sea breeze occur. In this case, west wind prevail at Qingdao Station. Compared to the PSB, the synoptic system of the CSB is further away from the coastline. It is different from PSB and CSB that the convergence line of BSB appears inland and Qingdao station is dominated by northeast wind with convergence of cold advection. The convergence area of PSB and CSB is the convergence of warm and humid air on the sea surface.
[image: Figure 6]FIGURE 6 | 500 hPa geopotential height field (black contour line) superimposed on the 850 hPa wind field (in colored streamline, red streamline for west wind and blue streamline for east wind) for three types of sea breeze: (A) PSB, (B) CSB and (C) BSB in the autumn of 2016–2020. The brown solid line represents the shear line, the brown dotted line represents the convergence line and the blue H (red L) represents the 850 hPa high (low) pressure center.
[image: Figure 7]FIGURE 7 | (A) Probability density distribution of lower tropospheric stability (LTS) for three types of sea breeze (PSB, CSB and BSB), where the error bar denotes one standard deviation. (B) Probability density distribution of bulk Richard number (Ri) for three types of sea breeze (PSB, CSB and BSB) in the autumn of 2016–2020 and (C) the profiles Ri of BSB starting from ground level up to 1 km altitude.
After that, the static stability of lower troposphere for the three types of sea breeze has been discussed in depth. Mean LTS and Ri for the daytime of three types of sea breezes are calculated using ERA–5 data for the autumn of 2016–2020. It can be seen from Figure 7A that the LTS of PSB reaches the largest whereas the BSB is the smallest. Typically, the LTS values are higher, the lower troposphere is more stable. This indicates that the atmosphere is the most stable when the PSB occurs, while the lower troposphere is the least stable when the BSB occurs. Ri is a dimensionless meteorological variable and can be calculated as the ratio of buoyance produced turbulence and shear-induced turbulence. A low Ri value is generally used to indicate weak instability and/or strong vertical shear. Figure 7B shows the probability density distributions of Ri for the three types of sea breeze. Noticeable is that the BSB has the lowest Ri, suggesting a strong vertical wind shear for the occurrence of BSB. Figure 7C presents the vertical variation of Ri starting from the ground up to 1 km above ground level (AGL). Ri is less than 1 in the lower range (below 600 m), indicating that the atmospheric stability is in a weak stable state. This is generally consistent with Miller et al., 2003 that the BSB had a sur-face–layer convergence area near the coast and needed a stronger thermal contrast.
3.5 Thermal contrast for three types of sea breeze
From Figure 8, it can be seen that the range of concentration of land-sea thermal contrast of BSB is greater than that of PSB and CSB by about 3°C, while the maximum probability of occurrence of land-sea thermal contrast is about 1.5°C for PSB, and about 1°C for CSB. The median of BSB is also greater than the median of PSB and CSB. It indicates that greater land-sea thermal contrast and thermal pressure gradient are required for the occurrence of BSB. The land-sea thermal contras of PSB and BSB are more inclined to be above 0°C, and the opposite for CSB. The median of land-sea thermal contrast of CSB is smaller than that of PSB, and the data amount is more inclined to be below 0°C. The above two findings are consistent with the conclusions obtained by Adams (1997).
[image: Figure 8]FIGURE 8 | The land-sea thermal contrast during the daytime of three types of sea breeze in 2016–2020, the center white dot represents the median.
4 CASE ANALYSES OF THREE TYPES OF SEA-LAND BREAZE
4.1 A PSB case on 24 August 2019
Figure 9A shows the diurnal variations of wind speed and direction of PSB on 24 August 2019. The region shaded in pink represents the hours with sea breeze. The average sunrise and sunset times for each month are marked in red and black in dotted line. Figure 9B presents the time–height cross–section of wind profile acquired from radar wind profiler in Qingdao on 24 August 2019.
[image: Figure 9]FIGURE 9 | (A) Diurnal variations of wind speed and direction of PSB on 24 August 2019. The region shaded in pink represents sea breeze duration. The average sunrise and sunset times for each month are marked in red and black in dotted line. The wind direction is shown in the upper left corner. (B) Time-height cross-section of wind profile acquired from radar wind profiler in Qingdao on 24 August 2019.
As shown in Figure 9A, the wind direction is stable in the range of 292.5°–337.5° in the land breeze period and transition period before 1,400 LST, and the wind direction is almost vertical to the coastline. At 1,400 LST the wind direction changes to 138°, indicating that the sea breeze begins to develop, and then the wind direction stabilizes in the range of 115.5°–157.5° that is perpendicular to the coastline. According to the angle conversion of land breeze and sea breeze and the conditions mentioned above, it is determined that a PSB event occurs on that day. When the sea breeze occurs, the wind speed is high but there is obvious angular deflection. At 1,600 LST, the maximum sea breeze speed is 3.4 m s−1, which decreases from 2,100 LST, but the sea breeze continued to occur. At 0800–1,300 LST (Figure 9B), the high–altitude wind direction is consistent with the surface wind direction, with southwest wind. At 1,400 LST, the high–altitude wind speed decreases significantly. At 1,700 LST, the wind direction changes. And at 1,800 LST, it is the same as the surface wind direction, blowing southeast wind. The maximum height is about 720 m AGL.
4.2 A CSB case on 28 May 2019
As shown in Figure 10A, the land breeze continues before 1,300 LST. At 1,100 LST, the wind direction is between 225° and 270°, and then it rotates counterclockwise. At 1,300 LST, the wind direction changes to sea breeze and the angle is 217° belonging to 180°–225°. After that, it remains within this range, and the wind direction changes to 266° at 2,000 LST indicating the end of the sea breeze. According to the angle conversion of land and sea breeze on that day, and the conditions mentioned above. It is determined that a CSB event occurs on that day. The sea breeze begins at 1,300 LST and develops to the maximum speed of 4.7 m s−1 at 1,800 LST, and then the wind speed decreases. As of 2,000 LST, the wind direction does not belong to the sea breeze range and the sea breeze ends. Before 1,200 LST (Figure 10B), there is northwest wind in the upper air, which is consistent with the surface wind speed. At 1,200 LST, it deflects counterclockwise and turns to southwest wind, when the surface breeze simultaneously turns to southwest wind. The south wind is maintained until 2,200 LST and could reach as high as 1,560 m AGL.
[image: Figure 10]FIGURE 10 | (A) Diurnal variations of wind speed and direction of CSB on May 28, 2019. The region shaded in pink represents sea breeze duration. The average sunrise and sunset times for each month are marked in red and black in dotted line. The wind direction is shown in the upper left corner. (B) Time-height cross-section of wind profile acquired from radar wind profiler in Qingdao on May 28, 2019.
4.3 A BSB case on 3 September 2019
Figure 11A shows that the land wind continues to blow before 0900 LST and the angle range is in the range of 0°–45°. Then it rotates clockwise. At 0900 LST, the wind direction changes to sea breeze with an angle of 80° belonging to 45°–90° and the sea breeze continues. At 1,900 LST, the wind direction changes to 268°, blowing land breeze, which marks the end of the sea breeze. According to the angle conversion of land and sea breeze on that day and conditions mentioned above, it is determined that the BSB occurs on that day. The sea breeze starts at 0900 LST and develops to the maximum sea breeze wind speed of 4.5 m s−1 at 1,100 LST, and then the wind speed fluctuates greatly. As of 1,900 LST, the wind direction does not belong to the sea breeze angle and thus the sea breeze is deemed ending. The high–altitude wind direction varies on that day and the sea breeze develops to the height of 600 m AGL at 1600 LST (Figure 11B).
[image: Figure 11]FIGURE 11 | (A) Diurnal variations of wind speed and direction of BSB on September 3, 2019. The region shaded in pink represents sea breeze duration. The average sunrise and sunset times for each month are marked in red and black in dotted line. The wind direction is shown in the upper left corner. (B) Time-height cross-section of wind profile acquired from radar wind profiler in Qingdao on September 3, 2019.
5 CONCLUSION AND DISCUSSION
Based on the high-quality controlled surface wind and temperature measurements, along with the wind profile radar observations and ERA–5 reanalysis at Qingdao station from 2016 to 2020, three types of sea breeze in Qingdao have been comprehensively analyzed. To our knowledge, this work is one of the first articles in China to analyze the classification of sea–land breeze from an observational perspective. Overall, there are 522 sea breeze days for the whole study period from 2016 to 2020, which accounts for 28.73% of the total number of days. There are 61 days belonging to PSB, 40 days witnessing CSB, and only 2 days experiencing BSB. This indicated that PSB was predominant in Qingdao. The peak period of sea breeze is from April to September and the wind speed is concentrated at 3–5 m s−1. The strongest sea breeze appears in March, which is 3.31 m s−1 and the lowest appears in December which is only 1.36 m s−1. One of the potential causes for the seasonal difference of sea breeze frequency and sea breeze hours is land–sea thermal contrast, which is calculated as the 2-m air temperature at Qingdao station minus the sea–surface temperature at Changmenyan buoy station. It is shown that positive land-sea thermal contrast is more conducive to the development of sea breezes.
Subsequently, we further compare the synoptic–scale circulation, LTS and Ri for three types of sea breeze. It is found that the contours for the geopotential height at 500 hPa are relatively flat for PSB and CSB, with prevailing westerly wind above Qingdao. In contrast, the BSB has an uneven distribution of geopotential height contours at middle and low altitudes. At this time, Qingdao is dominated by northeast wind, and inland convergence line causes cold advection convergence. The BSB corresponds to the least LTS values, which suggests that BSB tends to occur in the static unstable lower troposphere. By comparison, PSB tends to occur in the most static stable lower tropo-sphere.
Further analysis on the diurnal variation of sea breeze show that the sea breeze occurs most frequently for the period 1,200 to 1,600 LST. In winter, the sea breeze is less frequent, discontinuous and low in intensity. The frequency and wind speed in summer are the highest in the whole year. Among all three types of see breeze, the PSB has the highest intensity and most frequency throughout the daytime, especially in the seasons of spring, summer and autumn. The sea breeze cases show the shift of direction visually and clearly at last. When the PSB occurs, the sea breeze and land breeze were almost perpendicular to the coastline. At 1400 LST, the sea breeze begins to develop and reaches its maximum wind speed of 3.4 m s−1 after 2 h. On the CSB day, it rotates counterclockwise after 1,100 LST and the wind direction changes to sea breeze at 1,300 LST. At 1,800 LST, the maximum speed reaches 4.7 m s−1 LST. On the BSB day, a clockwise rotation occurs before 0900 LST. The maximum speed reaches 4.5 m s−1 at 1,100 LST. The variation patterns of upper air winds for both PSB and CSB are well consistent with the surface, except for the BSB for which the upper air wind is messy and highly variable.
In conclusion we have achieved the following innovative research results. 1) A standardized definitions for classifications of three types of sea breeze was defined and discussed in detail. The disk method is used to visualize the occurrence and transition angles of different types of sea breeze. The findings are more detailed and reliable and can provide refined scientific support for the application of wind energy resources, useful reference for understanding the local circulation in the coastal area of Qingdao, and meaningful for understanding the formation of local weather and pollution. 2) In this paper, a unified data source and unified judgments standard were used to explore the characteristics and influencing factors of occurrence of sea breeze at Qingdao station. It is more beneficial to the compare the basic characteristics of different types of sea breeze and draw reliable conclusions. The vertical structure of sea breeze has not been analyzed and discussed yet. In the future, it is proposed to conduct analysis of vertical data to explore the vertical structure and variation of sea -land breeze. In this paper, only surface wind and temperature data were selected for the determination of sea breeze judgment. In future research we will consider incorporating pressure data, humidity data, cloud amount and precipitation data into the calculation method to design a more accurate sea breeze separation method.
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This study focused on weather and environmental numerical prediction and public demand. It expanded the concept and technology growth points in new fields in terms of new tasks for major prediction services for “large-scale public events.” This is required for more advanced prediction and to improve the resolution, fineness, and accuracy of the prediction. This study explored the prediction theory and technical application of transient atmospheric aerosol pollution within an accuracy of an hour. The novelty of this study is as follows: ①Based on high-quality big data covering the Northern Hemisphere with high temporal resolution with an accuracy of 1 h, a quantitative theory of the “natural weather cycle” spectral analysis algorithm was developed. This study presented a quantitative forecast model that nests the “spectral analysis of atmospheric wave-like disturbance” in the westerly belt with the “transient characteristics” of micro-scale aerosols (PM2.5 concentration) in Beijing and North China. ②According to the nested model of this study, the wave-like oscillation (H′) of 500 hPa was positively correlated with the PLAM index and PM2.5 mass concentration during nested multi-“natural weather cycles.” The significance level exceeded 0.001. This study demonstrated the prediction abilities of early quantitative fine prediction theory and implementation in the context of air quality. The forecast service on 1 October 2022, for the opening of the CCP 20th National Congress (16 October), and during the conference was successfully presented in real time. The results of this study on hourly resolution high-precision air quality forecasting service showed that rolling forecasts can be continuously released both 1 month and 7–10 days in advance, and the nesting effect can constantly be updated. Forecasts were found to be consistent with reality. ③The nested mode method for atmospheric spectrum analysis and micro-scale aerosol (PM2.5) distribution provides quantitative analysis and a decision-making basis for business-oriented operations to address technical difficulties.
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1 HIGHLIGHTS

