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Editorial on the Research Topic

Integration of NGS in clinical and public healthmicrobiologyworkflows:

applications, compliance, quality considerations

Since its invention in the 90s, next-generation sequencing (NGS) has played an

instrumental role in pushing our understanding of human microbiome and microbial

genomics to a whole new level (1, 2). In the past decade, NGS has also been widely

adopted in public health and food safety laboratories and became the primary method for

microbial surveillance and outbreak investigation (3, 4). This trend extends to the clinical

laboratories, where NGS has been a powerful tool for hospital outbreak investigation and

institutional-level pathogen surveillance to aid infection prevention programs (5, 6). Soon

after, the exploration of NGS’s diagnostic utility for infectious diseases gained tremendous

momentum, with both whole-genome sequencing (WGS) based and metagenomics

(mNGS) based tests showing dramatic improvements in the detection and identification of

pathogens that otherwise couldn’t be detected or accurately identified, thus solving unmet

clinical needs (7–9). Despite the great promise and indisputable values, integration of NGS

is a challenging endeavor not only for each individual laboratory but also for our entire

field. The technical complexity, the lack of guidelines and standards, and the extraordinary

resources required are some of the most remarkable obstacles (10, 11). In this Research

Topic, integration and utilization of NGS in clinical and public health microbiology

was described in great detail, encompassing wet-lab techniques, bioinformatics, logistics,

outbreak investigation, genomic surveillance, and patient diagnostics.

One highlight of this Research Topic is the use of fungalWGS for genomic surveillance,

which historically had been less established compared to bacterial genomic surveillance.

UsingWGS, Michael et al. demonstrated that the infamous “BlackMolds” epidemic during

the delta wave of the COVID-19 pandemic in India was caused by multiple fungal species,
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predominantly Rhizopus delemar. Even among this species there

was vast genetic diversity indicating no common sources nor

a particular strain. Most COVID-19 patients who suffered

mucormycosis had diabetes which is a known risk factor for both

COVID-19 infection and invasive mucormycosis. These findings

were significant as they demystified the role of Mucorales and

its relationship with COVID-19. In another important study,

Gorzalski et al. utilized 3 different bioinformatics tools to analyze

the WGS data of over 200 Candida auris isolates from an ongoing

large outbreak in Nevada and elucidated the inferred transmission

networks based on shared SNP analysis. This study provided

essential genomic epidemiological data to help understand the

dynamics of this large outbreak which brought unprecedented

challenges to the hospitals in the affected areas even to date.

This study also highlighted the importance of implementing real-

time genomic surveillance of Candida auris to help slow down

its transmission.

The bioinformatics workflow TheiaEuk described in the

manuscript by Ambrosio et al. was designed to fully utilize the

benefit of a cloud computing platform. Their work on C. auris

genomic epidemiological analysis involved a large dataset, which

demonstrated that cloud computing is perhaps the only truly

scalable and sustainable solution for bioinformatic analyses.

Analyzing fungal WGS data is challenging, yet the

interpretation of fungal phylogenetic results can be equally

hard, as demonstrated in another outbreak investigation by Fan

et al.. In this study, Cyberlindnera fabianii, an unusual yeast was

recovered from the urine culture of 3 patients from the same ward,

prompting a suspicion for nosocomial infections. SNP analysis

revealed that two of the C. fabianii isolates had 192 SNPs difference

while the third was over 26,000 SNPs apart. The main conundrum

was how to interpret this 192 SNPs distance; the authors did

a literature review showing that the genetic difference of yeast

isolates with epidemiological link could range widely from <50

SNPs to >1000 SNPs, depending on the genome size of the species

and length of the outbreaks. Given the similar size of C. fabianii

compared to C. auris, 192 SNPs could still be interpreted as likely

having a common source. Ultimately, the only way to solve this

type of interpretation dilemma is to sequence many more fungal

pathogens and pair it with extensive collection of epidemiological

information on the potential transmission chains, which will

expand the fungal genome database and our knowledge base of

epidemiology of fungal nosocomial outbreaks and fungal evolution

during infection and colonization.

The improvement in result turnaround time and increasing

accessibility of sequencing technologies, even in limited-resources

circumstances, allows researchers to find innovative ways to

diagnose and improve the quality of care for high-consequence

endemic diseases such as tuberculosis. In this Research Topic, we

showcased seminal work by two different groups related to the

use of targeted NGS (tNGS) for the diagnosis and prediction of

antimicrobial resistance directly from primary specimens. tNGS

approach for TB resistance prediction is clearly favorable for

clinical application due to its ability to generate actionable results

with a rapid turnaround time, as opposed to whole-genome

sequencing, which is a great surveillance tool, but requires pure

culture, hence, leading to delays in obtaining the results. The work

by Murphy et al. described in detail a clinically validated, state-of-

the-art approach to using tNGS coupled with real-time long read

sequencing technology and customized bioinformatic pipeline to

examine genes and mutations in Mycobacterium tuberculosis to

predict resistance to antimicrobials, allowing clinicians to choose

the most appropriate treatment for each patient weeks before

WGS results were available. The work performed by de Araujo

et al. further emphasized the potential feasibility of utilizing

tNGS to enhance clinical and surveillance efforts to combat drug-

resistant M. tuberculosis by outlining an innovative programmatic

framework that incorporatedM. tuberculosis tNGS in low-resource

regions where NGS had not previously been available.

NGS has been widely used in surveillance of foodborne

pathogens and healthcare associated pathogens, especially

ones with resistant mechanisms of public health concern, like

carbapenem-resistant organisms (CRO). Yet the utilization of

genomic data for identification of outbreak sources and efficient

communication of genomic results to the epidemiologists still

could be improved tomake genomic epidemiology truly actionable.

Gali et al. highlights an application of automated, NGS cluster

analysis tool at NCBI Pathogen Detection, which provides

public health investigators current, pre-computed clustering data

commonly used for the investigation of foodborne outbreaks. The

Virginia Division of Consolidated Laboratory Services (DCLS)

laboratory has extended this application to detect and identify the

sources outbreaks of CRO, specifically involving Acinetobacter

baumannii, Enterobacter cloacae, Morganella morganii, Klebsiella

pneumoniae, Escherichia coli, and Proteus mirabilis.

The proper identification of pathogens is a cornerstone of

successful surveillance as well as clinical diagnosis. However, even

with such common pathogens as enteric bacteria, the scarcity

of well-curated reference datasets impedes clinical validations

of identification tools as well as the development of new

bioinformatics solutions. The paper presented by Lindsey et al.

described the development of Reference Genome Dataset for

benchmarking of enteric genomic identification using Average

Nucleotide Identity (ANI) algorithm. Themanuscript also provides

a nice example of clinical validation of a bioinformatics tool,

including determination of genome coverage limits for successful

ANI identification.

The mNGS technology has revolutionized pathogen detection.

Historically, many fastidious or endemic pathogens have been

under detected due to lack of effective diagnostic tools. As an

agnostic “one-stop test,” mNGS is shown by Chang et al. to be

particularly powerful in diagnosing a case of Leishmania donovani

visceral leishmaniasis, a rare infectious disease unexpectedly found

in an infant with acute lymphoblastic leukemia. The timely

diagnosis led to successful treatment, demonstrating the value

of mNGS. Another difficult-to-detect microorganism, Legionella

pneumonia, was successfully identified with mNGS in a clinical

case presented by Du et al. in which Legionnaires’ disease

coincided with rhabdomyolysis and acute kidney injury, a.k.a.

Legionella Triad, a rare and deadly syndrome requiring timely

diagnosis and treatment. The patient finally improved, and the

authors advocate for the implementation of mNGS for the early

diagnosis of severe cases of Legionnaires’ disease in resource

limited areas.
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Question of clinical relevance of mNGS findings remains

topical and matter of relative and absolute abundance of detected

species and its importance in making clinical interpretations

regarding the role of the detected pathogens as causative agents

of the disease are widely discussed. Unlike aforementioned studies

describing implementation of hypothesis-free mNGS approach,

Almas et al. showcase the use of a hybridization capture-

based sequencing method for the diagnosis of urinary tract

infections (UTIs) by combining broad detection range benefits

of NGS technology and precision of targeted approach for

focusing data generation on clinically relevant information. The

ability of the bioinformatic platform presented by the authors to

provide quantitative results is particularly attractive for clinical

microbiology applications.

Implementation of NGS is not without a set of unique

challenges, which include but are not limited to requirement of

expensive equipment and reagent, availability of skilled scientists

to perform the wet lab part, access to high-performance computing

platforms and well-trained bioinformaticians, and an effective

way to validate and communicate results to clinicians and

epidemiologists. Tartanian et al. astutely described not only their

trials and tribulations in implementing SARS-CoV-2 sequencing

within their health system, but also many aspects of their

efforts that were incredibly successful. With the sheer volume

of COVID-19 samples at the height of the pandemic, most, if

not all entities performing SARS-CoV-2 sequencing had to find

creative ways to increase the throughput of their sequencing

efforts. One of the approaches taken by institutions with financial

support was to implement automation throughout the NGS

workflow in efforts to increase the throughput. Socea et al.

described their success story, albeit not without some challenges,

in implementing automated library preparation to eliminate one of

the potential major bottlenecks in the NGS process. These stories

of overcoming challenges to establish next-generation sequencing

(NGS) capabilities provide valuable practical insights for those

facing similar odds.

NGS, as a tool for pathogen genomic surveillance, requires

tight coordination at multiple levels to ensure the NGS data

are of sufficient quality and associated contextual data meet the

requirements for public health action, both globally and locally.

These coordinating efforts often include both public and private

databases, increasing the complexity of data management in

submitting and extracting data for public health action. Wadford

et al. and the State of California established the California SARS-

CoV-2Whole Genome Sequencing (WGS) Initiative, or “California

COVIDNet.” This cross-sector collaboration implemented large-

scale genomic surveillance of SARS-CoV-2 across California to

monitor the spread of variants within the state, to detect new and

emerging variants, and to characterize outbreaks in various settings,

including congregate facilities and workplaces. The framework

and computational infrastructure developed for COVID-19 can

be extended now for pathogen genomic surveillance of other

infectious diseases.

Four decades ago, polymerase chain reaction (PCR) was

invented and now it has become a primary diagnostic and screening

tool for infectious diseases; NGS undoubtedly is following the

same trajectory. Many efforts and innovations are still required to

lower the cost and hurdles for the integration of NGS in clinical

and public health microbiology, yet a bright future lays ahead.

The advancements in automation, bioinformatics and database

curation, and better consensus and guidelines for implementation

of NGS assays in regulated environments for clinical testing

will accelerate the widespread adoption of NGS and strengthen

our capabilities for fighting the infectious diseases with ever-

changing landscape.
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A pseudo-outbreak of
Cyberlindnera fabianii funguria:
Implication from whole genome
sequencing assay

Xin Fan1†, Rong-Chen Dai2†, Timothy Kudinha3,4 and Li Gu1*

1Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory
Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China, 2School of Public
Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China, 3School of Dentistry and
Medical Sciences, Charles Sturt University, Leeds Parade, Oranges, NSW, Australia, 4NSW Health
Pathology, Regional and Rural, Orange hospital, Orange, NSW, Australia
Background: Although the yeast Cyberlindnera fabianii (C. fabianii) has been

rarely reported in human infections, nosocomial outbreaks caused by this

organism have been documented. Here we report a pseudo-outbreak of C.

fabianii in a urology department of a Chinese hospital over a two-week period.

Methods: Three patients were admitted to the urology department of a tertiary

teaching hospital in Beijing, China, from Nov to Dec 2018, for different medical

intervention demands. During the period Nov 28 to Dec 5, funguria occurred in

these three patients, and two of them had positive urine cultures multiple times.

Sequencing of rDNA internal transcribed spacer (ITS) region and MALDI-TOF MS

were applied for strain identification. Further, sequencing of rDNA non-

transcribed spacer (NTS) region and whole genome sequencing approaches

were used for outbreak investigation purpose.

Results: All the cultured yeast strains were identified as C. fabianii by sequencing

of ITS region, and were 100% identical to the C. fabianii type strain CBS 5640T.

However, the MALDI-TOF MS system failed to correctly identify this yeast

pathogen. Moreover, isolates from these three clustered cases shared 99.91%-

100% identical NTS region sequences, which could not rule out the possibility of

an outbreak. However, whole genome sequencing results revealed that only two

of the C. fabianii cases were genetically-related with a pairwise SNP of 192 nt,

whilst the third case had over 26,000 SNPs on its genome, suggesting a different

origin. Furthermore, the genomes of the first three case strains were

phylogenetically even more diverged when compared to a C. fabianii strain

identified from another patient, who was admitted to a general surgical

department of the same hospital 7 months later. One of the first three patients

eventually passed away due to poor general conditions, one was asymptomatic,

and other clinically improved.

Conclusion: In conclusion, nosocomial outbreaks caused by emerging and

uncommon fungal species are increasingly being reported, hence awareness
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must be raised. Genotyping with commonly used universal gene targets may

have limited discriminatory power in tracing the sources of infection for these

organisms, requiring use of whole genome sequencing to confirm outbreak

events.
KEYWORDS

uncommon fungal pathogen, molecular typing, nosocomial transmission,
Cyberlindnera fabianii, whole genome sequencing (WGS)
Introduction

Emerging fungal infections have become a global health

concern in the past few decades due to their notable morbidity

and mortality, especially among immunosuppressed patients

admitted to intensive care units (ICUs), or undergoing invasive

medical interventions (Pappas et al., 2018; Hoenigl et al., 2022;

World Health Organization, 2022). Although Candida albicans

remains the most predominant yeast pathogen, the incidence of

uncommon yeast species causing human infections has increased

enormously in recent years (Pappas et al., 2018; Chen et al., 2021).

Uncommon yeast species often exhibit decreased susceptibility to

commonly used antifungal agents, making them difficult to manage

in clinical settings. Moreover, there are increasing incidences of

nosocomial infections and outbreak events reported due to

transmission of uncommon or emerging yeast species worldwide

(Pappas et al., 2018; Chen et al., 2021). For instance, Candida auris,

which was first described in 2009, has caused a number of outbreaks

in different continents (Chow et al., 2018; Hoenigl et al., 2022;

World Health Organization, 2022).

In the investigations and tracing of fungal nosocomial

transmissions, molecular genotyping could provide essential

genetic evidence. Hence, a wide variety of molecular typing assays

have been evaluated and implemented in the study of outbreaks,

including band-pattern-based DNA analysis like random amplified

polymorphic DNA (RAPD) and pulsed field gel electrophoresis

(PFGE), traditional DNA sequencing-based phylogenetic methods

like single gene analysis, microsatellite analysis and multilocus

sequence typing (MLST), protein spectrum analysis by matrix-

assisted laser desorption/ionization-time of flight mass

spectrometry (MALDI-TOF MS), and whole genome sequencing

(WGS) techniques (Reiss et al., 1998; Pulcrano et al., 2012; Mikosz

et al., 2014; Xiao et al., 2014; Litvintseva et al., 2015; Oliveira and

Azevedo, 2022). Of these methods, WGS has become increasingly

used due to its outstanding discriminatory power (Litvintseva et al.,

2015; Bougnoux et al., 2018; Desnos-Ollivier et al., 2020; Oliveira

and Azevedo, 2022).

In this study, we report on three clustered funguria cases caused

by a rare fungal pathogen, Cyberlindnera fabianii, which occurred

over a two-week period within the same urology department, which
0210
was initially considered as a nosocomial outbreak event. Using

WGS, this event was finally confirmed as a pseudo-outbreak caused

by C. fabianii from two diverged genetic lineages.
Material and methods

Ethics

This study was approved by the Human Research Ethics

Committee of the Beijing Chaoyang Hospital (No. KE332). Written

informed consent was obtained from all participants involved.
Routine isolation of the microorganisms
and MALDI-TOF MS identification.

C. fabianii strains were isolated from urine samples of three

patients (number 1-3); on four different occasions for patient

number 1, only once for patient number 2, and on three different

occasions for patient number 3 (Figure 1 and Table 1). After these

three cases, no further C. fabianii cases were detected in the same

hospital for over seven months, till a new C. fabianii isolate,

cultured from an ascites sample of a patient admitted to general

surgery department (recorded as patient number 4), was detected,

and this isolate was used as a comparator.

Routine culture of specimens was carried out as per standard

laboratory protocols. Generally, for urine samples, 1 ml of the

sample was inoculated on Blood Agar media and incubated at

35 °C for 24 h. Thereafter, the number of colonies growing on the

media plate was counted to ensure that they met the criterion for a

urinary tract infection. A brief identification protocol revealed that

the cultured isolates were yeast. Thus, Sabouraud glucose agar

(SDA) was used to subculture these isolates for further

identification testing. Attempts were made to identify the cultured

yeasts by using a Vitek MS MALDI-TOF MS system (bioMérieux,

Marcy l’Etoile, France, with IVD database version 2.1), following

manufacturer’s instructions. For each run, Escherichia coli strain

ATCC 8739 was used to calibrate and control the method.

Unfortunately, this system was unable to identify the yeast strains.
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Molecular identification and phylogenetic
analysis by rDNA gene spacer regions

As all the suspected yeast isolates could not be identified using

the MALDI-TOF MS systems, sequencing of rDNA internal

transcribed spacer (ITS) regions was carried out. Briefly, DNA

extraction of the isolates was performed using a QIAamp DNA

Mini Kit (Qiagen, Hilden, Germany). The universal primer pair

ITS1 and ITS4 was used for amplification and sequencing of the ITS

region for each strain (Xiao et al., 2014), and a species identification

was carried out by querying against the Westerdijk Fungal

Biodiversity Institute’s database using a web-based pairwise

alignment tool (https://wi.knaw.nl/page/Pairwise_alignment ).

Further, to investigate the potential relatedness of these cases,

the first yeast isolate of each patient case was chosen for

further testing, and the rDNA non-transcribed spacer region 1

(NTS-1) was amplified with a forward primer NTS1-F (5’-

GGGATAAATCATTTGTATACGAC-3’) and a reverse primer

NTS1-R (5’-TTGCGGCCATATCCACAAGAAA-3’) as described

previously (Al-Sweih et al., 2019), and sequenced from both

directions. A phylogenetic tree of NTS-1 sequences was generated

by Mega X (version 10.2, https://www.megasoftware.net/ ) using

neighbor-joining method with bootstrap value of 1000. NTS-1

sequences from C. fabianii type strain CBS 5640T, and C. fabianii

reference genome strain JOY008, were also downloaded from

GenBank and included in the analysis. In addition, NTS-1

sequence extracted from the genome of Cyberlindnera jadinii strain

NBRC 0988 was selected as an outgroup.
Frontiers in Cellular and Infection Microbiology 0311
Whole genome sequencing and analysis of
C. fabianii strains

Whole-genome sequencing was performed on each of the first

yeast strain from each of patients 1 to 4. Generally, a 350-bp DNA

library was prepared using NEB Next Ultra DNA library prep kits

(NEW ENGLAND BioLabs Inc., MA, USA), following the

manufacturer’s instructions. Library integrity was evaluated with

an Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA).

Sequencing was performed on an Illumina NovaSeq using PE150

in a commercial company (Novogene Co., Ltd., Beijing, China).

For genome analysis, the complete reference genome of C.

fabianii strain JOY008 (GenBank accession no. GCA_022641835.1)

was used for read mapping. Single-nucleotide polymorphism (SNP)

analysis was carried out by Burrows-Wheeler Aligner (version

0.7.7), SAMtools (version 1.2), and Genome Analysis Toolkit

(GATK) (v.3.3-0) per GATK Best Practices (Li and Durbin, 2009;

Li et al., 2009; Mckenna et al, 2010). The filtered reads were

compared to the reference genome by SAMtools to generate BAM

files. Then, variants were marked by GATK MarkDuplicates for

each sample, and single-sample GVCF files were created by GATK

HaplotypeCaller with the option –emitRefConfidence GVCF. The

GVCF files were aggregated by GATK CombineGVCFs tool. After

that, the GVCF files were jointly genotyped with the GATK

GenotypeGVCFs to produce a single VCF file containing variants

data on every strain. Finally, the VCF file was selected using GATK

SelectVariants with the option -select-type SNP and filtered using

the following parameters: VariantFiltration, QD < 2.0,
FIGURE 1

Clinical features, treatment regimens, and outcomes of three clustered cases with Cyberlindnera fabianii funguria. Abbreviations: CC, CFU (colony
forming unit) count; LOS, length of stay; Culture +: culture positive for C. fabianii.
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TABLE 1 Clinical features of four patients with Cyberlindnera fabianii funguria and microbiology characteristics of the strains.

Patient No. 1 No. 2 No. 3 No. 4

Patient features

Reason for hospitalization Fever and parastomal fistula Postoperative follow-up of
bladder cancer

Fever with backaches Pancreatic cancer

Underlying disease Bladder cancer Bladder cancer Bladder cancer, diabetes No

Clinical status at time of first positive culture

Fever Yes No Yes Yes

Immunosuppressive state Yes Yes Yes Yes

Neutropenia (<109/L) No No No No

High urine leukocytes Yes No Yes No

Prior antibacterial exposure Yes Yes Yes Yes

Prior antifungal exposure No No No No

Abdominal surgery Yes Yes Yes Yes

Indwelling urinary catheter No No Yes No

Parenteral nutrition No No No Yes

Yeast culture

Department of hospitalization Urology Urology Urology General surgery

Samples positive for yeasts Urine Urine Urine Ascites fluid

Number of times isolated 4 1 3 1

Mixed bacteria culture positive Enterococcus faecium No Enterococcus faecium Enterococcus faecium,
Enterobacter cloacae

Identification

Lab no. of first strain CYCFB01-1 CYCFB02-1 CYCFB03-1 CYCFB04-1

ITS sequencing C. fabianii C. fabianii C. fabianii C. fabianii

Identity with type strain 100% 100% 100% 100%

Vitek MS No identification No identification No identification No identification

Antifungal susceptibility (mg/L)

Fluconazole 1 1 0.5 1

Voriconazole 0.015 0.015 0.015 0.03

Itraconazole 0.12 0.12 0.06 0.06

Posaconazole 0.12 0.12 0.12 0.12

Caspofungin 0.03 0.06 0.03 0.06

Micafungin 0.03 0.03 0.03 0.03

Anidulafungin 0.015 0.06 0.015 0.015

5- Flucytosine 0.12 0.06 0.12 0.06

Amphotericin B 0.5 0.5 0.25 0.25

Data availability

ITS OP904191 OP904192 OP904193 OP904194

NTS-1 OP912967 OP912968 OP9129689 OP91296870

WGS SAMN32011978 SAMN32011979 SAMN320119810 SAMN32011981
F
rontiers in Cellular and Infection M
icrobiology
 0412
ITS, rDNA internal transcribed spacer region; NTS-1, rDNA non-transcribed spacer region-1; WGS, whole genome sequencing.
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ReadPosRankSum < −8.0, FS > 60.0, MQRankSum < −12.5, MQ <

40.0 and HaplotypeScore > 13.0.

Specifically, in this study, the term “pseudo-outbreak” was used

to describe inappropriate artifactual clustering of real infections as

an outbreak event, due to limitation of investigation tools.
Antifungal susceptibility testing

Minimum inhibitory concentrations (MICs) of all the isolates

were determined by Sensititre YeastOne YO10 kits (Thermo

Scientific, OH, USA) following the manufacturer’s instructions,

and with Candida krusei ATCC 6258 and Candida parapsilosis

ATCC 22019, used as quality control strains.
Data availability

DNA sequences of rDNA ITS and NTS-1 regions for each of the

first yeast strain isolated from each individual has been deposited

into NCBI GenBank database (accession nos. OP904191-OP904194

for ITS region and OP912967-OP912970 for NTS-1 region). Their

WGS reads data is also now available in National Microbiology

Data Center (NMDC) database (Bioproject accession

no. PRJNA907923).
Results

Patients

Information pertaining to each of the 4 patients included in this

case study is summarized in Figure 1 and Table 1.

Patient 1 was a 65-year-old female admitted to the urology

department of Beijing Chao-Yang hospital on Nov 22, 2018, due to

presence of fever for two weeks and a parastomal fistula after ileal

replacement due to bladder cancer in 2016. Upon admission, the

patient had fever for over a week. On day 6 after admission, a yeast

strain was isolated from her urine sample and the colony count

(CC) was 8×104 CFU/ml. The same urine culture also grew

Enterococcus faecium (5×104 CFU/ml) as a mixed culture with the

yeast. The routine MALDI-TOF MS identification system failed to

identify the yeast isolate. Her urine samples collected on days 8, 13

and 15 after admission also yielded yeasts (CC of 8 to >10×104

CFU/ml). Follow-up ITS sequencing assigned all the strains as C.

fabianii. The patient was given fluconazole at 200 mg/day for 18

days after which her condition improved notably, and she was

finally discharged from the hospital on day 33 of admission.

Patient 2 was an 83-year-old male admitted to the urology

department of the hospital on Dec 04, 2018, for follow-up of bladder

cancer electrosurgery performed eight and four months before his

admission. On day 1 after admission, a urine sample was collected

for routine screening, which was reported positive for yeasts with a

CC of 5×104 CFU/ml. The yeast strain was identified as C. fabianii

by ITS sequencing. This patient didn’t present with any symptoms

of infection, and hence antifungal therapy was not given. Later, he
Frontiers in Cellular and Infection Microbiology 0513
received a transurethral resection of bladder tumor on day 3, and

was discharged on day 7 after admission.

Patient 3 was a 65-year-old male admitted to the urology

department of the hospital on Dec 03, 2018, due to presence of high

fever with backaches. Nine months before this admission, the

patient hand undergone nephroureterectomy of the left kidney.

He received nephrostomy on the right kidney immediately on day 1

after admission. His urine sample collected on day 2 was culture

positive for a yeast (CC: 8×104 CFU/ml), which was identified as C.

fabianii by ITS sequencing. However, no antifungal agents were

prescribed for him and only a broad-spectrum antibiotic was given.

On days 26 and 27, two urine samples were collected consecutively

and both were positive for C. fabianii with a CC of > 10×104 CFU/

ml. Of note, all his urine samples also grew E. faecium (>10×104

CFU/ml) as part of a mixed culture with the yeast. Though

fluconazole therapy (200 mg/day) was initiated on day 27 after

admission, the patient passed away on the same day.

Patient 4 was a 54-year-old female admitted to the general

surgery department of the hospital on Jul 18, 2019, which was over

seven months after the patient 1, 2 and 3 case clusters. She was

hospitalized due to pancreatic cancer, and received radical

pancreatoduodenectomy on day 12 after admission; later with

pancreatic intestinal anastomotic fistula. The patient’s ascites

sample collected on day 20 was reported positive for C. fabianii

and E. faecium. However, she didn’t have any other culture positive

results for fungi after that, nor received any antifungal treatment,

and was discharged from the hospital on day 52.
C. fabianii identification

All the yeast strains could not be identified using the Vitek MS

MALDI-TOF MS system IVD 2.0 database, nor were the isolates

misidentified as something else (identification confidence values

<60.0). This is not surprising as C. fabianii is not currently included

in the system’s spectrum database.

By sequencing of the ITS region, all the yeast strains from the

four patients were unambiguously assigned to C. fabianii, with their

respective ITS sequences 100% (602/602 bp) identical to that of C.

fabianii type strain CBS 5640T.
Phylogenetic analysis by rDNA
NTS-1 region

Since C. fabianii is a rare yeast species identified in human

patients, and the fact that the clustered cases (patients 1 to 3)

described here were identified within a two-week period from the

same department, an investigation was carried out to assess the

possibility of this being a nosocomial outbreak. Owing to the high

sequence similarity of the ITS region among the strains, sequence

analysis based on rDNA NTS-1 region was further carried out,

which was assumed to have higher discriminatory power and has

previously been used to confirm a C. fabianii outbreak in Kuwait

(Al-Sweih et al., 2019).
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Using C. jadinii (strain NBRC 0988) as an outgroup, the

phylogenetic tree based on the NTS-1 region clustered all the C.

fabianii isolates together (Figure 2), and inter-species variation

between C. jadinii and C. fabianii in NTS-1 region was >43.5%.

Amongst C. fabianii strains, some intra-species variation was

observed (Figure 2). However, sequence variations amongst the

strains from patients 1 to 3 was inconspicuous, as these strains

exhibited the same sequence type, while the strain from patient 2

had only one SNP (identity 1179/1180, 99.92%). In contrast, strains

from the three clustered cases were quite diverged from the strain

from patient 4 which was isolated seven months later, which had an

overall 7-bp insertions and 4 additional SNPs in its NTS-1 region

(identity 99.07%).
Whole genome sequencing results

Genome sequencing of yeast strains from patients 1 to 4

produced 2.6 to 3.7 Gb of clean data, and average depths of

sequencing were all above 200×. The average genome size

obtained was 12.94 Mb. Their genomes had an average GC

content of 44.4% to 45.1%, with N50 of 13,739 bp to 202,514 bp.

Comparative genomic analysis was performed for all strains. The

pairwise differences between genome reference strain JOY008,

which originated from a soil environment in USA, and our four

patients’ clinical strains, were 29,810-53,490 SNPs (Figure 2).

We carried out a review of previous outbreak reports caused by

different yeast species, and the number of pairwise SNPs described
Frontiers in Cellular and Infection Microbiology 0614
varied from less than ten to several hundred (Table 2). The yeast

strains from patient 1 and 3 had only 192 SNPs identified,

suggesting that they were probably closely related (Figure 2).

However, there were over 26,000 SNPs identified between the

strain from patient 2 and strains from patients 1 and 3 (Figure 2),

which was considered as a high-level genomic variation. These

findings suggested that the C. fabianii strain from patient 2 was

from a different origin. In addition, the yeast strain from patient 4

was even more diverged, with >43,000 of SNPs compared to all

strains from patients 1 to 3, and the reference genome (Figure 2).

Lastly, the phylogenetic tree constructed based on whole genome

SNPs also support the same conclusion (Figure 2).
Antifungal susceptibilities

All the C. fabianii strains isolated in this study showed good

susceptibility to all the nine antifungal agents tested (Table 1),

with geometric minimum inhibitory concentration (GM MIC) of

0.84 mg/L to fluconazole, 0.02 mg/L to voriconazole, 0.08 mg/L

to itraconazole, 0.12 mg/L to posaconazole, 0.04 mg/L

to caspofungin, 0.03 mg/L to micafungin, 0.02 mg/L to

anidulafungin, 0.08 mg/L to 5-flucytosine, and finally, 0.35 mg/L

to amphotericin B. If using clinical breakpoints or epidemiological

cut-off values of C. albicans as references, all these strains could be

classified as susceptible or of wild-type phenotype to all antifungal

agents tested.
FIGURE 2

Phylogenetic trees generated based on rDNA non-transcribed spacer (NTS) region-1 sequences and whole genome sequencing (WGS) SNPs, and
heatmaps revealing pairwise differences of SNPs amongst four patients’ strains collected in this study.
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Discussion

C. fabianii, basionymHansenula fabianii, homotypic synonyms

Candida fabianii, Lindnera fabianii and Pichia fabianii, is an

ascomycetous yeast that has a close relationship with human

activities (Kato et al., 1997; Arastehfar et al., 2019; Van Rijswijck

et al., 2019). This yeast species is commonly seen in fermented food

products like alcohols (Arastehfar et al., 2019; Van Rijswijck et al,

2019), and has also been used for treatment of waste water with a

long history (Kato et al., 1997). The species has now been assigned

within the Wickerhamomycetaceae clade (Kidd et al., 2023). Within

this clade, there are several other species that have been reported to

cause human infections, such as Wickerhamomyces anomalus and

Cyberlindnera jadinii (Treguier et al., 2018; Zhang et al., 2021).

Generally, detection of C. fabianii in clinical settings is rare.

According to previous surveillance reports on human fungal

diseases, the prevalence of C. fabianii is generally <0.1% (Pfaller

et al., 2019; Xiao et al., 2020). However, this yeast species is also an

opportunistic pathogen that can cause a broad-range of infections,

including lethal fungemia (Al-Sweih et al., 2019; Arastehfar et al.,

2019). A previous research suggests that C. fabianii only has low

virulence attributes (Arastehfar et al., 2019), although Nouraei et al.

observed that this fungal species was one of the uncommon yeasts

with high-level production of hemolysin, phospholipase and

proteinase (Nouraei et al., 2020). In addition, C. fabianii has been

observed to have a strong capacity for biofilm formation, which may
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contribute to its persistence and resistance to antifungal therapies

(Hamal et al., 2008; Nouraei et al., 2020).

Of note, several studies have revealed difficulties in the accurate

identification of C. fabianii using conventional methods, which may

influence precision clinical recognition and management of

infections caused by this organism (Svobodova et al., 2016; Al-

Sweih et al., 2019). MALDI-TOF MS has been reported as a

powerful tool for identification of yeasts, but the system’s

identification capacity largely relies on the peptide mass

fingerprint database that is incorporated into the system. Some of

the MALDI-TOF MS systems, such as Biotyper (Bruker Daltonics,

Germany, with IVD library version 8) and MicroIDSys (ASTA,

Korea, with database version 1.23.2), have demonstrated capacity to

accurately identify C. fabianii strains (Park et al., 2019; Teke et al.,

2021). In contrast to this, C. fabianii is still absent from the Vitek

MS IVD database (up to version 3.2), hence this system failed to

identify any of C. fabianii isolates in this study. Similar findings

were also reported by Teke et al. (Teke et al., 2021).

Although nosocomial transmission of fungal pathogens is less

frequently encountered in clinical practice compared to bacterial

pathogens, fungal outbreaks are more common than publicly

appreciated, and are mostly associated with medical products or

contamination of the hospital environment (Kanamori et al., 2015;

Litvintseva et al., 2015; Magill et al., 2018). For instance, Candida

parapsilosis, one of the most prevalent human pathogenic yeast

species, is well-known for causing catheter-related bloodstream
TABLE 2 Review of outbreak events caused by yeast species that were characterized by whole genome sequencing in previous studies.

Species Reference
Genome
size (Mb)

Country Patient
population

Ward No. of
cases
with WGS

No. of SNPs
within each
event

Reference

Candida albicans 14.3 Spain Neonate ICU 2-11 134-769 (Guinea et al., 2021)

Candida parapsilosis 13 Spain Neonate ICU 2-4 49-241 (Guinea et al., 2021)

Candida auris 12.7 US Adults Not specified 26 2-50 (De St Maurice et al.,
2022)

India Adults Medical wards 2-2 ≤7 (Yadav et al., 2021)

UK Adults ICU, high dependency units,
surgical admission ward

5-17 ≤134 (Rhodes et al., 2018)

UK Adults ICU, neurosciences
wards

37 ≤215 (Eyre et al., 2018)

Colombia Not
specified

Not specified 5 ≤40 (Escandon et al., 2019)

USA Not
specified

Not specified 10 ≤12 (Chow et al., 2018)

Dirkmeia
churashimaensis

21 India Neonate ICU 6 1,621 (Chowdhary et al.,
2020a)

Candida blankii 14.8 India Neonate ICU 6 ≤277 (Chowdhary et al.,
2020b)

Malassezia
pachydermatis

8.2 USA Neonate ICU 5 ≤14 (Chow et al., 2020)

Cyberlindnera fabianii 12.3 China Adults Urology department 2 192 This study
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infections. There have been a large number of nosocomial outbreaks

caused by Candida parapsilosis worldwide, including several recently

reported cases caused by fluconazole-resistant clones that raised more

public health concerns (Arastehfar et al., 2020; Zhang et al., 2020;

Thomaz et al., 2022). Moreover, reports of outbreaks caused by

unusual fungal pathogens, such as the recently emerged C. auris, are

increasing (Litvintseva et al., 2015; Chow et al., 2018). Of note, during

the COVID-19 pandemic period, fungal outbreaks caused higher

medical burdens to healthcare facilities and patients (Hoenigl et al.,

2022; Thomaz et al., 2022), and hence are beginning to receive

more attention.

Of note, a recent outbreak of C. fabianii in Kuwait was

described by Al-Sweih et al., which involved a total of 10

fungemia cases in neonates (Al-Sweih et al., 2019). Furthermore,

previous reviews on C. fabianii cases have demonstrated that the

elderly population is the second most vulnerable population after

neonates overall, with funguria being the first to second commonest

clinical symptom (Al-Sweih et al., 2019; Arastehfar et al., 2019; Park

et al., 2019). This agrees with our three-clustered C. fabianii

funguria cases which all occurred in elderly patients, and with

funguria as the common clinical symptom, though not every patient

had symptomatic urinary tract infection.

Published literature have emphasized that presence of indwelling

urinary catheter is the most important risk factor and transmission

route for nosocomial urinary tract infections, especially when catheter

care quality is poor. However, a variety of additional risk factors have

also been described, including female gender, increased age, diabetes,

bladder instrumentation, urinary outflow obstruction, amongst others.

(Pearson-Stuttard et al., 2016; Mody et al., 2017; Odabasi and Mert,

2020). Of the four patients described in this study, only one carried an

indwelling urinary catheter, and all of them had undergone abdominal

surgeries prior to the onset of funguria. Besides, three of the four

patients had E. faecium detected concurrently with C. fabianii in the

same urine sample. Enterococcus species, including E. faecium, are well-

known ubiquitous inhabitants of the human gut microbiota and could

lead to urinary tract infections (Magruder et al., 2019). Moreover, C.

fabianii has also been identified in the human intestinal microbiota

(Zhai et al., 2020), and previously Mathy et al. hypothesized that

translocation of C. fabianii from the gut was responsible for a

ventriculoperitoneal shunt case (Mathy et al., 2020). Therefore, it is

possible thatC. fabianii funguria cases identified in our studymay have

resulted from gut microbiota translocations, and abdominal surgeries

might serve as triggers or risk factors.

As widely-acknowledged, application of ITS sequencing could

allow accurate identification of yeast species but with insufficient

discriminatory power for intra-species typing (Stielow et al., 2015;

Al-Sweih et al., 2019). Al-Sweih et al. applied sequencing of NTS-1

regions, a gene locus that is considered to have a higher

discriminatory power, in C. fabianii outbreak investigation, and

found that all outbreak strains in Kuwait shared 100% identical

NTS-1 sequences (Al-Sweih et al., 2019). In comparison, we found a

single SNP within NTS-1 region on patient 2’s strain versus strains

from patients 1 and 3 in this study. However, further solid evidence

was still needed to rule out the possibility of a potential outbreak.

To address concerns on readiness and limitations in

discriminatory power of molecular typing methods in outbreak
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investigations, WGS has been recommended as a valuable alternative

(Litvintseva et al., 2015; Bougnoux et al., 2018; Desnos-Ollivier et al.,

2020). In this study, SNP-based analysis based on results acquired from

WGS data clearly suggested that the genome of patient 2’s strain was

quite divergent amongst the three clustered cases, which indicated a

pseudo-outbreak event. Of note, the phrase “pseudo-outbreaks” could

refer to either clustering of false infections, or artifactual clustering of

real infections (Wallace et al., 1998). Clustering of false infections was

more widely-noted, which may be associated with e.g. medical device

or clinical laboratory contaminations (Kirby et al., 2017; Abdolrasouli

et al., 2021). However, as indicated in our study, artifactual

misinterpretation of “outbreaks” due to limitation of investigation

methodologies (such as inadequate discriminatory power of

molecular typing assays) should also be avoided.

Although WGS has made significant contributions in

epidemiological studies, some limitations still remain. One major

issue, as noted in outbreak investigations of all microbes including

bacteria and fungi, is lack of consensus for data interpretation.

Specifically, setting-up pairwise SNP-based cut-off values for

assigning transmission events is still cumbersome, which has

limited the wide utility of WGS in epidemiological studies (Coll

et al., 2020; Guinea et al., 2021). In review of previous reports for

outbreaks caused by yeast species that were characterized by WGS,

it can be seen that the number of pairwise SNPs described in

different studies of diverged species varied significantly, from less

than ten to over hundreds. In the present study, genomic evidence

clearly supported that patient 2’s C. fabianii strain was from a

different origin, compared to others (with >26,000 SNPs compared

to strains from patients 1 and 3). However, the 192 pairwise-SNP

between strains from patient 1 and 3 may suggest that these two

patients could have acquired the yeasts from a common source in

the same ward but through different routes, rather than a direct

transmission between the 2 patients, in which case the number of

SNPs would be expected to be much less. But the hypothesis needs

additional evaluation in a larger population and with more cases.

Due to the possibility of nosocomial transmission of this yeast

in the described ward, surveillance infection control cultures were

obtained to screen for C. fabianii in the department’s environment

and amongst related health-care staff, but no C. fabianii was

detected. Additional infection control strategies implemented

further included enhancing environmental cleaning and hand

hygiene practices, as well as providing education of fungal

nosocomial infections to all healthcare staff.

One limitation of the study is that, antifungal susceptibility testing

was not carried out using the standard broth microdilution methods,

though YeastOne has proved equally efficient with good correlation in

testing of yeasts (Cuenca-Estrella et al., 2010). Furthermore, with the

limited number of cases studied, our base-line understanding for

intra-species variation of C. fabianii genomes was still limited.

Interpretation of any outbreak events shouldn’t simply rely on WGS

result alone. It warrants a comprehensive analysis of different aspects

of the cases, including patients’ clinical characteristics and

epidemiological data, as well as the pathogens’ phenotypic and

molecular characteristics.

In conclusion, as there are increasing reports of nosocomial

outbreaks caused by emerging and uncommon fungal species,
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increased awareness of these rare organisms is warranted in public

health. Conventional genotyping methods may have limited

discriminatory power in investigating outbreaks due to these rare

organisms; WGS has proven to be a good typing method for

supporting investigation of such rare outbreak events.
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NGS implementation for 
monitoring SARS-CoV-2 variants 
in Chicagoland: An institutional 
perspective, successes and 
challenges
Aileen C. Tartanian 1, Nicole Mulroney 1, Kelly Poselenzny 1, 
Michael Akroush 1, Trevor Unger 1, Donald L. Helseth Jr. 1, Linda 
M. Sabatini 1,2, Michael Bouma 1 and Paige M.K. Larkin 1,2*
1 NorthShore University HealthSystem, Evanston, IL, United States, 2 Pritzker School of Medicine, The 
University of Chicago, Chicago, IL, United States

Identification of SARS-CoV-2 lineages has shown to provide invaluable 
information regarding treatment efficacy, viral transmissibility, disease severity, 
and immune evasion. These benefits provide institutions with an expectation 
of high informational upside with little insight in regards to practicality with 
implementation and execution of such high complexity testing in the midst of 
a pandemic. This article details our institution’s experience implementing and 
using Next Generation Sequencing (NGS) to monitor SARS-CoV-2 lineages 
in the northern Chicagoland area throughout the pandemic. To date, we have 
sequenced nearly 7,000 previously known SARS-CoV-2 positive samples from 
various patient populations (e.g., outpatient, inpatient, and outreach sites) to 
reduce bias in sampling. As a result, our hospital was guided while making crucial 
decisions about staffing, masking, and other infection control measures during 
the pandemic. While beneficial, establishing this NGS procedure was challenging, 
with countless considerations at every stage of assay development and validation. 
Reduced staffing prompted transition from a manual to automated high 
throughput workflow, requiring further validation, lab space, and instrumentation. 
Data management and IT security were additional considerations that delayed 
implementation and dictated our bioinformatic capabilities. Taken together, our 
experience highlights the obstacles and triumphs of SARS-CoV-2 sequencing.

KEYWORDS

SARS-CoV-2, sequencing, molecular microbiology, molecular diagnostics, next 
generating sequencing

Introduction

Next generation sequencing (NGS) has been pivotal for understanding the impact of SARS-
CoV-2 variants on transmission, pathogenicity, disease severity, vaccine and therapy efficacy, 
and diagnostic detection (1). For instance, the Omicron variant has been shown to evade the 
immune response in patients previously infected with SARS-CoV-2 or vaccinated against SARS-
CoV-2 (2–5), render the majority of monoclonal antibody therapies ineffective (4), and cause 
more infections in younger patients compared to other variants (6). Conversely, the Omicron 
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variant was associated with a lower 28-day mortality, ICU admission 
rate, and oxygen requirements compared to Delta (7).

With the benefits of SARS-CoV-2 sequencing highlighted, 
implementing such testing is attractive to many healthcare systems, 
but there are numerous challenges and considerations that should 
be addressed. Here we describe our experience with implementing 
NGS for SARS-CoV-2 variant analysis at NorthShore University 
HealthSystem (NSUHS) molecular diagnostic laboratory (MDL). As 
a fully integrated healthcare system, NSUHS-Edward-Elmhurst 
Health (EEH) serves over 4.2 million residents across northeast 
Illinois, including the city of Chicago and six suburban counties. The 
system currently encompasses 8 hospitals and over 300 outpatient 
centers. The NSUHS MDL was the first clinical laboratory in Illinois 
to perform SARS-CoV-2 testing (8) and has performed over 800,000 
SARS-CoV-2 diagnostic assays to date. Our initial goals of SARS-
CoV-2 sequencing was to detect shifts and emergence of lineages in 
real time, but challenges with staffing, turn-around-time (TAT), and 
sample selection complicated this.

Demand on the lab and lab staff

The MDL has ample experience with NGS, given the breadth of 
oncology NGS assays performed, uniquely positioning the laboratory 
to bring in SARS-CoV-2 sequencing compared to laboratories without 
sequencing experience. We  officially launched COVIDSeq on an 
Illumina NextSeq 550Dx (San Diego, CA, United States) in March of 
2021 after delays due to installation, training, and reagent acquisition. 
Once launched, COVIDSeq productivity was constrained by the 
priority given to clinical diagnostic assays for staffing and freezer 
storage. Based on these factors, the percentage of SARS-CoV-2 
samples tested by the MDL that progressed to sequencing ranged from 
0 to 18.5% monthly for 2022, when sequencing was performed on a 
regular basis (Table 1). Samples were selected based on testing location 
and available media volume, with the exact number of samples tested 
fluctuating due to balancing the cost of a run and the availability of 

reagents and technologists to perform sequencing within a timeframe. 
Samples from 2020 and 2021 were run retrospectively, but due to 
delays discussed in detail below, most of 2021 was spent 
troubleshooting, validating, and optimizing. The use of a manual 
bioinformatics pipeline and analysis, as discussed below, complicated 
analysis. The addition of a new technologist to lead SARS-CoV-2 
sequencing and move to more automation, both for the wet lab and 
dry lab components, facilitated more streamlined SARS-CoV-2 
sequencing in 2022. Looking at 2022, there were factors that directly 
impacted the number of samples that could be sequenced per month. 
In September, we extracted and prepared libraries for 163 samples. 
However, our liquid handler malfunctioned by erroneously releasing 
all pipette tips and crashing the program. All samples had been 
depleted and the libraries were rendered unsavable. In November and 
December 2022, we exhausted our purchased sequencing reagents and 
did not have approval to order additional sequencing reagents due to 
the high cost that exceeded the allotted budget. All SARS-CoV-2 
sequencing was self-funded by our institution, requiring careful 
planning and restricting the ability to expand sequencing 
capacity significantly.

Our health system utilizes several different RT-PCR platforms for 
SARS-CoV-2 testing, which supports large volume testing in a variety 
of settings, including point-of-care and at each of our hospitals. 
However, this also led to multiple different swabs, transport media, 
and sample volumes. These variations were due to different assay 
requirements, sporadic swab and transport media shortages, and 
testing locations stocking different swabs. Due to early implementation 
of SARS-CoV-2 RT-PCR testing, we performed testing for a number 
of outreach non-affiliated sites that used a variety of swabs. The 
utilization of multiple instruments, many without available cycle 
threshold (Ct) values prevented establishment and selection of 
samples with appropriate Ct values. Often, labs will set a minimum Ct 
value for sequencing to increase sequencing yield, but we did not have 
that ability given the lack of available Ct value data. With sequencing 
any positive sample in 2022, only 25.3–57.0% of positive samples 
resulted in a consensus sequence for a SARS-CoV-2 lineage (Table 1). 

TABLE 1 Summary of SARS-CoV-2 samples tested clinically and sequenced at NSUHS for 2022.

Month 
(2022)

# SARS-
CoV-2 

clinically 
tested

# Positive 
SARS-CoV-2

# Positives 
sequenced

# Samples of 
sequenced with 

consensus 
sequence

% Samples of 
positives 

sequenced

% Samples of 
sequenced 

positives with a 
consensus 
sequence

January 25,892 6,062 607 272 10.0 44.8

February 20,396 1,523 281 71 18.5 25.3

March 24,870 1,133 134 35 11.8 26.1

April 30,301 3,065 258 147 8.4 57.0

May 33,106 5,963 432 211 7.2 48.8

June 24,988 4,423 433 170 9.8 39.3

July 23,230 4,556 482 252 10.6 52.3

August 22,467 3,674 299 119 8.1 39.8

September 22,467 2,461 0 N/A 0.0 N/A

October 24,972 2,394 297 75 12.4 25.3

November 28,592 2,908 0 N/A 0.0 N/A

December 27,763 3,857 0 N/A 0.0 N/A
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Some explanations for this wide range include low viral load (most 
EUA platforms used for clinical testing at our healthcare system only 
provided positive/negative results without a Ct value), and user and 
instrument error, including issues described below when automation 
was implemented. Due to lack of staffing and available resources, 
we did not collect this data for 2021 as we had to retrospectively 
sequence samples.

Complications with manual 
processing

The lab performed SARS-CoV-2 library preparations and 
sequencing using Illumina’s COVIDSeq™ RUO Test. As with most 
NGS assays, the library preparation portion of COVIDSeq is costly in 
terms of time and labor. Initially, all library preparations were 
performed manually, requiring two full 8 h shifts for one technologist 
to complete (Table 2). While there were two technologists trained on 
the COVIDSeq assay, these technologists also were performing 
molecular diagnostic assays for clinical care, limiting their ability to 
prepare libraries for COVIDSeq to once per week.

The increased demand for clinical plastic consumables caused 
backorders and supply chain issues, restricting our ability to regularly 
perform COVIDSeq. During the first year, it was difficult to acquire 
an adequate amount of pipette tips to perform not only COVIDSeq 
but any of our routine molecular diagnostic clinical assays. Manually 
performing one COVIDSeq library preparation would consume 33 
pipette tip boxes (Table 2). Therefore, to sequence a full run of 384 
samples, over 130 tip boxes would be required. Regular and rapid 
sequencing during shifts and emergence of lineages such as Alpha, 
Delta, and Omicron would have been beneficial as these results would 
contribute to the local and global sequencing effort as well as guide 
hospital policies (e.g., allowed meeting size). However, the clinical 
assays consumed the necessary pipette tips and other plastic 
consumables so this was not feasible.

Complications with automatic 
processing

With technologist time and consumables preciously scarce, two 
automated liquid handlers were purchased to supplement the labor 
demand required for this initiative. The PerkinElmer Janus G3 liquid 
handler (Waltham, MA, United States) was chosen to facilitate RNA 
extraction because it had a high volume capacity and was relatively 
easy to use. Unfortunately, several calibration corrections were 
required after initial install due to persistent issues with probe pressure 

and pipette tip compatibility resulting in inconsistent reagent and 
sample volumes. Most calibrations would require the onsite visit of a 
field service technician, delaying implementation even further. Once 
resolved, Janus was compatible with our already implemented 
ThermoFisher KingFisher Flex (Waltham, MA, United  States) 
instrument for viral RNA extraction/purification.

