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In 1996, and with extraordinary prescience, Panfilov and Holden had highlighted in
their seminal book ‘Computational Biology of the Heart' that biology was, potentially,
the most mathematical of all sciences. Fast-forward 20 years and we have seen
an explosion of applications of mathematics in not only biology, but healthcare
that has already produced significant breakthroughs not imaginable 20 years ago.
Great strides have been made in explaining through quantitative methods the
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underlying mechanisms of human disease, not without considerable ingenuity and
effort. Biological mechanisms are bewildering: complex, ever evolving, multi-scale,
variable, difficult to fully access and understand. This poses immense challenges
to the computational physiology community that, nevertheless, has developed an
impressive arsenal of tools and methods in a vertiginous race to combat disease
with the tall order of improving human healthcare. Mechanistic models are now
contending with the advent of machine learning in healthcare and the hope is
that both approaches will be used synergistically since the complexity of human
patophysiology and the difficulty of acquiring human datasets will require both,
deductive and inductive methods. This Research Topic presents work that is currently
at the frontier in computational physiology with a striking range of applications, from
diabetes to graft failure and using a multitude of mathematical tools. This collection
of articles represents a snapshotin a field that is moving at a dizzying speed, bringing
understanding of fundamental mechanism and solutions to healthcare problems
experienced by healthcare systems all over the world.

Citation: Tsaneva-Atanasova, K., Diaz-Zuccarini, V., eds (2018). Mathematics for
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Editorial on the Research Topic
Mathematics for Healthcare as Part of Computational Medicine

Appropriate mathematical tools and methodologies are critical for ensuring robust and reliable
computational model predictions based on medical and healthcare data in the era of the digital
health revolution (Duggal et al., 2018). Patient-specific approaches are being increasingly pursued,
with simulations benchmarked by clinical data (e.g., brain activity recordings; Breakspear, 2017)
obtained in non-invasive manner on individual level (e.g., resting state; Spetsieris et al., 2015).
Precision Medicine, although not a new concept, is gaining momentum (Hodson, 2016) powered
by the ever increasing volume of patients data (Colijn et al.). Quantifying patient similarity is an
important challenge that is critical in predicting patients’ disease trajectories (Sharafoddini et al.,
2017). In an opinion article (Brown) patient similarity concept has been introduced as a paradigm
shift in optimizing personalisation of patient care.

Applications of mathematics in healthcare are achieving unprecedented growth at vertiginous
speed in a vast number of areas. Mental health presents a formidable challenge in our modern
society and computational psychiatry has recently emerged (Huys et al, 2016) as a field
combing computational models and patients’ data in an attempt to enhance the prognosis,
diagnosis and treatment of mental health conditions. This special issue offers an example (Wong
et al.) of statistical learning in the model space for Attention-Deficit Hyperactivity Disorder
medication response prediction at individual patient level. Mental health is intimately related to
neurological diseases and brain modeling for neurological disease treatments (Rubin, 2017) has
found applications to setting deep-brain stimulation parameters in Parkinson’s disease treatment
(Mandali et al.).

Non-negligible effort is currently being devoted to capturing disease progression, a real
challenge in this field. Disease progression modeling involves simulations of disease evolution
based on available biomarkers or other time-dependent measures of disease status. This is
particularly important in the case of chronic (non-communicable) diseases as demonstrated
in this special issue in the case of hypertension (Wang et al.) as well as type 1 diabetes
(Wedgwood et al.). Chronic diseases are often extremely complex leading to computational models
formulated in high-dimensional space, which poses a challenge for characterizing the pathways
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of disease progression or patient-specific disease progression
trajectories as discussed in Colijn et al. Computational cardiology
encompasses mathematical modeling and computer simulation
of dynamical processes in the heart and the cardiovascular system
in health and disease (Trayanova et al., 2012). An example of
an application of computational cardiology is the use of subject-
specific computer models to predict neointimal hyperplasia
in vein grafts (Donadoni et al.). Computational cardiology
applications could help in improving clinical decision support
systems in cardiac ablation therapy for example (Green et al.).
Moreover, the use of collections of patient-specific models could
provide a tool for pre-clinical and clinical assessment of disease
pathology such as atherosclerosis and associated calcification
(Alimohammadi et al.).

Computational oncology broadly refers to computational
modeling and simulations of biological process underlying
tumors’ development and progression as well as cancer therapy
including cancer biomarkers and drug effects (Barbolosi et al.,
2016). An example of computational modeling of signaling
pathways involved in multiple myeloma is presented in
Kendrick et al. whereas (Iuliano et al.) presents a network-
based statistical methodology for cancer biomarker selection.
Computational and mathematical pharmacology is becoming
increasingly relevant for drug development. Mechanistic models
has become more and more widely used and our understanding
of the models’ qualitative and quantitative behavior has
improved (Krzyzanski and van Hasselt, 2018). There are
outstanding challenges, however, associated with parameter
identifiability of pharmacodynamics models (Janzén et al.) as
well as the estimation of drug absorption profiles in-vivo

(Tragardh et al.).
Robust quantitative methods for identifying
biologically/physiologically ~relevant computational model

parameters from experimental data are critical for the
successful applications of computational medicine in precision
healthcare (Colijn et al.). This special issue presents several
examples of such methodological developments in the
case of quantifying: the biomechanical properties of human
gallbladder (Li et al.); the forces involved in abrasion damage
to skin (Jayawardana et al.); and intracellular calcium signals
(Mackay et al.).
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Infectious disease modeling including the underlying
mechanisms is becoming increasingly important in the face
of the anti-microbial resistance and its associated clinical and
public health burden (de Kraker et al., 2016). Grasping the
complexity of host-pathogen interactions remains a challenge
and mathematical modeling and analysis could help designing
appropriate disease management strategies at patient-specific
level (Dominguez-Hiittinger et al.) that are necessary for
implementation of precision healthcare (Colijn et al.) as well as
to inform public policies related to vaccination, for example see
(Hamami et al.).

By no means the topics included in this special issue are
exhaustive. They are rather indicative of a wider range of
problems specific to computational medicine that not only can
be tackled by available mathematical approaches but also inspire
the development of novel tools and techniques. Examples of
methods that have not been included are machine learning
and artificial intelligence for electronic health records analysis
and usage (Callahan and Shah, 2018). We hope that future
Frontiers Research Topics will contain an increasing number of
contributions within the scope of mathematics for healthcare as
part of computational medicine.
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INTRODUCTION

Healthcare data generates a huge volume of information in various formats at high velocity
with sometimes questionable veracity (Barkhordari and Niamanesh, 2015) (4V). As a result, big
data tools such as patient similarity are necessary to facilitate analytics, which reduces costs
(Srinivasan and Arunasalam, 2013) and improves healthcare systems (Jee and Kim, 2013). Patient
similarity investigates distances between a variety of components of patient data, and determines
methods of clustering patients, based on short distances between some of their characteristics.
Although patient similarity is in its early stages, ultimately information about diseases, risk factors,
lifestyle habits, medication use, co-morbidities, molecular and histopathological information,
hospitalizations, or death are compared with laboratory investigations, imaging, and other clinical
data assessing medical evidence of human behavior (Figure 1). Such analytics consist of efficient
computational analyses with patient stratification by multiple co-occurrence statistics, based on
clinical characteristics. Algorithms create subgroups of patients based on similarities among
their electronic avatars. Among electronic avatars found to be similar, subgroups of patients can
be evaluated by further stratification guided by individual diagnoses, risk factors, medications,
and so on. Because of the multiple networks of subgroups of patients, patient similarity can
be considered an application of network medicine, with the output termed “patient similarity
networks.” Thus, data mining extracts clinically relevant information hidden in clinical notes
and embedded in other areas of the electronic health record (EHR) coupled with International
Classification of Disease codes. The result is a systematic individualized analysis of a subset
of patients that can improve outcome prediction and help guide management for a particular
patient currently being cared for by a clinician (Lee et al., 2015). The communication or output
from the algorithms can be used to identify and predict disease correlations and occurrence,
and potentially for clinical decision support at the point of care. Patient similarity analytics are
not restricted to global findings from large clinical trials consisting of somewhat heterogeneous
patient populations (Roque et al.,, 2011). In this way, patient similarity represents a paradigm
shift that introduces disruptive innovation to optimize personalization of patient care. Some
promising examples are regarding mental and behavioral disorders (Roque et al., 2011), infectious
diseases (Li et al., 2015), cancers (Wu et al., 2005; Teng et al., 2007; Chan et al., 2010, 2015;
Klenk et al., 2010; Cho and Przytycka, 2013; Li et al.,, 2015; Wang, 2015; Bolouri et al., 2016;
Wang et al., 2016), endocrine (Li et al., 2015; Wang, 2015), and metabolic diseases (Zhang et al.,
2014; Ng et al.,, 2015). Others involve diseases of the nervous system (Lieberman et al., 2005;
Carreiro et al., 2013; Cho and Przytycka, 2013; Qian et al., 2014; Buske et al., 2015a; Li et al.,
2015; Bolouri et al., 2016; Wang et al., 2016), eyes (Buske et al., 2015a; Li et al., 2015), skin
(Buske et al., 2015a; Li et al., 2015), heart (Wu et al., 2005; Tsymbal et al., 2007; Syed and
Guttag, 2011; Buske et al., 2015a; Li et al., 2015; Panahiazar et al., 2015a,b; Wang, 2015; Bjornson
et al.,, 2016), liver (Chan et al, 2015), intestines (Buske et al., 2015a), musculoskeletal system
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(Buske et al., 2015a), congenital malformations (Buske et al.,
2015a), and various other conditions or factors influencing health
status (Gotz et al., 2012; Subirats et al., 2012; Ng et al., 2015).

PATIENT SIMILARITY IN SYSTEMS
MEDICINE

Patient similarity is just starting to spread its wings and
has the potential to transform Systems Medicine, which is
Systems Biology applied to health care. Systems Biology
studies the characteristics of cells, tissues, organisms, or other
comprehensive biological units as whole systems. Systems
Biology seeks to determine how changes in one part of the
system can affect the behavior of the whole system, and often
focuses on predictive modeling of the system in a perturbed state.
Patient similarity analytics could be developed to bring together
characteristics of the patient as a whole human system, and
compare these to a multitude of similar patients. Accordingly,
patient similarity analytics should in the near future incorporate
genomics, transcriptomics, proteomics, microbiomics, and other
“omics” and diverse components of systems medicine. In
addition, simulation of physiology at the level of the molecule,
cell, tissue, organ, and organism should be consolidated as
a comprehensive similarity feature to give a broader view of
interactions among organ systems. Patient similarity analytics
could provide predictive models of a patient’s outcome in the
setting of disease perturbations or diagnoses relevant to the index
patient. Making adjustments in the query data that serve as input
for the predictive models would allow for assessment of how
new diagnoses or therapies could impact the overall behavior and
phenotype of the whole patient.

Beyond the reasoning above, integrating the majority of
these systems medicine tools into patient similarity analytics
is potentially the next frontier in Systems Medicine, for at
least a few reasons. First, patient similarity analytics embrace
a systems view by assessing a myriad of characteristics for
hundreds or thousands of patients to produce a meaningful and
useful result. Second, patient similarity analytics are analogous
to various “omics” that in part compose Systems Biology.
Just as transcriptomics refers to generation of messenger
RNA expression profiles (Briefing, 1999), one could consider
a term similaromics referring to generation or identification
of patients similar to an index patient. Similaromics is also
akin to phenomics, proteomics, and genomics, among others.
Phenomics refers to cataloging the observable characteristics
conferred by a gene and proteomics describes the generation of
proteins expressed by a cell (Briefing, 1999). One might argue
that patient similarity is not quite analogous to genomics, since
an individual’s genome is thought to be constant throughout
their lifetime. However, this is no longer necessarily the case,
due to the current progress of genome editing tools. Indeed,
patient similarity is analogous to these various omics, all with
the potential to change over the lifetime of the individual. Thus,
just as a genome is the complement of all DNA within a cell, a
similarome is the complement of patients found to be similar
to an index patient. Within the similarome, one can further
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FIGURE 1 | The patient similarity analytics loop in systems medicine.
Once a query patient is selected, the patient and clinician (e.g., physician or
other health professional) in partnership can enter the “patient similarity
analytics loop” (step 1), which is iterative as patient characteristics evolve over
time and new patients become available for inclusion in the similarome. In step
2, query information is entered via a clinical decision support tool interface. In
step 3, this information combines with data from the query or index patient’s
EHR to form the data input for the patient similarity algorithms. Each “omic” or
systems medicine data type or tool (Brown, 2015b) functions as a predictor
variable vector, all of which are incorporated into the multidimensional feature
space for the patient. In step 4, the entire available EHR patient populous is
interrogated with a patient similarity network analysis tool; efficient data mining
is completed using patient similarity algorithms. In step 5, similarity data is
arranged, yielding a similarome (cohort of patients most similar to the
query/index patient), with subsimilaromes (subgroups of patients most similar
to the query/index patient based on prioritizing various
comorbidities/medications, etc.). Step 6 involves data collating and
information retrieval. In step 7, the similarome (which includes subsimilaromes)
is presented to the patient-clinician partnership via the clinical decision support
tool interface for clinical decision-making at the point-of-care. C, Clinical
information; G, Genomics; O, Other systems medicine data types or tools;

P, Proteomics; S, Social network data; T, Transcriptomics.

distinguish subgroups of patients that are most similar to an
index patient, based on preferentially assigning preeminence to
comorbidities or medications of most interest or relevance to
the index patient, e.g., during a focused shared decision-making
session with a clinician. Similar to genotyping then, which
determines the presence or absence of a particular gene feature,
simotyping would allocate the presence or absence of a particular
similarity feature, for example, a diagnosis of diabetes. In this
context then, a similarity-wide association study (SiWAS) has the
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goal of discovering clusters of patients similar to an index patient
and identifying similar features that associate with specific
outcomes, such as complications, procedures, hospitalizations,
or death. For example, investigating whether in patients most
similar to an index patient diabetes is more likely to associate
with non-healing leg ulcers, critical limb ischemia, or gangrene
leading to limb amputation.

Third, patient similarity analytics have the potential to
bring together a variety of omics and other systems medicine
tools, if we can do so in a way that is effective, accurate,
consistent, and computationally efficient (Brown, 2015a).
Indeed, several groups have proposed methods of aggregating
omics and monitoring these over time for individual patients,
and perhaps even using comprehensive patient avatars.
Integrating these methods with patient similarity has the
potential to launch systems medicine further into a future
where medicine is even more precisely individualized. Patient
similarity will likely become and persist as a useful tool in systems
medicine.

MATHEMATICS IN PATIENT SIMILARITY
ANALYTICS

For illustration of the utility of patient similarity in medicine,
only briefly presented here are a few selected examples of patient
similarity analytics used for diabetes and cancer, which are
common chronic or terminal diseases, respectively, currently
addressed in public health. In some studies, a patient similarity
metric is determined as follows (Lee et al., 2015; Li et al., 2015).
A patient can be represented by a Euclidean vector. Predictor
variables such as laboratory test results or vital signs can define a
multi-dimensional feature space. The cosine of the angle between
two patients’ vectors can define the associated patient similarity
metric. A dot product can facilitate the calculation. This can
be termed the “cosine similarity,” defining the patient similarity
metric as follows:

PSM (P, Py) = — 1 P2
SNV
Yo Pii x Py

\/Z?:l Pyi? x \/Z?:l Py?

where Pj; and P,; represent a single predictor variable vector
for two separate patients, - represents the dot product, and
|| || represents the Euclidean vector magnitude, as shown. Since
the patient similarity metric is an angle cosine, it normalizes
between —1 (considered minimum possible similarity) and 1
(considered maximum possible similarity). As expected, two
predictor variable vectors pointing in the exact opposite direction
to each other would have a 180° angle between them, and
would therefore calculate to a patient similarity metric of —1.
Conversely, two perfectly overlapping vectors would have an
angle of 0° between them, and would therefore calculate to a
patient similarity metric of 1. Accordingly, before calculating the
total patient similarity metric, the product for each predictor
variable vector would be normalized to the range of —1 to 1 in the

multidimensional feature space, if continuous (Lee et al., 2015).
The product for categorical/binary predictor variable vectors
would be assigned a value of —1 or 1. The patient similarity
metric would be calculated for each patient in a given data set,
relative to an index patient P;. The N most similar patients to the
index patient would be utilized as a training data set for testing
in a validation data set, with prediction of prognosis, morbidity,
or mortality. After successful validation, the predictive model
could be used for epidemiologic or clinical studies. For example,
am algorithm using cosine similarity successfully identified three
subgroups of patients with diabetes (Li et al.,, 2015). The first
subgroup included patients with diabetic nephropathy (diabetes-
related kidney disease) and diabetic retinopathy (diabetes-
related eye disease). The second subgroup included several
patients with cancer and cardiovascular diseases. The third
subgroup included many patients who also had cardiovascular
diseases, along with neurological diseases, allergies, and HIV
infection. Various single nucleotide polymorphisms mapped
to these three subgroups that were confirmed in the EHR,
suggesting clinical relevance for patient similarity in precision
medicine. Jaccard similarity, another metric that can be leveraged
after assigning binary attributes to each patients multifeature
vector space, was useful to analyze features underlying deviant
responses to therapeutics in patients with diabetes (Zhang et al.,
2014).

Alternatively, unsupervised clustering of patients based on
their clinical predictor variables could be used to produce a
patient-patient network. The network could be organized using
L-infinity centrality, which is the maximum distance from each
point from any other point in a given data set. L-infinity centrality
produces a detailed and succinct description of any data set
yielding more information than scatter plots (Lum et al., 2013).
Large values for L-infinity centrality correspond to data points at
large distances from the center of the data set (Li et al., 2015).
Other pattern analysis and cluster algorithms (Daemen and De
Moor, 2009; Chan et al., 2010; Liu et al., 2013a; Mabotuwana
et al, 2013; Sundar et al., 2014), or algorithms incorporating
distance metric learning (Wang et al., 2011; Bian and Tao,
2012), locally supervised metric learning (Sun et al., 2012; Ng
et al., 2015), local spline regression (Wang et al., 2012), or
visual analytics (Tsymbal et al., 2009; Ebadollahi et al., 2010;
Gotz et al.,, 2011; Perer, 2012; Heer and Perer, 2014; Bolouri
et al., 2016; Ozery-Flato et al,, 2016), can also be used for
patient similarity to predict diabetes onset, develop treatment
recommendations tailored to each patient, or predict survival
after chemotherapy (Chan et al, 2010; Liu et al, 2013a; Ng
et al., 2015; Ozery-Flato et al., 2016), among other applications.
SNOMED CT and other medical terminology frameworks can
be used to facilitate communication across platforms in various
studies (Melton et al., 2006). There are also algorithms to
incorporate a time series into patient similarity analysis, to
predict trends over time among patients (Wu et al, 2005;
Hartge et al, 2006; Ebadollahi et al., 2010; Carreiro et al.,
2013; Alaa et al.,, 2016). For example, a patient similarity time
series algorithm has been used to fine-tune radiation treatment
planning for patients with head and neck cancers (Wu et al,
2005).
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CHALLENGES IN PATIENT SIMILARITY

There are certain challenges in patient similarity, such as network
bottlenecks, low hardware performance (processing power and
memory), and data locality (Osman et al., 2013; Karapiperis
and Verykios, 2014; Barkhordari and Niamanesh, 2015). Given
the observational or retrospective nature of patient similarity,
interpretation of data analysis will be imperfect. Confounder
control and treatment selection bias are inherent limitations
in such studies. However, groups have developed strategies
to manage the potential for confounders, such as restriction,
stratification, matching, inverse probability weighting, and
covariate adjustment (Gallego et al., 2015). Several groups have
also proposed solutions for other challenges that enable large
scale patient indexing and accurate and efficient clinical data
retrieval (Wang, 2015). Some have devised algorithms to address
the complexity of clinical data and limited transparency of
many existing clinical case retrieval decision support systems
(Tsymbal et al., 2009), as well as integration of data from
various heterogeneous omics studies (Wang et al., 2014, 2016;
Gligorijevic¢ et al., 2016) and physician input and feedback (Wang
et al,, 2011; Sun et al., 2012; Fei and Sun, 2015). Others have
produced algorithms that address scalability and uncertainty,
by requiring parallel or distributed algorithm implementations
built to scale, and enhancing interpretability by conveying
the certainty of results presented (Feldman et al., 2015). One
such algorithm or platform is scalable and distributable patient
similarity (ScaDiPaSi), a dynamic method for investigating
patient similarity that spreads the algorithm over several self-
sufficient hardware nodes to process query data from various
sources of different formats simultaneously (Barkhordari and
Niamanesh, 2015). Another tool, MapReduce, employs several
optimization techniques, such as job scheduling and cascading
work flows over multiple interdependent hardware nodes (Dean
and Ghemawat, 2008). Use of all of these technological solutions
for patient similarity in precision medicine will be facilitated
by bridging gaps among different scientific, technological, and
medical cultures, through interdisciplinary collaborations among
experts in medicine, biology, informatics, engineering, public
health, economics, and the social sciences (Kuhn et al., 2008).
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Precision medicine refers to the idea of delivering the right treatment to the right
patient at the right time, usually with a focus on a data-centered approach to this
task. In this perspective piece, we use the term “precision healthcare” to describe the
development of precision approaches that bridge from the individual to the population,
taking advantage of individual-level data, but also taking the social context into account.
These problems give rise to a broad spectrum of technical, scientific, policy, ethical
and social challenges, and new mathematical techniques will be required to meet
them. To ensure that the science underpinning “precision” is robust, interpretable and
well-suited to meet the policy, ethical and social questions that such approaches raise,
the mathematical methods for data analysis should be transparent, robust, and able to
adapt to errors and uncertainties. In particular, precision methodologies should capture
the complexity of data, yet produce tractable descriptions at the relevant resolution while
preserving intelligibility and traceability, so that they can be used by practitioners to aid
decision-making. Through several case studies in this domain of precision healthcare,
we argue that this vision requires the development of new mathematical frameworks,
both in modeling and in data analysis and interpretation.

Keywords: precision medicine, precision healthcare, data science, precision public health, mathematical modeling

INTRODUCTION: PRECISION MEDICINE AND ITS CHALLENGES

The phrase “precision medicine” describes the idea of delivering the right treatment to the right
person at the right time. Precision approaches aim to achieve a medical revolution: individualized
therapies based on quantitative, patient-specific datasets, integrated via algorithmic analyses that
can aid patient stratification, monitoring, and treatment design. These approaches have been
broadly supported in the US under President Obamas Precision Medicine Initiative (Collins
and Varmus, 2015; White House Precision Medicine Initiative, 2016), by the Gates Foundation
(Cisneros, 2016), and by the Chan Zuckerberg Initiative (Chan Zuckerberg Initiative — Advancing
human potential and promoting equal opportunity, 2017). Although some of the aspects of this
vision date back to the inception of the Human Genome Project, precision medicine now expands
beyond the restrictions of genomics to encompass a wide range of data sources increasingly
available to clinicians. The idea of embedding diagnostics and treatment with omics and other
medical and physiological datasets at the heart of medicine has been variously described as
systems medicine, personalized medicine, computational systems biomedicine, P4 (Predictive,

Frontiers in Physiology | www.frontiersin.org

15 March 2017 | Volume 8 | Article 136


http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00136
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00136&domain=pdf&date_stamp=2017-03-21
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:c.colijn@imperial.ac.uk
mailto:m.barahona@imperial.ac.uk
https://doi.org/10.3389/fphys.2017.00136
http://journal.frontiersin.org/article/10.3389/fphys.2017.00136/abstract
http://loop.frontiersin.org/people/396209/overview
http://loop.frontiersin.org/people/123146/overview
http://loop.frontiersin.org/people/396219/overview

Colijn et al.

Toward Precision Healthcare

Preventative, Personalized, Participatory) medicine, and
precision medicine, to name just a few (Duffy, 2016).

The development of the field has been underpinned by some
striking successes, particularly in cancer (Derks et al., 2014; Hiley
et al,, 2014; Arnedos et al., 2015; Friedman et al., 2015; Navin,
2015; Rubin, 2015; Stover and Wagle, 2015; Wills and Mead,
2015; Cloney, 2017), where molecular profiling is increasingly
routine in lung, breast, and colorectal cancers, as well as in
leukemias and melanomas (Larry Jameson and Longo, 2015). In
asthma, the heterogeneity in clinical response has been shown to
overlap with differences in a number of predictive biomarkers,
allowing patient stratification for tailored therapies (Muraro
et al., 2016). Precision approaches can have immediate benefits
for drug repurposing and treatment: the link between type 2
diabetes and early stage Alzheimer’, in which there is often
impaired glucose metabolism in the brain, is giving rise to a
body of research for new therapeutics that includes repurposing
existing drugs (Yarchoan and Arnold, 2014). Cardiovascular
disease is another natural domain for precision medicine,
as chronic, pervasive problems like diabetes, obesity, and
hypertension (with a significant socio-economic and life style
component) are directly linked to severe disease including
heart failure (Antman and Loscalzo, 2016). These highly
prevalent conditions are themselves diverse, multifactorial, and
co-occurrent in many individuals, yet mechanism-based markers
that predict the development of hypertension can already be
identified based on functional genetic and epi-genetic markers
(EI Shamieh and Visvikis-Siest, 2012; Zhang et al., 2015). In the
domain of infectious diseases, precision technologies can also
be used to identify pathogens and to determine susceptibility
to antimicrobial agents, guiding prescription, e.g., CD4+ cell
counts and viral loads can guide HIV therapies (Barnett et al.,
2008). Beyond single infections, the function of the microbiome
is being probed for disease associations (Gilbert et al., 2016) and
metabolomics and integrated omics’ tools are revealing disease
phenotypes (Chen et al., 2012; Dorrestein et al., 2014).

While there are plenty of potential “low hanging fruits” yet
to be plucked, for precision medicine to maximize its impact as
envisioned, a number of significant challenges need to be met
across multiple domains. Some of these challenges are technical
and relate to data collection, processing, storing, and sharing
(Garber and Tunis, 2009; Servant et al., 2014; Palmisano et al.,
2016; Sboner and Elemento, 2016), and have broad scientific,
clinical, social, and ethical ramifications (Juengst et al., 2012;
Khoury et al., 2012; Castaneda et al., 2015; Schork, 2015; Cohn
et al., 2016). Indeed, advances in sequencing, metabolomics,
biomarker discovery, genetics and single-cell technologies,
alongside computing, and data science, have brought a strong
impetus to the development of the scientific toolkit, data
management systems, and regulatory framework for precision
medicine. Data collection is currently taking place across the
traditional channels of hospitals, community health care settings,
and public health bodies, but also increasingly in a decentralized
manner via social media analytics and wearable devices. The
adoption of systematic formats for Electronic Health Records
has improved data collection and consistency, but a considerable
effort in data processing and integration still needs to take

place (Garber and Tunis, 2009; Servant et al., 2014; Palmisano
et al., 2016; Sboner and Elemento, 2016). Storing and accessing
extremely high volumes of data is difficult and a concerted
effort must be developed to enable clinicians, policy-makers, and
academics to access these datasets, thus reducing the need for
custom bioinformatics expertise. The question of whether data
management is done by public or private organizations, and
whether researchers and other users will need to pay to use data
is an additional area of concern. Further, efforts to harness large
datasets will require the development of sophisticated graphical
user interfaces and visualization, data quality management, and
data storage (Duffy, 2016). Programmes like the UK Biobank
(2016), an open resource collecting de-identified data on health
and well-being from 500,000 volunteers, and making it available
for research, will be instrumental in meeting these challenges.
There is also the issue of obtaining informed consent about
the storage and use of data, when the uses are dynamic and
expanding (Khoury et al., 2016). Finally, as yet there are no
centralized resources collecting datasets, modeling and software
analysis tools, and pipelines for precision medicine, which would
facilitate method-sharing and allow interested researchers to join
the effort.

Precision approaches, as they develop, must also
accommodate the ethical and transparent use of data. Recently,
O’Neil has coined the phrase “Weapons of Math Destruction”
(WMD) (O'Neil, 2016) to describe how black-box algorithms
can create pernicious and damaging feedback loops, with unfair
consequences to individuals, often without much effort placed
on identifying and correcting errors (O’Neil, 2016). Hood and
Friend (2011) present the vision that “in the not-too-distant
future, each patient will be surrounded by a ‘virtual cloud’
of billions of data points that will uniquely define their past
medical history and current health status. Furthermore, it will
be possible to mine the billions of data points from hundreds
of millions of individuals to generate algorithms to help predict
the future clinical needs for each patient.” Hence, although
precision medicine under this broad vision could have the
beneficial potential to identify diseases earlier, to reduce burdens
of treatment, and to improve screening by reducing false
positives, and ultimately improve health, a sceptic might imagine
a scenario in which these same predictions are used to produce
quality-adjusted life year estimates, affecting which treatments
are covered for whom, and guiding hiring, lending or health
insurance decisions (O’Neil, 2016). With the amount and
breadth of data available, there is the danger that such decisions
could yield negative discrimination according to e.g., postcode
lotteries, socio-economic factors, social network data, past
healthcare interactions, judicial and law enforcement history.

How can such scenarios be avoided? Part of the answer
must come from policy and regulation to ensure openness and
fair use of data (Noveck, 2015). Yet, in addition, we need to
develop the kind of mathematics and statistics for data science
that will keep the “human in the loop” so that decision-making
can be transparent and based on interpretable features and
evidence. In doing so, we will need to develop methods that
can track back and be updated in response to errors, taking
full account of uncertainties, thus avoiding the over-reliance on
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complex computational decision black boxes. With this aim of
model intelligibility, an important goal is to extract improved
data-driven descriptions at the appropriate intermediate scales
between the fully individualized level, which carries the risk of
non-transparent and damaging over-use of data, and descriptions
that are too coarse, which lead to insufficient precision in the face
of individual variation. There is virtue in reaching a nuanced,
data-informed middle-ground between these extremes: one that
considers the individual in a population context and includes the
role of human judgment.

It is thus essential to build theoretical understanding at
the appropriate scale. One of the advantages of an integrated
precision approach in medicine is to refine disease classification,
increasing and finessing the number of groups of patients to
reflect the true diversity of major diseases like cancers, so as to
target treatment appropriately. While biomarker information can
substantially improve clinical trial design as well as treatment
(Trusheim et al., 2011), stratification also greatly increases the
number of categories for which clinical trials may need to
be carried out, reducing reproducibility and posing challenges
to evidential policy (Khoury et al., 2012). Conversely, data-
centric approaches may identify common mechanisms and
treatments across disparate diseases, reducing stratification. Such
approaches could potentially deliver dramatic cost efficiency.
For these reasons, precision approaches must act at the right
scale, which will often be intermediate-between “one size fits all”
medicine and fully individualized therapies.

However, we do not yet have the ideal tools at hand
to identify relevant features and integrate them to obtain
interpretable predictions, optimized therapies, and new policies—
even if merged datasets describing multivariate aspects of
individuals’ health across time (including, e.g., genomic,
proteomic, metabolomic, brain images, social, and behavioral
data) collected with informed consent were available. In addition,
such combined genetic, genomic, proteomic, metabolomic, or
single-cell data will only provide highly enriched and noisy
snapshots taken at a few times—at best, we will have sparse noisy
samples of the underlying process of disease, and sparse samples
of the context of each patient.

To reveal the potential of such datasets in medicine, we must
thus develop mathematical frameworks that are able to describe
high-dimensional, dynamic, noisy, sparsely-sampled processes.
Ideally, we must then be able to extract concise descriptions
(coarse-grained at the right resolution) which are intelligible
and actionable, and which link co-occurrences of events, co-
morbidities, and time patterns in disease and in health-related
processes. This area poses a set of core mathematical challenges:
creating transparent, replicable descriptions in healthcare, which
make use of large diverse datasets, placing individuals in context,
and which use dynamical information across time at the correct
scales. These mathematical challenges must be researched in
parallel with precision medicine, ideally spanning the individual-
and population-level perspectives.

In our view, these constitute deep additional challenges to
mathematical modeling and data analysis that will need to be
met in order for precision approaches to meet their promise.
In the remainder of this perspective, we lay out a vision for

what we term precision healthcare, its aims and its mathematical
challenges. We do not aim to write a review of precision
medicine; many reviews of tools and methods in different
medical domains are available (see for example Chen and Snyder,
2013; Rosell and Karachaliou, 2013; Hiley et al., 2014; Ignatiadis
and Dawson, 2014; Arnedos et al., 2015 among many others),
as well as perspectives from a variety of viewpoints (Mirnezami
et al., 2012; Roychowdhury and Chinnaiyan, 2013; Ciardiello
et al., 2014; Ignatiadis and Dawson, 2014; Servant et al., 2014;
Arnett and Claas, 2016; Rost et al., 2016; Vargas and Harris, 2016).

Why Precision Healthcare?

For most of these challenges, population-level thinking coupled
with mathematical data science analytics can help translate the
benefits of precision medicine to address broader effects at the
group level, including concerns regarding health equity and
ethics. We use the phrase “precision healthcare” to encompass this
vision that integrates the population and individual perspectives.
Precision healthcare thus aims to build tools that make use of the
increasing array of data sources, allowing for their continuous
refinement in the face of new data, and whose predictions
are aimed at and respond to the requirements of healthcare
practitioners (clinicians, the public, policy thinkers, and other
stakeholders).

This vision will require the use of an array of mathematical
tools to unify individual-level precision medicine with public
health, placing high-dimensional individual data and refined
interventions in their social network context. Indeed, in many
instances, individual health cannot be separated from its
behavioral and social context. For example, highly targeted
interventions against a cancer can be undermined by metabolic
diseases caused by dietary behaviors which, in turn, co-vary
with social network structure and other societal constructs. An
adjuvant therapy for cancer might thus be to influence the diet
and behavior of the patient taking into account their close social
contacts.

The scenario by Hood and Friend (2011) mentioned above
can thus be thought of as the analysis of a virtual cloud of a
large number of high-dimensional feature vectors corresponding
to the different individuals. Dynamical datasets in this scenario
would correspond to a large collection of paths in such a space. If
the technical and policy challenges to collect and integrate such
data into a single accessible point of access were surmounted,
methods for dimensionality reduction could be applied to reduce
the relevant features to a few “components” which could then
be used to “cluster” (or classify) the data into groups of similar
individuals according to their paths. This is an area of current
active research, ranging from the direct application of classic
methods such as principal components analysis (PCA), support
vector machines (SVMs), and independent component analysis
(ICA) with all their myriad of variants, through manifold
learning to the revivified use of neural networks for such
classification tasks (Mallat, 2016). Developing ways to cope with
noisy data and noisy labels is an ongoing challenge in machine
learning (Xiao et al., 2015) and across precision medicine, as
omics datasets can be extremely noisy.

Frontiers in Physiology | www.frontiersin.org

17

March 2017 | Volume 8 | Article 136


http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

Colijn et al.

Toward Precision Healthcare

However, specific requirements in the precision healthcare
setting make such tasks especially difficult. The datasets are
dynamic and usually sparsely sampled. The processes involved
are high-dimensional, highly nonlinear, noisy, and uncertain.
The dimensionality reduction framework for such datasets
should ideally achieve competing objectives: preserve, to some
extent, the meaning of the original descriptive variables (without
mixing all features into conglomerates) while extracting concise
(i.e., sparse) representations in terms of few relevant extracted
features. Ideally, it should be possible to adjust the level of detail
(i.e., the resolution scale) of such models depending on the
quality of the data and the needs of the practitioner. Finally,
the mathematical framework should deliver robust outcomes,
and include the possibility of restricting and conditioning the
extracted models to incorporate additional and complementary
data without the need for refitting.

Indeed, in the process of harnessing these large-scale data, a
great degree of caution is required. Most biomedical research is
plagued by a flood of false positive results due to experiments
of insufficient discriminatory power (loannidis, 2005). The
translational impact of this trend is starkly illustrated by recent
failures to reproduce landmark cancer studies and low success
rates in clinical trials (Prinz et al., 2011; Begley and Ellis, 2012). In
particular, the quest for (publishable) p-values over (meaningful)
effect sizes (Goodman, 1999; Ziliak and McCloskey, 2008) has
led to the likely incorrect linking of many genetic features with
diseases (Johnston, 2016). Selecting appropriate mathematical
models can help increase the statistical power of large-scale
experimental data, allowing rigorous statistical treatments to
discriminate likely from spurious effects, and quantifying the
sizes of effects so that the scientific, as well as the nominally
statistical, significance of observations can be better understood.

The interface of individual-level personalized medicine and
public health will thus need to develop new mathematical
tools to formulate and analyse mathematical questions for data-
rich characterization of disease progression and transmission,
controlled intervention, and healthcare provision. Key areas that
we see in the remit of precision healthcare include: statistics
for noisy, incomplete, heterogeneous data; stochastic modeling;
inference and control of network dynamics; mathematical
approaches to exploit complex structure in large datasets, and
methods to couple imaging and omics. More broadly, a central
distinction between precision medicine and precision healthcare
is that the former treats individuals, whereas the latter treats
individuals explicitly embedded in a society or broader context.
Precision healthcare thus aims to link “big data” tools to explore
individual agents with an understanding of how those individuals
behave collectively and respond to society-wide initiatives.

Some Proposed Case Studies in Precision

Healthcare

We now describe a number of demonstrative examples, ill-
ustrating some of the tools that come under the umbrella
of precision healthcare. These range from systems precision
medicine approaches focusing on the representation of complex
dynamic data, to precision healthcare approaches including both

retrospective analysis and real-time interventions that are rooted
in complex individual and population data.

Gene Therapies for Mitochondrial Diseases

A combination of new maths, statistics, and large-scale
experimental data has led to recognition of the importance
of personalized therapeutic approaches in cutting-edge gene
therapies addressing the inheritance of mitochondrial diseases.
These diseases (e.g., mitochondrial encephalomyopathy, lactic
acidosis, and stroke-like episodes—MELAS, myoclonic epilepsy
with ragged red fibers—MERRE Leber’s hereditary optic
neuropathy—LHON) result from mutations in mitochondrial
DNA (mtDNA) which are passed from mother to child (DiMauro
and Davidzon, 2005). Mitochondrial replacement therapies aim
to prevent this inheritance by replacing mutated mother mtDNA
with mtDNA from a third party woman, but technological
limitations in the procedure can lead to small amounts of
mother mtDNA being amplified leading to disease (Burgstaller
et al,, 2015). Classically the risk of differential proliferation has
been considered minimal, but evidence harnessed with statistical
modeling and large-scale data from mouse models has shown it is
common (Burgstaller et al., 2014). Further, quantitative modeling
on large-scale human mtDNA datasets has confirmed that this
risk is present in heterogeneous human populations (Reyrvik
et al,, 2016), as supported by experimental observations (Hyslop
et al,, 2016; Yamada et al., 2016). The personalized aspect stems
from the fact that the risk of differential proliferation depends
on the genetic details of the mother’s and third-party’s mtDNA,
which vary throughout global human populations according to
geography and ancestry. Appropriate modeling can elucidate
the biological details of why these proliferative differences
arise, make probabilistic statements about the probability and
timescales of therapeutic outcomes, and describe the mtDNA
differences likely to arise in human populations. In the future,
precision healthcare strategies could allow us to propose suitable
third-party donors to optimize successful fertility strategies.

Pathways of Disease Progression in
High-Dimensional Spaces

Recent mathematical and statistical developments in the study
of evolution have shed light on the emergence of efficient
photosynthesis (Williams et al., 2013) and the reduction of
organelle genomes (Johnston and Williams, 2016) by modeling
evolution as the acquisition (or loss) of a set of L-discrete
traits. Evolution in this picture takes place on an L-dimensional
hypercube, with each vertex corresponding to a given pattern
of trait presence/absence and each edge corresponding to
an evolutionary innovation. Observations of evolutionary
intermediates can then be used, as in a hidden Markov model,
to infer likely trajectories through this space. This paradigm
can be developed to infer likely pathways of disease progression
(generalizing statistical studies on disease progression; Hjelm
et al., 2006; Pagel and Meade, 2006; Loohuis et al., 2014;
Beerenwinkel et al., 2015), picturing the “space of symptoms” as
an analogous hypercube, and disease progression as paths over
its edges. Large-scale and longitudinal patient datasets can be
used to infer likely sets of “evolutionary” trajectories through
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this space, so that probabilistic statements can be made about
the likely next step for any given individual patient-and thus
a personalized optimal therapeutic strategy. Interestingly, this
approach can be linked with descriptions based on continuous
variables, where similarity graphs are obtained from distance
matrices by using graph-theoretical sparsifications that preserve
the topological and geometrical structure of the data (Beguerisse-
Diaz et al., 2013). The structure of the similarity graphs from the
data can then be analyzed using multiscale community detection
algorithms leading to highly nonlinear clustering of symptoms
and individuals describing the observed pathways of disease
progression (Schaub et al., 2012).

Social Networks in Health Policy

Twitter provides a platform to interact directly with a large
audience, and to sample and address public opinion and
responses around specific issues and questions. However,
it is critical to understand the different communities and
conversations on Twitter, so as to target them appropriately.
For example, a recent example following conversations
on diabetes (Beguerisse-Diaz et al, 2017) used a unified
mathematical framework (Delvenne et al, 2010; Beguerisse-
Diaz et al, 2013; Beguerisse-Diaz et al, 2014; Lambiotte
et al.,, 2015) that brings notions from stochastic processes on
graphs and optimization to the analysis of Twitter networks.
In this particular study, 2.5 million diabetes-related tweets
were analyzed and found to fall within five broad thematic
groups: health information, news, social interaction, commercial,
and humor. Indeed, humorous messages and references to
popular culture appear consistently, more than any other type
of tweet, revealing the specific characteristics of social media
interactions. The analysis of the temporal “hub” and “authority”
scores of Twitter users revealed that the hub landscape is
diffuse whereas the landscape of authorities is highly persistent.
The Twitter authorities comprise not only bloggers, advocacy
groups and NGOs related to diabetes, but also for-profit entities
without specific diabetes expertise which influence the online
exchanges. The top authorities fall into seven interest groups,
as derived from their Twitter follower network revealing the
flow of information with specific audiences. A similar analysis
was carried out on the network of retweets generated by the
debate surrounding the proposed adoption of the “care.data”
(https://www.england.nhs.uk/ourwork/tsd/care-data/)  scheme
of personalized health care records by NHS England (Amor et al.,
2016). In that case, a series of interest groups and conversations
were identified revealing the different roles of users within and
across communities, including the limited reach of some of the
public policy accounts in the debate. Such findings could be used
by public health professionals and policy makers to use social
media as an engagement tool and to inform policy design. A
similar analysis have been carried out in Beguerisse-Diaz et al.
(2017) following other social movements.

Spreading of Vaccine Sentiment and Spreading of
Vaccine Preventable Disease

Vaccine hesitancy and a vaccine preventable disease can be
thought of as two distinct types of processes and they propagate
through distinct media. We suppose that sentiment is spread

socially (and is influenced by media outlets) but involves the
slow evolution of beliefs rather than something as simple as
the infectious propagation of a meme. In contrast, disease
spread need not respect social network structure. An integrated
intervention would not only target vaccination where the
disease has been reported and vaccine coverage rates are low
(de Figueiredo et al., 2015) but also where it is predicted to
appear. Predictions would be based on integrated multi-variate
“precision” data. Similarly, negative vaccine sentiment (Larson
et al,, 2016) could be targeted not only where it has been
reported but also where it is predicted to appear given the social
network structure. The coupling between belief dynamics and
epidemiology now has an established theoretical presence (Wang
et al., 2016) and importantly it has been observed that anti-
vaccination behavior is socially clustered (Onnela et al., 2016)
thereby undermining herd immunity (Salathé and Bonhoeffer,
2008); it is important to coordinate a public health response
that can incorporate belief and behavior dynamics as well as the
spread of infection.

Influencing Beliefs and Influencing Networks

Health outcomes for chronic conditions are modulated by health
behavior, which in turn might be expected to show covariation
sensitive to underlying social network structure (Centola, 2010;
Shalizi and Thomas, 2011; Christakis and Fowler, 2013). It
has further been suggested, independent of unhealthy behavior,
that social position can modulate health outcomes (Snyder-
Mackler et al, 2016). There are thus a number of possible
types of social interventions to improve health: (1) influencing
modes of thinking to encourage critical appraisal of apparently
acceptable but unhealthy behavior (changing the models that
individuals use) (2) influencing health beliefs about particular
topics (changing the data individuals access) (3) influencing
network structure (but not social co-ordinates) to build bridges
between communities for the exchange of health behavior (4)
influencing the social co-ordinates of individuals (or sectors
of society) and thereby altering their network neighborhood
(or the gross social network structure). Changes to (3) and
(4) might also affect possible physiological consequences of
status comparisons (Pickett and Wilkinson, 2015). While we
can cite examples of each class of intervention, these can be
remarkably challenging to effect: for example showing some
extreme vaccine sceptics information about the consequences of
vaccine preventable disease can increase their vaccine scepticism
(Nyhan et al., 2014); overwhelming evidence has been presented
of health inequities (Marmot and Commission on Social
Determinants of Health, 2007; Adler et al., 2016) but the problem
persists. Challenges (1-4) constitute challenges in contemporary
network science and its interface with optimal control: ideal
interventions will optimally control processes on networks and
optimally influence the network structure itself (Liu and Barabasi,
2016).

Genomic Epidemiology for Outbreak Reconstruction

Recent advances in sequencing technologies have driven changes
in many biological domains, including epidemiology (Jombart
et al., 2014; Kao et al., 2014; Colijn and Cohen, 2016). It
is now feasible to obtain DNA or RNA sequences from
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viruses, bacteria and other pathogens, and to use these data
to detect drug resistance, optimize treatments for individual
patients (Vanderkooi et al., 2005; Perez et al, 2016), and
to understand how pathogens are spreading and evolving
by tracking small variations in the pathogen as it moves
between individuals. To understand transmission, isolates are
collected from patients alongside clinical data such as times of
symptom onset. The isolates are sequenced and processed with
bioinformatics tools, capturing even small levels of variation
between patients (e.g., in a multiple sequence alignment). These
can be integrated with evolutionary models to infer phylogenetic
trees, describing patterns of shared ancestry among the isolates.
An epidemiological model is used to define how likely a set of
infection events are. This incorporates clinical information-for
example, it is very unlikely that an individual would transmit
an infection years before showing any symptoms, or while
living in another area. Finally, mathematical models that link
the phylogenetic and epidemiological information are used to
compute the joint likelihood of the genetic data and the set of
transmission events. This is embedded in a Bayesian approach,
so the result is a posterior collection of transmission trees (who
infected whom, and when), consistent with the data. There is a
rapidly-growing body of work on these inference problems (Hall
etal., 2015; Worby et al., 2015; De Maio et al., 2016; Klinkenberg
et al.,, 2016; Worby et al., 2016; Didelot et al., 2017); Figure 1
is based on the approach in Didelot et al. (2017). There are
natural precision healthcare applications of these tools: if more
transmission is inferred to have occurred in particular locations,
interventions such as improved ventilation and cleaning, early
screening and active case fining can be directed there. If risk
factors such as community membership, age, or co-morbidities
are identified, these can be managed similarly. But perhaps
the most exciting applications of these tools will happen when
sequencing can be done in a matter of hours or even days.
Identifying where there are likely missing cases could allow
us to identify cases early, treat them, and prevent onward
transmission. Real-time sequencing and infection-tracing has
already had impact in the recent Ebola epidemic (Quick et al.,
2016), setting the stage for this direction in public health (Gardy
et al., 2015).

DISCUSSION

We have framed precision healthcare to describe the development
of precision approaches which, while capturing the complexity
of individual data and its societal context, extract reduced
dimensionality descriptions at the relevant resolution while
preserving a measure of intelligibility of the models. This can
enable practitioners in the loop to use these precision approaches
effectively. Such methods should be transparent, robust and
able to adapt to errors and uncertainties. In bridging from
the individual to the population, the methodologies should
take advantage of the multivariate data sources at the heart of
precision medicine, yet take the social context and population
levels into account. Through several case studies in this domain
of precision healthcare, we argue that this vision requires the

development of new mathematical frameworks, both in modeling
and in data analysis and interpretation.

Recently, “precision public health” has been characterized
as delivering the right intervention to the right population at
the right time (Desmond-Hellmann, 2016; Khoury et al., 2016),
mirroring the oft-cited characterization of precision medicine.
With support from the Gates Foundation (Cisneros, 2016),
precision public health aims to apply precision (data-centered)
approaches to improve the health of populations and to reduce
health disparities. Public health thinkers are concerned about
precision medicine’s current emphasis on individual approaches,
its focus on extending the use of costly genetics and other
omics, and the development of tailored drug treatments (Khoury
et al., 2016). Bayer and Galea report that the number of NIH
projects with “public” or “population” in the title has dramatically
declined, and that in 2014, research areas described with the
words “genetic,” “genome,” or “gene” received 50% more funding
than those with “prevention”. They are concerned that the focus
on precision medicine is misguided (Bayer and Galea, 2015), and
argue that improving health requires addressing persistent social
realities that are not covered by access to clinical medicine (Adler
et al,, 2016). Persistent social inequalities can also be expected
to be a major barrier in bringing advances from omics-based
precision medicine to low-income countries, although recent
use of rapid genomics-based tools in the Ebola outbreak (Quick
et al., 2016) points to the potential to develop precision-based
approaches for low-income settings.

Precision public health places emphasis on addressing such
disparities, and (as with public health more generally) on
prevention. In many ways, data-centered approaches have
already been adopted by epidemiologists and public health
practitioners and, as precision public health incorporates more
individual-level data, it will require the envisaged scientific
tools of precision healthcare. These methodologies will allow
public health methods to integrate data on vaccine belief and
social context with individual health records, genetic data,
other biomarkers, and individual risk factors. Importantly, it
is realistic to envision that the use of mobile and social
network technologies will enable public health interventions
typically considered at the level of populations to instead be
tailored to individuals. We believe that an important aspect
of the success of precision public health will depend on
meeting the mathematical challenges we have outlined as
precision healthcare. Identifying the right population for the
right intervention will require data analysis, stratification, and
modeling at the right scale: too fine, and there would be
impractically many populations; too coarse, and the precision
advantage is lost. It will require intelligible, transparent methods
that can be communicated to public health practitioners, easily
updated in the face of new data and human judgment. It
will require using the right data to answer the right question,
and avoiding mis-use of data to treat some populations
unfairly.

It is no longer the case that the timescales of individual disease
progression and the timescale of changes in health policy or
social behavior are distinct. Chronic conditions from cancer to
diabetes are managed over years and decades. Years and decades
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Infer who infected whom and where
there are likely unsampled cases

are equally the timescales on which other chronic problems are
resolved: detrimental individual beliefs about healthy behavior, or
disadvantageous social policies. The comparability of timescales
of chronic diseases and chronic social problems, combined
with the increase of chronic disease in the population, presents
both policy, and mathematical challenges: parsimonious and
predictive model choice for these slow coupled processes is an
open challenge with important implications for the design of
public health protocols and policies. Such problems are specific to
precision healthcare: While precision medicine might integrate
multiple individual-level datasets to improve treatment for a
diabetic patient, it does not aim to consider the changing
relevant environment and behavior (including beliefs about diet
and obesity, food quality and availability, urban environments,
and access to exercise). The research outlined above on social
networks and health policy also exemplifies precision healthcare:
ithas a core set of mathematical challenges that are directly linked
to healthcare (vs. medicine) and integrates opinion, engagement,

individual information to societal behavior and intervention will
be characteristic of precision healthcare. However, even with
the best intentions, a version of precision healthcare that is
highly dependent on advanced tools might be used to reduce,
rather than enhance, health equity. A key challenge for precision
healthcare is thus to create technologies and practices to drive us
toward health equity.
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Attention-Deficit Hyperactive Disorder (ADHD) is one of the most common mental
health disorders amongst school-aged children with an estimated prevalence of 5% in
the global population (American Psychiatric Association, 2013). Stimulants, particularly
methylphenidate (MPH), are the first-line option in the treatment of ADHD (Reeves and
Schweitzer, 2004; Dopheide and Pliszka, 2009) and are prescribed to an increasing
number of children and adolescents in the US and the UK every year (Safer et al.,
1996; McCarthy et al., 2009), though recent studies suggest that this is tailing off, e.g.,
Holden et al. (2013). Around 70% of children demonstrate a clinically significant treatment
response to stimulant medication (Spencer et al., 1996; Schachter et al., 2001; Swanson
et al., 2001; Barbaresi et al., 2006). However, it is unclear which patient characteristics
may moderate treatment effectiveness. As such, most existing research has focused on
investigating univariate or multivariate correlations between a set of patient characteristics
and the treatment outcome, with respect to dosage of one or several types of
medication. The results of such studies are often contradictory and inconclusive due to
a combination of small sample sizes, low-quality data, or a lack of available information
on covariates. In this paper, feature extraction techniques such as latent trait analysis
were applied to reduce the dimension of on a large dataset of patient characteristics,
including the responses to symptom-based questionnaires, developmental health
factors, demographic variables such as age and gender, and socioeconomic factors
such as parental income. We introduce a Bayesian modeling approach in a “learning in
the model space” framework that combines existing knowledge in the literature on factors
that may potentially affect treatment response, with constraints imposed by a treatment
response model. The model is personalized such that the variability among subjects
is accounted for by a set of subject-specific parameters. For remission classification,
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this approach compares favorably with conventional methods such as support vector
machines and mixed effect models on a range of performance measures. For instance,
the proposed approach achieved an area under receiver operator characteristic curve
of 82-84%, compared to 75-77% obtained from conventional regression or machine
learning (“learning in the data space”) methods.