1. Theory and method of “natural weather cycle” spectral analysis algorithm.
2. Nested mode method for spectrum analysis and micro-scale aerosol (PM2.5) distribution.
3. Forecasts given were consistent with reality for National Day and CCP 20th Congress 2022.
2 INTRODUCTION
In recent years, with the development and prosperity of human economic and cultural activities, meteorological forecasting centers and the public are faced with the new task of providing forecasting services further in advance to increase forecast abilities for large-scale public activities. In this context, a more refined resolution is required for the prediction of changes in adverse meteorological conditions, with levels of accuracy to the nearest hour.
However, current climate predictions and long-term projections do not involve transient weather change information with high spatial and temporal resolution because the daily or hourly weather changes need to be considered as distractions that need to be filtered usually (Ackerman et al., 2004; Ren and Lei, 2022). Therefore, the development of “modern ultra-early weather forecasting” is a new trend. The goal of this is to provide instantaneous adverse weather precursor signals and unpredictable chains of influence for “special large-scale public activities” (Zhang et al., 2019).
Luo et al. (2019) pointed out that surface solar radiation (SSR) can affect climate, the hydrological cycle, plant photosynthesis, and solar power. Because of the correlation between PM2.5 and SSR, it is an effective and direct method to estimate PM2.5 by the value of SSR. In this study, special attention is paid to the correlation of PM2.5 to the parameters linking air quality to meteorological elements (PLAM) parameter in air quality prediction in weather impacts. In this study, the nested model closely links the interaction between aerosol micro-scale processes that affect air quality and large-scale processes with periods 5–7 D. PLAM parameterized meteorological condition factors include pollution boundary layer height (MLH), micro-scale atmospheric condensation rate (fc), and super-saturation (S). It has the following impact on AQ: first, the micro-scale atmospheric condensation process can produce feedback contribution to large-scale motion when MLH continuously and frequently decreases, stimulating frequent pulse rising jumps in super-saturation S in the bottom layer of the atmosphere. In return, the latent heat released during the condensation microphysical process heats the low-altitude ambient atmosphere, which decreases the MLH, thus forming the feedback process to increase super-saturation and subsequently aggravating haze-fog. This is the primary cause of large-scale, persistent formation of heavy pollution in the atmosphere (Wang et al., 2021).
Therefore, the difference between the nested model and the numerical prediction model is that PLAM parameters are reasonably referenced in the nested mode, and the ability of large-scale and micro-scale transient processes to interact is reasonably applied, which is conducive to improving the prediction effect.
Examples of these events at the global scale include large-scale public events such as Olympic events, including the successful hosting of the 2008 Beijing Summer Olympics in China. A long cover article on the results of the Beijing Olympics in China was introduced in the U.S. Weather Bulletin (Zhang et al., 2009). The multi-factorial characteristics of atmospheric aerosol pollution and quantification of the impact of adverse meteorological conditions at different stages of the Olympic Games were shown (Yang et al., 2009; Zhang et al., 2009; Li et al., 2011).
The large-scale public events of the Beijing 2022 Winter Olympics, including the research on environmental meteorological protection during large-scale events, have resulted in progress in environmental meteorological protection research. This has become a key focus and international frontier research field in terms of atmospheric forecasting scientific research in recent years (Wang DY. et al., 2022).
It has been examined why vegetation cover has improved in recent years, including forestation, and why sandstorms have “returned” to ravage most of China. The poor vegetation conditions in some regions of Mongolia are one of the main reasons, but the uncertainty of analysis needs to be further studied (Yi et al., 2016). Various micro-scale transient weather changes that are difficult to predict are closely related to large-scale fluctuations that nurture and affect such processes. However, to date, insufficient theoretical and methodological research has been conducted on this association. Zhao Tianliang, Zhang Xiaoye, and others have highlighted that since the 1960s, the main activity season for East Asian dust systems has been spring. Mongolia’s Gobi, northwest China, and northern China are the source areas for SDS (sandstorm system) in Asia. From this source zone, aerosols are emitted into the atmosphere, with an average of 51% of sediments returning to and being deposited near Asian sources. A total of 21% is deposited in non-source areas of the Asian subcontinent. More than 70% of the total amount of SDS aerosols are moving along the vicinity of the 40° north latitude. This is consistent with the “survival” trajectory of the mid-latitude extratropical cyclone system in the westerly wind belt. This suggests that aerosol systems often move, create, and die with the substantial impact of atmospheric wave-like disturbances in the East Asian atmospheric circulation (Zhao et al., 2003). For more advanced forecasts, such as monthly forecasts, this method can give an hourly resolution and a more detailed evolution of air pollution. Based on this prediction service, diagnosis and analysis of the overall context of air pressure fluctuations in the East Asian atmospheric circulation can be conducted. Spectral analysis of air pressure fluctuations in atmospheric circulation is a key indicator for tracking and predicting the activity trajectory of aerosol systems and their detailed evolution.
Allen highlighted that wave spectral analysis of air pressure fluctuations based on weather processes is important for capturing microphysical change information nested in long-term weather processes. The spectral analysis of weather processes has shown that relatively low-frequency air pressure fluctuations are the most important influencing factors driving near-ground airflow. More than 60% of the total power of the airflow spectrum occurs in low-frequency oscillations of approximately less than 100 days (Allen et al., 1997). The series of studies on the “Weather Process Cycle’s analysis” has shown that natural weather cycles of 5–7 days occur frequently in the atmosphere (Tverski, 1954; Zhang, 1959).
The development of big data/high-resolution data technology provides new conditions and opportunities for the conceptual update of the “natural weather cycle” and quantitative method research on spectral analysis of “grafting” atmospheric fluctuations. The “natural weather cycle” essentially means that the “weather phenomena in nature usually show a cyclical change.” The “natural weather cycle” is also a science to express “the periodic change of climate.” This can provide new connotations and new growth prospects for technological development (Conner and Higginbotham, 2013). This study has implemented research based on wave spectral analysis and the prediction principle of atmospheric fluctuation in the Northern Hemisphere. This was conducted using hourly resolution automatic weather station (AWS) data, ground and high-altitude observation data discussion, and NCEP reanalysis data. This study examined the analysis and prediction of air quality during the National Day period and the 20th National Congress on 16 October 2022 from a large-scale global perspective. Based on the impact of the cyclical evolution of atmospheric fluctuations in the Northern Hemisphere on the transient characteristics of air quality, an early predictive analysis method of high-resolution (hourly) air quality during major festivals and conferences was established.
3 MATERIALS AND METHODS
This study used hourly resolution AWS data, ground and high-altitude observation data from the National Information Center (CMA) of the China Meteorological Administration, atmospheric composition observations (http://www.zhb.gov.cn/hjzl/) from the Ministry of Ecology and Environment, and NCEP grid point reanalysis data. From the global perspective, this study aimed to examine wave spectral analysis of atmospheric fluctuations and the nested process analysis and prediction of micro-scale disturbances. This study mainly discusses the air quality forecasting services during October in Beijing, China. Visibility and fog-haze are the main objects of concern, and the construction of nested models at different scales prioritizes the change in PM2.5 concentration. The contribution of other aerosol elements, such as the composite effects of PM2.5 concentration and O3, were partially reflected by the PLAM index fusion in the model (Wang DY. et al., 2022; Wang JZ. et al., 2022). The parameters and calculation methods used in this study are in the following sections.
3.1 Wave spectral analysis of atmospheric fluctuation in the Northern Hemisphere
Considering the analysis of large-scale disturbances, the deviation of each grid point on each latitude circle in the Northern Hemisphere relative to the mean value of its zonal circle is
[image: image]
The spectral analysis formula of large-scale disturbance (wave) motion of atmospheric motion in the Northern Hemisphere is (Wang and Ji, 1981)
[image: image]
where λ is the longitude, Ф is the dimension, k is the number of waves of wave motion, and N is the number of values taken by longitude intervals. In order to describe the fluctuation situation of the actual atmosphere, in theory, the superposition of the first 12 waves (K = 1–12) can be calculated among many atmospheric fluctuations (→∞). The contribution of perturbations with wave numbers greater than 12 is already small and negligible. Namely,
[image: image]
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Thus, the parameters for obtaining a description of the wave state based on actual atmospheric observations are
[image: image]
Thus, Eq. 4 describes the amplitudes of each wavenumber (k) and their phases (expressed in longitude λ) at different times and in different latitude circles. [image: image] and [image: image] are the amplitude and phase of different wave numbers at different latitudes expressed as cosine and sinusoid, respectively. By describing the changes in amplitude and phase under different wavenumber conditions, the fluctuating activity of the Northern Hemisphere from high latitude to low latitude is obtained.
3.2 Atmospheric condensation and capturing the precursory signal of super-saturation
The expression of the condensation function (condensation rate) (Zhang et al., 2005; Zhang et al., 2021) is:
[image: image]
where [image: image] is the dry adiabatic lapse rate (C°m−1) and Cp, L, qs, and [image: image] are the pressure-specific heat, latent heat of condensation of water vapor, saturation-specific humidity, and dry air condensation rate, respectively. The condensation rate is a function of the saturation (S).
According to the definition of PLAM (Zhang et al., 2009; Wang et al., 2012; Zhang et al., 2021),
[image: image]
where the parameter (ws) is the saturation mixing ratio and θs is the humidity equivalent potential temperature. The super-saturation degree is a physical quantity that expresses the degree of super-saturation in percentage (Wallace and Hobbs, 2008); it is expressed as
[image: image]
where e and es are the vapor pressure and saturation vapor pressure, respectively. The condensation rate fc describes some essential characteristics of microphysical processes of aerosols associated with condensation, atmospheric saturation, clouds, and haze (Browning, 1973; Harrold, 1973; Shen et al., 2016; Wang et al., 2017). The reason supersaturated signals are hidden signals that are difficult to capture is that they often occur in the atmosphere, disappear instantaneously, and need to be captured at a high resolution (at least hourly). Additionally, to calculate S, a virtual temperature correction {Td = Td’ [1 + 0.378*(E/P)]} needs to be introduced (Holmboe et al., 1952). For the un-saturation vapor pressure, e = E (Td) in Eq. 7, where Td is the dew point temperature of the atmosphere.
3.3 The precursor signals of height changes of atmospheric pollution mixing layer
It has been recognized that the atmospheric boundary layer height is important for diagnosing atmospheric pollution near the ground layer. However, boundary layer information is one of the “hidden signals” that is often difficult to capture. At this atmospheric layer height, the height of the pollution mixing layer (H_PML), one of the defined heights, a precursor signal of air pollution will appear (Wang et al., 2017; Zhang et al., 2021; Liu et al., 2022):
[image: image]
where es is the saturation water vapor pressure. That is the method of capturing and calculating the precursor signal of atmospheric pollution mixing layer height.
4 RESULTS AND DISCUSSION
4.1 “Atmospheric wave-like disturbance” in the westerly belt associated with the “transient characteristics” of micro-scale aerosols during September–October 2022
4.1.1 Atmospheric fluctuation in the westerly belt of the Northern Hemisphere
For early and monthly forecasts with resolution up to the hour, the first step is to know the changes in hourly air quality resolution related to fluctuations in atmospheric circulation in the westerly belt of East Asia. How can this association be captured? This is the key to nesting important methods. For obtaining hourly resolution, more detailed predictions, diagnosis, and analysis of the context of atmospheric pressure fluctuations in East Asian atmospheric circulation is an important method to track and predict the activity trajectory and aerosol systems in detail. This involves spectral analysis of atmospheric pressure fluctuations in atmospheric circulation.
In this section, we examined wave spectral analysis in the westerly belt of the Northern Hemisphere as described on the latitude circle. In the first step, Figure 1 shows the fluctuation propagation of fluctuations in 3, 4, and 5, respectively. The amplitude and influence of the wavenumber above 6 are small.
1) Figure 1A shows a fluctuation in the wavenumber of 3. As shown in Figure 1A, 0°E−130°E is the cycle of the first wave, 130°E−120°W is the cycle of the second wave, and 120°W–0° is the cycle of the third wave. This suggests that when there is a wavenumber of 3, that is, three waves, in the Northern Hemisphere, the ridges of its high pressure are at 0°, 130°E, and 130°W, respectively. The corresponding air pressure trough positions are 70°E, 180°W, and 60°W, respectively.
2) Figure 1B shows a fluctuation in the wavenumber of 4. As shown in Figure 1B, 0°E−100°E is the cycle of the first wave, 100°E−180°W is the cycle of the second wave, and 180°W–90° is the cycle of the third wave. 90°W–0 is the fourth wave period. This suggests that when there is a wavenumber of four fluctuations, that is, four waves, in the Northern Hemisphere, the ridges of its high pressure are at 0°, 100°E, 180°W, and 90°W, respectively. The corresponding air pressure troughs are located at 55°E, 145°E, 145°W, and 45°W, respectively.
3) For the fluctuation in the wavenumber of 5 in the Northern Hemisphere, the ridges of its high pressure are at 0°, 80°E, 150°E, 140°W, and 70°W, respectively. The corresponding air pressure troughs are located at 50°E, 120°E, 180°W, 110°W, and 40°W, respectively.
[image: Figure 1]FIGURE 1 | Fluctuation propagation characteristics of fluctuations for wavenumber 3 (A), 4 (B), and 5 (C), respectively, in the Northern Hemisphere calculated by Eq. 3.
Therefore, wave spectral analysis of large-scale circulation in the Northern Hemisphere is helpful to obtain the movement of large-scale disturbances such as cyclone activity in the early stages and can provide the quantitative forecast location of disturbances.
4.1.2 High-resolution hourly variation of air quality and nested prediction of atmospheric fluctuations in the westerly belt
In most numerical weather prediction models, the prediction-specific classification has been finalized. For example, long-term numerical weather predictions do not include hourly forecasts. Short-term or “ultra-short-term hourly forecasts” are usually not provided in advance (year/month). However, today, the goals and needs of weather forecasting are constantly updated and need to be further improved. Among them, “specific large-scale public events” forecast the expansion of service demand. For example, the Olympics in France, the World University Games in Chengdu in China, etc., are about to be held. Weather forecasts for “specific large public events” are available as early as possible, months to years in advance, and daily hourly weather forecasts for the Olympic Games are urgently needed. As a result, new research areas such as 1) studying the demand and necessity of forecasting services for “specific large-scale public events,” 2) establishing new quantitative methods for predicting precursor signals, and 3) establishing target tasks and implementation methods for “ultra-early” fine prediction have become new focuses.
Taking the meteorological situation of the Beijing Winter Olympics as an example, the recent research results of Wang Deying and others show that the use of the aura signal method has successfully predicted air quality changes in Beijing, and the forecast is consistent with the observation (Wang DY. et al., 2022). The novelty of the results obtained by the precursor signal prediction method is as follows: 1) when the height (H) of the pollution boundary layer decreases continuously, that is, the normal pattern of height change in the mixed layer (increasing during the day and decreasing at night) is broken for 3–5 days (see Figure 2), low-visibility haze weather conditions are formed one after another. 2) The signal of change in wet equivalent temperature (δΘe) for seven consecutive days, which is equivalent to the natural weather cycle of the 7-day period, is stable and unchangeable. 3) This leads to rapid changes in PLAM (parameters of air pollution and meteorological conditions) and an increase in super-saturation (S) with a threshold of 6%–7% (Wang DY. et al., 2022).
[image: Figure 2]FIGURE 2 | Beijing PLAM index and pollution boundary layer height (H) from 1 September to 3 October 2022 and the hourly variation of PM2.5 from 1 September to 3 October 2022.
Figure 2 shows the Beijing PLAM index and pollution boundary layer height (H) from September 1 to 3 October 2022, calculated from Eq. 6 and Eq. 8, respectively, as well as the hourly variation of PM2.5 from September 1 to 3 October 2022. Figure 2 shows the following:
1) The hourly resolutions of weather elements and air quality show that the Beijing meteorological condition index PLAM, pollution boundary layer height H, and PM2.5 from September 1 to 3 October 2022 have significant micro-scale change characteristics. The traditional forecasting methods for conventional daily average distribution or fixed-point observation cannot meet the needs of increasing economic and social development. This is especially the case for the demand for refined services for the prediction of important large-scale public events.
2) There is a significant diurnal variation in the height (H_PML) of the pollution boundary layer represented in Figure 2. This is shown in the diurnal variation expressed by the symbols “[image: FX 1]” and “[image: FX 2]” of the Sun and the Moon, respectively, in the figure. There also were significant micro-scale changes in aerosol particulate pollution (PM2.5) concentrations.
3) When a significant continuous decrease in H_PML occurs, appearing as a “precursor signal of adverse weather” falling more than 3,000 m for 7 consecutive days from September 23 to September 30, H_PML from 4,000 to 1,000 m, more than 400 m/d, genus is relatively rare. From September 30 to October 3, haze occurred continuously, as shown by the weather symbol at the bottom right in Figure 2.
To meet the need for earlier granular service forecasts for important large-scale public events, a fine prediction model of atmospheric fluctuation spectrum analysis prediction and high-resolution (hourly) air quality fine prediction “grafted” nested process was established. This was conducted for the “natural weather cycle” of the 7-day process, at 500 hPa, with the characteristic description of wavenumber 4 (amplitude and azimuth).
In this study, the large-scale “natural weather cycle” and micro-scale (hourly resolution) process nesting of atmospheric fluctuations were used to conduct the experimental study of fine air quality prediction during the National Day and CCP 20 conferences in September–October 2022.
4.2 Air quality prediction services during the conferences of October 2022 [October 1, National Day, and 16–20 (CCP 20th National Congress)]
4.2.1 Wave spectral analysis of atmospheric fluctuation associated with weather cycle in the Northern Hemisphere during the period from late September to early October
Generally, there is a “north ridge–south trough (low trough)” disturbance in the westerly wind belt. This is a strong westerly wind belt with a wind speed of 20 m/s from the Tianshan Mountain Range to the western part of the Hexi corridor in China, which has a “north ridge–south trough” disturbance. When the westerly wind belt has completed an adjustment process from the zonal circulation to the meridional circulation, strong sand and dust aerosol weather occurs in the frontal zone of such westerly belt circulations (Zhao et al., 2003; Gao et al., 2005).
The study showed that the natural weather cycle of 5–7 days usually has some fundamental forecast properties. To confirm the quasi-length of the natural weather cycle in the same season, after confirming the length of the cycle using existing historical data, the degree of successive cycle length can be defined by the number of days in the current cycle. Cyclical trend periods are characterized by continuity. This represents the 1–2 days of the cycle as a trend period, during which the main properties of weather processes, the distribution of symbols of the barometric system, and the direction of movement remain unchanged (Tverski, 1954; Zhang, 1959).
Using high-resolution hourly data, a total of 14 days of spectral analysis tests were conducted from 25 September 2022 to 8 October 2022. Seven days of the “natural weather cycle” were taken to nest 500 hPa of the “natural weather cycle.” Figure 3 shows the propagation of fluctuations when wavenumber k = 4 in the Northern Hemisphere and the propagation of fluctuations in the PM2.5-related PLAM index in North China. Figure 3 is the same as Figure 1B; the orange line shows the propagation of fluctuations when the wavenumber k = 4 in the northern hemisphere, and the blue line in the figure shows the fluctuation propagation of the PLAM index in the Beijing area.
[image: Figure 3]FIGURE 3 | Fluctuation propagation characteristics of fluctuations in the Northern Hemisphere and the fluctuation propagation characteristics of fluctuations for observations of PLAM index associated with PM2.5.
Figure 4 shows the 72 h numerical weather forecast of 500 hPa in the Northern Hemisphere released by the Meteorological Center of China Meteorological Administration at 00:00 on 28 September 2022. It can be seen from Figures 1, 3, and 4.
1) Figures 1A–C show the slot and ridge (“λ”) position images depicted by wavenumbers 3, 4, and 5, respectively. Comparing Figure 1B and Figure 3, the calculated and plotted fluctuation (amplitude and azimuth) of wavenumber 4 of 500 hPa of East Asia (70–140°E) in the 7-day “natural weather cycle” is consistent with the micro-scale hourly resolution change of PM2.5. This has provided a quantitative basis for the further generation of hourly high-resolution air quality forecasts.
2) Around the Northern Hemisphere, there is a kind of westerly wind belt airflow through northern China, and the wind speed is greater than 20 m/s, as shown in green in Figure 4.
[image: Figure 4]FIGURE 4 | 72-h numerical weather forecast of 500 hPa in the Northern Hemisphere, the start time for which was at 00:00 on 28 September 2022, by the Meteorological Center of China Meteorological Administration.
Figure 4 shows that there are four waves in the westerly belt flow at wind speeds of 20–40 m/s in the Northern Hemisphere. This is consistent with the results shown in Figure 3, as indicated by the yellow dotted line. This shows that the nested results of atmospheric wave spectrum analysis with micro-scale aerosol (PM2.5) distribution in Figure 3 can provide a quantitative basis for forecasters to remove the technical difficulties of qualitative analysis. It is difficult to determine the instantaneous variability in air quality by relying on traditional weather maps in the subjective vision.
3) In the westerly wind belt with airflow greater than 20 m/s in the Northern Hemisphere, the westerly wind belt shows pronounced alternative fluctuation characteristics. Among them, the westerly wind belt has a high amplitude value in the north and a low amplitude value in the south. This is the “north ridge–south trough” fluctuation. This is consistent with the disturbance wave of the westerly wind belt that describes the southward penetration of cold air and the north-upward intersection of warm and humid air. It is conducive to humidification of particulate matter, accelerates pollution mixing, and is conducive to the development of polluted weather (Zhao et al., 2003; Gao et al., 2005). As a result of this study, it had been predicted that on 1–2 October 2022, the air quality forecast for National Day will be severe haze weather, which was consistent with the actual situation.
4.2.2 Composite nested patterns for large-scale “natural weather cycle” processes with micro-scale (hourly resolution) air quality weather distribution
Nesting the “natural weather cycle” process and the micro-scale hourly resolution air quality weather distribution can not only facilitate the prediction of late October 2022 (October 16–20) in advance but also improve the fineness of the predicted micro-scale process. The quantitative nesting of the classic “natural weather cycles” and micro-scale processes studied in previous studies is the key to the new technical approach.
In this study, high-resolution hourly data were used to quantify the nesting of spectral analysis for each latitude circle for 14 days from 25 September 2022 to 8 October 2022. In any latitude circle in the Northern Hemisphere, the values of the four latitude circles of 80°, 50°, 40°, and 20° N are taken to describe the situations of polar, mid-latitude, westerly wind belt, and low latitude, respectively, and find the average potential height (H) of each latitudinal circle 500 hPa and the deviation on each grid (H’).
This is shown in Eqs 1, 4: [image: image].
Figure 5A shows the simultaneous comparison between the hourly changes in the PLAM index in Beijing’s meteorological conditions from October 2 to 8, 2022, during the 7-day “natural weather cycle” process of the 500 hPa and in the same latitude circle (40°N). Among them, in the “natural weather cycle” of 40° north latitude, the hourly distribution of cosine oscillation (H′) at a potential height of 500 hPa {it is represented by αk = f [cos (λ)] in the figure} and the hourly distribution of the Beijing PLAM index are calculated by Eqs 4, 6, respectively.
[image: Figure 5]FIGURE 5 | (A) Simultaneous comparison between the hourly change of the PLAM index (meteorological conditions) in Beijing from October 2 to 8, 2022, and the 7-day “natural weather cycle” process of the 500 hPa and in 40°N. (B,C) Correlation analyses between oscillation (H′) of a potential height of 500 hPa and PLAM index (B) as well as the PLAM index and PM2.5 concentration (C) during the “natural weather cycle,” respectively.
Using hourly resolution data, Figures 5B, C calculate the correlation between oscillation (H′) of potential height of 500 hPa and PLAM index (Figure 5B), as well as the PLAM index and PM2.5 concentration (Figure 5C), during the “natural weather cycle,” respectively. Figure 5 shows the following:
1) As shown in Figure 5A, the 7-day “natural weather cycle” process can describe the perturbation of the potential height of 500 hPa. The micro-scale disturbance of PM2.5 is consistent with the large-scale periodic disturbance change in the Northern Hemisphere. The PLAM index accompanying the pollution-related meteorological conditions appears within a 7-day period of the disturbance process. From October 4 to October 7, the hourly resolution of pollution meteorological conditions of PLAM was consistently maintained to a minimum value of less than 40, as shown by the blue dotted line and arrow in Figure 5A.
2) The cosine oscillation (H′) of the 500 hPa height field disturbance was represented by αk = f [cos (λ)] in the figure, as shown by its hourly distribution value and the polynomial curve of its trend line. The two are highly compatible and are represented by the green dot connection and the red dotted line in Figure 4A, respectively. This provides a quantitative basis for the hourly distribution prediction of the Beijing PLAM index and its nesting within the “natural weather cycle” process.
Therefore, further calculations from high-resolution observations confirm the practicality of the “natural weather cycle” principle. It is predicted that during the successive natural weather cycles starting on the eighth day of the future, air quality can be affected by highly favorable weather conditions between 13 and 16 October 2022 during the first 1–2 days of the cycle. Excellent air quality was predicted.
