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Editorial on the Research Topic

Crop pest control and pollination, volume II

In the fascinating realm of agricultural and ecological sciences, a diverse array of

organisms play critical roles in maintaining the balance of ecosystems and influencing

agricultural productivity. Crops, microbes, bioactive volatiles, nematodes, natural enemy

insects, and native pollinators are all key players that impact pests and diseases, biological

control, and pollination. Each of these organisms contributes to the intricate web of

interactions that shape our environment and influence food production. Exploring the

intricate relationships between microbial agents, bioactive volatiles, nematodes, insect-

mediated biological control, and pollinators offers a wealth of potential in pest and disease

management, promoting sustainable agriculture, and maintaining ecosystem health. In this

Research Topic we explore research that harnesses these natural interactions to create

more resilient and environmentally friendly approaches to meeting our agricultural and

ecological challenges.

Microbes such as bacteria and fungi hold immense potential in controlling pests and

diseases (da Silva Folli-Pereira et al., 2022). These strains produce natural substances that

can act as deterrents, toxins, or even attractants for harmful insects or pathogens. Harnessing

these microbial properties offers a sustainable and environmentally friendly alternative

to traditional chemical pesticides, reducing the dependence on synthetic compounds

and minimizing negative impacts on ecosystems. Rhodopseudomonas palustris belongs

to Photosynthetic bacteria, which can decompose various carbon and nitrogen sources,

promote plant growth in the rhizosphere of plants, and antagonize crop pathogens. Luo

et al. reported that the R. palustris strain PSB06 increased the pepper yield by 33.45%, soil

nitrogen concentration, and improved pepper rhizosphere bacterial α diversity. Wu et al.

reported that the control efficiency of R. palustris strain PSB-06 combined with reduced

amount of isoprothiolane, a fungicide against rice blast, was higher than the individual

efficiency of fungicide, which highlighted the synergistic potential of PSB-06 to control rice

blast, providing environmental protection and reducing the use of fungicides.

Bioactive volatiles, volatile organic compounds emitted by plants and microbes, also

play a significant role in mediating interactions between organisms. These compounds can

serve as chemical cues, attracting or repelling specific insects or other organisms (Das et al.,

2013). Bioactive volatiles offer a complex communication network that can be harnessed to

manipulate the behavior and distribution of pests or beneficial insects. The South American

tomato pinworm, Tuta absoluta, is one of the most devastating invasive pests of solanaceous

plants worldwide. T. absoluta is resistant to many chemical classes of insecticides, leaving
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producers with few chemical control options. Chen T. et al.

reported that they found two attractants and two repellents

for T. absoluta from plant released volatiles, which could be

useful to develop the trapping and monitoring technology. Guo

et al. reported that the microbe Penicillium digitatum was an

important driver of the interactions between the yellow peachmoth

Conogethes punctiferalis and apple by altering apple volatiles, and

these findings may form the basis for developing attractant baits

for field trapping the yellow peach moth in the future.

Nematodes, small roundworms that inhabit soil ecosystems,

represent another growing biological control option given that

some are parasitic to insect pests. These beneficial nematodes

can be used as biocontrol agents to control a variety of soil-

dwelling insects due to their superior ability to actively search

for hosts. By employing nematodes, we can enhance pest

control measures while reducing the need for potentially

chemical interventions. Root-feeding white grubs are one

of the most serious pests of honeysuckle trees (Lonicera

japonica) in China, Li et al. reported that entomopathogenic

nematodes could provide curative efficacy against white grubs

and significantly reduce honeysuckle plant death, which provides

a biological control method for underground pests of Chinese

medicinal materials.

Insect-mediated biological control is a strategy that leverages

the natural relationships between insects to combat pests.

Encouraging the presence and abundance of these natural

enemies plays a crucial role in reducing pest populations and

managing crop damage without relying on chemical interventions.

Understanding the factors that affect insect predator populations,

including temperature stress and habitats, is crucial for developing

conservation strategies and managing biological control services

effectively. Ren et al. reported that temperature not only influenced

the population growth parameters, but also the predation rates

of Orius strigicollis to the western flower thrips Frankliniella

occidentalis. These results indicated that temperature should be

taken into account when releasing O. Strigicolli to control F.

Occidentalis. It is known that diversifying crop species within fields

can create a more balanced ecosystem and enhance the biological

control of natural enemies to reduce the pest outbreaks. Cui et al.

reported that the habitat of natural enemies can be expanded for

their preferences to feed and oviposit on different plants to achieve

pest control in adjacent cropping systems.

Crop plants serve as both the host, non-host and habitat of

various insect pests. Improving crop resistance and modifying

the composition of the agricultural landscape are both effective

strategies to reduce the harm caused by pests. Chen L. et al.

reported that amending soils with a 30:1 ratio of bamboo

charcoal and coconut bran induced biosynthesis of flavonoids,

terpenoids, and phenolic acids in tomato plants, which improved

plant growth and tolerance against South American tomato

pinworm, thus reducing the survival of this destructive pests.

Modifying the landscape around crop fields can help disrupt the

breeding and survival of insect pests. Wen et al. reported that

compositional heterogeneity positively affected an invasive pest

Bactrocera dorsalis and its associator Drosophila melanogaster,

whereas configurational heterogeneity negative affected B. dorsalis.

The relative effects of landscape structures are consistent

across multiple scales. These results provide new insights into

landscape effects on interconnected species using a diverse spatial-

scale approach.

Pollinators, such as bees, butterflies, and hoverflies, are vital

for successful plant reproduction and food production for 87%

of the leading global food crop species (Klein et al., 2007).

Understanding the factors that affect pollinator populations,

including temperature stress, is crucial for developing conservation

strategies and managing pollination services effectively. Native

pollinators play a crucial role in pollination, especially in

ecosystems where they have co-evolved with native plant

species. The decline of native pollinators due to habitat loss,

pesticide use, and climate change poses significant challenges

to agriculture and biodiversity. Recognizing and promoting the

importance of pollinators is crucial to ensure the pollination

and reproduction of native plants, maintain biodiversity, and

sustain food production. Cortés-Rivas et al. reported that some

native bee species can greatly improve the fruit set and fruit

quality of the highbush blueberry cultivars in Chile. This research

indicates that conservation of native pollinators, would improve

blueberry fruit quality and is likely to improve overall crop

productivity. The population of Osmia excavata, an important

native pollinator in China, has been in serious decline over

recent years. Song et al. reported that O. excavata had a

low tolerance to high-temperature stress, and the larvae of O.

excavata were more sensitive to temperature stress than adults,

which provided evidence of causes that could be contributing

to the population decline of O. excavata. Hoverflies have unique

lifecycles that include a larval stage during which they consume

aphids and other small insects, benefiting crop health. Cao

et al. reported the morphological characteristics and life cycle

of the hoverfly Eristalinus arvorum, a pollinating agent for

crops and flowering plants widely distributed across Chinese

agricultural and natural ecosystems. Monitoring and sampling

of pollinators allow researchers and practitioners to assess the

diversity, abundance, and health of these important species in

agricultural landscapes. In oilseed rape fields in China, Shi

et al. reported flight interception traps had a greater sampling

efficiency than pan traps shedding light on strategies for efficiently

monitoring agroecosystems.

Based on these findings in this Research Topic, harnessing

the interactions between crops, microbes, beneficial nematodes,

natural insect enemies and pollinators in agricultural systems,

holds immense potential for agricultural ecosystem service,

such as crop production, pest control and crop pollination.

Encouraging the presence and manipulating abundance of

these beneficial organisms, such as beneficial nematodes,

microbes, natural enemies plays a vital role in reducing pest

populations and crop damage without relying on chemical

interventions. Additionally, methods like enhancing crop

resistance and modifying habitats offer effective means to control

insect pests. The utilization of bioactive volatiles provides

a sophisticated communication network for manipulating

the behavior and distribution of pests and beneficial insects.

Furthermore, understanding the factors impacting natural enemy

and pollinator populations, is essential for developing effective

conservation and utilization strategies. By harnessing these
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natural interactions, sustainable agricultural systems can be

created, promoting ecological balance and reducing reliance on

chemical interventions.
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Combining the microbial agent
Rhodopseudomonas palustris

strain PSB-06 with fungicides for
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Xiyang Wu1,2, Yue Chen1,2*, Chunyan Chen2, Qiang Huang2,

Yingfei Qin1,2, Xin Zhang2, Chenggang Li2, Xinqiu Tan1,2,

Yong Liu1,2* and Deyong Zhang1,2*

1LongPing Branch, College of Biology, Hunan University, Changsha, China, 2Institute of Plant

Protection, Hunan Academy of Agricultural Sciences, Changsha, China

The rice blast disease caused by Magnaporthe oryzae threatens global rice

production yields. Tricyclazole and isoprothiolane are widely used fungicides

with high activity against rice blast, and our previous study indicated the

photosynthetic bacterium Rhodopseudomonas palustris PSB-06 significantly

antagonizes rice blast. However the e�ect of combining these two chemical

fungicides with PSB-06 on rice blast control is unclear. Here we test the control

e�ect of photosynthetic bacteria PSB-06 combined with isoprothiolane and

tricyclazole on rice blast. The growth of PSB-06 was una�ected by up to 1.25

mg/L of tricyclazole and 0.3 mg/L of isoprothiolane in the photosynthetic

medium, indicated the two fungicides have no inhibition on PSB-06. The

control e�ciency in the field test reached 76.06% when PSB-06 was combined

with isoprothiolane. This value was significantly higher than the individual

e�ciency of PSB-06 (67.99%) and tricyclazole (65.46%) and the combined

control e�ciency (72.20%) of those two antifungal agents. Our current

findings highlighted the potential of combining R. palustris strain PSB-06 with

isoprothiolane to control rice blast, providing environmental protection and

reducing the use of fungicides.

KEYWORDS

Magnaporthe oryzae, Rhodopseudomonas palustris, tricyclazole, isoprothiolane,

combined application

Introduction

Rice blast is an important fungal disease causing significant annual losses to global

rice production. It is caused by the filamentous fungus Magnaporthe oryzae (Talbot,

2003). In disease-endemic areas, the yield is generally reduced by 10–20%. Yield

reduction reaches 40–50% in severe cases, and grains are not harvested in particularly

heavy fields (Dean et al., 2012). Currently, the control of rice blast is mainly based on

breeding and utilizing disease-resistant varieties along with supplementation by chemical
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fungicides. This results in the selection of disease-resistant types

and drugs losing their effectiveness. Therefore, developing a

new safe, efficient, economical, and convenient way of rice blast

prevention and control is of great significance for ensuring

food security.

A biological control refers to using living organisms or

some metabolically active substances to prevent and control

plant diseases, pests, and weeds (Kenneth, 1987). The current

biological fungicides are primarily based onmicrobial fungicides

(Fravel, 2005). A microbial fungicide is artificially modified

or synthesized using microorganisms or their metabolites or

their metabolites as precursors. These biocontrol factors include

antagonistic microorganisms, antibiotics, and plant immunity

inducers (Qiu et al., 2017). In recent years, the use of

microbial fungicides to control rice blast has received increasing

attention and has become a research hotspot in rice blast

control. Trichoderma is a biocontrol fungus with abundant soil

resources. It antagonizes various plant pathogens (Woo and

Lorito, 2006). Trichoderma secretes extracellular enzymes, such

as chitinase, cellulase, glucanase, protease, etc., while competing

with pathogenic bacteria. These enzymes help dissolve the cell

wall of pathogenic fungi, degrade cellulose and glucan in the

environment, and acquire more nutrients while inhibiting the

growth of pathogenic fungi (Vinalea et al., 2008). A series of

studies have shown that Trichoderma is very good at inhibiting

rice blast with tremendous control (Prabhakaran et al., 2015;

Aravindan et al., 2016). In addition, biocontrol proteins like

antimicrobial proteins, disease course-related proteins, and

trigger proteinswere identified, produced, and applied (Chen

M. J. et al., 2014) For example, the distinct antifungal proteins

(AFPs) encoded by filamentous fungi exhibited antifungal

activity against most fungi tested.

Photosynthetic bacteria are prokaryotic organisms that

utilize light as their energy source. They use organic matter,

sulfide, ammonia, etc., as hydrogen and carbon sources to

perform photosynthesis under anaerobic conditions (Pirson,

1960; Olson, 2010). Photosynthetic bacteria are Gram-

negative and belong to the bacterial phylum Eubacteria, order

Rhodospirillales. It includes four families, 19 genera, and

about 50 species (Olson, 2010). Photosynthetic bacteria are

used in many fields due to their wide distribution, green

environmental protection, simple production conditions, low

cost, significant economic benefits, and convenient use (Idi,

2015). Our previous research identified the controlling effect

exerted by the photosynthetic bacterium Rhodopseudomonas

palustris strain PSB-06 on M. oryzae. Moreover, the secreted

protein GroEL was significantly antagonistic and pathogenic to

M. oryzae (Wu et al., 2021).

Currently, chemical control, biological control, and breeding

of disease-resistant varieties are the main methods for

controlling rice blast, along with cultivation management and

other technical means (Jia, 2013). Chemical fungicides are

the mainstream choice for rice blast control. Tricyclazole

and Isoprothiolane exhibit excellent management of rice blast

(Uchida and Fukada, 1983; Shiba andNagata, 2009). Tricyclazole

inhibits the formation of melanin in the rice blast pathogen,

thereby inhibiting the germination of conidia and the formation

of appressorium of the rice blast pathogen. Subsequently, the

invasion of the pathogen is prevented, and the plant is protected.

Isoprothiolane acts similarly to organophosphorus fungicides to

a certain extent. Its primarymechanism of action is to inhibit the

transmethylation of phospholipid choline before synthesis.

Here, the controlling potential of strain PSB-06 was

evaluated againstM. oryzae infection. Further, the combined use

of PSB-06 and isopropanethiole or tricyclazole was tested against

M. oryzae in greenhouse and field trials. The biological agents

exerted their antibacterial activity to a greater extent under the

action of pesticides. They competed for nutrients required for

fungal growth and reduced the use of pesticides to achieve a

pollution-free environment to the greatest extent.

Materials and methods

Bacterial strains and culture media

Photosynthetic bacterial PSB-06 and M. oryzae strain

Guy11 were provided by the Institute of Plant Protection,

Hunan Academy of Agricultural Sciences. PSB-06 was grown

in the photosynthetic medium (PM) at 30◦C under 6500 lx

illumination. The M. oryzae Guy11 strain was cultured on

complete medium (CM) agar plates for 3-7 days at 28◦C (Talbot

et al., 1993). Guy11 was inoculated onto SDC medium plates

for conidiation. The concentration was adjusted to 5 × 104

spores/mL before use.

Sensitivity test of M. oryzae to
isoprothiolane and tricyclazole

The growth rate assay method was used to identify the

sensitivity ofM. oryzae to isoprothiolane and tricyclazole. Fungi

blocks of 4mm diameter were cut and inoculated into the

medium plates with five concentration gradients of 1, 2, 3, 4,

and 5 mg/L. The plates were cultivated in the dark at 28◦C for

seven days to measure the diameter and calculate the relative

inhibition rate.

The calculation formula was:

Inhibition rate = (colony diameter of the control group -

colony diameter of the treatment group) /colony diameter of the

control group× 100%.
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Sensitivity test of appressorium formation
to isoprothiolane and tricyclazole

For conidiation, 10-day-old conidia were collected with

5ml of distilled water, filtered through three layers of

lens paper and counted with a haemacytometer under a

microscope. Conidial germination and appressorium formation

were measured on a hydrophobic surface, 30 µL conidia

containing 1, 2, 3, 4, and 5 mg/L fungicide, 5‰ (v/v)

methanol as control. Appressorium formation rate was counted

at 12 h post-inoculation (hpi) under the microscope, more than

200 appressoria were counted for each strain, Photographs

were taken at 24 hpi. The experiments were repeated

three times.

E�ect of isoprothiolane or tricyclazole on
PSB-06

After culturing PSB-06 for 5 days, 1mL of the culture

was added to a 120-mL serum bottle containing 100mL

of the photosynthetic medium. Cultures were diluted to

2 × 109 CFU /mL before use (Zhang et al., 2020). To

the flasks, isoprothiolane was added to final concentrations

of 1, 0.5, and 0.3 mg/L; tricyclazole was added to final

concentrations of 2.5, 1.25, and 0.8 mg/L. The mixed cultures

were incubated under anaerobic conditions at 30◦C and

6,500 lx illumination. After 2, 4, and 6 days, the absorbance

of the cultures in the flasks of each treatment group was

measured at 600 nm using a microplate spectrophotometer

(BioTek Instruments, VT, USA). At 6 days post-infection (6 dpi)

(the first day after inoculation), The contents were dispersed

on a solid medium plate of photosynthetic bacteria, and the

colonies were counted after seven days. The growth of the

photosynthetic bacteria under different treatment conditions

was determined by the optical density of the culture. The

number of colonies was counted to represent the number of

viable bacteria. Experiments were independently repeated at

least thrice.

Greenhouse experiments

The plant infection test was performed on 4-leaf-sized

susceptible rice seedlings from O. sativa cultivar CO39 using

5mL of the conidial suspension. The experimental treatment

was divided into six groups: Group 1: Ck; Group 2: 2 × 106

CFU/mL of PSB-06; Group 3: isoprothiolane to achieve a final

concentration of 0.3 mg/L; Group 4: tricyclazole to reach a

final concentration of 0.8 mg/L; Group 5: 2 × 106 CFU/mL

of PSB-06 + isoprothiolane to achieve a final concentration of

0.3 mg/L; Group 6: 2 × 106 CFU/mL of PSB-06 + tricyclazole

to reach a final concentration of 0.8 mg/L. The inoculated

rice was incubated at 28◦C and 90% humidity, cultivated in

the dark for 24 h and then transferred back to another moist

chamber with a photoperiod of 12 h under fluorescent lights.

The disease severity was evaluated at 7 days after inoculation

(Chen Y. et al., 2014). Approximately 6 cm long diseased

rice blades were photographed to evaluate the virulence of

different group.

Field experiments

The field experiment (2021) was conducted in Chunhua

(Hunan Province, China). The Nongxiang 42 cultivar

rice variety was selected as the control target during the

investigation. The soil was cultivated and fertilized according

to appropriate agronomic guidelines. The trials included

7 treatment regimens, each with 4 replicates. Each area

was 50 square meters. Using the random square method,

the following processing method was used: Treatment

1: Control (water); Treatment 2: 2 × 106 CFU/mL of

PSB-06; Treatment 3: 6 × 106 CFU/mL of PSB-06;

Treatment 4: 1 mg/L of isoprothiolane; Treatment 5: 2.5

mg/L of tricyclazole; Treatment 6: 6 × 106 CFU/mL of

PSB-06 + 0.8 mg/L of isoprothiolane; Treatment 7: 6 ×

106 CFU/mL of PSB-06 + 2 mg/L of tricyclazole. The

treatment was administered using a hand-held sprayer.

According to local weather conditions, the fungicide were

sprayed three times in a row, every 15 days apart. No other

fungicides were applied for controlling rice blast in the

experimental field. Experiments were independently repeated at

least thrice.

After 15 days of the last spray, 50 rice plants were randomly

selected from each experimental area for individual testing.

Disease severity and control efficacy were calculated as follows:

Disease severity (%) = [R (number of diseased plants with

this index× disease index) /(total number of plants investigated

× highest disease index)]× 100.

Control efficacy (%) = [(disease severity of control - disease

severity of treated group) /disease severity of control]× 100.

Statistical analysis

Statistical data analysis was carried out using the SPSS

software (version 17.0, SPSS, Inc., Chicago, IL, USA).

One-way analysis of variance (ANOVA) was used to

analyze the biocontrol effects. Student’s t-test was used to

determine any significance between means. p < 0.01 indicated

statistical significance.
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FIGURE 1

Sensitivity test of M. oryzae to isoprothiolane and tricyclazole. (A,B) The growth inhibition rate is estimated relative to the growth rate of each

untreated control. [Inhibition rate = (the diameter of untreated strain – the diameter of treated strain)/(the diameter of untreated strain × 100%)].

Values in columns followed by the same superscript letters indicate no significant di�erence according to the multiple Duncan test (P < 0.01).

Three repeats were performed and similar results obtained.

Results

Sensitivity test of M. oryzae to
isoprothiolane and tricyclazole

The effect of different concentrations of isoprothiolane or

tricyclazole was further evaluated on the growth of M. oryzae.

Our results showed that the growth inhibition rate of tricyclazole

and isoprothiolane onMagnaporthe oryzae exceeded 50% at the

concentration of 3 mg/L (Figure 1A)and 4 mg/L (Figure 1B),

respectively, the two fungicides have the same and significant

inhibitory effect on the growth of rice blast.

Sensitivity test of appressorium formation
to isoprothiolane and tricyclazole

Conidia, play an important role during M. oryzae

infection, we test the sensitivity of appressorium formation to

isoprothiolane and tricyclazole. Under fungicide treatment,

the biological morphology of conidia did not not changed

(Figure 2A). Then we counted the rate of appressorium

formation. Compared with the control group (98%), the

rate of appressorium formation was 38 and 59% after

treatment with tricyclazole and isoprothiolane at the

concentration of 1 mg/l, and the inhibition rate of two

fungicides on appressorium formation was the same at the

concentration of 5 mg/l (Figures 2B,C). The experimental

results showed that the two fungicides had significant inhibition

on appressorium formation.

FIGURE 2

Fungicide inhibits appressorium formation. (A) Morphological

observations of conidia. (B,C) Biostatistics of appressorium

formation, formation rate = normally formed appressorium /

total appressorium × 100% (p < 0.01). CK: 5‰ (v/v) methanol.

E�ect of isoprothiolane or tricyclazole on
strain PSB-06

The photosynthetic bacteria were co-cultured with different

concentrations of the two fungicides. The growth of the PSB-

06 was not inhibited at isoprothiolane concentrations lower

than 0.3 mg/L (Table 1) and tricyclazole concentrations lower

than 1.25 mg/L (Table 2). The optical densities (OD600) were

0.749, 1.319, 0.801, and 0.809 at 6 dpi, respectively. Further, the

number of CFU of PSB-06 detected on the plate was similar

to the optical density result. With increasing concentrations,
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TABLE 1 E�ect of Tricyclazole on the growth of PSB-06.

Tricyclazole (mg/L) Absorbance OD (600 nm) Viable number (× 106 CFU/ml)

2 dpi 4 dpi 6 dpi

0 0.447± 0.019c 0.622± 0.018b 0.749± 0.015c 121± 17c

0.8 0.501± 0.012b 1.22± 0.01a 1.319± 0.013a 186± 15a

1.25 0.513± 0.009a 0.626± 0.017b 0.809± 0.016b 152± 13b

2.5 0.18± 0.012d 0.228± 0.011c 0.231± 0.013d 62± 12d

Each value is the mean (± SE) of at least three replications.

Values in columns followed by the same superscript letters indicate no significant difference according to the multiple Duncan test (P < 0.05).

TABLE 2 E�ect of Isoprothiolane on the growth of PSB-06.

Isoprothiolane (mg/L) Absorbance OD (600 nm) Viable number (× 106 CFU/ml)

2 dpi 4 dpi 6 dpi

0 0.448± 0.011a 0.623± 0.012b 0.748± 0.009b 133± 13a

0.3 0.457± 0.008b 0.765± 0.011a 0.801± 0.007a 139± 14a

0.5 0.315± 0.011c 0.527± 0.013c 0.578± 0.012c 108± 12b

1 0.295± 0.014d 0.425± 0.015d 0.475± 0.016d 95± 15c

Each value is the mean (± SE) of at least three replications.

Values in columns followed by the same superscript letters indicate no significant difference according to the multiple Duncan test (P < 0.05).

both fungicides significantly inhibited the growth of PSB-06.

At the working concentration of tricyclazole (2.5 mg/L) and

isoprothiolane (1 mg/L), the optical densities of the PSB-06 were

0.231 and 0.475 at 6 dpi, respectively.

Plant infection assays

It was interesting to understand the effect of combining

PSB-06 with the two fungicides and check the antagonism

against rice blast. Hence, different concentrations of the

suspensions (PSB-06 and fungicides) were sprayed on 2-week-

old rice seedlings. After seven days post-infection, the spores

produced tiny and restricted lesions on the rice leaves in the

different treatment groups compared with the control group

(Figure 3A). Statistical analysis showed that the lesion density (5

cm2) was only 11 after the combined treatment of isoprothiolane

with PSB-06. Moreover, the controlling effect was higher than in

other treatment groups (Figure 3B). Thus, the fungicide mixed

with PSB-06 exerted better control.

Field experiments

The field test results were consistent with the greenhouse

test; each treatment significantly reduced disease occurrence

(Table 3). The preventive effect of combining PSB-06 and

isoprothiolane or PSB-06 and tricyclazole was higher than that

of the individual treatment. The treatment group 5 (2 × 106

CFU/mL of PSB-06 + 0.8 mg/L isoprothiolane) was the most

efficient and reduced by 76.06%. The effect of group 6 (2 × 106

CFU/mL of PSB-06 + 2.5 mg/L tricyclazole) was 72.02%, The

least efficient preparation was 2× 106 CFU/ml PSB-06, resulting

in a control efficacy of 47.28%, The effect of high concentration

treatment is higher than that of low concentration when applied

separately. The controlling effect of the group with a higher

concentration (6 × 106 CFU/mL) of PSB-06 was 67.99%, and

that of the individual fungicides isoprothiolane and tricyclazole

was 70.07 and 65.46%, respectively. These results indicate that

bactericide and PSB-06 have synergistic bacteriostatic effect, and

the synergistic effect of the two fungicides and PSB-06 could

control rice blast more effectively.

Discussion

Rice blast causes great harm to agricultural production, and

fungicides are the first line of treatment for controlling rice blast.

However, fungicides cannot be degraded in time. For example, 4

to 11 distinct fungicidal compounds were detected in 81 samples

from vineyards sprayed with fungicides. The ecotoxicological

potential of some mixtures in the water stream exceeded the

threshold set by the unified principle (Bundschuhab et al.,

2016). In Japan, large amounts of pentachloronitrobenzene

(PCNB) andmajor biodegradation products, pentachloroaniline

(PCA) and pentachlorothioanisole (PCTA), were detected in

agricultural areas (Fushiwaki et al., 1990). Fungicides are
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FIGURE 3

Pathogenicity assay under di�erent treatments. (A) Leaf spraying assay, four milliliters of conidia suspension (5 × 104 spores/ml) of each strain

were sprayed on two-week old rice seedlings. Diseased leaves were photographed at 7 day after inoculation. (B) Lesion density was performed

by counting lesion numbers of unit area.

TABLE 3 E�ect of combinations of PSB-06 and Isoprothiolane or Tricyclazole on controlling rice blast in the field plots.

Treatment Disease severity (%) Control efficacy (I) (%)

Control (water) 47.08± 11.02A –

2× 106 CFU/ml PSB-06 24.82± 13.03B 47.28± 10.67AB

6× 106 CFU/ml PSB-06 15.07± 12.48B 67.99± 12.07A

Isoprothiolane 1mg /ml 14.09± 8.11B 70.07± 10.11A

tricyclazole 2.5 mg/ml 16.26± 10.22B 65.46± 13.33A

2× 106 CFU/ml PSB-06+ 80% isoprothiolane 1 mg/ml 11.27± 8.28B 76.06± 15.44A

2× 106 CFU/ml PSB-06+ 80% tricyclazole 2.5 mg/ml 13.39± 10.15B 72.20± 10.28A

Each value is the mean (± SE) of at least three replications.

Values in columns followed by the same superscript letters indicate no significant difference according to the multiple Duncan test (P < 0.01).

generally toxic and pose a threat to human health. Fungicidal

residues in the environment can contaminate water, soil, and

food. Hence, it is essential to choose green control methods.

Biological control is convenient for local production

and local application. Biological control measures have a

wide range of applications and broad development prospects

compared with chemical control. These measures protect and

improve farmland ecological environment, do not pollute

the environment, reduce the remaining amount of residual

poison, and are safe for humans and animals. Moreover,

they benefit by delaying the occurrence and development

of fungal drug resistance. They also have a continuous

and lasting inhibitory effect on some fungi when used

constantly. Numerous examples demonstrate the advantages of

combining biological and chemical control methods to achieve

more effective sterilization and less environmental pollution

in the recent upsurge of integrated disease management.

Combining azoxystrobin with Bacillus subtilis under controlled

conditions showed better results against P. xanthii than

azoxystrobin alone (Gilardi et al., 2008). Two botanical

fungicides, Wanis 20 EC and Damet 50 EC, combined

with Pseudomonas fluorescens 1, reduced the wilt incidence

significantly under greenhouse (64%) and field conditions (75%)

(Akila et al., 2011). In addition, combined use accelerates the

degradation of fungicides. Photosynthetic bacteria significantly

degrade organophosphorus fungicides and chemical fungicides

containing ester bonds.

In this study, the effects of two fungicides were analyzed on

strain PSB-06. Tricyclazole (1.25 mg/L) or isoprothiolane (0.3

mg/L) did not inhibit the growth of strain PSB-06 (Tables 1,

2). Zhang et al. found that photosynthetic bacteria effectively

degraded the organophosphorus fungicide methamidophos.

The degradation rate of the non-organophosphorus fungicide

fenpromethrin reached 67.43% (Zhang et al., 2009a,b, 2014; Kim
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et al., 2011). Therefore, photosynthetic bacteria were selected as

the biological control agent.

As shown as our results, tricyclazole and isoprothiolane

have significant inhibitory effect on the growth of Magnaporthe

oryzae at the concentration of 3 mg/L and 4 mg/L, meanwhile,

the concentration of the two fungicides was 5 mg/L, the rate

of appressorium germination was only 7%, since conidia play

an important role during M. oryzae Infection. Hence, they

were found suitable for controlling rice blast. However, the

present study demonstrated a reduced effect of fungicides in

controlling rice blast when used individually. Combining the

fungicides with the biocontrol bacterium PSB-06 caused a

more significant inhibition of rice blast. The greenhouse and

the field experiment results demonstrated a higher control

on the rice blast when strain PSB-06 was combined with

isoprothiolane compared to their individual treatments. The

controlling effect of PSB-06 (6.7× 106 CFU/mL) on rice blast

in the field was 67.99 ±12.07%. This value was lower than that

of isoprothiolane (1 mg/mL) (70.07%) and higher than that of

tricyclazole (2.5 mg/mL) (65.46%). Co-spraying PSB-06 with

a low concentration of isoprothiolane (1 mg/mL) significantly

improved the controlling efficiency of rice blast. Thus, to achieve

the best biological control, temporary mixing is recommended

before spraying. The critical factor for biological control is the

efficiency and sustainability by which the agents subsequently

inhibit or kill the pathogens; they act on their own or the plant

(Kim et al., 2011; Vrieze et al., 2018). The ability to colonize

vegetation is key to functioning. PSB-06 grows in a photogenic

mode by collecting light energy and separating carbon from

carbon dioxide. So, it can adapt to the complex natural field

environment with its advantages (Liu et al., 2016).

Our previous study identified a significant increment in the

contents of SOD, POD, and chitin after rice was treated with

the photosynthetic bacterium. They played an essential role in

plant stress resistance (Wu et al., 2021). Su et al. also found that

photosynthetic bacteria colonized the leaf periphery of tobacco,

producing two plant hormones, 3-indoleacetic acid (3-IAA) and

5-aminolevulinic acid (5-ALA), which promoted plant growth

and development (Su et al., 2015, 2017). The controlling

efficiency of the current experiment was remarkable. The

combination of the antibacterial mechanism of the fungicide

and PSB-06 strain improved the controlling effect of rice

blast disease.

Combining chemical and biological control is promising.

Biological agents exert their antibacterial activity to a greater

extent under the action of fungicides. The photosynthetic

bacterium PSB-06 was more effective when combined with two

fungicides and had better application. It effectively controlled

rice blast and reduced the application amount of chemical

pesticides to achieve the harmony of green chemistry, high

efficiency, and environmental protection.
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Morphological characteristics
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(Fabricius, 1787) (Diptera,
Syrphidae)

Liang Cao1†, Qing Zeng2†, Qiuxia Ren1, Aiping Zeng1 and

Yongsheng Zhang1*

1College of Plant Protection, Hunan Agricultural University, Changsha, China, 2Hunan Agricultural

Biotechnology Research Institute, Changsha, China

The hoverfly Eristalinus arvorum (Fabricius, 1787) (Diptera: Syrphidae), which

belongs to the tribe Eristalini, is well known as a pollinating agent for crops and

flowering plants in agricultural and natural ecosystems. Large quantity, wide

distribution and their ecological function of the hoverfly E. arvorummake them

an appropriate candidate for use as pollinators and environmental indicator

species. However, little information has been known on the morphology

and the biological cycle of the hoverfly. In this study, feeding experiments

under artificial climate chamber andmorphological qualitative and quantitative

observations were carried out to study the morphology and the biological

cycle of the hoverfly E. arvorum. The morphology of eggs, larvae, pupae, and

adults of E. arvorum were described in detail for the first time. A complete

generation of E. arvorum lasts about 30.12 ± 0.14 days, and there is no

significant di�erence in body length between males (10.27 ± 0.29mm) and

females (11.16 ± 0.45mm). The most noteworthy morphological features of

E. arvorum are the stripes on the compound eyes, the mesonotum, and the

abdomen of adults, the chorionic structure consisting of fusiform units on the

egg’s surface, and the anterior spiracles and pupal spiracles of the pupae. Thus,

the detailed description based on morphology and life history will provide the

basis for the identification, biodiversity conservation and artificial breeding of

the hoverfly E. arvorum.

KEYWORDS

pollinating insect, Eristalinus arvorum, hoverfly, morphology, electron micrograph

Introduction

Hoverflies belong to the family Syrphidae (Insecta: Diptera) and are one of the

most diverse groups in Diptera. At present, there are more than 9,600 known species of

hoverflies in the world (Montoya et al., 2012; Zhou et al., 2021), with China being home

to 800 of those species from 200 different genera, accounting for one-tenth of the world’s

species. The life habits of hoverfly larvae are complex and can be divided into predatory,

phytophagous, and saprophagous hoverflies based on their feeding habits (Heiss, 1938;

Reemer, 2013). The larvae of predatory hoverflies are important natural enemies and
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can prey on aphids, scale insects, and plant hoppers (Sarthou

et al., 2005; Rijn et al., 2013). The larvae of saprophagous

hoverflies are the decomposers of ecosystems, feeding on

decaying animals and plants, animal feces, and other organic

material (Hodson, 1932; Ricarte et al., 2011; Mielczarek et al.,

2016; Campoy et al., 2020a). Some of the larvae of phytophagous

hoverflies are pests and feed on the roots, stems, and leaves

of plants (Creager and Spruijt, 1935; Ricarte et al., 2008, 2017;

Nunes-Silva et al., 2010; Dumbardon-Martial, 2016).

Most adult hoverflies visit flowers, feeding on pollen

and nectar to supplement nutrition and complete sexual

development (Grković et al., 2015; Djellab et al., 2019), they

are well-known pollinators of crops, ornamentals, and wild

angiosperms (Klecka et al., 2018). Hoverflies are second only to

bees as pollinators and even better than bees for some plants

(Gladis, 1996). Sánchez et al. (2022) found that pollination by

hoverflies could improve the yield and fruit quality of mango

under protected cultivation (Sánchez et al., 2022). Ollerton et al.

(2012) found that hoverflies play a greater role in pollination

than western honeybees. For some plants, hoverflies are the only

pollinators; for example, only two species of hoverflies have been

found to pollinate the Paphiopedidae (Bänziger, 2002).

Not only do the adults of saprophagous hoverflies visit a

variety of flowers, but their larvae can also serve as pollution

indicators (Burgio and Sommaggio, 2007). The larvae appear in

places with a lot of bacteria in the water and can remove decaying

organic material that pollutes the environment (Sommaggio

and Burgio, 2014; Moquet et al., 2018; Dunn et al., 2020).

Saprophagous hoverflies prey on ∼45% of all known aphids

FIGURE 1

Life history of Eristalinus arvorum.

in China. Eristalinus arvorum belongs to Eristalinus Rondani

1945, the subfamily Eristalinae, and is one of the dominant

species of hoverflies in southern China. The adults of this

species visit a wide range of flowers (Layek et al., 2022) and are

commonly found on flowers of vegetable and cash crops such

as Brassicaceae, Asteraceae, Labiatae, Rosaceae, Umbelliferae,

Leguminosae, and Liliaceae (Van de Weyer and Dils, 1999;

Dousti and Hayat, 2006; Almohamad et al., 2009). However,

limited research has been conducted on E. arvorum. The main

objective of this research was to study the morphological

characteristics and the biological cycle of E. arvorum to

improve the artificial rearing and crop pollination applications

of this species.

Materials and methods

Sample collection

Adults of E. arvorum were collected in the field and kept in

a bug dorm (30 cm × 30 cm × 30 cm) with tea pollen and 20%

honey water for feeding and soaked grains for laying eggs. Each

egg was placed separately in a Petri dish with artificial diets for

hatching. When the larvae reached their third instar, they were

put into a container with a layer of sawdust for pupation. Pupae

were isolated in individual Petri dishes and inspected daily until

the emergence of adults. Rearing of E. arvorum was performed

in a growth chamber at 25 ± 1◦C, 70 ± 5% RH, and a constant

photoregime of 12L:12D. A total of 120 eggs were selected and
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raised well into adulthood, and their life histories were observed

and recorded daily.

Third-instar larvae were selected as samples for

preservation. For permanent preservation, larvae were

immersed in cold water to extend them and then heated slowly

for about 4min to kill them. After this, they were preserved in

70% alcohol (Pérez-Bañón et al., 2013; Campoy et al., 2020b).

Descriptions were based on preserved specimens, with larval

characters checked against living specimens to minimize errors

due to preservation (Pérez-Bañón et al., 2013).

Morphological image

Samples of the hoverfly E. arvorum from eggs, the

first-instar, second-instar, and third-instar larvae, pupae,

and adults were collected during the rearing process and

then killed cryogenically. The samples were fixed on the

sample stage with the double-sided conductive tape of the

scanning electron microscope (SEM) and then sputtered with

a thin layer of gold (Pérez-Bañón et al., 2013; Campoy et al.,

2020b). Once the samples were prepared for observation,

they were transferred to the SEM. Secondary electron

images were observed and recorded by an SEM-6380LV

scanning electron microscope. Eggs, pupal spiracles, and

anterior spiracles with a low water content were studied

by SEM and others using a stereomicroscope with an

imaging system.

Statistical analysis

Twenty samples of male and female adults were measured

using the microscopic image measurement software Digimizer

3.2. SPSS 19.0 software was used for conducting the

statistical analysis, and the independent samples t-test was

used to analyze the difference in the bodies of male and

female adults.

Results

Biological habits

The individual development of E. arvorum goes through

four stages: eggs, larvae, pupae, and adults, and the larval

stage goes through three instars. E. arvorum can be reared in

captivity, and a complete generation lasts about 30.12 ± 0.14

days (Figure 1). The life history varies with temperature. At a

temperature of 25◦C, the egg stage lasts about 3.24 ± 0.05 days,

and the larval stage lasts about 11.38 ± 0.33 days. It takes about

3.53 ± 0.16 days from the first-st to the second-instar larvae,

about 4.12 ± 0.02 days from the second- to the third-instar

TABLE 1 The adult morphological data of Eristalinus arvorum.

Structure

measurement

Female Male

Prosoma width (mm) 4.10 ± 0.11 4.10 ± 0.10

length (mm) 2.42 ± 0.13 2.40 ± 0.12

Antenna scape (mm) 0.15 ± 0.01** 0.12 ± 0.01

pedicel (mm) 0.21 ± 0.01 0.22 ± 0.01

length of flagellum (mm) 0.51 ± 0.04 0.52 ± 0.03

width of flagellum (mm) 0.34 ± 0.03 0.35 ± 0.03

length of arista (mm) 1.50 ± 0.14 1.55 ± 0.14

full length (mm) 0.87 ± 0.07* 0.89 ± 0.05

Mesonotum width (mm) 3.80 ± 0.13 3.80 ± 0.08

length (mm) 3.37 ± 0.09 3.20 ± 0.09

Scutellum width (mm) 2.24 ± 0.07 2.40 ± 0.05

length (mm) 1.12 ± 0.03 1.15 ± 0.02

Membranous wing length (mm) 8.32 ± 0.09 8.16 ± 0.07

Wingspan length (mm) 20.63 ± 0.39 18.84 ± 1.15

Halter length (mm) 1.01 ± 0.05* 0.97 ± 0.02

Foreleg coxa (mm) 0.71 ± 0.03 0.70 ± 0.02

trochanter (mm) 0.48 ± 0.02 0.51 ± 0.09

femur (mm) 2.33 ± 0.11* 2.06 ± 0.06

tibia (mm) 2.14 ± 0.10 2.31 ± 0.47

tarsus (mm) 1.33 ± 0.07 1.13 ± 0.05

full length (mm) 7.03 ± 0.33* 6.16 ± 0.16

Midleg coxa (mm) 0.40 ± 0.02 0.34 ± 0.02

trochanter (mm) 0.46 ± 0.02 0.42 ± 0.02

femur (mm) 2.48 ± 0.07* 2.38 ± 0.03

tibia (mm) 2.35 ± 0.07* 2.25 ± 0.02

tarsus (mm) 1.84 ± 0.08 1.81 ± 0.07

full length (mm) 7.12 ± 0.21 7.10 ± 0.12

Hindleg coxa (mm) 0.51 ± 0.02 0.43 ± 0.02

trochanter (mm) 0.56 ± 0.02 0.52 ± 0.02

femur (mm) 3.49 ± 0.05 3.27 ± 0.05

tibia (mm) 2.78 ± 0.04 2.68 ± 0.07

tarsus (mm) 3.12 ± 0.05 2.83 ± 0.05

full length (mm) 10.39 ± 0.13* 9.72 ± 0.16

Thorax length (mm) 4.04 ± 0.33 4.12 ± 0.19

Abdomen length (mm) 6.00 ± 0.17 5.29 ± 0.10

Body length (mm) 11.16 ± 0.45 10.27 ± 0.29

width (mm) 4.18 ± 0.07 4.14 ± 0.05

20 male and 20 female adults were measured. Values are given as mean± SE. *Significant

difference between female and male by the t-test (P < 0.05); **Significant difference

between female and male by the t-test (P < 0.01).

larva, and about 4.28 ± 0.03 days from the third-instar larva

to pupal stage. The pupal stage lasts about 7.24 ± 0.13 days.

Adult development to sexual maturity takes about 9.38 ± 0.02

days. Larvae can feed on rotten grains, and pupae can pupate

on sawdust. Adults feed on nectars and pollens to complete

their development and reproduction, enjoy the sun, and live
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FIGURE 2

Egg of Eristalinus arvorum: (A) front view of the egg, (B) the thinner end of the egg, (C) egg reticulation, (D) egg reticulation, (E) egg top view, (F)

egg hole.

for about 1 to 2 months. The female adult lays 100–150 eggs

at a time.

Adult body data

The adult body of E. arvorum is divided into three parts: the

prosoma, the mesosoma, and the abdomen. The prosoma bears

a pair of antennae, which are divided into the scape, the pedicel,

and the flagellum from base to end. The scape in females is

significantly longer than that inmales (Table 1, P< 0.01), but the

overall length of the antenna is shorter in females than in males

(Table 1, P < 0.05). The mesosoma bears two pairs of wings

and three pairs of legs. The foreleg and hindleg are significantly

longer in females than in males (Table 1, P < 0.05). The body

length of females is slightly longer than that of males, although

there is no significant difference (Table 1).

Description of the morphological
characteristics

Egg

The mean lengths of eggs are 1.2 ± 0.12mm, and the

mean maximum widths are 0.35 ± 0.04mm. Each female adult

can lay dozens to hundreds of eggs at a time, depending

on the nutritional conditions. Eggs are white when recently

laid, become light gray before hatching, and become elongated

and rounded at both extremes (Figures 2A,B). The chorionic

structure comprises fusiform units, which are branched and

deeply hollowed in the middle (Figures 2C,D). The ventral

surface is slightly flattened, whereas the dorsal side is convex

(Figure 2E). There is a small bulge at the thinner end of the

fertilization hole (Figure 2F).

Larva

The larvae are called “rat-tailed maggots” because they have

a very long anal segment and a telescopic breathing tube that

can extend to the surface of the water. The body is roughly

cylindrical with a sub-cylindrical cross-section. The body color

is white in the early stage and becomes gray-brown in the

later stage. The dorsal and ventral surfaces are slightly flat. The

front end is blunt, and the rear end is tapered. The ventral

surface is flat and covered with short spicules, while the dorsal

side is slightly convex and fully covered with long pubescence

backward. The cuticle appears milky-light gray and is slightly

translucent when the larva is alive. The first instar larvae

(Figures 3A,B) and the second instar larvae (Figures 3C,D) were

similar to the third instar larvae (Figures 3E,F) in general

morphology. Excluding the posterior trachea, the body lengths

of the first instar larvae are 1.51 ± 0.04 to 7.02 ± 0.33mm

(Figures 3A,B), the second instar larvae are 7.02 ± 0.33 to 11.27

± 0.18mm (Figures 3C,D) and the third instar larvae are 11.27

± 0.18 to 23.21 ± 0.07mm (Figures 3E,F). The body length

may vary slightly depending on factors such as environment and
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FIGURE 3

Larva of Eristalinus arvorum; first-instar larvae: (A) dorsal view and (B) ventral view; second-instar larvae: (C) dorsal view and (D) ventral view;

third-instar larvae: (E) dorsal view, (F) ventral view, (G) frontal view, (H) frontal view, (I) midthoracic gastropod, (J) pupal respiratory horn

foramen, (K) antennomaxilary organs, (L) the anus, (M) posterior tracheal canal, (N) posterior trachea plate tip feathers, (O) posterior valve tip,

and (P) fissure.

food. The body surface has many wrinkled rings, and the somite

is not obvious (Figures 3E,F).

The third-instar larvae have stout, curved abdominal legs in

the mesothorax and 1–6 abdominal segments with toe grooves

(Figures 3G–I). Two dots are visible on the back (Figure 3J),

where two pupal respiratory horns grow during the pupal stage.

The anal process is prominent, and the long digital process

retracts into the anus (Figure 3L). A pair of antennomaxilary

organs are at the top of the head (Figure 3K). The rear valve

is located on the back of the distal segment and attached

to a single seat (Figures 3L,M), a telescopic breathing tube

extending several times the larva’s body length (Figure 3M).

Eight feather-like hairs on the end of the rear valve help the

rear valve float on the water to breathe while the larva is feeding

underwater (Figure 3N). The two plates of the rear valve are

closely connected to form a single oval plate with four slits

arranged in parallel (Figures 3O,P).

Pupa

The pupa is similar in shape to the larva. The body is pale

gray and in the shape of a droplet with a “little tail” at the

end of the abdomen that is slightly tan (Figures 4A,B). There

is a pair of anterior spiracles at the front of the head and a

pair of pupal respiratory horns at the back (Figure 4A). The

first to sixth abdominal segments have a pair of abdominal legs

(Figure 4B) but they are not prominent. There were no pupal

respiratory horns at the early stage of pupation, and the anterior

stomata were not obvious. At the later stage of pupation, a pair

of pupal spiracles grew (Figures 4C,D) from the foramen of the

respiratory horns. The alveolar opening is growing in the front

of the pupal spiracles (Figure 4E). There are alveolar openings on

the front of the pupal spiracles, varying in number from 4 to 8

(Figures 4F–L). The pupal spiracles folds are covered with villi in

a layered distribution (Figure 4M), and there are small irregular

bulges at the base with hairs on them (Figures 4N,O). There
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FIGURE 4

Pupa of Eristalinus arvorum: (A) dorsal view and (B) pupa ventral view; pupal spiracle: (C) frontal view, (D) back view, and (E) partial frontal view;

spiracular openings: (F) four-opening, (G) five-opening, (H) six-opening, (I) seven-opening, (J) eight-opening, (K) seven closed-mouth, and (L)

eight closed-mouth; (M) pupal spiracle projection base; (N) ornamentation on basal part; (O) ornamentation on basal part; and (P) anterior

spiracle.

are breathing openings on the alveolar plates of the anterior

spiracles (Figure 4P).

Adult

The compound eyes with different-sized dark spots are

dichoptic in females (Figures 5A,E) and holoptic in males

(Figures 5C,D). The upper part of the compound eye has dense

dark brown short fluff (Figures 5A,C), and the lower part

is nearly naked (Figures 5B,D). The vertical bristle is black

(Figure 5E). The front is extremely short and slightly convex,

covered with grayish-yellow or yellow fluffs and long black hairs

(Figures 5E,G). At the top of the head are three ocelli arranged

in a triangle (Figures 5E,G). Adults have licking mouthparts

(Figures 5F,H). In males, the length between compound eyes

is about 1.5 times the length of the triangle on top of the

head (Figure 5G). The orange antennae are composed of three

segments; the first and second are short, and the third section is

oval (Figure 5I).

The mesonotum is bright black with yellow fluff. On the

mesonotum, five yellow-gray stripes extend from the front end

to the posterior end, with a thin one in the middle and a

transverse stripe at the posterior end. The five yellow-gray

stripes are thinner in females than in males (Figures 5A,C).

The scutellum is pale yellow or bright brown, sometimes with

a metallic gloss, with shorter black hair in the middle and

long yellow hair on the sides and the ends (Figures 5A,C).

A pair of wings are attached to the mesonotum, and the

wing membrane of the forewings is transparent (Figure 5J);

the hindwings degenerate into halteres (Figure 5K), and the

calypteres are black and brown. Three pairs of mesothoracic

prolegs are usually brown-yellow or brown-red (Figures 5B,C).

The tibia ends of the foreleg and the midleg and the tibiae of the

hindleg are black except for the most basal part, and the tarsi
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FIGURE 5

Adult of Eristalinus arvorum: female: (A) dorsal view, (B) ventral view, (E) prosoma frontal view, and (F) prosoma dorsal view; male: (C) dorsal

view, (D) ventral view, (G) prosoma frontal view, (H) prosoma dorsal view, (I) antennae, (J) wing membrane, (K) halter, (L) foreleg, (M) midleg, (N)

hindleg, (O) ovipositor and gonostylus, and (P) gonosaccus and gonostylus.

ends are brown. Microvilli are on the femora, the tibiae, and the

tarsi (Figures 5L–N).

The first abdomere of the abdomen is yellowish to reddish

yellow with a shiny skin, and there are red or orange square

spots almost over the second abdomere. The abdomen in females

is longer than in males. There are yellow lateral stripes on

the abdominal segments 2–4 and a pair of yellow lateral spots

on segment 5 (Figures 5A,C). At the end of the abdomen is

an ovipositor and the gonostylus in females (Figure 5O) and a

gonosaccus and the gonostylus in males (Figure 5P).

Discussion

The chorionic structure of the eggs of E. arvorum

fits with the descriptions of other Eristalinus species. E.

arvorum, Eristalinus taeniops, Eristalinus aeneus, and Eristalinus

punctulatus present a chorionic structure with branched

fusiform units, but these units, in E. aeneus, are not sunk in

the middle (Zalat and Mahmoud, 2009; Campoy et al., 2020b).

In the case of E. taeniops, the branches are broader (Zalat and

Mahmoud, 2009), although the general pattern is similar and

difficult to distinguish from E. arvorum. An adult lays 100 to 150

eggs in masses, which is conducive to collection and feeding.

Despite there being about 75 known species of Eristalinus

(Sonet et al., 2019), only five species have had their larval stage

described: Eristalinus sepulchralis, Eristalinus megacephalus, E.

aeneus, E. taeniops, and E. punctulatus (Pérez-Bañón et al., 2003;

Zalat andMahmoud, 2009; Campoy et al., 2020b). Traditionally,

the main diagnostic characters of the larval morphology are

found in the transverse band of spicules (number of crochets)

and the anterior spiracles (length-width proportion of the

spiracle and extension of the spiracular plate relative to the

total spiracular length) (Pérez-Bañón et al., 2003; Zalat and

Mahmoud, 2009; Campoy et al., 2020b). However, Campoy

et al. (2020b) concluded that these characteristics are unreliable

for diagnosis by closely examining the morphology of the

above species. We found these characteristics of E. arvorum
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to be similar and difficult to distinguish from those of the

above species.

Regarding the pupal stage, Eristalinus species can be

separated by the pupal spiracles, following the key provided by

Pérez-Bañón et al. (2003). Because there is scant research on the

larvae and the pupae of Eristalinus species, Eristalinus species are

usually identified as adults.

The identification of E. arvorummainly focuses on the adult

stage.We found that themain diagnostic characteristics of adults

are the stripes on their compound eyes, the mesonotum, and

the abdomen. Although the pollination efficiency of E. arvorum

has not been previously assessed, other Eristalinus species have

been found to be good pollinators with high floral constancy

and positive pollination perspectives (Huda et al., 2015; Latif

et al., 2019; Campoy et al., 2020b). For example, E. punctulatus

is an excellent candidate to be artificially reared and tested as a

commercial pollinator in Australia, especially under greenhouse

conditions (Campoy et al., 2020b). Eristalinus aeneus could be

effective pollinators of chickpea and mango trees (Huda et al.,

2015; Latif et al., 2019; Sánchez et al., 2022). The morphological

photographs of adults in Figures 5A–D show that the chest, the

abdomen, and the legs of E. arvorum are covered with dense hair,

which enables it to carry a large amount of pollen and have high

pollination efficiency. In the preliminary field research, we also

found that this species can carry large amounts of pollen. The

adults of this species have a long lifespan and can live for 2–3

months in our laboratory with sufficient time for pollination.

Even though there are fewer flowers in the winter, this species

can still be harvested from November to January in Hunan

Province, China, due to its high tolerance for cold and hunger.

The large number of eggs this species lays is conducive to large-

scale artificial production. We have been able to artificially rear

E. arvorum in captivity, although the feeding system still needs to

be improved to make it more efficient. In this process, we found

that the composition and temperature of the artificial feed are

the key factors affecting its growth and development. Further

research is needed to determine the best feeding method.
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Introduction: Orius spp. are generalist predators released in horticultural and

agricultural systems to control thrips. Understanding the e�ects of temperature

on the development, predation rate, and population dynamics of Orius is

essential for identifying the optimal timing of Orius release for establishing

an adequate population to facilitate synchrony with thrips population growth

and to prevent thrips outbreaks. The biological control e�ciency of natural

enemies as well as predator–prey relationships can be precisely described by

integrating life table parameters and the predation rate.

Methods: In this study, the demographic features of Orius strigicollis fed on

2nd instar nymphs of western flower thrips (WFT), Frankliniella occidentalis,

were compared at 18.5, 23.5, 27, and 33◦C using the TWOSEX-MSChart

program. The CONSUME-MSChart program was used to examine predation

rates under di�erent temperatures (18.5, 23.5, and 27◦C).