Keywords: attention-deficit hyperactivity disorder, Bayesian inference, machine learning, methylphenidate, mixed
effects model, personalized medicine, prognosis, treatment response

1. INTRODUCTION

The ability to predict treatment response (or non-response) in
patients with mental health issues is potentially beneficial to
both clinicians and patients in a number of ways. First, any
treatment is accompanied by the risk of adverse effects—where
non-response is a probable outcome then the risks of treatment
may outweigh the benefits. Second, prediction of treatment
response may guide both the dose and choice of medication.
For example, where adverse events are dose-dependent then a
clinician may chose to abandon a treatment course if a patient
was a probable non-responder. Third, response prediction
helps to calibrate both clinician and patient expectations of
treatment outcomes. Finally, identifying non-responders may
prompt a re-appraisal of the diagnosis and formulation of
a patient’s problem—misdiagnosis being one potential cause
of non-response. These benefits certainly apply to Attention-
Deficit Hyperactive Disorder (ADHD), which is one of the most
common developmental disorders among school-aged children
with an estimated prevalence of 5% in the general population
worldwide (American Psychiatric Association, 2013). Stimulants,
particularly methylphenidate (MPH), are the first-line option in
the treatment of ADHD (Reeves and Schweitzer, 2004; Dopheide
and Pliszka, 2009). Stimulants are prescribed to an increasing
number of children and adolescents in the US and the UK every
year (Safer et al., 1996; McCarthy et al., 2009), though recent
studies suggest that this trend is tailing off e.g., Holden et al.
(2013). The beneficial effects of stimulant medication on the
core symptoms of ADHD have been demonstrated by numerous
clinical trials, reviews and meta-analyses (Banaschewski et al.,
2006; Greenhill et al., 2006; van der Oord et al., 2008; Storebo
et al.,, 2015). Nevertheless, adverse effects of the medications are
also common (Storebg et al., 2015). The findings from previous
research suggest that around 70% of children demonstrate a
clinically significant treatment response to stimulant medication
(Spencer et al, 1996; Schachter et al., 2001; Swanson et al.,
2001; Barbaresi et al., 2006). However, it is unclear which
patient characteristics may moderate treatment effectiveness and
whether non-response can be predicted.

To date, achieving accurate predictions of the clinical
outcomes for patients with ADHD has proven elusive—most
of the literature has focused on investigating the potential
correlations between a set of patient characteristics and the
outcome following treatment with one or more types of
medication. Information relating to patient characteristics has
mostly been in the form of subjective questionnaire ratings,
clinical notes and qualitative psychometric data; for example,

the ratings from symptom-based questionnaires such as the
Swanson, Nolan, and Pelham (SNAP) questionnaire (Swanson
et al.,, 1983; Atkins et al., 1985; Swanson, 1992; Bussing et al.,
2008), along with demographic variables such as age, sex and
social economic background. The results from such studies are
often contradictory and inconclusive due to small sample sizes
and/or limited availability and quality of data, especially in the
temporal (longitudinal) domain.

Along with more conventional statistical approaches, machine
learning has also shown promise in predicting treatment
response or prognosis in healthcare applications. Indeed, recently
a random forest regression analysis was used to predict outcome
in a group of patients affected by Obsessive Compulsive Disorder
(OCD) from a relatively small pool of questionnaire items, with
a reported error rate of 24.6% (Askland et al., 2015). Likewise,
there has been a previous attempt to use machine learning
techniques to predict treatment response in ADHD (Kim et al.,
2015); support vector machine classification from this study was
reported as 84.6% accurate (not to be confused with the balanced
accuracy measure used in this paper). However, in addition to
demographic and clinical questionnaire-derived data, the study
used genetic as well as neuroimaging and neuropsychological
information as inputs. Such data are unlikely to be readily
available to clinicians in routine practice.

In this paper we investigate whether the inclusion of prior
knowledge relating to the potential mechanism behind the
presentation of a mental health condition and characteristics of
individual patients can add value in predicting treatment. Thus,
we hypothesized that a pragmatic machine learning approach
based on a mechanistic or parametric model (a “learning in
the model space” framework) for treatment response prediction
may offer an advantage over more conventional methods
(Brodersen et al., 2011; Doyle et al., 2013; Chen et al., 2014;
Shen et al.,, 2016). This method represents each newly observed
patient through a model; the models are personalized such that
individual differences are accounted for by a set of subject-
specific parameters. In the case of ADHD, developing a plausible
mechanistic model is not straightforward—despite decades of
research, the underlying mechanism for the disorder is not well
understood. In addition, any mechanistic model would have to be
based on data that are likely to be available in good, but routine,
clinical practice.

This paper documents, within the “learning in the model
space” framework, a Bayesian linear regression model for
the prediction of treatment response in a cohort of children
diagnosed and treated for ADHD in the UK. The performance of
this new approach is then compared with conventional regression
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and machine learning methods (“learning in the data space”) to
assess whether or not the new approach offers benefits, and if so
under what circumstances.

2. MATERIALS AND METHODS
2.1. Participants

The children enrolled in the study were drawn from the
ADHD Drug Use and Chronic Effects (ADDUCE) cohort study
(The ADDUCE Consortium, 2016), covered by a data sharing
agreement with patient consent. The participants were from the
UK NHS Tayside region who had attended the ADHD treatment
clinics held at Dundee and Perth, UK. 262 families of eligible
children were contacted, of which 181 (70%) were recruited
and data on 173 of them were obtained for the purpose of this
study. In addition, data were available on 94 healthy controls.
Out of the 173 patients (whose baseline data are available),
157 of them started dose optimization studies and therefore
longitudinal (temporal) data are available (See Section 3.1). To
be eligible for the ADHD group, children had to be 6-17 years
of age, have a clinical diagnosis of ADHD (see below), have had
no previous medical history of methylphenidate use (medication-
naive) and have parental and child consent/assent to commence.
The criteria for the healthy control group were similar apart
from them having no current or previous psychiatric diagnoses.
The recruitment was carried out over a 30-month period from
January 2012-August 2014.

All patients in the ADHD group had already been clinically
diagnosed with ADHD; this diagnosis was based on the
clinical judgment of the assessing physician, informed by
structured interviews with parents/carers, information provided
by the child’s school, direct observation of the child at the
clinic, and at times, in their educational setting. Thus, the
physician had to be satisfied that the child fulfilled the
diagnostic criteria for a hyperkinetic disorder according to the
International Classification of Diseases 10th edition (ICD-10)
(World Health Organization, 2010), or ADHD as defined by
the Diagnostic and Statistical Manual 4th edition (DSM-IV)
(American Psychiatric Association, 2000). This means that the
child had to demonstrate disabling and pervasive inattentiveness,
hyperactivity, and impulsivity across a range of settings. The
clinic was designed to implement a “dose optimization titration”
scheme of medication in children diagnosed with ADHD. This
involved giving increasing doses of methylphenidate (as the first
line medication) at roughly weekly intervals until remission from
symptoms was achieved or problematic adverse effects were
encountered. If remission was not achieved with a first line
medication within recommended dosage limits, or if problematic
side-effects were encountered then a second line drug was
initiated, and again, increased in dosage, as before.

2.2. Assessment

A range of baseline social and demographic factors was recorded,
including parental marital status, family composition, and
socioeconomic status as indicated by the Scottish Index of
Multiple Deprivation (SIMD) 2012 (APS Group Scotland, 2012)
derived from the family home postcode. A history of any

previous psychiatric or non-psychiatric medication exposure
was recorded, as were any physical health issues. Verbal and
non-verbal intellectual functioning was estimated from parental
reports and any educational issues noted. Problems with anxiety
and low mood were rated using the short form of the Mood
and Feelings Questionnaire (MFQ) with the parents, and where
appropriate, the child as informants (Angold et al, 1996).
Dystonia and abnormal movements were recorded using the
Abnormal Involuntary Movement Scale (AIMS) (Guy, 1974, pp.
534-537). Oppositional and ADHD symptoms and behaviors
were rated, according to parental report, using the Swanson,
Nolan, and Pelham (SNAP-IV) questionnaire (Swanson et al.,
1983). Any substance used by the participants was recorded
using the Substance Use Questionnaire (SUQ). Fine motor
issues were recorded using the Developmental Coordination
Disorder Questionnaire 2007 (DCDQ’07). Several sections of
the Development and Well-Being Assessment (DAWBA) were
used (Goodman et al., 2000); these were (1) Rapidly Changing
Mood (child and parent versions), (2) Tic disorders, including the
Tourette syndrome, (3) Awkward and troublesome behavior. Tic
severity (where present) was also rated using the Yale Global Tic
Severity Scale (YGTSS) (Leckman et al., 1989). Possible behaviors
associated with an underlying Autism Spectrum Disorder (ASD)
were evaluated using the Social Communication Questionnaire
(SCQ) (Rutter et al, 2003). The Strengths and Difficulties
Questionnaire (SDQ) (Goodman, 1997-07) was used to rate
parental perceived levels of pro-social behavior, hyperactivity/
impulsivity, conduct problems, emotional symptoms and peer
relationship problems. The overall clinical impression was
recorded using the Clinical Global Impression—Severity scale
(CGI-S) (Guy, 1974, pp. 218-222) and Children’s Global
Assessment Scale (CGAS) (Shaffer et al., 1983).

Responses to medication, in terms of levels of ADHD
symptoms, were reported by parents and recorded using
the SNAP-IV questionnaire at each visit. Likewise, any
potential adverse effects and co-morbidity problems were
reported using the standard clinic proforma, along with
weight, height and blood pressure of the child at each
visit.

2.3. Feature Extraction/Factor Analysis

The aforementioned questionnaires included a large number
of items with categorical (binary or ordinal) response formats.
Thus, in order to facilitate model development by reducing
the dimensionality of the data whilst minimizing the loss
of information, a series of factor (latent trait) analyses were
conducted.

The key questionnaires used in the modeling process were
the SCQ, the SDQ, and the SNAP-IV (see the previous section).
In particular, the SNAP-IV scores served as the outcome
variables, which indicated whether symptomatic remission
had been achieved, following the dose-optimized titration
of medication. The factor analyses sought to identify the
dimensionality underlying the responses to the questionnaires
and, consequently, the standardized factor scores represented the
level of trait for each patient in that underlying dimension or
construct.
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In order to estimate the dimensionality, the sample of 173
patients and 94 healthy controls was randomly divided into
two roughly equal exploratory and confirmatory datasets. A
parallel analysis (Horn, 1965), adapted for categorical data,
was then implemented in the freeware FACTOR (Lorenzo-
Seva and Ferrando, 2006) using unweighted least squares (ULS)
estimation method. A weighted “promax” rotation was deployed
to achieve factor simplicity (Abdi, 2003). The maximum number
of plausible factors (latent variables) was assumed to be indicated
at the point where the eigenvalues of the factors in randomly
generated data exceeded those observed in the real data. A series
of exploratory factor analyses (EFAs-adapted for categorical
dependent variables) were then conducted to aid interpretation
of the factors. Oblique “geomin” rotation was used (Asparouhov
and Muthén, 2009), assuming that, as in almost all psychological
measures, underlying latent traits would be correlated with each
other to some extent (Thurstone, 1931). A series of confirmatory
factor analyses (CFAs) were then conducted using the held-
back, confirmatory data (see Section 3.1 on cross-validation),
in order to ensure that the factor structures derived fitted

the data adequately. All EFAs and CFAs were conducted in
the Mplus software version 7.1, using robust weighted least
squares with mean and variance adjustment (WLSMV) as the
estimation method (Muthén et al., 1997). Remission was defined
by a child having a reported factor score in the hyperactive
and inattentive dimensions (both elicited from factor analysis)
equivalent to a mean item score in the SNAP-IV of one or less,
which is conventionally taken to indicate symptomatic remission
(Hechtman, 2005; Chou et al., 2012). The resulting symptom
score thresholds are only slightly different for inattentiveness and
hyperactivity (—0.97 vs. —0.92).

3. MODELING APPROACH

The causal factor model, shown in Figure 1, was derived using
a rapid review approach to appraise and synthesize the existing
evidence (Khangura et al, 2012). This model also took into
account the nature of the data available in the cohort and was
modified accordingly. The goal is not for the causal model to be
comprehensive or definitive, but to identify from the literature

]
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FIGURE 1 | High level causal factor model of treatment response prediction in ADHD.
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as many potential factors relating to treatment response as there
are available from the dataset, as well as helping to elicit the
Bayesian prior distributions (Section 3.2.1). Model development
was based on a literature review. This involved running searches
in the EMBASE, MEDLINE and PsycINFO databases using
the synonyms for ADHD (e.g., hyperkinesis) combined with
terms relating to treatment outcome or response, and the names
of the medications (both scientific and trademarks, full and
abbreviated) prescribed in the cohort. The medications include
1) immediate release methylphenidate (IR-MPH, e.g., Ritalin®),
2) long-acting methylphenidate (XR-MPH, e.g., Concerta XL®,
Equasym XL®, Medikinet XL®), 3) dextroamphetamine (DEX,
e.g, Dexedrine®) including its prodrug lisdexamfetamine
dimesylate (e.g., Elvanse®), and 4) atomoxetine (ATOM, e.g.
Strattera®). Secondary sources were followed up. The quality
of trial-based studies could be appraised using the CONSORT
checklist (Schulz et al., 2010) and observational studies via the
STROBE guidance (von Elm et al., 2007). Two of the authors
(HKW and PAT) then made a judgment, based on the findings
reported in the literature and the perceived likelihood of bias
or uncertainty as to what extent variables in the model might
be related to treatment response in ADHD. The model derived
was consequently used to populate prior distributions for the
patient-specific model parameters (i.e., the hyperpriors). Where
the evidence was uncertain or inconsistent, the variances (i.e.,
imprecision) of the hyperpriors were increased.

Not every piece of information mentioned in Section 2.2
was used for the purpose of modeling, because of insufficient

data or multicollinearity between the variables. The causal
factor model was then simplified based on the breadth of
available data from the cohort, leading to a much reduced model
as shown in Figure 2. Some factors were combined through
another layer of feature extraction; for example, the motor and
control latent factors, themselves also obtained from applying
feature extraction to the DCDQ’07 questionnaire data (see
Section 2.2), were combined with the non-verbal communication
factor from the SCQ questionnaire to obtain a developmental
adversity factor. Some factors were not obtained from standard
questionnaires; for example, the perinatal adversity factor (see
Figure 2) was constructed from birth weight and gestation
age; the family size and socioeconomic status factor combined
the number of siblings, parental house ownership (owned,
mortgaged or rented) and the SIMD 2012 index (APS Group
Scotland, 2012).

3.1. Data

There were 267 subjects whose baseline characteristics were
measured (173 clinically diagnosed with ADHD and 94 healthy
controls) at the first clinical appointment. Of the 173 non-
controls, 157 were enrolled in dose optimization titration
studies with parental consent, for whom longitudinal (temporal)
data are available. The 157 patients with longitudinal data
were randomized and 10-fold cross-validation partitions were
constructed. Subjects were partitioned into 10 subgroups of
roughly equal size in a patient-coherent fashion, i.e., data from
a single patient only appeared in a single fold.

: . Longitudinal variables
Baseline variables :
Age Family size and social economic Medication Equivalent
g status type daily dosage
SNAP (26-item) I
4 parameters
Hyperactivity Inattentiveness Oppositionality
Treatment Response
sbQ
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Peer Pro-social Behaviour Emotion e 14 parame'ters B
Hyperactivity | | Inattentiveness
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FIGURE 2 | Reduced causal factor model of treatment response prediction in ADHD.
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For all models investigated in this paper, a single fold was
used as the validation dataset and the remaining nine folds were
combined to serve as the training dataset. This process was
iterated until each fold had served as validation data exactly
once.

3.1.1. Baseline Characteristics

We labeled the patient subjects by the indexing variable s
1,2,...,N. A set of L patient-specific baseline continuous
latent factors, encoded in a row vector by € Rjy; was
obtained by performing feature extraction as described in
Section 2.3 over the questionnaires detailed in Section 2.2.
Referring to Figure2, L 14 factors were used for
the baseline. Data from the controls in addition to the
training dataset were utilized during feature extraction to
ensure that the resulting latent factor models can sufficiently
encompass the entire range of characteristics from ADHD
patients to normal children. The resulting continuous latent
factors would, in theory, be sufficiently representative of the
information conveyed by the categorical questionnaire response
variables.

To ensure that validation data were strictly not used for the
model building, feature extraction was first performed using only
training data from each of the folds (plus all the controls). This
resulted in 10 sets of factor scores corresponding to each fold.
The factor model structures (e.g., the number of factors per
questionnaire) over the folds did not change across the folds,
as statistical fit indices and Chi-square difference tests did not
suggest that any changes were necessary. The factor models were
then used to estimate the baseline factor scores for the validation
sets in each of the folds.

Each of the 10 cross-validation runs resulted in a set of
corresponding continuous latent factors, which were used as
inputs to subsequent models. The models were trained and
validated using the same training-validation partitioning used in
the feature extraction process.

3.1.2. Longitudinal Data

Each of the 157 subjects with longitudinal data visited the
clinic a varying number of times—from titration, stabilization
to continuing care; the number of doctor’s appointments, As,
varies from 1 to 22. At each appointment, the parent or
guardian of the patient was asked to fill in an 18-item SNAP-IV
questionnaire, which measures the degree of inattentiveness and
hyperactivity. The responses were entered into a factor model
(identified through feature extraction) to extract a continuous
symptom score for inattentiveness and hyperactivity. We denote
the appointment number by the indexing variable a so that
a = 1,2,...,A. Let the independent “input” variables m,,
Mg, My 3, Mgy be the four types of medications, respectively, IR-
MPH, XR-MPH, DEX, and ATOM for subject s at appointment a.
Using datasheets for the medicines used, the dosages of DEX and
ATOM were normalized to an equivalent daily dosage (EDD) of
IR-MPH. For all g and s, this results in input and output matrices
of the form:

[(my1 miy my3 mig]
mp1 M3 M3 My
Input: M = ' ' (1
Mg Mg Mg3 Mgy
LMA,1 TMA2 A3 A 4 |
T
Output:y, = [r1 12 13 ... 1a,]" ()

where r is the symptom severity measure and can be either the
inattentiveness factor score or the hyperactivity factor score.

The combined EDDs of medications (for the 4 types)
prescribed over the appointment number for all patients are
plotted as a boxplot in Figure 3. One can observe that as forced
titration progressed over the appointments, the overall dosage
level increased.
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Figure4 shows the distribution of inattentiveness and
hyperactivity symptom factor scores for the patients for each
appointment. The lower the factor scores, the less severe
the symptoms are. In terms of a general trend, one can
clearly see an effective and quick reduction in symptom
levels over the first 5 appointments, as stimulant medication
prescription ramps up during forced titration. The symptom
scores cease to improve for appointments 6-8, after which a
slight increase can be observed. This hints at adherence or
persistence issues, but the available data do not allow further
investigation—as such issues are not consistently reported by
the parent/guardian or recorded in the clinical notes. While
the model has no mechanism for modeling such effects,
the adaptive learning nature of the Bayesian algorithm is
able to self-correct and compensate for small deviations, for
example, by “learning” to weight down the dose-response
parameter for a given medication when the patient has a low
adherence.

3.2. Treatment Response Model

Formulation
The treatment outcome is modeled as a linear combination of the
baseline variables and the medication dosage,

ys = Xows + € (3)
where
b, 1
X=|:m:| 4)
b; 1

€ ~ N(O,UE,SZ) € Ry, x1 is an error term and s € Rpy; is
the subject-specific parameter vector moderating the effect of the
baseline variables b on the treatment response, i.e., it accounts

for how large an effect each of the various baseline variables or
medication types has on treatment outcome. “Subject-specific”
means that the parameter vector was allowed to be different for
each subject so that patients with similar baseline characteristics
can still have a different prediction outcome. The number of free
parameters required is P = L+ 4+ 1 = 19 for L = 14 (see
Figure 2).

The baseline variables remain unchanged over different
appointments while the medication dosage may vary
according to the titration regime specified by the
clinician. Hence, every row of the matrix X; contains
the same baseline characteristic vector for an individual
patient, combined with the medication dosage vector.
The row number in X corresponds to the appointment
number.

Because the number of visits A of the subjects was usually
fewer than the dimension of the parameter space P, the
problem is mathematically underdetermined. Hence, classical
least squares regression methods would fail without an
appropriate regularization (Goodfellow et al, 2016). To
this end, we employ a Bayesian formulation. In particular,
the Bayesian linear regression was used to model the
temporal evolution of the dose-response relationship for each
patient.

In essence, a Bayesian approach allows prior or expert
knowledge to be encoded into the problem formulation and this
enables a probabilistic solution to be found despite the limited
data available.

3.2.1. Prior Distributions and Knowledge

The joint prior probability density function Pr (@,0?) is given
in Equation (A3, Supplementary Material). In this exercise,
the causal treatment response model based on the literature
was used to constrain the prior of @ and its covariance
matrix Ay L
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FIGURE 4 | Boxplots of symptom scores across all patients vs. appointment number. (A) Inattentiveness, (B) hyperactivity. Red horizontal lines: median;
boxes: interquartile range; whiskers: 95% confidence intervals; red crosses: outliers.
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When eliciting the prior, quantitative information from
the literature was not used, e.g., setting the mean of the
prior distribution of the parameter vector omega to a specific
numerical value. This is because the demography, sample sizes
and effect sizes across literature vary and there is no correct
way to normalize them. Instead, only the sign (direction) of
the effect was encoded. For example, there is evidence that
methylphenidate improves treatment response in the literature
(a positive dose results in lower symptom score), therefore
a negative value of —1 was specified for the columns of 7
corresponding to myg ...muy4 in Equation (1). For positive
associations with symptom scores, +1 was used instead. The
same magnitude is used in other factors (i.e., either +1 or —1).

Each cohort study or clinical trial from the rapid review was
appraised, respectively, using the STROBE and the CONSORT
checklists by counting the number of pass and fail items out
of the total. Evidence from the literature was marked as good
quality when both the checklist score was similar to other studies
on the same topic (within 20% from the best) and effect sizes
were statistically significant as reported by the authors for the
sample size used. The diagonals of the covariance matrix A, !
were assigned an initial value of one; for every contradicting
evidence (the effect sizes are opposite in direction) satisfying
these criteria, 0.5 was added to the corresponding variance
in the covariance matrix. A higher value may be specified if
necessary, to ensure that the prior distribution of parameter
omega spans both positive and negative sides sufficiently—within
one standard deviation of 7. On the other hand, if the effect sizes
are positive the variance was reduced by 0.1 for each supporting
studies, at the same time ensuring the variance does not go below
0.5. The (lack of) proposed existence of causal links between the
variables in the causal model (see Figure 1) ensures the sparsity
of the covariance matrix Aj .

While these numbers may not be completely objective, the
amount of data available means that the sensitivity of the results
to the prior is low—sensitivity analysis shows that the effect of
scaling the prior covariance between 50 and 150% of its original
values changes the errors by about 5% of the training root mean
squared (rms) error, and 3% for the validation rms error.

3.2.2. Posterior Distributions

The posterior distribution is given in Equation (A4,
Supplementary Material), where the parameters of the
distributions are obtained through Equation (A5) in

Supplementary Material. In the training set, Bayesian learning
uses data from all of the appointments that a subject had, in
which case n = A where, as before, A is the total number of
visits or appointments a subject has and data are available for.
We introduce the simplified notations after Bayesian update
has been applied to the training set using Equation (A5) in
Supplementary Material, so that

AZI — f\_l

. s > TA Ts ap, — & and ,BAS — Bs. (5)
This notation will be used in later sections. The reader should
be reminded that the parameters are derived from each subject

and hence are different across subjects. Notice that in a prediction

exercise (instead of retrospective regression formulated here), the
learning can be applied incrementally for each future observation
with each update using just the new observation.

3.3. Virtual Patient Profile

When a new patient (denoted by s = =) is received, one
can measure their baseline variables b,, but not their model
parameter space ®,. The goal is to estimate a virtual patient
profile that is believed to best describe the new patient using
only the available baseline measurements. To do this one
derives the mathematical mapping functions from the baseline
characteristics of a patient to their posterior parameters b, +>
Pr (w,) and Pr (ai), such that a prediction can be made from
the baseline variables. These functions are forged using machine
learning on the existing pool of training data. Since Pr (w;) is
parameterized by (s, A;') and likewise Pr (02) by (s By),
one has to learn the mappings from the baseline variables to
the parameters. The learnt mathematical mapping functions can

then be used to obtain estimates of (T, [\,:1) and (@, ,3*), which
represent the virtual patent profile for the new patient in the
model space.

Due to the conjugate nature of the priors, one does
not need to derive the hyperparameters o, and E* from
Equation (5) for the purpose of having point estimates for the
treatment response prediction. However, these hyperparameters
are necessary in order to derive the posterior distribution of
the predicted value—commonly referred to as the posterior
predictive distribution. Knowing the distribution allows us
to approximate the uncertainties of the estimates, e.g., 95%
confidence intervals. Two methods were proposed for learning
the mappings from the baseline variables to the virtual patient
profile and they are introduced in the following subsections.

3.3.1. Method 1: Generalized Linear Regression
To determine the mappings, one finds the functions:
a) f,(by) ~ T, and b) f,(by) = A;lwhere us is a row
vector containing non-zero elements of the upper (or lower)
triangular part of 1&;1 Since 1&71 is a covariance matrix
(hence symmetric), knowledge of the lower/upper half of the
off-diagonal elements plus the diagonal elements is sufficient to
fully recreate the matrix.

The mappings are learnt from the training data, in which

the posterior distributions of 7, and f\s_l are already available
through Equation (A5) in Supplementary Material. Linear
regression models of the form Y = PB were used to model the
two mappings, where the matrix B has rows of bs vectors—one
for each subject in the training set—and similarly Y is composed
of rows of a) 7, for determining f, or b) us for determining
fu- The least squares solutions for the models are given by the
Moore-Penrose pseudo-inverse,

Q= (B"B) 'BTY. 6)

For prediction, f, and f,, can both be formulated as f(b,) = b.Q.
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The posterior estimates for the hyperparameters for a new
patient are taken as the averaged values of &; and B across all
subjects in the training set, resulting in &, = 5.5 and B, = 1.7.

3.3.2. Method 2: Gaussian Kernel Weighted
Averaging
An alternative method is to find 7, and f\;l using a weighted

A L . .
average of Ty and A, , with s’ € S, being a subset of subjects
in the existing training pool whose baseline variables (by) were
“similar” to those of the new patient (b,). Highly similar subjects

. A1
will have a higher influence on the value of 7, and A, . The
“(dis)similarity” ds is measured using the pairwise euclidean
distance between b and by, such that

ds = (b* - bs) (b* - bs)T . (7)

This is then sorted and the 17.5% of subjects in S, with the
smallest “dissimilarity” values are kept; this percentage value was
chosen as it resulted in the lowest validation error. The weighting
ws was taken as the normalized Gaussian kernel

e — exp (—A . ds) )
Z exp (—A - dy)
Vs'e Sy

where the parameter value A = 1.15 was chosen as it again

resulted in the lowest validation error. Using Equations (7) and
N A1
(8), one can estimate 7,, and A, as

Ty = Z WsTs, (9a)

VseSs

A1
_ —1
VseSy

(9b)

and similarly the estimates of the hyperparameters are calculated
using

&* = Z Wi, (9C)
VseS,

Bo= > w. (9d)
VseSy

3.4. Prediction Using the Posterior
Predictive Distribution

When a new subject visits the clinician, their b, vector may
be measured and used to approximate ., A; 1, &, and ,3*
using either of the methods in the previous subsections. Given
a hypothetical medication input x,, the treatment response for
the new subject can then be predicted through the posterior
predictive distribution

Pr( *) =t, | X«Ts & I—i—x*z&*xl) (10)
o

where the number of degrees of freedom for the Student’s
t-distribution is given by v = 2d.

Equation (10) may be used to predict the treatment response
for this new patient over their course of the treatment
directly without learning; that is to treat each appointment
as independent and the parameters are not updated. On the
other hand, it is possible to perform incremental Bayesian
learning over the course of treatment, by using Equation (A5)
in Supplementary Material to update the parameters given
the treatment outcome measured for each new visit and the
associated inputs. Through incremental learning, the model
corrects for discrepancies between the true profile and the virtual
patient profile of the new patient. As such, one would expect
the prediction to improve as data from more visits to the
clinic become available. The implementation of these methods is
discussed in more detail in Section 4.4.

At some point, the profile of the new patient in terms of the
treatment outcome, inputs, and baseline characteristics can be
added to the pool of existing patient profiles (training set) to
improve the model’s generalizability for future patients.

3.5. Training and Validation

As discussed in Section 3.1, 157 patients with longitudinal
data were randomized and 10-fold cross-validation partitions
were constructed resulting in 10-folds of training-validation data
partitions.

First, for each fold, the framework detailed in Section 3.2 was
followed and Bayesian linear regression was performed to fit
patient-specific parameters to each patient in the training dataset.
Second, either of the methods specified in Section 3.3 was used in
order to construct virtual patient profiles for each patient in the
validation set, using the patient-specific parameters. Finally, the
procedure outlined in Section 3.4 was followed in order to obtain
a prediction for patients in the validation set; effectively treating
each patient as new.

3.6. Dichotomous Remission Prediction
Although the model was initially formulated to predict
a continuous scale of symptom scores, one can explore
dichotomizing the outcome into patients who have shown
reduced symptoms and those who have not. The justification is
that clinicians and doctors are less likely to be interested in a
predicted SNAP-IV score or symptom severity scale as opposed
to a simple “yes/no” answer as to whether the patient will be
in remission for a given medication. A simple way to adapt the
current model to do this is to apply a threshold to the continuous
symptom score prediction, below which the patient is predicted
to be in remission.

Some of the literature loosely defines remission in ADHD as
having a large majority of SNAP-IV responses rated in category 0
(not at all) or 1 (a little) (Hechtman, 2005; Chou et al., 2012).
Therefore in this paper, the thresholds were chosen such that
the approximate continuous symptom score corresponds to the
raw responses from the 18-item SNAP-IV questionnaire all lying
in category 1. The resulting symptom score thresholds are only
slightly different for inattentiveness and hyperactivity (—0.97 vs.
—0.92, see Section 2.3).
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Using these thresholds, it was found that the proportion of
visits when measurements were taken indicates that remission
was relatively rare, 160 out of a total of 1,147 (13.95%) for
the inattentiveness score and 139 (12.1%) for the hyperactivity
score. This is expected, as forced titration initially starts with a
low medication dosage and one would not expect an effective
reduction in symptom ratings to remission levels before the
dosage was ramped up in later appointments; in addition,
because of medical persistence issues patients can drop out before
the clinicians are able to find an effective dose.

Note that all the methods in this paper were first used
to predict the continuous symptom scores by regressing the
baseline variables, medication prescribed to the treatment
response at following appointments. Dichotomized remission
prediction only occurs at a later stage. Right censoring (where
patients prematurely drop out of dose optimization stage
without achieving remission) is therefore not an issue; repression
methods can utilize the remaining appointment information to
model treatment response regardless of whether remission was
achieved or not.

4. PERFORMANCE METRICS

To facilitate a comparison between the performance of the
different approaches, several performance metrics were used.
For the regression tasks, one is interested in the deviation in
the predicted symptom scores against the true symptom scores;
whereas for the remission classification tasks, one is interested in
the performance of the classifiers with regard to the probabilities
or ratios of true positive, false positive, true negative and false
negative cases.

4.1. Regression Task

The root mean squared (rms) error measure is defined as the
square of the averaged squared error across the 10-folds, across
subjects and across all appointments for each individual, i.e.,

rms = (11)

1 10 As X
1081 DD D AT =]

k=1 VseS a=1

where S is the set of all subjects considered (e.g., those in the
validation set), |S| denotes the number of subjects in S; ys, s, and
Aj are, respectively, the true outcome symptom score, the fitted
or predicted outcome symptom score, and the total number of
appointments for the individual subject s.

4.2. Classification Task

4.2.1. Sensitivity and Specificity

The sensitivity (SEN, also known as the true positive rate
or recall) is defined as Nrp/Np where Npp is the number
of true positives—appointments where measurements indicated
remission and were correctly predicted as such; and Np is the
actual number of positive cases, i.e., the number of appointments
where the corresponding subjects were indeed in remission. This
is reported in addition to the specificity (SPC, also known as
the true negative rate or fall-out), defined as Npn/Nn, where

Ny is the number of true negatives—those not in remission
and correctly predicted as such; and Ny is the actual number of
negative cases (Fletcher and Fletcher, 2005). Note that if one lets
Nrp and Ngy be the number of false positives and false negatives
respectively, then Np = Ntp + Npy and Ny = Ntn + Npp
(Fletcher and Fletcher, 2005).

Sensitivity characterizes the ability of a classifier to rule out
false negative predictions (type-II errors) given that a condition
is true. On the other hand, specificity measures the ability of
a classifier to rule out false positive predictions (type-I errors)
given that a condition is false. In this exercise, the sensitivity
measure is more important; due to the rarity of remission, and
the goal is to try to predict what level of medication is required
to achieve remission, the ability of a classifier to recall remission
cases (ruling out type-II errors) is more important than ruling out
type-I errors.

4.2.2. PPV and NPV
The positive predictive value (PPV, also known as the precision)
is the proportion of true positives in the predicted positive cases
and is the probability of remission given a positive prediction by
the algorithm. As such, the PPV is a measure of the “quality” of
a given positive prediction. PPV is given by Ntp/(N1p + Ngp).
Conversely, the negative predictive value (NPV) is the proportion
of true negatives in the predicted negative cases, and is the
probability of non-remission given a negative prediction. NPV
is given by NN /(NT~N + Nen) (Fletcher and Fletcher, 2005).

By the argument outlined above, the PPV is more important
for this exercise than the NPV.

4.2.3. Balanced Accuracy
The overall accuracy of a dichotomous predictor is defined by

Accuracy = (Ntp + N1n)/N,

where N = 1, 147 is the total number of appointments across all
subjects.

However, the overall accuracy measure is known to be
problematic when the prevalence of success/failure is low (Alberg
et al., 2004), i.e., the data are imbalanced (see also the end of
Section 3.6). Due to this, some of the literature uses the balance
accuracy (BAC) measure, defined as the average of sensitivity and
specificity (Brodersen et al., 2010). This is the accuracy measure
used throughout this paper. Note that, numerically, the BAC is
closely related to the Youden’s J-statistic (Youden, 1950), also
known as “informedness” or “DeltaP’” (Powers, 2011), since it
is equal to sensitivity plus specificity minus one.

4.2.4. ROC and AUC

The receiver operating characteristic (ROC) curve is commonly
used in the medical and the machine learning community to
evaluate the performance of binary classifiers Fawcett (2006).
It plots the true positive rate (sensitivity) against the false
positive rate (one minus specificity) for a given classifier. A curve
is obtained when its classification performance can be tuned
through setting a threshold or changing a parameter, trading
off the true positive rate against the false positive rate. Binary
classifiers that can achieve good compromise between sensitivity
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and specificity have a large area-under-the-curve (AUC), and this
single metric may be used to compare the performance between
the different classifiers Bradley (1997).

4.3. Trading Off Sensitivity and Specificity
From Section 3.6, the proportion of appointments without
remission is (100 — 13.95)% 86.05%. Therefore, given this
statistic, one would expect that a null model guessing the result
randomly would have a sensitivity of 13.95% and a specificity of
86.05%. Simply using point estimates of the continuous symptom
score from the learning in the model space approach and
thresholding them to give dichotomous predictions of remission
results in classifiers with low sensitivity values between 22 and
28% and high specificity values of 94-97%. Due to the low
number of remission cases compared to the non-remission cases,
the classification is biased against predicting the remission cases,
leading to low sensitivity (but high specificity). A classifier can
be tuned to improve its sensitivity performance by trading off
specificity to a certain degree. A good compromise would be
maximizing both sensitivity and specificity equally, which is
in essence maximizing the BAC or the Youden’s J-statistic in
Section 4.2.3.

The thresholds for remission are defined by the SNAP-IV
symptom factor scores as in Section 2.3, and this defines the
ground truth of whether a patient is in remission or not.
However, one can take advantage of the fact that the predicted
continuous symptom scores from the learning in the model space
approach form full posterior distributions with uncertainties
associated, and the levels of uncertainty are known (e.g., see the
error bars in Figures 5, 6). One may define a critical value as
the lower bound of the prediction, above which the probability
of the prediction being correct is x%. Instead of the remission
thresholds comparing against the point estimates, they may be
compared against the point estimates minus a critical value. The
larger the critical value, the higher the prediction score has to
be in order to be classified as not in remission. This in effect is
equivalent to raising the threshold, classifying more and more
cases into remission, which increases the sensitivity and lowers
the specificity. The range of “thresholds” or classifier parameter
settings that makes this trade-off can be used to generate a
ROC plot (Section 4.2.4). A similar trade-off can be made with
classical machine learning algorithms and will be discussed in
Section5.

The training data are used to find an optimal classifier setting
in order to achieve the highest BAC, and the same classifier
setting is then used to classify the validation data. This ensures
that the validation data are not used to minimize the validation
error.

4.4. Benchmarking and Implementation

The Bayesian learning in the model space approach relies on
prior knowledge (Section 3.2.1) and virtual patient profiles in the
model space (Section 3.3), as well as iterative learning (Bayesian
update) in order to function. To assess whether these components
contribute to the prediction capability of the model, several
implementation strategies are investigated, namely:

1. Appointment-independent prediction (AI): Treating each
appointment as independent (as the first appointment) and
giving a prediction only using the virtual patient profile;

2. Incremental Bayesian linear regression (BR): The first
prediction is performed in exactly the same manner
as the appointment-independent case. Then, Bayesian
linear regression using elicited priors (see Section 3.2.1)
is applied progressively. That is, the effect/outcome of
medication prescribed in appointment 1, then observed
at appointment 2, is used in the regression model. Then,
at appointment 3, outcomes from appointments 1 and
2 are used. Similarly, at appointment 4, outcomes from
appointments 1, 2 and 3 are used, and so on. This means
that except for the first prediction, the incremental Bayesian
linear regression learns from scratch the patient-specific
parameters (at each appointment) using the elicited priors.
This essentially disregards any information already learnt
from the current training set (the virtual patient profiles),
treats the validation set as a new “training” set, and performs
basic Bayesian linear regression fitting. However, instead
of all appointment outcomes being available for each new
patient, as is the case during the training phase, one
simulates the fact that information is progressively collected
during the course of treatment for new patients. Since the
virtual patient profiles are not utilized, this serves as a
benchmark reference to evaluate the effectiveness of the
constructed virtual patient profiles when compared with the
next case; this represents a method that can be implemented
even when no training data exist.

3. Incremental Bayesian learning/update (BU): The first
appointment is predicted as for the previous two cases,
but then when the true value is observed (in appointment
2), it is fed-back into the Bayesian learning model, i.e.,
Equation (A5) in Supplementary Material. This updated
model is then used to generate a prediction. This progressive
updating continues up to the most recent appointment. The
crucial difference between this method and the BR method
is that, here, the priors used were derived from the virtual
patient profiles, as opposed to the elicited priors used in the
BR method. When compared to the BR case, this highlights
whether the model space offers any utility in aiding the
prediction of treatment response.

The Bayesian approach was implemented ad hoc in
MATLAB software with custom routines. The performance
of the prediction was compared across the three different
implementations above, using the validation data.

5. COMPARISON WITH CONVENTIONAL
METHODS

To provide context to the results achieved using the learning
in the model space approach, the performance of conventional
linear regression methods and machine learning methods was
also investigated.
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FIGURE 6 | Examples of continuous hyperactivity symptom score prediction with the validation set. (A) Subject #6. (B) Subject #148.
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5.1. Mixed Effects Models

Linear mixed effects models (MEM) are widely used in many
fields; for instance, biology (Rico et al., 2007), ecology (Stevens
etal., 2007), linguistics (Nooteboom and Quené, 2008) and social
sciences (Kliegl et al., 2009). They extend upon classical linear
regression techniques to support data that have some form of
grouping. For example, in this paper, each patient had one or
more clinical appointments, and the data from each subject form
a group. For each patient s with a number of appointments (from
1 to Ajy), the severity symptom score vector y; (as in Equation 2)
is, for simplicity, assumed to have a linear relationship with the
baseline and treatment effect via the following formulation:

¥s = qs + bo + Xews + ¢, (12)
where X; is similar in structure to X defined in Equation (4)
but without the last column of ones; @; € Rpy; is the subject-
specific parameter vector for the fixed effects, g, ~ N(O, qu)
is the random effect affecting only the intercept by, and € ~
N(o, aés) € Ry, x1 is an error term assumed to have a normal
distribution. Observe that in this model, the scalar intercept by
is a fixed component for all of the patients in the population and
the random effect a; is a subject-specific scalar and is not grouped
under any other parameters.

A linear mixed effects model was constructed within the
R software (R Core Team, 2013), using the package “Ime4”
(Bates et al.,, 2015). Severity score predictions were produced
by performing out-of-sample forecasts, i.e., on the validation
data for each of the folds, using the “predict” function in the
R software. To generate a prediction, the random effects are
assumed to be zero and the population intercept was used. The
continuous symptom score regression results for the MEM are
prefixed MER.

For a dichotomized clinical remission classification, the
symptom score thresholds 0.92 and 0.97 from Section 2.3
for hyperactivity and inattentiveness were used to generate
the ground truths. Following the rationale in Section 4.3, the
symptom scores predicted by the MEM are given thresholds
at different levels to produce a set of classifiers trading off
sensitivity against specificity. These threshold-adjusted classifiers
are labeled taMEC. The best (in terms of Youden’s statistic)
threshold settings found using the training data were used for the
validation data; the thresholds were 0.05 and -0.20, respectively,
for the inattentiveness and hyperactivity symptom scores. In
addition, the “melogit” function in the Stata software (StataCorp,
2015) was used to directly estimate a mixed effects logistic
regression model—a MEM with a logistic link function that
predicts the probability of the binary remission outcome. In this
case, the threshold procedure was applied to the probabilities
rather than the raw symptom scores. The resulting classifier is
labeled 1rMEC.

5.2. Support Vector Machines and
Gaussian Processes
In addition to MEM, machine learning classification approaches

using support vector machines (SVM) and Gaussian processes
(GP) were benchmarked. Both the SVM and GP learning

methods are kernel machines and were implemented using linear
(dot product kernel: k(x;,%j) = (x;.xj)) and nonlinear kernels
(the Gaussian kernel: k(x;,x;) = exp [—y(||x,~ — xj||)2]). Readers
are invited to refer to Burges (1998) for a detailed description of
support vector machines and to Rasmussen and Nickisch (2010)
for a detailed description of GP learning. Compared to MEM
and the learning in the model space approach, the SVM and
GP are non-parametric methods—there are no subject specific
parameters to identify; the models map the subject-specific
inputs, such as baseline characteristics and the medication
dosage, to the output symptom scores.

For the SVM, nested cross-validation was employed to
optimize the parameters in the model. A broad log range
spanning [1073 : 10?] was arbitrarily chosen as the search
range for the regularization parameter C. Similarly, the gamma
parameter of the Gaussian kernel was optimized in the log range
spanning [10~* : 10']. For the GP, the model parameters were
optimized using conjugate gradient descent, avoiding the need
for nested cross-validation. SVM and GP learning approaches
were employed as regression models (support vector regression
SVR and Gaussian process regression GPR) for the linear and
nonlinear kernels to predict the clinical scores. Dichotomous
remission predictions were obtained by thresholding the distance
from the hyperplane for the SVM, and for thresholding the
probabilistic predictions of class membership for GP. These
binary classifiers are respectively labeled as SVC and GPC.

From Section 3.6, the number of remission cases outweighed
non-remission cases by a ratio of roughly 1:7. For a classification
task, this imbalance of data is problematic for many classification
algorithms (He and Garcia, 2009). To help alleviate this, a
downsampling approach was implemented for both linear and
nonlinear kernels of the SVM and GP classifiers dsSvC and
dsGPC. During the training phase, the non-responder class
was downsampled randomly to match the number of training
instances in the remission class. By repeating this downsampling
procedure, an ensemble of 1,000 classifiers was trained. A
classification prediction was generated by majority voting of
the ensemble. Additionally, for the SVMs, an alternative is to
learn the regularization parameters C on a per-class basis. The
rationale is that a higher penalty for errors can be placed on the
more abundant class (Osuna et al., 1997); this method is referred
to as the weighted SVM (rwSVC). The per-class C parameters
C™ and C~ were optimized using the ranges [1077:10!]
and [1072: 10%], respectively. Finally, for the Gaussian process
classifier, it is possible to calibrate the probabilistic predictions
in order to help account for imbalanced data (Bishop,
2006); this approach is referred to as a re-calibrated GP
(rcGPC).

Using MATLAB software, the SVM was implemented using the
libsvm toolbox (Chang and Lin, 2011), the Gaussian process
learning was implemented using the GPML toolbox (Rasmussen
and Nickisch, 2010).

6. RESULTS AND DISCUSSIONS

6.1. Continuous Symptom Score Prediction
The rms errors across all models are reported in Table 1.
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TABLE 1 | Rms errors for predicting symptom scores for inattentiveness (INA) and hyperactivity (HYP) using the (A) learning in model space and (B)

conventional approaches.

(1A) Learning in model space

Inattentiveness Hyperactivity
Method 1 Method 2 Method 1 Method 2
ATR 0.98 0.84 0.97 0.85
BRRT 0.82 0.82 0.84 0.84
BURt 0.99 0.73 1.01 0.75
*AIR: appointment-independent Bayesian linear prediction.
TBRR: retrospective Bayesian linear regression.
+BUR: incremental Bayesian learning/update linear regression.
(1B) Conventional approaches
Kernel Inattentiveness Hyperactivity
Linear Nonlinear Linear Non-linear
SVR 0.73 0.74 0.76 0.81
cprT 0.72 0.77 0.76 0.84
vERF 0.82 0.83

*SVR: support vector machine regression.
T GPR: Gaussian processes regression.
*MER: mixed effects regression.

6.1.1. Learning in the Model Space Approach

Looking at the learning in the model space approach, one can
observe that the virtual patient profile construction method,
labeled Method 2, resulted in lower errors overall compared
to Method 1. In Method 1, the mappings were learnt using
simple linear regression from baseline variables to the parameter
space. In addition to this simple linear regression, low degree
polynomial (quadratic to quartic) basis functions were tried;
whilst degrees up to a cubic resulted in a slightly lower training
error, there was worse generalizability (i.e., higher validation
error). For Method 2, the incremental Bayesian learning (BUR)
approach performed the best overall; its performance advantage
over the appointment-independent prediction (AIR) approach
is expected given that it allows the model to adapt to a
new patient as the treatment continues. The performance
advantage over the retrospective Bayesian linear regression
(BRR) approach can be attributed to the fact that the virtual
patient profile (Section 3.3) had utilized the prior whilst
the Bayesian linear regression only uses the elicited prior
(see Section 3.2.1). This supports the fact that the training
population was able to add valuable information to the prediction
task.

We recall that the BUR constructs virtual patient profiles while
the BRR only uses the prior knowledge. It is interesting to note
that the BRR outperforms the BUR using Method 1, suggesting
that Method 1 was not an effective method for incorporating
information from existing patient models.

Figure 7 shows the rms values averaged across all subjects
during the validation phase and sorted by the clinical
appointment (visit) number. Data above 15 visits are not
shown as only a single patient had more than 15 visits. There

is a slight downward trend visible with the BUR; suggesting
that incremental Bayesian learning approach is able to reduce
the prediction error as more data are known about a new
patient through repeated appointments. The BRR also shows a
downward trend, but the error is slightly higher than the BUR.
This is because the BRR starts with only the elicited prior and
performs learning (fitting) when more data are available, unlike
the BUR which starts off with information from the training set
in the form of a constructed/estimated virtual patient profile.

Figure 5 illustrates some examples of Bayesian linear
regression performed during the training phase and their
associated fitting rms errors. It can be seen that Bayesian
linear regression fits similarly well for both the inattentiveness
and hyperactivity symptom scores. Switching to a new type
of medicine is usually associated with larger uncertainty
(error bars). Looking at subject #74 (Figure 5B) in particular,
it can be seen that, despite having the same input dosage
from appointments 6-8, there were variations in the severity
of the ADHD symptoms. It is not possible to know the
exact reason for the variation for this subject during this
particular period, without further information—perhaps
this was due to adherence issues (the patient not taking
their medication as prescribed), physiological factors,
measurement “noise, or perhaps something else entirely.
By design, Bayesian linear regression can only fit the same
outcome given the same input. This does highlight the fact
that the current model may not have enough information
in the form of covariates to account for some of these
factors.

A subset of results for the validation phase is plotted in
Figure 6. For brevity, only prediction outcomes for hyperactivity
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FIGURE 7 | Rms prediction (validation) error averaged across all
subjects vs. appointment number.

symptom scores are shown and retrospective Bayesian linear
regression results (BRR) are omitted. The lack of solid lines
connecting the predictions in the topmost subplot serves as a
reminder that the model does not incorporate temporal aspects
for the case of appointment-independent (AIR) prediction,
which treats each appointment as the first (new) appointment
for a new patient. This is also why the 95% confidence intervals
for AIR are larger (more uncertain) than those for the BUR.
Also note that, by design, the prediction results for the first
appointment are identical for both approaches.

The figures illustrate that, during prognosis, incremental
learning does not always improve the prediction error compared
to simply predicting at every appointment without updating
the model using new information. However, based on the
rms errors in Table 1A, one expects incremental learning to
perform better overall across subjects, especially for subjects
with a prediction offset, such as over- or under-estimates.
This is illustrated by the results for subject #148 given
in Figure 6B, where the virtual patient profile for this
patient consistently underestimates the actual hyperactivity
score. Here, the incremental Bayesian learning was able to
adapt the parameter @ and shifted the prediction upwards,
resulting in lower prediction errors over the subsequent
appointments.

6.1.2. Conventional Machine Learning Approaches
Looking at the results in Table 1B, the conventional approaches
yield similar performance, with linear SVR and GPR methods
performing better than their nonlinear counterparts. The mixed
effects model has slightly worse results. Errors of linear SCR and
linear GPR are similar to each other, and to those for the learning
in the model space approach BUR with Method 2. We conclude
that for the task of predicting continuous symptom scores with
the dataset investigated, the learning in the model space approach
performs comparably with conventional approaches.

6.2. Dichotomous Remission Prediction
6.2.1. Learning in the Model Space Approach

For the learning in the model space approach, the ROC curves
for the dichotomous predictor are plotted in Figure 8 for both
of the virtual patient profile (Section 3.3) construction methods.
As the results for inattentiveness and hyperactivity scores were
similar, only the ROC curves for inattentiveness are shown.
The AUC values are given in the legend. The crosses on the
lines mark the resulting classifier performance if one uses point
estimates for the continuous symptom score from the model
and simply applies the clinical remission thresholds. The squares
mark the classifiers that have critical values based on maximizing
the Youden’s J-statistic (or the BAC, see Section 4.2.3) for the
training set—this is equivalent to the sensitivity and specificity
measures being maximized equally as a function of the critical
values. Lastly, the circles mark the best classifier for the
validation set in terms of the Youden’s J-statistic. The closer
the squares are to the circles, the better optimized the classifier
is assuming no knowledge of the validation dataset. Those
optimized classifiers marked by squares in the graph are used
to generate various binary classifier performance metrics (see
Section 4.2) in Table 2.

Looking at Table 2. The confusion matrices (CFM) show the
number of true positives and false negatives in the first column,
and false positives and true negatives in the second column.
These may be used to calculate any classification performance
metrics not included in this paper, such as the F-measure.

Similar to the continuous symptom prediction task, the BRC
outperforms the AIC showing that posterior information is
utilized effectively. As in the continuous task, the virtual patient
profile construction method labeled Method 2 is better overall
than Method 1, but the difference is much smaller in the
classification task and the advantage is not universal across all
metrics, especially for the AIC. Note that the virtual patient
profile construction method has little effect on the BRC as it does
not use it. The BRC achieves higher sensitivity values but a lower
PPV compared to the BUC, meaning that the BRC is better at
recalling remission cases, but the remission predictions by the
BUC are more reliable. The SPC achieved by the BUC is notably
higher, being better at ruling out false positives.

6.2.2. Conventional Machine Learning Approaches

Table 3 shows the binary classifier performance metrics for
the conventional machine learning approaches. Apart from the
AUGC, all of the other metrics in the table were derived from
classifier settings (set-points) that had optimized the balanced
accuracy (BAC) during the training stage. Apart from rcGPC,
the BAC values across the different approaches are similar. The
MEC classifiers perform well compared with GPC and SVC,
with consistently high AUC values for both inattentiveness and
hyperactivity. However, the set-points of the MEC classifiers
achieve lower sensitivity (but higher specificity) than the SVC. As
mentioned in Section 4.2, a higher sensitivity is more important
for this exercise. PPV is the other measure of interest; the
1rMEC, in particular, achieved the highest PPV amongst all the
conventional approaches—partially helped by its low sensitivity.
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FIGURE 8 | Receiver operator characteristic (ROC) plots of inattentiveness prediction using virtual patient profile constructed by Methods 1 and 2
(A,B) in the learning in model space approach; crosses: no critical value adjustment (based on point estimates); squares: best performing critical values on training
set; circles: best performing critical values on the validation set; AUC: Area under the ROC curve AIC: appointment-independent classifier; BRC: retrospective
Bayesian linear regression classifier; BUC: incremental Bayesian learning/update classifier.