3) As shown in Figures 5B, C, the potential height oscillation (H’) of 500 hPa is positively correlated with the PLAM index (Figure 5B), as well as the PLAM index and PM2.5 concentration (Figure 5C) during the “natural weather cycle”; the correlation confirmation coefficient (R2) was 0.38 and 0.35, respectively. The correlation significance level exceeded 0.001. This shows the practicality of the consistent changes between large-scale periodic disturbance changes and micro-scale meteorological conditions changes in air pollution in the Northern Hemisphere, as confirmed by this study, helps to achieve early, quantitative, and granular prediction of air quality.
As shown in Figure 5, in the hourly high-resolution diagnostic mode, in the “natural weather cycle” from October 2 to 8, 2022, the disturbance low-pressure trough reached its lowest value at 15:00 on the fifth, as shown by the dotted line and blue arrow. Figure 6 shows the evolution of low-phase (λ) values with a pressure “trough” at 500 hPa during fluctuations of atmospheric wavenumber 4 in six “natural weather cycles” from September 10 to 15 October 2022. Figure 6 shows the following:
1) The evolution of the phase (λ) during the fluctuation of atmospheric wavenumber 4 in the “natural weather cycle” can quantify the movement of the weather system that matches the change in concentration of polluted aerosols. It quantifies the movement change of the low-value pressure system in the mid-latitude westerly wind belt. This facilitates the quantification in advance of micro-scale changes in the movement of weather systems that cause favorable or unfavorable aerosol pollution weather.
2) Figure 6 shows that the low-value barometric system shifted eastward during three consecutive “natural weather cycles” from September 25 to 15 October 2022. Among them, on October 1, Beijing was in front of the low-value pressure “trough” (115°E). It was in the warm and humid area in front of the disturbance system (cyclone). Polluted weather occurred in the Beijing area. PM2.5 reached 158. On October 8, Beijing was located behind the low-value air pressure “trough” (130°E). On October 8, the study provided real-time forecasts 8 days in advance. On October 16, Beijing’s air quality was forecast to be high. From October 16 to 20, Beijing’s air quality continued to be relatively high. From October 16 to 19, the forecast of the meteorological conditions index was 42, 21, 20, and 20, respectively. The air quality trend was forecast to be high in Beijing on October 16 and after October 16. It was further confirmed by this study that the practicality of the consistent changes between large-scale periodic disturbance changes and micro-scale meteorological conditions changes in air pollution in the Northern Hemisphere helps to achieve early, quantitative, granular prediction of air quality.
[image: Figure 6]FIGURE 6 | Evolution of the low-value phase (λ) (500 hPa pressure “trough”) for the fluctuations in atmospheric wavenumber 4 during the period of six “natural weather cycles” from 10 September to 15 October 2022.
4.3 Air quality forecasting experiment during the CCP 20th National Congress
4.3.1 Quantized nesting of micro-scale precursor signals in the model
In the “natural weather cycle” study, the uncertainty caused by the more qualitative analysis used in previous studies is the key to limiting the optimization of the method. For example, the forecast time is estimated to be 1–2 days, and the predicted element changes are expressed only in “positive and negative signs” (Zhang, 1959). The quantitative indicators of precursor signals considered in this study include 1) changing the law of diurnal variation (rising during the day and decreasing at night) and the height of the mixed layer decreasing continuously and falling by more than 100 m for three consecutive days, 2) the hourly resolution change of the PLAM index of polluted meteorological conditions accelerating, and 3) the super-saturation (S) change threshold reaching 6%–7%. These microphysical processes that affect air quality are often nested and constrained by large-scale weather processes. This helps to achieve the goal of making high-resolution hourly detailed air quality predictions in advance by capturing early (days or weeks) precursor signals nested in large-scale weather processes (Wang DY. et al., 2022).
Figure 7 shows the hourly “natural weather cycle” in Beijing from 2 to 31 October 2022 and the nesting effect of micro-scale (hourly) precursor signals in it. Table 1 shows the nested characteristics of the “natural weather cycle” and its micro-scale hourly precursor signals. This is shown in Figure 7 and Table 1.
1) As shown in Figure 2 of Section 4.1.2, the sun symbol ([image: FX 3]) represents the day, and the moon symbol ([image: FX 4]) represents the night. There were significant diurnal changes in the Beijing PLAM index and pollution boundary layer height H from 1 September to 3 October 2022. These were calculated using Eqs 6, 8, respectively. During the day, and especially around noon, the boundary layer height H rises, and at night, the boundary layer height H decreases. The changes in PLAM value were opposite to the diurnal trend of boundary layer height H.
[image: Figure 7]FIGURE 7 | Nesting effect between the hourly “natural weather cycle” and microscale (hourly) precursor signal in Beijing from 2 to 31 October 2022.
TABLE 1 | Nested features of “natural weather cycles” and their micro-scale (hourly) precursor signals.
[image: Table 1]However, Figure 7 shows that the usual pattern of diurnal variation given in Figure 2 does not occur. Figure 7 shows the hourly change of the relevant features in October 2022. There were continuous five-decrease processes in boundary layer height (H) observed over several days, as shown by the red dotted dash lines in Figure 7. One process shows that the boundary layer height H also had a significant continuous rise. The peak of H appeared from 12:00 on the 13th to 00:00 on the 17th, and this is shown by the blue dotted dashed arrow in Figure 7. The significant continuous rise in H on this boundary layer height is one of the key precursor signals for the air quality forecast on 16 October 2022, the date of the opening ceremony. This is nested within the “natural weather cycle” signal, which becomes the pre-signal of the “transition weather change” (October 13–15) 96 h in advance. This strategic nesting of features at different scales is a key technique for accurate and fine prediction for observing large-scale trends in advance and describing more subtle changes consistent with their nesting. Table 1 shows nested features of “natural weather cycles” and their micro-scale hourly precursor signals.
2) For this research objective, the concept of the “natural weather cycle,” which has been quantified by the changes in αk = f [cos(λ)], is used to diagnose large-scale atmospheric cosine disturbances during and before meetings. As shown in Figure 7, 2 to 9, 9 to 16, and 16 to 23 October, 2022 were confirmed to be “natural weather cycles.” Each “natural weather cycle” lasted 7 days.
3) During the respective “natural weather cycles,” the peak of the barometric pressure disturbance ridge occurred at 18:00 on October 1, 18:00 on October 8, and 18:00 on October 15, respectively. The barometric pressure disturbance wave corresponded to the high-pressure ridge, which corresponded to the time period through Beijing. The lowest PM2.5 value occurred from 12:00 on October 3 to 18:00 on October 4, from 00:00 on October 9 to 18:00 on October 10, and from 00:00 on October 16 to 18:00 on October 17. The high level of air quality in Beijing was consistent, which coincided with the forecast period for high air quality in Beijing, including October 16 (Figure 7; Table 1).
4) Corresponding to the time periods in the natural weather cycle, a continuous decrease in H_PML was observed from 12:00 on October 5 to 00:00 on October 9 and from 12:00 on October 10 to 18:00 on October 13. Then, haze weather appeared after 48–72 h (see Figure 7; Table 1). This showed that as precursor signals, the quantitative indicators, including the early reduction of the height (H_PML) of the mixed layer, change of the PLAM index of pollution meteorological conditions, and change of hourly resolution of O3 concentration, all have fine consistent nesting effects with large-scale “natural weather cycles” (Figure 7; Table 1). This makes an important contribution to the early refinement and quantitative micro-scale fine prediction of air quality considering periodic changes. This indicates that the detailed distribution of air quality at hourly resolution has fine consistent nesting with large-scale “natural weather cycles” and, therefore, has provided high-precision predictability.
4.3.2 Nested forecasts versus live comparisons
Using hourly data from October 2 to 8, the forecast of the PLAM index for the opening day of the 20th National Congress (October 16) was initiated using the nested method of the 7-day “natural weather cycle” given in this study. The forecast map of the hourly daily PLAM index changed from 16 to 19 days, and the forecast value of the PLAM index changed from 16 to 19 days, which were 42, 21, 20, and 20, respectively. The original forecast figure is shown in Figure 7A.
For comparative testing, live observation data extending to 00:00 on October 19 are shown in Figure 8B. As shown in Figures 8A, B, the live scenario of Beijing’s hourly PLAM, the nested prediction of pressure fluctuations {expressed in αk = f [cos (λ)]} in the natural cycle is consistent with the real situation. This shows that the nested method of large-scale “natural weather cycle” and hourly high-resolution accurate forecasting provides meaningful development prospects for making detailed forecasts in advance.
[image: Figure 8]FIGURE 8 | (A) Using the “natural weather cycle” nested method, the forecast of the PLAM index for the opening day of the 20th National Congress (October 16) launched on 8 October 2022 and the PLAM index forecast during the conference. (B) PLAM index forecast of the 20th National Congress opening ceremony and the conference (October 16–19) is compared with the actual situation. PLAM as high as 80 (red line) and low value of 40 (blue line) are marked in the figure, which is the indicating thresholds for air pollution and good air quality, respectively.
Figure 9A shows a live sea level weather map of China and the surrounding areas released by the Central Meteorological Office of the China Meteorological Administration at 00:00 on 1 October 2022. Figure 9B shows a live sea level weather map of China and the surrounding areas at 00:00 on 16 October 2022. Figure 9C shows the correlation between the hourly forecast for PLAM and PM2.5 in this study.
[image: Figure 9]FIGURE 9 | (A) Live sea level weather map of China and surrounding areas released by the Central Meteorological Office of the China Meteorological Administration at 00:00 on 1 October 2022. (B) Live sea level weather map of China and surrounding areas at 00:00 on 16 October 2022. (C) Correlation between the hourly forecast of PLAM and PM2.5 in this study.
The ultra-early prediction service of “large-scale public activities” should not only extend the timeliness of forecasting but also refine the forecast, which has entered the focus of science and interdisciplinary research on “predictability” of modern weather forecasting. Based on this theoretical concept, this study introduces new technologies and methods to meet the demand for weather forecast services in Beijing (including hourly resolution) in October 2022. Eq. 5 gives the PLAM index ([image: image]) and its related Eqs 6, 7. The calculation methods and capture methods of air pollution mixed layer height (H_PML), condensation ( fc), super-saturation (S), and precursor signals were considered. Based on Eq. 5–7, the prediction of the nested method is calculated as shown in Figure 9C, which reveals the validity of the PM2.5-hour resolution prediction in this study and gives a reasonable prediction.
As shown in Figure 9, the forecast for severe haze pollution on October 1 (National Day) and the results for October 16 and October 16 to 19, including hourly PLAM forecasts for PM2.5, are consistent with the actual situation. Hourly fine forecasts were submitted 7–10 days in advance.
Figure 10 also shows that the consistency between prediction and actual observations of the nested method of micro-scale aerosol change and atmospheric disturbance wave-spectrum analysis is confirmed.
[image: Figure 10]FIGURE 10 | Conceptual pattern of the nested prediction model for PM2.5 micro-scale changes with wave spectral analysis in the westerly belt of Northern Hemisphere.
5 CONCLUSION
As shown in Figure 10, the results were as follows:
1) Based on high-quality big data, which includes the Northern Hemisphere, high temporal resolution data research accurate to the hour, and the development and establishment of a quantitative theoretical model of the “natural weather cycle,” spectral analysis algorithms are given. The diagnostic characteristics of spectral analysis of the “natural weather cycle” in the Northern Hemisphere are consistent with the observed reality. During the determined “natural weather cycle,” through wave spectral analysis, the amplitude and phase changes under different wavenumber conditions at different latitudes in the Northern Hemisphere could be quantitatively described. The activity of large-scale fluctuations in each latitude circle of the westerly belt in the Northern Hemisphere and the corresponding micro-scale with an hourly resolution of aerosol pollution could be obtained.
2) The diagnosis of atmospheric fluctuation was expanded in the westerly belt, and the transient characteristics of micro-scale aerosols (PM2.5 concentration) in Beijing and North China were grafted to the nested analysis and the diagnosis model of the “atmospheric fluctuation spectrum” in the westerly belt. Research has confirmed the usefulness of the “natural weather cycle” principle. It provides theoretical and practical application prospects for making hourly resolution monthly and quarterly forecasts in advance and establishing high-precision rolling predictions of air quality in 8–10 days.
3) The nested model of this study has shown that the wave oscillation (H′) of 500 hPa is positively correlated with the PLAM index and PM2.5 mass concentration during the nested multi-“natural weather cycle.” The relevant significance level exceeded 0.001. This study highlighted the prediction abilities of early quantitative fine prediction theory and practice of air quality. The forecast service on 1 October 2022, for the opening of the CCP 20th National Congress (16 October), and during the conference was successfully presented in real time. These results on hourly resolution high-precision air quality forecasting service show that rolling forecasts are continuously released 1 month in advance and 7–10 days in advance, and the nesting effect is constantly updated. The forecasts were consistent with reality.
4) The nested mode method of atmospheric spectrum analysis and micro-scale aerosol (PM2.5) distribution provides quantitative analysis and decision-making basis for business-oriented operations to remove technical difficulties. In the same way as sometimes relying on traditional weather map analysis, it is difficult to determine the instantaneous variability of air quality based on subjective vision.
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This study assessed spatiotemporal trends in daily monsoon precipitation extremes at seasonal and sub-seasonal scales (June, July, August, and September) and their links with atmospheric circulations over Pakistan. The study used observed precipitation data from fifty in-situ stations and reanalysis products from the European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) during 1981–2018. A suite of seven extreme precipitation indices and non-parametric statistical techniques were used to infer trends in the frequency and intensity of extreme precipitation indices. An increase in frequency and intensity of overall extreme indices was evident, with a maximum tendency in the country’s northwestern (z-score=>2.5), central, and eastern (z-score > 4) monsoon-dominant parts. The northern and southwestern parts of the country exhibited a slight decrease (z-score <–2) in frequency and intensity. The Sen’s Slope estimator (SSE) shows an increase in western parts (0.20 days) indicating a shift in the maxima of the monsoon precipitation. The regional precipitation shows an increase in wet days (R1 mm) with higher values of mMK (3.71) and SSE (0.3) in region 2 Similar results of moderate regional increase are evident for extreme indices except regions 1 and 3. The extreme 1-day maximum precipitation increased in region 3 (mMK: 1.39, SSE: 2.32). The extremely wet days (R99p TOT) precipitation has a moderate increase in all regions with a decrease in region 1. The temporal mutations showed dynamic changes, clearly reflecting the country’s historical extreme events. The frequency and intensity of precipitation extremes negatively correlated with the altitude (R = −0.00039). The probability density function (PDF) showed a significant increase in the density during June and September with a probabilistic positive shift during July and August. The intensified mid-latitude westerlies and subtropical zonal easterlies teleconnections, strengthening of the monsoon trough, and land-ocean thermal contrast are the potential drivers of the increasing trend in precipitation extremes. The current study could serve as a benchmark for future researchers and policymakers to devise effective mitigation strategies for sustainable development.
Keywords: extreme precipitation indices, sub-seasonal precipitation extremes, westerlies teleconnections, south asian high, Pakistan
1 INTRODUCTION
Anomalous precipitation patterns at intra-seasonal and inter-annual scale result in hydrometeorological hazards, such as floods and droughts (Ullah et al., 2021b; Lu et al., 2021; Yu et al., 2023; Zhang et al., 2023). Likewise, the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6) stated that anthropogenic global warming increased the frequency and intensity of precipitation extremes globally (IPCC, 2022). These extremes threaten human life, agriculture, water resources, biodiversity, and sustainable development (Khan et al., 2020; Ullah et al., 2022a). South Asian (SA) countries, including Pakistan, are at peak risk due to water and energy cycle changes (Eckstein and Kreft, 2020; Hussain M. et al., 2023). Therefore, assessing the nature and magnitude of changes in extreme and mean precipitation over SA countries has been the subject of several studies in recent years (Raghavan et al., 2012; Turner and Annamalai, 2012; Dahri et al., 2016; Naveendrakumar et al., 2019; Almazroui et al., 2020; Syed et al., 2022; Abbas et al., 2023b).
In Pakistan, two dominant precipitation patterns are primarily attributed to westerlies during the winter season (from December to the end of March) and summer monsoon season (from the end of June till September) (Hanif et al., 2013; Ullah et al., 2018a; Abbas et al., 2023b). The SA monsoon dominates Pakistan’s climate; about 65% of the total annual precipitation is received during the monsoon season (June to September) (Waqas and Athar, 2019; Ullah et al., 2021b; Abbas et al., 2022). The drought period of the late 1990s and the historic flooding event of 2010 and 2022, as examples, resulted in losses with severe impacts on crop production, gross domestic product (GDP), livelihoods, and water resources (Rahman and Khan, 2011; Xie et al., 2016; Ullah et al., 2019a; Rahman Z. U. et al., 2023). The increase in precipitation in the historical and future projections is obvious (Ahmad et al., 2018; Bhatti et al., 2020; Abbas et al., 2023a; Rebi et al., 2023), yet deviation of monsoon precipitation on a sub-seasonal scale has significant impacts on food security and socioeconomic conditions.
Changes in the regional hydrometeorological cycle of Pakistan have been extensively studied, reporting an overall increase and westward shift in the mean (Hanif et al., 2013; Latif and Syed, 2016; Ullah et al., 2018a; Preethi et al., 2019; Ali S. et al., 2020). These changes affected the country’s aridity, cropping patterns, eco-environmental, and socioeconomic conditions (Rahman and Khan, 2011; Befort et al., 2016; Arshad et al., 2017; Fahad and Wang, 2019; Ullah et al., 2022a). The monsoon precipitation magnitude has shown an increasing trend in northwestern and southeastern Pakistan while a decreasing trend in the southern coastal belt and central Indus basin (Abbas et al., 2014; Amin et al., 2017; Ali et al., 2019). In another study, Befort et al. (2016) reported that the country’s northern and northeastern plateaus had experienced an increasing trend in monsoon precipitation. Hussain et al. (2023a) and Bhatti et al. (2020) also explored an overall increase in daily precipitation extremes from rain-gauge observation over Pakistan. Such increasing trends in monsoon precipitation and its extremes are also reported in eastern and western India (Vinnarasi and Dhanya, 2016; Sharma et al., 2018; Venkata Rao et al., 2020), China (Ding et al., 2019; Shen et al., 2022a; 2022b) and central Asia (Wei et al., 2023).
The large-scale circulation patterns, including the Rossby waves, mid-latitude, and sub-tropical teleconnections, are linked to the historic flooding events of the region (Ullah et al., 2021b). The synoptic heavy precipitation events over western India and Pakistan are mostly due to the long-lived low-pressure system over the Bay of Bengal (Kale, 2012; Hunt and Fletcher, 2019). The continental precipitation recycling and evapotranspiration increase the moisture contents of the lower troposphere for enhanced precipitation (Martius et al., 2013; Pathak et al., 2017). The dynamic mountain’s ascent from extratropical waves influences the localized convective events, resulting in a heavy downpour (Ullah et al., 2021b; 2021a). The mid-latitude blocking and quasi-stationary synoptic waves from the Tibetan Plateau are continental sources, amplifying the regional precipitation extremes and enhancing moisture transport (Webster et al., 2011; Lau and Kim, 2012; Rasmussen et al., 2015). Moreover, consistent atmospheric blockings and westward extension of the Western Pacific Subtropical High (WPSH) due to El Niño–Southern Oscillation (ENSO) are further anticipated with extreme precipitation events over the region (Hong et al., 2011; Mujumdar et al., 2012; Yamada et al., 2016).
The above-cited literature has provided a detailed overview of the changes and variability in extreme and mean precipitation and their potential drivers. However, the sub-seasonal (monthly) precipitation extremes’ nature and variability have not been explored. The historic flooding events of 2010 and 2012 in Pakistan resulted from a synoptic-scale heavy downpour, resulting in serious flooding and losses on a wide spectrum (Webster et al., 2011; Rahman K. U. et al., 2023; Ishaque et al., 2023). Similarly, the region’s catastrophic drought episode of 1997–2002 resulted from an anomalous decrease and shift in seasonal precipitation for an extended period. The changes in water and energy cycles are extensively studied and attributed to global warming, which profoundly affects regional aridity, flood, and drought patterns. However, the flood and drought phenomena resulting from extreme sub-seasonal precipitation events are not fully explored in Pakistan. The current study has thus, attempted to explore the trend in daily monsoon precipitation extremes using observed precipitation data during 1981–2018. The underlying changes in the circulation patterns, convective activities, and relative humidity are further assessed to identify the potential drivers of the anticipated trend in precipitation extremes.
2 STUDY AREA
Pakistan is located in the tropical to subtropical climatic zone, with > 60% of its regional climate classified as arid (Haider and Adnan, 2014; Ahmed et al., 2019). The country’s annual temperature distribution shows that the maximum and minimum temperatures range from 15°C to 35 °C and ≤ 0°C–14°C, respectively (Ullah et al., 2019b; 2019c; Hussain et al., 2023b). The land-cover classes, derived from the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 6 (Sulla-Menashe and Friedl, 2019), indicate that most of the croplands dominate the Indus River Basin (Figure 1A). The regional (Figure 1B) variation in the land cover and climate classes varies from one region to another. In the north, region 1 is a semiarid climate with grasslands, region 2 is semiarid to arid with dominant croplands, region 3 is humid with croplands, and region 4 is an extremely arid region with variable precipitation and cropland. The complex topography derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER-GDEM) shows that the terrains and rigid mountains in the north stretched towards the country’s northwestern parts mostly define precipitation variability (Figure 1B).
[image: Figure 1]FIGURE 1 | (A) Land cover classes and (B) digital elevation model (DEM) shows different elevation classes of Pakistan. The rectangles show the selected regions for aggregate average trend analysis.
Figure 2 shows Pakistan’s annual water cycle and interannual mean precipitation averaged from the Pakistan Meteorological Department (PMD) observatories during 1981–2018. Two dominant precipitation peaks (Figure 2A) can be seen during the annual water cycle, indicating the winter westerlies and the summer monsoon. As in Figures 2A–C, a clear transition can be observed in precipitation from the north (>70 mm) to the south (20 mm) and west (80 mm) to the east (60 mm) of the country during the winter and spring. This transition is due to the westerly weather system, originating from the Mediterranean Sea, mostly active in Pakistan’s northwestern parts. Similarly, the monsoon is the peak precipitating season (Figure 2D); about 65% of the annual precipitation is received during the monsoon season. During the autumn season (Figure 2E), relatively less precipitation is received at most stations. Like precipitation, temperature exhibits high spatial variability with maximum intensity in the southern parts and minimum intensity in the northern mountainous parts (Ullah et al., 2019a; Hussain et al., 2023b). The monsoon daily precipitation extremes often result in severe flooding and drought (Rahman and Dawood, 2017; Fahad and Wang, 2019). Thus, studying the variability in extremes is necessary for understanding the sub-seasonal water cycle dynamics.
[image: Figure 2]FIGURE 2 | The multi-year mean of (A) monthly total precipitation and interannual mean of (B) winter, (C) spring, (D) summer, and (E) autumn seasons during 1981–2018 over Pakistan.
3 DATA AND METHODS
3.1 Data
In the current study, two types of datasets are used, i.e., observed and reanalysis for 1981–2018 based on the in-situ precipitation data available from the Pakistan Meteorological Department (PMD). The observed precipitation data of fifty (50) meteorological stations for the monsoon season (June, July, August, and September months) are obtained from the Pakistan Meteorological Department (PMD). The station density of the current study is shown in Figure 1B, representing the dense network in the north and relatively sparse density in the south. The dominant precipitation patterns of the country have a relatively higher deviation in the north than in the south and are better represented by the prevailing station density (Hanif et al., 2013; Bhatti et al., 2020). Figure 1B further shows the selected four regions for an area average trend analysis based on the individual differences in land cover, elevation, and climate class. The rain-gauge data are indeed subjected to deviations attributed to climatic and non-climatic factors, which are removed from the primary data before application (Toreti et al., 2011; Tapiador et al., 2012; Kidd et al., 2017; Tapiador et al., 2018). In addition, the atmospheric reanalysis datasets were acquired from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) data archives.
The ECMWF 5th generation atmospheric reanalysis (ERA5) of zonal and meridional wind components, relative humidity, air temperature, sea surface temperature, and geopotential height were used (Hersbach et al., 2020). The horizontal resolution of ERA5 is 31 km and has 137 vertical levels to 0.01 hPa (Dee et al., 2011). The advantages of the ERA5 include its improvements in precipitation and cloud schemes, model parametrizations, snow schemes, and improved radiative balance of the model (Shen et al., 2021; 2022b). For the current study, monthly mean data of the above variables were downloaded for the monsoon season with a grid size of 0.75°. The ERA5 atmospheric reanalysis data were downloaded from the following link: https://cds.climate.copernicus.eu/cdsapp#!/home.
The current study also used the NCEP/NCAR monthly mean outgoing longwave radiation (OLR) data (Liebmann and Smith, 1996). The resolution of radiance observation of OLR is 1.0 × 1.0°, derived from a high-resolution infrared radiation sounder (HIRS). The data was interpolated at a 2.5-degree spatial resolution of the initial National Oceanic and Atmospheric Administration (NOAA) data. The interpolated data provide a smooth and error-free overview of the tropical convective activities due to consistent quality control and conditional checks before interpolation. The OLR data used in this study were retrieved from https://psl.noaa.gov/.
3.2 Methods