The Beckman Coulter i7 liquid handler (Brea, CA, United States) 
was purchased to automate library preparation. Because COVIDSeq 
library preparations of 96 samples require two thermocyclers running 
in tandem, and the i7 had only one, the batches were halved from 96 
to 48 to accommodate the missing thermocycler. The i7 reduced 
hands-on time from 2 days to 7 h. In addition, the i7 uses only 30% of 
the number of tip boxes (Table 2). While there was a greater supply of 
tips for the i7 compared to manual pipette tips, we went one step 
further to decrease our chances of competing with labs for tips by 
using the unusual pipette tip size of 190 μL.

The i7 is convenient and improves workflow, but there were many 
challenges in establishing this assay automation. For instance, hard 
shell 96-well plates were on backorder when the i7 arrived, so we used 
non-hardshell 96-well plates. These plates melted and warped from 
the heat of the thermocycler, causing the i7 to drop, crush, and toss 
the plates as the grippers attempted to move them. Similarly, these 
plates proved to be incompatible with the reusable lid used by the i7 
thermocycler. During a run, the i7 would sense every time the plate 
was improperly sealed and stop the program. These problems required 
constant attention by our lab staff, manually adjusting the fit of the 
thermocycler lid. This persisted until the correct 96-well plates could 
be obtained.

Automated liquid handlers can be the source of numerous errors 
that are difficult to identify and troubleshoot. For example, 
we observed a consistent reduction in consensus sequence yield for 
samples positioned on the left side of the 96-well plates compared to 
the right side. After troubleshooting, the lab determined that the i7 
instrument lacked steps within the run script to re-suspend magnetic 
beads prior to arraying them into samples. As the beads settled to the 
bottom of the source tube through the duration of the library 
preparation, the i7 would dispense bead storage buffer, absent of 
beads, to the samples on the left side of the plate while the samples on 
the right side received the majority of beads. Once the mixing step was 
supplemented into the run script, we noted an improved uniformity 
of sample performance coupled with vastly improved library 
concentration yield. Despite this fix, the library concentration from 
the i7 would remain inferior to the yield of manual library preparation. 
And, like the Janus, i7 calibrations, updates, and repairs would often 
be  delayed because they required an onsite visit from a 
service technician.

We continued to identify opportunities for improved efficiency. 
The COVIDSeq program on our i7 calls for all reagents to be placed 
in 1.5 ml tubes and kept chilled on a cold block on the deck, reducing 
hands-on work for technologists, but it could take up to 3 h for a 
technologist to prepare the 1.5 ml tubes of master mixes. Over time, 
we reduced this timeframe by over 80% because we found that many 
of these master mixes could be  prepared and frozen in advance 
without sacrificing library preparation performance (Table 2).

Manual library preparations would typically produce >150 nM 
pooled libraries, but switching to automation resulted in libraries of 
<8 nM, despite the corrections made to the run script. Pools with a 
molarity <0.5 nM would result in a total batch failure defined as a 0% 

TABLE 2 Comparison of manual vs. automated library preparations.

Manual (96 
samples)

Automated 
(48 samples)

No. batches per sequencing run 4 8

No. of pipette tip boxes 33 5

Hands-on tech time 16 h 3 h→30 min

Turn around time 2 days 7 h

Final pool molarity >150 nM <8 nM
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consensus sequence. However, above 0.5 nM, we found no correlation 
(R2 = 0.0442) between a pool’s molarity and the percentage of samples 
resulting in a consensus sequence (Supplementary Figure S1). Ideally, 
we would quantify all individual specimens after RNA extraction, 
cDNA synthesis, and library preparation, removing low-concentration 
samples at each QC step. However, our lab does not have a high 
throughput way to quantify 96 samples at a time, so we only quantified 
each batch’s pooled library prior to combining the pools 
for sequencing.

Bioinformatics and cybersecurity

NGS generates millions of sequencing reads per sample, and 
analyzing these reads requires a robust bioinformatics pipeline in an 
effort to detect and track novel variants. When the bioinformatics 
infrastructure is insufficient to support this immense quantity of data, 
institutions typically opt for commercially available solutions; either 
cloud-based or local, for their bioinformatics pipeline needs due to 
ease of use and readily available customer support. Cloud-based 
applications have the benefit of ease-of-use and easily accessible 
vendor support; however, the ever-growing push for cloud application 
usage provides tremendous cybersecurity concern for institutions and 
often requires a lengthy and in-depth risk assessment, which can delay 
implementation. Using a local analysis bioinformatics application 
platform can reduce concern from a cybersecurity perspective, but it 
increases cost as these systems often require the purchase of licensed 
software and additional hardware.

Our initiative to implement a SARS-CoV-2 NGS assay was driven 
by immediate need to contribute in variant tracking within our 
community. Due to urgent importance and to avoid further delay in 
implementation, we opted to purchase the local Illumina DRAGEN 
server (as opposed to Illumina’s cloud-based application BaseSpace) 
to be the primary source of our bioinformatics data analysis. At the 
time, a BaseSpace subscription would have forced an extensive, 
lengthy risk assessment by our cybersecurity team as these cloud-
based applications do not always satisfy standard HIPAA requirements 
to protect personal health information (PHI).

The DRAGEN COVIDSeq test local pipeline provided a summary 
report of positive or negative results along with output directories 
containing the desired FASTA and VCF files. FASTAs, BAMs and 
VCFs generated by the Illumina DRAGEN software on the 
NextSeq 550Dx sequencer were copied to a separate Linux server for 
analysis. Initially, we ran our own variant calling pipeline using open 
source software (using samtools), visualizing the results in IGV, and 
running a local copy of Ensembl VEP for COVID-19 to annotate the 
variant consequences. This labor-intensive effort was quickly 
abandoned when we  began using more specialized open source 
software packages provided by Nextstrain, Pangolin, and Nextclade, 
reducing the necessity of manual analysis. After using Nextstrain (9) 
for a few months, we  recognized that variant nomenclature was 
evolving away from Nextstrain clade names to Pango lineage (10) and 
WHO labels. To generate Pango names we analyzed merged FASTA 
files using the latest version of Pangolin (11). Nextclade (12) was also 
used to compare and summarize variant classifications by uploading 
our merged FASTA files (13).

Launching the DRAGEN COVIDSeq local pipeline was initiated 
via the Linux command line terminal. This method is extremely 

foreign to users who are accustomed to GUI-based software with only 
little to moderate Linux command line experience. Customer support 
was a necessity, particularly support via vendor remote access, as 
we  experienced frequent pipeline analysis failures along with 
connectivity issues between the DRAGEN server and the 
NextSeq 550Dx. Vendor bioinformatics support is generally equipped 
to support their customers remotely. NorthShore HIT did not permit 
vendor remote support access, limiting our only options to lengthy 
phone conversations or email correspondence. With restricted remote 
access to independently investigate and troubleshoot, vendors rely on 
these often mutually time consuming methods to investigate and 
eventually resolve the issue. Lack of proper vendor remote support to 
address these issues contributed to lengthy delays in data processing 
as resolution to these problems often extended across multiple days.

With this workflow, we quickly realized that our goal to track 
lineage shifts in real time would be extremely difficult to accomplish. 
Available bandwidth for our highly talented yet small bioinformatics 
team was limited, as our established clinical oncology NGS assays 
were beginning to rebound to pre-pandemic volumes. Building and 
maintaining a local pipeline intended to track current lineages shifts 
required a considerable amount of bioinformatics support beyond the 
limits of our available institutional resources.

Internal bioinformatics resources were not the only struggle 
experienced through this initial process. The laboratory workflow 
required for the DRAGEN COVIDSeq test pipeline included a 
requirement for a positive, negative, and no template control for each 
set of 96 indices to be included in each sequencing run. In the event 
of a control failure, the entire set of 96 samples became invalid. To 
avoid risk of control failure, each positive control required a fresh 
serial dilution prior to each library preparation. These dilutions were 
not recommended to be stored long term. Since our intent was to only 
sequence known SARS-CoV-2 positive samples, the inclusion of 
controls seemed to hold little value and only added complexity to 
the workflow.

The local DRAGEN COVIDSeq pipeline did provide some upside. 
Each analysis completed rather quickly (usually within 1 to 2 h) and 
provided the necessary output data required for lineage identification. 
However, because the workflow to maintain this pipeline became 
unmanageable, we  made the decision to purchase a BaseSpace 
subscription and shift our analysis to this cloud-based application. 
This transition required a lengthy approval process through our HIT 
cybersecurity team as cloud-based NGS data analysis increases 
potential risk to loss of PHI. To diminish this risk, we decided that all 
samples would remain de-identified throughout the wet bench, 
sequencing, and post sequencing analysis. All data would be presented 
as aggregated de-identified data with no link to clinical information. 
We  did not have permission from HIT to submit any data to 
GISAID. Not only were our samples de-identified on the sequencer, 
but our institution considers date collected as PHI. This information 
is requested by GISAID for submission. Clinical microbiology 
laboratories at other institutions were able to submit completely 
anonymized samples to their academic colleagues for sequencing and 
in turn were able to successfully report de-identified metadata to 
GISAID and NCBI (14). These labs had IRBs that allowed patient-level 
data to be reported back to public health entities as the clinical labs 
retained access to the patient-level data while the academic sequencing 
partners did not have access (14). This approach, which requires 
institutional approval, infrastructure for de-identifying and 
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re-identifying, and access to academic sequencing laboratories, would 
be  ideal to allow dissemination of data to public health and 
biorepositories. In our case, sequencing was so delayed that our public 
health colleagues would have already sequenced those samples of 
interest, creating another hurdle for rapid collaboration.

Using the DRAGEN COVIDSeq pipeline via BaseSpace Sequence 
Hub resolved many of the previously mentioned concerns, including 
ease of use. Although analysis times increased by four-fold due to the 
shared traffic of the cloud-based server, the data analysis process was 
exponentially easier as it required very little intervention from internal 
staff and remote support was easily available to resolve problems. 
However, when launching the DRAGEN COVID lineage application, 
the sample selection process seems to be the most taxing step. Samples 
can be selected in groups, but careful attention is required as it is easy 
to unintentionally include or exclude samples from analysis. 
Identifying samples to be  analyzed through the application can 
be difficult as the sample list includes both completed and analysis-
pending samples. These concerns are rather minor compared to our 
prior workflow and the DRAGEN COVID lineage application has 
provided a manageable data analysis workflow as the application 
provides mapping/alignment and variant calling features. Open 
source databases, like NextClade and Pangolin, are routinely updated 
and made available for analysis through the application, and the data 
is easily viewable and managed by multiple users.

Clinical relevance/discussion

Molecular diagnostic assays that directly impact patient care were 
prioritized over SARS-CoV-2 sequencing, posing a challenge to 
continue RUO sequencing at high capacity. This was particularly the 
case during SARS-CoV-2 waves, when staffing was reduced due to 
illness and supplies were in high demand (15). As a result, there were 
substantial delays (>1 month) in sequencing SARS-CoV-2 specimens, 
contrasting with our original plan of using COVIDSeq to capture 
shifts and emergence of SARS-CoV-2 lineages. In addition to the cost, 
sequencing all specimens would likely provide little additional 
information as most samples received during pandemic waves would 
have the same composition of lineages that would be better captured 
with a smaller representative sample selection. On the other hand, 
between waves, our sample volume was too low to form any 
statistically relevant conclusions. Furthermore, it would take 
substantial time to accumulate 384 specimens for a full sequencing 
run, delaying results or forcing a partial run, which was costly. Surges 
in cases led us to recruit additional resource staff and research lab 
team members to work additional shifts to propel sequencing efforts, 
manually sorting through the samples to confirm positives, creating 
specimen labels, aliquoting, and documenting.

As previously discussed, our results were de-identified and mass 
aggregated to demonstrates shifts and trends within our patient 
population. While ideally we could share our results with our local 
health department to aid in their sequencing efforts, our results were 
not only delayed, but also did not have linked clinical data. This meant 
that sequencing efforts were unnecessarily duplicated due to inability 
to coordinate and share results, furthering the documented gap 
between public health labs and clinical labs (1, 16). We were, however, 
able to capture data categorized by symptomatic vs. asymptomatic 
cases and had these samples designated with their own test code for 

easy sorting and comparison. This comparison relied on trusting that 
physicians selected the correct test code indicating the presence or 
absence of symptoms. While we had planned to use these data to make 
comparisons between lineage and symptomatic state, upon review, 
we found that a small portion of physicians erroneously ordered the 
wrong test code and thus, accurate conclusions required substantial 
review. If the test codes had been appropriately ordered, the 
comparison in lineage between symptomatic and asymptomatic 
patients could have contributed to our knowledge in the field. In the 
end, we were able to share monthly trends with our healthcare system, 
modeling what other institutions have done (14).

Our decisions to sequence various populations and ultimately 
switch to mostly inpatient and ED specimens likely resulted in 
selection bias toward patients whose SARS-CoV-2 infection was not 
only symptomatic, but severe enough to seek hospital treatment, as 
well as selecting toward patients from high risk ages (including infants 
and those over the age of 65 years old) and individuals with 
pre-existing health conditions. The challenges of inferring clinical 
impact of variants have been well documented (17) as it is impossible 
to get a truly representative sample. Severity of symptoms is subjective 
and testing restrictions fluctuated throughout the pandemic, with 
some hospital systems only allowing the sickest patients to get tested 
(17). Moreover, COVID-19 studies often focus on hospitalized 
patients, not representative of the general population (17). The shift to 
at-home antigen testing also biases against sequencing asymptomatic 
or mildly symptomatic patients (16).

Despite the issues discussed previously, our data were useful in a 
broader capacity for our healthcare system. While there were detected 
cases of Omicron in our state, our sequencing confirmed the presence 
of Omicron in our patient population. This contributed to discussions 
on policies for masking and permitted meeting sizes. Furthermore, in 
conjunction with in silico analysis, we  used COVIDSeq to test 
detection of sequence-confirmed variants in our lab-developed SARS-
CoV-2 assay. We were able to confirm that the primers for this clinical 
assay could still detect even the most recently detected lineages of 
SARS-CoV-2. This was a concern for clinical laboratories across the 
world as the Alpha and Omicron variants exhibited spike (S) gene 
dropouts on assays that detect the S gene (18). While we  do not 
currently utilize any assay that targets S gene, mutations can occur in 
any region of the genome and thus it is important to monitor whether 
these mutations impact the ability for our assays to detect 
SARS-CoV-2.

The question of balancing cost, in terms of time and money, as 
well as staffing remains difficult and potentially unsustainable in the 
long-term for genomic surveillance. At times where multiple lineages 
are circulating, there was a push for more sequencing to better 
document lineage changes within our patient population, with the 
caveat that we do not have the capacity to provide rapid TAT for 
COVIDSeq. When there was an overwhelmingly predominant 
lineage, there was less institutional support for routine sequencing as, 
until a new variant of interest or concern is identified or mutations 
within current circulating variants would render treatments 
ineffective, the results would not impact hospital protocols. However, 
this approach would prevent detection of shifts in lineages as well as 
detection of novel lineages.

The challenges described here were not unique to our health care 
system. Both the importance of localized surveillance efforts as well 
as the extensive challenges in terms of labor force, supply chain issues, 
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and coordinated data acquisition, analysis and sharing became 
painfully evident. In recognition, Congress passed the “Tracking 
Pathogen Act” as part of pandemic preparedness measures within the 
FY2023 Omnibus legislation. This Act directs the Department of 
Health and Human Services to issue guidance and to support 
such efforts.
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Background: Legionella pneumonia, rhabdomyolysis, and acute kidney injury are

called the Legionella triad, which is rare and associated with a poor outcome and

even death. Early diagnosis and timely treatment are essential for these patients.

Case presentation: A 63-year-old man with cough, fever, and fatigue

was initially misdiagnosed with common bacterial infection and given beta-

lactam monotherapy but failed to respond to it. Conventional methods,

including the first Legionella antibody test, sputum smear, and culture of

sputum, blood, and bronchoalveolar lavage fluid (BALF) were negative. He

was ultimately diagnosed with a severe infection of Legionella pneumophila

by metagenomics next-generation sequencing (mNGS). This patient, who had

multisystem involvement and manifested with the rare triad of Legionella

pneumonia, rhabdomyolysis, and acute kidney injury, finally improved after

combined treatment with moxifloxacin, continuous renal replacement therapy,

and liver protection therapy.

Conclusion: Our results showed the necessity of early diagnosis of pathogens in

severe patients, especially in Legionnaires’ disease, who manifested with the triad

of Legionella pneumonia, rhabdomyolysis, and acute kidney injury. mNGS may be

a useful tool for Legionnaires’ disease in limited resource areaswhere urine antigen

tests are not available.

KEYWORDS

Legionella pneumonia, rhabdomyolysis, acute kidney injury, metagenomic

next-generation sequencing, case report

Introduction

Legionella pneumophila (L. pneumophila), a species of the Legionella genus, is the

causative agent of Legionellosis, which contains two forms: the non-pneumonic form

(Pontiac fever) and the acute pneumonic form (Legionnaires’ disease) (1). Pontiac

fever is an influenza-like syndrome. Legionnaires’ disease is more severe and can

be involved in extrapulmonary manifestation with severe pneumonia, which requires
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hospitalization and most commonly intensive care. The mortality

was 4.6% in medical wards compared with 23.1% in the intensive

care unit (ICU) (2). Extrapulmonary manifestations included

abdominal pain, diarrhea of the digestive system, weakness, and

fatigue of the musculoskeletal system, myoglobinuria of the urinary

system, malaise of the nervous system, etc. The triad of Legionella

pneumonia, rhabdomyolysis, and acute kidney injury (AKI) was

rare, and its mortality was much higher than in patients who

manifested only with Legionella pneumonia. Early diagnosis and

prompt treatment is critical for such patients. However, the existing

diagnosismethod of legionellosis cannotmeet the clinical demands.

Metagenomic next-generation sequencing (mNGS), a culture-

independent method, can detect all pathogens from one specimen

(3) and has been recommended by expert consensus for diagnosing

challenging cases of complicated infectious disease (4). It is

especially suitable for suspected infectious diseases with negative

conventional methods. Herein, we present a case of Legionella

pneumophilia infection that manifested initially as cough, fever,

and fatigue, and led to a rare triad of Legionella pneumonia,

rhabdomyolysis, and AKI, which was ultimately diagnosed

by mNGS.

Case presentation

A 63-year-old man presented to the emergency department

with a 3-day history of cough, fever, and fatigue. He was receiving

piperacillin-tazobactam monotherapy at a local hospital. However,

the patient failed to respond to the treatment. Initial vital signs

were body temperature (>40◦C), pulse 148 beats per minute, and

blood pressure 146/73 mmHg. Although he had been administered

10 L of oxygen via a nasal cannula, the peripheral oxygen

saturation was only 87%. Physical examination revealed somnolent

consciousness, and auscultation revealed decreased breath sounds

and scattered rales in both lower lobes. The muscle strength of

the upper limbs was grade four, and that of the lower limbs

was grade two. The initial laboratory test results are presented in

Table 1. Urine analysis showed hematuria. The first serum antibody

test of anti-Legionella was negative. DNA tests for chlamydia

and mycoplasma were negative, as well as viral pharyngeal

swabs for influenza A and B. Electrocardiography revealed

sinus tachycardia. Computed tomography (CT) revealed extensive

consolidation in both the lower lobes (Figures 1A, B). Invasive

intubation and continuous renal replacement therapy (CRRT) were

initiated immediately after admission, and intravenousmeropenem

(1,000mg q8h) was given on the first day. Given that the patient

had confusion, hyponatremia, elevated creatine kinase (CK), and

severe pneumonia, Legionnaire’s disease was suspected. Thus,

moxifloxacin (400mg, once a day) was added the next day for

treatment. He was admitted to the intensive care unit (ICU) for the

management of acute respiratory failure, massive rhabdomyolysis,

and AKI.

Abbreviations: L. pneumophila, Legionella pneumophila; AKI, acute kidney

injury; BALF, bronchoalveolar lavage fluid; CK, creatine kinase; BCYE,

bu�ered charcoal yeast extract; LEV, levofloxacin; mNGS, metagenomic

next-generation sequencing; MOX, moxifloxacin.

TABLE 1 Laboratory analysis at admission.

Laboratory analysis Level Normal range

WBC 11.65× 109/L 3–10× 109/L

NEU% 94.0% 40–75%

PCT >100 ng/ml <0.046 ng/ml

CRP 295.00 mg/L <5 mg/L

IL-6 111.00 pg/ml 0–7.00 pg/ml

ALT 173 IU/L <40 IU/L

AST 571 IU/L <35 IU/L

LDH 1,213 IU/L 120–250 IU/L

CK 27,848 IU/L 20–140 IU/L

Myoglobin >3000.00 ng/mL <58.0 ng/mL

CK-MB 25.12 ng/mL <2.88 ng/mL

TPN-T 73.0 ng/L 0–14 ng/L

serum creatinine 616.00 µmol/L 48–79 µmol/L

BUN 16.5 mmol/L 2.6–7.5 mmol/L

eGFR 19.70 ml/min/1.73m2
>90 ml/min/1.73m2

Na+ 130.9 mmol/L 137.0–147.0 mmol/L

Glucose 24.0 mmol/L 3.90–5.90 mmol/L

Glycosylated hemoglobin 13.3% <6.0%

WBC, white blood cell; NEU, neutrophil; ALT, alanine transaminase; AST, aspartate

transaminase; LDH, lactate dehydrogenase; CK, creatine kinase; TPN-T, troponin T; BUN,

blood urea nitrogen; eGFR, estimated glomerular filtration rate; Na, sodium.

Diagnostic assessment

The patient’s sputum smear and sputum, blood, and

bronchoalveolar lavage fluid (BALF) conventional common

bacteria cultures failed to reveal a pathogen. Therefore, BALF

and lung tissue samples were sent for mNGS analysis (BGI-

500, Chengdu, China). The BGI company conducted mNGS

as described previously (5), using samples of 0.5–3mL sputum

or lung tissue collected following standard procedures. The

sample was agitated at 2,800–3,200 rpm for 30min in a 1.5mL

microcentrifuge tube. DNA was extracted from a new tube

of 0.3mL sample tube using the TIANamp Micro DNA Kit

(DP316; Tiangen Biotech, http://tiangen.com) according to the

manufacturer’s recommendations. DNA libraries were constructed

using DNA fragmentation, end repair, adapter ligation, and

PCR amplification. It generated high-quality sequencing data

from sequencing libraries using the BGISEQ-500 platform.

Subsequently, computational subtraction of the human host

sequences (hg19) was performed and low-quality and short reads

(<50 bp) were removed by Burrows-Wheeler Alignment, as

well as low-complexity reads, the remaining data were classified

by aligning them to BGI self-established database downloaded

from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/), which contains

1,798 whole genome sequences of DNA viral taxa, 6,350 bacterial

genomes or scaffolds, 1,064 fungi related to human infection, and

234 parasites associated with human diseases.
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FIGURE 1

Chest computed tomography (CT) of the patient. (A, B) Chest CT on the first day of admission to the emergency department showed consolidation

of the lower lobes of both lungs; (C, D) Chest CT 23 days after moxifloxacin treatment showed that the lesions were significantly absorbed.

In total, 147,673,559 clean sequence reads were obtained in

the BALF. When human host reads were excluded, 1,021 sequence

reads were identified as Legionella at the genus level, 980 of which

matched L. pneumophila at the species level. mNGS of the lung

tissue yielded 131,264,566 clean sequence reads. When human

host reads were excluded, 309 sequence reads were identified as

Legionella at the genus level, 291 of which matched L. pneumophila

at the species level (Figure 2). Experts in respiratory illness,

microbiology, and radiology interpreted the results to identify

potential etiological agents. Moxifloxacin monotherapy was used

according to these results, and meropenem was weaned. Chest

radiography showed significant improvement after 7 days, and the

patient was extubated. After 15 days in the ICU, the patient was

transferred to the general ward for treatment. Kidney function

recovered gradually, and the frequency of hemodialysis changed

from once a day to every other day and continued until day 15.

The second anti-Legionella antibody test was positive 22 days after

the onset of the disease. After 23 days of moxifloxacin treatment,

chest CT revealed significant absorption of lesions (Figures 1C, D).

He was discharged from the hospital after 38 days with normal

creatinine and CK, ALT, AST, LDH, WBC count, PCT, and CRP

levels (Figure 3). The timeline of patients with relevant data on

episodes and interventions is presented in Figure 4.

Discussion

Legionella is gram-negative rod-shaped bacteria ubiquitously

found in fresh water environments and moist soil (6). Legionella

pneumonia accounts for 2–15% of all community-acquired

pneumonia (CAP) cases requiring hospitalization. It is the second

most common cause of serious pneumonia and requires ICU

admission (7). Legionnaire’s disease is a severe form of pneumonia

caused by Legionella; it can have extrapulmonary manifestations

(8). Most cases are caused by L. pneumophila, whereas some

are caused by Legionella longbeachae. Male sex (>50 years of

age), smoking, and diabetes mellitus are the risk factors (9).

Approximately 62% of the cases occur during summer and early

autumn (10), which is related to the use of air conditioning. In

this case, although the patient had no history of diabetes, his

random blood glucose level was 24.0 mmol/L, and his glycosylated

hemoglobin level was 13.3%. Therefore, the patient was diagnosed
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FIGURE 2

The corresponding reads of detected microorganism in (A) BALF and (B) lung tissue.

FIGURE 3

Some clinical indicators of this patient during hospitalization. (A) Creatinine and CK levels; (B) ALT, AST, and LDH levels; (C) WBC and body

temperature; (D) PCT, CRP levels.
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FIGURE 4

Timeline of the patient with relevant data of the episodes and interventions.

with type 2 diabetes. Generally, he had four risk factors: sex,

age, smoking history, and type 2 diabetes. Before the symptoms

appeared, he played Mahjong with his friends for 3 consecutive

days on air conditioning. We suspected that Mahjong parlor was

the source of the L. pneumophila infection.

No clinical manifestations unique to Legionnaire’s disease were

observed. The symptoms of Legionnaires’ disease from most to

least common include fever, cough, chills, dyspnea, neurological

abnormalities, myalgia or arthralgia, diarrhea, chest pain, headache,

and nausea or vomiting (10). Non-specific laboratory findings are

common, such as elevated CK level, myoglobinuria, hyponatremia,

microscopic hematuria, and leukocytosis (10). The rate of

hyponatremia was 25.3% in a study of CAP (11). In Legionnaires’

disease, the rate of hyponatremia was 44.4% (12). Hyponatremia

has a negative impact on multiple outcomes, such as the need

for mechanical ventilation and ICU care, the duration of hospital

or ICU stay. In particular, hyponatremia adds more than 10,000

RMB to the cost of care (13). In studies of Legionella-related

CAP, hyponatremia (<133 mmol/L) was one of the strongest

predictors (14, 15). Our patient had hyponatremia, elevated CK

level, myoglobinuria, and leukocytosis, which were important

reasons that the attending physician suspected Legionella-related

CAP and administered moxifloxacin.

Furthermore, rhabdomyolysis is a syndrome caused by the

breakdown and necrosis of muscle tissue and release of intracellular

contents into the bloodstream (16). A diagnosis can be made

when the serum CK level is >1,000 U/L (16). In adults, common

causes are trauma and infection. The reported viruses and

bacteria that can cause rhabdomyolysis include the following:

influenza A and B, coxsackievirus, Epstein–Barr virus, primary

human immunodeficiency virus, Legionella species, Streptococcus

pyogenes, Staphylococcus aureus (pyomyositis), and Clostridium

(17). Rhabdomyolysis caused by bacteria is associated with high

mortality and morbidity: 57% of the cases lead to AKI, and 38%

result in death (18). It can cause subacute- or acute-onset myalgia,

transientmuscle weakness, and dark tea- or cola-colored urine (16).

Rhabdomyolysis induced by Legionella is rare. Prompt recognition

is important for doctors to provide timely and appropriate

treatment. In the present case, the patient was initially administered

piperacillin-tazobactam monotherapy; however, no response was

observed. Differential diagnoses of S. pyogenes and S. aureus can

be excluded.

AKI refers to a sudden loss of excretory kidney function

determined by increased serum creatinine levels and reduced

urinary output, which can be caused by various factors (19).

Infections and hypovolemic shock are the primary causes of

AKI in low- and middle-income countries (19). In high-income

countries, it mostly occurs in hospitalized older patients and is

associated with sepsis, drug use, or invasive procedures (19). In

non-traumatic rhabdomyolysis, AKI related to myoglobinuria is a

serious complication. Patients who develop AKI have an increased

mortality rate of 80% (20). Considering Legionella infection,

the exact pathophysiology of rhabdomyolysis and AKI is poorly

understood and is currently suspected to be endotoxin-mediated

(21). It is thought to be induced by rhabdomyolysis; it is also

thought to be induced by direct bacterial inoculation of the renal

tissue (22). In our case, the CK level of the patient was 27,848

IU/L, he was anuric, with no more than 40mL dark-tea urine in

24 h, and the synchronous serum creatinine was 616.00 µmol/L

when he came to our hospital. In this patient, renal function

was severely impaired in the initial stage of the disease, and it

was difficult to determine whether AKI was indirectly associated

with L. pneumophila via rhabdomyolysis or directly affected by

L. pneumophila.

The triad of Legionella pneumonia, rhabdomyolysis, and AKI

is an unusual syndrome that was first reported in 1992 (23) and

is associated with high morbidity and mortality rates (up to 40%).

We performed a literature search of PubMed using the keywords

“L. pneumophila” and “rhabdomyolysis” and “acute kidney injury

or acute renal injury” There have been 13 published case reports

of rhabdomyolysis, renal failure, and Legionnaires’ disease. The

full text of one case report was unavailable; therefore, 12 case
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reports were available (Supplementary material). There were 11

men and 1 woman, with an average age of 53 years (range: 26–

67). CK levels ranged from 1,103 to 600,000 IU/L, and the serum

creatinine ranged from 2.1 to 11.05 mg/dL. All patients received

antibiotic therapy with macrolides and/or fluoroquinolones. In

total, 7 patients underwent dialysis, and 11 recovered; one female

patient and one male patient died. Therefore, an early diagnosis

is crucial. We conclude that the timely administration of potent

antibacterial drugs and hemodialysis treatment led to the recovery

of renal function. All diagnoses were based on antigen or antibody

tests. Our patient is the first case of the triad of Legionella

pneumonia, rhabdomyolysis, and AKI diagnosed using mNGS.

mNGS is an unbiased approach that can theoretically detect

all pathogens in clinical samples and is particularly suitable

for complicated infectious diseases, including viral, bacterial,

fungal, and parasitic diseases (24). mNGS has a significantly

better pathogen detection yield than other methods, especially for

difficult-to-culture pathogens such as Legionella (25–28). Clinicians

often find it difficult to distinguish Legionella pneumonia from

other causes of pneumonia because of the lack of specific clinical

manifestations. The gold standard for diagnosis is culture; however,

it is now rarely used because it is very time-consuming. Sputum

smear microscopy depends on the number of bacteria and the

operator’s skill. It is difficult to distinguish Legionella from other

bacteria using microscopic morphology. Legionella does not grow

on the standard medium used in microbiology laboratories, and

a specific medium containing yeast extract and activated charcoal

(buffered charcoal yeast extract, BCYE) is required (2). Anti-

Legionella antibodies in most patients develop only approximately

3 weeks after disease onset, and anti-Legionella antibodies are not

suitable for patients with severe diseases, such as Legionnaires’

disease. In many countries, urinary antigen test is the primary

diagnostic technique, although it is poorly sensitive to strains that

are non-L pneumophila serogroup 1 or other species, including L.

longbeachae (8). Urine antigens were not available at our hospital.

In this case, before the patient came to our hospital, he had been

administered piperacillin-tazobactam at a local hospital but still

had a fever. The conventional method yielded negative results.

After got the sample less than 48 h, the results of mNGS sent

to physicians. For fungi, 88,625 reads mapping to Candida were

detected in BALF. At the same time, no fungi were found in

the libraries from the lung biopsy. Candida was more common

in oral cavity and the upper respiratory tract, so we concluded

that some contaminants may be introduced in the process. mNGS

detected Legionella in both the BALF and lung tissues. Based

on his medical history, clinical symptoms, physical signs, results

of auxiliary examinations, and mNGS of both BALF and lung

tissue, we confirmed the causative pathogen and discontinued

meropenem. Thus, this approach also facilitates the use of targeted

and efficacious antimicrobial therapies and avoids antibacterial

resistance caused by abuse. Indeed, a large number of reads is

associated with relative prolonged time and financial costs. Despite

the high cost, some severe patients will benefit from the use

of mNGS due to timely and targeted treatment. Sometimes, the

total cost of patients using multiple pathogen cultures and tests

even exceeds mNGS. Meanwhile, with the continuous progress of

sequencing technology, the price of mNGS is gradually decreasing.

Legionella is susceptible to erythromycin, clarithromycin,

azithromycin, levofloxacin (LEV), and moxifloxacin (MOX) in

clinical practice (29). Many antibiotic-resistant clinical isolates of

L. pneumophila have been identified (30). These isolates were

mainly azithromycin-resistant. A meta-analysis concluded that the

effectiveness of macrolides or respiratory fluoroquinolones did

not reduce mortality among patients with Legionella pneumonia

(31). Therefore, clinicians should select an antibiotic that is better

tolerated and can provide coverage for concomitant infections.

Patients with extrapulmonary involvement are often treated with

fluoroquinolones (18). These three fluoroquinolones have similar

minimum inhibitory concentrations against L. pneumophila (30).

However, LEV requires dose adjustment according to renal

function. Ciprofloxacin should be administered twice daily, which

is inconvenient and also requires dose adjustments according to

renal function. MOX is an imported drug with proven efficacy

and does not require dose adjustment in patients with impaired

renal function; therefore, we chose MOX. The current antibiotic

treatment strategy entails a 7–10 days course for mild cases and a

21 days course for severe cases, which can be adjusted according to

the patient’s clinical response. In our case, due to severe illness, we

administered MOX for 30 days, including 23 days of intravenous

administration and 7 days of oral treatment. Eventually, the patient

recovered completely.

This case illustrates the potential for severe rhabdomyolysis in

a patient with Legionella pneumonia. It is believed that the rapid

initiation of precise antimicrobial treatment and early substitution

of renal function resulted in good outcomes. mNGS can assist

in diagnosing infections caused by difficult-to-culture pathogens

early, such as Legionella, especially in resource-limited settings

where specific assays, such as the urine antigen of Legionella, are

not accessible.
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The genomic data generated from next-generation sequencing (NGS) provides

nucleotide-level resolution of bacterial genomes which is critical for disease

surveillance and the implementation of prevention strategies to interrupt the

spread of antimicrobial resistance (AMR) bacteria. Infection with AMR bacteria,

including Gram-negative Carbapenem-Resistant Organisms (CRO), may be acute

and recurrent—once they have colonized a patient, they are notoriously di�cult

to eradicate. Through phylogenetic tools that assess the single nucleotide

polymorphisms (SNPs) within a pathogen genome dataset, public health scientists

can estimate the genetic identity between isolates. This information is used as

an epidemiologic proxy of a putative outbreak. Pathogens with minimal to no

di�erences in SNPs are likely to be the same strain attributable to a common

source or transmission between cases. These genomic comparisons enhance

public health response by prompting targeted intervention and infection control

measures. This methodology overview demonstrates the utility of phenotypic

and molecular assays, antimicrobial susceptibility testing (AST), NGS, publicly

available genomics databases, and open-source bioinformatics pipelines for a

tiered workflow to detect resistance genes and potential clusters of illness.

These methods, when used in combination, facilitate a genomic surveillance

workflow for detecting potential AMR bacterial outbreaks to inform epidemiologic

investigations. Use of this workflow helps to target and focus epidemiologic

resources to the cases with the highest likelihood of being related.

KEYWORDS

next-generation sequencing, antimicrobial resistance, outbreak, surveillance,

carbapenem-resistant organisms

Introduction

The United States Centers for Disease Control and Prevention (CDC) places Gram-

negative carbapenem-resistant organisms (CRO) into the top five most urgent antimicrobial

resistance threats in the United States (1). Carbapenem-resistant organisms of public

health significance include Enterobacterales order organisms, Pseudomonas aeruginosa, and

Acinetobacter baumannii. Identifying antimicrobial resistance (AMR) genes and disease

clusters within the population is essential for preventing and controlling the spread of

these pathogens. Next-generation sequencing (NGS) is key to identifying specific resistance

genes and their spread through a population. Comparison of pathogens at the nucleotide

level using NGS data allows for the determination of relatedness between bacterial isolates.

Identifying clusters of closely related bacterial infections by genomic comparison enhances

the public health response by enabling targeted intervention and infection control measures.
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The Combating Antibiotic Resistant-Bacteria (CARB) initiative

began in 2014 and continued with the US National Action Plan

for Combating Antimicrobial-Resistant Bacteria, 2020–2025 (2).

The initiative spurred the creation of the Antimicrobial Resistance

Laboratory Network (ARLN) in 2016 (3). As a CDC ARLN site,

Virginia’s Division of Consolidated Laboratory Services (DCLS)

began receiving CRO submissions in 2017 and implemented testing

to identify carbapenemase-producing organisms, antimicrobial

susceptibility testing, and PCR resistance gene identification.

In 2019, DCLS began sequencing a subset of Virginia CRO

isolates. DCLS utilizes the State Public Health Bioinformatics

(StaPH-B) Toolkit (4), a free and open-source python wrapper

for various bioinformatics tools and Nextflow-based workflows, to

analyze pre-defined AMR datasets.While the workflows are written

in the workflowmanager language Nextflow, other languages (such

as Python, BASH, and JavaScript) and tools are used as well. Each

workflow utilizes Docker containers, or compartmentalized tools

and their associated dependencies, to produce actionable public

health data. Workflows and tools that are hosted in the StaPH-B

Toolkit are developed by aU.S. public health laboratory consortium

(5) and are subjected to rigorous validation and verification

processes. Each of the discussed bioinformatics tools included

herein (except for National Center for Biotechnology Information

(NCBI) Pathogen Detection) are included in the Toolkit.

Public health laboratories receiving CDC funding for CRO

sequencing are required to submit sequences to NCBI Pathogen

Detection (6, 7). One advantage of submission to Pathogen

Detection is for broad swath surveillance for potential genetically

related isolates among all reads submitted to NCBI under

organism-specific umbrella BioProjects surveilled by Pathogen

Detection. Adopting NGS methods for detection of clusters of

AMR bacterial isolates, as well as identification of the underlying

resistance mechanisms harbored, varies substantially between

laboratories. While ongoing development within public health

laboratories for more efficient and actionable utilization of

NGS data continues, genomic comparison has proven useful in

detecting and controlling outbreaks of AMR infections (8, 9).

By harnessing the aforementioned services and bioinformatics

software, a tiered workflow for surveillance of resistance genes and

identification of potential disease clusters of these pathogens was

Abbreviations: AMR, Antimicrobial Resistance; ARLN, Antimicrobial

Resistance Laboratory Network; AST, Antimicrobial Susceptibility Testing;

CARB, Combating Antibiotic Resistant Bacteria; CDC, Centers for Disease

Control and Prevention; CRO, Carbapenem Resistant Organism; DCLS,

Division of Consolidated Laboratory Services; GAMMA, Gene Allele

Mutation Microbial Assessment; HAI, Healthcare-Associated Infection;

IMP, Imipenemase; KPC, Klebsiella pneumoniae carbapenemases; Mbp,

megabase pair; mCIM, modified Carbapenem Inactivation Method; MIC,

Minimal Inhibitory Concentration; NaOH, Sodium hydroxide; NCBI, National

Center for Biotechnology Information; NDM, New Delhi Metallo-Beta-

Lactamase; NGS, Next-generation sequencing; OXA, Oxacillinase; PCR,

Polymerase Chain Reaction; SNPs, Single Nucleotide Polymorphisms;

StaPH-B, State Public Health Bioinformatics; VDH, Virginia Department of

Health; VIM, Verona Intergron Encoded Metallo-Beta-Lactamase; WGS,

Whole Genome Sequencing.

piloted and is proposed for consideration by the broader public

health community.

Materials and methods

Microbiology methods

Carbapenem resistance screening for organisms that have

acquired a carbapenemase-producing gene begins by testing

bacterial cultures for carbapenemase enzyme production using

the modified Carbapenem Inactivation Method (mCIM) (10). All

mCIM-positive isolates receive PCR testing using the StreckTM

ARM-D β-lactamase PCR kit and antimicrobial susceptibility

testing using the SensititreTM Gram Negative MIC GN7F Plate

(ThermoFisher Scientific, Waltham, Massachusetts). The Streck

PCR assay detects the presence of the five most common

carbapenemase genes (KPC, NDM, VIM, IMP, and OXA-

48). Further genomic characterization using next-generation

sequencing is performed on isolates meeting one of the following

CDC ARLN criteria: (i) Enterobacterales PCR-positive for any

carbapenemase gene other than, or in addition to KPC, due

to the high prevalence of KPC-positive isolates in Virginia, (ii)

Pseudomonas aeruginosa andAcinetobacter baumannii isolates that

are PCR positive for any carbapenemase gene, including KPC,

due to the low KPC-positivity for these organisms in Virginia,

(iii) Enterobacterales, P. aeruginosa, or A. baumannii isolates

with resistance or non-susceptibility to all drugs in the Sensititre

panel and the submitting facility’s antimicrobial susceptibility

testing panel. (iv) organisms that are PCR-positive for two or

more carbapenemase genes; (v) mCIM-positive and PCR-negative

cultures which may harbor a novel resistance mechanism (11).

Of these criteria, novel resistance is the highest priority for

identification of emerging resistance factors.

Extraction and sequencing methods

Manual DNA extraction
Carbapenem-resistant genomic DNA is extracted using

QIAGEN QIAamp DNA Mini Kit (Qiagen, Aarhus, Denmark)

from isolated bacterial colonies grown on Tryptic Soy Agar (TSA)

with 5% sheep blood agar (Remel, Lenexa, Kansas) for 18–24 h at

33–37◦C. The following modifications were implemented to the

QIAGEN QIAamp DNA Mini Kit (12) method to obtain optimal

total DNA for short-read sequencing. Cell lysis is performed in

a biosafety cabinet to render the isolate no longer infectious.

A loopful of isolated bacterial colonies from the TSA with 5%

sheep blood agar plate is added into a labeled 1.5mL safe-lock

tube with 180 µL of ATL buffer, vortexed and pulse-centrifuged.

Proteinase K (20 µL) is added to the sample and incubated at

56◦C ± 1 for 1–3 h with vortexing every 20 mins. Immediately

after incubation, 4 µL of RNase A (Qiagen, Aarhus, Denmark)

is added to the sample, held at room temperature for 3–5 mins,

followed by 200 µL of AL buffer and 200 µL of 100% ethanol

(Pharmco, Brookfield, Connecticut). For quality assurance, a blank

sample, or no template control (NTC) is carried throughout the

Frontiers in PublicHealth 02 frontiersin.org35

https://doi.org/10.3389/fpubh.2023.1184045
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Gali et al. 10.3389/fpubh.2023.1184045

extraction and sequencing procedures to assess contamination or

other quality errors in testing.

Following cell lysis, samples are safely manipulated on the

bench top for DNA cleanup. The entire cell lysis volume is

transferred to a spin column placed in a 2mL collection tube

and centrifuged at 6,000 x g for 1min to bind genomic DNA

(gDNA) to the spin column’s silica membrane. Then, following the

manufacturer’s protocol, the spin column is washed twice using 500

µL of AW1 and AW2 buffers at 6,000 x g for 1min and 20,000 x

g for 3 mins, respectively, and then eluted into a clean tube using

100 µL of 10mM Tris-HCl, pH 8 (Fisher Scientific, Hampton, New

Hampshire). DNA quantification post extraction is measured with

theQubit dsDNABroad Range Assay Kit (Thermo Fisher Scientific,

Waltham, Massachusetts) on a Qubit fluorometer (Thermo Fisher

Scientific, Waltham, Massachusetts) to remove any samples with

suboptimal concentration (≤5 ng/µL) from further testing.

Whole genome sequencing (WGS)
The number of samples per sequencing run is determined by

the 500-cycle MiSeq Reagent Kit v2 (Illumina, San Diego, CA),

which has a maximum output of 8.5 Gb. For optimal run quality,

the total genome load for a 500-cycle cartridge is limited to 100

megabase pairs (Mbps), equivalent to up to 20 cultures with 5

Mbp genomes (13). A diverse run composition of bacterial species

is selected for library preparation. However, GC-rich content

organisms, such as P. aeruginosa, are limited to 4 to 6 samples per

run to avoid bias in sample read coverage (14).

WGS of bacterial isolates includes six components: library

preparation, quantification, optional fragment analysis,

normalization, denaturation, and loading (15). Samples are

prepared for WGS using the Illumina DNA Prep kit (Illumina,

San Diego, CA) with an average of 100–500 ng of input gDNA per

sample for a total volume of 30 µL. The library clean-up procedure

has been modified to utilize 40. 8 µL SPB/IPB and 44.2 µl H2O

per sample, to capture longer DNA fragments (13). Quantification

and fragment analysis is recommended at the end of preparation

to evaluate the quality of individual DNA and pooled libraries. The

blank (NTC control) is not loaded in the final pool but is assessed

for quality using the Qubit fluorometer (see below).

Individual DNA and pooled libraries are quantified using the

Qubit dsDNAHigh Sensitivity Assay Kit (Thermo Fisher Scientific,

Waltham, Massachusetts). Libraries prepared using the Illumina

DNA Prep method have an average quantification value of 10

ng/µL; however, the quantification value can vary. The allowable

quantification values for library blanks are ≤ 0.1 ng/µL for Qubit

2.0 and “out of range” for Qubit 3 and 4. Fragment analysis

is completed using the Agilent D5000 ScreenTape kit and 4200

TapeStation System. Average fragment sizes are obtained using the

region view, usually 800–1,000 bp.

Samples can be normalized individually; however, this

procedure uses the pool normalization method. This method takes

the pool concentration and average fragment size to calculate the

molarity of DNA from the pooled libraries, molarity (nM)= [(Pool

concentration ng/µL) / (660 g/mol x fragment size bp)] x 106.

The preferred starting library concentration for denaturation and

loading is 4 nM. The formulaM1V1=M2V2 calculates the amount

of pooled library required to achieve 50 µL of a 4 nM pool (200

/ molarity). The volume of the pool required is then subtracted

from 50 µL to determine the volume of diluent. The 4 nM pool is

denatured with 0.2N NaOH and denaturation is halted, and the

4 nM pool is further diluted using 990 µL of HTl. At this step, the

denatured pool has a concentration of 20 pM and will be diluted

for optimal clustering. The formula C1V1 = C2V2 is applied to

calculate the amount of denatured pool required to achieve a final

loading concentration of 15 pM, (20 pM) V1= (15 pM) (1,000mL).

DNA sequencing is performed on the Illumina MiSeq

Sequencing System using the 500 cycle v2 (2 x 251) base pair

sequencing chemistry. A PhiX Control v3 Library (Illumina, San

Diego, CA) is helpful for troubleshooting issues with cluster density

related to library preparation. The PhiX solution is denatured and

diluted to match the pooled library at 15 pM and is spiked into the

final pool at 1%. The denatured DNA/PhiX library pool is heated

at 96◦C ± 1 for 2 mins and submerged in ice for 5 mins before

transferring 600 µL into the 500-cycle MiSeq cartridge.

Sample sheets are built on Local Run Manager (16). The

cartridge and buffers are loaded into the instrument.MiSeq Control

Software is used to start the WGS run which requires a BaseSpace

account to access sequencing data for analysis. Prior to starting the

run, the MiSeq will do a system check to verify the run parameters,

reagent radio-frequency identification (RFID), available disk space,

and internet access. Following the pre-run check, the run is started

and takes∼36 h.

Post-run metrics are reviewed to assess the overall run quality.

If critical run metrics pass (see Table 1), the run is accepted for

initial bioinformatics analyses. Runs with quality metrics below the

expected results are comprehensively reviewed for troubleshooting

purposes and reloaded from library preparation. Run performance

can vary depending on run composition, library preparation, and

instrument errors; however, the Illumina Sequencing Analysis

Viewer can be used to investigate possible solutions (17).

Bioinformatics methods

Machine configuration
Bioinformatics analyses were performed using Amazon Web

Service Elastic Cloud Computing (AWS EC2) environments with

base Ubuntu 18.04 Bionic image virtual machines (VMs) with a

T2.2xlarge image (8 vCPUs, 32 GB of RAM).

Tredegar
The DCLS-developed and validated Tredegar pipeline was used

to analyze short-read Illumina data for quality and taxonomic label

verification of WGS data (18). Once sequencing run data is pushed

from the MiSeq instruments to BaseSpace, the data is pulled from

the cloud and analyzed on the VMs for quality control.

The following command was used for each analysis:

$ staphb-wf tredegar -o

<output_directory> <path/to/reads>

After the data is pulled from BaseSpace, Tredegar is utilized

to calculate the average read quality for both forward and reverse

reads.Minimumdata acceptability criteria include (i) fastqQ scores
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TABLE 1 Post run quality metrics.

Quality metrics Cluster
passing filter

Q30 (%) Q30
R1/R2 (%)

Cluster
density

(K/mm2)

Estimated
yield (Gb)

Aligned
PhiX (%)

PhiX error
rate (%)

Expected results ≥80 75 N/A 600–1,200 N/A 0.88–1.85 0.92–1.45

≥ 30 for both the forward and reverse reads (r1_q and r2_q,

respectively), (ii) an estimated genome length (est_genome_length)

within 0.5 Mbps of the expected genome size as determined on the

NCBI Genome browser (19), (iii) an estimated coverage (est_cvg)

≥ 40x (the total number of bases generated for the run divided by

the assembly length estimated from the de novo Shovill assembly

(20), (iv) assembled contig (number_contigs) <200, and (v) the

species prediction (species_prediction) by MASH (21) must match

the organism determined by MALDI-TOF Mass Spectrometry.

Deviation from these metrics may point to contamination, sample

switching, or sequencing malfunction.

Tredegar analyses are reported to the sequencing scientist via

custom-designed CSV files (Table 2). Isolates with quality metrics

failing to meet the above criteria are rejected and excluded from

further bioinformatics analysis. Sequences meeting quality metrics

are submitted to NCBI Pathogen Detection.

NCBI pathogen detection
Illumina sequencing reads and minimum isolate metadata

(excluding patient identifiable information), are submitted to

the NCBI Sequence Read Archive and CDC HAI-Seq Umbrella

Project, Gram Negative Bacteria BioProject PRJNA288601 with a

unique sample identification number assigned by the sequencing

laboratory for sample anonymity (6). Submission to an Umbrella

BioProject linked to NCBI Pathogen Detection prompts the

automatic analysis of reads for integration into the Pathogen

Detection Project (7, 22). In Pathogen Detection, there are

two different clustering pipelines in operation. For organisms

which have a whole genome multiple locus sequence type

(wgMLST) scheme available, a reference wgMLST scheme is used

to identify the loci and alleles in each assembled genome, and

then a 25-allele cut-off is applied to identify potential cluster

related isolates. The second process for organisms with less than

1,000 isolates on Pathogen Detection, or for which there is

not a wgMLST scheme utilizes k-mer distances to first cluster

related isolates, and then a first pass SNP analysis. Clusters

are created using 50-SNP single-linkage clustering. Once clusters

are created by the wgMLST or K-mer process, a reference is

selected within each, assemblies are aligned against the reference,

SNPs are called, and phylogenetic trees inferred. The sizes of

clusters may vary from two isolates to thousands, and for each

organism group isolates which do not fall within the cluster

detection criteria are omitted (23). The cluster analysis process

automatically starts once daily for each organism, if new data

are submitted.