The ROC plot for the MEC is shown in Figure 9. The 1rMEC
variant fitted the training set better but both the 1rMEC and
the taMEC achieve similar validation performance. Tracing the
ROC values, the 1rMEC seems more suitable for high specificity
settings while taMEC appears to be more suitable for high
sensitivity classification.

For the machine learning approaches GPC and SVC,
linear models work better. This was similarly observed in
the continuous symptom score prediction task. Comparing
methods in tackling data imbalance, the weighted SVM classifier
rwSVC method performed better than the downsampled dsSvC
method, while the downsampled Gaussian process classifier
dsGPC method performed better than the re-calibrated r cGPC.
Looking at both the BAC and AUC metrics, rwSVC and dsGPC
perform similarly, with the former slightly better at classifying
remission of hyperactivity, whereas the latter is slightly better for
inattentiveness.

Overall for the conventional methods, the rwSVC achieves
the best compromise between SEN and PPV, meaning that
it can identify remission cases more readily and at the same
time the remission predictions are more reliable. Comparing
Tables 2, 3 it can be seen that the learning in the model
space approach is superior overall. With respect to the BAC
and AUC measures, the best performing BUC approach has an
advantage of about 6-7%. This is interesting given the similar
performance in the continuous symptom score prediction task
amongst all approaches. The rms error measure in the symptom
score prediction task was based on point estimate calculations,
and thus used no information on the shape of the posterior
distribution. The posterior predictive distribution (Section 3.4)
for the BUC has a Student’s ¢-distribution specific to each patient.
The distributions were used to construct a probabilistic threshold
in trading off specificity and specificity. This subject-specific

nonlinear thresholding procedure may have contributed to its
performance advantage over other approaches.

6.2.3. Comparison with Literature

As far as the authors are aware, Kim et al. (2015) is the
only published literature on treatment response prediction of
ADHD patients using machine learning techniques. Their best
attempt achieved an AUC value of 0.84 and 86.4% classification
accuracy (that is, the percentage of correct predictions, different
from the BAC measure used in this paper) using a wide
range of information types including demographical, clinical,
genetic, environmental, neuropsychological and neuroimaging
measures. In comparison, this paper includes only the more
readily obtainable demographical and clinical information and
is able to achieve best-case AUCs of 0.82-0.84. Restricting to
demographical and clinical information, the highest performing
method using SVMs in Kim et al. (2015) had an AUC of
0.69. Granted, the comparison is imprecise because the quality,
quantity and sources of demographical and clinical information
are different between this paper and Kim et al. (2015). Judging
from the AUC values achieved by SVMs in this paper of about
0.71 (see Table 3), the results appears to be very close to those in
Kim etal. (2015). Due to this similarity, the previous comparisons
should be valid.

7. CLINICAL UTILITY AND FURTHER
WORK

The proposed learning in the model space approach is capable of
predicting, for an individual, the minimum dosage of a particular
medication required to have a user-defined chance of achieving
symptomatic remission. It is highly flexible and potentially can
be extended to any disease or disorder where medication is used
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TABLE 2 | Sensitivity, specificity, accuracy, and AUC of the remission classifier with critical values adjusted with respect to uncertainties in the predicted

symptom scores.

Inattentiveness
Method 1 Method 2 Method 1 Method 2
- 93 327 141 501 82 314 121 448
< 67 660 19 486 57 694 18 560
L
o aact 140 482 140 483 125 480 125 483
20 505 20 504 14 528 14 525
- 117 338 123 280 97 307 109 253
43 649 37 707 42 701 30 755
R AIC 58.1% 88.1% 59.0% 87.1%
§ BRC 87.5% 87.5% 89.9% 89.9%
BUC 73.1% 76.9% 69.8% 78.4%
R ATC 66.9% 49.2% 68.9% 55.6%
§ BRC 51.2% 51.1% 52.4% 52.1%
BUC 65.8% 71.6% 69.5% 74.9%
- AIC 62.5% 68.7% 63.9% 71.3%
% BRC 69.3% 69.3% 71.2% 71.0%
BUC 69.4% 74.3% 69.7% 76.7%
. AIC 22.1% 22.0% 20.7% 21.3%
§ BRC 22.5% 22.5% 20.7% 20.6%
BUC 25.7% 30.5% 24.0% 30.1%
_ AIC 90.8% 96.2% 92.4% 96.9%
>
g BRC 96.2% 96.2% 97.4% 97.4%
BUC 93.8% 95.0% 94.4% 96.2%
o AIC 69.0% 72.0% 68.0% 73.8%
§ BRC 81.2% 80.9% 83.6% 83.3%
BUC 77.1% 82.3% 76.7% 84.4%

aCFM: confusion matrix.

bSEN: sensitivity.

CSPC: specificity.

9IBAC: balanced accuracy.

ePPV: positive predictive value.

'NPV: negative predictive value.

9AUC: area under ROC curve.

*AIC: appointment-independent classifier.

T BRC: retrospective Bayesian linear regression classifier:
*BuUC: incremental Bayesian learning/update classifier.
Shaded values represent best performance amongst the compared methods.

in the course of treatment, speeding up and reducing the cost
of the dose optimization/forced titration process, and potentially
improving the quality of life for patients by ending the treatment
sooner.

The current model, however, does not take into account
adverse drug reactions (ADRs), minimization of which is another
goal of a dose optimization titration process. To improve clinical
utility, it is essential that ADRs are modeled. While data on this
are available from the clinical notes accompaning the ADDUCE
trial, a different modeling approach is required to incorporate
the many different types of ADRs, with prevalence ranging from
infrequent to very rare.

While the proposed approach achieves excellent performance
in terms of treatment response classification, there is room for
improvement. One obvious way to achieve this is to incorporate
more data, especially covariates that are functions of time.
In this exercise for example, the body mass index and age
variables measured at baseline (first appointment) of the patients
contribute to the latent factors, which in turn form the baseline
variables. As such, they do not vary over time. It may be worth
investigating whether the addition of temporal covariates, such
as blood pressure, would improve the model.

Another venue for potential improvement is to extend the
linear model to a nonlinear model—there is no guarantee that all

Frontiers in Physiology | www.frontiersin.org

L

April 2017 | Volume 8 | Article 199


http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

Wong et al.

Personalized Response Prediction for ADHD

TABLE 3 | Sensitivity, specificity, accuracy, and AUC of the remission classifier with critical values adjusted with respect to uncertainties in the predicted

symptom scores.

Inattentiveness Hyperactivity
Linear Non-linear Linear Non-linear

dssvca 70.0% 70.6% 67.6% 66.9%
. dsgpcP 68.1% 67.5% 67.6% 66.9%
= rwsvce 76.9% 33.8% 76.9% 69.1%
(% recpcd 43.1% 43.2% 71.3% 48.2%

taMEC® 60.0% 58.9%

1rMec! 53.1% 56.0%

dssvc 61.9% 62.3% 67.8% 66.6%
- dsGEC 67.9% 69.1% 67.8% 71.3%
S rwSve 55.9% 77.6% 62.1% 62.1%
(% rcGPC 59.0% 18.4% 50.7% 50.6%

taMEC 73.3% 73.8%

1rMEC 81.4% 81.4%
> dssve 66.0% 66.5% 67.7% 66.7%
g dsGPC 68.0% 68.3% 67.7% 69.1%
g rwsve 66.4% 55.7% 69.5% 65.6%
3 reGpC 51.1% 44.8% 46.9% 49.4%
(—% taMEC 66.6% 66.4%
. 1rMEC 67.2% 70.6%
E dssve 23.0% 23.3% 22.4% 21.6%
§ dsGPC 25.6% 26.2% 22.4% 24.3%
% rwsSvVCe 22.0% 19.6% 21.9% 20.1%
s rcGPC 15.6% 12.4% 10.8% 11.9%
2 taMEC 26.7% 23.7%
8 1rMEC 31.6% 29.0%
2 dssve 92.7% 92.9% 93.8% 93.9%
'§ dsGPC 92.9% 92.9% 93.8% 93.4%
a rwsve 93.7% 87.8% 95.1% 93.6%
o rcGPC 86.5% 79.8% 86.6% 87.63%
S taMEC 91.8% 92.9%
23S 1rMEC 91.5% 94.1%
e dssve 71% 69% 73% 71%
o dsGPC 75% 71% 73% 70%
2 rwWSVC 71% 60% 76% 71%
2 £CcGPC 49% 41% 46% 48%
§ taMEC 74.8% 77.5%
2 LrvEC 75.8% 77.2%

ag4ssvce: down-sampled support vector machine classifier; ?dsGpc: down-sampled Gaussian processes classifier; ¢ rwSVC: regularization-weighted support vector machine classifier;
9 rwGPC: regularization-weighted support Gaussian processes classifier; ¢t aMEC: threshold-adjusted mixed effects classifier; "1 rMEC: logitic regression mixed effects classifier.

Shaded values represent best performance amongst the compared methods.

the covariates have a linear relationship with treatment response.
Identifying the level and nature of nonlinear relationships
is the first challenge. In the current Bayesian framework,
the introduction of nonlinearities increases computational
complexity for Bayesian inference, requiring the use of
techniques such as Gibbs sampling.

There are other areas of interest. For example, what is the
optimum strategy, in terms of timing and requirements, for
incorporating semi-new patient data to the model space to
improve the generalizability of the model for other new patients?
How can medical adherence/concordance be modeled? Does
gender of the patient play a role in their treatment response?
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FIGURE 9 | Receiver operator characteristic (ROC) plot of
inattentiveness prediction using mixed effects models; crosses: no
threshold adjustment (based on point estimates); squares: best
performing threshold setting on training set; circles: best performing
threshold setting on the validation set; AUC: Area under the ROC
curve; taMEC: threshold-adjusted mixed effects classifier; 1LrMEC:
logitic regression mixed effects classifier.

8. CONCLUSION

A learning in the model space framework has been utilized
to develop a personalized medicine approach to treatment
response prediction. First of all, factor analysis was performed
to extract latent factors from a large clinical dataset, collected
from a UK sample of 157 patients suffering from attention-deficit
hyperactivity disorder. The resulting reduced-order patient
information was then encoded in a model parameter space
resulting in a cloud of personalized models. Then, the patient-
specific model space parameters were used to train a Bayesian
linear regression model. New patients are then matched to
existing patients most similar to themselves to obtain a virtual
patient profile, which in turn forms a prior parameter set for
the Bayesian linear regression model. Through a Bayesian update
algorithm, new data are continuously integrated to improve the
prediction performance for a given patient. In addition, the
parameters of the “new” patients can be added to the model
parameter space (once sufficient data are available) to improve
the generalizability of the model for future patients.
Comparisons were made between the learning in the model
space approach with conventional data-driven machine learning
and regression approaches. In terms of the prediction of
the continuous symptom factor scores, the performance of
the learning in model space framework was on a par with
conventional approaches. However, the new approach is shown
to outperform support vector machines, Gaussian processes and

linear mixed effects classifiers in the prediction of symptomatic
remission. The effective gain in classification performance of
the new model can potentially speed up and reduce the cost
of a forced titration or dose optimization titration process,
which is normally manually performed by the clinician to
assess the effective dosage of medication. Further work includes
incorporating the prediction of adverse drug reactions, which
is also an important element in the dose optimization titration
process.
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Dynamic processes, such as intracellular calcium signaling, are hallmark of cellular
biology. As real-time imaging modalities become widespread, a need for analytical
tools to reliably characterize time-series data without prior knowledge of the nature
of the recordings becomes more pressing. The goal of this study is to develop a
signal-processing algorithm for MATLAB that autonomously computes the parameters
characterizing prominent single transient responses (TR) and/or multi-peaks responses
(MPR). The algorithm corrects for signal contamination and decomposes experimental
recordings into contributions from drift, TRs, and MPRs. It subsequently provides
numerical estimates for the following parameters: time of onset after stimulus application,
activation time (time for signal to increase from 10 to 90% of peak), and amplitude of
response. It also provides characterization of the (i) TRs by quantifying their area under
the curve (AUC), response duration (time between % amplitude on ascent and descent
of the transient), and decay constant of the exponential decay region of the deactivation
phase of the response, and (i) MPRs by quantifying the number of peaks, mean peak
magnitude, mean periodicity, standard deviation of periodicity, oscillatory persistence
(time between first and last discernable peak), and duty cycle (fraction of period during
which system is active) for all the peaks in the signal, as well as coherent oscillations
(i.e., deterministic spikes). We demonstrate that the signal detection performance of this
algorithm is in agreement with user-mediated detection and that parameter estimates
obtained manually and algorithmically are correlated. We then apply this algorithm to
study how metabolic acidosis affects purinergic (P2) receptor-mediated calcium signaling
in osteoclast precursor cells. Our results reveal that acidosis significantly attenuates the
amplitude and AUC calcium responses at high ATP concentrations. Collectively, our data
validated this algorithm as a general framework for comprehensively analyzing dynamic
time-series.

Keywords: algorithm, calcium imaging, kinetics, osteoclast pathophysiology, parameter characterization,
purinergic/P2 receptors, real-time imaging
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Mackay et al.

Characterization of Dynamic Signals

INTRODUCTION

Cellular biology is vastly populated with dynamic processes,
which can be altered dramatically or subtly by pathological
causes. Calcium signals, characterized by fast and transient
increases in cytosolic free calcium concentration ([Ca%t]p),
which vary in amplitude and duration and can exhibit
oscillatory dynamics with frequency-dependent downstream
effects (Clapham, 2007), represent a prominent example of
such dynamic processes (Figure 1A). To fully understand the
data of such dynamic complexity, a robust methodology to
analyse, and characterize these responses is necessary. Numerous
studies have investigated [Ca?*]; dynamics, but the analysis
have in many cases been limited to qualitative assessments
(Cao et al, 1997; Frame and de Feijter, 1997; Jorgensen et al.,
1997; Jorgensen et al.,, 2003; Isakson et al., 2001; Romanello
and D’Andrea, 2001). Studies that have pursued quantitative
analysis of calcium time-series reported a number of different,
often non-overlapping characteristics of the response (Table 1).
In cases where experiments were conducted on a smaller-scale,
manual analysis was achievable. However, to achieve larger-scale
analyses for experiments with hundreds of individual recordings,
open-source signal-processing algorithms are required and
becoming increasingly relied on to overcome these bottlenecks
in productivity. None of 11 published algorithms we examined
provided a comprehensive analysis of the entire response
observed within a recording (Table 2). As a direct consequence
of the lack of a standardized methodology to quantify such
data-sets, findings from various studies are challenging to
compare, relate, and generalize. Hence, the motivation of
this study was to achieve faster analysis while standardizing
the methodology involved, thereby minimizing user-bias, and
ensuring consistency in the analysis of complex physiological
signals. While such a tool may or may not change the conclusions
of individual studies, it would improve comparability between
different studies, and potentially enable meta-analysis of different
experiments. We have therefore developed an algorithm that
addresses these concerns and focused on the dynamic signals
generated by purinergic (P2) receptors to demonstrate its utility.

Purinergic receptors that evoke intracellular responses upon
extracellular stimulation with nucleotides, such as ATP and
ADP, are known to induce complex [Ca?t]; signals. P2
receptors are subdivided into two families, P2X and P2Y
receptors, which are omnipresent in virtually all mammalian
tissue (Burnstock and Verkhratsky, 2009). The mammalian P2X
receptor family, consisting of seven subtypes (P2X;_7), are
ionotropic ligand-gated cation channels that can permit the
influx of extracellular calcium upon stimulation (Kaczmarek-
Hajek et al, 2012). The mammalian P2Y receptor family,

Abbreviations: ADP, Adenosine diphosphate; ATP, Adenosine triphosphate; AUC,
Area under curve; [Ca2T];, Cytosolic free calcium concentration; D(t), Global
drift model; E, Mean peak magnitude of MPR; FWHM, Full-width half-max;
F(t), Measured fluorescent signal; losc, Oscillatory persistence; MPR, Multi-peak
response; Nog, Number of peaks in MPR; &Pk, Width of oscillatory peak;
P2, Purinergic; or, Standard deviation of periodicity; T, Period of oscillation;
t10-90%, Activation time; Tdecay> Decay constant; tonset, Time of response onset; TR,
Transient response; TV, Total-variational.

consisting of eight subtypes (P2Y-346,11-14), are metabotropic
G-protein coupled receptors that can indirectly modulate the
release of calcium from intracellular calcium stores through
inositol triphosphate (von Kugelgen and Hoffmann, 2016). P2
receptors have been demonstrated to play an important role on
bone physiology (Lenertz et al., 2015). Since individual bone
cells commonly express multiple active P2 receptors (Gallagher
and Buckley, 2002), responses to purinergic stimulation result
in complex, concentration-dependent [Ca?T]; transients (Xing
et al., 2016). While it remains difficult to experimentally isolate
the contribution of individual receptors, a number of studies have
demonstrated that various P2 receptor subtypes have distinct
calcium response kinetics and signatures. For instance, various
P2X receptors desensitize at distinct rates under sustained agonist
stimulation (Koshimizu et al., 1999). P2X7-mediated responses
in particular are biphasic (Yan et al., 2010) and characterized by
sustained [Ca?*]; elevation (Nobile et al., 2003). It is becoming
increasingly clear, however, that P2 receptors cannot be studied
and manipulated as individual components, but rather must be
regarded as building blocks of a far more “dynamic architecture”
that permits diverse functionality and flexibility (Volonte et al.,
2006).

The goal of this study is to develop a universal signal-
processing algorithm for MATLAB (MathWorks, Natick,
MA) that would facilitate and standardize the parameter
characterization of time series calcium imaging recordings
containing prominent single transient responses (TR) and/or
multi-peaked responses (MPR). All signals, no matter their
complexity, can be reduced to a set of defined characteristics
that describe the magnitude and kinetics of a given response.
Based on our expertise and literature review (Tables 1, 2), we
have selected the following parameters: time of onset after
stimulus application (tonset), activation time (time for signal to
increases from 10 to 90% of peak; tjg—90%), and amplitude of
response. Additionally, TRs are specifically described by their
area under the curve (AUC), response duration (time between
Y amplitude on ascent and descent of the transient; FWHM),
and decay constant of the exponential decay region of the
deactivation phase of the response (Tdecay, Figure 1B) while
MPRs are described by their number of peaks (Nys), mean
peak magnitude (E), mean periodicity (T), standard deviation of
periodicity (oT), oscillatory persistence (time between first and
last discernable peak; los), and duty cycle (fraction of period
during which system is active; £P°2%/T, where £P¢%K is the width
of the oscillatory peaks, Figure 1C). Since MPRs can be either
stochastic or deterministic (Skupin et al., 2008; Dupont and
Combettes, 2009; Dupont et al., 2011), the algorithm reports two
sets of MPR parameters. The first describes MPR parameters
for all the peaks present, while the second set reports the MPR
parameters describing the subset of coherent oscillations, to
omit the influence of stochastic processes, and to focus on the
deterministic properties of the signal.

Live cell recordings will inevitably contain signal
contaminations arising from experimental conditions and
instrumentation, including (a) photochemical effects induced by
the measurement process and (b) unrelated biological processes.
While these imperfections are inherent to the experimental
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FIGURE 1 | Characterization of dynamic calcium signals. (A) Examples of heterogeneity of [Caer]i responses observed in various live-cell recordings; note many
signature forms that TRs and MPRs can exhibit. (B) Analysis of parameters for single-peak TRs. Inset: Representative single-peak TRs. (C) Analysis of parameters for
MPRs. Inset: Representative MPRs. Time of onset, tonset; area under curve, AUC; full-width half-max, FWHM; activation time, t1g_ggg,; decay constant, tgecay;
periodicity, T; number of peaks, Nosc; oscillatory peak magnitude, E; width of oscillatory peaks, Epeak; point of inflection in deactivation phase of TR, F”(p).
Arrows/text in red illustrate how parameters of interest are obtained.

TABLE 1 | Commonly reported parameters in studies investigating calcium dynamics.

Amplitude

tonset

t10-90% FWHM

AUC

Tdecay

Period

References

X X X X X X X X X X X X

X

Abu Khamidakh et al., 2013
Appleby et al., 2015
Churchill et al., 1996
Dickinson and Parker, 2013
Francis et al., 2016

, 1993

James et al., 2011

Rast et al., 2015

Shabir and Southgate, 2008
Smith et al., 2009

1997

Zhao et al., 2008

Hansen et al.

Sunetal.,

process, dynamic processes of interest can still be extracted from
these recordings. This process in itself can be complicated and
highly subjective depending on the extent to which the raw

data are corrupted by noise and drift. Therefore, to reliably
evaluate the magnitude and kinetics of these signals, we have
developed a systematic way of first identifying unwanted
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TABLE 2 | Published signal-processing algorithms.

Amplitude tonset t10-90 % FWHM AUC Tdecay t90-10% Period Classifier* References
X X X Bray et al., 2007
X X X Ellefsen et al., 2014
X X Fritzsche et al., 2015
X Juhola et al., 2015
X X X X Lock et al., 2015
X X X X Patel et al., 2015
X X X X Picht et al., 2007
X Ruffinatti et al., 2011
X X X Stoehr et al., 2014
X X X X Steele and Steele,
2014
X Wong et al., 2010

"Classifier: grouping of time-series by characteristic signature of response.

signal contaminations, and then removing their effects when
determining the parameters of interest. Following algorithm
validation, we have also investigated the effect of acidosis on
ATP-mediated [Ca?*]; responses in bone-marrow derived
osteoclast precursors to demonstrate the efficacy of this
algorithm in characterizing real-time cellular dynamics.

To implement the algorithm in MATLAB, the user is required
to store the set of discrete sample points of the measured signal
F(t), {Fi},i = 12,---,N, along with the corresponding
discrete time points {#} in an Excel file (filename.xlsx). The
algorithm can then be run using the MATLAB command

>>characterizeDocument(“filename.xlsx”)

The MATLAB code required to execute this command along
with examples of data and scripts are provided in Supplmentary
Materials (Data Sheet 1).

MATERIALS AND METHODS

Cell Culture

All procedures were approved by McGill University’s Animal
Care Committee and complied with the ethical guidelines of
the Canadian Council on Animal Care. Bone marrow precursor
cells were isolated from the femur and tibia of 6 week old
FVB mice (Charles River), plated at a density of 7.5 x 10°
on 48-well glass-bottom plates (No. 1.5 Coverslip, 6 mm glass
diameter, uncoated, MatTek Corp.) and cultured for 3 days
in aMEM (12,000-022, GIBCO) supplemented with 10% FBS
(080152, Wisent), 1% sodium pyruvate (600-110-UL, Wisent),
1% penicillin streptomycin (450-201-EL, Wisent), 50 ng/mL
MCSF (300-25, Peprotech), and 50 ng/mL RANKL according to
the protocol previously described (Boraschi-Diaz and Komarova,
2016).

Intracellular Calcium Measurements

After 3 days of culture, osteoclast precursors were loaded
with fura2-AM, a ratiometric fluorescent calcium dye (F1221,
Invitrogen), incubated at room temperature for 30 min and

washed twice with physiological solution (130 mM NaCl; 5 mM
KCl; 1 mM MgCl,; 1 mM CacCl,; 10 mM glucose; 20 mM HEPES,
pH 7.6). The final volume of 270 pL of physiological solution at
pH 7.6 or pH 7.0 was added and cells were acclimatized for 10
min to reduce the effects of mechanical agitation that resulted
from fura2-AM loading and washing. 10X ATP (Sigma) solutions
were prepared in physiological solution at corresponding pH
and 30 L was added after 10s of baseline [Ca?*]; recording
to obtain a 1X dilution (i.e., final concentrations ranging from
1 pM to 10 mM ATP). [Ca®t]; was imaged for an additional
110 s at a sampling rate of 2 images per second using a fluorescent
inverted microscope (T2000, Nikon). The excitation wavelength
was alternated between 340 and 380 nm using an ultra-high-
speed wavelength switching illumination system (Lambda DG-4,
Quorum Technologies). Regions of interest (ROI) were manually
defined and the ratio of the fluorescent emission at 510 nm,
following 340 and 380 nm excitation (f340/f380), was calculated
and exported using the imaging software (Velocity, Improvision).
All data were imported into an excel spreadsheet for subsequent
analysis.

Validation and Statistical Analysis

Algorithm performance was evaluated using the algorithm
generated figures for 450 individual signal fitting that enabled
retrospective visual examination of both response-detection and
quality of parameter fitting. Manual and automated estimates
were compared using a correlation plot and Bland Altman
analysis (Bland and Altman, 1986) to assess the degree of
correlation and agreement, respectively. For correlation analysis,
the line of exact linear correlation (i.e., y = x) is plotted as a
reference to assess deviation of the linear regression curve from
the desired 1:1 relationship between the manual and automated
estimates. For the Bland Altman analysis, we compared the
automated (a) and manual (m) parameter estimates of the ith
recording to obtain a Z-score, given by

Xi— X

Zi =
Ox
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where x; = (mj + a;)/2 is the average value of the estimated
parameter, X is the mean value of x averaged over all recordings,
and oy is the standard deviation of x overall recordings.
Furthermore, the percent difference, E;, of the i recording is
defined by

error ai — mj

i=

(o]

x 100% = x 100%.

average value Xi
8i vs. Z; were plotted to illustrate systematic biases. Negative
values of E; were interpreted as manual estimates being greater
than automated estimates, and vice versa. A quantitative estimate
of the interval of agreement, within which 95% of differences lie,
is defined by

95% interval of agreement = E =& 1.960%

=
o

where E is the mean percent difference over all recordings and
o is the standard deviation of E.

Experimental data were expressed as means + S.E.M. Effect
of ATP treatment under control conditions was evaluated using
one-way ANOVA followed with Bonferroni post hoc test. The
effect of acidosis was evaluated using two-way ANOVA with
Bonferroni post hoc test. Results were accepted as significant at

p < 0.05. Statistical analysis was performed in MATLAB.

RESULTS AND DISCUSSION

Although the notation used throughout the text implies that the
recorded signals are fluorescence, the methodology remains the
same for any other type of signals. For fluorescent recordings,
the measured fluorescence F may consist of multiple parts: the
drift, TR including the activation and deactivation phases, and
the superimposed MPR. It can be expressed as the sum of the
actual signal, Fy,, and the normally distributed noise with a
standard deviation o.

F(t) = Ftrue(t) + '/V(O: (7) . (1)
To characterize parameters that reliably reflect Fy..(t), F(t)
is first preprocessed to remove the effects of noise (Section
Noise Characterization) and to estimate the contributions of
drift to Fye(t) (Section Baseline Drift). Next, the activation
phase of TR is fit while simultaneously refining the estimated
contribution of the drift. This approach allows us to determine
if the recording is consistent with the expected model of a TR
superimposed on a drifting baseline (i.e., whether activation
phase is followed by a deactivation phase, Section Activation
Fitting). If a TR is detected, we proceed by fitting the full set of
TR model parameters simultaneously with the drift parameters
[Section Transient Response (TR) Model]. In the case where
there remain multiple significant deviations in the data from
the TR model, we investigate and characterize the presence of
oscillatory MPRs (Section Multi-Peaked Responses). The fitting
of the TR is refined to remove the effects of the multiple peaks
on the initial fit (Section Identifying Coherent Oscillations), in
order to provide the best estimate of the baseline around which
the MPRs oscillate. The deviations resulting from this secondary

fitting of the TR are then analyzed to determine those resulting
from coherent oscillatory processes (Section Characterizing
Oscillatory Parameters). At each step throughout the fitting
procedure, an updated estimate of the optimal set of parameters
(e.g., the drift parameters) is obtained. These parameters are
then used in a feed-forward manner, where the optimal set of
parameters of the preceding fit is used as an initial guess for
the subsequent step. This ensures that the algorithm produces
high-fidelity fittings. Finally, the algorithm performance and
utility is demonstrated with a new data set describing the
effect of acidosis on ATP-induced calcium signaling in osteoclast
precursors (Section Application to Pathophysiology).

Noise Characterization

The first step in the processing of data is to evaluate four values
that will be used for the remainder of the text: the derivative (i1)
of the noisy signal, the standard deviation of noise (o_), indices
at which this noise is not prevalent (j), and the noise-to-signal
ratio (¢). i will be used in Section Drift Delimitation to separate
the TR from the underlying drift. Data points excluded by j (i.e.,
noise) will be omitted. The methodology detailed throughout the
following section is an iterative procedure. In the instances where
those quantities are used, we are referring to the value determined
by the final iteration of the procedure.

Euler-Lagrange Formalism
The presence of noise in a recording renders naive methods
of derivative estimation inadequate (Chartrand, 2011). This is
particularly exacerbated by the intermittent presence of large
amplitude noise (spikes) related to the use of high gain settings on
instrumentation. To reliably delimit (i.e., define the boundaries
of) the drift in a recording of a noisy transient signal (Section
Drift Delimitation), we have adapted the total-variational (TV)
technique commonly used to estimate the first derivative of
a signal contaminated with various types of noise (Chartrand
and Staneva, 2008; Chartrand and Wohlberg, 2010; Chartrand,
2011). This technique performs better than the low-pass filter in
distinguishing the drift from the transient response, as it does not
indiscriminately remove high frequency components that affect
the overall trend of the signal.

Our TV-based methodology seeks a function, G (t), which
represents the derivative of Fiye(t), that solves the optimization
problem.

L

L
muin Olj ZZ‘dx + %II(Au (x) — F (x))|?dx (2)
0 0

The first term in Equation (2) is a regularization term which
penalizes sudden changes in the derivative (to make the fitting
smooth), the second term is an L? data fidelity term, where A
is the anti-differentiation operator (Au =~ Fjy,), and « is a
parameter dictating the balance between the two terms. In order
to solve this minimization problem, we have to find the stationary
solution to the following equation

d u (x)

JR— f— T f—
& i )] A" (Au(x) — F)

3)

U (x) = a
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derived from the Euler-Lagrange equation associated with
L
[ vdx is the L? -adjoint of A.

Equation (2), where ATy (x)

X

Within the context of ratiometric fluorescent dyes (such as Fura2
AM used for [Ca2t]; recordings in this study) the recorded signal
is the ratio of two Poisson random variables. The variance and
the mean of such a signal follow a complex, and seemingly non-
linear, function of the photon count rates at each wavelength.
Since these rates are assumed to be unknown a posteriori in
a recording, we cannot accurately determine how the noise is
distributed. However, we will assume that instrumentation and
experimental settings contribute to a noise distribution that
is approximately Gaussian. Moreover, in the specific case of
ratiometric dyes (Section Intracellular Calcium Measurements),
we have found that true noise distribution is a complex function
of time, but can be represented reliably using a time-dependent
Gaussian noise model. Therefore, to reduce data-fidelity and
conversely increase regularity in the regions of highest amplitude
noise while accurately reproducing data in regions of lowest
noise, we find instead a stationary solution to the following
equation

d o (x) AT (Au(x) = F)

Yaxld o +el ¥ ouwta @

ur (x) =

where ¥ (x,u) is an iteratively determined weighting function
(as described below), and ¢ and 7, are parameters introduced to
avoid dividing by zero.

At the n™™ iteration of the algorithm, we solve for u by
setting the left-hand-side of Equation (4) to zero, and linearizing
the problem through substituting every u appearing in the
denominators by the value of u" obtained from the previous
iterate. For a more detailed descritption of the means used
to solve this type of problem (see Vogel, 2002; Chartrand
and Staneva, 2008; Chartrand and Wohlberg, 2010). It is
known that an appropriate choice of the denominator offsets,
¢ and 7, is necessary to produce acceptable minimizations
(Chartrand, 2007), yet this choice is rarely considered beyond
their status as parameters that must be tweaked to obtain
acceptable results (Li et al, 2007; Chambolle et al., 2009;
Oh et al, 2013). In what follows, we detail a methodology
on how to determine the parameters «, & 7, and the
function 1 (t), based on the data F(t), and the derivative
estimate u (¢).

n+1

Dynamic Determination of Total-Variational
Parameters

Given a set of fluorescence recordings { F; } of length N, at the
n't iterate of the regularization algorithm, we identify the set
of indices j i = 1.2 ,N|y"(t) # oo} (as explained
in Section Removal of Noise Spikes) whose data are not likely
dominated by noise and thus should contribute to the fidelity
term of Equation (4). Letting A; = F; — F; _ 1, we can define the
weighting sequence gi = 1 — |Aj|/max |Aj| in order to provide

1

an upper bound on the noise of the signal, given by

]Z Al g

Y8
]

n
ot

The weights g; will tend to zero as A;j approach their maximum,
and converge to a positive number (< 1) as |Aj| approach
their minimum. We can thus conclude that the weighted average
of |Aj| will identify the smallest differences as being the most
informative of the magnitude of noise. Large discrete differenecs,
whether they result from transient increases in the noise level or
from the fact that the signal is non-stationary, contribute only
modestly to the estimate o}. On the other hand, we can also
estimate a lower bound on the noise using

)

where {' = F; — (Au™);, i.e., by taking the difference between the
data and the cumulative integral of u. Because we use the discrete
differences A; as our initial solution: u? = A, the integral of u"
(n > 0) will likely diverge away from the data with each succesive
iteration of the algortithm due to the action of the regularization
term in Equation (4). This tends to result in ¢” being smaller
than o}, although this is not always strictly true. The use of the
two different estimators for the noise allows for a more robust
performance of the methodology, as both estimators are prone to
becoming inaccurate in different scenarios. With an estimate of
the noise, we can also estimate the noise-to-signal ratio by

o = mean < ‘ g

©)

n
n o4

" max (Au™)’

The value of ¢ is a critical parameter in our algorithm as
it discreminates between small and large values of various
quantities. For example, it is employed to calculate an appropriate
value of ¢, defined in Equation (4), based on the scale of variations
of small values of o/, as follows

e = st ({ o] ] = (6" max (J]).re ).

The calculation of 5 requires defining another weighting
sequence h; = ‘u’ i!/max |u’ il , which tends to zero when u is
1

the most regular, as well as an estimate for the upper bound on
the total error, x, between the integral of u and the data in the
least regular regions of the solution, given by

>ohi g
n__ i

X o

When yx is small, » must be made large enough to improve
the smoothness of the fitting (at the expense of data-fidelity).
This can be acheived by making 7 a decreasing function of y.
However, if a recording does not contain any rapid jumps or
noise spikes (but is nonetheless noisy), such a relation between
x and n will not be sufficient to infer a proper choice of 7 given
x . Thus, we must include another term independent of x which
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will produce modest data-fidelity for signals dominated by drift.
We therefore define 1 to be

e — (% max ({IF; = Fi - 1| = std ({1Fy — F, -1
-

:r:2,...,N}):i:2,...,N}))Q

+ mean (argmax{ ’d’p : mean(d) > 3std(d) }) .

dc{sn}

which includes the smallest non-zero scale of the weighted
differences 8! = (1 — h') Al

TV methods tend to smooth the fit when there are large
amplitude jumps in the data, or where u is large. If a single
large jump dominates the derivative, this can lead to excessive
local smoothing, which can be resolved by having enhanced data-
fidelity at that point. On the other hand, in the presence of
large jumps in the data, small noise-driven fluctuations may be
under-regularized. In this case, data-fidelity at these points must
be reduced. The function ¢ allows for local enhancement or
reduction of data-fidelity. Unlike ¢, n does not depend on ¢, but
data-fidelity must through the weighting function ¢ (by making
Y proportional to ¢). Therefore, we define ¥ to be

7 ]
Y = <¢\/x +2) ! T ¢, (6)
where
I o= 1 [y
(o) V" min ({[u =T uf™" # 0)
Lo G (e
2T IN D @ &) [max () — [of[+¢7] |

= (mean ( g ) + std( g
parameter, v = uingll + (1 —hi4+ 1)2u?:11 is an estimator of
u; based on the adjacent values of u, and w; is a three-point
moving average of §;. The exponent J; emphasizes data-fidelity
(regularity) when the derivative of the following point is large
(small), whereas the exponent J, emphasizes data-fidelity when
Aj are small or when the derivative is near its maximum. When
A is large and uj — 1, u; are regular, on the other hand, J, is
small allowing regularity to propagate forward into regions of
signal possessing large ampltidue noise (i.e., where the data is not
informative). The balance between the two effects of J; along with
the x -dependent terms of Equation (6) produce an acceptable
compromise between the regularity of the fit and data-fidelity
for recordings across a wide range of signal-to-noise ratio and
extremely varied dynamics. Finally, once the maximum relative
change between two iterations of the procedure becomes less than
/@, we consider the solution to have achieved quasi-stationarity
and terminate the procedure.

)) /o isaiterative error scale

Removal of Noise Spikes

When a recording exhibits intermittent periods of high
amplitude noise (noise spikes), the data contaminated by these
noise spikes is minimally informative. Detecting them allows for
determining the indices j (Figure 2A). Within our regularization
algorithm, this is done by (a) setting ¢ to infinity at those time
points in such a way that Equation (4) only penalizes irregularity
at these time points, and (b) determining the fit at these points
based on the surrounding (reliable) data. After each iteration,
n, of the regularization algorithm, a smoother fit, Au", of the
data is obtained. We also obtain a criterion that determines
whether or not each point represents a noise spike based on a
comparison between the residual differences, ¢”, and a chosen
threshold value. This threshold is specified using the parameter
7)., given by

rrnm = (1 _S) + ‘i:trrllqax’

where & = exp (—( (Ui — Uf)/max{aﬁ,oﬁ } ) — (X”)Z/N)
is a convergence parameter for the noise rejection method.
Positive ¢ are rejected if they are greater than 7/} 0, while

negative /" are rejected if they are less than (z%,)°0 . The use of
two thresholds is due to the asymmetry of the Poisson statistics
underlying data collection using photodetectors. Rejection is
achieved by setting y; = oo, which serves as the basis for defining
the set of indices j (i.e,j = {i = 1,2,--- ,N [¢" (t}) # 00} as
stated before).

Baseline Drift

When fitting data to specific functional forms, it is important to
take into account temporal drifting of the baseline in a signal.
The specific nature of the processes underlying this drift are not
of particular interest here. Rather, we consider them as nuisance
trends and aim to remove their effects from the data.

Drift Model

Some drifts are quite slow compared to the timeframe of the
experimental recording, and thus can be fairly well represented
by linear functions, whereas others are fast and better represented
by an exponential decay function. Since, in a given recording,
a number of processes will result in the observed drift, we
postulate that, the drift throughout the signal can be well fit to
a combination of linear and exponential functions

a, (t;a,t,m) =a [1 — exp (7t/r, )] + mt (7)

where, a,, 7,, and m, are the exponential amplitude, exponential
time constant and the slope of the linear component of the
i drift within the signal, respectively (examples of fitted drifts
shown in Figures 2B,E,F). With an appropriate choice of data,
these are determined using the least squares fitting as discussed
in Section Drift Fitting. We have found numerous cases where
either the linear or exponential components were not justifed.
However, this knowledge is unavailable to us prior to conducting
manual or automated analysis of the data, and we cannot assume
a priori a less general form than Equation (7). Thus, we have

Frontiers in Physiology | www.frontiersin.org

November 2016 | Volume 7 | Article 525


http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

Mackay et al.

Characterization of Dynamic Signals

Signal

A Noise Detection (X) B Activation-Coupled Drift
© ©
[= =
2 2
%) %)
\
Time Time
c Gradual Activation D Non-Monotonic Activation

m

Signall

Drift Fitting.

©
5’ iﬂ)cal tiI1o<:al T
% 1/

tio  Time i Time

Drift Discrimination in Presence of MPR F Complex Drift
‘_é’, t e
@ S A// -7 4
Time Time

FIGURE 2 | Multitude of features that must be considered during parameter characterization. (A) Experimental recordings are often contaminated with
noise; red crosses represent noise detected and corrected. (B) Activation-coupled drift; Trajectory of baseline drift, d, can shift to secondary drift, do at time to. (C)

Determination of activation in the presence of gradual activation. Region of activation is restricted to z‘io ,tio , within which the most likely point of activation, tio ,is
+ loc act
statistically resolved. (D) Non-monotonic activation. Spurts of negligible activity, represented by the local maxima at tg
jocal loca
activation, in favor of t,  which is characterized by the max peak, t,0 . (E) Drift discrimination in cases where MPRs are superimposed on TRs. Underlying TR
local max

serves as a non-stationary baseline around which the MPR will oscillate within |:t2, tio until its contribution becomes negligible and the baseline drift, do, dominates
end

the MPR baseline. (F) Complex drift; Change in the baseline drift, tgp;, prior to onset of TR is ignored in favor of d4 after the reweighting procedure outlined in Section

and ty , are disregarded as points of

to rely on the fitting to optimize the contribution of the two
compoenets in a data-dependent manner.

It is possible for the signal to exhibit (multiple) drifts with
different trends separated perhaps by a TR. In order to capture
this effect in a signal, we use a global drift model that combines
the intial and secondary drifts (Figure 2B) in a semi-piecewise
manner in which the initial drift, d;, continues to contribute
to the overall observed drift and succesfully captures the global
behavior. This can be written as

d () +z ift<tb

() +dy(t—t)+z ift=t" ()

D) = {
where t; is the time at which the secondary drift, d,, begins and
z is the offset at t = 0. Rather than assuming that the drift is
similar for all recordings and attempting to construct a standard
curve, we assume that a few points in each recording are highly
informative of the drift in the baseline.

Drift Delimitation

To fit the drift model to the corresponding portion of the
recorded signal, it is necessary to delimit the boundaries of TR by
identifying the start of activation and end of deactivation. Firstly,
we will aim to estimate the point in time at which the TR of a
recording begins. Experimental TRs rarely activate abruptly and
simultaneously for a field of imaged cells. Many factors play a
role in the heterogeneity of responses observed such as variable
diffusion fronts of applied agonist or heterogenous receptor
expression among cells. These effects can manifest as very gradual
rises or additional small amplitudes prior to a certain activation
threshold being surpassed and a rapid activation phase being
observed (Figures 2C,D). Therefore, analyzing the activation
times of all components of the biological unit manually can
be subjective. While a simple threshold value in the signal can
be effective in detecting activation, the choice of the threshold
requires some knowledge of the amplitude of the noise o and
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is complicated by the presence of drift in the signal. Instead,
we determine the end points of the time intervals dominated by
the drift through statistical analysis of an estimate of the first
derivative of the signal & (). In other words, to distinguish the
drift from TR, the derivative of the latter must change in a way
that is more statisically significant than that of the former. The
methodology used to obtain the estimate for the derivative is
detailed in Section Noise Characterization.

Using the estimated time derivative, we aim to determine (i)
the earliest possible time of activation to (defined as the last
time point exhibitng a significant increase in the first derivative
before it reaches its maximum value), (ii) the time at which the
activation reaches its maximum value ., and (iii) the time
at which the deactivation ends and the signal is once again
dominated by the drift ¢; o

i Assuming that the estimated first derivative during activation
reaches a local maximum, we can find the most significant
local maxima of # at the location

ijocal = {i:ﬁi >Std(ﬁ),ﬁ12ﬁi_1andﬁi2ﬁi+1},

where we denote the first significant local maximum by
i?oml = min {ijyq}. By focusing on the portion of the signal
containing the first drift and the activation phase of the TR,
we restrict our attention to the time interval in which the first
derivative # (¢) is non-negative to disentangle the effects of
activation and drift in the data. In other words, we restrict our

analysis to [tio ) ], where the derivative is non-negative
+ local

and

= min {iziy =0 Vr=i.Li).
160,...,1local

Without prior knowledge about the sign of the derivative of

the baseline drift, we cannot conclude that i, corresponds to

the beginning of activation. To resolve this issue, we employ

a statistical test to determine the likely time at which the

activation occurs, located at the index

0 T ~ ~
gt = max !z.ul<std([uig,...,uio ])]

1
. .0 -0 local
S WIS Y

This methodology, based on the properties of the derivative
around its first significant local maximum, generally picks
out the first visually unambiguous activation (Figure 2C).
As a result, it may be necessary to trim recordings where
there are (large amplitude) artifacts prior to the activation of
interest.

ii. TRs may be produced by the action of multiple active units
(e.g., different receptor species) within the biological system
under consideration, each having distinct properties and
activation times. This leads to multiple delayed activations
taking place over a broad range of time (Figure 2D). Due
to the superposition of the drift in the baseline with
these responses, it is entirely possible for recordings to
be contaminated by strongly decreasing drift and for the
expected maximum TR to not coincide with the actual

maximum of the data. Thus, we have developed a method
to search for the visually most likely point at which the
TR reaches its maximum in the presence of a drift. For
each one of the Ny, significant local maxima of the first
derivative along the activation phase, we find the location of
the previous local minimum of the TV estimate of the data
using

min A .
i =imax,{n:u<0;:rei }
local {n =5 { - } local

as well as the location of the next local maximum at

i = {min, =, {n: 0 <0} :7 € ijpear} -

From the positions of the local extrema of the data, we
can estimate the value of the baseline drift from each local
minimum to the next local maximum using the linear
extrapolation

R R e R
r= (lloafl) se{L,..., Nigcar}

where A is the operator of antidifferentiation with Au ~ Fy.,

(see Equation 1). Based on this, we then estimate the average

rate of activation for each significant local maximum of the

derivative according to

(Ai1),~(v-), _
Mzi P = ()= (),
se€{l,..., Ny}

and select the first local maximum at the location

o .| r:u, = mean(u) —3-std(u) and v,
fmax = 1 > mean (v) — std (v)

which has an average rate and magnitude within a statistically
acceptable range (that excludes small outliers). o is the
time point at which the derivative reaches a local maximum.
It may differ from the one that corresponds to the local
maximum immediately following the ﬁrst activation time
point o (Figure 2D). This is because #,, depends solely

act
on the derlvatlve around its first local maximum, while 9,
takes into account an approximation to the average rate of
change around all local maxima; the local maximum after
i, should only differ from 1%, when there is a succession
of activations and the first does not have the largest rate of
activation.

Starting from this local maximum of the derivative, we
seek the location of the first point in time tend where the
change in the signal drops below the estimated noise level
o_ (see Section Dynamic Determination of Total-Variational
Parameters)

end . A
i = min { itn-(—t_1) <0_}, (10)
i€l N
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and thus isolate the time interval in which the most
significant activation occurs. Having isolated the most
significant activation, we finally arrive at the location of the
first estimate of the time where the response reaches its
maximum

argmax (Afl) ; } .

iei0 jend
1€1 50+ Imax

Imax = mMin {

iii. Having identified the time at which activation is likely to
begin tp » We can now assume that the signal prior to this
point is the drift. If the recording is of a sufficiently long
duration, the response will return to baseline and the end
of the recording should once again be dominated by the
(secondary) drift (Figure 2A). To account for this drift, we
need to estimate the time duration of deactivation. This is
done in a manner nearly identical to how we determined the
first time of activation to . However, due to the possibility
of having MPR after the 1n1t1at10n of TR (Figure 2E), we
cannot restrict ourselves to time intervals in which the first
derivative is non-positive. To solve this issue, we define a set
of time points after the presumed maximum of TR, located at
N}, and construct a measure

)

u idemy

idecay = {imax> - - ->

n:3 |iti| — mean ( ’:iidmy
max

ne(3,2,1,0}

Nend

> n-std 21 € ldecay

to quantify how far the derivative deviates from its mean during
the decay. This measure allows us to robustly detect the location
of the time point where TR is negligible

)>nend-std<A

uidecay

0 { A ( N
= min \i: || — mean | |i,,
d IEIdecay | | decay
The time point t,o ] is then used to determine the start of the new
en

drift.
Drift Fitting

To isolate the TR from the drift, it is necessary to generate
an accurate fit for the drift. This is achieved by employing a
succession of least square fits that progressively incorporates
more data and models that account for additional components
of the signal (including activation and deactivation phases
of TR). The first step in this successive least-square-fitting
method is to obtain preliminary estimates of the parameters
Ourift a1, T1,m1, a2, T2, my] of the drift model. The
MATLAB implementation of the non-linear least squares method
(Marquardt, 1963; Moré, 1978) is used. More specifically, we
initially minimize the error function between the drift model and
the data

)}

as defined in Section Drift Delimitation while j is defined in
Section Removal of Noise Spikes). We denote the first estimate
of parameters obtained from the minimizaiton of Equation (11)
by Qgrift. There is no guarantee, however, that the drift model

described by Equation (8) can accurately represent the actual
drift in the baseline. The emergence of drifting trends which
are not related to the onset of TR (Figure 2F) may require the
inclusion of more than two functions of the type described
in Equation (7), yet the decision to include more drift terms,
or alternatively to truncate the signal, would require manual
intervention. To circumvent this limitation, we perform a second
fit where the individual terms in Equation (11) are weighed
according to a weight function w, and the first derivative of the
data is taken into account. Although the set of parameters Ggriﬂ
will be able to produce the “general” trends in the data before
and after TR, the presence of multiple drifting trends necessitates
the use of the derivative estimate, i, to identify the segment(s)
of the signal that actually follow the trend described in Equation
(8) and remove the effects of others. The inclusion of &, however,
in the sum of squared errors can lead to erroneous fittings when
the drift is not well represented by Equation (8). The weight
function w alleviates this problem by preventing the linear and
exponential trends in Equation (7) from growing unjustifiably
large.

To determine w, we require that it approaches zero when the

match between # and D ( t; 0 is minimal. To achieve this, we

0
drift
choose w to depend on y = ‘ it—D (t Ggrlﬂ) ‘ as follows

wp=exp| ————~

mean (yk))'

We then apply the non-linear least squares fitting procedure to
minimize the error function

ol

D (1 6are) — Fi)’

# (1= D (i04)) |

and use Qgrift as an initial condition for the fitting procedure.

Sdrzft edﬁﬂ

Activation Fitting

For the activation phase of the response, we use the model

Mact

tMact IB”act
t

+ Mgt /
0

where A,y is the maximum of the Hill function, n,y is the

Zact (t; Aact> B> Nact> Mact) = Aqet

xMact

——daX
xMact 4 ‘B”act

sgﬂﬁ (9 dn.ﬂ) = Z (D (tk§ 0 dn.ﬂ) — Fk)z, (11)  Hill coefficient, B is the time at which the the Hill function

X reaches its half maximum, and myg is the slope of the quasi-

linear function that accounts for the trend which dominates

where the set of indices k 1is defined by &k = at the end of activation. The Hill function allows for a rapid
{{ L...,i%, } U { ign po-oN }} Nj @, and ign 4 are  rise and switch in convexity due to many biological units being
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activated at once, whereas the linear trend allows for a delayed
and slower rise induced by more units being progressively
recruited into the generation of the signal. The values of Ay
and m,; determine the magnitude of these two trends, whereas
nget and B affect primarily the timescales of switching between
the two. The time at which the activation phase begins is
denoted as t,,, and its estimate is confined to the time interval

[tiot,timax]. In order to obtain a preliminary estimate of the
ac

values of these parameters and those of the drift function, 6, =
[tons> Aacts Bs Bacts Macts er,-ft], we minimize the sum of square
errors between the activation data and the model along with their
derivatives, given by the function

. 2
Sact (Oact) = Z |:¢2 (FJ — Gact (tj, Qact))

' +S ri 0 ri]
j + ¢(£‘j — Gact (l‘j; Qact))z :| drift ( d ft)

(12)

where ¢ is the noise-to-signal ratio as defined in Section Dynamic
Determination of Total-Variational Parameters, and

Guct (t; Quct)

_ D (t; Oact) + Gact (t — tons Oact) if ton <t < tmax
D (£; Oact) otherwise

is our activation data model that takes into account the effect of
the drift D (defined in Equation 8) on the perceived activation. To
abrogate the influence of noise spikes on measured parameters,
the sum of squares in Equation (12) is evaluated at the set of
indices j (defined in Section Dynamic Determination of Total-
Variational Parameters) which are not dominated by noise.

Moreover, we use é;fl}t to denote the set of drift parameters

obtained from the minimization of Equation (12).

Signal Detection

In order for the algorithm to resolve whether there is a
discernable TR present in Fy,(t), three conditions must be
satisfied: (i) ijpe,y must be a non-empty set, (ii) the initial drift
estimate

Dt argmin  Sgp (6)

0| durip 035}

must be below the TV data estimate by a detection threshold of
4o_ for at least six data points, and (iii) the difference between
the TV data estimate and the initial drift estimate must not
be a strictly increasing function of time after tJ, . These three
criteria allow for the detection of the TR and further analysis of
its characteristics [Section Transient Response (TR) Model].

To evaluate the signal detection performance of the algorithm,
450 individual traces of ATP-induced calcium responses
were used as a validation set. Manual results were then
compared to automated detection of TRs to assess extent of
agreement between the two methods. Classical signal detection
nomenclature (i.e., true positive or negative and false positive or
negative) was intentionally avoided due to lack of certainty in

determining the true presence of TRs in more ambiguous cases.
We found that the automated and manual methods agreed in
detecting a TR in 88.1% of cases, and they disagreed in 11.9%
of cases (Figure 3A). Further dissection of these results showed
that 64.7% of disagreement arose from the algorithm reporting
an absence of TR while visual evaluation suggested otherwise
(Figure 3A), indicating that the algorithm has a tendency to be
more conservative than user-mediated assessments.

To determine whether there were particular types of
recordings that contributed to these disagreements, time-series
traces were qualitatively divided into two groups: Clean signals
with clearly defined responses were classified as “pronounced”
(Figure 3B, top), and signals containing ambiguous signals
with low signal to noise ratio or strong drift were classified
as “obscure” (Figure 3B, bottom). The total frequency of
disagreement was 3.6 times greater for obscure signals compared
to those classified as pronounced (17.4 vs. 4.8%; Figure 3C).
Regardless of the group, the algorithm signal detection remained
more conservative compared to the manual method.