Results: The results showed no significant di�erence in fecundity among

those reared at 18.5, 23.5, and 27◦C, but fecundity at these temperatures was

significantly higher than that at 33◦C. The intrinsic rate of increase (r), finite rate

of increase (λ), and net reproduction rate (R0) were the highest at 27◦C. The

net predation rate (C0) and transformation rate (Qp) were significantly higher

at 18.5◦C (C0 = 168.39 prey/predator, Qp = 8.22) and 23.5◦C (C0 = 140.49

prey/predator, Qp = 6.03) than at 27◦C (C0 = 138.39 prey/predator, Qp=

3.81); however, the finite predation rate (ω) showed the opposite trend. In

addition to temperature, the stage of O. strigicollis at release can a�ect

population dynamics.

Discussion: Our study showed that temperature influenced the demographic

traits and predation rates of O. strigicollis. When planning a release, the stage

of O. strigicollis and temperature should be taken into account to establish an

adequate population for the control of WFT.
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Introduction

The western flower thrips (WFT), Frankliniella occidentalis

Pergrande, is a notorious agricultural and horticultural insect

pest worldwide; this species harms plants directly through

feeding and oviposition and indirectly through the transmission

of plant viruses (Reitz et al., 2011, 2020; Gao et al., 2012;

Mouden et al., 2017; He et al., 2020; Wu et al., 2021). Damage

by WFT may reduce crop quantity and quality, resulting in

severe economic losses for farmers (He et al., 2020; Reitz

et al., 2020; Avellaneda et al., 2021). The WFT is a typical r-

strategist insect pest with a small size, cryptic behavior, and a

rapid reproduction rate, and these characteristics make WFT

develop resistance to chemical pesticides (Reitz et al., 2011,

2020; Gao et al., 2012; Wu et al., 2021). Moreover, long-term

and inappropriate use of chemical pesticides often results in

food safety problems, pesticide resistance, and negative impacts

on non-target species (Bielza, 2008; Gao et al., 2012; Mouden

et al., 2017). Ecology-based methods to reduce insect pest injury

in agricultural systems are essential to achieve integrated pest

management (Lewis et al., 1997; Demirozer et al., 2012; Mouden

et al., 2017). Hence, alternative measures to reduce reliance on

chemical insecticides, such as the release of biological control

agents, have become important (Mouden et al., 2017; Reitz et al.,

2020; Wu et al., 2021).

As biological control agents of key pests that infest

cultivated crops, insect predators and parasitoids provide

valuable ecosystem services (Landis et al., 2000; Lu et al., 2012;

Zhao et al., 2017). The periodic release of natural enemies, also

known as augmentative biological control (ABC), is commonly

used in greenhouse biological control programs (Messelink et al.,

2014; van Lenteren et al., 2018). Minute pirate bugs, Orius spp.,

are useful natural enemies that prey on small and soft-bodied

insect pests of agricultural and horticultural crops (De Clercq

et al., 2014; Bonte et al., 2017; Zhao et al., 2017; Peterson et al.,

2018). Feeding on non-prey food, such as pollen, allowsOrius to

survive when prey are scarce or absent, promoting sustainable

insect pest control (Hinds and Barbercheck, 2020; Mendoza

et al., 2021, 2022). Accordingly, these generalist predators are

preferred in ABC programs and are now mass-reared for pest

control purposes, particularly thrips control (Mouden et al.,

2017; van Lenteren et al., 2018; Hinds and Barbercheck, 2020;

Reitz et al., 2020; Mendoza et al., 2021). Indeed, releasing O.

insidiosus at a 1:40 WFT ratio can nearly eliminate a WFT

population within days (Funderburk et al., 2000). Thus, a

comprehensive understanding of the characteristics of Orius

is crucial for the development and promotion of this natural

enemy as a method of thrips control.

Temperature is an important environmental factor that

influences both the biological and ecological characteristics

of natural enemies (Wallner, 1987; Sørensen et al., 2013;

Helgadóttir et al., 2017) as well as the effectiveness of biological

control (Montserrat et al., 2013; Boukal et al., 2019; Bai et al.,

2022). In mass-rearing programs, natural enemies are reared

indoors at an optimum and constant temperature to ensure

rapid and efficient production, but these conditions considerably

differ from those of crop systems in the field or greenhouse

(Montserrat et al., 2013; Sørensen et al., 2013; Helgadóttir et al.,

2017), in which temperatures change with seasonal oscillations

and diel activity rhythms. As the temperature has a direct

effect on the survival, development, and reproduction of natural

enemies (Helgadóttir et al., 2017), population dynamics will

be affected by temperature fluctuations (Barton and Schmitz,

2009; Montserrat et al., 2013). Thus, the development, predatory

ability, and population dynamics of natural enemies in response

to various temperatures must be systematically assessed; these

results will facilitate predictions of the ecological effects of

climate change on predator-prey interactions (Boukal et al.,

2019).

Numerous studies have assessed the influence of

temperature on the development, fecundity, and functional

response of Orius species (Nagai and Yano, 1999; Ohta, 2001;

Baniameri et al., 2005; Ballal et al., 2017). Experimental studies

on the integrated life table traits and predatory rates of Orius

species in response to temperature can precisely elucidate

the biological control efficiency of Orius and predator-prey

relationships (Ding et al., 2021). Orius strigicollis is a major

natural enemy of pests among agroecosystems in southern

China, Korea, and Japan (Musolin et al., 2004; Cho et al.,

2005; Musolin and Ito, 2008; Ding et al., 2021) that has been

mass-reared for thrips control (van Lenteren, 2012; Tuan

et al., 2016; van Lenteren et al., 2018). Releasing this biological

control agent and establishing an adequate population

promotes synchronization with thrips population growth and

prevents thrips outbreaks. In this study, to fully understand

the effect of temperature on the population dynamics and

development of O. strigicollis, the demographic characteristics

(including development, reproduction, survival, and longevity)

of O. strigicollis reared at constant temperatures of 18.5–

33◦C and fed 2nd instar WFT nymphs were quantitatively

described using the life table analysis program (TWOSEX-

MSChart, Chi, 2022a), which can precisely describe stage

differentiation and correctly evaluate the fitness of populations

(Chi et al., 2020). The predation rates of O. strigicollis fed

WFT under different temperature conditions (18.5–27◦C)

were also evaluated with the CONSUME-MSChart computer

program (Chi, 2022b). Additionally, the population growth

of O. strigicollis under different temperature conditions

was projected using the TIMING-MSChart program (Chi,

2022c).
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Materials and methods

Insects

Western flower thrips were collected from Cucumis melo

L. grown in the greenhouse at the Institute of Vegetables and

Flowers, Chinese Academy of Agricultural Sciences (39.53 ◦N,

116.70 ◦E) in Beijing, China, in 2007 and reared on bean

pods (Phaseolus vulgaris L.) under laboratory conditions at

26±1◦C, with relative humidity (RH) of 60 ± 10% and an

L14:D10 photoperiod. Orius strigicollis were collected from

thrips-damaged pepper (Capsicum annuum L.) plants grown in

the greenhouse at the Yangdu Experiment Station of Zhejiang

Academy of Agricultural Sciences (30.53 ◦N, 120.68 ◦E) in

Jiaxing, Zhejiang Province, China, in 2016 and reared on

WFT and bean pods, which were used as a water source

and oviposition substrate for O. strigicollis. To avoid the

negative effects of inbreeding, both WFT and O. strigicollis

were collected every year from the field to propagate with the

laboratory colony.

Life table and predation rate of O.

strigicollis under various temperature
conditions

Orius strigicollis eggs oviposited for 24 h on bean pods were

selected and randomly separated into four groups, with 82, 98,

78, and 104 eggs per group. The egg groups were maintained at

18.5, 23.5, 27, and 33◦C, respectively, with 60± 10% RH and an

L16:D8 photoperiod. Every 24 h, the eggs were checked, and for

viable eggs, the demographic traits were accurately determined

(Mou et al., 2015; Ding et al., 2021). In total, 74 (18.5◦C), 88

(23.5◦C), 71 (27◦C), and 89 (33◦C) eggs were used as the initial

samples. Newly hatched nymphs were individually transferred

to Petri dishes (6 cm in diameter) with a fine brush. Two holes

(1 cm in diameter) covered with a fine-mesh screen in the lid

of the Petri dish allowed for ventilation. A piece of fresh bean

pod (2–3 cm in length) was provided as a water source, and

different numbers of 2nd instar WFT were provided as food

for O. strigicollis nymphs (Ding et al., 2021). To prevent the

escape of theWFT from the Petri dish, each dish was sealed with

Parafilm. Every 24 h, the developmental stage of the nymphs

was observed, and fresh bean pods and WFT were replaced in

the Petri dish. Since predatory ability varies with developmental

stage in O. strigicollis, different numbers of WFT were provided

daily: 10 WFT for 1st (N1) and 2nd instar (N2), 15 WFT for

3rd (N3) and 4th instar (N4), and 20 WFT for 5th instar (N5)

O. strigicollis every day (Ding et al., 2021). The number of WFT

provided for O. strigicollis every day under various temperature

conditions was sufficient. The numbers of WFT consumed byO.

strigicollis reared at 18.5–27◦C were recorded every 24 h.

When the adults emerged, sex was determined. Females and

males were paired, and each adult pair was moved into a Petri

dish (9 cm in diameter) with a 3 cm-diameter hole on the lid

covered with a fine-mesh screen. A fresh bean pod (∼6 cm in

length) was used as the oviposition substrate, and a sufficient

number of thrips (30 WFT) were provided as prey. Fecundity,

longevity, and survival were recorded every 24 h, and fresh bean

pods and WFT were provided daily. If the number of females

exceeded that of males or a paired male died, additional males

of the same age from the laboratory colony were paired with

the females, but the longevity and the number of consumed

WFT were not recorded. If the number of males exceeded that

of females or a paired female died, additional females of the

same age from the laboratory colony were paired with the males,

but female fecundity, longevity, and the number of consumed

WFT were not recorded (Ding et al., 2021). The numbers of

WFT consumed by adult O. strigicollis reared at 18.5–27◦C

were recorded, and a male-to-female ratio of 1:2 was used to

determine the consumption rate of paired adults (Ding et al.,

2021).

Data analysis

Life table analysis

The demographic characteristics of O. strigicollis fed on

WFT in response to temperature were analyzed using the

computer program TWOSEX-MSChart (Chi, 2022a) based on

the age-stage, two-sex life table theory (Chi and Liu, 1985; Chi,

1988; Chi et al., 2020). The age-stage-specific survival rate (sxj)

(where x indicates age and j indicates stage), age-specific survival

rate (lx), age-specific fecundity (mx), net maternity (lxmx), age-

stage-specific fecundity (fxj), intrinsic rate of increase (r), net

reproduction rate (R0), finite rate of increase (λ), and mean

generation time (T) were calculated according to Chi and

Liu (1985). The age-stage life expectancy (exj) was calculated

according to Chi and Su (2006), and the age-stage reproductive

value (vxj) was calculated according to Tuan et al. (2014a,b). R0

was calculated as follows:

R0 =

∞∑

x=0

lxmx (1)

The interactive bisection method and the Euler-Lotka

equation (Goodman, 1982) were used to estimate r:

∞∑

x=0

e−r(x+1)lxmx = 1 (2)

λ and T were calculated as follows:

λ = er (3)

T =
ln(R0)

r
(4)
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The variances and standard errors of all of the parameters

were estimated with 100,000 resamplings in the TWOSEX-

MSChart program. Significant differences in the parameters

under different temperature conditions were determined using

the paired bootstrap test based on the 95% confidence intervals.

Predation rate analysis

The predation rates ofO. strigicollis at different temperatures

(18.5, 23.5, and 27◦C) were calculated according to Chi and Yang

(2003) using the CONSUME-MSChart computer program (Chi,

2022b). The age-specific predation rate (kx, the number of prey

consumed by the surviving O. strigicollis at age x) was calculated

as follows:

kx =

∑β
j=1 sxjcxj

∑β
j=1 sxj

(5)

where cxj is the number of 2nd instar nymphs ofWFT consumed

by O. strigicollis at age x and stage j, which was calculated

as follows:

cxj =

∑nxj
i=1 dxj,i

nxj
(6)

where dxj,i is the number of WFT consumed by the ith O.

strigicollis at age x and stage j, and nxj is the number of O.

strigicollis surviving to age x and stage j. The age-specific net

predation rate (qx) was calculated as follows:

qx = lxkx =

β∑

j=1

sxjcxj (7)

The cumulative net predation rate (Cx) (the number of prey

consumed per predator from birth to age x) and the net

predation rate (C0) (the total number of prey consumed per

predator over its lifetime) were calculated as follows:

Cx =

x∑

i=0

qi =

x∑

i=0

liki (8)

C0 =

∞∑

i=0

lxkx (9)

The transformation rate (Qp) indicates the number of

prey consumed to produce one offspring and was calculated

as follows:

Qp =
C0

R0
(10)

Following Ding et al. (2021), the predation rate of each

predator in stage j (Pj) was calculated as follows:

Pj =

∑nj
i=1 pij

nj
(11)

where pij is the number of prey killed by predator i in stage j and

nj is the number of predators that survived in stage j.

The daily predation rate per predator in stage j (Dj) (Ding

et al., 2021) was calculated as follows:

Dj =

∑b
x=a cxjsxj

∑b
x=a sxj

(12)

where a and b indicate the first and last ages of stage j,

respectively. The finite predation rate (ω) (Yu J. K., et al., 2013)

was calculated as follows:

ω = λ

∞∑

i=0

β∑

j=1

axjcxj (13)

where axj indicates the proportion of individuals at age x and

stage j.

Significant differences in the parameters under different

temperature conditions were determined using the paired

bootstrap test in the TWOSEX-MSChart program (Chi, 2022a).

Population projection

The population growth of O. strigicollis under different

temperature conditions was projected using the computer

program TIMING-MSChart (Chi, 2022c). All of the figures were

drawn with GraphPad Prism software (8.0 version).

Results

Life table of O. strigicollis under di�erent
temperatures

The temperature had a strong effect on the developmental

duration of O. strigicollis, as the developmental duration

shortened with an increase in temperature (Table 1). At 18.5◦C,

the developmental durations of both O. strigicollis eggs and

nymphs were the longest, followed by those at 23.5◦C and 27◦C.

At 33◦C, the developmental durations of O. strigicollis eggs and

nymphs were the shortest, indicating a fast development rate

(Supplementary Table 1). The adult longevity of O. strigicollis

was not significantly different between the 23.5 and 27◦C

treatments; both were significantly lower than that at 18.5◦C but

longer than that at 33◦C.

The age-stage survival rate (sxj) of O. strigicollis under

the different temperature conditions is shown in Figure 1;

obvious overlaps existed among the stages at all of the tested

temperatures. The survival rates of both eggs and nymphs varied

with temperature; the survival rates were higher at 18.5, 23.5,

and 27◦C (Figures 1A–C) and lower at 33◦C (Figure 1D).

The adult preoviposition period (APOP), total

preoviposition period (TPOP), and oviposition days (Od)

were significantly longer at 18.5◦C than those at 23.5, 27,
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TABLE 1 Developmental times (d) and adult longevities (d) ofOrius strigicollis fed on Frankliniella occidentalis at di�erent temperatures.

Stage 18.5◦C 23.5◦C 27◦C 33◦C

n Mean ± (SE) n Mean ± (SE) n Mean ± (SE) n Mean ± (SE)

Developmental time

Egg 74 10.27± 0.15 a 88 4.34± 0.05 b 71 3.72± 0.07 c 89 2.11± 0.06 d

N1 66 6.52± 0.11 a 81 2.06± 0.04 b 65 1.91± 0.08 b 75 1.56± 0.06 c

N2 60 5.79± 0.12 a 73 3.16± 0.11 b 60 1.65± 0.06 c 68 1.26± 0.05 d

N3 58 5.40± 0.14 a 73 2.99± 0.11 b 58 1.40± 0.07 c 66 1.26± 0.06 c

N4 57 5.84± 0.20 a 69 2.25± 0.10 b 56 1.46± 0.08 c 64 1.38± 0.06 c

N5 55 9.49± 0.21 a 66 3.77± 0.10 b 54 3.24± 0.09 c 57 2.79± 0.07 d

Pre-adult 55 43.25± 0.36 a 66 18.48± 0.18 b 54 13.31± 0.16 c 57 10.32± 0.14 d

Adult longevity

All adult 55 42.55± 2.40 a 66 16.17± 0.95 b 54 14.02± 0.87 b 57 4.75± 0.32 c

Female adult 26 44.04± 3.14 a 32 17.47± 1.49 b 33 14.36± 1.13 b 30 5.33± 0.42 c

Male adult 29 41.21± 3.62 a 34 14.94± 1.18 b 21 13.48± 1.39 b 27 4.11± 0.45 c

Different letters within the same rows indicate significantly different temperatures determined by the paired bootstrap test with 100,000 resamplings (P < 0.05).

FIGURE 1

Age-stage survival rate (sxj) of Orius strigicollis fed on Frankliniella occidentalis under 18.5◦C (A), 23.5◦C (B), 27◦C (C), and 33◦C (D).

and 33◦C (Table 2). The parameters of APOP and Od did not

significantly differ between the 23.5◦C (APOP = 4.73 days,

Od = 10.67 days) and 27◦C (APOP= 3.60 days,Od = 9.23 days)

treatments, but both were significantly longer than those at

33◦C (APOP= 1.78 days, Od = 3.04 days). The mean fecundity

(F) of O. strigicollis showed no significant difference among the

18.5◦C (58.31 eggs/female), 23.5◦C (64.03 eggs/female), and

27◦C (78.09 eggs/female) treatments but was obviously higher
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TABLE 2 Preoviposition period, oviposition period, and fecundity ofOrius strigicollis preying on Frankliniella occidentalis at di�erent temperatures.

Parameters 18.5◦C 23.5◦C 27◦C 33◦C

n Mean ± (SE) n Mean ± (SE) n Mean ± (SE) n Mean ± (SE)

Adult preoviposition period, APOP (d) 24 11.79± 1.40 a 30 4.73± 0.70 b 30 3.60± 0.57 b 23 1.78± 0.20 c

Total preoviposition period, TPOP (d) 24 55.12± 1.45 a 30 23.40± 0.68 b 30 16.83± 0.63 c 23 11.78± 0.30 d

Oviposition days (Od , d) 24 24.96± 2.13 a 30 10.67± 1.25 b 30 9.23± 0.91 b 23 3.04± 0.41 c

Fecundity (F, all eggs/female) 26 58.31± 6.48 a 32 64.03± 8.00 a 33 78.09± 9.82 a 30 17.87± 3.70 b

Fecundity (f, eggs/female/d) 26 1.32± 0.14 c 32 3.57± 0.35 b 33 5.28± 0.50 a 30 2.93± 0.52 bc

Different letters within the same rows indicate significantly different temperatures determined by the paired bootstrap test with 100,000 resamplings (P < 0.05).

FIGURE 2

Age-specific survival rate (lx), fecundity (mx), net maternity (lxmx), and female age-specific fecundity (fx7) of Orius strigicollis fed on Frankliniella

occidentalis under 18.5◦C (A), 23.5◦C (B), 27◦C (C), and 33◦C (D).

than that at 33◦C (17.87 eggs/female). However, the number

of eggs laid per female per day (f ) at 27◦C (5.28 eggs) was

obviously larger than those at 23.5◦C (3.57 eggs), 33◦C (2.93

eggs), and 18.5◦C (1.32 eggs). Among the tested temperatures,

the female age-specific fecundity (fx7) first increased rapidly,

peaked, and then decreased (Figure 2). The peak fx7 of O.

strigicollis was 7.83 eggs/female at 27◦C, which was higher than

that at 23.5◦C (6.55 eggs/female), 33◦C (5.25 eggs/female), and

18.5◦C (2.28 eggs/female). Fecundity (mx) and net maternity

(lxmx) are plotted in Figure 2.

The life expectancy (exj) of O. strigicollis decreased with

increasing temperature (Figure 3). The highest reproductive

values (vxj) of O. strigicollis at 18.5, 23.5, 27, and 33◦C were

29.43, 34.60, 35.78, and 13.57 day−1, respectively (Figure 4).

The intrinsic rate of increase (r) and finite rate of increase

(λ) of O. strigicollis were highest at 27◦C (r = 0.1682 day−1,

λ = 1.1833 day−1) but did not differ significantly from those

of at 33◦C (r = 0.1298 day−1, λ = 1.1387 day−1) (Table 3);

those at 23.5◦C (r = 0.1094 day−1, λ = 1.1157 day−1) and

18.5◦C (r = 0.0457 day−1, λ = 1.0467 day−1) were lower.
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FIGURE 3

Life expectancy (exj) of Orius strigicollis fed on Frankliniella occidentalis at 18.5◦C (A), 23.5◦C (B), 27◦C (C), and 33◦C (D).

The net reproductive rate (R0) of O. strigicollis at 27
◦C (36.29

offspring/individual) was not significantly different from that

at 23.5◦C (23.28 offspring/individual), but the R0 values at

both of these temperatures were significantly higher than

those at 18.5◦C (20.48 offspring/individual) and 33◦C (6.02

offspring/individual). The mean generation time (T) of O.

strigicollis decreased as the temperature increased. The longest

generation time was observed at 18.5◦C (66.06 days), while the

shortest generation time was observed at 33◦C (13.83 days).

Predation rate

The daily predation rate (Dj) of O. strigicollis increased as

the temperature increased within the tested temperature range

(Table 4), and the Dj of each stage was the highest at 27◦C.

For O. strigicollis female adults, the Dj showed no significant

difference between 27◦C (9.88 prey/predator) and 23.5◦C (9.44

prey/predator), but these Dj values were significantly higher

than that at 18.5◦C (4.40 prey/predator). The total numbers of

WFT consumed (Pj) during the preadult stage were 69.96, 63.61,

and 60.28 per predator at 18.5, 23.5, and 27◦C, respectively

(Table 5). The adult Pj at 18.5◦C was higher than those at

23.5 and 27◦C. The Pj of female adults was the highest at

18.5◦C (198.87 prey/predator), followed by 23.5◦C (164.92

prey/predator) and 27◦C (141.93 prey/predator).

The first peaks of the age-specific predation rate (kx) and

age-specific net predation rate (qx) in O. strigicollis fed on WFT

at 18.5◦C occurred at the age of 39.00 days in the N5 stage;

these rates then decreased until adult emergence at the age of

44.00 days (Figure 5A). The peaks occurred significantly later

than those at 23.5◦C (15.00 days) (Figure 5B) and 27◦C (10.00

days) (Figure 5C).

The net predation rate (C0) varied significantly among

temperature conditions (Table 6). Each O. strigicollis consumed

an average of 168.39 prey over its lifetime when reared at

18.5◦C, which was significantly higher than the numbers of prey

consumed at 23.5◦C (140.49 prey/predator) and 27◦C (138.39

prey/predator). The finite predation rate (ω) increased as the

temperature increased. The transformation rate (Qp) indicated

that at 18.5◦C, O. strigicollis needed to consume 8.22 WFTs

to produce one egg, which was not significantly different from

that at 23.5◦C (6.03); however, both were higher than that at

27◦C (3.81).
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FIGURE 4

Reproductive value (vxj) of Orius strigicollis fed on Frankliniella occidentalis at 18.5◦C (A), 23.5◦C (B), 27◦C (C), and 33◦C (D).

TABLE 3 Population parameters ofOrius strigicollis preying on Frankliniella occidentalis at di�erent temperatures.

Population parameters 18.5◦C 23.5◦C 27◦C 33◦C

n Mean ± (SE) N Mean ± (SE) n Mean ± (SE) n Mean ± (SE)

Intrinsic rate of increase, r (d−1) 74 0.0457± 0.0032 c 88 0.1094± 0.0065 b 71 0.1676± 0.0085 a 89 0.1298± 0.0185 ab

Finite rate of increase, λ (d−1) 74 1.0467± 0.0034 c 88 1.1157± 0.0072 b 71 1.1826± 0.0100 a 89 1.1387± 0.0209 ab

Net reproductive rate, R0 (offspring/individual) 74 20.48± 3.94 b 88 23.28± 4.36 a 71 36.29± 6.45 a 89 6.02± 1.52 c

Mean generation time, T (d) 74 66.06± 1.66 a 88 28.76± 0.74 b 71 21.33± 0.55 c 89 13.83± 0.36 d

Different letters within the same rows indicate significantly different temperatures determined by the paired bootstrap test with 100,000 resamplings (P < 0.05).

Population projections of O. strigicollis in
response to temperature

Data from the life table study were used to project the

population growth of O. strigicollis with an initial number of 10

viable eggs (Figure 6). The population increased faster at 27◦C

than at 18.5, 23.5, and 33◦C. After 40 days, the total numbers of

O. strigicollis produced under 18.5, 23.5, 27, and 33◦C conditions

were 8 (0 eggs, 6 nymphs, 1 female adult, and 1 male adult),

181 (21 eggs, 152 nymphs, 4 female adults and 4 male adults),

3,308 (2,014 eggs, 1,115 nymphs, 109 female adults, and 70 male

adults), and 855 (430 eggs, 299 nymphs, 73 female adults, and 53

male adults), respectively.

With an initial population of five pairs of newly hatched

adults, after 40 days, the total numbers of O. strigicollis

produced at 18.5, 23.5, 27, and 33◦C were 223 (79 eggs,

137 nymphs, 4 female adults, and 3 male adults), 2,926

(1,695 eggs, 1,062 nymphs, 87 female adults, and 82 male

adults), 12,888 (5,380 eggs, 5,936 nymphs, 986 female

adults, and 586 male adults), and 3,085 (564 eggs, 2,195

nymphs, 184 female adults, and 142 male adults), respectively

(Figure 7).
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FIGURE 5

Age-specific predation rate (kx), age-specific net predation rate (qx) and cumulative predation rate (Cx) of Orius strigicollis fed on Frankliniella

occidentalis at 18.5◦C (A), 23.5◦C (B), and 27◦C (C).

Discussion

E�ect of temperature on the
development and fecundity of O.

strigicollis

Variability in temperature conditions can directly affect

the physiology, survival, fecundity, behavior, and other

characteristics of insects (Harrison et al., 2012; González-

Tokman et al., 2020), ultimately affecting population dynamics

(Bai et al., 2022). The development rate of insects is temperature-

dependent (Bai et al., 2022), and the developmental duration

of Orius can be significantly affected by this abiotic factor.

Consistent with these findings, our results showed that

temperature had a significant effect on the developmental

duration of O. strigicollis. The prolongation of developmental

duration observed at decreased temperatures may be due to a

decrease in insect metabolism at lower temperatures (Howe,

1967; Brown et al., 2004; Garcia et al., 2007; Williams III and

Roane, 2007; González-Tokman et al., 2020). Thus, the adult

preoviposition period (APOP), total preoviposition period

(TPOP), oviposition days (Od), and mean generation time (T)

exhibited temperature dependence (Table 2).

Low temperatures resulted in fewer eggs laid per day

by O. strigicollis, similar to Bicyclus anynana, which laid

fewer eggs per day at lower temperatures than at higher

temperatures (Geister et al., 2008). However, the mean

number of eggs laid per O. strigicollis female over a lifetime

revealed no significant difference between 18.5, 23.5, and

27◦C when considering the longevity and survival of adults.

The fecundity of insects is limited under high-temperature

conditions (Harrison et al., 2012). For example, when the

temperature was 32–36◦C, the fecundity of Orius tantillus

decreased substantially (Ballal et al., 2017), and the fecundity

of both Orius laevigatus and Orius albidipennis decreased

substantially as the temperature was increased to 35◦C

(Cocuzza et al., 1997; Sanchez and Lacasa, 2002). As a

result of physiological trade-offs, insects may need to reduce

their fecundity to ensure high-quality egg production (Berger

et al., 2008). Fand et al. (2015) also reported reduced adult

longevity at high temperatures, as well as a shortening of

the reproductive phase with decreased oviposition. In the

current study, the high temperature had an obvious effect

on the fecundity of O. strigicollis, resulting in a significantly

low net reproductive rate (R0 = 6.02 offspring/individual

at 33◦C).
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FIGURE 6

Population projection of Orius strigicollis fed on Frankliniella occidentalis at (A) 18.5◦C, (B) 23.5◦C, (C) 27◦C, and (D) 33◦C starting with an initial

population of 10 viable eggs.

E�ect of temperature on the population
parameters of O. strigicollis

Previous studies by Tuan et al. (2016) and Ding et al. (2021)

showed that the intrinsic rate of increase (r) and finite rate of

increase (λ) of O. strigicollis fed on Cadra cautella (r = 0.1677

day−1, λ = 1.1826 day−1) and Frankliniella intonsa nymphs

(r = 0.1437 day−1, λ = 1.1546 day−1) at 25◦C were similar,

and these rates were also similar to those of O. strigicollis fed

on WFT nymphs at 27◦C in this study (r = 0.1682 day−1,

λ = 1.1833 day−1). The temperature had obvious effects on

developmental duration, longevity, survival, and fecundity; thus,

both the population parameters of r and λwere also temperature

dependent (Yu J. K., et al., 2013; Ali et al., 2020). For O.

strigicollis reared at 18.5◦C and 23.5◦C, a slow developmental

rate (Supplementary Table 1) was the primary factor resulting in

the low rate of population increase. However, despite the low

fecundity of O. strigicollis at 33◦C, the short preadult duration

and adult longevity enhanced population growth, resulting in

large increases in these rates (r = 0.1298 day−1, λ = 1.1387

day−1). These findings are similar to the results of a previous

study, where the recorded values were 0.12 day−1 (r) and 1.13

day−1 (λ) for O. strigicollis reared on eggs of Pectinophora

gossypiella at 31◦C (Ali et al., 2020).

E�ects of temperature on the predation
rates of O. strigicollis

Temperature strongly affects the predation ability of

predaceous insects, as frequently confirmed by the functional

response (Sørensen et al., 2013; Ge et al., 2018; Rehman

et al., 2020; Bai et al., 2022). As the temperature increases

within a tolerable temperature range, physiological metabolism

increases, and predators consume more prey to meet these

energetic demands (Schwarz and Frank, 2019; González-

Tokman et al., 2020). Similarly, the mean predation rates per

day (Dj) of both nymphs and adults of O. strigicollis on WFT

increased as the temperature increased (Table 4). The finite

predation rate (ω) can be used to assess the potential predation

of natural enemies (Chi et al., 2011; Yu J. K., et al., 2013);

this rate showed an increase with increasing temperature in the
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FIGURE 7

Population projection of Orius strigicollis fed on Frankliniella occidentalis at (A) 18.5◦C, (B) 23.5◦C, (C) 27◦C, and (D) 33◦C starting with an initial

population of five paired adults.

current study, similar to trends in previous studies (Sørensen

et al., 2013; Helgadóttir et al., 2017; Ge et al., 2018). When

considering the survival rate, longevity, and predation rate,

higher net predation rates (C0) were observed at 18.5 and

23.5◦C than at 27◦C, similar to the result reported by Yu J. K.,

et al. (2013). Additionally, when developing at low temperatures,

some insects can physiologically adapt by accumulating energy

reserves to improve cold stress tolerance (Denlinger and Lee,

2010). Thus, O. strigicollis reared at 18.5◦C may need to

accumulate more energy reserves for survival by increasing the

predation rate. Accordingly, the transformation rate (Qp) was

highest at the lowest temperature (18.5◦C), allowing individuals

to maximize fitness at this temperature.

Population projections and release

The computer simulation in this study showed the

stage structure and population dynamics of O. strigicollis in

response to different temperatures, providing a reference for

the field application of this natural enemy under various

environmental temperature conditions. The optimal predator

stage, release time, and release ratio of natural enemies at

various temperatures can be determined based on population

projections (Yu L. Y., et al., 2013; Mou et al., 2015; Ding

et al., 2021) to ensure the establishment of sufficient natural

enemy populations for pest population suppression (Janssen

and Sabelis, 2015; Mendoza et al., 2021). Obviously, the

developmental stage of natural enemies released can affect

population dynamics, and theO. strigicollis population increased

faster when initiated using five pairs of adults than when using

10 viable eggs, similar to the results reported by Ding et al.

(2021). As the predation rate was also age-dependent (Table 4),

the release of adults or nymphs of O. strigicollis with a high

predation rate is favorable for achieving immediate pest control

(van Lenteren et al., 2018; Ding et al., 2021). In addition, the

preventative release of natural enemies (one aspect of ABC)

by introducing natural enemies in the greenhouse first and

supporting natural enemy establishment before pest arrival

has also been proposed (Messelink et al., 2014; van Lenteren

et al., 2018; Pijnakker et al., 2020). This method facilitates the

establishment of an adequate population of natural enemies,
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TABLE 4 Predation rate for daily (Dj) ofOrius strigicollis fed on

Frankliniella occidentalis at di�erent temperatures.

Development

stage

18.5◦C 23.5◦C 27◦C

n Mean ± (SE) N Mean ± (SE) n Mean ± (SE)

N1 74 0.63± 0.02 c 88 2.09± 0.06 b 71 2.34± 0.09 a

N2 66 1.19± 0.03 c 80 2.52± 0.06 b 65 4.40± 0.17 a

N3 61 1.50± 0.04 c 73 3.79±0.09 b 60 6.64± 0.03 a

N4 58 2.58±0.08 c 73 5.85± 0.18 b 58 8.37± 0.27 a

N5 56 3.71±0.08 c 66 6.92± 0.14 b 56 8.09± 0.19 a

Preadult 74 1.46± 0.04 c 88 3.21± 0.07 b 71 4.11± 0.12 a

All adult 55 3.60± 0.13 c 66 7.28± 0.32 b 54 8.34± 0.33 a

Female adult 26 4.40± 0.11 b 32 9.44± 0.19 a 33 9.88± 0.19 a

Male adult 29 2.72± 0.09 c 34 4.91± 0.19 b 21 5.75± 0.23 a

Different letters within the same rows indicate significantly different temperatures

determined by the paired bootstrap test with 100,000 resamplings (P < 0.05).

TABLE 5 Predation rate for the stage ofOrius strigicollis survived (Pj)

fed on Frankliniella occidentalis at di�erent temperatures.

Development

stage

18.5◦C 23.5◦C 27◦C

n Mean ± (SE) N Mean ± (SE) n Mean ± (SE)

N1 66 4.18± 0.15 a 80 4.45± 0.10 a 65 4.45± 0.18 a

N2 60 6.90± 0.19 b 73 8.08± 0.27 a 60 7.35± 0.26 ab

N3 58 8.16± 0.29 c 73 11.33±0.35 a 58 9.55± 0.38 b

N4 57 14.93±0.68 a 69 13.09± 0.42 b 56 12.63± 0.49 b

N5 55 35.36±0.84 a 66 26.62± 0.72 b 54 26.20± 0.71 b

Preadult 55 69.96± 0.98 a 66 63.61± 1.01 b 54 60.28± 1.17 c

All adult 55 152.96± 0.12 a 66 117.76± 9.00 b 54 116.90± 8.68 b

Female adult 26 198.87±13.21 a 32 164.92± 12.77 a 33 141.93± 11.28 b

Male adult 29 108.69±11.71 a 34 73.38± 6.74 b 21 77.55± 8.33 b

Different letters within the same rows indicate significantly different temperatures

determined by the paired bootstrap test with 100,000 resamplings (P < 0.05).

allowing predator synchronization with pest population growth.

Thus, in the preventative release of this natural enemy, both the

effects of environmental temperatures and the release stage ofO.

strigicollis on the population dynamics should be considered to

determine the timing of release to prevent thrips outbreaks.

Integrated analysis of the demography and predation

rate of the natural enemy in response to temperature can

facilitate the biocontrol efficacy of natural enemy release

for pest control. This study comprehensively described the

demographic characteristics and predation rate of O. strigicollis

in response to temperature. Increasing temperature promoted

the development and shortened the longevity ofO. strigicollis. At

27◦C and 33◦C,O. strigicollis exhibited rapid population growth;

in contrast, relatively low temperatures, especially 18.5◦C, led

TABLE 6 Parameters ofOrius strigicollis preying (Mean ± SE) on

Frankliniella occidentalis at di�erent temperatures.

Parameter 18.5◦C 23.5◦C 27◦C

Net predation

rate, C0

(prey/predator)

168.39± 13.36 a 140.49± 10.21 a 138.39± 10.72 b

Finite

predation rate,

ω (d−1)

1.14± 0.04 c 2.63± 0.09 b 3.24± 0.14 a

Transformation

rate, Qp

8.22± 1.42 a 6.03± 0.98 a 3.81± 0.58 b

Different letters within the same rows indicate significantly different temperatures

determined by the paired bootstrap test with 100,000 resamplings (P < 0.05).

to slow population growth. The predation rates of O. strigicollis

in various developmental stages varied greatly at different

temperatures. Consequently, when releasing O. strigicollis in

the field to control WFT, both environmental temperature and

developmental stage should be taken into consideration to

establish sufficient populations.
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Landscape structures a�ect pests, depending on compositional heterogeneity (the

number and proportions of di�erent habitats), configurational heterogeneity (spatial

arrangement of habitats), and spatial scales. However, there is limited information

on the relative e�ects of compositional and configurational heterogeneity on

invasive pests and their associates (species that can benefit from invasive pests),

and how they vary across spatial scales. In this study, we assayed the invasive pest

Bactrocera dorsalis (Hendel) and its associated fly Drosophila melanogaster in 15

landscapes centered on mango orchards. We calculated landscape composition

(forest percentage, mango percentage, and Shannon’s diversity) and configuration

(edge density) using two methods: spatial distance scales and combined scales.

Spatial distance scales included bu�er rings with radii of 0.5, 1.0, and 1.5 km, and

combined scales referred to cutting or not cutting a smaller ring from larger ones. Our

results shown that compositional heterogeneity positively a�ected B. dorsalis and D.

melanogaster due to forest cover percentage, whereas configurational heterogeneity

with high edge density negative e�ect on B. dorsalis. Forest cover had less of an

e�ect on B. dorsalis than configurational heterogeneity, but the opposite e�ect was

observed for D. melanogaster. Importantly, the direction and strength of forest cover

and configurational heterogeneity to species did not vary with spatial distance scales

or spatial combined scales. Thus, compositional and configurational heterogeneity

exhibit di�erential e�ects on this invasive pest and its associator, and revealed that

the relative e�ects of landscape structures are consistent acrossmultiple scales. These

results provide new insights into landscape e�ects on interconnected species using a

diverse spatial-scale approach.

KEYWORDS

landscape complexity, landscape fragmentation, landscape e�ects, invasive species, pest

control, multiscale method

1. Introduction

Land use change and intensification have led to habitat destruction and fragmented

landscapes, potentially exacerbating biodiversity loss and pest outbreaks (Sirami et al., 2019;

Tougeron et al., 2022). Landscape heterogeneity, constituted by the types of habitats surrounding

agricultural lands and their spatial arrangement, has been recognized as important for pest

control (Clemente-Orta et al., 2020; Paredes et al., 2021). However, previous studies have focused
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on the impact of landscape structures on native pests while paying

little attention to invasive pests and their effects on interconnected

insects (e.g., commensalism) (Schmidt et al., 2019; Shi et al., 2021).

Understanding of how landscape heterogeneity regulates pests and

their associates (species with interactions with pests) remains a core

topic in revealing landscape effects (Gagic et al., 2021; Shi et al., 2021)

and an urgent need for developing conservation strategies (Rios et al.,

2021; Ratto et al., 2022).

Landscape effects on pests depend on compositional

heterogeneity and configurational heterogeneity (Fahrig et al.,

2011; Kheirodin et al., 2020; Ouyang et al., 2020; Zhang et al., 2021),

but there is no consensus on their relative contributions for pest

control (Rybicki et al., 2020; Metzger et al., 2021; Saura, 2021),

perhaps the lack of consensus is due to the functional trait and

different needs of the species studied (Aristizábal and Metzger,

2018; Martin et al., 2019). The habitat amount hypothesis states

that the habitat amount in the landscape surrounding a sample

site determines species abundance (Fahrig, 2013; Rios et al., 2021;

Malagnini et al., 2022). Several studies support this hypothesis; for

example, coffee coverage in agricultural landscapes is positively

correlated with coffee berry borer (Aristizábal and Metzger, 2018),

as more resources are available to the pest. In addition, the island

biogeography theory argues that landscape configurations with

high habitat fragmentation are critical to species (Rybicki et al.,

2020; Saura, 2021). Generally, habitat fragmentation is detrimental

to individual species abundance (Heidrich et al., 2020; Rybicki

et al., 2020), as it forms small isolated islands that support smaller

communities, increasing the probability of inbreeding and extinction

(MacDonald et al., 2018). The negative correlation between habitat

fragmentation (e.g., edge density) and pests observed in previous

studies supports this theory (Bosem Baillod et al., 2017); however,

contradictory results have shown that habitat fragmentation is

positively related to species abundance (Fahrig, 2017; Fletcher et al.,

2018), which is attributable to, but not limited to, habitat type

diversity and spatial scale of effect (Aristizábal and Metzger, 2018;

Fletcher et al., 2018; MacDonald et al., 2018).

Differences in spatial scale may significantly affect the impact of

habitat cover and fragmentation on pests (Aristizábal and Metzger,

2018; Da Silva Carneiro et al., 2022). Landscape structures may even

have opposite effects on pests at different spatial distance scales

(the radius of the distance from the sampling site forms different

spatial buffer rings, Figure 1B), as the dispersal ability of pests is

limited due to their functional traits. For example, the correlation

between forest cover and coffee berry borers changes from positive

to negative as the spatial distance changes from 300m to 2 km

(Aristizábal and Metzger, 2018). In addition to the spatial distance

scale, the spatial combined scale formed by the small distance

buffer rings (e.g., 0.5 km radius) nested within the large distance

buffer rings (e.g., 1.5 km radius, Figure 1B) may affect the species

distribution (Da Silva Carneiro et al., 2022). Delineating the scope

of the landscape by spatial distance is insufficient to elucidate the

landscape effects, because the surrounding landscape effects is not

clarified by removing small nested circles. Moreover, the expansion

of spatial distance potentially increases new habitat types and spatial

arrangements (Da Silva Carneiro et al., 2022), and it is difficult

to elucidate the landscape effects of these new elements without

decoupling spatial scales (removing the small buffer ring from the

large one). Unfortunately, almost all previous studies have focused

on the spatial distance scale while ignoring the spatial decoupled of

effect (Aristizábal and Metzger, 2018; Kheirodin et al., 2020), which

limits the understanding of how landscape affects pests.

In this study, we explored the relative effects of landscape

composition and configuration on pests at multiple spatial scales.

We targeted a pest fruit fly, Bactrocera dorsalis (Hendel) (Diptera:

Tephritidae), in mango (Mangifera indica Linn) orchards. Mangoes

are a popular fruit worldwide, and B. dorsalis is a serious threat to

mango yield and quality (Grechi et al., 2022). In African countries

invaded by B. dorsalis, the proportion of damaged mango fruits that

have been recorded can be as high as 78%, causing serious economic

losses to local small farmers (Cugala et al., 2020). As an invasive pest

in China and other regions (Liu et al., 2019; Grechi et al., 2022), B.

dorsalis females pierce the skin of fruit during oviposition. Larvae

that develop inside the fruit tend to feed on the most nutritious part

of the pulp, which leads to fruit damage. Larvae drop from the host

and burrow into soil to form pupae. Adults feed mostly on nectar,

but some also draw nutrients from pollen and rotting fruit (Liu et al.,

2019). Owing to its strong ability to survive and reproduce, B. dorsalis

inevitably affects native species. As another fruit fly, Drosophila

melanogaster (Diptera: Drosophilidae) can benefit from B. dorsalis

because D. melanogaster can obtain food and reproduce from mango

fruits infested by B. dorsalis. Therefore, D. melanogaster is defined as

an associator of B. dorsalis.

We selected 15 landscapes with mango orchards at their center

on Hainan Island (Figure 1), the main mango fruit-producing area

in China, which has been invaded by B. dorsalis (Liu et al., 2019).

We measured B. dorsalis and D. melanogaster abundances in each

mango orchard and its surrounding habitats. The compositional and

configurational heterogeneity in each landscape were characterized

on a spatial distance scale and spatial combined (coupled and

decoupled) scales. We hypothesized that the impact of landscape

heterogeneity on an invasive pest and its associator varies with

spatial scale and examined the following questions: (1) How do

compositional and configurational heterogeneity differ in their

impact on the invasive pest and its associator? (2) Do landscape

variables in relation to the invasive pest and its associator vary with

spatial distance scales, and (3) spatial combined scales?

2. Materials and methods

2.1. Study site and landscape settings

This study was conducted in the southwestern region of Hainan

Island, China (18◦45
′

N, 109◦17
′

E). The area has a tropical marine

monsoon climate. The average annual temperature is 19–26◦C. The

mean annual precipitation is 1,400–1,800mm. Land-use patches are

dominated by smallholders, forming a highly heterogeneous mosaic

landscape mainly comprised of forest, rubber (Hevea brasiliensis),

mango, longan (Dimocarpus longan), papaya (Chaenomeles sinensis),

areca (Areca catechu L.), and farmland (rice and vegetables) patches.

Mango orchards, which are managed similarly and are the main

income source for many smallholders in the region, have been

affected by the invasive pest B. dorsalis for many years. B. dorsalis

is thought to have invaded Hainan Island as early as 1934 (Liu et al.,

2019). Smallholders would use insecticides to exterminate B. dorsalis

1–2 times a year during the near-ripening period of mangoes.
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FIGURE 1

Schematic diagram of the study area and landscape settings. The yellow circles (1.5 km radius) in the left panel (A) indicate the spatial distribution of the

15 landscapes. The right panel (B) shows the processing of the landscape at spatial distance and combined scale. Distance scales refer to bu�er rings with

0.5, 1, and 1.5 km radius around the central mango patch, respectively [x-coordinate, (B)], and the combined scale refers to whether to remove the ring

with 0.5 km [y-coordinate, (B)]. (C, D) Indicate the potential impact of spatial scale on landscape heterogeneity-species relationships.

FIGURE 2

Species abundance di�erences among habitats. (A) Indicates Bactrocera dorsalis abundance, (B) indicates Drosophila melanogaster abundance, and

di�erent lowercase letters on the histogram indicate significant di�erences. (C) Indicates the correlation between B. dorsalis and D. melanogaster

abundance by correlation analysis.

Taking the mango patch as the center, we set 15 landscapes as a

gradient based on forest cover, with a radius of 1.5 km surrounding

the mangoes (Figure 1A). This landscape radius was chosen based

on previous studies that observed traces of multiple pest activity

(Gardiner et al., 2009; González et al., 2020). Among the selected

landscapes, forest cover percentage varied from 0 to 30%, with

varying degrees of landscape fragmentation.

2.2. Compositional and configurational
heterogeneity

First, we obtained a high-resolution geographic image map

for each landscape based on their coordinates using ArcGIS 10.2

software. We divided the landscape patches into 11 categories [forest,

mango, rubber, longan, areca, banana, papaya, farmland, water area,

residential land, and others (Figure 1B)] and then used ArcGIS

10.2 software to outline each patch. The patches were identified by

combining high-resolution satellite images (0.83m) and data from

field surveys conducted in June–August 2021, after which the vector

graphics were converted into raster maps to calculate compositional

and configurational heterogeneity metrics. We used FRAGSTATS 4.2

software (McGarigal et al., 2012) to calculate the landscape indices.

Since longan, papaya, farmland and banana have a small

percentage of area in the landscape, while forest, mango, rubber

and areca are the main land types that make up the composition

of the landscape, the compositional heterogeneity indicators

included mango cover percentage (%), forest%, rubber%, areca%,

and Shannon’s diversity index. Configurational heterogeneity was

indicated by edge density, which can reflect the degree of landscape

fragmentation (Martin et al., 2019).
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FIGURE 3

Linear relationships between landscape heterogeneity and species at spatial distance scales (0.5, 1, and 1.5 km). (A–C) Indicate log-transformed

Bactrocera dorsalis abundance; (D–F) indicated log-transformed Drosophila melanogaster abundance. The blue, green, and red lines represent the spatial

distance scales of 0.5, 1, and 1.5 km, respectively. The coupled results are shown, and the decoupled results can be known from Supplementary Figure 2.

2.3. Landscape spatial scales

Two spatial scales were set: spatial distance scale and spatial

combined scale. The spatial distance scale refers to the circle of buffer

rings centered on the mango patch with radii of 0.5, 1, and 1.5 km,

respectively (Figure 1B), which can clarify the effect of landscape

variables with spatial distance.

The spatial combined scales were defined based on whether the

buffer ring with a radius of 0.5 km was cut off from the larger

1 and 1.5 km rings. The nested landscape formed without being

cut off was called the coupled (Figure 1B), and the central blank

landscape formed by cutting off was called a decoupled. Thus,

the spatial combined scale contains two categories of coupled and

decoupled (Figure 1B). Combined scales were used to explore the

effects of surrounding habitat composition and configuration at

different distances.

2.4. Species sampling

In September 2021, the newly grown leaves of mango trees in the

current year were in the mature stage. The invasive pest (B. dorsalis)

and its associator (D. melanogaster) were identified in mango patches

at the center of each landscape and other surrounding patches (such

as forest and rubber) using yellow sticky traps (length × width: 20

× 25 cm) and yellow funnel traps (attractant: methyl eugenol). Three

yellow sticky traps and three funnel traps were set at a height of ∼1–

2m above the ground and were displayed at least 3m apart within

each patch. All traps were placed at least 6m from the edge of each

patch to reduce edge effects. Except for 15mango patches at the center

of the landscape, other surrounding patches were randomly selected

in each landscape to determine whether the land cover types were

habitats for B. dorsalis and D. melanogaster. In total, 75 patches were

investigated in 15 landscapes, including 4 forest, 15 mango, 15 areca,

13 rubber, 9 farmland, 9 longan, 7 banana, and 3 papaya patches; thus,

we placed 225 yellow sticky traps, and funnel traps, respectively. After

3 days, we collected all yellow sticky and funnel traps and counted the

number of each species.

During the flowering (October 2021), young fruit (November

2021), and near-ripe stages (March 2022) of mangoes, we measured

the invasive pest and its associator in central mango patches using two

yellow traps methods by the same sampling method as in September

2021. Therefore, the numbers of each species in mango patches

were determined four times. The species abundance of each patch

measured each time was obtained by summing the two methods,

following previous study (Perrot et al., 2022).

2.5. Statistical analysis

At the patch level, we confirmed the presence of both species

in the selected habitat types, and then analyzed the differences in

B. dorsalis and D. melanogaster abundances among habitats using

ANOVA. Multiple comparisons were then made using the Tamhane’s

T2 due to the heterogeneity of variance in the species abundance data.

We explored the correlation between B. dorsalis and D. melanogaster
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abundance using linear regression analysis across all patches. Species

abundance was log-transformed before doing the regression analysis,

as were the following regressions and correlation analysis.

At the landscape level, we first removed the covariance between

landscape variables in two steps. (a) Pearson’s correlation analysis

was performed on the landscape variables at each spatial scale

(Supplementary Figure 1), and only those variables with weak

correlations (r < 0.65) were retained (Da Silva Carneiro et al.,

2022); (b) The retained landscape variables were subjected to

multiple regression analysis to log-transformed species abundance,

and the landscape variables were further filtered by VIF<2 (Perrot

et al., 2022). The landscape variables that were thus screened were

edge density, forest cover percentage (%), mango%, and Shannon’s

diversity (Supplementary Table 1). The general linear model was then

used to analyze the relationship between each landscape variable and

species abundance, with landscape variables as fixed effects, species

abundance as response variables, and sampling site and month as

covariates in the spatial distance and combined scales.

To explore the effects of spatial distance and combined scales on

the landscape variable-species abundance relationship, we explored

differences in linearly fitted relationships between landscape variables

(Supplementary Table 1) and species abundance using grouped

regression. The spatial distance scale varies from 0.5 to 1 km and then

to 1.5 km. Spatial combined scales for coupled and decoupled were

compared at distance scales of 1 and 1.5 km, respectively. Differences

in linearly fitted relationships were checked using the Chow test

(Zeileis et al., 2002; Wen et al., 2022).

To reveal the optimal landscape variables and spatial scales,

we subjected all landscape variables (Supplementary Table 1) and

species (B. dorsalis andD.melanogaster) abundance tomultiple linear

regression analysis in a stepwise approach, with landscape variables as

independent variables and species abundance as dependent variables.

Standardized regression coefficients were used to compare the

relative effects of landscape variables on species. All of the above data

analyses were conducted using IBM SPSS software (version 21.0).

3. Results

A total of 40 594 Bactrocera dorsalis and 10 438 Drosophila

melanogaster specimens were collected during the sampling period.

Both species were captured in the selected habitat types (Figure 2A).

B. dorsalis abundance in forests was significantly higher than that in

mango orchards (P < 0.05, Figure 2A), but there was no significant

difference betweenmangoes and other habitats (P< 0.05, Figure 2A).

There were no significant differences in D. melanogaster abundance

among the habitats (P > 0.05, Figure 2B). B. dorsalis and D.

melanogaster abundances showed a significant positive correlation

across the landscape patches (P < 0.05, Figure 2C).

3.1. Impact of landscape heterogeneity on
pests

Configurational heterogeneity (edge density) was negatively

correlated with B. dorsalis abundance (P < 0.05, Figure 3A,

Supplementary Figure 2A), but the correlation with D. melanogaster

was insignificant (P > 0.05, Figure 3D, Supplementary Figure 2D).

In contrast, compositional heterogeneity was positively correlated

with B. dorsalis and D. melanogaster abundance owing to an

increase in the percentage of forest cover (P < 0.05, Figures 3B, E,

Supplementary Figures 2B, E). The percentage of mango cover was

not significantly associated with either species at 1 and 1.5 km scales

(P > 0.05, Figures 3C, F).

3.2. Spatial distance scale e�ects of
landscape heterogeneity on pests

Negative relationships between edge density with B. dorsalis

abundance was observed across spatial distance scales of 0.5, 1, and

1.5 km (Figure 3A, Figure 2A). In addition, there were no significant

changes in the slopes of these fitted lines (Figure 3A), implying that

variation in the strength of these indicator effects is limited. Positive

correlation between forest cover percentage with B. dorsalis and

D. melanogaster abundances did not change with spatial distance

scale from 0.5, 1 to 1.5 km (Figures 3B, E). The slope of the fitted

lines between forest cover and species abundance did not change

significantly at the scales of 0.5,1, and 1.5 km (Figures 3B, E),

indicating that the effect of forest cover had limited variation in

intensity. Overall, spatial distance scales did not alter the direction

and intensity of compositional and configurational heterogeneity

affecting the species (Figure 3).

3.3. Spatial combined scale e�ects of
landscape heterogeneity on pests

At spatial coupled and decoupled, the direction of linear

relationships between edge density with B. dorsalis abundance was

consistent, regardless of 1 or 1.5 km space distances (Figure 3).

In addition, there was no difference in the strength of the linear

relationship, as the differences in the regression coefficients of

the fitted straight lines were insignificant (P > 0.05, Table 1,

Supplementary Table 2). Similarly, the direction and strength

of the correlation between forest percentage with B. dorsalis

and D. melanogaster abundance did not change from spatial

coupled (Figures 3B, E) to decoupled, regardless of 1 km (Table 1)

or 1.5 km space distances (Supplementary Table 2). Therefore,

spatially combined scales had limited effects on compositional and

configurational heterogeneity effects.