Pathogen Detection provides AMR gene prediction for all

submitted isolates in addition to SNP distances and phylogenetic

trees for clustered isolates (22, 24). An email notification alert was

built to alert analysts when a submitted isolate is added into a

SNP cluster on NCBI. In the DCLS surveillance workflow, NCBI

provides the initial phylogenetic and cluster analysis.

Hickory
For analysis of a pre-defined organism dataset, the DCLS-

developed Hickory (25) bioinformatics pipeline was used to

determine the most appropriate reference genome within the

Illumina short-read dataset via MASH (21). The Hickory pipeline

takes in fastq files and generates assemblies from the data. Once

the fasta files have been generated, binary sketches of the fasta

files are drawn within an individual directory using MASH. The

fasta file sketch, or genome sketch, with the least MASH distance

from the other fasta file sketches in the directory is selected as the

most appropriate reference genome. The selection of a reference

genome with the least distance from the dataset is important

because it increases the number of nucleotide positions available

for comparative genomics, and therefore, inferences made about

genomic similarity or dissimilarity of a dataset. Hickory provides

the reference-free FASTA assembly file of the appropriate reference

genome for each dataset analyzed. This FASTA file is then used

as the reference genome during Dryad analysis. Hickory ensures

a closely related reference is used for comparative genomic analysis

so that the maximum number of positions can be queried.

After separating the read data by species, the following

command was used for each analysis:

$ staphb-wf hickory -o

<output_directory> <path/to/reads>

Dryad
Isolates that pass Tredegar metrics are analyzed by Dryad,

a bioinformatics tool developed by the Wisconsin State Public

Health Labs and validated by DCLS (26). Dryad utilizes the CFSAN

SNP pipeline to determine the SNP distance between closely

related samples (27). Potential AMR determinants are identified via

AMRFinder Plus (22, 24).

After separating the read data by species, the following

command was used for each analysis:

$ staphb-wf dryad main -cg -s -r

<reference.fasta> -o <output_dir> /

-report <reads>

Dryad analyses produce SNP-distance heatmaps, phylogenetics

trees, and if selected during the analysis initiation, a list of

AMR gene predictions. Isolates that are ≤ 11 SNPs apart are

considered “putative” outbreak clusters; bioinformaticians rely on

epidemiologists and their gathered evidence to determine if an

isolate is truly related. Isolates that are between 12 and 15 SNPs

apart can still be considered related with enough supporting

epidemiological evidence. Carbapenem-resistant isolates can be
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TABLE 2 Example of Tredegar results with passing quality metrics.

Sample rq_1 r2_q est_genome_length est_cvg number_contigs species_prediction subspecies_
prediction

2022EP-00093 35.26 31.45 5524279 81.33 74 Klebsiella_pneumoniae NA

2022EP-00091 37.09 34.98 3807676 85.89 51 Acinetobacter_baumannii NA

2022EP-00092 35.04 31.55 5398118 59.17 47 Serratia_marcescens NA

2021EP-00104 36.91 35.32 3871668 145.61 93 Acinetobacter_baumannii NA

2021EP-00106 36.7 34.64 3937667 105.59 100 Acinetobacter_baumannii NA

2022EP-00007 35.69 32.16 5313287 102.98 147 Escherichia_coli O102:H6

considered related at a larger SNP range than other isolates; isolates

that are between 12 and 30 SNPs apart may be determined to be

related with epidemiological support.

Individual introduction cases are determined by the number of

SNPs separating the isolates in an outbreak dataset. For example,

Figure 1 shows isolates VA7, VA6, and VA8 are between 1 and 4

SNPs apart from one another. Isolates VA1 and VA2 are 0 SNPs

apart from one another. This shows two putative clusters in the

dataset; Group A, composed of VA7, VA6, and VA8, and Group B,

composed of VA1 and VA2. These results indicate the presence of

two putative outbreak clusters, or two separate introductions.

GAMMA
GAMMA (28), Gene Allele Mutation Microbial Assessment, is

a CDC-developed bioinformatics software tool designed to analyze

FASTA files to identify protein coding regions of interest. Currently,

DCLS is utilizing a CDC provided custom database to elucidate

hyper-virulence genes (peg-344, iroB, iucA, prmpA, and prmpA2)

from sequencing assembly. GAMMA uses a Conda environment

during routine analyses. GAMMA result TSV files are passed

to the requesting scientists for epidemiology-report generation.

Hypervirulence genes identified by GAMMA are submitted to the

CDC ARLN branch.

The following command was used for each analysis:

$ GAMMA.py fasta_file

custom_db.fasta output_dir

Results

NCBI cluster surveillance

In November 2021, DCLS began piloting a program using

NCBI Pathogen Detection in a tiered surveillance method. Table 3

demonstrates the value in using NCBI Pathogen Detection as

the primary step in the surveillance method. Of the 381 isolates

sequenced from 2019 when CRO sequencing began until May

2022, 104 cluster notifications would have been received that

include Virginia isolates. After removing clusters that only included

multiple isolates from the same patient, 91 clusters would have

prompted further investigation. Many of these clusters carry over

from 1 year to the next due to the long-term colonization of patients

and environments with resistant organisms.

Once a cluster is identified, scientists review the notification

email from NCBI. The DCLS criteria for potential outbreak

surveillance are more stringent (≤ 11 SNPs) compared to NCBI

(≤50 SNPs). As mentioned previously, isolates between 12 and

30 SNPs may be included if there is epidemiologic evidence.

Scientists will identify cluster isolates within 11 SNPs of each

other and verify there are at least three Virginia isolates in the

cluster (per epidemiologist request). Bioinformaticians use Hickory

and Dryad for a more thorough investigation of the identified

cluster. Dryad assesses and confirms the SNP distances between

the clustered isolates using a within-dataset reference genome

determined by Hickory. Both Dryad and Hickory utilize well

established, open source, peer reviewed bioinformatics tools and

have been validated through a rigorous state validation process.

Once the Dryad pipeline confirms the SNP distance and AMR

gene prediction results from NCBI Pathogen Detection, DCLS

scientists build a surveillance report based on the combined wet-

lab and bioinformatics results to communicate the findings to

the epidemiologist.

The surveillance report includes the SNP matrix, resistance

gene predictions confirmed by PCR (ex: NDM, VIM, KPC, OXA-

48, or IMP), patient identification, and AST results. Since March

2022, the implementation of the NGS surveillance process has

resulted in 30 communications of potential outbreak clusters. Five

of these were for Enterobacterales and Pseudomonas aeruginosa

which are provided in a surveillance report to epidemiologists

at the Virginia Department of Health (VDH). The other

communications were for Acinetobacter baumannii isolates which

are of secondary priority to VDH epidemiologists and per request,

cluster information is e-mailed to the epidemiologist. All NGS

result reports include a disclaimer stating results are not for

clinical diagnosis or patient management but are for epidemiologic

purposes only. NGS results are communicated only to the health

department epidemiologists.

While Dryad is a useful tool for analyzing individual outbreak

datasets, the process is reliant on scientists submitting requests

for known isolates. By utilizing the NCBI cluster detection

pipeline, DCLS has begun to identify and analyze outbreaks

both within-state and nationally. Since NCBI Pathogen Detection

includes submissions from other laboratories, including other

public health laboratories, cluster notifications can include DCLS

isolates, and closely related isolates sequenced at other public health

laboratories. Informing epidemiologists of these potential links

to out-of-state isolates assists in determining possible sources of

infection or enabling multi-state investigations.
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FIGURE 1

Example output of Dryad data. Each Dryad analysis produces a SNP-distance heatmap and phylogenetic tree.

TABLE 3 Isolates sequenced and NCBI clusters identified.

Isolates
sequenced

NCBI
clusters

Adjusted-
removed
same
patient
clusters

Adjusted-
removed
clusters
from
other
years

2019 148 39 32 32

2020 102 30 26 17

2021 119 30 28 17

2022 12 5 5 2

Total 381 104 91 68

For example, during an outbreak investigation of Proteus

mirabilis isolates in Virginia for a local health department,

the NCBI Pathogen Detection pipeline identified several other

isolates sequenced by the Mid-Atlantic ARLN regional laboratory.

Communication with the regional laboratory found that the isolates

were colonization screening specimens sent from Virginia to

the regional laboratory since DCLS does not currently perform

colonization screening. Use of NGS for surveillance increased the

number of isolates potentially related to this outbreak from 3 to

10 spanning a much longer period than originally investigated

(Figure 2, Proteus mirabilis Cluster).

Figure 2 shows all the clusters meeting surveillance notification

criteria during a pilot of the tiered surveillance method DCLS

performed from November 2021 to April 2022. NGS surveillance

providedmany previously unidentified clusters and isolates (Shown

in blue in Figure 2, Surveillance WGS link). As has been

demonstrated by PulseNet for foodborne diseases, the ability

to link cases of related infections using NGS is a powerful

epidemiologic tool (29, 30). Surveillance and identification of

related antimicrobial-resistant isolates provides an increased ability

to respond and prevent the spread of this serious public

health threat.

Dryad/NCBI SNP discrepancies

Though rare, differences can occur in the SNP calls from

the different pipelines. Several factors can cause discrepancies

between these tools. Dryad is an open-source bioinformatics tool

which lists each tool used and its version. NCBI Cluster Detection

uses a suite of alternative tools curated by NCBI to perform

assembly, genome annotation, antibiotic resistance determination

and genome clustering (31, 32). Slight differences in tool heuristics

and their parameters can lead to variations in SNP distances

(33, 34). Reference genome selection can affect the SNP distances

because the reference genome is the sequence to which all other

cluster isolates are compared and if a more distant reference

genome is used, there is a risk of losing genomic comparability for

regions absent in the reference (35). The NCBI reference genome

selection method chooses an in-group reference genome with the

longest read from an initial dataset, which is often larger since

it includes sequences from other NCBI submitters (31). Hickory

selects the reference genome from within the user-defined dataset
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FIGURE 2

Clusters detected using tiered surveillance method (November 2021–April 2022).

based on MASH distance (21). The user-defined dataset typically

consists of isolates only sequenced and under suspicion of being

outbreak-associated. Theoretically, there is an increased likelihood

of identifying a greater number of SNPs because within dataset

selected genomes should have a greater genetic identity. Masking

portions of the genome sequence can also lead to differences in

SNP distances. Some tools mask repetitive genome regions before

SNP analysis, potentially altering downstream data. NCBI utilizes

masking, while Dryad does not. Computing resources can also

influence downstream analysis results (36). Masking and reference

genome selection are the most likely causes of the significant

discrepancies shown in Table 4.

NDM-19/NDM-7 cluster

Another benefit to running multiple analysis tools is using

repeat results as a check to ensure the result report includes all

the resistance genes present in the genome. On rare occasions,

one AMR analysis tool doesn’t report a gene found by another

AMR prediction tool, and further analysis is required to verify

the results. One example of when running two analysis tools

proved beneficial was with an NDM Klebsiella pneumoniae

TABLE 4 Dryad and NCBI discrepancies.

Cluster Isolate # Dryad NCBI

Proteus mirabilis 2022EP-00001 & 7

isolate cluster

16-35 SNPs 4-10 SNPs

Acinetobacter

baumannii

2021EP-00086 &

2021EP-00090

64-75 SNPs 7-14 SNPs

Enterobacter

cloacae

2019EP-00005 &

2019EP-00121

479 SNPs 19 SNPs

Klebsiella

pneumoniae

2022EP-00149 &

2022EP-00173

292 SNPs 18 SNPs

outbreak investigation. On NCBI Pathogen Detection, AMR

prediction of one isolate (2022EP-00101) had an NDM-19 gene,

and the other isolate (2022EP-00107) had an NDM-7 gene.

Dryad analysis results lacked the NDM-7 on 2022EP-00107

in the DCLS AMR report. Both isolates had positive NDM

results from the Streck ARM-D, β-lactamase PCR kit further

verifying the NCBI results. Re-sequencing and repeat Dryad

analysis produced the same results. Combining the reads from

both sequencing runs provided more depth and coverage, and

Dryad analysis of the combined assembly identified the NDM-7
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gene on the AMR prediction profile. Using more than one tool

proved significant because results from one bioinformatics tool

showed a gap in the results identified by the second tool, and

further supported the overall SNP comparison indicating isolate

genetic identity.

AMR genes reporting

AMR gene predictions can produce a long list of resistance

genes. Determining which genes to report to the epidemiologist

has been a significant challenge. Including a list of all the

genes identified can be overwhelming and not always informative

or helpful since epidemiologists already have the antimicrobial

susceptibility testing (AST) results, and prediction of a gene is not

equivalent to expression. At DCLS, reporting AMR genes is based

on the significance of the gene within the isolate or outbreak cluster,

as determined by relevance to other phenotypic testing by mCIM,

AST and PCR. A gene and allele number are always provided for

carbapenemase genes since these genes are of interest to the CDC.

For example, knowing an isolate or outbreak cluster carries

the NDM-5 gene will provide specific information on which

resistance gene is responsible for the carbapenem resistance.

Allele identification also enables tracking of the frequency of

individual alleles within a geographic area. If an allele is unknown,

meaning the beta-lactamase (bla) gene is returned un-numbered

by the AMR prediction method (ex: NDM-5 vs. NDM), further

analysis is necessary to verify the presence of a unique allele

and identify the responsible genome mutation (24). Using an

alignment tool to compare the un-numbered gene sequence to

the closest neighbor allows for identification of the nucleotide

differences between the genes. Requesting an allele number for

these un-numbered alleles is done through NCBI (37). Recently

DCLS identified an un-numbered NDM allele that was a mutation

of an NDM-7 in a K. pneumoniae. This gene had an M22I

amino acid change due to a point mutation (Figure 3). The novel

gene was named NDM-50 by NCBI. Surveillance detected two

other isolates with this gene in Virginia over the next 2 months.

Genome alignment can also be used to verify gene mutations

of numbered alleles in closely related isolates as in the NDM-

19/NDM-7 cluster above.

Currently, NGS result reports to epidemiologists include only

genes indicated by PCR-detection. If an antimicrobial resistance

gene other than a carbapenemase gene is predicted in one outbreak

isolate, but absent in another, that could explain the difference in

susceptibility results of a specific drug in the isolate’s AST profiles,

then a comment is added to the surveillance report shared with the

health department. The report states that the difference in the AST

profile is most likely due to the presence or absence of a resistance

gene without naming the specific gene. The report may also include

other novel genes causing carbapenem resistance identified in the

organism of interest. Each report includes a disclaimer stating

results are for epidemiologic purposes only and not for clinical

diagnosis or patient management.

FIGURE 3

Gene mutation alignment.
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Hypervirulence genes

The emergence of hypervirulent antimicrobial resistant

bacteria has led to increased concern, as hypervirulence genes have

been known to lead to more invasive and life-threatening illnesses.

Hypervirulence and antimicrobial resistance were considered

to be two divergent evolutionary pathways. However, in recent

years organisms harboring both hypervirulence and antimicrobial

resistance genes have emerged (38). Since DCLS added GAMMA

to AMR analysis in February of 2022, of the 234 isolates analyzed

the following hypervirulence genes were detected: 7 iroB-6, 3

iroB-23, 10 iucA-45, 1 iucA-18, 1 iucA-1, and 2 rmpA2–3. These

genes were identified using a custom-database provided by CDC.

These hypervirulence genes were all present in isolates that

also tested positive for at least one carbapenem-resistance gene.

Hypervirulence genes were originally described in K. pneumoniae

isolates. However, the majority of the hypervirulence genes

identified by DCLS since implementing GAMMA have been found

in E. cloacae and Escherichia coli. One iroB-6 isolate was part of

a multistate NDM + E. cloacae cluster found using the tiered

method for surveillance.

Discussion

NGS has provided a higher-resolution method for identifying

and tracking resistance and hypervirulence genes of concern,

as well as performing a critical role in the epidemiological

investigations of Candida auris and carbapenamase-producing

organisms. These techniques allow epidemiologists to study

epidemiological links between microorganisms. The lack of a

centralized national database for CRO genomic epidemiology

has stymied proactive surveillance-based detection of possible

clusters of interest across multiple facilities, temporally disparate

cases, and prolonged time frames. The methodology described

herein harnesses a publicly available data repository that

provides centralized and integrated bacterial pathogen genomic

comparisons for cluster prediction. Notification tools available

through NCBI can alert laboratorians and epidemiologists to

matches to jurisdictional isolates, as they are identified in the

Pathogen Detection algorithm. Further interrogating putative

clusters with a within data-set reference can help to further discern

the extent of genomic differences which serve as a proxy for

likelihood of transmission of a common infectious bacterial strain.

NGS has been used many times to assist Virginia Department of

Health epidemiologists in the quest to stop the spread of disease

and antimicrobial resistance.

In 2019, an outbreak of KPC Pseudomonas aeruginosa in

Southwest Virginia at an acute care hospital was investigated. To

determine if there was spread within the facility, screening was

conducted at the hospital as well as an infection prevention and

control assessment. Epidemiologists found a total of 2 cases within

the facility and determined there was no spread outside of the

facility. The investigation was considered closed.

In September of 2022, another case of KPC Pseudomonas

aeruginosa was discovered in the same acute care hospital and was

believed to be an isolated case. When the epidemiologists received

the NGS surveillance results, they were able to determine that the

case was 0 SNPs apart from the 2 cases in 2019. This information

shifted the investigation and encouraged the team to investigate the

possibility of sustained reservoirs within the hospital itself.

The source of the outbreak has yet to be determined; the

investigation is still ongoing. NGS has enabled the team of

epidemiologists to gain insight into the linkage between these three

cases, whereas before it was thought that the cases were unrelated.

NGS gives epidemiologists an extra tool to be able to stop multi-

drug resistant organisms and protect some of our most vulnerable

populations. By using NGS to elucidate linkages across outbreaks

and identify the presence of resistance genes adds another line of

defense to the arsenal of public health.

This example demonstrates the value of adding NGS

surveillance to the DCLS microbiology workflow. These results

can be used by epidemiologists to improve the prevention and

control of these highly resistant infectious pathogens. In addition,

surveillance enables the tracking and identification of novel and

emerging resistance genes and pathogens within our region.

Limitations to surveillance using NGS include the dependence on

hospital compliance to CRO submission laws. Funding also limits

sequencing all CRO isolates which may leave gaps in tracking

the spread of AMR. In addition, not all isolates are submitted to

NCBI, and metadata can be lacking. Deidentification can prevent

linking patients from Virginia tested in other states due to cross

border healthcare or reference laboratory testing. Multistate

outbreaks can be difficult for follow up due to multiple health

departments and public health laboratories involvement. Lack

of standardization of AMR tools and databases also inhibits

comparison of results from one source to another. Despite the

limitations, implementing NGS surveillance over the last year has

improved awareness and understanding of carbapenem-resistant

organisms and their resistance genes within Virginia for both the

public health laboratory and the health department. This raised

awareness has shown the need for plasmid genomics to track the

spread of plasmids and resistant genes between bacterial species

and is the focus of future work at DCLS.
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Background: Visceral leishmaniasis (VL) is a neglected vector-borne tropical

disease caused by Leishmania donovani (L. donovani) and Leishmania infantum

(L. infantum). Due to the very small dimensions of the protozoa impounded within

blood cells and reticuloendothelial structure, diagnosing VL remains challenging.

Case presentation: Herein, we reported a case of VL in a 17-month-old

boy with acute lymphoblastic leukemia (ALL). The patient was admitted to

West China Second University Hospital, Sichuan University, due to repeated

fever after chemotherapy. After admission, chemotherapy-related bone marrow

suppression and infection were suspected based on clinical symptoms and

laboratory test results. However, there was no growth in the conventional

peripheral blood culture, and the patient was unresponsive to routine antibiotics.

Metagenomics next-generation sequencing (mNGS) of peripheral blood identified

196123 L. donovani reads, followed by Leishmania spp amastigotes using

cytomorphology examination of the bone marrow specimen. The patient was

given pentavalent antimonials as parasite-resistant therapy for 10 days. After the

initial treatment, 356 L. donovani reads were still found in peripheral blood by

mNGS. Subsequently, the anti-leishmanial drug amphotericin B was administrated

as rescue therapy, and the patient was discharged after a clinical cure.

Conclusion: Our results indicated that leishmaniasis still exists in China. Unbiased

mNGS provided a clinically actionable diagnosis of a specific infectious disease

from an uncommon pathogen that eluded conventional testing.

KEYWORDS

visceral leishmaniasis, Leishmania donovani, metagenomic next-generation sequencing,

acute lymphoblastic leukemia, rapid diagnosis, case report

Introduction

Visceral leishmaniasis (VL) is a vector-borne protozoan neglected tropical disease

(NTDs) caused by Leishmania donovani complex (L. donovani and L. infantum) and

L. donovani (1–3). It is caused by an infection of blood cells in the lymphoid organs, primarily

the spleen, bone marrow, and liver, and is fatal in more than 95% of untreated cases (4).
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In China, 3,169 cases of VL have been reported, with ∼140–509

cases diagnosed per year between 2002 and 2011. VL is considered

endemic in over 50 counties across 6 provinces/autonomous

regions in western China, including Xinjiang, Gansu, Sichuan,

Shaanxi, Shanxi, and Inner Mongolia (5–8). According to these

data, leishmaniasis is not extinct and could potentially cause a

public health problem in China.

Acute lymphoblastic leukemia (ALL) is the most frequent

type of pediatric cancer, with an incidence of 5.4 per 100,000

cases in patients aged <15 years old (9). In addition, cases of

leishmaniasis found in patients formerly diagnosed with various

cancers and treated with long-term anti-cancer chemotherapy have

been previously reported, clearly suggesting an overlap between

leishmaniasis transmission and malignant disease (10).

The diagnosis of VL is based on detecting Leishmania

amastigote parasites in bone marrow or spleen biopsies. However,

the very small dimensions of the protozoa impounded within

blood cells and reticuloendothelial structure makes diagnosing

leishmaniasis challenging (11). Recently developed metagenomics

next-generation sequencing (mNGS) analyses forego the use of

specific primers or probes. Instead, the entirety of the DNA and/or

RNA (after reverse transcription to cDNA) is sequenced, thus

providing a practical approach for diagnosing rare, novel, and

atypical infectious etiologies (12). In the following description, we

reported a VL case in an ALL infant after chemotherapy diagnosed

by mNGS and parasitological microscopy.

Case presentation

A 17-month-old boy was admitted to West China Second

University Hospital, Sichuan University, in March of 2022 for

the insidious onset of fever, ecchymosis of skin, anhelation, and

pancytopenia. On admission, blood routine examination results

were as follows: white blood cell (WBC) 2.5 × 109/L, hemoglobin

(Hb) 60 g/L, platelet (PLT) 45× 109/L, and immature granulocytes

found in peripheral blood smears. Subsequently, bone marrow

morphology, immunophenotyping, cytogenetics, and molecular

genetics were carried out. Based on the above testing, the boy

was diagnosed with B-cell acute lymphoblastic leukemia (B-ALL,

L2, ETV6-PEX5 fusion gene positive, KRAS A146V and KRAS

A146T mutation, IKZF1–8 heterozygous deletion, 45, XY, der

(7; 12) (q10; q10)(5)/46, XY (15). Then, according to ALL-low

risk (ALL-LR) of the Chinese Children’s Cancer Group study ALL

2020 (CCCG-ALL-2020), conventional and continuous therapy

TABLE 1 Laboratory test results of a patient during diagnosis and treatment.

Enrollment time WBC
(×109/L)

N (%) L (%) E (%) Hb (g/L) PLT
(×109/L)

PT (S) APTT (S) Fg (mg/dL) CRP
(mg/L)

On admission 1.0 60.4 29.5 0 85 8 15.5 43.6 105 76.9

7 days after antibiotic

treatment

12.2 91.0 3.0 0.1 122 39 12.7 34.2 200 125.5

10 days after sodium

stibogluconate treatment

1.5 74.7 9.3 0 81 159 10.7 25.4 202 7.2

14 days after Amphotericin

B

2.8 39.1 35.0 0.2 110 182 / / / 0.5

was administered. After the remission induction regimen of 4

weeks, complete remission (CR) was reached. Subsequently, the

child was supposed to receive consolidation therapy according to

CCCG-ALL-2020 with three courses after 4 weeks of achievement

of CR.

On October 2022, which was also the interval between the

first consolidation treatments, the patient was hospitalized again

for a repeated fever of 13 days and coagulopathy after the

second cycle of consolidation chemotherapy. Laboratory tests

are shown in Table 1. Color Doppler ultrasonic examination

showed swollen liver and spleen. The above results suggested that

the infant had chemotherapy-related bone marrow suppression,

infection, and coagulation dysfunction. Vancomycin, imipenem,

and voriconazole were used for empirical antibiotic therapy. Fresh

frozen plasma, fibrinogen, and prothrombin complex were used

for improving coagulation function. Seven days after therapy, the

patient still had a fever (38.4–39.4◦C), and his liver and spleen

were enlarged. CRP and PCT levels were 125.5 mg/L and 3.99

mg/L, respectively (Table 1). No microorganisms were detected by

blood culture.

Then, mNGS was carried out in peripheral blood. After DNA

was extracted from 200 µl of peripheral blood, the DNA library

was built and sequenced on Nextseq 550 platform (Illumina,

USA). All human host DNA was filtered out, and the valuable

reads were aligned to Microbial Genome Databases (ftp://ftp.ncbi.

nlm.nih.gov/genomes/) using BWA. Finally, a number of 196123

special reads of L. donovani were detected, and the coverage of

the genome and relative abundance of L. donovani was 39.43 and

97.9%, respectively (Figure 1), which was indicative of L. donovani

infection. In addition, 1 special read of Klebsiella pneumoniae was

detected and defined as a background bacteria. Examination of

patients’ demographic information revealed the following: ever

since birth, he resided in Jiuzhaigou county of Sichuan province,

which is known as an endemic leishmaniasis region. Subsequently,

microscopy of the bone marrow showed a larger number of

Leishmania spp amastigotes, while phagocytic phenomena of

histiocytes were found in all smears (Figure 2). All bone marrow

smears from confirmed leukemia were reviewed, revealing no

Leishmania spp amastigote in microscopy. Furthermore, RK39

antigens were also positive by immunochromatography. Thus,

VL was diagnosed, and sodium stibogluconates were used as

an anti-leishmanial drug. Nevertheless, after 10 days of anti-

leishmanial therapy, 356 special reads of L. donovani were detected

in peripheral blood by mNGS (Figure 3), and Leishmania spp

amastigotes were also observed in the bone marrow. Subsequently,
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FIGURE 1

The diagnosis of Leishmania infection by metagenomics next-generation sequencing (mNGS). (A) Mapping of Leishmania donovani reads on the

genome. (B) Distribution of pathogenic microorganisms reads in the absence of human, others, and unclassified reads.

FIGURE 2

Bone marrow cytology of this patient. Arrowheads show the

Leishmania spp amastigotes in extracellular and phagocyte, which

are oval and 2.9–5.7 × 1.8–4.0µm in size (Wright’s stain, ×1,000).

the anti-leishmanial drug Amphotericin B was used as rescue

therapy. After completion of therapy, there was no Leishmania spp

amastigote in the bone marrow. Finally, the child was discharged

56 days after admission. He was subsequently referred to the

hematological clinic for leukemia and follow-up. On February

2023, he was readmitted to the hospital for chemotherapy, when

mNGS test for peripheral blood was performed, and no reads of

L. donovani were detected.

Discussion

In the present study, we described a case of an infant diagnosed

with ALL on admission to the hospital with repeated fever and

coagulopathy after chemotherapy. A specific pathogen infection

was suspected after collecting demographic information and

learning about the history of lifelong residence in the forest region

in Sichuan province, clinical symptoms, laboratory test results, and

treatment history. Subsequently, the diagnosis of VL was definitely

confirmed by mNGS. The patient was treated with pentavalent-

Sb with adequate dosage and duration, and mNGS detected

356 L. donovani reads from the patient’s plasma sample. Anti-

leishmanial drug amphotericin B was subsequently administrated

as rescue therapy. To the best of our knowledge, this is a rare report

of leishmaniasis diagnosed by mNGS in leukemia, which provides

a valuable reference for VL diagnosis and therapy follow-up.

Due to its wide geographic distribution, leishmaniosis

constitutes a major public health problem. It is the second most

prevalent pathogen among parasitic diseases. Hepatosplenomegaly,

anemia, fever, cachexia, and leucopenia are all symptoms of this

kind of VL, which can be significantly more dangerous (13). Factors

that negatively impair the immune response, such as malnutrition

or AIDS, are known to increase the risk of acquiring the infection
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FIGURE 3

The follow-up diagnosis of Leishmania infection after using pentavalent antimonials 10 days by mNGS. (A) Mapping of Leishmania donovani reads on

the genome. (B) Distribution of pathogenic microorganisms reads in the absence of human, others, and unclassified reads.

and result in more severe manifestations (14). Previous studies

have reported that VL is a frequent opportunistic infection in

HIV-infected immunodeficient individuals that is very rarely

found in cancer patients (10, 13). Although immune suppression

by treatments or diseases has been rarely described as a risk factor

for VL, the most common underlying cause of immunodeficiency

in patients with VL are hematological malignancies apart from

HIV infection (15). Nonspecific manifestations such as fever,

fatigue, hepatosplenomegaly, hepatosplenomegaly, and weight

loss may be attributed to malignancy or related treatment, which

is difficult to diagnose in patients with tumors (13). Considering

the risk of infection, there is a semiquantitative interaction of

2 factors, i.e., epidemiological exposures and the net state of

immunosuppression. In this study, the boy resided since birth

in an endemic leishmaniasis region of Sichuan province, and

anti-leukemia chemotherapy resulted in immunosuppression.

Several studies reported a possible association between Leishmania

infection and cancer (16). Although local immune suppression

induced by malignant disorders may promote leishmaniasis

development, it is more likely that immunosuppression induced

by long-term anti-cancer chemotherapy is responsible for parasite

expansion (16).

As L. donovani is a specific pathogen that is not commonly

present in the environment, patient’s epidemiological history

and nonspecific manifestations may be easily overlooked. Also,

serological or polymerase chain reaction (PCR) reagents for

this pathogen are not routinely prepared in the laboratory,

which may delay the diagnosis of this infection. Some VL cases

have been misdiagnosed as autoimmune hepatitis, ALL, and

malignant lymphoma. They can also be asymptomatic, occur in

unusual locations, or be clinically or microbiologically refractory

(10, 15, 17, 18). In the present case, the symptoms of fever,

fatigue, and hepatosplenomegaly were attributed to the ALL or

related treatment, and the absence of amastigotes on repeat

bone marrow smears to leukemia diagnosis and surveillance,

which is why the infection of L. donovani was initially ignored.

Finally, the infection was definitely confirmed by mNGS as an

unknown and refractory infection. The diagnosis of Leishmania

infection is based on detecting Leishmania amastigote, and various

diagnostic techniques were used in making the diagnosis. Most

studies used combined immunological methods, while others

used plot molecular and parasitological tests. Some cases are

also challenging to diagnose due to the low parasite load and

low levels of antibodies (19). As an unbiased approach to the

detection of pathogens, mNGS has allowed crossing the divide

from microbial research to diagnostic microbiology, overcoming

limitations of current diagnostic tests and allowing for hypothesis-

free, culture-independent pathogen detection directly from clinical
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specimens (20, 21). In addition, for infectious diseases, collecting

patient medical history, especially epidemiological history, is very

important for diagnosis, as it can help us quickly adopt appropriate

detection methods to identify the pathogen. However, in this case,

the history of leukemia has its specificity, which has led to the

neglect of typical bone marrow microscopy and medical history

collection. Nonetheless, future clinical studies are needed to further

confirm the value of mNGS in diagnosing Leishmania infection.

In summary, VL should be considered a potential opportunistic

infection in patients with hematologic malignancies, especially

in immunosuppressed patients living in or having visited areas

where the disease is endemic. Unbiased mNGS may provide a

clinically actionable diagnosis of a specific infectious disease from

an uncommon pathogen, eluding conventional testing for weeks

after the initial presentation.
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targeted next generation 
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Mycobacterium tuberculosis complex (MTBC) infections are treated with 
combinations of antibiotics; however, these regimens are not as efficacious 
against multidrug and extensively drug resistant MTBC. Phenotypic (growth-
based) drug susceptibility testing on slow growing bacteria like MTBC requires 
many weeks to months to complete, whereas sequencing-based approaches 
can predict drug resistance (DR) with reduced turnaround time. We  sought to 
develop a multiplexed, targeted next generation sequencing (tNGS) assay that 
can predict DR and can be performed directly on clinical respiratory specimens. 
A multiplex PCR was designed to amplify a group of thirteen full-length genes 
and promoter regions with mutations known to be  involved in resistance 
to first- and second-line MTBC drugs. Long-read amplicon libraries were 
sequenced with Oxford Nanopore Technologies platforms and high-confidence 
resistance mutations were identified in real-time using an in-house developed 
bioinformatics pipeline. Sensitivity, specificity, reproducibility, and accuracy of the 
tNGS assay was assessed as part of a clinical validation study. In total, tNGS was 
performed on 72 primary specimens and 55 MTBC-positive cultures and results 
were compared to clinical whole genome sequencing (WGS) performed on paired 
patient cultures. Complete or partial susceptibility profiles were generated from 
82% of smear positive primary specimens and the resistance mutations identified 
by tNGS were 100% concordant with WGS. In addition to performing tNGS on 
primary clinical samples, this assay can be  used to sequence MTBC cultures 
mixed with other mycobacterial species that would not yield WGS results. The 
assay can be effectively implemented in a clinical/diagnostic laboratory with a 
two to three day turnaround time and, even if batched weekly, tNGS results are 
available on average 15 days earlier than culture-derived WGS results. This study 
demonstrates that tNGS can reliably predict MTBC drug resistance directly from 
clinical specimens or cultures and provide critical information in a timely manner 
for the appropriate treatment of patients with DR tuberculosis.

KEYWORDS

mycobacterium, tuberculosis, drug susceptibility, resistance, targeted sequencing, 
nanopore

OPEN ACCESS

EDITED BY

Peera Hemarajata,  
Association of Public Health Laboratories,  
United States

REVIEWED BY

Jennifer K. Spinler,  
Baylor College of Medicine, United States
Hannah Gray,  
University of California,  
Los Angeles, United States

*CORRESPONDENCE

Kimberlee A. Musser  
 kimberlee.musser@health.ny.gov

RECEIVED 14 April 2023
ACCEPTED 07 June 2023
PUBLISHED 29 June 2023

CITATION

Murphy SG, Smith C, Lapierre P, Shea J, Patel K, 
Halse TA, Dickinson M, Escuyer V, 
Rowlinson MC and Musser KA (2023) Direct 
detection of drug-resistant Mycobacterium 
tuberculosis using targeted next generation 
sequencing.
Front. Public Health 11:1206056.
doi: 10.3389/fpubh.2023.1206056

COPYRIGHT

© 2023 Murphy, Smith, Lapierre, Shea, Patel, 
Halse, Dickinson, Escuyer, Rowlinson and 
Musser. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 29 June 2023
DOI 10.3389/fpubh.2023.1206056

50

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1206056﻿&domain=pdf&date_stamp=2023-06-29
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1206056/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1206056/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1206056/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1206056/full
mailto:kimberlee.musser@health.ny.gov
https://doi.org/10.3389/fpubh.2023.1206056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1206056


Murphy et al. 10.3389/fpubh.2023.1206056

Frontiers in Public Health 02 frontiersin.org

1. Introduction

Tuberculosis (TB) continues to be a major contributor to global 
infectious disease deaths, with an estimated 10.6 million cases and 1.6 
million deaths worldwide in 2021 (1). TB patients are treated with 
combination drug regimens; however, the emergence of increasingly 
drug-resistant forms of Mycobacterium tuberculosis complex (MTBC) 
in recent decades necessitates the use of alternative therapies (2). 
Currently, strategies for therapy are still mostly decided based on 
culture-based phenotypic drug susceptibility testing (DST); however, 
MTBC DST requires weeks or months to complete due to the slow 
growth rate of this organism (3–7). During this time, patients can 
be prescribed ineffective drug regimens, leading to treatment failure 
or the promotion of drug resistance (DR) (8). The potential for these 
negative patient outcomes underscores the need for quicker methods 
to detect DR TB (DR-TB).

Molecular and sequencing-based assays offer a faster alternative 
for profiling DR in slow-growing organisms like M. tuberculosis. 
Commercially available molecular methods include Xpert MTB/RIF 
(Cepheid, Sunnyvale, CA) (9) and the GenoType MTBDRplus line 
probe assay (Hain Lifescience Nehren, Germany) (10), which detect 
mutations within specific “hot spot” regions to predict DR. These 
rapid diagnostics, endorsed by World Health Organization (WHO), 
have contributed to improved global detection of DR, particularly for 
the first-line drug rifampin (11–14). These assays, however, may miss 
mutations outside of the targeted “hot spot” regions and incur false 
negative results (15, 16), or, in rare circumstances, silent or neutral 
mutations may incur false positive results for DR (17, 18).

Sequencing-based methods provide greater resolution of these 
loci. Assays developed for the detection of DR include pyrosequencing 
(19–22) and Sanger sequencing (23) of individual targets; however, 
these methods are typically limited to single-plex reactions analyzing 
limited sections of DR determining loci. NGS assays offer more 
comprehensive DR profiles by identifying novel and high confidence 
DR-associated mutations throughout the genome (24, 25). Whole 
genome sequencing (WGS) assays, such as the one implemented by 
Wadsworth Center, identify high-confidence mutations that allow 
accurate prediction of phenotypic DR (26). These assays provide 
comprehensive DR profiling and the bioinformatic analysis can 
be routinely updated to include new loci and mutations in accordance 
with national and global WHO databases (27). WGS results can 
be  generated before phenotypic DST is available (7, 26, 28, 29); 
however, most clinically validated WGS assays are performed on 
MTBC-positive cultures that can require several weeks of incubation (30).

Targeted NGS (tNGS) assays can further reduce the time required 
for comprehensive DR profiling by amplifying numerous loci directly 
from clinical specimens. Several tNGS assays for DR profiling have 
been described in the literature, including laboratory-developed 
assays (31–35) and the commercially available Genoscreen Deeplex 
(36, 37) and Ion AmpliSeq (38). These assays vary in a number of ways 
including the selection and size of targets, how multiplexed the PCR 
reactions are, and the sequencing platforms employed, which include 
Illumina (31, 35, 36), Ion Torrent (32, 34, 38), and Oxford Nanopore 
Technologies (33, 39, 40).

In this paper, we  describe the design, validation, and 
implementation of a tNGS assay for direct DR profiling on MTBC-
positive clinical specimens at the Wadsworth Center. This assay 
includes a simplified set up with two multiplexed PCR amplification 

reactions that target thirteen full-length loci implicated in DR to first- 
and second-line MTBC antimicrobials. The assay was optimized for 
sequencing on an Oxford Nanopore Technologies platform, enabling 
real-time analysis, a two-to-three-day turnaround time with typically 
<2 h of sequencing time, and a cost of less than $80 per sample. In 
addition to performing tNGS on primary specimens, this assay was 
found to be accurate and generated susceptibility profiles comparable 
to those currently obtained with our existing WGS assay, which can 
only be performed on cultured isolates. These results demonstrate that 
tNGS-based assays can provide a reliable and cost-effective tool for 
early detection of DR-TB and should be considered for implementation 
in public health and clinical laboratories with MTBC testing needs 
and resources.

2. Materials and methods

2.1. Sample preparation

Samples submitted for mycobacterial testing were handled in a 
BSL-3 laboratory. Sterile tissue specimens (e.g., lung tissue, lymph 
node tissue) were homogenized in sterile saline. Respiratory 
specimens (e.g., sputum, bronchial washes, and bronchoalveolar 
lavages) underwent digestion and decontamination to optimize 
mycobacteria recovery. This procedure uses a 3.5% sodium hydroxide 
solution to dissolve mucus, lyse organic material, and inactivate other 
bacteria. Following incubation, the solution was neutralized, bacteria 
were concentrated by centrifugation, and the pellet was resuspended 
in a buffer. Processed samples were used to inoculate liquid cultures 
(MGIT 960, BACTEC) and underwent differential staining and smear 
microscopy. Aliquots for molecular testing were heat inactivated 
(80°C for 1 h) before handling in a BSL-2 laboratory.

2.2. Direct smear microscopy for acid-fast 
bacilli

Processed primary specimens were stained using the Ziehl-
Neelsen Carbol Fuchsin method according to manufacturer 
instructions (Remel Inc., San Diego, CA) and examined under a 
microscope for the presence of Acid-Fast Bacilli (AFB). Samples 
positive for AFB were further categorized based on the number of 
AFB observed, with numerous defined as >9 AFB per high power field 
(HPF-1000X) (++++), moderate as 1–9 AFB per HPF (+++), few as 
1–9 AFB per 10 HPF (++), and rare as 1–9 AFB per 300 HPF (+). 
Smear negative samples are defined as those with no AFB observed.

2.3. Real-time PCR for MTBC detection

DNA was extracted via mechanical lysis with FastPrep24 (MP 
Biomedicals, Solon, Ohio) and tested for M. tuberculosis complex 
(MTBC) DNA using previously described real-time PCR assay (41). 
This multiplexed assay includes a single-copy (ext-RD9) and multi-
copy (IS6110) target for MTBC detection and a target for 
Mycobacterium avium complex detection (ITS). All specimens 
included in this study were positive for MTBC DNA via a real-
time PCR.
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2.4. Whole genome sequencing

Samples included in this study were analyzed using a 
NYS-validated WGS assay as previously described (26). Briefly, a 
manual DNA extraction utilizing InstaGene reagent (Bio-Rad 
Laboratories, Hercules, CA), mechanical lysis, and centrifugation was 
performed on heat-killed isolates identified as MTBC-positive. 
Concentration of DNA was assessed using Qubit DNA fluorometry 
(Thermo Fisher Scientific, Waltham, MA) and samples were prepared 
for Illumina sequencing on a MiSeq or NextSeq instrument (Illumina, 
San Diego, CA). Results were analyzed using a clinically validated 
in-house developed bioinformatics pipeline that identifies high-
confidence and unknown/novel mutations (26).

2.5. DNA extraction and controls for tNGS

For tNGS, an automated lysis and purification-based DNA 
extraction method (EZ1 Virus DSP Kit, Qiagen) was used to minimize 
DNA shearing. On this platform, 100 μL of specimen was extracted 
and eluted in 60 μL. Each run included a positive and negative control, 
consisting of 100 μL of Mycobacterium bovis BCG MGIT positive 
culture and 100 μL of sterile molecular grade water, respectively. Both 
extraction controls were processed in parallel with clinicals specimens 
and serve as reagent and sequencing controls for the entire tNGS assay.

2.6. Primer design and PCR

Thirteen primer sets were designed to amplify full-length genes 
(rpoB, katG, mabA, inhA, embB, gyrA, gyrB, ethA, rrs, rpsL, and pncA) 
and/or promoter regions (oxyR-ahpC, mabA-inhA, embC-A, pncA, 
and eis) implicated in DR to first- and second-line MTBC 
antimicrobials, including rifampin, isoniazid, ethambutol, 
pyrazinamide, fluoroquinolones, ethionamide, streptomycin, and 
kanamycin/amikacin (Supplementary Table S1). Possible primer pairs 
were generated using Primer3 (42) and checked for in silico 
interactions with ThermoFisher’s Multiple Primer Analyzer Tool 
(ThermoFisher Scientific, Waltham, MA) (43). Primer sets were 
multiplexed into two PCR reactions referred to as “Pool A” and “Pool 
B” and primer concentrations were optimized to obtain balanced 
amplification of each target (Supplementary Table S2). Each 40 μL 
PCR reaction contained Long Amp Hot Start Taq Mastermix (New 
England Biolabs, Ipswich, MA), DMSO (5% final concentration), and 
5 μL of template. PCR was run for 40 cycles (with a 3 min and 30 s 
extension time) according to manufacturer instructions. Amplicons 
were visualized via gel electrophoresis alongside a 1 kilobase ladder.

2.7. Library preparation for nanopore 
sequencing

PCR reactions for each sample were combined and prepared for 
sequencing using ligation-based reagents from Oxford Nanopore 
Technologies (ONT; Oxford, United Kingdom) and adapted protocols 
(44). An overview of library preparation steps is illustrated in 
Figure  1A. Briefly, amplicons were purified using AMPure XP 
(Beckman Coulter, Brea, CA) and quantified using a Qubit™ Flex 

Fluorometer (ThermoFisher Scientific, Waltham, MA). Samples were 
normalized for concentration prior to a two-step “spike-in” method 
for DNA end repair and barcode ligation (44). Barcoded products 
were purified using AMPure XP, followed by adapter ligation and a 
final AMPure XP clean-up. Final eluate concentrations were 
measured, samples were pooled in equal ratios, and the final library 
was diluted to a concentration of 35 ng/μL. A 12 μL volume of the 
library was loaded onto an R9 flow cell according to manufacturer 
instructions. The run was sequenced on either a MinION Mk1C or a 
GridION platform with high-accuracy base calling until approximately 
50 k reads per sample were obtained. Flow cells were washed according 
to manufacturer instructions and reused only if the flow cell retained 
sufficient active pores (>450) and only with uniquely barcoded 
samples to limit potential cross-contamination.

2.8. Bioinformatic analysis

Oxford Nanopore Technologies sequencing data is analyzed in 
real-time using a custom bioinformatics pipeline (Figure 1B), akin to 
the NYS-validated WGS pipeline described in Shea et al. (26). The 
pipeline reads in each of the raw fastq files as they are generated using 
the MinKNOW interface on the instrument. Fastq files are 
demultiplexed using Guppy on a separate server via command line 
interface (CLI) with default parameters. Reads are combined into a 
final fastq file for each analyzed sample. The pipeline then assesses the 
taxonomic content of each file using Kraken2 (version 2.1.2) and the 
k2_standard_08gb_20220607 database (45). All non-Mycobacterium 
genus reads are filtered out for the rest of the downstream analyses. 
Reads are mapped to Mycobacterium tuberculosis H37Rv reference 
genome with minimap2 (version 2.24-r1122) (46) and amplicon 
primers sequences are hard-clipped from both ends using SAMtools 
(v 1.15.1) with ampliconclip (47). Finally, a high-quality consensus 
sequence is generated for each sample using SAMtools mpileup (47) 
with minimum mapping quality and base quality of Phred 30 and 12, 
respectively, and minimum depth of 10× and 60% allele agreement. 
Indels require 40× minimum depth and 55% allele agreement. In cases 
where indels are directly adjacent or inside homopolymeric regions of 
three or more identical bases, percent allele agreement is raised to 
75%. If a position (variant or invariant) does not reach these 
requirements, it is assigned as ‘N’ on the consensus sequence. The 
pipeline identifies 86 high-confidence resistance mutations across the 
51 positions listed in Supplementary Table S1, and notes novel/
unknown mutations. The different cutoffs for single nucleotide 
polymorphisms (SNPs) and insertions/deletions (INDELs) were 
empirically determined by assessing the different allele frequencies 
(AF) over several runs and determining the best AF cutoff to avoid 
calling any false positive SNP or INDEL variants.

3. Results

3.1. Validation of tNGS for clinical use

To validate the tNGS assay for clinical use, we assessed sensitivity, 
reproducibility, specificity, and accuracy. To assess sensitivity of tNGS 
on respiratory specimens, a culture of the M. tuberculosis reference 
strain H37Rv (ATCC 25618) was serially diluted and spiked into 
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processed negative sputa to determine the limit of detection (LOD). 
Average Ct-values for MTBC detection ranged from 24.2 to 
undetected and the concentration of M. tuberculosis in each PCR 
reaction ranged from 108 CFU to 0.00108 CFU (21,600 CFU to 
0.216 CFU per mL). tNGS was performed on three replicate dilution 
series and sequenced to a total of approximately 80 k reads per sample. 
Quality control (QC) metrics were met for all targets (and 
corresponding drug classes) down to a lower detection limit of 
0.108 CFU per reaction (Supplementary Table S3).

To measure reproducibility, three replicates of three smear positive 
specimens were processed in parallel (intra-assay) or on separate days 
(inter-assay). Results were concordant within and between runs, as 
shown in Supplementary Table S4. Specificity was tested against a 
panel of five organisms – including two mycobacteria (Mycobacterium 
fortuitum and Mycobacterium abscessus) and three other organisms 
common in sputa (Klebsiella pneumoniae, Streptococcus pneumoniae, 
and Haemophilus influenzae). No cross-reactivity was detected in this 
panel of organisms (Supplementary Table S5).

3.2. tNGS detection of drug resistance 
directly on respiratory specimens

To measure assay accuracy, tNGS was performed on a panel of 72 
extracted primary specimens that were selected for their diverse 
mutations and drug resistance profiles. All specimens included in the 
panel were confirmed positive for MTBC DNA via real-time PCR. The 
panel consisted of 35 retrospective blinded samples and 37 prospective 
samples received over a period of 8 months (May 2022 to January 
2023). The panel included predominantly sputa (n = 58, 81%) along 
with other respiratory specimens (i.e., bronchoalveolar lavages and 
bronchial washes) and rarer specimen types (i.e., lymph nodes and lung 
tissue). Specimens covered a range of MTBC concentrations (assessed 
by AFB smear and real-time PCR); most specimens included were AFB 

positive (n = 65, 90%), but five AFB negative samples and two untested 
samples were also included in the study (Supplementary Table S6).

The two multiplex PCR reactions were performed on the panel of 
specimens and amplification was confirmed by gel electrophoresis. 
Amplicons that could be visualized with ethidium bromide gel staining 
following PCR were present in 78% of the samples tested. High 
confidence resistance and unknown/novel mutations and DR profiles 
identified by tNGS were compared to those obtained from the 
NYS-validated WGS assay on isolates from the matched specimens. 
Profiles were defined according to CDC definitions: multidrug resistant 
(MDR; INH and RIF resistant), pre-extensively drug resistant (pre-
XDR; INH, RIF, FQ), extensively drug resistant (XDR; INH, RIF, FQ, 
KAN/AMI). Resistance to other MTBC antimicrobials not meeting the 
criteria above is defined here as other mono- or poly-resistant (R). The 
results for each specimen are shown in Supplementary Table S6 and an 
aggregate summary is provided in Table 1. Of the MTBC-positive 
samples sequenced, tNGS correctly identified 44 pan-susceptible, 5 
mono/poly-resistant, and 5 MDR, and 1 pre-XDR, and 1 XDR strain, 
all determined to have a DR profile identical to the WGS DR profile 
obtained from the culture isolate from the same case. At the mutation 
level, two tNGS reports identified additional unknown mutations in 
primary specimens that were not identified by WGS performed on 
cultured isolates. This raises the potential for tNGS to detect 
subpopulations in the primary clinical specimens. Overall, these results 
demonstrate that tNGS can accurately detect susceptible and DR forms 
of MTBC directly from primary specimens.

3.3. Primary specimen tNGS data quality

To evaluate data quality, samples were categorized based on the 
number of targets that met quality control thresholds defined by the 
analysis pipeline, either as complete susceptibility profiles (all 13 
targets pass QC), partial susceptibility profiles (≥10 targets pass QC), 

FIGURE 1

Overview of library preparation steps and bioinformatic analyses for tNGS nanopore sequencing. (A) For library preparation, two multiplex PCR 
reactions for each sample were combined and processed with AMPure bead-based clean-up steps (green arrows, “C”), enzymatic reactions (black 
arrows), dsDNA quantification via Qubit and normalization (black rectangles), and heat inactivation steps (red asterisk). (B) Bioinformatic tools used to 
analyze sequencing data and identify high confidence resistance mutations in MTBC. Diagrams created with BioRender.com.
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or no profile (not sequenced). In the panel of 72 primary specimens, 
tNGS produced 68% complete profiles, 10% partial profiles, and the 
remaining 22% were not sequenced due to PCR failure. These results 
indicate that targeted sequencing data can be obtained direct from 
primary specimens, although there is some variability in data quality.