Transient Response (TR) Model

Transient cellular responses are generally complex with multiple
time scales and amplitudes. They may, in fact, exhibit prolonged
MPRs superimposed on a more acute response (see Figure 2E).
For these reasons, a complete characterization of all possible
TRs is unlikely to be attainable. In order to remain as
general as possible, we propose modeling TR as a continuously
differentiable piece-wise defined function that first increases
during the activation phase and subsequently decreases during
the deactivation phase. Due to the large number of parameters
required for such a description and the automated nature of
our fitting procedure, we decompose the fitting of the whole TR
into a sequential fitting of the activation phase alone followed
by a fit of both phases simultacously. This yields significantly
more reliable results with faster convergence rates over a wide
gamut of input data, because it allows for information obtained
during preliminary simple fits to be used in a progressively more
complex manner. In order to capture the complex fluorescence
response generated by the spatially separated units in a live cell,
we use a combination of Hill functions and quasi-linear functions
generated by the integral of the corresponding Hill functions.

Response Fitting

Following the least squares fitting of the activation data, we now
seek to fit the entire recording (with the drift and TR) using a
continuously differentiable function. A decreasing Hill Function
is used to describe deactivation phase of the signal in a manner
similar to Equation (11), as follows

t
ynde

1% Nde
MmMge dx,
xMde 4 )/nde
0

it (15 Ader V) = Adegr o +

where Ay, is the amplitude of the Hill function, ng4, is the Hill
coefficient, y is the time at which the Hill function reaches
its half maximum, and my, is the slope of the quasi-linear
function that accounts for the trend dominating at the beginning
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FIGURE 3 | Signal detection performance of algorithm. (A) Signal detection analysis demonstrates relative selectivity and sensitivity of the algorithm as
compared to user-mediated manual detection. “Agreement” refers to instances where the detection of a response was consistent between algorithm and manual
methods. “Disagreement” refers to the contrary. “Present” indicates cases where a response was detected using the indicated method, while “absent” refers to cases
where a response was not detected. (B) Representative time-series for pronounced (top) and obscure (bottom) signals. (C) Analysis of disagreement cases for
pronounced and obscure signals. Automated detection, auto; manual detection, manu; sample size, n.

of deactivation. The time when the response switches to the
deactivation function is denoted by t4.. The parameter my, is
chosen such that the response function returns to zero by the end
of the recording and is given by

d)(F] - Gresp (tj; gresp))z
Sresp (Oresp) = & \j» e
P ( resp) Z]: +(uj — Gregp (l‘j? 9resp))2

A

+rp(Dy (T — t2; a2, T2, mz))2:| + 2 Sarift (Oarige) »(14)
g
_ 8act Cacts Aact> B> Mact, Mact) — Adeww
Mde = N — tge 0 ’ to obtain the fitting, where x is a parameter quantifying the
e
de apparent coherence between the drift and reponse models (D and
Zresp)> given by
where £,y = tg, — ton is the time duration of the activation

phase of the response. If differentiability is not enforced at
the point fg, where the two functions g, and gy, meet,
then the fitting may contain sharp edges indicative of
unconverged solution. To solve this issue, the continuity
of the first derivative of these two functions, particularly
at tj,, is achieved through a third-order Hermite spline

(Aﬁ)N — Zact (tmax — ton’ Aact> B> Nact> Mact)
(Ai’)N - (Al:t)i ’

min

i€ 0. imax

A is a parameter defined by

(Traub, 1964) on the time interval [tg, — Cactstde + Sdels max |i¢i|
where ¢, and ¢4 are two parameters that must satisfy N — g
Gact < Lact and ¢4, < 2y (see Data Sheet 2 in Supplementary T max i

Materials). The overall response model is thus given by

Sact (t — ton; eresp)

.0 .
1€1,¢¢5++sImax

ifton <1t <tde— Sact

&resp (t; eresp) =\ PHermite (t — (tde — Pact) ; eresp) if tge — Gact <t < tje+ Gde

8de (t — Lde; eresp)

where Oresp = [Oact tdes Sact> Sde> Ade> V> NdeOarift]. Given the
response model, we define the global data model as

. _)D (t; gresp) + Gresp (ti; gresp) if ton <t
Gresp (12 O Ourit) = { D (t; Oresp) otherwise’
(13)
and minimize the error function

lftde'i'gdeft

and the values for the parameters Agcs, nger, B> Macr, and oy
are taken from the activation fitting. The first two terms in
the sum of squares in Equation (14) are analgous to those
in Equation (12), whereas the third term minimizes the AUC
for the second drift function D,. By including the coefficient
« in this third term, however, allows D, to become more
significant when there is a large mismatch in the value of
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the baseline between tio‘ and fy (that cannot be explained

Activation Parameter Validation: tonset, t19-g0%;, and
Amplitude

The three parameters, tonset, ti0—90%, and amplitude, are
considered together because they describe what happens at the
activation phase of the TR, with no regard for the deactivation
phase or MPR. The time at which a TR is discernable from
baseline is defined as topset and is estimated directly as the
parameter t,, of the response function gresp. There was a strong
linear agreement between the manual and automated-estimates,
with a linear slope of 1.06 and a correlation coefficient (r?)
of 0.94 (Figure 4A, left). On average, automated estimates of
tonset Were 4.6% greater than manual estimates, with limits of
agreement ranging between —10 and 19% difference (Figure 4A,
right). The tjo—goy% is also estimated numerically from the
response function gpp. Using the response function allows
to overcome issues arising from the subsampling of rapid
dynamics by numerically evaluating on a time grid 10 times
finer than the input times. Manual estimation of this parameter
is contingent upon accurate estimation of the baseline and
peak occurrences, both of which present potential sources of
error, particularly for noisy signals with drift. The relationship
between manual and automated estimates had a linear slope
of 0.77 and a correlation coeflicient of 0.77 (Figure 4B, left).
The higher degree of scatter away from the line of exact linear
correlation is reflected by the wider Bland-Altman interval of
agreement, ranging from —89 to 54% difference between manual
and automated estimates. Overall, there was a —17% difference
between all paired estimates of tj9—gg, revealing that t;o—gge was
manually overestimated compared to the automated estimates
(Figure 4B, right). Amplitude estimates obtained by the manual
and automated methods had a strong linear relationship with
a slope of 1.02 and a correlation coefficient of 0.84 (Figure 4C,
left). The limits of agreement, ranging from —26 to 25%, were
narrow with a mean percent difference of —0.3% between all
paired estimates of amplitude (Figure 4C, right).

TR Parameter Validation: AUC, FWHM, and tgecay

Due to the inherent differences between TRs and MPRs and the
approach taken with this algorithm, the AUC, FWHM, and tgecay
are limited to describing TRs. Nevertheless, these parameters will
be also reported in the presence of MPRs where they should
be interpreted with the following considerations. (i) if a MPR
is superimposed on a TR, the reported parameters describe the
underlying TR, not the superimposed MPR. (ii) if TR presence
is not detectable and MPR demonstrates a purely oscillatory
response, the reported parameters characterize the first peak
only. With these considerations in mind, manual evaluation
of TR parameters was performed with a variety of signals,
including MPRs. AUC estimates are manually determined using
a geometric estimation of the area of a triangle whose vertices
are at the start, peak, and end of the TR. Algorithmically, AUC
was evaluated from the area under g, using the trapezoidal
rule (Rice, 1973) implemented in MATLAB using “trapz().”
Comparing the manual and automated estimates demonstrated
a linear relationship with a slope of 0.85 and a correlation
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FIGURE 4 | Validation of activation parameter measurements.
Parameters were estimated manually and then compared with
automated-estimated values using correlation analysis (left: solid line, linear
regression line; broken line, line of equality) and Bland-Altman analysis (right,
solid line: mean percent difference, &; broken line: limits of agreement, &
+1.96 oz). (A) Time of onset, tonset- (B) Activation time, t19-ggo - (C)
Amplitude. Arbitrary units, A.U. Insets: Visual representations of parameters
measured.

coefficient of 0.79 (Figure5A, left). On average, automated
estimates were 4.6% larger than manual estimates with an
interval of agreement ranging between —38 and 47% difference
(Figure 5A, right). Considering the geometric-approach used for
manual-estimation of AUC values, it is reasonable to assume that
the error arose from manual limitations.

Due to the difficulty in determining the precise time at which
the signal returns to its former baseline, it would be challenging
to manually describe the duration and decay characteristics of the
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FIGURE 5 | Validation of TR parameter measurements. Parameters were
estimated manually and then compared with automated-estimated values
using correlation analysis (left: solid line, linear regression line; broken line, line
of equality) and Bland-Altman analysis (right: solid line, mean percent
difference, E; broken line, limits of agreement, & £1.96 o). (A) Area under
curve, AUC. (B) Full-width half-max, FWHM. (C) Decay constant, Tdecay-
Arbitrary units, A.U. Insets: Visual representations of parameters measured.

response. Incomplete recordings and background drift are largely
responsible for generating such behavior. The full-width half-
max (FWHM) is defined as the time elapsed between the two half-
max coordinates of a peak. Our analysis of FWHM revealed that
the linear relationship between manual and automated-estimates
was strong, with a correlation coeflicient of 0.87 and slope of 0.95
(Figure 5B, left). The Bland Altman analysis demonstrated that
the agreement interval ranged from —20 to 22% difference with
a mean percent difference of 0.85% between all paired estimates
(Figure 5B, right).

Finally, to manually estimate the decay constant, the time of
the inflection point (p) is visually estimated and the general trend
of the data following p is represented by a mono-exponential
decay. The decay constant is then determined by the time it takes
for the signal to reduce to approximately 37% of its initial value
(1/e). Algorithmically, the time p is determined by solving for the
inflection point in the deactivation function, given by

) 1/nge

The data following p is then fit to a mono-exponential decay
function using least squares, to determine the time constant of
decay. The slope of the linear agreement between manual and
automated-estimates was 0.81 and the correlation coeflicient was
0.75 (Figure 5C, left). The Bland Altman analysis revealed a
strong systematic bias of —14% difference, with an agreement
range of —63 to 34% difference, signifying that manual efforts
to estimate the decay constant consistently overshot the values
reported by the algorithm (Figure 5C, right).

nge — 1
nge + 1

p:tde+7<

Multi-Peaked Responses

To isolate the characteristic parameters of MPRs that are
frequently superimposed on TRs (Figure 2D), the TR model gresp
must be refined to serve as a non-stationary baseline around
which the MPR will oscillate. This refinement is necessary
because it is often the case that the TR model g5y will produce
sub-optimal fittings where the data deviates significantly from
the TR fitting. Therefore, to accurately characterize the TR
and quantify the properties of truly oscillatory MPRs, it is
first necessary to adapt the least squares fitting procedure of
Section Response Fitting to remove the effects of data points
not well represented by Gyegp. This is done by first identifying
large deviations representing MPRs from the Gpegp -fitting
(obtained by minimizing Equation 14), and then reweighing
the sum of squares in Equation (14) to remove the influence
of those deviations from the fits. We subsequently perform
a secondary fitting of Gy to determine more accurately
the baseline, delineating the TR, where the MPR-associated
deviations originate from. Finally, we analyze the MPRs by
determining whether they represent oscillations and, if so,
quantify their properties.

To identify these MPR-associated deviations from the newly
defined baseline, we first employ the MATLAB “findpeaks()”
function. This finds the peaks and troughs of the significant
deviations in the TV data estimate, A (¢), from the TR estimate,

Gresp ( t; émp ), truncated at its half-maximums, where éresp is the

optimal parameter set obtained from minimizing Equation (14).
This truncation permits for the possibility that the onset of TR
coincides with the first peak of the MPR-associated deviations.
The implementation of peak-finding algorithm, on the other
hand, allows for the specification of minimum heights and timing
between peaks, set to be 60— and 5 s, respectively. The algorithm
yields the heights (EP¢?*, Erough); the FWHM (£Peok, giroughy,
and the times (¢, 748" of significant peaks and troughs of
the deviations, respectively (see Figure 2D). In total, there are
N = Npeak + Nirougn of these deviations, including Ny, peaks
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and Nyyouqn troughs. If N < 2, then the only deviation in the
signal is the TR and the algorithm can terminate. Without prior
knowledge of the nature of the MPR-associated deviations, it is
very difficult to determine whether they result from trends which
are above, below, or symmetric to the TR. To resolve this issue, we
assume that the estimated baseline from Section Response Fitting
underlies the signal in the absence of deviations. To incorporate
this assumption algorithmically, we define two bias parameters
based on the relative heights of the first peak and trough, as
follows

B Eﬁ)eak 47 .
Opeak = €XP | — trough an
El
B Etlmugh 47
Otrough = €Xp | — Elljmk .

These quantities are then used to calculate weighting functions
for the data based on the properties of peaks

2
N, ~peak
peak peak opeak (ti - tf )
7l = Z Opeak €Xp | —¢| —————
r=1 r
~peak\ 2
Opeak (ti - tf )
+ (1= opeat) | 1 —exp [ ¢ | —— 7
r
and troughs
n_itrough
Nirouch ~trough 2
roug Otrough \ ti — tr
= Z Otrough €XP —¢ trough
r=1 r
~trough 2
Otrough (ti —tr )
+ (1 - otrough) I —exp —¢ trough
-
peak _trough

The weighting functions 7y, m; quantify the relative
reliability of the data around each deviation based on how close
it is to the fitting function Gyesp and on its duration. We can also
assess the reliability of each time point of the recording (including
the TR, the drift, and any MPR-associated deviations present)

by how well its derivative matches Gresp (t; éresp ) This is done

using another weighting function, defined by

. n 2
U — Gresp (t; eresp)
2 std (ill - Gresp (t; é\resp ))

Ui

Il = exp

We combine these weighting functions using the criterion that
for a data point to be reliable, it must have either a large value of

7Pk or trough and a large value of I'. It is implemented in the

weighting function €, as follows
— min (nitrough>> .
1

With Q;, we can fit the TR reliably in the presence of significant
deviations from the model of Equation (13). This is done by
minimizing the error function

k h .
Q =T; (nipea n n_itroug — min (nipeak)
1

¢ 2 (F; — Gregp (1 Oresp))’
ngesp (eresp) = ¢ Z +Q]2 (1}] — Gresp (tj; eresp))z
j + k@ (Dy (ty — ta; a2, T2, m2))?

A
+ ?Sdriﬂ (Parife) - (15)

Identifying Coherent Oscillations

Not all MPRs correspond to periodic oscillations (Thurley et al.,
2014). To address this, the algorithm reports two sets of MPR
parameters, the first to describe all the peaks detected within
a MPR, and the second to describe the subset of coherent
peaks present within the same MPR. This section focuses on
how the subset of coherent oscillatory peaks is identified. We
use a clustering algorithm which is an unsupervised learning
technique that enables for the identification of natural groupings
or patterns with a defined data set. By minimizing Equation
(15), we obtain the most reliable estimate of the TR (specified
by the model Gygp and its optimal parameter set éfgsp), which
we take to be the baseline of the MPR-associated deviations.
Given the estimate Gyesp (t; o< we repeat the peak finding

resp >
steps detailed in Section Multi-Peaked Responses. To determine
whether or not the detected deviations represent oscillations, we
use a Gaussian mixture model clustering technique. It groups
together (in clusters) peaks and troughs with comparable periods,
T (determined by the difference between two consecutive peak or
trough times; i.e., ¢ or #7°“8") and FWHM, &. Two adjacent
deviations are deemed to be coherent oscillations if they are
grouped in the same cluster. In situations where the period or
FWHM are modulated throughout time, Gaussian clustering
technique may not be able to cluster all coherent oscillations
adequately. We therefore process clusters by defining period-
and FWHM-trends for all coherent oscillations. If this trend can
accurately predict the period and FWHM of the first deviation of
an adjacent cluster, then both clusters are deemed to form a set
of coherent oscillations. This is repeated for all pairs of adjacent
clusters, progressively updating the set of coherent oscillations
with those previously deemed incoherent at prior steps.

This procedure use the Expectation Maximization (EM)
clustering algorithm (McLachlan and Peel, 2005) to cluster the
period and FWHM of a potential oscillatory MPRs, and to
determine the optimal number of clusters using gap statistic
(Tibshirani et al., 2001). It allows for a reliable separation of
oscillatory data from recording artifacts or non-oscillatory MPRs
with visually different properties. It also yields a set of Npeak
peaks (Nm,ugh troughs) occurring at times ¢ (7°48"), which
together represent coherent oscillations. Having determined the
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properties of the individual features making up the oscillations,
they can be used to quantify the properties of the oscillations.

Characterizing Oscillatory Parameters

In order for the algorithm to report the oscillatory properties of
a signal, the MPR-associated deviations must satisfy N > 2, for
the set of MPR parameters describing all detected peaks. If these
deviations form a coherent set of oscillations, a second set of MPR
parameters characterizing this coherent oscillatory behavior is
also reported. In both instances, the following parameters will
be reported: the number of oscillations (N,), the average
magnitude of the oscillations (defined as EP¢®™ + EoUsh) the
average period of oscillation (T), the standard deviation of the
periodicity (or), the total time for which the oscillations persist

(defined as £ = ?ieak —
Npeuk

parameter (given by Epe“k/T ) (Smedler and Uhlén, 2014).

?Ifmk), and the mean duty cycle

MPR Parameter Validation: Nosc, E, T, losc, and £Pe3K/T
Manual estimates of N is determined by counting the number
of discernable peaks within the signal. The slope of correlation
was 0.85 with an r?-score of 0.78 (Figure 6A, left). The mean
difference between manual and automated estimates was 15%
with an interval of agreement ranging from —39 to 69%
(Figure 6A, right). The peak magnitude of the oscillations, E, is
manually estimated by the mean change between peak maxima
and their subsequent trough minima, after correcting for a non-
stationary baseline that is often a consequence of a concurrent
TR. For most signals the non-stationary baseline can be manually
estimated to be linear. However, there are a few cases where an
estimate of an exponential baseline is required. The correlation
between manual and automated estimates was relatively strong,
with an r2-value of 0.92 and a slope of 1.08 (Figure 6B, left).
The agreement analysis on the other hand revealed relatively
no bias, with a mean difference of —2% and limit of agreement
ranging from —48 to 44% difference (Figure 6B, right). The
periodicity is manually estimated by the average time between
adjacent peaks. The linear relationship was slightly weaker with
a r’-value of 0.55 and slope of 0.65 (Figure 6C, left). The
mean difference between manual and automated estimates was
negligible, at only 0.3%, indicating an absence systematic bias,
and the limits of agreement spanned from —54 to 54% difference
(Figure 6C, right). The standard deviation of periodicity was
obtained from the same set of periods used to estimate the mean
period. The linear slope was 0.77 and the r?-value was 0.77
(Figure 6D, left). Similar to periodicity, the mean difference for
the standard deviation of periodicity was a negligible —0.4%,
with limits of agreement ranging from —61 to 62% difference
(Figure 6D, right). Oscillatory persistence is chosen to describe
how long oscillations are sustained within a given recording,
and is estimated as the elapsed time between the first and last
discernable peaks in the MPR. The correlation between manual
and automated estimates was supported by a r?-value of 0.79
and slope of 0.85 (Figure 6E, left). The mean difference between
paired estimates was only —5.3% with a limit of agreement
between —47 and 37% difference (Figure 6E, right). Finally, the
duty cycle is manually estimated by the ratio between £P¢2X and T.

£P2K js manually determined by the mean FWHM of individual
oscillatory peaks and the same T value obtained above is used
to calculate xP® /T. The linear relationship between manual
and automated estimated of £P?* /T was decidedly weak with a
slope of 0.51 and 2 of 0.26 (Figure 6F, left). The Bland Altman
analysis, however, suggests that there was a systematic bias that
could explain the poorer correlation results. The mean difference
between manual and automated estimated was —19% with a limit
of agreement between —69 and 31% (Figure 6F, right).

The MPR parameter validation described above focuses on the
set of parameter estimates describing all the peaks in the MPR,
rather than the subset of coherent oscillations. This is because
manual detection of each peak in the MPR is less subjective
than detecting only the coherent peaks in the MPR. Since the
algorithm sub-selects the coherent oscillatory peaks from the
initial set of identified deviations, the performance reported for
the characterization of all peaks extends to the subset of coherent
oscillations. Furthermore, as expected, the standard deviation
of the periodicity is consistently lower for coherent oscillations
when compare to the ot reported for all peaks in the same
MPR (i.e., more regular periodicities result in lower standard
deviations).

To ensure confidence in the reported MPR parameters,
users of this algorithm are urged to visually verify the quality
of the signal fittings to determine whether the algorithm is
characterizing their peaks of interest, as these may not always
coincide with the most prevalent oscillatory component of the
signal (Thurley et al., 2014). Furthermore, Ny reported for all
peaks and coherent peaks can be compared to be aware of how
many peaks were omitted during the clustering step. Collectively,
the information reported for MPRs is sufficient for the informed
analysis of a diverse selection of MPRs, including those that
exhibit coherent oscillations and those that do not.

Application to Pathophysiology

In the context of bone physiology, the deleterious consequences
of disrupting extracellular nucleotide-mediated cross talk have
been highlighted by the emergence of P2 receptor knockout
mouse models (Lenertz et al., 2015). P2 receptors are particularly
sensitive to changes in the extracellular milieu. Consequently,
P2 receptor pathophysiology is often coupled to events that
influence the extracellular composition, thereby compromising
processes regulated by the P2 receptor network. In particular,
changes in extracellular pH alter P2 receptor function (King et al.,
1997; Gerevich et al., 2007; Wildman, 2009; Langfelder et al.,
2015). Such conditions arise from pathological acidosis that is
commonly caused by systemic acid-base disturbances, such as
metabolic or respiratory acidosis (Krieger et al., 2004; Miller,
2012; Berend et al., 2014). More localized acidifications can also
be associated with tumors (Martin and Jain, 1994; Kato et al,,
2013). Since the skeleton is a common metastatic site for cancer,
and participates in systemic buffering of protons, the effect of
acidosis on the skeletal system is of particular interest. On the
cellular level, acidosis promotes the activation of osteoclasts,
resulting in elevated bone resorption which manifests itself in
osteoporotic phenotype (Bushinsky and Frick, 2000; Krieger
et al.,, 2003; Ahn et al., 2012; Gasser et al., 2014). However, it
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FIGURE 6 | Validation of MPR parameter measurements. Parameters were estimated manually and then compared with automated-estimated values usmg
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remains unclear whether the P2 receptor network plays a direct
role in this cascade of events. The most immediate influence of
acidosis on the P2-receptor network can be studied at the level of
the [Ca?*]; response evoked immediately upon application of a
purinergic agonist.

We investigated the effect of acidosis on ATP-mediated
[Ca?*]; responses in bone-marrow derived osteoclast precursors

to demonstrate the applicability of the developed algorithm.
The application of ATP (100 nM to 10 mM) to the fura2-loaded
osteoclast precursors evoked a [Ca®*]; TR in a dose-dependent
manner in control and acidosis conditions (Figures 7A,B). The
response amplitudes under acidic conditions were virtually
indistinguishable from the control for ATP concentrations up
to 10 wM. However, above this threshold concentration, the
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amplitude of the control responses continued to increase with
rising concentrations of ATP, while [Ca?*]; responses under
acidic conditions plateaued at 10 wM (Figure 7C). With respect
to the AUC of the [Ca2t]; responses, the observed differences
between the two conditions were more gradual with a diverging
trend beginning as low as 1M ATP and becoming more
prominent at high ATP (Figure 7D). Finally, acidosis was found
to have no significant effect on the periodicity of the oscillatory
responses (Figure 7E).

These findings support that acidosis, while having no effect
on ATP-mediated [Ca%*]; responses at lower ATP concentration,
significantly attenuates the magnitude of [Ca?*]; transients
responding to higher ATP concentrations (>10 wM ATP).
Within the limited scope of this study that is focused on
the development of a data analysis algorithm, we can only
hypothesize on the mechanism by which these differences
arise. One possibility is that the rise in extracellular [HT]
has a significant influence on the electro-chemical gradient
across the cellular membrane, which may consequently alter
the extent of calcium flux across certain ionotropic P2X
receptors. Since the oscillations are commonly driven by
inositol triphosphate-mediated release of calcium from internal
calcium stores (i.e., isolated from extracellular [H*]), it may
explain why the oscillatory behavior is not affected by acidosis.

Alternatively, there may exist a subset of P2 receptors that are
sensitive to fluctuations in extracellular [H], while P2-receptors
involved in oscillatory behavior and/or responses to lower
ATP concentrations (<10 wM) are resilient to such changes.
Regardless of the underlying mechanism, these results highlight
that the P2 receptor network can be differentially modulated by
extracellular pH.

CONCLUSIONS

This paper presents an autonomous signal-processing algorithm
capable of robustly removing signal-contaminating noise and
delineating the various components seen in a calcium response,
including non-stationary drift, TRs, and MPRs (possibly caused
by flickers, puffs, and sparks) sampled with at least twice the
Nyquist frequency. By fitting piece-wise defined model functions
to data, the algorithm also extracts estimates for the parameters
that are relevant to the characterization of cellular transient
dynamics. Any time-series recordings can be used as an input
for the algorithm, provided that they resemble a single or
multi-peak transient response. As demonstrated in the validation
process, manual estimation of certain parameters has an inherent
degree of subjectivity and measurement error associated with
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FIGURE 7 | Algorithm application in characterization of pathological states. ATP (100 nM-10 mM) was applied to Fura-2 loaded osteoclast precursors, under
control (pH 7.6) and acidosis (pH 7.0) conditions, and [Ca2+]i responses were recorded. Algorithm was used to obtain estimates for amplitude, AUC and periodicity.
(A) Representative [Ca2+]i response traces for 100 WM and 1 mM ATP under control conditions. (B) Representative [Ca2+]i response traces for 100 WM and 1 mM
ATP under acidosis conditions. (C) Amplitude dose-response curves. (D) AUC dose-response curves. (E) Period dose-response curves. For (C-E), data are mean +
S.E.M. The effect of ATP under control conditions was examined using one-way ANOVA. The effect of acidosis on ATP-mediated responses was examined using
two-way ANOVA. The Bonferroni test was used for post hoc multi-comparison analysis; **p < 0.01; **p < 0.001 indicate significant difference compared to the
response to the lowest ATP concentration; #p < 0.05 indicates significant difference between responses to the same [ATP] in control and acidosis conditions.
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it. In particular, the manual evaluations of AUC values, decay
constant and the time of onset, as well as most of the MPR-
parameter values, were found to rely on subjective estimates
and thus lacked true accuracy and consistency. Because of such
limitation in the validation method, manual-estimates are to
be recognized as representative estimates, rather than accurate
values for these parameters. Consequently, validation method
applied here should be considered as a comparison against
imperfect estimates.

Nevertheless, our analysis of the automated method has
verified that the algorithm performs within acceptable margins
of agreement when compared to manual analysis. Regarding
the response detection capabilities, the algorithm behaves
conservatively compared to manual assessments, especially when
presented with low-magnitude TRs or ambiguous response
signals. Most importantly, our algorithm has been validated
against experimental [Ca’*]; recording data, rather than
simulated data, ensuring that the method is capable of handling
variations in drift and noise that realistically reflect signal
contaminations of experimental data acquisition. We have
demonstrated that this automated methodology is effective in
analyzing empirical data, providing quantitative insights about
them and identifying differences between them.

A particularly unique feature of this algorithm is its capacity
to characterize the magnitude and temporal characteristics of
MPRs exhibiting stochastic and deterministic behavior. It is well
established that a diverse amount of biochemical processes can
be amplitude- and/or frequency-modulated (Adachi et al., 1999;
Micali et al.,, 2015). To analyse such oscillatory data, the fast
Fourier transform (FFT) is commonly used, which allows for the
conversion of a signal from its time domain, into the frequency
domain. Unfortunately, the variance in the frequency domain is
proportional to the number of repetitive components in the time-
domain. Therefore, if the oscillatory signals present few repetitive
components then reliable resolution of the true periodicity of the
signal is unachievable. To circumvent the limitations inherent to
FFT, we apply the MATLAB “findpeaks()” function to identify
peaks of interest. To isolate underlying coherent oscillations
that are often present, we applied a clustering method. This is
based on the principle of clustering deviations from baseline
according to their temporal offset and respective FWHM. The
advantage of this approach is that it allows for the reliable
detection of periodic peaks, even in the presence of stochastic
discharges, as is often the case in experimental recordings.
Secondly, comparison of the set of MPR parameters for all peaks
and subset of coherent peaks allows users to quantify the extent
of stochastic activity within MPRs. Alternatively, the relationship
between mean and standard deviation of periodicity in a MPR
has been previously used to reveal the contribution of stochastic
processes to the periodicity (Thurley et al., 2014). We anticipate
this methodology will contribute to the comprehensive analysis
of diverse MPRs.

Calcium signaling is by no means unique to the P2-receptor
network, but rather represents the most ubiquitous and
versatile messenger found in biological systems. All kinds of
extracellular signals exploit calcium as a secondary messenger,
including P2 agonists (i.e., ATP, ADP, UTP, and UDP),

endothelin-1, oxotremorine-M, norephinephrine, thrombin,
PDGFE, bombensin (Balla et al., 1991; Palmer, 1994; Burnstock,
2004). The universal involvement of calcium ranges from basic
physiological processes such as muscle contraction, neuronal
discharge and pancreatic secretion, to early development events
including mammalian egg fertilization and embryonic pattern
formation (Berridge et al, 2000). Calcium signaling is also
known to be impaired in various pathological states, as
suggested for metabolic acidosis in this study, chronic renal
failure (Massry et al., 1995), Alzheimer’s (Brawek et al., 2014),
Diabetes (Chen et al., 2015), and zinc deficiency (O’Dell and
Browning, 2013). However, despite all that we know about
calcium’s role in biological processes, there remains ongoing
debate on how calcium signals robustly encode information
while still exhibiting a large degree of heterogeneity within
and between various cellular populations. Many theories have
been proposed to establish how information can be encoded.
Some of these involve encoding information on the basis of
calcium binding cooperativity (Larsen et al., 2004), amplitude
and frequency modulation (De Pitta et al., 2009), changes in
spike time variation (Thurley et al., 2014), and signal integration
(Hannanta-anan and Chow, 2016). In order to reconcile these
theories and establish a universal syntax for calcium-encoded
information, tools such as this algorithm will aid in the large-
scale analysis of experimental data sets required for the validation
of mathematical models.

The consideration of signaling nuances that are specifically
found in physiological signals, but may or may not be
present in non-biological signals, was a critical step in the
development of this algorithm. As demonstrated in this
study, physiological signals were decomposed into their
elementary components and mathematically generalized to
enable for the computational reconstruction of a diverse range
of signature forms. In doing so, we were able to provide
a foundation for further modeling of the nonlinear multi-
parametric physiological signals. This study demonstrates
that the accurate description of complex physiological
signals is non-trivial, but rather an extensive mathematical
undertaking. Therefore, we believe that, beyond serving
the purpose of a signal-processing tool, this algorithm will
also contribute to future efforts to modeling physiological
signals.

In summary, we have detailed an open-source MATLAB
algorithm intended to facilitate the analysis of time-series
recordings. With minimal user-input required, this tool
dramatically decreases analysis time and ensures consistency
in parameter characterization of complex physiological signals.
This algorithm is capable of handling noise and drift and
robustly characterizes the magnitude and kinetics of dynamic
processes, outputting the amplitude, time of onset (tonget)s
activation time (tj9—g90%), full-width half-max (FWHM),
AUC, and decay constant (Tgecay)- In the presence of MPR,
six additional parameters are characterized which include
number of oscillations (Ngg.), magnitude of oscillatory peaks
(E), periodicity (T), standard deviation of periodicity (oT),
oscillatory persistence (losc), and the duty cycle (El’eak/T). This
algorithm is not limited to any specific data-type, but [Ca?*];
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recordings represent an obvious application. In addition to
calcium imaging, other imaging modalities such as adapted
fluorescence resonance energy transfer (FRET) biosensors, real-
time bioluminescence and voltage and current measurements
can generate time-series data for which characterization of
signal magnitude and kinetics can provide valuable information.
As data acquisition becomes more efficient and data sets
become increasingly complex, automated analysis will serve
as an essential tool for conducting basic research and clinical
screening.
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International initiatives such as the Cancer Genome Atlas (TCGA) and the International
Cancer Genome Consortium (ICGC) are collecting multiple datasets at different
genome-scales with the aim of identifying novel cancer biomarkers and predicting
survival of patients. To analyze such data, several statistical methods have been
applied, among them Cox regression models. Although these models provide a good
statistical framework to analyze omic data, there is still a lack of studies that illustrate
advantages and drawbacks in integrating biological information and selecting groups
of biomarkers. In fact, classical Cox regression algorithms focus on the selection of
a single biomarker, without taking into account the strong correlation between genes.
Even though network-based Cox regression algorithms overcome such drawbacks, such
network-based approaches are less widely used within the life science community. In
this article, we aim to provide a clear methodological framework on the use of such
approaches in order to turn cancer research results into clinical applications. Therefore,
we first discuss the rationale and the practical usage of three recently proposed
network-based Cox regression algorithms (i.e., Net-Cox, AdalLnet, and fastcox). Then,
we show how to combine existing biological knowledge and available data with such
algorithms to identify networks of cancer biomarkers and to estimate survival of
patients. Finally, we describe in detail a new permutation-based approach to better
validate the significance of the selection in terms of cancer gene signatures and
pathway/networks identification. We illustrate the proposed methodology by means of
both simulations and real case studies. Overall, the aim of our work is two-fold. Firstly,
to show how network-based Cox regression models can be used to integrate biological
knowledge (e.g., multi-omics data) for the analysis of survival data. Secondly, to provide
a clear methodological and computational approach for investigating cancers regulatory
networks.
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INTRODUCTION

Recent developments in high-throughput technology have
produced a huge amount of multiple and diverse genome-
scale data to deal with biological and clinical questions
in cancer. For example, genomics, transcriptomics, and
epigenomics information is nowadays publicly available for
tens of different cancer cell lines from thousands of patients
in The Cancer Genome Atlas (TCGA, http://cancergenome.
nih.gov/). Mutations data over one million tumor samples are
also reported in Cosmic (http://cancer.sanger.ac.uk/cosmic), the
world’s largest and most comprehensive resource for exploring
the impact of somatic mutations. Other valuable databases
include The Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/gds) among others. Such amount of data is likely
to revolutionize genetics and biomedical cancer research, but a
thorough integration of all these different types of information
is necessary. Indeed, cancer is a “multi-factorial” disease caused
by a combination of genetic, environmental, and lifestyle factors.
Such factors play an important role in discovering prognostic
and diagnostic cancer gene signatures opening a new way toward
the so called “personalized medicine.” The term refers to a
new type of therapy that is essentially based on the features
of each patient. For instance, the anticancer drug Cetuximab
(Karapetis et al., 2008) inhibits cells proliferation by binding to
the EGF receptor and, consequently, preventing activation of
the downstream signaling pathway. However, it has been found
that Cetuximab can work only if the K-RAS gene is not mutated.
Another example is the anti-cancer drug Trastuzumab (Hudis,
2007), which is effective only in patients that highly express the
human epidermal growth factor (HER2) at the cell surface, to
which the antibody binds. These examples highlight the need of
identifying stable and interpretable biomarkers able to predict
patient survival and characterize a patient-personalized therapy.
In addition, the knowledge of complex cancer processes and
networks is important to optimize the use of technology within
health care (Raghupathi and Raghupathi, 2014). By discovering
associations within the data, big data analytics has the potential
to improve care, save lives, and lower costs.

As a consequence, in the last years, there has been a growing
interest in developing methods that integrate different genome-
scale data into regression models for survival data to create a
comprehensive view of human biology and disease (Wang et al.,
2014). A popular used approach for the integration of genomic
and clinical information is the Cox proportional hazard model
(Cox, 1972). The main goal of such method is investigating
the connection between gene expression data and survival
information to predict cancer survival, assess cancer outcomes,
and identify new gene markers. However, since gene expression
data are usually characterized by a number of covariates p
much larger than the sample size n, the traditional Cox model
cannot be applied. Hence, several penalized Cox regression
methods have been developed to identify core pathways and
biomarkers involved in cancer progression, e.g., the Cox model
based on Lasso penalty (Tibshirani, 1996, 1997; Gui and Li, 2005).
Alternative penalized Cox regression models based on variable
selection include the SCAD (Fan and Li, 2001), the adaptive Lasso

(Zou, 2006), the elastic net model (Zou and Hastie, 2005; Simon
et al., 2011a; Wu, 2012), and the Dantzig selector (Candes and
Tao, 2007) among others. These methods are able to cope with
the high-dimensionality of gene expression data, thus solving
the “p > n” issue (Engler and Li, 2009). All these penalized
models are statistically efficient in high-dimensional regression,
but they perform poorly on data with high collinearity. Moreover,
no biological knowledge is taken into account. Indeed, they
are simply based on statistical frameworks completely ignoring
biological regulatory network, protein—protein interaction (PPI),
signaling pathways, and well-known relationships among genes.
In such models, the lack of biological information produces
instability in predictors reducing the predictive ability of the
models. Hence, in order to provide more reliable and biologically
meaningful results, the inclusion of a-priori biological knowledge
into the models is mandatory. To address this issue, new
penalized Cox methods based on the integration of genomic
information have been recently proposed (Zhang et al., 2013;
Gong et al., 2014; Sun et al,, 2014). In such models, the genomic
information is encoded by a network whose graph structure
identifies a given relation (edges) between genes (nodes). The
resulting Laplacian matrix is then integrated as penalty in the Cox
regression models. In particular, the network can represent the
correlation between genes (Zhang et al., 2013), KEGG pathways
identification (Sun et al., 2014), functional interaction network
(Huttenhower et al., 2009), or PPI. These Cox models based
on a-priori biological network are called “network-based Cox
regression.”

The network-based Cox regression methods provide an
efficient tool to perform Cox regression on high-dimensional
data incorporating genes network information. In literature,
there are some recent approaches that analyze different Cox
methods. For instance, an accurate review of eight different
methods that integrate network information into multi-variable
Cox models is presented to study the risk prediction in
breast cancer and the integrated Brier score is used as a
performance measure (Frohlich, 2014). However, the study
performed enrichment analysis on the signatures genes selected
by the compared models without showing any survival prediction
analysis in terms of Kaplan-Meier curves. A network-based
Cox regression model that explores gene-to-gene connections in
multiple cancer datasets is also performed for maximizing the
overall association of the sub-network with clinical outcomes
(Martinez-Ledesma et al., 2015). A potential limitation of
these conventional networks is that the edges only reflect the
information of within-features or within-relations, and do not
consider the association between features and outcomes, which
may be useful in improving the predictive power. Therefore,
an alternative network construction method for the outcome-
guided gene-interaction network has to be introduced in order to
improve the performance of survival analysis in network-based
Cox regression (Jeong et al., 2015).

In this work, we present a methodological framework for
the analysis of molecular and survival data through a cross-
validated approach of network-based Cox regression algorithms
(Net-Cox, Adalnet, and fastcox, see Section Methods). The
method starts from the analysis of raw data and, through a
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cross-validated penalty approach, it guides the reader to the
interpretation of the final results. As shown in Figure 1, the
general steps of our approach are the following: (i) defining
the biological question and the experimental design using
microarray data, then integrating a-priori biological information
using functional map of the human genome such as HEFalMp
(Huttenhower et al., 2009) and KEGG; (ii) performing biological
screening of the data for selecting relevant features through cross-
validated penalization (Simon et al., 2011b); (iii) implementing
network-based Cox regression models for the analysis of cancer-
related genes; (iv) evaluating survival models to predict cancer
patient prognosis and exploring cancer associated pathways. The
presented approach provides a new methodological framework
for the study and the interpretation of regression methods
through gene-network and pathways analyses and it can be easily
adapted to incorporate other network-based Cox regression
algorithms.

A preliminary study for the comparison of penalized Cox
models was presented in Iuliano et al. (2014), where the analysis
was limited to cancer survival prediction using top ranked
genes. No simulation studies, extensive pathways analysis or
validation of the data were performed in that study. On the
contrary, this article presents a more accurate and complete
analysis based on a cross-validated approach (Simon et al,
2011b), the overall workflow (see Figure 2) that includes both
simulation studies and novel real cancer datasets (see Section
Data Analysis). Simulated data have been used to perform a

statistical comparison of the methods in terms of sensitivity,
specificity, number of selected genes, false positive rates, and
Matthews correlation coefficient in two simulation settings with
different genetic effects. On the other hand, real datasets analysis
was performed to assess the relevance of the selected genes in
the training dataset and to test the survival prediction accuracy
of each model. Cross-validated Kaplan-Meier curves for survival
analysis and pathway analysis were also computed (see Section
Results). The novelty of the current study consists in the
integration of a cross-validated approach (Simon et al., 2011b)
to obtain an accurate survival prediction even when the number
of cases is relatively small for an effective sample splitting (see
Figure 2). Cross-validation methods have been largely applied
in Cox regression models to estimate prediction errors and for
model parameters tuning (Vasselli et al., 2003; Molinaro et al,,
2005; Simon et al.,, 2011b). Some of the most relevant cross-
validation approaches include leave-one-out cross-validation
(LOOCV; Kearns and Ron, 1999), k-fold (Refaeilzadeh et al.,
2009), and bootstrap algorithms (Kohavi, 1995). However, all
these methods do not provide a good estimation if the data
available are limited for an effective division in training and test
sets. On the contrary, the cross-validation method used in our
analysis (Simon et al., 2011b) is based on a re-sampling algorithm
that allows an accurate prediction of the survival risk model
regardless the data size. Therefore, in this work, we first present a
novel statistical approach to infer pathway interaction networks
from gene expression data that relies on a new mathematical
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FIGURE 1 | The pipeline of network-based Cox models approach for cancer survival analysis in four general steps. (1) Define the biological question and
the experimental design and then, integrate a-priori biological information using functional map of the human genome; (2) perform biological screening of the data in
order to select IN variables to use in the analysis; (3) implement network-based Cox regression models with the integration of a re-sampling method based on a
cross-validated approach; (4) apply survival analysis to predict cancer patients and pathway analysis to explore groups of genes associated to the disease.
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FIGURE 2 | Workflow of prognostic model building by using gene expression profile in cancer. The method starts from the analysis of raw data and, through
a cross-validated penalty approach, it leads to the interpretation of the final results. Step (1) includes the input data for the survival analysis: gene expression data,
(Continued)
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FIGURE 2 | Continued

cancer-related genes, pathway information, and overall survival (OS) times. Step (2) illustrates the novelty of the work based on a k-fold cross-validation Kaplan—-Meier
procedure by integrating network-regularized Cox models for selecting significant genes and pathways structures. The Prognostic Index (PI) has been used to divide
the patients in high-risk and low-risk groups. Then, the union of these two groups is done to plot single cross-validated Kaplan—Meier curves and to calculate the
p-value permutation test. Step (3) shows the survival prediction to test how well the models generalize across independent cancer datasets.

concept (based on the biological screening and network-based
Cox regression methods) for understanding pathways’ activity
and relationships. Second, we provide a methodological strategy
to researchers for the use of network-based Cox regression
models in order to turn cancer research results into clinical
applications.

METHODS

Network-Regularized Cox Regression

Models

The Cox Proportional hazards model (Cox, 1972) is the most
widely used model to describe the relationship between survival
times and predictor covariates.

Given a sample of n subjects, let T; and C; be the survival time
and the censoring time, respectively, for subjecti =1, ..., n. Let
t; = min {T;, C;} be the observed survival time and §; = I(T; <
C;) the censoring indicator, where I(-) is the indicator function
(i.e., 8; = 1 if the survival time is observed and §; = 0 if the
survival time is censored). We denote by X; = (Xj1, ..., Xip)’
the regression vector of p-variables for the ith subject (i.e., the
gene expression profile of the ith patient over p genes). The
survival time T; and the censoring time C; are assumed to be
conditionally independent given X;. Furthermore, the censoring
mechanism is assumed to be non-informative. The observed data
can be represented by the triplets {(t;, 6;, X;),i =1, ..., n}. The
Cox regression method assumes that the hazard function h(#|X;),
which is the risk of death at time ¢ for the ith patient with gene
expression profile X; , can be written as

h(t1X;) = ho(t) exp (X}B)

where hy(t) is the baseline hazard and g = (81, ..
column vector of the regression parameters.

In the classical setting, the regression coefficients are estimated
by maximizing the Cox’s log-partial likelihood

., Bp) is the

pIB) =D 81 XiB—log| Y expXB) |, (1)

i=1 jER(ti)

where t; is the survival time (observed or censored) for the ith
patient, R(#;) is the risk set at time t; (i.e., the set of all patients
who still survived prior to time t;).

However, in the analysis of gene expression data, the number
of genes p is usually larger than the sample size n and the
standard Cox-model cannot be directly applied. To cope with
the curse of dimensionality (p > n), a variety of penalization
approaches have been proposed for achieving good prediction
performance and easy interpretation of the data. Although these

regularization methods induce sparsity into the solution by
shrinking some estimates to zero, the biological relationship
of gene expression profiles is not taken into account. Hence,
in order to integrate information from molecular interactions
between genes, network-based constrained methods for high-
dimensional Cox regression have been introduced.

In this context, the regression coefficients are estimated by
maximizing the penalized Cox’s log-partial likelihood function

Phen(B) =Y 8 {XiB —log | Y exp(XjB) | t—P.(B), (2)

i=1 jeR(t;)

where P, (f) is a network-constrained penalty function on the
coefficients .

Such penalty function describes the existing relationships
among the covariates (genes) specified by a network G
(V,E, W) (weighted and undirected graph), where V
{1, e, p} is the set of vertices (genes/covariates), an element
(i, ) in the edge set E C V x V indicates a link between vertices
iand jand W = (wy), (i, j) € E is the set of weights associated
with the edges. These weights are usually used to represent the
relations between genes in terms of gene—gene interaction, KEGG
pathway analysis or PPI. Hence, the network structure plays
an important role since it incorporates prior gene regulatory
information often ignored.

The three regularized network-based Cox regression models
used in our study are presented below and differ in the form of
the penalty function P, (B).

Net-Cox method
Net-Cox regression (Zhang et al., 2013) is an extension of the
L,-Cox model and uses the following penalty function
Pro(B) =r[llBl} + (1—a)2(B)]. 3)
where A > 0 and @ € (0, 1] are two regularization parameters in
the network constraint. and
O(B) = > wi(Bi— ). (4)

(i,j)eE

The penalty (3) consists of two terms: the first one is an L,-norm
of B that regularizes the uncertainty in the network constraint;
the second term is a network Laplacian penalty ®(8) that
encourages smoothness among correlated gene in the network
and encode prior knowledge from a network.

Given a normalized graph weight matrix W, we assume that
co-expressed (related) genes are assigned similar coefficients by
defining the cost term ®(fB) as reported in Equation (4). ®(8)
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can be also written as ®(8) = /(I — W) = B’'LB where Lisa
positive semi-definite matrix derived from network information
(weight matrix W) and I is an identity matrix. Hence, the
objective function will result in a significant cost in the network
if any pair of genes is connected by an high weight edge and the
difference between their coeflicients is large.

Note that to identify the signature genes classified by Net-Cox,
which is a ridge regression based method, we create a consensus
ranking of the relevant cancer genes.

Adalnet Method
Adaptive Laplacian net (Sun et al., 2014) is a modified version
of a network-constrained regularization procedure for fitting
linear models and for variable selection (Li and Li, 2008, 2010)
where the predictors are genomic data with graphical structures.
AdaLnet is based on prior gene regulatory network information,
represented by an undirected graph for the analysis of gene
expression data and survival outcomes.

Denoting with d; = Zi:(i,j)eE wjj the degree of vertex i,
AdaLnet defines the normalized Laplacian matrix L = (I;;) of the
graph G by

1, ifi=jandd; #0,
lij= { —wij/\/did;, if(i, j) € E, (5)
0, otherwise.

Note that L is positive semi definite. The network-constrained
penalty in Equation (2) is given by

Pro(B) =A[alBl + 1 —a)¥(B)], (6)
with

Z wij (Sign()éi)ﬂi/\/gi - Sign(gj)ﬂj/\/;j>2_

(i.j)eE

V() =

Equation (6) is composed by two penalty terms. The first one
is an Lj-penalty that induces a sparse solution, the second
one is a quadratic Laplacian penalty V() B'LB that
imposes smoothness of the parameters § between neighboring
vertices in the network. Note that L S'LS with S
diag(sign(f}l), R sign(ﬁp)) and 8 = (,31, e, Bp) is obtained
from a preliminary regression analysis. The scaling of the
coefficients B respect to the degree allows the genes with more
connections (i.e., the hub genes) to have larger coefficients.
Hence, small changes of expression levels of these genes can lead
to large changes in the response.

An advantage of using penalty (6) consists in representing the
case when two neighboring variables have opposite regression
coeflicient signs, which is reasonable in network-based analysis
of gene expression data. Indeed, when a transcription factor (TF)
positively regulate gene i and negatively regulate gene j in a
certain pathway, the corresponding coefficients will result with
opposite sign.

Note that in Net-Cox and AdaLnet, L is the parameter
controlling the weight between the likelihood and the network
constraint and « € (0, 1] is the parameter weighting the network
constraint.

Fastcox Method

The penalty function of fastcox (Yang and Zou, 2012) computes
the solution paths of the elastic net penalized Cox’s proportional
hazards model (Wu, 2012). In this method the penalty function
in Equation (2) is given by

Pio(B) =2 [awuﬁnl + %(1 - a)llﬂll%] ,

where the non-negative weights w allow a more flexible
estimation. In particular, setting w; = 0 implies no shrinkage
and the variable j will be always included in the final model.
Default is 1 for all variables. @ € (0, 1] is the elastic net trade
off. This regularization technique is a combination of the lasso
and ridge penalty that produce a sparse model (given by the
L;-penalty) with good prediction accuracy, while encouraging a
grouping effect. It is worthy to note that this method does not
include any gene network information. It has been used in our
study to obtain pathways investigation and survival prediction
from a relevant method that is simply based on statistical
framework.

Tuning Parameters by Five-Fold

Cross-Validation

For all the methods, we estimated the regularization parameters
using cross-validation. Four-folds of data are used to build a
model for validation on the fifth fold, cycling through each of
the five-folds in turn. Then, the (A,«) pair that minimizes the
cross-validation log-partial likelihood (CVPL) are chosen as the
optimal parameters. CVPL is defined as

CVPL(A, ) = LIy A

—= Z{e(ﬂ

@) — ' a),

8)
where B (_k)(-) is the estimate obtained from excluding the kth
part of the data with a given pair of (A, ), £(-) is the Cox log-
partial likelihood on all the sample and £(=¥)(.) is the log-partial
likelihood when the kth fold is left out (van Houwelingen et al,,
2006).

General Algorithm: A Re-Sampling Method

for Survival Prediction

The prediction capabilities of a given method are usually
evaluated using a training set to select the markers and a testing
set to measure the goodness of the prediction. In several cases
training and test sets are obtained splitting a given dataset in two
parts. However, findings could be over optimistic depending on
the specific split. To further understand the role of the network
information in cross-validation and to overcome the drawbacks
of investigating only one split, each network-based model was
validated with the re-sampling procedure suggested by Simon
etal. (2011b). This method is based on a cross-validated estimate
of the survival distribution of the risk groups and provide a more
efficient use of data than fixed sample splitting (see Figure 2).
The steps of the re-sampling algorithm for survival prediction
are presented below.
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Procedure 1: k-fold Cross-validated Kaplan-Meier survival
method

1. The full dataset D is partitioned into K approximately equal
parts Dy, ..., Dg.
Foreachk=1,...,K
2. Set Ty = D — Dy as the training set and Dy, as the testing set.
3. Perform network-based Cox regression on T} and select high-
risk cancer genes Gg. Denote the parameter estimate by ﬁTk.
4. Calculate the prognostic index (PI) for each patient i in Dy as

Dk _ ’ A
PIik —xik,BTk,

where x;, is the vector of gene expression value associated
to the ii-th patient into the k-fold. Each patient i, in Dy is
assigned into the high/low-risk group if its prognostic index
PIZZ" is above (or below) a fixed threshold PI*Tk defined
adaptively on Tj.

5. All the patients classified as low-and-high risk in any of the
folds are grouped together and a single Kaplan-Meier curve is
computed as the union of the risk groups defined in each fold.
The set of predictive genes is selected as the union of G, for
k=1,....K.

6. Compute the log-rank yx statistic under the null hypothesis
that survival is independent of expression profile.

7. Calculate a permutation p-value as follows:

(i) from the m-th permutation data (m 1,..., M),
compute the log-rank le statistic using the cross-
validation procedure (1-6),

(ii) compute the permutation p-value, p, as

M
p=M"1Y 1P, = Py).

i=1

For our analysis, the estimate BTk in step 4 was computed by using
five-fold cross-validation (i.e., K = 5) to select the optimal tuning
parameter values (A1, , @, ), that we used to fit the corresponding

penalized function PXT ar (BTk) on Tg. In particular, we first set
KoYk

«a to a sufficiently fine grid of values on [0, 1]. For each fixed o, A
was chosen from {107°,1074,1073,1072, 107!, 1} for Net-Cox,
while it was set A to a decreasing sequence of values Ay t0 Apin
automatically chosen for AdaLnet and fastcox.