Considering all landscape variables in spatial distance and

combined scales, edge density at coupled 1 km scale and forest cover

at coupled 0.5 km scale were important factors for B. dorsalis, and

the importance of the former (absolute value of the standardized

coefficient) was higher than the latter (Table 2). For D. melanogaster,

the proportion of forest cover at coupled 1 km scale was more

important than edge density at coupled 1 km scale, although the latter

had a significant effect (Table 2).

4. Discussion

This study aimed to explore at multiple spatial scales how

landscape heterogeneity affects an invasive pest (B. dorsalis) and an

associated fly insect (D. melanogaster, hereafter “associator”) that

could benefit from the invasive pest. The results showed that the
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TABLE 1 Grouped regression results show di�erences in the fitting linear relationship between landscape heterogeneity with pests from spatial coupled

to decoupled.

Species abundance Landscape
heterogeneity

Coupled Decoupled 1b (b1-b2) t p

b1 b2

B. dorsalis Edge density −0.005 −0.005 −0.000 −0.070 0.944

Forest% 0.012 0.010 0.002 0.219 0.827

D. melanogaster Forest% 0.014 0.013 0.001 0.195 0.846

b1 and b2 refer to the linear regression coefficients of landscape structures on species at landscape coupled and decoupled on a 1 km distance scale, respectively. Differences between coupled with

decoupled were checked using the Chow test.

effects of landscape heterogeneity on the invasive pest were opposite

in compositional and configurational heterogeneity, with the former

having positive and the latter having negative effects. Compared

with compositional heterogeneity, configurational heterogeneity had

higher and lower relative contributions to the invasive pest and

associator, respectively, but did not vary with diverse spatial scales.

Thus, landscape effects are species-dependent, but not spatial scale-

dependent.

4.1. E�ects of compositional and
configurational heterogeneity

Compositional heterogeneity was positively correlated with the

invasive pest and associator dependent on forest cover rather than

other habitats, which differs from the results of previous studies

showing that forest cover is often thought to reduce pest abundance

(Medeiros et al., 2019; González et al., 2020). For example, forest

cover is negatively associated with a coffee leaf pest (Leucoptera

coffeella) (Medeiros et al., 2019) and fruit pest (coffee berry borer)

(Aristizábal and Metzger, 2018). This conflicting result may be

attributed to the differences in the ability of forests to control native

and invasive pests. For native pests, various factors exist in the

forests that limit their populations, such as competitors and natural

predators (Henri et al., 2015; Aristizábal and Metzger, 2018). For

invasive pests, however, there is not only a lack of competitors

and natural enemies, but also sufficient alternative food sources,

overwintering sites, and refuges provided by forests with high plant

diversity (Tscharntke et al., 2016; Gurr et al., 2017; Tamburini et al.,

2020). This is potentially conducive to the survival and reproduction

of invasive pests, thereby increasing the number of invasive pests

in agricultural land adjacent to forests. Similarly, in addition to

obtaining resources from surrounding forests, the associator can

better maintain populations by following the invasive pest, as shown

by the significant positive correlation between the abundance of the

invasive pest and the associator.

In contrast, configurational heterogeneity was negatively

correlated with invasive pest abundance. Both negative and positive

effects of landscape configuration on insects have been reported

in previous studies (Fahrig, 2017; Martin et al., 2019). For pests,

configurational heterogeneity with high edge density may reduce

crop cover available as a food resource, echoing the resource

concentration hypothesis (Tscharntke et al., 2016), while high edge

density resulting from fragmentation promoted pest transfer from

crop patches to surrounding habitat due to dispersal effects (Martin

et al., 2019; Haan et al., 2020). Fragmentation increases new habitats

that are more suitable for pests to survive, as in the present study,

and rubber plantations are more suitable for B. dorsalis than mango

orchards, accelerating the outward spread of B. dorsalis, thereby

making configurational heterogeneity negatively related to this

invasive pest. However, the associator was insignificantly associated

with configurational heterogeneity, which may be attributed to the

insignificant differences in associator abundance across habitat types

(Figure 2B), that is, the number per unit area remained unchanged

regardless of configurational heterogeneity. This indicates that

species respond differently to landscape changes (Martin et al., 2019),

even though the two species are closely related.

Notably, compositional heterogeneity contributed less to invasive

pest abundance than configurational heterogeneity; however, the

opposite was true for the associator. Although landscape composition

with high forest cover promoted the invasive pest, invasive

pest overflow from forests would be buffered by configurational

heterogeneity with high edge density through dilution effects (Haan

et al., 2020), similar to that observed in other insects (Martin

et al., 2019; Souza et al., 2020). Other habitats (e.g., areca and

banana) did not differ significantly frommango orchards in attracting

invasive pests (Figure 2A), but some habitats (e.g., rubber) were more

suitable for the survival of invasive pests than mango orchards. This

also facilitates the escape of invasive pests in response to strong

disturbances in mango orchards due to habitat fragmentation with

high edge density, which provides a longer common boundary (Souza

et al., 2020; Moore et al., 2022). These factors make configurational

heterogeneity more important for invasive pests, supporting the

habitat diversity hypothesis (MacDonald et al., 2018). In contrast,

compositional heterogeneity had a greater effect on the associator,

mainly because it was positively affected by forest cover, whereas

edge density showed limited effects. However, at the landscape level,

the relative effects of landscape variables on specific species remain

elusive, as species respond to landscape heterogeneity, which varies

widely across diverse landscape contexts (Martin et al., 2019; Moore

et al., 2022).

4.2. E�ects of spatial distance and combined
scales

The results showed that the strength and direction of

the relationships between compositional and configurational

heterogeneity with the invasive pest and its associator did not

vary with spatial distance. Some studies suggest that the effects

of landscape variables on species vary with spatial distance scales

(Aristizábal and Metzger, 2018; Redlich et al., 2018), which
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TABLE 2 Multiple linear regression screening of landscape heterogeneity variables explaining species variation integrating spatial coupled and decoupled.

Response variable Predictor variable t p Standardized coe�cient

B. dorsalis Intercept 8.948 <0.05 –

Edge density (coupled-1 km) −2.312 <0.05 −0.168

Forest% (coupled-0.5 km) 1.782 0.076 0.129

D. melanogaster Intercept 1.953 0.052 –

Forest% (coupled-1 km) 5.780 <0.05 0.454

Edge density (coupled-1 km) 3.461 <0.05 0.262

Mango% (decoupled-1 km) 2.119 <0.05 0.126

contradicts our results. This may be due to differences between

species with different functional traits and dispersal abilities. Winged

insects (such as B. dorsalis and D. melanogaster) can travel faster and

farther than other insects because of their ability to fly (Miguet et al.,

2016; Zhang et al., 2021), and generalist pests (such as B. dorsalis)

spread farther than specialists because of extensive habitat adaptation

(Miguet et al., 2016; Pan et al., 2022). In particular, invasive pests

can survive in a variety of habitats and spread easily among patches

owing to the formation of patch connectivity. Furthermore, the

spatially coupled scales formed by small distances (e.g., 1 km) nesting

within a large distance (e.g., 1.5 km) make it difficult to separate

the effects from each other (Martin et al., 2016), thus making the

direction and intensity of landscape variable effects constant with

spatial distance.

Another novel finding of the present study is that spatially

combined (coupled and decoupled) scales did not change the

intensity and direction of landscape effects, which provides new

insights into the effects of landscapes on pests and associators.

Previous results have only shown that landscape structures control

pests at spatially coupled (Aristizábal and Metzger, 2018; Kheirodin

et al., 2020; Zhang et al., 2021), making it difficult to distinguish

the role of surrounding landscape heterogeneity at different spatial

distances from the sampled crop patches (Da Silva Carneiro et al.,

2022). The comparison of results in the present study revealed

that spatial coupling and decoupling did not change the landscape

effects, whether the spatial distance was 1 or 1.5 km, indicating that

farther and nearer distance habitat heterogeneity has similar effects

on species, at least for B. dorsalis and D. melanogaster. This may

be because species with a flexible diet and flight ability have an

efficient dispersal capability and adaptability regardless of habitat

type (Miguet et al., 2016; Zhang et al., 2021), especially for invasive

pests, there may also be a lack of natural enemies in geographic

space. Furthermore, habitat type and landscape variable changes were

limited after spatial decoupling compared to coupling, regardless

of distance.

4.3. Implications and prospects

The present findings have implications for habitat conservation

and biological control, especially in the context of landscape

heterogeneity due to global land-use change (Martin et al., 2019;

Zheng et al., 2019). Although the results showed that forest

cover was positively associated with an invasive pest, especially

at a distance scale of 0.5 km radius, reducing forests to control

invasive pests is not recommended. Most studies have found that

forests conserve biodiversity, including plants, arthropods, birds,

and mammals (Zhang et al., 2017; Aristizábal and Metzger, 2018;

González et al., 2020). The benefits of controlling invasive pests

by destroying forests are likely to be far less than those of

biodiversity conservation by protecting forests, not to mention

the fact that forests potentially provide many natural enemies to

control agricultural pests (Aristizábal andMetzger, 2018; Varela et al.,

2018; Martin et al., 2019). Habitat fragmentation had a negative

effect on the invasive pest. Maintaining the diversity of habitat

types in the surrounding landscape composition is beneficial for

the control of invasive pests and can be attempted in landscape

management at the 1 km landscape radius. In addition, the effects

of spatial scales were not evident in the present study, it is

suggested that spatial distance and combined scale should be

combined to elucidate landscape effects in broader regions (Medeiros

et al., 2019; Da Silva Carneiro et al., 2022), especially at spatially

decoupled, as scale effects may depend on landscape contexts

and species functional groups (Martin et al., 2019; Haan et al.,

2020).

Pests are not only regulated by landscapes but also affected by

natural enemies (Kheirodin et al., 2020; Zhang et al., 2021), which

are thought to be closely related to compositional and configurational

heterogeneity (Tscharntke et al., 2016; Martin et al., 2019; Kheirodin

et al., 2020). Although we used a pest sampling method known

to trap parasitic natural enemies (Böckmann et al., 2015), we did

not capture parasitoids associated with the invasive pest that have

been reported (Liu et al., 2019). It is still necessary to explore the

presence or absence of other natural enemies associated with invasive

pests and their responses to landscape heterogeneity at multiple

spatial scales, which is important for unraveling the mechanisms

of landscapes controlling invasive pests. Moreover, the effects of

invasive pests on crops need to be assessed in detail, such as

fruit damage rates and economic losses to smallholders, which are

directly related to policymaking. Taken together, we suggest that

a cascading framework of landscape structures, natural predators,

invasive pests, and crop loss should be constructed to address the

possible impacts of land-use change on sustainable agriculture in

the future.

5. Conclusions

Landscape compositional heterogeneity with high forest cover

was positively related to an invasive pest and its associator, whereas
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the negative effect of configurational heterogeneity on the invasive

pest mainly depended on edge density. The relative effect of

compositional heterogeneity on the invasive pest was lower than

that of configurational heterogeneity, but the opposite was true for

the associator. The direction of the relationships between landscape

variables with the invasive pest and the associator did not change with

spatial distance and combined scales, nor did the strengths of these

relationships. Possible reasons for this are that species with wings

have a high dispersal ability and habitat adaptability, and habitat

types and landscape structure have limited variation at spatial scales.

We believe that maintaining appropriate landscape fragmentation

around crop patches is effective for inhibiting invasive pests, but

further elucidation of the relationships between landscape effects,

natural enemies, invasive pests, and ecological effects is necessary

for developing agricultural conservation strategies in the future.
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Bioactive volatile compounds from
Penicillium digitatum-infected
apples: Oviposition attractants for
yellow peach moth Conogethes
punctiferalis (Lepidoptera:
Crambidae)

Hong Gang Guo†, Shuang Zhen Miao†, Peng Peng Ai,
Min Zhao Zhang, Zhe Yan and Yan Li Du*

College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China),
Ministry of Agriculture and Rural A�airs of the People’s Republic of China, Beijing University of Agriculture,
Beijing, China

Introduction: Plant-associated microbes critically shape the dynamics of plant-
and insect-associated communities. In previous studies, we reported that the
yellow peach moth Conogethes punctiferalis (YPM) preferred to Penicillium
digitatum-infected apples (PDA) for oviposition. However, the underlying mechanisms
remains unclear.

Methods: In the present study, the behavioral and physiological experiments were
conducted to determine how P. digitatum a�ects the oviposition selection of mated
YPM females via altering host plant volatile organic compounds (VOCs).

Results: Mated YPM females were attracted to and laid more eggs on PDA than on
non-infected apples (NIA), mechanically damaged apples (MDA), and P. digitatum in
potato dextrose agar medium (PPD) in the oviposition selection experiments. Four-
arm olfactometer assays further confirmed that odors in PDA were responsible for
the attractiveness of mated YPM females. Further analyses showed that 38 VOCs
were collected and identified from all treatments by GC-MS, with five specific
VOCs (methyl 2-methylbutyrate, styrene, methyl caproate, butyl caprylate, and n-
tetradecane) emitting from PDA. A principal component analysis (PCA) based on
the absolute contents of 38 VOCs revealed a clear separation of PDA from NIA,
MDA, and PPD. Moreover, when P. digitatum-induced specific VOCs were added to
apples in individual or synthetic blends, there was a significantly higher percentage
of mated YPM females to apples with individual or synthetic blends consisting of
methyl 2-methylbutyrate, butyl caprylate, or n-tetradecane in Y-tube olfactometer
experiments, suggesting that these three specific VOCs acted as predominant
olfactory signals for mated YPM females to PDA.

Discussion: Taken together, the microbe P. digitatum was an important driver of the
interactions between YPMs and host plants by altering plant volatiles. These findings
may form the basis for developing attractant baits for field trapping YPMs in the future.

KEYWORDS

Conogethes punctiferalis, Penicillium digitatum, plant-microbe-insect interactions, chemical
communication, host plant volatile organic compounds
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Introduction

Plant-associated microbes are widely reported as important but
overlooked drivers of host plant-herbivorous insect interactions,
either direct effects of plant-associated microbes on herbivorous
insects via the ingestion of microbes and/or microbial metabolites or
indirect effects of plant-associated microbes via altering the host plant
biochemistry (Eberl et al., 2018, 2019, 2020). The impacts of plant-
associated microbes on herbivorous insects could further cascade up
and down multiple trophic levels in the arthropod community at
spatial scales ranging from patterns within single host plants to entire
landscapes (Tack and Dicke, 2013). Consequently, it is meaningful to
investigate tripartite interactions among plant-associated microbes,
host plants, and herbivorous insects for improving our knowledge
on the ecology and evolution of plant-microbe-insect interactions
and designing more effective management strategies to control
herbivorous insects in agroecosystems.

Plant-associated microbes exhibit diverse effects on the
herbivorous insects’ foraging behavior, such as the location and
selection of host plants, including detrimental, beneficial, and neutral
(Kopper et al., 2004; Witzgall et al., 2012). Furthermore, the changes
in host plant volatile organic compounds (VOCs) caused by plant-
associated microbes infection could be responsible for the alteration
of herbivorous insects’ foraging behavior (Groen et al., 2016; Rizvi
et al., 2016; Grunseich et al., 2019). For example, the bacteria on the
egg-surface, such as Providencia sp. and Klebsiella sp., increase the
relative content of β-caryophyllene in host plant VOCs, and result
in deterring the oviposition of Bactrocera dorsalis (Li et al., 2020).
Interestingly, a recent study shows that Lymantria dispar L. are
attracted to volatiles from rust spores (Melampsora laricipopulina)
(Eberl et al., 2018), suggesting that VOCs emitted by both host
plants and the microbes themselves are important for establishing
tripartite interactions among herbivorous insects, host plants, and
plant-associated microbes (Tasin et al., 2012; Fernandez-Conradi
et al., 2018). Our previous results also found that mated yellow
peach moth (Conogethes punctiferalis, YPM) females preferred to
Penicillium fungi-infected apples, including Penicillium sumatrense-
infected apples, Penicillium citrinum-infected apples, Penicillium
digitatum-infected apples, and the components and proportions
of apples’ VOCs were changed by Penicillium fungi-infection (Shi
et al., 2019; Guo et al., 2022). Furthermore, P. digitatum-infected
apples were more attraction to mated YPM females than other two
Penicillium fungi-infected apples, triggering us to explore which
components of VOCs in P. digitatum-infected apples or P. digitatum
itself were crucial for mediating the foraging preference of YPM
females to Penicillium-infected apples.

The YPM is a generalist herbivorous insect and a serious pest
in tropical and eastern Asia, and Australia. Damage caused by
the tunneling of YPM larvae into fruits results in serious loss of
apples, corns, chestnut, and other crops (Li et al., 2015; Du et al.,
2016). Recent efforts for controlling this pest have been focused on
modulating male behavior by sex pheromones (Xiao et al., 2012; Du
et al., 2014). However, the current strategies of interrupting their
normal mating with sex pheromones are useless for mated YPM
females. Other strategies, including plant-derived attractants and/or
repellents as allelochemicals that selectively manipulate the behavior
of YPM females, demand for the integrated pest management of
YPMs (Xiao et al., 2012; Luo and Honda, 2015a). P. digitatum,
an important and common phytopathogen of citrus fruits in the

postharvest period around the world, causes citrus green mold
disease with the deterioration and rotting of citrus fruits (Bhatta,
2022). Furthermore, the orange-originated P. digitatum fungus could
infect apple fruits with the typical symptom described in other
studies (Shi et al., 2019), suggesting the infection capacity of the
orange-originated P. digitatum fungus on apple fruits.

Therefore, further understanding the principle of chemical
ecology about the effects of plant-associated microbes on YPMs
might be meaningful for developing attractants based on bioactive
host plant VOCs to trap YPM females. Keeping the above in view, we
determined the effect of P. digitatum on the VOCs of apples, and the
cascading effects on the host preference of mated YPM females. Our
specific objectives were to determine (1) the oviposition selection and
behavioral responses of YPM females among the non-infected apples
(NIA), mechanically damaged apples (MDA), P. digitatum-infected
apples (PDA), and P. digitatum in potato dextrose agar medium
(PPD); (2) the differences of VOCs from NIA, MDA, PDA, as well as
PPD; (3) which VOCs were key components for affecting oviposition
behavior of YPMs.

Materials and methods

Insects

A colony of YPMs was established and had been maintained
for about 25 generations on maize in climate incubators (RTOP-B,
Zhejiang Top Instrument Co., Ltd.) at 23± 1◦C, RH 75± 2%, 16L/8D
photoperiod, and 3, 500 lux light intensity (Guo et al., 2021). Adult
moths were provided with 5–8% honey solution after emergence.
Apples covered with gauze pieces were provided for the oviposition
of mated YPM females in the cage.

Fungal culture

The P. digitatum isolated from orange fruits were purified using
the traditional tissue separation method (Shi et al., 2019). The
symptomatic–asymptomatic junction tissue was cut into segments
(about 0.5 × 0.5 cm2), which was immersed completely into 2%
sodium hypochlorite for 3 min and flushed with sterilized water three
times, and then were immersed completely into 75% ethanol for
1 min and flushed with sterilized water for three times. Finally, the
segments were incubated onto potato dextrose agar (containing (g/L):
potato 200; dextrose 20; agar 18) medium in Petri dishes and placed in
a constant temperature incubator at 28◦C. After repeated purification
for four times, the pure culture of P. digitatum was obtained. Potato
dextrose agar medium (7 mm diameter) with fully grown P. digitatum
(PPD) was also prepared and incubated at 28◦C for 6 d before
behavioral assays.

Reparation of conidial suspension

The P. digitatum was cultured on potato dextrose agar at 25◦C
to prepare the conidial suspension. The potato dextrose agar culture
of P. digitatum bearing 7-d-old conidia was gently rinsed in 1.5 mL
sterilized distilled water and the density of conidial suspension was
adjusted to 8× 107 conidia/mL.
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Apple treatments

Non-infected apples
Apple (Malus pumila, Red fuji variety) fruits with uniform size

(7–9 cm diameter) and shape were bought from the supermarket
of Beijing University of Agriculture (Beijing, China) and were
stored at 4◦C in a refrigerator. Apple fruits with uniform size
were firstly sterilized using 75% alcohol for 1 min, and then 1%
sodium hypochlorite for 3 min, at last washed with sterilized
distilled water under the horizontal-laminar airflow clean bench for
further experiments.

Mechanically damaged apples
Apple fruits with uniform size were sterilized as NIA treatment.

Two holes (7 mm diameter) at the opposite sides of each apple were
punched and immediately stuffed using sterilized fungus-free potato
dextrose agar medium.

P. digitatum-infected apples
Apple fruits with uniform size were sterilized as NIA treatment.

Two holes were punched as MDA, and then stuffed using potato
dextrose agar medium with fully grown P. digitatum.

After treatments, each apple was placed into a sterilized plastic
box (25× 18× 12 cm) and incubated at 28◦C for 2, 4, 6, and 8 d before
used for following behavioral assays. Considering to the fact that the
apples infected by P. digitatum for 8 d or longer would become rotten
in the following days, the apples infected for 6 d were, therefore, used
in the later experiments.

Oviposition behavioral experiments

To test the effects of P. digitatum on the oviposition behavior of
mated YPM females, four treatments (NIA, MDA, PDA, and PPD)
were simultaneously offered in a wood-frame cage (35× 27× 25 cm)
with plastic gauzes on side walls to allow the oviposition of mated
YPM females. The experimental materials (NIA, MDA, PDA, and
PPD) were individually put into two opposite plastic bowls that were
punched holes in advance. The materials were renewed every day and
their positions were randomly changed. Ten newly emerged naive
females and 15 males (no exposure to natural or synthetic sources
of apples or fungi-infected apples) had been released into a cage to
copulate for 3–4 days before the oviposition selection experiments.
Each experiment was replicated 20 times with a total number of 200
females. The egg numbers on each sheet were counted separately and
the data were statistically treated on the basis of average number of
eggs by 10 females.

Four-arm olfactometer experiments

Four-arm olfactometer was used to test two bioassay experiments
about the behavioral responses of mated YPM females, one is to the
odors from NIA, MDA, PDA, and PPD, the other is to different
concentrations (10−1, 10−2, 10−3, and 10−4 (v/V)) of the same
specific VOCs from P. digitatum-infected apples. According to our
previous study, the four-arm olfactometer consists of four glass

chambers (2.5 cm diameter, 10.0 cm long), each with terminal end
coupling to a cap (3.0-cm-long arms, 2.0 cm diameter) and central
converging into a 10-cm-long common arm (2.5 cm diameter) (Shi
et al., 2019). Moistened and charcoal-filtered air was pumped through
each odor and then respectively went into one of the caps at a rate of
250 ml/min controlled by flow meters (LZYIA Instrument Co. Ltd,
China). One moth was introduced into the entrance of the common
arm of the olfactometer using a glass vial, and its behavioral response
was observed under a 25-W red light lamp. The test for each moth
lasted 3 min, and the behavioral response was classified as a choice
if the moth passed over 1/3 length of the arm associated with one
of the four odors and stayed there for more than 30 s. Conversely,
no-choice was assigned if the test moth remained in the common
arm for 3 min. The position of the lateral chambers along with the
olfactometer was systematically exchanged after testing 2 moths to
avoid positional bias. The olfactometer was flushed following Du et al.
(2016). The moths used for test were allowed to acclimatize to the test
conditions for 2 h before the start of the test. 3- to 4-day-old mated
females were used and each individual moth was used only once. The
selection rate in the four-arm olfactometer experiment was defined
as the number of females that made a selection for the odor divided
by the total number of females that made a selection for any odors
offered simultaneously.

The experiment 1: the behavioral responses of mated YPM females
to the odors from NIA, MDA, PDA, and PPD. Three apples of
each treatment (NIA, MDA, PDA) and 4 pieces of PPD (diameter
7 mm) were placed into an oven bag (Reynolds Kitchens, Richmond,
VA, USA) respectively. Each oven bag was tightened and connected
with a Teflon tube to one of the caps of the four-arm olfactometer
for behavioral tests. A total of 211 individual mated YPM females
were tested.

The experiment 2: the behavioral responses of mated YPM
females to different concentrations of the five specific VOCs from P.
digitatum-infeced apples. For each VOC, four concentrations (10−1,
10−2, 10−3, and 10−4 (v/V)) were prepared with mineral oil as
solvent. And then, an aliquot of 10 µl test solution for each of the four
concentrations of the same compound was applied onto a 1 × 5 cm
filter paper, which was thereafter placed into one chamber of the four-
arm olfactometer for behavioral tests. Totally, 80 mated YPM females
(styrene), 86 mated YPM females (methyl 2-methylbutyrate), 80
mated YPM females (methyl caproate), 85 mated YPM females (butyl
caprylate), and 80 mated YPM females (n-tetradecane) were tested.

All chemicals (purities ≥ 95%) were purchased from commercial
companies, which methyl 2-methyl butyrate and styrene were from
J & K Chemical Ltd. (Shanghai, China), methyl caproate, butyl
caprylate, and n-tetradecane from TCI Development Co., Ltd.
(Shanghai, China).

VOCs collection and analysis

Five apples of each treatment (NIA, MDA, PDA) and
correspondingly similar size of PPD that were placed into a
48.2 × 59.6 cm oven bag respectively were used to collected VOCs
according to dynamic headspace collection method reported by Guo
et al. (2021).

The bag mouth was tightened with a twist tie around a glass
tube (6 mm diameter, 10 cm long) filled with 50 mg of Porapark Q
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adsorbent (80–100 mesh, Waters Corporation). The humidified and
purified air was pushed at a rate of 450 ml/min by a QC-1S pump
(Labor Protection Science Research Institute of Beijing) into the
bag through the Teflon tube and was pulled out through the glass
tube filled with Porapark Q adsorbent. VOCs were trapped by the
Porapark Q adsorbent when they passed through the glass tube.

After collection, the trapped VOCs were eluted using
chromatography-grade n-hexane (99.9%) and then were analyzed
using an Agilent 6,890 gas chromatograph (GC) coupled to an
Agilent 5,975 Mass Spectrometer (MS). The procedures for the
GC-MS analysis were the same as described in Du et al. (2016)
with the exceptions that the GC was equipped with a DB-5MS
column (60 m × 0.25 mm × 0.15 µm, Agilent, USA) rather than
a HP-5MS column (30 m × 0.25 mm × 0.25 µm) and the injector
temperature was 250◦C other than 210◦C. Following injection, the
column temperature was maintained at 37◦C for 6 min, followed by
an increase in temperature of 2◦C/min to 70◦C for 5 min, and then
an increase of 5◦C/min up to 200◦C, at last maintained at 200◦C
for 5 min. Compounds were tentatively identified by comparing
mass spectra with NIST Standard Reference Database 98 (Agilent
Technologies, Palo Alto, CA, USA). Compounds were quantified by
their total ion abundance relative to that of the internal standard
(n-nonyl acetate).

Electroantennogram assays

Five specific VOCs from PDA, including methyl 2-methyl
butyrate, styrene, methyl caproate, butyl caprylate, and n-tetradecane,
were chosen for electroantennogram (EAG) measurements. All
chemicals (purities ≥ 95%) were purchased from commercial
companies, which methyl 2-methyl butyrate and styrene were from
J & K Chemical Ltd. (Shanghai, China), methyl caproate, butyl
caprylate, and n-tetradecane from TCI Development Co., Ltd.
(Shanghai, China). Four concentrations [10−1, 10−2, 10−3, and 10−4

(v/V)] of five individual compounds were prepared as the four-arm
olfactometer experiment 2. The test solutions were stored at −20◦C
for further EAG analyses.

EAG recordings were performed on 3- to 4-day-old mated YPM
females that the moths at this stage were eggs-loading and sensitive
to signals used for oviposition location (Belmain et al., 2002). The
method of EAG recordings was the same as that described by Du
et al. (2016). Stimulus was delivered and tested in increasing doses
on the antennae of mated YPM females with mineral oil and n-
hexanol being used as control and standard stimuli, respectively. EAG
test was run for a variable number of replicates per day, and each
compound at each concentration was tested on 15 antennae. In each
test, the control and standard stimuli were applied subsequently after
four successive stimulations. Normalization was achieved by dividing
the peak EAG amplitude of the test puff with the average EAG
amplitude of the two nearest standard stimulations after subtracting
the amplitude recorded in response to the mineral oil.

Y-tube olfactometer experiments

The preference of mated YPM females to apples with or
without five specific VOCs (methyl 2-methylbutyrate, styrene, methyl

caproate, butyl caprylate, and n-tetradecane) from PDA was tested
using Y-tube olfactometer. For Y-tube olfactometer assays, apples
with and without five specific VOCs from PDA [the amount
was referred to the concentrations in fungi-infected apple fruits
(Supplementary Table S1)] were separately placed into the chambers
of the Y-tube. The test procedure was similar to that in our previous
study (Guo et al., 2022). Each individual moth was used only
once, and totally 80 mated female moths were tested for each
treatment. The selection rate in the Y-tube olfactometer experiment
was defined as the number of females that made a selection for
apples with exogenous compounds divided by the total number
of females that made a selection between apples with and without
exogenous compounds.

Statistics analyses

Data obtained from oviposition selection experiments, behavioral
assay in four-arm olfactometers, EAG tests, and the absolute content
of host plant VOCs were subjected to analysis of variance (ANOVA)
using Tukey-HSD test (P < 0.05). The data of Y-tube olfactometer
experiments were analyzed using non-parametric Chi-square analysis
(Females with no choice were excluded from statistical analyses,
P< 0.05). The quantification of VOCs measured as the absolute
content of each compound was analyzed using principal component
analysis (PCA) by the software program SIMCA P+ 11.0 (Umetrics
AB, Umeå, Sweden) (P < 0.05). All statistics except the PCA analysis
were performed using the SPSS16.0 statistical software. Graphs were
generated in the program of Graphpad Prism 9.0.

Results

Oviposition selection of YPMs among NIA,
MDA, PDA, and PPD

In order to assess the effects of P. digitatum on the oviposition
selection of mated YPM females, the apples infected with P. digitatum
for 2, 4, 6, and 8 d were simultaneously provided to allow the
oviposition selection of mated YPM females. The results showed that
the number of eggs on the 8d-PDA was significantly higher than those
on the 2d- and 4d-PDA, and was larger (but not significant) than
that on the 6d-PDA (F3, 79 = 11.699, P < 0.01; Figure 1A). When
NIA, MDA, PDA, and PPD were simultaneously offered in a cage to
allow for oviposition, the average number of eggs laid by 10 mated
YPM females (173.2) was significantly higher on PDA than those on
MDA (22.3), NIA (22.2), and PPD (5.7) (F3, 79 = 111.413, P < 0.01;
Figure 1B), respectively.

Selection behavior of YPMs among odors of
NIA, MDA, PDA, and PPD

The behavioral responses of mated YPM females were tested in a
four-arm olfactometer. The selection rate of mated YPM females to
the odor of PDA (42.03%) was significantly higher than those to the
odor of NIA (17.91%), the odor of MDA (24.17%), and the odor of
PPD (15.89%) (F 3,19 = 18.948, P < 0.01; Figure 1C), suggesting that
mated YPM females preferred to the odor of PDA.
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FIGURE 1

The selection behavior of mated YPM females. (A) The average egg numbers of mated YPM females on P. digitatum-infected apples among di�erent
infection time (2, 4, 6, and 8 d, respectively). It was repeated five times. (B) The average egg numbers of mated YPM females among PPD, NIA, MDA, and
PDA. It was repeated five times. (C) The selection rates of four-arm olfactometer experiments among the odors from PPD, NIA, MDA, and PDA. A total of
211 mated YPM females were tested for four-arm olfactometer experiments. Di�erent letters indicated significant di�erence among di�erent treatments
(Tukey-HSD test after ANOVA, P < 0.05). Non-infected apples (NIA), Mechanically damaged apples (MDA), P. digitatum-infected apples (PDA), and P.
digitatum in potato dextrose agar medium (PPD).

VOCs profiles

In total, 38 volatile compounds were detected from the emissions
of NIA, MDA, PDA, and PPD, including 24 compounds in NIA,
22 compounds in MDA, 24 compounds in PDA, and 1 compound
in PPD (Supplementary Figure S1; Table 1). The results showed that
α-farnesene was the most abundant compound in NIA, MDA, and
PDA. Compared with MDA and NIA, five compounds, including
methyl 2-methylbutyrate, styrene, methyl caproate, butyl caprylate,
and n-tetradecane, were specifically detected in PDA. Only one
compound, ethyl butyrate, was found in PPD (Table 1).

A principal component analysis (PCA) based on the absolute
content of the 38 compounds was then performed to determine the
major sources of variations in the four treatments (NIA, MDA, PDA,
and PPD). The biplot depicted by graphical PCA expounded the
first two principal components (PCs) with an explication of 70.61%
of the total variance in the four treatments. The first component
(PC1), which explained 50.68% of the total variance, was clearly
isolated NIA. The second component (PC2) accounted for 19.93%
of total variance (Figure 2A). Further analyses indicated that the
major loadings of PC1 were for n-butyl butyrate (-0.995), isoamyl 2-
methylbutyrate (−0.995), hexyl hexanoate (-0.989), amyl hexanoate
(-0.989) and major loadings of PC2 were for styrene (0.887), ethyl
octanoate (0.887), α-farnesene (0.868), ethyl caproate (0.865). And
then, PC scores were subjected to one-way ANOVA. The results
showed that NIA was significantly higher than PDA and MDA in PC1
scores, and PDA had the highest PC2 scores among four treatments
(Figures 2B, C).

EAG and behavioral responses of mated YPM
females to volatile compounds

Five specific VOCs emitted from PDA, including methyl 2-
methylbutyrate, styrene, methyl caproate, butyl caprylate, and n-
tetradecane, were selected for EAG and behavioral tests. Each of the
five synthetic compounds could trigger significant EAG responses

of mated YPM females, with dose-dependent decreasing from 10−1

to 10−4 (v/V) (Figure 3). Of which, the strongest EAG response
was elicited by methyl caproate at 10−1 (v/V) (EAG value = 1.314
µA) (Figure 3C), followed by methyl 2-methylbutyrate at 10−1 (v/V)
(EAG value = 0.995 µA) (Figure 3B) and butyl caprylate at 10−1

(v/V) (EAG value = 0.790 µA) (Figure 3D). The compound methyl
2-methylbutyrate at concentration of 10−2 (v/V) (EAG value= 0.620
µA) (Figure 3B) could trigger stronger EAG responses than styrene
at 10−1 (v/V) (EAG value = 0.602 µA) (Figure 3A) and, butyl
caprylate at 10−2 (v/V) (EAG value = 0.398 µA) (Figure 3D) and
styrene at 10−2 (v/V) (EAG value = 0.374 µA) (Figure 3A) both
trigger stronger EAG responses than n-tetradecane at 10−1(v/V)
(EAG value= 0.347 µA) (Figure 3E).

To further predict the optimal concentration for attraction,
the four-arm olfactometer was further used to determine the
simultaneous selection of C. punctiferalis mated females among
four concentrations [10−1, 10−2, 10−3, and 10−4 (v/V)] of each
same compound. The behavioral responses indicated that the five
individual compounds all showed the strongest attractiveness to the
mated YPM females at 10−2 (v/V) in the four-arm olfactometer
experiments (Figure 4). For styrene, the selection rates of mated
YPM females were 35.89% at 10−3 (v/V) and 39.56% at 10−2(v/V),
which was significantly higher than those of 14.19% at 10−4 (v/V)
and 10.35% at 10−1 (v/V) (Figure 4A). The selection rate of mated
YPM females was highest at 10−2 (v/V) (41.82%) among four
concentrations of methy1 2-methylbutyrate, followed by those at
10−1 (v/V) (25.58%) and 10−4 (v/V) (17.48%), and the lowest was at
10−3 (v/V) (15.13%) (Figure 4B). The selection rate of mated YPM
females was significantly higher at 10−2 (v/V) (34.24% of methyl
caproate and 36.97% of n-tetradecane) than those at 10−1 (v/V)
(13.64% of methyl caproate and 17.79% of n-tetradecane), while it
was intermediate at 10−3 (v/V) (24.72% of methyl caproate and
24.55% of n-tetradecane) and 10−4 (v/V) (27.39% of methyl caproate
and 20.69% of n-tetradecane) (Figures 4C, E). For butyl caprylate,
the selection rate of mated YPM females at 10−2 (v/V) (37.88%) was
the highest, followed by those at 10−3 (v/V) (24.24%), 10−4 (v/V)
(19.70%), and 10−1 (v/V) (16.67%) (Figure 4D).
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TABLE 1 VOCs were identifieda in headspace collections from four treatmentsb.

No. Compounds CAS Retention
time (min)

Relative content (%)c Absolute content (µg/µL)d

NIA MDA PDA PPD NIA MDA PDA PPD

1 Ethyl propionate 105-37-3 4.36 — 2.63± 1.173 — — — 2.75± 1.36 — —

2 n-Propyl acetate 109-60-4 4.43 — 0.361 — — — 0.39 — —

3 2-Methyl-1-butanol 137-32-6 5.10 — 0.94± 0.272 0.43± 0.113 — — 0.74± 0.01 0.58± 0.12 —

4 Methyl 2-methylbutyrate 868-57-5 6.34 — — 0.39± 0.104 — — — 0.56± 0.05 —

5 Ethyl butyrate 105-54-4 7.56 — 9.57± 2.193 2.68± 0.225 100.00± 4.173 — 10.58± 3.95b 3.94± 0.42ab 0.59± 0.08a

6 n-Propyl propionate 106-36-5 7.98 — 0.35± 0.052 — — — 0.42± 0.02 — —

7 n-Butyl acetate 123-86-4 8.20 2.63± 0.313 3.18± 0.473 1.01± 0.245 — 5.08± 1.05b 3.02± 0.25b 1.47± 0.40a —

8 Ethyl-2-methylbutyrate 7452-79-1 10.27 — 21.44± 2.453 13.86± 0.555 — — 21.87± 5.08 21.28± 3.17 —

9 2-Methybutyl acetate 624-41-9 12.21 9.34± 0.653 11.53± 1.753 5.17± 0.645 — 17.74± 2.14b 11.01± 1.19b 7.78± 1.39a —

10 Styrene 100-42-5 12.58 — — 2.08± 0.555 — — — 3.32± 1.06 —

11 n-Propyl butyrate 105-66-8 13.37 0.66± 0.113 0.32± 0.012 — — 1.29± 0.32 0.39± 0.03 — —

12 Butyl propionate 590-01-2 14.12 1.07± 0.273 0.36± 0.012 — — 2.11± 0.66 0.43± 0.05 — —

13 Amyl acetate 628-63-7 14.48 0.47± 0.032 0.65± 0.012 0.351 — 0.95± 0.14 0.79± 0.08 0.64 —

14 Methyl caproate 106-70-7 15.16 — — 0.44± 0.032 — — — 0.81± 0.05 —

15 Ethyl tiglate 5837-78-5 16.18 — 0.421 — — — 0.46 — —

16 Propyl 2-methylbutyrate 37064-20-3 16.72 0.68± 0.073 1.23± 0.363 0.96± 0.135 — 1.30± 0.21a 1.11± 0.09a 1.49± 0.32a —

17 n-Butyl butyrate 109-21-7 20.62 2.89± 0.433 — — — 5.59± 1.21 — — —

18 Ethyl caproate 123-66-0 20.79 0.35± 0.062 4.32± 0.943 5.74± 0.705 — 0.60± 0.10a 4.75± 2.90b 8.94± 1.80b —

19 Hexyl acetate 142-92-7 21.91 4.21± 0.613 3.71± 0.263 2.88± 0.195 — 8.15± 1.82a 3.85± 1.00a 4.28± 0.51a —

20 Butyl 2-methylbutyrate 15706-73-7 24.09 2.75± 0.453 1.16± 0.343 0.97± 0.115 — 5.30± 1.11b 1.05± 0.12a 1.41± 0.16a —

21 2-Methylbutyl butyrate 51115-64-1 25.60 0.53± 0.022 — — — 1.07± 0.13 — —

22 Propyl caproate 626-77-7 29.22 1.58± 0.043 — 0.48± 0.044 — 2.99± 0.25 — 0.81± 0.10 —

23 2-Methylbutyl 2-Methylbutyrate 2445-75-8 29.81 0.75± 0.093 — 0.55± 0.042 — 1.44± 0.24 — 0.97± 0.11 —

24 Hexyl propionate 2445-76-3 30.06 0.80± 0.203 — — — 1.58± 0.50 — —

25 Isoamyl 2-methylbutyrate 27625-35-0 32.14 0.37± 0.053 — — — 0.71± 0.13 — —

26 Hexyl isobutyrate 2349-07-7 32.73 0.27± 0.032 — — — 0.53± 0.00 — —

27 Butyl hexanoate 626-82-4 35.09 11.57± 0.343 0.96± 0.123 1.42± 0.225 — 22.00± 2.51b 0.94± 0.20a 1.99± 0.14a —

28 Ethyl octanoate 106-32-1 35.16 — 0.82± 0.173 1.63± 0.365 — 0.88± 0.33 2.86± 0.69 —
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FIGURE 2

Principal component analysis based on 38 compounds which were
obtained from NIA, MDA, PDA, and PPD. (A) The percentage of total
variance explained by the first two principal components (PCs). (B) The
overall distribution of PC1 scores within four treatments. (C) The
overall distribution of PC2 scores within four treatments. Di�erent
letters indicated significant di�erence among four treatments
(Tukey-HSD test after ANOVA, P < 0.05). The numbers in the graph
were the same as those in Table 1. Non-infected apples (NIA),
Mechanically damaged apples (MDA), P. digitatum-infected apples
(PDA), and P. digitatum in potato dextrose agar medium (PPD). The
VOCs of PDA were identified in five repetitions. The VOCs of NIA,
MDA, PPD were identified in three repetitions.

To address the critical synergist in attracting mated YPM
females to fungi-infected apples, the individual or mixed blends
of five specific VOCs were added onto the mechanically damaged
apples (MDA) respectively to test the behavioral responses, with
MDA as control (Figure 5; Supplementary Table S1). For individual
compounds, mated YPM females preferred to apples with methyl 2-
methylbutyrate (the selection rate of 66.25%, χ2

= 8.45, P = 0.004)
(Figure 5B), butyl caprylate (the selection rate of 61.25%, χ2

=

4.05, P = 0.044) (Figure 5D), and n-tetradecane (the selection rate
of 66.25%, χ2

= 8.45, P = 0.004) (Figure 5E). However, mated
YPM females had significant repellence to apples with styrene (the
selection rate of 37.5%, χ2

= 5.00, P = 0.025) (Figure 5A). For
mixed compounds, mated YPM females had significant preference
to apples with methyl 2-methylbutyrate and butyl caprylate (the
selection rate of 62.5%, χ2

= 5.00, P = 0.025) (Figure 5K), methyl
2-methylbutyrate and n-tetradecane (the selection rate of 63.75%,
χ2
= 6.05, P = 0.014) (Figure 5L), butyl caprylate and n-tetradecane

(the selection rate of 70%, χ2
= 12.8, P< 0.001) (Figure 5O), styrene,

methyl 2-methylbutyrate, and n-tetradecane (the selection rate of
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FIGURE 3

EAG responses of mated YPM females to five individual compounds. Bars represented mean ± SE (n = 15). Di�erent letters on the bars indicated
significant di�erence among the four concentrations of the same compounds (Tukey-HSD test after ANOVA, P < 0.05). (A) styrene, (B) methyl
2-methylbutyrate, (C) methyl caproate, (D) butyl caprylate, (E) n-tetradecane. Each compound at each concentration was tested on 15 antennae, and a
total of 300 antennae were tested for all treatments.

FIGURE 4

The selection rates of mated YPM females among the four concentrations [10−1, 10−2, 10−3, and 10−4 (v/V)] of the same compounds in four-arm
olfactometer. Di�erent letters on the bars indicated significant di�erence among the four concentrations of the same compounds (Tukey-HSD test after
ANOVA, P < 0.05). (A) styrene, (B) methyl 2-methylbutyrate, (C) methyl caproate, (D) butyl caprylate, (E) n-tetradecane. 80 mated YPM females (styrene),
86 mated YPM females (methyl 2-methylbutyrate), 80 mated YPM females (methyl caproate), 85 mated YPM females (butyl caprylate), and 80 mated YPM
females (n-tetradecane) were tested.

62.5%, χ2
= 5.00, P = 0.025) (Figure 5R), methyl 2-methylbutyrate,

methyl caproate, and butyl caprylate (the selection rate of 67.5%,
χ2
= 9.80, P= 0.002) (Figure 5V), styrene, methyl 2-methylbutyrate,

methyl caproate, and butyl caprylate (the selection rate of 61.25%,
χ2
= 4.05, P = 0.044) (Figure 5Z), methyl 2-methylbutyrate,

methyl caproate, butyl caprylate, and n-tetradecane (the selection
rate of 61.25%, χ2

= 4.05, P = 0.044) (Figure 5AD), styrene,
methyl 2-methylbutyrate, methyl caproate, butyl caprylate, and
n-tetradecane (the selection rate of 63.75%, χ2

= 6.05, P = 0.014)
(Figure 5AE).

Discussion

Plant-associated microbes and herbivorous insects often co-
occur on the same host plant. It has indicated that plant-associated
microbes have significantly cascading effects on host preference
of herbivorous insects via affecting host plant VOCs (Fernandez-
Conradi et al., 2018; Grunseich et al., 2019). In the present study,
P. digitatum infection changed the VOCs profile of apple fruits,
including five specific VOCs that were methyl 2-methylbutyrate,
styrene, methyl caproate, butyl caprylate, and n-tetradecane, and

consequently attracted the oviposition of YPM females. These
findings implied that the roles of plant-associated microbes should be
taken into account in the interactions between YPMs and host plants.

Plant associated microbes could alter the oviposition and foraging
behaviors of subsequent herbivorous insects. However, there are no
uniform effects of plant-associated microbes on insects’ behavior.
For example, Botrytis cinerea has an avoidance response of Lobesia
botrana for laying eggs on the grape plants (Tasin et al., 2012).
On the contrary, YPM females laid more eggs on PDA than on
NIA and MDA, as well as than on PPD in the current study.
Furthermore, the number of eggs laid by YPM females increased
along P. digitatum infection time. The positive effects of plant-
associated microbes on the preference of herbivorous insects for host
plants have also been reported in other studies (Cardoza et al., 2002,
2003), confirming the important roles of plant-associated microbes in
the host selection of herbivorous insects. Moreover, a meta-analysis of
1,113 case studies gathered from 101 primary papers suggests that the
concept of tripartite interactions among host plants, plant-associated
microbes, and herbivorous insects is dependent on microbes lifestyle
(biotrophic or necrotrophic pathogens), herbivorous insects feeding
guild (sap-sucking or chewing insects), and the spatial scale of
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FIGURE 5

Behavioral responses of mated YPM females to apples with and without compounds in Y-tube olfactometer. The bars represented the percentage of the
responding mated YPM females to apples with or without compounds. Stars indicated significant di�erence in Y-tube olfactometer assays using χ2 test
(*P < 0.05, **P < 0.01, ***P < 0.001). 1. Individual compound: (A) compound 1, (B) compound 2, (C) compound 3, (D) compound 4; (E) compound 5; 2.
compounds’ mixture: (F) compounds (1+5); (G) compounds (1+2); (H) compounds (1+4); (I) compounds (1+3); (J) compounds (2+3); (K) compounds
(2+4); (L) compounds (2+5); (M) compounds (3+4); (N) compounds (3+5); (O) compounds (4+5); 3. compounds’ mixture: (P) compounds (1+2+3); (Q)
compounds (1+2+4); (R) compounds (1+2+5); (S) compounds (1+3+4); (T) compounds (1+3+5); (U) compounds (1+4+5); (V) compounds (2+3+4);
(W) compounds (2+3+5); (X) compounds (2+4+5); (Y) compounds (3+4+5); 4. compounds’ mixture: (Z) compounds (1+2+3+4); (AA) compounds
(1+2+3+5); (AB) compounds (1+2+4+5); (AC) compounds (1+3+4+5); (AD) compounds (2+3+4+5); 5. compounds’ mixture: (AE) compounds
(1+2+3+4+5). Compound 1: styrene; Compound 2: methyl 2-methylbutyrate; Compound 3: methyl caproate; Compound 4: butyl caprylate; Compound
5: n-tetradecane. 80 mated YPM females were tested for each compound, and a total of 2,480 mated YPM females were tested for all compounds.

the interaction (local or distant) (Fernandez-Conradi et al., 2018),
suggesting that different factors remain to be explored in the overall
effects of P. digitatum on the performance and host preference of
YPMs in the further experiments.

Chemical communication is an ancient and ubiquitous channel
to mediate species interactions, and host plant VOCs is defined
as olfactory cues in host location, recognition and selection of
herbivorous insects. The YPM females were attracted to and laid
eggs on artificial substrates that released host plant odors (Luo and
Honda, 2015a,b; Du et al., 2016). In the present study, the VOCs
profile of PDA was significantly different from NIA, MDA and
PPD. Furthermore, mated YPM females had an obvious preference
for PDA odors to NIA, MDA, and PPD odors in the four-arm
olfactometer, which was not only in line with the oviposition
preference of YPM females for PDA, but also further indicated the
potential role of host plant VOCs for the preference of YPM females.
Moreover, our experiments revealed a clear separation between VOC
profiles of PDA (including five P. digitatum-induced specific VOCs)
vs. MDA or NIA via PCA analysis, implying that these specific VOCs
could be served as signals for the oviposition and foraging behaviors
of YPMs to PDA. These results are agree with recent studies that host
plant VOCs could be frequently altered by plant-associated microbes’
infection and consequently have impacts on the host selection of
herbivorous insects (Groen et al., 2016; Rizvi et al., 2016; Grunseich
et al., 2019). Thus, it is not uncommon for herbivorous insects to
employ fungi-induced kairomones for host location.

Some specific VOCs are emerged as attractants in the oviposition
and foraging behavior of herbivorous insects (Turlings and Erb,
2018). For example, styrene is reported to be a spoilage marker of
decayed apples after infection by Penicillium expansum and elicits
strong electrophysiological antennal activity for Ips typographus at
very low levels (Kim et al., 2018, 2019; Schiebe et al., 2019). As in our
study, styrene was specifically emitted in a relatively ample amount
from PDA and triggered significant EAG responses. However,

mated YPM females showed obvious repellence to the styrene-
supplemented apples in Y-tube olfactometer assay, which is the same
as a previous study that styrene significantly reduces pine weevils’
attraction to cut pieces of Scots pine twigs (Azeem et al., 2013).
Indeed, YPM females exhibited significant preference to apples with
three other P. digitatum-induced specific VOCs, including methyl 2-
methylbutyrate, butyl caprylate, and n-tetradecane, individually or
together, suggesting that it was the mixed blends, but not one specific
VOCs, that served as olfactory cues for the host orientation and
oviposition selection of YPM females to PDA. This is consistent with
the evidence that changes in the overall composition and relative
ratios of the host plant VOCs make plants co-infested by Nilaparvata
lugens (Stål) and Chilo suppressalis (Walker) unattractive to Anagrus
nilaparvatae females (Hu et al., 2020). One possible explanation is
that, compared with individual components, the quantitative as well
as qualitative differences in the blend of plant VOCs have a significant
effect on herbivorous insects’ behaviors (Bruce and Pickett, 2011).
Collectively, these P. digitatum induced specific VOCs functioned
together as olfactory cues for the interactions between YPM females
and apples.

In summary, a battery of experiments were carried out to gain
further insight into the hypothetical roles of the plant-associated
microbes (P. digitatum) in mediating the host plant location and
oviposition selection of YPMs via host plant VOCs. Current study
found that YPM females preferred to P. digitatum-infected apples for
oviposition in the oviposition behavioral experiments. Odors from
P. digitatum-infected apples were responsible for the attractiveness
of YPM females as demonstrated in the four-arm olfactometer
assay. Furthermore, three of five P. digitatum-induced specific
VOCs, including methyl 2-methylbutyrate, butyl caprylate, and n-
tetradecane, might serve as key olfactory cues for YPM females to
P. digitatum-infected apples via Y-tube olfactometer assay. These
findings shed light on the underlying mechanisms of the attraction
of YPMs by P. digitatum-infected apples, and might form the basis
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for the development of attractant formulations for field trapping
YPM moths. In the future, field experiments will be carried out to
prove the semiochemical roles of individuals as well as blends of
P. digitatum-infected apple volatiles in attracting YPMs.
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Introduction: The south American tomato pinworm (Tuta absoluta), an invasive insect

pest species, has established itself in more than 33 Chinese prefectures, where it

is mainly damaging tomato crops. Immediate e�orts have been initiated to find

strategies to control this pest. Studies have shown that biochar (BC) amendment to

soil can enhance plant growth and resistance to herbivory.

Methods: First, we quantified themorphological performance of tomato plants grown

in di�erent coconut bran and bamboo charcoal (v/v) combinations and selected the

most beneficial one. Then we checked the T. absoluta survival on the tomato plants

grown in the selected bamboo charcoal combination. Finally, we studied the leaf

metabolite accumulation and gene expression changes in tomato plants after growing

in the selected bamboo charcoal combination.

Results: We found that the 30:1 ratio of bamboo charcoal and coconut bran is

the most beneficial to tomato growth as its amendment to soil increased tomato

plant height, stem thickness, and chlorophyll content, whereas, the T. absoluta

survival decreased. The metabolome profiles of BC tomato leaves showed an

increased accumulation of flavonoids, terpenoids, and phenolic acids compared

to CK. Transcriptome sequencing resulted in the identification of 244 di�erentially

expressed genes. Most of the upregulated genes were associated with stress-

related hub proteins, flavonoid biosynthesis, MAPK and phytohormone signaling, and

terpenoid biosynthesis. Additionally, the expression ofmany genes related to signaling

and defense was changed in response to the bamboo charcoal amendment.

Discussion: We conclude that bamboo charcoal induces biosynthesis of flavonoids,

terpenoids, and phenolic acids, which improve plant growth and tolerance against

T. absoluta, thus reducing the survival of destructive pests.

KEYWORDS

flavonoids, terpenoids, resistance to insect-pest, South American tomato pinworm,

phytohormone signaling, LSU hub genes

1. Introduction

Tuta absoluta (South American tomato pinworm) was a newly invaded insect pest species in

Ili, Xinjiang, China in 2017, where it caused significant damage to tomato crops (Zhang et al.,

2020a,b). This pest originated in Peru, South America and severely damaged tomato crops in the

1950s. Now it has spread to more than 100 countries in South America, Europe, Africa, and Asia
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(Campos et al., 2017; Biondi et al., 2018; Mansour et al., 2018;

Han et al., 2019a). Since China is the largest producer of tomato

in the world (Ghimire et al., 2017), the rapid spread of T. absoluta

via fruit and seedling is threatening the Chinese tomato industry.