(a) Extreme precipitation indices
For extreme precipitation, a set of seven precipitation indices were derived from the Experts Team on Climate Change Detection Indices (ETCCDI) of the World Meteorological Organization (WMO) (Zhang et al., 2011). Table 1 shows a detailed overview of the selected indices and their classification for the current study. Using these indices, we have considered two aspects of the precipitation extremes, i.e., the frequency of the days and their relative intensity for the monsoon months. It should be noted that the precipitation variability over Pakistan significantly varies from the east to the west, especially during the monsoon season (Hanif et al., 2013). Therefore, these indices are useful in characterizing monsoon precipitation variability in arid, semiarid, and humid climates. The choice of multiple absolute and percentile-based relative threshold indices could provide a tangible way of assessing trends in regional heavy and very heavy precipitation extremes.
(b) Trend analysis
TABLE 1 | Extreme precipitation indices used in the study.
[image: Table 1]For inferring trends in the extreme precipitation indices, a suite of non-parametric statistical techniques, namely, modified Mann-Kendall (mMK) (Hamed and Rao, 1998) and Sen’s slope estimator (SSE) were used (Sen, 1968). The mMK test was used to determine the significance of the trend with a 95% significance bound, and SSE was employed to estimate the magnitude of the monotonic trend (Ullah et al., 2019c; Ali G. et al., 2020). Both the original Mann-Kendall (MK) and its modified version (mMK) tests are often used to detect the significance of the trend in a time series; the MK test is sensitive to autocorrelation (Ullah et al., 2018b; Khan et al., 2021), which may affect its outcomes regarding significance. On the other hand, the mMK effectively nullifies the effect of autocorrelation before determining statistical significance (Salman et al., 2017; Xie et al., 2020; Hussain et al., 2022). Therefore, the present study preferred the mMK test over the MK to overcome autocorrelation in the datasets. Moreover, the mMK test is simple and robust against outliers, missing values, and normal distribution and is less sensitive to abrupt breaks in time series.
Similarly, the Sequential Mann-Kendall (SQMK) test (Sneyers, 1990) was further used to detect the abrupt changes (mutations) in the temporal trends of the sub-seasonal extreme precipitation indices. In addition, linear regression analyses were used to estimate the temporal trend across time and the elevation during the study period. More details about mMK, SSE, SQMK, and linear regression tests can be found in recent studies (Ullah et al., 2018a; Hussain et al., 2022). Finally, a non-parametric Probability Density Function (PDF) was employed to describe the distribution pattern of the extreme precipitation indices, allowing for the changes in the input to shape the distribution pattern and moments based on the mean, mode, median, kurtosis, and skewness. A Gaussian kernel with zero mean and unit standard deviation represents a normal distribution for a simple PDF. In contrast, a deviation on either the left or right side suggests a decrease or increase in the respective field’s magnitude, frequency, and/or intensity (McColl et al., 2017; Ullah et al., 2021b).
(c) Extreme precipitation indices relationship with atmospheric circulations
We further attempted to explore the extreme precipitation indices’ relationship with the atmospheric circulation strength in the region following previous studies (Rasmussen et al., 2015; Ullah et al., 2021b). To find such a relationship, we used the South Asian High (SAH) oscillations and the long-term interannual scale difference in the intensity of the atmospheric processes. The SAH oscillation and regional deviations were previously linked with Asian monsoon precipitation variability and changes (Ge et al., 2018; Zhang et al., 2020). The SAH index was calculated from the meridional shift of the 200 hPa geopotential height difference between the southwest (20—27.5°S, 50—80°W) and northwest (27.5–35°N, 50—80°E), as shown in a recent study (Wei et al., 2015). We calculated the relative mean difference by dividing the study period into two phases to estimate the long-term differences in the atmospheric processes, including divergent circulations (200 hPa), outgoing longwave radiation, relative humidity (850 hPa), and atmospheric temperature (850 hPa). The first phase spans from 1981 to 1990, and the second spans from 2009 to 2018 for the monsoon season. The first phase is then averaged and subtracted from the second phase. The purpose of this relative difference between the 2 decades relates to global warming and its impact on the circulation intensity of the region. Unlike a composite analysis of the selected extreme events, the relative difference may better state the probabilistic changes and relative differences in the atmospheric states.
4 RESULTS
4.1 The spatial trend in daily extreme precipitation indices
Figure 3 shows the spatial trend of extreme precipitation indices derived from the sub-seasonal daily precipitation during 1981–2018. The stations with the significant trend at 95% confidence bounds are encircled. The frequency of wet days (R1 mm) showed a general increase in the country’s central, southern, and northern parts with a z-score value of >1.5 (Figure 3A). The core monsoon and adjacent mountainous regions experienced an erratic trend, with few stations showing a decrease (z-score = −5) and an increase in the mountainous parts. For the frequency of heavy precipitation days (R10 mm), a consistently increasing trend was explicit in the monsoon domain of the region (Figure 3B). The magnitude of the increasing trend was relatively high in the central and eastern parts (>2.5), which are considered key monsoon areas. On the other hand, a decrease in the frequency of heavy precipitation days (R10 mm) was evident in the northern mountainous (z-score <–2) (Figure 3B) and arid southwestern climate (z-score = −1.49).
[image: Figure 3]FIGURE 3 | Modified Mann-Kendall (mMK) trend of the extreme precipitation frequency during 1981–2018 over Pakistan; (A) wet days (R1 mm), (B) heavy precipitation days (R10 mm), (C) very heavy precipitation days (R20 mm), (D) Mean precipitation on wet days (SDII), (E) One-day maximum precipitation (Rx1 day), and (F) very wet days (R95p TOT), (G) extremely wet days (R99p TOT) precipitation. The encircled stations have passed the significant presence of trend with a 95% confidence.
As seen in Figure 3C, the frequency of very heavy precipitation days (R20 mm) increased in the eastern parts of the region (z-score > 4) and was erratic in the rest of the country with a moderate decrease of < –1.80 notable in northern and southern regions. The increase is relatively high in the eastern parts, followed by the northwestern region (z-score: 3.5). The intensity of wet days average precipitation (SDII) showed an increase in the central monsoon region (z-score= >2), including the eastern and central regions of the country (Figure 3D). In the rest of the country, the SDII trend is erratic, with a general increase in the monsoon regions and a decrease in the arid western stations. The maximum 1-day precipitation (Rx1 day) trend is consistent with SDII in the core monsoon regions and erratic in the rest of the country (Figure 3E). The country’s eastern and western foothills regions have shown an increasing trend (z-score = 2.50) and a decrease in the arid southern region (z-score = −0.69).
The intensity of the very wet days (R95p TOT) has decreased in the central arid plains, increasing in the Indus Basin eastern parts and southern coastal regions with a z-score of 1.5 (Figure 3F). The decrease in the intensity of very wet days is smaller, mostly in the country’s central arid regions, with a z-score of −1.49. However, the increase is dominant in the central and western foothills of the country, with a z-score of >1.5. The intensity of extremely wet days (R99p TOT) precipitation (Figure 3G) is generally erratic but shows an increase in the monsoon regions. The eastern, central, and western foothills increase is 0.71, stretching towards the southwestern and coastal regions.
Figure 4 shows the SSE of the extreme precipitation frequency and intensity from 1981 to 2018. As seen in Figure 4A, the frequency of wet days (R1 mm) increased in the eastern, northern, and northwestern parts (0.20 days), whereas a moderate decrease in the south and southwest is obvious (<–0.19 days). For heavy precipitation days (R10 mm) (Figure 4B), the increase is concentrated in the central monsoon region (>0.11 days). These parts are the main monsoon domain where the average increase amounts to >0.25 days. The frequency of very heavy precipitation days (R20 mm) has a moderate increase in northwestern parts (>0.13 days) and a moderate decrease (−0.02 days) in northern and southern parts of the country (Figure 4C). The mean precipitation on a wet day (SDII) (Figure 4D) exhibited an increase in the eastern, western parts of the region (>0.2 mm), alongside a decrease in the north and southeastern coastal regions (−0.14 mm). The maximum 1-day precipitation (Rx1 day) (Figure 4E) precipitation is erratic in the north and southwest (−0.27—0.17 mm) and increased in the eastern, northwestern, and central parts of the region (0.52 mm). The very wet days (R95p TOT) precipitation (Figure 4F) showed an obvious increase in the eastern and central parts of the region (0.11 mm), whereas the rest of the country, including the northern, western, and southern parts, showed a consistent decrease (−0.14 mm). The intensity of extremely wet days (R99p TOT) precipitation (Figure 4G) has a small decrease and thus can be referred to as unchanged during the study period. More detailed analysis with long time series of the precipitation data can better predict this trend.
[image: Figure 4]FIGURE 4 | Theil Sen slope of the extreme precipitation frequency during 1981–2018 over Pakistan; (A) wet days (R1 mm), (B) heavy precipitation days (R10 mm), (C) very heavy precipitation days (R20 mm), (D) Mean precipitation on wet days (SDII), (E) One-day maximum precipitation (Rx1 day), and (F) very wet days (R99p TOT), (G) extremely wet days (R99p TOT) precipitation.
The mMK and SSE of regional precipitation averaged for the selected stations in each region (Figure 1B) are further shown in Table 2. The regional average precipitation trend can better capture the regional precipitation behavior concerning the erratic nature of the spatial trend. The regional relative highest trend values for mMK and SSE magnitude are shown in bold. The relative increase in the wet days (R1 mm) showed an overall increase in all regions, with the highest values of mMK (3.71) and SSE (0.3) in region 2. For heavy precipitation days (R10 mm), the increase was moderate in all regions, with a consistent increase in region 2 (mMK: 2.92, SSE: 0.12) and a decrease in region 4 (mMK: –0.062, SSE: 0). For very heavy precipitation days (R20 mm), a similar increase in region 2 (mMK: 3.38, SSE: 0.078) was obvious, with a moderate increase in the rest of the regions. For SDII, a decrease in regions 1 and 4 (mMK: –1.45, −1.95, SSE: –0.035; −0.16) was obvious, and an increase in region 3. The 1-day maximum precipitation (Rx1 day) decreased in region 2 and 4, with a moderate increase in region 3 (mMK: 1.39, SSE: 2.32). For very wet days (R95p TOT), a decrease in regions 1 and 4 was obvious, along with an increase in region 2 (mMK: 2.46, SSE: 2.32). The extremely wet days (R99p TOT) precipitation has a moderate increase in all regions with a decrease in region 1.
TABLE 2 | The mMK and TS trend of selected regions average precipitation during 1981–2018.
[image: Table 2]4.2 Temporal evolution of the monsoon extreme precipitation indices
Figure 5 shows the abrupt changes (mutations) in extreme precipitation indices’ temporal trends over Pakistan from 1981 to 2018. The UB statistics (blue dashed line) show the backward trend from 2018 towards 1981, while the UF statistics (orange line) show the forward trend (1981–2018); the green line shows the 95% significance limit for the trend in a time series. The points where UB and UF lines cross each other represent the abrupt shift in trend from decreasing to increasing state and vice versa. For the frequency of wet days (R1 mm) (Figure 5A), a constantly increasing trend is evident from 1981 with multiple mutations from 1990 to 2000. The catastrophic flooding and drought events in Pakistan are depicted in mutation points during the study period (Xie et al., 2016; Abbas et al., 2021). These events limited access to food and water, damaged the basic infrastructure, and affected the socioeconomic and sustainable development of the country (Rahman and Khan, 2011; Ullah et al., 2021b).
[image: Figure 5]FIGURE 5 | The abrupt changes in sub-seasonal daily precipitation extreme during 1981–2018 over Pakistan; (A) wet days (R1 mm), (B) heavy precipitation days (R10 mm), (C) very heavy precipitation days (R20 mm), (D) Mean precipitation on wet days (SDII), (E) One-day maximum precipitation (Rx1 day), and (F) very wet days (R99p TOT), (G) extremely wet days (R99p TOT) precipitation.
For the frequency of heavy precipitation (R10 mm) (Figure 5B), a consistent periodicity with multiple turning points inferred a continuous change in the trend. The drought periods of 1988–1990 and 1997–2002 and the flooding events of 1990 and 2010 showed a phase shift in the trend. For the frequency of very heavy precipitation days (R20 mm) (Figure 5C), three turning points were explicitly evident in early 1990, 2000, and 2015, inferring a shift in the frequency trend. The drought period of the late-1990 was very obvious, followed by a smooth increase afterward. The intensity of wet days mean precipitation (SDII) (Figure 5D) has different statistics and dynamical patterns evident from the respective frequency plot with a significant increase during 1985–1995, followed by a sharp decline during early 2000. The 1-day maximum (Rx1 day) precipitation (Figure 5E) showed the dry and wet episodes of the region with dynamic mutations in the early 1990s and a moderate increase in post-2010 with a decrease afterward. The intensity of the very wet days (R95p TOT) precipitation (Figure 5F) has shown four turning points in the trend linked with changes in the precipitation intensity. The mutation points reflect the major precipitation extremes, such as the floods in the early-1990s, the drought in 1997–2002, and the 2010 floods. The extremely wet days (R99p TOT) precipitation (Figure 5G) showed a moderate to very lower variation over the study period and rather dynamic mutations with no obvious trend visible. In conclusion, Figure 5 shows that the precipitation variability over Pakistan is moderately associated with and influenced by the large-scale atmospheric and oceanic forcing as previously explored. The forcing appears to influence the interannual monsoon precipitation extremes over Pakistan during their transition from one phase to another, such as during the 2010 flooding and drought phases (Webster et al., 2011; Xie et al., 2016).
Figure 6 shows the relationship between extreme precipitation frequency and intensity with the altitude of rain gauges. The mMK values for the frequency and intensity of the selected absolute and percentile-based precipitation indices are regressed against the elevation of the stations. The mMK values for the frequency (Figure 6A) of wet days (R1 mm) showed a decreasing trend with elevation with regression coefficients of −0.00039. The mMK values of heavy precipitation days (R10 mm) showed a similar decreasing trend with regression coefficients of −0.0011 (Figure 6B), with a similar decrease for very heavy precipitation days (R20 mm), with a regression coefficient of −0.00085 (Figure 6C), respectively. The mean precipitation on wet days (SDII) showed an overall decreasing trend with altitude (−0.00054); however, the trend was erratic in the lower and moderate altitudes (Figure 6D). The 1-day maximum precipitation (Rx1 day) also showed a decrease across altitude (−0.00045), but the station density in lower and moderate elevations showed an increase in the precipitation (Figure 6E). The very wet days (R95p TOT) intensity (Figure 6F) has decreased across altitude with regression coefficients of −0.00028, followed by a similar decrease for extremely wet days (R99p TOT) intensity with the highest decreasing trend compared to the intensity-based indices (Figure 6G).
[image: Figure 6]FIGURE 6 | Linear trend in sub-seasonal daily precipitation extreme against elevation during 1981–2018 over Pakistan; (A) wet days (R1 mm), (B) heavy precipitation days (R10 mm), (C) very heavy precipitation days (R20 mm), (D) Mean precipitation on wet days (SDII), (E) One-day maximum precipitation (Rx1 day), and (F) very wet days (R95p TOT), (G) extremely wet days (R99p TOT) precipitation.
In conclusion, Figure 6 shows that the frequency and intensity of precipitation extremes concerning altitude exhibited a decreasing trend during the monsoon season. The relationship showed that some stations have positive and negative residues in the lower and higher altitude regions, inferring that precipitation increases with altitude in the moderate altitudes. Still, the overall relationship is negative due to the higher altitude and density of the stations in the northern parts of the study region. The possible reason for such a weaker and negative relationship could be that the extreme monsoon precipitation is centered in the country’s central regions, mostly in the middle and lower altitude classes. Furthermore, the extreme precipitation indices have a diverse regional variability, with each regional index trend varying from the rest. The results also agree with the previous studies showing a decrease in monsoon mean precipitation and an increase in wet days across moderate and lower altitudes (Ullah et al., 2018a; Bhatti et al., 2020).
Figure 7 shows the probability density function (PDF) of the extreme precipitation frequency, intensity, and its moments of distribution (Table 3). The wet days (R1 mm) (Figure 7A) PDF shows an overall positive asymmetric distribution in monsoon months, indicating an inconsistent increase. This indicates that the onset and recession of the monsoon season are getting vibrant, while the mid-monsoon season is getting intense with more precipitation days. As seen in Table 3, the wet days’ precipitation (R1 mm) has shown a higher deviation towards maxima during August (4.54), followed by July (1.44), September (1.01), and June (0.94). Similarly, July and August have the highest mean wet days’ precipitation at 5.59 and 5.42, respectively.
[image: Figure 7]FIGURE 7 | Probability density function (PDF) of daily monsoon precipitation intensity indices for June, July, August, and September months during 1981–2018 over Pakistan; (A) wet days (R1 mm), (B) heavy precipitation days (R10 mm), (C) very heavy precipitation days (R20 mm), (D) Mean precipitation on wet days (SDII), (E) One-day maximum precipitation (Rx1 day), and (F) very wet days (R95p TOT), (G) extremely wet days (R99p TOT) precipitation.
TABLE 3 | Descriptive statistics showing moments of distributions for extreme precipitation indices during 1981–2018 over Pakistan.
[image: Table 3]The heavy precipitation days (R10 mm) (Figure 7B) exhibited a similar pattern to wet days (R1 mm), highlighting the high frequency (intensity) of heavy precipitation events (R10 mm). In terms of distribution statistics (Table 3), the months of June and September (July and August) showed the highest skewness and kurtosis (deviation and mean) values, affirming higher frequency (intensity) of heavy precipitation days (R10 mm) during these months. The skewness and kurtosis values for heavy precipitation days (R10 mm) were high in September (1.45 and 5.24), followed by June (1.21 and 4.66), while the higher degree of deviation and mean was evident during July (0.77 and 2.43), followed by August (0.68 and 2.28), respectively.
For very heavy precipitation days (R20 mm) (Figure 7C), the PDF followed the pattern of heavy precipitation days (R10 mm); however, slight changes are observed in the density and distribution of the selected months. June and September have the highest frequency with slight rightward movement during September, indicating frequent heavy precipitation events. The higher skewness and kurtosis during June and September infer a shift towards more extreme values and a high frequency of very heavy precipitation events (R20 mm) during these months (Table 3). On the other hand, the larger distribution towards the right side in July and August is explicitly conclusive of a relatively higher degree of change in the intensity of very heavy precipitation events (R20 mm) during these months.
The maximum 1-day precipitation (Rx1 day) is similar to other absolute indices (Figure 7D), with high density and positive distribution during the selected months. However, June and September have the highest density, while July, August, and September have more positive shifts. The PDF pattern indicates that the study region was predominated by regular daily maximum precipitation extremes (Rx1day) during June and September. The PDF pattern was confirmed by the related statistics (Table 3), showing the highest skewness, kurtosis, and standard deviation during July (1.86, 8.37, and 11.08) and September (1.92, 6.32, and 11.85). The higher degree of skewness, kurtosis, and deviation suggests asymmetrical and variable daily maximum precipitation (Rx1 day) during these months.
In mean precipitation on wet days’ (SDII) PDF (Figure 7E), the highest density was observed in June with a slight asymmetrical shift in the high precipitation distribution, suggesting a high frequency during the study period. However, positive shifts with the symmetrical pattern were found in the rest of the months, indicating high uniformity in the magnitude of wet days’ mean precipitation (SDII). Table 3 shows high skewness and kurtosis values were observed in June (1.26 and 4.85), indicating recurrent wet-day precipitation (SDII).
For very wet days’ precipitation (R95p TOT) (Figure 7F), an opposite pattern is found in the density and distribution of the selected months relative to the absolute indices. Interestingly, July and August (June and September) show a relatively significant increase in density (distribution), which contradicts the PDF patterns of absolute precipitation indices. These results suggested the frequent and intense occurrences of very wet events (R95p TOT) in Pakistan during July and June were relatively predominated by very wet day extremes (R95p TOT). In terms of PDF statistics (Table 3), the highest skewness and kurtosis values were found in July (1.82 and 8.96), which confirmed the occurrence of frequent and intense very wet extremes (R95p TOT).
The extremely wet days’ precipitation (R99p TOT) PDF followed the very wet days’ PDF pattern with slight variations in the density and distribution of the selected months (Figure 7G). The higher intensity of extremely wet days (R99p TOT) in the July and August months could be attributed to more precipitation, as these months are mid of monsoon season in Pakistan. In terms of PDF statistics (Table 3), the skewness and kurtosis values were high during July (1.19 and 4.99) and September (1.21 and 4.55), whereas the degree of deviation was high during June, followed by September and July at the rate of 28.82, 27.47, and 21.94, respectively.
In conclusion, from Figure 7, an obvious overall increase is observed in the frequency and intensity of extreme precipitation indices. The absolute indices have observed a relatively high frequency during June and September, while a strong intensity during July and September. In contrast, the percentile-based indices have shown an opposite pattern with high frequency in June and September and intensity in June and September. The high frequency of extreme precipitation indices during June and September indicates that the onset and recession of the monsoon season have been vibrant in Pakistan during the study period. Moreover, the increasing intensity of extreme precipitation indices during July and August suggests that the study region has received more precipitation during these 2 months and could be considered the peak monsoon months in Pakistan. Generally, the extreme precipitation increase in intensity is reported in the previous study over Pakistan (Bhatti et al., 2020).
4.3 Possible atmospheric drivers
This section has attempted to show a potential mechanism of the changes in the extreme precipitation indices and their association with the large-scale atmospheric phenomenon. For this purpose, we have used a two-step approach, including a long-term correlation of the extreme precipitation indices with South Asian High (SAH) meridional oscillation in the first step and a relative difference of the circulation intensity during the study period in the second step.
Figure 8 shows the correlation between the South Asian High (SAH) index and the extreme precipitation frequency and intensity during the study period. For wet days (R1 mm) precipitation, a positive correlation (>0.45) was visible in core monsoon regions and negative in the central parts of the country (Figure 8A). A consistent positive correlation in the northern and southern and a negative correlation in the central parts of the country was obvious for heavy and very heavy precipitation days (Figures 8 B, C). The relative strength of the correlation was stronger for very heavy precipitation days (>0.60) among the frequency-based indices (Figure 8C). The mean wet days’ precipitation (SDII) showed a consistent positive correlation in the north and southern parts alongside a negative correlation in the central parts of the region (Figure 8D). For maximum 1-day precipitation (Figure 8E), the strength of the correlation was positive in the north, and a rather weaker to moderate negative relationship was obvious in the rest of the country. The relatively strong relationship among the intensity of very wet days (R95p TOT) (Figure 8F) across the core monsoon regions of the country, whereas the extremely wet days (R99p TOT) precipitation (Figure 8G), was rather uniform across the eastern parts of the country from the north to southward. In conclusion, the SAH meridional oscillation across the northward and southward of the study region exhibited an erratic relationship with the frequency and intensity of the extreme. The correlation strength varies regionally among the indices, indicating that the large-scale shift toward northwestward may suppress the monsoon precipitation over Pakistan and vice versa (Wei et al., 2015).
[image: Figure 8]FIGURE 8 | Correlation of SAH index and extreme precipitation indices of (A) wet days (R1 mm), (B) heavy precipitation days (R10 mm), (C) very heavy precipitation days (R20 mm), (D) mean precipitation of wet days (SDII), (E) maximum 1-day precipitation, (F) very wet day precipitation (R95p TOT), and (G) extremely wet days precipitation (R99p TOT) during the study period.
Figure 9 shows the relative difference of (a) 200, (b) 500, and (c) 850 hPa wind components (vectors) and stream function (shaded) for the first (1981–1990) and last decade (2009–2018). From Figure 9A, the wind components and stream function showed the relative strength of the circulations and the center of the cyclonic/anticyclonic motion. Two high-pressure systems are evident; the first is located over the Tibetan Plateau in the north of Pakistan, while the second is over northwestern Pakistan, centered over Eurasia. A low-pressure cut-off can be seen between the two pressure systems, separating them. The mid-tropospheric circulations (500 hPa) have preserved the probabilistic Rossby Wave pattern with the leading ridge and Tibetan High favoring intensified ascent over Pakistan (Figure 9B). A strong southwesterly flow (850 hPa) over the Arabian Sea (20°N, 50°E-70°E) is discernable that after entering the Bay of Bengal region forms a southeasterly flow, favoring enhanced moisture transport from the Arabian Sea and the Bay of Bengal (Figure 9C). The two pressure systems provided a frontal system where warm air masses from the Bay of Bengal and warm pool region through southwesterlies and cold Eurasian air masses merge and probably drive the extreme precipitation during the monsoon season. The mechanism shown here suggests an increase in the intensity of the circulation pattern and its associated impact on the regional precipitation extreme indices. Further detailed studies are thus needed for a more definitive mechanism assessment.
[image: Figure 9]FIGURE 9 | Wind components (vectors), and stream function (shaded) difference at (A) 200 hPa, (B) 500 hPa, and (C) 850 hPa.
The divergent wind and velocity potential (Figure 10A) further indicated that a relatively intensified vertical ascent in the study region has been evident in the recent decade. The divergent circulations’ center has exhibited a strong divergent motion with vectors indicating a strong heat source over the SA landmasses and the Bay of Bengal. The difference between the two periods indicates that more precipitation is received in the region than in the first phase, leading to extra latent heat release and stronger vertical ascent. The heat source of the SA monsoon is located over the Tibetan Plateau and has been extensively studied for its thermal controls over the Asian monsoon and exhibited a strong correlation with the precipitation variability over Pakistan (Ullah et al., 2021a; 2022b; 2023). The velocity potential further indicates a consistently intensified ascent of the wind, descending into the Indian Ocean, coastal regions of Somalia, and East Africa.
[image: Figure 10]FIGURE 10 | The difference in the (A) divergent circulations at 200 hPa, (B) outgoing longwave radiation, (C) relative humidity at 850 hPa, and (D) Temperature at 850 hPa. The difference is calculated by subtracting the first-decade mean (1981–1990) from the last-decade mean (2009–2018) for the respective fields.
The outgoing longwave radiation has been used as a proxy to indicate strong convective activities over the study region (Ullah et al., 2021b). The difference in the outgoing longwave radiation (Figure 10B) showed an intensification of the convective activities over Pakistan and the adjacent Indian Ocean. In addition, a decrease is evident in northwestern India, the Bay of Bengal, and the Arabian Sea region. The study regions’ intensified convection indicates increased vertical motion, condensation aloft, and enhanced precipitation extremes. The decrease (negative anomalies) in OLR indicates an increase in cloud cover due to an increase in the convection leading to extreme precipitation accompanied by other synoptic weather patterns during the monsoon (Lim et al., 2011). For relative humidity at 850 hPa (Figure 10C), an increase in the magnitude was obvious over Pakistan’s eastern and southeastern monsoon regions. The increase accounted for >8% of the mean magnitude from the mean of the first phase, inferring an increase in the region’s lower troposphere’s moisture profile. The northern parts have featured a decrease in the relative humidity’s magnitude. Such a decrease can be disregarded because of terrain-induced biases. Hence, no valid data exist at 850 hPa in those regions. The air temperature at 850 hPa over Pakistan (Figure 10D) indicated a decrease in air temperature’s absolute magnitude from the first phase. Concerning previous figures, the increase in relative humidity and strengthening of the monsoon trough over the study region indicated lower temperatures due to more water vapors in the air, causing cooling through evapotranspiration. The air temperature over the adjacent Indian Ocean was relatively higher, showing a contrast pattern. Such a pattern indicates that over the ocean increase in temperature will also accelerate the convection. The evaporated water vapors are generally transported to the continental regions, resulting in precipitation and cooling the air temperature.