In step 5, we selected PI*> Tk as the optimal cut-off in terms of
PIPk, By using the PI:{ k, it was possible to split the patients in two
subgroups, i.e., high-risk and low-risk prognosis groups. Thus, the
patient i, in T was assigned to the high-risk (or low-risk) group
if his prognostic index PIiT k¥ was above (or below) the quantile
selected on a grid of given values that spans from 30 to 70%. The
cut-off PI* Tk was chosen in correspondence to the lowest p-value
in a log rank test on this grid.

In step 7, we set M equal to 500.

Survival Analysis
Network-based Cox regression model was used to discover
significant variables, i.e., genes, correlated with death risk.

Overall survival (OS) curves were estimated using the Cross
Kaplan-Meier estimator and compared using the two-sided
log-rank test as implemented in the R package survival. The
statistical significance of the log-rank statistic related to the
cross-validated Kaplan-Meier curves was obtained through a
permutation distribution (Simon et al., 2011b) as described
in the previous section. Permutation test was used to test
the association between high-risk or low-risk groups and p <
0.05 were considered statistically significant. A simple scheme
of the applied procedure for OS estimation is reported in
Figure 2.

Furthermore, we also validated the predictive performance
of the three methods using independent dataset for training
and testing. In this context, we used the largest dataset as
training set to identify the gene expression signatures (see
Figure 2, step 2). Then, the second independent dataset was
considered as test set in order to analyze the survival prediction
of the models. We used Kaplan-Meier survival curves and
log-rank test to perform the analysis (see Figure2, step
3).

Pathway Analysis

We performed pathway analysis based on KEGG database and
on the Human Experimental/Functional Mapper (Huttenhower
etal., 2009). In particular, we focused on a gene-gene interaction
analysis developing gene-networks that describe the relations
between genes in terms of KEGG pathways. Each node in the
network represents a gene and an edge between two nodes means
that the two genes belongs to the same pathway. Different colors
are used for different pathways. The color of each node indicates
how strong is the relationship between the gene and the disease
under analysis (ovarian and breast cancer; Huttenhower et al,,
2009). The p-value chosen within the interval [0, 0.1] represents
the node color intensity. Red color, that is p = 0, means that
there is a high significant gene-disease relation, while green color,
that is p = 0.1, means that not exist a relevant gene-disease
relation.

Gene networks have been computed by considering only the
not isolated genes in the intersection between KEGG pathways
and the set of genes selected by each method. Given a set of
genes G and the set of all the KEGG pathways K, we defined a
gene g as not isolated if G N K 2 {g}. Namely, g is not isolated
if there is at least another gene ¢’ € G belonging to the same
pathways of g.

Software

The methodological approach presented in Figure 2 has been
implemented as an integrative R script that allows to run
the different algorithms under the same R environment. Net-
Cox, which is a Matlab toolbox (http://compbio.cs.umn.edu/Net-
Cox/), AdaLnet, available as an R code and sent us upon request
and fastcox, which is an R package (http://code.google.com/p/
fastcox/) were merged together by using R.matlab, https://cran.
r-project.org/web/packages/R.matlab/index.html. The script also
includes the implementation of the re-sampling permutation
approach (Simon et al., 2011b) and the cross-validation method
for parameters estimation. Both simulated and real data can
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be used to run the script which can be easily adapted for the
integration of new Cox models.

For real data analysis, the microarray data were preprocessed
using R packages available in Bioconductor. First, we selected
from the initial dataset the genes that were more likely to be
involved in cancer by using a functional map summarizing
the most relevant interactions in the cancer area of interest
(Huttenhower et al., 2009). Then, we used HEFaIMp tool
(Huttenhower et al, 2009) to build the genes network and
identify the weight of the edges between the selected genes.
Finally, Net-Cox, AdaLnet, and fastcox were implemented
integrating a cross-validation method for selecting the optimal
tuning parameters A and « and a re-sampling based procedure
(Simon et al., 2011b), see Procedure 1.

The scripts are available upon request from the first two
authors.

DATA ANALYSIS

Simulation Scheme

We used the three methods in two different simulation settings
(Wu and Wang, 2013; Sun et al,, 2014) in order to investigate
the performances and the properties of the three models and
to facilitate the interpretation of results. We considered two
scenarios that are likely to be encountered in genomic studies
and we simulated gene expression data as network constrained.
Both the two settings consist of 100 regulatory networks. Each
regulatory network is composed by one transcription factor (TF)
that regulates 10 genes resulting in a total of 1100 genes. Detailed
settings are given below.

Scenario 1: Not-Overlapped Networks

The first setting simulates a scenario with not-overlapped
networks, which means that the 100 regulatory networks are
disjoint each other and each gene is linked to only one TF. Under
this assumptions, the degree d; of each TF = 10 and d; = 1 for the
regulated genes. The edges’ weight w;; = 1 between the TFs and
their regulated genes, w;; = 0 otherwise. The expression value of
each TF was generated from a normal standard distribution. The
expression values of the ten regulated genes were generated from
a conditional normal distribution with positive correlation (p =
0.7) between the expression of five genes and the corresponding
TE and negative correlation (p = —0.7) for the remaining five
genes. This simulates the activation or repression of each gene
under the effect of the corresponding TF. The failure times were
generated from the Cox model

88

At1X) = ro(t) exp(D BiX))

=1

which includes only s = 88 relevant genes (i.e., eight regulatory
networks). The baseline hazard function A¢(t) was specified
by a Weibull distribution with shape parameter 5 and scale
parameter 2. Censoring times were generated from U(2, 15) with
a censoring rate of about 30%. The sample size was fixed at
n = 200 and the simulation were replicated 100 times. In this
setting of not-overlapped genes, the coefficients g, j=1, ..., 44

were generated from the uniform distribution U(0.1, 1), while g;,
j=45, ..., 88 were generated from U(—1.5, —0.1).

For each of the settings above, we quantified the noise as the
mean between the variance of each transcription factor (TF) and
the variance of the 10 corresponding regulated genes.

Scenario 2: Overlapped Networks

The second setting simulates a scenario with overlapped
networks, where four regulatory networks (i.e., 44 genes) are
connected to the other four networks. This mimics the fact that
some genes can belong to different pathways regulating different
biological processes, as often observed in cancer. For the sake of
simplicity, we assume that all the genes (including the TF) in the
networks P3, P4, Ps, and Pg are connected to the genes in the
remaining four network Pj, P,, P, and Pg which are maintained
disjointed and independent each other. The expression values
of the TFs and the regulated genes were generated from a
multivariate normal distribution with cov(X;, X;) = 0.5,
The coefficients j, j = 1,...,22, corresponding to P1 and
P2, were generated from the uniform distribution U(0.1, 0.5),
the coefficients corresponding to the 44 common genes §;, j =
23, ..., 66 were generated from U(—0.1, 0.1) and the coeflicients
Bj»j = 67, ..., 88, corresponding to P; and Pg, were generated
from the uniform distribution U(—1, —0.5). Survival times were
generated as reported in the first setting with the same censoring
rate.

Statistical Measures

The performance of each method is summarized by four
measures: sensitivity, specificity, number of genes selected, and
the Matthews correlation coefficient (MCC). The sensitivity or
true positive rate (TPR) and specificity or true negative rate (TNR)
are given by

TP
" TP+ EN’

TN

TPR R= ——r,
TN + FP

where TP, TN, FP, and FN denote the numbers of true positives,
true negatives, false positives, and false negatives, respectively. A
test with high sensitivity (few false negative) has a low type II
error rate, while a test with a high specificity (few false positive)
has a low type I error rate. The number of genes selected refers
to the genes identified as relevant by each method in the training
set. The analysis of these genes gives information on prediction
accuracy.
The Matthews correlation coefficient (MCC) is defined as

B TP x TN — FP x FN
/(TP + FP)(TP + FN)(IN + FP)(IN + FN)’

MCC

The MCC measure is an global measure of accuracy, and a larger
MCC indicates a better performance.

Real Data Applications

We applied the three network methods on different real datasets
containing large-scale microarray gene expression measurements
from ovarian and breast cancer including survival information
(see Table 1) in order to facilitate the detection of molecular
biomarker and pathway analysis with clinical utility.
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TABLE 1 | Microarray Dataset Summary (OS = overall survival).

Datasets Ref. Sample Platform Genes Survival Cancer
number number data type
GSE26712 Bonome et al., 2008 185 Affymetrix U133A 13104 [ON] Ovarian
OV-TCGA The Cancer Genome Atlas Research Network, 2011 578 Affymetrix U133A 13104 oS Ovarian
GSE20685 Kao et al., 2011 327 Affymetrix U133Plus2 21686 (OS] Breast
GSE7390 Desmedt et al., 2007 198 Affymetrix U133A 13718 (OS] Breast

Ovarian Datasets

We downloaded the first ovarian dataset from NCBI Gene
Expression Omnibus as raw .CEL files (Bonome: GSE26712).
The data contain gene expression profiling for extensive set of
185 primary ovarian tumors untreated late-stage (III-IV) high-
grade (2,3) patients hospitalized at the Memorial Sloan-Kettering
Cancer Center between 1990 and 2003. The Affymetrix human
U133A microarray platform was used. The second ovarian
dataset, the ovarian TCGA, was downloaded from The Cancer
Genome Atlas data portal (The Cancer Genome Atlas Research
Network, 2011). It was obtained at the gene level (level 3) using
the Affymetrix human U133A microarray from 578 samples. All
patients were diagnosed with high-grade serous carcinoma and
were in an advanced stage. We noted that such datasets are very
similar in terms of type of patients, platforms, and cancer disease.
Therefore, they can be also used for validation.

Breast Datasets

The breast cancer microarray datasets were downloaded from
NCBI GEO database as raw .CEL files (Kao: GSE20685 and
Desmedt: GSE7390). Gene expression profiling of the first
dataset was conducted on fresh frozen breast cancer tissue
collected from 327 patients diagnosed and treated between 1991
and 2004 at the Koo Foundation Sun-Yat-Sen Cancer Center.
Hybridization targets were prepared from total RNA according
to the Affymetrix U133 plus 2.0 platform. The second breast
cancer dataset was chosen on gene expression profiling of frozen
samples from 198 N—systemically untreated patients at the
Bordet Institute. It was based on the Affymetrix U133 platform.

Preprocessing

All the raw files were processed and normalized by RMA package
available in Bioconductor (Gentleman et al., 2004). Between
arrays normalization was carried out by using the preprocessCore
package available in Bioconductor (Gentleman et al., 2004).
Survival data (OS, i.e., overall survival), censoring indicator and
time to death, for each patients in every dataset were also given
(Figure 2, step 1).

Cancer Genes and Related Functional Networks

Following our previous study (Iuliano et al., 2014), in order
to better analyze real datasets, we first applied a biologically
inspired size reduction of the dataset, then we built an a-priori
network information for the type of cancer under investigation
(see Figure2, step 1). For a better focus on genes that are
more likely to be relevant in cancer, we selected the high-risk
cancer genes using the Human Experimental/Functional Mapper

TABLE 2 | Significant genes number selected using HEFalMp tool.

Datasets Genes number
GSE26712 1068
OV-TCGA 1068
GSE20685 536
GSE7390 536

(Huttenhower et al.,, 2009), which is based on a regularized
Bayesian integration system. This mapper provides a p-value for
each gene describing the significance of the relation between
the gene and the disease of interest (breast and ovarian cancer,
respectively). In our analysis, we selected only the genes with p
< 0.05. A summary of the final number of the genes selected
from each dataset is reported in Table 2. The network matrices
used to test the network-based Cox models in our analysis
were also derived from the Human Experimental/Functional
Mapper which provides maps describing the genes functional
activity and interaction networks in over 200 areas of human
cellular biology with information from 30,000 genome-scale
experiments. This functional network summarizes information
from a variety of biologically informative perspectives: prediction
of protein function and functional modules, cross-talk among
biological processes, and association of novel genes and pathways
with known genetic disorders (Huttenhower et al., 2009). The
edges of the network are weighted between [0, 1] and express the
functional relation between two genes. Note that the functional
linkage network includes more information than Human PPI,
frequently used as the network prior knowledge. It is clear
that taking into account such biological knowledge helps in
identifying significant genes that are functionally related in order
to obtain important results biologically interpretable.

In order to adapt the gene network to the different methods,
the final weight matrix was slightly different from method to
method. In particular, since AdaLnet requires a weight matrix
consisting of 0 and 1, each matrix element was set equal to 0 (or 1)
if the weight value was below (or above) a fixed threshold equals
to 0.5. On the other hand, Net-Cox uses the original weight matrix
as obtained in the original paper (Huttenhower et al., 2009).

RESULTS

In our study, we analyzed three network-based Cox regression
methods described in Section Methods both on simulated
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TABLE 3 | Simulation results for Not-Overlapped settings. Sensitivity, specificity, number of selected genes, false positive rates, and MCC were averaged
over the 100 replications.

Sensitivity Specificity No. genes No. FP MCC

Net-Cox

No. genes = 44 0.240 (0.042) 0.977 (0.004) 44.000 (0.000) 22.910 (3.677) 0.300 (0.063)
No. genes = 88 0.489 (0.071) 0.956 (0.006) 88.000 (0.000) 44.940 (6.233) 0.445 (0.077)
No. genes = 176 0.737 (0.087) 0.890 (0.008) 176.000 (0.000) 111.180 (7.692) 0.464 (0.070)
AdalLnet

General setting 0.444 (0.250) 0.792 (0.170) 249.360 (193.786) 210.330 (172.384) 0.190 (0.059)
No. genes < 100 0.200 (0.085) 0.967 (0.021) 51 (27.256) 33.395 (21.227) 0.220 (0.064)
No. genes > 100 0.627 (0.160) 0.660 (0.099) 399 (113.254) 343.807 (100.118) 0.166 (0.041)
fastcox

General setting 0.141 (0.117) 0.970 (0.037) 42.62 (46.613) 30.19 (37.833) 0.160 (0.082)
No. genes < 10 0.017 (0.017) 0.999 (0.0002) 1.524 (1.486) 0.048 (0.216) 0.099 (0.07)
No. genes > 10 0.231 (0.063) 0.949 (0.036) 72.379 (40.331) 52.017 (36.492) 0.204 (0.054)

The table reports three consensus rankings for Net-Cox obtained selecting 44, 88, and 176 genes. For Adalnet and fastcox, we show the results related to the general setting, and
the statistical measures obtained when the number of selected genes is higher (or lower) of a fixed threshold (threshold was set equal to 100 for Adalnet and equal to 10 for fastcox).
Standard deviation is reported in brackets.

TABLE 4 | Simulation results for overlapped settings.

Sensitivity Specificity No. genes No. FP MCC

Net-Cox

No. genes = 44 0.156 (0.043) 0.970 (0.004) 44.000 (0.000) 30.240 (3.766) 0.175 (0.064)
No. genes = 88 0.288 (0.044) 0.938 (0.004) 88.000 (0.000) 62.620 (3.842) 0.227 (0.048)
No. genes = 176 0.386 (0.044) 0.860 (0.003) 176.000 (0.000) 142.010 (3.860) 0.182 (0.035)
AdalLnet

General Setting 0.262 (0.178) 0.879 (0.144) 145.280 (160.666) 122.240 (145.679) 0.166 (0.067)
No. genes < 100 0.141 (0.064) 0.977 (0.020) 35.635 (24.760) 23.206 (20.296) 0.196 (0.060)
No. genes > 100 0.467 (0.106) 0.713 (0.105) 331.973 (114.325) 290.865 (106.135) 0.114 (0.043)
fastcox

General setting 0.098 (0.099) 0.974 (0.039) 34.55 (47.732) 25.89 (39.807) 0.134 (0.061)
No. genes < 10 0.019 (0.015) 0.999 (0.0001) 1.679 (1.281) 0.0178 (0.134) 0.115 (0.065)
No. genes > 10 0.199 (0.061) 0.942 (0.040) 76.386 (45.224) 58.818 (40.830) 0.158 (0.044)

Sensitivity, specificity, number of selected genes, false positive rates and MCC were averaged over the 100 replications. The table reports three consensus rankings for Net-Cox obtained
selecting 44, 88, and 176 genes. For Adalnet and fastcox, we show the results related to the general setting, and the statistical measures obtained when the number of selected
genes is higher (or lower) that a fixed threshold (threshold was set equal to 100 for Adalnet and equal to 10 for fastcox). Standard deviation is reported in brackets.Standard deviation
is reported in brackets.

and real data. Here, the major interest is the association of to biomedical community in the form of a comprehensive

genomic features with clinical outcomes under specific scenarios. ~ methodological procedure (see Figure 1).

Simulation studies were based on two different biological

scenarios and were introduced to show the performance of

the selected network methods. While, real data analysis was ~ Simulation Studies

performed in order to provide a better understanding of the = We analyze the performance of the three analyzed methods in

outcomes in terms of predictive/prognostic biomarkers and  two simulation settings where the number of relevant genes

to demonstrate their validity and clinical utility. In particular,  is fixed a-priori to 88 genes. The first setting simulates a

we first investigated the three methods in terms of survival  scenario with not overlapped pathways, which means that

prediction performances and then, a pathway analysis was carried  each gene in the network belongs to only one pathway (not-

out focusing on the relevance in cancer of the selected genes. overlapped pathways). The second setting represents a more
It is important to note that the goal of this study is not to  realistic scenario with a set of genes shared among different

provide a rank list of the analyzed methods, but to present a  pathways (overlapped pathways). In both cases, a five-fold cross

accurate study for the identification of new cancer related genes  validation was conducted on the full dataset in order to select the

and core pathways in order to make available such information  tuning parameters (A, @) and to obtain the coefficient estimates
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TABLE 5 | Optimal « cross-validated value calculated on the k training sets.

Datasets k Partitions Net-Cox AdaLnet fastcox

o Genes selected « Genes selected « Genes selected
GSE26712 5 0.2 101 0.5 23 0.01 453
OV-TCGA 5 0.5 99 0.5 38 0.1 623
GSE20685 5 0.5 76 0.5 28 0.01 298
GSE7390 5 0.5 89 0.5 14 0.01 423

by using the three methods. The details of the simulation data are
reported in Section Methods.

The performance of each method is summarized by several
statistical measures: sensitivity, specificity, number of selected
genes, false positive rates, and Matthews correlation coefficient
(MCCQC). Simulation results for both the models are reported
in Tables 3, 4, respectively (standard deviation is reported
in brackets). To analyze the signature genes identified by
Net-Cox, which is a method based on ridge regression, we
considered three different consensus rankings where the number
of significant genes selected by the method was fixed to 44, 88,
and 176 genes, respectively. The selected genes were classified
in descending order according to the absolute value of the
regression coefficients. On the other hand, to better highlight the
variable selection performance of AdaLnet and fastcox, we split
the 100 iterations in two groups based on the number of genes
selected at each iteration. We fixed 100 genes as threshold for
AdaLnet and 10 genes for fastcox, then we computed again the
statistical measures based on the two groups.

In the not-overlapped setting, Net-Cox performed better than
the other two methods as showed by the MCC, which provides
an overall measure of accuracy. In particular, when considering
44 and 88 genes, the false positive rate in Net-Cox was 22.910
and 44.940, respectively, with MCC equals to 0.300 and 0.445.
Sensitivity and specificity were, respectively, 0.240 and 0.977 in
the first case, 0.489 and 0.956 in the second case study. When the
number of selected genes was increased to 176, even if the false
positive rate increased resulting in a lower specificity (0.890), the
sensitivity reached its highest values producing the highest MCC
(0.464).

Since the majority of the selected genes were irrelevant and
both AdaLnet and fastcox resulted in sparse models, specificity
was much higher than sensitivity and was comparable between
the two variable selection methods. In particular, in the not-
overlapped setting, AdaLnet selected in average 249.360 genes
with a false positive rate equals to 210.330. Sensitivity and
specificity were equal to 0.444 and 0.792 resulting in a MCC of
0.190. On the other hand, fastcox selected in average 42.62 genes
with a false positive rate of 30.19. MCC was equal to 0.160 with
sensitivity 0.141 and specificity 0.970.

AdaLnet had the best performance when the number of
selected genes was below 100, while fastcox exhibit the best
performance when the number of genes was above 10. This
means that in the other cases the methods fail in the execution
of the cross-validation (see Supplementary Image 1).

In the overlapped-pathways setting, Net-Cox obtained the
highest MCC overall when considering 88 genes (MCC equals
to 0.227) with a false positive rate equals to 62.620, sensitivity
0.288 and specificity 0.938. However, even if the specificity
levels of the three consensus rankings were almost equal to the
previous setting (specificity for 44, 88, and 176 genes equals
to 0.970, 0938, and 0.860, respectively), in this setting Net-Cox
sensitivity decreased resulting in lower MCC compared to the
not-overlapped case (MCC for 44, 88, and 176 genes equals to
0.175, 0.227, and 0.182, respectively). AdaLnet and fastcox also
reported lower MCCs compared to the not-overlapped setting
(MCC equals to 0.166 in AdaLnet and 0.134 in fastcox). In
particular, both AdaLnet and fastcox showed an higher specificity
than before (0.879 and 0.974, respectively) but a lower sensitivity
(0.262 and 0.098). Further analysis showed that AdaLnet had the
highest MCC when the number of selected genes was below 100
(MCC 0.196), while fastcox had the highest MCC (0.158) when
the number of selected genes was above 10, in accordance with
the previous results (see Supplementary Image 2).

Real Data Analysis

In order to evaluate the performance of the three Cox models in
terms of survival analysis, we used cross-validated Kaplan-Meier
curves (Simon et al., 2011b) for overall survival (OS) both on
ovarian and breast microarray studies (see Figure 2, step 2). Note
that p-value was estimated within the same dataset but the cross-
validation approach is used to correct over optimistic conclusions
due to the lack of independence between samples.

Moreover, since the ovarian datasets are comparable in terms
of types of patients, platforms and cancer disease, Kaplan-Meier
curves and two-side log-rank test were used to estimate the
survival time and stratify the low-risk and high-risk groups on
the independent test set (see Figure 2, step 3).

Table 5 reports the number of genes selected by the three
Cox regression methods for each OS and the optimal tuning
parameter «. Interestingly, the optimal o was often equal to
0.5, indicating that there was a good balance between statistical
constraints and network information. These results confirm that
the network carries important information useful for improving
survival analysis. Moreover, since Net-Cox is a method based on
ridge regression, the genes are only shrunk and it is necessary
to fix a threshold for selecting the most relevant cancer genes.
Hence, within each fold, we ordered the genes according to the
absolute value of the corresponding regression coefficients, then
we considered the union of the top 50 genes selected in each fold.
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FIGURE 3 | Cross-validated Kaplan-Meier curves of the prognostic
models on GSE26712 dataset. The patients are divided in high-risk and
low-risk groups based on the pathways and genes selected by each methods
for overall survival (OS). The survival probabilities of these two groups are
compared using the log-rank test by using Net-Cox (A), AdaLnet (B), and
fastcox (C).

In the following, we present the main results obtained.

Results on the Ovarian Datasets

Figures 3, 4 show the cross-validated Kaplan-Meier curves for
high-and-low risk groups patients selected in the ovarian datasets
(Benome: GSE26712 and OV TCGA datasets, respectively).

0 50 100 150

Time (months)

FIGURE 4 | Cross-validated Kaplan-Meier curves of the prognostic
models on OV TCGA dataset. The patients are divided in high-risk and
low-risk groups based on the pathways and genes selected by each methods
for overall survival (OS). The survival probabilities of these two groups are
compared using the log-rank test by using Net-Cox (A), AdaLnet (B), and
fastcox (C).

Figure 3 shows that in the Bonome dataset the gap between the
survival curves of the two risk groups in Net-Cox (Figure 3A) and
fastcox (Figure 3C) is wider compared to AdaLnet (Figure 3B).
In particular, in predicting survival probabilities, fastcox
(permuted p < 0.05) seem to discriminate the risk groups better
than Net-Cox and AdaLnet where the permuted p > 0.05. These
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FIGURE 5 | Kaplan-Meier curves for validation test on GSE26712
ovarian dataset. The curves show the patients stratified by using the genes
selected in the OV TCGA dataset by Net-Cox, AdalLnet, and fastcox [(A), (B),
and (C), respectively] with threshold p < 0.05.

findings confirm the results previously obtained in Tuliano et al.
(2014), in relation to the survival curves for each method. This
was mainly due to the cross-validation approach used in this
analysis to overcome the sample splitting problem with too small
dataset.

On the other hand, in the OV TCGA dataset (Figure 4), the
survival curves for high-and-low risk patients are not significantly
separated. In particular, fastcox is the only method with a

Time (years)

FIGURE 6 | Cross-validated Kaplan-Meier curves of the prognostic
models on GSE20685 dataset. The patients are divided in high-risk and
low-risk groups based on the pathways and genes selected by each methods
for overall survival (OS). The survival probabilities of these two groups are
compared using the log-rank test by using Net-Cox (A), AdaLnet (B), and
fastcox (C).

significant difference (permuted p < 0.05) in the OS between the
high-and-low-risk groups.

Finally, to test the survival prediction across independent
datasets, we used the ovarian OV TCGA dataset as training set,
and the Benome dataset as the test set to predict the risk scores
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FIGURE 7 | Cross-validated Kaplan-Meier curves of the prognostic
models on GSE7390 dataset. The patients are divided in high-risk and
low-risk groups based on the pathways and genes selected by each methods
for overall survival (OS). The survival probabilities of these two groups are
compared using the log-rank test by using Net-Cox (A), AdaLnet (B), and
fastcox (C).

of the patients (see Figure 2, step 3). Figure 5 shows the Kaplan—
Meier curves for the two risk groups (high-and-low risk groups)
in the Benome dataset obtained by Net-Cox (Figure 5A), AdaLnet
(Figure 5B), and fastcox (Figure 5C). All the three methods gave
a significant p-value at the 5% significance level (log-rank test,
p < 0.05).

Results on Breast Datasets

Figures 6, 7 show the cross-validated Kaplan-Meier curves for
high-and-low risk groups patients selected in the breast datasets
(Kao: GSE20685 and Desmedt: GSE7390, respectively). In the
Kao dataset, the permuted p-value related to Figure 6A (Net-Cox)
and Figure 6C (fastcox) was smaller than 0.05, which means the
high-risk and low-risk groups were significantly separated and the
selected pathways and genes were related to survival times. In
Figure 6B (AdaLnet), a patient of the high-risk group fell in the
low-risk group and the permuted p-value is not significant.

We performed the same analysis for high-and-low risk
patients in the Desmedt dataset. Also in this case, there was
a significant difference in OS between the two risk groups as
shown in Figure 7A (Net-Cox) and Figure 7C (fastcox) where the
permuted p-value is smaller than 0.05. In Figure 7B (AdaLnet)
the permuted p-value is not significant.

Identified Pathways

In this section, we present the results of the analysis in terms of
KEGG pathways analysis based only on not-isolated genes (see
section Methods for details). We report here only the networks
related to AdaLnet and Net-Cox since all the networks related
to fastcox have more than 100 node and 2000 edges and a clear
visualization would not be possible. However, the lists of the
genes selected by fastcox and the related pathways are reported
in Supplementary Table 1 (ovarian datasets) and Supplementary
Table 2 (breast datasets).

Figures 8, 9 show the gene-networks obtained for the Bonome
dataset (GSE26712) built on the genes identified by Net-Cox and
Adalnet, respectively. From the color of the nodes, we can infer
that all the selected genes have a significant relation with ovarian
cancer. Indeed, almost all the genes are close to red except for
AKT3 which has a p-value correlation equal to 0.039. Indeed,
AKTS3 is usually involved in prostate and breast cancer (Nakatani
et al., 1999). However, since it was selected both by Net-Cox and
fastcox, a possible significant relation between AKT3 and ovarian
cancer could be inferred as indeed confirmed by literature (Liby
etal., 2012). In particular, AKT3 has a specific role in the genesis
of ovarian cancer through modulation of G2-M phase transition
(Cristiano et al., 2006). As showed in Figure 8, AKT3 is also
involved in many cancer pathways, such as KEGG basal cell
carcinoma, KEGG prostate cancer, and KEGG melangiogenesis. It
is worthy to note that this gene was also selected in our previous
study (Tuliano et al., 2014) by all the analyzed methods and it was
also involved in the same cancer related pathways. These findings
confirm the importance of AKT3 in ovarian cancer as confirmed
indeed by literature (Cristiano et al., 2006).

In the Bonome dataset (GSE26712), Adalnet selected only two
not-isolated genes (RBI and BRCA2) involved in two different
cancer pathways (Figure 9). Both the genes have been frequently
observed in epithelial ovarian cancer (Flesken-Nikitin et al.,
2003; Dinulescu et al., 2005; Naora and Montell, 2005) and
several studies report their stable correlation (Flesken-Nikitin
et al., 2003; The Cancer Genome Atlas Research Network, 2011).
Moreover, the strong interaction between RBI and the tumor
protein TP53 (Dong et al.,, 1997; Schuijer and Berns, 2003) has
been identified by Net-Cox and fastcox (Figure 8).
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FIGURE 8 | Gene-network of not isolated genes selected by Net-Cox in the Bonome ovarian dataset (GSE26712). Each node represents a gene and an
edge between two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents
the p-value of the interaction between the gene and ovarian cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.
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FIGURE 9 | Gene-network of not isolated genes selected by Adalnet in
the Bonome ovarian dataset (GSE26712). Each node represents a gene
and an edge between two nodes means that the two genes belongs to the
same pathway. Different colors are used for different pathways. The color of
each node represents the p-value of the interaction between the gene and
ovarian cancer (Huttenhower et al., 2009). Genes with p > 0.10 are
represented in green.

Figures 10, 11 show the gene-networks obtained for the OV
TCGA ovarian dataset built on the genes identified by Net-Cox
and Adalnet, respectively. As already observed in the Bonome
dataset analysis, all the selected genes in the OV TCGA dataset
resulted strongly correlated with ovarian cancer. Indeed, almost
all the genes are close to red. The only gene with a slightly

different color is FZD3 which has a p-value of 0.049 and was
selected by all the three methods. Hence, even if this gene has
been mainly classified as gastric-cancer-related (Katoh, 2005),
our results prove that it also has a relevant effect in ovarian
cancer as confirmed by literature (Tapper et al., 2001). It is also
important to note that other genes have been selected by all
the three methods (i.e., GMPR, ENPPI, and APC). Such genes
have been already classified as ovarian-related in cancer literature
(Gayther et al., 1997; Kikuchi et al., 2007; Rikova et al., 2007),
but, in our analysis, the pathways involved in such relation are
also investigated. For example, while GMPR and ENPP]I interact
simply through the KEGG purine metabolism pathway, the APC-
FZD3 interaction involves three different pathways: KEGG basal
carcinoma, KEGG pathways in cancer, and KEGG wnt signaling
pathway.

It is worthy to note that some of the genes selected by the three
methods (e.g., NPY, COL5A1, EGFR, and FBLI) have been already
reported in literature (Zhang et al., 2013) where an analysis of
subnetwork signatures in ovarian cancer based on Cox model is
presented. Moreover, our approach selected new genes, such as
AKT3 and RB1, which are also related to ovarian cancer (Flesken-
Nikitin et al., 2003; Cristiano et al., 2006). These results show that
our findings are consistent with the previous ones including, at
the same time, other gene signatures.

Figures 12, 13 report the gene-networks selected in the Kao
dataset (GSE20685) by Net-Cox and Adalnet, respectively. FGFR2
and BCL2 were again selected in this dataset confirming the
strong relevance of the two genes in breast cancer. Moreover,
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FIGURE 10 | Gene-network of not isolated genes selected by Net-Cox in the TCGA ovarian dataset. Each node represents a gene and an edge between
two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of
the interaction between the gene and ovarian cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.
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FIGURE 11 | Gene-network of not isolated genes selected by Adalnet in the TCGA ovarian dataset. Each node represents a gene and an edge between two
nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of the
interaction between the gene and ovarian cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

BRCA2 (Wooster et al., 1995) was selected by Net-Cox and fastcox et al., 2006) and through our analysis new common biomarkers
confirming the accuracy of our analysis. It is also worthy to note  can be identified.

that in all the breast cancer gene-networks the KEGG prostate In the Desmedt dataset (GSE7390), all the genes selected by
cancer is always recurrent. This is mainly due to the common  Adalnet were isolated and no network was built in this case.
biomarkers between the two diseases (Yang et al., 1998; Mattie A list of the genes selected is reported in Table 6. Figure 14
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FIGURE 12 | Gene-network of not isolated genes selected by Net-Cox in the GSE20685 breast dataset. Each node represents a gene and an edge between
two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of
the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.
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the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.
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reports the gene-network related to the genes selected by Net-
Cox. All the selected genes show a strong relation with the
disease, such as FGFR2 and BCL2, which were selected by
both Net-Cox and fastcox and are involved in KEGG prostate
cancer and in KEGG pathways in cancer. Both the genes are
largely known as independent prognostic marker in breast
cancer (Hunter et al, 2007; Thomadaki et al., 2007; Callagy
et al, 2008). Both Net-Cox and fastcox selected UGT2BIS5,
which has a breast-cancer-correlation p = 0.049. This gene

has been usually involved in prostate cancer (Gsur et al,
2002), but recent works highlight its role also in breast cancer
(Wegman et al., 2007).

In the analysis of the breast datasets, there was no overlap
with our previous study (Iuliano et al., 2014). This was mainly
due to the different datasets analyzed here potentially (different
cancer subtype and different types of conditions) and to the more
sophisticated procedures followed in this analysis. Indeed, in our
previous work, we split the dataset in training and test set only
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FIGURE 14 | Gene-network of not isolated genes selected by Net-Cox in the GSE7390 breast dataset. Each node represents a gene and an edge between
two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of
the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

TABLE 6 | List of genes selected by Adalnet in the breast dataset methodological and practical strategy in research and clinical
GSE7390. settings.
Genes p-values Here, we presented an extended methodological strategy for
the analysis of gene signatures and survival prediction (see
BRCAT 0 Figure 1). We integrated a new cross-validation method (Simon
GYPB 0.0489 et al, 2011b) with the most recent network penalized Cox
MYBL2 0.0026 models (Yang and Zou, 2012; Zhang et al., 2013; Sun et al,
ADHB 0.0259 2014) to obtain an effective multi-splitting of the data and
GHRHR 0.0007 achieve an accurate survival prediction (see Figure2). The
GUCY2C 0.0323 analysis of the models was based both on simulated and real
PPP2R1B 0.0321 datasets in order to provide an accurate analysis in terms
SLC1A2 0.0450 of statistical and biological investigation. Indeed, we showed
SLC12A3 0.0483 that, given a number of variables not extremely high, all the
LIPF 0.0449 analyzed methods were able to select the altered genes under
TRIP13 0.0001 different simulation settings. On the other hand, the analysis
PPMAE 0.0026 on real cancer datasets showed that through the integration
CEP152 0.0064 of network information into Cox regression methods it is
PSPCH 0.0475 possible to identify cancer gene signatures with an accurate

prognostic performance. Therefore, the contribution of this
study is two-fold. Firstly, to obtain an integrative analysis of
cancer genes networks and survival prediction. Secondly, to
provide a computational and methodological framework for
better investigating cancers regulatory networks and facilitating
the management of patients in terms of prognosis, diagnosis and
treatment.
The findings of this study have a number of important
DISCUSSION AND CONCLUSIONS implications for future practice. Firstly, a practically appealing
study based on a fast screening procedure (Fan and Lv, 2008;
A key issue in cancer survival analysis is uncovering the relation ~ Fan et al., 2010) could be introduced in order to reduce
between gene expression profiles and cancer patients survival in  the size of the feature space to a moderate scale. In fact,
order to identify biomarkers for disease diagnosis and treatment.  several types of screening procedures could be combined
In the last years, there has been a growing interest in methods that ~ to integrate biological information into statistical screening
incorporate network information into classification algorithms  analysis and provide more definitive understanding of the
for genes signature discovery. The main aims are to identify = gene-regulatory networks. Secondly, the integration of clinical
molecular biomarkers that reliably predict patient’s response to  information and data from different omics (e.g., epigenomics or
therapy and to avoid ineffective treatment for reducing drug  metabolomics) into the screening procedure could also provide
side-effects and associated costs. For this purpose, prognostic =~ a more accurate investigation and prevent the drawbacks of
and diagnostic biomarker signatures need to be derived from  the current methods. Moreover, a more accurate biomarkers
omics data for various disease entities in order to offer useful  investigation could be performed using a number of high-quality

The second column reports the breast-cancer correlation p-value of each gene
accordingly (Huttenhower et al., 2009). All the selected genes resulted isolated and no
network was built in this case.

once, while here we used a cross-validation procedure that is
expected more robust results.
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binary PPIs available in literature (Rolland et al., 2014) where
a proteome-scale map of the human binary interactome is
compared to alternative network maps in order to give a
deeper insight into genotype-phenotype relationships. Finally,
it will be necessary to develop an user-friendly interface
to turn this methodological framework into a practical
tool.
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Issues of parameter identifiability of routinely used pharmacodynamics models are
considered in this paper. The structural identifiability of 16 commonly applied
pharmacodynamic model structures was analyzed analytically, using the input-output
approach. Both fixed-effects versions (non-population, no between-subject variability)
and mixed-effects versions (population, including between-subject variability) of each
model structure were analyzed. All models were found to be structurally globally
identifiable under conditions of fixing either one of two particular parameters.
Furthermore, an example was constructed to illustrate the importance of sufficient data
quality and show that structural identifiability is a prerequisite, but not a guarantee, for
successful parameter estimation and practical parameter identifiability. This analysis was
performed by generating artificial data of varying quality to a structurally identifiable
model with known true parameter values, followed by re-estimation of the parameter
values. In addition, to show the benefit of including structural identifiability as part of
model development, a case study was performed applying an unidentifiable model to
real experimental data. This case study shows how performing such an analysis prior
to parameter estimation can improve the parameter estimation process and model
performance. Finally, an unidentifiable model was fitted to simulated data using multiple
initial parameter values, resulting in highly different estimated uncertainties. This example
shows that although the standard errors of the parameter estimates often indicate a
structural identifiability issue, reasonably “good” standard errors may sometimes mask
unidentifiability issues.

Keywords: structural identifiability, practical parameter identifiability, mixed effects models, pharmacodynamic
models, fixed effects models

INTRODUCTION

Pharmacodynamic (PD) models quantify processes involved in drug action such as distribution
to the effect site, receptor binding and signal transduction. PD models are valuable in making
predictions of drug effects in un-tested scenarios such as outcomes across different populations
or with new dosing schedules. Such predictions may not always be valid: In particular, there may be
issues related to parameter identifiability. Within the concept of parameter identifiability, there are
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two distinct types: structural identifiability (Bellman and Astrom,
1970) and practical identifiability (Raue et al., 2009).

As suggested by the name, structural identifiability concerns
the inherent identifiability of the parameters in a model given
its structure and observed outputs (Bellman and Astrém, 1970).
If a model is structurally unidentifiable, this means that at
least one parameter can have any value without changing the
model output (albeit with possible readjustment of remaining
parameters). A well-known structurally unidentifiable problem
is the linear model commonly used for estimating bioavailability
F and volume of distribution V from plasma concentrations
measured after oral drug administration, the most simple case
being the one compartment PK model with first order absorption,
where the plasma drug concentration C following a single dose is
defined according to

(e—ke-t _ e—kﬂ)

where F is the bioavailability of the drug, DOSE is the orally
administered dose, V is the volume of distribution, k, is the
rate of absorption and k. is the rate of elimination. It has
been shown that only the fraction g can be identified, and any
estimate of F will therefore inversely correlate to V and both
values will be biologically meaningless (Cheung et al., 2013).
Importantly, predictions of C(t) are still valid as these depend
on the identifiable fraction % While structural identifiability is a
property of the postulated model structure given a set of outputs,
practical identifiability is related to the experimental data. In
particular, it is a measure of the amount of information contained
in the experimental data and how this information is translated
to parameter uncertainty and subsequent prediction uncertainty.

Parameter identifiability is unfortunately often only
investigated and considered at the level of practical identifiability
using more simple measurements such as standard errors or
correlation matrices rather than more sophisticated approaches
such as the profile likelihood approach (Raue et al., 2009). This
is problematic for several reasons. The primary reason is that it
cannot be guaranteed that the estimated parameter values are
uniquely determined by just looking at the estimation results. In
addition, if the structural identifiability of a model is unknown, it
means that the source of uncertainty in the parameter estimates
may be either due to the experimental data, the model structure,
or both (Figure 1). Thus, increasing the quality of the data may
or may not improve the precision of the parameter estimates.
However, if structural identifiability analysis has concluded that
the model is identifiable, the uncertainty in the model parameters
is directly linked to the quality of the data and how well the model
can describe them. In this scenario, the uncertainty of the model
parameters can be improved by increasing the quality of the data.
However, there will always be uncertainties in the parameter
estimates even if the model is structurally identifiable and the
quality and quantity of the experimental data are relatively high.
An approach to further strengthen the plausibility of the model
predictions under such conditions is to divide the experimental
data into two parts: data used for parameter estimation and
data used for model validation, i.e., by estimating the unknown

F-DOSE - k,

O= Y=k

(1)

parameters using a subset of the experimental data and using the
resulting estimates to predict the validation data.

To further exemplify the importance of structural
identifiability, consider the two following biological examples. In
Evans et al. (2004), a model which aims to describe the activity of
an anti-cancer agent named topotecan and its delivery to nuclear
target DNA is presented. Prior to parameter estimation it was
found that a subset of the model parameters was unidentifiable
but if additional experimental measurements were made, in
this case determining volume ratios, then the model would
become structurally identifiable. In Evans et al. (2001), a parent-
metabolite model for ivabradine is considered. The model was
shown to be structurally unidentifiable with either intravenous,
oral or combined intravenous and oral administration. It was
also shown that by either fixing the volume parameter for the
central compartment, or with a particular simplification of the
model structure, then the model becomes identifiable for the
given observations. If a formal structural identifiability analysis
had not been performed then these two research projects would
have most likely continued without these insights with the
potential risk of missleading outcomes.

While PD models are highly diverse, many basic processes
involved in drug action are similar across drugs and systems,
such as distribution from the plasma to the target tissues,
interaction with a target such as receptor binding or altered rates
of production or loss of a target. These general processes have
been described using semi-mechanistic models. For example, the
effect compartment model (Sheiner et al., 1979) has been used to
describe short delays in drug action due to distributional delays
using a hypothetical “effect compartment.” Similarly, receptor
binding models (Danhof et al., 2007; Gabrielsson et al., 2011),
turnover models (Gabrielsson et al., 2011) and the operational
model (Black and Leff, 1983; Danhof et al., 2007) have been
used to describe the processes of drug binding and signaling.
However, despite frequent use, relatively few PD models have
been analyzed from a structural identifiability perspective. An
example of a published structural identifiability analysis is for an
approximation of the receptor binding model. Receptor binding
often occurs over very fast timescales relative to the PK, and
sometimes also with respect to the effects elicited by the receptor
once bound. In such cases, the receptor binding model may be
approximated by a quasi- or pseudo-steady state approximation.
When using such an approximation, it has been shown that
the individual on and off rates of drug binding to the receptor
cannot be uniquely identified (Chappell, 1996). Another example
is the target-mediated drug disposition model (Mager and Jusko,
2001) applicable to the modeling of biologics, which has been
shown to be structurally identifiable (Eudy et al., 2015). However,
the identifiability of the effect compartment model and the
operational model have, to our knowledge, not previously been
analyzed. Furthermore, mixed effects (“population”) models
are often used to account for and quantify known sources
of variability in data sets, such as between-subject variability
(BSV). Such models are combined structural and statistical
models, with additional statistical parameters describing the
variance of a postulated distribution of the model parameter
values across e.g., subjects. The structural identifiability of
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FIGURE 1 | Schematic comparing the model development process including or excluding a structural identifiability analysis. If the structural identifiability
of a model is known, the standard errors in the parameter estimates reflect the uncertainty in the data and and how well the model can describe them. However, if the
structural identifiability is unknown, the standard errors in the parameter estimates may reflect both issues with the model structure and the data.

mixed effects models describing BSV has not previously been
analyzed.

The primary goal of this paper is to illustrate the concept and
importance of parameter identifiability, both from a structural
and practical perspective. Structural identifiability analysis is
performed on a family of 16 commonly used PD models to
serve as a database for modelers in the pharmaceutical domain.
Both fixed-effects models and the corresponding mixed-effects
(population) models are analyzed. Pharmacodynamic models
describing combinations of none to three different mechanisms
of delays in drug action are analyzed: (i) delays in drug
distribution to the site of action applying the effect compartment
model, (ii) delays in signal transduction, build-up or loss of effect
applying turnover models and (iii) delays due to slow dissociation
to the target applying receptor binding models. These and
similar models are extensively used within mechanism-based PD
models in pharmaceutical research (Ploeger et al., 2009; Peletier
and Gabrielsson, 2012). In addition, the problem of structural
identifiability and its relation to practical identifiability will be
illustrated through a set of examples using both simulated data
and real experimental data.

METHODS

Structural identifiability analysis has been performed on all
models written in state-space form. A fixed-effects state-space
model is written on the following form

2
(©)

x(ty) = xo

x(t) = f(x(t), u(t),0),
y(t) = h(x(1), u(t),0)

where x(t) € R”" is the state (e.g., plasma concentration of the
drug, bound and unbound receptors etc.) u(t) € R is the input
(IV bolus, IV infusion etc.), @ € RP is the vector of model
parameters (e.g., clearance rate, maximum saturation, etc.),
y(t) € R™ is the output (measurement of plasma concentration,
drug effects) and f and h are smooth functions as C* with respect
to the functional arguments.
A mixed-effects model is written on one of the forms

xi(t) = f(xi(1), ui(1), ;) xi(to) = x0(¢;)
yi(t) = h(xi(t), ui(t), ¢;)

(4)
(5)

where ¢; = g(8,n;,C;) are the parameters for the i:th subject,
n; ~ N(0,R) are the random effects variables where 2 is the
variance-covariance matrix of the random effects 5;, 8 are the
population parameters and C; are the covariates for the different
subjects in the population.

Structural Identifiability: Definition

As mentioned in the introduction, structural identifiability is
a theoretical concept with direct practical relevance. This is
because if a model is structurally unidentifiable, some of the
model parameters may take on arbitrary numerical values while
the model may still describe the experimental data equally well. In
a numerical structural identifiability analysis different numerical
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values are sought that will result in identical model responses.
In an analytical structural identifiability analysis, more general
conclusions can often be drawn since in such as analysis symbolic
relationsships between the model parameters can be derived
allowing for suggestions of reparametrization and/or additional
measurements required to render an unidentifable model to
become identifiable. Since different values of the unidentifiable
parameters result in identical responses or predictions any
subsequent biological interpretations of the estimates of those
unidentifiable parameters (e.g., clearance, ICsp) are effectively
meaningless in a biological context. It is because of this that
structural identifiability is often referred to as a prerequisite to
successful parameter estimation. In other words, if a structural
identifiability analysis (in which perfect experimental conditions
e.g., noise-free and continuous measurements, are assumed) has
shown that some of the model parameters can not be determined,
it follows directly that these parameters can never be determined
in the less ideal case, i.e., under real experimental conditions for
discrete measurements with noise present.

To define exactly what is meant by structural identifiability
there now follows a more rigorous mathematical definition of the
concept in the context of fixed-effects models.

Let the generic parameter vector @ belong to a feasible
parameter space ©, i.e., @ € ©. Let y(t, 0) be the output function
from the state-space model. Further, consider a parameter vector
6 where y(t,0) y(t,é) for all t. If this equality, in a
neighborhood N C © of 6, implies that 6 then the
model is structurally locally identifiable. If N = © then the
model is structurally globally identifiable. If a model is structurally
unidentifiable, then every neighborhood of @ contains a @ # 6
such that y(,8) = y(t,0) for all t.

Since the mixed-effects models to be considered in this paper
are also analyzed from a structural identifiability perspective it
must first be defined what is meant by the identifiability of such
models. Since mixed-effects models yield individual predictions,
in contrast to single predictions in the fixed-effects case, the
previous definition is not immediately applicable to mixed-
effects models. Instead, a generalized version of the definition
of structural identifiability is used. In this new definition, first
presented in Janzén et al. (2016), a model is defined to be
structurally identifiable if the distribution of the output from the
model determines both the structural and statistical parameters,
i.e., the parameters in the vector # and the variance parameters
in @ denoting the variance of the random effects 5 respectively.
Now follows a more rigorous definition of structural identifiable
for mixed-effects models.

Let p(y(9,9),t) denote the distribution of the output signals
y at time t. Let the generic parameter vector and matrix {6, 2}
belong to a feasible parameter space {#, 2} € ©, and consider
the following two sets of parameters {#,€} and 6,9Q). If
Py t) = pyGe) 1) for all t implies that {6, 2} = 6,9}
in a neighborhood N C © then the model is structurally locally
identifiable, and if N ©® the model is structurally globally
identifiable. For a structurally unidentifiable parameter, 6;, or
w; € 2, every neighborhood N around 6;, or w;, has a parameter
vector/matrix 0, or , where 6; £ 0, or w; # @j, give rise to the
same distribution of identical input-output relations.

Investigated Model Structures

The model structures investigated to determine structural
identifiability were all combinations of sub-models representing
receptor binding, a hypothetical effect compartment and direct
or indirect transduction (see Figure2). In total, 16 different
model structures were investigated (Table 1). Both fixed-effects
and mixed-effects versions of each model were analyzed from a
structural identifiability perspective.

Structural Identifiability: Example

To exemplify the structural identifiability analysis, a summary of
the analysis of the structural identifiability of Model 13 (Table 1)
is provided. This model is a dynamic receptor binding model
with an effect compartment and linear transduction. The details
of the structural identifiability analysis for this model is available
in the Supplementary Materials. The mathematical model has the
following structure

Ce = keO(Cp - Ce)
RC = kon(Riot — RC)C, — ko RC
E = k.RC

(6)

with the unknown parameter vector 8 = (keo, ke, kon> koﬁr) and
where C, is the concentration in the blood plasma and is in
this case a known input signal, C, is a state representing the
concentration in the hypothetical effect compartment, RC is the
receptor complex, E is the observed effect and R, representing
the percentage of total number of receptors, which is fixed at
100%.

The approach chosen to study structural identifiability here
is the input-output approach, for which details can be found in
Bearup etal. (2013). A general outline of the method is given here
followed by an example of how a structural identifiability analysis
is performed.

The input-output approach used in this paper was chosen
for three reasons. The first reason was because the input-output
approach can be used to show whether a model is globally or
locally identifiable, or unidentifiable. Some of the other methods
that are available for performing a structural identifiability
analysis can only be used to show whether a model is at least
locally identifiable or unidentifiable. The second reason was that
there is a direct extension from non-population (fixed-effects)
models to population (mixed-effects) models when it comes to
structural identifiability analysis using the input-output approach
as will be explained further below. The third reason is because the
method is applicable to both linear and nonlinear models.

The main idea behind the input-output form approach is to
transform the model to a form from which the identifiability
problem can more easily be studied. This is performed by
iteratively computing higher order time derivatives of the output
function and using subsequent substitution to eliminate all state
variables in order to express the system as a monomial solely in
terms of the output functions(s) and its (their) derivatives. As
the assumption of perfect experimental conditions is made, it
follows that the output function and its higher order derivatives
are assumed to be known. In other words, a model rewritten
on an input-output form is a single equation with the output
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FIGURE 2 | Schematic of the investigated pharmacodynamic models. (A) The 16 investigated models are constructed by combining the following submodels:
Direct or delayed biophase concentration through distribution to a hypothetical effect compartment, dynamic or direct receptor binding using the steady-state
approximation and direct proportional or sigmoid signal transduction or delayed signal transduction applying a turnover model. (B) Example of a full model where all
three processes are assumed to be dynamic and cause delay between plasma concentration and drug effect.

function and its higher order derivatives being known and the
model parameters (that enters as the monomial coeflicients)
being unknown. Determining whether a model is structurally
identifiable or otherwise is then a case of showing whether
the resultant input-output equation has a single, finite, or an
infinite number of solutions for the parameters in the coefficient
expressions.

By iteratively differentiating the output signal and eliminating
the state variables the model can be rewritten in the following
input-output form

- Rtotchkgke()kon — 2Ryt CpkekeokonE + Reot kekeokuﬂE_
CpkeokanE2 + Riot kekeOE + Reot kekuﬁj3 + keokuﬂE2+

Ryt keE + keoEE + EE — E* = 0. (7)
The structural identifiability of a model can then be studied
by considering the coefficients in the input-output form of
the model. Introducing an alternative parameter vector 6 and
collecting the coefficients in the input-output form as

1

> (8, 0)¢i(E,0), E(t, 0), E(1,6),...) =0
k=1

®)

permits determination of whether the model is structurally
identifiable or otherwise, given that the ¢(-) are linearly
independent. The analysis shows that § = §, meaning that model
13 is structurally globally identifiable (details are given in the
Supplementary Materials).

Similarly, a mixed-effects version of the model can be studied
by using the coefficients in the input-output relation. As outlined
and discussed in detail in Janzén et al. (Under review), since
individual estimates are obtained in a mixed-effects model
a distribution, assuming an infinite number of subjects (i.e.,
ideal experimental conditions in a mixed-effects context), of
cx(@) is in turn obtained. This distribution is directly linked
to the distribution of the output functions. By introducing the
random effects on the coefficients from the input-output form,
according to the statistical sub-model, functions of random

variables are derived. By studying whether the distributions of
the generated functions of random variables determine both
the fixed effects and the random effects related parameters,
conclusions regarding whether the mixed-effects model is
structurally identifiable or otherwise can be made. The mixed-
effects version of model 13 with lognormally distributed random
effects on all model parameters with a diagonal covariance
matrix is also structurally globally identifiable. This follows
from the fact that the structural model has been shown to be
structurally globally identifiable (detail in the Supplementary
Material) and the statistical parameters are uniquely determined
by the lognormal distribution.