Additionally, the fact that it can also feed on other host plants is

alarming to local crop production. A recent survey reported that T.

absoluta was found in 269 sites in 33 prefectures and the infestation

percentage ranged from 78.1 to 100%, which is further alarming and

calls for strategies to control this pest.

Among the major control strategies adopted in other countries,

chemical control (use of organophosphates, pyrethroids, abamectin,

and other broad-range chemicals) remains the principal option to

control this invasive insect pest (Desneux et al., 2022). However,

this strategy causes severe damage to the environment as well as

public health. Furthermore, there are reports on the development

of resistance due to short generation time and high biotic potential

(Guedes et al., 2019). On the contrary, the biocontrol strategy of

using hemipteran mirids has been found to be the most promising

due to the ease of their establishment in tomato fields and the high

predation rate (Silva et al., 2016). Moreover, nearly 15 arthropod

species have been reported to prey on T. absoluta (Zappala et al.,

2013). However, such biocontrol strategies require rearing of the bio-

control agents on different scales, controlled testing on a domestic

scale, and official registration (Yazdanpanah et al., 2021). Among the

other strategies, the use of fungi-derived natural products and host

plant resistance are suitable from the environment as well as public

safety perspectives. Some studies have also reported the adaption

of combined approaches such as host plant resistance together with

selective insecticides and biocontrol agents (Wangari Nderitu et al.,

2020).

One of the non-chemical alternative methods is the use of

products derived from agricultural and other organic wastes such as

biochar. Biochar amendment to soil has shown pathogen-suppressive

effects in a wide range of plant species against plant-pathogenic

bacteria, fungi, oomycetes, and nematodes (Poveda et al., 2021).

Moreover, the use of biochar amendment can improve plant growth

and resistance to herbivory by changing jasmonic acid (JA) levels

(Waqas et al., 2018). Studies on tomatoes have shown that biochar

application from different feedstocks enhanced plant growth and

resistance against Meloidogyne incognita (Arshad et al., 2020, 2021).

Biochar application can also reduce the reproductive potential of

the English grain aphid by activating the expression of defense-

related genes in wheat (Chen et al., 2019). Bamboo charcoal is

recognized as a regenerative biochar due to its cost-effectiveness

and environment friendliness (Kawakami et al., 2005). It has the

potential to improve plant growth by improving soil properties,

chlorophyll contents, photosynthesis rate, and biomass (Hua et al.,

2012). Moreover, its by-products have shown activities against insect

pests such as Tetrenchus cinnabarinus, Emposasca flavescens, and

Aphis medicagini (Wang et al., 2015). Thus, these reports indicate

that the use of bamboo charcoal can improve plant growth and may

provide/enhance tolerance against invading insect pests. Based on

these reports, we hypothesize that the addition of bamboo charcoal

to the soil (or growing substrate) may improve the growth of tomato

plants and induce metabolic responses and gene expression that

may increase resistance to T. absoluta infection. Indeed, various

abiotic factors could be manipulated to alter plant phenotypic traits,

which could in turn trigger bottom-up effects on insect herbivores

and even organisms from higher trophic levels (Han et al., 2022).

Much evidence has been obtained for T. absoluta management via

bottom-up effects (Han et al., 2019b).

The use of transcriptome sequencing and metabolome profiling

can help us identify the key metabolites and genes that are

accumulated or expressed, respectively, in tomato plants grown

in soil amended with bamboo charcoal. A similar strategy has

helped researchers identify genes and associated pathways such as

protein processing, plant-pathogen interaction, photosynthesis, and

signaling in response to different biotic stresses e.g., in pepper against

Fusarium wild (Zhu et al., 2021), in oat against oat-stem-rust (Li

et al., 2022), and in strawberry fruits against Botrytis cinerea (De

Tender et al., 2021). In this study, we used a combined metabolome

profiling and transcriptome sequencing approach to understand the

key changes in the accumulated metabolites and respective changes

in gene expression in leaves of tomato plants grown in coconut

bran amended with bamboo charcoal. We also studied if bamboo

charcoal amendment effects the survival of T. absoluta on tomato

plants. First, we quantified the morphological performance of tomato

plants grown in different coconut bran and bamboo charcoal (v/v)

combinations and selected the most beneficial one. Then we checked

the T. absoluta survival on the tomato plants grown in the selected

bamboo charcoal combination. Finally, we studied the leaf metabolite

accumulation and gene expression changes in tomato plants after

growing in the selected bamboo charcoal combination.

2. Materials and methods

2.1. Plant material and growth in bamboo
biochar

The tomato (Solanum lycopersicum L.) variety “Moneymaker”

was used as the plant material. The seeds were obtained from

Zhejiang Academy of Agricultural Sciences, China. Seeds were

surface sterilized and sown in square pots (7 cm wide and 9 cm deep)

filled with sterilized coconut bran in an insect-free greenhouse at

the experimental station of the Zhejiang Academy of Agricultural

Sciences. The day/night temperatures and relative humidity were

24 ± 1/20 ± 1◦C and 60 ± 5%. The experimental plants were not

exposed to any type of pesticides or herbicides. The experimental

plants (treated and CK) were supplemented with water-soluble

macro-element fertilizer (OMEX, 18-18-18 NPK) at 2 g per pot to

promote plant growth. When the seedlings reached two-leaf stage,

they were transferred into different combinations of the sterilized

coconut bran and bamboo charcoal v/v mixtures i.e., 10:1 (BC1),

30:1 (BC2), and 50:1 (BC3), whereas, 100% coconut bran was used

as control (CK). Each treatment was repeated three times with

fifteen plants per repetition (35 plants per treatment). The pots

were watered every 2 days. The physiological parameters i.e., plant

height and stem diameter were measured on the 10th and 20th

day after seedling transplanting. For each trait measurement, eleven

plants were randomly selected from each treatment. The means of

three replicates were compared by the least significant difference test

in Microsoft Excel
R©

2019 (www.microsoft.com). The most useful

mixture (v/v) of coconut bran and bamboo charcoal was selected.
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2.2. Insect feeding of BC-grown tomato
plants and survivorship of T. absoluta

The South American tomato pinworm (T. absoluta) population

was collected from Yili, Xinjiang, China in 2018, and was

continuously raised in an artificial climate chamber with temperature,

relative humidity, and light/dark period of 25 ± 1◦C, 60 ± 5%, and

16/8 h, respectively. Tomato plants reaching five-leaf stage were used

for experiments. Ten plants (six repeats for BC andCK each) were put

in 50× 50× 50 cm3 nylon gauze insect cages and the newly emerged

T. absoluta larvae were placed individually on each tomato plant for

12 days. In total, 120 newly emergedT. absoluta larvae were randomly

allocated to the two treatments (BC and CK). The individual larvae

on the tomato leaf were checked daily for development, and the

pupated larvae were recorded as alive. Survival rates were recorded

and statistically tested (p < 0.05) by using SPSS (version 26). The

probability of survival was determined by using a Log-Rank test and

the survival distributions of the T. absoluta on BC and CK plants were

compared (GraphPad Prism 9).

2.3. Metabolome analysis

2.3.1. Sample preparation and extraction
Healthy tomato leaf samples (in triplicate) were collected from

seedlings transplanted after 20 days. The sampled leaves were washed

with distilled water, immediately frozen in liquid nitrogen, and stored

in a −80◦C freezer. The leaf samples were freeze-dried by vacuum

freeze-dryer (Scientz-100F) and crushed using a mixer mill (MM

400, Retsch) with the help of zirconia beads for 1.5min at 30Hz.

The lyophilized powder (50mg) was then dissolved in 1.2mL of 70%

methanol solution, followed by vertexing for 30 s. The vertexing was

done six times every 30min. The mixture was then centrifuged at

12,000 rpm for 3min, the extracts were filtered through a 0.22µm

microfilter (SCAA 104, ANPEL, Shanghai, China), and analyzed

in UPLC-MS/MS.

2.3.2. UPLC conditions and ESI-Q TRAP-MS/MS
The extracts were analyzed using a UPLC-ESI-MS/MS system

(UPLC, SHIMADZU Nexera X2, https://www.shimadzu.com.cn/;

MS, Applied Biosystems 4,500 Q TRAP, Thermofisher, China).

The column was Agilent SB-C18 (1.8µm, 2.1mm ×100mm); The

mobile phase consisted of solvent A, pure water with 0.1% formic

acid, and solvent B, acetonitrile with 0.1% formic acid. For the

sample measurements, we used a gradient program with the starting

conditions of 95% A, 5% B. Within 9min, a linear gradient to

5% A, 95% B was programmed, and a composition of 5% A, 95%

B was kept for 1min. Afterwards, a composition of 95% A, 5.0%

B was adjusted within 1.1min and kept for 2.9min. The flow

velocity was set as 0.35mL per minute; the column oven was set to

40◦C; the injection volume was 4 µL. The effluent was alternatively

connected to an ESI-triple quadrupole-linear ion trap (QTRAP)-

MS.

The ESI source operation parameters were as follows: source

temperature 550◦C; ion spray voltage (IS) 5,500V (positive ion

mode)/-4,500V (negative ion mode); ion source gas I (GSI),

gas II (GSII), and the curtain gas (CUR) were set at 50,

60, and 25 psi, respectively; the collision-activated dissociation

(CAD) was high. Instrument tuning and mass calibration were

performed with 10 and 100 µmol/L polypropylene glycol solutions

in QQQ and LIT modes, respectively. QQQ scans were ac-

quired as MRM experiments with collision gas (nitrogen) set to

medium. DP (declustering potential) and CE (collision energy) for

individual MRM transitions was done with further DP and CE

optimization. A specific set of MRM transitions were monitored

for each period according to the metabolites eluted within

this period.

2.3.3. Bioinformatics analyses of metabolome data
Principal Component Analysis (PCA) was computed by using

the “prcomp” function in R (www.r-project.org). Pearson correlation

coefficients (PCC) between samples were calculated by the “cor”

function in R and presented as heatmaps.

The metabolites were considered differentially accumulated

if the variable importance in projection (VIP) was ≥ 1 and the

absolute Log2 FC was (|Log2 FC| ≥ 1.0). The VIP values were

extracted from OPLS-DA results, which were generated using the

R package MetaboAnalystR. The data was log-transformed and

mean centered before OPLS-DA. In order to avoid overfitting,

a permutation test (200 permutations) was performed. The

identified metabolites were annotated using the KEGG Compound

database (http://www.kegg.jp/kegg/compound/), and annotated

metabolites were then mapped to the KEGG Pathway database

(http://www.kegg.jp/kegg/pathway.html). Pathways to which the

differentially accumulated metabolites (DAMs) were mapped

were fed into MSEA (metabolite sets enrichment analysis),

and their significance was determined by the hypergeometric

test’s p-values.

2.4. Transcriptome sequencing

2.4.1. RNA extraction, library preparation, and
sequencing

Total RNAs were extracted from triplicate leaf samples by

using Spin Column Plant total RNA purification Kit (Sangon

Biotech, China). RNA integrity and purity were tested by agarose

gel electrophoresis and NanoPhotometer, respectively. RNA

concentration was measured using spectrophotometer and Qubit

2.0 Fluorometer. PolyA tail enrichment of RNAs was done through

Oligo (dT) magnetic beads to obtain mRNAs. The mRNAs were

fragmented by using fragmentation buffer, and were used to

synthesize cDNA using a kit (QuantiTech Reverse Transcription

Kit, Qiagen). The cDNAs were purified by AMPure XP beads,

A-tailed, and ligated with sequencing adapters. The fragment

size selection was done by using AMPure XP beads, and cDNA

libraries were obtained, quantified, and their insert size was

detected by 2,100 bioanalyzer (Agilent Technologies, California,

United States). q-PCR was used for quantification of an effective

library concentration i.e., >2 nM. After finding out the effective

library concentration, libraries were pooled, and sequenced on the

Illumina HiSeq platform.
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2.4.2. Bioinformatic analyses
For analyzing the sequencing data, first, we filtered the data and

obtained high-quality reads followed by calculating the sequencing

error rate and GC content distribution (Petrussa et al., 2013). Next,

the transcriptome sequencing data was compared with the reference

genome (Sola-num_lycopersicum.SL3.0) using HISAT2 (Wang et al.,

2020). Then, BLAST was used to compare the transcript sequences

with KEGG (Mukhtar et al., 2011) database. The transcript expression

was computed as Fragments Per Kilobase of transcript per Million

fragments mapped (FPKM). Finally, PCC and PCA were computed

in R.

Differential gene expression between CK and the treatment group

was computed as reported earlier (Liang et al., 2022) by using DESeq2

(Koch et al., 2016). The Benjamini Hochberg method was used to

perform multiple hypothesis test corrections on the probability (P-

value) to obtain false discovery rate (FDR). The screening criteria for

the differentially expressed genes (DEGs) were |log2 Fold Change| ≥

1 and FDR < 0.05. Venn diagrams were prepared in InteractiVenn

(Farhangi-Abriz and Torabian, 2018). Pathway annotation of the

DEGs was done in KEGG (https://www.genome.jp/kegg) (Mukhtar

et al., 2011). The enrichment of DEGs in different KEGG pathways

was done as reported earlier (Petrussa et al., 2013).

To validate the RNA sequencing-based expression, 15

tomato genes were selected for qRT-PCR analysis using the

iScript cDNA Synthesis Kit (BIO-RAD, Hercules, CA, USA)

and the iTaq Universal SYBR Green Supermix 50ml (BIO-

RAD, Hercules, CA, USA). cDNAs produced during the RNA

sequencing stage were used and four biological and three

technical replicates were included. The qRT-PCR was based

on specific primer pairs (Supplementary Table 1) designed

in Primer 3.0 software (http://bioinfo.ut.ee/primer3-0.4.0/)

(Ding et al., 2019). TUB gene was used as the reference

(Supplementary Table 1).

3. Results

3.1. Morphological performance of tomato
seedlings under di�erent bamboo charcoal
(v/v) ratios

Plant height of BC1 (coconut bran and bamboo charcoal v/v

10:1), BC2 (coconut bran and bamboo charcoal v/v 30:1), and

BC3 (coconut bran and bamboo charcoal v/v 50:1) treatments

increased by 11.2, 16.59, and 24.35%, respectively, compared to CK

10 days after the seedlings transplantation. Whereas, after 20 days

of transplanting, the plant height of tomato seedlings significantly

increased in BC2, but no significant difference was found in BC1

and BC3 compared to CK (Figures 1A, Bi, Supplementary Table 2A).

These results suggest that BC2 is suitable combination for tomato

seedling growth. After seedlings were transplanted for 10 days,

the stem thickness increased in BC3, however, in the case of BC1

and BC2, there was no significant increase as compared to CK.

While, stem thickness of the seedlings transplanted after 20 days

increased significantly in BC1 and BC2 but the increase was not

significant in BC3 (5.06 cm) compared to CK (4.72 cm) (Figure 1Bii,

Supplementary Table 2A). These observations further confirm the

plant height results that BC2 is the most suitable combination of

coconut bran and bamboo charcoal. Finally, the chlorophyll content

was significantly different in BC1 as compared to CK in seedlings

transplanted after 10 days, whereas the chlorophyll content of BC1

was obviously lower than that of other treatments in seedlings

transplanted after 20 days (Figure 1Biii, Supplementary Table 2A).

Thus, the plant height, stem thickness, and chlorophyll contents

indicate that BC2 is the best mixture that supports tomato seedling

growth. Also, these observations indicate that seedlings transplanted

after 20 days are a better choice to understand the effect of

BC on the growth and chlorophyll content as compared to CK

(Figure 1).

3.2. Feeding of T. absoluta on tomato
seedlings’ leaves grown in BC

The T. absoluta were fed on the tomato seedling leaves

grown in BC2 (thereafter BC) and CK. The probability of the

survival of T. absoluta significantly decreased with increase in

days as compared to CK (Figure 2A). Similarly, the survival rate

of the T. absoluta was significantly lower in BC as compared

to CK (Figure 2B). These observations indicate that BC

significantly improves the tolerance of tomato seedlings against

T. absoluta.

3.3. Metabolomic response of tomato
seedlings grown in bamboo charcoal

The metabolome profiles of BC and CK leaves could

detect 919 metabolites that were classified as alkaloids, amino

acids and derivatives, flavonoids, lignans and coumarins,

lipids, nucleotides and derivatives, organic acids, phenolic

acids, steroids, and terpenoids (Figure 3A). Principal

component analysis showed that BC and CK replicates tended

to group together (Figure 3B), whereas PCC was >0.93

(Figure 3C). Both the PCA and PCC analyses indicate that

the sampling was reliable. Almost all compound classes were

accumulated in higher quantities in BC as compared to CK

(Figure 3D).

3.4. Di�erential metabolome profiles of
tomato leaves grown in CK and BC

Based on the screening criteria i.e.., VIP ≥ 1 and |Log2 FC|

≥ 1.0, 39 metabolites were differentially accumulated between

BC and CK. These metabolites were classified as flavonoids,

amino acids and derivatives, alkaloids, lipids, nucleotides

and derivatives, terpenoids, and steroids (Figure 4A). Six

metabolites (Dihydrokaempferol-3-O-glucoside, Querce-tin-3-O-

glucosyl(1→ 4)rhamnoside-7-O-rutinoside, Querce-tin-3-O-(6"-O-

p-coumaroyl)sophoroside-7-O-rhamnoside, p-Coumaroyleuscaphic

acid, Dihy-drokaempferol-7-O-glucoside, and Neotigogenin-

glucose-glucose-glucose-glucoside) were exclusively detected in

BC. In addition to these six compounds, four other compounds

belonging to phenolic acid (1) and flavonoids (3) were highly up-

accumulated in BC as compared to CK (Figure 4B). Most of the other

up-accumulated metabolites in BC were classified as flavonoids,
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FIGURE 1

(A) Phenotypes of the tomato plants grown in three di�erent coconut bran and bamboo charcoal combinations. (Bi) Plant height (Bii), stem thickness,

and (Biii) chlorophyll content in tomato leaves grown in BC1 (10:1), BC2 (30:1), and BC3 (50:1). The bars show mean ± SEM (n = 11). Di�erent letter in

figure b indicates that di�erences in treatments are significant (p < 0.05).

terpenoids, phenolic acids, organic acids, and steroidal saponins

(Supplementary Table 3). These observations indicate that BC leaves

have higher flavonoid, terpenoid, organic acid, and phenolic acid

contents than CK, therefore, growing tomato in 30:1 v/v coconut

bran and bamboo charcoal induces their increased biosynthesis.

On the contrary, the top-10 most accumulated compounds in

CK were lipids (1), flavonoids (2), amino acids and derivatives (4),

nucleotides and derivatives (2), and alkaloids (1) (Figure 4B). Taken

together, higher accumulation of flavonoids, organic acids (3-Methyl-

2-oxopentanoic acid), phenolic acids, steroids (Neotigogenin-
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FIGURE 2

(A) Probability of survival of T. absoluta. (B) T. absoluta survival rate fed on BC and CK. CK (100% coconut bran), BC (30:1 v/v coconut bran and bamboo

charcoal). The bars show mean ± SEM (n = 6). *Indicates significant di�erences between the CK and BC (p < 0.05).

FIGURE 3

Metabolome analysis of BC (30:1 v/v coconut bran and bamboo charcoal) and CK (100% coconut bran) leaves. (A) Heatmap of the relative intensities of

the detected metabolites in CK vs. BC, (B) Sum of accumulated contents of metabolite classes in CK and BC, (C) Principal component analysis, and (D)

Pearson’s Correlation Coe�cient based on the relative metabolite intensities in CK vs. BC.
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FIGURE 4

Di�erential metabolome profile of tomato seedlings grown in CK (100% coconut bran) and BC (30:1 v/v coconut bran and bamboo charcoal). (A)

Heatmap of the z-scores and (B) top-10 up- and down accumulated metabolites in CK vs. BC.

glucose-glucose-glucose-glucoside), and terpenoids in BC can be

related with the decreased survival rate of T. absoluta.

3.5. Transcriptome response of tomato
seedlings grown in bamboo charcoal

3.5.1. Summary of transcriptome sequencing
Sequencing of six tomato leaf cDNA libraries resulted in 43.98

to 53.47 million raw reads. After filtering, 42.08–52.15 million clear

reads (41.38 Gb clean data) were obtained. The Q20%, Q30%, GC

content (%), and error rate (%) were 98.1, 94.227, 42.901, and

0.025%, respectively (Supplementary Table 4). Gene expression was

computed as FPKM (Supplementary Figure 1A). The FPKM-based

PCA analysis showed that PC1 and PC2 explained 28.41 and 23.98%

variation, respectively (Supplementary Figure 1B). The PCC between

the replicates of the same treatment and/or control was > 0.95,

indicating the reliability of the sampling (Supplementary Figure 1C).

A total of 26,046 transcripts were expressed, which could be

annotated in GO, KEGG, KOG, NR, Pfam, and SwissProt. The

datasets of the transcriptomes from our study were uploaded to NCBI

Sequence Read Archive with accession number PRJNA898145.

3.5.2. Di�erential gene expression profiles of
tomato leaves (CK vs. BC)

A total of 224 transcripts were differentially expressed between

CK and BC; 144 were downregulated, while 80 were upregulated in

BC. These transcripts were enriched in environmental information

processing (ABC transporters, MAPK signaling, and plant hormone

signal transduction), metabolism, and organismal systems (circadian

rhythm and plant-pathogen interaction) (Figures 5A, B). According

to GO classification, the highest number of DEGs were related

to cellular components (cellular anatomical entity), followed by

molecular processes (cellular processes andmetabolic processes), and

molecular function (catalytic activity and binding) (Figure 5C). The

qRT-PCR analysis of 15 randomly selected genes indicated similar

transcript levels as of RNA-seq results (Supplementary Figure 2).

3.5.2.1. Highly up and downregulated genes in BC-grown

tomato seedlings

The most upregulated gene in BC was RESPONSE TO

LOW SULFUR 2 (LSU2)/EN-HANCED DE-ETIOLATION 6

(Solyc03g096780.1), followed by LSU3 (Solyc03g096770.1), L-

ornithine N5-acetyltransferase (Solyc00g272810.1), acyl-lipid

Delta6-acetylenase/acyl-lipid (9-3)-desaturase (Solyc08g063090.2),

and Probable serine/threonine-protein kinase PBL2 (novel.1843).

Whereas, multicystatin (novel.2673), wound-induced

proteinase inhibitor (Solyc09g089500.3, Solyc09g089540.3, and

Solyc09g083445.1), proteinase inhibitor I-B-like (Solyc09g089530.3),

leucyl aminopeptidase (Solyc12g010030.2 and novel.2698), serine

protease inhibitor 5-like (Solyc03g098760.2), were downregulated in

BC as compared to CK (Supplementary Table 4).

3.5.2.2. Changes in the expressions of MAPK and plant

hormone signaling-related genes

Three LRR receptor-like serine/threonine-protein

kinase ERECTA (Solyc03g112580.3, Solyc05g015150.3, and

Solyc03g007050.3), and abscisic acid receptor PYR/PYL

(Solyc06g050500.2) enriched in MAPK signaling pathway—

plant were upregulated in BC as compared to CK. Whereas, a protein

phosphatase 2C (Solyc03g096670.3), a WRKY22 (Solyc03g007380.2),

and a TF MYC2 (Solyc10g009270.3) were downregulated in BC as

compared to CK. Other than MAPK signaling, we also observed

that phytohormone signaling-related genes were also differentially

expressed. Of these, protein brassinosteroid insensitive 1 (BRI1,

Solyc00g110870.3) and a DELLA protein (Solyc07g065270.1) were

up-regulated in BC as compared to CK, whereas, others including

xyloglu-can:xyloglucosyl transferase TCH4 and two gibberellin

receptor GID1 were downregulated in BC (Supplementary Table 4).
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FIGURE 5

(A) Heatmap of FPKM values of the di�erentially expressed genes in CK vs. BC. Enrichment of the di�erentially expressed genes in CK vs. BC in (B) KEGG

and (C) GO pathways.

These observations indicate that gibberellin, ABA, brassinosteroid,

and salicylic acid signaling play roles in better performance of the

BC-grown tomato seedlings as compared to CK.

By removing the log2 foldchange screening criteria, overall, there

were 705 genes associated with phytohormone signaling. All these

showed variable gene expressions. However, interesting observations

were that the brassinosteroid insensitive 1-associated receptor kinase

1 (BAK1) and most of the protein BRI1 were upregulated in BC

as compared to CK. Similarly, the MAPKKK17/18 and MAPKK

ANP1 transcripts were upregulated in BC as compared to CK

(Supplementary Table 5).

3.5.2.3. Changes in the expressions of flavonoid, terpenoid,

sugar-related genes

Three genes i.e., nerolidol synthase (Solyc10g005400.3),

anthocyanidin 3-O-glucoside 2”’-O-xylosyltransferase

(Solyc04g079050.2), and tropinone reductase 1 (Solyc06g083470.3)

were upregulated in BC as compared to CK, whereas several other

genes enriched in phenylpropanoid biosynthesis, flavonoid

biosynthesis, and stilbenoid, diarylheptanoid, and gingerol

biosynthesis were downregulated in BC as compared to CK. To

further find related genes, we searched the GO terms with annotation

as “terpenoids.” This resulted in the identification of five genes;

three of which were upregulated in BC as compared to CK including

cytochrome P450 family 76 subfamily A (Solyc09g098030.3),

solute carrier family 15 (pep-tide/histidine transporter), member

44624 (Solyc03g113250.3), and a typhasterol/6-deoxotyphasterol

2alpha-hydroxylase (Solyc00g170200.1). Whereas, two genes

were downregulated in BC as compared to CK; cis-zeatin O-

glucosyltransferase (Solyc11g007490.2) and strigolactone esterase

(Solyc00g170200.1). The GO terms associated with “polysaccharides”

included the basic endochitinase B, beta-amylase, and subtilisin-like

protease SBT1.9. These transcripts were downregulated in BC as

compared to CK, whereas, xyloglucan:xyloglucosyl transferases,

pectinesterase, and a Subtilisin-like protease SBT3 were upregulated

in BC as compared to CK (Supplementary Table 4).
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We also searched for genes involved in flavonoid biosynthesis

regardless of DEG filtering criteria and found 28 transcripts related

to flavonoid biosynthesis e.g., chalcone synthase, flavonoid 3′-

monooxygenase, shikimate O-hroxycinnamoyltransferase, flavanone

4-reductase, and flavonoid 3′,5′-hydroxylase had higher expressions

in BC as compared to CK. These changes are consistent with

the observed higher flavonoid accumulation in BC as compared

to CK. Moreover, 88 genes related to terpenoid biosynthesis or

terpenoid backbone biosynthesis showed higher expressions in BC

as compared to CK. Notably, we observed higher expressions

of genes annotated as 8-dydroxygeraniol dehydrogenase, (-)-

germacrene D synthase, premnaspirodiene oxygenase, (3S,6E)-

nerolidol synthase, geranylgeranyl diphosphate synthase, type II,

geranylgeranyltransferase type-1 subunit alpha, 4-coumarate-CoA

ligase, and squalene monooxygenase in BC as compared to CK. These

changes are also consistent with the metabolome profiles of BC and

CK. Similarly, 91 genes related to starch and sucrose biosynthesis

had higher expressions in BC as compared to CK. Most importantly,

we observed the higher expression of starch synthases, trehalose 6-

phosphate, endoglucanases, glucan endo-1,3-beta-glucosidases, and

trehalose 6-phosphate synthase/phosphatase. These expressions are

consistent with the higher accumulation of saccharides in BC as

compared to CK (Supplementary Table 5).

Taken together, the transcriptome data confirms that

metabolomic profiles are related to flavonoids, terpenoids, and

saccharides in BC.

3.5.2.4. Changes in expression of fatty acid and cutin,

suberine, and wax-related genes

Twelve DEGs were enriched in fatty acid-related pathways

i.e., fatty acid elongation, fatty acid biosynthesis, biosynthesis

of unsaturated fatty acids, fatty acid metabolism, and cutin,

suberin, and wax biosynthesis. Only four genes associated with

these pathways were upregulated. Of these, the 3-ketoacyl-CoA

synthase (Solyc05g009270.3), acyl-lipid Delta6-acetylenase/acyl-

lipid (9-3)-desaturase (Solyc08g063090.2), solute carrier family 15

(peptide/histidine transporter), member 44624 (Solyc01g096880.3),

and the anthocyanin 3-O-glucoside 2-oxylosytransferase were

up-regulated in BC as compared to CK (Supplementary Table 4).

Further exploration of genes with fatty acid biosynthesis related

annotations showed that 32 transcripts were increasingly expressed

in BC as compared to CK. These include 3-oxoacyl-[acyl-carrier

protein] reductase, long-chain acyl-CoA synthetase, acetyl-CoA

carboxylase, acyl-[acyl-carrier-protein] desaturase, 3-oxoacyl-[acyl-

carrier-protein] synthase II, and fat-ty acyl-ACP thioesterase B

(Supplementary Table 5).

3.5.2.5. Di�erential expression of sulfur metabolism,

glutathione metabolism, and solute carrier family genes in

CK vs. BC

Two genes annotated as adenylyl-sulfate reductase (glutathione)

enriched in sulfur metabolism were upregulated. Eight genes

annotated as solute carrier family members were differentially

ex-pressed. Of these, only solute carrier family 15 members

(Solyc03g113250.3 and Solyc01g096880.3) were upregulated in BC,

whereas all others including solute carrier family 31, 36, 39, and 50

members were downregulated in BC as compared to CK. Five genes

[glutathione S-transferase (GST, Solyc06g069045.1) and four leucyl

aminopeptidases (Solyc12g010020.2, Solyc12g010025.1, novel.2698,

and Solyc12g010030.2)] were downregulated in BC as compared to

CK. However, by considering genes with log2 foldchange lower than

1 and higher than −1, we observed that multiple GST transcripts, L-

ascorbate peroxidases, glutathione dehydrogenase/transferases, and

glucose-6-phosphate 1-dehydrogenases that were associated with

glutathione metabolism had higher FPKM values in BC as compared

to CK (Supplementary Tables 4, 5).

Regarding the changes in the expression of transcription factors

(TFs), of the 26,046 expressed genes, 1,850 were annotated as

TFs, which were classified as 91 TF families. Interestingly, 789

TFs showed upregulation; the most upregulated TFs belonged to

AP2/ERF, LOB, bHLH, GNAT, SET, SWI, B3, and WRKY families

(Supplementary Table 6).

4. Discussion

Biochar amendment in soil/substrate has shown positive effects

on plant defense against different pathogens, however, limited data

is available for insect pests (De Tender et al., 2021). The spread

of T. absoluta in mainland China (Zhang et al., 2021) calls for the

exploration of possible strategies to reduce tomato crop losses. Several

studies have also reported positive effects of bamboo charcoal on

plant growth and development. Our results that BC (30:1) caused

a significant increase in stem thickness and plant height indicate

that the usage of bamboo charcoal in a specific v/v ratio could

be beneficial for plant growth and development. This observation

is consistent with earlier reports that different types and ratios of

biochar have shown variations in their effects on plants (Chrysargyris

et al., 2020). Our results are also consistent with the earlier reports

that incorporation of bamboo charcoal in growth media increased

plant height in tea (Gao et al., 2012), stem diameter in Sapium

sebiferum (L.) and some temperate broad-leaved trees (Chen et al.,

2021), and chlorophyll content in turfgrass (Hua et al., 2012).

Thus, we conclude that bamboo charcoal has growth promoting

effects on tomato seedlings. In addition, the results that the survival

of T. absoluta significantly decreased in BC as compared to CK

indicate that its addition increases tomato plants’ resistance against

T. absoluta. Previously, soil amendment with biochar has shown to

have the ability to increase plant’s resistance to herbivory (Waqas

et al., 2018) and M. incognita infestation (Arshad et al., 2020, 2021).

The metabolomic and transcriptomic signatures that are related to

such changes in tolerance against T. absoluta are discussed below.

Biochar exerts beneficial effects on plant growth and

development. Such effects also cause changes in the biosynthesis of

plant primary and secondary metabolites. Earlier studies have shown

that the application of biochar causes metabolic shift in different

plant organs (Sun et al., 2017). Particularly, biochar application

caused significant increase in flavonoid, total sugars, and enzyme

activities in basil, and resulted in higher plant height, leaf length,

leaf number, and yield (Jabborova et al., 2021). Our data also suggest

that the use of bamboo charcoal can result in a higher accumulation

of flavonoids, phenolic acids, steroids, and organic acids in tomato

leaf (Figure 4). Flavonoids (Lattanzio et al., 2000), organic acids

(Morgunov et al., 2017), steroids (Janson et al., 2009) have been

implicated in both the plant growth and survival as well as defense

against insect pests. Therefore, the higher content of these secondary

metabolites is possibly related to the decreased T. absoluata survival

rate. One of the inducible chemical defense responses in plants

Frontiers in Sustainable FoodSystems 09 frontiersin.org
68

https://doi.org/10.3389/fsufs.2023.1101151
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Chen et al. 10.3389/fsufs.2023.1101151

against invading insect pests and herbivores is the synthesis of a wide

range of secondary metabolites including flavonoids, terpenoids,

and alkaloids (D’Esposito et al., 2021). Our data also indicated a

higher accumulation of flavanonols, flavonols, triterpenes, steroidal

saponins, phenolic acids, flavones, monoterpenoids, and phenolic

acids (Supplementary Table 3). These observations are consistent

with the report that biosynthesis of defensive secondary metabolites

increased in a partially resistant cherry tomato in response to T.

absoluta (D’Esposito et al., 2021). Therefore, from the literature

cited and our combined metabolome and transcriptome data,

we can conclude that the biosynthesis of these metabolites is a

defense response in tomato against T. absoluta and growing in

bamboo charcoal can enhance the accumulation of these metabolites

in tomatoes.

To further understand the changes in total relative intensities of

these metabolite classes in BC, we used the transcriptome sequencing

approach. The upregulation of nerolidol synthase transcripts in BC

is consistent with earlier report that it is an herbivore-inducible

terpene synthase gene in maize (Degenhardt and Gershenzon,

2000). Similar to this report, the higher expression level of the

nerolidol synthase transcripts in BC as compared to CK might

be a reason for the observed reduced T. absoluta survival rate

(Figure 2). Furthermore, the increased expression of other terpene

biosynthesis related genes, such as 8-dydroxygeraniol dehydrogenase,

(-)-germacrene D synthase, premnaspirodiene oxygenase, (3S,6E)-

nerolidol synthase, geranylgeranyl diphosphate synthase, type II,

geranylgeranyltransferase type-1 subunit alpha, 4-coumarate-CoA

ligase, and squalene monooxygenase, is also consistent with

higher terpenoid accumulation in BC (Supplementary Table 3).

Thus, it is understandable that bamboo charcoal induces higher

expression of terpenoid biosynthesis related genes that lead toward

higher terpenoid accumulation and reduced T. absoluta survival

on tomato leaves. Similarly, the higher flavonoids content and

respective upregulation of flavonoid-biosynthesis genes including

chalcone synthase, flavonoid 3’-monooxygenase, shikimate O-

hydroxycinnamoyltransferase, flavanone 4-reductase, and flavonoid

3′,5′-hydroxylase (Petrussa et al., 2013), indicate that bamboo

charcoal induces higher expression in flavonoids. This higher

flavonoid biosynthesis in turn enables tomato plants to tolerate T.

absoluta as they play defensive roles in other plant species against

insect pests (Lattanzio et al., 2000). Moreover, our data also indicated

that bamboo charcoal induces higher expression of starch and sucrose

biosynthesis, which is consistent with the earlier reports that biochar

amendment can improve the total sugar contents in plants (Sun et al.,

2017; Jabborova et al., 2021).

The higher expression of LSU transcripts indicates that bamboo

charcoal induces stress-related hub proteins. The LSU proteins

have been identified as immune-related hubs and play undefined

roles against pathogens (Mukhtar et al., 2011). Furthermore, LSU

proteins are involved in various protein-protein interactions with

the proteins functioning at different molecular levels (Mukhtar

et al., 2011). For example, reduced expressions of LSU genes in

Arabidopsis resulted in increased disease (Pseudomonas syringae

infection) susceptibility (Garcia-Molina et al., 2017). Therefore, it

is possible that LSU proteins perform similar functions in tomato

against T. absoluta, and that their expressions can be induced by

growing tomato in bamboo charcoal. The upregulation of genes such

as L-ornithine N5-acetyltransferase, acyl-lipid delta6-acetylenase,

and probable serine/threonine-protein kinase PBL2 in response

to bamboo charcoal amendment indicate that tomato plants may

resist T. absoluta by involving ornithine metabolism, fatty acid

biosynthesis, and PAMP-triggered immunity, respectively.

Phytohormones (ethylene, gibberellin, auxin, brassinosteroid,

jasmonates, and salicylic acid) are involved in plant defense

responses against insect attack and herbivory (Howe and Jander,

2008). Changes in their contents can activate signal transduction

upon insect feeding or plant tissue wounding (Koch et al., 2016).

The use of biochar has been shown to increase plant growth-

mediated hormones (Farhangi-Abriz and Torabian, 2018). Our

results that the expressions of BRI1, BAK1, DELLA, TCH4, MYC2,

PYR/PYL, PP2C, and GID1 genes changed in tomato seedlings

indicate that bamboo charcoal activates GA, ABA, brassinosteroid,

and JA signaling. However, since we did not detect differential

changes in phytohormone (or related metabolites), therefore, further

research is needed to understand how bamboo charcoal may

change the phytohormone profile of the tomato seedlings. Moreover,

the increase in expression of genes enriched in MAPK signaling

pathway such as ERECTA also suggests that bamboo charcoal can

initiate signaling cascades in tomato leaves that help it maintain

developmental integrity in biotic stress conditions. This proposition

is based on the known role of ERECTA in maintaining plant

phenotype and developmental integrity under different stress and

microenvironmental scenarios (Douglas et al., 2002). In addition

to phytohormone signaling, bamboo charcoal also regulated the

expression of oxidative stress related genes such as GST, which

plays roles against biotic and abiotic stresses in plants (Estévez

and Hernández, 2020). Finally, our results indicate that bamboo

charcoal activates the expression of different classes of TFs in tomato

leaves to help the plant survive under attack. Earlier studies on

different types of biochar have indicated that biochar-mediated plant

growth under biotic stress is accompanied by the regulation of the

expression of various TFs (Jaiswal et al., 2020). Different classes of

TFs have been implicated in resistance against insect-pests e.g., ERF

TFs enable tobacco plants to resist Myzus periscae and Spodoptera

litura attack (Wu et al., 2020). Similarly, brassinosteroid related TF

BIL1/BZR1 have been reported to help plant resist against insect

feeding. Therefore, it can be understood that bamboo charcoal

induced expression changes in a range of TF families, which in turn

enabled tomato plants grow better and resist T. absoluta infestation.

Data availability statement

The datasets presented in this study can be

found in online repositories. The names of the

repository/repositories and accession number(s) can be found

at: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA898145.

Author contributions

LC and XL: conceptualization. QZ and AJ: methodology. TC

and JW: software. JZ, JH, and ZZ: validation. MH: formal analysis.

SZ: investigation. XR: resources. WD: data curation. YL: writing—

original draft preparation. LC and XL: writing—review and editing.

LC: visualization. YH: supervision. XL: project administration. XL

and YL: funding acquisition. All authors have read and agreed to the

published version of the manuscript.

Frontiers in Sustainable FoodSystems 10 frontiersin.org
69

https://doi.org/10.3389/fsufs.2023.1101151
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA898145
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Chen et al. 10.3389/fsufs.2023.1101151

Funding

This research was funded by the Pioneer and Leading Goose

R&D Program of Zhejiang (Grant No. 2022C04016); the Joint

Funds of the National Natural Science Foundation of China

(Grant No. U22A20489); the National Natural Science Foundation

of China (Grant No. 32272524); the China Postdoctoral Science

Foundation (Grant No. 2021M702906); the Primary Research and

Development Plan of Lishui (Grant No. 2020ZDYF02); the Zhejiang

Provincial Natural Science Foundation of China under (Grant

No. LQ22C140004).

Acknowledgments

We would like to thank Prof. Pengjun Zhang from Ningbo

University for sharing the tomato seeds.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fsufs.2023.

1101151/full#supplementary-material

SUPPLEMENTARY FIGURE 1

(A) Overall distribution of gene expression, (B) Principal component analysis,

and (C) Pearson’s correlation coe�cient based on FPKM values of the

di�erentially expressed genes be-tween CK and BC tomato leaves.

SUPPLEMENTARY FIGURE 2

qRT-PCR results of 15 selected genes in tomato. ∗Indicates significant

di�erences be-tween the CK and BC (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

SUPPLEMENTARY TABLE 1

List of primers used for qRT-PCR analysis.

SUPPLEMENTARY TABLE 2

(A) Morphological performance of the tomato plants grown in three di�erent

coconut bran and bamboo charcoal combinations. (B) Probability of survival

of T. absoluta (raw data).

SUPPLEMENTARY TABLE 3

List of di�erentially accumulated metabolites in tomato leaves grown in CK

(100% coconut bran) and BC (30:1 v/v coconut bran and bamboo charcoal).

SUPPLEMENTARY TABLE 4

List of di�erentially expressed genes in tomato leaves grown in CK (100%

coconut bran) and BC (30:1 v/v coconut bran and bamboo charcoal).

SUPPLEMENTARY TABLE 5

List of genes associated with di�erent KEGG pathways that showed changes

in the ex-pression between leaves grown in CK (100% coconut bran) and BC

(30:1 v/v coconut bran and bamboo charcoal).

SUPPLEMENTARY TABLE 6

Expression changes in transcription factors between CK and BC tomato leaves

grown in CK (100% coconut bran) and BC (30:1 v/v coconut bran and bamboo

charcoal).
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Rhodopseudomonas palustris

PSB06 agent enhance pepper yield
and regulating the rhizosphere
microecological environment

Luyun Luo1†, Pei Wang2†, Diandong Wang1, Xiaobin Shi2,

Jingwen Zhang3, Zhixiang Zhao4, Jun Zeng5, Jingjing Liao1,

Zhuo Zhang2* and Yong Liu2*

1Yangtze Normal University, Chongqing, China, 2Hunan Plant Protection Institute, Hunan Academy of

Agricultural Sciences, Changsha, China, 3College of Plant Protection, Hunan Agricultural University,

Changsha, China, 4Hainan Key Laboratory for Control of Plant Diseases and Insect Pests, Research Center for

The Quality Safety and Standards of Agricultural Products in Hainan Academy of Agricultural Sciences, Plant

Protection Institute of Hainan Academy of Agricultural Sciences, Haikou, China, 5Institute of Applied

Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümq, China

The Rhodopseudomonas palustris (R. palustris) PSB06 can promote crop growth, as

it maybe regulates microbial communities in plant root soil, soil physicochemical

properties, thus creating a favorable habitat for the crop growth. However, there

are few studies on the yields and rhizosphere microbial community of R. palustris

PSB06 agent. In the study, the high-throughput sequencing was used to study

the changes of rhizosphere soil bacterial community after PSB06 treatment. The

results indicated R. palustris PSB06 agent increased the pepper yield by 33.45%

when compared to control group, with better e�ect than other treatments.

And it also significantly increased soil nitrogen concentration. R. palustris PSB06

agent had improved pepper rhizosphere bacterial α diversity and changed the

community structure. Acidobacteria, Proteobacteria, Actinomycetes and Firmicutes

were dominant phyla in all the pepper rhizosphere soil samples. The results showed

that soil bacterial community were significantly positively correlated with pH (R =

0.8537, P = 0.001) and total nitrogen (R = 0.4347, P = 0.003). The nine significantly

enriched OTU in R.palustris PSB06 treatment (PB) group belong to Nitrososphaera

(OTU_109,OTU_14,OTU_18,OTU_8), Lysobacter (OTU_2115,OTU_13),Arenimonas

(OTU_26), Luteimonas (OTU_49), and Ramlibacter (OTU_70) were significantly

positively correlated with the total yield of pepper (R > 0.5, P < 0.05). Overall, our

results provide a theoretical basis for studying the microbial regulation of R.palustris

PSB06 on rhizosphere soil.

KEYWORDS

Rhodopseudomonas palustris PSB06, yield, diversity, bacterial community, rhizosphere

Introduction

Microorganisms play an important role in the process of matter cycling and energy flow

in the ecosystem and maintain the stability of soil ecosystem function (Guo et al., 2021).

Soil microorganisms, phychemical properties and enzymes are important components of soil

ecosystem and key factors in regulating soil microecological environment and function. Soil

microorganisms can convert organic matter in soil into nutrients needed for plant growth

(Yin et al., 2013). Root exudates play an important role in biogeochemical cycling, regulation

of rhizosphere ecological processes, and plant growth and development. They can attract

beneficial microorganisms and affect the assembly of rhizosphere microbiota, thus improving
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the ability of plants to adapt to the environment (Bulgarelli

et al., 2012). Plant rhizosphere growth-promoting bacteria are a

kind of beneficial microorganisms that can stably survive in plant

rhizosphere and can promote growth and control soil-borne diseases.

After entering the rhizosphere environment, they colonize the root

surface by interacting with microorganisms in plants and soil to

promote crop growth and control plant diseases.

Photosynthetic bacteria (PSB) are a group of prokaryotes

that perform photosynthesis without oxygen production, widely

distributed in soil, paddy fields, swamps, lakes, rivers, oceans

and other places (Hohmann-Marriott and Blankenship, 2012).

Photosynthetic bacteria have a mutualistic symbiosis with plants.

They can significantly improve the available nutrients in soil by fixing

nitrogen and solubilizing phosphate, and it also are excellent growth

promoting bacteria in plant rhizosphere (Ndona et al., 2011; Wang

et al., 2019a). R. palustris that belongs to PSB, which is considered to

be the most metabolized bacteria. It can decompose various carbon

and nitrogen sources, while it is also an important source of growth

promoting bacteria in the rhizosphere of plants (Merugu et al., 2011;

Wong et al., 2014). R. palustris is also a promising biofertilizer,

which not only supplies plant nutrients through nitrogen fixation,

but also increases the utilization rate of synthetic nitrogen fertilizer,

thereby improving crop yield and soil fertility and promoting crop

growth (Kornochalert et al., 2014; Nunkaew et al., 2014). R. palustris

PS3 has a growth-promoting effect on a variety of crops (Wong

et al., 2014; Lee et al., 2016). During leaf growth development, R.

palustris PS3 inoculation can promote plant growth by enhancing

nitrate absorption (Hsu et al., 2021). Arashida et al. (2019) co-

cultured Bacillus subtilis and the purple non-sulfur bacterium R.

palustris in nitrogen-free medium, and observed diazotrophic growth

in the subculture. Foliar spraying of R. palustris can change the soil

microbial community of stevia to promote plant growth (Xu et al.,

2016). And R. palustris GJ-22 was proved that can also promote

crop growth by producing IAA (Su et al., 2017). At the same time,

studies on rice also showed that the inoculation of R. palustris could

promote the plant growth, increase the crop yield and change the

soil microbial community (Kantha et al., 2015; Luo et al., 2019).

Therefore, R. palustris can effectively reduce the use of chemical

fertilizers in agriculture, and has a broad application prospect in

reducing the application of chemical fertilizers.

As an effective biological agent, R. palustris PSB06 has been

registered as a pesticide. In this study, we compared the differences

of rhizosphere bacterial communities of R. palustris PSB06 and

other treatments in the field, analyzed the correlation between

bacterial communities and the yield and physicochemical properties

of pepper, and focused on the population differences of bacterial

communities. Our studies will afford a theoretical basis for reveal the

mechanism ofR. palustris PSB06 affecting pepper yield and regulating

rhizosphere environment.

Materials and methods

Experimental design

Field experiment was conducted in Maidi Village (112◦28′54′′E,

29◦29′52′′N), Yueshi Town, Huarong County, Yueyang City, Hunan

Province from March 15 to June 18 in 2018. The pepper variety

selected in this experiment was “Xiangyan 15”, which was grown in

large quantities in Hunan Province from Longping Seed Industry

Company. The strain Rhodopseudomonas palustris (R. palustris)

PSB06 (CCTCC No: M2012518) was used in the study with 107

cfu/g from Hunan Institute of Plant Protection. And the planting

soil had a pH = 7.74, soil matter = 15.1 mg·g−1, available K =

122.70 mg·g−1, available P = 43.08 mg·g−1, total N = 1328.69

mg·g−1, total P = 864.50 mg·g−1, and total K = 1818.61 mg·g−1.

The field experiment was carried out with five groups, one group is

the soil samples before the experiment, and other four groups are

the experimental treatment group. LB: soil samples before planting;

PB: R. palustris PSB06 fermentation broth; MB: Farmhouse manure

(2 ton·mu−1 of chicken manure); CB: Conventional fertilizer (51%

Sanning compound fertilizer, N: P2O5:K2O: 25:10:16:2 ton·mu−1,

Hubei Sanning Chemical Co., Ltd.) and CKB: Fresh water. Each

experimental treatment was repeated for seven times, with a total

of twenty-eight plots, and fifty pepper plants were planted in each

plot. The plots were arranged in completely random groups. The

pepper was treated with R. palustris PSB06 agent at 7-leaf stage, with

30mL per plant, and the root was irrigated once every 7 days for 3

times in total. After 30 days of field application, five-point sampling

method was used to randomly select sampling points to collect the

rhizosphere and surrounding soil of pepper. Soil samples of four

pepper plants were collected in each site and mixed as one repeated

soil sample.

Determination of pepper yield

Pepper fruits were collected since the first fruiting time after

treatment, and collected every ten days and three times in total. The

peppers were collected and weighed in each time, while the yield

was recorded.

Determination of soil physiochemical
properties

The pepper root surrounding soil was collected by shaking

root method and then air-dried. The physiochemical properties

of the air-dried soil samples were determined. The pH of the

manure samples was measured in the aqueous extract (soil:

deionized water = 1:2.5) using a multi-parameter water quality-

monitoring instrument. Total potassium (TK, measured according

to flame atomic absorption spectrophotometric method, GB 9836-

1998), total nitrogen (TN, measured according to the modified

Kjeldahl method, HJ/T 707-2014), total phosphorus (TP, measured

according to the sodium hydrogen carbonate solution-Mo-Sb anti

spectrophotometric method, HJ/T 704-2014), and organic matter

(OM, measured according to the method for determination of soil

organic matter, GB9834-1988) were measured by the Institute of Soil

Science, Chinese Academy of Sciences (Nanjing, China).

DNA extraction, PCR amplification and
high-throughput sequencing

The pepper rhizosphere soil samples were collected at the 7 day

after the third irrigation. The roots were removed by shaking off the
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root method, and the roots were placed in a conical flask containing

100mL 0.05 mol/L phosphoric acid buffer (pH = 7.0). Place four

plants per conical flask and shake the conical flask from side to side to

wash thoroughly the roots of the plants so that the soil is fully mixed

into the buffer. Remove the cleaned root blocks from the conical flask

with sterile forceps, then pour the remaining mixture into a 50mL

sterile plastic sterile centrifuge tube at a high speed of 13,000 rpm

for 3min to allow the soil to fully settle in the centrifuge tube and

discard the supernatant. Then 50mL centrifuge tube containing the

soil sample was placed in a freeze-drying apparatus for freeze-drying.

After freeze-drying, the soil samples were thoroughly ground with

a sterile mortar, filtered through an 80-mesh sieve, and stored in a

refrigerator at −20◦C. 0.5 g of each sample was accurately weighed

for DNA extraction that using the Fast DNA Spin Kit for Soil (MP

Biomedicals, USA) according to the Kit instructions.

The total DNA concentration of samples were determined

by NanoDrop 2000, with the A260/A280 value required

between 1.8 and 2.0. The genomic DNA concentration of all

samples was quantified to 30 ng·µL −1 before amplification.

Taking the total DNA of the sample as the template, Universal

primers 515F (5 ’-GTGCCAGCMGCCGCGGTAA-3’) and 806R

(5 ’-GGACTACHVGGGTWTCTAAT-3’) were used for PCR

amplification of bacterial 16S rDNA fragments with 6 bp barcode

(Wang et al., 2015). The PCR reaction system as follows: 5 µL

10×PCR buffer (containing 20 mmol·L−1 MgCl2), 4 µL dNTP (10

mmol·L−1), 1U Taq DNA polymerase, 1 µL DNA template, and

sterilized ddH2O supplemented to 50 µL. PCR reaction conditions:

pre-denaturation at 95◦C for 10min, after denaturation at 95◦C for

45 s, annealing at 55◦C for 1min, extension at 72◦C for 45 s, cycling

for 35 times. Finally, it was extended at 72◦C for 10min and stored

at 4◦C at constant temperature. The purified PCR products were sent

to Nanjing Puvekon Biotechnology Co., Ltd. (Nanjing, China) for

sequencing. The clean reads were deposited into the NCBI Sequence

Read Archive (SRA) database (Accession Number: PRJNA869895).

Data analysis

Raw sequence data reads were processed with an in-house

pipeline (http://mem.rcees.ac.cn:8080). In brief, a separate sample

was generated according to different barcodes and primers, allowing

for one mismatch. Paired-end reads with at least 30 bp overlap were

combined by the FLASH program (Magoč and Salzberg, 2011), and

filtered by Btrim program with Quality Score <20 (Kong, 2011).

Then we discarded the sequences with either an ambiguous base

or <200 bp. The UPARSE algorithms were used to detecte and

remove chimera sequences (Edgar, 2013). Low abundance OTUs

(≤1 count) were eliminated from the OTU table. The bacterial

representative sequences for each OTU were assigned to different

taxonomic groups using the RDP Classifier database (Silva database

132 version). The resampled OTU table, which was obtained by

resampled randomly with the lowest sequence number, was used

for the subsequent analysis. The α-diversity was assessed using

the Chao1, Observed_richness, Shannon and Inv_simpson index.

Weighted principal coordination analysis (Weighted_PCoA) based

on unifrac matrix, multi-response permutation procedures (MRPP),

analysis of similarities (ANOSIM), and Adonis were used to test

FIGURE 1

The total pepper yield and yield at di�erent time points. a–d indicate

the statistical diferences at P < 0.05 for one-way ANOVA.

the bacterial community differences among the groups. The mantel

test and canonical correspondence analysis (CCA) were used to

analyze the relationship between environmental factors and bacterial

communities. The key bacterial taxa responsible for discrimination

between two groups were identified using linear discriminant analysis

(LEfSe) with linear discriminant analysis (LDA)= 3.

Statistical analysis

The difference of α-diversity index and yield of pepper among

different treatments were evaluated by one-way ANOVA after

multiple comparisons based on Duncan algorithm using IBM

SPSS for Windows (v.22.0) software. The results were presented

as mean ± standard error (SE). The Student t test was used to

assessed the difference between two groups of soil physichemical

properties and relative abundance of top 30 genera, and statistical

significant level was set at P < 0.05 by the software Microsoft

Excel 2019. The spearman correlation coefficient was used to analyze

the correlations between the core genera of the four treatment

groups and yield, and the results were visualized using Cytoscape

3.6.0 software.