To determine the factors that influence tNGS target failure and 
establish quality criteria for testing, the bacterial load in samples was 
estimated using AFB smear microscopy and MTBC real-time PCR 
Ct-values. Complete or partial profiles were obtained for 83% of the 
smear positive specimens tested (n = 65) (Figure  2A). Within the 
subset of smear positive samples, these percentages correlated with 
AFB smear results: 100% of samples with numerous AFB produced 
complete profiles, whereas complete or partial profiles were obtained 
for 93% of AFB moderate, 86% of AFB few, and 55% of AFB rare 
samples (Figure 2B). Of the five smear negative samples tested, only 
one specimen yielded a susceptibility profile; however, this sample had 
a low Ct-value uncharacteristic of a smear negative result 
(Supplementary Table S6). A smear could not be performed on several 
specimens due to specimen viscosity or insufficient volume for testing. 
These results indicate that target amplification is dependent on the 
quantity of AFB cells in the specimen and suggest that AFB smear-
positive specimens are the most likely to yield complete 
susceptibility profiles.

Samples were also stratified by Ct-values derived from MTBC real-
time PCR testing. Ct-values for the single-copy MTBC target (ext-RD9) 
ranged from 22.1 to 37.4 (or undetected) (Supplementary Table S6). 
Lower Ct-values yielded more complete tNGS sequencing results 
(Figure 2C); for values of 34.9 and below, 89% of samples yielded either 
complete or partial susceptibility profiles. In contrast, samples with 
Ct-values ≥35 were more prone to PCR failure (82%) and only two 
samples above this threshold produced a partial profile. Examination 
of Ct-values for IS6110, which is a multi-copy target and considered a 
more sensitive marker for MTBC detection, showed similar trends but 
with different ranges (Figure 2D). IS6110 Ct-values ranged from 18.4 
to 38.0 in the primary specimens tested (Supplementary Table S6). 
Samples with Ct-values ≤31.9 yielded either complete or partial 
susceptibility profiles (91%), whereas Ct-values ≥32 more were more 
prone to PCR failure (73%). These results indicate the quality of tNGS 
data is dependent on the amount of MTBC DNA present in the 

specimen and further suggests that quantification via real-time PCR 
may be used as a reliable metric for assessing sample quality for tNGS.

3.4. tNGS improves turnaround times

The ability of tNGS to generate comprehensive susceptibility 
profiles directly from a patient specimen has the potential to reduce 
turnaround times. A subset of 16 primary specimens with matched 
WGS results were used to calculate turnaround times; samples 
included in the analysis had tNGS performed as part of the routine 
testing algorithm (i.e., initiated within 1 week of MTBC detection) and 
yielded a positive MGIT culture suitable for WGS (Figure 3A). The 
average number of days required for MTBC detection via real-time 
PCR, tNGS (from extraction to result), MTBC isolation, and WGS 
(from extraction to result) are shown in Figure 3B.

Both tNGS and WGS samples were batched and run weekly. On 
average, tNGS results were available 10 days from sample receipt (or 7 
business days if excluding weekends) (Figure 3B). This represents a 
15 day reduction in turnaround time for tNGS versus WGS, with the 
improvement among samples ranging from 6 to 31 days (Figure 3C). 
Notably, one specimen included in this study was identified as XDR 
using tNGS and these results were available within 5 days from sample 
receipt, whereas culture-based WGS results were not available for an 
additional 3 weeks. These differences in turnaround time can largely 
be attributed to the incubation period required to obtain an AFB-positive 
culture and subsequent characterization (average 12.2 days); however, 
we also found that processing times – from sample extraction to final 
result – were shorter for nanopore-based tNGS (4.3 days or 2.3 business 
days) compared to Illumina-based WGS (6.3 days) in our current 
workflows (Figure  3B). These results demonstrate nanopore-based 
tNGS can offer comprehensive DR detection before MTBC isolates are 
available for WGS or culture-based DST.

3.5. tNGS on MTBC-positive cultures

tNGS may also provide additional utility for identifying high-
confidence and unknown/novel mutations within MTBC-positive 
cultures. tNGS was performed on a panel of 55 MTBC-positive cultures, 
21 of which were dual-positive for M. avium complex. Complete profiles 
were obtained for 100% isolates, whereas dual-positive cultures yielded 
either complete (86%) or partial profiles (14%) (Supplementary Table S7). 
Profiles were in 100% concordance with WGS (Table 2); however, two 
dual-positive samples did not have WGS available for comparison due 
to failure to obtain pure MTBC culture. These results demonstrate that 
tNGS can build comprehensive DR profiles from cultured material, even 
for mixed cultures that may not meet quality criteria for WGS analysis.

3.6. tNGS SNP-based lineage prediction

In addition to DR profiling, tNGS data can also be used to identify 
the seven main phylogenetic MTBC lineages to provide supporting 
data during epidemiological investigations. In silico lineage predictions 
tools often utilize single-nucleotide polymorphisms (SNPs) to classify 
each lineage, but these SNP catalogs may vary (48). A SNP-based 
algorithm for lineage prediction was designed using the targets 
available in the tNGS assay (Figure 4). This algorithm initially relies 

TABLE 1 Comparison of DR profiles identified by tNGS performed on 
primary specimens to WGS performed on matched MTBC-positive 
cultures.

WGS (culture)

S R MDR Pre-
XDR

XDR

tNGS 

(Primary)

S 44 0 0 0 0

R 0 5 0 0 0

MDR 0 0 5 0 0

Pre-XDR 0 0 0 1 0

XDR 0 0 0 0 1

Not 

sequenced

13 1 2 0 0

Total 57 6 7 1 1

Profiles are categorized as pan-susceptible (S), mono- or poly-resistant (R), multidrug 
resistant (MDR), pre-extensively drug resistant (pre-XDR), and extensively drug resistant 
(XDR).

54

https://doi.org/10.3389/fpubh.2023.1206056
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Murphy et al. 10.3389/fpubh.2023.1206056

Frontiers in Public Health 06 frontiersin.org

on gyrB mutations that distinguish M. tuberculosis (gyrB 403 GCG 
mutation) from other Mycobacterium species (gyrB 403 TCG). For 
M. tuberculosis strains, the algorithm identifies markers for lineage 1 
(gyrB 291 ATC), lineage 3 (oxyR-ahpC, −88 A), and lineage 4 (katG 
463 CGG). MTBC strains not falling into these categories are classified 
as likely lineage 2; “likely” reflects the limitation that lineage 2 cannot 
be distinguished from the rarer lineage 7 with this set of loci. Other 
members of the MTBC are identified as lineage 5 (ethA 124 GAC), 
lineage 6 or 9 (inhA 78 GCG), M. bovis or bovis BCG (pncA 57 GAC), 
M. orygis (gyrB 290 GCA), or M. caprae (gyrB 356 GCG). Strains not 
fitting these criteria are not assigned with a lineage determination.

These SNP-based lineage predictions were performed on all 
samples included in this study (primary specimens and cultures) 
where both tNGS and WGS results were available (n = 109). This panel 
included lineages 1–4 and included one M. bovis BCG strain. 
Comparison of lineages derived in silico from tNGS and WGS are 
shown in Table 3. 98.2% of lineages were correctly identified by tNGS, 
0.9% were undetermined due to target failure, and one lineage 4 strain 
(0.9%) was identified as “likely lineage 2” due to a heterogeneous SNP 

at katG 463. These results show that SNP-based lineage predictions are 
possible and highly accurate using a small number of loci.

3.7. Fiscal analysis of tNGS

The cost associated with nanopore-based tNGS is detailed in 
Table 4. The fixed cost per sample includes reagents for extraction 
($12.17), PCR ($5.90) and library preparation ($37.21). The cost of gel 
electrophoresis is not included as this is considered an optional step. 
Some tNGS costs per sample are dependent on batch size; for example, 
each tNGS sequencing run requires $25.90 of reagents for flow cell 
priming, loading, and washing/storing regardless of the number of 
samples run. Other costs depend on flow cell reusage; we determined 
costs based on an average of 8 samples per run and up to three flow 
cell uses. Based on these estimates, the total estimated cost is $78.31 
per sample. This analysis also does not include plastic consumables, 
technician time, instrumentation, or facility overhead as these factors 
may be facility specific and add to the overall price of the test. The cost 

FIGURE 2

tNGS data completeness is arranged by AFB smear (A) and (B) tNGS data completeness is arranged by AFB smear and real-time PCR values for (C) a 
single-copy target RD9 and (D) multi-copy target IS6110 for MTBC. Profiles are defined as complete (all 13 targets pass QC), partial (≥10 targets pass 
QC), or not sequenced.
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per sample is similar to the cost of high-throughput WGS sequencing 
currently performed at the Wadsworth Center (49). These analyses 
indicate that tNGS assays can be cost-effective for implementation in 
diagnostic/clinical laboratories.

4. Discussion

4.1. tNGS is sensitive, scalable, and reliable 
for rapid prediction of drug resistance

tNGS represents a sensitive, reliable, and cost-effective method for 
detecting DR-TB direct from primary specimens in a clinical or 

diagnostic laboratory setting. This assay accurately identified diverse 
DR profiles – including MDR and XDR strains – with easier set-up 
than single-target assays and faster turnaround times than testing 
performed on cultured MTBC isolates, including WGS and 
phenotypic DST. This laboratory-developed tNGS assay represents an 
improvement to our current testing algorithm by offering 
comprehensive DR profiling shortly after TB diagnosis. Our study 
revealed a 15 day improvement in turnaround time compared to 
culture-based WGS, but additional experience will continue to inform 
tNGS implementation and improve the time to result.

4.2. tNGS assays require careful selection 
of targets and high-confidence mutations

tNGS assays require careful selection of targets and high 
confidence resistance mutations (50). Our assay targets full-length loci 
associated with resistance to first- and second-line MTBC 
antimicrobials and is consistent with other targeted assays (31–38), 
with some variation in number and size of loci included. In contrast 
to molecular beacon and line probe assays which focus just on hot 
spot regions, the assay described in this study examines full-length 
genes and promoter regions of many targets to allow for detection of 
rare and atypical resistance mutations. Although most smear positive 
specimens yielded complete susceptibility profiles, we  found that 
longer targets (i.e., embB, rpoB) were more prone to low-coverage or 
amplification failure, resulting in partial susceptibility profiles. This 
observation suggests that sensitivity may be improved by splitting 
larger loci into multiple overlapping amplicons. One additional 
limitation of tNGS assays is that amplification may fail if strains carry 

FIGURE 3

Turnaround times for MTBC molecular testing and sequencing. (A) MTBC testing algorithm at the Wadsworth Center. Processed specimens are used 
for mycobacterial culture. Heat killed aliquots are tested for MTBC DNA via real-time PCR and positive specimens are then referred to tNGS. When 
positive cultures are available, WGS is performed. Phenotypic drug-susceptibility testing (DST) is performed only if unknown/novel mutations or 
multidrug resistant strains are detected. (B) Timeline showing the average number of days required for MTBC DNA detection via real-time PCR, tNGS 
(from extraction to result), MTBC isolation, and WGS (from extraction to result) (n = 16). Note that tNGS and WGS assays are batched weekly and 
average turnaround times include non-business days (i.e., weekends). Estimated time for first-line DST results are indicated with a dashed arrow. 
(C) Turnaround time (TAT) improvements (in days) of direct tNGS compared to culture-derived WGS.

TABLE 2 Comparison of DR profiles identified by tNGS and WGS 
performed on MTBC-positive cultures.

Whole Genome Sequencing (Culture)

S R MDR pre-
XDR

Not 
Sequenced

tNGS 

(Culture)

S 45 0 0 0 2

R 0 3 0 0 0

MDR 0 0 3 0 0

pre-

XDR

0 0 0 2 0

Total 45 3 3 2 2

Profiles are categorized as pan-susceptible (S), mono or poly-resistant (R), multidrug 
resistant (MDR), and pre-extensively drug resistant (pre-XDR). Not sequenced indicates that 
a high-quality sample was not available for WGS analysis.
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mutations or deletions in primer binding regions, but these 
undetermined results will be further understood upon reflexing to 
WGS or culture-based DST in diagnostic testing algorithms 
(Figure 3A).

The accuracy of sequencing-based predictions for TB DR 
compared to phenotypic DST have been previously established for 
WGS (26); however, both tNGS and WGS assays require regular 
updates to keep pace with the emergence of new DR mutations. In 
the current Wadsworth Center testing algorithm, isolates with 
novel mutations undergo DST in order to characterize the 
potential impact of these mutations. A minimum of three isolates 
with paired phenotypic DST results or strong supporting literature 
are required to move novel mutations – initially reported as 
“unknowns” – to either a neutral or high confidence DR mutation 
list (26). Laboratories with smaller testing catalogs may refer to 

the WHO database (51) or other supporting literature to 
supplement their high confidence DR mutation list. tNGS assays 
may be updated with additional targets or multiplex pools to keep 
pace with emerging need, such as genotypic DST predictions for 
drugs included in the BPaLM/BPaL (bedaquiline, pretomanid, 
linezolid, moxifloxacin) regimens for treating MDR and XDR 
infections (52).

FIGURE 4

In silico SNP-based lineage classifications for MTBC. The SNP-based ID algorithm looks for unique SNPs in gyrB, oxyR-ahpC, katG, ethA, inhA, and 
pncA in the order shown below. Diagram created with BioRender.com.

TABLE 3 Concordance of in silico SNP-based lineage classifications from 
tNGS and WGS datasets.

Lineage (WGS)

1 2 3 4 BCG

Lineage 

(tNGS)

Lineage 1 14 0 0 0 0

Likely Lineage 2 0 31 0 1 0

Lineage 3 0 0 11 0 0

Lineage 4 0 0 0 50 0

M. bovis or BCG 0 0 0 0 1

Undetermined 1 0 0 0 0

Total 15 31 11 51 1

TABLE 4 Costs associated with tNGS.

tNGS 
steps

Total number of samples run on each flow 
cell

1 
sample

8 
samples

16 
samples

24 
samples

Extraction $12.17 $97.36 $194.72 $292.08

PCR $5.90 $47.22 $94.45 $141.67

Library 

preparation $37.21 $297.69 $595.37 $836.40

Nanopore 

sequencing 

reagents*

$25.90 

(1 run)

$25.90 

(1 run)

$51.81 

(2 runs)

$77.71 

(3 runs)

Nanopore 

flow cell** $475.00 $475.00 $475.00 $475.00

Total cost 

per sample $556.19 $117.89 $88.21 $78.31

*Includes the cost of reagents for priming, loading, and washing/storing the flow cell. Cost is 
calculated per run and is independent of number of samples. **Calculations assume up to 8 
samples per run and up to three re-uses of the flow cell.
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4.3. Considerations for implementing 
Oxford Nanopore sequencing

Special considerations and workflow adaptations are required for 
using Oxford Nanopore Technologies sequencing platforms. Raw data 
files from nanopore sequencing devices are basecalled into fastq files 
that are available for analysis. Newer versions of these basecalling 
algorithms continually provide better sequencing accuracy and, 
depending on the algorithm and flow cell version used, these 
accuracies can approach and even surpass Illumina-based platforms 
(53). These improvements demand greater processing requirements 
and thus can create lag times between sequencing and fastq file 
generation, thus, the use of graphics processing unit (GPU) or Cloud 
computing resources are highly recommended for basecalling and 
data post-processing (54, 55). Both the MinION Mk1C and GridION 
platforms from Oxford Nanopore Technologies were used in this 
study. While both platforms were able to take advantage of their GPUs 
for basecalling, we found that the compute power of GridION was able 
to perform high accuracy basecalling in real-time, enhancing 
turnaround times compared to the MinION Mk1C. The GridION, 
however, occupies a larger footprint in the laboratory and is less 
portable than the Mk1C for applications in resource-limited settings.

Future applications of this technology include detection of 
heterozygous positions, but this is currently limited by the accuracy 
of the sequencing data. Newer nanopore chemistries paired with more 
advanced basecalling algorithms show improved accuracy and 
potential for heterozygous detection (56). However, these updates to 
chemistry also necessitate frequent validation and verification. Thus, 
adoption of commercial products with longevity are critical for clinical 
implementation and use.

Consistent with other studies (40), we found that nanopore-based 
tNGS was cost-effective and comparable to current high-throughput 
WGS assays. Nevertheless, nanopore costs can vary widely depending 
on batch sizes and flow cell usage. To minimize cost, this validation 
study successfully obtained accurate tNGS data with re-used flow cells; 
however, we  suggest using unique barcodes for each run to limit 
potential cross-contamination in clinical testing. Laboratories with 
lower testing volumes may consider combing multiple targeted assays 
onto one nanopore flow cell.

In conclusion, this study demonstrates the utility of a clinical tNGS 
assay as an early detection method for drug resistance direct from 
MTBC-positive specimens. This particular tNGS assay showed more 
than a two-week improvement in turnaround time compared to culture 
and WGS workflows at a similar cost. This method also offers additional 
utility for cultures that are low quality for WGS analysis due to mixed 
organisms or low MTBC DNA concentration. Early detection methods 
are an essential part of TB testing algorithms to ensure that patients are 
expeditiously placed on appropriate drug treatment regimens.
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Background: Urinary tract infections (UTIs) remain a diagnostic challenge and

often promote antibiotic overuse. Despite urine culture being the gold standard

for UTI diagnosis, some uropathogens may lead to false-negative or inconclusive

results. Although PCR testing is fast and highly sensitive, its diagnostic yield is

limited to targeted microorganisms. Metagenomic next-generation sequencing

(mNGS) is a hypothesis-free approach with potential of deciphering the

urobiome. However, clinically relevant information is often buried in the

enormous amount of sequencing data.

Methods: Precision metagenomics (PM) is a hybridization capture-based

method with potential of enhanced discovery power and better diagnostic

yield without diluting clinically relevant information. We collected 47 urine

samples of clinically suspected UTI and in parallel tested each sample by

microbial culture, PCR, and PM; then, we comparatively analyzed the results.

Next, we phenotypically classified the cumulative microbial population using the

Explify® data analysis platform for potential pathogenicity.

Results: Results revealed 100% positive predictive agreement (PPA) with culture

results, which identified only 13 different microorganisms, compared to 19 and

62 organisms identified by PCR and PM, respectively. All identified organisms

were classified into phenotypic groups (0–3) with increasing pathogenic

potential and clinical relevance. This PM can simultaneously quantify and

phenotypically classify the organisms readily through bioinformatic platforms

like Explify®, essentially providing dissected and quantitative results for timely

and accurate empiric UTI treatment.

Conclusion: PM offers potential for building effective diagnostic models beyond

usual care testing in complex UTI diseases. Future studies should assess the

impact of PM-guided UTI management on clinical outcomes.

KEYWORDS

urinary tract infections, uropathogen, PCR, MNGs, precision metagenomics, next-
generation sequencing, UTI management, UTI treatment
frontiersin.org0161

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1221289/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1221289/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1221289/full
https://orcid.org/0000-0002-9323-6818
https://orcid.org/0000-0002-2818-7474
https://orcid.org/0000-0001-9067-2406
https://orcid.org/0000-0001-8886-1101
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2023.1221289&domain=pdf&date_stamp=2023-07-04
mailto:rsharma@aalabs.com
mailto:rahuldnadx@gmail.com
https://doi.org/10.3389/fcimb.2023.1221289
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2023.1221289
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Almas et al. 10.3389/fcimb.2023.1221289
1 Introduction

Urinary tract infections (UTIs) are common human illnesses,

affecting nearly 50% of people at least once in their life and

disproportionately impacting adult women (Sihra et al., 2018). In

the United States alone, more than 1 million people suffer from

difficult-to-treat or chronic UTIs every year. In clinical settings,

UTIs are one of the leading causes of antibiotic prescriptions in

adults, which alter urinary tract microbiome and result in

antimicrobial resistance—a substantial challenge for public health

in recent years (McAdams et al., 2019; Finton et al., 2020). Another

important consideration is that complex infectivity can trigger

systemic infection with deleterious harm (Neugent et al., 2020;

Kaushik et al., 2021). Furthermore, clinical management of UTIs

has become more difficult because of resistance to most beta-lactam

antibiotics (Rajabnia et al., 2019). No doubt that urinary tract

infectivity can lead to costly and unproductive treatment and

recurrent disease and trigger undesirable quality of life outcomes

(Zhang et al., 2022). And it is likely that much of the UTI diagnostic

challenge comes from pairing a matrix and microbiome that is

conducive for large numbers of potential pathogens with current

limitations in molecular testing (Mouraviev and McDonald, 2018;

Lee et al., 2020; Jones-Freeman et al., 2021).

The standard method of uropathogen diagnosis is often

microbial culture and susceptibility testing. But because the

diagnostic yield of urine culture is frequently influenced by prior

antibiotic exposure, poor sensitivity, and difficult-to-culture or

uncultivable microorganisms, culturing techniques remain

ineffective for up to 50% of symptomatic women (Price et al.,
Frontiers in Cellular and Infection Microbiology 0262
2016). And although polymerase chain reaction (PCR) methods can

rapidly detect pathogens directly from clinical samples compared to

culturing, including uncultivable microorganisms, PCR methods

are limited to amplifying pretargeted species (Smith and Osborn,

2009). There is an unmet need for additional laboratory techniques

to timely and accurately detect uropathogens.

In recent years, laboratorians have advanced uropathogen

discovery with metagenomic next-generation sequencing (mNGS)

(Mouraviev and McDonald, 2018). Unlike PCR, the mNGS

approach is target-agnostic and does not require a prior

microorganism knowledge. And by sequencing all nucleic acids in

a sample, a wide net is cast likely capturing any existing

microorganisms, including the urobiome (Figure 1). The

application of mNGS has shown promise in various UTI case

studies (Li et al., 2020; Duan et al., 2022). But the adoption of

mNGS is slow in the clinical laboratory due to the associated costs,

expertise, and bioinformatic workflows required (Sharma et al.,

2015; Carpenter et al., 2022). Moreover, extracting clinically

relevant information can be challenging for target-agnostic

approaches—based on rRNA gene amplification and shotgun

sequencing after the depletion of host DNA—that promote a high

microbiome yield (Price et al., 2021). Alternatively, a hybridization

capture-based targeted sequencing approach, also known as

precision metagenomics (PM), has potential to bridge the

diagnostic gap by providing enhanced discovery power with

better diagnostic yield without diluting clinically relevant

information (Cariou et al., 2018)—also enabling important

uropathogen discovery including fastidious, obligate anaerobic,

and non-culturable microorganisms (Stinnett et al., 2021).
FIGURE 1

Workflow for Urinary Tract Infection (UTI) precision metagenomics analysis.
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Accordingly, PM has potential to overcome limitations of both

routine and robust UTI testing methods directly from

clinical samples.

The purpose of this study is 2-fold. First, we collected 47 urine

samples of clinically suspected UTI and in parallel tested each

sample by microbial culture, PCR, and PM; then, we comparatively

analyzed the results. Second, we phenotypically classified the

cumulative microbial population using the Explify® data analysis

platform (IDbyDNA) for potential pathogenicity. Last, we discuss

the potential clinical benefits of PM for UTI management.
2 Materials and methods

Forty-seven urine samples were collected for routine clinical

testing following the standard operating procedures conforming to

the rules of aseptic technique and transported to the laboratory.

Culture and PCR testing were performed for routine clinical

diagnosis. Then, de-identified remnant urine was tested with a

hybridization capture-based PM workflow at Advanta Genetics

(Tyler, TX, USA).
2.1 Microbial culture

Urine (1 µl) was inoculated onto Spectra UTI biplates

(ThermoFisher, Carlsbad, CA, USA) with chromogenic medium

for isolation, differentiation, and presumptive pathogen detection.

The inoculated medium was incubated for 24 h at 37°C aerobically.

After 24 h, biplates were examined for microbial colonies,

morphology, and color reactions. Any plates with no growth were

incubated for an additional 24 h. Microbial colonies on each side of

the biplates were counted, and results were reported as colony-

forming units (CFUs) per milliliter of urine. Colony count was

reported in log-10 intervals (<104, 104–105, or >105 CFU/ml),

where <104 CFU is considered clinically irrelevant. Preliminary

identification was acquired through rapid benchtop testing,

chromogenic agar, and Gram stain evaluation. Definitive

identification was performed with the Sensititre™ARIS HiQ™

System (ThermoFisher, Carlsbad, CA, USA).
2.2 Nucleic acid extraction

The urine samples were vortexed for a minimum of 10 s to

ensure homogeneity before 500 µl of sample was transferred to a 2-

ml safe-lock tube (Eppendorf, Hamburg, Germany) containing

approximately 100 µl of RNase-free zirconium oxide beads (Next

Advance, Inc., Troy, NY, USA) along with 20 µl of proteinase K

(Invitrogen, Waltham, MA, USA). Samples were lysed using a

TissueLyser (Qiagen Inc., Hilden, Germany) at 30 Hz for 5 min.

A 150-µl aliquot of the lysed sample was then combined with 50-µl

internal control (IC) in a 96-well plate (Roche, Germany) and

loaded into a MagNA Pure 96 System (Roche, Germany)

programmed according to the manufacturer’s guidelines using the

MagNA Pure 96 DNA and Viral NA Small Volume Kit (Roche,
Frontiers in Cellular and Infection Microbiology 0363
Germany) with an elution volume of 100 µl. A synthetic DNA IC

was spiked (5 µl) into each sample prior to DNA extraction, and

successful extraction was confirmed by positive detection of IC by

PCR amplification. Each sample was also spiked with T7

bacteriophage DNA (Microbiologics, St. Cloud, MN, USA),

delivering a final concentration of 1.2 × 107 PFU/ml of the

sample. Copies of T7 were used for computing the absolute

concentration of the target copies detected by PM.
2.3 qRT-PCR testing

Each sample was tested for 28 uropathogens (24 bacteria and 4

fungi) (S-1) using commercially available predesigned PCR reaction

mixtures (Scienetix, Tyler, TX, USA). Briefly, 2.5 µl of extracted

DNA was added to a 7.5-µl reaction mixture containing the

microbe-specific primer pairs and TaqMan probes. Triplex PCR

reactions were performed on the Light Cycler® instrument (Roche,

Germany) in a 384-well plate with the thermal cycling program set

to initial denaturation at 95°C for 3 min followed by 40 cycles of

amplification at 95°C for 5 s and 60°C for 30 s. An amplification

control (AC) containing the target-specific template DNA for each

microbe was tested as a positive control (PC), while molecular grade

water was tested as no template control (NTC). The quantitative

cycle threshold (Ct) value of ≤35, when accompanied by the

sigmoid amplification curve, was considered positive for the

qualitative detection of the targeted organism.
2.4 Precision metagenomics

2.4.1 Library preparation and sequencing
Sequencing libraries were prepared using IDbyDNA Urinary

Pathogen ID/AMR Panel (UPIP) protocol (Illumina Inc, San Diego,

CA, USA). An aliquot of the DNA used for PCR testing was used for

library preparation and sequencing. Libraries were constructed by

DNA tegmentation and adapter ligation using the Illumina® DNA

prep with the enrichment tegmentation kit (Illumina Inc, San

Diego, CA, USA). Indexed libraries were enriched for microbial

content by hybridization capture of relevant genomic regions of 135

bacteria, 35 viruses, 14 fungi, and 7 parasites (S-1). Indexed libraries

were pooled in triplicate and hybridized with the UTI Pathogen ID-

AMR probes (Illumina Inc, San Diego, CA, USA) at 95°C for 1 min,

followed by 94°C to 58°C with 2-min hold at each 2°C temperature

decrement, and 90-min hold at 58°C. Captured libraries were

amplified for 18 cycles and cleaned using AmPureXP (Beckman

Coulter, Pasadena, CA, USA) beads.

Ten-fold serial dilutions of ZymoBIOMICS (Cat # D6300,

Zymo Research, Irvine, CA, USA) community standard was used

as a training set to determine reporting thresholds based on

sequence data. Genomic coverage, median depth, and reads per

kilobase per million mapped (RPKM) resulting in ≥90% accurate

detection of known microorganisms were recognized as cutoffs for

accepting positive microbe detection. A ZymoBIOMICS

community sample and a urine conditioning buffer sample were

also processed as PC and negative control (NC), respectively, with
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each batch of library preparation and sequencing. Libraries were

quantified using a Qubit 2.0 fluorometer (Invitrogen, Waltham,

MA, USA), and fragment sizes were analyzed in Agilent 5200

Fragment Analyzer (Agilent, Austin, TX, USA). The libraries were

then pooled to an equimolar concentration and normalized to 1-nM

concentration. The final library pool was denatured and neutralized

with 0.1 N NaOH and 200 mM Tris-HCl (pH 8), respectively. The

denatured libraries were further diluted to a loading concentration

of 2 pM. Dual indexed paired-end sequencing with 75-bp read

length was done using the HO flow cell (150 cycles) on the Illumina

MiniSeq® instrument.

2.4.2 Explify® bioinformatic analysis
Sequencing data were analyzed with the Explify® UPIP data

analysis solution. MiniSeq® run parameters were uploaded on the

Explify® portal, and the corresponding run folders containing the

binary base call (BCL) sequencing files were shared via a local host.

Sequencing data were de-multiplexed using sample-specific barcodes.

Samples passing the predefined QC requirements were analyzed.

Predefined targets included in the ZymoBIOMICS community were

correctly identified from a minimum of 0.5 million reads; meaning,

only samples with ≥0.5 million reads were considered for a

comprehensive microbial profile. Individual sample results were

automatically reported by JavaScript Object Notation format

containing the quantitative identification of microorganisms in each

sample. Identified organisms were auto classified into phenotypic

categories based on the microbe’s potential pathogenicity. Group-0

microorganisms were considered common contaminants or healthy

microflora; group-1 microorganisms were phenotypically classified as
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part of the normal flora, colonizers, or contaminants; group-2

microorganisms were phenotypically classified as frequently

associated with UTI disease; and group-3 microorganisms were

phenotypically classified as routinely pathogenic for UTI disease.
3 Results

Comparative method analysis demonstrated dissimilar

diagnostic yield (Tables 1–3) with PM identifying polymicrobial

infection in 46/47 (98%) samples compared to PCR 39/47 (83%)

and urine culture 33/47 (70%). However, PM had 92% positive

predictive agreement (PPA) with culture and 95% PPA with PCR.

Urine culture isolated 13 different microorganisms, PCR amplified

19 microorganisms, and PM identified 62 distinct microorganisms.

Importantly, PM demonstrated positive results in 13 no growth

urine culture biplates resulting in the discovery of 58 additional

microorganisms (Figure 2).
3.1 Microbial culture

After 48 h, samples were considered positive if microbial

colonies were visible on the primary biplate. Results showed

microbial growth in 33/47 (70%) samples, with four samples

demonstrating differentiated polymicrobial colonies. Escherichia

coli was the most commonly isolated organism, 14/33 (30%).

Other isolated organisms included Enterococcus faecalis, 7/33

(15%); Proteus mirabilis, 3/33 (6%); Citrobacter freundii, 3/33
TABLE 1 Prevalence of phenotypic group-0 and group-1 microorganisms detected by urine culture, PCR, and PM of suspected UTI cases (n = 47).

Microorganism Type Culture (+) PCR
(+)

NGS (+)

Human papillomavirus type 51, 55/44 56 and 68 (HPV; High-risk) Virus 0 No target 6

Trichomonas vaginalis parasite 0 No target 1

Actinobaculum massiliense Bacteria 0 No target 3

Alloscardovia omnicolens Bacteria 0 No target 1

Corynebacterium aurimucosum Bacteria 0 No target 3

Corynebacterium coyleae Bacteria 0 No target 1

Epstein–Barr virus (EBV) Virus 0 No target 1

Facklamia hominis Bacteria 0 No target 10

JC polyomavirus Virus 0 No target 13

Lactobacillus species Bacteria 2 No target 0

Mobiluncus curtisii Bacteria 0 No target 4

Peptostreptococcus anaerobius Bacteria 0 No target 2

Porphyromonas asaccharolytica Bacteria 0 No target 6

Propionimicrobium lymphophilum Bacteria 0 No target 17

Rothia kristinae Bacteria 0 No target 1
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(6%); Enterobacter cloacae, 2/33 (4%); Klebsiella oxytoca, 2/33 (4%);

while Staphylococcus aureus , Acinetobacter baumannii ,

Enterobacter gergoviae , Enterococcus faecium , Klebsiella

pneumoniae, and Staphylococcus epidermidis were all respectively

identified in 1/33 (2%) samples. Two samples (4%) were culture-

positive for the Lactobacillus genus, and the remaining 14 (30%)

were culture-negative—no growth was observed after 48 h

of incubation.

Phenotypic classification results placed Lactobacillus in group-1

because it is part of the normal vaginal flora and is often considered

a contaminant when cultured from urine specimens (Das

Purkayastha, 2020; Das Purkayastha et al., 2020). The sample

positive for S. epidermidis was phenotypically classified in group-

2; although S. epidermidis is often considered a urine contaminant,

it can also be linked to nosocomial infection (Otto, 2009) and cause

UTIs in children (Hall and Snitzer, 1994). The remaining positive

cultures were phenotypically classified in group-3—common

uropathogens often with correlated etiology for UTIs.
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3.2 qRT-PCR

Among the 47 samples tested, 39/47 (83%) were positive for ≥1

microbe, while 8/47 (17%) were PCR-negative. Of the 28

microorganisms targeted by PCR, 19/28 (68%) amplified with Ct

≤35 were considered positive. Noticeably abundant were E. coli 13/

39 (33%) and Enterobacter cloacae 13/39 (33%). This was followed

by E. faecalis, 12/39 (31%); E. faecium, 9/39 (23%); K. pneumoniae,

9/39 (23%); Actinobaculum schaali, 7/39 (18%); Morganella

morganii, 6/39 (15%); Pseudomonas aeruginosa, 6/39 (15%);

Prevotella bivia, 4/39 (10%); Bacteroides fragilis, 3/39 (8%); K.

oxytoca, 3/39 (8%); Streptococcus agalactiae, 3/39 (8%); Candida

albicans, 2/39 (5%); Candida glabrata, 2/39 (5%); Candida

parapsilosis, 2/39 (5%); and Citrobacter freundii; K. aerogenes and

Staphylococcus aureus were positive in 1/39 (3%) of samples.

No microorganisms were classified into phenotypic group-0 or

group-1. A. schaali and B. fragilis were classified in phenotypic

group-2—detected in 14% (7/47) and 6% (3/47) of samples,
TABLE 2 Prevalence of phenotypic group-2 microorganisms detected by urine culture, PCR, and PM of suspected UTI cases (n = 47).

Microorganism Type Culture (+) PCR
(+)

NGS (+)

Acinetobacter pittii Bacteria 0 No target 2

Actinotignum sanguinis (Actinobaculum schaalii) Bacteria 0 7 9

Aerococcus christensenii Bacteria 0 No target 1

Aerococcus lactolyticus Bacteria 0 No target 3

Atopobium vaginae Bacteria 0 No target 2

Bacteroides fragilis Bacteria 0 3 3

Bifidobacterium breve Bacteria 0 No target 3

BK polyomavirus Virus 0 No target 3

Corynebacterium glucuronolyticum Bacteria 0 No target 1

Finegoldia magna (Peptostreptococcus magnus) Bacteria 0 No target 4

Human adenovirus B Virus 0 No target 1

Oligella urethralis Bacteria 0 No target 1

Prevotella bivia Bacteria 0 4 0

Prevotella timonensis Bacteria 0 No target 11

Providencia stuartii Bacteria 0 No target 2

Staphylococcus epidermidis Bacteria 1 No target 5

Staphylococcus haemolyticus Bacteria 0 No target 2

Staphylococcus hominis Bacteria 0 No target 2

Staphylococcus simulans Bacteria 0 No target 3

Staphylococcus warneri Bacteria 0 No target 1

Streptococcus anginosus Bacteria 0 No target 6

Streptococcus constellatus Bacteria 0 No target 1

Streptococcus intermedius Bacteria 0 No target 1

Ureaplasma parvum Bacteria 0 No target 1
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respectively. Seventeen likely pathogenic microorganisms were

phenotypically classified in group-3.
3.3 Precision metagenomics

Ten-fold serial dilutions of the ZymoBIOMICS microbial

community were tested in triplicate, and only dilutions with ≥0.5

million total reads resulted in the accurate detection of all targets

included in the control. Thus, the minimum yield of 0.5 million

reads/sample was applied as a cutoff for further analysis.

Furthermore, ≥25% organism target coverage, median depth of

≥1X, and RPKM >10 were identified as acceptance criteria for

reporting individual organism (S-2).

Only one sample failed to yield minimum 0.5M reads, and

the hybridization capture-based approach was significant for

resulting in 46/47 (98%) positive samples. Categorically, PM
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detected 62 distinct species consisting of 52 bacteria, 8 viruses, 1

fungus, and 1 parasite. The top 5 pathogenic bacteria were E. coli,

22/46 (48%); E. faecalis, 12/46 (26%); K. oxytoca, 10/46 (22%); K.

pneumoniae, 7/46 (15%); and Aerococcus urinae, 6/46 (13%).

The positive rate for virus detection was 23/46 (50%)—JC

polyomavirus 13/46 (28%) was recognized as the most

commonly detected virus. C. glabrata 1/46 (2%) and

Trichomonas vaginalis 1/46 (2%) were the fungal and parasite

species detected.

Bioinformatic analysis classified the 62 microorganisms in

phenotypic groups. Human papillomavirus (serotypes 51, 55, 56,

and 68) and T. vaginalis were classified in group-0. Considered

common urine contaminants but rarely pathogenic for UTI, 12

organisms were classified in group-1. Considered more frequently

associated with UTI disease, group-2 accounted for 23/62 (37%)

microorganisms, while 22/62 (35%) of microorganisms were

classified in group-3 as likely pathogenic for UTI.
TABLE 3 Prevalence of phenotypic group-3 microorganisms detected by urine culture, PCR, and PM of suspected UTI cases (n = 47).

Microorganism Type Culture (+) PCR
(+)

NGS (+)

Acinetobacter baumannii Bacteria 1 Negative 0

Aerococcus urinae Bacteria 0 Negative 6

Candida albicans Fungi 0 2 0

Candida glabrata Fungi 0 2 1

Candida parapsilosis Fungi 0 2 0

Citrobacter freundii Bacteria 3 1 4

Corynebacterium pseudogenitalium Bacteria 0 No target 4

Corynebacterium urealyticum Bacteria 0 No target 3

Enterobacter cloacae complex Bacteria 2 13 6

Enterococcus faecalis Bacteria 7 12 12

Enterococcus faecium Bacteria 1 9 2

Enterococcus raffinosus Bacteria 0 No target 1

Escherichia coli Bacteria 14 13 22

Klebsiella aerogenes Bacteria 1 1 1

Klebsiella. oxytoca Bacteria 2 3 10

Klebsiella pneumoniae Bacteria 1 9 7

Klebsiella quasipneumoniae Bacteria 0 No target 2

Klebsiella variicola Bacteria 0 No target 2

Morganella morganii Bacteria 0 6 3

Proteus mirabilis Bacteria 3 7 5

Pseudomonas aeruginosa Bacteria 0 6 4

Salmonella enterica Bacteria 0 No target 3

Serratia marcescens Bacteria 0 No target 1

Staphylococcus aureus Bacteria 1 1 1

Streptococcus agalactiae Bacteria 0 3 2
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4 Discussion

Several laboratory methods have been developed for the diagnosis

of UTIs. The most common include microbiological culture and

various nucleic acid amplification techniques. However, these usual

care approaches have limitations in the management of UTI and

often result in empiric therapy challenges (Cai et al., 2012; Boyanova

et al., 2022). Accordingly, this study sought to compare UTI samples

for diagnostic yield between urine culture, PCR, and PM. Although

the results demonstrate that PM shows promise for guiding better

urinary tract diagnostics and therapeutic management of UTI,

interpretation of urobiome pathogenicity remains methodologically

challenging in the laboratory (Perez-Carrasco et al., 2021). We

provide further evidence of this by discussing comparative results

and phenotypic classification of the microorganisms detected in

this study.
4.1 Comparative results

Culture growth isolated Lactobacillus in 2/47 samples; the genus

is considered essential for maintaining urinary tract symbiotic

microflora (Stapleton and Stamm, 1997). But the genus was not

probed by PCR or PM despite research showing quantitative

detection informative for microflora imbalance and UTI

(Martinez et al., 2014). There were noted concerns between the

methods with closely related species. Although the exact probe

sequences used in the PM kit were not available, the observed

discrepancies indicate it may be that the hybridization capture-

based approach is less discriminatory with certain microorganisms.

For example, PM failed to differentiate Prevotella timonensis from
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Prevotella bivia. This was evident when P. timonensis was identified

in 11/47 PM tested samples. But all 47 PM samples were negative

for P. bivia by PM despite PCR amplifying 4/11 samples for P. bivia.

While P. timonensis was not probed by PCR, results suggest

specificity concerns for PM false negative for P. bivia and likely

false positive for P. timonensis. Furthermore, C. albicans and C.

parapsilosis were amplified by PCR but not detected by PM. But

because the RPKM for these fungal species was below prespecified

thresholds for reporting PCR and PM, results were excluded (S-2).

We also noted discordance among culture, PCR, and PM results for

one E. coli sample when it was isolated in urine culture and detected

by PM but did not amplify by PCR, suggesting that strain specificity

of PCR primers warrants consideration. In another example, one

urine culture isolated A. baumannii, but it was not detected by PCR

or PM. While sequencing techniques of this Gram-negative

bacterium have shown genotyping advantages (Alshahni et al.,

2015), there are noted discordances in the literature with various

laboratory methods, particularly for bacteremia (Pailhoriès et al.,

2018). However, of the two culture-positive samples for A.

baumannii, one of the samples probed PM positive for

Acinetobacter pittii, which is part of the A. baumannii complex,

suggesting higher differentiation potential by PM. Enhanced

detection was also noted when A. urinae—an emerging pathogen

causing UTI in older adults (Higgins and Garg, 2017)—was

identified in six PM samples but absent in culture and PCR.

These noted differentiation challenges (Figure 3) are also seen in

similar studies comparing laboratory methods for UTI

pathogenicity (Chen et al., 2020).

Implications of organism classification were considered

important for clinical relevance (Figure 4). Our downstream

analysis utilized the Explify® bioinformatic platform that
FIGURE 2

Deciphering the microbiology of the culture-negative urine samples using target-specific PCR and PM. (A) Microorganisms identified by urine
culture. (B) Differential microbial profile of the culture-negative samples by target-specific PCR panel. (C) Microbial profile of the culture-negative
samples detected by PM. The number after the organism’s name denotes the number of samples found positive for the organism.
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classified each microbe into phenotypic groups 0–31—applying an

escalating order of potential pathogenicity. Human papillomavirus

and T. vaginalis were the only microorganisms classified in

phenotypic group-0 because both are common etiological agents

of sexually transmitted infection, not UTI. Microorganisms

classified in phenotypic group-1 are frequently considered part of
1 The Explify® bioinformatic analysis was limited to qualitative detection

because of the comparativemethods (culture and qualitative PCR) used in the

study. The Explify® platform is capable of reporting absolute abundance

(organism/ml) of organisms in clinical specimens derived from the RPKM

value of a known quantity of spiked T7 Phase. Quantitative analysis was

beyond this study. See https://www.illumina.com/products/by-type/

informatics-products/basespace-sequence-hub/apps/explify-upip-data-

analysis.html
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the normal flora but with the potential for associated UTI diseases

in certain clinical manifestations. For example, Actinobaculum

massiliense, Corynebacterium aurimucosum, Corynebacterium

coyleae, Peptostreptococcus anaerobius, and Propionimicrobium

lymphophilum are part of the commensal microflora of the skin,

urethra, mucous membranes, and genital tract but are also reported

pathogenic for mild to severe UTI complications (Greub and

Raoult, 2002). Likewise, C. coyleae can be considered as

contamination or normal flora if co-isolated with E. faecalis or E.

coli, but the microbe can be infective if isolated as monoculture

(Sokol-Leszczynska et al., 2019). As an example, C. coyleae infection

in a polycystic kidney disease patient led to bilateral nephrectomy,

suggesting that Corynebacterium is an emerging pathogen with the

potential for complicated UTIs (Barberis et al., 2018). Two viruses

were detected by PM and classified in phenotypic group-1—

Epstein–Barr virus and JC polyomavirus—both unlikely to be
FIGURE 3

Differential detection of microorganisms by urine culture, PCR, and PM in UTI samples (n = 47). (A) Number of samples positive (≥1 organism
detected) by culture (Greub and Raoult, 2002), PCR (Reploeg et al., 2001), and PM (Goldberg et al., 2015); (B) microorganisms detected by culture
(Duan et al., 2022), PCR (Stinnett et al., 2021), and PM (62). Note: (A) represents 33 samples concordantly positive by culture, PCR, and NGS; one
sample only positive by PCR; eight samples only positive by PM; five samples positive by PCR and NGS but not by culture. (B) represents two
microorganisms that were exclusively detected by urine culture, three were exclusively detected by PCR, and 45 were exclusively detected by PM.
Ten microorganisms were detected concordantly by culture, PCR, and PM. One microbe was detected by PM and culture, and six microorganisms
were detected by PCR and PM.
FIGURE 4

Phenotypic classification of microorganisms detected by urine culture, PCR, and PM. Phenotypic group 1: Microorganisms rarely associated with
urinary tract infections and may frequently represent normal flora, colonizers, or contaminants. Phenotypic group-2: Microorganisms infrequently
associated with urinary tract infections and may frequently represent part of the normal flora, colonizers, or contaminants. Phenotypic group-3:
Microorganisms commonly associated with urinary tract infections but may also represent part of the normal flora, colonizers, or contaminants.
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detected by routine microbiology or PCR. The viruses are linked to

persistent bladder inflammation and progressive multifocal

leukoencephalopathy, respectively (Jhang et al., 2018).

Phenotypic group-2 microorganisms are infrequently associated

with UTIs and may frequently represent normal flora, colonizers, or

contaminants. However, these microorganisms are routinely cited for

UTI pathogenic potential. Of specific note, PM identified 23

microorganisms that were classified in phenotypic group-2,

whereas concordance in culture and PCR was only 1/23 and 2/23,

respectively. Curiously, S. epidermidis was the only Staphylococcus

species isolated by urine culture (1/47). However, S. epidermidis was

detected in five PM samples. PM also identified four additional

Staphylococcus species, three of which were classified in phenotypic

group-2. Importantly, these cocci species are emerging opportunistic

uropathogens (Kanuparthy et al., 2020). Also classified in phenotypic

group-2, BK polyomavirus was PM-positive in 3/47 samples.

Although human polyomaviruses are common in the general

population, their presence in immunocompromised or

immunosuppressed individuals may cause several clinical

manifestations. For instance, BK nephropathy is complicit for up to

80% of kidney transplant failures within 2 years, especially if untimely

diagnosed (Ambalathingal et al., 2017). Due to its severe

consequences, the timely and accurate detection of BK

polyomavirus is critical (Reploeg et al., 2001; Myint et al., 2022).

Phenotypic group-3 microorganisms are generally considered

uropathogens and rarely present as commensals or contaminants.

Phenotypic group-3 microbe detection by method consists of 11

culture, 16 PCR, and 25 PM microorganisms. However, six crucial

uropathogens (Corynebacterium pseudogenitalium, Corynebacterium

urealyticum, Enterococcus raffinosus, Klebsiella quasipneumoniae,

Klebsiella variicola, and Salmonella enterica) were not probed by

PCR nor represented by culture growth. The Enterobacter species,

particularly E. coli, were the most prevalent UTI pathogens identified

in this study. Even though Enterobacter were commonly diagnosed

by urine culture and PCR, PM provided greater speciation, important

for therapeutic management (Mezzatesta et al., 2012).

Despite some explicable differentiation challenges, PM appears

to have greater discovery power in deciphering the microbiome of

urine samples—identifying 35 bacterial species not isolated by urine

culture or detected by PCR (of these 35 bacterial species, 33 were

absent target-specific PCR probes). Importantly, PM exclusively

identified eight bacterial species classified in phenotypic group-3

that were undetected by both culture and PCR, including

A. urinae, K. quasipneumoniae, K. variicola, C. urealyticum, C.

pseudogenitalium, S. enterica, Serratia marcescens, and E. raffinosus.

We note that 6/8 of these bacterial species were not probed by PCR

nor do they appear to be common targets for PCR detection.

Although A. urinae and S. marcescens were probed, they failed to

amplify, whereas PM detected A. urinae in six samples and S.

marcescens in one sample. Moreover, PM exclusively identified

eight viral strains that went undetected by culture or PCR. And

although considered a common cause of sexually transmitted

infection, T. vaginalis was the one parasite detected among 47

samples—and only detected by PM. This is important because

many microbiology laboratories are ill-equipped to isolate and

identify UTI viruses and parasites (Szlachta-McGinn et al., 2022).
Frontiers in Cellular and Infection Microbiology 0969
Mixed cultures in clinical microbiology laboratories are often

considered possible periurethral or vaginal contamination (Szlachta-

McGinn et al., 2022). However, UTIs caused by polymicrobial flora

are common (Detweiler et al., 2015). In this study, PM identified

coinfection in 41/47 samples—urine culture was polymicrobial in 36

samples. And although PCR has potential for identifying coinfection,

recognition is restricted to probed targets (Wojno et al., 2020). For

this and other reasons, the hybridization capture-based approach

used in this study has potential to improve UTI (co)pathogenic

discovery and management.

Despite numerous advantages of PM, the approach still has

some constraints before full adoption in the clinical laboratory.

Implementing PM in the clinical laboratory is expensive and time-

consuming and requires high-level expertise. Furthermore,

production workflows may benefit from multiplexity optimization

to reduce the cost (Carpenter et al., 2023). Moreover, the extensive

differentiation power of PM makes distinguishing between

pathogenic and commensal microflora challenging, particularly

for less studied and emerging pathogens. Bioinformatic platforms

like Explify® are showing promise and will likely improve as more

clinically correlated sequencing data emerge. For example, the

Explify® platform is capable of reporting absolute abundance

(organisms per milliliter) of organisms in clinical specimens,

providing clinicians a comprehensive report containing

quantitative values of each identified organism in a patient

sample—including each organism-associated AMR marker. And

although the qualitative detection and AMR marker analysis were

beyond the scope of this study, such offerings can help clinicians

make a better medical decision for symptomatic patients with

clinical UTI symptoms. Yet, despite the paradigm shift to

genotyping for diagnosing infectious disease, adoption of the

technology by clinicians appears slow (Goldberg et al., 2015).

Although sequencing cost and turnaround time are continuously

declining, several technical, clinical, and regulatory challenges still

delay the broader acceptance of PM in infectious disease

management (Goldberg et al., 2015).

However, even in its current qualitative format, this study

demonstrates that PM has potential to influence diagnostic

specificity and improve public health decisions. As technology

continues to advance our understanding of the etiological

relationship between microorganisms and their hosts, PM has the

potential to bridge the gap between microbial research and

diagnostic microbiology for UTIs and other infectious diseases

(Almas et al., 2023). Further studies are warranted to demonstrate

the financial incentives for accurate and timely diagnosis leading to

prompter patient recovery and savings in treatment costs.