It is worth mentioning that structural identifiability analysis
using analytical techniques such as the input-output approach
may encounter certain limitations in terms of model size
and complexity. In general, the more complex a model is in
terms of the state-space dimensions and number of unknown
parameters, then the more computationally demanding the
subsequent analysis may become. If an analytical approach is
not possible due to symbolic computational intractability then
a hybrid symbolic/numerical analysis approach is an alternative,
see the profile likelihood approach (Raue et al., 2009) or the
Exact Arithmetic Rank approach (Karlsson et al., 2012). For an
extensive comparison between the profile likelihood approach,
the Exact arithmetic Rank approach and a differential algebra
approach implemented in a software called DAISY, see Raue et al.
(2014).

Practical Identifiability

Once the structural identifiability of the postulated model has
been determined, parameter estimation can be performed. As
with the structural identifiability example, Model 13 (Table 1)
was selected for the simulation study to investigate the influence
of varying data quality on the practical identifiability of the
parameters. This model includes two different sources of delay,
one from distribution to the effect site, where the rate is
controlled by the parameter k., and also through slow receptor
dynamics, where the off-rate is controlled by the parameter k.
The possibility to distinguish the two different delays in practice
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TABLE 1 | Summary of the 16 PD fixed effects and mixed effects models for which the structural identifiability was investigated.

N Model equations 1/0 ICs Fixed effects models Mixed effects models
Fixed effect parameters Fixed effect parameters? Random effect parametersb
Rtofcp
1 E=keg +c Cp/E Riot, ke, Kg ke, Ky Nkes NKd
2 E= En{ForCol” Cp/E Riot, Em, RCs0,n, Ky Em,RCs0,n, Ky NEm . IRC50+ N, IKd
(Kd+Cp)nRCn Z(Rtotcp)n P ot i N f I m s f i
3 E= Kin(1 + keKm L) — koutE Cp/E  EQ) =kout/Kin  Rtot:Kin, Kout: ke, Kg Kin, Kout, ke, Kg Tkin» kout » ke » IKd
? RiotC
4 E= Kin — kout(1 + ke Kdtthr cpp E Co/E  EQ) =Kout/Kin  Ritot:kin.Kout: ke, Ky Kin» Kout ke, K Tkin» kout » ke » Kd
5 RC = kon(Riot — RC)Cp — koitRC ~ Cp/E RC(0)=0 Rtot, Kon, Koff, Ke Kon, Kot Ke Nkon » Mkoff» ke
E = keRC
6  AC =kon(Rtot — RCICp —kofRC ~ Cp/E  RC(0)=0 Riot Kon. Kot Em,RCs0.n Kon Koff» Em, RCs0,n NRC50: Mkon» Mkoff» NEM » I
EnRC"
chrg TRCD
7 RC = Kon (Rtot RC)Cp - koffRC CD/E RC(0) =0 Riot, Kon, koffv Kin, Kout, ke kon,koff: Kin, Kout» ke Nkon s Nkoff » Nkin s Nkout ke
E =kin(1 + keRC) — koutE E(O) = kout/Kin
8  RC=kon(Riot — RC)Cp —kotRC ~ Cp/E RC(0) =0 Rtot, kon. Koff  Kin» Kout Ke Kon. Koff+ Kin» Kout  Ke Nkon Mkoff » Mkin» kout ke
E =Kip — kout(1 + keRC)E E(Q) = kout/Kin
9 Ce=kep(Cp—Ce Cp/E Cel0)=0 keo Rtot ke, Ky keo: ke Kg ke0: ke IKd
RiotC.
E =ke d:_ (?e
10 Ce =keo *(Cp — Ce) Cp/E Ce0)=0 ke0, Rtot: Em, RCs0,n, Ky ke0, Em, RCs0,n, Ky 1NRC50: MkeO» EM» N> IKd
E = Em (Rtotce)
(K +Ce)"RCEy + (RtotCe)"
11 Ce =keo *(Cp — Ce) Cp/E Cel0) = keo, Ritot. kin, Kout ke, Kg Keo. Kin, Kout ke, Kg NkeO: Mkin» Tkout ke NKd
E = kin(1 + Ko 1612%8) — koutE E(0) = kout /kin
12 Ce=keo*(Cp— Ce) Cp/E Cel0) = keo, Ritot. kin, Kout ke, Kg Keo, Kin, Kout ke, Kg kO Mkin» Tkout ke NKd
E = ki — kout(1 + ke RELZE)E E(0) = kout /kin
18 Ce =keo *(Cp —Ce) Cp/E Ce0)=0 keo, Rtot, kon, Koff ke Ke0, kon, Koff, ke kO Mkon: Nkoff ke
RC = kon(Riot — RC)Ce — kot RC RC(0) =0
E = keRC
14 Co = kep * (Cp — Ce) Cp/E Ce0)=0 Keo, Ritot, RCs0, Kon, Ko, Em.n keo, RCs0,kon, Koft, Em. N Nke0s MRC50 Mkon Tkoff» NEm» I
RC = kon(Rtot — RC)Ce — kofRC RC(0) =0
E— _EmRC
~ RCJ, +RC"
15 Ce =kgp * (Cp — Ce) Cp/E  Cel0)=0 Keos Rtots Kon, Koff s Kins Kout, Ke Ke0, Kon, Kot , Kin, Kout, ke NkeO: Nkons Nkoff » Nkin» Mkout» ke
RC = kon(Rtot — RC)Ce — kot RC RC(0) =
E =Kn(1 + keRC) — koutE EO) = kout/km
16 Ce =keo *(Cp — Ce) Cp/E  Cel0)=0 Keo, Rtot, Kon. Koff  Kin, Kout ke Keo, Kon, Koff, Kin, Kout ke 1keO Mkon» Nkoff» kin+ Nkout  Tke
RC = kon(Rtot — RC)Ce — kot RC RC(0) =
E = kin —kout(1 + keRC)E E(0) = kout/kin

N, Model number; I/0, Model inputs/outputs; ICs, Initial conditions. @R was fixed at 100 when analysing the mixed effects models. ® Each mixed-effects model was assumed to have

a diagonal covariance matrix & with lognormally distributed random effects.

under varying data quality was investigated in a simulation
study. R;,; was fixed to 1 following the results of the structural
identifiability analysis to ensure the structural identifiability of
the model. True parameter values were assigned to each model
parameter: ke, = 1, kg = 0.2, koﬁ = 0.02 and k,;, =
0.05 amounts per minute. All parameters were assumed to vary
between subjects following a log-normal distribution as this
ensures positive rates for all subjects, with standard deviation
0.3 amounts per minute to represent differences in a
population. The model is summarized in Figure 3A.

The simulation study was performed in MATLAB 2013b
(The MathWorks, Inc., 2016) and Monolix 4.3.2 (Lixoft, 2012)
as outlined in Figure 3B. (1) PK data were simulated without

g =

variability or noise, applying an intravenous bolus dose of
20 mg/kg to a hypothetical typical individual with volume of
distribution 1 and rate of elimination 0.2 mg/kg. (2) Model
13 with the selected “true” parameter values was used to
simulate data sets of varying size and quality. Three factors were
changed that influence the information available in the data: (i)
different sampling densities At = 1,2,5,10,15,20,25,30 min.
(ii) different additive noise levels ¢ = 0.05,0.15,0.5 response
units and (iii) different numbers of subjects n = 100, 40, 12. (3)
Parameters were estimated using each simulated data set, with the
following initial guess selected for the optimization algorithm:
ke = 1, kg = 0.1, koﬁc = 0.01 and k,, = 0.01 units per minute
for the structural parameters and 0.3 units per minute for the
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FIGURE 3 | (A) Model 13 and the selected true parameter values. BSV is between-subject variability. (B) Workflow for the simulation study. (C) Accuracy of the typical
parameter estimates for the combined effect compartment/dynamic receptor model fitted to simulated data. The accuracy of each parameter (y-axis: estimated/true
parameter value, line of unity marked by black line) and its uncertainty (normalized standard error, filled lighter area) is given at each data resolution level (x-axis: time
between samples increasing from 1, 2, 5, 10, 15, 20, 25 to 30 min) for simulated data for 100, 40 and 12 subjects (row 1, 2, 3) adding additive noise with standard
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standard deviations. (4) The ratio between the final parameter
estimates and the true parameter values were calculated and
compared for the typical parameters to investigate the effects of
varying sampling frequency, noise levels and number of subjects
on parameter accuracy.

RESULTS

Structural Identifiability Analysis

The results of the structural identifiability analysis applying the
input-output approach are summarized in Table 2, including
the structural identifiability results and the reparameterization
solutions to achieve structurally identifiable models.

All fixed effects versions of the models were in their original
parameterization shown to be structurally unidentifiable. For all
of the models, the source of the unidentifiability problem was
the parameters Ry and either RCsy (Models 2, 6, 10, 14) or
k. (remaining models) (see Table 2). The analysis showed that
these parameters are unidentifiable and therefore any numerical
estimates of them are effectively meaningless from a biological
perspective. Furthermore, it was shown that even though Ry
and k. or RCs are unidentifiable, the product Rs,¢k. and fraction
Ryot/RCs are globally identifiable. The remaining parameters in
the analyzed models were all shown to be globally identifiable.
Therefore, three methods may be applied to ensure structurally
globally identifiable models: (1) A new parameter may be defined
as Ryotk,, representing the effect when all targets are bound,
and Ryt /RCs, representing the transducer ratio, to replace the
unidentifiable parameters. (2) Ryo; or (3) k. and RCsp may be fixed
to known or assumed numerical values. However, this affects the
units and interpretation of the non-fixed parameter. For example,
Ryt may be fixed at 100%, resulting in changed units for k, to
units per percent bound receptor.

As discussed in Janzén et al. (Under review), if the structural
model is structurally globally identifiable, and if the statistical
sub-model is structurally globally identifiable, it follows that
the mixed-effects model is also structurally globally identifiable.
The statistical sub-model for the random effects considered in
this paper takes the form of the structurally globally identifiable
lognormal distribution. Therefore, the mixed-effects versions
of the models in Table 1 are structurally globally identifiable
following the reparameterization or fixing of Ry or k.

Simulation Study of Practical Identifiability

In the simulation study, increasing noise, reducing sampling
frequency and reducing the number of subjects all led to worse
parameter estimation results (Figure 3). At the lowest noise level
(column a), the model parameters were well estimated up to a
sampling density of At = 10, while increasing the sampling
interval above this level led to over- and underestimation of k,
and ko, respectively. At the intermediate noise level (column
b), similar results were obtained, although problems occurred at
smaller sampling intervals. At the highest noise level (column
¢), the parameter estimation was unsuccessful for all estimation
runs except for 100 subjects and 1 min sampling interval.
The simulation study shows a trend of decreasing accuracy to
estimate the true parameters when the amount and quality of
the data decreases. Some of the model parameters vary more
than others when the data become worse in terms of noise
levels, the number of measurements and the number of subjects.
For instance, ko was estimated reasonably well, except for
the very worst case 3c, while the estimates for k, and k,, are
poor in la. It can also be seen that the uncertainty in the
parameter estimates (standard errors) generally widens with
either increased noise, reduced sampling density or reduced
number of number subjects. Interestingly, high precision (small
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TABLE 2 | Results of the structural identifiability analysis of the mixed-effects models 1-16 in Table 1.

Model description

Structural identifiability results

Fixed effects

Random effects?

N Distr. | Binding | Transd. SU parameters Sl parameters & combinations Sl parameters

1 Direct | SS | Linear Riot, Ke Riotke, K4 Nke» TKd

2 Direct | SS | Sigmoid Riot, RCs0 Riot/RCs0, ke, Kg, N NRC50: Nke» K TIn

3 Direct | SS | Indirect Riot, ke Riotke, kin, Kout, Kg Mkin: kout: ke TKd

4 Direct | SS | Indirect Riot, ke Riotke, kin, Kout, Ka Tkin» Mkout: ke IKd

5 Direct | Dynamic | Linear Riot, ke Riotke, kon, Koff TIRtotJRC50+ Mkon: Nkoff» NEM

6 Direct | Dynamic | Sigmoid Rtot, RCs0 Rtot/RCs0, kon, Koff, Em,n 1RC50+ MTkon Tkoffs IEm I

7 Direct | Dynamic | Indirect Riot, ke Rtotke, Kon, Koff s Kin» Kout Tkon NMkoff» Nkin» kout» ke

8 Direct | Dynamic | Indirect Riot, ke Rtotke, Kon, Koff s Kin» Kout TNkon Nkoff > Mkin» Nkout > ke

9 Delay | SS | Linear Riot. ke Riotke, ke, Ko ke0: ke NKd

10 Delay | SS | Sigmoid Riot, RCs0 Rtot/RCs0.Keo. Kon. Korr, Em. 1 TkeQ» TRC50» Em » > NKd

1 Delay | SS | Indirect Riot, ke Riotke, Keo. Kin, Kout, Ka ke Mkin» kout ke » NKd

12 Delay | SS | Indirect Riot, ke Rtotke, ke0, Kin, Kout, Kg NkeOs Mkin» Nkout Mke» NKd

13 Delay | Dynamic | Linear Riot, ke Rtotke. keo. Kon, Koff Tke0’ Mkon: koff ke

14 Delay | Dynamic | Sigmoid Rtot, RCs0 Rtot/RCs0.Ke0. Kon. Koff» Kin» Em, N ke» NRCS0: Mkon: Mkoff» NEm: i
15 Delay | Dynamic | Indirect Rtot, ke Rtotke, keo, Kon, Koft » Kin Kout Nke0> Mkon» Nkoff» Nkin» Mkout » ke
16 Delay | Dynamic | Indirect Riot, ke Riotke, Keo, Kon, Koff Kin, Kout 1ke0: Nkon: Mkoff s Nkin» Tkout: ke

SU, Structurally unidentifiable; Sl, Structurally identifiable. R was fixed at 100 when analysing the mixed effects models.
Structurally identifiable and unidentifiable parameters and a suggested reparameterization are provided for the corresponding fixed effects models. Random effects were evaluated for

the reparameterized models.

standard errors) is in many optimizations acquired despite low
accuracy in the parameter estimates.

Case Study: Analysing Cardiac (Side)
Effects

A case study was conducted in order to exemplify the process of
model development, including structural identifiability analysis.
Side effects of potential new drugs on the heart must be evaluated
by monitoring changes in the duration of specific intervals
monitored in the electrocardiogram (ECG), such as the QT
interval (defined by the Q and T peaks in the ECG) which
corresponds to the duration of the ventricular action potential.
The main part of the QT interval constitutes the ventricular
repolarization phase, corresponding to the JT interval (defined
by the J point and T peak in the ECG), and prolongations are
strongly linked to inhibition of the cardiac ion channel hERG
(Pollard et al.,, 2010). In this example, model 10 (Table 1) was
applied to link inhibition of the hERG ion channel in vitro
to prolongation of the JT interval following treatment with
the anti-arrhythmic compound and mixed ion channel blocker
AZD1305, a proprietary AstraZeneca compound. Model 10 was
selected since an identifiable version of this model has been
used previously to fit this type of data (Jonker et al., 2005) and
following evaluation of additional structures, for example model
2 (without the effect compartment).

Methods

Clinical study and PK and QT interval data are described in
Parkinson et al. (2013). This phase I study was performed in
accordance with the ethical principles of the Declaration of

Helsinki and is consistent with the International Conference
on Harmonisation (ICH)/Good Clinical Practice. JT intervals
were calculated by subtracting QRS from QT. In vitro data
were acquired from the original data collected by Carlsson et al.
(2009). Methods for PKPD model development are detailed in
Bergenholm et al. (2016). Baseline variability of JT intervals
was minimized applying a circadian rhythm and RR correction
models (Chain et al., 2011; Bergenholm et al., 2016). The PK
and PD were modeled sequentially, and Model 10 (Table 1) was
selected to describe the drug effect. K; was estimated prior to the
PKPD modeling using the I, model, where the inhibition in %
is calculated according to

I(C) =100 x C/(IC50 + C) 9)
where ICsp corresponds to the drug concentration resulting
in 50% inhibition, substituting K; in Model 10. Parameter
estimations were performed using the stochastic approximation
expectation maximization (SAEM) algorithm as implemented in
Monolix 4.3.2 (Lixoft, 2012).

Results

The estimated ICsy of hERG was 0.37 &£ 0.04 uM with between
cell variability of 0.19 £ 0.09 uM. Fitting all parameters of
the operational model led to high uncertainty and correlation
between Ry and RCsy (Table 3). Structural identifiability
analysis of this model showed that only the fraction Ry,/RCs
is identifiable (see Table2) and the model was therefore
reparameterized with t = Ryt /RCs, resulting in a structurally
identifiable model. Estimation of the reduced model resulted in
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TABLE 3 | Estimated parameter values for the original and
re-parameterized Model 10 fitted to AZD1305 PK-hERG-JT interval data.

Parameter  Unit Unidentifiable model Identifiable model

Estimate BSV % (SE) Estimate BSV % (SE)
(SE) (SE)

Em ms 172 (23.9) 18.7 (9.09) 162 (18.9) 20.6 (7.67)

RCs0 uM 0.753 (173)  13.3 (15300) - -

n 2.02 (0.24) 35.1(7.5) 2.1(0.219) 36.4 (7.69)

Riot uM 1.1 (252) 13.2 (15400) - -

T - - 1.55(0.163) 15.2(8.17)

ICsp uM 037 (fixed)  0.19 (fixed)  0.37 (fixed)  0.19 (fixed)

keo h=1  9.37(2.96) 125 (24) 9.42 (2.91) 123 (23.4)

Residuals ms 6.64 (0.155) - 6.64 (0.155) -

—2LL 7662 7670

SE, Standard error; BSV, Between-subject variability; —2LL, —2 LogLikelihood.

similar parameter values for all of the identifiable parameters,
similar goodness of fit values and residuals and good precision in
the population estimate of v (Table 3). The fits to the generated
data can be seen in Figure 4.

Discussion

Both the full and reparametererized versions of model
10 described the data well. However, standard errors and
correlations of Ry, and RCsg correctly indicated identifiability
issues with the former. The estimated parameters were converted
to the traditional E,,;, and EC5y parameters, which describe the
maximal effect and the drug concentration at half-maximum
effect respectively. Epqx and ECsg were calculated according to

E,,t"
Epax = m (10)
IC
ECsp = > (11)

Q24 ml/n—1

and resulted in an estimated E ;¢ of 117 ms and 116 ms and ECsg
of 0.36 and 0.35 M respectively for the full and reparameterized
models. This highlights that identifiable parts of a structurally
unidentifiable model are still informative. The estimated E,;
is similar to that in previous hERG-QT modeling of dofetilide
(Jonker et al., 2005), while the estimated hERG block at 10 ms JT
prolongation was slightly higher (18 vs. 9%). This may be caused
by AZD1305-induced calcium block (Carlsson et al., 2009), as
the calcium current depolarizes the cardiac cells (Amin et al.,
2010), counter-acting the repolarization by hERG. The structural
identifiability analysis showed that two model parameters could
not be estimated. This led to model reduction. Performing this
analysis prior to parameter estimation ensures the theoretical
possibility of estimating all parameters in the model. Estimating
the parameters of the unidentifiable model could have been
avoided, reducing the number of iterations in the optimization.
Also, ensuring structural identifiability improves confidence in
the biological interpretation of the estimated parameter values.

DISCUSSION

Unidentifiability issues can cause many different types of
problems if not mitigated when models are used to quantify,
predict and understand the effects of potential drugs. Most
importantly, the biological/physiological interpretations of
structurally or practically unidentifiable parameters are not
valid. This may lead to wrong conclusions, for example when
unknowingly comparing unidentifiable parameters to rate
candidate drugs or for comparison with competitors. Also,
any predictions based on the profiles of unmeasured states of
the system may be meaningless if the parameters directly or
indirectly related to those states are unidentifiable. For example,
if the effect of interest in a toxicity or efficacy study depends
on the concentration in a compartment for which the profile
is linked to structurally unidentifiable parameters, it may be
impossible to separate the distribution to this compartment and
the drug effect. Unidentifiability issues may also cause technical
problems, as the parameter estimation step may take a very long
time, or fail (crash), if a structurally unidentifiable model is used
(depending on what form of optimization routine is used).

We have investigated the structural identifiability of
16 fundamental pharmacodynamic models and identified
parameterizations that are structurally identifiable both for
fixed effects- and mixed-effects- versions of the models, as
summarized in Table 2. For all of the investigated models, the
total amount of receptor in the system was fixed (to e.g., 1 or
100%) in order to achieve structural identifiability. This implies
that some parameters for the “signal transduction” are relative.
For example, the units of a proportional signal transduction are
effect units per fraction bound/inhibited receptor if Ry is fixed
to 1. This analysis shows that given sufficient data quality, it is,
in theory, possible to distinguish between different sources of
delay from the data. Thus, it is possible to differentiate delays
that are compound-specific (e.g., distribution, drug-receptor
binding kinetics) from delays that are system-specific (e.g.,
turnover of receptors) to compare compounds and simulate
untested systems. The investigated models have been used
successfully and repeatedly in practice (Ploeger et al.,, 2009;
Peletier and Gabrielsson, 2012), and our results confirm the
general assumption of structural identifiability. This provides
confidence in the theoretical soundness of using these models.

Next, we estimated parameters of the unidentifiable and
reparameterized versions of Model 5 (Tables1l, 2) in to
investigate the possible consequences of estimating unidentifiable
models (Figure 5). Three separate runs of parameter estimation
were performed. Parameters in the unidentifiable version of
the model were estimated in two different runs using different
initial estimates. For the third parameter estimation run, the
model was reparameterized following insights from the structural
identifiability analysis.

Investigating the estimated parameters shows that standard
errors of unidentifiable parameters differ significantly between
the two estimation runs, and are larger than the standard error
of the product of the parameters. For one of the estimation
runs the magnitude of the standard errors (37.6 and 33.7%)
did not clearly indicate a structural identifiability problem. In
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FIGURE 4 | PK and JT interval data (markers) and model predictions (lines) for humans treated with placebo and 3 selected doses of AZD1305. (A)
Model predictions by the unidentifiable JT model. (B) Model predictions by the identifiable JT model. (C) Individual PK model parameters predicting the PK in each
subject were used to drive the PD response. Individual subjects are separated by color.

A Structural identifiability analysis B Estimation of structurally unidentifiable (SU) models
Input: C 1. SU model 2. SU model (different start guess)
Output: E ) _ _ | Start Estimate RSE  Residuals | Start Estimate RSE  Residuals
Initial conditions: R(0) = Ru, RC(0) =0 Roc |10 11.9 376 766 Roc|100 87 163 7.66
Parameters: o, Kos K k. |10 16.4 33.7 k|1 217 154
Kon | 1 3.71 223 |5 3.45 22.9
Kotr | 1 4.85 225 Kotr | 1 4.76 22.8
~n
€8 C +R
Kony ko .
RC ke = E M 3. Reparametens.ed model (R, = 100).
| Start Estimate RSE Residuals
Kl 2.03 15.8 7.67
Identifiable parameters: k,,, Ko Kon | 1 3.61 226
Unidentifiable parameters: k;, Ry Ko | 1 4.86 229

Identifiable combinations: k,*R;y

FIGURE 5 | (A) Results of the structural identifiability analysis of Model 5. (B) Optimization results following estimation of unidentifiable and identifiable versions of
Model 5 using example data.

the second estimation run the standard errors (163 and 154%)  and k, were —0.9 and —0.99 respectively, indicating a potential
did indicate a structural identifiability problem. However, for  structural identifiability problem in both cases. Alternatively,
both estimation runs the estimated correlations between Ry  analysing the models using the profile likelihood approach (Raue
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et al., 2009) would also potentially indicate a problem with
structural and practical identifiability. Although estimation of
an unidentifiable model in theory should lead to infinitely large
uncertainty for the structurally unidentifiable parameters due to
a flat likelihood function in the directions representing those
parameters, this did not happen in practice. The reason why
this did not happen can be explained by measurement and
numerical noise. In real-world problems, the likelihood function
is never completely flat which introduces false local minima
where the optimization routine may become “stuck” depending
on the initial guesses used for the model parameters and the
optimization algorithm itself. This example shows the potential
danger of using practical identifiability analysis as a tool to
deduce structural identifiability. For the first set of initial guesses
for the parameters, the reported RSE-values are unreasonably
high indicating a structural identifiability issue. However, the
RSE-values reported using a different set of initial guesses for
the model parameters do not indicate that there is any structural
identifiability problem. The results of these estimations were used
to draw some general conclusions. These are as follows:

e Different initial guesses of the model parameters may lead to
different estimates of structurally unidentifiable parameters.

e Large standard errors may indicate that a parameter is
structurally (or practically) unidentifiable but unidentifiable
parameters may also appear well-determined.

e Reparameterizing the structurally unidentifiable model to
become identifiable leads to similar residuals (and likelihood)
and improved parameter precision of the new parameter(s).

e Identifiable parameters can still be well-determined when
other parameters are unidentifiable.

Similar findings regarding masking of structural unidentifiability,
i.e., estimation of seemingly reasonable RSE-values of structurally
unidentifiable parameters, has been reported in the conference
contribution (Aoki et al., 2015) and in the follow-up paper
(Aoki et al, 2014). These findings were reported using
NONMEM, rather than Monolix, which indicates that estimation
of misleading RSE-values under structural unidentifiability
conditions is not a software specific issue but instead a
general numerical computational instability issue. In these two
publications, a numerical approach called preconditioning is
suggested. In short, this approach involves reparametrization
of the model in such a way so that the subsequent numerical
computations of the RSE-values reportedly becomes more
stable and thus more reliable under structurally unidentifiable
conditions.

It is important to remember that having a structurally
identifiable model is only a prerequisite for successful parameter
estimation. In other words, that parameters are identifiable with
ideal data (continuous, noise-free data from an infinite number
of subjects in the mixed effects model case) does not guarantee
that they will be practically identifiable with a finite number of
noisy data points from a finite number of subjects.

The effects of practical identifiability were investigated in
a simulation study, where the quality of the data was varied
from good to worse, but the structural model was known to
be identifiable (Model 13). Conclusions from this example are
that:

e A structurally identifiable model does not guarantee reliable
parameter estimates.

e Data must contain information over relevant time scales for
the investigated system.

e Noise levels, sampling density and the number of subjects
(mixed-effects models) are all important in order to be able
to estimate parameters with reasonably high precision.

When the data do not contain information on the time scale of
the rate parameters in the system, the model should be reduced to
only account for effects over the relevant time scales. This applies
even when all parameters are structurally identifiable.

CONCLUSIONS

Parameter identifiability should be investigated to ensure
both structural and practical identifiability. Our work
confirms the structural identifiability of a set of fundamental
pharmacodynamic models, and provides examples of estimation
results with unidentifiable models. The investigated models
have been proven to have a sound theoretical basis in terms of
structural identifiability and thus are reliable in this respect. This
in turn increases the reliability of using such models in clinical
pharmacology and therapeutics.
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Type 1 diabetes (T1D) is an auto-immune disease characterized by the selective
destruction of the insulin secreting beta cells in the pancreas during an inflammatory
phase known as insulitis. Patients with T1D are typically dependent on the administration
of externally provided insulin in order to manage blood glucose levels. Whilst
technological developments have significantly improved both the life expectancy and
quality of life of these patients, an understanding of the mechanisms of the disease
remains elusive. Animal models, such as the NOD mouse model, have been widely used
to probe the process of insulitis, but there exist very few data from humans studied at
disease onset. In this manuscript, we employ data from human pancreases collected
close to the onset of T1D and propose a spatio-temporal computational model for the
progression of insulitis in human T1D, with particular focus on the mechanisms underlying
the development of insulitis in pancreatic islets. This framework allows us to investigate
how the time-course of insulitis progression is affected by altering key parameters, such
as the number of the CD20+ B cells present in the inflammatory infiltrate, which has
recently been proposed to influence the aggressiveness of the disease. Through the
analysis of repeated simulations of our stochastic model, which track the number of beta
cells within anislet, we find that increased numbers of B cells in the peri-islet space lead to
faster destruction of the beta cells. We also find that the balance between the degradation
and repair of the basement membrane surrounding the islet is a critical component in
governing the overall destruction rate of the beta cells and their remaining number. Our
model provides a framework for continued and improved spatio-temporal modeling of
human T1D.

Keywords: type 1 diabetes, insulitis, agent-based modeling, spatio-temporal dynamics, peri-islet basement
membrane

1. INTRODUCTION

Type 1 diabetes (T1D) is an auto-immune disease characterized by the selective destruction of
pancreatic beta cells in the islets of Langerhans by the immune system (Eisenbarth, 1986; Atkinson,
2012; Boitard, 2012; La Torre and Lernmark, 2012; Pugliese, 2014; Richardson et al., 2014; Roep
and Tree, 2014). This destruction takes place during an inflammatory phase, known as insulitis, in
which various immune cells infiltrate the islets (Lecompte, 1958; Gepts, 1965; Willcox et al., 2009;
Morgan et al., 2014). As the beta cell mass decreases over the course of the disease, the ability of
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the islets to secrete sufficient quantities of insulin to properly
regulate blood glucose levels becomes compromised. As a result,
patients with type 1 diabetes ultimately become reliant on the
lifelong administration of external insulin.

Well-defined genetic components have been identified which
predispose individuals to T1D; in particular the HLA-genotype
(Itoh et al., 1993; Somoza et al., 1994). However, this alone is not
sufficient to predict which individuals will develop the disease
with precision. Since monozygotic twin studies have shown
limited pairwise concordance for T1D (Barnett et al., 1981; Lo
et al., 1991; Redondo et al., 2001), it is clear that environmental
factors, such as viral infection, vitamin D status and childhood
nutrition may also contribute significantly to the development of
T1D (Knip et al., 2005).

Among the different subtypes of immune cells which infiltrate
islets, CD8+ T cells are considered as the likely mediators of
beta cell destruction (Bottazzo et al., 1985; Itoh et al., 1993;
Somoza et al., 1994). It is widely believed that these promote beta
cell apoptosis by both direct and indirect mechanisms and that
macrophages then clear dying and dead beta cells very quickly.
Other T lymphocytes, such as those expressing CD4, are also
thought to play a role, though their precise functions are less clear
(Willcox et al., 2009; Richardson et al., 2011). In addition to the
T cells, B lymphocytes (CD20+) are also present in significant
numbers during certain stages of insulitis in some patients.
Indeed, recent evidence has suggested that the number of B cells
and/or the ratio of B-cells to CD4+- cells present in the infiltrate
can be used to classify the disease into two distinct phenotypes.
These have been defined as “hyper-immune,” characterized by
elevated numbers of CD20+ cells and a rapid loss of beta cell
mass whereas, by contrast, the “pauci-immune” phenotype, is
associated with a lower proportion of B cells and a much slower
destruction of beta cells (Morgan et al., 2014; Leete et al., 2016).
The mechanisms by which the B cells affect the rate of disease
progression are unknown, but it is possible that they collaborate
with CD8+ T cells to drive beta cell loss (Huppa and Davis, 2003).

Progress in understanding the cellular and molecular
mechanisms underlying insulitis in humans has been hindered
by the paucity of available samples from patients who died at, or
close to, disease onset. Fewer than 200 such samples are available
worldwide (Gepts, 1965; Foulis and Stewart, 1984; Kloppel et al.,
1985; Dotta et al., 2007; Walker et al., 2011; Campbell-Thompson
et al.,, 2012; Pugliese, 2014), and inferring the time course of
a disease process from histological samples is fraught with
difficulty since a range of assumptions and extrapolations about
the likely progression are inevitably required to achieve this.

To offset this problem, much work has been performed using
animal models such as the non-obese diabetic (NOD) mouse
as a proxy for the human condition (Kachapati et al., 2012).
The advantages of this are clear—experiments can be performed
over relatively short periods of time and analysis of circulating
and pancreatic lymphyocyte populations is achieved more readily
during the course of disease. Such studies have, therefore, been
extremely informative as a means to identify important cellular
and molecular factors involved (Lally and Bone, 2003), although
considerable effort needs to be made to verify that results are
translatable to humans. While a large number of potential

therapies have been identified in rodents, a means to prevent
the human disease remains elusive (Brehm et al., 2012; In’t Veld,
2014; Pugliese et al., 2014; Reed and Herold, 2015).

An alternative approach, which may shed light on human
insulitis is offered by mathematical modeling. By constructing
environments that mimic the pancreas and immune system,
experiments can be performed in silico, and the results compared
to empirical data arising from studies of relevant human
tissue. Through model construction and analysis, candidate
mechanisms giving rise to TID can be interrogated in a
systematic way. To this end, a number of authors have developed
models describing: beta cell function (Bertram and Sherman,
2004), defective macrophage clearing (Marée et al., 2006),
immune cell populations (Mahafty and Edelstein-Keshet, 2007),
multi-clonal populations of immune cells (Khadra et al., 2009,
2011; Jaberi-Douraki et al., 2015), immune cell cycles (Jaberi-
Douraki et al., 2014b), and apoptotic stress generated by the loss
of beta cell mass (Jaberi-Douraki et al., 2014c¢).

A common theme among the models outlined above is that
they can be regarded as “lumped models,” in that they deal
with averaged quantities taken over the whole body. For certain
applications, this seems appropriate, as it is commensurate
with current clinical practice. The biomarkers clinicians have
available are typically derived from blood samples, in particular,
measures of HbAlc and fasting glucose levels (American
Diabetes Association, 2006; Inzucchi, 2012). Other biomarkers,
such as measures of C-peptide (NIC, 2015) and islet cell and
anti-insulin antibodies (Taplin and Barker, 2008) can be used
to identify individuals who may be susceptible to diabetes
and, though it is not currently routine clinical practice, they
can also be used to aid classification of diabetes (Jones and
Hattersley, 2013). Biomarkers obtained from blood samples are,
by their nature, whole body measures. However, it is known from
histological samples that insulitis displays a pronounced spatial
dependence (Willcox et al., 2009; Morgan et al., 2014). This is due
in part to the distribution of the islets within the pancreas, but
is also a consequence of the presence of a basement membrane
around the islets (Korpos et al., 2013), establishing a barrier
to immune cell infiltration. Interactions and communication
between immune cells also play a role and are likely to contribute
to this spatial dependence.

Insulitis is a spatially heterogeneous process, both within an
individual islet and across the pancreas as a whole. Islets that
are heavily infiltrated can be located near to islets that are free
from inflammation. Moreover, within an infiltrated islet, the
destruction of beta cells appears not to follow a “wave-like”
profile, as might be expected, but seems more random (Willcox
et al, 2009; Morgan et al, 2014). These observations lend
credence to the notion that immune cell communication is a
critical component of insulitis.

To investigate insulitis and its relevance to the progression
of T1D, these spatial aspects must thus be taken into account.
Moreover, since the number of immune cells infiltrating any
given islet is low (Willcox et al., 2009; Morgan et al., 2014), density
based approaches, such as ordinary differential equation (ODE)
modeling, cannot be applied with precision and alternatives are
required.
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In this manuscript, we construct an agent-based model of
the insulitis process within a single islet. The model is posed
on a regular domain that represents the space surrounding
the islet. The principal agents in our model are the immune
cells and we describe how they locate and target beta cells and
how they interact with one another. By using an agent-based
approach, we avoid the problems associated with density-based
(averaged) descriptions of cell mass. We begin by introducing
the relevant biology for our problem. Following this, we describe
the development of, and results from, the agent-based model
simulations. Finally, we conclude with a discussion of the model
and its potential extensions.

2. RELEVANT BIOLOGY

In this section, we highlight the biology corresponding to the
components of our model.

2.1. Cell Types

Our model consists of three distinct cell types—two types of
lymphocyte and the beta cells. We consider in particular CD8+ T
lymphocytes and CD20+ B lymphocytes. Of the various immune
cells that have been shown to be involved in human insulitis,
these are the ones that are believed to be most relevant to the
questions under investigation in our study. The CD8+ cells are
implicated in the destruction of the beta cells, while the CD20+
cells are deduced to play an important role, since their absence
is associated with a weakly aggressive phenotype (Morgan et al.,
2014). In our model, the B cells will essentially act as antigen
presenting cells to the T cells (Rodriguez-Pinto, 2005). We
assume that macrophages efficiently clear apoptotic beta cells. We
do not account for mitosis in any of the cell types; whilst division
and selection of relevant lymphocytes has been demonstrated in
the lymphatic system, evidence for it in the peri-islet space is
minimal (Willcox et al., 2010). Immune cells are assumed to have
a finite lifespan and beta cells die following interactions with T
cells (Cnop et al.,, 2010). We do not consider other cell types,
such as o and § cells, that are also found within the islets of
Langerhans (Kim et al., 2009).

2.2. Basement Membrane

Individual islets are contained within an encapsulating
membrane. This membrane is comprised of various laminins
and collagen (Korpos et al., 2013) and acts as barrier to invading
immune cells. In mice with T1D, these compounds are lost,
suggesting that the basement membrane has been degraded.
In our model, we assume that the T cells are responsible for
degrading the membrane, but in principle, other cells could be
also responsible for this. We also make the assumption that the
membrane can be repaired over time.

2.3. Cell Movement

We assume that beta cells have a fixed location, but that immune
cells are free to move around. The direction of this movement
is mediated by a chemokine gradient, which will be described
below (Stein and Nombela-Arrieta, 2005). In addition, immune
cells of different types are attracted to one another, instigated by

different chemical signaling pathways (Janeway et al., 1985). Cells
are not allowed to pass through the basement membrane, nor
through each other, but are allowed to remain in contact with
one another.

2.4. Chemokine

The beta cells are considered to secrete a chemokine signal that
attracts immune cells toward the islet (Christen and Von Herrath,
2004). In our study, we assume that the chemokine molecules are
bound to the membrane of the beta cells and may also be cleaved
off so that they diffuse freely.

2.5. Cell Interactions

In their role as antigen presenting cells, the B cells can
cause the T cells to enter an activated state, in which both
their sensitivity to the chemokine gradient and their killing
efficiency are enhanced (Friedl et al., 2005). We assume that
activated T cells have a shorter lifespan than their non-activated
counterparts (Green et al., 2003).

When a T cell encounters a beta cell, it triggers a pro-apoptotic
pathway within the beta cell, ultimately resulting in the death of
the beta cell (Cnop et al., 2005).

The behavior of the cells and membrane are summarized
below.

2.6. Summary of Basic Behavior
Below, we will summarize the behavior of each of the cells types
included in our modeling.

T cells

e Move up chemokine gradients
Degrade basement membrane
Kill beta cells

Interact with B cells

When activated by B cells, T cells become more sensitive to the
chemokine gradient and become more effective at killing beta
cells.

B cells

e Move up chemokine gradients

e Form productive interactions with T cells
e Activate T cells

Beta cells
e Immobile
o Killed by T cells

We do not include in our model the possibility of beta cell
replication. Studies have suggested that beta cell proliferation is
increased, particularly in the early stages of insulitis (Willcox
etal., 2010). Here, we disregard this effect.

Basement membrane
e Degraded by T cells.
e Can self-repair.
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3. METHODS

3.1. Building a Cellular Automaton
ODE-based modeling approaches average the dynamics
associated with insulitis over space essentially representing the
entire pancreas. Such approaches have provided numerous
insights into the potential roles of T and B cell involvement in
T1D and we refer the reader to Jaberi-Douraki et al. (2014a) for
a recent and comprehensive review of this literature. However,
we know that insulitis is heterogeneous and that the number
of immune cells directly involved in the destruction of the beta
cells in humans is low - far lower than would be necessary for
a density approximation to be justified (Willcox et al., 2009;
Morgan et al., 2014). Instead, we employ a different, agent-based,
modeling approach (An et al., 2009; Holcombe et al., 2012). Our
agents, the immune and beta cells, occupy finite area within a
two dimensional space. In a real islet, cells are free to move in
three dimensional space, but for ease of modeling (as a starting
point of first approximation) and for a more direct comparison
with data, we shall here restrict ourselves to the planar case. The
agents are given specific rules to locomote, interact with one
another and with the basement membrane. Simulations will then
be performed to track emergent behavior arising from the basic
rules. In this way, the model will evolve over a spatially extended
domain in which cell-cell interactions can be explicitly defined.
Note that the rules that govern our agents’ dynamics are
not intended to be exhaustive lists for all potential behaviors
exhibited by the cells. Instead, they are intended to represent
a minimal set of interactions that can explain the observed
phenomena. Additionally, the model can be iteratively developed
to account for new interactions as required.

3.2. Cell Movement

In this modeling framework, the cells are treated as being discrete
circular particles (Levine et al., 2000; Palsson and Othmer, 2000;
Tijskens et al., 2003; Maini and Baker, 2011; Bruna and Chapman,
2012; Plank and Simpson, 2012). Cell movement is simulated by
modeling the forces that act upon cells from different sources
and then by resolving these forces using Newton’s second law
of motion. In the absence of external forces, intrinsic forces
acting upon the immune cells cause them to diffuse randomly,
obeying a random walk. In the presence of a chemokine gradient,
these same cells will seek to move up the gradient. Cells may be
attracted to one another and may be in contact with one another
for extended periods of time, that is, we allow cells to overlap, but
they may not pass through each other.

3.3. Immune Cell Forces

Before discussing the governing equations, it is useful to define
indexing sets for each of the cell types. In the following, we define
the sets 7, B3, and B as sets containing the indices for T, B, and
beta cells respectively. From Newton’s second law of motion, we
have:

d’x; dx;
L= —ni— + Fi + o&(1),

for each cell where x; € R? is the cell’s location, m; € R is the
mass of the cell, 7; € Rx is the cell’s viscosity and F; € R? is the
force acting on the cell. The final term in Equation (1) represents
a Gaussian white noise process: (§(t)) = 0, (§(H)&(t + s)) =
8(t-s), with strength o such that the immune cells perform
random walks in the absence of any other forces (Palsson and
Othmer, 2000; Middleton et al., 2014). In biological systems,
we assume that the cells have low Reynold’s numbers such that
inertial forces are small compared to viscous ones. Under this
approximation, we can replace (Equation 1) with:

dx; 1
Jz—Fi—f—O'.fi(t), ieTUB
dt ni
For simplicity, we set ; = 1 for all cells. Note that, in a

general mathematical framework, specific values for 7; can be
absorbed into the definition of F;. For our model definition, we
include heterogeneity between immune cells through variations
in their sensitivity to chemical gradients, as we shall discuss in
Section 3.11. We will also initially assume that the cells within
the subgroups are homogeneous with respect to their geometry,
that is, they share a common radius rimm.
The force F can be broken up into its constituent parts:

Fi = Fichemo + Ficell—cell + Flislet + Fiﬁ' )

chemo cell-cell
F i 3 i

In the above, represents chemotactic force,

represents cell attraction and repulsion, whilst F}Slet represents

the interaction with the basement membrane and Ff represents
interaction with the beta cells.

3.4. Chemokine Signaling
Since the chemokine is a chemical signal, we establish a gradient
using a reaction-diffusion equation:

aa% = DV*C + f(Q). (3)
We assume that the chemokine evolves on a much faster
timescale compared to the movement of the cells, so we assume
the chemokine to be at steady state by setting the LHS of
Equation (3) to zero. The domain on which we simulate our
model represents only a small space around an individual islet.
We note that this region is small compared to the entire
pancreas, and further that the chemokine is free to diffuse out of
our prescribed region. Typically, when solving PDEs, boundary
conditions are applied at the edge of the domain over which
the equation is being solved. However, as we are treating our
region as only a small part of a much larger one, we feel it is
more appropriate to not apply boundary conditions, leaving them
open. The reaction term is given by local decay with point sources
given by the locations of the beta cells. The chemokine equation
now reads:

DV’C=1C - v()s(x — x)), (4)
jeb

where 1 is the degradation rate of the chemokine and x; are the
centroids of the beta cells. To reflect the fact that dead beta cells
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will not secrete chemokine, we assume that the production of
chemokine is dependent on the current viability of the cell vj(t).
For a viable beta cell, v = 1, whilst dead beta cells have v = 0.
This equation can itself be recast as:

QC =) vsx—x), Q=(—DV?). (5)
jep

The Green’s function for the operator Q at a given time is a
Gaussian function and so we lump parameters together and
choose a form for the chemokine signal given by:

Clat) = Y avj(t) exp (—(x — x))? /(205)) , 6)

jep

where o now represents the strength of the chemokine signal
and o¢ represents the range over which it decays. In order to
represent our assumption that the chemokine exists in forms in
which it is bound to the membrane and forms in which it freely
diffuses, we replace Equation (6) by:

2

it =Y Y avChexp (—x = %)%/C02p), @)

k=1 jep

where o¢ ) is small and reflects the membrane bound chemokine,
whilst Cg, k = 1,2 control the proportion of chemokine that is
membrane bound vs. that which is freely diffusing. The immune
cells respond to this gradient via:

chemo
F i

=S;VC,

where S; is the sensitivity of the 7’th cell to the chemokine
gradient. We note that this represents the notion that immune
cells tend to move up a potential gradient in which the locations
of the beta cells are given by local peaks of this potential. The
use of such potentials to model forces is an integral part of this
modeling framework (Middleton et al., 2014).

3.5. Cell-Cell Interactions

We assume that T and B cells are attracted to one another.
For simplicity’s sake, we assume that this can be modeled via
another Gaussian function. It is worth noting that this could
represent attraction acting at a distance, or could represent a local
effect acting to keep cells in contact with one another (or some
combination of the two). We do not allow cells to pass through
one another. We can achieve both of these through the use of
another potential. Common choices for these potentials include
the Lennard-Jones potential and the Morse potential (Middleton
etal., 2014). We shall use the following potential:

Uicell-cell — Z Aff exp(—|xj _ xi|2/d§)
j#ijeTUB
- Ar(|xj — x| — 27’imm)6l_l(|xj — Xi| = 27imm)-

(8)

The first of these terms is the attraction between immune cells of
different types—B cells seek out T cells to activate and T cells are
also attracted to B cells. This is achieved by setting:

A=At
0 Xxi=xj
where y; is an indicator function taking value 1 if cell i is a T cell
and 0 if it is B cell. The spatial scale of this attraction is set by d,.
The second term accounts for the fact that cells cannot pass
through one another. If the distance between cells is greater
than the sum of their radii, that being 2rimm, they exert no
repulsive force on one another, achieved through the inclusion
of a Heaviside function H. However, if this distance falls below
this sum, a large repulsive force is exerted. This is known as a
hard-core potential (Levine et al., 2000). Note that some authors
choose this potential to be infinite at the point of contact, so that
cells cannot occupy or share any part of physical space (Bruna
and Chapman, 2012). However, this necessitates choosing a
smaller time step and, since cells can remain in contact with one
another for significant periods of time, we will not make such
a choice. Note also that the parameter A, is shared amongst all
immune cells. Once again, the forces acting on the i’th cell can
then be expressed as:

Flgell—cell — _VUicell-cell. 9)

Note that, since immune cells move around the domain, the
potential “landscape;” together with its peaks and troughs, is
constantly evolving.

3.6. Islet Interactions

For simplicity, and to remain consistent with our chosen
geometry of the cells, the basement membrane encapsulating the
islet is chosen to be a circle centred at the origin with radius R.
Cells cannot pass through the membrane, so when it is present,
immune cells remain on the inside or outside of the islet. This
can be reflected through the use of another hard-core potential.
Whilst we have not yet defined the dynamics for the membrane,
we shall assume that there is a integrity threshold, &, below which
the membrane does not prevent cells from passing through. Since
we do not expect the membrane to have the same integrity across
its whole length, we also need to account for the location at which
the cell interacts with the islet. The relevant hard-core potential
is then given by:

U}Slet = Aiget H(m(0) — hH(fimm — |dl —R|)
(rimm — |di — R|)6’

di = |xi — Xiglet|>

(10)

where m(0) € [0,1] is the membrane integrity at angle 6 € St
around the membrane, xige; € R? is the location of the center
of the islet and Ajqe is a constant indicating the strength of
repulsion. Once more, the force acting on the cells is then given
by:

F;slet — —VU?Slet. (11)
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Finally, we must define the forces acting upon the immune cells
exerted by the beta cells. This is functionally the same as the
repulsive force between cells (Equation 8) and is given by:

Uf = Ay v(0H(x; — xil = (7 + Timm))
jep

(Ixj — xil = (g + Timm))®, (12)
where rg is the radius of the beta cells. The time-dependence of v;
here reflects that the beta cells may die, after which we no longer
need to consider repulsive effects generated by them (assuming
the dead cell bodies are cleared by macrophages), and so vj is set
to 0 for that cell. The final force in Equation (2) is defined through

Ff = —vu’.

D= — (13)
3.7. Immune Cell Lifespan

The timescale over which insulitis takes place is long compared
to the average lifespan of an immune cell. Thus, we need to
incorporate immune cell death into our model. We assume that
T and B cells have a lifespan of Lt, and Lg respectively. Each cell
then has a counter y;, which is incremented by setting x; +—
Xi + 1 at each time step. Activated T cells are expected to have
shorter lifespans than unactivated T cells (Green et al., 2003), so
for those cells, we instead update the counter via x; > x; + Ax
where Ay > 1.

When y; exceeds Lt (or L) for a given T (B) cell, it is
considered to be dead and is removed. We keep the number of T
and B cells constant throughout the simulation by assuming that
each dead cell is replaced by a newly arriving one. We assume that
the vasculature is sufficiently dense that immune cells can enter
at any point in the extra-islet space. As such, the location of the
new cell is drawn randomly from a uniform distribution over the
extra-islet space, achieved through the use of polar coordinates.
The cell’s counter is reset to 0 and, if the cell is a T cell, it is chosen
to be in the unactivated state.

3.8. Membrane Dynamics

In our simplified geometry, the encapsulating membrane is a
represented by a circle, which can be parameterized by a single
variable 6 € S!. The equation governing the evolution of the
membrane viability, m, is given by:

dm(0) B
e a,(1 —m(6))
— M Y exp (= (1% = %m(O)] = fimm)/dm) , (14)
i€eT

where «,, and A,, are respectively the repair and degradation
rates of the membrane and x,,(6) is the location in real space
of the membrane at position 6. The term in the sum represents
the fact that we expect T cells to break down the membrane and
this can only occur when T cells are close enough. The range over
which the T cells can degrade the membrane is set by d,,.

We note that as beta cells are destroyed, the morphology of
the affected islets may change. In particular, some islets in T1D

present with small size and irregular outline (Gepts, 1965). The
membrane in our study, where it exists, simply follows a circle
with fixed radius, and thus does not account for these changes.
However, we note that not all degranulated islets have small size
and irregular outline (Gepts, 1965). Moreover, the morphology of
islets, irrespective of insulitis, is highly variable. It is thus difficult
to infer how the morphology of a given islet varies over the course
of the insulitic process. Nevertheless, it seems likely that changes
to islet morphology will occur, and we discuss approaches to
incorporate this into our model in Section 5.1.1.

3.9. Activation and Apoptosis

When T cells and B cells are in contact with one another, we
assume that B cells can activate non-activated T cells and that
this process has a characteristic time course. We thus describe
the activation level of the 7’th T cell, a;, via:

da, > jes H(IXj — xi = 2rimm + 0.1]) g <1 ‘
E — _ )\‘ﬂai , 1e€T,
0 ai = 1,

(15)
where 1, is the decay rate of the activation signal. The constant
0.1 is included inside the Heaviside function to account for
the fact that we are not explicitly modeling cell-cell contacts,
and the use of hard-core potentials tends to make cells move
apart quickly when they are close. Our specific choice for this
constant is selected such that cells are allowed to remain in
contact with one another. We note that if this value is selected
to be too large, cells can essentially occupy the same location,
whilst values that are too small will cause cells to “bounce” off
one another. We wish to avoid both of these behaviors, and over
a range of choices, we found that a value of 0.1 satisfied these
criteria. Once the activation signal reaches 1, the cell is activated
and remains so until that cell dies, (or until the end of the
simulation if that occurs first), reflected by setting the RHS to zero
upon the activation reaching 1. Activated cells have an increased
sensitivity to the chemokine signal and enhanced killing rate.
This is captured in the model by increasing the sensitivity and
killing parameters:

Si—> Si+ AS, ki ki+ Ak,
where AS and Ak are positive constants.
The dynamics for the apoptosis of beta cells b; follows a similar
prescription:

Yjer kH(1Xj — Xi — 2rimm + 0.1])

db;
= —Apbi

i

where A, is the decay rate of the apoptotic signal, «; is the killing
rate of the jth T cell, and we include the constant, 0.1, for the
same reasons as for (Equation 15). If b; exceeds 1 for a given cell
i, that cell is assumed to have been killed and is removed from the
simulation. This is achieved by setting its viability, v;, to be zero.
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3.10. Implementation

Since the system we are solving is a Langevin equation, we
must use an appropriate numerical method to deal with the
stochasticity. For computational efficiency, we shall use the
forward Euler-Maruyama scheme. This method only has strong
order dt'/? but requires the fewest function evaluations of any
of the solvers for stochastic differential equations (SDEs). The
one exception to this is the equation governing the membrane
dynamics where the explicit Euler scheme is unstable and
causes solutions to blow up. For this equation, we use an
implicit, backward Euler scheme. This keeps the total order
accuracy of solutions consistent with the other equations, but
provides the required stability without incurring additional
computational cost.