Results

E�ects of R. palustris PSB06 agent on pepper
yield in the field

The total yield and yield of each time points of pepper were

calculated, and the results were shown in Figure 1. The yield of

pepper in R. palustris PSB06 root-irrigation treatment (PB) and

farm manure treatment (MB) groups was significantly higher than

that in the control group when the pepper was collected at first

and second sampling time (P < 0.05), and there was no significant

difference between formal fertilizer treatment (CB) group and control

group (CKB). But the yield of pepper in the experimental group was

significantly higher than that in the control group at third sampling

time (P < 0.05). The total yield of pepper in PB, MB and CB groups
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FIGURE 2

The physicochemical properties of di�erent treatments. PB, R. palustris PSB06 root-irrigation treatment; MB, farm manure treatment; CB, formal fertilizer

treatment; CKB, control treatment; LB, pre-planting soil sample group, n = 7. “*”, “**”, “***” indicate significant di�erence between treatments and control

group, significance level at P < 0.05, P < 0.01, P < 0.001.

was significantly higher than that in control group (P < 0.05) and

highest in PB group. Compared with the control group, the total yield

of pepper in PB, MB and CB groups increased by 33.45, 28.44, and

11.03%, respectively.

E�ects of PSB06 agent on soil
physicochemical properties

Physiochemical properties of soil were measured before planting

and 30 days after treatment, and the results were shown in Figure 2.

Before planting pepper, the pH, total nitrogen (TN), available kalium

(AK) values of pre-planting soil sample group (LB) were the highest

and significantly higher than control group (CKB), but no significant

difference at organic matter (OM), total phosphorus (TP), available

phosphorus (AP) concentration. The pH of PB, MB and CB groups

were significantly lower than those of CKB group (P < 0.05), and the

pH of PB group was the lowest (pH= 6.9).

The contents of TN and AP in three experimental groups were

significantly higher than those in CKB group (1011.86 mg/kg) (P

< 0.05), the concentration of AP in PB group (56.78 mg/kg) was

the highest, and the concentration of AP in PB group was 49.88%

higher than control group. There was no significant difference

in OM concentration between treatment and control group. The

concentration of TP in CB and MB groups was significantly higher

than that in control group (P < 0.05). The AP concentration of CB

group was significantly higher than CKB, but there was no significant

difference between PB, MB groups and CKB group.
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TABLE 1 Summary of α diversity indices among di�erent treatments.

Treatment Chao1 Shannon Inv_Simpson Observed_richness

PB 2663.61± 124.8b 4.95± 0.04b 30.72± 1.99b 1360.57± 28.26b

MB 2385.3± 140.88b 4.26± 0.11c 17.62± 2.54b 1109.71± 50.03cd

CB 2592.23± 104.17b 4.7± 0.07b 27.87± 2.28b 1183.57± 31.29c

CKB 2421.51± 67.85b 4.19± 0.11c 17.73± 1.85b 979± 50.56d

LB 3772.52± 55.18a 6.49± 0.13a 247.44± 44.5a 2300.14± 72.02a

PB, R. palustris PSB06 root-irrigation treatment; MB, farm manure treatment; CB, formal fertilizer treatment; CKB, control treatment; LB, soil samples before transplant seedlings.

a, b, c, d indicate the statistical differences at P < 0.05 for one-way ANOVA. n= 7.

E�ects of R. palustris PSB06 agent on
rhizosphere bacterial community

A total of 1,648,432 high quality sequences were obtained from

the raw data of 35 soil samples in the field experiment after a

series of quality controls, with the sequence number ranging from

23,339 to 87,188. A total of 4861 OTU representative sequences

were obtained from each group of samples by clustering at 97%

similarity. The bacterial α diversity index of the pre-planting soil

sample group (LB) and four treatment groups were shown in Table 1.

The bacterial α-diversity index (Chao1, Observed_richness, Shannon,

and Inv_Simpson index) of the PB group was significantly higher

than other four treatment groups. The bacterial α-diversity index

(Observed_richness, Shannon index) of the PB and CB group was

significantly higher than control group (CKB) while no significant

difference between MB and CKB group. The bacterial α-diversity

index (Chao1 and Inv_Simpson index) of the PB and CB group

was higher than CKB group but no significant difference among

these groups.

A total of 4861 operational taxa (OTU) were identified from

35 soil samples in the field. The dominant phyla and class is

shown in Supplementary Figure S1A. The dominant phylum in

LB group were Proteobacteria (38.87%), Actinobacteria (11.68%),

Thaumarchaeota (7.48%), and Bacteroidetes (7.82%), respectively.

And Acidobacteria, Proteobacteria, Actinobacteria, and Firmicutes

all were dominant phyla in the four groups of pepper rhizosphere soil

samples. At the class level, the dominant populations were shown in

Supplementary Figure S1B, and all OTUs are divided into 80 class.

The dominant class in LB soil samples were α -proteobacteria,

β -proteobacteria, γ -proteobacteria and δ -proteobacteria,

Actinobacteria and Acidobacteria Gp6. The dominant class in the

four groups pepper rhizosphere soil samples were α -proteobacteria,

β -proteobacteria, γ -proteobacteria and Bacilli, respectively. At the

phylum identification level, the dominant bacterial groups in the

LB group (relative abundance greater than 4%) were Proteobacteria,

Actinobacteria, Thaumarchaeota, Bacteroidetes and Acidobacteria.

The dominant phyla in soil samples of PB group were Proteobacteria

(58.47%), Actinobacteria (12.18%), and Firmicutes (9.46%), and

Thaumarchaeota (Chigarchaea: 6.19%). The dominant phyla in

the soil samples of the MB group were Proteobacteria (71.79%),

Actinobacteria (11.56%), and Firmicutes (4.91%), while conventional

fertilizer treatment (CB) group were Proteobacteria (54.57%),

Actinobacteria (14.11%), Firmicutes (8.69%), and Bacteroidetes

(14.11%). 7.22%), and Acidobacteria (5.48%). And in the control

group (CKB), Proteobacteria (69.50%), Actinobacteria (12.60%), and

Firmicutes (5.95%) were the dominant phyla.

FIGURE 3

Principal coordinate analysis (PCoA) of bacterial communities among

di�erent treatments. PB, R. palustris PSB06 root-irrigation treatment;

MB, farm manure treatment; CB, formal fertilizer treatment; CKB,

control treatment; LB, soil samples before planting, n = 7.

At the genus level, the differences of the top 30 genera among

the five groups were analyzed, and the results were shown in

Supplementary Figure S2. The results showed that the relative

abundance of Flavobacterium, Gaiella, Gp6, Nitrososphaera,

Phycicoccus and Arenimonas in LB group was significantly higher

than that in CKB group but significantly lower in Aeromicrobium,

Bacillus, Ensifer, Enterobacter, Factibacillus, Lechevalieria, Lysobacter,

Nocardioides, Paenibacillus, Pseudomonas, Pseudoxanthomonas,

Rhizobium, Shinella, Sphingobium, Streptophyta, Streptomyces,

Variovorax. The relative abundance of Gaiella, Gp6, Nitrososphaera,

Ramlibacter, and Arenimonas in PB group was significantly higher

than that in control group while lower in Enterobacter, Nocardioides,

Pseudomonas, Rhizobium, and Streptophyta. The relative abundance

of Gaiella, Gp6 in MB group was significantly higher than that

in control group while lower in Marmoricola, Sphingomonas and

Streptophyta. The relative abundance of Agromyces, Arthrobacter,

Dyadobacter, Gaiella, Lysobacter, Nitrososphaera, Phycicoccus,

Pseudoxanthomonas, Ramlibacter and Variovorax in the CB group

was significantly higher than that in control group while lower in

Ensifer, Enterobacter, Lechevalieria, Rhizobium and Sphingomonas.

The differences of the rhizosphere soil bacterial community

structure among soil samples were compared, and the results were

shown in Figure 3 and Supplementary Table S1. Principal coordinate
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TABLE 2 The mantel test result between environmental factors and

bacterial communities based on Bray-Curtis and Jaccard distances.

Factors R.BC P.BC R.JC P.JC

pH 0.8537 0.001 0.727 0.001

AK 0.1049 0.134 0.0878 0.088

TN 0.4347 0.003 0.4122 0.001

TP −0.0372 0.617 −0.0527 0.771

AP −0.1018 0.884 −0.056 0.81

OM 0.07 0.26 0.1255 0.042

AK, available potassium; TN, total nitrogen; TP, total phosphorus; AP, available phosphorus;

OM, organic matter; BC, Bray-Curtis distance; JC, Jaccard distance; R.BC, correlation coefficient

value of BC; P.BC, significance value of BC; R.JC, correlation coefficient value of JC; P.JC,

significance value of JC.

analysis (PCoA) and dissimilarity analysis showed that there were

significant differences in the bacterial community structure between

the the pre-planting soil samples and the four pepper rhizosphere soil

samples. The PCoA results indicated that the bacterial communities

of the pre-planting soil samples and the four pepper rhizosphere soil

samples were significantly separated while the bacterial communities

of the four treatment groups were also significantly separated from

each other. PCoA1 and pCoA2 accounted for 77.03% of the total

variation. The results of dissimilarity analysis (MRPP, ANOSIM,

and ADONIS) based on Bray-Curtis matrix showed that there were

significant differences between LB and CKB group (P < 0.01), and

the three experimental groups (PB, MB, CB) were also significantly

different from CKB group (P < 0.05).

Correlation analysis of yield,
physicochemical properties and bacterial
community

The results showed that the total yield was correlated with pH

(R = −0.651, P < 0.001) and TK (R = −0.4237, P < 0.05). In

addition, TP was positively correlated with AP and TN, while pH

was negatively correlated with TP, TN, and AP. Mantel test analysis

was used to assess the relationship between bacterial community

structure and environmental factors (Table 2). The results showed

that soil bacterial community were significantly positively correlated

with pH (R = 0.8537, P = 0.001) and TN (R = 0.4347, P = 0.003)

(Supplementary Figure S3).

In addition, CCA was used to evaluate the soil bacterial

community and physiochemical properties among all groups, as

shown in Supplementary Figure S4. Soil OM, AP, pH, TN, and AP

were significantly correlated with the bacterial community structure

between the pre-planting soil samples group (LB) and four treatment

group samples, and CCA1 and CCA2 accounted for 86.53% of the

total variation. The Total (N, P), available (P, K), and pH were

significantly correlated with the soil community structure, explaining

54.60% of the total variation, which CCA1 and CCA2 explained 31.96

and 22.64% of the variation, respectively.

The LefSe method was used to screen significantly enriched OTU

in the three treatment groups and the control group, among which

12 OTU were enriched in the PB group, 19 OTU in the CB group

and 4 OTU in the MB group (Figure 4). And 9, 5, 2 enriched OTU

in the PB, CB, MB group were significantly positively correlated with

the total pepper yields (R > 0.5, P < 0.05), respectively (Figure 4A).

These OTU mainly belong to Thaumarchaeota, Proteobacteria,

Actinobacteria, and Verrucomicrobia. The significantly enriched

OTU in PB group belong to Nitrososphaera (OTU_109, OTU_14,

OTU_18, OTU_8), Lysobacter (OTU_2115, OTU_13), Arenimonas

(OTU_26), Luteimonas (OTU_49), and Ramlibacter (OTU_70). And

the significantly enriched OTU in CB group belong toNitrososphaera

(OTU_18, OTU_109), Lysobacter (OTU_13), Phycicoccus (OTU_31)

and Terrimicrobium (OTU_68) while Acinetobacter (OTU_55,

OTU_74) in the MB group.

Discussion

It is an environmentally friendly approach to improve the crop

yield and soil environment by introducing beneficial microbes to the

agriculture ecological system. Previous study also indicated that soil

microbial inoculants can enhanced nutrient uptake and stimulated

plant growth accumulation after whole-inoculation procedures

(Wang et al., 2019a). In our study, the total yield of pepper treated

with R. palustris PSB06, farm manure and conventional fertilizer was

significantly higher than control group (P < 0.05), which increased

by 33.45, 28.44, and 11.03%, respectively. And it indicated that R.

palustris PSB06 inoculations significantly increased pepper yield, with

better yield increase than other treatments. In previous studies, R.

palustris is also a promising biofertilizer, which improving crop yield

and soil fertility by supplies plant nutrients through nitrogen fixation

and increases the utilization rate of synthetic nitrogen fertilizer

(Kornochalert et al., 2014; Nunkaew et al., 2014).R. palustris PS3 has a

growth-promoting effect on a variety of crops (Wong et al., 2014; Lee

et al., 2016). In agricultural production, the application of R. palustris

PSB06 as a biofertilizer to reduce or replace the use of manure and

chemical fertilizers will effectively reduce the emission of pollutants

in the environment and the environmental safety problems caused by

the overuse of chemical fertilizers to a certain extent.

Soil microbes play an important role in agroecosystems by

mediating biogeochemical and nutrient transformation (Banerjee

et al., 2018; Zhu et al., 2018). The rhizosphere is the most active

area in the plant-microbe interactions system. Some studies have

evaluated the influences of different microbial inoculants on soil

properties and plant nutrient uptake under controlled conditions

(Qiao et al., 2019; Wang et al., 2019b, 2021a). The composition

and assembly process of rhizosphere bacterial communities may be

affected by different rhizosphere environments. In this study, the soil

pH of R. palustris PSB06, farm manure and conventional fertilizer

group was significantly lower than control group, and the total

nitrogen concentration was increased by 13.22, 12.92, and 18.19%,

respectively. Previous studies indicated that each environmental

variables may have different driving effects on community assembly

and composition (Lee et al., 2017; Wang et al., 2017; Zhao et al.,

2017). Conventional fertilizers and farm fertilizers contain a large

amount of nitrogen and phosphorus elements, which were directly

absorbed and utilized by plants when applied to the environment. R.

palustris PSB06, as a bacteria with nitrogen fixation function, it can

indirectly promote the pepper growth and development by producing

nutrients needed by plants through biological nitrogen fixation.

In addition, we also analyzed the association between rhizosphere

bacterial microbiota and the corresponding environmental factors.
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FIGURE 4

LefSe analysis between three treatment groups and the control group. (A) The enriched significantly OTU in the PB, CB, MB group were significantly

positively correlated with the total yield of pepper (R > 0.5, P < 0.05), respectively. (B) The significantly enriched OTU between CB and CK group. (C) The

significantly enriched OTU between PB and CK group. (D) The significantly enriched OTU between MB and CK group.

The results showed that soil bacterial community were significantly

positively correlated with pH (R = 0.8537, P = 0.001) and TN

(R = 0.4347, P = 0.003). It indicated that the soil TN and pH

significantly affected rhizosphere bacterial community composition,

and further demonstrated the function of nitrogen in microbial

community changes and pepper growth and development. The

changes in soil chemical factors due to R. palustris PSB06 inoculation,

such as nitrogen and pH, were the dominant factors explaining the

succession of the resident community. Kuramae et al. (2010) also

reported that soil pH significantly altered the microbial secondary

succession, the soil pH in inoculated treatments significantly differed

from that in non-inoculated soil. Wang et al. (2019a) found that the

phosphate-solubilizing bacteria possess the ability to produce organic

acid and release nutrient contents, thus leading to a decrease of the

soil pH and changes in the related nutrient contents. In the present

study, the concentration of TN were significantly increased but slight

difference among available nutrients compared to the control group

after the PSB06 inoculation application. Previous study also showed

that the addition of bacterial growth medium had a very limited

effect on soil available nutrients (Wang et al., 2021b). As a efficient

and ecofriendly soil management strategy, microbial inoculants are

applied for improving crop productivity and soil properties by

colonizing the rhizosphere and increasing nutrient availability to the

host plant (Yilmaz and Sönmez, 2017; Berg et al., 2020; Pagnani et al.,

2020).

Soil microorganisms are the main drivers of soil ecosystem

functioning (Zhong et al., 2020). However, the native soil microbial

community is sensitive to exogenous disturbances and natural

climate change (Hartmann et al., 2015; Suleiman et al., 2016).

Human disturbance of farmland soil can greatly affect crop

rhizosphere processes, especially rhizosphere microbial communities

(Mariotte et al., 2018). The importance of the root-associated

microbial community for plant growth and development has

been widely recognized (Wagner et al., 2014; Debenport et al.,

2015). Previous study suggested that invasion by a single strain

may change microbial community composition and function, and

diversity determines the outcome of biotic invasions (Mallon et al.,

2018). Mawarda et al. (2020) also indicated that the deliberate
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release of microbial inoculants may affect resident microbiome

interactions. Dissimilarities among rhizosphere bacterial community

compositions at different treatments indicate that changes in the

rhizosphere environment occur after factitious interference. In our

study, principal coordinates analysis (PCoA) demonstrated that

bacterial community structure between the experimental group and

control group after application, indicating that R. palustris PSB06

irrigation changed the bacterial community structure in rhizosphere

soil. In addtion, the α-diversity of rhizosphere bacterial community

at R. palustris PSB06 group was significantly higher than control

group, reflecting the application on the evolution of rhizosphere

bacterial community.

Soil-resident microbial communities are frequently subjected

to biotic disturbances, including beneficial microbial inoculants

and harmful pathogens, which can change microbial community

succession, composition, and diversity (Xiong et al., 2017; Lourenco

et al., 2018). In our study, we defined the taxonomic structure of

the pepper root microbiota, which mainly comprising Acidobacteria,

Proteobacteria, Actinomycetes, and Firmicutes. Acidobacteria and

Acidobacteria are the dominant phyla in rhizosphere soil and

widely distributed in soil around the world, indicating that

pepper rhizosphere bacteria also follow the general rule of

bacterial community establishment (Delgado-Baquerizo et al., 2018).

Acidobacteria can offers efficient carbon and nitrogen cycling from

soil organic matter, while Proteobacteria can release nutrients

from complexes of organo-mineral that facilitate plant growth

(Lugtenberg and Kamilova, 2009; Eilers et al., 2010). Actinobacteria

are generally defined as copiotrophic bacteria, while Acidobacteria

are oligotrophic bacteria (Dai et al., 2018). Compared with the control

group, PSB06 treatment group decreased the relative abundance of

Proteobacteria and increased the relative abundance of Firmicutes.

Wang et al. (2021b) found that the relative abundances of families

like Xanthomonadaceae significantly increased after PSB treatments

application, suggesting that the introduction of PSB changed specific

resident microbial populations. The microbial invasions frequently

usually start with a dominating microbial population and have

an impact on the native soil microbiome (Mallon et al., 2018).

Previous studies have attempted to evaluate the impacts on the

microbial community in the rhizosphere of the introduction of plant-

growth-promoting rhizobacteria (PGPR), it indicated that microbial

inoculants may alter the resident community composition by causing

resource competition, synergistic effects, and antagonistic effects

(Zhang et al., 2019; Zhuang et al., 2021). These changes in the

abundances of some taxa after the initial disturbance due tomicrobial

inoculation may be a result of competition for resources in the soil

(Krause et al., 2014).

Understanding the interactions among microbial taxa and

environmental factors can reveal the complex microbial community

structure and detect potential keystone species (Wang et al., 2015;

He et al., 2017). Therefore, we screened the enriched OTUs in

different treatments and analyzed their correlation with yield. The

results showed that the PB group have more positive OTUs than

other treatments and control group. The nine significantly enriched

OTU in PB group belong to Nitrososphaera (OTU_109, OTU_14,

OTU_18, OTU_8), Lysobacter (OTU_2115, OTU_13), Arenimonas

(OTU_26), Luteimonas (OTU_49), and Ramlibacter (OTU_70) were

significantly positively correlated with the total pepper yield (R

> 0.5, P < 0.05). The yield improvement may be the result of

microbial-crop interaction, our results indicated that cooperative

microbial interactions may play an critical role in soil microbial

assembly and may benefit plant growth and development. The

functional study of these bacteria is also the focus of our next

research. So, isolation and functional verification of rhizosphere

microbiota is necessary for future work, especially for potential

keystone species. It will help further our understanding of this

microecosystem in the crop rhizosphere.

Conclusions

R. palustris PSB06 treatment increased the pepper yield and

improved the rhizosphere soil microbial environment by increasing

the bacterial alpha diversity and changing the rhizosphere bacterial

structure, which created a more healthy soil environment for

pepper growth.
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Insects are key pollinators to ecosystem function, but much work remains to

determine the most cost-e�ective, reliable scheme to monitor them. Pan traps

(PT) and flight interception traps (FIT) are two of the most popular insect sampling

methods used. However, their relative sampling performance and cost is poorly

known for agroecosystems in China. We conducted a study across 18 oilseed rape

fields in smallholder farmland in Zhejiang, China using these two traps. Our results

showed that a single FIT had a greater sampling e�ciency (more individuals and

higher species richness) than a single PT, but controlling for cost, four PTs (the cost

for four PTs is close to one FIT) showed a greater sampling e�ciency than FITs. PTs

collected more small-bodied individuals while FITs and PTs did not significantly

di�er in terms of monitoring pollinator insects with large body size. When

exploring whether semi-natural habitat embedded in the agricultural landscape

a�ected these results, results from both trap types shows that semi-natural habitat

had a significant positive impact on wild pollinator diversity and rarefied species

richness. Future studies that examine the e�ects of agricultural landscape on

the wild pollinator community should combine PTs with netting or other active

methods for long-term wild pollinator monitoring strategies.

KEYWORDS

pan trap, window trap, flight interception trap, mass-flowering crop, smallholder

farmland, pollinator monitoring, pollinator diversity

Introduction

Insect pollinators provide important ecological services for crops globally (Klein et al.,

2007; Aizen et al., 2009), but recent reports of decline make their future uncertain (Potts

et al., 2010, 2016; Rhodes, 2018; LeBuhn and Vargas Luna, 2021). The decline of pollinators

in the agroecosystems may lead to yield losses in pollinator-dependent crops (Steffan-

Dewenter et al., 2005). To better conserve insect pollinators and maintain their pollination

services, it is necessary to monitor their population dynamics and community composition

using solid sampling methods (Howlett et al., 2009; Westerberg et al., 2021), as otherwise

recommendations and subsequent conservation actions could prove ineffective.
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Insect monitoring is generally done through a combination of

active and passive collectionmethods. Active methods are relatively

straightforward, involving either direct specimen collection or

observation, and are best paired with passive sampling to ensure

a full accounting of local biodiversity (Gibbs et al., 2017; Templ

et al., 2019; Portman et al., 2020; Prendergast et al., 2020). Passive

methods are more complicated, carried out through various types

of traps (Prendergast et al., 2020). Notably, it is exceedingly

important to test passive traps across settings, to understand their

biases and also ensure that they are used in a responsible manner

that does not potentially cause decline of local susceptible species

(Gibbs et al., 2017; Portman et al., 2020).

Various passive sampling traps have been developed for

pollinating insects, including pan trap (Cane et al., 2000; Westphal

et al., 2008) and flight interception trap (Howlett et al., 2009).

Pan traps (PTs) are colored containers filled with liquid that

attract flower-visiting insects (Cane et al., 2000; Westphal et al.,

2008); they have been widely applied in previous studies for

pollinator biodiversity monitoring due to their cost-effectiveness

(Zou et al., 2017; Wu et al., 2018; Larkin and Stanley, 2021; Shi

et al., 2022a). However, as an attractant-based sampling trap, they

have inherent biases (Cane et al., 2000). PT’s sampling performance

may be affected by surrounding flowering plants (Steven et al.,

2003; Baum and Wallen, 2011; Westerberg et al., 2021), especially

when deployed in mass-flowering crops, and tend to be biased

toward pollinators with similar traits, for instance, ground nesters

(Roulston et al., 2007), or those from the family Halictidae. Flight

interception traps (FIT) are non-attractant traps andmight result in

different catches from PTs (Lamarre et al., 2012; Mesa et al., 2013).

FITs are essentially transparent panes used to direct flying insects

into collection traps held below (Knuff et al., 2019; González et al.,

2020).

Some studies have previously compared PT and FIT

efficacy, but these are largely outside of pollinator-dependent

agroecosystems and have largely been conducted in just temperate

areas (Kehinde and Samways, 2012; Cunningham et al., 2013;

Rader et al., 2014). Additionally, sampling methods may be biased

toward pollinators with different functional traits (Prendergast

et al., 2020). Body size is important functional traits for pollinators

and larger pollinators have been found to provide superior

pollination services (Huda et al., 2015; Jauker et al., 2016). While

some studies have explored the impacts of body size for trapping

(McCravy et al., 2019; Krahner et al., 2021; Thompson et al., 2021),

PTs and FITs have yet to be explicitly compared as such.

Habitat type can also strongly influence trapping results. In

agricultural landscapes, semi-natural habitats (forest, shrub and

grassland) can support the local wild pollinator communities

through offering floral resources and nesting locations (Garibaldi

et al., 2020; Raderschall et al., 2021; Shi et al., 2021). Consequently,

it is necessary to account for habitat types in agroecosystems from

a broad array of climates and crops, as otherwise the generality

of best practices for trapping may be limited to overstudied

temperate environments.

In this study, we collected wild pollinators using PTs and

FITs in 18 oilseed rape (Brassica napus L.) fields in the

smallholder agricultural landscapes in subtropical China. Oilseed

rape requires insect pollination for optimal yield (pollinator-

dependent) (Zou et al., 2017). Thus, monitoring pollinator

diversity for oilseed rape is essential for agricultural production

(Ouvrard et al., 2019). However, our knowledge of best practices

for monitoring in oilseed rape is limited. In conducting

long-term monitoring, financial (money to make traps) and

labor costs (effort in assembly and deployment) must be

considered. Our aims were to (1) assess the pollinator diversity

for oilseed rape in these areas; (2) compare the sampling

performance of these two trap types under the same budget,

accounting for wild pollinator abundance and species richness. We

further explore whether these two sampling methods are biased

toward pollinators’ body size; (3) To account for the effect of

agricultural landscape, we also collected in a range of situations

involving varying levels of semi-natural habitat. Thereby, we

provide a better framework for understanding and monitoring

crop pollinator diversity in the under-studied subtropics of

East Asia.

Methods

Study sites and land use analysis

This study was conducted in oilseed rape fields in Kaihua

County, Zhejiang Province, China. Kaihua County was chosen for

its small field sizes due to montane terrain (Lou et al., 2019).

Thereby, these landscapes well represent smallholder plantations.

In the early spring, oilseed rape is the most dominant crop

there. Later in May, oilseed rape will be harvested and rice

will be cultivated in the same field (oilseed rape-rice rotation).

Oilseed rape production is essential for local smallholder farmers’

livelihood since many farmers use oilseed rape as their cooking

oil sources rather than for sale. Oilseed rape pollinators sampling

started at the end of February and ended in late April in 2022,

covering the whole flowering season of oilseed rape. In total, 18

research sites were selected with one field each (Figure 1). All

of the fields were managed using smallholder farming practices

(< 2 hectares) (Lowder et al., 2016). The minimum distance

between two sampling sites was 1.9 km with montane terrain

between them, exceeding the average foraging distance of many

insect pollinators (Chifflet et al., 2011). Semi-natural habitat is

defined as the habitat in the agricultural landscape where non-

crop plants grow (Holland et al., 2016). Semi-natural habitats

in this study include forest, shrub and grassland that embedded

in the agricultural landscape and water bodies, like rivers and

streams were not included in the analysis, as in prior studies

in China (Zou et al., 2017; Shi et al., 2021, 2022b) and abroad

(Papanikolaou et al., 2017; Zou et al., 2017; Shi et al., 2021).

The land-use data (forest, shrub, grassland and other) in the

1000 m radius for the focal oilseed rape field was collected using

ground verification methods (Liu et al., 2016; Zou et al., 2017)

in the spring of 2022. We selected a 1000m radius for our

landscape analysis as this is the foraging range for many pollinators

(Zurbuchen et al., 2010; Chifflet et al., 2011) and the strongest

impact of agricultural landscape on pollinator diversity has been

shown at a scale of 1000m radius (e.g., Zou et al., 2017). The

proportion of semi-natural habitat in each site was calculated in

Arcmap 10.8.
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FIGURE 1

The 18 research sites located in Kaihua County, Zhejiang Province (China).

Pollinator sampling methods

FITs and PTs were deployed in one focal oilseed rape field

at each sampling site. Each FIT was composed of a transparent

acrylic plate (55∗50 cm and 3mm in thickness) fixed on two

wooden sticks using plastic cable ties. Under the acrylic plate, a

white plastic tray (60∗43 cm and 11 cm in depth) was fixed to the

sticks using metal wires. A PT array was made of three plastic

cups (450ml with diameter of 8.3 cm) with UV white, blue and

yellow color, fixed on a stick about 1.5m in height using metal

ring cupholders. For both interception trap and PTs, small holes

were drilled near the top of the containers for rainwater drainage.

Photos of the two trap types can be found in Figure 2. The cost

of manufacturing 18 FITs was 1450 RMB, including acrylic plates

(650 RMB), plastic tray (630 RMB), wooden sticks (90 RMB),

and iron wire and plastic cable ties (80 RMB). The money cost

of manufacturing 72 PTs was 1410 RMB, including plastic cups

(500 RMB), paint (550 RMB), and wooden sticks (360 RMB).

The money costs of manufacturing one FIT (80.6 RMB) and four

PTs (78.3 RMB) were close. In addition, the human labor for

manufacturing two trap types were close (e.g., labor hours for both

traps were around 16 h in 2 days). Thus, in each focal oilseed

rape field, four PT sets were placed ∼1m from the field edge and

one FIT was deployed, along a randomly-selected field edge for

intercepting pollinators visiting the focal oilseed rape field. As two

passive traps, FIT and PT sampling does not involve in intensive

labor, which is different sweeping net that involving intensive labor

work from experienced personnel. Overall, monetary and labor

costs for conducting this pollinator sampling project were both low

and feasible.

Samples were collected and traps reset every seven days,

resulting in 52 sampling days per site. The collected samples were

stored in the refrigerator (-20◦C) for further species identification.

European honeybees (Apis mellifera), as managed non-native

pollinators in China, were excluded from this study. All insect

samples were sorted to morpho-species and then identified

to species or morphospecies by taxonomists. Pollinators were

classified as large (body length > 12mm) and small (body length

< 12mm) insects according to Albrecht et al. (2007). Hence,

butterflies, carpenter bees, bumblebees, wasps, one longhorn

bee (Eucera floralia), two digger bees (Anthophora villosula and

Anthophora plagiata), two scoliid wasp species (Scoliidae sp1 and

Scoliidae sp2) and one large hoverfly (Phytomia zonata) were

grouped as large-bodied pollinators and the rest pollinators were

grouped as small-bodied pollinators (Supplementary Table S1).

Statistics analysis

Samples from each site caught using the same samplingmethod

were pooled to have a robust dataset. Linear mixed models were

used to compare the differences in wild pollinator abundance,

diversity and species richness between two trap types, of which

study site was the random factor. The abundance of the three

most abundant species (Eucera floralia, Apis cerana and Gametis

jucunda), as well as the abundance of large and small pollinators

between the two trap types were also compared via linear mixed

models. Species richness was rarefied to 31 individuals which is the

lowest sample size using FITs and PTs among all sites. Abundance

was calculated using the total amount of pollinator individuals

divided by sampling days (e.g. number of individuals per sampling

days). We firstly compared catches of one set of FITs with a set of

PTs, then with single PTs.
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FIGURE 2

Examples of pan trap (A) and flight interception trap (B) setups.

In order to check whether or not samples from FITs and

PTs had similar species compositions, we calculated the beta-

diversity based on each site and different traps (i.e,. one FIT vs.

4 PTs from each site). To compare the pollinator community

composition, we used Principal Coordinate Analysis (PCoA) based

on Bray-Curtis distance. The Bray-Curtis distance matrix was

calculated as an index for beta-diversity, and is relatively robust to

sampling size (Ricotta and Podani, 2017). We then used Principal

Coordinate Analysis (PCoA) to visualize our results. ANOSIM

was conducted with 9999 permutations to analyze the dissimilarity

between pollinator communities in PTs and FITs. We also conduct

indicator species analysis to check the species that were more often

collected by one trap type.

Multiple linear regression was used to investigate the effect

of the proportion of semi-natural habitats in on wild pollinator

abundance and rarefied species richness. The proportion of semi-

natural habitats at 1000m was used as our response variable.

To check whether semi-natural habitats had consistent effects on

samples from different traps, interactions between proportion of

semi-natural habitats and trap types were added as an explanatory

variable. In the case of no interaction effect (and this is our case, see

“Results”), analysis between semi-natural habitats and pollinator

variables were conducted separately for FITs and PTs. We checked

the heteroscedasticity for all linear regression models. To check for

spatial autocorrelation, we calculated Moran’s I of model residuals

(Gittleman and Kot, 1990) and we did not detect any significant

spatial correlations in any of the analyses in this study (p > 0.05).

All statistical analyses were conducted in R 3.5.2 (R Core Team,

2016). To calculate rarefied species richness at each site (n = 31,

which was the least number of sampled wild pollinator using FITs

and PTs among all sites), we used the package “vegan” (Oksanen

et al., 2019). To produce rarefaction extrapolation curves, we used

the function iNEXT in the package “iNEXT” (Hsieh et al., 2016).

Function “lme()” packages “nlme” (Pinheiro et al., 2017) was used

to conduct the linear mixed model. Function “anosim ()” in the

“vegan” package (Oksanen et al., 2019) was used to compare the

differences in wild pollinator community composition in FITs and

PTs. Function “multipatt” in the package “indicspecies” was used

to conduct indicator species analysis (De Caceres et al., 2016).

Breusch-Pagan test using “bptest ()” function in R package “lmtest”

(Hothorn et al., 2015) was used to check the heteroscedasticity.

Package “ape” (Paradis and Schliep, 2019) was used to check the

Moran’s I value.

Results

In total, 2,970 (53 species) wild pollinator specimens were

collected by FITs (1,230 individuals; 33 species) and PTs (1,740

individuals; 50 species) (species list see Supplementary Table S1 and

rarefaction curve for PT and FIT see Supplementary Figure S1).

The five most abundant wild pollinator species sampled by FITs

were Eucera floralia (226), Apis cerana (203), Gametis jucunda

(158), Pieris rapae (152) and Halictus aerarius (62). The five most

abundant wild pollinators collected by PTs were E. floralia (254), G.

jucunda (161), Xylocopa tranquabaroroum (146), A. cerana (140),

and Lasioglossum sp (133) (Supplementary Table S1). Single FITs

catch significantly more individuals per sampling day (1.31 ±

0.14) and rarefied species (9.22 ± 0.46) than single PTs (0.47 ±

0.04 per sampling day and 2.61 ± 0.12 species) (p < 0.05) while

four PTs collected significantly higher individuals per sampling

day (1.86 ± 0.14) and species (10.43 ± 0.46) than single FITs (p

< 0.05) (Figures 3A, B). There was no significant difference in

the abundance per sampling day of the three dominant pollinator

species A. cerana, G. jucunda and E. floralia between PTs and FITs

(p > 0.05). Lasioglossum sp.1, Ceratina japonica, Lasioglossum sp2,

Chrysomya megacephala, Lasioglossum sp were five species caught
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FIGURE 3

Number of species (A) and (B) pollinator individuals collected by a FIT, a single PT and four PTs combined (4PTs).

significantly more often in the PTs (p < 0.0.05) while no species

caught significantly more often in the FITs.

The proportion of each wild pollinator species (log-

transformed) in the insect in PTs and FITs was significantly

correlated (r2 = 0.70, p < 0.001) (Figure 4). Wild pollinator

abundance measures collected using FITs and PTs were not

significantly correlated (p > 0.05), but species richness and

diversity in FITs and PTs were significantly positively correlated

(p < 0.05). The analysis of similarities (ANOSIM) test recovered

significant differences between the pollinator communities

collected by FITs and PTs overall (R= 0.2081; p < 0.001; Figure 5).

There was no significant difference in the abundance and relative

abundance of large-sized pollinators in FITs and PTs (p > 0.05)

(Supplementary Figure S2). The abundance of small pollinator

insects in PTs was significantly higher than in FITs (p < 0.05) while

there was no significant difference in relative abundance (p > 0.05)

(Supplementary Figure S2).

Semi-natural habitat in both small-scale (500m) and large-scale

(1000m) had positive effects on wild pollinator rarefied species

richness and diversity (p < 0.05), while semi-natural habitat had

no significant impact on wild pollinator abundance (p > 0.05)

(Table 1). There was no significant effect of sampling type on wild

pollinator abundance, rarefied species richness or diversity (p >

0.05) (Figure 6; Table 1). There was also no significant effect of

interactions between sampling types and semi-natural habitats on

wild pollinator abundance, rarefied species richness and diversity (p

> 0.05) (Figure 6; Table 1). At the 1000m radius scale, semi-natural

habitat had no significant effect on wild pollinator abundance

collected by FITs (slope = 0.09, intercept = 1.25, p > 0.05) or PTs

(slope= 0.29, intercept= 1.65, p> 0.05) (Figure 6A). Semi-natural

habitat had a significant positive impact on wild pollinator rarefied

species richness collected by both FITs (slope = 10.43, intercept

= 1.53, p < 0.001) and PTs (slope = 8.35, intercept = 4.28, p <

0.05) (Figure 6B). Semi-natural habitat in the agricultural landscape

had significant positive impact on wild pollinator diversity collected

FIGURE 4

The relationship between the proportion of pollinator species in PTs

and FITs.

by FITs (slope = 1.41, intercept = 0.95, p < 0.001) and had

marginally significant effect on diversity collected by PTs (slope

= 0.88, intercept = 1.52, p=0.07) (Figure 6C). At the 500m

radius scale, semi-natural habitat had no significant effect on wild

pollinator abundance collected by FITs (slope = 0.72, intercept =

0.88, p > 0.05) or PTs (slope = 0.84, intercept = 1.36, p > 0.05)

(Figure 6D). Semi-natural habitat had a significant positive impact

on wild pollinator rarefied species richness collected by both FITs

(slope = 7.31, intercept = 4.86, p < 0.001) and PTs (slope = 7.20,
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FIGURE 5

Principal coordinate analysis (PCoA) ordination of wild pollinator communities using pan traps (PT) and flight interception traps (FIT). The ellipses

indicate 95% confidence intervals.

intercept = 6.13, p < 0.05) (Figure 6E). Semi-natural habitat in

the agricultural landscape had significant positive impact on wild

pollinator diversity collected by FITs (slope = 1.13, intercept =

1.31, p < 0.001) and PTs (slope = 0.82, intercept = 1.68, p < 0.05)

(Figure 6F).

Discussion

Despite much prior research on the topic, there remain many

gaps in our knowledge of effective monitoring for pollinating

insects, especially in subtropical environments of Asia and for the

multitude of passive trap methods (Cane et al., 2000; Campbell and

Hanula, 2007; González et al., 2020; Van Drunen et al., 2022). The

sampling performance of FITs and PTs, as two common passive

pollinator sampling methods, has been assessed at limited scales

(one oilseed rape field) previously and found flight interception

trap outperform pan trap (more individuals and species collected

per trap; Shi et al., 2022b). Here, we expanded on prior efforts

by expanding sampling coverage and incorporating trait and

semi-natural area analyses to determine whether these factors

introduce biases.

Our results suggested that both FITs and PTs are surprisingly

similar in their per-cost effectiveness and coverage in trapping

pollinators. Results showed that a single FIT caught more

individuals and species than single PTs, agreeing with the prior

study (Rubene et al., 2015; Shi et al., 2022b). It seems likely that

the highly attractive oilseed rape reduces the catches of PTs, so non-

attractant FITs are less impacted by this and collect more specimens

per unit (Baum and Wallen, 2011; Vrdoljak and Samways, 2012;

Prendergast et al., 2020).

To scale for large monitoring efforts, cost must also be

considered. We found that PTs (four per site) outperformed FITs

(one per site, similar in cost to four PT sets) in oilseed rape

fields (more wild pollinator individuals and species), while there

was also now a difference in pollinator community composition

between the two trap types. Notably, FITs can still manage to catch

wild pollinator species that PTs did not, such as Xylocopa nasalis

(a common carpenter bee species widely distributed in southern

China), and more individuals of Apis cerana. In addition, FITs can

be used to track wild pollinator movement patterns in agricultural

landscapes (Cunningham et al., 2013) while PTs cannot. Thus,

depending on the budget and research questions, FITs might still

be useful under some circumstances.

More small pollinators were collected by pan traps and more

small species, such as Lasioglossum sp, were significantly caught

by pan traps, while there were no significant differences in the

collection of large-bodied species between PTs and FITs, an

outcome previously unreported. Contrastingly, McCravy et al.

(2019) found that Malaise traps, which are somewhat similar to

Frontiers in Sustainable FoodSystems 06 frontiersin.org87

https://doi.org/10.3389/fsufs.2023.1155458
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Shi et al. 10.3389/fsufs.2023.1155458

FIGURE 6

The impact of sampling methods (FIT and PT) and the proportion of semi-natural habitat in on (A, D) wild pollinator abundance (per sampling day),

(B, E) rarefied species richness and (C, F) Shannon diversity. (A–C) were in 1000m radius and (D–F) were in 500m radius scale. Solid lines occur

where the impact of semi-natural habitat was significant (p < 0.05).

TABLE 1 The impact of sampling methods (FIT and PT; base: FIT), the proportion of semi-natural habitat and their interactions on wild pollinator

abundance per sampling day, rarefied species richness and Shannon diversity in large scale (1000m radius) and small scale (500 m radius).

500 m 1000 m

Explanatory variable Abundance Rarefied species
richness

Diversity Abundance Rarefied species
richness

Diversity

Semi-natural habitat 0.72± 0.83 7.31± 2.20∗∗ 1.13± 0.31∗∗∗ 0.09± 1.09 10.43± 2.75∗∗∗ 1.41± 0.41∗∗

Trap type (Base: FIT) 0.47± 0.73 1.27± 1.93 0.37± 0.27 0.40± 1.15 2.75± 2.92 0.57± 0.43

Semi-natural habitat∗Trap type 0.12± 1.18 −0.11± 3.11 −0.32± 0.44 0.20± 1.54 −2.09± 3.89 −0.53± 0.58

∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

FITs in that they physically block flight for capture, collected a

higher proportion of small wild bees than PTs and vane traps.

Krahner et al. (2021) also found that Malaise traps collected higher

proportion of small wild bee than PTs, but their results were

not consistent across 2 years. Consequently, it seems that these

methods may both be better than malaise traps for sampling larger

species, but this requires further study, and the unique collection

of Xylocopa nasalis by only FITs suggests that perhaps some of the

largest pollinators might still more easily avoid PTs.

Semi-natural habitat also had consistent positive impact

on wild pollinator diversity and species richness across trap

types. Semi-natural habitat inside agricultural landscapes

can benefit wild pollinators through providing diverse floral

resources as food, potential nesting sites and nesting materials

(Tscharntke et al., 2005), and numerous studies have confirmed

the important role of semi-natural habitats in maintaining

wild pollinator diversity (Le Féon et al., 2010; Carvell et al.,

2011; Zou et al., 2017; Wu et al., 2019; Shi et al., 2021). Prior

studies have suggested that oilseed rape, as high-quality pollen

and nectar source, can be extremely attractive for pollinators

(Holzschuh et al., 2013) but both trapping methods recovered

a positive effect of semi-natural areas nonetheless, possibly due

to pesticides or other management regime factors specific to

the area.
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Many ecological studies integrate multiple trap types. The most

commonly used combination is active sweeping net and passive

PTs (Morandin et al., 2007; Kwaiser and Hendrix, 2008; Gill and

O’Neal, 2015; Perrot et al., 2018; Van Drunen et al., 2022), and it is

generally accepted that such a mix of active and passive methods is

optimal (Prendergast et al., 2020). Many such studies have pooled

samples across methods (Morandin and Winston, 2005; Tucker

and Rehan, 2018), but some studies choose to analyze the results

from different approaches separately (Perrot et al., 2018). FITs and

PTs have also previously been analyzed together (Kehinde and

Samways, 2012; Rader et al., 2014), but the consistency of these two

traps across habitat types was previously unknown. With further

testing in additional sites, it may be that FITs and PTs can be

generally analyzed together, such that multiple questions can be

addressed. To avoid overgeneralization, more sampling projects

ought to be conducted at other sites, such as Jiangxi, Fujian and

Hunan provinces, to comprehensively understanding the pollinator

community in smallholder farmland in China. In addition, the

potential competition between different methods used at the same

sampling point (i.e., one trap may affect the other trap’s catches)

should be explored. Other potential concerns, for instance, causing

damaging to crop when deploying traps and collecting samples,

should be addressed in further studies.

Conclusion

In conclusion, PTs were more efficient than FITs in oilseed rape

fields across various agricultural landscapes with a gradient of semi-

natural habitat coverage in a cost-effectiveness framework. In terms

of monitoring large and small-bodied pollinators, PTs collected

more small individuals while there were no significant differences

between FITs and PTs. Both also produced consistent results

when investigating the impact of semi-natural habitat on wild

pollinator diversity and species richness (semi-natural habitat had a

significant positive impact on wild pollinator diversity and rarefied

species richness). Consequently, PTs appear to be a viable method

for monitoring pollinator diversity in subtropical agroecosystems,

and these efforts could be enhanced by incorporating active

sampling methods such as netting (Prendergast et al., 2020).

Notably, although we recovered similar catches from these

two methods, their sampling efficiency may vary in different

habitats. Thus, further testing in additional habitats and climate

would be useful for developing a generalizable guide for what

methods should be used under different circumstances. Given

the predominance of PTs in the literature, we suggest that for

comparability purposes they should be preferred when limited

resources for passive trapping are available, with resources devoted

additionally to active methods that would better complement

passive methods to provide a clearer view of the fauna.
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Behavioral mechanism of transfer
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sorghum fields
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Yi Yu and Xingyuan Men*

Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China

Increasing crop biodiversity, such as by adjacent managed crops, is recognized

as an e�ective biological control measure. However, few studies have focused

on the mechanisms involved in how adjacent managed crops increase natural

enemy populations, leading to reduced pest numbers. This study investigated the

hypothesis that cotton grown adjacent to sorghum would positively influence the

feeding and oviposition preferences of the ladybug Propylaea japonica, which

predates cotton aphids, leading to enhanced pest control. The populations of

Aphis gossypii were significantly lower and those of P. japonica were significantly

higher in cotton grown adjacent to sorghum compared with monoculture cotton

fields. Regardless of diet on which the larva of P. japonicawere reared (Melanaphis

sacchari, A. gossypii, and 50% M. sacchari + 50% A. gossypii), the adults always

consumed significantly more M. sacchari compared with A. gossypii. P. japonica

also showed significantly higher feeding and oviposition preferences for host

plants bearing aphids to only host plants. P. japonica fed M. sacchari preferred

to lay eggs on cotton, whereas those fed A. gossypii preferred to lay eggs

on sorghum. These results suggest that the habitat of natural enemies can be

expanded by influencing their feeding and oviposition preferences to achieve

pest control in adjacent cropping systems. This research, which incorporates field

and laboratory studies, suggests an approach for the successful conservation

and biological control of cotton aphids using adjacent managed cotton and

sorghum crops.

KEYWORDS

adjacent managed, Propylaea japonica, feeding preference, oviposition preference, Aphis

gossypii,Melanaphis sacchari

Introduction

Large monoculture farming systems reduce farmland biodiversity and have altered

the composition and stability of arthropod populations in agriculture, promoting pest

outbreaks as well as decreasing the number and effectiveness of natural enemies, particularly

indigenous generalist predators (Thies et al., 2005; Mkenda et al., 2019). The adjacent

management of crops has been shown to be an efficient tool to enhance the abundance and

diversity of natural enemies and reduce the abundance of pests, decreasing crop damage

and providing direct benefits by reducing the need for pesticides (Meehan et al., 2011;

Paredes et al., 2013). High crop species richness can suppress pest populations, suggesting

that crop species richness also enhances biological control services (Sheng et al., 2017).

Greenstone et al. (2014) reported that growing soybean adjacent to cotton as part of a

Frontiers in Sustainable FoodSystems 01 frontiersin.org92

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2023.1151404
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2023.1151404&domain=pdf&date_stamp=2023-04-06
mailto:menxy2000n@hotmail.com
https://doi.org/10.3389/fsufs.2023.1151404
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsufs.2023.1151404/full
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Cui et al. 10.3389/fsufs.2023.1151404

conservation biological control strategy significantly decreased the

number of the target pest,Megacopta cribraria shield bugs. Natural

enemies that moved from adjacent wheat fields to cotton fields were

able to maintain the cotton aphid population below the threshold

at which significant damage would be caused (Men et al., 2004).

Therefore, adjacent crop management has been used to increase

natural enemy efficiency to reduce the incidence of crop pests

(Scheid et al., 2011; Simpson et al., 2011). There have been many

field studies of adjacent crop management on the interactions of

pests and their natural enemies. However, little is known about the

mechanisms involved.

Host plants on which prey feed affect the nutritional quality of

those prey, in turn affecting the feeding preference, development,

and mortality of their predators (Banihashemi et al., 2017). The

nutritional quality of host plants is an important factor influencing

the vigor of predators because not all prey species are equally

nutritious (Zhang et al., 2012). Plants respond to herbivore-induced

damage by releasing density-related volatiles (Cotes et al., 2015).

These volatiles can be used by natural enemies to find their

prey on infested plants (Pettersson et al., 2005). For example,

the adults of many natural enemies of aphids orient to volatile

compounds emitted by host plants in response to aphid feeding

(Sasso et al., 2009). Volatiles from aphid-infested cotton have a

key role in mediating the orientation behavior of the ladybug

Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) (Wang

et al., 2015). Such attraction is likely to increase the fitness of P.

japonica because aphids represent a complete food source for both

adults and juveniles (Obrycki et al., 2009).

Both the presence and quality of prey have strong effects on not

only the retention of adult predators, but also their reproductive

output (Hodek and Honek, 2009). For example, the quantity or

quality of a prey directly influence whether a female predator will

oviposit on the host plant (Yao et al., 2021). In general, natural

selection favors predators that lay eggs in a site that is most

appropriate for their offspring (Putra et al., 2009). For example,

egg clusters of the ladybug Hippodamia convergens are typically

found only on aphid-infested sorghum plants in the field but not

on uninfested plants (Michaud and Jyoti, 2007). In addition, the

abundance and quality of aphids in a habitat affects the survival of

larvae (Seagraves, 2009). There is an optimal number of coccinellid

eggs that can be laid in an aphid colony to maximize the number

of surviving offspring (Rondoni et al., 2014) and aphids constitute

a staple food for ladybugs that oviposit in the vicinity of aphid

colonies (Oliver et al., 2006). However, how predator feeding and

oviposition preferences suppress aphids in adjacent managed host

crops is unclear.

Aphids are very serious insect pests in most agroecosystems

in the world (Figueroa et al., 2018). The cotton aphid Aphis

gossypii and sugarcane aphidMelanaphis sacchari are the two most

dominant species in northern China (Ma et al., 2006; Guo et al.,

2011). A. gossypii is an important cotton pest, which causes severe

damage to crops, leading to economic losses, whereasM. sacchari is

one of the most important pests on sorghum (Wu and Guo, 2005;

Guo et al., 2011). The ladybird P. japonica preys upon a variety

of crop pests in northern China, predominantly aphids and, thus,

serves as an excellent biological control agent (Gao et al., 2010).

Aphid availability and quality affect the fecundity and survival of P.

japonica (Tang et al., 2013). Previous studies showed that sorghum

was a source of ladybirds in cotton and, thus, incorporation of

sorghum on farms growing cotton has the potential to enhance

the biocontrol of cotton aphids on cotton in the field (Tillman and

Cottrell, 2012). However, the mechanisms affecting the transfer and

dispersal of P. japonica between sorghum and cotton remain to

be elucidated.

Thus, the current study investigated: (1) the effects of adjacent

managed cotton–sorghum ecosystems on P. japonica and its aphid

prey; (2) the effects of aphid species on the consumption by, and

behavioral responses of, P. japonica fed M. sacchari, A. gossypii,

and 50% M. sacchari + 50% A. gossypii; and (3) the effects of host

plant type (sorghum; cotton; sorghum inhabited by M. sacchari;

and cotton inhabited by A. gossypii) on the feeding and oviposition

preferences of adult P. japonica.

Materials and methods

Field experimental design

The field experiment was performed in 2021 at the

Experimental Base of Shandong Agricultural Academy of Science,

Jinan, Shandong, China (116.99◦E, 36.97◦N). Experimental units

were 10m × 100m sorghum plots (variety Lunuo 8) planted

adjacent to 40 × 100m cotton plots (variety Lumianyan 28). A

mono cotton field was used as a control. In the cotton and sorghum

fields, each plot was sampled by using a 5-point random sampling

method, and the number of A. gossypii,M. sacchari, and P. japonica

on three cotton and three sorghum plants per point was recorded

on 16 August 2021.

P. japonica breeding

Individuals P. japonica were collected from the Experimental

Base of Shandong Agricultural Academy of Science in the field. The

offspring of these P. japonica were reared in an artificial chamber

(PRX-500D-30, Haishu Safe Apparatus, Ningbo, China), which

was maintained at 28◦C and 75% relative humidity (RH) under

a photoperiod of 14 h:10 h light:dark. Newly hatched P. japonica

were fed on three different diets (M. sacchari, A. gossypii, or 50%

M. sacchari+ 50% A. gossypii).

Host plants

Plants of two crops, cotton (variety LuMianYan 28) and

sorghum (variety Lunuo 8), were selected for this study. Plants

were grown in a potting mixture of peat moss, vermiculite, organic

fertilizer, and perlite (10:10:10:1 by volume) in a greenhouse

under natural light at 28 ± 2◦C. Plants were randomly placed in

the artificial chamber and re-randomized once a week to avoid

positioning effects. No fertilizer or pesticides were used throughout

the experiment.
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Feeding and oviposition preference of P.
japonica

The feeding preference of P. japonica was evaluated on

sorghum, cotton, sorghum inhabited by M. sacchari, and cotton

inhabited by A. gossypii. P. japonica individuals were collected

directly from fields located in the Experimental Base, Shandong

Agricultural Academy of Science. The experiment was conducted

in a covered square cage (2.0 × 2.0 × 2.0m). Twelve plants

(three sorghum plants, three cotton plants, three sorghum plants

inhabited by M. sacchari, and three cotton plants inhabited by A.

gossypii) were placed in a random order at an equal distance from

the center point to form a circle. Twenty adults P. japonica were

placed on the center point within a replicate. The positions of the

adult beetle were checked and recorded daily at 2-h intervals from

05:00 h to 21:00 h for 3 days.

The oviposition preference of P. japonica was assessed

following the same method as described above for the feeding

preference. P. japonica fed on M. sacchari, A. gossypii, and 50% M.

sacchari+ 50%A. gossypii, respectively. Five mated and ovipositing

adult females (10 days old) were released in the center of square

cover cage. The number of eggs laid on each plant was counted after

3 days to determine the oviposition preference.