In conclusion, convection and monsoon trough over the study region has intensified, indicating relatively higher precipitation in the country than in the first phase. The global warming-induced changes have shuffled the global water cycle as indicated by the IPCC that the wet regions or seasons will become wetter and warmer at the end of the century (IPCC, 2022). Similar findings are reported in the previous study on a global scale, indicating that the future precipitation in the Asian monsoon domain will be more violent (Trenberth, 2011; Greve et al., 2014; Singh et al., 2014) due to the intensification of the monsoon trough and enhanced monsoon activities over the region. The high-pressure systems’ (South Asian High) movement into the mid-latitude regions is further linked with intensified downstream precipitation patterns due to intensified wind ascent (Wei et al., 2015; Ullah et al., 2021b).
5 DISCUSSION
Pakistan is facing a rapid increase in extreme weather events, which resulted in significant socioeconomic and human losses (Atta-ur-Rahman and Khan, 2011; Nanditha et al., 2023). A recent massive flood in August 2022 in Pakistan triggered by increased intensity and duration of monsoon precipitation extremes (Nanditha et al., 2023) and the disastrous floods and severe damages caused by extreme monsoon precipitation over South Asia and East Asia during 2020 are prime examples (Kripalani et al., 2022). The recent floods in Pakistan have affected 33 million people, damaged 1.5 million homes, and caused $2.3 billion in crop damage (Shehzad, 2023). Therefore, the dynamic patterns of regional monsoon extremes and their variabilities need more attention from the scientific community. In response to such facts, this study aims to assess monsoon extreme precipitation spatial and temporal patterns over Pakistan from observations and reanalysis products during 1981–2018 and the associated large-scale circulation mechanism.
The findings revealed an increasing trend in wet days precipitation with a maximum tendency in the northwestern, central, and eastern monsoon-dominant parts. Two types of extreme precipitation trend patterns were obvious, including the moderate and the heavy and very heavy precipitation indices frequency and intensity. The moderate and wet days precipitation increase is centered in the western and northern parts expressing an expanding monsoon domain towards the west as previously explored from the mean spatiotemporal patterns (Jayasankar et al., 2018; Ali et al., 2021). The frequency and intensity of precipitation extremes for heavy and very heavy events increased in the monsoon core region and mixed patterns in the northwestern and southwestern parts of the country. Such an increase, especially in the country’s western and northern parts, infers a westward movement of the monsoon circulations and local precipitation recycling, which has been confirmed by previous studies as well (Hanif et al., 2013; Ali S. et al., 2020; Ullah et al., 2021b). The results also indicate a latitudinal shift in monsoon precipitation and its extremes, which could have significant implications for the northwestern parts of Pakistan. Additionally, Safdar et al. (2019) reported a southeastward shift in the geographical distribution of monsoon precipitation and its extremes during 2010–2017. The heavy and very heavy precipitation extremes intensity and frequency show an erratic to moderate increase in the eastern and central monsoon region of the country that leads to deluges and heavy flooding, as evident from the recent flooding (Atta-ur-Rahman and Shaw, 2015; Qazlbash et al., 2021; Abbas et al., 2023a; Rebi et al., 2023).
According to Abbas et al. (2023a) reported an increase in R1 mm, R10 mm, and R20 mm is evident during the summer monsoon in the eastern, western, and southeastern parts of Pakistan. Such a trend could alter the country’s water resources, crop productivity, and food security in the near future (Ali et al., 2019; Alvar-Beltrán et al., 2021). The results of increasing precipitation extremes agree with the findings of the previous studies in Pakistan (Bhatti et al., 2020; Hussain et al., 2023a), which reported an overall rise in the mean and extreme precipitation in the country. These results are also in line with studies conducted in neighboring countries, like India (Singh et al., 2019; Kripalani et al., 2022), Nepal (Sharma et al., 2023), China (Wu et al., 2019), and Southeast Asia (Cui et al., 2019; Syed et al., 2022), which revealed an increasing trend of monsoon extremes in the stated regions. The increasing tendency of monsoon precipitation extremes in Pakistan and neighboring countries could be attributed to dynamic changes in the global monsoon system, as suggested by studies (Wang et al., 2012; 2017). A similar rate increase in precipitation extremes has been projected in SA monsoon-dominated regions, including Pakistan, by recent modeling studies and is also available in the latest IPCC assessment report (IPCC, 2022; Abbas et al., 2023a). The findings of these studies suggest that South Asia is a climate change-sensitive region, and the increasing trend of observed precipitation extremes could exacerbate the frequency and intensity of hydrometeorological disasters in the region.
On the other hand, the results showed that the frequency and severity of heavy and very heavy precipitation extremes moderately decreased in the country’s northern mountainous region. These outcomes are in line with the findings of recent studies (Hussain et al., 2023a; Rebi et al., 2023), which reported a decreasing trend in precipitation in the northern mountains and the monsoon core region of Pakistan at −4.48 and −1.66 mm/decade during 1960–2016, respectively. The decrease in monsoon precipitation extremes in the northern mountainous region of Pakistan can be attributed to multiple factors. For instance, the inability of the rain gauges to capture extreme precipitation events and/or lack or poor management of precipitation data greatly affect the variability of precipitation extremes in high mountains (Ren et al., 2017; Ullah et al., 2018a). Recent studies reported the existence of uncertainty in hydrometeorological data in mountainous regions, which could lead to misinterpretation of climate extremes, including precipitation extremes (Pellicciotti et al., 2012; Álvarez-Rodríguez et al., 2017; Zhan et al., 2017; Ullah W. et al., 2019).
The temporal variability from the SeqMK of the extreme precipitation indices shows a dominant influence of the large-scale forcing such as the atmospheric forcing (Ullah et al., 2021b), surface forcing (Hussain et al., 2023a), Oceanic (Hussain et al., 2023b), and from the surrounding topography (Wang et al., 2017; Ullah et al., 2021a). The temporal evolution and mutations of the extreme precipitation indices frequency and intensity vividly show peak dry and wet years, reflecting how the regional scale drivers listed above control the changes in precipitation. The probability density function and the moment of distribution further show the influence of the mutations in changing the mean precipitation, the distribution peaks, and the right-tailed shoulders’ expansion towards more extremes during July and August. The projected changes in drivers such extremes as the ENSO, the Indian Ocean, and the Himalayan Tibetan Plateau could further intensify the severity and frequency of these mutations. Indeed other forcing, such as the solar cycle, external forcing, and volcanic forcing, are also responsible for such mutations (Dai and Wang, 2017; Wang et al., 2017). Recent studies indicated that the regional topography in the northwestern mountainous belt of SA, comprised of the Hindukush-Karakoram-Himalaya (HKH) ranges, is also a key factor in modulating the South Asian monsoon precipitation, influencing the frequency and magnitude of precipitation in South Asian countries (Boos and Kuang, 2013; Sun et al., 2017; You et al., 2017). The overall spatiotemporal variability of the precipitation extremes is in line with the findings of the previous studies (Ullah et al., 2018a; Hussain et al., 2021), suggesting that such mutations could be due to the warming and intensification of the SA monsoon circulations (Liu et al., 2007; Ullah et al., 2020; 2021b). Some modeling studies projected that anthropogenic global warming would greatly influence global monsoon regimes’ spatial and temporal dynamics in the coming decades. In a recent study, Ali et al. (2021) projected an increase in the monsoon area in the Upper Indus Basin (UIB) and a northward shift of the monsoon region, indicating frequent and intense precipitation in the northern part of the UIB under higher warming scenario. Such forcing as causal factors of the monsoon extremes need further studies to deeply understand the mechanism. The outcome of these forcing could be seen in the recent flooding and droughts in southern parts of Pakistan in 2022 that claimed capital and human lives in return (Nasir et al., 2020; Qazlbash et al., 2021).
Furthermore, the study revealed enhancement of the mid-latitude westerlies and subtropical zonal easterlies teleconnections, strengthening of the monsoon trough, and land-ocean thermal difference are the possible causes of the increasing trend in precipitation extremes over Pakistan (Figure 8; Figure 9). The correlation strength of the SAH and the extremes indices varies regionally among the indices, indicating that the large-scale shift toward northwestward may suppress the monsoon precipitation over Pakistan and vice versa (Wei et al., 2015). Similar atmospheric and oceanic patterns were reported by previous studies (Latif and Syed, 2016; Ahmed et al., 2020; Ullah et al., 2021b; Abbas et al., 2023b), indicating that the westerlies and easterlies are strengthened (suppressed) during the above (below) normal precipitation composites, while the enhanced (reduced) convective activity in the Indian Ocean acts as a key source of influenced precipitation in the region. It is essential to comprehend how oceanic and atmospheric circulation systems interact with monsoon precipitation and how they influence extreme events to build effective countermeasures to institutional attempts to advance policy solutions (Ndehedehe et al., 2019; Hussain et al., 2023a) Moreover, Hussain et al. (2023a) revealed significant coherences of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) with monsoon precipitation in the monsoon region and central and southeastern Pakistan at various scales, which could also be the primary reason for the observed enhanced mid-latitude westerlies. Whereas, no influence of the Indian Summer Monsoon (ISM) was observed in the northern parts of Pakistan, which are located away from the monsoon core region. Some recent studies have partially attributed monsoonal variability and inconsistency to large-scale circulations in Pakistan, such as Indian Ocean Dipole (IOD) and ENSO (Safdar et al., 2019). In the UIB, Ali et al. (2021) noted increased and expanded precipitation in monsoon months (i.e., June, July, and August), which they linked to changes in wind circulation patterns in the Pakistan monsoon-dominated region.
The study further investigated the convective activity over the continental and oceanic masses and its role in monsoon precipitation extremes. The analysis revealed negative anomalies in OLR, indicating enhanced convection over Pakistan and the South Asian area in the recent decade (Figure 10). Recently, Ullah et al. (2021b) employed OLR anomalies as a proxy to pinpoint the convective activity over the continental and oceanic masses during the above- and below-normal composites and observed similar patterns. Similarly, Latif and Syed (2016) analyzed the OLR composite anomaly and saw deep convection moving from the Arabian Sea in a northward direction and from the Bay of Bengal in a northeasterly direction. The OLR anomalies intensify as the monsoon onset approaches Pakistan and flows quickly northward, combining with the other unfavorable anomaly spreading from the Bay of Bengal, bringing deluges to the northern parts of the region. Although this study tried to explore the relationship of monsoon precipitation extremes with large-scale atmospheric circulations, future studies should explore the changes in the atmospheric water contents and related factors for their quantified impacts on the precipitation extremes in Pakistan and neighboring countries. How the regional and large-scale drivers affect the extremes in a time and space domain needs more investigation.
6 CONCLUSION
The present study assessed the spatiotemporal variability of daily monsoon (June, July, August, and September) precipitation extremes in Pakistan from observed and reanalysis datasets. A total of seven extreme precipitation indices were used, i.e., wet days (R1 mm), heavy precipitation days (R10 mm), very heavy precipitation days (R20 mm), mean precipitation on a wet day (SDII), maximum 1-day precipitation (Rx1 day), very wet days (R95p TOT), and extremely wet days (R99p TOT). A suite of numerical and statistical computational techniques was used to infer trends in the frequency and intensity of the extreme precipitation indices. The key conclusions of the study are listed below.
• The frequency and intensity of precipitation extremes increased in the monsoon core region (i.e., eastern and northeastern parts), and a westward shift in moderate precipitation. The northern mountainous and southern regions experienced a decrease and erratic pattern in heavy and very heavy precipitation extremes.
• The mutation points in the temporal trend of precipitation extremes consistently reflected increasing (decreasing) shifts during the early 1990s and late 2010s (1997–2002). Likewise, the temporal distribution exhibited an overall increase in the frequency and intensity of extreme precipitation indices with fewer peaks and troughs, indicating the country’s flooding and droughts episodes during the study period.
• Regarding elevation, the frequency and intensity of extreme precipitation exhibited a negative relationship with altitudes, indicating that the monsoon precipitation is decreasing at higher altitudes in Pakistan.
• The PDF showed a significant increase in the frequency and intensity of precipitation during June and September, whereas a probabilistic positive shift during July and August is obvious.
• The possible impacts of the circulation include the mid-latitude teleconnections with a tropical monsoon climate, enhancing frontal weather formation. The lower tropospheric moisture contents, weakening of the monsoon trough, thermal gradient with the ocean, and convective activities suggested an increase in moisture transport to the monsoon domain in the last decade, favoring an increasing trend in extremes.
Further studies can explore the changes in the atmospheric water contents for their quantified impacts on the precipitation extremes. The approaches used in the current study are based on statistical diagnostics and trend approaches, which may be subjected to biases and deviations in results due to the choice of the datasets and scaling, which, however, could not impact the large-scale results.
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Climate and hydrologic hazards pose a threat to the distribution of watersheds’ water resources in time and space, necessitating planning for sustainable resilience and adaptation. Hydrologic modelling has emerged as a potential solution for understanding watershed responses to projected climate change, and a prediction model that can deliver actionable information is necessary, although it requires basin-scale observations to calibrate the model to reliably predict basin-scale water resources hazards. Such luxury is not always tenable in watersheds with inadequate ground-based observation. However, satellite-based evapotranspiration (ET) data coupled with a machine learning feature selection as a data refinement process has made integrated water balance modelling widely regarded as a viable alternative for improving the capability of watershed modelling processes in data-sparse regions. This study developed a convincing hydrologic model framework to sufficiently calibrate and provide accurate behavioural solutions for all model responses. The framework was applied to four sub-basins that form the larger Lake Chad basin. The model results were applied to assess the dynamic changes in projected blue and green water resource sustainability in response to climate change in one of the sub-basins. Study findings indicate that hydrologic fluxes can be simulated accurately with varying degrees of acceptability, with R2 and NSE values in the range of 0.69–0.88 and 0.45–0.77 for calibration and 0.69–0.79 and 0.34–0.63 for validation, respectively, and captured within a satisfactory uncertainty range of P-factor and R-factor values of 0.68–0.93 and 0.73–1.31, respectively, in 83%, 67%, 85.7%, and 81.3% of the sub-watersheds based on multi-site simulation despite distinct watershed morphology, although there are significant trade-offs in parameter sensitivity. Whilst green water is the dominant freshwater component across the basin relative to blue water, climate change may be a significant factor influencing changes in the projected green water sustainability status, and the combination of socioeconomic drivers and climate change may significantly impact the projected blue water sustainability status across the basin. Projected changes in the green and blue water sustainability status have shown that more than 50% of the watershed will become ecologically fragile. In addition, the identified freshwater geographic sustainability hotspots may be beyond restoration without adequate long-term river basin water resource plans.
Keywords: data uncertainty, feature selection, integrated modelling, ungauged watershed, climate change, water footprint, freshwater sustainability
1 INTRODUCTION
Water resource planning must find a solution to the issue of achieving judicious and effective use of water, particularly in light of the growing population, climate change, and depleting water supplies (Novoa et al., 2019). Water is the cornerstone of community development since it provides such a wide range of ecological functions. This enables its efficient, fair, and sustainable distribution in order to eradicate poverty, promote economic development, and protect the environment (Hu et al., 2016).
The rate and amount of time required to store water in various storage reservoirs, including surface and groundwater, seas, atmosphere, snow, and ice, has been altered due to human use (Keys et al., 2016). Consequently, attaining water sustainability, which is defined as meeting everyone’s present water needs without compromising the supply in the future while advancing societal goals and preserving the environment, remains one of the greatest difficulties worldwide (Hu et al., 2016; Chouchane et al., 2018). Many administrative authorities have made the sustainable management of water resources a top priority to ensure that all residents and economic sectors have access to water sufficiently in the right quality and quantity (Martinsen et al., 2019; Tortajada et al., 2019). The sustainability of water in a basin can only be achieved if it is possible to sustain ecosystems’ hydrological, ecological, biological, and chemical processes while providing an equitable and effective water supply over time (Pfister et al., 2009; Wang et al., 2016). The water footprint (WF) concept addresses these needs by providing an assessment of water resources that accounts for natural variability and usage across sectors (Hejazi et al., 2014).
A multi-dimensional indicator called the water footprint (WF) reveals the characteristics of anthropogenic stresses on water supplies and the amount of freshwater consumed. This offers insights into water-related challenges, aids in understanding present patterns of water allocation across different river basin sectors (Muratoglu et al., 2022), and enables decision-makers to take advantage of the substantial data on water use supplied by the WF technique by improving water management, hotspot identification, and the development of appropriate responses to changes (Pellicer-Martínez and Martínez-Paz, 2018). The approach is excellent for comparing water resources across different administrative boundaries relative to their quantity and quality (Li et al., 2018).
Blue and green water are the two categories into which the freshwater cycle can be separated based on the hydrological processes and types of storage involved. Green water is the portion of precipitation that seeps into the ground and changes into soil moisture or momentarily stays on top of the ground or vegetation and, subsequently, evaporates and transpires back into the atmosphere. Blue water is the term for precipitation that accumulates in aquifers, lakes, and reservoirs and flows through or below the land surface (Rockström et al., 2009; Rodrigues et al., 2014). The consumption of both blue and green water by various sectors is included in the water footprint concept, according to Hoekstra et al. (2011). The concept indicates that the green water footprint (GWF) represents the estimated amount of green water required and used by plants (i.e., evapotranspiration (ET) from crop and pastureland), which is frequently referred to as productive vapour flows), whereas the blue water footprint represents the consumptive use of freshwater water resources from rivers, lakes, and overland flow.
Hydrologic models created for various time and spatial scales have started to become more complicated, and as a result, the use of WF as an indicator of sustainability is essential in order to determine environmental water consumption restrictions (Shrestha et al., 2017). This indicator is particularly essential in regions susceptible to water variabilities, such as basins in Mediterranean and tropical climates, where the demand for water for irrigation rises during decreased precipitation, limiting runoff and downstream flows (Novoa et al., 2019).
Previous studies have demonstrated that extreme hydrological events are rising in terms of frequency and severity due to the deepening of global climate change, creating new problems for managing water resources and the regional water cycle (Vicente-Serrano et al., 2017; Tabari, 2020). Global attention has been drawn to changes in climate patterns and their possible effects on water resources. However, there are uncertainties in future climate change estimates (e.g., changes in temperature and precipitation), which makes it difficult to decide on appropriate adaptation measures by planning authorities (Dessai and Hulme, 2007; Gosling and Arnell, 2016). The main sources of these uncertainties are changes in the initialisations and parameterisations used in climate models to explain physical processes as well as downscaling methods (Zhuang et al., 2016). It has been posited that water resources are vulnerable to these uncertainties, and it is challenging to anticipate with precision in a changing environment. Therefore, it is crucial to create water management plans in an environment that is complex and uncertain during a period of global climate change (Wang et al., 2016).
Multiple climate models have been used in an evaluation framework to find effective ways to manage basin water resources under the effects of climate change; the results showed that these plans are extremely vulnerable to climatic changes. Some conclusions drawn from other studies revealed that water resources in various regions are sensitive to climate change, and the relative influence varies significantly around the world. Accumulating evidence reveals that the sources and types of uncertainties affect the selection of adaption strategies (Dessai and Hulme, 2007; Arnell et al., 2011; Refsgaard et al., 2013; Cai et al., 2015; Tzabiras et al., 2016; Sun et al., 2017). Identification of effective corporate strategies and policy actions requires uncertainty analysis (e.g., climate adaptation, resilience, and mitigation measures). When stakeholders, decision-makers, and researchers are aware of the sources, types, and characteristics of uncertainty, their trust in scientific analysis is increased (Gabbert et al., 2010; Kirchner et al., 2021). Accounting for uncertainty is typically necessary for the scientific publishing of model-generated quantitative assessments and is regarded as excellent modeling practice (Troost et al., 2015).
Observational data are the foundation of our understanding of environmental systems, but their scarcity and unpredictability limit their study and practical applications. The accuracy of atmospheric data is crucial for the validity of hydro-meteorological and climatological investigations, among other factors (Zandler et al., 2019). The flaws in the input rainfall data utilised might be reduced or amplified by the non-linearity of hydrological modelling processes, which can lead to a good or bad depiction of the hydrological responses and, consequently, lead to inadequate water resource policy and adaptation measures (Maggioni and Massari, 2018). In order to improve the spatiotemporal process representation, distributed observational datasets must be used to inform and assess distributed hydrological models, created to enable large watershed forecasts (Baroni et al., 2019; Ocio et al., 2019). In this instance, determining whether meteorological data are adequate and coherent to accurately reproduce basin-scale hydrology is a requirement before choosing data for managing water resources (Laiti et al., 2018). Integrated modelling is useful in many areas of study on global climate change, and in this article, we define integrated modelling as an interdisciplinary technique of linking accurately curated empirical data and mathematical models that are founded on disciplinary notions to present a more thorough and precise picture of interactions between people and their environment (Moss et al., 2010; Laniak et al., 2013).
Uncertainty can manifest and build up across any chosen modelling framework, which makes it a significant problem for integrated modelling. Uncertainty is mostly dealt with in two ways using existing integrated modelling frameworks (IMFs). The first is by using scenarios to measure the uncertainty of future changes, e.g., various alternative descriptions of how the future might look are provided, which are internally consistent with projections (Reilly and Willenbockel, 2010; Mitter et al., 2019). Second, contributions from research teams of how outputs of hydrologic models are compared with observations defined based on recommended key performance indicators across the scientific community and the techniques are utilised to address uncertainty due to the application of various alternative data with designed models (Elliott et al., 2014; Folberth et al., 2019). The full identification and tracking of uncertainties in integrated modelling, i.e., the manner in which uncertainty spreads among climate models as applied to hydrologic modelling in data-sparse regions, has received very little attention (Holzkämper et al., 2015; Karner et al., 2019; Mitter and Schmid, 2019). Such analysis was previously acknowledged as a serious research quest in the early phases of integrated modelling, particularly for the propagation of uncertainty from land use optimisation models to the construction of hydrologic models.
In connection with this effort, numerous studies that provide a unique methodology to define and understand the various hydrologic model processes and the relationships between the various hydrological variables are important (Bierkens et al., 2015). It was also emphasised that one of the major scientific difficulties is continually refining the depiction of hydrologic model processes in the model design (Clark et al., 2015). The hydrologic community has agreed on the necessity for additional datasets along with associated signature measurements to enhance the portrayal of the key physical model processes (Clark et al., 2016). The fact that climate models still struggle to accurately replicate important climate processes is of greater concern. While precipitation estimates are widely variable, temperature projections are similar across all climate models and are thought to be more reliable, and future hydro-meteorological conditions can be uncertainly predicted because of the significant degree of variability in general circulation model (GCM) outputs.
In order to create an integrated modelling framework, it is often necessary to work on individual model modifications, model connections that are improved, and the application of the integrated modelling framework to particular research issues, whose outcome can be relied upon for the basin-scale assessment of water security, sustainability, and other related applications to achieve better water policy decisions in response to projected climate change. For a meaningful comprehension of basin weather patterns and their future trends based on feature extraction by training the historical dataset using artificial intelligence to track water resource indicators, a prediction model that can deliver actionable information is necessary (Kratzert et al., 2018; Ali et al., 2020). In this study, we created a convincing framework or strategy to deal with the difficulties of modelling in areas with little or sparse data, appropriate ways to use alternative research datasets to evaluate models, and considerations for data uncertainty and incompatibility between models and measurements. The framework integrates a machine learning technique, Boruta random forest (BRF) optimiser, and a hydrologic model, Soil and Water Assessment Tool (SWAT), to refine the data input process mechanism for the creation of a reliable model for basin water resource assessment. The methodology will be applied to four sub-watersheds that encompass the Lake Chad hydrologic basin in Sub-Saharan Africa, with variable morphological properties.