Moreover, clinical utility studies will likely drive adequate

reimbursement of PM for wider adoption in clinical practice.
5 Conclusion

History shows that usual care testing is not the diagnostic solution

for recurrent and complex UTI. This study supports that PM offers

prospects to bridge the UTI diagnostic gap. This approach allows a

workflow where laboratorians can qualify, quantify, and phenotypically
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classify pathogenicity more readily through bioinformatic platforms

like Explify®, essentially providing dissected results across a broad

array of input types and quantities for timely and accurate empiric UTI

treatment. Moreover, PM offers potential for building effective

diagnostic models beyond usual care testing in complex and

coinfected UTI diseases. Future studies should assess the impact of

PM-guided UTI management on clinical outcomes.
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In the wake of COVID-19, the importance of next-generation sequencing (NGS) 
for diagnostic testing and surveillance-based screening has never been more 
evident. Considering this, continued investment is critical to ensure more public 
health laboratories can adopt these advanced molecular technologies. However, 
many facilities may face potential barriers such as limited staff available to routinely 
prepare, test, and analyze samples, lack of expertise or experience in sequencing, 
difficulties in assay standardization, and an inability to handle throughput within 
expected turnaround times. Workflow automation provides an opportunity to 
overcome many of these challenges. By identifying these types of sustainable 
solutions, laboratories can begin to utilize more advanced molecular-based 
approaches for routine testing. Nevertheless, the introduction of automation, 
while valuable, does not come without its own challenges. This perspective 
article aims to highlight the benefits and difficulties of implementing laboratory 
automation used for sequencing. We  discuss strategies for implementation, 
including things to consider when selecting instrumentation, how to approach 
validations, staff training, and troubleshooting.

KEYWORDS

next-generation sequencing, automation, validation, verification, public health

1. Introduction

The introduction of accessible next-generation sequencing (NGS) technology has changed 
the landscape of clinical and public health microbiology. It offers the possibility of improving 
diagnostics, surveillance, and public health response. Sequencing can now be used to routinely 
support outbreak investigations, thus helping laboratories detect disease clusters sooner and 
with more clarity (1–3). By replacing standard microbiology methods with culture-independent 
applications for pathogen detection, NGS has the potential to guide more targeted patient care 
(4). Therefore, it is not surprising over the last 3 years there has been a major push to invest in 
genomic sequencing (5). NGS data has been essential during the COVID-19 pandemic. When 
combined with epidemiology, it offers a means to investigate transmission patterns as the virus 
continues to spread across the globe. Now, more than ever, clinical, and public health facilities 
are working with limited staff. New hires may lack the knowledge or experience to understand 
sequencing assays. Thus, at first glance, implementing NGS technologies may seem too 
complicated and time-consuming for laboratories to onboard or to even try to increase 
sequencing capacity. Workflow automation provides an opportunity to overcome some of these 
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barriers. General laboratory automation has been used in many 
different types of laboratories for years (6), and has only exploded 
more recently, resulting in a multi-billion dollar market (7). As 
demand for next-generation sequencing increases, it only makes sense 
to consider how automation could potentially be used to support this 
type of testing. Here we discuss several aspects of automation for 
preparing sequencing libraries. We highlight the key benefits as well 
as some of the challenges of using automated liquid handlers. We also 
discuss how we approached validating one of these systems.

2. The benefits of NGS automation

Preparing specimens for next-generation sequencing is a time-
consuming process, involving multiple steps, starting from sample 
extraction. The process of preparing the sequencing libraries is a 
critical part in obtaining high-quality results. It involves several time-
sensitive steps, pipetting small volumes, as well as washing and 
re-washing samples. The entire process can take hours of a bench 
scientist’s time and one mistake can result in the loss of an entire day’s 
worth of work. Several manufacturers have designed automated liquid 
handlers specifically for this complicated process. Automated 
instruments of various sizes and capabilities have been created and 
can be programmed to perform an entire library prep protocol as a 
single streamlined process or in separated individual steps. While 
automation is not a magical solution to fix every problem, it does offer 
several benefits worth noting and may allow laboratories to overcome 
some of the hurdles involved with implementing NGS (8).

2.1. Improved quality

The most obvious reason for automation is enhanced sample 
quality, often with greater consistency than most laboratory scientists 
can reproduce manually. For NGS, a lot of library prep protocols use 
magnetic beads and repeated wash steps for purification and fragment 
size selection. Manual preparation requires that scientists are skilled 
and fully trained, otherwise samples may be lost, contaminated, or of 
suboptimal quality, all which affects downstream analyses. Automated 
platforms are designed for these precise pipetting steps, producing 
consistent high-quality libraries in less time than it takes using manual 
preparation. In our experience, we  have observed quality 
improvements by a few measures including more uniform nucleic acid 
fragment lengths and less need for repeat testing of samples. 
Ultimately, a decrease in failed runs saves time, reagents, and supplies.

2.2. User friendly interface

Although the backend algorithms to automate a sequencing 
library preparation protocol can be  complicated, many platforms 
come with a computer pre-programmed with user-friendly control 
software. Scientists do not need a lot of experience with NGS or a deep 
understanding of the scientific process to setup or run these liquid 
handlers. Established protocols often use simple images to display 
exactly where consumables should be placed, provide visual cues to 
indicate what step of the process is occurring, and the instrument can 
perform calculations to determine reagent volumes needed for the 

number of samples being run. Therefore, net training time is reduced, 
and scientists should not need specialized programming expertise to 
troubleshoot basic issues.

2.3. Increased flexibility

Automated instruments often allow laboratories to scale-up or 
scale-down as needed. There are instruments that offer variable levels 
of throughput while maintaining quick turnaround times. A lab can 
process 4–384 samples per run, depending on their system and 
needed output. Another added benefit is that some platforms offer 
modular workflow options with safe stopping points that enable labs 
to adjust as needed. Instead of an end-to-end process, labs can opt to 
only use the instrument for certain steps like library clean-up. Those 
that need more than the standardized library prep protocol offered 
through commercial vendors, manufacturers like Agilent and 
Beckman Coulter have graphical or simplified software interfaces that 
removes some of the complexity of creating customized protocols. 
They also offer training courses on method programming through 
their software. Hamilton and Beckman Coulter also have decks that 
can be reconfigured for new workflows. However, this may not be the 
case for all platforms. Some platforms have locked-in protocols that 
require the manufacturer to establish new workflows.

2.4. Timesaving

Automated platforms for library prep can perform more than just 
liquid transfer and mixing. Instruments can be customized to include 
on-deck thermocyclers, shakers, and heat blocks for a fully automated 
system, reducing the need for any manual interference. If prepared 
manually, the Illumina DNA Prep protocol takes approximately 3 h to 
generate a sequencing ready library. While the overall run time is 
similar for an automated workflow, the hands-on time is far reduced 
(approximately 30 min to set up instrument plus 2.5 h automated run 
time versus 3+ hours for the manual protocol per 8 samples 
processed). An added benefit is that only one scientist is needed to 
setup an instrument, regardless of the number of samples being run. 
Once the samples are loaded and the program is started, that scientist 
is free to walk-away and focus on other tasks.

3. The challenges with NGS 
automation

While automated workflows have many benefits, as mentioned 
above, there are some significant challenges to consider before 
deciding to implement such systems.

3.1. System cost, design, and setup

Automated instruments are often quite expensive to purchase 
(quotes we have received range between $45K–300K spanning a low 
throughput platform and two different high throughput instruments), 
and careful consideration should be given to determine whether one 
may be realistic or necessary for the current and future workload. 
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Such systems have become increasingly complex, often with many 
add-on options like on-deck thermocyclers, bulk pipettor attachments, 
and robotic arms to suit different laboratory capacity needs and to 
perform various assay protocols. It is worthwhile to have a firm 
understanding of the fundamental components of a given procedure 
and/or product before settling on the system design that will 
be optimal for use. Depending on the starting sample material, reagent 
kit type, and sequencing platform to be used, there may be a limitation 
as to what instruments are compatible and available to choose from. 
We estimate it costs about $40 per sample, so there is likely little room 
to save in actual cost, but the relief in hands-on technician time may 
be worth it. Additionally, as automation becomes more widespread, 
costs may come down for consumables and for new systems in 
the future.

3.2. Troubleshooting and training

Initial on-site training is likely to be provided by a representative 
from the manufacturer to allow for familiarization with the installed 
instrument and to provide an overview of the basic workflow that it 
performs. However, hands-on experimentation will likely be required 
to gain experience and a better understanding of the system’s nuances. 
Clean water runs and test runs will help assess what steps and actions 
may present run errors or other issues that could impact the 
downstream quality of testing samples. Modifications to the software 
program running the workflow may be necessary to ensure that steps 
are performed accurately and seamlessly with minimal error and 
stoppage within the user’s laboratory. Although it’s worth noting that 
modifications may be limited by the manufacturer. In our experience, 
there is very little prospect of access to off-site vendor training to 
enable customization of software or protocol workflows. As with any 
new instrument, testing personnel will need to be  trained. It may 
prove fruitful to train more senior staff (upper management or section 
supervisors) as “super users” to protect against loss of expertise to 
employee turnover or in times of limited availability of competent 
staff. We recommend maintaining a minimum of two “super users” at 
all times. These “super users” should be proficient in troubleshooting 
more difficult errors that may require remote assistance from the 
manufacturer, as well as the ability to realign deck positions (“deck 
teaching”), among other skills.

3.3. Routine performance and maintenance

One of the perks of using automated workflows is the concept of 
being able to “walk-away” without interruption to testing. The true 
experience though may be more complicated than that. Following 
manufacturer’s instructions for daily, weekly, and more long-term 
maintenance programs is crucially important to keep the instrument 
running smoothly. Routine maintenance includes channel 
calibration, both spacing, aspiration and dispensing, as well as 
surface cleaning to remove dust or other contaminates. This will 
likely be automatically prompted for by the instrument, but if not, a 
regular schedule (weekly) for such activities should be implemented. 
Annual preventative maintenance is also often provided by the 
manufacturer under special contracts (additional $15K–30K/year) 
to limit likelihood of bigger problems accumulating. These 

preventative maintenance appointments likely require scheduling 
with the on-site representative, which means there may be a waiting 
period before service is performed. The same is often true for any 
other service calls that may be needed when the instrument has an 
error or issue that the user is not able to resolve on their own. In our 
experience, direct communication with field engineers and 
applications specialists is common, which reduces instrument 
downtime and removes the need for tiered response through the 
general customer service line. Although our setup does not allow 
remote access, others may be able to design their system to enable 
this feature to limit the need for on-site visits when fixing minor 
errors and problems. Maintaining competency on a manual 
preparation method is recommended to ensure workflow is not 
halted if instrumentation requires repair or service.

3.4. Quality control within system 
limitations

As with all assays, quality controls (QC) must be continuously 
monitored to ensure the implemented instrument and protocol 
provides consistent, reliable, and accurate results. Within 
sequencing, there are often many QC “checkpoints” to confirm that 
each sample’s integrity is maintained from one step to another; these 
are often at key points in the procedure (e.g., after DNA extraction, 
after library preparation, after sequencing, etc.). Within automated 
systems, and depending on the library preparation kit used, there 
may be limitations in the ability to measure the sample quality at 
these predetermined points. In some cases, it may be necessary to 
modify appropriate timepoints for such system checks, and to 
be  creative with when and how quality can be  measured. For 
example, certain extraction/cell lysis methods may end with a 
beaded product, therefore, traditional quantification methods may 
not be  practical after such steps. If situations like this arise, it 
becomes critical to establish quality thresholds at the next earliest 
available opportunity to limit time, sample, and reagent waste. In the 
instance that the extracted specimen cannot be measured due to the 
presence of beads, we find the QC checkpoint of quantifying DNA 
upon completion of the library preparation to be  critical in 
determining whether each sample meets the quality needed for 
sequencing. This means that there may be reagent and sample waste 
if one does not meet the threshold for sequencing, and the sample 
will have to be completely re-extracted. This can be an annoyance in 
our experience, but it has not happened frequently or more often 
than in other methods.

4. One system does not fit all

There are a variety of automated platforms currently on the 
market geared toward next-generation sequencing library 
preparation (Table 1). Before committing, laboratories should assess 
their budget, facilities, and sequencing workflow to help identify 
what would work best for them to meet their sequencing goals. 
While a clinical lab may prioritize high-volume testing, a research 
facility may require a system with a flexible workflow. For this 
summary, we will focus on three main areas: system compatibility, 
system capability, and system capacity.
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4.1. System compatibility

Ensuring a library preparation protocol is compatible with an 
automated platform can have a big impact on selection. Identifying 
a liquid handling system that already has the established vendor-
approved workflow that matches the preparation kit that will 
be  used can eliminate the time and energy needed to design a 
customized method. Illumina and New England Biolabs are two 
examples of companies that have partnered with leading automation 
manufacturers, including Agilent, Tecan, and PerkinElmer, to 
establish automated workflows for their library preparation kits. 
This opens the door for a single automated instrument to be used 
for several different sequencing applications. Another factor to 
consider if already performing NGS, is whether any internal 
changes were made to the manufacturer’s procedure or use of a lab 
developed protocol. Usually, the lab end user will not be an expert 
in scripting automation. So, for any modifications the lab will need 
to discuss with the manufacturer to see if adjustments can 
be incorporated into the automated workflow. However, if a lab can 
foresee the need to continually configure or develop new protocols, 
it may be worth the effort to invest time in training on scripting or 
choose an instrument designed to support this feature. It is also 
important to consider what consumables can be used. Proprietary 
hardware and tips may be  a limiting factor if items are in high 

demand and become backordered. The ability to use more generic 
plates and tips offers some flexibility.

4.2. System capabilities

Although fully integrated “walk-away” automation seems ideal 
because it can free up scientists for other tasks, it may not be realistic 
for every lab. Fully automated systems require more space, more 
complex algorithms, and can be costly. Partial automation can be as 
simple as an automated pipetting station programmed to transfer and 
mix reagents. This will still require more work but should cut down 
on the hands-on time and reduce potential errors when compared to 
complete manual prep. However, if looking to eliminate almost all 
hands-on interaction, it is best to look for all-in-one liquid handlers. 
As mentioned previously, these systems may include multi-channel 
pipetting heads, plate grippers for moving hardware across the 
instrument deck, orbital shakers, and plate magnets for bead clean-up 
steps. Additional features such as on-deck thermal cyclers or storage 
towers for consumables may not be standard, thus increasing costs. 
Some systems also incorporate an on-deck or attached sequencer, 
further minimizing manual interactions. However, these extra items 
take up deck space and may decrease sample throughput.

4.3. System capacity

Robots designed for small batch volumes may be  ideal for 
low-volume laboratories or those that prioritize faster turnaround 
times. Instruments equipped to prep  96–384 samples will likely 
be beneficial for facilities of higher volumes that need to sequence 
larger batches, depending on the system’s design. However, batching 
may result in an increase in turnaround times. Consumable use may 
also be a factor to consider. Automation requires a large amount of 
disposable hardware. And whether preparing 8 or 96 samples, some 
platforms may use the same amount of pipette tips, tubes, and plates. 
Therefore, it may be  more economical to opt for sequencing in 
larger batches.

5. Designing regulatory-compliant 
validations

While NGS has become a more widely used practice, especially in 
the public health laboratory space, it may be useful to consider the 
assay design and implementation to meet regulatory compliance. 
Many regulatory programs (e.g., CLIA, CAP, etc.) have begun making 
more specific guidance (9, 10) and there are several useful resources 
available to strategize a successful approach (11).

The following components for validation of an automated liquid-
handling instrument have been defined using a combination of best 
practices outlined by others, while tailoring to the instrument and 
DNA library preparation kit used (Table 2; Hamilton Microlab STAR 
and Illumina DNA Prep Kit products). It is worth noting that 
validations for laboratory developed tests (LDT) that are solely for 
surveillance purposes require a lower burden than those for 
diagnostic purposes to meet regulatory compliance. Consideration 
should be given as to how results will be used when on-boarding 

TABLE 1 Fully automated library preparation platforms.

Manufacturer and platforms

Mid- to High-Throughput  

(up to 384 samples)

Agilent

 • Bravo

Beckman Coulter

 • Biomek i-Series

Eppendorf

 • epMotion ®
Hamilton

 • Microlab STAR™

 • Microlab VANTAGE™

PerkinElmer

 • Sciclone G3®
 • Fontus™

 • Zephyr®
SPT Labtech

 • Firefly®
Tecan

 • Fluent®
 • DreamPrep®
 • Freedom EVO®

Low-Throughput (<96)

Agilent

 • Magnis

Beckman Coulter

 • Biomek NGeniuS

PerkinElmer

  • BioQule™ NGS System

Tecan

  • MagicPrep™
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sequencing tests and platforms. Additional comprehensive examples 
using other systems can be  found to help design, develop, and 
implement across diverse settings and different laboratory setups 
(12, 13).

5.1. Accuracy

Defined here as a measure of agreement between the tested 
sample and a reference, assessed for the following:

 • Wet lab – sequencing platform (e.g., Illumina MiSeq, Oxford 
Nanopore, PacBio, etc.)

 • Dry lab – bioinformatics pipelines

We validated the use of one platform and compared results from 
two pipelines to generate the accuracy of the assay. We prepared 10 
samples and sequenced them on a single run to measure accuracy of 
this LDT.

5.2. Precision

Defined here as a measurement of consistency between the 
tested sample when run multiple times, under different 
conditions (e.g., days, operators, sample preparations, etc.). The 
number of samples required to meet this criterion should be at 
the direction and approval of each individual laboratory’s 
director. We utilized 5 samples to measure precision, as this was 
the minimum needed to test the range of organisms we  test 

routinely, while also accounting for cost of supplies, reagents, and 
instrument use.

 • Repeatability (Intra-assay precision) – samples tested in duplicate 
or triplicate within a single run

Note: Be aware of potential sequencing biases or errors that can 
occur when there is too much similarity between samples.

 • Reproducibility (Inter-assay precision) – samples prepared by 
individual operators on separate days, sequenced on the same 
run and/or on different runs

5.3. Sensitivity

Defined here as the limit of detection (LOD), we utilized the final 
concentration (High-sensitivity Qubit reading in ng/μL) of a prepared 
sample library that could be used to identify to species level.

5.4. Specificity

Defined here as the ability of a bioinformatics pipeline to identify 
contamination or interfering substances, as well as exclusion of a 
genus and/or species outside of those intended.

5.5. Method comparison (manual vs. 
automated protocols)

We added method comparison to determine if the results obtained 
from the new automated process differed from those using the 

TABLE 2 Example sample set and criteria for validation of WGS for major bacterial pathogens.

Validation criteria

Accuracy

Specimen list

 • Acinetobacter baumannii

 • Camplyobacter jejuni

 • Enterobacter cloacae

 • Escherichia coli

 • Klebsiella pneumoniae

 • Listeria monocytogenes

 • Neisseria gonorrhoeae

 • Salmonella enterica Heidelberg

 • Salmonella enterica Typhimurium

 • Salmonella enterica Arizoniae (run control)

Quality control metrics to meet criteria

Correct genus/species identification

Coverage (20-40X depending on the genus)

Identification of characteristic antimicrobial resistance (AMR) gene

Other important QC metrics

GC Content

Number of Contigs

 

10 sample prepared and sequenced on a single run

Precision

Intra-Assay
5 samples prepared in duplicate and sequenced on single run and evaluated for QC metrics 

used in accuracy analysis

Inter-Assay
5 samples prepared by 2 independent scientists, sequenced on separate MiSeq instruments, 

and evaluated for QC metrics used in accuracy analysis

Method Comparison
5 samples prepared using manual and automated protocols, sequenced on single run, and 

evaluated for QC metrics used in accuracy analysis

Analytical sensitivity
DNA Input Range 1 ng - 10 ng*

Limit of detection (LOD) determination Run control subspecies ID with minimum accepted coverage (≥30X)

Analytical specificity Secondary species abundance ≤ 1% of all sequencing reads are that of a “contaminant”

*Illumina recommends a standardized minimum DNA input (1 ng, extract concentration 0.2 ng/μL), which is required to obtain pipeline submittable sequencing read files.
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currently validated manual preparation protocol. This was used solely 
to test the library preparation portion of the protocol, as the extraction 
method and the bioinformatics pipeline for analysis were identical 
between both methods.

5.6. Reference interval

Defined here as the normal value expected to correctly identify 
the genus and species of a given Gram-negative bacterial panel. 
However, this metric could be defined differently based on the desired 
target and intended use for result reporting. One example may be the 
presence or absence of a specific target gene.

5.7. Reportable range

Defined here as the output result that may be used for reporting, 
generally to include the genus and species identified, but may also 
contain serotype or other information. Depending on the use of a 
result, additional parameters with strict thresholds may be required, 
including coverage, Q30 scores, read length, etc.

6. Discussion

As we  come out of the COVID-19 pandemic, it has become 
obvious that public health laboratories need to be ready to handle the 
next outbreak. The emergence of novel pathogens and the expansion 
of known antimicrobial resistant threats will likely balloon the test 
burden within public health over the coming decades. Sequencing, 
including automation, is just beginning to address public health needs 
and to aid in clinical diagnosis and treatment decisions. Working 
together with research, commercial, and clinical laboratories is 
essential to ensure a seamless transition from discovery and design to 
diagnosis, practice, and scaling. Advancement in NGS automation 
should be  expected to continue, thus making new systems and 
instruments more prevalent, especially as they become more efficient 
and economical. Therefore, many public health laboratories should 
begin to consider the platforms and technologies that may work best 
for their workers, patients, and budgets.

As discussed previously, automation is essential to build testing 
capacity and to reduce the workload of manual test procedures. 
Although reliable and effective, automation can be complex and may 
bring new learning challenges to be of use. We recommend public 
health laboratories extend patience when acquiring new 
instrumentation, practice flexibility and generosity with time and 

resources that may be required for successful implementation and 
be communicative with others to problem-solve and troubleshoot. 
Automation is becoming more commonplace and there is an ever-
growing network of laboratories and public health spaces that can 
work together to ensure the uptake and application of automation will 
continue to be valuable and successful.
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A Candida auris outbreak has been ongoing in Southern Nevada since August 
2021. In this manuscript we  describe the sequencing of over 200 C. auris 
isolates from patients at several facilities. Genetically distinct subgroups of C. 
auris were detected from Clade I  (3 distinct lineages) and III (1 lineage). Open-
source bioinformatic tools were developed and implemented to aid in the 
epidemiological investigation. The work herein compares three methods for C. 
auris whole genome analysis: Nullarbor, MycoSNP and a new pipeline TheiaEuk. 
We also describe a novel analysis method focused on elucidating phylogenetic 
linkages between isolates within an ongoing outbreak. Moreover, this study places 
the ongoing outbreaks in a global context utilizing existing sequences provided 
worldwide. Lastly, we describe how the generated results were communicated to 
the epidemiologists and infection control to generate public health interventions.

KEYWORDS

Candida auris, epidemiology, whole-genome sequencing, bioinformatics, emerging 
pathogens

1. Introduction

Candida auris was first identified in 2009 in Japan and has quickly become an emerging 
global pathogen (1). Since its discovery it has rapidly spread worldwide (2–4). Genomic analysis 
of C. auris has identified four main clades in addition to a rarer fifth clade (5). C. auris clades 
were initially identified by geographical region—Clade 1 (South Asian), Clade 2 (East Asian), 
Clade 3 (African), Clade 4 (South American) and Clade 5 (Middle Eastern) (2, 5). However, 
outside of Clade 5, all other clades have escaped their initial geographic boundaries (6).

C. auris presents multiple medical and public health challenges which contribute to its 
concern as an emerging pathogen. Firstly, C. auris commonly possesses resistance to existing 
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antifungal pharmaceuticals (2). Secondly, C. auris has the ability to 
colonize hosts both internally and externally and often 
asymptomatically. This facilitates spread (6, 7) and obfuscates 
screening strategies. Thirdly, these traits facilitate establishment and 
spread within health care facilities which has prompted agencies 
around the world (Centers for Disease Control [CDC], European 
Centre for Disease Prevention and Control [EDPC] and Public Health 
England) to release clinical alerts on C. auris (8–10). Fourthly, crude 
estimates of mortality for hospitalized patients with candidemia is 
30–72% in frequently hospitalized indivivduals.

Because of the ability of C. auris to spread and colonize in health 
care facilities, rapid identification and genomic analysis are necessities 
in containing outbreaks. In this study we applied robust genomic 
sequencing analysis to a major outbreak of C. auris in southern 
Nevada. Analysis revealed two genomically distinct, simultaneous 
C. auris outbreaks that initiated with chronological proximity. Whole 
genome sequencing was performed on 208 isolates associated with the 
outbreak. The sequences generated were utilized both to develop and 
to assess novel tools. These tools were utilized for identification and 
for phylogenetic analysis to aid the epidemiologic investigation. Three 
existing methodologies for analyzing C. auris whole genome 
sequences were studied and the results are shown: Nullarbor (12, 13), 
mycosnp (3) and TheiaEuk (14). All methods showed the ability to 
identify C. auris based on whole genome sequencing and to generate 
relatedness metrics. Using these tools, we describe the development 
of a custom, shared single-nucleotide polymorphism (SNP) method 
that may provide significant aid in the use of C. auris genomic 
sequences in epidemiologic investigations.

2. Materials and methods

2.1. Collection of specimens

Specimens were isolated from clinical samples collected in Nevada 
from August 2021 to July 2022. Two additional isolates of interest from 
Nevada are included in this study from 2022-11-18 and 2023-01-15. 
C. auris is not a reportable organism in Nevada, so initial clinical 
samples were obtained in collaboration with our ARLN lab in 
Washington State and southern Nevada clinical partners. Since, 
C. auris is not a reportable organism, so it is difficult to estimate the 
number of cases compared to the number sequenced in this 
timeframe. However, this study sequenced every C. auris isolate from 
the time range noted that the Nevada State Public Health Laboratory 
was able to obtain a cultured isolate. All relevant information for each 
C. auris isolates including clade designation, Sequence Read Archive 
identifier at NCBI, antifungal MICs, etc. is included in 
Supplementary Table S1.

2.2. Whole-genome sequencing of 
Candida auris

Genomic DNA used for sequencing was extracted using a 
combination of bead-beating (FastPrep-24, MP Biomedicals, Irvine, 
CA) and magnetic-bead purification (Maxwell RSC 48, Promega, 
Madison, WI). First, isolates from Sabouraud Dextrose agar plates 
were mixed with silica beads (Lysing Matrix C, MP Biomedical) and 

then mechanically sheared with 2 cycles at 6.0 m/s for 30 s with a 5 min 
pause between (FastPrep-24, MP Biomedical). Genomic DNA was 
extracted using PureFood Pathogen Kit (Promega) on a Maxwell RSC 
48 (Promega) using manufacturer’s protocol. Genomic DNA was 
library prepped using DNA Prep Kit (Illumina, San Diego, CA) using 
manufacturer’s recommended protocol using a STARlet automated 
liquid handler (Hamilton Company, Reno, NV). Paired-end 
sequencing (2×151) was performed using Illumina’s MiniSeq and 
NovaSeq 6,000 to a minimum depth of 35x average coverage.

2.3. Antibiotic susceptibility testing

Candida auris AST was performed using microbroth dilution and 
predefined gradient of antibiotic concentrations (Etest) methods. A 
patient isolate was grown on Sabouraud Dextrose agar plate and 
incubated at 30°C in ambient air for 24 h and used to make 0.5 
McFarland inoculum suspension in demineralized sterile water. The 
0.5 McFarland suspension was measured by spectrophotometer to 
verify the 0.5 McFarland (80–82% transmittance). Twenty microliters 
of 0.5 McFarland suspension were added into 11 mL of RPMI broth 
tube, and 100 μL of the RPMI diluted sample was distributed to each 
well of a 96-well plate pre-loaded with antibiotics and incubated along 
with control plates for 24 h at 35°C. The same 0.5 McFarland inoculum 
suspension was used to inoculate a RPMI agar plate using a sterile 
cotton swab. A single Amphotericin B Etest strip was applied to 
middle of the agar surface using sterile forceps and incubated along 
with control plates for 24 h at 35°C. The AST of the microbroth 
dilution panel was read using parabolic magnifying mirror to 
determine the MIC (lowest concentration where there is ≤50% growth 
compared to growth control well). For the Amphotericin B Etest, MIC 
was interpreted at value where there is 100% growth inhibition 
(number above where ellipse intercepts Etest strip).

2.4. Nullarbor implementation

Nullarbor is a reads-to-report bioinformatics pipeline originally 
written in Perl. In the Terra workflow version, Nullarbor is 
implemented as a single task using the Workflow Description Language 
(WDL). Reads are accepted in two separate arrays for read file one and 
read file two (n= 16). A tsv input file is generated by iterating through 
the arrays of read files, and this sample sheet tsv is ultimately passed 
into the Nullarbor analysis module. Additional inputs include an array 
of sample names, and a reference genome. The clade specific reference 
genome should be used, meaning clade must be discerned prior to 
running this workflow, as there is no clade typing module.

Read cleaning is performed removing sequencing adaptors and 
low-quality input sequencing data using Trimmomatic (15). Species 
identification is performed using Kraken 2 with the EuPathDB64 
database available here1 (16). De novo assembly is performed using 
SKESA (17). In addition, sequencing reads are aligned to a 
user-provided reference genome using Snippy, and the core phylogeny 
and SNP matrix are produced using snippy-core (18).

1 https://benlangmead.github.io/aws-indexes/k2
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2.5. MycoSNP implementation

MycoSNP is an open-source bioinformatics pipeline designed to 
call variants and construct a phylogeny from mycotic pathogen next 
generation sequencing data (3). The original version of this tool was 
written in Nextflow and implemented by the CDC Mycotics Disease 
Branch2 (19). The components of this tool are wrapped in docker 
containers. Each of these components is an established bioinformatics 
method, and output files are in standard format so as to allow 
compatibility with downstream analytical modules. The inputs to this 
workflow include the raw read FASTQ files from an Illumina paired 
end sequencing run and a reference genome in FASTA file format. The 
reference genomes utilized were the CDC clade 1 reference genome 
[strain B11205] (GenBank Accession GCA_016772135.1) and the 
CDC clade 3 reference genome [strain B11221] (GenBank Accession 
GCA_002775015.1) (5).

MycoSNP was run with default settings as described by Bagal et al 
(3). The first step of the pipeline is to prepare the reference genome for 
alignment by masking repeat regions using nucmer3 and generating 
an index for efficient alignment with the Burrows-Wheeler Aligner 
(BWA).4 Next, the FASTQ files are processed and checked for quality. 
For FASTQ processing, SeqKit5 is used to filter unpaired reads, SeqTK6 
is used to downsample reads, and FaQCs7 is used to perform quality 
checks and read trimming. After processing, the reads are aligned to 
the reference genome using BWA. The resulting binary alignment map 
(BAM) files are sorted with SAMTools8 and processed to remove 
duplicates, ensure mate-paired read information is correct, and add 
read groups with Picard.9 This final step of the alignment process is to 
perform additional quality checks using FastQC10 and MultiQC.11 
Variants are called using GATK.12 The resulting GVCF files from each 
sample are then combined into a single VCF file, which is then filtered 
based on normalized variant quality, Phred-scaled probability of 
strand bias, mapping quality of all reads at the variant site, and the 
number of filtered reads that support each of the alleles found at the 
variant site.13 The combined and filtered VCF is then split into 
individual sample-specific VCF files. Using BCFTools14 and SeqTK, a 
consensus sequence is generated for each sample, and these sequences 
are combined into a multi-FASTA to be  used as the input to the 
phylogenetic tree construction tools.

2 https://github.com/CDCgov/mycosnp-nf

3 https://github.com/garviz/MUMmer/blob/master/nucmer

4 https://github.com/lh3/bwa

5 https://github.com/shenwei356/seqkit

6 https://github.com/lh3/seqtk

7 https://github.com/LANL-Bioinformatics/FaQCs

8 https://github.com/samtools/

9 https://github.com/broadinstitute/picard

10 https://github.com/s-andrews/FastQC

11 https://github.com/ewels/MultiQC

12 https://github.com/broadinstitute/gatk

13 https://gatk.broadinstitute.org/hc/en-us/

articles/360035890471-Hard-filtering-germline-short-variants

14 https://github.com/samtools/bcftools/releases

Multiple phylogenies are generated in MycoSNP. The phylogenetic 
inference tools rapidNJ,15 FastTree2,16 RaxML,17 and IQTree18 are all 
utilized in this final step of the workflow.

To make this workflow available on the Terra platform, the 
original pipeline has been split into two separate tools, each wrapped 
in a WDL workflow. The two new workflows perform variant calling 
and phylogenetic analysis independently, but the underlying 
components are the same as the original MycoSNP.

2.6. TheiaEuk implementation

The TheiaEuk_PE workflow performs the assembly, quality 
assessment, and genomic characterization of fungal genomes (14). 
This cloud-native workflow is implemented in the Workflow 
Description Language and has been operationalized on the Terra.bio 
platform. TheiaEuk_PE has been fashioned to accept Illumina 
paired-end sequencing data as the primary input but offers many 
optional inputs to allow the user to specify parameters for all internal 
components of the workflow. Input reads are preprocessed with a 
raw-read quality assessment followed by read cleaning (quality 
trimming and adapter removal), and then an additional quality 
assessment of the cleaned reads. Subsequently, de novo assembly is 
performed using the Shovill package with SKESA set as the default 
assembler. SKESA is implemented using default parameters. Once the 
assembly has been generated an assembly quality assessment is 
performed using QUAST. Using the assembly, species taxon 
identification is performed by GAMBIT (20). The GAMBIT 
implementation in TheiaEuk_PE uses a custom fungal database 
containing 5,667 genomes and 245 species. For some taxa identified, 
taxa-specific sub-workflows will be automatically activated, launching 
additional taxa-specific characterization tools, including a GAMBIT-
based clade-typing tool and antifungal resistance detection performed 
using Snippy variant calling with a custom query for genes in which 
there are known antifungal-resistance conferring mutations (14). For 
C. auris, TheiaEuk queries the Snippy results for strings matching the 
FKS1, ERG11, and FUR1 genes.

2.7. Benchmarking against other workflows

Three workflows were compared in this study using two sets of 
C. auris reads. The first set was 60 samples from clade 1 and the 
second set was 148 samples from clade 3. TheiaEuk was combined 
with kSNP3 to produce phylogenetic trees and SNP matrices. First, 
TheiaEuk was used to produce assemblies which were then used as 
inputs to the kSNP3 workflow to produce a pair of phylogenetic 
trees and SNP matrices. MycoSNP_Variants was used to produce 
VCF files which were fed into the MycoSNP_Tree workflow to 
produce a set of phylogenetic trees and a SNP matrix. Nullarbor 
was run as a single workflow producing a SNP matrix and a 
phylogenetic tree. Each VM deployed to run these workflows was 

15 https://github.com/johnlees/rapidnj

16 https://github.com/citiususc/veryfasttree

17 https://github.com/stamatak/standard-RAxML

18 https://github.com/Cibiv/IQ-TREE
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given runtime parameters of 32 cpus and 128 GB of memory. These 
compute resources were allocated to each VM, so workflows that 
launched several VMs simultaneously took advantage 
of parallelization.

2.8. Candida auris specific subroutines 
within TheiaEuk

Upon the taxonomic assignment of C. auris to a sample, 
TheiaEuk_PE automatically triggers two taxa-specific sub-workflows 
(14). First, a clade-typing workflow is launched. Clade-typing is 
performed using a modified version of the GAMBIT module to 
determine which of the five clade specific references most closely 
matches the query sequence. The output of the clade-typing module 
includes the clade assignment as well as a clade-specific annotated 
genome which is then passed to the antifungal resistance detection 
module. Snippy is used to align reads to the annotated reference 
genome and call variants. The variants are annotated with the genes 
in which they are found because the input reference genome is 
annotated. The variants are then queried for any that occur within 
genes known to contain resistance conferring mutations. This method 
is used rather than reporting only known resistance conferring 
mutations to ensure that novel resistance conferring mutations are 
not ignored.

2.9. Shared SNP analysis

This analysis uses the VCF file from kSNP3 which lists each 
unique SNP in a dataset with the 9 base pairs upstream and 
downstream of the SNP location (21). The SNP output for clade 1 
is made against the CDC clade 1 reference genome [strain B11205] 
(GenBank Accession GCA_016772135.1) and the SNP output for 
clade 3 is made against the CDC clade 3 reference genome [strain 
B11221] (GenBank Accession GCA_002775015.1) (5). The VCF 
file displays if each SNP is present, absent or unassembled for each 
input genomes. This analysis focuses only on SNPs that are 
assembled in each input genome and then filters out from that 
group SNPs that are in every input genome (save the reference 
genome) and SNPs that are unique to only one of the input 
genomes. The SNPs that remain are referred to as “shared SNPs,” 
falling somewhere between unique and present in all genomes in 
your query set. These SNPs are manually clustered to form groups 
that have unique patterns of shared SNPs. These SNPs were not 
annotated in our analysis.

3. Results

3.1. NV outbreak

An outbreak of C. auris in southern Nevada was first detected in 
August 2021. As of October 31st, 2022, over 500 cases had been 
reported with over 200 isolates preserved. We report on 210 isolates 
including 2 isolates that represent new introductions to Nevada as 
detected by our analysis pipelines described below. All isolates were 
subjected to whole genome sequencing.

3.2. Global relatedness of southern Nevada 
clades to global clades

To initially assess isolates associated with the outbreak 
genomically, we utilized a phylogenetic tree-based comparison on 
the entire genome against a subsampling of previously submitted 
clade 1 or clade 3 strains from organizations around the world 
(Figures 1A,B; Supplementary Table S2) (21). These trees establish 
that the southern Nevada strains have a unique phylogenetic 
signature among all C. auris isolates previously submitted to 
public repositories. Figure 1A presents C. auris clade 1 samples 
that have been sequenced and uploaded to public repositories. The 
major phylogenetic groups are highlighted with different colors 
and annotated by the region where the C. auris isolates were 
collected with the Nevada isolates highlighted in purple. The 
Nevada clade 1 outbreak is genetically distinct from other 
outbreaks in the U.S. as shown in Figure 1A. The index southern 
Nevada case for the clade 1 outbreak was SRR23249008 
(Supplementary Table S1).

A similar analysis was performed with clade 3 samples and is 
shown in Figure 1B. As with clade 1 analysis, it became clear that 
the Nevada clade 3 samples (highlighted in purple) were 
genetically distinct from other previously sequenced outbreaks. 
The index southern Nevada cases for the clade 3 outbreak were 
SRR19738700 and SRR23109087 which were both collected on 
11-02-2021 in the case facility (Supplementary Table S1). Note the 
one isolate labeled Arizona01  in the shaded purple box was 
collected in Arizona from a southern Nevadan patient. 
Epidemiological investigation strongly suggested the patient 
contracted C. auris in southern Nevada prior to travel to Arizona 
(data not shown). The information on the case described in the 
previous sentence was obtained and shared with the Nevada State 
Public Health Laboratory in collaboration with our public health 
partners in Utah and Nevada. These data were collected and 
shared in accordance with IRB protocols. We concluded having a 
pipeline(s) of rigorous bioinformatic tools capable of handling 
fungal microbes would be necessary for the public health response 
to these simultaneous and distinct outbreaks occurring in 
southern Nevada.

3.3. State of fungal bioinformatic 
whole-genome sequencing pipelines circa 
march 2022

After an initial analysis of the outbreak specimens with regard to 
clade, we  sought to further determine the utility of phylogenetic 
analysis to assist disease control. Upon initiation of sequencing and 
genomic analysis of the outbreak at the Nevada State Public Health 
Laboratory, one computational method /pipeline was available for 
assessments of C. auris (12, 13). Another was completed but 
unpublished (3). Difficulties with implementation of the former led 
our group to develop a novel pipeline for identification and 
phylogenetic analysis of C. auris genomes. This pipeline has been 
named “TheiaEuk” (14). As we sought to determine the best methods 
for using sequencing to assist disease control efforts for this outbreak, 
we  sought to compare all three methods in terms of capability 
and functionality.
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3.4. Pipeline comparisons for Candida auris 
genome assemblies

In testing three methods, we assembled genomes (n = 60) from 
clade I from patients found infected by C. auris in southern Nevada. 
Assembly and downstream analyses were completed using each of 
three workflows: Nullarbor, TheiaEuk and Mycosnp. Upon 
completion, results from Nullarbor needed no additional analysis. 
TheiaEuk and Mycosnp required additional step for the generation of 
SNP matrices and/or phylogenetic trees (Figure 2). Times required for 
analyses are shown in Table  1. As shown in Table  2, all methods 
assemble genomes of nearly identical sizes with the average genome 
lengths of Nullarbor being 12,276,509 bp, TheiaEuk being 
12,288,829 bp and MycoSnp being 12,406,106 bp. For assembly, 
Nullarbor uses Shovill v1.1.0 with SKESA v2.4.0 as the default setting. 
TheiaEuk uses Shovill v1.1.0 with SKESA v2.4.0 as the default setting. 
MycoSNP uses a reference guided assembly that produces the same 
genome length for each sample using method BWA v0.7.17 for read 
alignment and GATK v4.2.5.0 for variant calling. MycoSNP using 
reference guided assembly creates a single contig per chromosome 
where Nullarbor produces an average of 683 contigs from our Clade 
I  samples and TheiaEuk produces an average of 505 contigs from 
tested clade I samples (Table 2).

3.5. Benchmarking TheiaEuk, MycoSNP and 
Nullarbor

Comparison of the three whole-genome sequencing pipelines 
based on analysis time was performed on the same test set described 
in the previous section (Table 1). All pipelines were run with the same 
virtual machines (Materials and Methods). MycoSNP had the fastest 
report time at 2 h and 5 min, followed by TheiaEuk at 8 h and 10 min 
with nullarbor requiring 26 h and 12 min.

3.6. Pipeline comparisons for Candida auris 
SNP matrices

Each method produces SNP matrices which display the calculated 
number of SNPs between each sample in an analyzed set. We compared 
the number of SNPs detected by each method compared to the first 
clade I sample by numerical order based on our internal nomenclature 
(SRR19664611) to all other samples. We then calculated the absolute 
differences between each pairwise SNP comparison between two 
methods. Comparing Nullarbor and TheiaEuk the difference was 1.9 
(± 2.1) SNPs with Nullarbor consistently reporting fewer SNPs. 
Comparing Nullarbor and MycoSNP the difference was 1.9 (± 2.2) 

FIGURE 1

Phylogenetic trees generated by kSNP3 (21) on Candida auris isolates. Isolates are labeled by region from which they were isolated. Samples for each 
tree are listed with their SRA ID in Supplemental Table 2. Shading on the tree represents highly related branches which clustered by geography. 
(A) Phylogenetic tree of Clade 1 isolates including 4 isolates from the southern Nevada outbreak (colored in purple). (B) Phylogenetic tree of Clade 3 
isolates including 5 isolates from the southern Nevada outbreak (colored in purple).
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SNPs with Nullarbor consistently reported fewer SNPs. Comparison 
of TheiaEuk and MycoSNP resulted in a difference of 0.57 (± 0.89) 
SNPs with MycoSNP consistently reporting more SNPs (Table 3).

3.7. Development of a pipeline to 
distinguish fine grain differences in 
ongoing outbreaks

Distinguishing genetically related isolates within an outbreak can 
be challenging for pathogens with low rates of mutation (22). A SNP 

can be  the result not only of biological introduction, but also 
introduced through sequencing and biocomputational methods. 
Within the outbreak observed herein, core genome assemblies possess 
a large number of shared SNPs when compared to the CDC clade 
references and have relatively smaller number of distinguishing 
mutations that define subgroups (Figure 3A). For example, all but a 
single clade 1 isolate share 52 common SNPs (Supplemental data), yet 
Table 4 shows that the most common clade 1 subclade (Group K) 
differs by only 3 SNPs from the second most common subgroup 
(Group B). We propose that the usage of subsets of shared mutations 
that follow asexual microbial evolution theory would define the most 
highly related subgroups (Figure 3A). To this end it can be observed 
that within a clade, most isolates which share a large number of “core” 
SNPs compared to the CDC reference, show relatedness relevant to 
epidemiological investigation. Such cases, then with additional SNPs 
shared, result in cases with a distinct profile of descendancy and thus 
would be assumed to have the highest level of relatedness (Table 4).

FIGURE 2

Workflow comparisons of whole-genome sequencing bioinformatic pipelines that analyze C. auris WGS data. The shaded key highlights the major steps 
performed in analysis for ease of comparison. For details on each workflow see Materials and Methods. (A) Nullarbor (B) TheiaEuk (C) MycoSNP_variants.

TABLE 1 Run times for each of the tested WGS pipelines on both the 
Clade 1 and Clade 3 isolate sets.

Clade 1 [time 
(hr:min)]

Clade3 [time 
(hr:min)]

TheiaEuk (Average) 2:25 2:47

kSNP3 1:09 3:03

Total 3:34 5:50

MycoSNP (Average) 7:09 8:19

MycoSNP_Tree 0:24 1:11

Total 7:33 9:30

Nullarbor 25:16:00 53:44:00

For Clade 1 n = 60 and for Clade 3 n = 148.

TABLE 2 For the Clade 1 dataset (n = 60) the comparison of WGS assembly 
stats (genome length and number of contigs) is reported.

Mean genome 
size (bps)

Number of 
contigs

Nullarbor 12,276,509 (± 27,775) 683 (± 215)

TheiaEuk 12,288,829 (± 25,062) 505 (± 248)

MycoSNP 12,406,106 NA
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3.8. Inference of relatedness among 
Candida auris clade I outbreak samples

In order to utilize whole-genome variation to provide disease 
control investigators with data regarding the most related sets of 
isolates, specific SNPs were studied for evidence of inheritance 
patterns. Clade I (n = 60) isolates were analyzed using kSNP3 using the 
clade I CDC reference strain [strain B11205] as our reference (21). 
This analysis generated 208 SNPs whereupon the parent (defined as 
the reference strain) or variant sequence was detected in all 60 strains. 
Of these SNPs, 109 were present in only one isolate (aka unique SNPs). 
Of the 99 SNPs that were shared among two or more Clade I isolates, 
54 were present in 57 out of 60 clade I isolates. The remainder of the 
analysis focused upon these 57 strains which all shared this set of “core 
NV clade I” SNPs.

Among these 57 strains 19 SNP sets were identified which 
differentiated this group based on genetics. These SNP sets (Table 4) 
contained between 1 and 8 SNPs. The presence of the SNP set in an 
isolate is represented with a “+” in Table Y and its absence is 
represented with a “-“. We identified 15 groups of isolates that had 
more than one member and had a unique combination of SNP sets 
(Table  4)—we designated these as clade 1 Groups A through 
O. Provision of group designations was to assist disease controllers in 
Nevada in having a nomenclature to describe cases. It was not an 
attempt to create a novel general nomenclature field-wide. Lastly, 
we present a subset of our inferred clade 1 transmission network based 
on these data in Figure 3B.

3.9. Inference of relatedness among 
Candida auris clade III outbreak samples

The analysis described above was repeated for the 148 Clade III 
isolates using the clade III CDC reference strain [strain B11221] as our 
ancestral outgroup for kSNP3. This analysis generated 401 SNPs 
where the parent or variant sequence was detected in all 148 strains. 
Of these SNPs, 280 were present in only one isolate (aka unique SNPs). 
Of the 121 SNPs that were shared among two or more clade III 
isolates, 28 were present in 147 out of 148 clade III isolates. Focus was 
placed upon these 147 strains which all shared this set of “core NV 
clade III” SNPs.

Among these 147 isolates 42 SNP sets were identified which 
differentiated this group based on genetics. These SNP sets 
(Supplementary Table S3) contained between 1 and 5 SNPs. The 
presence of the SNP set in an isolate is represented with a “+” in 
Supplementary Table S3 and its absence is represented with a “-“. 
Groups of isolates (n = 35) were identified that had more than one 
member and had a unique combination of SNP sets 

(Supplementary Table S3)—these were designated as Clade 3 Groups 
A through KK.

3.10. Discovery of new introductions to 
Candida auris to southern Nevada using 
shared SNP analysis

The shared SNP analysis described above is performed by the 
Nevada State Public Health Laboratory on a regular basis since 
September 2022. During that time, this analysis has identified two 
novel clade 1 introductions. These novel introductions have a unique 
set of “core” SNPs that are different from the Southern Nevada “core” 
SNP signature. To quantify this, we ran kSNP3 with four members of 
the southern Nevada Clade 1 outbreak with the suspected two novel 
clade 1 introductions (21). The first novel introduction represented by 
isolate SRR23137821 has 2,519 SNPs not shared by any of the original 
clade 1 isolates from this outbreak (Table  5). The second novel 
introduction represented by isolate SRR23920687 has 87 SNPs not 
shared by any of the original clade 1 isolates from this outbreak 
(Table 5). While all three have a small, overlapping set of 10 common 
SNPs when compared to the CDC clade 1 reference strain, the vast 
genetic diversity detected by the shared SNP analysis shows that these 
are new introductions.

4. Discussion

Candida auris is among the most challenging of healthcare-
associated infections (2, 6–11). It combines the ability to persist 
environmentally with inherent drug resistance and the ability to 
cause significant morbidity and mortality. As such, public health 
must bring every tool at its disposal to bear on this threat. Herein, 
we assess one possible tool for its ability to assist in combatting 
C. auris outbreaks: genomics, in response to multiple, complex 
outbreaks in Nevada, we  sought to generate as much genomic 
intelligence as possible to better understand the spread of the 
pathogen. The use of genomics to track and to describe pathogens 
is certainly not novel. However, its application to C. auris outbreaks 
is relatively new. As a fungal pathogen, C. auris has been shown to 
have a mutation rate much slower than other, healthcare associated 
agents (23–26). Slower mutation rates may result in less diversity in 
outbreak populations, thus limiting the ability to distinguish cases 
within transmission networks. Confronting this, we assessed the 
genomic diversity of whole genome sequences from numerous 
isolates associated with outbreaks of clade I  and clade III. The 
observations that were made led to the use not only of quantification 
of SNP distances, but also the recognition of the genomic locations 
of SNPs that were shared among cases. Utilization of “shared” SNPs 
was found to provide power to the use of whole genomics for 
studying C. auris during an outbreak. The concept of shared SNPs 
allowed rational descriptions and delineations of phylogenetic 
descendancy. The result was the creation of means to more 
effectively serve disease controllers and epidemiologists in 
furtherance of their investigations. While this may not make up for 
a slow mutation rate associated with the pathogen and thus a lower 
discriminatory capacity, it does create a means to direct investigators 
to the most related cases in a rational way. The use of shared SNPs 

TABLE 3 Calculated SNP differences between the WGS pipelines for 
Clade 1 (n = 60).

Assembly 
Method #1

Assembly 
Method #2

Ave Difference in 
SNP Matrix (± 

SNPs)

MycoSNP TheiaEuk 0.57 (± 0.89)

MycoSNP Nullarbor 1.9 (± 2.2)

TheiaEuk Nullarbor 1.9 (± 2.1)
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has been applied to pathogen genomics in many instances but to 
our knowledge, this is the first use of the concept to assess case 
relatedness within a C. auris outbreak (27–29). A previous study 
applied whole genome sequencing to a small outbreak of C. auris 

within a hospital (30). Therein it was shown that in fact there was 
considerable genomic diversity between multiple isolates taken 
from the same patient, and also taken from different patients who 
were roomed together and were likely transmission pairs (30).