Prey biomass consumption

The prey biomass consumed by P. japonica was determined

using no-choice and free choice tests. A 24-h-starved adult female

P. japonica (10 days old) that had previously been fed one of three

different diets (M. sacchari, A. gossypii, or 50% M. sacchari + 50%

A. gossypii) was provided with third-instar larvae ofM. sacchari and

A. gossypii. In the no-choice test, P. japonica was provided with 100

M. sacchari or A. gossypii larvae. In the free choice test, P. japonica

was provided with 50 M. sacchari and 50 A. gossypii larvae. After

24 h, the number of unconsumed aphids was counted. The biomass

consumption of P. japonicawas then calculated based on the weight

of 100 aphids and feeding ratio.

Y-tube experiments

A Y-tube olfactometer was used to investigate the behavioral

responses of P. japonica adults that had fed on one of five diets

(M. sacchari, A. gossypii, or 50% M. sacchari + 50% A. gossypii,

fed on M. sacchari then fed on A. gossypii for 1 day and fed on A.

gossypii then fed onM. sacchari for 1 day) to: (1) intact sorghum vs.

intact cotton; (2) sorghum bearing M. sacchari vs. cotton bearing

A. gossypii; and (3) M. sacchari vs. A. gossypii. For the treatments

of different plants, plant was placed in a glass enclosure which

connected to the ends of arms with five centimeters rubber tube.

For the treatment ofM. sacchari vs. A. gossypii, aphids were placed

on the end of the arms.

The behavioral responses of P. japonica were determined in a

40 mm-diameter × 36 cm-long glass Y-tube olfactometer with a

60◦ inside angle. The flow rate was 4.8 L/min (equal to 3.8 m/min

inside the tube) in each Y-tube arm. A single P. japonica was placed

in the olfactometer for 10min. A “no choice” outcomewas recorded

when the adults remained inactive during the test period. A “first

choice” outcome was recorded when the adults moved>25 cm into

either arm (visually assessed by a line marked on each arm). Each

experimental pair was repeated with at least adult 80 P. japonica.

Statistical analysis

Two-way factorial ANOVA (SPSS 13.0, SPSS Inc., Chicago, IL,

USA) was used to analyze the feeding preference and prey biomass

consumption of adult P. japonica. One-way ANOVA was used to

analyze the effect of adjacent crop management on the population

numbers of M. sacchari, A. gossypii, and P. japonica in the field.

Differences among means were determined using Tukey’s test at

P < 0.05. X2 tests were used to analyze the adult P. japonica

feeding and oviposition preferences and to examine the significance

of differences in the choosing behaviors of P. japonica in the

olfactometer test.

Results

E�ect of adjacent crop management on the
numbers of M. sacchari, A. gossypii, and P.

japonica in the field

The number ofM. sacchari on sorghumwas significantly higher

than the number of A. gossypii on adjacent cotton (89.68%; F

= 21.32, P < 0.001; Figure 1A). The same was found for A.

gossypii populations on mono cotton compared with the number

on adjacent cotton (67.05%; F = 35.90, P < 0.001; Figure 1B).

Similarly, the number of P. japonica per 100 sorghum plants was

significantly higher than on adjacent cotton (84.73%; F = 209.05,

P < 0.001; Figure 1C), as was the number of P. japonica per 100

adjacent cotton plants compared with mono cotton (F = 18.48, P

< 0.001; Figure 1D).

Feeding preference

Host plant type significantly influenced the feeding preference

of adult P. japonica, whereas time of day and host plant type× time

of day did not (Table 1). P. japonica preferred sorghum to cotton,

and with a significantly higher feeding preference for both types

of host plant bearing aphids compared with host plants without

aphids (Figure 2).

Y-tube experiments

P. japonica fed M. sacchari showed a significant preference for

the odor of sorghum compared with cotton (P < 0.01; Figure 3A).

However, there was no difference in preference for host plant odor

between the other four treatment groups (i.e., P. japonica fed 50%

M. sacchari + 50% A. gossypii, A. gossypii + M. sacchari for 1 day,

or A. gossypii,M. sacchari+ A. gossypii for 1 day) (Figure 3A).
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FIGURE 1

E�ect of adjacent crop management on the numbers of M. Sacchari, A. Gossypii and P. Japonica in the field. (A) Population of Melanaphis sacchari

on sorghum and Aphis gossypii on adjacent cotton. (B) Population of A. gossypii on adjacent cotton and mono cotton. (C) Population of P. japonica

per 100 plants of sorghum and adjacent cotton. (D) Population of P. japonica per 100 plants on adjacent cotton and mono cotton. Di�erent

lowercase letters indicate significant di�erences among di�erent crops (Tukey’s test: P < 0.05).

TABLE 1 ANOVA of the e�ects of host plant type and time of day on the

feeding preference of Propylaea japonica.

Source df F P

Host plant type 3 269.223 <0.001

Time of day 5 0.026 1

Host plant type× time

of day

15 0.974 0.488

P. japonica fed M. sacchari showed a significant preference for

the odor of sorghum bearing M. sacchari compared with cotton

bearing A. gossypii (P < 0.05; Figure 3B). However, there was no

difference in preference for sorghum bearingM. sacchari vs. cotton

bearing A. gossypii between the other four treatment groups (see

above) (Figure 3B).

P. japonica fedM. sacchari significantly preferredM. sacchari to

A. gossypii (P< 0.001; Figure 3C). However, there was no difference

in preference forM. sacchari vs. A. gossypii in any of the other four

treatment groups (see above) (Figure 3C).

Prey biomass consumption

Aphid species significantly influenced the biomass consumed

by P. japonica in the no-choice and free choice tests (Table 2).

In the no-choice test, P. japonica adults fed M. sacchari (F

= 5.12, P < 0.05), A. gossypii (F = 4.72, P < 0.05), and 50%

M. sacchari + 50% A. gossypii (F = 6.50, P < 0.05) consumed

significantly moreM. sacchari compared with A. gossypii (by 25.74,

21.02, and 24.07%, respectively) (Figure 4A). However, there was

no significant difference in the biomass ofM. sacchari or A. gossypii

consumed by P. japonica adults fed on above three treatments

(Figure 4A).

In the free choice test, P. japonica adults fed A. gossypii (F =

5.61, P < 0.05) and 50%M. sacchari + 50% A. gossypii (F = 26.27,

P< 0.001) consumed significantlymoreM. sacchari compared with

A. gossypii (30.83 and 45.68%, respectively) (Figure 4B). However,

there was no significant difference in the biomass of M. sacchari

or A. gossypii consumed by P. japonica adults fed on above three

treatments (Figure 4B).

Oviposition preference

P. japonica fed M. sacchari significantly preferred to lay their

eggs on cotton compared with sorghum, and on sorghum bearing

M. sacchari rather than sorghum alone (X2 = 7.630, P < 0.05;

Figure 5). P. japonica fed A. gossypii significantly preferred to lay

their eggs on sorghum bearing M. sacchari compared with cotton

bearing A. gossypii, and on sorghum bearingM. sacchari compared

with sorghum alone (X2 = 5.678, P < 0.05; Figure 5). P. japonica

fed 50%M. sacchari+ 50% A. gossypii significantly preferred to lay

their eggs on host plants infested with aphids regardless of the aphid

species compared with host plants only (cotton and sorghum) (X2

= 10.020, P < 0.05; Figure 5).
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FIGURE 2

E�ects of host plant type on the feeding preference of adult Propylaea japonica. Di�erent lowercase letters indicate significant di�erences between

host plant type treatments at a set time (X2 test, P < 0.05).

FIGURE 3

E�ect of aphid species on the behavioral responses of Propylaea japonica, originally fed di�erent diets (M. sacchari, A. gossypii, 50% M. sacchari +

50% A. gossypii, fed on M. sacchari then fed on A. gossypii for 1 day, or fed on A. gossypii then fed on M. sacchari for 1 day), to sorghum and cotton

(A), sorghum with M. sacchari and cotton with A. gossypii (B), and M. sacchari and A. gossypii (C). The X2 test was used to analyze di�erences

between the numbers of P. japonica in each arm of the Y-tube (*P < 0.05; **P < 0.01; ***P < 0.001; ns, non-significant).

Discussion

Researchers have evaluated the role of crop diversity in

improving the impact of biological control, which enhances natural

enemies and reduces pests (Rusch et al., 2016). High crop species

richness suppresses pest populations by increasing the number

of natural enemies (Sheng et al., 2017). There is a growing body

of evidence suggesting that adjacent habitats positively affect pest

regulation by natural enemies compared with monoculture systems

(Bianchi et al., 2010). Large numbers of natural enemy taxa

that move to adjacent crops provide a biological pest control

service (Macfadyen and Muller, 2013). For example, alfalfa grown

adjacent to wheat fields significantly increased the abundance of

predators, including Hippodamia variegata and Chrysopa sinica,

and decreased the densities ofMacrosiphum avenae and Schizaphis

graminum, which are dominant cereal aphid species in wheat fields
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(Zhao et al., 2013). In the current study, the number ofM. sacchari

on sorghum was significantly higher than of A. gossypii on adjacent

cotton, whereas P. japonica populations were significantly higher

on sorghum than on adjacent cotton, suggesting that the predator

population increased with the increasing pest population on the

host crop. In addition, A. gossypii populations were significantly

smaller and P. japonica populations were significantly larger in

adjacent cotton fields than in monoculture cotton fields. These

results were consistent with previous studies of cotton grown

adjacent to sorghum (Tillman and Cottrell, 2012). This suggests

sorghum is an ideal crop for the conservation of predators that

subsequently disperse to adjacent cotton fields and help control the

aphid population.

The effects of a host plant on the palatability and suitability

of the prey for a predator are well-known (Ugine et al., 2021).

Prey preference and prey suitability are important for determining

predator behavior, such as feeding and habitat selection (Weber

et al., 2006). Published data indicate that induced volatiles

attract natural enemies to an infested plant (Tan and Liu, 2014).

TABLE 2 ANOVA of the e�ects of P. japonica treatment (fed on di�erent

diets) and aphid species on the aphid biomass consumed by Propylaea

japonica.

Di�erent
treatment

Factor F P

No choice test P. japonica treatment 1.774 0.178

Aphid species 16.045 <0.001

P. japonica treatment× aphid

species

0.037 0.963

Free choice test P. japonica treatment 1.126 0.332

Aphid species 28.361 <0.001

P. japonica treatment× aphid

species

1.74 0.185

For example, Harmonia axyridis females showed a significant

preference for aphid-infested marigolds because of the plant

volatiles induced by aphid feeding (Zhang et al., 2022). In the

current study, P. japonica showed a significantly higher feeding

preference for host plants bearing aphids compared with host

plants alone. This might be because aphid-infested host plants,

such as sorghum and cotton, release significantly higher amounts of

volatiles compared with host plants without aphids, thus attracting

higher numbers of natural enemies. Our results also showed that

P. japonica preferred sorghum to cotton, which might be because

sorghum is a C4 plant, whereas cotton is a C3 plant. Thus, crops

grown adjacent to C3 (cotton) or C4 (sorghum) plants provide ideal

systems for studying the transfer and dispersal of natural enemies.

Differential biomass consumption is indicative of aphid

palatability to ladybugs (Mishra, 2005). Previous studies showed

M. sacchari is an optimal food source for P. japonica among five

species of aphids (Liu et al., 2013). The current results showed

that P. japonica adults consumed significantly more M. sacchari

compared with A. gossypii. This suggests that P. japonica prefers to

consumeM. sacchari, which could explain the increased P. japonica

populations found in sorghum crops grown adjacent to cotton in

the field. In our study, P. japonica fed M. sacchari also showed a

significant preference for the odor of sorghum, sorghum bearingM.

sacchari, andM. sacchari alone. After being fedA. gossypii for 1 day,

these preferences disappeared. This suggests that, as M. sacchari

populations decrease in the field, P. japonicawouldmove to feed on

A. gossypii, which could lead to a change in preference of P. japonica

forM. sacchari, resulting in the transfer and dispersal of P. japonica

in adjacent managed cotton–sorghum ecosystems.

The type of plant can also affect its suitability as a oviposition

site for predators, such as ladybugs, and subsequently affect

their reproduction (Mirhosseini et al., 2015). Host plants can

have a dramatic effect on the survival of coccinellid eggs, with

Coleomegilla maculata being shown to preferentially lay eggs on

aphid-infested plants (Michaud and Jyoti, 2007). Female Propylea

FIGURE 4

E�ects of aphid species on the prey biomass consumed by adult Propylaea japonica fed di�erent aphid-based diets (M. sacchari, A. gossypii, and 50%

M. sacchari + 50% A. gossypii) in the no-choice test (A) and free-choice test (B). Di�erent lowercase letters indicate significant di�erences between

aphid species within a P. japonica treatment, and di�erent uppercase letters indicate significant di�erences between P. japonica treatments involving

di�erent aphid species (Tukey’s test: P < 0.05).

Frontiers in Sustainable FoodSystems 06 frontiersin.org97

https://doi.org/10.3389/fsufs.2023.1151404
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Cui et al. 10.3389/fsufs.2023.1151404

FIGURE 5

E�ect of host plant on the oviposition preference of adult Propylaea japonica originally fed di�erent aphid-based diets (M. sacchari, A. gossypii, and

50% M. sacchari + 50% A. gossypii). Di�erent lowercase letters indicate significant di�erences between the type of host plant treatment within a P.

japonica treatment (X2 test: P < 0.05).

dissecta laid numerous eggs on plants with a high aphid density

and fewer eggs on plants with a low aphid density (Omkar, 2004).

In addition to coccinellids, oviposition preference of hoverflies

varies in response to both the presence of aphids as well as

their aphid (Amiri-Jami et al., 2016). In the current study, P.

japonica significantly preferred to lay their eggs on aphid-infested

cotton and sorghum, a result consistent with previous studies,

presumably because the aphids are a food source for the larvae

once they’ve hatched. It was also found that P. japonica fed M.

sacchari preferred to lay eggs on cotton, whereas those fed A.

gossypii preferred to lay eggs on sorghum. This suggests that

oviposition behavior can be exploited to expand the habitat of

ladybugs, an ecological adaptation of predatory natural enemies in

the farmland ecosystems.

Conclusions

Our results indicate that an adjacent cropping system of

cotton and sorghum can result in significantly higher P. japonica

populations, leading to decreased aphid abundance compared with

monocultures. P. japonica preferred to feed and lay eggs on aphid-

infested plants over host plants without aphids, and also prefer to

oviposit on other host plants. These results suggest that the habitat

of natural enemies can be expanded by influencing their feeding

and oviposition preferences to achieve pest control in adjacent

cropping systems. Thus, increasing crop diversity, which provides

favorable conditions for agriculture based on ecological principles,

can contribute to the development of sustainable agroecosystems.
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Zhenqiao Song2,3, Wenxiu Guo1* and Yi Yu1*

1Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of

Agricultural Sciences, Jinan, China, 2State Key Laboratory of Crop Biology, College of Agronomy,

Shandong Agricultural University, Tai’an, China, 3Shandong Key Laboratory of Crop Biology, College of

Agronomy, Shandong Agricultural University, Tai’an, China

Root-feeding white grubs are one of the most serious pests of honeysuckle

trees (Lonicera japonica) in China, directly damaging their roots and facilitating

infection by soil pathogens. Entomopathogenic nematodes (EPNs) are considered

as potential control agents against soil-dwelling insect pests. This study aimed

to identify e�ective EPN species against white grubs through bioassay and field

experiments. Among the EPN species screened against Holotrichia oblita under

laboratory conditions, Steinernema feltiae and Heterorhabditis indica had low

virulence, while S. longicaudum, S. glaseri, andH. bacteriophora applied at a rate of

400 IJs/larva caused a higher corrected mortality (80.00± 5.77%), which screened

them as good candidates for future applications. The field experiments showed

that both S. longicaudum and H. bacteriophora were approximately as e�ective

in reducing white grubs as the insecticide phoxim, whereas S. glaseri caused a

significantly lower reduction compared with these two EPNs and phoxim. Plant

mortalities obtained from S. longicaudum, H. bacteriophora and the insecticide

treatment plots were significantly lower than those observed in the water-treated

control plots. All EPNs examined could establish well in the treated honeysuckle

fields for 42 d, confirmed by Tenebrio molitar larvae baiting technique. Our

findings suggest that EPNs could provide curative e�cacy against white grubs and

significantly reduce plant death in honeysuckle fields.

KEYWORDS

white grubs, entomopathogenic nematode, honeysuckle, biological control, field

e�cacy, ecological planting

1. Introduction

Honeysuckle, Lonicera japonica Thunb, is a Chinese medicinal plant native to

East Asia and can be easily grown all over the world. It is renowned for its

active compounds and widespread pharmacological effects on heat-evil, dysentery and

swellings, body protection and lifespan extension as recorded in the famous classical

book of Chinese material media “Ben Cao Gang Mu” (Shang et al., 2011). So many

beneficial effects including anti-viral (Ding et al., 2017), anti-bacterial (Rahman and

Sun, 2009), anti-oxidant (Kong et al., 2017), anti-inflammatory (Tang et al., 2016),
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anti-diabetic (Han et al., 2015) and neuroprotective (Wang et al.,

2014) have been demonstrated for this plant. Moreover, it is also

used as cosmetics, food products, and healthy beverages worldwide

(Wang, 2010; Fang et al., 2020). Along with the great changes in

the environment, food consumption, and lifestyle observed in the

modern society, honeysuckle is playing an increasingly important

role in our daily life (Yang et al., 2018). Honeysuckle cultivation has

been expanded as the demand increases (Hu et al., 2022), while the

problem of white grubs is becoming more and more serious (Xin,

2017; Li, 2022).

White grubs, which are the root-feeding larvae of scarab

beetles, are one of the most severe soil-dwelling pests and are

increasingly damaging honeysuckle cultivation (Xu andWei, 2021).

Holotrichia oblita Faldermann is one of the dominant species found

in honeysuckle fields and it generally co-occurs with other white

grub species, such as Brahmina faldermanni Kraatz and Maladera

orientalisMotschulsky (Li, 2022). These larvae feed on honeysuckle

roots, facilitating their infection by other soil pathogens and

subsequent decay (Gao et al., 2020). The damages caused to the

roots affect the entire plant, with serious impacts on tree growth

and flowering, eventually leading to the plant’s death (Liu et al.,

2017; Gao et al., 2020).

For many years, white grubs in honeysuckle fields have been

mainly controlled using chemical insecticides, such as phoxim

and chlorpyrifos (Liu et al., 2017). However, the efficacy of these

products is not always satisfactory as white grubs live concealed

in the soil and in addition to the development of insecticide

resistance (Gao et al., 2020). Therefore, in light of the increasing

environmental and human safety concerns, and of the importance

of honeysuckle flowers for medical purposes, alternative

biological strategies are urgently needed to control white grubs in

honeysuckle fields.

Entomopathogenic nematodes (EPNs) are known as potential

biological control agents and have been used to control a

variety of soil-dwelling insects due to their superior ability

to actively search for hosts (Grewal et al., 2005; Georgis

et al., 2006). Some EPN species have been shown to be

potentially highly efficient against different white grub species

in turf grass or peanut fields, such as Steinernema scarabaei,

S. longicaudum, S. glaseri, Heterorhabditis bacteriophora, and H.

zealandica (Tamson and Alm, 1995; Koppenhöfer et al., 2000,

2002; Koppenhöfer and Fuzy, 2003a,b; Grewal et al., 2004; Du

et al., 2009; Guo et al., 2015). However, knowledge of EPNs

application to control white grubs in honeysuckle fields is

still limited.

The successful application of EPNs strictly depends on

environmental factors, such as soil texture, moisture, and

temperature (Shapiro-Ilan et al., 2012a; Guo et al., 2015).

Honeysuckle cultivation needs to pay more attention to the geo-

herbalism (Zhang et al., 2003; Duan et al., 2019), for the soil

characteristics is of great importance to the content of active

compounds in honeysuckle flowers (Chen et al., 2021). Yimeng

mountain area is the natural planting area for honeysuckle (Liu

et al., 2008). Pingyi county, which is located in the Yimeng

Mountains, is the largest honeysuckle production area in China

(Zhang, 2021). The soil here is sandy and arid, which favors the

accumulation of the plants’ active compounds (Chen et al., 2021).

Whether these soil conditions are also suitable for the successful

application of EPNs needs to be explored.

More importantly, it is necessary to choose the appropriate

EPN species to control the target pest by considering their

virulence, environmental tolerance, and even persistence (Shapiro-

Ilan et al., 2002, 2006a,b). The virulence of EPNs to white grubs

varies with EPN and white grub species (Koppenhöfer and Fuzy,

2003a,b; Grewal et al., 2004). Although there are some differences

in the virulence of each EPN to different white grub species, certain

EPNs were shown to be pathogenic to several white grubs, as

observed for H. bacteriophora against Popilia japonica Newman

(Selvan et al., 1994), Maladera matrida Argaman (Glazer and

Gol’Berg, 1993), H. parallela Motschulsky (Guo et al., 2013), and

H. oblita (Guo et al., 2015). Little is known on the efficacy of certain

EPNs against white grubs in the honeysuckle fields. More EPN

species are needed to be screened for providing more alternatives

to effectively control white grubs that always co-occur in the same

honeysuckle fields.

Therefore, five EPN species, i.e., S. longicaudum X-7, S. glaseri

KG, S. feltiae SN, H. bacteriophora H06, and H. indica LN2,

reported with high virulence or good performance in the fields

against several pests, for example, fungus gnats, Lepidopterous

pests and white grubs (Yan et al., 2014; Wang et al., 2021), were

chosen for bioassay screening againstH. oblita, one of the dominant

white grub species in honeysuckle fields. Subsequently, the control

efficacy of high virulent EPN species screened in the bioassay was

evaluated in the honeysuckle fields in the present study.

2. Materials and methods

2.1. EPNs

The Steinernema longicaudum X-7, S. glaseri KG, S. feltiae SN,

H. bacteriophora H06, and H. indica LN2 species used in this

study were provided by Weifang Hongrun Agriculture Science

and Technology Co., LTD, China. Infective juveniles (IJs) were

cultured in vitro in solid sponge media using the method described

in Bedding (1981) with modifications (Han, 1996) and were

formulated with vermiculite (200 mesh). IJ suspensions were used

for experiments if more than 95% of IJs were alive, which was

assessed using a microscope before the experiments (Yan et al.,

2013).

2.2. Insects

The second instar larvae ofH. oblita used for the bioassays were

provided by the Cangzhou Academy of Agriculture and Forestry

Science, China. The white grubs were reared and fed on dry potato

pieces (0.5 × 0.5 × 0.5 cm). The size and weight of each instar

larva were consistent with the measurements reported in Guo et al.

(2015). The larvae were individually kept in plastic cups (with a

diameter of 4.3, height of 7 cm, and a 2-mm-diameter hole in the

lid) filled with 50 g of sandy soil (10% w/w soil moisture) at 25 ±

2◦C and 50% relative humidity (RH). Six wheat seeds were added

to each cup as food. The cups were kept at 25◦C for 24 h and only
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grubs that showed signs of activity were selected for the bioassays

(Koppenhöfer and Fuzy, 2008).

Yellow mealworms, Tenebrio molitor L., were purchased from

Shandong Taian Wuma market. The mealworms were reared in a

controlled roomwith 25± 2◦C and 50%RH, and fed on wheat bran

and fresh vegetable leaves. Similarly sized 9th- to 11th-instar larvae

were chosen to evaluate nematode persistence by burying them in

soil samples collected from the field experiments (Guo et al., 2015).

2.3. Bioassays

2.3.1. Virulence of di�erent EPN species to
second instar H. oblita larvae

One mL of IJ suspensions containing 200 IJs of S. longicaudum,

S. glaseri, S. feltiae, H. bacteriophora, or H. indica was applied into

each cup containing the H. oblita larvae (equal to 1.5 × 109 IJs

ha−1). A similar volume of water without nematodes was added

to the soil of control treatment. Three replicates were set for each

treatment or control and each replicate tested 10 individual larvae.

After the treatment, the cups were placed in the dark at 25 ± 2◦C

and 75± 5% RH. White grub mortality was assessed after 4, 7, and

14 d; the cadavers were placed onto moist filter paper and were

dissected 3 d later to evaluate IJ invasion (Yan et al., 2013).

2.3.2. E�ect of highly virulent EPN species applied
at di�erent rates

The bioassay was performed in plastic cups, as described above.

IJ suspensions of the most effective EPN species screened in the

first step, i.e., S. longicaudum, S. glaseri, or H. bacteriophora, were

prepared. OnemL of the nematode suspension containing 400, 200,

100, or 50 IJs was applied into each cup with one grub (equal to

3.0 × 109, 1.5 × 109, 7.5 × 108 or 3.75 × 108 IJs ha−1). Water

without IJs was used as control. Ten cups with 10 individual larvae

were set as one replicate and three replicates were set for each

treatment or control. All cups were placed in the dark at 25 ± 2◦C

and 75 ± 5% RH. Grub mortality was assessed as described in the

previous section.

2.3.3. Field experiments
Two field trials were conducted in different honeysuckle fields

in the Pingyi area, China. Before the treatments, the presence of

native EPN populations in the fields was assessed by baiting soil

samples with yellow mealworms as described in Liu et al. (2009).

No EPN populations were detected in the experimental fields. Grub

populationwas estimated based onDu et al. (2009) and species were

identified following the guidelines reported inWei et al. (1989) and

Cao and Li (2017). In brief, 30 honeysuckle plants were randomly

selected and the soil around their roots (diameter = 40 cm, depth

= 20 cm) was removed to identify larval species and calculate

population abundance.

The first experiment was performed in a honeysuckle field in

Fumin village (N35◦15′23′′, E117◦40′54′′) on August 26, 2020, at

1:30 pm, to determine which EPN species to apply against white

grubs and at which rates. The sandy soil in the field had a water

content of 8.09 ± 0.53%. The day was sunny, air temperature

was 29◦C and soil temperature was 27◦C at a depth of 5 cm. The

honeysuckle plants in the experiment field were 3 years old. Each

plant covered an area of ∼1.15 m2 (diameter = 1.21m). Each

experimental plot had an area of 48 m2 (15m× 3.2m) with a 1.6-m

buffer space set between plots and containing 36 honeysuckle plants

spaced 1.6-m apart within a row. The white grub species present

in the experiment field were H. oblita, Brahmina faldermanni, and

Serica orientalis with a ratio of 5: 4: 6. The population density was

5.67± 0.61 larvae per plant, and the larvae were mainly in the first,

second, and third instar with a ratio of 1: 7: 2. S. longicaudum, S.

glaseri, and H. bacteriophora treatments were applied at 3.0 × 109,

1.5× 109, and 7.5× 108 IJs/ha, respectively.

The second experiment was conducted in Nanwan village

(N35◦16
′

56
′′

, E117second) on August 18, 2021, at 4:30 pm, to assess

the efficacy of EPNs against white grubs at the selected application

rate and the protection provided to honeysuckle plants. The sandy

soil in the fieldhad a water content of 6.22 ± 0.34%; the day was

sunny with an air temperature of 27◦C and soil temperature of

26◦C at a depth of 5 cm. The honeysuckle plants were 3 years old.

Each plant covered an area of∼1.04 m2 (diameter= 1.15m). Each

experimental plot had an area of ∼100 m2 (33.3m × 3.0m) with a

1.5-m buffer space set between plots and contained 75 honeysuckle

plants spaced 1.6m apart within a row. The white grub species

present in this experiment field were H. oblita, S. orientalis, and

Hoplosternus incanus with a ratio of 8: 9: 2. The population density

was 3.20 ± 0.05 larvae per plant and the larvae were mainly in the

first, second, and third instar with a ratio of 1: 8: 1. S. longicaudum,

S. glaseri, and H. bacteriophora treatments were applied at 1.5 ×

109 IJs/ha.

In both experiments, phoxim (EC 48%, Shandong United

Pesticide Industry Co. Ltd, Jinan, China) at a dosage of 4,500mL/ha

was used as a positive control. Water without IJs or insecticide was

set as a negative control. In the first and second experiments, 15 L

and 30 L of water, respectively, containing different concentrations

of IJs or phoxim were sprayed on the soil around each plant root. A

similar volume of only water was used for the control experiment.

No additional irrigation or other insecticides were supplied. Each

treatment was conducted in four replicates (plots) and all the plots

were arranged in a randomized complete block design. Throughout

both experiments, soil temperature at a depth of 5 cm ranged from

16 to 25◦C.

White grub populations were monitored 7, 21, and 42

d after treatment (DAT) in both experiments. In the second

experiment, plants selected for the larval abundance were

excluded; the number of dead plants and total plants in

each plot were determined on May 15, 2022, to calculate

plant mortality.

EPN persistence in the soil was evaluated by assessing the

mortality of yellow mealworm larvae buried in the soil samples 7,

14, 21, 28, 42 d after EPN application in both experiments. Soil

sample (10 cm × 10 cm × 10 cm) around each plant roots was

taken and five soil samples were taken from each plot. Then, 10

mealworm larvae were put in each soil sample and mortality was

assessed 4 d later. Dead larvae were incubated in petri dishes with

moist filter paper and were dissected 3 d later to estimate IJ invasion

(Yan et al., 2013).
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FIGURE 1

Corrected mortality of Holotrichia oblita Faldermann treated with Steiernema longicaudum X-7 (Sl), S. glaseri KG (Sg), S. feltiae SN (Sf),

Heterorhabditis bacteriophora H06 (Hb), and H. indica LN2 (Hi) evaluated at 4, 7 and 14 DAT. Di�erent letter(s) on the bars represent significant

di�erences among treatments on the same day (P < 0.05, Tukey’s test).

FIGURE 2

Corrected mortality of Holotrichia oblita Faldermann treated with Steinernema longicaudum X-7 (Sl), S. glaseri KG (Sg), and Heterorhabditis

bacteriophora H06 (Hb) at rates of 50, 100, 200, and 400 IJs per larva evaluated at 4, 7, and 14 DAT. Di�erent letter(s) on the bars represent significant

di�erences among treatments on the same day (P < 0.05, Tukey’s test).

2.4. Statistical analysis

The H. oblita and T. molitor bioassay data were corrected

for control mortality using Abbott’s formula (Abbott, 1925).

The percentage reductions in white grubs in the field

experiments were calculated based on Liu et al. (2007) and

Guo et al. (2013, 2015). Plant mortality was calculated using the

following equation:

Pd(%) = Nd/Na× 100,

where Pd is the percentage of dead plants in each plot, and Nd

and Na indicate the number of dead plants and the total number of

plants in each plot, respectively.
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TABLE 1 Percentage reduction in white grubs obtained from di�erent treatments at 7, 21, and 42 days after treatment (DAT) in honeysuckle fields in

Fumin (first experiment) and Nanwan (second experiment), Shandong, China.

Treatmenta % Grub reductionb at DAT

7 14 42

First experiment in Fumin

Sl30 78.89± 4.29a 82.45± 3.41a 80.19± 4.04a

Sl15 76.48± 3.14a 78.35± 2.38ab 78.98± 2.64a

Sl7.5 65.86± 3.13ab 74.53± 4.65ab 74.57± 2.95ab

Hb30 76.28± 2.79a 80.24± 3.07a 81.21± 4.28a

Hb15 76.77± 2.75a 80.30± 3.26a 78.71± 3.88a

Hb7.5 66.64± 2.87ab 72.36± 3.09ab 77.32± 3.79a

Sg30 64.69± 3.28ab 67.47± 2.57ab 64.20± 3.79ab

Sg15 63.70± 3.99ab 67.65± 3.76ab 63.83± 3.73ab

Sg7.5 57.46± 4.13b 63.79± 2.36b 58.24± 3.15b

Phoxim 80.36± 3.87a 76.07± 3.13ab 74.68± 1.81ab

Second experiment in Nanwan

Sl15 75.46± 3.36b 79.19± 4.54ab 74.91± 2.31a

Hb15 75.28± 2.78b 76.47± 5.36ab 72.34± 3.63a

Sg15 67.65± 1.77b 62.43± 2.85b 51.48± 5.94b

Phoxim 87.68± 2.56a 83.66± 3.68a 74.55± 4.75a

aSl, Steinernema longicaudum X-7; Sg, S. glaseri KG; Hb, Heterorhabditis bacteriophora H06; 30 = 3.0 × 109 IJs/ha, 15 = 1.5 × 109 IJs/ha, 7.5 = 7.5 × 108 IJs/ha. Phoxim was applied at

4,500 mL/ha.
bMean± SE. Different letter(s) represent significant differences among treatments on the same DAT (P < 0.05, Tukey’s test).

Arcsine square root transformation was applied to the

percentage data before statistical analysis in SPSS 16.0 (SPSS

Inc., Chicago, IL). Means were separated using Tukey’s test

and differences among means were considered significant

at P < 0.05.

3. Results

3.1. Virulence of di�erent EPN species
against H. oblita

A significant difference was observed between white grub

mortalities (hereafter referred to as “mortalities”) caused by

different EPN species (Figure 1). At 4 DAT, S. longicaudum and

H. bacteriophora caused higher mortalities than S. feltiae and

H. indica, while their values were not significantly different

from the mortalities associated with S. glaseri (F = 8.401; df

= 4, 10; P = 0.003). With time, an increase in mortality

was observed in all treatments. Until 7 DAT, S. longicaudum,

S. glaseri, and H. bacteriophora, caused significantly higher

mortalities than S. feltiae and H. indica (F = 6.110; df

= 4, 10; P = 0.009). At 14 DAT, the mortalities (63.33

± 3.33% to 66.67 ± 3.33%) observed in the treatments

with S. longicaudum, S. glaseri, and H. bacteriophora, were

significantly higher than that by H. indica (F = 9.357; df = 4,

10; P = 0.002).

3.2. E�ects of application rates on the
virulence of superior EPNs

White grub mortalities varied with EPN application rates

(Figure 2). Generally, the higher application rates were, the higher

mortalities were obtained. White grub mortalities kept increasing

with time. At 4 DAT, the mortalities caused by S. longicaudum at

400 IJs/larva and H. bacteriophora at 400 and 200 IJs/larva were

significantly higher than that incurred by the same EPN species

applied at lower rates (F = 5.020; df = 11, 24; P < 0.001). No

significant difference was observed among the three application

rates used for S. glaseri. At 14 DAT, the highest mortalities,

ranging from 70.00 ± 5.77% to 80.00 ± 5.77%, were caused by S.

longicaudum, S. glaseri, and H. bacteriophora at 400 IJs/larva (F =

4.478; df = 11, 24; P = 0.001).

3.3. E�ects of EPN application in
honeysuckle fields

The reduction in white grub population (hereafter referred to as

“grub reduction”) in the EPN- and phoxim-treated plots at different

sampling times in the two experiments were shown in Table 1.

In the first experiment, the treatments with S. longicaudum

and H. bacteriophora at all application rates showed high efficacy

against white grubs. At 7 DAT, when compared insecticide phoxim,

S. longicaudum and H. bacteriophora at all application rates caused
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similar grub reduction, while S. glaseri at 7.5 × 108 IJs/ha caused

a significantly lower grub reduction (F = 4.754, df = 9, 30; P

= 0.001). No significant difference was observed among the grub

reduction from the treatments with the same EPNs at different

application rates. However, the application of S. longicaudum and

H. bacteriophora at the high rates of 3.0 × 109 and 1.5 × 109

IJs/ha and low rate of 7.5 × 108 IJs/ha caused > 76% and ≈ 65%

grub reduction, respectively. However, grub reduction caused by

both EPN species applied at 7.5× 108 IJs/ha significantly increased

over time, reaching 77.32 ± 3.79%. All rates of S. longicaudum

andH. bacteriophora caused grub reductions ranging from 74.57±

4.65% to 81.21 ± 4.30% after 42 DAT, which were not significantly

different from those obtained using phoxim, but significantly

higher than the reductions obtained using S. glaseri at 7.5 × 108

IJs/ha (F = 4.590, df = 9, 30; P = 0.001).

In the second experiment, S. longicaudum andH. bacteriophora

were approximately as efficient as phoxim in reducing white

grub population. At 7 DAT, phoxim was more effective

against white grubs when compared with the EPNs. The

grub reductions caused by S. longicaudum, S. glaseri, and H.

bacteriophora at 1.5 × 109 IJs/ha were 75.46 ± 3.36%, 67.65

± 1.77%, and 75.28 ± 2.78%, respectively, significantly lower

than that caused by phoxim (F = 9.687; df = 3, 12; P =

0.002). However, with time, the differencesbetween phoxim

and the EPNs S. longicaudum and H. bacteriophora, were

reduced to zero. Until 42 DAT, these two species and phoxim

had the same efficacy, achieving grub reductions that were

significantly higher than that caused by S. glaseri KG (F = 6.292;

df = 3, 12; P = 0.008).

3.4. E�ects of EPN application on plant
mortality

Plant mortality in different treatment plots was shown in

Figure 3. Plant death from plots treated with S. longicaudum,

S. glaseri, H. bacteriophora, and phoxim were 0.84 ± 0.48%,

2.09 ± 0.41%, 0.83 ± 0.41%, and 0.85 ± 0.49%, respectively.

No significant difference was observed among the treatments

with the EPNs and phoxim. While the mortalities observed in

plots treated with S. longicaudum, H. bacteriophora, and phoxim

were all significantly lower than those in the control plots

treated with water (4.19 ± 0.49%) (F = 4.442; df = 4, 15

P = 0.014).

3.5. EPN persistence

The mortalities of baited yellow mealworm larvae were

calculated. S. longicaudum, S. glaseri, and H. bacteriophora were

able to persist in the soil for 42 d after application (Table 2).

Yellow mealworm mortalities ranged from 20.00 ± 4.08% to

45.00 ± 2.89% in the first field trail and from 27.50 ± 4.79% to

45.00 ± 2.89% in the second one. No significant difference was

observed among treatments on the same sampling day (experiment

1: F ≤ 1.586; df = 8, 27; P ≥ 0.176; experiment 2: F ≤ 0.984;

df = 2, 9; P ≥ 0.411).

FIGURE 3

Plant mortality observed in di�erent plots treated with Steinernema

longicaudum X-7 (Sl), S. glaseri KG (Sg), and Heterorhabditis

bacteriophora H06 (Hb) at 1.5 × 109 IJs/ha, and phoxim at 4,500

mL/ha evaluated on May 13, 2022. Di�erent letter(s) on the bars

represent significant di�erences among treatments and the

water-based control (CK) (P < 0.05, Tukey’s test).

4. Discussion

The screening of EPN species is critical to achieve a successful

biocontrol of pests. Foremost, suitable EPN species must be

matched with the target pest (Lacey andGeorgis, 2012; Shapiro-Ilan

and Dolinski, 2015). Among the EPN species tested via bioassay in

this study, S. longicaudum, S. glaseri, and H. bacteriophora showed

high virulence to H. oblita, which was congruent with previous

studies that S. longicaudum (Li et al., 2007; Du et al., 2009; Guo

et al., 2013), S. glaseri, andH. bacteriophora were highly pathogenic

to a variety of scarab larvae (Grewal et al., 2005; Koppenhöfer and

Fuzy, 2006). In contrast, our results showed that S. feltiae and H.

indica were slightly virulent to grubs. The virulence of EPNs varies

with different EPN species and target pests (Lacey et al., 2015)

and little is known about that caused by S. feltiae and H. indica

to scarab larvae. These two species have been reported to have a

wide host range, with high virulence to fungus gnats (Zhao, 2013;

Yan et al., 2019) and Lepidopterous pests (Lacey et al., 2015; Wang

et al., 2021). Their lack of virulence to scarab larvae maybe partly

due to their failure in overcoming host defenses (Wang et al., 1995;

Lara-Reyes et al., 2021).

Although we firstly screened EPN species through laboratory

bioassays to narrow down the candidates, the importance of

confirming the virulence determined via bioassay by conducting

subsequent filed trials cannot be overemphasized (Shapiro-Ilan

et al., 2012b). In the honeysuckle fields treated in this study,

the efficacy of S. glaseri against white grubs was not satisfactory.

Although this was the first EPN species used to control white grubs

at large scales (Gaugler et al., 1992), studies have shown that its field

efficacy has deteriorated (Selvan et al., 1994; Converse and Grewal,

1998). Long-term laboratory culture may be one of the main factors

responsible for its reduced performance (Converse and Grewal,

1998; Lee et al., 2002). Moreover, the potential virulence of S. glaseri

against other white grub species co-occurring in same field may

be another factor affecting its field efficacy. This virulence remains
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TABLE 2 Corrected mortality of Tenebrio molitor bait larvae in soil samples collected from the first (Fumin) and second (Nanwan) experiments

conducted in Shandong, China at 7, 14, 21, 28, and 42 DAT.

Treatmenta % Grub reductionb at DAT

7 14 21 28 42

First experiment in Fumin

Sl30 32.50± 4.79 45.00± 2.89 37.50± 2.50 37.50± 9.47 37.50± 2.50

Sl15 25.00± 2.89 37.50± 2.50 25.00± 5.00 35.00± 5.00 25.00± 5.00

Sl7.5 37.50± 2.50 25.00± 5.00 35.00± 6.46 37.50± 2.50 35.00± 6.46

Hb30 25.00± 6.46 32.50± 4.79 32.50± 4.79 35.00± 6.46 42.50± 4.79

Hb15 35.00± 5.00 32.50± 4.79 35.00± 2.89 30.00± 5.77 30.00± 7.07

Hb7.5 22.50± 2.50 35.00± 5.00 40.00± 4.08 35.00± 2.89 27.50± 6.29

Sg30 30.00± 4.08 27.50± 4.79 35.00± 5.00 27.50± 4.79 32.50± 7.50

Sg15 30.00± 7.07 30.00± 5.77 37.50± 2.50 32.50± 4.79 35.00± 5.00

Sg7.5 25.00± 6.46 27.50± 4.79 27.50± 7.50 30.00± 4.08 20.00± 4.08

Second experiment in Nanwan

Sl15 37.50± 4.79 42.50± 4.79 45.00± 2.89 30.00± 4.08 32.50± 4.79

Hb15 32.50± 2.50 37.50± 4.79 37.50± 4.79 27.50± 8.54 35.00± 5.00

Sg15 35.00± 2.89 37.50± 4.79 40.00± 4.08 32.50± 4.79 27.50± 4.79

aSl, Steinernema longicaudum X-7; Sg, S. glaseri KG; Hb, Heterorhabditis bacteriophoraH06; 30= 3.0× 109 IJs/ha, 15= 1.5× 109 IJs/ha, 7.5= 7.5× 108 IJs/ha.
bMean ± SE. No significant difference was observed among the corrected mortalities obtained from different treatments on the same day (First experiment, F ≤ 1.586; df = 8, 27; P ≥ 0.176;

Second experiment, F≤ 0.984; df= 2, 9; P ≥ 0.411, Tukey’s test).

to be determined, as in this study we only assessed the virulence

against the larvae of H. oblita.

Unlike S. glaseri KG, both S. longicaudum andH. bacteriophora

achieved an acceptable level of grub control in the treated

honeysuckle fields, where multiple species of white grubs co-

occurred. To ensure a successful control, it is important that EPN

species are highly pathogenic to several grub species, as these

have overlapping geographic ranges and may often co-occur in

the same fields (Grewal et al., 2004). Steinernema longicaudum

and H. bacteriophora have been shown to perform well against

different white grub species; for example, S. longicaudum proved

to be effective against Polyphylla gracilicornis (Fan, 2015) and

Holotrichia ovata (Zhang et al., 2006) in bioassays, and against

Exomala orientalis in turf grass (Lee et al., 2002) andH. parallela in

peanut fields (Guo et al., 2013), while H. bacteriophora performed

well against Popillia japonica in turf grass (Koppenhöfer and Fuzy,

2003a,b; Grewal et al., 2004; Torrini et al., 2020), H. parallela (Guo

et al., 2013), and H. oblita (Guo et al., 2015) in peanut fields.

Although we did not test the virulence of either EPN to the white

grub species mentioned above via bioassay, we believe that both are

suitable to control them based on the results of the present study

and the good field performance reported in previous studies.

In addition to the suitability of EPN species, adequate

environmental conditions, especially in terms of soil moisture, are

considered as another important factor in EPN application (Kaya,

1990; Shapiro-Ilan et al., 2006a). The honeysuckle trees in this

study were planted in hill fields with sandy soil characterized by

poor water retention. However, according to our data, the soil

moisture detected during the experimental period ranged from

8.07 to 16.33%, and EPNs could establish well in this soil. The

honeysuckle trees in the experiment fields were 3-years-old, with

lush vines covering the ground. We speculated that the good level

of shade and frequent rainfall in summer and autumn contributed

to the adequate soil moisture. Generally, white grub outbreaks in

honeysuckle are persistent (Li, 2022). In this study, EPNs could

reduce white grub populations in the long term in the fields, which

indicated that soil conditions, including soil moisture, texture, and

temperature (16–25◦C), favored EPN establishment, dispersal, and

contact with hosts (Guo et al., 2015).

In the present study, plant mortalities in the plots treated with

S. longicaudum, H. bacteriophora, and phoxim were significantly

reduced by a rate of ≈80% compared with the values observed

in the control plots treated with water. This indicated that the

reduction in white grubs obtained through the above-mentioned

treatments could lower plant mortality. To improve the curative

qualities of honeysuckle flowers, more attention should also be paid

to ecological planting. In particular, the application of EPNs to

control pests dwelling below the ground is of great significance for

ecological planting, not only for biological control purposes, but

also to enhance plant defenses (Helms et al., 2019). Further studies

should focus on the effects of EPNs on the soil system and the

quality of honeysuckle flowers after EPN application.

In our study, both S. longicaudum and H. bacteriophora

treatments performed well against white grubs in honeysuckle

fields. However, H. bacteriophora may be considered as a more

promising agent due to its relatively lower production cost (Guo

et al., 2013) and higher stability under unfavorable conditions (Yan

et al., 2010) compared with S. longicaudum. The EPN application

rate is of paramount importance, varying across target pests

and environmental settings (Shapiro-Ilan and Dolinski, 2015).

Frontiers in Sustainable FoodSystems 07 frontiersin.org106

https://doi.org/10.3389/fsufs.2023.1155133
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Li et al. 10.3389/fsufs.2023.1155133

Generally, higher application rates could enhance the efficacy of

the treatments to some degree, achieving results within a shorter

period of time (Guo et al., 2015). This would also entail an increase

in costs; however, applying lower EPN rates will increase the risk

of low efficacy against white grubs (Shapiro-Ilan et al., 2006a), as

suggested by the data in our first experiment. Our results showed

that 1.5 × 109 IJs/ha would be an optimal application rate for

honeysuckle fields, considering that higher rates did not determine

a greater reduction in white grubs at all.

In summary, the present study highlighted the potential of

using EPNs against white grubs in honeysuckle fields. Additional

studies are needed on how to accelerate the effects of EPN

treatments through the joint application of EPNs and other

entomopathogenic agents, such as Metarhizium anisopliae and

Beauveria bassiana, among others, which will improve efficacy.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Author contributions

XL, WG, and YY conceived and designed the research. XL, SL,

LL, HC, and YS conducted experiments. XL analyzed the data and

produced a draft of the manuscript. XM, WG, YY, JW, XF, and

ZS provided comments on various drafts. All authors read and

approved the final manuscript.

Funding

This study was supported by the earmarked fund for CARS

(CARS-21), Shandong Provincial Natural Science Foundation

(ZR2019BC113), and Shandong Modern Agricultural Industry

Technical System Project of China (SDAIT- 20-04).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. J.
Econ. Entomol. 18, 265–267. doi: 10.1093/jee/18.2.265a

Bedding, R. A. (1981). Low cost in vitro mass production of Neoaplectana and
Heterorhabditis species (Nematoda) for field control of insect pests. Nematologica 27,
109–114. doi: 10.1163/187529281X00115

Cao, Y. Z., and Li, K. B. (2017). Map of Common Underground Pests in China.
Beijing: China Agricultural Science and Technology Press.

Chen, Q. Q., Weng, S. Q., Cheng, L., Chen, X. Q., Lu, D. J., Zhou, J. M., et al. (2021).
Relationship between genuine honeysuckle quality and soil fertility. Soils 53, 732–738.

Converse, V., and Grewal, P. S. (1998). Virulence of entomopathogenic
nematodes to the western masked chafer Cyclocephala hirta (Coleoptera:
Scarabaeidae). J. Econ. Entomol. 91, 428–432. doi: 10.1093/jee/9
1.2.428

Ding, Y., Cao, Z., Cao, L., Ding, G., Wang, Z., and Xiao, W. (2017). Antiviral
activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition
of neuraminidase. Sci. Rep.7, 45723.

Du, X., Liu, Q., Zhang, L., Liang, L., Xie, N., and Zhang, S. (2009). Application
technology of Steinernema longicaudum BPS strain in peanut fields for chafer grub
control. Agrochemica 48, 379–388.

Duan, H. F., Wu, Q. N., Zhu, Y. Y., Liu, C. C., Huang, Z. H., Qian, D. W., et al.
(2019). UPLC was used to determine 10 components in honeysuckle from different
areas. Chin. Trad. Herb. Drugs 50, 5858–5864.

Fan, F. F. (2015). Infectivity of Entomopathogenic Nematodes to Grassland Soil Pest
White Grubs on Alpine Areas (Master’s thesis). Xining: Qinghai University.

Fang, H., Qi, X., Li, Y., Yu, X., Xu, D., Liang, C., et al. (2020). De novo
transcriptomic analysis of light-induced flavonoid pathway, transcription factors in
the flower buds of Lonicera japonica. Trees 34, 267–283. doi: 10.1007/s00468-019-
01916-4

Gao, L. F., Zhou, X. J., Shen, J. D., and Zhao, Q. (2020). Investigation and occurrence
regularity of main insect pests of honeysuckle in Nanyang city. Bull. Agric. Sci. Technol.
211–213.

Gaugler, R., Campbell, J. F., Selvan, S., and Lewis, E. E. (1992). Largescale inoculative
releases of the entomopathogenic nematode Steinernema glaseri: assessment 50 years
later. Biol. Control. 2, 181–187. doi: 10.1016/1049-9644(92)90057-K

Georgis, R., Koppenhöfer, A. M., Lacey, L. A., Be’lair, G., Duncan, L. W., Grewal, P.
S., et al. (2006). Successes and failures in the use of parasitic nematodes for pest control.
Biol. Control 38, 103–123. doi: 10.1016/j.biocontrol.2005.11.005

Glazer, I., and Gol’Berg, A. (1993). Field efficacy of entomopathogenic nematodes
against the bettieMaladera malrida (Coleoptera: Scarabaeidae). Bioconlr. Sci. Technol.
3, 367–376. doi: 10.1080/09583159309355291

Grewal, P. S., Koppenhöfer, A. M., and Choo, H. Y. (2005). “Lawn, turfgrass
and pasture applications,” in Nematodes as Biocontrol Agents, eds P. S. Grewal,
R. U. Ehlers, and D. I. Shapiro-Ilan (Wallingford, CABI Publishing), 115–146.
doi: 10.1079/9780851990170.0115

Grewal, P. S., Power, K. T., Grewal, S. K., Suggars, A., and Haupricht, S.
(2004). Enhanced consistency in biological control of white grubs (Coleoptera:
Scarabaeidae) with new strains of entomopathogenic nematodes. Biol. Control 30,
73–82. doi: 10.1016/j.biocontrol.2003.09.016

Guo, W. X., Yan, X., Zhao, G. Y., and Han, R. C. (2013). Efficacy of
entomopathogenic Steinernema and Heterorhabditis nematodes against white grubs
(Coleoptera: Scarabaeidae) in peanut fields. J. Econ. Entomol. 106, 1112–1117.
doi: 10.1603/EC12477

Guo, W. X., Yan, X., Zhao, G. Y., and Han, R. C. (2015). Efficacy of
entomopathogenic Steinernema and Heterorhabditis nematodes against Holotrichia
oblita. J. Pest. Sci. 88, 359–368. doi: 10.1007/s10340-014-0626-y

Han, J. M., Kim,M. H., Choi, Y. Y., Lee, H., Hong, J., and Yang,W.M. (2015). Effects
of Lonicera japonica thunb. on type 2 diabetes via ppar- γ activation in rats. Phytother
Res. 29, 1616–1621. doi: 10.1002/ptr.5413

Han, R. C. (1996). The effects of inoculum size on yield of Steinernema carpocapsae
and Heterorhabditis bacteriophora in liquid culture. Nematologica 42, 546–553.
doi: 10.1163/004625996X00045

Helms, A. M., Ray, S., Matulis, N. L., Kuzemchak, M. C., Grisales, W., Tooker, J.
F., et al. (2019). Chemical cues linked to risk: cues from below-ground natural enemies

Frontiers in Sustainable FoodSystems 08 frontiersin.org107

https://doi.org/10.3389/fsufs.2023.1155133
https://doi.org/10.1093/jee/18.2.265a
https://doi.org/10.1163/187529281X00115
https://doi.org/10.1093/jee/91.2.428
https://doi.org/10.1007/s00468-019-01916-4
https://doi.org/10.1016/1049-9644(92)90057-K
https://doi.org/10.1016/j.biocontrol.2005.11.005
https://doi.org/10.1080/09583159309355291
https://doi.org/10.1079/9780851990170.0115
https://doi.org/10.1016/j.biocontrol.2003.09.016
https://doi.org/10.1603/EC12477
https://doi.org/10.1007/s10340-014-0626-y
https://doi.org/10.1002/ptr.5413
https://doi.org/10.1163/004625996X00045
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Li et al. 10.3389/fsufs.2023.1155133

enhance plant defences and influence herbivore behaviour and performance. Funct.
Ecol. 33, 1–11. doi: 10.1111/1365-2435.13297

Hu, K. J., Wang, H. N., and Yuan, H. F. (2022). Analysis on the progress of Chinese
honeysuckle research. J. Hebei North Univ. 7, 38–42.

Kaya, H. K. (1990). “Soil ecology,” in Entomopathogenic Nematodes in Biological
Control, eds R. Gaugler, and H. K. Kaya (Boca Raton, FL: CRC Press), 93–116.

Kong, D., Li, Y., Bai, M., Deng, Y., Liang, G., and Wu, H. (2017). A comparative
study of the dynamic accumulation of polyphenol components and the changes in
their antioxidant activities in diploid and tetraploid Lonicera japonica. Plant Physiol.
Biochem. 112, 87–96. doi: 10.1016/j.plaphy.2016.12.027

Koppenhöfer, A. M., Brown, I. M., Gaugler, R., Grewal, P. S., Kaya, H. K., and
Klein, M. G. (2000). Synergism of entomopathogenic nematodes and imidacloprid
against white grubs: greenhouse and field evaluation. Biol. Control 19, 245–252.
doi: 10.1006/bcon.2000.0863

Koppenhöfer, A. M., Cowles, R. S., Cowles, E. A., Fuzy, E. M., and Baumgartner, L.
(2002). Comparison of neonicotinoid insecticides as synergists for entomopathogenic
nematodes. Biol. Control 24, 90–97. doi: 10.1016/S1049-9644(02)00008-7

Koppenhöfer, A. M., and Fuzy, E. M. (2003a). Steinernema scarabaei for the control
of white grubs. Biol. Control 28, 47–59. doi: 10.1016/S1049-9644(03)00048-3

Koppenhöfer, A. M., and Fuzy, E. M. (2003b). Effects of turfgrass endophytes
(Clavicipitaceae: Ascomycetes) on white grub (Coleoptera: Scarabaeidae) control
by the entomopathogenic nematode Heterorhabditis bacteriophora (Rhabditida:
Heterorhabditidae). Environ. Entomol. 32, 392–396. doi: 10.1603/0046-225X-32.2.392

Koppenhöfer, A. M., and Fuzy, E. M. (2006). Effect of soil type on infectivity and
persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema
glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. J. Invertebr.
Pathol. 92, 11–22. doi: 10.1016/j.jip.2006.02.003

Koppenhöfer, A. M., and Fuzy, E. M. (2008). Early timing and new combinations
to increase the efficacy of neonicotinoid–entomopathogenic nematode (Rhabditida:
Heterorhabditidae) combinations against white grubs (Coleoptera: Scarabaeidae). Pest
Manag. Sci. 64, 725–735. doi: 10.1002/ps.1550

Lacey, L. A., and Georgis, R. (2012). Entomopathogenic nematodes for control of
insect pests above and below ground with comments on commercial production. J.
Nematol. 44, 218–225.

Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., and
Goettel, M. S. (2015). Insect pathogens as biological control agents: back to the future.
J. Invertebr. Pathol. 132, 1–41. doi: 10.1016/j.jip.2015.07.009

Lara-Reyes, N., Jiménez-Cortés, J. G., Canales-Lazcano, J., Franco, B., Krams, I.,
and Contreras-Garduño, J. (2021). Insect immune evasion by dauer and nondauer
entomopathogenic nematodes. J. Parasitol. 107, 115–124. doi: 10.1645/20-61

Lee, D. W., Choo, H. Y., Kaya, H. K., Lee, S. M., Smitley, D. R., Shin, H. K.,
et al. (2002). Laboratory and field evaluation of Korean entomopathogenic nematodes
isolates against the oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae). J.
Econ. Entomol. 95, 918–926. doi: 10.1603/0022-0493-95.5.918

Li, J., Sun, C., Kang, Y., and Ma, J. (2007). Control effect of entomopathogenic
nematodes against grubs in peanut field. Agrochemica 46, 62–63.

Li, X. (2022). Effects of Entomopathogenic Nematodes for the Control of White Grubs
in Honeysuckle Fields (master’s thesis). Tai’an: Shandong Agricultural University.

Liu, N., Yang, X. H., Chen, Z. G., Zhao, J., Xu, J., and Sun, T. (2008). Present situation
of honeysuckle variety resources and cultivation and utilization in Yimeng Mountain
area. China Seed Ind. 4, 57–58. doi: 10.19462/j.cnki.1671 895x.2008.04.035

Liu, Q. Z., Li, J. X., Xu, X. J., Sun, C. M., Kang, Y. J., Zhou, H. Y., et al. (2007). The
preliminary study on grub control with Rhabditis (Oscheius) spp in peanut fields. Acta
Agric. Boreali-Sin 22, 250–253.

Liu, S. S., Ke-Bin, L. I., Liu, C. Q., Wang, Q. L., Yin, J., and Cao, Y. Z. (2009).
Identification of a strain ofHeterorhabditis (Nematoda:Heterorhabditidae) from Hebei
and its virulence to white grubs. Acta Entomol. Sin. 52, 959–966.

Liu, Y. H., Lu, X., Jia, H. M., Xin, Z. S., and He, Y. Z. (2017). Study on efficacy of
insecticides against Serica orientalis in honeysuckle field. China Plant Prot. 37, 66–69.

Rahman, A., and Sun, C. K. (2009). In vitro control of food-borne and food spoilage
bacteria by essential oil and ethanol extracts of Lonicera japonica thunb. Food Chem.
116, 670–675. doi: 10.1016/j.foodchem.2009.03.014

Selvan, S., Grewal, P. S., Gaugler, R., and Tomalak, M. (1994). Evaluation
of Steinernematid nematodes against Popillia japonica (Coleoptera: Scarabaeidae)
larvae: species, strains, and rinse after application. J. Econ. Enlomol. 87, 605–609.
doi: 10.1093/jee/87.3.605

Shang, X., Pan, H., Li, M., Miao, X., and Ding, H. (2011). Lonicera japonica thunb.:
ethnopharmacology, phytochemistry and pharmacology of an important traditional
Chinese medicine. J. Econ. Enlomol. 138, 1–21. doi: 10.1016/j.jep.2011.08.016

Shapiro-Ilan, D. I., Bruck, D. J., and Lacey, L. A. (2012b). “Principles
of epizootiology and microbial control,” in Insect Pathology, eds F. E. Vega,
and H. K. Kaya (Amsterdam: Elsevier), 29–72. doi: 10.1016/B978-0-12-384984-7.
00003-8

Shapiro-Ilan, D. I., and Dolinski, C. (2015). “Entomopathogenic nematode
application technology,” in Nematode Pathogenesis of Insects and Other Pests,
Sustainability in Plant and Crop Protection, ed R. Campos-Herrera (Switzerland,
Springer), 231–254. doi: 10.1007/978-3-319-18266-7_9

Shapiro-Ilan, D. I., Gouge, D. H., and Koppenhöfer, A. M. (2002). “Factors
affecting commercial success: case studies in cotton, turf and citrus,” in
Entomopathogenic Nematology, ed R. Gaugler (Walingford, CABI Publishing),
333–355. doi: 10.1079/9780851995670.0333

Shapiro-Ilan, D. I., Gouge, D. H., Piggott, S. J., and Fife, J. P. (2006a). Application
technology and environmental considerations for use of entomopathogenic nematodes
in biological control. Biol. Control 38, 124–133. doi: 10.1016/j.biocontrol.2005.09.005

Shapiro-Ilan, D. I., Han, R., and Dolinski, C. (2012a). Entomopathogenic nematode
production and application technology. J. Nematol. 44, 206–217.

Shapiro-Ilan, D. I., Stuart, R. J., and McCoy, C. W. (2006b). A comparison of
entomopathogenic nematode longevity in soil under laboratory conditions. J. Nematol.
38, 119–129.

Tamson, Y., and Alm, S. R. (1995). Evaluation of Steinernema glaseri (Nematoda:
Steinernematidae) for biological control of Japanese and oriental beetles (Coleoptera:
Scarabaeidae). J. Econ. Enlomol. 88, 1251–1255. doi: 10.1093/jee/88.5.1251

Tang, Y. L., Yin, L., Zhang, Y. D., Huang, X., Zhao, F. L., Cui, X. B.,
et al. (2016). Study on anti-inflammatory efficacy and correlative ingredients with
pharmacodynamics detected in acute inflammation rat model serum from caulis
Lonicerae japonicae. Phytomedicine 23, 597–610. doi: 10.1016/j.phymed.2016.01.016

Torrini, G., Paoli, F., Mazza, G., Simoncini, S., Benvenuti, C., Strangi, A., et al.
(2020). Evaluation of indigenous entomopathogenic nematodes as potential biocontrol
agents against Popillia japonica (Coleoptera: Scarabaeidae) in northern Italy. Insects 11,
804. doi: 10.3390/insects11110804

Wang, J., Dai, K., Kong, X. X., Cao, L., Qu, L., Jin, Y. L., et al. (2021). Research
progress and perspective on entomopathogenic nematodes. J. Environ. Entomol.
43, 811–839.

Wang, L. J. (2010). The study progress of Lonicera japonica. Med.
Inform. 2293–2296.

Wang, P., Liao, W., Fang, J., Liu, Q., Yao, J., Hu, M., et al. (2014). A glucan isolated
from flowers of Lonicera japonica thunb. inhibits aggregation and neurotoxicity of
aβ42. Carbohydr. Polym. 110, 142–147. doi: 10.1016/j.carbpol.2014.03.060

Wang, Y., Campbell, J. F., and Gaugler, R. (1995). Infection of entomopathogenic
nematodes Steinernema glaseri and Heterorhabditis bacteriophora against Popillia
japonica (Coleoptera: Scarabaeidae) larvae. J. Invertebr. Pathol. 66, 178–184.
doi: 10.1006/jipa.1995.1081

Wei, H. J., Zhang, Z. L., and Wang, M. Z. (1989). Underground Pests in China.
Shanghai: Shanghai Science and Technology Press.

Xin, Z. S. (2017). Occurrence and biocontrol technology of scarab in honeysuckle
field, Julu county.Modern Rural Sci. Technol. 5, 39.

Xu, X. Y., and Wei, K. (2021). Activity regularity and comprehensive control
measures of white grubs from honeysuckle field. Agric. Knowl. 19, 46–48.

Yan, X., Guo, W. X., Zhao, G. Y., and Han, R. C. (2014). Research advances in
subterranean pest control by entomopathogenic nematodes. J. Environ. Entomol. 36,
1018-1024.

Yan, X., Han, R., Moens, M., Chen, S., and Clercq, P. (2013). Field
evaluation of entomopathogenic nematodes for biological control of striped flea
beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae). Biocontrol 58, 247–256.
doi: 10.1007/s10526-012-9482-y

Yan, X., Liu, X. J., Han, R. C., Chen, S. L., Clercq, P. D., and Moens,
M. (2010). Osmotic induction of anhydrobiosis in entomopathogenic nematodes
of the genera Heterorhabditis and Steinernema. Biol. Control 53, 325–330.
doi: 10.1016/j.biocontrol.2010.01.009

Yan, X., Zhao, G., and Han, R. (2019). Integrated management of chive gnats
(Bradysia odoriphaga Yang and Zhang) in chives using entomopathogenic nematodes
and low-toxicity insecticides. Insects 10, 161. doi: 10.3390/insects10060161

Yang, Z. Z., Yu, Y. T., Lin, H. R., Liao, D. C., Cui, X. H., and Wang, H. B. (2018).
Lonicera japonica extends lifespan and healthspan in Caenorhabditis elegans. Free
Radic. Biol. Med. 129, 310–322. doi: 10.1016/j.freeradbiomed.2018.09.035

Zhang, A. J. (2021). Development countermeasures of Lonicer japonicaindustry in
Pingyi under the strategy of rural revitalization. Chin. Wild Plant Resour. 40, 81–85.

Zhang, C. Y., Li, P., Qi, H., and Li, J. (2003). Analysis on the geologic background
and physicochemical properties of cultivated soil of flos lonicerae in the geo-authentic
and non-authentic producing areas. China J. Chin. Mater. Med. 28, 114–117.

Zhang, Z. R., Cao, L., Liu, X. L., Wang, G. H., Xu, Z. F., and Han, R. C.
(2006). Screening of the synergistic agents of Steinernema longicaudum X-7 in
entomopathogenic nematodes. Insect Knowl. 68–73.

Zhao, G. Y. (2013). Studies on Application Entomopathogenic Nematodes
for the Control of Bradysia odoriphaga (master’s thesis). Tai’an: Shandong
Agricultural University.

Frontiers in Sustainable FoodSystems 09 frontiersin.org108

https://doi.org/10.3389/fsufs.2023.1155133
https://doi.org/10.1111/1365-2435.13297
https://doi.org/10.1016/j.plaphy.2016.12.027
https://doi.org/10.1006/bcon.2000.0863
https://doi.org/10.1016/S1049-9644(02)00008-7
https://doi.org/10.1016/S1049-9644(03)00048-3
https://doi.org/10.1603/0046-225X-32.2.392
https://doi.org/10.1016/j.jip.2006.02.003
https://doi.org/10.1002/ps.1550
https://doi.org/10.1016/j.jip.2015.07.009
https://doi.org/10.1645/20-61
https://doi.org/10.1603/0022-0493-95.5.918
https://doi.org/10.19462/j.cnki.1671 895x.2008.04.035
https://doi.org/10.1016/j.foodchem.2009.03.014
https://doi.org/10.1093/jee/87.3.605
https://doi.org/10.1016/j.jep.2011.08.016
https://doi.org/10.1016/B978-0-12-384984-7.00003-8
https://doi.org/10.1007/978-3-319-18266-7_9
https://doi.org/10.1079/9780851995670.0333
https://doi.org/10.1016/j.biocontrol.2005.09.005
https://doi.org/10.1093/jee/88.5.1251
https://doi.org/10.1016/j.phymed.2016.01.016
https://doi.org/10.3390/insects11110804
https://doi.org/10.1016/j.carbpol.2014.03.060
https://doi.org/10.1006/jipa.1995.1081
https://doi.org/10.1007/s10526-012-9482-y
https://doi.org/10.1016/j.biocontrol.2010.01.009
https://doi.org/10.3390/insects10060161
https://doi.org/10.1016/j.freeradbiomed.2018.09.035
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Frontiers in Sustainable Food Systems 01 frontiersin.org

Development of attractants and 
repellents for Tuta absoluta based 
on plant volatiles from tomato and 
eggplant
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Introduction: Tuta absoluta is currently considered one of the most devastating 
invasive pests of solanaceous plants worldwide, causing severe damage to the 
tomato industry. Insects use volatile organic compounds (VOCs) to locate host 
plant for feeding and oviposition. Those VOCs could be developed as lures for 
pest monitoring and control.

Methods: In this study, the differentially accumulated VOCs between the 
preferred host (tomato) and non-preferred host (eggplant) were analyzed by GC–
MS method, and their roles on female T. absoluta host selection and egg laying 
behaviors were investigated using electroantennography (EAG), olfactometer and 
cage experiments.

Results: A total of 39 differentially accumulated VOCs were identified in tomato 
and eggplant. Strong EAG signals were obtained in 9 VOCs, including 5 VOCs 
highly accumulated in tomato and 4 VOCs highly accumulated in eggplant. 
Further olfactometer bioassays showed that 4 compounds (1-nonanol, ethyl 
heptanoate, ethyl octanoate and o-nitrophenol) were attractive to T. absoluta 
females, while 5 compounds (2-phenylethanol, 2-pentylfuran, trans,trans-2,4-
nonadienal, 2-ethyl-5-methylpyrazine and trans-2-nonenal) were repellent, 
indicating that VOCs from host plants play important roles in host plant 
preferences. The attractive activities of 1-nonanol and ethyl octanoate, as well as 
the repellent activities of trans,trans-2,4-nonadienal and trans-2-nonenal, were 
further confirmed in cage experiments.

Discussion: In this study, two attractants and two repellents for T. absoluta were 
developed from plant released VOCs. Our results could be useful to enhance the 
development of eco-friendly and sustainable pest management strategies for T. 
absoluta.
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1. Introduction

The South American tomato pinworm, Tuta absoluta (Meyrick) 
(Lepidoptera, Gelechiidae), an invasive pest native to Peru, South 
America, has become one of the most devastating pests of solanaceous 
plants worldwide (Biondi et al., 2018). It can infest host plants at all 
developmental stages, with the larvae mining and feeding on leaves, 
stems and fruits, causing crop losses up to 80–100% in the area 
without timely control measures (Desneux et al., 2010). After invading 
Europe in 2006, this pest spread quickly to Afro-Eurasian 
supercontinent, and now has been recorded in more than 90 countries 
and regions outside South America (Biondi et al., 2018; Desneux et al., 
2022). In Asia, T. absoluta has been found in many countries (Campos 
et al., 2017; Han et al., 2019), including countries on the northwestern 
and southwestern border of China, e.g., Tajikistan, Kyrgyzstan, India, 
Nepal, etc. (Campos et al., 2017; Sankarganesh et al., 2017; Uulu et al., 
2017; Saidov et al., 2018). Recently, this pest was found in northwest 
China in Xinjiang (Li D. et al., 2019; Li X. W. et al., 2019; Zhang et al., 
2019) and southwest China in Yunnan (Zhang et al., 2020), and has 
quickly spread to 14 provinces in China mainland, poses a significant 
threat to China’s tomato production (Zhang et al., 2021).

Currently, chemical control is still the main control method for 
T. absoluta implemented in its native ranges and invaded countries 
to counter its great threat to agricultural production (Guedes et al., 
2019). It has been reported that the application of insecticides 
could prevent the occurrence and spread of T. absoluta to some 
extent (Silvério et  al., 2009). However, the control effects of 
insecticides is limited because of the larval endophytic feeding 
behavior which makes T. absoluta a difficult target for insecticide 
sprays (Guedes and Siqueira, 2012). In addition, due to the 
intensive use of insecticides, T. absoluta has become resistant to 
many chemical classes of insecticides, including organophosphates 
(Siqueira et al., 2000b; Lietti et al., 2005; Haddi et al., 2017; Barati 
et al., 2018), pyrethroids (Haddi et al., 2012; Biondi et al., 2015), 
spinosyn (Campos et al., 2014, 2015), avermectins (Siqueira et al., 
2001; Silva et al., 2016), cartap (Siqueira et al., 2000a), benzoylureas 
(Silva et al., 2011), indoxacarb (Roditakis et al., 2018) and diamides 
(Silva et al., 2019). Alternative control strategies should therefore 
be used within the context of integrated pest management (IPM) 
for this destructive pest.

In response to insect herbivory, plants release volatile 
compounds that may serve as protective substances as well as 
mediators of interactions with other plants, microbes, and animals. 
Plant-released semiochemicals are promising eco-friendly pest 
management methods that has been widely used as a sustainable 
alternative for synthetic insecticides (Dudareva et  al., 2006; 
Shrivastava et  al., 2010; Beck et  al., 2017). In the process of 
co-evolution between insects and plants, there is a corresponding 
interaction between insects and plants. The most primitive 
ecological relationship is that insects select their compatible host 
plants, while the phytoconstituents of host plants are one of the 
direct causes of host plant-insect interaction (Thompson, 1988). 
Plants could release different classes of volatile organic compounds 
(VOCs) into the external environment during their growth and 
development, which enables plants to generate defense signals and 
communicate with each other (Baldwin et al., 2006; Heil and Silva 
Bueno, 2007). Plant VOCs also play important roles in plant-insect 

interactions, affecting insect feeding, mating and egg-laying (Bruce 
et al., 2005). Insects use plant volatiles to locate plant hosts for 
feeding and oviposition (Kuhnle and Muller, 2011; Wynde and 
Port, 2012). Those VOCs could be  developed as lures for pest 
monitoring and control (Shrivastava et al., 2010). On the other 
hand, many plants have developed counter strategies to defend 
themselves against these insects, including repellent VOCs, which 
could be developed into repellents to reduce pest populations on 
target crops (War et al., 2012).

The use of plant chemicals (VOCs and non-volatile secondary 
metabolites) for pest control has been reported for T. absoluta. For 
instance, it has been reported that the extracts of jojoba, 
Simmondsia chinensis, can effectively control T. absoluta (Abdel-
Baky and Al-Soqeer, 2017). Essential oils of three Satureja species, 
S. khuzestanica, S. bachtiarica, and S. rechingeri, had fumigant 
toxicity on T. absoluta, with geraniol the main component of all 
essential oils (Rahmani and Azimi, 2021). Shared volatile 
compounds from different hosts [a blend consisting of limonene 
(16.64%), β-ocimene (1.84%), α-terpinene (12.17%),δ-eIemene 
(4.29%) and (E)-β-caryophyllene (6.78%)] could attract female 
T. absoluta (Msisi et al., 2021). Consequently, understanding the 
plant chemicals involved in T. absoluta-host plant interactions 
could be  useful for the development of a new strategy for the 
control of this pest.

Tuta absoluta is oligophagous and can survive and reproduce 
normally on potatoes, tobacco and other Solanaceae crops (Arnó 
et al., 2019). Nevertheless, it has been found that T. absoluta had a 
strong preference for tomatoes among host plants, and volatile 
chemical signals played important roles in its host plant preferences 
(Subramani et al., 2021). Similarly, in our previous study, it has been 
found that the number of eggs laid by T. absoluta was significantly 
higher on tomatoes than on eggplants (Chen et al., 2021). In this study, 
we further analyzed the differentially accumulated VOCs between 
these two host plants, and their roles on female host selection and egg 
laying behaviors were investigated by using electroantennography 
(EAG), olfactometer and cage experiments. The VOCs with attractive 
and repellent activities could be used to develop new control strategies 
for this pest.

2. Materials and methods

2.1. Plant materials and insects

Seeds of tomato (variety Zhefen 202) and eggplant (variety Zheqie 
NO.1) were sown in the coconut coir for germination. After the 
two-leaf stage, seedlings were individually transplanted into plastic 
pots (7 cm long, 7 cm wide and 9 cm high) and placed in an insect-free 
greenhouse (26 ± 5°C, 60% ± 5% RH, 16 L:8 D photoperiod). The 
plants were watered at regular intervals and 1 g of water-soluble 
fertilizer containing 18 macro-elements (OMEX, 18–18-18) was 
applied to each plant. Plants at the 5-leaf stage were used for host plant 
VOC collection and egg-laying experiments.

Tuta absoluta populations were collected in 2018 from tomato 
fields in Yili, Xinjiang, and were continuously reared in an artificial 
climate chamber (25 ± 1°C, 60% ± 5% RH, 16 L:8 D photoperiod) on 
tomato plants.
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2.2. Headspace solid-phase 
microextraction coupled to gas 
chromatography–mass spectrometry 
(HS-SPME/GC–MS)

When the healthy host plants (tomato and eggplant) were at the 
5-leaf stage, the third leaf from the top was selected, the veins were 
removed, approximately 1 g of each sample was lyophilized in liquid 
nitrogen (LN) and subsequently stored in a − 80°C freezer. Samples 
were later pulverized in liquid nitrogen and vortexed to mix evenly. 
The samples were moved into a headspace bottle with fully automatic 
headspace solid-phase microextraction (HS-SPME) (Lee et al., 2007). 
The gas chromatography-mass spectrometer (GC–MS) was used to 
identify terpenoids, benzene ring types and phenylpropanoids, fatty 
acid derivatives and other volatiles. The volatile content was 
determined by the headspace collection method or extraction method. 
The SPME readings were taken at 250°C aging temperature; 5 min 
aging time; 60°C heating temperature; 10 min heating time; 20 min 
adsorption time; 5 min desorption time; and 5 min aging time after 
sample injection. The original data file obtained by GC–MS analysis 
was first extracted using the MassHunter software (Agilent) (Yuan 
et al., 2022). Three samples were collected and tested both for tomato 
and eggplant.

2.3. Electroantennographic (EAG) 
responses of T. absoluta females to VOCs

To test whether differentially accumulated VOCs between tomato 
and eggplant contribute to host plant preference of T. absoluta, EAG 
responses of T. absoluta females and males to 20 differentially 
accumulated VOCs were determined using the EAG detection system 
(Stimulus Air Controller CS-55 and SYNTECH IDIC2; Syntech, 
Hilversum, the Netherlands). The 20 VOCs, which were selected 
according to the principal component analysis and the characteristics 
of VOCs, were as follows: 1-nonanol, 2-phenylethanol, 2-isopropyl-3-
methoxypyrazine, ethyl heptanoate, ethyl octanoate, 
1,4-diethylbenzene, o-nitrophenol, which were highly accumulated in 
tomato; benzyl alcohol, 2-pentylfuran, benzaldehyde, trans,cis-2,6-
nonadienal, trans,trans-2,4-nonadienal, furfural, trans-2-hexen-1-al, 
trans,trans-2,4-heptandienal, isophorone, 2-s-butylphenol, 4-hexen-
3-one, 2-ethyl-5-methylpyrazine, and trans-2-nonenal, which were 
highly accumulated in eggplant. The synthetic standards of the above 
VOCs were purchased from Merck and Shanghai Aladdin Biochemical 
Technology Co.

The standard compounds were diluted in a gradient with paraffin 
oil to four concentrations (0.1, 1, 10, and 100 mg/mL), 10 μL of each 
was applied to a piece of filter paper (5 mm × 2 cm), which was placed 
into Pasteur pipette 10 min before testing. 10 μL of paraffin oil was 
used as a control stimulus. The stimulus was made by introducing the 
test volatile to the antenna at a flow rate of 25 mL/min for 2 s and with 
an interval of 1 min for the next stimulus. For each test chemical, 
paraffin oil was used as control. The test order was paraffin oil, the test 
compound, and paraffin oil. The test compound of each concentration 
was performed on five females and males. Relative EAG values of 
T. absoluta were reported as the percentage of the response to 
paraffin oil.

2.4. Olfactometer bioassay

The responses of T. absoluta females and males to 9 volatile 
compounds with strong EAG responses, including 5 highly 
accumulated in tomato (1-nonanol, 2-phenylethanol, ethyl heptanoate, 
ethyl octanoate and o-nitrophenol) and 4 highly accumulated in 
eggplant (2-pentylfuran, trans,trans-2,4-nonadienal, 2-ethyl-5-
methylpyrazine and trans-2-nonenal), were tested by using Y-tube 
olfactometer. The glass Y-tube is with a 3-arm structure, which 
consists of a 60-mm-long base tube and two 60-mm-long arms. The 
two arms were separated from each other at an angle of 90°. Teflon 
tubes were used to connect the components of the olfactometer 
apparatus. Air was pumped into the apparatus by an electromagnetic 
air pump, filtered by activated carbon, and split into two air streams 
at a flow rate of 60 ml/s. Before each test, the apparatus was rinsed with 
pure ethanol and dried in an oven (120°C).

Tuta absoluta females and males of mixed ages (2–4 days) were 
used for Y-tube olfactometer bioassays. The bioassays were conducted 
in a dark room at 25 ± 1°C and 60% ± 5% RH. The light was provided 
by an LED lamp located in the ceiling directly above the Y-tube. 
Solutions of each VOC compounds were prepared in paraffin oil at a 
gradient of four concentrations (0.1, 1, 10, and 100 mg/mL), and 10 μL 
was pipetted onto a piece of clean filter paper (1 × 1 cm), which was 
then transferred to a glass flask as the test odor source. Filter paper 
with 10 μl of paraffin oil in a glass flask was used as a control 
odor source.

Tuta absoluta females and males were individually transferred to 
the base tube of the Y-tube and their choice was recorded within 
5 min. When the tested individual crossed half-length of either arm, 
the “effective choice” was recorded. If the tested individual did not 
cross half-length of either arm within 5 min, the “no choice” was 
recorded. To prevent the effects of light, the Y-tube arms were swapped 
after every 5 insects. The experiment was repeated five times, with 20 
individuals each time.

2.5. Cage experiments

Cage experiments were conducted in a climate chamber 
(25 ± 1°C, 60% ± 5% RH, 16 L: 8 D photoperiod) to test the responses 
of T. absoluta females to 4 VOCs (1-nonanol, ethyl octanoate, 
trans,trans-2,4-nonadienal and trans-2-nonenal) that showed the 
highest attractive or repellent activities to T. absoluta females in 
olfactometer bioassays. In each cage, six five-leaf stage tomato plants 
were placed equally along two opposite sides of the cage, with three 
plants along each side. The concentrations of standard compounds 
that showed the highest attractive or repellent activities to T. absoluta 
were used in cage experiments. The standard compounds of selected 
VOCs were dissolved in hexane at the required concentration. A 
Rubber septum with 10 μl diluted standard compounds of selected 
VOCs was hung on each of the three plants on one side of the cage. 
Rubber septa with 10 μl of hexane were used as control, and were 
hung on plants on the other side of the cage. Thirty 2 to 4 days old 
females of T. absoluta were released from the middle of the cage. 
After 48 h, the number of T. absoluta eggs on all leaves of each 
tomato plant was counted. The experiment was repeated twice for 
each tested VOC compound.
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2.6. Statistical analysis

Quality control (QC) analysis was conducted before data were 
obtained from GC–MS to confirm the reliability of the data before the 
overall analyses. The QC sample was prepared by mixing sample 
extracts for insertion into every three samples to monitor the changes 
in repeated analyses. Data matrices with the intensity of the metabolite 
features from the samples were uploaded to the Analyst software 
(version 1.6.1; AB Sciex, Canada) for statistical analyses. The partial 
least squares discriminant analysis (PLS-DA) was performed to 
maximize the metabolome differences between sample pairs. The 
relative importance of each metabolite to the PLS-DA model was 
tested using the variable importance in projection (VIP) as a 
parameter. Metabolites with VIP ≥ 1 and fold change ≥2 or fold 
change ≤0.5 were considered differential metabolites for group 
discrimination (Chong et al., 2018). PCA and Ward’s hierarchical 
clustering heatmap were performed using R software (version 3.3.2).1 
Consequently, a metabolic pathway was constructed according to 
KEGG2; and pathway analysis was performed using MetaboAnalyst3 
based on the change in metabolite concentration compared with the 
corresponding controls.

EAG data were analyzed using one-way ANOVA followed by 
Turkey’s Highest Significant Difference. Olfactometer data was 
analyzed using the Chi square test. The null hypothesis was that 
T. absoluta had 50: 50 distributions across the two arms of the 
olfactometer. Differences in the number of eggs on tomato plants with 
VOC compounds and solvent control were analyzed using Student 
t-test. Data analyses were performed by using SPSS (SPSS Inc., 2007, 
Chicago, IL) with p ≤ 0.05.

3. Results

3.1. Analysis of differentially accumulated 
VOCs in tomato and eggplant

VOCs released from the two host plants (tomato and eggplant) 
collected by HS-SPME were identified by GC–MS. In total, one hundred 
and forty VOCs predominantly from alkanes (24), heterocyclic 
compounds (20), alcohol (16), aldehyde (16), terpenes (14), ketone (13), 
ester (11), aromatics (10), phenol (8), olefin (3), acid (2), ether (1), amine 
(1) and other (1) classes were detected in this study (Figure  1A; 
Supplementary Table S1). Thirty-nine differentially accumulated VOCs 
were identified between these two different host plants 
(Supplementary Table S2), of which, 15 VOCs were accumulated higher 
in tomato than in eggplant, which belong to alcohol (3), heterocyclic 
compound (3), terpenes (2), aromatics (2), ester (2), alkanes (1), aldehyde 
(1) and phenol (1). These VOCs might contribute to the higher attraction 
of tomato plants to T. absoluta females for host selection and oviposition. 
While 24 VOCs were accumulated higher in eggplant than in tomato, 
which belong to aldehyde (9), heterocyclic compound (5), alcohol (3), 
ketone (3), phenol (2), terpenes (2). These VOCs might have repellent 
activities to T. absoluta.

1 www.r-project.org

2 https://www.genome.jp/kegg/

3 https://www.metaboanalyst.ca/

The 39 differentially accumulated VOCs were further evaluated 
using principal component analysis (PCA) to clarify that the 
differentially accumulated VOCs detected could be used to distinguish 
between the two host plants. PCA analysis (Figure 1B) indicated that 
the detected VOCs were divided into two groups, with significant 
differences between tomato and eggplant, suggesting significant 
differences in VOCs between the two host plants. Although tomato 
and eggplant could not be distinguished in the PC2 (vertical axis) 
principal component, a significant distinction between tomato and 
eggplant could be  found in the PC1 (horizontal axis) principal 
component. The PC1 (horizontal axis) principal component explained 
62.51% of the total variance between samples, while PC2 (vertical 
axis) explained only 16.88%. The variability between sample groups 
and the similarity within sample groups confirmed the differential 
accumulation of VOCs in the two host plants.

We performed a hierarchical clustering analysis of the 
differentially accumulated VOCs detected in tomato and eggplant 
samples (Figure  1C), which showed a high degree of similarity 
between the biological replicates within each host plant and significant 
differences between the tomato and eggplant samples. These results 
indicate the high quality of data from both sets of samples and the 
presence of significant differences in VOCs in the two host plants.

3.2. EAG responses of T. absoluta females 
to VOCs

To demonstrate that the differential accumulation of VOCs on the 
two host plants identified in this study does have effects on the 
egg-laying behavior of T. absoluta females, the EAG response of 
T. absoluta females and males to 20 differentially accumulated VOCs 
were initially screened. These 20 VOCs included 7 VOCs that were 
higher accumulated in tomatoes than in eggplants, namely 1-nonanol, 
2-phenylethanol, 2-isopropyl-3-methoxypyrazine, ethyl heptanoate, 
ethyl octanoate, 1,4-diethylbenzene, o-nitrophenol, and 13 VOCs that 
were higher accumulated in eggplants namely benzyl alcohol, 
2-pentylfuran, benzaldehyde, trans,cis-2,6-nonadienal, trans,trans-
2,4-nonadienal, furfural, trans-2-hexen-1-al, trans,trans-2,4-
heptandienal, isophorone, 2-S-butylphenol, 4-hexen-3-one, 2-ethyl-
5-methylpyrazine, trans-2-nonenal.

The results showed that all the 20 VOCs triggered certain EAG 
responses of T. absoluta females (Figure 2), confirming that the selected 
VOCs might have some effects on host plant selection and egg-laying 
behavior of T. absoluta females. It is also noteworthy that among the 20 
compounds tested, 9 VOCs, including 5 highly accumulated in tomato 
(1-nonanol, 2-phenylethanol, ethyl heptanoate, ethyl octanoate and 
o-nitrophenol) and 4 highly accumulated in eggplant (2-pentylfuran, 
trans,trans-2,4-nonadienal, 2-ethyl-5-methylpyrazine and trans-2-
nonenal), caused significantly higher EAG responses in T. absoluta 
females. The EAG responses of T. absoluta males to 20 VOCs 
(Supplementary Figure S1) were roughly the same as females.

3.3. Olfactory responses of T. absoluta 
females to VOCs

Among the 9 VOCs in the olfactometer bioassays, 4 compounds (all 
higher in tomatoes than in eggplants) were attractive to T. absoluta 
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females and 5 compounds (four of them were higher in eggplant than in 
tomato) were repellent (Figure 3). Specifically, 1-nonanol was shown to 
be attractive to T. absoluta females at doses of 1 and 10 μg, but had no 
significant attractive effect at doses of 100 and 1,000 μg. Ethyl heptanoate 
at a dose of 10 μg showed an attractive effect on T. absoluta females, but 
no significant effects at 1, 100 and 1,000 μg. Ethyl octanoate was attractive 
to T. absoluta females at 1, 10 and 100 μg, but there was no significant 
effect at 1000 μg. O-nitrophenol at a dose of 1 μg produced an attractive 
effect on T. absoluta females, but there were no significant effects at doses 
of 10, 100 and 1,000 μg. By contrast, 2-phenylethanol at 100 and 1,000 μg 
produced repellent effects on T. absoluta females, but no significant 
repellent activities were found at 1 and 10 μg doses. 2-pentylfuran at 
1000 μg produced a repellent effect on T. absoluta females, but there was 
no significant repellent effect at 1, 10 and 100 μg. The trans,trans-2,4-
nonadienal produced repellent effects on T. absoluta females at doses of 
10, 100 and 1,000 μg, but no significant effect at 1 μg. 2-ethyl-5-
methylpyrazine produced repellent effects on T. absoluta females at doses 

of 100 and 1,000 μg, but not repellent at 1 and 10 μg. The trans-2-nonenal 
produced repellent effects on T. absoluta females at four doses of 1, 10, 100 
and 1,000 μg. Notably, 1-nonanol and ethyl octanoate, which were more 
abundant in tomatoes compared to eggplants, showed significant 
attractive activities to T. absoluta females, while trans,trans-2,4-nonadienal 
and trans-2-nonenal, which were more abundant in eggplants than 
tomatoes, showed significant repellent activities to T. absoluta females. 
The behavioral responses of T. absoluta males to these nine VOCs were 
highly consistent with females (Supplementary Figure S2).

3.4. Effects of VOCs on the oviposition 
behavior of T. absoluta

Results from cage experiments showed that 1-nonanol, ethyl 
octanoate, trans,trans-2,4-nonadienal and trans-2-nonenal could 
significantly influence the number of eggs laid by T. absoluta on the 

A

B C

FIGURE 1

(A) Classes of volatile organic compounds identified of tomato and eggplant. (B) Principal component analysis (PCA) of differentially accumulated 
VOCs identified from tomato and eggplant leaves by headspace solid-phase microextraction (HS-SPME). (C) Heatmap clustering of 39 differentially 
accumulated VOCs identified from tomato and eggplant leaves.
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host plants (Figure 4). Specifically, T. absoluta females laid significantly 
more eggs on tomato plants with 1-nonanol by 91.6% compared to 
control plants with hexane. Similarly, T. absoluta females produced 

significantly more eggs on tomato plants with ethyl octanoate by 
245.2% compared to control plants with hexane. By contrast, 
T. absoluta females produced 71.9% fewer eggs on tomato plants with 

FIGURE 2

Electroantennographic (EAG) responses of T. absoluta females to 20 volatile compounds. The bar represents the standard error, and the different 
letters above each bar indicate Turkey’s highest significant difference at p < 0.05.
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trans,trans-2,4-nonadienal compared to control plants with hexane. 
T. absoluta females produced 35.8% fewer eggs on tomato plants with 
trans-2-nonenal compared to control with hexane. These results 
suggest that 1-nonanol and ethyl octanoate had significant attractive 
effects on the oviposition choice of T. absoluta females. On the 
contrary, trans,trans-2,4-nonadienal and trans-2-nonenal had 
repellent effects on the oviposition choice of T. absoluta females.

4. Discussion

Compared with polyphagous insects, oligophagous insects usually 
have a much stronger preference for selecting suitable host plants 
(Gripenberg et al., 2010). The dispersal ability of T. absoluta larvae is 
limited, consequently, host plant selection of T. absoluta females often 
determines the food source of their offspring at the larval stage (Silva 
et al., 2021). Results from our previous study showed that T. absoluta 
females showed significant oviposition preference to tomatoes 
compared to eggplants (Chen et  al., 2021). This phenomenon is 
consistent with the “preference performance hypothesis” (Jaenike, 
1978; Thompson, 1988; Mayhew, 1997; Gripenberg et al., 2010). In 
response to the host plant preference behavior of T. absoluta, 
we supposed that one or more specific plant VOCs released by tomato 
plants may have attractive effects on T. absoluta females, facilitating 

their rapid localization to tomato plants and preferred oviposition on 
tomato leaves.

The results from this study showed that 39 differentially 
accumulated VOCs were identified between the preferred host 
(tomato) and non-preferred host (eggplant) by headspace solid-
phase microextraction coupled with gas chromatography–mass 
spectrometry (HS-SPME/GC–MS). Specifically, 15 VOCs were 
highly accumulated in tomato, with alcohol and heterocyclic 
compounds the most abundant. These results were different from the 
previous study, which reported that tomato had a higher number of 
terpenes and acid compounds than other host plants (including 
eggplant) (Msisi et al., 2021; Subramani et al., 2021). Our results 
showed that 24 VOCs were accumulated higher in eggplant with 
aldehyde and heterocyclic compounds the most abundant. However, 
some highly accumulated compounds reported in eggplant 
compared with tomato, such as 1,2,3,5-tetramethylcyclohexane, 
cyclooctene, 3-(1-methylethenyl), 1,2,3,5-tetramethylcyclohexane, 
etc. (Subramani et al., 2021), were not found in our study. Similar to 
previous studies (Proffit et al., 2011; Msisi et al., 2021; Subramani 
et al., 2021), these differentially accumulated VOCs might contribute 
to the oviposition preference differences between tomato and 
eggplant. A previous study reported that the high composition of 
terpenes in tomato contributed to the attractive activity of tomato 
volatiles to female T. absoluta, while highly constituted green leaves 

FIGURE 3

Responses of female T. absoluta to nine VOCs in a Y-tube olfactometer. NS indicates no significant difference; asterisks indicate significant differences 
(*p < 0.05; **p < 0.01).
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volatiles (GLVs) in watermelon contributed to the repellent activity 
of watermelon volatiles to female T. absoluta (Msisi et al., 2021). 
Subramani et  al. reported that volatiles from tomato, such as 
p-quinone, 2-carene, δ-curcumene, and 1,2-diethylbenzene, could 
serve as oviposition stimulants to T. absoluta, whereas the presence 
of 1-fluorododecane in host plants such as datura, eggplant, 
ashwagandha, and black nightshade, might deterred T. absoluta from 
ovipositing (Subramani et al., 2021). It has also been reported that 
plant volatiles from different tomato cultivars contributed to the 
oviposition choice of T. absoluta (Proffit et al., 2011). 2-tridecanone, 
2-undecanone, and zingiberene, which are compounds not detected 
in susceptible tomato varieties, were detected in wild tomato 
varieties resistant to T. absoluta (Leite et al., 1999; Azevedo et al., 
2003). Consequently, we suspected the VOCs accumulated higher in 
tomato might contributed to the higher attraction of tomato plants 
to T. absoluta females for host selection and oviposition, while the 
VOCs accumulated higher in eggplant might be account for the 
repellency for egg laying.

To confirm the behavioral effects of the differentially accumulated 
VOCs on T. absoluta, 20 differentially accumulated VOCs had been 
selected for electroantennographic tests. The results showed 9 VOCs, 
including 5 highly accumulated in tomato (1-nonanol, 
2-phenylethanol, ethyl heptanoate, ethyl octanoate and o-nitrophenol) 
and 4 highly accumulated in eggplant (2-pentylfuran, trans,trans-2,4-
nonadienal, 2-ethyl-5-methylpyrazine and trans-2-nonenal), caused 
significant higher EAG responses of T. absoluta females (Figure 2) and 
males (Supplementary Figure S1). Further olfactometer bioassays 
showed that 4 compounds (1-nonanol, ethyl heptanoate, ethyl 
octanoate and o-nitrophenol) were attractive to T. absoluta females, 
while 5 compounds (2-phenylethanol, 2-pentylfuran, trans,trans-2,4-
nonadienal, 2-ethyl-5-methylpyrazine and trans-2-nonenal) were 
repellent (Figure  3). These results showed that, except for 
2-phenylethanol, VOCs that were highly accumulated in tomato 
elicited attractive activities to T. absoluta, while VOCs that were highly 
accumulated in eggplant elicited repellent activities, and the results for 
males were highly consistent with those of females 

(Supplementary Figure S2). These results proved that volatile chemical 
signals played important roles in the host plant preferences of this 
pest. The VOCs identified in this study were different from the VOCs 
with oviposition selection behavior effects on T. absoluta in previous 
studies (Smith et  al., 1996; Anastasaki et  al., 2018), which could 
provide new candidate compounds for the development of bisexual 
attractants and repellents for this pest.

Results from cage experiments confirmed that 1-nonanol and 
ethyl octanoate were attractive to T. absoluta for oviposition. The 
attractive activities of these two volatiles have been reported in other 
pests. For instance, 1-nonanol could induce attraction response in 
sandfly Lutzomyia longipalpis (Magalhaes-Junior et al., 2014), melon 
fly Bactrocera cucurbitae (Siderhurst and Jang, 2010), and parasitic 
wasp Campsomeris tasmaniensis (Allsopp, 1992). However, this 
compound has been reported to be an oviposition deterrent for 
codling moth, Cydia pomonella (Yokoyama and Miller, 1991). Ethyl 
octanoate itself or synthetic compounds blend containing ethyl 
octanoate were attractive to fruit flies, such as Bactrocera dorsalis, 
Anastrepha ludens and A. obliqua (Robacker et al., 1992; Cruz-Lopez 
et al., 2006; Jayanthi et al., 2012). Ethyl octanoate is also one of the 
major volatile compounds of fermented sugar baits, which are 
commonly used for mass trapping of lepidopteran species (El-Sayed 
et al., 2005). Our results also showed that trans,trans-2,4-nonadienal 
and trans-2-nonenal could repel T. absoluta from oviposition. 
Trans,trans-2,4-nonadienal has been frequently reported to be a 
repellent against stored product insects, such as granary weevil 
Sitophilus granarius (Germinara et  al., 2015), cigarette beetle 
Lasioderma serricorne and booklouse Liposcelis bostrychophila (Wei 
et  al., 2018). Trans-2-nonenal was reported to be  repellent to 
Culicoides biting midges (Isberg et al., 2017), and this compound 
was also effective in inactivating pathogenic bacteria (Cho et al., 
2004). Further study should be conducted to test the effects of the 
identified attractive and repellent VOCs on field populations of 
T. absoulta.

In conclusion, our results identified 39 differentially 
accumulated VOCs between the preferred host (tomato) and 

FIGURE 4

The effect of four VOCs on the oviposition behavior of T. absoluta. The bar represents the standard error, and asterisks indicate significant differences 
(*p < 0.05; **p < 0.01).
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non-preferred host (eggplant). Then the behavioral effects of these 
VOCs on the host selection and oviposition of T. absoluta were 
further investigated by using electroantennography and 
olfactometer tests. Almost all the selected VOCs that were highly 
accumulated in tomato showed attractive activities to T. absoluta, 
while VOCs highly accumulated in eggplants showed repellent 
activities, indicating that VOCs from host plants play important 
roles in host plant preferences. The attractive activities of 
1-nonanol and ethyl octanoate, as well as the repellent activities 
of trans,trans-2,4-nonadienal and trans-2-nonenal, were further 
confirmed in cage experiments. These VOCs will enhance the 
development of semiochemicals-based eco-friendly control 
strategies for this pest.
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SUPPLEMENTARY FIGURE S1

Electroantennographic (EAG) responses of T. absoluta males to 20 volatile 
compounds. The bar represents the standard error, and the different letters 
above each bar indicate Turkey’s highest significant difference at p < 0.05.

SUPPLEMENTARY FIGURE S2

Responses of male T. absoluta to nine VOCs in a Y-type olfactometer. NS 
indicates no significant difference; asterisks indicate significant differences 
(*p < 0.05; **p < 0.01).
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Evaluation of Osmia excavata 
(Hymenoptera: Megachilidae) 
sensitivity to high-temperature 
stress
Yingying Song 1, Li Liu 2, Hongying Cui 1, Wenxiu Guo 1, Suhong Lv 1, 
Baohua Ye 2, Lili Li 1, Yi Yu 1 and Xingyuan Men 1*
1 Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China, 2 College of 
Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China

The population of Osmia excavata, an important pollinator in commercial 
orchards, has been in serious decline over recent years. To evaluate the risk of 
high-temperature stress on O. excavata, we  evaluated the high-temperature 
tolerance and potential physiological and biochemical responses of O. excavata 
after a series of high-temperature stresses. The results showed that the mortality 
rates of O. excavata increased gradually with increases in temperature and duration 
of stress (R2 = 0.88–0.99; p < 0.05). The larvae of O. excavata were more sensitive 
to temperature stress than adults, and the median lethal time (LT50) value of the 
former was smaller than the latter in the acute response test. By comparing the 
results of acute and chronic responses of O. excavata to high-temperature stress, 
we found that the LT50 values of natural cocoon-break adults at slightly higher 
temperatures (35°C and 40°C) were smaller than those of artificial cocoon-break 
adults, but the LT50 values were similar under extreme high-temperature stress 
(45°C). Furthermore, the acute and chronic responses on the fat content of adult 
Osmia obtained by artificial and natural cocoon-break methods were significantly 
different (F = 5.03; p < 0.05). Additionally, the mortalities of the young larvae and 
artificial cocoon-break adults were both significantly and positively correlated 
with trehalose content (r  = 0.78–0.82, p  < 0.05). However, the mortality of the 
natural cocoon-break adults was negatively related to the acetylcholinesterase 
activity (r = −0.93, p < 0.001). Overall, these results suggested that O. excavata has 
a low tolerance to high-temperature stress and provide evidence of causes that 
could be contributing to the population decline of O. excavata.

KEYWORDS

Osmia excavata, high-temperature stress, mortality rate, median lethal time, 
physiological and biochemical index, ecological risk

Introduction

Osmia excavata (Hymenoptera: Megachilidae) is a univoltine pollinator that spends its 
entire life inside a bee tube until it emerges the following spring (Men et al., 2018). This 
insect is used widely to pollinate apple, pear, peach, cherry, and other commonly planted 
fruit trees in China because of several advantages, including a better pollination efficiency 
than that of bees and artificial pollination, resistance to low temperature in winter, low 
take-off temperature (i.e., about 13°C), long daily pollination activity, fast frequency of 
visiting flowers, and simple feeding and management (Shu et al., 2002; He and Zhou, 2009; 
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Sgolastra et al., 2015). Known as the king of pollinators (Li, 1992), 
O. excavata has been used for more than 30 years in China (Lu et al., 
1992). However, the population of O. excavata has been in serious 
decline in recent years, which has impeded its function in ecological 
pollination (Cao et al., 2017; Liu et al., 2018). Many studies have 
found that the lethal factors in the decline of O. excavata have 
included residual pesticide in pollen, egg abortion, predation by 
parasitic mite wasps, and natural death (Yu, 1999; Zhai et al., 2016; 
Song et al., 2021), while Liu et al. (2018) believed that natural death 
was the main cause among the other factors. Cao et al. (2017) also 
reported that nearly 80% of O. excavata would die due to unsuitable 
growing conditions. However, relevant research is still very limited.

According to investigations, farmers in China usually hang the 
collected bee tubes with O. excavata in a ventilated outdoor 
environment, and occasionally put them under the eaves (Yu, 2014). 
However, this method of storing O. excavata can increase the risk 
of high temperatures in the following ways. First, the temperature 
outside is approximately 3.8°C higher than that in the ambient 
conditions (Zhou et  al., 2018). Second, an outdoor storage 
environment is vulnerable to short periods of direct sunlight, which 
in turn creates a greenhouse effect inside the cocoon. Finally, global 
warming is already causing extreme high temperatures and heat 
waves in many parts of the world, and this phenomenon is posing 
a serious threat to biodiversity (García-Robledo et al., 2016; IPCC, 
2021). It is reported that high-temperature events have increased by 
40% over the past 60 years and the duration, frequency, and 
intensity of heat waves are predicted to increase with a 90%–99% 
probability (Ju et al., 2013).

Although insects are ectotherms, the growth and development 
of insects including O. excavata need to be carried out in an optimal 
temperature range (Zhang et  al., 2020; Kuczyk et  al., 2021). 
Otherwise, the fitness of the insect would be severely decreased. 
Chen et al. (2018) reported that the lethal temperatures for most 
insects are usually between 40°C and 50°C, depending on the 
species and life stage. Some insects are even at risk of extinction at 
current projected rates of global warming (García-Robledo et al., 
2016; Abou-Shaara et al., 2017; Wang et al., 2017). For example, 
when the growth temperatures are higher than 36°C, a colony of 
honey bees is likely to be exposed to superheated temperatures, 
which would impact the adult brain (Abou-Shaara et al., 2017); 
short-term high-temperature stress can also decrease oviposition in 
Bactrocera cucurbitae and Carposina sasakii (Zeng et  al., 2019; 
Zhang et al., 2020), and increase the instantaneous death risk of 
Ostrinia furnacalis (Zhou et  al., 2018). However, few relevant 
studies on how O. excavata respond to high-temperature stress exist 
due to their long life history and the difficulty in observing their 
development status in the cocoon.

Thus, the objective of this research was to evaluate the high-
temperature tolerance and potential physiological and biochemical 
responses of O. excavata after a series of high-temperature 
stresses. We speculated that (i) the higher is the stress temperature 
and longer the stress period, the greater the risk of O. excavata 
mortality; (ii) the acute and chronic responses of O. excavata to 
high-temperature stress may be  different and; (iii) the 
physiological and biochemical substances of O. excavata and 
resisting high-temperature stress may be disturbed under high-
temperature stress.

Materials and methods

Insects

The population of O. excavata was commercial, and acquired from 
Yantai Bifeng Agricultural Technology Co. Ltd., China. It has been 
continuously mass-reared for more than 10 generations in fruit 
orchards in Shandong Province, China. No pesticides were sprayed 20 
days before flowering and throughout the flowering period.

High-temperature stress

The effects of high-temperature stress on O. excavata refer to 
previous research methods with minor modifications (Wang et al., 
2017; Zhang et  al., 2020). The tubes containing O. excavata were 
placed in growth climatic chambers (RXZ-600C, Ningbo Jiangnan, 
China) at different temperatures (30°C, 35°C, 40°C, and 45°C) during 
the young (2nd instar) larval, mature (5th instar) larval, and adult 
stages of O. excavata. After a certain period of temperature stress 
treatment, the larval and adult of O. excavata were taken out for life 
index detection.

Measurement of mortality

In the acute response test, the young and mature larvae and 
artificial cocoon-break adults of O. excavata were measured. Bee 
tubes were opened by hand and cocoons were artificially and 
carefully dissected with scissors after different periods of high-
temperature stress and the mortality of O. excavata was observed 
according to the method of Song et al. (2021). There were three 
tubes per replicate (i.e., 18–24 larvae or cocoons per replicate) and 
three repeats (i.e., 54–72 larvae or cocoons per treatment) every 
sample date. The number of cocoons in each tube (6–8 cocoons per 
tube) was determined according to the egg-laying situation of 
maternal O. excavata. Mortality was observed at 0.25 h intervals, 
the longest observation period was 2.5 h for larvae and 24 h 
for adults.

To observe the long-term effects of high-temperature stress on the 
adults, the chronic response for natural cocoon-break adults was 
tested. The cocoons containing O. excavata that have been exposed to 
heat stress for a certain length of time were transferred to their optimal 
growing environment, that is a darkroom with 65%–75% relative 
humidity and 25°C ± 2°C temperature (Song et al., 2021). Then the 
mortality of O. excavata was observed after a natural cocoon break.

Physiological and biochemical indexes

The young and mature larvae, natural cocoon-break, and artificial 
cocoon-break adults of O. excavata were both used to measure the 
physiological and biochemical indexes after high-temperature stress 
exposure. There were three tubes per replicate and three repeats.

The trehalose content in each O. excavata was assayed using a 
trehalose quantification kit (Suzhou Keming Biotechnology Co., Ltd., 
China). In brief, each O. excavata was weighted using an electronic 
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balance (AL104; Mettler-Toledo, China). The lapping liquid of 
O. excavata and extracting solution was left standing at room 
temperature for 45 min and oscillated 3–5 times. After cooling, the 
sample was centrifuged for 10 min at 8,000 rpm and 25°C to obtain the 
supernatant. The value was recorded spectrophotometrically 
at 620 nm.

Acetylcholinesterase (AchE) activity was measured using a kit 
provided by Suzhou Keming Biotechnology Co., Ltd. The O. excavata 
and extracting solution were ground to homogenate under ice bath 
conditions. The abrasive liquid was centrifuged for 10 min at 8,000 rpm 
and 4°C. Then, the activity of AchE was evaluated 
spectrophotometrically at 412 nm.

The fat and free water were also assayed. First, the fresh weight 
of O. excavata was determined using an electronic balance. Then 
the body was dried for 48 h at 60°C and the dry weight was 
determined. The free water was obtained by calculating the 
difference between the wet and dry weight of O. excavata. Then 
dried O. excavata was added to 2 ml of chloroform:methanol (2:1), 
and fully ground until homogenized. Afterward, the homogenate 
was centrifuged for 10 min at 2,600 rpm and the supernatant was 
discarded. Another 2 mL of the mixture was added to the residue, 
the centrifugation was repeated once, and the supernatant was 
discarded. The remaining residue was dried for 72 h at 60°C to 
constant weight. Finally, the fat was calculated according to a 
method described previously (Colinet et al., 2007).