Note that the membrane (Equation 14) treats distinct points
along the membrane as being distinct from one another. This
is the only system that is grid-based - all of the other equations
are grid-free. In order to solve this system, we first discretize the
membrane into Ny points, 6; = —x + 27 (i — 1)/Ng, i = 1,N,
and subsequently solve (Equation 14) at each of these points. To
find the value of the m at a point not on the discrete grid, we
use band-limited interpolation for periodic signals as described
in Schanze (1995).

3.11. Initial Conditions and Parameters

The immune cells are initially located at random, non-
overlapping positions within annular domain with inner radius R
and outer radius Imm. The islet is positioned at the center of the
domain, which for simplicity, we set as our origin. To distribute
the beta cells, Ng cells are arranged in concentric circles within
the islet. Next, for T = 1000 timesteps, they are allowed to freely
evolve governed by:

dx; i -
ditl =F;Slet+F;'3 p +o&(t), ie B, (16)

where x; is the center of the i’th beta cell, F}Slet is the same as
Equation (13) operating on the beta cells rather than the immune
cells with:

PP = _vuf,, (17)

1

where

U P = 3 H(x — xil = 2rp)(1x — x| —2rp)%, (18)
JFLEB

where x; € R? now represents the location of the beta cell. After
the n steps, the beta cells are fixed in location for the remainder
of the simulation. Note that during this process, the immune
cells are fixed in position. We distribute cells in this manner as
it (a) generates a more realistic islet geometry compared with
spacing them evenly within the islet and (b) it overcomes the
known computational problems with randomly distributing non-
overlapping disks in a confined region (Song et al., 2008). In
Figure 1, we show the initial and final configuration of the beta
cells following this approach. All simulations and analyses were
performed in Matlab.

A B

FIGURE 1 | (A) Initial configuration of beta cells within an islet, distributed in
concentric circles. (B) Final configuration of the beta cells evolved for
T = 1000 timesteps, according to Equations (16-18).

Other initial conditions are given by m = 1 forall 6, a; = 0
forallie 7,and b; = 0,v; = 1,Vi € B.

The sensitivities of the T and B cells to the chemokine gradient
are drawn from distinct Gaussian distribution with means St and
Sp and variances o and op respectively. Parameters governing
the geometry of our domain, such as immune cell and beta cell
sizes were chosen to be matched to available data. In particular,
beta cell diameters were taken from Saisho et al. (2013), immune
cell diameters were based on values found in Wang et al. (2012),
numbers of cells in each immune cell population were taken
from Willcox et al. (2009) and islet composition (in terms of
beta cells) were based on those found for humans in Kim
et al. (2009). Data regarding the in vivo lifespan of specific
effector lymphocytes in humans are rare and these may also
be heterogeneous even within the same population. However,
effector lymphocytes are unlikely to have lifespans ranging
beyond several weeks (Sprent, 1993). To address the uncertainty
in lifespans, we performed simulations across a range of values,
from 3 to 7 weeks and compared results.

Other parameters in our model were tuned to provide the
required behaviour, though we comment that much of the general
behavior observed in our simulations is robust to parameter
variations, suggesting that the model outcomes are robust. We
note that certain processes, such as the degradation and repair
of the peri-islet basement membrane, are phenomenological in
nature, and as such, it is difficult to ascribe to them meaningful
parameter values. Whilst the islet membrane is a physical
component of the real system, we represents its viability by
a scalar in the range 0-1, and so parameter values should be
interpreted with respect to this scaling. Similar comments hold
for the chemokine signal. Though a chemoattractant gradient
is thought to exist in the peri-islet space, it is not clear what
its composition, and subsequent properties, might be. As such,
we have chosen a prototypical form to represent our chemokine
signal, and investigated how changes to the strength of this signal
impacts upon the resulting dynamics. All parameter values are
summarized in Table 1 and referenced in text where they are
altered for specific numerical experiments.

4. RESULTS

In Figure 2, we show the initial state of a prototypical simulation,
and the state of the system at T = 4000 days. Here, we
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TABLE 1 | Table of parameter values and meanings for the agent-based

model.
Nt Number of T cells 30 Ref: Willcox et al. (2009)
Npg Number of B cells {5, 30} Ref: Willcox et al.
(2009); Leete et al. (2016)
Ng Number of beta cells 166  Ref: Kim et al. (2009)
o Strength of Wiener process 1.0 pm days*1
limm Radius of immune cells 4.0pum  Ref: Wang et al. (2012)
rg Radius of beta cells 6.4 um  Ref: Saisho et al.
(2013)
R Radius of islet 120.0 um  Ref: Kim et al.
(2009)
St Mean sensitivity of T cells 600 N—8 nwm mM—1
S Mean sensitivity of B cells 700 N—8 nwm mM—1
oT Variance of sensitivity of T cells 0.5N=8 pm mm~1
o Variance of sensitivity of B cells 0.5N8 wm mm—1
I3 Kiling rate 0.2 cell= day~"
ac Chemokine strength 0.5 uM
ocA Range of chemokine signal 200.0 pm
aco  Chemokine strength 10.0 uM
ac,2 Range of chemokine signal 8.0 um
Ag Attraction strength between T and 1.0N78 um
B cells
da Attraction range between T and B 4.0 pm
cells
Ar Repulsion rate for hard-core 10.0N"8 wm
potential between cells
Aislet  Repulsion rate for hard-core 100.0 pm
potential of islet
am Repair rate of membrane 0.01 day*1
m Degradation rate of membrane 0.1 cell=" day~!
dm Membrane degradation range 4.0 pm
Aa Decay rate of activation signal 0.5 day‘1
Ap Decay rate of apoptotic signal 0.5 day‘1
AS Activated sensitivity boost 400 N=8 pm mm—1
Ak Activated Killing rate boost 0.9 cell~! day’1
Lt Lifespan of T cells {21, 28, 56} days  Ref: Sprent
(1993)
Ly Lifespan of B cells {21, 28, 56} days  Ref: Sprent
(1993)
Ak Activated killing rate boost 0.9 cell " day*1
Ax Activated cell lifespan counter 2
dt Time-step for EM scheme 0.001 day™'

Where indicated, references show the studies upon which specific parameter values were
based. Parameters are altered as discussed in the text for specific numerical experiments.

can see that the islet exhibits significant beta cell loss. We
also see that immune cells congregate at the islet membrane
and that a small number infiltrate the islet itself. Across
all parameter sets used in our experiments, this behavior is
preserved. In the Supplementary Material, we provide videos
showing the full time-course of typical simulations with base
parameters as indicated in Table 1, lymphocyte lifespan of
21 days and other parameters selected to reflect a variety of
conditions, as discussed in the forthcoming sections. These
simulations may be compared with the averaged results shown in
Figures 3-7.

FIGURE 2 | (A) Initial state of system. (B) State of the system after T = 4000
days. A video of the full time-course of this simulation can be found in the
Supplementary Material. In both panels, the blue circles represent beta cells,
the red circles represent T cells, the green circles represent B cells, the black
circle represents the peri-islet basement membrane and the black gradient
represents a chemokine signal. Parameters are as in Table 1.

For all parameter sets, we simulate 100 realizations and
average at specific time points to develop a time-course. During
the simulations, we keep track of the number of immune cells
within the islet and the number of viable beta cells. We take the
total area encompassing the viable beta cells as being reflective of
the beta cell mass. We shall now report both the time-courses of
the remaining beta cell mass as a percentage of the initial mass
(calculated as the ratio of the total mass of viable beta cells at
time t and the initial mass of beta cells, averaged over the 100
realizations), and the number of immune cells in the islet for a
number of conditions, along with the standard error of the mean
(SEM) at each time point. In each case, we shall use the base set
of parameters as indicated in Table 1, changing specific values
where indicated. In all cases, to assess how the lifespan of the
immune cells affects the resulting dynamics, we vary this between
21, 28, and 56 days as indicated in the figures.

4.1. Varying Number of B Cells
We begin by examining a key condition in this study, namely how
the number of B cells in the peri-islet space impacts the rate of
destruction of beta cells. To address this, we compare a condition
with few B cells, setting Ng = 5, and one with a higher number of
B cells, with Ng = 30. These results are summarized in Figure 3.
We observe that when the immune cell lifespan is short,
neither the low nor the high B cell condition exhibit significant
beta cell destruction. As the lifespan is increased, we observe a
pronounced increase in this rate. For an immune cell lifespan
of 56 days, we see that the high B cell condition reaches an
equilibrium value at around 3000 days. Note that the equilibrium
value is below the critical threshold of ~20% of remaining beta
cell mass (Cnop et al., 2005) (however, it should be noted that
this threshold is a whole-body threshold and may not be valid for
an individual islet).

4.2. Varying Repair Rate of Membrane

We have assumed in our model that the peri-islet basement
membrane is capable of being repaired at a rate o;,. If we decrease
Oy, the rate of degradation of the membrane may be such that
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FIGURE 3 | Effect of variation of B cell number on beta cell mass loss in the agent-based model. Each graph shows the mean + SEM for 100 simulations.
Across all immune cell lifespans, we find that increasing the number of B cells significantly increases the destruction rate of the beta cells. Parameters are as in

100
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cell mass cell mass
50+
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Table 1. Videos of typical simulations for the case with immune cell lifespans of 21 days may be found in Videos S1, S2.

4000 6000

Days

holes caused by infiltrating T cells are not repaired (at least
over the timescale of our simulation). In the extreme case, the
membrane is incapable of repair, in which case we set o, = 0.
In Figure 4, we display the time-course of a simulation in such a
regime.

It is clear from these graphs that removing the repair
mechanism of the membrane dramatically increase the
susceptibility of the beta cells to cytotoxicity. In the most extreme
case, in the situation with few B cells and a short immune cell
lifespan, we now see a huge difference in both the rate of beta cell
destruction and the final cell mass at the end of our simulation.
In the case with no membrane repair, the final beta cell mass
of almost all simulations is below ~20% of the initial mass.
These results highlight the importance of the peri-islet basement
membrane to the progression of insulitis, and also suggest
that ongoing repair of this membrane is critical to slowing the
infiltration of the immune cells.

We also observe, in contrast to the results in Figure 3, that
the immune cell lifespan now has a more muted affect on the
resulting dynamics. Whilst there is an increase in the rate of
beta cell destruction with increasing lifespan, the more significant
contribution appears to be to lower the equilibrium value of
remaining beta cell mass. This likely arises due to the fact that,
as the beta cell population decreases, so too does the chemokine
signal to which the immune cells respond. This means that the
cells (on average) move into the islet at a slower rate, since their
paths becomes more dominated by noise. If the cell lifespan
is too short, the immune cells may die before entering the

islet if there are insufficient beta cells generating a chemokine
gradient.

4.3. Increasing the Membrane Degradation
Rate

Instead of reducing the basement membrane repair rate, we
now increase the efficacy of the immune cells of degrading the
membrane, setting A,, = 0.2 and display the results in Figure 5.
For comparison with the condition in which the encapsulating
membrane is not repaired, we additionally plot results from this
case in the same figure, as indicated.

As expected, increasing the rate of membrane degradation
increases the rate of beta cell destruction and subsequently
decreases the final remaining beta cell mass. Compared with the
condition with no membrane repair, we see that the initial rate of
beta cell destruction is greater in the case with high membrane
degradation. However, as the insulitis process continues, this
trend becomes reversed. Remarkably, across all cases varying
the number of B cell and the immune cell lifespan, the time
at which this occurs appears to be approximately the same.
We also see that the final beta cell mass is lower for the
condition with no repair than for that with high membrane
degradation.

At the beginning of simulations, the ability of the T cells to
degrade the basement membrane at a faster rate allows them
to infiltrate the islet and subsequently kill the beta cells more
quickly. Whilst the initial degradation of the membrane in
the no repair condition is slower, the fact that “holes” in the
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FIGURE 4 | Time-course of beta cell mass comparing conditions with and without peri-islet basement repair. Each graph shows the mean + SEM for 100
simulations. Data for simulations with 5 B cells are displayed in the left column, whilst those for simulations with 30 B cells are depicted in the right column. In the case
without membrane repair, we observe both an increase in the rate of beta cell destruction and pronounced differences in the final beta cell mass across all immune cell
lifespans and B cell number. Parameters are as in Table 1 with «y = 0. Videos of typical simulations for the case with immune cell lifespans of 21 days may be found
in Videos S3, S4.

encapsulating membrane caused by T cells are not repaired
means that, at later times, immune cells can simply pass through
these holes.

When the membrane can be repaired, the rate of immune
cell infiltration is governed by the balance between how quickly
it can be degraded and how quickly it can be repaired. As the
chemokine signal across the peri-islet space becomes weaker
when beta cells die, the average rate that T cells reach the
basement membrane falls, since the strength of the signal is a
contributory factor in determinining the transit time for a T cell
toward the islet. As there are fewer T cells aggregrating at the islet
membrane at any given time, the degradation of the membrane
becomes slower, and hence the beta cells are destroyed at a slower
rate as time progresses. At later times the arrival rate of T cells
may be so slow that the membrane is repaired at the same rate as
it is degraded, on average, and so islet infiltration by the immune
cells will be halted.

These observations account for the slower rate of beta
cell destruction and higher remaining beta cell mass for
the high degradation condition compared to that with no
membrane repair. This further highlights the importance
of continual basement membrane repair to the slowing of
insulitis.

4.4. Increasing the Killing Efficiency of the
T Cells

We now increase the killing rate of the T cells. To reflect the fact
that we assume that activated T cells are responsible for most of
the beta cell destruction, we achieve this by doubling the killing
rate boost, setting Ak = 1.8. The results for these experiments
are displayed in Figure 6.

We observe that increasing the killing rate of the immune cells
does not significantly affect the death rate of beta cells, either
quantitatively or qualitatively. In all cases, we observe an increase
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FIGURE 5 | Time-course of beta cell mass comparing with higher membrane degradation rates. Each graph shows the mean + SEM for 100 simulations.
The left column shows results for simulations with 5 B cells whilst the right column shows those with 30 B cells. Data for the condition with the base value for
membrane degradation but with am = 0, as reported in Figure 4 are also shown. An increase in the beta cell destruction rate, as well as lower final beta cell masses
are observed across all immune cell lifespans and number of B cells. Note, however, that whilst the initial rate of beta cell destruction for the condition with high
membrane degradation is higher than that for the case with no membrane repair, the final beta cell mass is higher for the former compared with the latter. We refer the
reader to the text in Section 4.3 for further interpretation of this observation. Parameters are as in Table 1 with %, = 0.2 for the high degradation condition and
am = 0 for the no membrane repair condition. Videos of typical simulations for the case with immune cell lifespans of 21 days may be found in Videos S5, S6.

in the beta cell mass destruction rate, but this is fairly minimal.
The limited impact of increased killing rate can be understood
by noting that, whilst the killing rate is an important factor in
the overall insulitis process, this is dominated by transit time to
and within the islet, as well as activation by B cells. Once inside
the islet, T cells can interact with and kill beta cells but the total
number of beta cells an individual T cell can destroy will be
influenced more strongly by its remaining lifespan than on its
killing rate. This highlights the need to incorporate the spatial
aspects of the immune response and that high T cell killing rates
do not necessarily significantly affect the progression of insulitis.

We comment that these observations at first seem at
odds with previous results from the NOD mouse where
the avidity of a T cell population is well-correlated with
its pathogenic potential, and the progression of TI1D occurs

through avidity maturation (Amrani et al.,, 2000). Theoretical
studies have supported the viewpoint that higher avidity
CD8+ T cell populations lead to increased rates of beta cell
destruction (Khadra et al., 2011) and that low avidity populations
may have a protective effect against T1D development (Khadra
et al, 2009). However, recent results in the NOD model
have suggested that the highest avidity CD8+ cells do not
escape thymocyte negative selection, and accordingly, the cells
responsible for beta cell destruction in the murine pancreas
may be regarded as those with “intermediate avidity” (Han
et al., 2016). Furthermore, the paucity of data on the specificity
of lymphocytes involved in human insulitis makes it difficult
to propose quantitative statements about the effective killing
potential of individual T cells. This is particularly difficult
since the majority of the results regarding the avidity of
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FIGURE 6 | Time-course of beta cell mass comparing with higher activated killing rates. Each graph shows the mean 4 SEM for 100 simulations. The left
column shows results for simulations with 5 B cells whilst the right column shows those with 30 B cells. Although an increase in the rate of beta cell destruction is
observed, this is relatively small in all cases. Parameters are as in Table 1 with Ax = 1.8.

human lymphocytes come from peripheral blood measurements
and are not necessarily indicative of avidities within the
pancreas (Reijonen et al., 2004; Standifer et al., 2009). Finally, the
lifespan of a T cell that has successfully infiltrated an islet should
still have a significant impact on the number of beta cells it can
destroy, assuming its avidity is sufficiently high.

4.5. Increasing the Rate of Chemokine
Production

To reflect increases in the rate of chemokine production, we
now double o). and o simultaneously, setting &l = 1.0 and
aé = 20.0. Note that, since we are assuming a quasi-steady state
approximation for the chemokine, this simply adjusts the profile
of the chemokine signal across our domain. The results for these
simulations are depicted in Figure 7.

As for the situation with increased killing rates, we observe
similar qualitative behavior to the case with lower chemokine
production rates. However, in contrast to the former case, the

quantitative differences between the beta cell death rate and
final cell mass are much greater. This further highlights the
contribution of cell movement in the overall inflammatory
response.

4.6. Combining High Chemokine Signals

and Reduced Membrane Repair

In our final numerical experiment, whose results are shown
in Figure 8, we simultaneously increase the strength of the
chemokine signal, setting ol = 1.0, @2 = 20.0, as in the
previous subsection, and remove the membrane repair, setting
@y, = 0. As expected, with these combined alterations, we now
observe significantly high rates of beta cell destruction for all
cases considered. Moreover, the final beta cell mass at the end
of our simulations is below 20% of the original cell mass. For the
cases with the longest lived immune cells, those having a lifespan
of 56 days, we now see that essentially all of the beta cells have
been destroyed within 1000 days.
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FIGURE 7 | Time-course of beta cell mass comparing conditions with the base and increased strength of chemokine signal. Each graph shows the mean
+ SEM for 100 simulations. The left column shows results for simulations with 5 B cells whilst the right column shows those with 30 B cells. In the high chemokine
signal parameter regime, we observe both an increase in the rate of beta cell destruction and pronounced differences in the final beta cell mass across all immune cell
lifespans and B cell number. These differences are greater than those displayed for higher T cell killing rates in this figure. Parameters are as in Table 1 with aé =1.0
and aé = 20.0. Videos of typical simulations for the case with immune cell lifespans of 21 days may be found in Videos S7, S8.

4.7. Immune Cell Invasion Profiles

We now consider how the invasion of immune cells is dependent
on the remaining beta cell mass and report the dependence of the
number of immune cells within the islet (i.e., within the basement
membrane) on the remaining beta cell mass. These results are
shown in Figure 9 for the case with 5 B cells and in Figure 10
for the case with 30 B cells. The results for the case with high
chemokine signals with no basement membrane repair, and for
the case with increased membrane degradation are omitted, but
are qualitatively similar to the case with no repair alone. In both
figures, we only show results when the immune cell lifespan is
56 days.

For situations with 5 B cells, we observe two qualitative
behaviors amongst the range of cases considered. Using the
default parameters and those with high killing rates, we observe
no infiltration of the islet by the B cells. The immune cell

population undergoes an initial increase to a maximum value,
followed by an approximately linear decay with the remaining
beta cell mass. The behavior with high chemokine signals or no
membrane repair does show islet invasion by the B cells. In these
cases, the T cell population now both increases and decreases
more gradually as a function of the beta cell mass, and attains
a higher maximum value than in either of the two previous cases.

If we now increase the number of B cells to 30, we observe, in
all cases, invasion of the islets by B cells and a qualitatively similar
profile of T cell infiltration. With the default parameters, or those
with high killing rates, the maximum value of invading T cells
occurs when approximately 50% of the beta cell mass remains.
In contrast to the T cell population, the number of invading B
cells varies little with the beta cell mass. In the case with no
membrane repair, this is no longer true, and we now find that the
B cell profile follows the T cell profile and furthermore, that the
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FIGURE 8 | Time-course of beta cell mass with high chemokine signals without basement membrane repair. Each graph shows the mean + SEM for 100
simulations. The left column shows results for simulations with 5 B cells whilst the right column shows those with 30 B cells. In all cases, the rate of beta cell loss is
high and the remaining cell mass at the end of the experiments is low. Parameters are as in Figure 7 with om = 0.

maximum value of immune cell infiltration occurs at low values
of the remaining beta cell mass.

4.8. Trial-to-Trial Variability and the Role of
Space

For each of the scenarios listed, we report the standard error of
the mean for all recorded values at each time point. In general,
we observe that variability across our simulations for a given
scenario is low, suggesting that the model behavior is robust
and that noise does not significantly affect the intrinsic model
dynamics. In particular, scenarios with either very high rates or
very low rates of beta cell destruction exhibit very little variability.
Variation is highest in scenarios that lead to intermediate rates of
beta cell death, suggesting that the role of noise in such situations
is much more significant in these conditions.

The results reported in Figures 3-10 reflect spatial averages
that are taken over the peri-islet space. As such, they do not
reflect the spatial component of the dynamics produced by the

agent-based model. These effects are, in general, quite subtle.
In particular, since we assume that activation of CD8+ cells
by CD20+ cells requires them to be co-localized, the spatial
arrangement of the immune cells will play an important role
in determining the overall rate of beta cell destruction. The
geometry in this initial version of the model has been chosen
to be simplistic in nature. In future versions, the geometry will
be adjusted to better match that of real islets as discussed in
Section 5.1.1. One could imagine scenarios in which the routes
taken by immune cells when migrating toward the islet could
influence the average number of interactions with one another,
and further, that these paths would be influenced by prominent
vasculature near the islet.

The spatial configuration of the immune cells also plays
a significant role in determining how quickly the basement
membrane is degraded. Where many CD8+ cells accumulate at
specific points along the periphery of the islet, we would expect
high rates of membrane degradation. Conversely, if the cells
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number: 3971831129485; www.interscience.wiley.com).

are evenly distributed along the membrane, average degradation
rates are likely to be low. Our results suggest that the dynamical
processes governing the repair and destruction of the basement
membrane play a key role in determining the overall rate of beta
cell destruction and so it is clear that the spatial distribution of
immune cells along this membrane will also be critical.

These spatial considerations are the key determinant for the
degree of variability observed between trials, as reported in
each of the figures. In the Supplementary Material, we provide
animations of typical simulations in a subset of the scenarios
listed to demonstrate the subtle role that these effects have on the
insulitis process.

5. DISCUSSION

In this manuscript, we have constructed a spatial, agent-based
model of immune cell invasion of a prototypical islet of
Langerhans. The agents in the model are immune and beta cells,
and each obeys rules that broadly match the general behavior
of these cell types. The model attempts to mimic a real islet,
allowing for in silico experiments to be performed through
model simulation. The agent-based framework allows both the
spatial aspects of insulitis to be investigated, and avoids issues
of applying ODE-based approaches to a system that has low cell
numbers. It is intended that this will lay down the framework
for more extensive spatio-temporal modeling of insulitis, with an
ultimate aim to understand its core mechanisms and to devise
strategies to slow or halt its progress.

Overall, the observed phenomena in the model are well
matched to real data, which have been collected and analyzed
from human patient samples (Willcox et al., 2009; Morgan et al.,
2014), and are reported in Figure 11. We note that data for
the pauci-immune phenotype have recently appeared in Leete

et al. (2016), but since our model is primarily focussed on
the hyper-immune phenotype, we highlight these results here.
Results from the agent-based model have the same qualitative
behavior as displayed by these data. This in turn provides
evidence that the mechanisms included within our model
are sufficient to capture qualitatively the key features of the
inflammatory response. In particular, we note that the case with
no membrane repair appears to provide the best qualitative
match to the existing data, in which we see a rise in the number
of infiltrating immune cells during disease progression, with
a peak at around 10-20% of remaining beta cell mass. We
note that scenarios with low overall rates of beta cell death
are associated with low levels of B cell infiltration. This further
supports the viewpoint that the CD20+ cells play an important
role in determining the rate of beta cell destruction. By adding
and removing mechanisms in a systematic way, we can probe
what effect their inclusion or exclusion will have on the resulting
dynamics and subsequent prognosis. It is important to note that,
since we investigate the disease at the level of the islets, we can
make predictions about how modifying certain cell properties
will affect the inflammation of the islets, rather than considering
whole body responses.

Accordingly, in the present study, we have performed several
parameter studies to examine how the relative contributions of
core processes affects insulitis. We have demonstrated that, under
the assumptions used in constructing the model, an increased
number of B cells in the peri-islet space gives rise to a faster
destruction of the beta cells. This effect can be amplified by
factoring in manipulations of other processes, such as the killing
rate of the beta cells by T lymphocytes and the repair rate of
the islet’s basement membrane. Simply increasing the killing rate
of the T cells did not have a significant impact of the rate of
the beta cell destruction. However, increasing the strength of the
chemokine signal to which the immune cells respond did show
a pronounced increase in the death rate. These facts highlight
the importance of the chemotactic process by which the immune
cells enter the islet, find and kill the beta cells.

In scenarios in which the islet basement membrane is unable
to repair itself, or is degraded more rapidly, we also see significant
increases in the beta cell destruction. Moreover, we also find
that the final beta cell mass at the end of our simulations is
substantially depleted. This highlights the importance of this
membrane as a barrier to the infiltrating immune cells. In
particular, when chemokine signals are sufficiently high, if the
membrane is incapable of being repaired, all of the beta cells
may ultimately be killed, whereas in other situations, we find
residual beta cells even after long simulation times (not shown).
The importance of the basement membrane during insulitis in
our model is in line with a recent study of this membrane in
samples from human patients with T1D (Bogdani, 2016).

Upon examining the dependence of the immune cell invasion
on the remaining beta cell mass, we find in most cases the profile
of B cell infiltration is relatively flat. In cases with low B cell
numbers, low chemokine signals and with a membrane that is
repaired, there is essentially no B cell invasion. In situations with
higher numbers of B cells, the beta cell mass at which the T cell
invasion is maximal is shifted to lower values. In the case with
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no membrane repair, this maximal point is shifted to very low
values of the remaining cell mass. Moreover, in this instance,
we also see that the B cell invasion profile follows that of the
T cells. This condition is most consistent with the human data
reported in Willcox et al. (2009), suggesting that, for our model,
low membrane repair rates are an important factor in the insulitis
process.

The rise and subsequent decrease in T cell populations
observed in our simulations is in accordance with experimental
results of T1D specific autoimmune responses in the NOD
model (Trudeau et al, 2003). These dynamics have been
described as “waves” and have been explained mathematically by
transitions through Hopf and homoclinic bifurcations in Mahaffy
and Edelstein-Keshet (2007) and by transient bistability of the
autoimmune state in Jaberi-Douraki et al. (2014b). Interestingly,
in the latter of these two theoretical studies, inclusion of multiple
clones of T cells with different avidities can give rise to multiple
waves in the T cell dynamics, which can significantly impact
the rate of overall beta cell destruction. This highlights potential
avenues for intervention through the promotion of lower avidity
T cell populations.

It should be noted that data on the specificities of T cells within
human insulitic islets are rare, but that cells with varying antigen
specificities may be present (Coppieters et al., 2012; Babon et al.,
2016). Thus, a potential development of our model would be to
include multiple clonal populations to explore these dynamics in
the spatial context, particularly given the potential insights that
may be applicable from the theoretical results in Mahaffy and
Edelstein-Keshet (2007) and Jaberi-Douraki et al. (2014b).

Agent-based and lattice-based approaches are becoming
increasingly popular in biological modeling. ODE based
approaches, which have long been a linchpin of the mathematical
biology community become ill fit for purpose when wishing
to describe processes in which the number of agents is small.
Considering stochastic variants of ODEs and partial differential
equations (PDEs) models is one potential approach to account
for the variability that arises from low cell numbers, but this
too is only a good approximation when the number of cells is
sufficiently high. Moreover, these approaches do not typically
account for trial-to-trial variability that may be important for
describing individual results. Note that, at various levels of
description, systems of differential equations can still form part
of agent-based models.

One of the attractive properties of ODE and PDE
modeling when compared with agent-based simulations is
the computational cost associated with the latter, whereas density
(continuum) based methods typically are low dimensional
in nature. Indeed, a significant barrier to the widespread use
of agent- and lattice-based models in the past has been the
requirement of significant computational power. In recent years,
the technological advances in computing have started to erode
this barrier. In addition, domain decomposition methods (Chen
etal., 2007; Tapia and D’Souza, 2011) and the ability to parallelise
computations on large scales on commercially available graphics
processing units (Chen et al., 2007; Tapia and D’Souza, 2011;
Harvey et al., 2015) has made agent-based simulations achievable
universally.

Here, we have focussed on a specific type of agent-based
model. This is based on a discrete particle formulation, where
each cell is parameterized by a finite area and location. Broadly,
agent-based models can be divided into lattice-based and lattice-
free methods (Plank and Simpson, 2012). The discrete particle
approach is lattice-free, meaning that cells are free to move
anywhere in the domain. One limitation of this approach is
that the cells are restricted to be described as circles; that is,
their shape cannot be deformed. Immune cell deformation may
play an important role when considering how cells pass through
degraded parts of the basement membrane. In the current model
formulation, cells must “wait” until the gaps in the membrane are
sufficiently large before they can pass through.

An alternative to the discrete particle formulation is the
lattice-based cellular Potts model. This modeling framework has
been growing in popularity and has been applied to cell migration
in a number of contexts, including vasculogenesis (Merks et al.,
2006; Daub and Merks, 2013), morphogenesis (Chen et al., 2007;
Marée et al., 2007) and wound healing (Scianna, 2015). Although
the cellular Potts model is lattice-based, the cells within the
framework can occupy many lattice sites and thus their shape, as
well as their location, evolves over time. On a fine enough lattice,
such models can look remarkably similar to the system they are
approximating. However, with the increase in spatial resolution
of the lattice comes an associated computational cost. It should
be noted that there are several actively maintained packages for
agent-based modeling, such as CHASTE (Mirams et al., 2013)
and CompuCell3D (Swat et al., 2012).

One approach that combines the flexibility of lattice-free
approaches together whilst allowing for cells to change shape
is to treat points on the cell membrane as particles and resolve
forces acting upon them, under the assumption that the cell
remains bounded by its membrane (Elliott et al., 2012). However,
the mathematical machinery and computing power required
to embed such a description into our domain are prohibitive
for our purposes. A “halfway” house could, in which the cells
are treating as deformable ellipsoids, is another possible way of
relaxing our assumption that cells are perfectly circular (Palsson
and Othmer, 2000).

5.1. Future Directions

The modeling framework described within this manuscript is not
intended to be a fully comprehensive endpoint for the study of
the spatio-temporal dynamics associated with insulitis. Instead,
it is intended to be the first step to building a general virtual
environment in which to simulate the invasion of islets during
T1D. We will now highlight some potential areas for model
development.

5.1.1. Geometry

We have treated perhaps the simplest possible geometry that is
reflective of the islet. The model is planar in nature, whereas real
islets and immune cells are three dimensional structures. We have
ignored the mechanical effects on the basement membrane: as
beta cells are removed from the islet, the morphology of the islet
itself may change (Brereton et al., 2014). There is currently no
structure imposed upon the extra-islet space. Accurate modeling,
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for example, in which the vasculature is taken into account may
constrain locations at which immune cells are allowed to enter
the domain. Through the use of imaging techniques, it should be
possible to build a more faithful representation of both the intra-
and extra-islet space and include these in the model.

5.1.2. Different Cell Types

The model could be developed to include more cell types, such
as the macrophages that clear apoptotic beta cells, or different
endocrine and exocrine cells which are not targeted by immune
cells, but may slow their movement. There may be other cell-cell
interactions that may be important during insulitis, for example
the role of CD4+ cells in the activation of CD8+ cells (Castiglioni
et al., 2005). Even restricting the model to the two immune cell
types described in this manuscript, we could consider different
clonal populations of the T cells (Khadra et al., 2011). One
hypothesized strategy to slow the progression of insulitis is to
promote the replication of a low avidity clone of T cells, that will
out compete the higher avidity clones for space and resources,
leaving only relatively passive T cells (Amrani et al., 2000; Khadra
et al., 2009; Bluestone et al., 2015). Such a mechanism could be
tested in our modeling framework.

5.1.3. Cell Proliferation

Currently, none of the cell types included in the model undergo
cell division. In general, post-natal beta cell replication in humans
is thought to occur at low rates, and we have disregarded
it here. Similarly, immune cell replication in and around the
islet is also assumed to be negligible. However, there is some
evidence to suggest both that beta cell proliferation is enhanced
during insulitis, at least during its early phases (Willcox et al.,
2010; Dirice et al., 2014) and that immune cell replication also
takes place within the islet itself (Graham et al., 2012) in the
NOD model, though these findings have not been corroborated
in human tissue. In particular, data collected from ex vivo
human samples suggested that very few lymphocytes in the
peri-islet space were positive for proliferative markers (Willcox
et al.,, 2010). In order for the hypothesis of promotion of low
avidity clones to be tested, the model would have to include
cell division, since the action of long-lived memory cells is an
integral part of that theory, however this may require coupling
of the agent-based model with one representing the lymphatic
system.

5.1.4. Multiple Islets

One of the striking features of insulitis is its heterogeneity,
even within an individual patient. Islets near to one another
can display different inflammatory profiles—insulitis in one islet
thus does not imply insulitis in nearby islets. By extending our
domain to include multiple islets, we can use the modeling
framework to investigate under what scenarios this can occur.
In particular, we can hope to identify what cellular interactions,
on a broad scale, must occur for such heterogeneity in disease
progression to be observed. One simple way to incorporate the
influence of other islets in the current framework would be to
include additional point sources of chemokine outside of the
working domain. This would have subtle effects on the dynamics

of cell movement, particularly when the number of beta cells
becomes low.

5.1.5. Membrane Degradation

In the current model prescription, the membrane integrity is
assumed to be compromised in a simple way by the action
of nearby immune cells. This process is solely dependent on
the proximity of the immune cells to the membrane. A more
sophisticated approach might be to model the cells secreting
proteases which diffuse freely and erode the membrane when
they meet it. Whilst this is perhaps better fitted to the true
processes that degrade the membrane, it is still not clear which
cells are responsible for mediating this process. One potential
route would thus be to consider the effects of having different
immune cells responsible for this process within the modeling
framework.

5.1.6. Waxing and Waning

One of the phenomena not accounted for in our description
is the honeymoon period (Akirav et al., 2008). This is a phase
lasting, in some cases, up to and beyond a year, typically
immediately following diagnosis, in which the requirement for
exogenous insulin is diminished. Though understanding of the
mechanisms giving rise to this transient asymptomatic period is
poor, one notable theoretical study demonstrated that this can
occur naturally (in rare cases) when taking into account the
role of endoplasmic reticulum stress and subsequent beta cell
apoptosis (Jaberi-Douraki et al., 2014c). This study highlighted
the possibility that elevations in the maximal unfolded protein
response due to metabolic therapies could benefit patients by
helping to meet metabolic demand, but despite this, they could
not ultimately maintain a sufficient population of healthy beta
cells to regulate blood glucose levels.

It is not clear whether the honeymoon period is reflective of
events occurring at the level of individual islets, whether it is only
present at the systemic level and whether it arises as a result of
some innate periodicity present in either the immune system or
in the beta cells. Modeling studies involving multiple islets may
help to address some of these questions.

5.1.7. Therapeutic Intervention

Once a realistic geometry, motivated by real data, has been
constructed, and the model sufficiently developed, an ultimate
goal would be to test therapeutic interventions that target the
pancreas specifically, such as the transplantation/implantation
of encapsulated islets or populations of beta cells (Rickels et al.,
2005; Robertson, 2010). We have discussed one hypothesis
involving the promotion of low avidity T cell clones (Amrani
et al,, 2000; Khadra et al, 2009). One potential method for
doing this is through the intravenous injection of ex vivo-selected
and ex vivo-expanded autologous regulatory T cells, such as
CD4+ cells (Bluestone et al., 2015), another is to incite the same
expansion of regulatory T cells in vivo through the intravenous
injection of nanoparticles coated with pMHC (Sugarman et al.,
2013). Our modeling framework could easily be extended to
include the effect of infusion of either the cells themselves or the
nanoparticles to test the spatial aspects of these interventions.
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5.1.8. Cell-Cell Coupling

It is evident from the multiple sources of data that
communication between immune cells is an important aspect
of insulitis, though the exact processes by which these cells
exchange information is unknown. One potential avenue of
investigation is to assess specific cell interactions based on
known immunological mechanisms (Huppa and Davis, 2003;
Friedl et al., 2005). These can be incorporated into an agent-
based model to see what the overall effects of these specific types
of interaction are, with a view to identifying which signaling
pathways are most likely to result in the behavior observed in
patient data (McLennan et al., 2012).

5.1.9. Comparison with Animal Models

Animal models, and in particular, the NOD mouse model have
been extensively used to unravel potential causes and treatment
options for human T1D. That true parallels between the disease
in rodents and man may be fewer than is ideal, and the
fact that treatments that work in mice are not as efficacious
in humans (In’t Veld, 2014) has led to questions about the
suitability of animal models for human disease. From a modeling
perspective, this opens up interesting questions. In particular, is
it that the underlying mechanisms of insulitis truly are different
between different species, or are some processes universal, albeit
with potential different time courses and parameters? The former
suggests that in order to find a cure for human T1D, only focus on
the human condition is likely to yield fruitful results. However,
the latter option suggests that, if relations between mice and
men for those preserved pathways can be found, that the models
can still provide vital insights. An in silico modeling framework
seems like a natural place to address such a question as it allows
quantitative probing of such relationships.

5.1.10. Experimental Design

One of the critical factors hindering progress in understanding
TID is the lack of human pancreatic samples from which to
extract data. Moreover, these provide data only at one specific
timepoint, so that very little is known about the time course of
insulitis in humans.

One role for mathematical modeling is to identify avenues to
explore to aid our understanding of disease mechanisms. The
present study has suggested that the balance between repair and
degradation of the peri-islet basement membrane surrounding
the islets is a critical factor which determines the overall rate
of beta cell destruction. Presently, little is known about the
composition of this membrane in humans, though recent studies
have identified its components in both healthy and infiltrated
islets in the NOD mouse (Korpos et al., 2013). We thus feel
that gaining an improved understanding of the structure of
the human peri-islet basement membrane will significantly our
improve understanding of insulitis.

Results from the agent-based model also suggest that the
chemoattractant produced by the beta cells, and the lymphocytes’
response to it is also important for governing disease progression.
As such, in vitro experiments to assess and quantify the rate of
immune cell migration to candidate chemokines would be useful
to explore how immune cells initially reach the islet.

Finally, little is understood about the interaction between
CD20+ and CD8+ cells during insulitis. The co-localization
of these immune cell types in pancreatic samples suggest an
interaction between the two (Huppa and Davis, 2003), and as
such, we speculate that this could give rise to the activation of
T cells. However, experiments have yet to confirm this for the
immune cells involved in human T1D. Moreover, the specific
dynamics of this process need to be better understood before the
true role of the CD20+ cells in human insulitis can be revealed.

Overall, we believe that the proposed spatio-temporal
framework has great potential as a tool to investigate insulitis in
humans, and by focussing attention on the pancreas, it maximizes
the use of the currently available human tissue data. We have
identified a number of potential avenues in which the framework
could be developed and a number of questions that could be
addressed in doing so and we hope to continue in this line of
research.
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Video S1 | Typical example of agent-based model simulation using
parameters in Table 1, with immune cell lifespans of 28 days and B = 5.

Video S2 | Typical example of agent-based model simulation using
parameters in Table 1, with immune cell lifespans of 28 days and B = 30.

Video S3 | Typical example of agent-based model simulation with no
peri-islet membrane repair, as indicated in Section 4.2 with immune cell
lifespans of 28 days, and B = 5.

Video S4 | Typical example of agent-based model simulation with no
peri-islet membrane repair, as indicated in Section 4.2 with immune cell
lifespans of 28 days, and B = 30.
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Video S5 | Typical example of agent-based model simulation with high
rates of peri-islet membrane degradation, as indicated in Section 4.3 with
immune cell lifespans of 28 days, and B = 5.

Video S6 | Typical example of agent-based model simulation with high
rates of peri-islet membrane degradation, as indicated in Section 4.3 with
immune cell lifespans of 28 days, and B = 30.
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Identifying the heterogeneous biomechanical property of human gallbladder (GB) walls
from non-invasive measurements can have clinical significance in patient-specific
modeling and acalculous biliary pain diagnosis. In this article, a pointwise method was
proposed to measure the heterogeneity of ten samples of human GB during refilling.
Three different points, two on the equator of GB body 90° apart and one on the apex
of GB fundus, were chosen to represent the typical regions of interest. The stretches
at these points were estimated from ultrasound images of the GB during the bile
emptying phase based on an analytical model. The model was validated against the
experimental data of a lamb GB. The material parameters at the different points were
determined inversely by making use of a structure-based anisotropic constitutive model.
This anisotropic model yielded much better accuracy when compared to a number
of phenomenologically-based constitutive laws, as demonstrated by its significantly
reduced least-square errors in stress curve fitting. The results confirmed that the human
GB wall material was heterogeneous, particularly toward the apex region. Our study also
suggested that non-uniform wall thickness of the GB was important in determining the
material parameters, in particular, on the parameters associated with the properties of the
matrix and the longitudinal fibers —the difference could be as large as 20-30% compared
to that of the uniform thickness model.

Keywords: gallbladder, strain energy function, heterogeneity, anisotropic property, constitutive law, optimization,
inverse problem

INTRODUCTION

Human gallbladder (GB) is a small pear-shaped organ that is attached to the underside of the right
lobe of the liver. Its function is to store and concentrate bile produced continuously by the liver.
Induced by cholecystokinin (CCK), bile can be expelled from the GB to the gut to aid the digestion
of fat. Cholecystitis, often due to blockage of the cystic duct by gallstones, and acalculous biliary
pain are common GB diseases that affect both women and men (Cozzolino et al., 1963; Williamson,
1988). The symptoms in acalculous biliary pain disease vary widely from discomfort to severe pain,
which usually follows food intake. However, the painful symptoms remain in nearly 50% patients
following gallbladder removal (Cholecystectomy) (Smythe et al., 1998, 2004). This is in part due to
the lack of understanding of the underlying mechanism for acalculous biliary pain.

Frontiers in Physiology | www.frontiersin.org

122 March 2017 | Volume 8 | Article 176


http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00176
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00176&domain=pdf&date_stamp=2017-03-31
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:wenguang.li@glasgow.ac.uk
https://doi.org/10.3389/fphys.2017.00176
http://journal.frontiersin.org/article/10.3389/fphys.2017.00176/abstract
http://loop.frontiersin.org/people/391309/overview
http://loop.frontiersin.org/people/423433/overview

Lietal

Pointwise Method for GB

Interestingly, many human tissues, such as artery, breast,
liver, and pancreas, can develop local disease, examples include
vulnerable plaque (Baldewsing et al., 2004a; Trivedi et al., 2007),
atheroma in coronary and femoral arteries (Chandran et al., 2003;
Baldewsing et al., 2004b; Hamilton et al., 2005), arterial stenosis
(Franquet et al., 2011), and cerebral aneurysms (Zhao et al.,
2011a,b). Biomechanical properties of the diseased soft tissue are
different to those of the healthy ones and are often heterogeneous.
Inverse methods have been developed to identify isotropic
biomechanical properties (Chandran et al., 2003; Baldewsing
etal., 2004a,b; Hamilton et al., 2005; Trivedi et al., 2007; Franquet
etal., 2011) in terms of the Young’s modulus. In studies by Zhao,
Raghavan, and Lu, pointwise inverse approaches were used to
reveal the anisotropic heterogeneous biomechanical properties
of cerebral aneurysms (Zhao et al., 2011a,b), ascending thoracic
aneurysms (Davis et al., 2015) and murine aortas (Bersi et al.,
2016) on a membrane mechanic model.

Healthy human GB wall is commonly regarded as a
homogenous anisotropic non-linear material in passive state, i.e.,
bile refilling phase (Li et al., 2012, 2013; Xiong et al., 2013).
However, recent work based on in vitro test of a healthy lamb
GB suggested that this might not be true (Genovese et al,
2014). In addition, human acalculous biliary disease can lead
to increased material heterogeneity in the GB wall. In this
paper, we addressed this issue by extending the homogenous
anisotropic non-linear biomechanical model for human GB wall
proposed in Li et al. (2013) to a heterogeneous anisotropic
case. We used an inverse pointwise method to identify the
heterogeneous anisotropic property at three different points
on the GB wall. The method was based on an ellipsoid
membrane model and an in-house developed program using
MATLAB.

COMPUTATIONAL MODELS

Geometrical Model and Stresses under

Internal Pressure

A series of ultrasonic images of acalculous human GB had been
scanned in 10 min interval for 60 min during the emptying phase
at the Sheffield Hallamshire Teaching Hospital. A typical example
is illustrated in Figure 1, marked by the three axes D;, D5, and
D3 (D; < D, < Ds3). From these images we generated the
corresponding ellipsoid models, as shown in Figure 2A, which
are used to estimate the GB volume.

The passive biomechanical property of GB wall exhibits in the
refilling phase only, hence we will focus this process. The refilling
phase is the reverse process of the emptying phase. This means
that for the same volume, the refilling and the emptying phases
share the same ellipsoid (Li et al., 2013). The heterogeneous
anisotropic biomechanical property of human GB wall in the
refilling phase will be determined inversely at points 1, 2, and 3
in a GB wall. Point 1 is an intersected point of two ellipses, one is
along the equator and the other is in the longitudinal direction in
ameridian plane, point 2 is also on the equator but 90° apart from
point 1, and point 3 is at the apex as shown in Figure 2A. In the
spherical coordinate system (r, ¢, €), the coordinates of points 1,

2,and 3 are (D;/2, 0, 7/2), (D,/2, w/2, 7 /2), and (D3/2, 0, 1),
respectively.

Observing that the volume of the GB model was reduced
by 50% by the end of emptying (Li et al., 2013), we chose the
end of the emptying configuration of the GB as the reference
configuration.

We interpolated the GB model with fifteen time moments
throughout the refilling phase based on GB images using
the geometrical similarity (Li et al., 2011). The GB wall
circumferential and longitudinal in-plane stretches at point 1 ata
time instant ¢; is calculated with (Ragab and Bayoumi, 1998).

¢ _ ur Dy Jug

{)‘11'_ Ll ey DT“,)&T (1)
0 __ Ur ou,
M=+ + 2

where the radial displacement u, = 0.5 (Dlj - Du), and j =
1,2,3...,N, here N = 15, Dy is the length of the principal axis D;
at time t1, Dyj is the length of the principal axis D at time ¢;.
Since point 1 is on the axis of the ellipsoid, symmetry requires that
dug/0¢ = dug/00 = 0. Hence, Equation (1) can be simplified
to:
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The incompressibility of the GB wall means that the stretch
component of GB thickness must satisfy:

h ¢ 56
M= 1/(AUAU). 3)
Similarly, the stretch components are for point 2:

o _ 50
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and for point 3:

Y
[ A5 =25 =¢D3j/D31 )
h 0
My =1 /(Aijsj) :

where D1 and D;; are the length of principal axis D, at time #;
and t;, while D3; and Ds; are the length of principal axis D3 at
time ¢, and ¢;.
These stretch components at ¢; (j = 1,..,N) and point i (i =
1,2,3) can be presented simply:
¢ 0
[ Aij = hjj = Dij/Da ©
h $40
M= 1/<Aijkij> .
The stretches during the refilling phase are plotted against the
GB volume in Figure 2B at points 1, 2, and 3 for a typical GB
sample. The GB volume changed with time exponentially based
on an earlier model in Li et al. (2011): V = GeHt + M, where
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FIGURE 2 | The imaged-based ellipsoid model for GB during the refilling phase, (A) ellipsoid model with three control points on the surface, (B) the stretch
components estimated from the ellipsoid model for GB sample No.1 listed in Table 1.

G, H, and M are parameters determined analytically using the Fy = D3jKK; <1 _ Kji—K3; cos 2 4)4)
- .. 2 2 1
measured GB volume and pressure at the moments ¢ and ty. 4hy KK
The expressions of in-plane stress components in the GB wall 212 2 2 202\ .2
. . . . by | KEKS+ (K3 + K3 — 2K3KE) sin’6,
during the refilling phase were the same as these in the emptying Fp = et )
phase (Li et al., 2011) since we assumed the GB material is an YR 4 (Klz] - K§J> c0s26; cos 2¢p;
elastic membrane:
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Fn - \/KZ- sin? ¢; + K2. cos? oi
ol = pFoF b 91 4 K cos” 9
b _ . Fy (7)
% =PiF,>

where K1 = D1j/D;; , Kyj = D2j/Ds; , hij is the GB wall thickness

where p; is the refilling pressure at time #;, and Fy, Fy, and F, are  at point i, and time £, and D;; = )\ZDil) hij = )»Zhil- The internal
the functions describing the geometry of the GB: pressure pj is given by Li et al. (2013):
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TABLE 1 | Parameters of ten human GB samples, these parameters are for one dataset rather than an average of the whole set.

Moment Parameter GB sample No.
1 3 4 17 19 21 29 37 39 43

At end of refilling pn (Pa) 1,466.5

Dy (mm) 23.4 26.8 32.9 27.2 34.7 28.2 28.1 30.2 33.2 37.6

Dypy (mm) 25.0 27.9 35.2 27.2 35.7 30.1 28.9 30.8 33.5 38.0

Dgpy (mm) 541 70.7 57.5 56.9 92.3 74.5 56.1 53.8 53.9 82.1
At start of refilling p1 (Pa) 466.6

D4 (mm) 16.8 21.0 24.8 21.4 26.8 20.8 20.1 24.7 24.2 28.1

Dy (mm) 18.2 21.2 25.8 20.7 29.2 24.2 22.7 24.7 26.1 29.7

Da, (mm) 51.7 59.3 54.9 46.7 72.9 62.9 49.9 41.2 47.5 70.3
Ejection Fraction (EF) in 30 min (%) 4.5 114 13.3 32.4 49.4 66.3 37.8 77.0 60.1 2.7
A uniform thickness, i.e., h11 = hp; = hz; = 2.5 mm, is assumed.

G/tN
Ny’
i=pi| — tj € [0,tN] ) T

where py is the mean final bile pressure in a GB after the refilling /"ll‘n!‘\s\\
phase chosen to be 1,466.5 Pa (11 mmHg), p; is the bile pressure ".n““\ Matrix
when the refilling starts, p; = 466.6 Pa (3 mmHg), and ¢y is the ..nn‘ ‘

total time of the refilling phase. These values are estimated from
in vivo measurements (Li et al., 2013).

The Constitutive Model

To determine the heterogeneous material parameters of human
GB wall, the structure-based anisotropic constitutive model used
in Li et al. (2013) was extended so that the material parameters
are location dependent. At each point, the GB wall is assumed
to be composed of homogeneous matrix and two families of
fibers along the circumferential and longitudinal directions,
respectively, as shown in Figure 3. The strain energy functions
are:

2

i
2Ky

) Kl (04 —1)
Vi = —-3)+ 2/c1i |:eK2(( ;) ) -1
(10)

where the parameters d, Kfn (i = 1,2,3, m = 1-4) are location
dependent. The total number of material property constants in
Equation (10) for points 1-3 should be 15 in general. However, at
point 3, there are no circumferential fibers, so the second term in
Equation (10) disappears, i.e., k; and k3 vanish. Hence, there are
a total of 13 parameters to be determined.

The in-plane Cauchy stress components at ; are:

2
6 _ g (397 _ 302 1 2392l (392 (102
o =2d (17 = 32) + 220 (17 — 1) exp (Ké (7 -1) )
+o
. . . 2
‘7190 =2 (A?jz - )\fj‘.z) + Zk?jzlcé <A?jz - 1) exp (Ki(ksz - 1) )
+0f]

(11)

Circumferential
fibre

X
sy

4

(C:;K]:lk'::l’(frl('f)

Longitudinal
fibre

3(c*, ki, K})

FIGURE 3 | The GB wall is composed of matrix and two families of
fibers, the thirteen material parameters are location dependent,
changing from points 1-3.

where oi‘f and og (1= 1,2,3) are interpreted as the initial stresses
imbedded in the GB wall, which are estimated using Equations
(7-9) with the internal pressure p;.

Comparison with Other Constitutive
Models

Several phenomenological anisotropic strain energy functions
have been proposed for soft tissues. Here we did not
intend to be exhaustive but will choose three commonly
used strain energy functions for comparisons. These
include the Fung strain energy function (Ferruzzi et al,
2011):
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CP%Wqﬁwmf
+2a3 (302 — 1) —1)] _ 1} i (12)

The Choi-Vito strain energy function (Ferruzzi et al., 2011):

[eial()”q>2 - 1)2 + e%az ()‘92 - 1)2

Jeim (A = 1) —1) _ 3} (13)

v =c

and the Zhou-Fung strain energy function (Zhou and Fung,
1997):

A 091 402671420 621) 07

c
V=0 a2 - 1) a2 - 1)
+2as (A2 —1) (A2 —1)] -1

5 [0 -1 402 1)
+2bs (A% — 1) (A2 - 1)] (14)

Inverse Estimate of the Material

Parameters
The material parameters in Equations (10) or (12) or (13) or (14)
are selected to minimize the objective function:

3 N 5 ,
f= ZZ |:(U$ — a,-’j(b) + (05 — ai}e) ] (15)

i=1j=1

The minimization was performed using the Trust-Region-
Reflective algorithm in MATLAB (More and Sorensen, 1983)
which terminated when the objective function value is less than
10~°. In addition, the following RMS error (RMSE) is calculated
to assess the curve-fitting quality:

&= x 100%.