FIGURE 3

Inferred transmission networks based on shared SNP analysis. (A) Figure illustrates how theoretical Ancestral strain I (with SNP Z) could evolve during 
an outbreak. When an isolate acquires a novel SNP or SNPs during this hypothetical outbreak, an arrow is displayed and a designation (such as SNP A) 
is shown above the arrow. Gray circles represent inferred genotypes based on clinical isolates. Blue circles represent clinical isolates and their known 
genotypic profile. This figure demonstrates how lineage can be inferred from a genetically diverse set of isolates within a known outbreak. (B) Inferred 
transmission network from the clade 1 southern Nevada outbreak. In this instance we have observed isolates from all intermediates except the most 
ancestral strain. This representation is derived from the data presented in Table 4.
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TABLE 4 Shared SNP analysis of clade 1 isolates.

SNP 

Set

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 Clade 1 

Group

# 

SNP 

in Set 6 1 1 1 1 1 4 3 8 1 1 1 2 3 1 1 1 3 2

SRR23958479 | + + + + + + − − − − − − − − − − − − − A

SRR23958550 | + + + + + + − − − − − − − − − − − − − A

SRR19664607 | + + + + + − − − − − − − − − − − − − − B

SRR20081625 | + + + + + − − − − − − − − − − − − − − B

SRR23958553 | + + + + + − − − − − − − − − − − − − − B

SRR23958512 | + + + + + − − − − − − − − − − − − − − B

SRR23109092 | + + + + + − − − − − − − − − − − − − − B

SRR19738655 | + + + + + − − − − − − − − − − − − − − B

SRR23958484 | + + + + − − + − − − − − − − − − − − − C

SRR23958472 | + + + + − − + − − − − − − − − − − − − C

SRR23958509 | + + + − − − − − − − − − − − − − − − − n/a

SRR20081622 | + + − − − − − + − − − − − − − − − − − D

SRR20081630 | + + − − − − − + − − − − − − − − − − − D

SRR23958473 | + + − − − − − + − − − − − − − − − − − D

SRR23958536 | + + − − − − − − + − − − − − − − − − − E

SRR19738708 | + + − − − − − − + − − − − − − − − − − E

SRR20081617 | + + − − − − − − − + − − − − − − − − − F

SRR23958480 | + + − − − − − − − + − − − − − − − − − F

SRR23958501 | + + − − − − − − − − + − − − − − − − − G

SRR23958477 | + + − − − − − − − − + − − − − − − − − G

SRR23958478 | + + − − − − − − − − − + − − − − − − − H

SRR19738637 | + + − − − − − − − − − + − − − − − − − H

SRR19738652 | + + − − − − − − − − − − + − − − − − − I

SRR23249014 | + + − − − − − − − − − − + − − − − − − I

SRR23249013 | + + − − − − − − − − − − − + − − − − − J

SRR19738642 | + + − − − − − − − − − − − + − − − − − J

SRR23958528 | + + − − − − − − − − − − − − − − − − − K

SRR23958523 | + + − − − − − − − − − − − − − − − − − K

SRR23958519 | + + − − − − − − − − − − − − − − − − − K

SRR23958514 | + + − − − − − − − − − − − − − − − − − K

SRR23958503 | + + − − − − − − − − − − − − − − − − − K

SRR23958502 | + + − − − − − − − − − − − − − − − − − K

SRR23958500 | + + − − − − − − − − − − − − − − − − − K

SRR23958487 | + + − − − − − − − − − − − − − − − − − K

SRR19664611 | + + − − − − − − − − − − − − − − − − − K

SRR19738706 | + + − − − − − − − − − − − − − − − − − K

SRR19738640 | + + − − − − − − − − − − − − − − − − − K

SRR19738712 | + + − − − − − − − − − − − − − − − − − K

SRR20081637 | + + − − − − − − − − − − − − − − − − − K

SRR23958556 | + + − − − − − − − − − − − − − − − − − K

SRR23958546 | + + − − − − − − − − − − − − − − − − − K

SRR19738698 | + + − − − − − − − − − − − − − − − − − K

SRR19738690 | + + − − − − − − − − − − − − − − − − − K

(Continued)
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Sequencing and genomic analysis provided real benefits to disease 
controllers and epidemiologists who were investigating these 
outbreaks in Nevada. It became readily possible to distinguish between 
ongoing transmission within facilities versus novel introductions into 
facilities on the basis of shared SNP descendancy. This triggered 
different strategies and tactics on a facility-by-facility basis which were 
applied based upon phylogenetic information rather than from best 
guesses. Lastly, we demonstrated the shared SNP analysis detected two 
novel clade 1 introductions from outside of southern Nevada. This 
early detection allowed our public health responders to attempt to 
contain these new introductions and prevent their establishment in 
southern Nevada. This was critical because the greater the number of 
overlapping and ongoing outbreaks a region is experiencing, the more 
complicated the role of disease control investigators and 
epidemiologists becomes.

Because multiple tools exist to assess whole genome sequencing 
of C. auris, the work herein rigorously compared and contrasted three 
such pipelines. Each performed reliably, though specific differences in 
genome sizes and time-to-answer were found among the three. 
Notably, pairwise comparisons of SNP distances between fixed sets of 

isolates across different pipelines revealed that different pipelines will 
provide different results. This finding indicates that choice and 
validation of pipelines is not just a matter of formality. As microbiology 
and bioinformatics continue to merge, it is critical that when new 
pipelines are constructed that they are validated against existing tools. 
An ever-increasing number of pipelines does not serve the field of 
medicine or public health if the pipelines are not clearly assessed from 
a quality assurance perspective. Much work lies ahead for standards, 
consultation and accreditation agencies associated with diagnostic 
science, as emerging bioinformatic tools require rigorous assessment. 
Even when they are not used as diagnostic tools, their use as aids to 
epidemiology and disease control will trigger enormous shifts in 
work-time and resources, which are often limited in the public 
health realm.

Comprehensive and rapid sequencing of cases as described 
herein has just begun to impact the public health intervention 
aspect of the outbreak. Affected sites with continuous transmission 
have sought additional interventions, including novel means of 
chemical disinfection and the use of (PCR) screening tests for 
incoming patients and employees. Unlike the use of sequencing for 
other hospital acquired infections (e.g., CRE) the comprehensive 
use of sequencing as shown herein has laid the groundwork for 
training and familiarization with the use of genomic sequence 
intelligence. The intense sequencing has additionally led to a highly 
sophisticated and detailed description of the outbreaks which has 
gained the attention of elected public servants in the state who have 
sought additional resources for approaching the outbreak. 
Additionally, sequencing and analysis have also provided gravitas 
to the successful actualization of C. auris as a reportable entity 
in Nevada.

This study possesses unique strengths. It included a large number 
of isolates, collected prospectively in the course of major outbreaks. 

TABLE 4 (Continued)

SNP 

Set

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 Clade 1 

Group

# 

SNP 

in Set 6 1 1 1 1 1 4 3 8 1 1 1 2 3 1 1 1 3 2

SRR19738686 | + + − − − − − − − − − − − − − − − − − K

SRR19738668 | + + − − − − − − − − − − − − − − − − − K

SRR23109093 | + + − − − − − − − − − − − − − − − − − K

SRR23109093 | + + − − − − − − − − − − − − − − − − − K

SRR23249015 | + + − − − − − − − − − − − − − − − − − K

SRR19738677 | + − − − − − − − − − − − − − + − − − − L

SRR19738650 | + − − − − − − − − − − − − − + − − − − L

SRR23958539 | + − − − − − − − − − − − − − − − − − − n/a

SRR19738715 | − − − − − − − − − − − − − − − + + − + M

SRR23109090 | − − − − − − − − − − − − − − − + + − + M

SRR23109088 | − − − − − − − − − − − − − − − + + − − N

SRR19738688 | − − − − − − − − − − − − − − − + + − − N

SRR19664610 | − − − − − − − − − − − − − − − + − + − O

SRR23958488 | − − − − − − − − − − − − − − − + − + − O

SNP Set refers to a SNP or set of SNPs that are found only in a subset of strains in this analysis. # SNP in Set refers to the number of SNPs in each SNP set (this ranges from 1 SNP to 8 SNPs). 
The Clade 1 Group refers to assigned designations of all isolates that have the same shared SNP pattern.

TABLE 5 Comparison of SNPs in reference to the CDC Clade 1 reference 
for two strains from the Nevada outbreak.

Isolate Number of novel 
mutations compared to 

the NV clade 1 core 
isolates

SRR23137821 2,519

SRR23920687 87

Comparison of SNPs in reference to the CDC Clade 1 reference for two strains from the 
Nevada outbreak.
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The study included analysis of two simultaneous, genomically distinct 
outbreaks (clade I and clade III), which on the surface resembled a 
singular outbreak. Additionally, the study compares different tools/
pipelines rather than merely showing the construction and 
functionality of one alone.

This study possesses weaknesses of note. While a high number 
of isolates associated with a large outbreak were assessed, there are 
significant gaps in the information that matches epidemiologic 
data to sequencing data. It is difficult to say with certainty that 
genomic relatedness ascertained herein is guaranteed to 
be meaningful from the disease control perspective, without more 
data. Additionally, not all laboratories or public health jurisdictions 
could necessarily repeat what was performed herein, as massive 
resources were necessarily harnessed to generate the granularity of 
intelligence described.
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Introduction: The clinical incidence of antimicrobial-resistant fungal infections 
has dramatically increased in recent years. Certain fungal pathogens colonize 
various body cavities, leading to life-threatening bloodstream infections. 
However, the identification and characterization of fungal isolates in laboratories 
remain a significant diagnostic challenge in medicine and public health. Whole-
genome sequencing provides an unbiased and uniform identification pipeline for 
fungal pathogens but most bioinformatic analysis pipelines focus on prokaryotic 
species. To this end, TheiaEuk_Illumina_PE_PHB (TheiaEuk) was designed to 
focus on genomic analysis specialized to fungal pathogens.

Methods: TheiaEuk was designed using containerized components and written 
in the workflow description language (WDL) to facilitate deployment on the 
cloud-based open bioinformatics platform Terra. This species-agnostic workflow 
enables the analysis of fungal genomes without requiring coding, thereby reducing 
the entry barrier for laboratory scientists. To demonstrate the usefulness of this 
pipeline, an ongoing outbreak of C. auris in southern Nevada was investigated. We 
performed whole-genome sequence analysis of 752 new C. auris isolates from 
this outbreak. Furthermore, TheiaEuk was utilized to observe the accumulation 
of mutations in the FKS1 gene over the course of the outbreak, highlighting the 
utility of TheiaEuk as a monitor of emerging public health threats when combined 
with whole-genome sequencing surveillance of fungal pathogens.

Results: A primary result of this work is a curated fungal database containing 5,667 
unique genomes representing 245 species. TheiaEuk also incorporates taxon-
specific submodules for specific species, including clade-typing for Candida auris (C. 
auris). In addition, for several fungal species, it performs dynamic reference genome 
selection and variant calling, reporting mutations found in genes currently associated 
with antifungal resistance (FKS1, ERG11, FUR1). Using genome assemblies from the 
ATCC Mycology collection, the taxonomic identification module used by TheiaEuk 
correctly assigned genomes to the species level in 126/135 (93.3%) instances and to 
the genus level in 131/135 (97%) of instances, and provided zero false calls. Application 
of TheiaEuk to actual specimens obtained in the course of work at a local public 
health laboratory resulted in 13/15 (86.7%) correct calls at the species level, with 2/15 
called at the genus level. It made zero incorrect calls. TheiaEuk accurately assessed 
clade type of Candida auris in 297/302 (98.3%) of instances.

Discussion: TheiaEuk demonstrated effectiveness in identifying fungal species 
from whole genome sequence. It further showed accuracy in both clade-typing 
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of C. auris and in the identification of mutations known to associate with drug 
resistance in that organism.

KEYWORDS

Candida auris, epidemiology, whole-genome sequencing, bioinformatics, emerging 
pathogens

1. Introduction

Microbial fungal pathogens are a major public health concern 
estimated to affect over 13 million patients annually, with mortality of 
over 1 million patients annually (1, 2). Fungal infections are especially 
problematic for patients with conditions such as HIV/AIDs, chronic 
obstructive pulmonary disease (COPD), asthma, tuberculosis and 
patients undergoing cancer treatments. Fungal pathogens remain 
understudied compared to prokaryotic pathogens and often present 
difficulties in identification and characterization (3–8).

Antifungal drugs are the primary treatment for pathogenic fungal 
infections. There are four major classes of antifungal drugs: 
echinocandins (caspofungin), azoles (fluconazole), polyenes 
(amphotericin B), and the pyrimidine analogue 5-flucytosine. However, 
the overuse and misuse of these drugs have led to the emergence of 
drug-resistant strains of these fungi and increasingly prevalent multi-
drug resistant fungal infections (9–11). Given the limited classes of 
drugs to treat fungal infections, the threat of multidrug resistant fungal 
infections poses a public health menace (9, 11). These strains are often 
more difficult to treat, resulting in longer hospital stays, higher 
healthcare costs, and increased mortality rates. In fact, some studies 
have shown that mortality rates can be as high as 50% in patients with 
drug-resistant Candida albicans infections (9, 10).

Candida auris is a fungal pathogen that has rapidly emerged as a 
public health concern. It was originally identified in Japan in 2009, and 
has since been found in over 30 countries, including the United States 
(10, 12–14). This organism is particularly concerning because it has 
demonstrated resistance to multiple antifungal drugs, making treatment 
of infections challenging. In a study of C. auris isolates from multiple 
continents, fluconazole resistance was detected in 93% of isolates, 
amphotericin B resistance was detected in 35%, and echinocandin 
resistance was detected in 7% (13). The scope of antifungal treatment 
options is limited, making managing infections with C. auris difficult (1). 
The ability to resist treatment combined with the ability to cause invasive 
infections in patients who are already ill and weakened leads to high 
C. auris mortality (13, 15). This highlights the need for enhanced 
surveillance methods that detect not only the presence of C. auris, but 
also whether the isolate is part of an ongoing outbreak and what 
antifungal resistance determinants the isolate may harbor.

While there are numerous other fungal pathogens of public health 
concern, certain species exist as growing antimicrobial resistance 
threats. Aspergillus fumigatus is a common opportunistic airborne 
fungal pathogen that can cause serious infections in humans. 
Resistance to several antifungal drugs, including azoles, has been 
observed in this fungus (16, 17). Cryptococcus neoformans is a fungal 
pathogen that causes serious infections in individuals with weakened 
immune systems, and often presents difficulties in infection 
management due to resistance to several antifungal drugs (18, 19). 
C. albicans is a type of fungus commonly found on the skin and 

mucous membranes of humans. Although often harmless, it can cause 
infections in vulnerable individuals, such as those with weakened 
immune systems, surgical wounds, or indwelling medical devices. In 
recent years, C. albicans has also become a growing public health 
threat due to its increasing resistance to antifungal drugs (20, 21).

Genomic sequencing is a useful tool for analyzing fungal pathogens 
for public health investigations (22). By analyzing individual pathogen 
genomes, researchers can identify the species responsible for a patient 
infection, sub-type the organism, and detect mutations that are 
associated with resistance to antifungal medicines. For this to 
be  realized, accessible and easy-to-use bioinformatic pipelines for 
genomic fungal analysis must be developed and deployed to the public 
health community. To this end, we developed TheiaEuk, a pipeline that 
performs genome assembly and taxonomic identification of 245 fungal 
species across 138 genera from FASTQ files generated by whole-
genome sequencing. Following taxonomic identification, species-
specific analyses are automatically launched. For example, when 
C. auris is detected, clade designation and mutations that are likely to 
result in antifungal resistance are automatically reported. Lastly, 
genome assemblies produced by the TheiaEuk pipeline are compatible 
with several tools for downstream phylogenetic analysis especially 
when accessed in the Terra platform (23). We demonstrate that the 
TheiaEuk pipeline provides the bioinformatic tools needed by public 
health and medical professionals to utilize whole-genome sequencing 
to characterize and to phylogenetically assess fungal pathogens.

2. Materials and methods

2.1. TheiaEuk pipeline

2.1.1. TheiaEuk implementation
The TheiaEuk workflow was designed to perform de novo genome 

assembly, quality assessment, and genomic characterization of fungal 
pathogen genomes from paired-end short read sequencing data (see text 
footnote 1). The workflow is written in the workflow description 
language (WDL) and as such may be implemented on the browser-based 
Terra platform (23, 24). The workflow can also be executed from the 
command line interface using WDL workflow engines such as Cromwell 
or miniWDL (25, 26). TheiaEuk will process and analyze Illumina 
paired-end FASTQ inputs using default parameters established for robust 
fungal pathogen analysis; these parameters can be modified by users 
from within the graphical user interface of Terra. The workflow utilizes 
many existing bioinformatics tools as cited in the sections below and 
produces outputs with industry standard file formats to facilitate 
downstream analyses. Comparison of TheiaEuk to other pipelines that 
have been deployed for fungal genome analysis, MycoSNP (27) and 
Nullarbor (28), was presented in Gorzalski et al. (29). The structure of 
the pipeline is described below and illustrated in Figure 1.
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FIGURE 1

The TheiaEuk workflow is a species-agnostic bioinformatics pipeline for fungal genome characterization. Input FASTQ files from WGS of fungal 
pathogens are assessed for quality and de novo assembled regardless of species. Taxonomic identification is performed by GAMBIT using a custom 

(Continued)
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2.1.2. Read trimming and quality control
To avoid errant characterization from poor sequencing data, 

TheiaEuk performs raw read screening on input FASTQ files to 
determine whether the workflow will proceed to subsequent analysis 
or be halted in the event of scarce or problematic input data. This step 
assesses the number of base pairs, number of reads, and proportion 
of reads in each input FASTQ file. It also employs MASH sketches to 
estimate genome size and sequencing depth (30). Samples that pass 
the initial read screen proceed to an optional step in which reads are 
randomly subsampled to 150× read depth using RASUSA to conserve 
computational resources (31). Next, TheiaEuk performs read 
trimming using Trimmomatic and adapter trimming using BBDuk 
(32, 33). Read trimming is followed by an additional read screening 
step to determine if the sequencing data still passes the screening 
parameters. Samples which meet the parameters proceed 
automatically to genome assembly.

2.1.3. Genome assembly
TheiaEuk performs de novo genome assembly using the Shovill 

package (34). Shovill is a software package containing several 
assembly algorithms commonly used for bacterial genome assembly 
including SPAdes (35) and SKESA (36). SKESA has been set as the 
default assembler, but the ability to select an alternative assembly 
program is made available to the user. All the assembly programs 
within Shovill are designed to assemble haploid genomes, which 
limits the scope of the pipeline to fungal pathogens with single copies 
of unpaired chromosomes. Certain downstream modules, 
particularly GAMBIT due to its k-mer-based approach, may 
be  robust to bioinformatics challenges associated with de novo 
assembly of diploid organisms. Nonetheless, these assemblies may 
be highly fragmented or error prone. Results for diploid organisms 
must at minimum be assessed with caution and in conjunction with 
the level of heterozygosity. Following de novo assembly, TheiaEuk 
performs quality assessment of the assembly using QUAST and 
BUSCO (37, 38).

2.1.4. Taxonomic identification
Following genome assembly, the assembly FASTA files are passed 

to the Genomic Approximation Method for Bacterial Identification 
and Tracking (GAMBIT) tool for taxonomic identification (39). 
GAMBIT infers taxonomy by querying a sample genome against a 
database of genomes with known taxonomic information and 
identifying the most similar genome to the query. If the distance 
between the query genome and the closest genome is within a built-in 
species threshold, GAMBIT reports the species of the closest genome 
as the predicted species for the query genome. If not, GAMBIT 
determines if the query is close enough to be considered a member of 
the closest genome’s genus, otherwise it will not make a taxonomic 
prediction for the query genome.

Within TheiaEuk, GAMBIT is implemented with the default 
parameters (k = 11 and prefix = ATGAC), and the taxon predicted by 
GAMBIT is reported as well as the ten closest genomes within the 

GAMBIT database to the query sample. The only previously published 
GAMBIT database is exclusive to prokaryotic species, therefore 
we  developed a novel fungal database for identification of fungal 
pathogens, as described below. This novel fungal database is used by 
default within TheiaEuk.

2.1.5. Taxa-specific modules (clade typing)
Based on the taxonomic identification made by GAMBIT, 

TheiaEuk proceeds with taxa-specific modules. For samples identified 
as C. auris, TheiaEuk will perform clade typing using GAMBIT with 
a custom database consisting of five reference genomes representing 
the five major clades of C. auris (Supplementary Table S1). GAMBIT 
reports the reference genome that is most similar to the query 
genome and the associated clade is reported for the sample.

2.1.6. Taxa-specific modules (AMR determinant 
detection)

For samples identified as C. auris, A. fumigatus, and C. neoformans, 
TheiaEuk invokes a module which aligns input FASTQ files to a 
species-appropriate annotated reference genome using Snippy (40). 
To detect potential antimicrobial resistance determinants, the 
resulting VCF files may be queried for gene and product names that 
are associated with antimicrobial resistance following TheiaEuk 
analysis. Snippy has been used previously to detect mutations in the 
FKS1 gene of Candida species (41). For C. auris, the antimicrobial 
resistance detection module aligns reads to a clade-specific reference 
genome and automatically queries the resulting VCF files for three 
genes associated with antimicrobial resistance (FKS1, ERG11, FUR1). 
A list of all mutations that have been detected in these select genes are 
reported to the user. The reference genomes for each C. auris clade are 
indicated in Supplementary Table S1.

2.2. Fungal GAMBIT database creation

In order to infer taxonomic assignments from fungal genomic 
data, we created a novel fungal GAMBIT database using a similar 
process as the prokaryotic GAMBIT database (39). The process of 
creating a GAMBIT database requires the calculation of compressed 
representations of each genome that will be included in the database, 
or GAMBIT signatures, which enable the calculation of GAMBIT 
distances between genomes. In order for GAMBIT to generate a 
species assignment for a query genome, the distance between the 
query genome and the closest genome within the database must 
be  below the maximum distance between genomes within that 
species (species diameter). As such, the GAMBIT database must 
be curated to ensure that species diameters are non-overlapping and 
unbiased by mislabeled or poor-quality genomes.

The novel fungal database was created by downloading all the 
fungal genomes available on GenBank as of 2022-11-30 and curating 
this list of genomes to exclude poorly represented species and 
mislabeled genomes. GAMBIT signatures were computed using the 

FIGURE 1 (Continued)
fungal database. Taxa-specific sub-workflows for Candida auris, Cryptococcus neoformans, and Aspergillus fumigatus proceed automatically based on 
the GAMBIT result.
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same criteria as the most recent GAMBIT bacterial database (k = 11 
and prefix = ATGAC). For inclusion in the database, species were 
required to have at least two genomes in GenBank and at least one 
genome representing the species in RefSeq (42). Subsequently, 
we  curated the database on the basis of the species diameter. 
Specifically, we computed the GAMBIT diameter of each species and 
excluded species with either (i) a diameter of zero or (ii) a 
combination of three or fewer genomes and a diameter greater than 
0.75. The database was also manually curated to remove genomes 
which were clearly highly distant from all other genomes within the 
species, as these were likely mislabeled on submission.

To establish a set of genomes with non-overlapping species 
diameters, it was necessary to divide nine species into subspecies 
groups. In the event that the closest genome in the database to a 
query genome is a member of a subspecies, GAMBIT will report the 
parent species as the taxonomic assignment. In addition, two pairs of 
species were too closely related to distinguish (Aspergillus flavus/
Aspergillus oryzae and Aspergillus niger/Aspergillus welwitschiae), 
therefore were combined. If the distance between a query genome 
and the closest genome in the GAMBIT database is greater than the 
species diameter, GAMBIT checks if the sample is within the genus 
diameter and attempts to report a genus for the genome. Genus 
diameters were computed similarly to species diameters, but were 
additionally curated by lowering the diameter to 95% of the minimum 
distance between the genus and other genera in the database and to 
20% greater than the maximum species diameter of any species 
within the genus.

Ultimately, 245 fungal species from 138 genera are represented in the 
fungal database from a total of 5,667 fungal genomes. A table indicating 
the number of genomes and species diameter for each species represented 
in the database is indicated in Supplementary Table S2.

2.3. Fungal GAMBIT database validation

2.3.1. GAMBIT versus ANI analysis
Analysis of GAMBIT distances versus average nucleotide identity 

(ANI) was performed using the GAMBIT distance values computed 
during the creation of the fungal database for all of the genomes in set 
1 and set 2 (k = 11 and prefix = ATGAC). Set 1 included all Candida 
genomes within the fungal GAMBIT fungal database and set 2 
included a diverse set of genomes across multiple genera. ANI was 
computed using FastANI (version 1.33) with default parameter values 
(k-mer size 16 and fragment length 3,000) (43). Pairwise comparisons 
were included in both the statistical analysis and visualizations if the 
percent of mapped fragments was at least 50%. Figures were generated 
using scripts adapted from Lumpe et al. using Matplotlib (44, 45).

2.3.2. ATCC mycology genomes
Validation of the fungal GAMBIT database using the ATCC 

Mycology Collection genomes was performed using the Gambit_
Query workflow developed by Theiagen Genomics on Terra.1 All 
available fungal genomes were downloaded from the ATCC genome 

1 https://github.com/theiagen/public_health_bioinformatics/blob/

PHB-v0.1.0-theiaeuk-manuscript/workflows/standalone_modules/wf_gambit_

query.wdl

portal on 2023-03-08 (46–48). ATCC genomes downloaded from the 
ATCC genome portal were used exclusively for testing and were not 
included in the GAMBIT fungal database. GAMBIT was run with 
default parameters and we  examined the predicted taxon and 
predicted taxon rank for agreement with the taxonomic annotation 
from ATCC.

2.3.3. Sequenced isolates from Alameda County
In order to generate a diverse set of fungal genomes for 

assessing the accuracy of GAMBIT using the fungal database, 19 
fungal samples from 18 distinct species were obtained from the 
Alameda County Public Health Laboratory. Whole genome 
sequencing of these fungal specimens was performed by the 
Nevada State Public Health Laboratory through an identical 
protocol as described below for sequencing of C. auris isolates 
from southern Nevada. The TheiaEuk workflow v1.0.0 was used 
to run GAMBIT with default parameters on Terra and 
we compared the predicted taxon from GAMBIT to the taxonomic 
assignment made using molecular techniques. Whole genome 
sequencing data for each specimen was submitted to NCBI’s 
Sequencing Read Archive (SRA); accessions are available in 
Supplementary Table S3.

2.4. Clade typing validation

Within the TheiaEuk pipeline, clade typing of C. auris is 
performed when a sample is predicted to be  C. auris by 
GAMBIT. We  tested the accuracy of the TheiaEuk clade typing 
module by querying 302 samples from a published C. auris dataset in 
which clades were assigned (49). Genomes in this dataset were 
originally derived from multiple studies, with clade type reported by 
Chow et al. (13, 49–54). Sequencing read data was pulled from NCBI’s 
SRA using the Theiagen Genomics SRA_Fetch workflow2 and 
analyzed using TheiaEuk v1.0.0 with default parameters.

2.5. Antimicrobial resistance mutation 
detection validation

To verify that TheiaEuk reports mutations in antimicrobial 
resistance genes in samples with known resistance determinants, 
we  identified whole genome sequencing data for 219 C. auris 
samples from published datasets (55–57). FASTQ files for these 
samples were imported into Terra using the SRA_Fetch workflow 
and analyzed using TheiaEuk v1.0.0 with the default parameters. 
The outcome of the TheiaEuk AMR mutation detection module was 
compared to the known FKS1 and ERG11 mutations within 
each sample.

2 https://github.com/theiagen/public_health_bioinformatics/blob/

PHB-v0.1.0-theiaeuk-manuscript/workflows/utilities/data_import/wf_sra_

fetch.wdl
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2.6. Southern Nevada Candida auris 
outbreak

2.6.1. Specimen collection
C. auris specimens from an ongoing outbreak in southern 

Nevada were isolated from clinical samples collected from April 
2022 to February 2023. Genomic data from 752 specimens is 
reported for the first time in this study, but several analyses utilize 
all sequenced isolates from the southern Nevada outbreak 
including an additional 209 specimens reported in Gorzalski  
et al. (29).

2.6.2. Whole genome sequencing
Genomic DNA for sequencing was extracted using a combination 

of bead-beating (FastPrep-24, MP Biomedicals, Irvine, CA) and 
magnetic-bead purification (Maxwell RSC 48, Promega, Madison, 
WI). First, isolates were picked from Sabouraud Dextrose agar plates 
and mixed with silica beads (Lysing Matrix C, MP Biomedical). Cells 
were mechanically sheared with 2 cycles at 6.0 m/s for 30 s with a 
5 min pause between (FastPrep-24, MP Biomedical). Genomic DNA 
was isolated using the PureFood Pathogen Kit (Promega) on a 
Maxwell RSC 48 (Promega) using the manufacturer’s protocol. 
Genomic DNA libraries were prepared using DNA Prep Kit 
(Illumina, San Diego, CA) using the manufacturer’s recommended 
protocol using a STARlet automated liquid handler (Hamilton 
Company, Reno, NV). Paired-end sequencing (2× 151) was 
performed using Illumina’s MiniSeq and NovaSeq  6000 to a 
minimum depth of 35× average coverage. Whole genome sequencing 
data for these specimens was submitted to NCBI’s sequencing read 
archive (SRA) and accessions are available in Supplementary Table S4. 
Samples were analyzed using the TheiaEuk workflow v1.0.0 with 
default parameters on Terra. Analysis of clade assignments and FKS1 
mutations among these samples and an additional 209 specimens 
reported in Gorzalski et al. (29) was visualized using R and RStudio 
with the tidyverse package (58–60). Twelve samples with either 
assembly lengths greater than 14 Mbp or BUSCO completeness 
scores less than 90% were excluded from this analysis as noted in 
Supplementary Table S4.

2.6.3. Antimicrobial susceptibility testing
C. auris antimicrobial susceptibility testing (AST) was performed 

using microbroth dilution and predefined gradient of antibiotic 
concentrations (Etest) methods. A patient isolate was grown on SabDex 
agar plate and incubated at 30°C in ambient air for 24 h and used to 
make 0.5 McFarland inoculum suspension in demineralized sterile 
water. The 0.5 McFarland suspension was measured by 
spectrophotometer to verify the 0.5 McFarland (80%–82% 
transmittance). Twenty microliters of 0.5 McFarland suspension were 
added into 11 mL of RPMI broth tube and 100 μL of the RPMI diluted 
sample was distributed to each well of a 96-well plate pre-loaded with 
antibiotics, then incubated along with control plates for 24 h at 35 
C̊. The same 0.5 McFarland inoculum suspension was used to inoculate 
a RPMI agar plate using a sterile cotton swab. A single Amphotericin B 
Etest strip was applied to middle of the agar surface using sterile forceps 
and incubated along with control plates for 24 h at 35 ̊C. The AST of the 
microbroth dilution panel was read using a parabolic magnifying 
mirror to determine the MIC (lowest concentration where there is 
≤50% growth compared to growth control well). For the Amphotericin 

B Etest, MIC was interpreted at a value where there is 100% growth 
inhibition (number above where the ellipse intercepts Etest strip).

3. Results

3.1. TheiaEuk workflow

In response to an ongoing outbreak of C. auris in southern Nevada, 
Theiagen Genomics and the Nevada State Public Health Laboratory 
collaborated to develop a bioinformatics pipeline for analyzing C. auris 
WGS data: TheiaEuk. TheiaEuk is a species-agnostic workflow for 
fungal genome characterization that can be implemented through a 
graphical user interface using Terra. Briefly, this pipeline quality trims 
and assesses input paired-end short read sequencing data then creates 
a de novo assembly using the SKESA assembler (Figure 1) (36). Using 
the genome assembly, species taxon identification is performed by the 
Genomic Approximation Method for Bacterial Identification and 
Tracking (GAMBIT) tool. GAMBIT implementation in TheiaEuk uses 
a novel, curated fungal database containing 5,667 genomes and 245 
species. For certain identified taxa, taxa-specific workflows are activated, 
such as a C. auris clade-typing tool and antifungal resistance detection.

3.2. Fungal GAMBIT database validation

GAMBIT was designed for microbial taxonomic identification by 
querying genome assemblies against a database and assigning 
taxonomy based on curated diagnostic thresholds (39). The initial 
GAMBIT database contained only prokaryotic genomes, but nothing 
precluded the extension of GAMBIT to eukaryotic microbes. Here 
we  describe the development and validation of a novel fungal 
microbial database using the core GAMBIT logic.

First we demonstrate that eukaryotic microbial isolates have the 
same relationship as prokaryotes when comparing average nucleotide 
identity (ANI) versus GAMBIT distance (Figure 2) (39, 43). To this end, 
two sets of genomes were selected within the fungal database and ANI 
and GAMBIT distance computations were performed between every 
pair of genomes within each dataset. These fungal genomes demonstrate 
the same logarithmic relationship between ANI and GAMBIT distance 
as prokaryotic genomes (Figure 2A) which suggests that there is no 
difference between prokaryotic and eukaryotic microbes in terms of 
identification via GAMBIT. In the first dataset, we  examined 318 
genomes from the Candida genus (Figure 2B). For comparisons where 
FastANI reported an ANI value and the percent of mapped fragments 
was greater than 50% (13,389 genome pairs, 26.4% of comparisons), 
GAMBIT distance and ANI exhibited a Spearman correlation of 97.3%. 
This analysis was extended to a broader range of eukaryotic microbial 
species and demonstrated the same relationship with a Spearman 
correlation of 98.9% for pairwise comparisons where ANI values were 
reported (970 genome pairs, 12.3% of comparisons) (Figure 2C).

3.3. Validation of the fungal GAMBIT 
database using ATCC genomes

To assess the accuracy of the fungal GAMBIT database, the 
taxonomic assignments were validated using two sets of genomes with 
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known taxonomic assignments. The first validation was performed 
using fungal genomes from the ATCC Mycology collection (46, 47). 
This dataset was selected due to the high level of confidence in the 
taxonomic assignment of these genomes and includes 190 fungal 
genomes from 61 genera and 109 species. In total, 135 of the genomes 
are represented at the species level within the GAMBIT database, 33 
are represented only at the genus level, and 22 are not represented at 
the genus or species level. Of the genomes for which a species 
prediction was possible (135 genomes), GAMBIT reported the correct 
species for 126 genomes (Table 1). For the remaining 9 genomes, 
GAMBIT predicted either the correct genus (5 genomes) or made no 
taxonomic prediction (4 genomes). For the genomes that were 
represented only at the genus level (33 genomes), GAMBIT reported 
the correct genus for 3 genomes and reported no taxonomic 
assignment for 30 genomes. Finally, for the genomes that were not 
represented at the genus or species level within the GAMBIT database 
(22 genomes), GAMBIT made no taxonomic predictions, as expected. 
GAMBIT taxonomic assignment for each genome is indicated in 
Supplementary Table S5.

The data demonstrated that using the developed fungal database, 
GAMBIT reported either an accurate taxonomic assignment or no 
taxonomic assignment for all 190 genomes examined. Given the 
underrepresentation of high-quality fungal genomes in public 

repositories, the GAMBIT database is designed to perform taxonomic 
identification conservatively. Consequently, the majority of taxonomic 
assignments were at the lowest possible taxonomic rank (126/135 
possible species assignments, 3/33 genus assignments), but 39 
genomes were assigned to either a higher taxonomic rank or received 
no taxonomic assignment.

3.4. Validation of the fungal GAMBIT 
database using sequenced samples

Given the relative scarcity of fungal genomes available for 
validating the fungal GAMBIT database, the Nevada State Public 
Health Laboratory obtained 19 fungal samples from the Alameda 
County Public Health Laboratory and subjected them to whole 
genome sequencing. The samples represented 18 distinct fungal 
species according to previous reference laboratory biochemical and 
molecular laboratory techniques including Aspergillus, Candida, 
Clavispora, Coccidioides, Cryptococcus, Kluyveromyces, Pichia, 
Trichophyton, and Yarrowia species (Table 2). Sequencing data was 
analyzed using TheiaEuk with the fungal GAMBIT database to assess 
the accuracy of GAMBIT taxonomic identification. One sample did 
not produce quality sequencing data for successful completion of 

FIGURE 2

Relationship between GAMBIT distance and average nucleotide identity (ANI) for every pair of genomes within three datasets. (A) Image is reproduced 
from (39) and consists of 70 prokaryotic genomes from diverse taxa. This set is shown here to visualize the trend observed in prokaryotic genomes. 
(B) Set 1 consists of 381 Candida genomes (Spearman correlation  =  97.3%) and (C) and set 2 consists of 126 fungal genomes from diverse species 
(Spearman correlation  =  98.9%). Only pairwise comparisons where FastANI reported that greater than 50% of fragments mapped were included in 
statistical analyses and plotted.

TABLE 1 Fungal GAMBIT database validation using ATCC Mycology genome collection.

Expected assignment (ATCC) Total

Species Genus No assignment

Observed assignment 

(GAMBIT)

Species 126 0 0 126

Genus 5 3 0 8

No assignment 4 30 22 56

Total 135 33 22 190 Total Genomes

One hundred ninety fungal genomes were analyzed using GAMBIT with the fungal GAMBIT database. Based on the content of the fungal GAMBIT database, query genomes were expected to 
be identified at the species level, genus level, or not assigned. Correct taxonomic assignments made by GAMBIT for each possible taxonomic rank are shown. GAMBIT made no incorrect 
taxonomic assignments.
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TheiaEuk (A. flavus). Of the remaining 17 species, 14 were represented 
at the species level within the fungal GAMBIT database, 2 at the genus 
level only (Fusarium of undetermined species and Candida 
metapsilosis), and 1 was not represented (Trichophyton mentagrophytes). 
Of the 15 samples where species assignments were possible, 13 were 
identified correctly at the species level and 2 were identified correctly 
at the genus level. Of the 2 samples where genus-level only assignments 
were possible, 1 was assigned the correct genus and 1 received no 
assignment. The sample that was not represented in the database 
received no assignment, as expected. Therefore, both validations of the 
fungal GAMBIT database demonstrated exclusively accurate 
taxonomic assignments, often at the lowest taxonomic level possible.

3.5. Clade typing validation

TheiaEuk performs clade typing on genomes that are identified as 
C. auris by GAMBIT using the clade-typer module (Materials and 
Methods). To validate this functionality, 302 samples with determined 
clade types from published datasets were compared against the results 

from TheiaEuk (Table 3) (49). These samples represented four of the five 
C. auris clades (clade I: 126 samples, clade II: 5 samples, clade III: 51 
samples, clade IV: 120 samples). All clade assignments made by TheiaEuk 
were found to match the previously published clade assignments except 
for one sample which was assigned to clade I despite being previously 
described as clade III. This genome (strain B16401) was also previously 
assigned to clade I by another genomic analysis approach, suggesting 
that the clade identity is controversial for this strain (41). Four samples 
were not assigned to clades because GAMBIT failed to confidently assign 
the sample as C. auris. Clade typing outcomes for each specimen are 
available in Supplementary Table S6. TheiaEuk performed accurate clade 
assignment in 99.6% of cases and therefore enables rapid determination 
of sample clade without the need for other phylogenetic analysis.

3.6. Antimicrobial resistance determinant 
detection validation

TheiaEuk detects mutations in select antimicrobial resistance 
genes by aligning reads to a C. auris clade-specific reference genome 

TABLE 2 Fungal GAMBIT database validation using genomes obtained from the Alameda County Public Health Laboratory and sequenced by the 
Nevada State Public Health Laboratory.

NCBI organism 
name

Expected 
GAMBIT genus 
assignment

Expected  
gambit species 
assignment

Observed 
GAMBIT genus 
assignment

Observed  
gambit species 
assignment

Identification 
method or isolate 
source

Aspergillus terreus Aspergillus terreus Aspergillus terreus MALDI-TOF at MDL

Candida albicans Candida albicans Candida albicans ATCC 14053

Candida auris Candida auris Candida auris CDC B11903

Candida dubliniensis Candida dubliniensis Candida NA Unknown

Candida glabrata Candida glabrata Candida glabrata ATCC 2001

Candida metapsilosis Candida NA NA NA MALDI-TOF at MDL

Candida parapsilosis Candida parapsilosis Candida parapsilosis MALDI-TOF at MDL

Candida tropicalis Candida tropicalis Candida tropicalis CAP B-36-90

Clavispora lusitaniae Clavispora lusitaniae Clavispora lusitaniae CAP F-15-00

Coccidioides immitis Coccidioides immitis Coccidioides immitis Coccidioides real-time PCR 

at Reference Lab

Coccidioides immitis Coccidioides immitis Coccidioides immitis Coccidioides real-time PCR 

at Reference Lab

Cryptococcus gattii VGI Cryptococcus gattii Cryptococcus gattii ATCC MYA 4560

Cryptococcus 

neoformans

Cryptococcus neoformans Cryptococcus neoformans ATCC 204092

Fusarium sp. Fusarium NA Fusarium NA Morphology

Kluyveromyces 

marxianus

Kluyveromyces marxianus Kluyveromyces NA ATCC 2512

Pichia kudriavzevii Pichia kudriavzevii Pichia kudriavzevii CAP B-24-92

Trichophyton 

mentagrophytes

NA NA NA NA ATCC 9533

Yarrowia lipolytica Yarrowia lipolytica Yarrowia lipolytica MALDI-TOF at MDL

Expected genus or species assignments were determined by the reference laboratory using the molecular or biochemical approaches indicated. The NCBI organism name column indicates the 
known taxonomic information about the sample based on molecular or biochemical approaches. The expected GAMBIT genus assignment and expected gambit species assignment columns 
indicate the expected taxonomic assignment by GAMBIT based on the representation of that taxon within the GAMBIT database. An “NA” is shown if either the genus or species is missing 
from the database. The observed GAMBIT genus assignment and observed gambit species assignment columns indicate the actual taxonomic assignment by GAMBIT. An “NA” is shown if 
GAMBIT did not report an assignment at that taxonomic level.
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and querying the resulting variant-calling output for associated gene 
and product names. We  sought to verify that TheiaEuk reports 
mutations in genes associated with antimicrobial resistance from 
genomic data with known mutation status. To this end, three 
published datasets with genomic data spanning four C. auris clades 
were identified in which presence or absence of FKS1 and ERG11 
mutations was noted (55–57). The genomic data was analyzed using 
TheiaEuk and determined that TheiaEuk correctly identified all 
known mutations in FKS1 and ERG11 for 219 samples (Table 4, results 
from each sample are available in Supplementary Table S7). Because 
TheiaEuk reports these mutations from variant-calling data, the choice 
of reference genome impacts the mutations reported by TheiaEuk. It 
is observed that the default clade III reference genome in TheiaEuk 
incorporates a known azole resistance mutation: ERG11 V125A/
F126L (56). Likewise, the clade IV reference genome incorporates the 
ERG11 Y132F mutation (61).

3.7. Implementation of TheiaEuk for the 
southern Nevada outbreak

Since its development, TheiaEuk has been used to analyze 961 
C. auris isolates from an ongoing outbreak in southern Nevada. 
Genomic and phylogenetic analysis of the first 209 samples were 
reported in Gorzalski et al. (29) and the remaining 752 samples are 
reported for the first time in this study. These 752 specimens were 
isolated from samples obtained from either patients presenting with 
symptoms or through screening of long-term care patients between 
April 2022 to February 2023. Several medical facilities used the 
Nevada State Public Health Laboratory for routine screening of 
C. auris. Culturing of all PCR positive samples was attempted with 
sequencing performed on all culture positive specimens. All samples 
were identified as C. auris by TheiaEuk. Twelve samples were excluded 
from subsequent analysis due to low genome quality; the remainder 
were assigned to either clade I (n = 157) or clade III (n = 583). These 
data represent an ongoing outbreak; the rapid ability to distinguish 
which isolates belong to the two major outbreaks and which isolates 
are part of new introductions based on whole-genome sequencing 
demonstrates the utility of TheiaEuk as a front-line analysis tool for 
fungal pathogens.

3.8. Detection of antimicrobial resistance 
determinants in southern Nevada outbreak

The TheiaEuk pipeline enables monitoring of mutations in genes 
associated with echinocandin resistance, particularly FKS1. The 
relevance of this analysis in the southern Nevada outbreak was 
examined by two methods. Firstly, the accumulation of FKS1 
mutations over time was examined during the outbreak using data 
from this work and Gorzalski et al. (Figure 3) (29). These mutations 
occur in strains that share the complete genetic background of 
non-FKS1 mutant isolates in the Nevada outbreak. Thus, the most 
parsimonious explanation for the occurrence of FKS1 mutations is 
that they evolved during the outbreak, suggesting that they are in 
response to the treatment by the frontline antifungals for C. auris 
which are all in the echinocandin class. Mutations in FKS1 were 
detected in 18 out of 949 samples throughout the outbreak and were 
found to represent 7 distinct amino acid substitutions: Ser639Phe, 
Leu640Val, Arg641Gly, Arg641Ser, Asp642Tyr, Leu686Phe, 
and Ile1361Thr.

Secondly, the MIC data for six antifungals that were available for 
isolates in this dataset were examined. The data was parsed based on 
presence or absence of FKS1 mutations (Figure 4). Among the six 
antifungals, there are three echinocandins: anidulafungin, caspofungin 
and micafungin. Isolates with FKS1 mutations exhibit a significantly 
reduced susceptibility to echinocandins relative to isolates without 
FKS1 mutations (Wilcoxon rank sum test with continuity correction: 
anidulafungin value of p = 0.0004511, caspofungin p-value = 0.000576, 
micafungin p-value =0.001556). Reduced susceptibility to azoles was 
also observed for isolates with FKS1 mutations to a lesser extent and 
this trend was significant in two drugs (Wilcoxon rank sum test with 
continuity correction: isavuconazole p-value = 0.024270.02203, 
itraconazole p-value = 0.009552, posaconazole p-value = 0.05928). 
While FKS1 mutations were correlated with reduced susceptibility to 
azoles, it is unlikely that they were responsible for the reduced 

TABLE 3 Clade typing validation using 302 C. auris samples spanning four 
major clades.

Clade from publication

Clade-

typer 

results

Total: 302 Clade I Clade II Clade III Clade IV

Clade I 123 0 1 0

Clade II 0 5 0 0

Clade III 0 0 50 0

Clade IV 0 0 0 119

Clade-typer 

skipped

3 0 0 1

Cladetyper results compared to the clades assigned by the original publication (49). The 
clades assigned by the clade-typer module in TheiaEuk are along the left axis and the clades 
from the original publication are across the top. Samples that were not successfully assigned 
to the C. auris taxa by GAMBIT were skipped by the clade-typer module. Only one sample 
produced a discordant result between the clade-typer result (clade I) and the result reported 
in the original publication (clade III).

TABLE 4 TheiaEuk accurately identified mutations in FKS1 (top) and 
ERG11 (bottom) for 219 C. auris genomes from published datasets.

Expected

FKS1 
mutation

No FKS1 
mutation

Observed FKS1 mutation 44 0

No FKS1 

mutation

0 175

Expected

ERG11 
mutation

No ERG11 
mutation

Observed ERG11 

Mutation

161 0

No ERG11 

Mutation

0 58

Samples spanned four C. auris clades: clade I (33 samples), clade II (7 samples), clade III (94 
samples), and clade IV (85 samples). The number of expected missense, stop codon, and 
indel mutations detected in FKS1 and ERG11 based on the mutations reported in the original 
publication was compared to the observed number of mutations in these genes reported by 
TheiaEuk. The default clade III and IV reference genomes in TheiaEuk include known 
ERG11 mutations, therefore detection of no variant at that site by TheiaEuk was interpreted 
as agreement with the original publication.
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FIGURE 3

Number of southern Nevada C. auris isolates with and without FKS1 mutations by month. Nine hundred forty-nine C. auris isolates from southern 
Nevada were analyzed using TheiaEuk for presence or absence of FKS1 mutations. This graph splits the isolates between clade I and clade III 
representing the two major outbreaks in southern Nevada. The data is represented by month with the number of isolates with the wild-type FKS1 
sequence shown in teal and the number of isolates with a mutant FKS1 sequence shown in orange. This figure excludes one sample collected in 
January of 2020 which precedes the ongoing outbreaks.

FIGURE 4

Box plot of MIC data for the six major antifungals that treat C. auris based on FKS1 mutation status. Plotted are the 326 isolates from the southern 
Nevada C. auris outbreak that have MIC data for any of six antifungals. Only 247 isolates have MIC data for micafungin, otherwise n  =  326 for all other 
drugs. The orange box plots indicate isolates containing FKS1 mutations and the teal plots indicate isolates containing FKS1 wild-type sequence. Small 
dots indicate individual sample MIC measurements whereas large dots indicate outlying data points of the boxplot.
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susceptibility given the distinct mechanisms of action of echinocandins 
and azoles.

4. Discussion

Fungal diseases represent a major threat to public health as 
evidenced by increasing mortality rates in recent years (62). However, 
these eukaryotic agents have not incurred the same focus of 
prokaryotic pathogens, especially in the realm of whole-genome 
sequence identification and surveillance. This is likely due to the 
complex nature of their laboratory diagnoses, and the relative paucity 
of genomic tools to assess them (3–8). The introduction of TheiaEuk 
provides a platform to utilize whole-genome sequencing of fungal 
microbial pathogens in both the research and clinical setting.

A novel contribution of this work is the development and 
assessment of a fungal taxonomic identification process from WGS 
data. The primary identification engine (GAMBIT) has been utilized 
in a CLIA regulatory environment to report clinical diagnostic 
identifications of prokaryotic pathogens (39). Here we extended the 
same logic to fungal pathogens and laid the groundwork for a similar 
validation. This is important for clinical laboratories as fungal 
pathogens often possess complex and ambiguous biochemical profiles 
that often result in identifications at only the genus level. Moreover, 
the expertise in mycology to make routine laboratory diagnosis is 
waning (63). Creating a fungal identification pipeline using whole 
genome sequencing that will be  implemented in a regulatory 
environment should increase the number of clinically relevant fungal 
genomes that are produced by public health laboratories and other 
health care providers (39). This will allow the initial fungal database 
presented here to be  updated and extended to additional fungal 
species, thus increasing impact.

The regular incorporation of whole genome sequencing to fungal 
pathogen surveillance provides not only robust taxonomic 
identification but additional insights regarding genetic relatedness. 
For example, the use of TheiaEuk in the ongoing C. auris outbreak in 
southern Nevada demonstrated that specimens collected during the 
same time period represented distinct introductions because it 
revealed that samples were from two different clades. Also, while the 
TheiaEuk pipeline does not directly produce phylogenetic trees from 
specimen sets, the output files generated by the workflow are 
compatible with numerous downstream tools for more granular 
phylogenetic analysis. Examples include the kSNP3 workflow and 
MashTree workflow, both of which are open source and available for 
analysis using Terra (30, 64, 65). Through these subsequent analyses, 
transmission networks among fungal pathogens may be discerned.