Data analysis

Before statistical analysis, data were transformed to log10, 
arcsine, or square-root when necessary to evaluate data normality 
and homogeneity. The median lethal time (LT50) and analysis of 
variance were determined using SPSS v.21.0 (SPSS Inc., Chicago, 
IL; Abbott, 1925). One-way analysis of variance (ANOVA) was 
used to estimate the impact of different duration of high-
temperature stress on the mortality and the physiological and 
biochemical indexes of O. excavata. Two-way ANOVAs were 
performed to determine the impact of insect stages (or response 
mode) and high-temperature stress on the physiological and 
biochemical indexes of O. excavata. Means were compared by 
using Tukey’s LSD test at p < 0.05. Pearson’s correlation was used 
to analyze the relationships between the mortality and the 
physiological and biochemical indexes of O. excavata at different 
insect stages under high-temperature stress.

Results

Acute responses of Osmia excavata to 
high-temperature stress

The mortality of O. excavata significantly increased with an 
increase in the duration of high-temperature stress (p < 0.05; Figure 1) 
and increased with an increase in temperature (R2  = 0.92–0.99; 
Table 1).

For the young larvae of O. excavata, the mortality at 30°C for 
2.5 h was about 15%, and that at 35°C for 2.5 h was about 30%, but 
those were significantly higher than those at 30°C and 35°C for less 

than 1.75 h (+66.7% and +79.96%), respectively (p  < 0.05). The 
mortality of young larvae at 40°C for 1.75–2.0 h was more than 
40%, and both were markedly higher than those at 40°C for less 
than 1.25 h (p < 0.05). The mortality of the young larvae at 45°C for 
1.0 h reached 96.67%, and significantly higher than that at 45°C for 
0.75 h (+20.84%; p < 0.05). The young larvae did not die when the 
temperature was lower than 40°C for 0.5 h, but the mortality 
reached 20% after 0.25 h at 45°C (Figure 1). Additionally, the LT50 
of the young larvae decreased with an increase in temperature 
(Table 1). The LT50 of the young larvae at 30°C and 35°C were over 
3 h, and at 40°C and 45°C, they were 2.01 and 0.53 h, respectively 
(R2 = 0.98–0.99; Table 1; Figure 1).

For the mature larvae of O. excavata, the mortality at 30°C for 
2.25 h was about 13% and significantly higher than that at 30°C for less 
than 1.25 h (+100%; p < 0.05). The mortalities of the mature larvae at 
35°C and 40°C for 2.0 h were markedly higher than those for 1.5 h, 
respectively (+66.65% and + 30%; p  < 0.05). The mortality of the 
mature larvae at 45°C for 1.0 h reached 100%, and significantly higher 
than that at 45°C for 0.75 h (+20%; p < 0.05; Figure 1). The LT50 of the 
mature larvae at 40°C and 45°C were 2.35 h and 0.47 h, respectively 
(R2 = 0.95–0.99; Table 1; Figure 1).

For the artificial cocoon-break adults, the mortality increased 
slowly with time at 35°C and 40°C, but rapidly at 45°C (Figure 2). The 
mortality of the artificial cocoon-break adults at 45°C for 0.5 h was 
nearly 50% and markedly increased to 90% after 2 h (+107.14%; 
p < 0.05). The LT50 of the artificial cocoon-break adults at 40°C and 
45°C were more than 25 and 0.6 h, respectively (R2  = 0.92–0.99; 
Table 1; Figure 2).

FIGURE 1

Acute response of the young and mature larvae of Osmia excavata 
to different durations of high-temperature stress (different lowercase 
letters indicate significant differences between different stress times 
at the same temperature according to Tukey’s LSD test at p < 0.05).
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Chronic responses of Osmia excavata to 
high-temperature stress

In the natural cocoon-break adults of O. excavata, no death 
occurred under 35°C stress after 17 h, but the mortality increased 
significantly to 30% after 24 h (p < 0.05; Figure 2). The mortality of 
natural cocoon-break adults increased faster with time at 40°C than 
that at 35°C, but slower than that at 45°C (p < 0.05). The mortality of 
natural cocoon-break adults at 45°C for 1 h was nearly 23.33% and 
markedly increased to 90% after 3.5 h at 45°C (+285.77%; p < 0.05). 
The LT50 of natural cocoon-break adults at 40°C and 45°C were 15.55 
and 1.51 h, respectively (R2 = 0.88–0.99; Table 1; Figure 2).

Physiological and biochemical indexes of 
Osmia excavata under high-temperature 
stress

Although the acute response of the physiological and biochemical 
indexes of O. excavata were significantly different between young 
larvae, mature larvae, and artificial cocoon-break adult stages 
(F  = 5.52–653.19; p  < 0.01), the high-temperature stress had no 
significant effect on the acute response of the physiological and 
biochemical indexes (F = 0.36–0.88; p > 0.05; Table 2). There were 
significant interactions of the fat content between temperature stress 
and insect stage (F = 3.38; p < 0.01). Additionally, the trehalose content 
of the mature larvae at 35°C was significantly increased compared 
with that at 30°C (+126.20%; p < 0.05; Figure 3). The fat content of the 
artificial cocoon-break adults at 45°C was markedly higher than that 
at 35°C (+32.12%; p < 0.05). The free water content was significantly 
decreased compared with that at 35°C (−9.21%; p < 0.05; Figure 3).

There was no significant difference between the acute and chronic 
responses on the physiological and biochemical indexes of adult 

TABLE 1 Effects of high-temperature stress on the time of death in Osmia excavata at different stages of development, including young larvae, mature 
larvae, artificial cocoon-break adults, and natural cocoon-break adults.

Response Insect stage Temperature (°C)
Regression  
equation

LT50 (h) R2

Acute response

Young larvae

30 y = 8.67x − 4.11 >3 0.98

35 y = 14.22x − 7.63 >3 0.99

40 y = 32.38x − 15.24 2.01 0.98

45 y = 106.67x − 6.67 0.53 0.98

Mature larvae

30 y = 7.56x − 3.19 >3 0.95

35 y = 18.73x − 6.90 3.04 0.97

40 y = 23.18x − 4.40 2.35 0.95

45 y = 100x + 3.33 0.47 0.99

Artificial cocoon-

break adults

35 y = −0.02x2 + 1.04x + 2.31 − 0.92

40 y = 0.01x2 + 0.78x + 14.40 >25 0.97

45 y = −7.61x2 + 48.18x + 24.01 0.6 0.99

Chronic response
Natural cocoon-

break adults

35 y = 0.18x2 – 2.53x − 9.62 >25 0.95

40 y = −0.17x2 + 7.02x − 18.06 15.55 0.88

45 y = −10.48x2 + 70.95x − 33.34 1.51 0.99

LT50, median lethal time.

FIGURE 2

Acute response of the artificial cocoon-break adults and chronic 
response of the cocoon-break adults of Osmia excavata to 
different durations of high-temperature stress (different 
lowercase letters indicate significant differences between 
different stress times at the same temperature according to 
Tukey’s LSD test at p < 0.05).
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Osmia obtained by either artificial or natural cocoon-break methods 
(F = 1.42–2.76; p > 0.05), except the fat contents (F = 5.03; p < 0.05; 
Table 3). The high-temperature stress had a significant effect on the 

contents of trehalose and fat (F = 4.38–6.86; p < 0.05). The trehalose 
content of adult Osmia obtained by the natural cocoon-break method 
at 45°C was significantly higher than that at 30°C (+359.31%; 

TABLE 2 Effects of high-temperature stress on the acute response of the physiological and biochemical indexes of Osmia excavata at different stages of 
development, including young larvae, mature larvae, and artificial cocoon-break adults (F value).

Impact factors df
Trehalose  

(mg/mg prot)
Acetylcholin esterase 
(nmol/min/mg prot)

Fat (%) Free water (%)

Temperature stress (T) 3 0.88 0.36 0.59 0.51

Insect stage (I) 2 5.52** 11.12*** 653.19*** 123.45***

T × I 5 1.13 1.45 3.38 ** 1.10

**p < 0.01; ***p < 0.001.

FIGURE 3

Effects of high-temperature stress on the physiological and biochemical indexes of Osmia excavata at different stages of development, including 
young larvae, mature larvae, artificial cocoon-break adults, and natural cocoon-break adults (AchE, acetylcholinesterase; different lowercase letters 
indicate significant differences between different insect stages at the same temperature stresses according to Tukey’s LSD test at p < 0.05; different 
capital letters indicate significant differences between different temperature stresses in the same insect stage at p < 0.05).

TABLE 3 Physiological and biochemical indexes of the acute and chronic responses of adult Osmia obtained by artificial and natural cocoon-break 
methods to high-temperature stress (F value).

Impact factors df
Trehalose  

(mg/mg prot)
Acetylcholin esterase  
(nmol/min/mg prot)

Fat (%) Free water (%)

Temperature stress (T) 3 4.38** 0.56 6.86*** 116.18

Response mode (R) 1 2.76 1.42 5.03* 2.03

T × R 3 2.36 1.2 0.78 21.46

Response mode, acute and chronic responses of adult Osmia; *p < 0.05; **p < 0.01; ***p < 0.001.
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p < 0.05), 35°C (+177.17%; p < 0.05), and 40°C (+342.15%; p < 0.05). 
The fat content of adults by the natural cocoon-break method at 45°C 
was markedly higher than that at 35°C (+29.59%; p < 0.05; Figure 3).

Correlation analysis between the mortality 
and physiological and biochemical indexes 
of Osmia excavata

The mortality of the young larvae was significantly and positively 
correlated with the trehalose content (r = 0.78, p < 0.05) and AchE 
activity (r = 0.67, p < 0.05; Figure 4). The mortality of the artificial 
cocoon-break adults of O. excavata was also significantly and 
positively related to the trehalose content (r = 0.82, p < 0.01). However, 
the mortality of the natural cocoon-break adults was negatively related 
to the AchE activity (r = −0.93, p < 0.001). The mortality of the mature 
larvae was not significantly correlated with physiological and 
biochemical indexes [r = (−0.10) − 0.11, p > 0.05; Figure 4].

Discussion

High-temperature stress poses a serious 
risk to Osmia excavata

Temperature is one of the most important external conditions 
affecting the life activities of insects (Dongmo et al., 2021; Gaytán et al., 
2022), but an abnormal high-temperature environment has a serious 
impact on growth and development, and even causes the risk of 
extinction in some insects (García-Robledo et al., 2016; Abou-Shaara 
et al., 2017; Wang et al., 2017). Populations of O. excavata are more easily 
affected by adverse factors because they only have one generation a year 
(Men et  al., 2018). Our results demonstrated that the higher the 
temperature, the faster the death rate of O. excavata, which was consistent 
with our hypothesis (i). Similar results have been obtained in Carposina 
nipponensis (Zhang et al., 2020), Ophraella communa (Chen et al., 2018), 
and Corythucha ciliata (Ju et al., 2013). In addition, this study found that 
under a slightly higher temperature (35°C and 40°C), the LT50 value of 
adults was higher than that of larvae. Thus, we  speculated that the 
harmful effects of high temperatures on O. excavata depend not only on 
the intensity and duration of stress but also on the developmental stage 

(Enriquez and Colinet, 2017). As the adults of O. excavata will naturally 
emerge from the cocoon with the rising temperature in the spring (Men 
et al., 2018), this may be the reason for a higher temperature tolerance in 
adults than in larvae. By comparing the results of acute and chronic 
responses of O. excavata to high-temperature stress, it was found that the 
LT50 values of natural cocoon-break adults at 35°C and 40°C were 
smaller than those of artificial cocoon-break adults, but similar LT50 
values were observed at 45°C. This may occur for three reasons: (a) the 
physiological and biochemical substances that maintain the normal 
growth and development of O. excavata were destroyed after slightly 
higher temperature stress, even if they did not die immediately, but it was 
not enough to support their survival for long; (b) the functions related to 
cocoon breaking were severely damaged and failed to successfully break 
the cocoon; (c) extreme high-temperature stress (45°C) may cause 
O. excavata to die instantly. Considering the high mortality we found in 
larvae and adult Osmia, apiarists should store bee tubes in a cool 
ventilated place out of direct sunlight to maintain an adequate population 
of O. excavata.

Metabolites in larvae of Osmia excavata are 
more susceptible to high temperature 
stress than those in adults

Trehalose is an important blood sugar in insects, not only can it 
be stored as an energy source and carbohydrate reserve but also as a 
compatible solute adapted to various stresses, such as heat, cold, 
osmotic stress, and drought (Xin et al., 2013; Qin et al., 2015). There 
was no significant difference in the trehalose content in larvae and 
artificial cocoon-break adults at 30°C, but the trehalose content in the 
former increased faster than the latter with an increase in temperature, 
especially when the temperature reached 40°C and 45°C, the content 
and growth rate of trehalose in the young larvae were both higher than 
that of the mature larvae. These results showed that the smaller the 
insect stage under high-temperature stress, the more drastic the 
change of trehalose content in O. excavata. This may be due to the 
poor ability of the younger larvae to resist an adverse environment. 
Jiang et al. (2016) also believed that the body surface of younger larvae 
was soft and its cuticle was thin, but the body surface of adult insects 
was relatively hard and the cuticle layer was thicker, which can reduce 
stress and retain normal life activities of adults.

FIGURE 4

Pearson’s correlation between the mortality and the physiological and biochemical indexes of the young larvae, mature larvae, artificial cocoon-break 
adults, and natural cocoon-break adults of Osmia excavata under high-temperature stress (r value). The darker the blue or red, the stronger the 
negative or positive correlation, respectively.
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Fat plays an important role in the energy storage and metabolism 
of insects (Wu et al., 2019). At the same time, insects cannot live 
without the participation of free water, which is a good solvent in the 
cell, can participate in the cellular biochemical reaction, and transport 
nutrients and waste produced by metabolism. Adults of O. excavata 
were found to have less fat and more free water than larvae. The 
temperature in the larval stage of O. excavata is relatively low under 
natural conditions, so the larvae would resist the cold climate by 
storing more fat and reducing free water content; as temperatures rise 
in the adult stage, the O. excavata would break diapause, cocoon 
breaking, flight, etc., therefore, they need to use more energy and free 
water to speed up metabolism (Sgolastra et al., 2015; Men et al., 2018). 
It was also found that the contents of fat and free water in larvae were 
not significantly affected after extreme heat stress, whereas the 
contents in adults were more affected, indicating that the fat and free 
water contents in larvae of O. excavata were less sensitive to high-
temperature stress than that in adults. This may be because the larvae 
of O. excavata have fewer activities and slower metabolism than adults 
in the cocoon, but further research is needed.

Special metabolism in adult Osmia 
excavata after high-temperature stress

In the chronic response test, the trehalose content of adult Osmia 
was significantly increased after extreme high-temperature stress 
compared to slightly higher temperature stress. We speculated that 
there may be  two reasons: (a) trehalase was inactivated in insects 
under extreme high-temperature stress, so trehalose could not 
be hydrolyzed, and more trehalose content was accumulated (Qin 
et al., 2015); (b) a special protective membrane is formed on the cell 
surface by increasing trehalose content under harsh conditions, such 
as extreme high temperature, to prevent the structure of biomolecules 
from being disrupted (Ma et al., 2018). These results were similar to 
previous studies on Monolepta hieroglyphica and Gomphocerus 
sibiricus and suggested that this was a manifestation of insect 
adaptation to high-temperature stress (Li et al., 2014; Ma et al., 2018). 
However, in the acute response test, the trehalose contents of larvae or 
artificial cocoon-break adults were not markedly changed after being 
subjected to high temperatures. We  believed that although the 
trehalose content in O. excavata increased with an increase in 
temperature stress at each insect stage, it did not increase to a 
significant level in a short time.

The fat contents in natural and artificial cocoon-break adults of 
O. excavata after extreme high-temperature stress were both 
significantly higher than those after slightly high-temperature stress, 
but the change in the trend of free water was opposite to that of the fat 
content. Zhao et al. (2010) found that low-temperature stress can also 
lead to an increase in insect fat content. We believe that the reasons 
for the increase in fat content are different between high and 
low-temperature stress: the former may be due to the serious loss of 
free water in the adult body of O. excavata under extreme temperature 
stress, which hinders normal metabolism and inhibits the 
decomposition of fat, even causing adults to die faster; the latter may 
be  because insects would reduce their supercooling point in a 
low-temperature environment by increasing their fat content, which 
can increase their cold tolerance and resist cold damage (Zhao et al., 
2010). Interestingly, Liu et al. (2010) reported that heat-shock stress 

decreased lipid storage in planarian Dugesia japonica to suppress its 
development. We also found that the fat content of adults decreased 
at 35°C compared with 30°C, but did not reach a significant level. This 
may be  because the life activities of O. excavata have not been 
completely disordered after they endured tolerable temperature stress, 
and the metabolic ability was enhanced to maintain normal life 
activities by consuming more energy substances such as fat.

Conclusion

To date, the population of O. excavata has been in serious decline 
and there is a lack of observation on the sensitivity of O. excavata to 
high-temperature stress. The current study found that the mortality of 
O. excavata significantly increased with the increased temperature and 
duration of high-temperature. Additionally, the larvae of O. excavata 
were more sensitive to the same temperature stress than adults, and 
the LT50 value of the former was smaller. Furthermore, there was a 
significant difference between the acute and chronic responses on the 
fat content of adult Osmia by both the artificial and natural cocoon-
break methods. And the mortalities of the young larvae and artificial 
cocoon-break adults were both significantly and positively correlated 
with the trehalose content. Given the potential impacts of high-
temperature stress on the cocoon break, flight ability, and fertility of 
O. excavata, the adverse impact of temperature on the population of 
O. excavata needs further study.
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Introduction: Blueberry is one of the most relevant buzz-pollinated crops

worldwide, and Chile is the most important global producer of fresh blueberries

during wintertime in the Northern Hemisphere. Non-buzzing bees, such as

honey bees, may provide suboptimal services compared with bees capable

of buzz pollination. The widely held contention that honey bees are inferior

pollinators of blueberries drives the industry to place pressure on governments

to allow bumblebee (Bombus terrestris) importation for pollination. However,

the introduction of B. terrestris generates environmental problems in Chile by

competing with and transmitting parasites to local bees. Despite some native

Chilean bees being recently recognized as e�cient pollen vectors of blueberry

crops, no study has evidenced the influence of their visits on fruit yield. Therefore,

we aimed to evaluate the native Chilean floral visitors’ performance to improve the

quantity and quality of highbush blueberry in comparison to the performance of

managed visitors.

Methods: Per-visit pollination performance (fruit set and fruit quality) and visitation

frequency were measured, and the performance of buzzing behavior by flower

visitors was evaluated in four cultivars grown in five blueberry orchards located in

southern Chile.

Results: We found that fruit set and weight were highly influenced by floral visitor

taxon. Some native bee species can greatly improve the fruit set and fruit quality

(greater weight) of the highbush blueberry cultivars. For instance, one single visit

of C. occidentalis can increase fruit weight by a factor of 1.8 compared to an

A. mellifera visit; however, visits of halictids and syrphids resulted in lower fruit

sets than those of unvisited flowers. However, we found that the occurrence of

sonication behavior alone was not a predictor of higher fruit set and fruit weight

of highbush blueberry cultivars. Consequently, the taxonomic recognition of floral

visitors, ideally to the species level, is still needed to distinguish the most e�cient

fruit yield promoters of blueberry.

Discussion: The conservation of the biotic pollinators, especially native

pollinators, would improve blueberry fruit quality and is likely to improve overall

crop productivity.
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buzz pollination, buzz pollinated crops, Chile, ecosystem services, non-apis bees,
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1. Introduction

World blueberry production has more than doubled in the

last 10 years, reaching 823,328 tons in 2019. Of this, 58%

is produced in North America, with38% in the United States

and 20% in Canada (FAO, 2020). Following the same trend,

the area of Chilean blueberry cultivation has increased rapidly

during the last 30 years (Retamales and Hancock, 2018).

In 2021, Chile had 18,000 hectares planted with blueberry,

exported 118,225 tons of fresh blueberry fruit, and was the

third greatest provider of fresh blueberry fruit to the Northern

Hemisphere during its winter (Velasco, 2021). However, there

are several challenges to producing blueberry fruits of high and

consistent quality (Retamales and Hancock, 2018). The number

of fruits per plant and their fresh weight are two fundamental

factors of blueberry plant yield (Hall et al., 2020). Large and

consistent berries increase the market price (Gilbert et al.,

2014).

High-quality fruit production by wild and commercial

blueberries is highly dependent on the input of biotic pollinators

(MacKenzie and Eickwort, 1996; Fulton et al., 2015). Studies in

the native range of southern and northern highbush blueberries

reveal that the most effective pollinators of blueberries are typically

large bees that can extract pollen from anthers by vibrating their

bodies during floral visits (Stubbs and Drummond, 1996; Javorek

et al., 2002; Campbell et al., 2018). The vibrations produce an

audible buzzing sound, which gives the name to this pollination

syndrome: buzz pollination or floral sonication (Vallejo-Marín,

2019; Pritchard and Vallejo-Marín, 2020).

The predominant floral trait related to buzzing behavior is

the presence of poricidal anthers (Buchmann, 1983; De Luca and

Vallejo-Marin, 2013). For flowers with poricidal anther dehiscence,

the only exit of pollen from the flower is via tiny openings at the

apex of the anthers (Delaplane et al., 2000). This is the case for

blueberry flowers and flowers of more than 20,000 species of native

and cultivated flowering plants (Buchmann, 1983). Although most

buzz-pollinated flowers are nectar-less (Vallejo-Marín et al., 2010),

in some cases, such as with blueberry, flowers also produce floral

nectar (Javorek et al., 2002), which implies that even a flower visitor

capable of sonicating will not necessarily do so if it is looking

for nectar. Furthermore, although hives of the honey bee (Apis

mellifera) are widely managed for blueberry pollination throughout

the world (Benjamin et al., 2014; FAO, 2020), these bees are unable

to sonicate and tend to present lower per-visit pollen deposition

rates than bees capable of vibrating flowers (Javorek et al., 2002;

Rogers et al., 2013; Cortés-Rivas et al., 2023). Thus, honey bees

and other non-buzzing bees may provide a suboptimal service

compared with other bees capable of buzz pollination (Stubbs and

Drummond, 1996; Javorek et al., 2002; Kim et al., 2005; Campbell

et al., 2018; Nicholson and Ricketts, 2019; Cooley and Vallejo-

Marín, 2021).

The widely held contention that honey bees are inferior

pollinators of blueberries drives the industry to place pressure on

governments to allow bumblebee (Bombus terrestris) importation

for pollination. Managed beehives of B. terrestris achieve high

yields due, partially, to their ability to sonicate flowers and be

active during environmental conditions unfavorable to honey bees

(De Luca et al., 2013; Howlett et al., 2019; Cortés-Rivas et al.,

2023). However, the introduction of B. terrestris generates serious

problems for the conservation of native pollinators since this

species is highly invasive where it is introduced and can compete

and transmit parasites to native bees (Matsumura et al., 2004; Dafni

et al., 2010; Morales et al., 2013; Smith-Ramírez et al., 2018). As a

result, strict laws prohibiting the movement of bumblebees are in

place in parts of the USA (Winter et al., 2006), southern Africa, and

Australasia (Goka, 2010; Inoue and Yokoyama, 2010) because their

introduction could have undesired effects on native fauna and flora

(Velthuis and Van Doorn, 2006; Goka, 2010; Inoue and Yokoyama,

2010).

However, the performance of native fauna to pollinate

blueberry crops in Chile has recently been revealed, with some

bee species having high conspecific pollen transference (Cortés-

Rivas et al., 2023). These highly efficient native species would be

a more sustainable alternative to B. terrestris importation. Despite

this encouraging finding, no study has evidenced the influence

of the visits of these native species on fruit yield. Therefore,

distinguishing the pollinators associated with higher fruit quantity

and quality among the local pool of visitor species is essential to

reveal their relative importance for agricultural production (Javorek

et al., 2002; Isaacs and Kirk, 2010; Nicholson and Ricketts, 2019).

Thus, we aimed to evaluate the native Chilean floral visitors’

ability to improve highbush blueberry fruit yield compared to that

of managed visitors. We expected that, due to the capacity of

some native bee taxa to perform sonication and transfer a high

amount of conspecific pollen, their visits would result in higher

fruit set and fruit weight in relation to A. mellifera and at least

similar to B. terrestris, making them suitable alternative candidates

to improve fruit yield of blueberry crops in Chile (Hypothesis

1). Because the occurrence of floral sonication is a predictor of

higher pollen deposition on the stigmatic surface of blueberry

flowers (Cortés-Rivas et al., 2023), we wanted to know if buzzing

behavior was associated with higher fruit quantity and/or quality,

so we compared blueberry fruit production between the subset of

visits with floral sonication and the subset of visits without this

behavior. We chose this approach to focus on the influence of the

buzzing behavior itself rather than having to assume that a bee

belonging to a taxon capable of vibrating does necessarily vibrate

on every visit.We expected that visits to highbush blueberry flowers

accompanied by buzzing behavior would be associated with higher

fruit set, seed set, and fruit weight than visits without this behavior

(Hypothesis 2).

2. Materials and methods

2.1. Study areas

Fieldwork was conducted in five highbush blueberry orchards

located in southern Chile (Maule and Los Ríos Regions;

Supplementary Figure S1; Table 1) between September and

November in 2020 and 2021. The total area of cultivated

blueberries per orchard ranged from 3.2 to 141 hectares of both

organic and conventional farming. The most common growing

cultivars were Legacy, Brigitta, Duke, Elliot, and Draper. Four of

the five orchards were supplemented with colonies of managed

exotic bees of Bombus terrestris and/or Apis mellifera (Table 1). The
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TABLE 1 Highbush blueberry orchards located in the southern region of Chile (Maule and Los Ríos Regions), where this study was conducted from

September to November of 2020 and 2021.

Orchard Locality/region Latitude,
longitude

Farming type Area Cultivars Managed
bee(s)

Agrícola

Aguas Negras

Paillaco/Los Ríos 40◦2’55.62“S,

72◦45’15.20”W

Conventional 28 ha Brigitta, Legacy,

Elliot, Draper, Duke

Bombus

terrestris/Apis

mellifera

Shine Liucura Paillaco/Los Ríos 40◦2’49.89“S,

72◦46’49.21”W

Organic 8.1 ha Brigitta, Bluecrop,

Coville, Elliot,

Legacy

Bombus terrestris

Agroberries

Asque

Mariquina/Los Ríos 39◦33’59.4“S,

72◦59’28.4”W

Organic 141 ha Brigitta, Duke,

Elliot, Legacy,

Topshelf

Apis mellifera

Agroberries

Cun Cun

Mariquina/Los Ríos 39◦33’44.0“S,

73◦02’33.8”W

Conventional 114 ha Brigitta, Duke,

Elliot, Legacy,

Topshelf

Apis mellifera

Agrícola

Campos

Álvarez

Linares/Maule 35◦55’45.8“S,

71◦29’37.9”W

Conventional 3.2 ha Duke, Legacy. None

Information about the geographical location, farming type, cultivated area, blueberry cultivars, and bee species managed for crop pollination.

local temperature varied between 10◦C and 37◦C (average 20.2◦C),

and the wind varied between 0.16 and 8.85 km/h.

2.2. Pollination e�ciency and fruit yield

Wemeasured fruit set and seed set based on the single visit test

(Ne’eman et al., 2010). To conduct this test, we randomly selected

and labeled 10 individual plants per blueberry cultivar/orchard,

maintaining a minimum distance of 10m between each individual

plant, as follows: (1) Agrícola Aguas Negras: Legacy, Elliot, Draper,

Brigitta, and Duke; (2) Shine Liucura: Legacy, Elliot, and Brigitta;

(3) Agroberries Asque: Brigitta, Duke, Elliot, and Legacy; (4)

Agroberries Cun Cun: Brigitta, Duke, Elliot, and Legacy; (5)

Agrícola Campos Álvarez: Duke and Legacy. For each labeled plant,

we enclosed three clusters of flowers in the bud stage in tulle

bags after removing all open flowers to ensure that only non-

visited flowers remained. After the flower opening, we removed

the bags and allowed a single visit to each cluster. We noted

whether insects sonicated the flower during flower visits (based

on our audible perception of the sound emitted by bees vibrating)

and recorded information about individual plant identification,

blueberry cultivar, orchard, date, and time. Immediately after an

insect concluded its visit, we identified (or collected) it and marked

the flower with colored wool yarn (N = 834 flowers). We also

marked some non-visited flowers (N = 354 flowers) with wool

yarn of a different color (control group) and re-bagged all of the

flowers. We, then, killed the collected insects and stored them in

individually labeled flasks. In the laboratory, we photographed and

identified the insects to the lowest taxonomic level possible.

We kept the flowers bagged for approximately 70 (±3) days

and then checked whether the flowers set fruit, and if they did, we

immediately weighed each fruit using a precision balance (Dblue R©

model DBPDWS32S, Valparaíso, Chile; precision 0.001g). In the

laboratory, we separated the seeds from the pulp and counted the

number of viable seeds (according to Dogterom et al., 2000; Rogers

et al., 2013).

2.3. Statistical analysis

We arranged the data according to visitor taxon and according

to the occurrence of buzzing behavior during each visit. Data

were not normally distributed according to visual inspection

with the QQ plot and Shapiro–Wilk tests, so we used non-

parametric tests.

We used generalized linear mixed models (GLMMs)

to determine whether the fruit set (binomial distribution,

link = “logit”) differed among floral visitor taxa and the control

(non-visited flowers) (function “glmmTMB”, “glmmTMB” package,

Brooks et al., 2017).We built another GLMM to determine whether

fruit sets differed between visits with and without sonication,

among study orchards, and blueberry cultivars. Individual plants

(10 individual plants per blueberry cultivar/orchard) were included

as the random factor for these models.

To analyze how fruit weight (response variable) was influenced

by pollinator taxon, visits with and without sonication, study

orchard identification, blueberry cultivar, and the interaction

between pollinator taxon and blueberry cultivar, we used a GLMM

with a gamma distribution using the glmmTMB function in

the glmmTMB package (Magnusson et al., 2019). To analyze

if the number of seeds per fruit (count response variable) was

influenced by pollinator taxon, sonication, blueberry cultivar, and

the interaction between pollinator taxon and blueberry cultivar, we

used a GLMM with a zero-inflated negative binomial distribution

(“nbinom1”) using the glmmTMB function in the glmmTMB

package (Magnusson et al., 2019). We included the orchard name

(as shown in Table 1) as a random factor for these models.

We assessed the fit of all models using the diagnostic plots of

the “DHARMa” package (Hartig, 2020). We tabulated estimated

marginal means for each visitor taxon using the R package

“emmeans” (Lenth, 2019) and tested the significance of pairwise

differences by the Tukeymethod.We specified the type IIWald chi-

square (χ2) tests via the Anova() function in the car package (Fox

et al., 2018). We performed all statistical analyses with R software

version 4.0.3 (R Core Team, 2017).
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3. Results

During 1,056 h of sampling effort for the single-visit test, we

recorded 927 visits of 18 insect species to flowers of highbush

blueberry cultivars in the five studied orchards. Among the visiting

species, 15 were native and three were exotic/managed. Buzzing

behavior (sonication) occurred in 45.6% of all visits. Only bees

were observed performing buzzing behavior, and among them, the

native species were Cadeguala occidentalis (sonicated in 68.4% of

visits) and Colletes cyanescens (sonicated in 50% of visits), and

one managed species was Bombus terrestris (sonicated in 56.7% of

visits).We pooled as “other native bees” (sonicated in 9.1% of visits)

the native bee species that did not reach a minimum of 10 samples

as follows: Corynura chloris, Corynura sp., Centris cineraria,

Caenohalictus sp., and Ruizantheda proxima. Moreover, two native

(B. dahlbomii and C. nigritulus) and two exotic (B. ruderatus and

A. mellifera) bee species were not observed performing buzzing

behavior. Similarly, the remaining floral visitor species (three flower

flies, Syrphidae) were not observed performing buzzing behavior

during visits to blueberry flowers. We pooled in “syrphids” all the

flower flies because none of them reached the minimum of 10

samples (Figure 1).

3.1. Fruit set

Overall, 60.4% of all visited flowers and 33.6% of unvisited

flowers (bagged flowers, control) of highbush blueberry set fruit.

However, the fruit set was influenced by the floral visitor taxon

(glmmTMB: χ²= 19.4, df= 10, p < 0.05, N = 1281). Visits of both

native bees (especially B. dahlbomii, C. cyanescens, C. occidentalis,

C. nigritulus, and “other native bees”) and exotic/managed bees (B.

ruderatus, B. terrestris, and A. mellifera) produced proportionally

more fruits than the control (Figure 1). On the other hand, visits by

syrphids set fewer fruits than the control (Figure 1). However, none

of these contrasts were statistically significant, except that those

flowers visited by C. occidentalis and B. terrestris set more fruits

than those visited by syrphids (Supplementary Table S2).

Similarly, the fruit set was also dependent on the type of

blueberry cultivar (glmmTMB: χ² = 12.89, df = 4, p < 0.01):

75.2% and 76.5% of all tested flowers of Elliott and Duke,

respectively, featured fruit set, while 56.9%, 50%, and 43.6% of

the flowers of Legacy, Draper, and Brigitta featured fruit sets,

respectively. However, only the contrast between Draper and

Elliott presented a significant difference (Odds ratio = 0.13, t-ratio

= −2.838, p = 0.0374; Supplementary Table S3). However, the

presence/absence of sonication behavior (glmmTMB: χ² = 0.44, df

= 1, p = 0.5074) and orchard ID (glmmTMB: χ² = 3.35, df = 3, p

= 0.3403) did not influence fruit set.

3.2. Fruit weight

Fruit weight for single-visited flowers of highbush blueberry

depended on floral visitor taxon (glmmTMB: χ² = 99.5, df = 7,

p < 0.001, N = 481). Flowers visited by C. occidentalis (Mean

± SD; 1.20 ± 0.87g, N = 213) set the heaviest fruits, followed

by those visited by B. terrestris (0.86 ± 0.59g, N = 191) and

A. mellifera (0.76 ± 0.78g, N = 83; Figure 2). However, there

were no significant differences among these three bee species.

Additionally, flowers visited by any of these species produced

heavier fruits than unvisited flowers (control, 0.40 ± 0.34g, N =

119; Supplementary Table S4). On the other hand, flower visits of

the native bees Corynura herbsti and Lasioglossum sp. resulted in

lighter fruits than those of the control; visits of “other native bees”

set fruits with no difference in weight from those of the control.

Fruit weight was also influenced by the blueberry cultivar

(glmmTMB: χ² = 219.389, df = 4, P < 0.001). Elliott set the

lightest fruits among all cultivars, followed by Brigitta with fruits

approximately two times heavier than Elliott. The fruits of Brigitta

did not differ from those of Legacy (Supplementary Table S5). Duke

and Draper set the heaviest fruits with no difference between

them (Supplementary Table S5). The fruits of Duke and Draper

could be on average 4.3 times heavier than those from Elliott

and almost double the weight of the fruits of the Legacy cultivar

(Supplementary Table S5).

Fruit weight was also influenced by the interaction between

pollinator taxon and blueberry cultivar (glmmTMB: χ² = 62.3,

df = 12, P < 0.001; Figure 2). The flowers of Brigitta visited by

“other native bees” (composed mostly of small halictid bees) set

lighter fruits than those visited by C. occidentalis and the unvisited

flowers (control, Table 2; Figure 2). Comparisons among the other

pollinator taxa and control were not significant for the Brigitta

cultivar (Supplementary Table S6).

The flowers of the Duke cultivar visited by any bee species

set heavier fruits than the control of unvisited flowers (Figure 2,

Table 2). The floral visits of C. occidentalis produced the heaviest

fruits of Duke with a significant difference from other bee species,

except B. terrestris. The other comparisons were not statistically

significant (see Figure 2; Supplementary Table S6). In the case of

the Elliott cultivar, only pollination by C. occidentalis and “other

native bees” resulted in heavier fruits than the control (Table 2);

flowers visited by A. mellifera set lighter fruits than those of C.

occidentalis (Figure 2). The other comparisons for Elliott were not

significant (Table 2). Finally, the pollinator taxon did not influence

fruit weight, and no contrasts were significant for the Legacy

cultivar (Figure 2; Supplementary Table S6).

Fruit weight did not differ significantly between flowers visited

with and without buzzing behavior (glmmTMB: χ² = 0.90, df = 1,

P = 0.3419).

3.3. Seed set

Seed set varied according to pollinator taxon (glmmTMB:

χ² = 122.03, df = 4, P < 0.001, N = 595), highbush blueberry

cultivar type (glmmTMB: χ² = 127.10, df = 3, P<0.001,

N = 595), and the interaction between these two variables

(glmmTMB: χ² = 30.2, df = 12, P<0.005, N = 595). Flowers

pollinated by B. terrestris (Mean+SD: 21.7 ± 12.6) and C.

occidentalis (10.3 ± 11.1 seeds/fruit) set fruits with more seeds

than unvisited flowers (control, Figure 3), without a difference

between them (Supplementary Table S7). Flowers pollinated

by these two bees set fruits with more seeds than did flowers
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FIGURE 1

Proportion of fruit set failure (flowers that did not convert into fruits, red colored) and fruit set success (flowers that converted into fruits, blue

colored) of single-visited flowers of highbush blueberry cultivars in five orchards in the southern region of Chile. The pie charts represent the

proportion of visits with floral sonication (blue) and without (red) in relation to all visits observed of a visitor species. The number between brackets

indicates the number of individuals observed (N) per species. Other native bees include bees that did not reach ten samples: Corynura chloris,

Corynura sp., Centris cineraria, Caenohalictus sp., Ruizantheda proxima.

pollinated by A. mellifera (3.4 ± 5.3 seeds per fruit) and “other

native bees” (3.4 ± 5.3). In addition, flowers visited by A.

mellifera and “other native bees” set fruits with a similar number

of seeds to those of the control (Supplementary Table S7);

here, “other native bees” includes B. dahlbomii because

it did not reach the minimum number of samples

(N < 10).

Legacy was the cultivar that produced the greatest seed

set per fruit among all the tested cultivars, while Brigitta

produced the least (Supplementary Table S8). The remaining

cultivars (Duke and Elliott) did not differ significantly for the seed

set (Supplementary Table S8).

The interaction between the blueberry cultivar and pollinator

taxon was also significant (glmmTMB: χ² = 30.2, df = 12, P

< 0.005, N = 595; Figure 3). Flowers visited by B. terrestris

set more seeds than the control for all four cultivars (Table 3).

However, flowers visited by C. occidentalis set more seeds than

the control in three of the four cultivars (except Legacy, Table 3,

Supplementary Table S9). Despite visits of B. terrestris resulting in a

greater average seed set, there was no difference with C. occidentalis

among the blueberry cultivars (Supplementary Table S9). On the

other hand, “other native bees” only showed a positive effect

compared to the control for the Elliott cultivar and presented a

negative effect or no difference when compared to the control for

the other cultivars.

3.4. Correlation between seed set and fruit
weight

All cultivars presented a strong positive correlation between

seed set and fruit weight (Figure 4). However, the influence of seeds

per fruit was stronger for Brigitta (R= 0.53, p< 0.001) andDuke (R

= 0.79, p< 0.001), while for Elliot (R= 0.64, p< 0.001) and Legacy

(R = 0.57, p < 0.001), it was weaker, especially for Legacy, which

produced the largest seed set but without a proportional increase in

fruit weight (Figure 4).

4. Discussion

Despite the occurrence of floral sonication being a predictor

of higher pollen deposition on the stigmatic surface (see Cortés-

Rivas et al., 2023), we found that the occurrence of this behavior

alone was not a predictor of higher fruit set and fruit weight of

highbush blueberry cultivars. Instead, fruit sets and fruit quality

improvement are more dependent on the taxonomic identity of the

visiting species. Among them, some native bees can greatly improve

the fruit set and fruit quality (greater weight) of highbush blueberry

cultivars. Therefore, the taxonomic identity of floral visitors, ideally

at the species level, is still needed to distinguish the most efficient

promoters of blueberry fruit yield.
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FIGURE 2

Boxplots comparing the e�ect of the pollinator taxon on the highbush blueberry fruit weight (grams) based on single-visit tests in five orchards in the

southern region of Chile. The top graphic considers the e�ect of pollinator taxon on fruit weight of all blueberry cultivars together, and the four

bottom graphics show the e�ect per highbush blueberry cultivar. The boxes are colored according to the geographic origin of the visiting insects:

native (blue), exotic (red), and control (black). Other native bees include bees that did not reach ten samples: Corynura chloris, Corynura sp., Centris

cineraria, Caenohalictus sp., Ruizantheda proxima, Colletes cyanescens, Colletes nigritulus.
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TABLE 2 Pairwise contrasting of the interaction between visitor taxon

and highbush blueberry cultivar for fruit weight in five orchards of the

southern region of Chile (gamma distribution, glmmTMB).

Contrast Ratio
(±SE)

t-ratio p-value

Blueberry cultivar = Brigitta

Control vs. other native

bees

2.20 (±0.56) 3.117 0.0164

C. occidentalis vs. other

native bees

2.86 (±0.75) 3.976 0.0007

Blueberry cultivar = Duke

Control vs. A. mellifera 0.28 (±0.05) −6.413 <0.0001

Control vs. B. terrestris 0.23 (±0.05) −6.429 <0.0001

Control vs. C.

occidentalis

0.16 (±0.04) −7.784 <0.0001

Control vs. other native

bees

0.47 (±0.12) −2.933 0.0287

A. mellifera vs. C.

occidentalis

0.59 (±0.11) −2.830 0.0385

C. occidentalis vs. other

native bees

2.82 (±0.72) 4.077 0.0005

Blueberry cultivar = Elliott

Control vs. C.

occidentalis

0.40 (±0.09) −4.135 0.0004

Control vs. other native

bees

0.55 (±0.10) −3.186 0.0131

A. mellifera vs. C.

occidentalis

0.50 (±0.12) −2.788 0.0433

Blueberry cultivar = Legacy

None of the contrasts was significant

Information about the geographical location, farming type, cultivated area, blueberry

cultivars, and bee species managed for crop pollination.

4.1. Chilean native bees can enhance the
fruit set and quality of blueberry crops

As previously expected, the exclusion of biotic pollinators

reduced the fruit set of highbush blueberry cultivars. However,

the capacity of floral visitors to pollinate varied greatly, with

only a subset of all floral visitors actually pollinating the flowers

and promoting the fruit set. The flowers that were single-visited

by native and managed bees, especially bumblebees (Bombus

dahlbomii, B. ruderatus, and B. terrestris) and medium-sized

solitary bees (C. cyanensis, C. occidentalis, and other native bees),

set a higher number of fruits compared to the control of unvisited

flowers, and are likely to increase fruit set. Among them, the

giant Patagonian bumblebee (B. dahlbomii) achieved the highest

proportion of fruit sets, with more than 90% of flowers visited

setting fruits.

The high efficiency to set fruits of blueberry could be a

new piece of evidence to enhance the functional role of B.

dahlbomii as a relevant crop pollinator and highlights the urgent

need to implement conservation strategies because of the delicate

conservation status of this bumblebee (Morales et al., 2013; Smith-

Ramírez et al., 2018; Henríquez-Piskulich et al., 2021). This

bumblebee is classified as a threatened species by the IUCN Red

List with declining populations (Morales et al., 2016), and its threat

has been attributed to, among other factors, the introduction of B.

terrestris hives for crop pollination, especially blueberries (Morales

et al., 2013; Smith-Ramírez et al., 2018). Therefore, strategies

to enhance crop pollination with this exotic species necessarily

need to deal with the fragile conservation status of B. dahlbomii.

These strategies could include integrative habitat management and

more sustainable alternatives to replace the importation of B.

terrestris colonies.

In addition to the effect on fruit set, fruit quality and seed

set were strongly pollinator-dependent. Fruits from flowers visited

by pollinators can be three times heavier and set up to 6.3 times

more seeds than those from non-visited flowers. This is particularly

relevant for the farmer since fruit quality (heavier and larger fruits)

has direct consequences on market price (Gilbert et al., 2014;

Retamales and Hancock, 2018; Hall et al., 2020). The ground-

nesting solitary bee C. occidentalis achieved high performance as

a pollinator of blueberry and is similar to the exotic and managed

bumblebee (B. terrestris). Both of these species are sonicating

bees. Surprisingly, we found that a single visit of C. occidentalis

can increase fruit weight by 5.8 times over that of non-visited

flowers and 1.8 times over those visited by A. mellifera. Cadeguala

occidentalis, commonly found visiting other crops (Monzón et al.,

2020; López-Aliste et al., 2021; Smith-Ramírez et al. in review), is

widely distributed in Chile (GBIF Secretariat, 2021) and has known

nesting behavior and biology (Torchio and Burwell, 1987;Montalva

et al., 2011; López-Aliste et al., 2021). However, key aspects of

the biology of C. occidentalis, especially its solitary behavior and

ground-nesting, need to be taken into consideration to enhance

blueberry pollination with this bee species. Grazing, for example,

can destroy nest sites, remove forage plants, and alter the structure,

diversity, and growth habits of the plant community (Black et al.,

2011). Despite prescribed burns being beneficial for maintaining

some ecosystems, they also significantly reduce ground-nesting bee

populations (Black et al., 2011).

4.2. Floral sonication alone is not a
predictor of high fruit yield

Despite the occurrence of buzzing behavior (or floral

sonication) being related to higher conspecific pollen deposition on

stigmas of highbush blueberry (Cortés-Rivas et al., 2023), we found

that floral sonication did not have significant effects on fruit set

and fruit weight. Instead, fruit weight was particularly dependent

on pollinator taxon, even more than on the presence/absence

of buzzing behavior. Buzzing behavior is widespread and occurs

among many bee taxa, including bees that differ greatly in

morphology and foraging behavior (Cardinal et al., 2018). For

example, some small bees capable of performing buzzing behavior

(Lasioglossum sp. and C. chloris) were less efficient pollinators of

the studied highbush blueberry orchards, their visits only resulting

in low or no fruit set. This must be, among other factors, because

their body is not large enough to touch the stigmatic region

while searching for nectar and pollen on the flower (Solís-Montero

and Vallejo-Marín, 2017; Földesi et al., 2021). Therefore, bee

body size relative to blueberry flower size and foraging behavior

must be among the key co-factors affecting pollination efficiency
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FIGURE 3

Boxplots comparing the e�ect of the pollinator taxon on the seed set of highbush blueberry cultivars based on single-visit tests in five orchards in the

southern region of Chile. The top graphic considers the e�ect in all blueberry cultivars together, and the four bottom graphics show the e�ect per

highbush blueberry cultivar. Boxes are colored according to the geographic origin of the visiting insects: native (blue), exotic (red), and control

(black). “Other native bees” includes bees that did not reach ten samples: Bombus dahlbomii, Corynura chloris, Corynura sp., Centris cineraria,

Caenohalictus sp., Ruizantheda proxima, Colletes cyanescens, Colletes nigritulus, Lasioglossum sp., Corynura herbsti.

(Solís-Montero andVallejo-Marín, 2017;Morais et al., 2020; Földesi

et al., 2021; Mesquita-Neto et al., 2021). The bees that were notably

equal to or larger in size than the anther–stigma distance achieved

greater performance at setting fruit with the highest weight (e.g., B.

terrestris, B. dahlbomii, C. occidentalis, and Colletes spp.). However,

we did not measure the body size of individual bees nor the anther–

stigma distance of blueberry flowers, which could be a better

predictor of fruit yield than the buzzing behavior alone and could be
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addressed by further studies. Therefore, our results cannot support

our hypothesis that the buzzing behavior alone is a predictor of

higher fruit set andweight. Instead, species identity remains a better

predictor of the quantity and quality of blueberry fruits.

Like bees, some syrphids (flower flies) can generate vibrations

of sufficient amplitude to extract pollen from buzz-pollinated

flowers (Vallejo-Marín and Vallejo, 2021). However, we have not

observed flies performing floral sonication in blueberry flowers.

In fact, only one case of floral sonication by flower flies has been

reported, involving aMexican cactus fly (Volucella mexicana) in the

flowers of a Solanum plant (Buchmann et al., 1978). The absence

of this behavior is explained by the fact that the amount of pollen

required by a flower fly is much less than that required by a bee

(Larson et al., 2001). Syrphids usually do not feed their offspring

with pollen, and their larvae consume other resources (Diaz et al.,

2020). Pollen consumption is, then, only related to the diet of adult

flies (Larson et al., 2001). In addition, there is very little information

on the role of flower flies and other flies in the pollination and fruit

production of blueberries in Chile or elsewhere. (Cook et al., 2020;

Cortés-Rivas et al., 2023). Mann (2014) suggested that blowflies

(Calliphoridae) may be effective pollinators due to their ability

to sonicate, but no direct evidence of pollination efficiency was

presented. To our knowledge, only the study by Cook et al. (2020)

provides evidence that the presence of blowflies in greenhouses

improves the pollination of blueberries. However, Cortés-Rivas

et al. (2023) showed that flower flies were poor pollinators of

blueberry plants, depositing few pollen grains on the stigmatic

surface per visit. Our results showed that their visits resulted in

a similar proportion of fruit compared with unvisited flowers.

Although flies are capable of producing floral vibrations, our study

provides evidence against the notion that flower flies are effective

pollinators of highbush blueberry cultivars but are rather pollen or

nectar thieves.

4.3. Blueberry pollination, sustainable
agriculture, and pollinator conservation

Buzz-pollinated plants and their flower visitors represent

a tangible example of the importance of considering bee

functional diversity in the pollination of cultivated species (Cooley

and Vallejo-Marín, 2021). However, our results evidenced that

taxonomic diversity is also a key component since the quality of the

pollination provided also depends on the taxon of flower visitors.

Consequently, the taxonomic recognition of species becomes

indispensable to distinguishing the most efficient pollinators of

blueberry (Cortés-Rivas et al., 2023). Therefore, by discriminating

true fruit set promoters from nectar/pollen thieves and being aware

of the value of bees to crop income, farmers could be encouraged

to consider the pollination perspective in their crop management.

This could result in the conservation of local wild bee species,

thereby contributing to advances toward more sustainable and

higher-yield agriculture (Isaacs and Kirk, 2010; Garibaldi et al.,

2014; Nicholson and Ricketts, 2019).

Our results showed that some native Chilean pollinating bees

(e.g., B. dahlbomii andC. occidentalis) can bemuch better fruit yield

promoters thanA.mellifera and equivalent to the exotic bumblebee.

However, the potential to enhance blueberry fruit production alone

TABLE 3 Pairwise contrasting of the e�ect of the interaction between

visitor taxon and highbush blueberry cultivar on seed set in five orchards

of the southern region of Chile (nbinom1 distribution, glmmTMB).

Contrast Ratio t-ratio p-value

Blueberry cultivar = Brigitta

Control vs. B. terrestris 0.15 (±0.08) −3.446 0.0055

Control vs. C. occidentalis 0.18 (±0.09) −3.286 0.0095

Blueberry cultivar = Duke

Control vs. A. mellifera 0.28 (±0.11) −3.149 0.0148

Control vs. B. terrestris 0.16 (±0.06) −4.797 <0.0001

Control vs. C. occidentalis 0.12 (±0.04) −5.743 <0.0001

A. mellifera vs. C. occidentalis 0.43 (±0.09) −3.899 0.0010

B. terrestris vs. other native

bees

2.45 (±0.67) 3.257 0.0104

C. occidentalis vs. other native

bees

3.22 (±0.82) 4.585 0.0001

Blueberry cultivar = Elliott

Control vs. B. terrestris 0.17 (±0.05) −5.481 <0.0001

Control vs. C. occidentalis 0.17 (±0.05) −5.629 <0.0001

Control vs. other native bees 0.27 (±0.09) −4.101 0.0004

A. mellifera vs. B. terrestris 0.25 (±0.08) −4.358 0.0002

A. mellifera vs. C. occidentalis 0.26 (±0.08) −4.348 0.0002

A. mellifera vs. other native

bees

0.41 (±0.13) −2.810 0.0407

Blueberry cultivar = Legacy

Control vs. B. terrestris 0.51 (±0.12) −2.905 0.0311

B. terrestris vs. other native

bees

4.34 (±21.16) 3.013 0.0226

does not justify the immediate abandonment of managed hives

to pollinate blueberry cultivars. There are practical challenges

associated with supplementing pollination with native pollinators

(Cooley and Vallejo-Marín, 2021). One of them is increasing their

abundance in crop fields (Isaacs and Kirk, 2010; Garibaldi et al.,

2014; Henríquez-Piskulich et al., 2021), as they represented only

11.9% of all visits in the studied blueberry orchards (Cortés-Rivas

et al., 2023). Strategies to increase native pollinators can include

creating wildflower strips for pollinators and the restoration of

hedgerows on farms, along with the conservation of nearby natural

and semi-natural habitats (Morandin and Kremen, 2013; Potts

et al., 2016; Sutter et al., 2018; Rodríguez et al., 2021). Such efforts

would provide nesting habitats and floral resources for the most

effective pollinators of blueberry and consequently, the overall

native bee community within agricultural ecosystems since they

not only visit crops but also depend on native habitats to nest,

feed, and reproduce (Nicholson et al., 2017; Monzón and Ruz,

2018; Rodríguez et al., 2021). Second, attention must be taken to

ensure that commercial colonies of native bees do not become a

problematic resource in their native range (Mallinger et al., 2017).

Despite that, we expect that our study will be one more piece of

evidence to discourage the importation of B. terrestris hives for

blueberry pollination in Chile while incentivizing the development
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FIGURE 4

Non-linear correlation between the number of seeds per fruit and the fruit weight (grams) of four highbush blueberry cultivars in five orchards

southern region of Chile.

and implementation of integrative habitat management strategies

to conserve native bees and consequently enhance crop pollination.

To our knowledge, this is the first study evidencing the per-

visit performance of native crop pollinators to enhance fruit

quantity and quality in the Chilean environment. Here, we applied

field experimental protocols and sampling methods to investigate

blueberry pollination and evaluated the relative performance of

managed bees and native bees in per-visit-based tests in commercial

blueberry fields. Bees, however, vary in their foraging range

(Greenleaf et al., 2007; Zurbuchen et al., 2010) and distribution,

so examining the bees that visit blueberries over multiple regions

and landscape scales can help reveal how these factors affect

pollinators and their pollination services. Moreover, sampling bias

must be another relevant factor, since a limited number of flowers

set fruit. Considering that a plant is typically visited by multiple

flower visitors and per visitor replicates are needed, replicates were

missing for some flower visitor species.

In summary, our results indicate that visits of native bees

can enhance fruit production of highbush blueberry crops in

Chile. However, fruit set and fruit quality improvement are more

dependent on the taxonomic identity of the visiting species rather

than their sonication behavior alone. Some native Chilean bees,

especially C. occidentalis and the giant Patagonian bumblebee

(B. dahlbomii) were efficient fruit promoters of blueberry and

performed better or similar to honeybees (A. mellifera) and the

exotic bumblebee.We suppose that the conservation of these native

pollinators would result in increased crop yields because their

visits enhance blueberry fruit quality and are likely to improve

overall crop productivity and sustainability. Therefore, instead of

continuing to rent or pay for managed beehives, which represents

a high cost for farmers (Isaacs and Kirk, 2010; Henríquez-Piskulich

et al., 2021), the service provided by native pollinators should

be considered, with priority given to the subset of the most

successful pollinators.
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