(16)

It should be pointed out that the optimization process was
conducted at points 1, 2, and 3 simultaneously rather than
separately at each point. To secure a global minimum, the initial
guesses of the parameters were chosen randomly within a suitable
range, such as [0.01, 10] for cl, Kll, Kzl, Ki, e, /<12, /<22, Kf, ¢, and
K43, but [0.01, 3] for K31, K32, and K;. In those ranges, the optimized
material parameters did not occur at the boundaries, and the
curve fitting error was in the minimum. 80 initial guesses were
generated randomly, followed by 80 optimization processes. The
mean property constants and curve fitting errors were chosen to
be the results. The detail of initial guesses on property constants
optimization is given in Section Effects of Material Heterogeneity.

Neck 5 P Fundus

Cut from the edge
which it connects to

P00 000000
20 30 40 s0 60 70 80 90

FIGURE 4 | A GB wall thickness profile, showing the thickest wall at
the GB apex and thinnest wall near the neck, adopted from Su (2005)
with permission.

The Variable Wall Thickness

The GB wall thickness is related to the stress magnitude
determined from the experimental images, as shown in Equations
(7) and (8). This means that even when the pressure is the same,
stresses can be different due to a varied thickness. This leads to
different material parameters in the strain energy function in
Equation (10). We now address the issue of the variable wall
thickness of GB. A three-dimensional in vivo measurement of
wall thickness of the GB was not yet available (Engel et al., 1980;
Sanders, 1980; Prasad et al., 2008; Mohammed et al., 2010; Ugwu
and Agwu, 2010); however, varying thickness of GB wall was
measured in vitro with a digital slide caliper (Su, 2005; Khan et al,,
2012). A contour of GB wall thickness is illustrated in Figure 4
(Su, 2005). It is observed that the thickness of the GB apex in the
fundus increases to around 5 mm maximum and the wall of the
neck is as thin as 2 mm. The ratio of the maximum thickness over
the thickness of the body is 1.2.

In Khan et al. (2012), 62 GB samples were divided into three
age groups; (10-20) years, (21-40) years, and (41-70) years. The
thicknesses of these GBs were measured manually at the fundus,
body and neck. It was identified that the maximum thickness was
found on the neck, and the thinnest wall is located at the fundus.
For the (41-70) years group, which coincides with the patient’s
age group for GB surgery in the paper, the ratio of the thickness
at the fundus over the thickness of the body is 0.9. This is contrary
to the finding in Su (2005). These ratios are used to examine the
effect of a varying thickness.

GB Samples

The input data for our model were the geometrical parameters
based on ultrasound images, and internal pressures at the start
and end of emptying/refilling phase of ten GB samples from a
previous study (Li et al., 2013). These geometrical parameters
and internal pressures are shown in Table 1. Additionally, the
geometrical parameters and pressure profile at 15 or more
moments between the start and the end of refilling phase were
interpolated according to the method in Li et al. (2011) and
Equation (9). A uniform wall thickness was assumed at the start
of refilling phase, i.e., hj; = hy; = h3; = 2.5mm (Li et al,, 2011,

Frontiers in Physiology | www.frontiersin.org

March 2017 | Volume 8 | Article 176


http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

Lietal

Pointwise Method for GB

2012, 2013). The stretch components of GB No. 1 over time are
shown in Figure 2B. Note that the stretch-volume profiles are
patient-specific.

In Table 1, the ejection fraction (EF) of a GB is defined as
the ratio of the difference between the initial and emptied GB
volumes at 30 min after venous injection of stimulator-CCK.
Ethical approval for the use of data in Figure 4 and (Li et al.,
2013) were approved by the ethical committees in the hospital
where the studies were conducted, and the subjects gave informed
consent to these studies.

The Solution of Inverse Problem

From Table 1, we had the ellipsoid model geometrical parameters
at the beginning and the end of the refilling phase, which were
the same as the end (30 min after CCK) and beginning of the
emptying phase from the routine ultrasound images taken in
hospital, as shown in Figure 1. As the least squares method
required more scattered points than the number of parameters to
be estimated, the ellipsoid model (Li et al., 2011) was interpolated
over 15 or more time points for the emptying phase. The internal
bile pressure is then given by Equation (9). These data were
used to obtain the initial guess for the optimization process.
The stretch and stress components were then computed, and the
objective function and the RMSE were evaluated and compared
to a given criterion of 107°, If the criterion was not satisfied, a
new guess based on the Trust-Region-Reflective algorithm would
be generated, and the procedure repeated until the convergent
result is reached.

RESULTS

Effects of the Initial Guesses on Material

Property Constants
GB No.l shown in Table1 was randomly chosen to identify
effects of initial guesses on the repeatability of inversely
determined GB wall biomechanical property constants at points
1, 2, and 3. The initial guesses of the constants were generated
randomly in the ranges for search of property constants
mentioned in Section Inverse Estimate of the Material Parameters
by normal distribution function in MATLAB and the numbers
of initial guesses were specified 10, 20, 30, ..., 130, respectively.
The means of the determined property constants and RMSE as
well as their standard error at 95% confidence level are illustrated
in Table 2. The true value of these property constants should be
equal to the mean = its standard error at 95% confidence level.
Note that the parameters at points 1-3 determined by the least
squares method based on the Trust-Region-Reflective algorithm
could not be repeated from one initial guess to another due
to the complexity of the inverse problem. Considering the
property constants determined from statistics point of view,
however, the material parameters and their standard error at
95% confidence level inversely determined remained unchanged
basically, especially when the number of initial guesses was 80
or more. This suggests that the biomechanical property constant
values are repeatable in a statistical sense and are globally
optimum. In the following sections, the property constants are
extracted with 80 initial guesses at a computational cost of around

TABLE 2 | Mean material property constants and standard error at 95% confidence level of GB No.1 with 2.5 mm uniform initial thickness at various initial guests.

Time
costed

(min)

£ (%)

k20 c3 (Pa) xg (kPa)

xg (kPa)

x12 (kPa)

¢2 (kPa)

x; (kPa)

x11 (kPa)

¢l kpa)

No of

initial

guesses

4.2
8.5
13.0

4855 + 0.0088 2.4611 4 0.0476 4.4470 = 1.4226 7.2492 + 0.0487
4808 4 0.0080 2.4712 4 0.0336 5.2825 4 0.9006 7.1797 4 0.0601
4798 4+ 0.0058 2.4768 4 0.0213 5.2257 4+ 0.6993 7.1762 4 0.0440
4802 £ 0.0067 2.4812 £ 0.0294 4.7908 £ 0.6233 7.1914 £ 0.0513
4831 £ 0.0046 2.4671 £ 0.0194 4.8035 4 0.5842 7.2110 £ 0.0376
4826 £ 0.0050 2.4617 £ 0.0223 5.3255 4 0.5797 7.2025 + 0.0368
4842 £ 0.0042 2.4603 £ 0.0190 4.9036 + 0.4887 7.2082 + 0.0310
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TABLE 3 | Heterogeneous material parameters of ten GB samples determined inversely with model Equation (10) and compared with homogeneous
model (Li et al., 2013) in uniform thickness h{y = hoq = hzy = 2.5 mm.

GBNo.  Model Point i ¢ (kPa) x} (kPa) K ) il (kPa) k) & (%)
1 Heterogeneous 1 0.2180 + 0.0131 21992 +£ 0.0206  0.3105 4+ 0.0064  0.6391 +£0.0203  0.5603 + 0.0267  7.1827 & 0.0310
2 0.0160 £ 0.0016  2.4538 4+ 0.0025  0.2861 +£0.0008  0.1041 + 0.0030  1.5253 4 0.0385
3 1.4801 £ 0.0040 - - 2.4807 £0.0176  4.8695 + 0.4743
Homogeneous 1,2,3 2.3349 0.5977 0.8512 1.3952 1.0430 2.2
3 Heterogeneous 1 0.1742 £ 0.0076  3.6549 + 0.0142  0.7242 £ 0.0053  0.8486 + 0.0141 1.4082 + 0.0281 1.9123 £ 0.0152
2 0.0885 + 0.0084  3.3645 + 0.0150  0.4526 +£ 0.0047  0.1987 £0.0144  0.9714 £ 0.1228
0.3487 + 0.0001 - - 0.9275 £ 0.0012  4.2149 + 0.0085
Homogeneous 1,2,3 1.8375 4.7385 1.3538 0.8694 0.9568 3.9
4 Heterogeneous 1 0.2229 +0.0086  4.0107 +£0.0159  0.4920 +£ 0.0045  1.1588 £ 0.0160  0.8603 + 0.0185  3.2065 + 0.0092
2 0.1669 + 0.0091 3.9481 £ 0.0168  0.4622 £ 0.0047  0.5402 £+ 0.0162 1.2017 £ 0.0454
3 0.9313 + 0.0004 - - 0.6766 £ 0.0043  6.2768 + 0.0462
Homogeneous 1,2,3 2.1817 2.9539 0.7230 0.6578 1.0458 3.0
17 Heterogeneous 1 0.1484 +0.0080  3.3757 + 0.0151 0.8418 £ 0.0065  0.6389 + 0.0144 1.8043 +£0.0455  5.1699 + 0.0131
2 0.21562 £ 0.0116  2.9225 £ 0.0205  0.5591 £ 0.0074  0.5387 £ 0.0204  0.9941 + 0.0516
3 0.8548 + 0.0004 - - 0.1702 £ 0.0017 5.1634 £ 0.1110
Homogeneous 1,2,3 1.6810 2.9213 0.1161 0.4784 1.6530 2.5
19 Heterogeneous 1 0.5583 + 0.0195  4.4503 4+ 0.0362  0.4628 +0.0094  0.6047 +0.0349  1.0724 +0.1010  3.6488 + 0.0141
2 0.0978 £ 0.0078  6.7567 & 0.0169  0.6573 £0.0049  0.0512 +0.0025  3.2080 =+ 0.0823
0.5965 + 0.0003 - - 0.6651 + 0.0042 1.1060 + 0.0216
Homogeneous 1,2,8 2.2772 6.2427 0.1106 0.2182 0.8042 3.0
21 Heterogeneous 1 0.2321 +£0.0088  6.1282 +0.0227  3.2180 £0.0189  1.7915+ 0.0157  7.2733 £ 0.0529  7.8681 + 0.0058
2 0.0576 + 0.0002  2.7506 £+ 0.0005  0.0628 + 0.0002  0.0101 & 0.0001 0.1280 + 0.0228
0.0188 + 0.0005 - - 1.8847 £ 0.0046  5.3105 £+ 0.0167
Homogeneous 1,2,3 2.2309 3.0375 0.0176 0.2213 0.7755 3.4
29 Heterogeneous 1 0.3411 +£0.0158  2.3990 + 0.0247  0.2708 £ 0.0066  0.5445 + 0.0249  0.4547 +£0.0363  5.1186 + 0.0165
2 0.1083 + 0.0081 3.5589 + 0.0156  0.8243 £ 0.0065  0.4838 +£0.0135  2.6977 + 0.0584
3 1.2416 £ 0.0013 - - 0.5071 £0.0059  3.1976 + 0.2470
Homogeneous 1,2,3 2.0624 1.6658 0.7148 0.8237 1.15647 2.6
37 Heterogeneous 1 0.2382 £ 0.0126  4.1246 £ 0.0250  1.2410 £0.0120  1.0673 £ 0.0257 1.7882 £ 0.0579  6.3186 + 0.0054
2 0.2411 £0.0117  4.1189 + 0.0233 1.2435 +£0.0113  1.0612 £+ 0.0236 1.7999 + 0.0555
3 0.9575 + 0.0002 - - 0.0149 £ 0.0005  6.7694 + 0.0517
Homogeneous 1,2,3 1.9243 4.3563 0.4350 0.1451 1.3890 2.5
39 Heterogeneous 1 0.3117 £ 0.0121 2.9031 +£0.0199  0.2749 + 0.0051 0.8384 +£0.0197  0.5063 +£0.0218  5.5799 + 0.0092
2 0.2700 + 0.0127  3.6645 + 0.0238  0.6873 £0.0084  0.8535 + 0.0221 1.8349 + 0.0444
1.8285 + 0.0019 - - 0.1972 £ 0.0062  3.0987 + 0.2607
Homogeneous 1,2,8 2.4066 1.7295 0.5803 0.8437 1.1167 2.5

30 min. This time consumption is much less than 3.5-7.0 h
based on the approach of ABAQUS 3D FEA plus MATLAB
optimization solver in Li et al. (2013).

Effects of Material Heterogeneity

The material parameters of heterogeneity inversely determined
are listed in Table3 and compared with those from the
corresponding homogenous model in Li et al. (2013). The error

¢ in the homogenous model reflects the error in GB volume
between image observation and homogenous model prediction.
For all the GBs, the material parameter associated with the
matrix in the heterogeneous model is around 10 times that of the
homogenous model. For GB 3, 4, 17, 29, 37, 39, and 43, the mean
values of fibers-related material parameters at points 1 and 2, x?
and 3, basically agree with k1 and 3 in the homogenous model,
ie., Klz A (1-2) k1 and k5 ~ (1-2) k3. For GB 1, 19, and 21, Klz and
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TABLE 4 | The first principal stresses in 10 GB samples wall estimated by using the homogenous model in Li et al. (2013) and the heterogeneous model
Equation (10) in the present paper.

Stress (kPa) GB sample No.

1 4 17 19 21 29 37 39 43
Homogenous (Li et al., 2013) 9.75 13.66 11.89 1711 14.41 12.17 12.78 13.26 17.09
Heterogeneous 10.86 14.49 11.40 16.25 14.09 14.41 11.41 14.96 17.85
Pain due to CCK No No Yes Yes No No No Yes Yes

TABLE 5 | Material parameters of Fung strain energy function Equation (14) inversely determined with uniform thickness h{4y = hpq = hzq = 2.5 mm.

i

GB No. Point i ¢ (kPa) al al, al, & (%)

1 1 5.9207 + 0.0444 1.0182 £ 0.0060 0.0102 = 0.0002 0.6373 = 0.0006 7.4833 £ 0.0119
2 6.2282 + 0.0398 1.4220 + 0.0106 0.0755 =+ 0.0064 0.0600 = 0.0062
3 5.6380 + 0.0916 - 5.6863 = 0.0900 -

3 1 4.4149 £ 0.0299 2.4513 £ 0.0135 0.0225 + 0.0020 0.4580 =+ 0.0013 6.8817 £ 0.0102
2 6.6937 + 0.0337 1.9242 + 0.0123 0.1144 £ 0.0087 0.0725 + 0.0086
3 2.5090 + 0.0910 - 3.2397 £ 0.1120 -

4 1 5.4869 + 0.0489 1.9630 + 0.0145 0.0102 £ 0.00010 0.5777 £ 0.0003 13.6283 + 0.0140
2 6.8674 + 0.0568 2.0333 £ 0.0252 0.2729 + 0.0233 0.2018 £ 0.0237
3 3.1520 & 0.0934 - 3.5454 £ 0.0952 -

17 1 3.6600 = 0.0395 2.865 + 0.0244 0.0419 =+ 0.0034 0.3753 =+ 0.0020 17.5786 + 0.0106
2 6.0800 + 0.0578 1.8191 + 0.0262 0.3547 + 0.0227 0.1892 £ 0.0227
3 2.4674 + 0.1469 - 2.7210 £0.1183 -

19 1 7.6011 £ 0.0673 1.9387 + 0.0144 0.0103 = 0.0004 0.3693 =+ 0.0002 12.3314 + 0.0231
2 6.6126 + 0.0695 3.5333 £ 0.0413 0.2148 £ 0.0265 0.3362 + 0.0264
3 3.2850 + 0.1789 - 1.9863 + 0.1098 -

21 1 3.3914 + 0.0674 4.8971 £ 0.0613 0.8129 £ 0.0153 0.5357 £ 0.0100 11.7094 + 0.0132
2 9.3404 + 0.0119 0.9968 = 0.0010 0.0100 = 0.0001 0.0934 + 0.0001
3 1.5754 + 0.0672 - 7.3935 + 0.1600 -

29 1 6.324 + 0.0650 1.1187 4+ 0.0095 0.0100 = 0.0001 0.5099 =+ 0.0004 16.0779 + 0.0202
2 4.2754 £ 0.0757 2.7660 = 0.0531 0.3330 + 0.0414 0.5028 £ 0.0414
3 3.4407 £ 0.0716 - 3.5408 + 0.0713 -

37 1 3.5278 & 0.0919 3.5628 = 0.0604 0.1031 = 0.0094 0.4602 + 0.0055 24.8315 4 0.0129
2 3.4863 + 0.0700 3.7051 £ 0.0844 0.7644 + 0.0690 0.7056 =+ 0.0684
3 2.6134 £ 0.2148 - 1.9942 £ 0.1109 -

39 1 5.9501 + 0.0708 1.2697 4+ 0.0124 0.0100 = 0.0001 0.6480 = 0.0005 20.5731 4 0.0203
2 5.5450 + 0.0627 2.1687 =+ 0.0566 0.5208 = 0.0539 0.4967 = 0.0539
3 3.7173 £ 0.0586 - 3.9577 + 0.0636 -

43 1 7.7685 + 0.0518 1.6277 4+ 0.0086 0.0100 = 0.0001 0.3810 = 0.0002 17.0028 + 0.0199
2 7.6550 = 0.0566 2.2885 =+ 0.0319 0.3060 = 0.0297 0.3350 = 0.0300
3 3.1778 + 0.0862 - 3.1777 £ 0.0862 -

/c32 are different from «; and «3 in the homogenous model. On
one hand, the material parameters in the heterogeneous model
at point 1 and point 2 are similar, implying the heterogeneity of
the GB wall along the circumference is small. This is especially
true for GB 37 which has D; & D,; the points 1 and 2 share

the same parameters. On the other hand, the parameters at point
3 differ substantially from the other two, suggesting a strong
heterogeneity from GB body to fundus.

The first principal stresses of all the GB samples are compared
in Table 4 with those predicted by the homogenous model in
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TABLE 6 | Material parameters of Choi-Vito strain energy function Equation (13) inversely determined with uniform thickness hyy = hpq = hzy = 2.5 mm.

GB No. Point i ci (kPa) a’; a"2 ag e (%)

1 1 6.5709 + 0.0467 1.0196 £ 0.0103 0.1209 + 0.0070 0.9865 + 0.0068 7.2885 + 0.0086
2 6.2533 + 0.0550 1.83934 + 0.0102 0.0112 + 0.0003 0.3090 + 0.0030
3 5.6432 + 0.1665 - 5.7457 + 0.1631 -

3 1 6.7592 + 0.0606 2.8159 + 0.0111 0.6914 + 0.0309 1.0173 + 0.0838 6.8731 £ 0.0170
2 6.1800 + 0.0362 2.0092 + 0.0094 0.0245 + 0.0023 0.4406 + 0.0054
3 2.4858 + 0.1920 - 3.4989 + 0.2282 -

4 1 6.3626 + 0.0556 2.0862 + 0.0127 0.4669 + 0.0211 1.2218 + 0.04994 13.2913 4 0.0049
2 6.0338 + 0.0369 2.1638 £ 0.0116 0.0814 + 0.0056 1.1084 £+ 0.0120
3 3.2084 + 0.2091 - 3.6669 + 0.19996 -

17 1 3.5904 + 0.0691 3.5174 £+ 0.0342 0.8399 + 0.0354 0.9713 + 0.1038 17.4151 £+ 0.0056
2 4.4094 + 0.0362 2.2944 +0.0147 0.2778 £ 0.0170 1.2093 + 0.0349
3 2.7237 £ 0.2346 - 2.7146 + 0.2294 =

19 1 8.3497 + 0.0547 1.9024 £+ 0.0123 0.1462 £ 0.0066 1.1344 + 0.0123 11.8413 £ 0.0103
2 6.3147 + 0.0600 3.6558 + 0.0276 0.0840 + 0.0110 1.1832 4+ 0.0276

4.0103 £ 0.1681 - 1.6285 + 0.0616 -

21 1 3.0469 + 0.0164 8.9908 + 0.0453 4.3924 + 0.0317 0.6240 + 0.0482 12.1795 £ 0.0184
2 9.2992 + 0.0231 1.0055 =+ 0.0020 0.0026 + 0.0001 0.0277 + 0.0002
3 1.4123 £+ 0.0302 - 8.0059 £ 0.1113 -

29 1 6.8779 £ 0.0807 1.1716 £ 0.0138 0.1738 £ 0.0076 0.8076 + 0.0109 15.8654 4+ 0.0173
2 3.1266 + 0.0826 3.7813 £ 0.0497 0.4507 + 0.0607 1.8447 + 0.1480
3 3.5246 + 0.1540 - 3.5659 + 0.1611 -

37 1 3.4254 + 0.0991 4.8591 £0.1016 1.5987 + 0.0496 0.9439 + 0.1021 24.6237 + 0.0101

2.7583 + 0.1002 5.3099 + 0.1160 1.2692 + 0.0877 2.5030 + 0.2218

3 2.5060 + 0.2000 - 2.0923 + 0.1252 -

39 1 6.9593 + 0.0467 1.83088 £+ 0.0127 0.2592 + 0.0121 1.0019 + 0.0184 20.2444 + 0.0071
2 3.9188 + 0.0587 2.9796 + 0.0358 0.6190 + 0.0436 2.1451 + 0.0932
3 3.6297 + 0.1896 - 4.2443 + 0.2282 -

43 1 8.5402 + 0.0387 1.5659 + 0.0074 0.0782 + 0.0040 1.0716 + 0.0060 16.2154 4+ 0.0084
2 6.9974 + 0.0440 2.3804 + 0.0143 0.0865 + 0.0070 1.4685 + 0.0132
3 3.5295 + 0.2111 - 3.2640 + 0.1878 -

Li et al. (2013). These stresses are extracted at point 1 since the
length of an ellipsoid major axis is the shortest through that point,
resulting in the highest stress level there based on Equations (7)
and (8) in the ¢ direction. It is shown that the homogenous
model underestimate the stresses in the wall of GB1, 3, 4, 29,
39, and 43, and overestimates them for the remaining GBs. As
a result, the relative error in the first principal stresses varies in
a range of —11.4%~ +410.8% in comparison with the stresses in
the homogenous model.

Comparison with Other Constitutive
Models

The inversely estimated parameters are shown in Tables 5-7 for
the Fung, Choi-Vito, and Zhou-Fung strain energy functions,
respectively. The parameters in the Zhou-Fung model were as

many as 17 in total at the three points; thus the number of time
instants was increased to 30 in the optimization procedure.

Our results show that even though the model parameters
using these strain energy functions can also be inversely
determined, the errors in stress are quite large. For instance, the
mean errors are 14.8, 14.6, and 14.0% for the Fung, Choi-Vito
and Zhou-Fung strain energy functions, respectively, while the
structure-based model Equation (10) yields a mean error of 5.0%
only (Figure 5).

Variation of the GB Wall Thickness

We notice from Table 3 that there are some large errors ranged
between 5.2 and 7.8% for the parameters estimated for five GB
samples: 1, 17, 21, 37, and 39. To identify the cause of the errors,
the stress-volume curves of GB 3 and 39 at points 1, 2, and 3
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FIGURE 5 | A comparison of errors in the least-squares stress curve fitting between the present constitutive law and existing laws proposed by Fung,
Choi-Vito, and Zhou-Fung, respectively.

are shown in Figure 6. The predicted stress agrees well with the
observations at points 1 and 2, but not so well at point 3. In the
following, we show that this is due to the uniform wall thickness
assumption used in the model.

In Section Comparison with Other Constitutive Models, the
GB wall heterogeneity mainly occurs in the apex region, resulting
in poor agreement in the stress, as shown in Figure 6. Therefore,
we altered the GB wall thickness at the apex to examine the effect
of varying thickness. First, the apex thickness was changed to
3.0 mm, based on the ratio of 1.2 found in Su (2005), and kept
at 2.5mm at points 1 and 2. The extracted pointwise mechanical
properties in Equation (10) are shown in Table 8.

The relative changes in these 13 parameters are tabulated
in Table 9. The increased thickness at the apex by 20% has a
considerable effect on the material parameters, with changes up
to 30%, in particular, on k}, ¢2, k2, ¢, k3, and &}, which are
associated with the properties of the matrix and the longitudinal
fibers. This is very different to the membrane theory, in which
the Young’s modulus is independent of the membrane thickness
(Timoshenko and Woinowsky-Krieger, 1959).

We also found that an increased h3; could lower the error in
the stress between the model production and the observation. If
we increase h3; to 5.0 mm, the error reduces by 2.5%. Further
increase in thickness does not decrease the error much, see
Figure 7. Interestingly, 5.0 mm apex thickness seems to agree
with measurement in Su (2005). Finally, if h3; is reduced to be
10% thinner than hj; and hy;, 2.25 m, according to Khan et al.
(2012), then the errors in the stresses are greater, as shown in
Figure 7. Thus, the observation that apex thickness was thinner

than the GB body in Khan et al. (2012) did not agree with the
results from the cohort of GB samples used here.

Note that in Khan et al. (2012) post-mortem samples from
“unclaimed bodies” were used and so would not have been fresh.
When left in situ the bile will start to break down the gallbladder
wall-a process known as autolysis. Therefore, the results for wall
thickness might not be reliable. Samples in Su (2005), on the
other hand were obtained fresh from the operating theater and
washed immediately. So we would have more faith in the results
in Su (2005).

Comparison with Animal Test

Our ellipsoid model is different from the patient specific GB
geometries. One may ask if such a simple model is of any practical
use. To answer this question, we compared our model prediction
with the in vitro measurements of a lamb GB (Genovese et al.,
2014). In Genovese et al. (2014), a lamb GB was harvested and
inflated at a pressure up to 50 mmHg, then a series points on
the GB outside surface were tracked optically, and the strain
fields were estimated from fitting curves of these points. The
tension/stress fields were then calculated by using the elastic
membrane model and solved numerically. In our model, we
only used the diameters from Genovese et al. (2014) as the two
minor axis lengths D; and D, respectively. The stress field, hence
tension, are obtained analytically from Equation (7). The results
are shown in Figure 8, where the comparisons of the second
Piola-Kirchhoff surface tensions are plotted for pressure p =
20 and 50 mmHg (we couldn’t compare the results at p = 3.5
mmHg, as the tension profile in Genovese et al. (2014) seems to
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FIGURE 6 | Comparison of the modeled (lines) and estimated (symbols) circumferential and longitudinal stresses with the image-based ellipsoid
membrane mechanic model at points 1, 2, 3, for GB 3 (A-C), and GB 39 (D-F).
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TABLE 8 | Material parameters inversely determined with model Equation (10) and variable thicknesses: hyy = hyy = 2.5 mm, and hgq = 3.0mm.

GB No.

ci (kPa)

x} (kPa)

i
k3

ih (kPa)

i
kg

e (%)

0.2146 + 0.0118
0.0106 + 0.0029
1.1918 4 0.0046

2.2040 + 0.0186
2.4626 + 0.0047

0.3090 + 0.0056
0.2836 + 0.0014

0.6441 £0.0185
0.1089 + 0.1089
2.2841 4+ 0.0212

0.5514 + 0.0218
1.5081 + 0.0662
4.8171 £ 0.4371

5.9256 + 0.0297

0.1739 4+ 0.0077
0.0926 + 0.0072
0.2897 + 0.0002

3.6555 + 0.0144
3.3569 + 0.0130

0.7239 + 0.0053
0.4549 + 0.0040

0.8493 £ 0.0142
0.1907 £ 0.0123
0.7816 £ 0.0026

1.4068 + 0.0291
0.9927 + 0.1021
4.1440 £ 0.0214

1.8261 £0.0173

0.2299 + 0.0087
0.1638 + 0.0095
0.7727 + 0.0003

3.9979 + 0.0161
3.9544 + 0.0174

0.4956 + 0.0046
0.4604 + 0.0049

1.1460 £ 0.0161
0.5469 + 0.0169
0.6013 £ 0.0036

0.8751 + 0.0196
1.1846 4 0.0468
5.8020 + 0.0544

2.8756 + 0.0119

0.1572 4+ 0.0086
0.2326 + 0.0138
0.7162 4+ 0.0007

3.3594 + 0.0160
2.8920 + 0.0241

0.8488 + 0.0070
0.5705 + 0.0089

0.6231 £0.0152
0.5087 £ 0.0238
0.15622 + 0.0020

1.8528 + 0.0515
1.0820 £+ 0.0671
4.2194 £0.1741

4.6031 £ 0.0195

0.5454 + 0.0152
0.0918 4+ 0.0076
0.4974 + 0.0003

4.4740 + 0.0284
6.7692 + 0.0165

0.4564 + 0.0073
0.6541 £ 0.0049

0.6271 £ 0.0276
0.0493 + 0.0025
0.5500 + 0.0042

0.9859 + 0.0699
3.1356 + 0.0818
1.1336 £ 0.0261

3.2060 + 0.0129

21

0.2266 + 0.0094
0.0577 4+ 0.0002
0.0157 4+ 0.0005

6.1367 + 0.0238
2.7500 % 0.0006

3.2163 £ 0.0194
0.0631 + 0.0002

1.8135 £ 0.0201
0.0101 £ 0.0002
1.6921 £ 0.0060

7.1830 % 0.0671
0.1368 + 0.0252
5.2078 + 0.0272

7.5871 £ 0.0058

29

0.3272 + 0.0156
0.1032 + 0.0063
1.0348 £+ 0.0013

2.4211 £ 0.0244
3.5691 + 0.0120

0.2648 + 0.0065
0.8197 £ 0.0049

0.5663 + 0.0245
0.4906 £ 0.0105
0.4320 + 0.0059

0.4261 + 0.0358
2.6659 + 0.0461
2.6961 + 0.2625

4.4857 + 0.0208

37

0.2469 + 0.0126
0.2414 £ 0.0140
0.7965 + 0.0002

4.1076 + 0.0252
4.1183 £ 0.0280

1.2490 £ 0.0122
1.2440 £ 0.0136

1.0492 £ 0.0253
1.0606 + 0.0283
0.0153 + 0.0005

1.8288 £ 0.0601
1.8085 + 0.0664
6.3465 + 0.0628

5.5412 £ 0.0075

39

0.2999 + 0.0131
0.2650 + 0.0123
1.6221 £ 0.0023

2.9229 + 0.0217
3.6739 + 0.0230

0.2699 + 0.0054
0.6839 + 0.0081

0.8575 + 0.0216
0.8623 + 0.0215
0.1718 £ 0.0083

0.4888 + 0.0222
1.8161 4 0.0420
2.8898 + 0.2615

4.8833 + 0.0117

43

0.3508 + 0.0156
0.23056 + 0.0099
1.1491 £ 0.0005

4.3358 + 0.0275
5.3712 £ 0.0192

0.2502 + 0.0054
0.4119 £ 0.0044

0.7968 + 0.0275
0.7883 £ 0.0181
0.2174 £ 0.0031

0.5590 + 0.0371
1.5736 + 0.0399
3.0536 + 0.2349

3.2537 £ 0.0129

be unrealistically large, which is possibly due to a typo in the color
map scale).

The overall agreement is encouraging; in both our model and
experiments, the highest tension is found near the GB equator,
and the minimum tension occurs at the apex. The values of
the predicted surface tension are also in good agreement with
the experimental data except some isolated tension spots due
to the rapid change in the wall curvature of the lamb GB. The
predicted surface tension magnitude near the GB body/equator
is in a range of 0.023-0.027 N/mm, compared with 0.03-0.04
N/mm in the experiments at 20 mmHg pressure. Likewise, the
predicted tension is in a range of 0.063-0.073 N/mm, compared
to the range of 0.06-0.08 N/mm in the experiments at 50 mmHg.

DISCUSSION

Ultrasonography is a common method for monitoring GB
volume variations in daily diagnosis (Dodds et al, 1985;
Portincasa et al, 2003; Ugwu and Agwu, 2010). Although a
detailed 3D model is more accurate, simplified geometry models
are fast and therefore frequently used in clinical assessment.
When an ellipsoidal model is used to estimate GB volume based
on the images scanned during emptying phase, the error of the
model in GB volume is about 0.8 = 0.1 ml. This compares better
to the error of 2.1 £ 0.2 ml if using sum-of-cylinder method
(Dodds et al.,, 1985). To assess if the simplified model could
predict the stress distribution of a realistic GB sample, we also
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TABLE 9 | Relative changes in the parameters due to varied wall thickness.

GB No. Point i Aci[cl (%) Akl [kl (%) Axly /iy (%) Axh /i (%) Akl /il (%) Ae (%)

1 1 —1.5229 0.2183 —0.4831 0.7824 —1.5884 —1.2571
2 EEE BN EEE S EEE
3 —19.4784 - - —7.9252 —1.0761

3 1 —0.1722 0.01642 -0.0414 0.0825 —0.0994 ~0.0862
2 B BN BN EE EEE
3 —16.9200 - - —156.7305 —1.6821

4 1 3.14042 —0.3192 07817 —1.1046 1.7203 —0.3309
2 IEEE EEE B EEE Bl
3 —17.0300 - - —-11.1292 —7.5644

17 1 5.9299 —0.4829 0.8316 —2.4730 26880 ~0.5668
2 B EEEE BN EEE
3 -16.2143 - - -10.5758 ~18.2825

19 1 —2.3106 0.5325 —1.3829 3.7043 —8.0660 -0.4428
2 Il EEE EEE EEE
3 -16.6136 - - —17.3057 2.4955

21 1 —2.3697 0.1387 —0.0528 1.2280 —1.2415 —0.2810
2 EEE EEE BN B el
3 ~16.4894 - - ~15.5250 ~1.9339

29 1 —4.0751 0.9212 —2.2157 4.0087 —6.2898 -0.6329
2 Il EEE EEE EEE EEm
3 ~16.6559 - - ~14.8097 ~15.6836

a7 1 3.6524 —0.4122 0.6446 —1.6959 2.2704 —0.7774
2 BT BN BTN Il O
3 ~16.8146 - - 26846 —6.2472

39 1 —3.7857 0.6820 ~1.8188 2.2781 —3.4565 ~0.6966
2 IBEE BN BTN ETE Bl
3 —16.7569 - - —12.8803 —6.7415

43 1 —3.7322 0.56367 —1.8439 3.0656 —5.6381 ~0.4476
2 Il B BTN B EEEE
3 ~16.5808 - - ~13.4554 —17.0601

AC, A, Ak, Ak, Akly and Ae are the differences of these parameters and error between the case of hg; = 3.0 mm thick apex wall and the case of 2.5 mm uniform GB wall, ¢/, &},

Kb, Kk k', are the parameters for the 2.5 mm uniform GB wall.

compared our model prediction with the surface tension data for
alamb GB, and the overall agreement was surprisingly good.

We comment that the segmentation error of estimating the
GB diameter from a GB image is usually around 4.31-7.21%
(Bocchi and Rogai, 2011). To address the effect of this error on
the GB wall material parameters, we introduce a random error
(or noise) of 4.31-7.21% in the major axis lengths, i.e.:

&sg = 0.0431 + rand x (0.0721 — 0.0431) (17)

where rand is the inner random function in MATLAB to
generate a random number in value 0-1. Then we run the

inverse heterogeneous problem code with these noisy data for a
number of GB sample, say No. 1, 3, 17, and 21. The parameters
estimated are compared in Table 10 against those without the
noise.

When noise is considered, the error in the curve fitting
increased mostly by 3.1-6.7%, some can go as high as 12.3%,
in comparison with the case without the noise. The influence
of segmentation error on the parameters varies from one GB
to another, however, the parameters at points 1, 2 are mostly
likely affected by the segmentation error, particularly, changes
in ', ), kb, kj, & k3, are k7 can be large. Hence, the
segmentation error should be reduced as much as possible to
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GB No.
FIGURE 7 | Effect of GB wall thickness at the apex on the error in stress, the thickness at the apex is varied to be 2.25, 2.5, 3.0, 5.0, and 7.0 mm,
respectively, while the thickness at the other two points 1 and 2 is kept to be 2.5 mm.

improve the accuracy of the inverse estimation. In future, using
an automatic segmentation method with small segmentation
error as introduced in Bocchi and Rogai (2011) may be the way
forward.

In our previous work in Li et al. (2013), the human GB wall
was considered to be a non-linear composite material of matrix
and two orthogonal families of fibers in the circumferential
and longitudinal directions, respectively, and the material
parameters were assumed to be constant. These parameters
were determined inversely in Li et al. (2013) by using the
FEM software-ABAQUS with a user subroutine and a MATLAB
code. However, such an inverse approach is extremely time-
consuming (~7h) and unsuitable for clinical applications.
In this work, we have developed a simpler approach using
analytical or simpler forward solvers, which makes it possible
for clinical assessment of in GB human wall disease in real
time.

In addition, we extended the previous model from
homogenous membrane model in Li et al. (2013) to
heterogeneous model, which has significantly improved the
fitting accuracy. The heterogeneity of the GB has been confirmed
in the experimental work on lamb GB (Genovese et al., 2014).
The inverse estimation of the heterogeneous property constants
had an error less than 7% for the ten human GB samples, and the
computational time was reduced by 20 times (~30 min). Further,
allowing the wall thickness variation following experiments (Su,
2005), reduced the error to be less than 4%.

One potential clinical use of the model is to assessing
the GB pain. In Table4, we compare the first principal

stress with the pain score associated with the CCK venous
injection. It is clear that there is a strong correlation
between the magnitude of the stress and the pain score.
Although given the limited sample size, the homogeneous and
heterogeneous model seem to do equally well in terms of pain
prediction.

The limitations of our study should also be mentioned. In the
study, the stretches at the points 1-3 were determined analytically
during GB emptying phase. The analytical method was based on
the GB volume change from images. To our best knowledge, no
speckle tracking echocardiography on GB has been reported to
validate our model, unlike extensive measured on human left
ventricle (Edvardsen et al., 2002; Marwick, 2006; Crosby et al,,
2009; Maffessanti et al., 2009; Marwick et al., 2009; Tanaka et al.,
2010; Hoit, 2011; Kleijn et al., 2011). In addition, there were also
no in vitro passive tensile tests on the specimens harvested from
the body and fundus of human GB. In future, we may be able
to utilize the measured strain/stretch to validate our analytical
method for stretch extraction, this will make our regional GB
biomechanical property identification more accurate.

Further, we only used one in vitro observation to determine
the reference configuration of human GBs. In reality, the size
of a reference configuration may not be exactly 50% of the
size of totally refilled GB. It is possible that the GB reference
configuration can be estimated using GB ejection fraction (EF)
in cholecystokinin-cholescintigraphy (CCK-CS) (Ozden and
DiBaise, 2003) or fatty meal Cholescintigraphy (FM-CS) (Al-
Mugbel et al., 2010) exanimation for GB patients’ in vivo clinical
diagnosis.
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p=20mmHg, exp.

p=20mmHg, model

FIGURE 8 | Comparison of the peak tension from the ellipsoid model with the in vitro experimental tension of a lamb GB (Genovese et al., 2014) at the
internal pressure of 20 and 50 mmHg, respectively, two plots in the top row are from Genovese et al. (2014), with permission.

p=50mmHg, exp.

p=50mmHg, model

Although we have investigated the thickness variation in
our model, the values we used were applicable only for a
healthy GB. When human GBs suffer from diseases such as
acute cholecystitis, acalculous cholecystitis and ascites (Sanders,
1980; Runner et al., 2014), the GB thickness can increase
significantly. Indeed, diseased GB body wall thickness was
ranged in 3-5 mm (Sanders, 1980; Mohammed et al., 2010;
Runner et al.,, 2014). How to estimate the GB wall thickness
change in disease will be an important challenge for future
studies.

CONCLUSIONS

The heterogeneity of ten samples of human GB is investigated
theoretically in refilling phase using a structure-based

constitutive model, ellipsoidal GB and membrane in-plane
mechanic model. Three different points, two on the equator of
GB body with 90° apart and one on the apex of GB fundus, are
chosen to evaluate the variation of the material properties. The
stretches at these points are tracked over time from the routine
ultrasonic images scanned at the Sheflield Hallamshire Hospital
during the emptying phase. The material parameters at the
three different points are determined inversely using a MATLAB
code. The human GBs are found to exhibit heterogeneity,
especially from GB body to its apex region. It is found that using
a homogeneous model underestimate the peak stresses in the
GB wall, and that a strong heterogeneity occurs from GB body
to fundus. Finally, our model results indicate that the GB wall
is much thicker at the apex, which clarify the contrary findings
reported in the literature.
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TABLE 10 | Heterogeneous material parameters of four GB samples inversely determined with Equation (10) and uniform thickness hqy = hpq = h3y =2.5

mm when the error in segmentation is considered.

«} (kPa)

Kb )

«l, (kPa)

Kh ()

2.1992 + 0.0206
2.2538 + 0.0108
2.4538 + 0.0025
2.7813 £ 0.0109

0.3105 + 0.0064
0.4583 4 0.0037
0.2861 + 0.0008
0.1910 4+ 0.0028

7.1827 4+ 0.0310
10.2758 4 0.0171

0.6391 + 0.0203
0.5776 + 0.0097
0.1041 + 0.0030
0.1074 £ 0.0100
2.4807 £ 0.0176
2.6040 + 0.0094

0.5603 + 0.0267
1.0080 £ 0.0154
1.6253 £ 0.0385
0.7072 + 0.1303
4.8695 + 0.4743
4.9530 + 0.2609

3.6549 £ 0.0142
4.4777 £0.0349
3.3645 + 0.0150
3.6458 £ 0.0074

0.7242 + 0.0053
0.4755 + 0.0099
0.4526 + 0.0047
0.5561 4 0.0022

1.9123 £0.0152
8.6650 £ 0.0106

0.8486 + 0.0141
1.1143 £ 0.0357
0.1987 £ 0.0144
0.1301 + 0.0063
0.9275 + 0.0012
1.4950 + 0.0064

1.4082 + 0.0281
0.7544 + 0.0501
0.9714 £ 0.1228
2.4910 + 0.0864
4.2149 + 0.0085
1.0760 £ 0.0253

3.3757 £ 0.0151
4.3780 £ 0.0042
2.9225 £ 0.0205
2.8344 + 0.0085

0.8418 + 0.0065
0.3579 + 0.0013
0.5591 4+ 0.0074
0.7250 + 0.0035

5.1699 £ 0.0131
8.9515 £ 0.0048

0.6389 + 0.0144
1.1763 £ 0.0069
0.56387 + 0.0204
0.1470 + 0.0060
0.1702 + 0.0017
0.1426 + 0.0018

1.8043 £ 0.0455
0.4943 £ 0.0133
0.9941 + 0.0516
3.4810 + 0.0704
5.1634 + 0.1110
6.6020 + 0.0852

6.1282 4+ 0.0227
5.55628 + 0.0200
2.7506 4+ 0.0005
2.9211 4+ 0.0005

3.2180 + 0.0189
4.1576 £ 0.0214
0.0628 + 0.0002
0.0536 + 0.0002

7.8681 4 0.0068
12.3111 4 0.0049

1.7915 £ 0.0157
1.6702 £ 0.0104
0.0101 + 0.0001
0.0101 + 0.0001
1.8847 £ 0.0046
1.7578 £ 0.0036

7.2733 £ 0.0529
7.9210 + 0.0451
0.1280 + 0.0228
0.0990 + 0.0208
5.3105 + 0.0167
4.4671 £ 0.010

GB No. Point i With segmentation error cl (kPa)
1 1 No 0.2180 £ 0.0131
Yes 0.2179 £ 0.0069
2 No 0.0160 £ 0.0016
Yes 0.0681 £ 0.0063
3 No 1.4801 £ 0.0040
Yes 0.7986 + 0.0033
& (%) No
Yes
3 1 No 0.1742 £ 0.0076
Yes 0.2905 + 0.0183
2 No 0.0885 + 0.0084
Yes 0.0546 + 0.0041
3 No 0.3487 £ 0.0001
Yes 0.3173 £ 0.0004
& (%) No
Yes
17 1 No 0.1484 £ 0.0080
Yes 0.0207 + 0.0021
2 No 0.2152 £ 0.0116
Yes 0.4705 + 0.0048
3 No 0.8548 + 0.0004
Yes 0.8166 + 0.0001
& (%) No
Yes
21 1 No 0.2321 £ 0.0088
Yes 0.1136 + 0.0068
2 No 0.0576 + 0.0002
Yes 0.0402 £ 0.0002
3 No 0.0188 + 0.0005
Yes 0.0161 £ 0.0006
€ (%) No
Yes
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Estimating the in vivo absorption profile of a drug is essential when developing extended-
release medications. Such estimates can be obtained by measuring plasma concentra-
tions over time and inferring the absorption from a model of the drug’s pharmacokinetics.
Of particular interest is to predict the bioavailability—the fraction of the drug that is
absorbed and enters the systemic circulation. This paper presents a framework for
addressing this class of estimation problems and gives advice on the choice of method.
In parametric methods, a model is constructed for the absorption process, which can
be difficult when the absorption has a complicated profile. Here, we place emphasis on
non-parametric methods that avoid making strong assumptions about the absorption.
A modern estimation method that can address very general input-estimation problems
has previously been presented. In this method, the absorption profile is modeled as a
stochastic process, which is estimated using Markov chain Monte Carlo technigques. The
applicability of this method for extended-release formulation development is evaluated by
analyzing a dataset of Bydureon, an injectable extended-release suspension formulation
of exenatide, a GLP-1 receptor agonist for treating diabetes. This drug is known to have
non-linear pharmacokinetics. Its plasma concentration profile exhibits multiple peaks,
something that can make parametric modeling challenging, but poses no major difficulties
for non-parametric methods. The method is also validated on synthetic data, exploring
the effects of sampling and noise on the accuracy of the estimates.

Keywords: input estimation, deconvolution, Markov chain Monte Carlo, exenatide, extended release

1. INTRODUCTION

Extended-Release (ER) drug formulations are commonly used to improve the properties of drugs.
They can allow for less frequent dosing schedules, improving compliance and quality for the patient.
They can also improve safety by lowering the peak plasma concentration and enable the development
and use of drugs whose pharmacokinetic (PK) properties would otherwise be unacceptable. For ER
medications, the formulation design is specifically intended to provide a targeted release or input
rate that optimizes the compound PK. ER medications are typically administered orally (tablets and
capsules) or injected as intramuscular/subcutaneous depot formulations.
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Most types of oral ER technologies today are based on poly-
meric systems (Yang and Pierstorff, 2012; Arafat, 2015). The
oral formulations can be categorized into matrix, reservoir (or
membrane controlled), and osmotic systems (Ratnaparkhi and
Gupta Jyoti, 2013; Khalane et al., 2016). The drug release mech-
anisms involve drug diffusion, system swelling, or erosion and
dissolution, or osmotic pressure-induced release (Siepmann and
Gopferich, 2001; Arifin et al., 2006). Parenteral depot injections
are used to achieve extended drug release over a week or longer.
They include formulation types such as oil-based solutions, drug
suspensions, polymer-based microspheres and polymer-based or
lipid liquid crystal in situ formings (Rhee et al., 2010; Gulati and
Gupta, 2011; Schwendeman et al., 2014). Biodegradable micro-
sphere systems (e.g., made of PLGA copolymer) have proved
to be a successful approach to deliver macromolecular drugs
(Mitragotri et al., 2014).

In any ER-formulation development process, it is fundamental
to determine the in vivo drug release/absorption profile of each
candidate formulation. This is done routinely in drug discovery
and development. Measuring the absorption profile in vivo is
generally difficult and expensive. Typically, the data that are avail-
able are plasma concentration profiles following extravascular
administration. If a model of the PK is available, it is possible to
infer the absorption profile from plasma concentration data. The
total amount of drug absorbed, and therefore the bioavailability,
can be computed by integrating the absorption profile. Standard
methods exist for the case where the PK is linear (Verotta, 1996).
However, methods that are applicable to the non-linear case are
not widely available.

When predicted in vivo input profiles are available, it may be
possible to validate or invalidate the translatability of the in vitro
system. Given data for several candidate formulations, an in vitro
in vivo correlation (ivivc) can be established, relating the in vitro
drug dissolution or release to the in vivo drug absorption or
release (Lu et al.,, 2011; Cardot and Davit, 2012). Ideally, one
can then predict the in vivo performance based on the in vitro
release profile and optimize the formulation by in vitro testing
at low cost. In addition, knowledge of the absorption profile in
an animal model can help in predicting, and hence optimizing,
the human PK profile. To achieve this, a human intravenous PK
model is required, either from real data or predicted from cellular
or animal data. The absorption profile obtained from animal data
is fed to the human model, resulting in human PK trajectories.
This type of human predictions is always desired in drug discovery
to assess feasibility. Naturally, prediction reliability increases with
the amount and quality of data.

One way to estimate the absorption profile is to build a para-
metric model of the drug release and absorption processes. For the
drug release process, various models have been proposed, ranging
from simple empirical models to detailed mechanistic models that
account for various processes such as degradation and erosion
(Siepmann and Peppas, 2001; Versypt et al., 2013). However, if the
release profile is complicated, it may be difficult to create a model
that is able to capture the observed plasma concentration (Shen
and Burgess, 2015). One example is long acting biodegradable
particles for subcutaneous injection. The model may also need to
be tailored to the particular type of drug and formulation used.

For sparse data, such models may also have practical identifiability
issues. An alternative is to use non-parametric methods. In these
methods, the release/absorption profile is allowed to take any
functional form as long as it matches the data and does not exhibit
any unrealistic behavior, such as taking negative values. Predic-
tions from such non-parametric methods are often sufficient for
compound/formulation selection in drug discovery.

This paper considers such non-parametric methods for esti-
mating the release/absorption profile and bioavailability of
extended-release formulations and gives advice on the choice of
methods, given the data and system knowledge that are available.
The choice of method depends on the characteristics of the PK
model:

e When the dynamics of the PK model are substantially faster
than the release/absorption profile, it is reasonable to assume
that the PK model is essentially in steady state over the
timescales of interest. The plasma concentration at any time-
point is a function of the absorption rate only at that timepoint,
regardless of previous history. For linear PK models, the rela-
tionship between plasma concentration and absorption rate is
linear.

e When the dynamics of the PK model are too slow to be ignored
in relation to the absorption profile, the plasma concentration
atany timepoint is a function of the complete absorption profile
up to that point. If the PK model is linear and time-invariant,
the relationship between the absorption rate u(t) and plasma
concentration C(t) is given by

C(t) = I(¢) = u(t), (1)

where I(t) is the impulse response of the system and x* is
the convolution operator. Estimating u(t) from C(t) is con-
sequently referred to as deconvolution (Verotta, 1996). The
impulse response can be derived from a model, if one is avail-
able, or may be determined empirically, e.g., from intravenous
data.

o The most general case is when the dynamics of the PK model
are non-linear. Here, the relationship between u(f) and C(t)
cannot be expressed by a convolution operation. Estimating the
absorption profile is still possible if a (non-linear) PK model
is available. In this case, the dynamics are represented by a
system of ordinary differential equations, which is integrated
numerically as part of the estimation procedure. Since this
operation is not related to convolution, we prefer the more
general term input estimation.

A decision tree summarizing these aspects is given in Figure 1.

In its most general form, input estimation is the technique
of estimating the input to a dynamical system, given measure-
ments of the system’s state. In the present case, the input is
the release/absorption profile of the drug, u(t), the dynamical
system is the PK model, and the measurements are of plasma
concentrations C(t). A methodology for performing such analyses
has been presented in Trigardh et al. (2016). These methods do
not make any assumptions about stationarity or linearity and are
therefore applicable to the most general case presented above.
Previously, the methods have been applied to estimating the
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FIGURE 1 | Decision tree for the choice of method for predicting a release/absorption profile. If a suitable model for the release/absorption profile exists or
can be constructed, parametric methods are suitable. Otherwise, non-parametric methods can be used. The method presented in this paper addresses the most
general non-parametric case, with non-linear PK and without any steady-state assumptions. If linearity or steady-state conditions can be assumed, simplifications
can be made in order to reduce the computational requirements. IV = intravenous administration.
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absorption profile of an immediate-release (IR) formulation of
the drug eflornithine as well as for estimating the energy intake
in bodyweight models. The purpose of this paper is to evaluate
the applicability of the method of Tragardh et al. (2016) to ER-
formulation problems and to investigate what adaptations, if any,
are necessary in order to ensure good performance on this kind of
problem. Additionally, the accuracy of the method is evaluated on
simulated data for which the true input function is known. Esti-
mation of ER release/absorption profiles differs from estimation
of IR profiles in the following respects:

1. The timescales of ER absorption profiles can vary over large
ranges, potentially much larger than the time constants of the
PK model.

2. The absorption profile of ER formulations is typically con-
siderably more complicated than the absorption profile of IR
formulations.

Model dynamics that are fast compared to the timescales
of interest can cause stiffness issues. In general, an estimation
method that has previously been shown to perform well will
not necessarily perform well when applied to a problem with
substantially different data and model parameters. For this reason,
it is essential to evaluate the methodology in Trigardh et al. (2016)
on a realistic ER estimation problem.

In this paper, these methods are applied to Bydureon (Buse
et al,, 2010, 2013), an extended-release microsphere formulation
of the GLP-1 receptor agonist exenatide (Buse etal.,2004;

DeFronzo et al., 2005). The Bydureon formulation consists of
exenatide encapsulated within poly-(p,