The objective is to provide a novel pathway to increase transparency and improve uncertainty communication of long-term water balance models in an easily understood way without compromising scientific accuracy in data-sparse watersheds, which have not been adequately studied. This idea seeks to be general and adaptable enough within the allowable uncertainty band to permit its use in other basins with comparable modelling problems. Finally, the integrated model framework will provide a crucial link between hydrology and human activities at local watershed levels to assess and monitor the implications and dynamic changes from baseline, the projected blue and green water resources and their sustainability, in response to changes in climate at annual and monthly timescales in the Yobe-Komadugu sub-watershed.
2 CASE STUDY AREA AND DATA
2.1 Case study area
The Lake Chad basin, with an estimated area of over 2,500,000 km2, is one of the largest endorheic basins in the world (Coe and Foley, 2001; Gao et al., 2011). It is located between the Sahara and the Sudano-Sahelian areas of West Africa, between latitudes of 5.2⁰–25.3⁰ N and longitudes of 6.9⁰–24.5⁰ E (Figure 1). The basin receives the majority of its annual rainfall between July and September. The region is renowned for being particularly susceptible to climate change, which frequently results in severe drought and water shortage circumstances (Ndehedehe et al., 2018), and the lake is a freshwater source for livestock grazing, fish farming, and other socioeconomic activities (Buma et al., 2016). The major contributors of discharge to the lake are the Chari River (∼90%), with an annual streamflow of 860 m3/s between 1960 and 2013, and the Yobe River (∼2–5%), with an annual streamflow of 18 m3/s between 1961 and 2013 (Lemoalle, 2014). Other rivers that contribute supplies of between 1% and 2% are Gubio, Yedseram, Ngadda, and El-Beid. However, there are a few rivers like the Batha River and other rivers situated in the Saharan zone that do not have an outlet to Lake Chad (Figure 1). The precipitation in the basin varies geographically and seasonally between <100 and 1,500 mm/yr (Nkiaka et al., 2018).
[image: Figure 1]FIGURE 1 | Lake Chad basin showing sub-basins, lake, major river networks, and MODIS Evapotranspiration (ET) data points.
2.2 Dataset description
2.2.1 MODIS evapotranspiration
The state of observed streamflow data is quite poor and inadequate, with many missing data points, which undermines the confidence in the output of hydrologic modelling results temporally and spatially in the entire basin. Alternatively, the availability of high spatial variability of satellite-derived land surface MODIS-NASA Evapotranspiration data at a monthly timescale was extracted by overlaying the 1.0 × 1.0 grids with the basin map. A total of 100 observation points (Figure 1) were generated and aggregated to develop 59 simulation sub-basin points across the entire watershed, as recommended by Abbaspour et al. (2019), and the data were divided into 1983–1998 for calibration and 1999–2006 for validation of the models. A more accurate hydrologic model simulation may be obtained by taking into account the geographical distribution of the AET throughout the watershed. The MODIS-NASA ET data also takes into account factors like plant transpiration and the evaporation of soil moisture (Autovino et al., 2016).
2.2.2 Digital elevation model and soil, land use, and land cover data
The watershed was delineated using the ArcSWAT program in the ArcMap 10.8 environment using the topography information from the basin that was collected from the ASTER Global Digital Elevation Model version 3, with a spatial resolution of 30 m. The soil data were obtained from the Harmonized World Soil Database (HWSD) (Table 1), with a 1 km resolution, founded by the Food and Agricultural Organization (FAO) and notable research centres (Abbaspour et al., 2019). Land use and land cover data were obtained from the European Space Agency (Table 1), which was an initiative that was developed from global composite land cover maps using observations from the 300-m MERIS sensor onboard the ENVISAT satellite mission. The GlobeCover map contains 23 land cover types (Bontemps et al., 2011). The description, resolution, and data source are shown in Table 1, and the links to the source can be found in Abbaspour et al. (2019).
TABLE 1 | Input data required for hydrologic model development.
[image: Table 1]2.2.3 Climate data
The gridded precipitation and temperature data used here were recommended from a previous study by Lawal et al. (2021) at a daily time-step between 1979 and 2011 and were extracted at a 1° × 1° grid resolution for the pre-processing of general circulation models for baseline (1979–2011) and projected (2021–2080) climate change scenario data considering two shared socioeconomic pathways based on carbon dioxide emission scenarios SSP2(4.5) and SSP5(8.5), supported by the World Climate Research Programme in the ESGF database, and the data are available and can be extracted from the source provided in Table 1.
3 RESEARCH METHODOLOGY
3.1 Pre-processing of input data
The dataset required for the integrated model framework needs to be checked and prepared to fit the model specifications for efficient and accurate output of the model hydrologic variables. The primary input data required are pre-processed to depict the status of the watershed land management and vegetation properties.
3.1.1 Climate models, downscaling, and bias correction
The general circulation models (GCMs) used in this assessment were the ensemble of four (MPI-ESM1.2-LR, INM-CM4.8, MRI-ESM2.0, and INM-CM5.0) Coupled Model Intercomparison Project Phase 6 (CMIP6) models and were extracted at 210 data points (Figure 2A) for the historical (1979–2011) and projected climate change scenarios (2021–2080) for two shared socioeconomic pathways (SSP4.5 and SSP8.5) corresponding to total radiative forcings of 4.5 and 8.5 W/m2 (approximately equal to mean CO2 emission concentrations of 650 and 1,370 ppm), respectively, in 2100. Before predicting the future climate, it was necessary to modify the climate model’s outputs because they contain biases. The delta and quantile mapping methods were used to downscale and correct the known biases in the precipitation and temperature data, respectively, based on a study conducted in the basin using CPC and PGF gridded data in line with study requirements (Lawal et al., 2023). The methods are non-parametric and corrected the predicted climate data based on point-wise empirical cumulative distribution functions. The downscaling strategies were found to significantly improve the forms of the linked frequency distributions and minimise systematic biases and indices of extreme events by approximately one order of magnitude (Themeßl et al., 2012).
[image: Figure 2]FIGURE 2 | Description of morphological data in the study: (A) digital elevation model and meteorological points, (B) soil types, and (C) land use and cover data.
3.1.2 Land use, soil, and DEM data
The soil characteristics for the entire watershed were extracted from the world HWSD dataset and include two soil profiles (0–30 cm and 30–100 cm depths), the available water capacity, and the bulk density, along with the majority of the soil information needed for the SWAT model. The majority of the primary soil classifications include clay, loam, sand, clay–loam, sandy-clay, loamy-sand, sandy-loam, sandy-clay-loam, and rock that make up the watershed (Figure 2B). The watershed’s land use and land cover data were extracted to match the sub-watershed extent and categorised into six different land uses that work with the SWAT model (Figure 2C), including artificial area (URMD) 0.013%, barren land (BARR) 52.873%, agricultural land (AGRL) 3.743%, forest land (FRST) 15.636%, vegetation (PAST) 27.842%, and water bodies (WATR) 0.166%. In order to extract the topographic features of the terrain, which are a necessity for hydrological research, basin elevation information is crucial. The 30 m spatial resolution digital elevation model (DEM) was extracted (Figure 2A) and transformed into a Universal Transverse Mercator system of coordinate representation to aid the delineation of the watershed boundary.
3.2 Integrated modelling framework
We combined a machine learning optimiser (BRF) and SWAT model to refine the input process of the baseline and projected climate data to reduce input uncertainties in the modelling process (i.e., technical uncertainties) to enhance the simulation process and improve the confidence in the modelling output for the reliable assessment of basin-scale hydrologic features. This approach is necessary to further lower the danger of misinterpreting climate signals and improve adaptation assessments. Our goal is to create an integrated modelling framework that satisfies these criteria for evaluating the effects of anticipated regional water balance changes brought on by climate-projected scenarios on the sustainability of green and blue water in data-sparse regions under uncertainty. The two integrated processes are discussed briefly in the following sub-section, and the schematic overview is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Schematic overview of the integrated SWAT and BRF modelling framework (IMF) for reliable water balance modelling in data-sparse regions.
3.2.1 Boruta random forest optimizer
The Boruta feature selection method was created as a wrapper for the random forest algorithm, which is used to identify important features of the predictors. Every input predictor’s Z-score distribution relative to the shadow property is calculated. The distribution of the Z-score metrics establishes the key components of the predictors (Kursa and Rudnicki, 2010). It involves developing a stepwise model using a minimal-optimal feature selection technique that rates the salient features of the model and the residual according to the optimization-determined factors (Kursa, 2016). It is an effective feature selection technique that makes it easier to categorize high-dimensional data. Information gain is used to gauge each feature’s contribution and establish its association using a novel extension of balanced information gain. This is very significant when analyzing a vast amount of data to achieve high generalization accuracy.
The methodology of the optimization process of the input dataset is discussed in Lawal et al. (2023). The proposed strategy is required to address potential shortcomings of the conventional modelling methodologies, such as their incapacity to analyze stochastic aspects, complicated variable input features, and interrelated climatic and hydrological properties that restrict the process’ ability to address crucial temporal behaviour (Adamowski et al., 2012). As demonstrated in Lawal et al. (2023), the BRF feature selection technique has been proven to retain the climatic signals by filtering out redundant downscaled GCMs that may create a dip in the capability of selected ensembles developed to accurately represent basin-scale hydrologic features like extreme events (return period of flood and drought) and their trends and magnitudes. Thus, integrating the feature extraction algorithms with SWAT modelling may provide an improved output of calibrated and validated water balance models for a reliable and accurate prediction of baseline and projected hydrologic features in data-sparse watersheds for water security assessment.
3.2.2 SWAT hydrologic model
The model is a semi-distributed and continuous time-step hydrological model known as SWAT. The model is utilised to study water quality (sediment load and nutrient flow), water quantity (streamflow, evapotranspiration, water yield, aquifer recharge, etc.), and crop growth processes in different watersheds (Veettil and Mishra, 2018; Gesualdo et al., 2019). Surface runoff in the model is generated by the use of the SCS curve number method, and ET is estimated by various approaches based on the source of the data and basin conditions, such as the Priestley–Taylor, Penman–Monteith, or Hargreaves methods. All flow variables are evaluated using the mass balance equation of the model system (Swain et al., 2020). The water balance equation conceptualises SWAT’s simulation of the hydrological processes as
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where [image: image] is the residual water content in the soil (mm), [image: image] is the initial soil water content, [image: image] is the time in days, [image: image] denotes precipitation, [image: image] denotes surface runoff, [image: image] denotes evapotranspiration, [image: image] is the subsurface flow from the soil profile, and [image: image] is the return flow on the [image: image] day all in mm.
SWAT primarily analyses each hydrologic response unit (HRU), which is a division of the sub-basin with similar groups of soil and vegetation types, to estimate the water availability at each sub-main basin’s channel for a particular time phase. To regulate the flow of water, the water is subsequently channelled to the basin exit via the river and subsurface systems. SWAT’s model optimisation process and analysis are often performed using SWAT-CUP or calibration and uncertainty programs (Abbaspour et al., 2015). The Sequential Uncertainty Fitting version 2 (SUFI-2) tool, an optimisation algorithm based on stochastic procedures within the SWAT-CUP interface, was utilised for adjusting independent parameter sets by Latin hypercube sampling (LHS). The interface used global or one-factor-at-a-time sensitivity analysis during calibration and validation. The model performance was evaluated by the statistical metrics coefficient of determination (R2) and Nash–Sutcliffe efficiency coefficient (NSE), whose equations are as follows:
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where [image: image] is the observed mean value, [image: image] is the value of the [image: image] observation, [image: image] is the modelled value of the [image: image] observation, [image: image] is the mean of the simulated model values, and n is the total number of sample sets of the observation.
3.3 Integrated model setup and calibration, validation, and uncertainty analysis
3.3.1 Integrated model simulation
The model was set up by importing the DEM to the ArcSWAT interface, and the watershed boundary was delineated. However, the basin was divided into four major watersheds based on the climatic zones: the Yobe-Komadugu, Magay–Ngadda, Chari–Logone, and Bodou–Dillia sub-basins (Figure 1). The main river networks and tributaries were generated based on a threshold drainage area of 3,000 km2, and all were connected to Lake Chad. The HRUs’ adjusted threshold of soil type, land use, and slope were set at 15% to fairly retain the characteristics of the land use features and slope classes of 0%–2%, 2%–8%, 8%–15%, and >15%. The catchment was discretised into 315 sub-basins, with a sub-division of 1,702 HRUs (Table 2).
TABLE 2 | SWAT model basin parametrisation.
[image: Table 2]The Boruta random forest filter was integrated to optimise the climate dataset used in this study. Initially, 16 GCM datasets at a daily time-step were parsed through the algorithms by utilising the observed gridded and GCM datasets as the target and dependent features, respectively, at the 210 grid points considered, to screen and extract the significant input features (GCMs). The optimisation process (i.e., dependent and target) features are considered to be statistically significant if the lagged values delay them. All input predictors’ Z-scores are computed by the algorithm, and the distribution defines the shadow characteristics derived from the target variable. At each grid point, an input feature is deemed important if and only if the feature importance score (Z-score) is greater than the shadow attributes generated from the target feature after 500 iterations.
The ensemble of the four best GCMs at each grid point was formed for both baseline 1979–2011 and the projected scenarios SSP2(4.5) and SSP5(8.5) at two-time slices of 2021–2050 and 2051–2080 and integrated into the hydrologic model. The optimisation process is important to screen through antecedent lagged memories within the datasets (GCM inputs) after the application of the algorithms to potentially correlate the time series arising from meteorological factors without necessarily misrepresenting the basin climate features. Owing to the lack of observation data, like wind speed, solar radiation, relative humidity, and reservoir operation data, default model values were maintained, and the influence of the reservoir was neglected. The Hargreaves temperature-based approach was set up within the model in the simulation of the evapotranspiration variable to prevent the influence of the aforementioned weather data in the ET simulation.
3.3.2 Model calibration, validation, and uncertainty analysis
The four watershed models were optimised using SUFI-2 algorithms against the observed ET data extracted at 100 points and reaggregated to form 59 test points based on the delineated watershed boundaries and with a balanced spatial distribution that covers the entire basin to increase confidence in the model output. The primary objective was to identify sensitive model parameters in the watershed that controls the basin hydrology. Preselection of sensitive parameters was performed in accordance with the recommendation by Abbaspour et al. (2017), Jiang et al. (2020), and López et al. (2017), and a one-parameter-at-a-time sensitivity analysis using five simulation runs was conducted. The observed ET data were sub-divided for calibration and validation at a point having a homogeneous representation of ET characteristics capturing wet, moderate, and dry years across the available data period. The sensitivity analysis was used to assess the statistical significance of the model parameters based on the t-stat and p-value analysed.
The uncertainty in the simulation was estimated by adjusting the model parameters determined at 97.5% and 2.5% levels of confidence. The integrated model capability was determined by the efficiency criteria in Eqs (2) and (3), and the uncertainty range was quantified by the P-factor and R-factor. The P-factor indicates the percentage of observed data enclosed within the 95PPU band, and the R-factor is the ratio of the average thickness of the 95PPU band to the standard deviation of the observed and simulated data. The optimum values of 1 and 0 indicated a perfect model. The analysis was conducted for the period 1982–1999 for calibration and 2000–2006 for validation. The model results of the calibrated and validated ET and the most sensitive parameter for each watershed are presented and explained in Section 4.
3.4 Assessment of water footprint environmental sustainability
The output of the hydrologic model was used to evaluate the impact of climate change on spatial and temporal variations in green and blue water footprint environmental sustainability of the Yobe-Komadugu watershed. The watershed is dominated by agricultural land and situated within the two-climate extreme of the basin. The sustainability index (Supporting Material) is a summary index that assesses the sustainability of water resource systems (da Cunha e Silva et al., 2022). It can be used to calculate the sustainability for water consumers and determine changes in sustainability by comparing the index among various suggested water policies (de O. Vieira and Sandoval-Solis, 2018). The sustainability index will help decision-makers to highlight policies that will maintain or enhance the basin’s desired future water management characteristics (Sandoval-Solis et al., 2011).
Geographic hotspots that lead to water resource conflict were identified by defining the environmental sustainability of blue and green water at the basin size in relation to freshwater provision levels (threshold available water for human use). To evaluate the environmental sustainability, we used a sustainability index (Supporting Material), which compared specific sub-basin WF to its corresponding water availability (WA) in terms of the water footprint concept, as demonstrated in Liu et al. (2020) based on the following equation:
[image: image]
[image: image]
Here, [image: image] and [image: image] represent the indices that define watershed blue and green water environmental sustainability in sub-basin [image: image] at time [image: image]; [image: image], [image: image], [image: image], and [image: image] represent blue and green water footprint and availability, respectively. When the blue and green water footprints exceed the availability, i.e., [image: image] and [image: image], then the water footprint is unsustainable in the sub-basin because human water usage contravenes the needs of ecosystems and environmental flow regulations (Hoekstra et al., 2011). Here, we categorize the green and blue water sustainability thresholds into extremely (ES) ([image: image]), highly (HS) ([image: image]), and moderately (MS) ([image: image]) sustainable indices, which are referred to as viable water security points, and extremely (EU) ([image: image]), highly (HU) ([image: image]), and moderately (MU) ([image: image]) unsustainable indices, which are referred to and identified as high-, medium-, and low-risk geographic water security hotspots, respectively.
3.4.1 Blue water footprint and availability assessment
Blue water is determined from the output of the modelling framework (Figure 3). Blue water is the sum of groundwater storage and water yield (WYLD), referred to as blue water flow (BWF). The water yield (WYLD) defines the threshold amount of water that leaves the HRU and enters the main channel, and groundwater storage is the difference between aquifer recharge (GW_RCHG) and the main channel flow (GW-Q) (Rodrigues et al., 2014). The basin blue water security is evaluated by the sustainability indicators in terms of the blue water footprint or water abstraction restriction based on satisfying absolute environmental demand, i.e., the concept of both abstraction (demand) and consumption (withdrawal minus return flow). The blue water footprints were referred to as water appropriated or consumed by different sectors at the river basin scale, and the spatial distribution of water uses was determined by sectoral water demand information (Table 3), 1-km gridded world population density (CIESIN) data for baseline and projected future periods consistent with the CO2 emission scenarios related to the middle of the road (SSP2) and fossil-fuelled development (SSP5) available at http://sedac.ciesin.columbia.edu/gpw (Balk et al., 2006; Jones and O’Neill, 2016), and a conservative value of 92 L/capita/day was used to quantify absolute basic water consumption for the domestic blue water footprint to meet the minimum target during stringent water restrictions (Crouch et al., 2021). This concept was adopted here and can be applied to basins where actual sectoral water demand information cannot be established or is inadequate for long-term water security assessment at the basin scale.
TABLE 3 | Sectoral water use information in Chad and Nigeria.
[image: Table 3]The basin’s annual blue water footprint was determined based on the following equation:
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where [image: image] is the proportion of sectoral water use, [image: image] is the area of the sub-basin (km2), [image: image] denotes the long-term mean population density per square km, [image: image] is the per capita water use (L/capita/day), and n denotes the number of sectors utilising the freshwater resources. However, owing to inadequate data, monthly variations were not accounted for in the assessment of blue water sustainability at a monthly scale.
The blue water availability was estimated as proposed in Hoekstra et al. (2011), where [image: image] was determined by considering the proportion of safe natural runoff (streamflow) that is available for consumptive use at each sub-basin, as shown in Eq. 7.
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where Q represents the long-term sub-basin natural runoff (streamflow) (m3/s) and EFR is the environmental flow requirement to maintain a healthy river ecosystem. In this case, EFR was estimated using the presumed standard method proposed in Richter et al. (2012), stating that 20% of the long-term mean monthly natural runoff can be made available and considered appropriate for withdrawal.
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3.4.2 Green water footprint and availability assessment
Green water has two components defined as green water flow (withdrawal) and green water storage (availability). According to the HRU output of the SWAT model, the green water withdrawal represents actual evapotranspiration and is defined as the green water footprint (Rodrigues et al., 2014; Veettil and Mishra, 2016). The amount of soil moisture or green water storage (GWS) that can support crop development and soil evapotranspiration, which represents the original soil water (SW) content, is referred to as “green water availability.” It was acquired from the output of the SWAT model and applied to the water sustainability assessment (Abbaspour et al., 2015; Veettil and Mishra, 2018).
4 RESULTS
4.1 Calibration and validation of the integrated model
The model optimisation process is quite challenging and, to a certain extent, subjective in complex hydrology, especially in a region with inadequate multi-variable observed data. We therefore aim to produce a model whose simulation reflects the natural conditions of the watershed. As a first step, we integrated the Boruta random forest feature selection approach as an interface to assess and filter out redundant downscaled GCM data across the 210 selected grid points of the entire watershed. According to Lawal et al. (2023), this procedure was required to improve and preserve the internal variability of climate data signals that may be affected by reparameterisation to utilise the right number of GCM ensembles capable of evaluating the complex interactions within hydrologic models and ensure all uncertainty (conceptual model, input data, and parameters) ranges are mapped onto and bracketed by most of the observed data within the accepted range of uncertainty (Abbaspour et al., 2007), for an accurate understanding of long-term changes in baseline and projected watershed hydrology, especially in data-sparse and climate-sensitive regions, which are not adequately studied.
The one-at-a-time sensitivity analysis adopted for the preselection of sensitive model parameters was relied on here, partly due to the use of different observed data for calibration and validation processes from previous hydrologic studies of watersheds with similar features around the world (Abbaspour et al., 2017; 2015; López et al., 2017; Jiang et al., 2020), variations in watershed features, and a homogeneous representation of the evapotranspiration characteristics capturing wet, moderate, and dry years across the available data period. The built-in sensitivity analysis tool utilised algorithms (SUFI-2) in SWAT-CUP and identified 19 parameters in the four sub-watersheds analysed, with different levels of sensitivities outlined in Table 4, and this may have alluded to the variations in land use and land cover and terrain and slope features across the watershed.
TABLE 4 | Model sensitive parameters, ranges, and best-fitted values at sub-watersheds.
[image: Table 4]The result of the model global sensitivity analysis of the calibration process across the four sub-watersheds analysed indicated that the combination of the parameters rendered some less sensitive in the simulation run. Thus, we categorised the level of parameter sensitivity based on the p-value of the model run as (p-value = 0) highly sensitive (**), (0 < p-value ≤10−5) moderately sensitive (*), and (p-value > 10−5) less sensitive. The sensitivity threshold applied indicated that the SCS runoff curve number for average moisture condition (CN2.mgt), moist bulk density (SOL_BD().sol), saturated hydraulic conductivity (SOL_K().sol), and soil evaporation compensation factor (ESCO.hru) are the most important modelling parameters in the entire watershed, as shown in Table 4.
Other important sensitive parameters to note based on the sub-watershed modelling process are highlighted with a single asterisk, and they differ across the watersheds, which may be related to the distinct morphological features that change the hydrologic behaviour. However, the optimised watershed’s sensitive parameter ranges were varied, and this lack of uniqueness is a characteristic of the calibration of hydrologic models. This assertion was supported in Abbaspour et al. (2009), stating that there will be numerous such models with various parameter ranges if a model that fits the measurements exists.
The sub-watershed performance of the simulation process, as shown in Figures 4A–D, was calculated based on the observed and “best” simulated monthly actual evapotranspiration values of the objective function across the 59 measured points spatially distributed across the basin. The calibrated and validated model results depicted by the correlation coefficient (R2) and Nash–Sutcliffe efficiency (NSE) criteria were in the range of R2 = 0.69–0.88, NSE = 0.45–0.77 and R2 = 0.62–0.79, NSE = 0.34–0.63 across all the watersheds, respectively. Moreover, a large number of the achieved model results fell within a satisfactory uncertainty range, with P-factor and R-factor values in the range of 0.68–0.93 and 0.73–1.31 in 83%, 67%, 85.7%, and 81.3% of the sub-watershed, respectively. There are a few sub-basins with poor simulated output whose R2 and NSE values are as low as 0.25 and 0.14, respectively, although they exhibited a good representation of the data uncertainty band with encouraging P-factor and R-factor values in the range of 0.53–0.78 and 1.21–1.95, respectively. Even the region with better objective functions faces difficulty in simulating and matching the peak values of the observed evapotranspiration values, and this may be due to simplification of the model by reaggregation of the land use features and inadequate data that account for some of the important basin-scale processes like lack of sufficient information, such as reservoir operations, dams, water transfers, and irrigation process, and this is generally classed as technical modelling uncertainties and natural heterogeneity in the hydrologic modelling process and has been corroborated in Schuol et al. (2008) and Abbaspour et al. (2015). However, our results are generally quite realistic for the basin-scale assessment of water-related hazards.
[image: Figure 4]FIGURE 4 | Comparison of the observed and simulated results (95% prediction uncertainty band) of actual evapotranspiration between 1983 and 2006) in the basin. (A) Yobe-Komadugu watershed, (B) Magay–Ngadda watershed, (C) Chari–Logone watershed, and (D) Bodou–Dillia Watershed.
The obvious reason for the large variability in NSE estimates across the four basins or model results could be related to the “actual evapotranspiration only” calibrations. The modelling issue can be significantly “improved” by incorporating additional observation datasets into the distributed calibration modelling schemes (Kunnath-Poovakka et al., 2016; Rajib et al., 2016), where reliable data are made available. However, Koppa et al. (2019) argued that the ability of a model to simultaneously reproduce the included water balance components is not assessed by any limits of acceptability or error thresholds in multivariate calibration.