Examination of the southern Nevada C. auris outbreak by 
TheiaEuk also reveals the necessity of pipelines like the one described 
for detection of antimicrobial resistance determinants. Currently, 
there are three classes of antifungals that can treat C. auris. Yet, most 
C. auris strains (93%) are resistant to fluconazole, and another 35% are 
resistant to AmpB (13). This leaves echinocandins as the major 
frontline defense to C. auris. Given that C. auris forms biofilms on 
both biotic and abiotic surfaces, exists asymptomatically on colonized 
patients, carries drug resistance, and poses potential lethal 
consequences upon septic infection, C. auris presents a real threat to 
our health care system (66). This threat is amplified if echinocandin 
resistant isolates become endemic to communities. The ability to 

detect and to take disease control action on isolates of C. auris that 
have mutations in FKS1 that correlate with decreased susceptibility to 
echinocandins is critical to mitigate this new threat. Unfortunately, 
current phenotype-based systems that assess for decreased 
susceptibility rely on centralized services where isolates of interest are 
sent, cultured, then grown and tested against a series of antifungals. 
This is followed by the reporting of data in a systematic form which 
often results in a considerable turnaround time to inform health care 
providers that they have a resistant or decreased susceptibility isolate 
of C. auris. This lag may prevent the most effective actions from being 
taken to control these potential threat organisms. Whole-genome 
sequencing and the detection of FKS1 mutations decrease this timeline 
significantly and provide a method for disease control investigators to 
stay ahead of echinocandin resistant strains of C. auris.

An often overlooked but increasingly important aspect of 
bioinformatics tools is the need to be accessible to the broader scientific 
community, not just bioinformaticians. Innovative tools conceived and 
developed within the disease pillars of academic and government 
laboratories are often inaccessible to the average public health scientist 
with no training, experience, or resources in command line 
bioinformatics. To this end, we share the same philosophy as Black 
et al. in their recommendations for supporting open pathogen genomic 
analysis in public health (67). TheiaEuk was intentionally developed 
from the beginning to be (1) reproducible in the way it implements 
containerization, versioning, workflow management, and auditability, 
(2) scalable in the utilization of cloud resources, and (3) deployable 
within hours using the open bioinformatics platform Terra for 
workflow registry and web portal accessibility. This open bioinformatics 
platform will then bridge across all disease pillars, where specialty tools 
designed by disease experts will be accessed and utilized in a common, 
open environment. This is particularly important for public health 
laboratories whose pathogen genomic outbreak investigations cover 
the full spectrum of human and animal pathogens. In addition to 
accessibility the ability to validate workflows for public health use is 
vital, something not often encountered in research environments but 
critical for our public health system. Here, again, the use of the open 
bioinformatics platform Terra, with the ability to version, audit, and 
validate every workflow, meets the needs of public health scientists, 
both nationally and internationally.
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Targeted next-generation sequencing (tNGS) from clinical specimens has the 
potential to become a comprehensive tool for routine drug-resistance (DR) 
prediction of Mycobacterium tuberculosis complex strains (MTBC), the causative 
agent of tuberculosis (TB). However, TB mainly affects low- and middle-income 
countries, in which the implementation of new technologies have specific needs 
and challenges. We propose a model for programmatic implementation of tNGS 
in settings with no or low previous sequencing capacity/experience. We highlight 
the major challenges and considerations for a successful implementation. This 
model has been applied to build NGS capacity in Namibia, an upper middle-
income country located in Southern Africa and suffering from a high-burden of 
TB and TB-HIV, and we describe herein the outcomes of this process.

KEYWORDS

Next generation sequencing (NGS), Mycobacterium tuberculosis complex (MTBC), NGS 
clinical use, Genomic diagnostic, Genomic surveillance, NGS programmatic 
implementation, high TB burden countries, low- and middle-income countries

1. Introduction

Infectious diseases are currently one of the most explored fields for clinical and public 
health genomics, as sequencing technologies simplified and accelerated the deep 
characterization of pathogens (1). Pathogen genomics is transforming surveillance programs 
allowing both prompt identification of outbreaks and epidemics and accurate diagnosis at 
individual level, replacing the standard techniques in microbiology laboratories (2, 3). The 
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emergence of infectious threats, such as SARS-CoV-2 and 
Monkeypox viruses, showed the needs of strengthening health 
systems worldwide with implementation of NGS capacity (4). 
However, other more prevalent diseases such as tuberculosis (TB) 
and malaria should also profit on NGS implementation to improve 
diagnosis and for monitoring/surveillance.

TB is a leading infectious killer, after COVID-19 in 2020/2021, 
with estimated total incidence of 10.6 million new cases and 1.6 
million deaths (5). It is also the leading killer of people living with 
human immunodeficiency virus (HIV) and a major contributor to 
deaths related to antimicrobial resistance. The use of World Health 
Organization (WHO)-recommended molecular diagnostics 
(mWRDs) for diagnosis and drug resistance (DR) testing to at least 
key drugs such as rifampicin, isoniazid and fluoroquinolones, remains 
limited in low-resource, high TB burden settings. The incomplete 
drug sensitivity testing (DST) coverage leads to empiric treatment 
initiation, despite the existing treatment guidelines requiring access to 
testing (6).

Whilst mWRDs already accessible in low- and middle- income 
countries (LMICs) allow prompt resistance prediction for one or 
few drugs, next generation sequencing (NGS) of Mycobacterium 
tuberculosis complex (MTBC) strains offers the most 
comprehensive approaches to determine resistance to the current 
recommended regimens (3, 6). Two main NGS-based approaches 
may be used: whole genome sequencing (WGS) and targeted NGS 
(tNGS). tNGS takes advantage of the selective amplification of 
DR-related regions of MTBC genome and provides quick results 
directly from clinical specimen, with higher sensitivity than WGS, 
lower turnaround time and easier interpretation (7–10).

Genome sequencing has also already been introduced as a tool to 
investigate TB DR evolution, transmission dynamics and the 
population structure of MTBC, for surveillance of DR (9–11), and 
patient’s management (12), although a roadmap to a programmatic 
implementation of TB genomics is still lacking.

Recent investigations have shown that using sequencing to 
inform treatment regimens for DR TB led to decisions comparable to 
those derived from phenotypic DST (pDST) (6, 7). Also, it became 
evident that analyzing by NGS all genes known to be associated with 
DR would improve the design of personalized multidrug-resistant 
(MDR) TB regimens (high concordance with pDST-informed 
decisions) (13). However, the implementation of NGS in TB clinical 
laboratories requires adequate infrastructure, training, and strategic 
planning. Challenges include procurement, sample referral, quality-
assured procedures, data management, translation into clinical 
practice and sustainability (e.g., human resource retention) (14, 15). 
Therefore, it is important to collect data-driven evidence from 
practical implementations in high TB burden countries. Many of the 
challenges to an effective implementation of genomics in resource-
limited settings are technical and deal with the renovation of 
healthcare systems, including high costs, suboptimal supply, 
inadequate infrastructure and link of sequencing information to 
existing record systems (1, 16, 17). Other aspects involve social  
and ethical components (use/sharing of data and clinical 
application thereof).

Herein we detail our model of implementation of tNGS for DR 
prediction of MTBC strains in settings with no or low previous 
sequencing capacity. We detail how this model was implemented at 

the University of Namibia (UNAM) in Windhoek, Namibia, one of the 
30 high-burden countries for TB and TB-HIV.

2. Implementation model

In this section we define the steps that we consider crucial and 
how those were addressed during the tNGS implementation in 
Namibia (in italics).

2.1. Implementation strategy and roadmap

As shown in Figure 1A, our strategy for the implementation of 
NGS was based on three pillar phases: preparation, implementation, 
and sustainability. These phases are subdivided into smaller categories 
of tasks (Figure 1A, white boxes).

In the preparation phase, as the first phase of the implementation 
process, we defined the main outcomes of the intervention and the 
strategy to assess deliverables. The entire outline of the implementation 
process must be planned here.

The implementation phase focuses on practical work once the 
strategies have been developed. Capacity building, support, training, 
pilots and the search for sustainability begin in this phase.

The sustainability phase aims to scale up NGS capacity, anchor 
NGS in  local guidelines and help programs in the search for new 
sources of funding.

Our implementation strategy was based on the exchange of 
knowledge between a center of expertise for NGS (non-profitable), in 
this case with extensive experience in doing NGS on clinical MTBC 
strains, to another center in a LMIC that does not had this capacity.

2.1.1. Preparation phase

2.1.1.1. Site identification
Epidemiological context, laboratory network and testing 

algorithms are considered in our approach. In this context, we needed 
to consider the local testing algorithm for TB and DR TB, in order to 
determine the best way to incorporate tNGS. We needed to identify 
which specimens could be used to extract mycobacterial DNA (e.g., 
leftovers of sputum specimens, new sputum, cultures, etc.) by avoiding 
unnecessary additional steps to the standard procedures for collecting 
and preparing specimens.

Namibia has an estimated TB incidence of 460/100,000 population 
and estimated 560 multidrug-resistant (MDR) TB cases per year. Xpert 
MTB/RIF Ultra and line probe assays (LPA) 1st-2nd line are used. The 
diagnostic algorithm is reported in Supplementary Text. Second line 
DST testing coverage is incomplete due to reagent stock outs or culture 
contamination leading to shipment of selected strains for further testing 
outside the country. The NGS platform was implemented at an academic 
institution, the UNAM, within the national TB programme (NTP) 
network. Consultative need assessment meetings were held between the 
UNAM, the National TB and Leprosy Programme and collaborating 
stakeholders (Research Center Borstel and Robert Koch Institute, 
Germany, Ministry of Health and Social Services and the Namibian 
Institute of Pathology) which facilitated and supported the 
implementation of tNGS in Namibia. Additionally, in Namibia the use 
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FIGURE 1

Proposed tNGS implementation roadmap, diagnostic flowchart and tested drugs for the detection of drug-resistance TB cases including NGS 
technologies for enhanced genotypic resistance prediction of M. tuberculosis complex (MTBC) strains. (A) Roadmap for building tNGS capacity in low- 
and middle-income countries (from left to right). (B) Flowchart including the GeneXpert MTB/RIF Ultra and MTB/XDR (or any other endorsed test with 
similar application) as screening tests for selection of samples to downstream targeted next-generation sequencing (tNGS). Hands-on time refers 
specifically to the theoretical amount of time needed to perform the test, excluding the time needed to collect the clinical specimen. Turn-around 
time (TAT) refers to the theoretical amount of time needed to perform the test added to the theoretical time to have available clinical specimens 
(specially affected when additional samples have to be collected). The TAT for tNGS in routine settings is expected to be around 6–8  days from the 
entry test result. Dashed boxes indicate the panel of drug-resistances investigated by each test, green, yellow and red colors indicate the relative 
hands-on time, reference: (12). (C) Venn diagram depicting the panel of drug-resistances investigated by each test, worth mentioning that the number 
of amplified targets is different between the molecular DST tests. pDST, phenotypic drug sensitivity testing; INH, isoniazid; RIF, rifampicin; FQN, 
Fluoroquinolones; CPM, capreomycin; AMK, amikacin; S, streptomycin; EMB, ethambutol; KAN, kanamycin; ETH, ethionamide; BDQ, bedaquiline; CFZ, 
clofazimine; LIN, linezolid; PZA, pyrazinamide.
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of tNGS for TB diagnosis is supported by the NTP as one 
recommendation of the end term review of the NTP is “to develop a 
contingency plan and diversify TB testing, particularly drug 
resistance testing.”

2.1.1.2. Timeline
The complete timeline must be realistic and focused on priorities 

to mark the overall project progress.
Our NGS implementation process in Namibia started in 2019 

with a 1-year long preparation phase, during this period, among other 
tasks, the protocols were developed and tested at the center of expertise 
for NGS. After that, the capacity building started, i.e., the 
implementation phase, with an initial aim to be done in 2-years. 
However, our timeline was severely affected by COVID-19 pandemic, 
the implementation phase was duly extended having a total duration 
of 4 years (2019–2022).

2.1.1.3. Scope of end-use
The overarching goal of the implementation process is to develop 

local technical capacity for the use of tNGS as an add-on diagnostic 
tool for prediction of DR profiles of medicines included in MDR or 
rifampicin-resistant (RR) TB regimens. A proposed workflow for the 
future incorporation of tNGS into the national algorithm is shown 
on Figure 1B. Our proposed algorithm would include samples for 
tNGS that presented prior DR profile on screening test(s), i.e., 
GeneXpert MTB/RIF Ultra and MTB/XDR. tNGS would enable 
faster results than culture-based pDST, with the additional benefit of 
interrogating genotypic resistance to bedaquiline, clofazimine, 
linezolid and pyrazinamide (currently not tested in the local settings, 
Figure 1C).

Initially, around 50 MDR/RR TB samples are expected per year 
mainly from the TB referral hospital in Windhoek and will be used for 
pilot adoption of tNGS, then it is planned to roll out to cover MDR/
RR-TB cases from the entire country.

2.1.1.4. Ethics and cooperation contracts
Ethical review ensures that the study adheres to the agreed ethical 

standards and in this field with the specific consideration of sharing 
of genetic data and personal data.

The project in Namibia was approved by the local Ethics committee 
of UNAM and approved by the Ministry of Health (# 17/3/3EN). 
Cooperation and material transfer agreements were also signed by the 
implementing partners and the implementation site, containing the 
scope of the process and terms for collaboration.

2.1.1.5. Budgeting
A financial plan must include costs for key actors and activities 

including personnel, infrastructure, purchase of devices and 
consumables, shipments, training (including travel and 
accommodation), internet and other services.

In Supplementary Figure 1 we reported a rough average percentage 
of expenses per year over the 4 years of implementation in Namibia. 
Human resources (HR) at the referral center and implementation sites 
are the highest expense (52%), followed by consumables (23%), and 
devices (17%). The total funds used in this period was approximately 
418,500.00 USD. With regards to equipment maintenance, as 
we acquired new equipment, it came with the standard manufacturer’s 

warranty for at least the initial implementation phase. After that, 
extended warranty plans were considered for just the sequencing devices 
and were contracted with the official local distributors of the sequencers. 
The other equipment was included in the regular institutional 
maintenance activities, being under UNAM responsibility.

2.1.1.6. HR
A survey of available laboratory staff must be carried out to 

understand if reallocation of existing staff is feasible. If new staff is 
hired, training needs should be  considered. The calculation of 
needed personnel was done empirically based on our experience as 
center of expertise for NGS, available funds, and expected 
sample flow.

A laboratory technologist and a PhD student were recruited to 
be dedicated to the development of tNGS activities locally, based on 
their background in medical laboratory sciences and medical 
biochemistry, with molecular biology techniques experience such as 
Sanger sequencing.

2.1.1.7. Coordination
Defining the coordination process is an essential part, 

coordinators supervise all processes (HR, materials and equipment) 
and ensure that all team members are aware of the objectives, schedule 
and progress. Resources must be allocated efficiently, potential risks 
anticipated and mitigation strategies applied.

Implementation coordinators were hired/delegated at the 
international center of expertise for NGS and locally.

2.1.1.8. Communication
Effective communication of results is a key step to motivate all 

stakeholders (Ministry of Health (MoH), staff and the community).
Annual workshops were carried to share the implementation 

outcomes with main stakeholders. Concurrently the tNGS was discussed 
regularly with NTP and clinical partners in order to secure an early 
translation of implementation into clinical practice (ongoing), based on 
the tNGS data currently being generated in-country during  
implementation.

2.1.2. Implementation phase

2.1.2.1. Infrastructure for sequencing and data analysis
This capacity involves the selection of the adequate facilities for 

the installation of the NGS lab. A wet lab infrastructure herein refers 
to the physical laboratory space, equipment, and reagents required for 
the pre-PCR area (DNA extraction), and the post-PCR area (PCR 
amplification, library preparation, and sequencing). The sequencing 
laboratory should have adequate space, sturdy benchtops, electricity 
and internet outlets, and follow strict room temperature, humidity, 
and air quality requirements for operation of the sequencers and 
related instruments.

The sequencing apparatus was installed in the lab of the department 
of Human, Biological and Translational Medical Sciences in 
collaboration with the “Group Research in Infectious Diseases (GRID), 
UNAM (Supplementary Figure 2). Two Illumina iSeq100 machines 
were purchased as an upgrade to the existing Sanger sequencing facility. 
The iSeq100 instrument was selected based on its size, multiplexing 
capacity suitable for local workflows, cost-effectiveness, and user-friendly 
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interface. The user’s manual was referred to find the appropriate site 
for installation.

A dry lab infrastructure refers to the computational infrastructure 
required for analyzing and interpreting the sequencing data generated 
by tNGS.

The sequencers were connected to the network, to a network 
attached storage system for data backup and to an uninterrupted power 
supply device. Fridge and freezers for the reagent’s storage and a thermal 
cycler were also procured. Due to power interruption experienced at the 
implementation site a backup freezer was installed with backup power 
supply. Computers were purchased for routine use, which are sufficient 
for analyzing tNGS in the cloud. Additionally, a high-end computer was 
purchased to handle more complex local analysis in case further needs 
are identified (Supplementary Table 1).

2.1.2.2. Supplies
An efficient and trustworthy supply chain is crucial for 

achieving sustainability.
Materials were securely delivered either from the Research Center 

Borstel, Germany, and shipped, or through regional distributors 
(however mainly located in South Africa).

We performed a rough estimation of the initial investment needed 
to procure the consumables required to start the tNGS activities 
(Supplementary Table 2).

2.1.2.3. Education, training, and support
After the training and competency assessment, continued 

assistance should be conducted (using instant messaging apps, regular 
meetings, and written reporting methods).

In Namibia, personnel were trained on tNGS workflow and analysis, 
including hands-on, quality checks, and run of the iSeq100 instrument. 
Training was performed either hybrid or locally at the implementing facility. 
The educational activities comprehensively included theoretical and practical 
packages with tailored agenda, refresh, and troubleshooting sessions over the 
entire implementation phase. Data analysis requested additional tutoring 
activities and was not limited to the laboratory study staff.

2.1.2.4. Laboratory protocols and pilot study
Upon completion of the practical sequencing training, local 

samples from TB patients are sequenced as pilot to assess the capacity 
and feasibility.

Strains from clinical culture TB samples were subjected to tNGS as 
pilot (No. 48 RR as identified by Xpert MTB/RIF Ultra). The details and 
outcomes of this study are described in Supplementary Text and 
Supplementary Table 3.

3. Discussion

NGS-based analysis of clinical MTBC strains bridge gaps 
associated with pDST and the limitations of other mWRDs for DR 
testing (12). tNGS can detect DR-associated mutations to a variety of 
antibiotics as those included in the WHO-recommended DR TB 
treatments, and is applied to a variety of clinical specimens (9, 10, 18). 
It also allows species identification at the lineage level, detection of 
mixed populations and heteroresistance (9, 10, 18).

It is expected that within the next few years, with an increased 
automation of the NGS workflow and improved treatment algorithms, 

NGS workflows will be  widely implemented at least at reference 
laboratory level and clinicians will adopt individualized treatment 
decisions soon after diagnosis of DR TB is made by entry tests from 
patient samples (ideally 6–8 days in programmatic conditions), 
adjusting also the duration of treatments, and therefore their efficacy, 
costs and toxicity (6).

The process of implementation of TB genomics for surveillance of 
DR TB, recommended by the WHO, and as a routine diagnostic tool 
at country level, requires careful planning, strong commitment, and 
investment to support successful adoption into national algorithms. 
Before the implementation process starts, it is crucial to ponder the 
use of NGS within the NTP, with implications for choice of 
technologies and equipment to use, selection of sites, referral systems, 
target turnaround times, implementation of clinical decision making 
and incorporation into treatment guidelines. An implementation plan 
is needed to build the NGS infrastructures (wet and dry) and HR 
(management and technical). In addition to a careful planning step, it 
is also important to proceed stepwise and to report the obstacles 
identified during the implementation process. If the implementation 
strategy is not adequate, based on evidence, and without regular 
assessments, this tool will not positively impact the diagnosis at 
implementation sites. In fact, considering the several barriers to NGS 
uptake at country level, a completely ‘self-sustainable’ NGS capacity 
seems still far from reality in LMICs (15). Reassuringly, laboratory 
infrastructures and specialized academic education for scientists and 
clinicians are expanding quickly in LMICs, opening new opportunities 
for research in such scenarios, further progress, awareness and 
equitable partnerships (19, 20). With the COVID-19 pandemic, the 
number of countries recognized by the African Union having local 
access to sequencing facilities increased by around 50% and consortia 
were created to study the spread of SARS-CoV-2 variants (21). Worth 
mentioning that the NGS capacity developed within the project in 
Namibia was timely used for emergency response to COVID-19 
pandemic and variant’s surveillance. In this context and given costs, 
countries should consider that an investment for a given disease (e.g., 
surveillance of DR TB or COVID-19) can impact other health 
priorities such as viral diseases or AMR surveillance, as it creates 
facilities and capacity that can be  expanded. Another unforeseen 
benefit was that the trained personnel at UNAM were able to train 
other laboratory scientists from the Sub-Saharan region (Botswana, 
and Eswatini).

Some challenges to a programmatic implementation of NGS are 
technical and include the complexity of protocols and workflows, and 
sophisticated and not yet fully standardized data management, 
analysis and interpretation. To tackle this, several collaborative 
initiatives were created in order to provide data on the performance 
of existing technologies, and industries and researchers are developing 
end-to-end user-friendly NGS solutions. Furthermore, knowledge of 
molecular mechanisms at the basis of the emergence of DR is 
incomplete, limiting the predictive values of NGS. The correct use of 
data requires training of clinicians on their interpretation (Figure 1A, 
utilization and communication of sequencing data information), a 
competence that in initiated but still faces challenges in Namibia. 
Herein, the analysis of our pilot data indicates that the protocols need 
to be properly validated at the implementation sites, and that the 
limitations of tNGS have to be evaluated locally. We had to start the 
implementation with DNA from MTBC cultures for ease, although 
the immediate next step is to apply it on primary patient samples (e.g., 
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sputum) with protocols already validated. On the brighter side, the 
analysis of the pilot samples showed a clear advantage of tNGS by 
providing a broader vision of resistance profile to anti-TB drugs 
(Figure 1C), the user-friendly analysis interface, validation steps and 
the indication of the “usability” of the sequencing results.

The main challenges of the NGS implementation process at UNAM 
were: (i) initial technical issues experienced with the iSeq100 setup, later 
resolved through remote technical support; (ii) unforeseen costs to 
stabilize and control the room temperature required due to the local 
semi-arid environment; (iii) an unstable internet connection has resulted 
in a challenging data upload process; (iv) delay in the construction of 
dedicated pre-PCR and post-PCR areas; (v) delay in the delivery of 
material due to COVID-19 restrictions; and (vi) sufficient adhesion of 
local stakeholders to translate tNGS results into clinical practice and 
public health policy. Despite these challenges, our planning and initial 
implementation phase are finalized, NGS capacity was successfully built 
and is currently in use by the GRID, UNAM, while the implementation 
of tNGS results into clinical processes, and some other competencies of 
the sustainability phase, have just started. We recognize the need for a 
clinical advisory committee (CAC), that will review and discuss the 
reports generated by tNGS, as well as provide guidance to the clinicians. 
The CAC should consist of representatives from NTP and National TB 
Reference Laboratories, implementing partners, laboratory specialists, 
clinicians, and international experts. However, the implementation of 
such committees and the approval to use tNGS data requires 
multisectoral and political support in the country. This process is 
ongoing and challenging, but it should be facilitated upon the release of 
WHO guidelines for tNGS use in DR TB diagnostics. The plan is that the 
tNGS DR report and standard results will be shared with the CAC, which 
will review and discuss the data and provide guidance to the clinicians.

Logistic aspects, such as procurement and supply chains in 
countries where distributors are not present and unable to provide 
optimal maintenance and support, importation requirements, as well 
as transportation of samples or reagents in case of unreliable referral 
systems, represent threats in the current scenario. In Namibia, the 
obstacles primarily revolve around the market and logistic, there are 
complete shortages of some products in the local market. As a solution, 
we  have managed to identify suppliers of sequencing products in 
neighboring countries, particularly South Africa. However, these are 
only third-part distributors, and the materials are imported from other 
countries. Consequently, there is a significant loss of shelf-life during 
transportation between manufacturer-distributor- implementation 
site; increased prices are also expected due to the reselling process. As 
a feasible alternative, but not long-term sustainable, the products can 
be purchased at the center of expertise for NGS outside the country (in 
a place where the supplier availability, market prices and logistics are 
less challenging), re-packed and sent to the implementation site. 
Another important, yet often unforeseen obstacle that greatly affects 
the availability of NGS supplies, is the bureaucratic and time-
consuming processes for importation of donated goods. This still 
requires facilitation by the local authorities. WHO and other TB 
stakeholders are encouraging companies involved in the 
manufacturing/supply of NGS-related items to explore ways to expand 
the use of genomics in LMICs and make it more accessible, through 
incentives such as modified pricing models, reduction of costs and 
loans at low-interest (22). The development of reagents/technologies 
that do not require temperature control can also help to push the 
implementation of NGS in Sub-Saharan Africa.

The SWOT (strengths, weaknesses, opportunities, and threats) 
analysis reported in Table 1 offers a framework to assess the characteristics 
of the TB genomics solution and helps to identify the main areas for 
improvement, and strategies to maximize the advantages and to mitigate 
the disadvantages of tNGS in TB control and care. We proposed here a 
model based on tNGS implementation, which is more suitable than WGS 
for direct and faster DST testing, as it usually does not require culture. This 
approach offers higher standardization of wet protocols as kit-based, 
automated data analysis pipeline, and increased multiplexing compared to 
WGS for routine settings. Conversely, WGS approach from cultures would 
provide higher resolution of genomes and transmission outbreaks, but 
currently with a more challenging implementation process in high TB 
burden, low-resource settings.

The ultimate scope of the tNGS implementation in routine settings 
of high TB and/or DR TB incidence countries is to improve clinical 

TABLE 1 SWOT analysis for use of tNGS-based genomics in TB control 
and care.

Strengths Weaknesses

  Multi-purpose, multi-disease   Need of genotypic-phenotypic 

associations

  Suitable from various sample types   Turnaround time depends on 

sample referral and sequencing 

capacity/multiplexing

  Rapid (faster turnaround times than 

conventional pDST testing)

  Start-up costs

  Kit-based and user-friendly analysis 

tools (improved standardization)

  Currently not feasible at peripheral 

level

  Deep level of genetic information 

enabling “precision”

  Procurement and supply chain

  Need of specialized and trained 

personnel

Opportunities Threats

  Less phenotyping in routine testing   Borderline mutations

  High predictive value for drug-

resistance

  Confidence-grading of mutations 

requires large and representative 

datasets

  Huge research on innovative NGS 

technologies

  Support to clinicians

  Development of lists of confidence-

graded mutations reflecting on 

routine Nucleic Acid Amplification 

Tests

  Not all resistance mechanisms can 

be explored (e.g., gene expression, 

structural changes)

  Interrogates resistance to additional 

anti-microbials not routinely tested 

in national algorithms

  Information technology (IT) 

infrastructure

  Research outcomes   Cost-effectiveness to 

be demonstrated

  Efficient and timely results reporting

  To achieve sustainability

This table provides a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of 
the use of genomics in TB control and care. The SWOT analysis helps to identify strategies to 
maximize the advantages and mitigate the disadvantages of having tNGS capacity for TB 
implemented.
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management of cases and provide surveillance to resistance to new 
regimens. Relevant TB stakeholders are looking with interest at the pilot 
implementation studies and findings and should encourage roll out at 
the level of national/regional laboratories (23). It is advisable that, once 
tNGS receives approval from WHO as a diagnostic tool for DR TB, NTPs 
will include tNGS in the diagnostic algorithms. This should 
be accompanied by sustainability plans and budgetary allocations. In 
settings where NGS capacity is lacking, the implementation process can 
be better planned by leveraging the experience presented in this study.

Sustainability can be achieved by several measures, starting with 
the release of WHO policies on NGS use for clinical care/surveillance, 
then with the inclusion in the Global Drug Facility list for regular 
global supply at negotiated price, the adoption of NGS into national 
guidelines, and the development of more cost-effective protocols and 
other commercial point-of-care solutions. Furthermore, the 
incorporation of sequencing as valuable public health tool into the 
national anti-TB DR surveys will facilitate the collection of 
comprehensive data from countries. This data will inform timely public 
health actions to be integrated into national strategic plans for TB. It 
will enable the design of optimized diagnostic algorithms, assessment 
of the efficacy of recommended treatment regimens, identification of 
research needs, and guide resource allocation planning (24).
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Introduction: The SARS-CoV-2 pandemic represented a formidable scientific 
and technological challenge to public health due to its rapid spread and 
evolution. To meet these challenges and to characterize the virus over time, 
the State of California established the California SARS-CoV-2 Whole Genome 
Sequencing (WGS) Initiative, or “California COVIDNet”. This initiative constituted 
an unprecedented multi-sector collaborative effort to achieve large-scale 
genomic surveillance of SARS-CoV-2 across California to monitor the spread of 
variants within the state, to detect new and emerging variants, and to characterize 
outbreaks in congregate, workplace, and other settings.

Methods: California COVIDNet consists of 50 laboratory partners that include 
public health laboratories, private clinical diagnostic laboratories, and academic 
sequencing facilities as well as expert advisors, scientists, consultants, and 
contractors. Data management, sample sourcing and processing, and 
computational infrastructure were major challenges that had to be resolved in 
the midst of the pandemic chaos in order to conduct SARS-CoV-2 genomic 
surveillance. Data management, storage, and analytics needs were addressed with 
both conventional database applications and newer cloud-based data solutions, 
which also fulfilled computational requirements.

Results: Representative and randomly selected samples were sourced from state-
sponsored community testing sites. Since March of 2021, California COVIDNet 
partners have contributed more than 450,000 SARS-CoV-2 genomes sequenced 
from remnant samples from both molecular and antigen tests. Combined with 
genomes from CDC-contracted WGS labs, there are currently nearly 800,000 
genomes from all 61 local health jurisdictions (LHJs) in California in the COVIDNet 
sequence database. More than 5% of all reported positive tests in the state have 
been sequenced, with similar rates of sequencing across 5 major geographic 
regions in the state.

Discussion: Implementation of California COVIDNet revealed challenges and 
limitations in the public health system. These were overcome by engaging in novel 
partnerships that established a successful genomic surveillance program which 
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provided valuable data to inform the COVID-19 public health response in California. 
Significantly, California COVIDNet has provided a foundational data framework and 
computational infrastructure needed to respond to future public health crises.

KEYWORDS

SARS-CoV-2, genomic surveillance, COVID-19, whole genome sequencing, cloud-based 
computing, data management

1. Introduction

In early 2020, as SARS-CoV-2 began to spread rapidly around the 
world, it became clear that an unprecedented, multi-faceted, and 
coordinated response would be required for this public health crisis. 
In April 2020, the Governor of California established the California 
Testing Task Force (CA-TTF)1 (1) to address the daunting need to 
provide COVID-19 testing for the state’s population of nearly 40 
million. Akin to actions taken by the United  Kingdom (2), the 
CA-TTF implemented the California SARS-CoV-2 Whole Genome 
Sequencing (WGS) Initiative, a genomic surveillance program created 
to track evolution of the virus over time, monitor variant and lineage 
transmission throughout the state, and characterize outbreaks and 
clusters of this virus. Objectives of this program included developing 
a network of public health laboratories (PHLs) with long-term 
sequencing capabilities, building genomic epidemiology capability at 
the state and LHJs for real-time public health action, and establishing 
and maintaining long-term partnerships among LHJs, academic 
institutions, and other public, non-profit, and private institutions. This 
endeavor, named “California COVIDNet,” is led by the California 
Department of Public Health (CDPH) with guidance, support, and 
input from the Chan Zuckerberg Biohub (CZB) and comprises an 
exceptional, collaborative network of public, private, and academic 
laboratories that partnered to scale WGS in response to the COVID-19 
pandemic. Herein, we  describe the implementation of California 
COVIDNet, hereafter designated as COVIDNet.

2. Materials and methods

2.1. Implementation of COVIDNet

Implementing COVIDNet required establishing systems and 
processes, many of which did not exist prior to the pandemic, to 
manage sample data and sample flow (Figure 1). This included (1) data 
management systems to anonymize and store SARS-CoV-2 positive 
sample data to ensure patient privacy, (2) cloud-based storage capacity 
for WGS data, (3) bioinformatics capabilities for sequence analysis, (4) 
a network of testing sites and laboratories to source random, 
representative SARS-CoV-2 positive samples throughout the state, and 
(5) a network of laboratories to process and sequence samples. Also 
required were the infrastructure, processes, and procedures to receive 
sequence data from partner laboratories for centralized and 
standardized bioinformatics processing, quality control, and analyses 
for transmission of high-quality lineage results to the state’s COVID-19 
reporting system and uploading of the data to public repositories. 
Consultants and contractors with demonstrated expertise in viral 

1 https://testing.covid19.ca.gov/

evolution, bioinformatics, genomics, and privacy were engaged to 
advise and guide the execution of many of these processes, including 
(1) an expert advisory group (see below), (2) a CDPH legal and privacy 
advisory team, (3) Theiagen Genomics (Highlands Ranch, CO 
United States), to provide bioinformatics support, including pipelines 
for data quality control and analysis, lineage reporting and uploading, 
and cloud-based data storage, and (4) the University of California Santa 
Cruz (UCSC) Pathogen Genomics Center to develop and implement 
a system of tools for genomic analyses, including applications for health 
departments to characterize clusters and outbreaks in their jurisdictions.

2.2. Expert panel advisory group

In June 2020, CDPH convened an advisory panel of nationally and 
internationally recognized experts comprised of 18 distinguished 
researchers and subject matter experts in genomic sciences, viral 
evolution, and mathematical modeling. This expert panel was 
assembled to support, advise, and guide the initial phases of 
COVIDNet implementation as well as to engage with LHJs in 
analyzing and interpreting WGS results.

2.3. Sequencing and data storage capacity

In the first year of the pandemic, most public health-oriented 
sequencing of California SARS-CoV-2 positive samples was 
performed by the CZB in association with California local PHLs, as 
well as by the SEARCH Alliance in San Diego. Although COVIDNet 
was conceived in April 2020, scaled-up laboratory operations of 
COVIDNet did not begin until March 2021. This delay was due to 
factors related to establishing protocols and practices for specimen 
and data acquisition, flow, and management for a large and populous 
state. A considerable amount of time and effort was required to recruit 
and onboard partner laboratories to source or sequence specimens in 
the midst of the pandemic. CDPH determined and applied best 
practices to maintain compliance related to data security and privacy, 
as well as navigate the challenges of logistics and contracting to 
implement the computational infrastructure required for 
bioinformatics analytics. CDPH contracted with Theiagen Genomics, 
which provided a cloud-based solution to house and analyze viral 
sequence data via Terra.bio on the Google Cloud Platform (GCP).

2.4. Sampling representativeness

One of the goals of genomic surveillance is to ensure sufficient 
representativeness of the tested population. Successful genomic 
surveillance of COVID-19  in California required a sequencing 
strategy representative of the state’s geography and diverse 
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communities that would yield an accurate estimate of SARS-CoV-2 
lineages circulating within the state. Achieving the volume and 
distribution of sequencing that matched true infection rates in each 
community was not realistic or feasible due to resource and logistical 
constraints. To coordinate the public health response related to 
COVID-19 policies (such as stay-at-home orders, tracking 
hospitalization and ICU capacity, etc.) across the 61 California LHJs, 
five Health Officers regions were organized as follows: Rural 
Association of Northern California Health Officers (RANCHO), 
Association of Bay Area Health Officials (ABAHO), Greater 
Sacramento Region of Health Officers (GSRHO), San Joaquin Valley 
Consortium of Health Officers (SJVHO), and Southern California 
Health Officers (SCHO) (Figure 2) (3). An initial recommendation 
of the COVIDNet Expert Panel Advisory Group was to target 2 to 5% 
of the SARS-CoV-2 positive samples in California for sequencing, 
provided that sampling was random and that less heavily populated 
counties, such as those in the RANCHO region, were well-
represented. To gauge representativeness across the state, 
we compared sequencing rates from each Health Officers region on a 
per 100,000-person basis.

2.5. California COVIDNet laboratory 
network

Success of COVIDNet required establishing a network of 
diagnostic and sequencing laboratories with varied and critical roles. 
CDPH developed a Memorandum of Understanding form entitled the 
“COVIDNet Laboratory Participation Agreement,” whereby 
participating laboratories became official COVIDNet partners to serve 
as diagnostic, processing (for viral nucleic acid extraction), or 
sequencing laboratories. Public, private, and academic laboratories 
became part of this network.

2.6. Scaling sequencing capacity and 
sample storage

Early in the pandemic, CZB provided free COVID-19 testing and 
SARS-CoV-2 WGS services, technical consultation, and bioinformatic 
resources to CDPH, LHJs, and local PHLs. The WGS data generated 
from CZB served as decisive proof-of-concept that a comprehensive 
genomic surveillance program for SARS-CoV-2 in California could 
support and inform public health action and policy. Soon thereafter, 
the University of California Office of the President (UCOP) and 
CDPH partnered to quickly establish contracts with eleven UC 
laboratories to provide WGS capacity services to scale sequencing to 
at least 5,000 genomes per week. Adding to this capacity were several 
private laboratories also contracted to provide sequencing services. 
CDPH established an onsite high-throughput workflow to receive and 
process thousands of SARS-CoV-2 positive samples every week, 
extracting and transporting SARS-CoV-2 viral RNA to COVIDNet 
laboratory partners for sequencing. The standardized extraction 
protocol, in addition to the standardized analytic pipeline (described 
below), supported quality control comparisons among the different 
sequencing methods used by the contracted WGS laboratories.

Aliquots of SARS-CoV-2 samples sent out for sequencing were 
archived for long-term storage at-80°C. We  had to purchase ten 
additional-80°C freezers to accommodate storage capacity needs due 
to the large influx of samples during Delta and Omicron surges.

2.7. Centralized repository for sequencing 
data and designating variants

As previously described (4), CDPH established a centralized 
sequence repository (COVIDNet sequence database) and analysis 
structure for SARS-CoV-2 data using cloud storage and computation 

FIGURE 1

Flow of samples and data from sample collection to genomic sequencing and epidemiology for SARS-CoV-2 genomic surveillance by COVIDNet.
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capabilities (Terra.bio on the GCP) in line with recommendations 
outlined by Black et al. (5). To ensure CDPH access to SARS-CoV-2 
sequence data generated from samples within the state but sequenced 
by non-COVIDNet partners, the California Code of Regulations 
(CCR) Title 17 Section 2505 was updated in July 2021 to require that 
SARS-CoV-2 lineage/variant results including Global Initiative on 
Sharing All Influenza Data or GISAID (6–8) reference number or raw 
sequence data, from any California-sourced positive specimen, 
be reported to CDPH by the sequencing laboratory2 (9). Sequencing 
laboratories were provided with an SFTP route to upload FASTQ files 
and metadata securely to the COVIDNet sequence database and 
separate metadata repository, respectively. The majority of 
non-COVIDNet sequence data was submitted to the COVIDNet 
sequence database by laboratories under contract with the U.S. Centers 

2 https://www.cdph.ca.gov/Programs/CID/DCDC/CDPH%20Document%20

Library/LabReportableDiseases.pdf

for Disease Control and Prevention (CDC). Sequence data in the 
COVIDNet sequence database were processed using a standardized 
workflow established by Theiagen Genomics, as described by Smith 
et al. (4). After processing, assembled genomes were uploaded to the 
public repositories, GISAID or National Center for Biotechnology 
Information (NCBI) (10).

2.8. Development of analytic tools to 
support epidemiologic analysis

The UCSC Pathogen Genomics Center was contracted to develop 
specialized genomic data analytic tools such as on-demand 
comprehensive phylogenetic resources for CDPH and LHJs, allowing 
rapid identification and tracking of variants and mutations of interest. 
UCSC deployed its Ultrafast Sample placement on Existing tRee 
(UShER) framework (11) to add, in near real-time, every newly 
sequenced sample from the COVIDNet sequence database to a global 
phylogenetic tree representing all available genome sequence data 

FIGURE 2

The five California Health Officers Regions. Red: Association of Bay Area Health Officials (ABAHO); Green: Greater Sacramento Region of Health 
Officers (GSRHO); Blue: Rural Association of Northern California Health Officers (RANCHO); Yellow: San Joaquin Valley Consortium of Health Officers 
(SJVCHO); Orange: Southern California Health Officers (SCHO). https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Order-of-the-
State-Public-Health-Officer-Hospital-Health-Care-System-Surge-FAQ.aspx (3).
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from public repositories (currently more than 16 million SARS-CoV-2 
genomes). The global phylogenetic tree serves as the source of 
sequence data to build the California Big Tree – a collection of all 
California-sourced SARS-CoV-2 sequence data represented in a 
phylogenetic format3 (12). UCSC also developed Cluster Tracker, a 
geo-genomic visualization tool to predict origins of identified genetic 
clusters4 (13). This is an exploratory tool that enables users to identify 
introductions of SARS-CoV-2 into California (state-level, or for 
authorized users, county-level) and track the geographic clustering of 
specific SARS-CoV-2 variants or lineages. The tool displays geographic 
region, sample count within the cluster, clade, lineage, specimen 
identifiers, and timeframe of clusters based on date of specimen 
collection. The tool calculates metrics such as a growth score, and best 
potential origins and indices. Significantly, the user can click on a link 
to access another UCSC tool called Big Tree Investigator5 (14), which 
uses NextStrain (15) to build a phylogenetic tree around a selected 
cluster and enables linking of California sequences to comprehensive 
patient-level data reported through the California Reportable Disease 
Information Exchange (CalREDIE) Electronic Laboratory Reporting 
(ELR) and non-ELR surveillance systems. These data, displayed 
together, will enable the authorized CDPH or LHD users to further 
investigate COVID-19 transmission dynamics within the state and in 
some cases beyond the state. We expect Big Tree Investigator to go live 
in December 2023.

2.9. Acquisition, processing, and 
sequencing of samples

2.9.1. SARS-CoV-2 positive specimens
In general, positive samples detected by molecular methods, 

including real-time reverse transcription polymerase chain reaction 
(RT-qPCR), loop-mediated isothermal amplification (LAMP), and 
transcription-mediated amplification (TMA) assays, were accepted for 
sequencing. Suitable maximum cycle threshold (Ct) values ranged 
from 28 to 33. Although Relative Light Unit (RLU) values from 
transcription mediated amplification (TMA) tests do not correlate 
directly with viral RNA concentration, TMA specimens were deemed 
acceptable for WGS if RLU >1,100. Later in the pandemic, as 
molecular testing rates declined, and antigen testing became more 
common, reactive swabs from antigen tests were also accepted for 
sequencing. COVIDNet sequencing prioritized at-risk and vulnerable 
populations, (e.g., congregate settings such as skilled nursing facilities, 
prisons, and schools) and known outbreaks, as well as striving to meet 
equitable representativeness across the state. COVIDNet local PHL 
partners contributed to these overall goals and many of them 
prioritized jurisdictional-based investigations of suspected 
re-infection and vaccine-breakthrough cases and possible importation 
of new variants from international travelers.

Due to high testing volume and space limitations, many diagnostic 
laboratories initially discarded SARS-CoV-2 positive specimens 
before they could be captured for sequencing. To remedy this, in April 
2021, CDPH, with the support of LHJs, modified the CCR Title 17 

3 https://genome.ucsc.edu/cgi-bin/hgPhyloPlace

4 https://clustertracker.gi.ucsc.edu/

5 https://pathogengenomics.ucsc.edu/tools

Section 2505 to require diagnostic laboratories to provide COVID-
positive remnant specimens to CDPH or a local PHL upon written 
request6 (16). Additionally, a centralized COVID-19 testing laboratory, 
established by the State of California, provided a pipeline of 
representative COVID-positive specimens collected from more than 
7,000 community-based CA-TTF testing sites for WGS. This 
laboratory aimed to sequence all COVID-positive samples with Ct 
values less than 33 but ceased operations in May 2022. Additional 
specimen sources for WGS included those tested by local PHLs that 
were either sequenced onsite or by a COVIDNet sequencing 
partner laboratory.

To maintain compliance with California regulations related to 
personally identifiable information (PII) and protected health 
information (PHI), samples were de-identified and assigned a 9-or 
10-digit Patient Anonymized Unique Identifier (PAUI) to serve as 
sample identification for sequence data to be  processed in the 
Terra.bio cloud-based platform, uploaded to public repositories such 
as GISAID and NCBI, and subsequently linked with epidemiologic 
information in a secure PII/PHI-compliant environment. The PAUI 
numbers were coded such that the first digit corresponded to 
particular sample sources or projects in order to distinguish 
community surveillance samples from samples collected for high 
priority sequencing or outbreak investigations.

2.9.2. Sample processing and whole genome 
sequencing

Samples received by CDPH (in either viral transport medium 
or molecular transport medium) were processed using the 
KingFisher Flex Purification System (Thermo Fisher Scientific, 
Waltham, MA United  States) nucleic acid extraction platform. 
Briefly, the lysis step was performed within a class II biological 
safety cabinet by adding 275 μL of lysis solution containing binding 
solution and magnetic beads to 200 μL of sample in a 96-well deep 
well plate. After 10 min of lysis/binding, the plate was loaded onto 
the KingFisher® instrument along with wash plates, tip comb, and 
elution plate. Extracted nucleic acid was eluted in 50 μL of elution 
buffer. Extracts were stored at-70°C and shipped on dry ice to 
COVIDNet sequencing partners on a weekly basis. Samples that 
were tested by the LAMP method (Color Health, Burlingame, CA 
United States) were extracted at the testing facility as follows: total 
RNA was extracted using the Chemagic® 360 automated system 
(Perkin-Elmer, Waltham, MA United  States). Samples were 
resuspended in 950 mL lysis buffer (CMG-832). 300uL of lysate was 
mixed with 300uL of 1x PBS and 10uL of polyA (CMG-842/
CMG-843) and 150 uL of magnetic beads (CMG-7000), extracted 
per manufacturer’s protocol, eluted in 80uL of Nuclease-Free Water7 
(17), and shipped on dry ice to CDPH as nucleic acid extracts. The 
State’s COVID-19 testing laboratory performed nucleic acid 
extractions using the Chemagic® extraction platform as described 
above8 (18). COVIDNet partner PHLs that performed their own 
sequencing followed nucleic acid extraction protocols compatible 
with their sequencing protocols.

6 https://www.cdph.ca.gov/Programs/CID/DCDC/CDPH%20Document%20

Library/LabReportableDiseases.pdf

7 https://www.fda.gov/media/138249/download

8 https://www.fda.gov/media/147547/download
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Because of the varying capabilities and instrumentation available 
among the COVIDNet sequencing laboratory partners, library 
preparation and sequencing protocols used were dependent upon the 
particular sequencing method employed by the laboratory (Table 1). 
Sequencing library preparation methods included standard ARTIC 
v.3, v.4, and v.4.1 (19, 20), ARTIC v.3 with 275 bp tailed amplicons9 
(21), the SWIFT protocol (23), Midnight protocol (25), and Varskip 
(24). Sequencing technologies included Illumina (San Diego, CA 
United  States) MiSeq®, Illumina NextSeq®, Illumina NovaSeq®, 
AVITI™ (Element Biosciences, San Diego, CA United States), and 
Clear Dx (San Carlos, CA United States) (22). Illumina sequencing 
included single-end as well as paired-end protocols.

2.10. Data management: processing, 
analysis, and storage

Since it was not feasible to standardize the library preparation and 
sequencing methods by the various COVIDNet contributors, 
homogeneity of analysis was achieved by having all sequence data 
centralized and analyzed using a standardized workflow. Uniform 
workflow, bioinformatics analytics, and training resources were 
established (4) utilizing Terra.bio10 (26), as the centralized location to 
house COVIDNet sequence data.

Raw sequence data reads, in FASTQ file format, were made 
available through various methods on Terra.bio. County PHLs shared 
FASTQ files from other cloud-based platforms such as Illumina’s 
BaseSpace (San Diego, CA) and the Clear Labs Portal (San Carlos, 
CA). Read data hosted on Illumina’s BaseSpace platform were made 
available on Terra.bio through the BaseSpace_Fetch workflow11 (27), 
while reads stored on the Clear Labs Portal were made available on 
Terra.bio directly through the portal’s user interface. Academic 
COVIDNet partners were provisioned with GCP buckets to serve as 
persistent storage. They uploaded FASTQ files directly to these 
buckets, and the data stored in these GCP buckets were made 
accessible on Terra.bio through an automated cron job which ran once 

9 https://www.protocols.io/view/ucsf-cat-covid-19-tailed-275bp-v3-artic-

protocol-v-kxygxpnpzl8j/v1

10 https://terra.bio

11 https://github.com/theiagen/terra_utilities/blob/main/workflows/wf_

basespace_fetch.wdl

daily. Alternatively, FASTQ files were manually uploaded from a local 
machine to Terra.bio.

Once the FASTQ files were available on Terra.bio, genome 
assembly and characterization were performed using the TheiaCov 
Workflows for Genomic Characterization. This open-source workflow 
series is available on the Public Health Viral Genomics Github 
repository12 (28) and includes workflows for analysis of Illumina 
paired-end, Illumina single-end, Oxford Nanopore (Oxfordshire, 
England), Element Biosciences AVITI (San Diego, CA), and Clear 
Labs SARS-CoV-2 data. In addition to assembling the genome, these 
workflows also provided quality control metrics, Pango lineages (29), 
and Nextclade clades (15). The StaPH-B docker image for Pangolin13 
(30, 31) was used within the TheiaCov workflow, wherein the UShER 
(11) mode of Pangolin was used by default for lineage assignment. 
Whenever the docker image was updated following a pangolin-data14 
(32) release, the Pangolin_Update workflow15 (33) on Terra.bio was 
run to assign updated lineages to California sequences with collection 
dates in the past two months.

SARS-CoV-2 sequence data from CDPH were submitted to GISAID 
and NCBI if the genome assembly covered at least 83% of the Wuhan-1 
reference genome (MN908947) (34), as determined by the TheiaCov 
workflows. The Mercury workflow series on Terra.bio, also hosted within 
the Public Health Viral Genomics Github repository (28) were used to 
reformat the FASTA files and metadata according to the submission 
guidelines for GISAID and NCBI. Genome assemblies from CDPH were 
uploaded to GISAID and GenBank (35) and raw reads were uploaded to 
the Sequence Read Archive (SRA) (36) with the exception of data 
generated on the Element Biosciences AVITI instrument, as data from 
that instrument cannot be accepted at this time. Raw reads uploaded to 
CDPH SARS-CoV-2 BioProject (PRJNA750736) were depleted of host 
reads using the SRA human read scrubber16 (37). All California local 
PHLs that used Terra.bio also uploaded to GISAID and NCBI using their 
own quality control thresholds for submission. It is important to note 
that samples sequenced by local PHLs were distinct from the samples 
sequenced by COVIDNet sequencing laboratories and therefore 
duplicate submissions to public repositories were highly unlikely and not 
considered a concern. The Terra.bio platform also allowed local PHLs to 
customize and optimize workflows for their own use, such as to build 
automated import and export pipelines to decrease reliance on 
manual processes.

Data on Terra.bio are exported to external Google buckets for 
downstream visualization, alerting, and reporting using the Terra_2_
BQ workflow17 (38). Data were then ingested into Big Query projects 
using either a cron job running a shell script, or a Google workflow. 
An SQL query was used to combine data from all COVIDNet partners 
into a single data source. Looker, a GCP for automated alerts and 
reports, or Looker Studio, a visualization platform, was used to 
monitor the changes in SARS-CoV-2 lineages over time.