The result presented here is a step forward and improvement to earlier studies by Faramarzi et al. (2013) and Schuol et al. (2008), using a stand-alone SWAT model with the direct use of climate data, where the results from the studies indicate a poor watershed representation of the portion of the Lake Chad basin, which depicted a large uncertainty range with a correlation value greater than 0.6 at only 38% of the calibration point and poor objective function value (NSE) of between 0 and 0.2 in the larger Lake Chad region, and this may be attributed to the use of climate data with coarse resolution and distorted signals of watershed features where the complex orographic and land–sea distribution was not accounted for and may lead to local variation in basin water balance outputs and affect projected climate change assessment studies. Our result has shown a wider spatial coverage of good P-factor and R-factor values relative to the previous study, which was reported to be 0.6 or higher at only 61% and 1.5 at only 69% of the basin area. However, there are differences in model variables and parameters adopted for calibration, and these studies are conducted on a wider scale. Interestingly, the optimisation approach used here by incorporating machine learning into the integrated modelling strategy could reduce large model uncertainty propagation and provide a new direction to modelling issues in data-sparse regions with variable morphological features by providing high-valued water resource information at the local basin scale to drive sustainable water policy decisions.
4.2 Assessment of climate change impact on projected green and blue water resources
The assessment of climate change impact on the spatial and temporal distribution of blue and green water resources will be of great significance at the sub-watershed level to provide the necessary information for decision support for water authorities. The confidence in the output of the model results was reinforced by investigating variations in the projected mean changes in the near future (2021–2050) and far future (2051–2080) annual precipitation and average temperature from baseline (1982–2011) of the ensemble GCM refined by the Boruta random forest feature selection approach of the Yobe-Komadugu watershed. The results of the projected changes in annual precipitation and temperature for the two scenarios based on shared socioeconomic pathways are shown in Table 5.
TABLE 5 | Median of the projected changes in annual precipitation and temperature in the Yobe-Komadugu watershed.
[image: Table 5]The results of the projected changes in precipitation indicated an increasing trend with an annual shift of 7.1% and 7.40% in the near future to 13.25% and 27.68% in the far future, associated with the increased warming scenario of average temperature in the range of 0.69 ± 0.15°C and 0.89 ± 0.11°C between 2021 and 2050 and 1.17 ± 0.22°C and 1.78 ± 0.24°C between 2051 and 2080 for SSP2(4.5) and SSP5(8.5), respectively. The range of projection here is similar and consistent with the reported findings of previous studies (Vizy et al., 2013; Sylla et al., 2016; Almazroui et al., 2020), and the projected changes may be linked to variability and changes in West African Monsoon features, like changes in the intensity and localisation of the African easterly waves and jets, monsoon flows, and integrated moisture flux divergence (Teichmann et al., 2013; Mariotti et al., 2014; Sylla et al., 2015).
The result of the changes in spatial and temporal distributions from the baseline of projected green and blue water components under the two climate change emission scenarios SSP2(4.5) and SSP5(8.5) for the near future (2021–2050) and far future (2051–2080) periods of the Yobe-Komadugu watershed is displayed in Figures 6–11, respectively. The watershed was chosen because it is characterised by incidences of climate extremes. The most recent and notable events were the reported heavy windstorm in April 2022 and the downpour in May 2022 that affected approximately 180 communities and resulted in the loss of lives, food, buildings, livestock, and farmlands (SEMA, 2022). In addition, it is an important agriculture production region and, as a main contributor of water resources to replenish the larger Lake Chad, understanding the hydrologic variability and present and future water resource environmental footprint sustainability status at the desired watershed levels will enhance adequate river basin planning and management. The delineated watershed boundary and the sub-basins are shown in Figure 5.
[image: Figure 5]FIGURE 5 | Delineated Yobe-Komadugu watershed with sub-basin locations.
4.2.1 Spatial and temporal variations in green water flow under different climate change scenarios
The hydrological cycle is expected to intensify due to increased rainfall and a warmer atmosphere, as evidenced by the projected increase in atmospheric temperature as a result of CO2 emissions, which indicates a greater evaporative demand and increases GWF, consistent with the findings of Ogutu et al. (2021), Pham-Duc et al. (2020), and Todzo et al. (2020). It is projected to increase at different levels based on the emission scenario and time slices, e.g., the baseline period (1982–2011) depicted a mean annual GWF of 393.55 mm for the entire basin, as shown in Figure 6A. Assessment of the climate change emission scenarios indicated a projected increase in the spatial changes in mean GWF of 417.02 mm and 425.03 mm for SSP2(4.5), as shown in Figures 6B,D, accounting for 6.0% and 8.0% relative to the baseline period, while a projected increase was observed in spatial changes of mean GWF of 418.75 mm and 457.86 mm for SSP5(8.5), as shown in Figures 6C,E, accounting for 6.4% and 16.34% mean increases relative to the baseline period in near and far future time slices, respectively. Few exceptions were noted with contrasting GWF hydrologic features where declining GWF was predicted, especially in the downstream (sub-basin 20, 21, and 25–30) of the watershed.
[image: Figure 6]FIGURE 6 | Changes in the spatial distribution of annual green water flow in the Yobe-Komadugu watershed.
Analysis of the distribution and changes in the mean monthly variation of GWF in the near (2021–2050) and far future (2051–2080) relative to the baseline (1982–2011) period, as depicted in Figure 7, showed a consistent projected increase between spring and summer months in the range of 12.95%–33.54% and 5.93%–31.02% (Figure 7A) in the near future for SSP2(4.5) and SSP5(8.5), respectively, while a projected increase in the mean monthly GWF in the range of 23.25%–65.76% and 26.39%–87.43%, as shown in Figure 7B, in the far future was estimated for SSP2(4.5) and SSP5(8.5), respectively. However, there is generally a projected sharp decline of GWF in autumn and winter seasons across the basin, projected to be approximately 53.38% and 54.10% in the near future and 54.72% and 36.0% in the far future for SSP2(4.5) and SSP5(8.5), respectively. The reason for the enhanced projected GWF may be related to the increased temperature in the tropical regions between April and September due to an increase in CO2 emission concentration. The projected increase in precipitation events also enhances vegetation cover and the activity of actual plant transpiration.
[image: Figure 7]FIGURE 7 | Changes in the temporal distribution of mean monthly green water flow during (A) 2021–2050 and (B) 2051–2080 in the Yobe-Komadugu watershed.
4.2.2 Spatial and temporal variations in green water storage under different climate change scenarios
The result of the mean annual GWS, represented by the soil moisture conditions, which changes over time, indicated a substantial projected decline in all sub-basins of the watershed from the baseline period, with an annual average value of 341.89–324.79 mm (Figure 8A) and 302.43 mm for SSP2(4.5), as shown in Figures 8B, D, and 299.45 mm and 293.45 mm for SSP5(8.5) in Figures 8C,E, accounting for the projected decline of 4.99% and 11.54% in basin GWS for SSP2(4.5) and 12.41% and 14.17% for SSP5(8.5) in the near and far future periods, respectively. This decline may not be unconnected to the huge overexploitation of groundwater resources for irrigation practices by further lowering the water table level in the basin, and possibly increasing surface air temperature could also affect soil water flow regimes, thereby increasing the groundwater evaporative demands.
[image: Figure 8]FIGURE 8 | Changes in the spatial distribution of green water storage in the Yobe-Komadugu watershed.
Analysis of the distribution and changes in the mean monthly variation of GWS of the near and far future periods relative to the baseline scenario, as depicted in Figure 9, showed a consistent projected decline in most months in the range of 2.75%–44.11% at a mean rate of 6.95 mm/month and 24.97%–69.99% at a mean rate of 15.65 mm/month (Figure 9A) in 2021–2050 and 5.47%–54.45% at a mean rate of 6.28 mm/month and 26.47%–70.59% at a mean rate of 15.85 mm/month (Figure 9B) in 2051–2080 for SSP2(4.5) and SSP5(8.5), respectively. However, there is an exception in the monsoon season across the basin, with projected increases in GWS of approximately 53.28% (18.58 mm/month) and 60.02% (20.71 mm/month) in 2021–2050 and 15.87% (5.72 mm/month) and 56.83% (23.91 mm/month) in 2051–2080 based on the two emission scenarios, respectively. The projected increase in the monsoon season is generally significant between the month of July and September, which is associated with high rainfall intensities and interannual seasonal variability, as corroborated by Almazroui et al. (2020).
[image: Figure 9]FIGURE 9 | Changes in the temporal distribution of the mean monthly green water storage during (A) 2021–2050 and (B) 2051–2080 in the Yobe-Komadugu watershed.
4.2.3 Spatial and temporal variations in blue water flow in different climate change scenarios
The climate change impact on spatial and temporal variations in blue water flow was quantified at the sub-basin level in the watershed. BWF showed high variability, and the dynamics are quite distinct in the upstream and downstream parts of the watershed. For example, BWF is projected to decline at mean annual rates of 38.9 mm/year and 37.25 mm/year at the sub-basin (1–13, 15, 18, and 22) upstream, while associated projected increases of 54.66 mm/year and 55.27 mm/year at sub-basin (14, 16, 17, 19–21, and 23–30) downstream, in 2021–2050, as shown in Figures 10B,C, for SSP2(4.5) and SSP5(8.5), respectively, from the baseline period (1982–2011) depicted a mean annual BWF of 37.83 mm for the entire basin (Figure 10A). Similarly, the dynamics remain the same for the far future but with reduced magnitudes of decline from the baseline of 25.98 mm/year and 29.69 mm/year upstream and increased magnitudes of 77.23 mm/year and 98.97 mm/year downstream in 2051–2080 (Figures 10D, E) for SSP2(4.5) and SSP5(8.5) emission scenarios, respectively. However, analysis of changes in BWF in the entire watershed depicted projected increases from the baseline period of 2.85 mm/year and 4.76 mm/year in 2021–2050 and 20.21 mm/year and 52.01 mm/year in 2051–2080 for the CO2 emission scenarios, respectively.
[image: Figure 10]FIGURE 10 | Changes in the spatial distribution of blue water flow in the Yobe-Komadugu watershed.
Analysis of the distribution and changes in the mean monthly variation in BWF of the near and far future periods relative to the baseline scenario (Figure 11) showed that the projected decline is prevalent between months in the winter and spring seasons (Figures 11A, B), where precipitation events are non-existent or sub-optimal in the tropical regions. However, the summer and autumn months showed a projected increase in BWF relative to the baseline period, which may be associated with increased monsoon rainfall events and intensities, thereby intensifying wet extremes and dry spell lengths by shortening the Sahel rainy seasons, as predicted in previous studies (Sarr, 2012; Sylla et al., 2016; Almazroui et al., 2020).
[image: Figure 11]FIGURE 11 | Changes in the temporal distribution of the mean monthly blue water flow during (A) 2021–2050 and (B) 2051–2080 in the Yobe-Komadugu watershed.
The projected declines oinBWF are in the range of 0.17–4.88 mm/month and 0.17–6.42 mm/month (Figure 11A) between 2021–2050 and 0.13–6.0 mm/month and 0.07–5.49 mm/month (Figure 11B) between 2051–2080 for SSP2(4.5) and SSP5(8.5), respectively. However, there is a generally sharp increase in BWF in the monsoon season across the basin, especially in August, with a projected p of up to 4.76 and 4.96 mm/month between 2021–2050 and 11.66 and 23.8 mm/month between 2051–2080 based on the two emission scenarios. These sharp changes in BWF across the months validate the significant increase in heavy rainfall events and changes in seasonality that exacerbated incidences of frequent weather extremes, i.e., flooding and droughts in the Sahel region (Boko et al., 2007; Niang et al., 2014).
4.3 Climate change impact on and socioeconomic drivers of spatial variation in projected green and blue water sustainability
Green and blue water sustainability was determined at the sub-basin scale for baseline (1982–2011) and projected changes in the near (2021–2050) and far (2051–2080) future based on the two CO2 emission scenarios using the Sustainability index, as shown by the spatial maps in Figure 12 and Figure 13, respectively. The baseline period showed that green water is moderate to extremely sustainable (ES) in seven sub-basins, accounting for 16.50% of the watershed area, with Sustainability index (SI) ranging from 0.19 to 0.3, 0.5 to 0.71, and 0.81 to 1.0 in sub-basins (10 and 27), (7 and 26), and (1, 2, and 8) (Figure 12A), respectively. The remainder of the watershed was characterized by a low level of green water sustainability, except sub-basins 3, 20, and 24, which are high-risk geographic hotspots. The favourable Sustainability index of the sub-basins located upstream of the watershed may be due to land use and land cover features, which are a mixture of scanty vegetation and bare land with associated low green water footprints as a result of little to non-existent rainfed agricultural practices.
[image: Figure 12]FIGURE 12 | Spatial risk map of changes in baseline and projected green water environmental sustainability in the Yobe-Komadugu watershed.
[image: Figure 13]FIGURE 13 | Spatial risk map of changes in baseline and projected blue water environmental sustainability in the Yobe-Komadugu watershed.
Analysis of the projected green water sustainability indicated that there is a 1–2-fold shift in the sustainability threshold across the basin, with a steady to sharp decline of the favourable basin green water sustainability status from the baseline of 16.50% to 15.9% for SSP2(4.5) (Figure 12B) and 0% for SSP5(8.5) in 2021–2050 (Figure 12C), and the far future also indicated a decline of the watershed green water sustainability threshold of 1.86% for SSP2(4.5) (Figure 12D) and 0% for SSP5(8.5) (Figure 12E) in 2051–2080 of the watershed area. The geographic hotspots ([image: image]) are generally situated upstream of the watershed in all scenarios and are an indication that climate change may have a more profound effect on the high to extremely unsustainable green water status, which is evident from the continuous increase in green water flow and decreased green water storage, which is a phenomenon that may have been causing increased humidity and affecting the timing, spatial pattern, and intensity of rainfall in a basin, as suggested by Du et al. (2018), and as CO2 emissions rise, the efficiency of the utilisation of water in the photosynthetic process increases, resulting in CO2 fertilisation (Donohue et al., 2017).
The changes in blue water sustainability in the watershed for the baseline period in Figure 13A were assessed to be 15.61% HS, 5.4% MS, 15.65% MU, and 63.34% HU–EU (potential blue water geographic hotspots) of the watershed area. The high level of blue water sustainability is predominant upstream of the watershed; however, sub-basins 1, 2, and 6 are shown to be highly unsustainable, which may be related to the absence of viable stream channels and the high rate of evaporative demands, which characterized the basin as semi-arid with severe drought events and high interannual rainfall variability due to the effect of Intertropical Convergence Zone (ITCZ) migration (Thompson and Polet, 2000).
Analysis of the influence of climate change and changes in socioeconomic activities on projected blue water sustainability indicated further increases in blue water geographic hotspots across the watershed area of 71.53% and 75.38% (Figures 13B, C) between 2021 and 2050 and 73.51% and 76.35% (Figures 13D, E) between 2051 and 2080 for SSP2(4.5) and SSP5(8.5), respectively. Our model results showed that the blue water security hotspots regions have negative SIs ranging from 0.5 up to as high as 16.58 for both SSP2(4.5) and SSP5(8.5), respectively. The blue water’s continued unviability may be caused by major river systems drying up and reduced flows brought on by the overuse of groundwater and surface water resources as a result of intensive irrigation practices. These consistent patterns could be scaled with the SSP emission scenarios, which have shown a strong correlation between anthropogenic GHG emissions and potential environmental impacts, as corroborated by Adeyeri et al. (2019). Some of the viable blue water sustainable sub-basins are characterised by interconnected large streams that form the Komadugu-Yobe and Komadugu-Gana river sub-systems that support different ecological processes and socioeconomic activities, such as fish production, pastoralism, and forest regeneration, with a population of over 20 million people depending on these activities in the basin. The continued decline in sustainable blue water may be worrisome to local and national strategic freshwater management plans and a threat to diplomatic relationships among countries that share the basins.
4.4 Climate change impact on and socioeconomic drivers of the temporal variability of projected changes in green and blue water sustainability
The green and blue water sustainability assessment at the local basin scale will require an understanding of the temporal pattern of freshwater circulation at a monthly timescale to improve and stabilize the basin ecosystems. Figures 14A–E show a heat map of the severity of the baseline and projected monthly changes in green water sustainability across the 30 sub-basins of the watershed. The results indicated that green water is more sustainable in the pre- and post-monsoon months, with indices in the range of 0.15–0.95 (Figure 14A), although there is a consistent projected change in the sustainability status from moderately unsustainable to highly and extremely unsustainable green water in the monsoon months between April and June, indicating a transition to potential geographic water sustainability hotspots across all the climate change scenarios, as shown in Figures 14B–E.
[image: Figure 14]FIGURE 14 | Heat map showing temporal changes in mean monthly baseline and projected green water environmental sustainability in the Yobe-Komadugu watershed.
However, a gradual change in the favourable green water sustainability status emerges in the July–August with 23% (Figure 14B) and 80% (Figure 14C) in the near future and 16.7% (Figure 14D) and 70% (Figure 14E) in the far future for SSP2(4.5) and SSP5(8.5) emission scenarios, respectively, across the entire watershed, and this may be connected to the sudden projected increase in rainfall events and intensities in the semi-arid climate. Assessment of the baseline blue water sustainability status (Figure 15A) indicated that sub-basins 1–19 (upstream) showed a moderate-to-high blue water sustainability in the monsoon months of May–September, with indices that ranged from 0.47 to 0.98; conversely, sub-basins 20–30 (downstream) generally exhibit the potential for geographic blue water sustainability hotspots, indicating highly to extremely unsustainable status 92.2% of the time during the monsoon period with indices in the range of 0.78 to–4.2. However, our analysis of monthly blue water availability indicated that the environmental flow requirement to maintain a healthy aquatic ecosystem cannot be met in 60.3% of the months in the baseline period and have been generally identified during the low-flow periods between the months of November and March and should have been classed as a “no abstraction period,” and streams should be protected across the basin.
[image: Figure 15]FIGURE 15 | Heat map showing temporal changes in mean monthly baseline and projected blue water environmental sustainability in the Yobe-Komadugu watershed.
The unsustainable blue water status may be closely related to the mass exploitation of ground and surface water for domestic and agricultural (irrigation) practices, high rate of surface water evaporation, and plant transpiration due to increased surface air temperature that triggered declining runoff contribution and shrinkage to the major Lake Chad, which is consistent with the findings of Lemoalle et al. (2012) and Zhu et al. (2017). The assessment of the model output for blue water sustainability status showed projected increases in the “no abstraction period” to 74.4% (Figure 15B) and 65% (Figure 15C) for the near future and 66.11% (Figure 15D) and 65.3% (Figure 15E) in the far future for CO2 emission scenarios SSP2(4.5) and SSP5(8.5), respectively.
The projections here indicate that the gradual increase in precipitations may have a direct impact on the sustainability of green water resources, where the monsoon months of July–August experienced a projected change in green water sustainability status from MU to MS, as shown in Figures 14C, E. However, blue water sustainability status tends to be degraded relative to the baseline in all emission scenarios considered, and a favourable blue water status may only be achieved through enforcing regulations to protect intense groundwater withdrawal, especially during low-flow periods, and exploring innovative river basin water conservation strategies. According to the anticipated changes in the sustainability of green and blue water, more than half of the watershed will be ecologically fragile. Without prompt action by water authorities to improve ecological resilience and adaptation to reduce the shrinkage of wetlands and larger Lake Chad in the face of changing climate and socioeconomic activities, some regions’ freshwater geographic sustainability hotspot statuses may be beyond the recovery points, which will make restoration quite difficult.
5 DISCUSSION
This study has demonstrated that the introduction of data pruning through machine learning in the hydrologic modelling process to enhance the previous frameworks will be beneficial, especially in data-sparse watersheds, where the climatological dynamics are highly variable and vulnerable to climate change. Although it is a challenge to understand the model stage that provides the majority of the overall uncertainty, as alluded to by Martin et al. (2020), various sources of uncertainty in climate impact modelling for water resource assessment include GHG concentration pathways (scenario uncertainty), GCM parameterisation (input uncertainty), and hydrologic model internal processes (structural uncertainty) and their interlinkages. According to Schewe et al. (2014), regional or local application may vary across different parts of the globe. The modelling scheme objective of managing scenarios and input uncertainty was prioritised in this study because they are generally classed as medium to high contributors of error propagation (Fang et al., 2018) and their management can cover for the limitations of inadequate data in order to prevent amplifying structural model uncertainty, although these uncertainties will inevitably remain and need to be addressed in practice through appropriate management actions by improved process understanding and adequate implementation of expert feedback on parameter calibration and model sensitivity mapping to narrow their effect in impact studies, as corroborated by Smith et al. (2018).
The relationship between the simulated and observation data based on the calibration statistics showed a satisfactory performance, although varied across the sub-watersheds. The result showed that a better uncertainty range (Figures 4A–D) was achieved with wider spatial coverage represented by the P-factor and R-factor values in the basin relative to the regionalisation modelling approach adopted in previous studies (Schuol et al., 2008; Faramarzi et al., 2013), which tend to be unrealistic and produce unsatisfactory performance and uncertainty range. This approach has often produced contradictory results, as suggested by Oudin et al. (2008), which may portray poor water resource dynamics and lead to a policy decision that affects resilience planning, especially in watersheds characterised by high climate variability.
The spatial variation in the green and blue water flow and storage in this study, as illustrated in Section 3.2, are quite intensified downstream, and this may be attributed to the presence of arable land, high population density, and intense agricultural activities, and the trends in the temporal variation in monthly changes are synonymous with semi-arid regions, as corroborated by Muratoglu et al. (2022) in the Euphrates. The projected unsustainable green and blue water status necessitates the review of water use policies, especially awareness programmes for local farmers on the willingness to change and adopt farming practices and strategies that lessen pressure on green water resources to prevent further intensification of current local basin water conflicts, as suggested by Li et al. (2020), failure of which will undoubtedly perpetuate the great uncertainty over how water availability and demand will change in the future (Sorg et al., 2014), and appropriate environmental flow regulations are critical for improving projected blue water sustainability status, especially in critical periods of the year, as suggested in previous studies (e.g., Hejazi et al., 2014).
6 CONCLUSION AND FUTURE WORK
In this study, we developed a framework by integrating machine learning-based Boruta random feature selection as an input data refining process with process-based SWAT hydrologic models to optimise the calibration process. The accepted or rejected model parameter solutions based on a set error threshold were used to test whether models developed based on this framework can simultaneously improve baseline and future climate projections and accurately simulate water balance components in watersheds with insufficient ground-based modelling data, which is necessary for successful and reliable hydrologic modelling at the local scale.
Applying the framework to four sub-watersheds that form the larger Lake Chad basin defined by distinct morphological properties, we found that the model simulates the hydrologic fluxes of ET with varying degrees of acceptability. While ET can be simulated accurately, there are significant trade-offs in parameter sensitivity ranges in the calibration process across the sub-watersheds. Some of the key findings and conclusions in the research are summarized in this section. The integrated hydrologic modelling process in this study can reliably represent the spatiotemporal distribution of the watershed hydrology, irrespective of the different morphological characteristics of the four sub-watersheds, and reduce uncertainty from the input data (e.g., precipitation and temperature), which are the main drivers of water balance models. The feature selection mechanism could reduce uncertainty propagation within acceptable thresholds in the data input process and provide ensembles whose projections can be relied upon and consistent with previous studies for water security assessment.
Green water is the dominant freshwater component across the basin relative to blue water, and climate change may be a significant factor influencing the spatial and temporal changes in projected green water sustainability status. The combination of socioeconomic drivers and climate change may have a significant impact on the projected blue water sustainability status across the basin. High GWF (ET), temperature, and the flat terrain in the Yobe-Komadugu watershed may affect the spatial distribution of projected natural runoff distribution, and thus, the projected blue water footprint exceeds the blue water availability, and human water use can only be met by using up the environmental flows, resulting in the degradation of rivers and groundwater potential. Additionally, given the WF hotspots found in this study, new appropriate water abstraction targets should be quantified as part of future research, as well as its impact on blue water, which has a higher opportunity cost due to its potential as an input in many supply chains for emerging industries other than agriculture to help improve water management efforts at the local river basin scale.
We should also point out that the results and conclusions reported in this study are based on certain configurations of the model parameters, input dataset, reference data, and hydrologic model. The established modelling framework, however, is independent of model and data type and may be used to assess the effectiveness of hydrologic state variables and fluxes at small-scale watershed levels. Nevertheless, some obvious limitations are that the study does not consider the effects of some watershed management practices like irrigation withdrawals and reservoir regulations due to unavailability of data and future topographic changes in terrain and slope, which will be significant driving factors governing the hydrologic response to land use and land cover changes.
This research focuses on blue and green water sustainability; however, efforts are required to extend the current work to grey water assessment by developing innovative ways and building observation datasets to further extend the model calibration and validation efforts to increase the confidence of hydrologic variable outputs required to reliably measure and quantify grey water footprint and sustainability for managing wastewater discharge and the application of fertilizers and pesticides for water pollution control. The water Sustainability index and status could be useful in the development of effective local river basin policies and regulations. Future work should involve addressing some of the limitations identified by extending the current study through the incorporation of more water balance variables into the optimisation process and analysing their effects on the general trade-offs in the accuracy of modelling output.
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Index Statistics June July August September

Wet days (R1 mm) Skewness 073 -031 1.04 L1
Kurtosis 294 325 299 457

std 094 144 454 101

Mean 324 559 542 301

Heavy precipitation days (R10 mm) Skewness 121 031 021 145
Kurtosis 466 254 200 524

s 051 077 064 053

Mean 102 243 228 107

Very heavy precipitation days (R20 mm) | Skewness 136 062 037 144
Kurtosis 480 284 234 467

sud 033 050 041 036

Mean 0.46 138 127 057

Maximum 1-day precipitation (Rx1 day) Skewness 102 186 039 192
Kurtosis 433 837 212 632

sud 6.42 1108 899 1185

Mean 1832 3541 3595 2449

Mean precipitation on wet days’ (SDII) Skewness 126 035 042 0.99
Kurtosis 485 351 225 354

std 258 304 297 355

Mean 667 1077 1116 7.99

Very Wet days total precipitation (R9SpTOT) Skewness 085 182 030 084
Kurtosis 673 896 3.06 258

std 1494 711 675 1137
Mean 4682 57.67 59.65 57.16

Extremely wet days’ total preci Skewness 028 119 -013 121
Kurtosis 258 499 229 455
std 2882 2194 1421 2747
Mean 8121 99.52 99.36 93.28
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Index Statistics R1 mm R10 mm R20 mm SDll Rx1 mm
R mMK 36 06 003 -145 022
TS 021 0 0 -0.035 001 -0.062 0
' R2 mMK 371 292 338 1.03 ~0058 246 1.56
TS 03 012 0078 0.04 -0031 232 038
R3 mMK 343 227 168 005 1.39 055 101
TS 018 0.07 003 00012 038 068 092
7 R4 mMK 171 -0.062 025 -1.95 0059 -0.67 02
TS 007 0 0 -0.16 -031 0 0
Country mMK 1.28 0.98 055 0.12 -0.063 0.07 077
TS 0.04 0.01 0034 008 0 0012 021

Th bold valiies are thoss Whio Bassed the slinificarics tese with a'p valiies of eqiial 666 163s than 0,05,
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Dataset

Variables

Note

ERA-S 6 h-cumulative Initial field at the issue time, absolute
precipitation value

ERA-S Land-sea mask

ERA-S Lake cover

ERA-S High vegetation cover

ERA-S Low vegetation cover

ECMWE- | 6 h-cumulative Forecast field to correct, absolute value

IS precipitation

ECMWE- 2 m-temperature

IS

ECMWE- | 10 m-u wind

1Fs

ECMWF- | 10 m-v wind

1S

ECMWE- 500 hPa-geopotential

IS height

ECMWEF- | Sea level pressure

IS

ECMWE- | Relative humidity

1S

ETOPOL Altitude
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Variable Precipitation (mm) Temperature (°C)
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Parameter name Sub-basin fitted parameter values Parameter range

Yobe-Komadugu Magay-Ngadda Chari-Logone Bodou-Dillia
r_CN2.mgt ~0.01% 0017 -0.15% -0.02%* -02-02
V_GW_DELAY.gw 88.66" 182.56 6328 88.66% 0.0-5000
V_ALPHA_BF.gw 084° 050 [ 071 0.84% [ 00-10
r_GWQMN.gw -137 004 038 -137 0.0-5,000
v_GW_REVAP.gw 019 010 005 012 002-02
v_REVAPMN.gw 199.36 - - - 00-500
r__RCHRG_DP.gw 080 - - - 00-10
7 r__SOL_Z().sol | -003 - - - 00-3,500 i
v_SOL_BD().sol 108+ 060 b b 108 09-250
v__SOL_AWC().sol 058 058 042 039 0.0-1.0
v_SOL_K().sol | 28593+ 436* 143535 285.93* 0.0-2000
v_CH_N2.rte 022 018 027 017 ~001-03
v_CH_K2.rte | 367.65* 26033 387.82 367.65° ~0.01-500
v_ALPHA_BNKurte 086 032 032 086 00-10
r_SLSUBBSN.hru | 021% | -001 | 0.09 021 [ 100-150
I v_OV_Nhru 005 005 002 005 001-1.0
\_ESCOhru [ 092+ 0277 052 0927 00-10
v_EPCO.hru 024 014 022 024 00-10
r__HRU_SLP.hru 005 005 0.27° -0.02%* 00-10
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Sector Chad (%) Nigeria
Domestic use 21 58
Industrial use 0 4
Agricultural use 79 39

Source: GWP (2013).
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Basin Area (km' No of sub-basins  No of HRUs

Yobe-Komadugu | 1459089 30 160
Magay-Ngadda 847931 27 171
Chari~Logone s 91 572
Bodou-Dillia 1,327,055 167 799
Total | oaems 315 | 1702

The bold values are the sum of total basin area, sub-basin and hydrologic response unit
(HRU) of the entire basin respectively.
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Data used

Topography
Land use data
Soil data

Meteorological data

ET data

Description

Digital elevation model
GlobeCover land use map
Digital soil map
Precipitation

Maximum temperature
Minimum temperature

Actual evapotranspiration

Resolution
30mx30m
5% 5°

1km

Daily

mm/month

ASTER Global Digital Elevation Model V003
GlobeCover 2009
HWSD v1.12

CMIPS esgf project

'MODIS-NASA Data
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River Headwaters region in 2000-2019

Note. T,, air temperature; P, precipitation; ET, evapotranspiration; SWS, soil water storage; SF, snowfall; SMT, snowmelt.

Abbreviation ~ Resolution Variables Data access Last access
(dd/mm/
yyyy)
ERAS-Land ERA5-Land 01 P, T,, ET, SWS, | DOI: 10.24381/cds 68d2bb30 18/05/2022
SE, SMT
CRU T$4.05 CRU 05 BT, https://catalogue.ceda.ac.uk/uuid/ 27/05/2022
€2665020a5¢4b80b2001814855668 1
China meteorological forcing dataset CMED 01 P, DOI: 10.11888/AtmosphericPhysics.tpe. 30/05/2022
249369.file
GLDAS_NOAH025_M_2.0 GLDAS 025" P, T, ET, SWS, | DOI: 10.5067/95Q1B3ZXP2C51948-2014 02/06/2022
SE, SMT
GLEAM v3.6 GLEAM 025" SWS, ET https://www gleam.eu/ 28/06/2022
Terrestrial evapotranspiration dataset TEDC 01 ET DOL: 10.11888/AtmosPhys.tpe.249493.file 08/06/2022
across China
Monthly snowmelt dataset in China SMT-Y 05’ SMT DOL: 10.12072/ncdc NIEER db2387.2022 16/08/2022
A dataset of glacier outline in the Three- = — - Glacier area DOL: 10.11922/sciencedb j00001.00234 21/08/2022
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Variable Sub-basin Trend Period References
Precipitation YARHR Increasing Yes 1957-2016 Chu et al. (2019)
Increasing No 1960-2009 Mao etal. (2016)
Increasing No 1961-2007 Liu and Wang, (2012)
Increasing Yes 1961-2015 Ahmed et al. (2020)
Increasing Yes 1982-2014 “This study
YERHR Increasing Yes 1957-2016 Chu et al. (2019)
Increasing No 1960-2009 Mao et al. (2016)
Increasing Yes 1982-2014 This study
LARHR Increasing Yes 1957-2016 Chu et al. (2019)
Increasing No 1960-2009 Mao etal. (2016)
Increasing No 1961-2007 Liu and Wang, (2012)
Increasing Yes 1982-2014 This study
Evapotranspiration YARHR Increasing — 1980-2017 Lietal. (2021b)
Increasing Yes 1957-2013 Du et al. (2017)
Increasing No 1983-2006 Lietal. (2014)
Increasing Yes 1982-2014 “This study
YERHR Vlncreasing - 1980-2017 Lietal. (2021b)
Increasing Yes 1958-2017 Hou et al. (2020)
Increasing No 1983-2006 Lietal. (2014)
Increasing Yes 1982-2014 This study
LARHR Increasing — 1980-2017 Lietal. (2021b)
Increasing Yes 1982-2014 “This study
TRHR Decreasing No 2003-2014 Xueet al. (2018)
Increasing — 1980-2000 Lietal. (2012)
Increasing Yes 1982-2014 “This study
*Soil water storage YARHR Increasing Yes 2003-2012 Zhang et al. (2022a)
Increasing Yes 1982-2014 “This study
YERHR Increasing Yes 2003-2015 Lv et al. (2019)
Increasing Yes 2003-2012 Zhang et al. (2022b)
Decreasing Yes 2013-2020 Zhang et al. (2022a)
Increasing Yes 1982-2014 This study
LARHR Decreasing Yes 2013-2020 Zhang et al. (2022b)
Increasing Yes 1982-2014 “This study
TRHR Increasing No 2003-2014 Xu et al. (2018)
Increasing Yes 1982-2014 “This study
Glacier area YARHR Decreasing - 1986-2009 Yao et al. (2014)
Decreasing - 19705-2019 This study
rRR Decreasing Yes 1986-2021 Chen et al. (2022)
Decreasing - 1970s-2019 s study
Glacier melt | vARHR Increasing Yes 1961-2012 Jiang et al. (2016)
Increasing Yes 1982-2014 “This study
YERHR Increasing Yes 1961-2012 Jiang et al. (2016)
Increasing No 1982-2014 | This study
LARHR Increasing Yes 1961-2012 Jiang et al. (2016)
Increasing No 1982-2014 “This study
Snowtal | vamr Decreasing Yes 1961-2019 | Livetal 2022)
Decreasing Yes 1982-2014 “This study
YERHR Decreasing Yes 1961-2019 Liu et al. (2022)
Decreasing Yes 1982-2014 This study
LARHR Decreasing Yes 1961-2019 Liu et al. (2022)
Decreasing Yes 1982-2014 “This study
Snowmelt | YARHR Decreasing - 1971-2007 Lietal. (2021a)
Decreasing No 1982-2014 “This study
YERHR Decreasing - 1971-2007 Lietal. (2021a)
Decreasing Yes 1982-2014 “This study
LARHR Decreasing - 1971-2007 Lietal. (2021a)
Decreasing No 1982-2014 This study
TRHR Decreasing Yes 1971-2007 Lietal (2021a)
Decreasing Yes 1982-2014 | This study
Runoff YARHR Increasing Yes 1957-2016 Chu et al. (2019)
Increasing Yes 1960-2012 Tang and Cao, (2021)
Increasing No 1960-2009 Mao etal. (2016)
Decreasing No 1961-2007 Liu and Wang, (2012)
Increasing Yes 1982-2014 “This study
YERHR Decreasing No 1957-2016 Chu et al. (2019)
Decreasing Yes 1960-2009 Mao et al. (2016)
Decreasing Yes 1961-2007 Liuand Wang, (2012)
Decreasing No 1982-2014 This study
| LARHR Decreasing Yes 1960-2012 Tang and Cao, (2021)
Decreasing No 1960-2009 Mao et al. (2016)
Decreasing No 1961-2007 Liuand Wang, (2012)
| Increasing No 1982-2014 “This study
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Type Classification criteria

abrupt type Ry <0.1x Ry Ry< 0.1 xRyand Ry <01 xRy
growing type When Ry > R or R >R sor R, > R s and at least one of (R 4, R R 3) has a magnitude greater than one-tenth of that of Ry but smaller
than Ry

continuous type When at least one of (R.y, R, R ) has a magnitude greater than that of R,
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Data type Data soure

the hourly temperature and
precipitation data

the Liaoning Meteorological Information Center

the nighttime light data Defense Meteorological Satellite Program/Operational Line-Scan
System (DMSP/OLS) obtained from the National Geographic Data

Center. (https://www.ngdc.noaa gov/cog/dmsp html)

the data on urban land area Liaoning Statistical Yearbook

GDP data the Resources and Environment Science and Data Center (hitp:/

www.resdc.cn)

the population density data the Population Grid_China released by the Institute of Geographical
Sciences and Natural Resources Research, Chinese Academy of

Sciences. (hitpy//www.geodata.cn)

Data description

7 national meteorological stations (1974-2020) and 237 regional
automatic stations (2005-2020)

from 1993 to 2013

from 1993 to 2013

1km resolution (2019)

1 km resolution (2010)
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bekistan

-087

Serbia

-093

Russian federatio

-0.69

Belarus

-1.01

No significant decrease

Romania

No significant decrease

Estonia

No significant decrease

Latvia

No significant decrease

Hungary

Croatia

-535

-2.03

-3.85

-5.71

-2.56

Significant decline (***)

Significant decline (**)

Significant decline (***)

Significant decline (***)

Significant decline (***)

Lithuania

-379

Crech Republic

-5.55

Slovak Republic

-630

Poland

-2.86

Slovenia

-5.05

Significant decline (***)

Significant decline (***)

Significant decline ()

Significant decline (***)

Significant decline (***)

Moldova

Greece

Ukraine

-141

-353

-418

Significant decline (*)

Significant decline ()

Significant decline (***)

Note: Z values less than ~1.28, ~1.96, ~2.32 correspond to a significant downward trend at the 90%, 95%, and 99% confidence levels, respectively. Countries not listed in the table are on an

upward trend or have not seen an inflection point.






OPS/images/fenvs-10-1046890/inline_56.gif





OPS/images/fenvs-10-1094169/fenvs-10-1094169-g012.gif





OPS/images/fenvs-11-1135030/fenvs-11-1135030-t001.jpg
Group Countries
Reached the peak(11) Estonia, Latvia, Hungary, Croatia, Romania, Lithuania, Czech Republic, Slovak Republic, Poland, Slovenia
Peak plateau period1 (the downward trend is not Uzbekistan, Serbia, Russian Federation, Belarus
significant) (4)
Peak plateau period2 (obvious recession) (3) Moldova, Greece, Ukraine
Not reached the peak (35) Kyrgyz, Nepal, Pakistan, Bosnia and Herzegovina, Armenia, Georgia, Albania, Singapore, Lao PDR, Cambodia,

Vietnam, Philippines, India, Bangladesh, Mongolia, Tajikistan, Turkey, Kazakhstan, Myanmar, Egypt, Azerbaijan,
Iran, Iraq, Thailand, Malaysia, Indonesia, Turkmenistan, China, Saudi Arabia, Oman, United Arab Emirates,
Bahrain, Brunei
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Model

CCSM4
COSMOS
HadCM3
IPSL-CM5A
MIROCAm
ModelE2-R
MRI-CGCM2.3
NorESM-L
KCM

Response
of EASM (m/s)

-0.12
0.30

-1.20
-0.22
-1.07
-0.43
-0.36
-031
056

Response of precipitation
(mm/day)

-0.05
0.77
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-0.24
-024
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Variable

SST (‘C)
SAT (K)

Greenland Ice Sheet
Accumulation (mm/yr)

Precipitation (mm/day)
Arctic sea ice (km?)

Antarctic sea ice (km?)

Annual mean for
plio

18.44
287.70
105.1

2.85
12782
10353

Response to
decreasing CO,

-233
-322
458

-021
3082
7592

Response to restricted
indo. Passages

0.08
0.16
-76

0.01
7
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Response to closed Panama
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032
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