12 https://github.com/theiagen/public_health_viral_genomics

13 https://hub.docker.com/r/staphb/pangolin/

14 https://github.com/cov-lineages/pangolin-data

15 https://github.com/theiagen/public_health_viral_genomics/blob/main/

workflows/wf_pangolin_update.wdl

16 https://github.com/ncbi/sra-human-scrubber

17 https://github.com/theiagen/terra_utilities/blob/main/workflows/wf_

terra2bq.wdl

TABLE 1 SARS-CoV-2 sequencing protocols employed by California 
COVIDNet WGS laboratory partners.

Sequencing
protocol

Number of COVIDNet 
laboratories

ARTIC or modified ARTICa 27

Clear Dxb 11

Swiftc 3

Varskipd 2

aARTIC v.3, v.4, and v.4.1 (19, 20), ARTIC v.3 with 275 bp tailed amplicons (21).
bClear Dx (22).
cSWIFT protocol (23).
dVarskip (24).
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2.11. Quality of sequence data

Successful sequencing was determined by “percent reference 
coverage,” i.e., the proportion of the genome successfully sequenced 
to a minimum depth of 20X. The minimum percent reference coverage 
required for uploading to a public sequence repository was 83%, 
approximately 25,000 bases of a SARS-CoV-2 genome. Other quality 
metrics assessed, but not necessarily used to reject sequences, 
included: (1) the quantiles of sequencing depth across the results of a 
sequencing run; (2) the proportion of putative human DNA (as found 
via Kraken2 (39) analysis) vs. the percent reference coverage; and, (3) 
sample or within-run contamination, as evidenced either by high 
proportions of apparent minor allele frequency single nucleotide 
polymorphisms (SNPs) across samples in a sequencing run or by 
improbable phylogenetic placement, such as detection of a variant 
from samples collected prior to the emergence of said variant. More 
recently (as of April 2023), samples with a disproportionately high 
number of variants (>17.5%) with allele frequencies between 60 and 
90% were rejected due to the likelihood that such samples were either 
contaminated or coinfected. We assumed that contamination was 
more likely in these cases than coinfection, and that coinfections, if 
present, would be rare and unlikely to affect the understanding of 
surveillance significantly. The lower threshold of 60% was selected 
because it is also the minimum threshold for calling a variant allele for 
assembly and thus may have affected lineage determination and 
phylogenetic placement.

3. Results

One primary goal of COVIDNet was to sequence 2–5% of SARS-
CoV-2 positive samples in California, in a representative and equitable 
manner. Through collaborative agreements and contracts with a 
variety of partners, we successfully engaged 50 laboratories including 
public health, academic, and private laboratories to achieve large-scale 
WGS of SARS-CoV-2 throughout California. As of March 2023, 
CDPH has received more than 660,000 samples from various 
submitters throughout the state and processed and extracted more 
than 217,000 samples (data not shown) that met WGS criteria (e.g., Ct 
value <33 or from reactive antigen tests). As the pandemic progressed 
and the COVIDNet workflow became routine, we expanded SARS-
CoV-2 genomic surveillance to include (1) testing sites along the 
international border between California and Mexico, (2) at three 
international airports, (3) at community organizations serving priority 
populations, and (4) at all schools participating in the CA-TTF testing 
program. In mid-June 2021, we partnered with a large integrated 
health system that serves over 4.5 million members in Northern and 

Central California (40) to characterize SARS-CoV-2 variants in both 
inpatient and outpatient populations, further expanding the 
COVIDNet surveillance network. In the latter part of 2022, as antigen 
testing began to predominate over molecular testing for SARS-CoV-2, 
select COVIDNet partners transitioned WGS operations to accept 
swabs from reactive antigen tests to maintain an adequate level of 
surveillance as much as possible.

Through COVIDNet, WGS capacity and bioinformatics 
capability increased within the network of 29 California PHLs at the 
state and local levels. By the end of 2021, a total of 15 (52%) of 29 
PHLs were conducting SARS-CoV-2 genomic surveillance via 
COVIDNet. To date, WGS capacity for SARS-CoV-2 has been 
established at 19 of the 29 (66%) PHLs in the state. Six California 
PHLs have hired bioinformaticians for SARS-CoV-2 sequence 
analysis. In mid-2022, CDPH formally established a new Genomic 
Epidemiology Section to analyze, manage, and apply SARS-CoV-2 
genomic surveillance data for situational awareness, and to inform 
infectious disease modeling and forecasting18 (41), public health 
action, and policy.

3.1. Sequencing volume

As shown in Table 2, between March 2020 through March 2023, 
a total of 450,030 genomes were deposited by COVIDNet partner 
laboratories into the California COVIDNet sequence database in 
Terra.bio, with 344,837 genomes (77%) meeting the 83% reference 
coverage threshold to upload to GISAID or NCBI. The percent of 
genomes uploaded was higher overall for PHLs (87%) than for 
COVIDNet contract laboratories (74%) (Table 2). In some cases, this 
was likely due to differences in specimen handling. Samples processed 
at the COVIDNet contract laboratories typically underwent several 
freeze-thaw cycles prior to extraction, had to be transported to CDPH 
for extraction, or were of poor quality. The percentage of sequences 
assigned to a lineage increased over time and has remained above 80% 
since July 2021 (Figure 3). From March 2020 through March 2023, 
CDC-contracted laboratories contributed more than 335,000 
sequences to the California COVIDNet sequence database (data not 
shown). Most of the California-sourced samples (~75%) sequenced 
by CDC-contracted laboratories were from the Southern California 
Health Officer (SCHO) region (data not shown), the most populous 
region of the state (Table 3). Samples sequenced by CDC-contracted 
laboratories made up 66% of samples from the SCHO region in the 

18 https://calcat.covid19.ca.gov/cacovidmodels/

TABLE 2 SARS-CoV-2 genomes stored in the California COVIDNet sequence database (March 2020 through March 2023).

Laboratory
Category

Total genomes 
sequenced

Total genomes uploaded* and 
accepted#

Percent of genomes uploaded* 
and accepted #

COVIDNet contract 356,875 263,706 74%

Public Health Laboratory

(State and local)
93,155 81,131 87%

Totals 450,030 344,837 77%

*Genomes that achieved ≥ 83% reference coverage were uploaded to GISAID or NCBI sequence repositories. #A genome was considered accepted by GISAID if it was released upon curation 
without requiring further confirmation or modification of the sequence data.
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COVIDNet sequence database, compared to less than 30% from the 
four other regions (Figure 4). In regions other than the SCHO, more 
than 50% of the samples were sequenced by COVIDNet laboratory 
partners (Figure 4).

Between March 2020 and December 2020, an average of 361 
samples were sequenced per month, with an average of 0.7% of 
positive tests sequenced (data not shown). From January 2021 
through June 2021, a time period that encompasses the start of 
COVIDNet sequencing in March 2021, an average of 20,875 samples 
were sequenced per month, with an average of 7.9% (~11-fold 
increase from 2020) of positives sequenced. The large-scale genomic 
surveillance efforts across California by COVIDNet and 
CDC-contracted laboratories has resulted in nearly 800,000 SARS-
CoV-2 genomes in the COVIDNet sequence database. Between 
March 2020 and March 2023, these data have allowed us to monitor 
the emergence and spread of different variants statewide including 
the emergence of Epsilon in the fall and winter of 2020, followed by 
co-circulation of Alpha and P.1 (Gamma) in the spring of 2021 
(Figure 5). Later we observed the transition to Delta in June 2021 
followed by the abrupt introduction and predominance of Omicron 
BA.1 in December 2021 with subsequent diversification of Omicron 
sublineages, and dominance of BA.5 from June 2022 into January 
2023. We saw the rise of the XBB and other recombinants in late 
winter of 2022 with XBB.1.5 predominating at the end of March 2023 
(Figure 5).

The percentage of positive samples sequenced peaked at over 21% 
in July 2021 (Figure 6). Sequencing volume peaked between July 2021 
and February 2022, averaging 52,941 samples per month, which 
correlated with a spike in the number of reported positive tests in the 
state. The percent of positives sequenced averaged 7.1% but dropped 
to a low of 1.6% in January 2022 during the Omicron surge (Figure 6). 
From March 2022 through January 2023, sequencing volume declined 
to an average of 16,881 sequences per month, and an average of 6% of 
positive tests sequenced.

3.2. Sequencing representativeness

All 61 California health jurisdictions were represented within the 
COVIDNet sequence database. Sequencing representativeness was 
similar across the five Health Officers regions of California. The 
number of samples sequenced per 100,000 people ranged from 1,650 
to 2,086 from March 2020 through March 2023 (Table 3). This value 
varied over time, but in total remained similar across Health Officers 
regions at specific time points, except for a spike in August 2021 from 
the RANCHO region (Figure 7). The proportion of sequences per 
respective Health Officers region corresponded approximately well 
with each region’s population percentage (Table 3). Given that nearly 
two-thirds of the sequences generated by CDC-contracted laboratories 
were from the SCHO Region, sample representativeness across other 
regions in the state was assured by supplementing with COVIDNet 
sequencing of samples from CA-TTF community-based sites and 
other sources (Figure 4).

3.3. Quality of sequence data

We routinely monitored the quality of sequence data generated by 
the COVIDNet sequencing laboratories which varied across the 
network (data not shown). We met with the sequencing laboratories 
monthly to review overall sequencing quality and success of individual 
sequencing runs; occasionally we requested re-sequencing when a 
high proportion of failures or evidence of significant contamination 
was detected. Although the measure of human DNA vs. the percent 
reference coverage was not used as a criterion for rejection, low 
percent reference coverage (i.e., failed sequencing) tended to strongly 
correlate with a high proportion of human DNA in a sample. While 
the overall sequencing quality was acceptable across COVIDNet 
partners (as represented by proportion of sequences assigned a lineage 
designation) (Figure 3), some laboratories experienced sporadic issues 

FIGURE 3

Percentage of SARS-CoV-2 sequences in the California COVIDNet sequence database assigned to a lineage or not assigned (March 2020 to March 
2023).
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requiring re-sequencing and root-cause analysis to prevent recurrent 
quality excursions (data not shown). Problems included general 
quality issues such as unacceptably low numbers of samples passing 
quality metrics on a given sequencing run, as well as occasional 
detection of contamination from a sample or within a sequencing run, 
as evidenced either by high proportions of minor allele frequency 
SNPs across samples within a sequencing run, or for example, by the 
improbable detection of putative Omicron sequences from samples 
collected prior to the known date of Omicron emergence. In some 
instances, we observed declines in sequence quality over time as the 
virus evolved which indicated the need to update sequencing protocols 
or primers, particularly with the emergence of the Omicron variant in 
November 2021. In general, the goal of data quality monitoring was 
to keep the number of errors in sequences released to public 
repositories low, while not slowing throughput needed to maintain 
relevant and current surveillance.

4. Discussion

4.1. Public health impact of COVIDNet

The large-scale approach to genomic surveillance implemented by 
California COVIDNet partners and others has enabled CDPH and 
LHDs to monitor the evolution of SARS-CoV-2 over time including 
transitions between viral variants of interest and variants of concern 
(VOC). COVIDNet efforts have provided valuable data supporting 
epidemiologic investigations and policy-making decisions in 
California, at the state and local levels. COVIDNet data have revealed 
local trends of viral transmission, helped to characterize and better 
understand outbreaks of SARS-CoV-2 within skilled nursing facilities, 
schools, and other settings (42–50) and have provided situational 
awareness of circulating variants with the potential to impact efficacy 
of vaccines and therapeutics. Of particular note was the use of WGS 

TABLE 3 SARS-CoV-2 sequencing volume by California Health Officers Region and population (March 2020 – March 2023).

California (CA)
Health Officers
region

Population (2021) Percent of CA 
population

Number of 
sequences

Percent of 
sequences

Number of sequences
(per 100,000 
population)

ABAHO 8,451,422 21% 163,948 24% 1,940

GSRHO 2,964,755 8% 51,489 7% 1,737

RANCHO 701,548 2% 14,631 2% 2,086

SJVCHO 4,470,528 11% 86,492 13% 1,935

SCHO 22,867,100 58% 377,387 54% 1,650

California

Total
39,455,353 100% 693,947 100% 1,783

ABAHO: Association of Bay Area Health Officials

GSRHO: Greater Sacramento Region of Health Officers

RANCHO: Rural Association of Northern California Health Officers

SJVHO: San Joaquin Valley Consortium of Health Officers

SCHO: Southern California Health Officers

FIGURE 4

Percentage of sequenced samples for each California Health Officers Region by laboratory category (March 2020 to March 2023).
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data to assess the levels of circulating SARS-CoV-2 variants with 
known resistance to monoclonal antibodies that effectively ruled out 
such treatment. Furthermore, COVIDNet data have enabled 
identification and characterization of cases and variants associated 
with vaccine breakthrough infections, the first cases of new VOCs in 
the state, re-infections (40) (45) (49), and long-term infections 
demonstrating intra-host evolution (unpublished). Regardless of 
publication status, sequence data meeting quality criteria have been 
uploaded in a timely manner to data repositories for public access. 
COVIDNet efforts have provided data enabling California to establish 
its own COVID forecasting model available online to the public19 (41).

19 https://calcat.covid19.ca.gov/cacovidmodels/

The cloud-based data infrastructure developed to store the large 
volume of COVIDNet WGS data and to provide a framework for 
analysis has created capability, not only for SARS-CoV-2 but also 
other pathogens, such as monkeypox virus (MPXV), enteric bacteria, 
and select pathogens associated with hospital infections. The 
workflows for SARS-CoV-2 sequence analysis have been leveraged 
for wastewater surveillance (WWS) applications and will be utilized 
in the continued expansion of WWS at CDPH. Using automated tools 
(e.g., Google Looker) to query the COVIDNet sequence database at 
defined time periods, we set up email alerts to notify relevant public 
health officials about the detection or emergence of concerning 
variants, mutations of interest, and proportions of variants detected 
weekly (4).

In April 2022, as the COVID-19 pandemic continued, the 
emergence and subsequent global spread of MPXV occurred (51–53). 

FIGURE 5

Proportions of major SARS-CoV-2 variants by collection date from the California COVIDNet sequence database, March 2020 through March 2023. 
Data graphed represent weekly proportions with the black line representing the 4-week rolling average number of samples sequenced. Colors 
correspond to indicated SARS-CoV-2 variant lineage.

FIGURE 6

Number of positive SARS-CoV-2 tests in California (CA) per month and the percent of positive tests that were sequenced per month (March 2020 to 
March 2023).
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Although WGS protocols and data analysis for this emerging 
pathogen were not in place at that time, we were able to modify the 
SARS-CoV-2 WGS workflow and adapt the COVIDNet data analysis 
infrastructure for timely MPXV sequence analysis. MPXV WGS 
results were shared among California LHDs and PHLs to examine 
transmission patterns and evolution of MPXV as it spread in different 
regions of the state.

4.2. Accomplishments

COVIDNet successfully achieved many of its original goals and 
objectives. We achieved large-scale genomic surveillance of SARS-
CoV-2 across California, which allowed us to monitor the 
emergence and spread of variants statewide including the lineage 
diversification of Omicron variants and the rise of SARS-CoV-2 
recombinants (Figure  5). Nineteen of 29 California PHLs have 
established WGS capability for SARS-CoV-2 and are now thusly 
prepared for future public health crises and pandemics. Due to the 
efforts of both COVIDNet partners and non-COVIDNet 
laboratories, there are nearly 800,000 genomes in the COVIDNet 
sequence database, and as cases of COVID-19 continue to occur, 
this number will continue to increase.

With COVIDNet, we established significant collaborations with 
academic and private partners that strengthened statewide capacity to 
respond to COVID and future infectious disease threats. We  will 
endeavor to maintain these important partnerships to benefit and 
ensure preparedness for public health. The success of COVIDNet 
demonstrates the power of productive collaborations among 
California’s public, private, and academic institutions in responding 
to an unprecedented international public health emergency. The 
response to COVID-19  in California laid the foundation for 
COVIDNet, as a system, to be adapted for other pathogens of public 
health importance and future public health emergencies.

4.3. Challenges

The accomplishments of implementing COVIDNet did not occur 
without challenges, some resolved, some still ongoing, with many 
inherent to outdated public health infrastructure and data systems. 
Challenges included navigating hierarchies of data management needs 
from samples, sequences, metadata, and results. Because COVIDNet 
receives disparate data from multiple sources and projects, we were 
forced to develop multiple databases to manage incoming data and 
samples amid viral pandemic surges. This approach allowed us to 
quickly scale during the pandemic, but it created burdensome processes 
for managing and analyzing data from the variety of sources. It also 
caused inconsistencies and redundancies in data, such as duplicate 
sequences with different internal identifiers, inability to easily manage 
multiple samples from single individuals, and incomplete metadata.

Patient-level metadata is frequently classified PII and PHI that 
cannot be housed in the same location as its matching viral genomic 
data. The COVIDNet sequence database is specifically a PII/PHI-free 
cloud-based platform, consistent with this tenet. It is a significant 
challenge to join sequence data with PII/PHI data due to incompatibilities 
between the two data systems and associated privacy regulations. 
Substantial investments were made in collaboration with UCSC to 
develop a tool, Big Tree Investigator, to automate integration of sequence 
data from the COVIDNet sequence database with patient-level data 
located in a separate secure PHI-compliant environment. Big Tree 
Investigator advances beyond earlier genomic epidemiology tools to 
facilitate linking of these databases to visualize sequence data with 
associated PHI-metadata mapped on a phylogenetic tree. Such 
visualizations will provide context from other sequences and metadata 
to understand clusters and outbreaks to, possibly, contain/control further 
transmission within a defined community or region (i.e., conduct 
genomic epidemiology). Developing this tool has been impeded by 
complications relating to PII/PHI concerns and limited assets, but 
we anticipate that Big Tree Investigator will go live in December 2023.

FIGURE 7

Number of SARS-CoV-2 sequences per 100,000 people by month for each California Health Officers region (March 2020 to March 2023).
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4.4. Limitations

The COVIDNet project had several limitations, many of which 
still exist. First and foremost was the static and risk-averse nature of 
public health infrastructure and systems at the state and local levels 
that were insufficient to support advances in sequencing technology 
and attendant data requirements, particularly during the chaos of the 
pandemic. Prior to the pandemic, funding for public health had 
declined and was usually insufficient to implement modern systems 
or needed updates. The pandemic resulted in increased funding for 
public health response, but in many cases the infrastructure was a 
hindrance in putting the funds to use quickly or optimally.

A major limitation was achieving timely generation of sequence 
data. Contracts with COVIDNet partners established a 2-week 
turnaround time for sequence results but delays of 2 weeks or more to 
process and ship samples out to COVIDNet partners were typical, 
impeding timely results. Although CDPH can provide rapid SARS-
CoV-2 WGS (49), this was not scalable and proved useful only for 
certain situations, such as high-risk outbreaks or severe cases.

Limitations in sampling strategies to meet goals of 
representativeness and equity were manageable because of widespread 
availability and accessibility of COVID-19 testing from established 
community-based testing sites and other sources. The closure of these 
testing sites, as well as the transition from molecular-based to antigen-
based testing made it difficult to maintain the goal of geographic and 
equitable representation and we expect this challenge to continue. As 
sources of samples for sequencing decrease, the risk of surveillance 
bias will also increase. Given the success of SARS-CoV-2 wastewater 
surveillance (54–56), we expect wastewater surveillance to continue 
to contribute a significant portion of data to inform SARS-CoV-2 
genomic surveillance going forward and that this will help to mitigate 
surveillance bias.

A further limitation is that, although we  established a PAUI 
system to distinguish between surveillance samples and other high 
priority/outbreak samples, the COVIDNet database contains 
sequences that do not have PAUI numbers and thus it is not always 
clear whether these samples are surveillance-based or from targeted 
investigations and therefore not randomly selected. Thus, outbreak 
specimens and specimens from high-risk settings may be  over-
represented as surveillance data. Likewise, the vast majority of 
specimens that were sequenced did not include attendant detailed 
medical or travel history, and thus this genomic surveillance program 
was primarily laboratory-based.

4.5. Recommendations and conclusions

As we move to the next phase of COVID-19, it is important to 
ensure funding to support ongoing genomic surveillance for SARS-
CoV-2 and other pathogens of public health significance globally, 
nationally, and at state and local levels. Secure and sustained funding 
is critical to ensure the capacity to identify and analyze emerging 
pathogens of concern. Resources are also required to address gaps in 
public health infrastructure, in particular, systems related to data 
management, storage, and analysis. These systems are in significant 
need of modernization and functional interoperability to optimize 
data transmissions.

To build on experience gained with COVIDNet and prepare for 
future crises, it is imperative that we create, in advance, uniform data 

requirements with the ability to integrate incoming data from many 
sources, and transition to database and query platforms that can 
handle very large datasets.

Partnerships between public health departments and clinical 
laboratories should be established to help enhance collaborations and 
prepare us for the next large outbreak or pandemic. By enhancing 
these partnerships, we can help to identify and submit specimens for 
genomic surveillance as part of routine public health surveillance 
systems and also provide critical genomic information for the medical 
community that might help guide care and treatment. Protocols 
should be developed between these institutions to create a sample 
referral system in the event of outbreaks of concern or public health 
emergencies so that specimens are not discarded before they can 
be captured for sequencing or other characterization.

The value of COVIDNet will continue with ongoing genomic 
surveillance of SARS-CoV-2, as well as other pathogens of public 
health significance. Importantly, the COVIDNet infrastructure has 
already demonstrated, with the emergence of MPXV, its utility to 
be leveraged for the next public health crisis. The flexibility of this 
large-scale, collaborative system provides the necessary methods, 
logistics, and workflows that require only minor modifications to 
enable effective genomic surveillance and epidemiology at local, 
regional, and state levels.
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Introduction:Mucormycosis is an acute invasive fungal disease (IFD) seenmainly

in immunocompromised hosts and in patients with uncontrolled diabetes. The

incidence of mucormycosis increased exponentially in India during the SARS-

CoV-2 (henceforth COVID-19) pandemic. Since there was a lack of data on

molecular epidemiology of Mucorales causing IFD during and after the COVID-

19 pandemic, whole genome analysis of the Rhizopus spp. isolated during this

period was studied along with the detection ofmutations that are associated with

antifungal drug resistance.

Materials and methods: A total of 50 isolates of Rhizopus spp. were included in

this prospective study, which included 28 from patients with active COVID-19

disease, 9 from patients during the recovery phase, and 13 isolates from COVID-

19-negative patients. Whole genome sequencing (WGS) was performed for the

isolates, and the de novo assembly was done with the Spades assembler. Species

identification was done by extracting the ITS gene sequence from each isolate

followed by searching Nucleotide BLAST. The phylogenetic trees were made

with extracted ITS gene sequences and 12 eukaryotic core marker gene

sequences, respectively, to assess the genetic distance between our isolates.

Mutations associated with intrinsic drug resistance to fluconazole and

voriconazole were analyzed.

Results: All 50 patients presented to the hospital with acute fungal rhinosinusitis.

These patients had a mean HbA1c of 11.2%, and a serum ferritin of 546.8 ng/mL.

Twenty-five patients had received steroids. ByWGS analysis, 62% of the Rhizopus

species were identified as R. delemar. Bayesian analysis of population structure

(BAPS) clustering categorized these isolates into five different groups, of which

28 belong to group 3, 9 to group 5, and 8 to group 1. Mutational analysis revealed

that in the CYP51A gene, 50% of our isolates had frameshift mutations along with

7 synonymous mutations and 46% had only synonymous mutations, whereas in

the CYP51B gene, 68% had only synonymous mutations and 26% did not have

any mutations.
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Conclusion:WGS analysis of Mucorales identified during and after the COVID-19

pandemic gives insight into the molecular epidemiology of these isolates in our

community and establishes newer mechanisms for intrinsic azole resistance.
KEYWORDS

whole genome sequencing, molecular epidemiology, Mucorales, COVID - 19, azole
resistance detection
Introduction

Mucorales are common environmental molds that cause

mucormycosis. This is an opportunistic fungal infection that is

angio-invasive and therefore has high morbidity and mortality.

Even though mucormycosis is found worldwide, causative agents

are more common in India. Among the order Mucorales, Rhizopus

arrhizus/R. oryzae is the most common species isolated in the

laboratory, followed by Rhizopus microspores, Litchthemia,

Cunningamella, and Saksena. Patients with diabetes mellitus,

hematological malignancy and chemotherapy, and hematopoietic

stem cell transplant, and solid organ transplant recipients on

immunosuppressive therapy with iron overload are at risk of

developing mucormycosis. The most common clinical

presentation is invasive fungal sinusitis or rhino-orbital–cerebral

mucormycosis (ROCM), followed by pulmonary, gastrointestinal,

cutaneous, and renal mucormycosis.

The delta wave of the pandemic swept through India from May

2021. There was an increase in the incidence of mucormycosis in

patients with SARS-CoV-2 (henceforth COVID-19) during this

wave around the world, particularly from India. Epidemiological

reviews reveal an acute increase in the incidence of ROCM related

to COVID-19 infection. Phylogeny of Mucorales isolated during the

COVID-19 pandemic has not been studied in India, where many

cases were reported, including from our center (Cherian

et al., 2022).

Before the COVID-19 pandemic, the death rate for

mucormycosis was 50%; however, during the delta wave, fatalities

amounted to 85% (Aranjani et al., 2021). Owing to the rise in

mucormycosis cases during this wave of the COVID-19 pandemic

and its link with fatalities in COVID-19 patients, further studies on

mucormycosis are needed particularly to investigate the

relationship of Mucorales with COVID-19 patients (Al-Tawfiq

et al., 2021).

So far, genotyping of Mucorales has been performed by using

the internally transcribed spacer (ITS) region and D1/D2 regions of

the 28S rRNA subunit (Nagao et al., 2005), or multilocus

sequencing typing of conserved loci (Cendejas-Bueno et al.,

2012). These methods do not reflect genome-scale phylogenetic

differences adequately or correctly capture strain and species-level

diversity. Whole genome sequencing (WGS) has been used in the

recent studies to investigate mucormycosis outbreaks. Though it

has inherent challenges, WGS analysis will help to understand the

biology and pathogenesis of the organism and disease.
02128
Azoles inhibit ergosterol synthesis by interacting with the 14-∝
sterol demethylases, encoded in molds by CYP51 genes. Azole

resistance in filamentous fungi are due to overexpression of

CYP51A and/or point mutations in the CYP51A gene and

overexpression of efflux pumps. Macedo et al. in 2018 describe

that in Rhizopus oryzae, CYP51 genes are uniquely responsible for

intrinsic resistance to short-tailed triazoles such as voriconazole and

fluconazole (Macedo et al., 2018).

Therefore, in this study, we performed WGS on 50 isolates of

Rhizopus spp. isolated during the delta wave of the COVID-19

pandemic from COVID-positive, -recovered, and -negative patients.

We wanted to ascertain the phylogenetic relationship among the

isolates in these three groups and to study whether evolutionary

clusters and the presence of mutations in the CYP51 genes played a

role in the severity of the disease in COVID-19 patients.
Materials and methods

Ethics

This study was approved by the Christian Medical College,

Vellore Institutional Review board and Ethics committee (IRB

no. 14007).
Study population and sample collection

This was a prospective study done at Christian Medical College

Vellore, a large tertiary care teaching hospital that saw many

patients with COVID-19-associated mucormycosis. Consecutive

clinical isolates of Rhizopus arrhizus were cultured from patients

with ROCM during the delta wave of the COVID-19 pandemic

between March 2021 and December 2021 to collect isolates from

post-COVID-19 and COVID-19-negative patients. All isolates were

retrieved from patients presenting with a rhino-orbital cerebral

sinusitis and were from the sinus tissue; some had extensions into

the brain and some into the bone and orbit. The sinus tissue

samples obtained from these patients were minced with sterile

scissors in a sterile petri dish. The presence of sparsely septate

broad, irregular hyphae branching at obtuse angles on microscopic

calcofluor white microscopic preparation was identified, and it was

cultured on Sabourauds Dextrose Agar with and without antibiotics

as per standard laboratory procedure. Characteristic features on
frontiersin.org
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culture and microscopy identified the cultures. COVID-19 testing at

our center was carried out by the Altona Realstar SARS-CoV-2

RTPCR kit and the Cepheid Xpert Xpress SARS-CoV-2 assay. Of

the 50 isolates collected during this period, 28 belonged to patients

with active COVID-19 disease (within 3 weeks of RT-PCR

positivity), 9 were from patients in the recovery phase (after 3

weeks of RT-PCR positivity), and 13 isolates were from COVID-19-

negative patients (negative RT-PCR test).
DNA extraction

Mucorale isolates were stored at room temperature and

subcultured onto Sabouraud Dextrose Agar before processing for

DNA extraction. Once grown on Sabouraud Dextrose Agar, they

underwent Genomic DNA extraction using the QIAamp DNAMini

Kit (QIAGEN, Hilden, Germany) per the manufacturer’s

instructions. Good-quantity and -quality DNA was selected, and

WGS was further carried out. The isolated DNA was quantified

using a QubitTM 3 Fluorometer (Thermo Fisher Scientific) and a

minimum of 0.3 ng/µL DNA concentration was required to perform

WGS. DNA quality was verified by running agarose gel

electrophoresis to detect nucleic acid degradation. Extracted DNA

was stored at −20°C until further use.
Whole genome sequencing

KAPA HyperPrep Kit (Roche) was used to prepare Illumina

sequencing libraries according to the manufacturer’s instructions.

After preparing the DNA sample libraries, they were purified with

Ampure XP Reagent (Beckman Coulter), quantified with 5300

Fragment Analyzer (Agilent), and uniquely barcoded multiple

samples libraries were normalized together to be sequenced

equally and simultaneously in a single run. Then, the libraries

were sequenced with a 2×150-bp paired-end reads chemistry on the

Illumina NovaSeq platform as per the manufacturer’s instructions,

resulting in an average of 100× coverage of the whole genome per

isolate for all samples.
Genome assembly

Sequence reads were trimmed to remove poor-quality bases

using Trimmomatic (v0.39) followed by de novo assembly with

Spades (v3.14.1) with the following k-mer lengths: 27, 33, 55,

and 75.
Species tree generation based on ITS gene

Mucorales, in comparison with other genetic targets like 18S

and D1/D2 of the 28S gene ITS region, shows higher species-specific

variability and may further discriminate species in Rhizopus species

(Nagao et al., 2005). Abe et al. also describe better clustering
Frontiers in Cellular and Infection Microbiology 03129
of isolates using ITS region sequencing (Abe et al., 2006). Based

on this, ITS gene sequences were extracted from our isolates

and reference isolates genome with the BLASTN 2.12.0+ tool

and the combined sequence of ITS1-5.8S-ITS2 genes were

searched as a query in the Nucleotide BLAST database (https://

blast.ncbi.nlm.nih.gov/) for species identification. Genetic

clustering analysis for our isolates along with reference isolates

was done with RhierBAPS 1.1.4 (Tonkin-Hill et al., 2018). ITS gene

sequence multiple alignment was done using Geneious software

(https://www.geneious.com/) with Clustal Omega v1.2.3 (Sievers

and Higgins, 2018) for our isolates along with the reference isolates,

and species tree was generated with RAxML 8.2.11 with the

following parameters: GTRGAMMA nucleotide model, Rapid

Bootstrapping and a search for best-scoring maximum likelihood

tree, 100 bootstrap replicates with parsimony random seed 100,

followed by visualization and annotation using iTOL (https://

itol.embl.de/) (Figure 1).

Based on work from Macedo et al. (2018), two types of CYP51

genes were identified in the R. oryzae genome, and they were

classified as CYP51A and CYP51B (Macedo et al., 2018). R.

oryzae ATCC 11886 CYP51A and CYP51B gene sequences were

downloaded from the NCBI database and blasted with our isolate

genome with the help of the BLASTN 2.12.0+ tool; conversion of

the resulting nucleotide sequence to protein sequence followed by

multiple alignment with reference protein sequence was done using

Geneious software (https://www.geneious.com/) with Clustal

Omega v1.2.3 and studied for mutations.
Phylogenetic tree construction using
eukaryotic reference marker genes

Our clinical isolate-assembled genomes were analyzed with the

Benchmarking Universal Single‐Copy Orthologs (BUSCO v5.4.4)

tool to look for orthologous groups specific to the fungi_odb10

lineage using Augustus (v3.3) as described by Simao et al. and

Stanke et al (Simão et al., 2015). (Stanke et al., 2006) and the

following parameter: “Rhizopus oryzae” species was selected for

genome assessment mode and protein-coding genes were predicted.

Predicted protein sequences were extracted from the AUGUSTUS

output. The PhyloSift reference marker genes for eukaryotes as

described by Darling et al. (2014) were downloaded and

concatenated into one combined file for query and then searched

against our isolates that predicted protein sequences (Nguyen et al.,

2020). From the 33 reference marker genes found to be conserved

among all eukaryotic organisms, only 12 of them were present with

complete sequence across 30 of our clinical isolate genomes; thus,

they were utilized to compare the phylogenetic relatedness between

those isolates (Figure 2). Those are 14_3_3, Actin_noOuts,

Atub_noOuts, Btub_noOuts, enolase, gamma_noOuts, hsp70,

hsp70cyt, hsp70er, Rps23a_noOuts, TFIIH, and U5. Nucleotide

sequences of these marker genes from our isolates were aligned

using Geneious software (https://www.geneious.com/) with Clustal

Omega v1.2.3 as described by Sievers and Higgins et al (Sievers and

Higgins, 2018). to make a combined multiple alignment file
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followed by Phylogenetic tree construction with RAxML 8.2.11

(Stamatakis, 2014) with the following parameters: GTRGAMMA

nucleotide model, Rapid Bootstrapping and search for best-scoring

maximum likelihood tree, 100 bootstraps replicates with parsimony

random seed 100, followed by visualization and annotation using

iTOL (https://itol.embl.de/).
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Quality controls

Negative water controls were used for the extraction and

subsequent WGS. PhiX controls were used for library

preparation. All isolates were blasted with reference isolates.

ATCC strains were not used as positive controls.
FIGURE 2

Phylogenetic relatedness based on eukaryotic reference markers.
FIGURE 1

Phylogenetic tree based on ITS gene.
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Results

Cohort description

Fifty clinical isolates were cultured from patients diagnosed

with ROCM during the study period. The study population

included 38 male and 12 female patients with a mean age of

50.28 (28–81) years. Most patients were from Tamil Nadu (34),

followed by the adjoining state, Andhra Pradesh (Anand et al.,

2022). As shown in Table 1, 28 patients were COVID-19 positive, 13

were COVID-19 negative, and 9 were COVID-19 recovered, and

the three groups were compared using ANOVA. All -values <0.05

were considered significant.

The mean duration of symptoms was 10.5 days. A total of 28

patients gave a history of prior hospital admission, and 25 had

received steroids. All patients had sinonasal involvement. Forty-six

percent had additional orbital involvement, while the palatal and

intracranial extension was seen in 36% and 20%, respectively. Extra

paranasal sinus involvement was seen predominantly among the

COVID-negative patients. Four patients had bony involvement at

presentation, while another 14 showed late bony changes.

Among the COVID-19-positive patients, 14 tested positive at

admission, while the rest presented within 3 weeks of testing

positive. All patients in the cohort had diabetes. Of the seven

diabetic patients who presented with ketoacidosis, six were

COVID-19 positive. The mean HbA1c was 11.2%, and serum

ferritin was 546.8 ng/mL in the cohort. Among the 50 patients

with AIFS, 20 patients had associated CGFS.
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On follow-up, 40 (80%) patients were alive, among whom 30

had no clinical or radiological evidence of disease, 1 patient had the

residual disease, while 9 patients though clinically and

endoscopically normal, had radiological changes. Eight (16%)

patients had expired, and two were lost to follow-up.
Phylogenetic assessment

Based on the ITS gene (Figure 1), Bayesian analysis of population

structure (BAPS) clustering algorithm clustered 50 isolates from CMC

and reference isolates into five groups. Group 1 comprises eight of our

clinical isolates identified as R. arrhizus (n = 3) and R. delemar (n = 5)

species closely clustered to the clinical reference strains R. arrhizus

(B7407 and 21396) and R. delemar (21446). Group 2 contains four of

our clinical isolates; all were identified as R. delemar; R. arrhizus 97-

1192 strain shows close relatedness with these groups. Thirty-four

clinical isolates were found to be clustered in group 3, 28 CMC isolates

clustered with six reference clinical strains, R. arrhizus CMC strains

(Nagao et al., 2005) were closely related to R. arrhizus (13440 and

CBS_112.07T), and, similarly, R. delemar CMC strains (24) were

closely associated with R. delemar (RA 99-880). Group 4 consists of

one clinical isolate identified as R. homothallicus species. Group 5 was

divided into two subgroups: 2 clinical isolates identified as R.

microsporus and 11 clinical isolates (7 isolates from CMC clustered

with 4 reference strains) identified as R. azygosporous. Table 2

summarizes the BAPS groups stratified by COVID-19-negative,

COVID-19-positive, and COVID-19 recovered patients.
TABLE 1 Clinical and laboratory findings of the patients with mucormycosis.

Total
(N = 50)

COVID positive
(N = 28)

COVID recovered (N = 9)
COVID negative
(N = 13)

p-value

Age

0.938Mean ± SD 50.28 ± 12.65 50.50 ± 14.18 48.89 ± 9.78 50.77 ± 12.20

Range 28-81 28-81 37-61 33-76

Gender

0.052Male (%) 38 (76) 19 (67.9) 9 (100.0) 10 (76.9)

Female (%) 12 (24) 9 (32.1) 0 3 (23.1)

Comorbidities

DM 50 (100) 28 (100) 9 (100) 13 (100) –

DKA 7 (14) 6 (21.4) 1 (11.1) 0 0.077

Duration of symptoms (days)

0.950Mean ± SD 10.5 ± 25.04 11.21 ± 33.26 11.11 ± 9.03 8.54 ± 7.90

Range 1–180 1–180 4–28 2–25

Species

0.057Rhizopus arrhizus (%) 44 (88) 27 (96.4) 8 (88.9) 9 (69.2)

Rhizopus microsporus (%) 6 (12) 1 (3.6) 1 (11.1) 4 (30.8)

Prior hospital admission (%) 28 (56) 17 (60.7) 8 (88.9) 3 (23.1) 0.005

(Continued)
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Based on the mentioned eukaryotic reference marker genes, 30

isolates’ genomes were utilized for building the phylogenetic tree to

explain the genetic relatedness. This divided 30 clinical CMC

isolates into two major branches. The top branch consists of three

COVID-19-negative isolates, a COVID-19-positive isolate, and a

COVID-19-recovered isolate, and the lower branch consists of 25

isolates composed of 17 COVID-19-positive, 3 COVID-19-

negative, and 5 COVID-19-recovered patient isolates.
Phylogenetic tree inference

In our 50 clinical isolates (Figure 1), 31 isolates were identified as

R. delemar, which includes 22 isolates from COVID-19-positive
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patients, 4 isolates from COVID-19-recovered patients, and 5

isolates from COVID-19-negative patients; 9 isolates identified as

R. arrhizus, consisting of 4 COVID-19-positive, 2 COVID-19-

recovered, and 3 COVID-19-negative patient isolates; 7 isolates

were identified as R. azygosporous, comprising 1 COVID-19-

positive, 2 COVID-19-recovered, and 4 COVID-19-negative patient

isolates; 2 isolates were identified as R. microsporus species, which

contained one COVID-19-recovered and COVID-19-negative

patient; and 1 COVID-19-positive patient isolate belonged to the R.

homothallicus species. From the BAPS clustering, we observed that 28

of our patient isolates belong to group 3; 17 of them were isolated

from COVID-19-positive, 5 from COVID-19-recovered, and 6 from

COVID-19-negative patients. All the COVID-19-positive isolates in

group 3 were identified as R. delemar.
TABLE 1 Continued

Total
(N = 50)

COVID positive
(N = 28)

COVID recovered (N = 9)
COVID negative
(N = 13)

p-value

Steroids given (%) 25 (50) 17 (60.7) 6 (66.7) 2 (15.4) 0.010

Disease extent (%)

Nose and PNS 50 (100) 28 (100) 9 (100) 13 (100) –

Orbit 23 (46) 13 (46.4) 2 (22.2) 8 (61.5) 0.177

Palate 18 (36) 5 (17.9) 5 (55.6) 8 (61.5) 0.009

Intracranial 10 (20) 5 (17.9) 1 (11.1) 4 (30.8) 0.488

Blood parameters

HbA1C

0.836Mean ± SD 11.2 ± 2.35 11.32 ± 2.39 11.34 ± 2.26 11.80 ± 2.54

Range 5.9–15.6 6.2–>14 8.2–14.9 5.9–>14

Serum ferritin

Mean ± SD 546.81 ± 424.64 578.66 ± 446.12 427.86 ± 425.6 567.62 ± 419.24

Range 120.9–1,909.6 123.1–1,909.6 133.4–1,433.8 120.9–1,423.4

HPE (%)

0.639
AIFS 29 (58) 16 (57.1) 4 (44.4) 9 (69.2)

AIFS + CGFS 20 (40) 11 (39.3) 5 (55.6) 4 (30.8)

No biopsy 1 (2) 1 (3.6) 0 0

Osteomyelitis (%)

0.082
Nil 32 (64) 18 (64.3) 4 (44.4) 10 (76.9)

At initial presentation 4 (8) 1 (3.6) 3 (33.3) 0

Late presentation 14 (28) 9 (32.1) 2 (22.2) 3 (23.1)

Outcome (%)

0.187

Alive with no clin/radio disease 30 (60) 17 (60.7) 7 (77.8) 6 (46.2)

Alive with radio+ clinical 9 (18) 4 (14.3) 2 (22.2) 3 (23.1)

Alive with clinical 1 (2) 1 (3.6) 0 0

Dead 8 (16) 6 (21.4) 0 2 (15.4)

LFU 2 (4) 0 0 2 (15.4)
fro
All tests were compared using ANOVA, p < 0.05 was taken as significant.
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Summary of mutations

Except in CMC_M21 and CMC_M36 isolates, mutations were

observed in the CYP51A gene sequences in all 50 isolates with T

nucleotide insertion at the 144 and 145 nt, T nucleotide insertion at

263 nt, C330T, C339T, C375T, G798A, A831G, T1008C, and

T1542C. In the mutations observed, only the insertion mutations

altered the protein sequence, which leads to frameshift since all the

other mutations were synonymous. We have also observed

mutations in CYP51B at C75T, T129C, insertion of A at the base

of 255 nt, C378T, C575T, G1708A, T1144C, and A1485C. In

CMC_M1, C575T and G1708A nucleotide changes were observed

that lead to protein sequence change P192L and V570I, respectively;

all the other mutations observed in this gene sequence of our

isolates were synonymous. Insertion mutations were observed in

the isolates CMC_M21 and CMC_M36 at CY51B, which lead to the

frameshift of protein sequence; these isolates also did not have any

mutations at CY51A. Figure 3 summarizes the findings.
Discussion

Mucormycosis is an acute invasive disease-causing rhino-

cerebral mucormycosis in patients with diabetes mellitus and

immunocompromised patients such as bone marrow or organ

transplants. During the delta wave of the COVID-19 pandemic,
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there were increased cases of mucormycosis among patients with

COVID-19 infection. This is the first study looking at the molecular

epidemiology of the Mucorales during and after the pandemic.

The molecular epidemiology of mucormycosis has been studied

to investigate outbreaks among solid organ transplant patients and

compare it with the environmental isolates (Simão et al., 2015).

Here in our study, we used WGS to compare the molecular

epidemiology and relatedness of the Mucorales in COVID-19-

positive, COVID-19-recovered, and COVID-19-negative patients.

As described by our center as well as a study done across India, the

most common risk factor for mucormycosis among COVID-19

patients was diabetes mellitus with 21% among the COVID-19-

positive patients having diabetes ketoacidosis. The high serum

glucose and ferritin levels secondary to uncontrolled diabetes mellitus

and ketoacidosis in a hypoxic acidic medium, in combination with

COVID-19-induced decreased phagocytosis, stimulated an ideal state

for the escalation of mucormycosis. Similar to the case–control

investigation done in 11 hospitals across India, the common

presentation in our center was rhino-cerebral mucormycosis, both

during and after the pandemic (Anand et al., 2022).
Phylogenetic tree

WGS-employed phylogenetic analysis results in a higher

resolution in establishing association among isolates. The
FIGURE 3

Mutations in the CYP51A and CYP51B genes.
TABLE 2 Distribution of the Mucorales into the various BAPS clusters.

BAP clus-
ters (n = 5)

COVID-19-positive
patient isolates

COVID-19-recov-
ered patient isolates

COVID-19-negative
patient isolates

Total number of patient isolates
observed in each group

Species identification by BAPS
clustering

Group 1 6 0 2 8 R. arrhizus (3), R. delemar (5)

Group 2 3 1 0 4 R. delemar

Group 3 17 5 6 28
R. arrhizus strains 13440 and

CBS_112.07T (4), R. delemar (28)

Group 4 1 0 0 1 R. homothallicus

Group 5 1 3 5 9
R. microsporus (2), R. azygosporous

(7)
BAPS, Bayesian analysis of population structure.
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phylogenetic tree constructed using ITS1 gene sequences (Figure 1)

from the clinical and reference isolates was clustered into five

groups. Group 3 consisted of the highest number of clinical

isolates, of which COVID-19-positive individuals were found at a

higher abundance in the group (Table 2). Groups 3 and 5 showed a

dichotomous tree, separated into new groups based on the

subspecies type. Using a synoptic approach, clinical isolates were

linked to environmental isolates. Three isolates from group 1, group

3, group 4, and group 5 were closely associated with environmental

isolates, indicating the involvement of strains from hospital or

the surrounding community. In the ITS-based tree, most of the

isolates belonged to R. delemar species, indicating it to be the

responsible strain that had been widely distributed. The top branch

homology between the clinical isolates is in the core genome tree.

Most of the COVID-19-positive patients were categorized into the

R. delemar group. A close clustering can also be observed between

the COVID-19-positive isolates and the COVID-19-recovered

isolates; a close association was also observed between the R.

delemar and R. arrhizus species, indicating a genetic relatedness

between them. As observed in several studies, our study finds it

tenable that various species are involved in the incidence of

mucormycosis outbreaks instead of a solitary strain (Neblett

Fanfair et al., 2012; Garcia-Hermoso et al., 2018). Thus, in this

study, we were able to ascertain that the Rhizopus spp. causing

rhino-cerebral mucormycosis during the COVID-19 pandemic

were as diverse as the strains after the epidemic. Though we

found increased number of group 3 isolates in COVID-19-

positive patients, there was no particular clustering of the

difference groups, indicating that there was not a common source

for the increased surge of cases during the pandemic.
Mutation analysis

Mutation analysis (Figure 3) revealed that in the CYP51A gene,

a T nucleotide insertion was observed at the base of 144, 145, and

263 on the sequence that leads to a frameshift of protein translation

in 25 isolates (15 COVID-19-positive, 4 COVID-19-recovered, and

6 COVID-19-negative patients).

The following nucleotide changes were also observed along with

frameshift mutation in the same isolates: C330T, C339T, C375T,

G798A, A831G, T1008C, and T1542C. The A831G, T1008C,

C1005T, and C1162T mutations were present without the

frameshift mutation in another 23 isolates (from 12 COVID-19-

positive, 4 COVID-19-recovered, and 7 COVID-19-negative

patients). Since these were synonymous mutations, protein

sequences were not altered. Two isolates, CMC_M21 and

CMC_M36, from a COVID-positive and a COVID-recovered

patient, respectively, did not have any nucleotide changes in the

CYP51A gene sequence. These two were also the only isolates that

had a nucleotide A insertion in the CYP51B gene sequence, which led

to a frameshift mutation, present along with the following

synonymous mutations: C75T, C378T, and T1144C. Like CYP51A,
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at CYP51B, some synonymous mutations, namely, C75T, T129C,

C378T, and A1485C, were present without any frameshift mutation

in 34 isolates comprising 27 COVID-19-positive and 7 COVID-19-

recovered patient isolates, but unlike CYP51A, one COVID-19-

recovered patient isolate (CMC_M1) had two point mutations in

the CYP51B gene—C575T and G1708A—that led to protein

sequence change P192L and V570I, respectively. Of the COVID-19

patients, 13 COVID-19-negative patient isolates did not have any of

these mutations in the CYP51B sequence, whereas all isolates had

mutations in the CYP51A gene sequence. The CYP51A gene is

uniquely responsible for the intrinsic azole resistance phenotype and

not CYP51B; CYP51B gene mutations were rarely reported in studies

done on fungal isolates. Similarly, we also did not find any mutations

in 13 isolates from COVID-negative patients. Further studies are

required to understand the CYP51B gene functions and its

mutations’ involvement in the azole resistance.

Azoles act intracellularly by binding and inhibiting a key

enzyme in the ergosterol pathway, lanosterol 14-ademethylase, a

cytochrome P450 enzyme (named ERG11 or CYP51A depending

on the fungus) (Jensen, 2016). The mechanism of intrinsic azole

intrinsic resistance in Mucorales includes overexpression and/or

point mutations in the CYP51A gene. Macedo et al. (2018) analyzed

the role of the CYP51A gene and its mutations causing intrinsic

resistance to voriconazole and fluconazole in Mucorales. They have

demonstrated that the gene sequence of CYP51A can be solely

responsible for this intrinsic resistance. They hypothesized that

azole resistance in Mucorales would occur because of Y132F and/or

F145M substitutions in CYP51A, based on C. albicans Erg11p

amino acid sequence numbering. In our study, we have not found

any point mutation as mentioned above. Limited literature available

shows that CYP51 mutations are associated with resistance to

voriconazole and fluconazole but not posaconazole or

itraconazole (Chau et al., 2006). In addition to synonymous

mutations in the CYP51A gene sequence, 25 isolates had a

frameshift mutation in the CYP51A gene sequence due to the

insertion of T nucleotide at the base of 144, 145, and 263 that

leads to alteration in the protein translation. These frameshift

mutations were unique and have not been described by Macedo

et al. (2018). We have also analyzed the CYP51B gene sequence of

our isolates and inferred the results. Based on our observation, we

have found that two point mutations, namely, P192L and V570I, in

one isolate and one insertion mutation, nucleotide A at the base of

255, led to frameshift of protein translation in two isolates in the

case of the CYP51B gene along with some synonymous mutations.

Further analysis is required to evaluate the importance of these

mutations. The significance of these mutations can be ascertained

only by performing in vitro and in vivo antifungal drug

susceptibility testing of these isolates and comparing with the

clinical outcome of the patients.

One of the main challenges is that mutations and phylogenetic

analysis of Mucorales by WGS has been applied infrequently in

studies of mucormycosis because the mucormycete genomes are

complex and there are very few scaffolds for assembling the
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genomes. There are only few clinical isolates in existing databases to

compare our isolates for strain relatedness using SNP differences as

is being used for other microorganisms.

The main limitation of the study was that the sample size was

small and involved those collected over a short period of time

during the acute phase of the COVID-19 pandemic and after

COVID-19. In non-COVID-19 times, we see mucormycosis in

different clinical spectra (Manesh et al., 2019). All patients

included in this study during the COVID pandemic had diabetes

mellitus as a risk factor. No other immunocompromised status was

detected in any of them. Therefore, one of the limitations of the

study is that the results of the study may not be representative of

patients with other immunocompromised conditions. We also did

not perform environmental sampling to look for Mucorales in the

community. Thus, we were not able to demonstrate the source of

these organisms or demonstrate any particular clustering of clades

of Rhizopus spp. We also could not compare these genotypic data to

phenotypic antifungal susceptibility for mucormycosis.

In summary, WGS on Mucorales is essential to ascertain the

phylogenetic relationships among isolates in a hospital or in a

community and compare it elsewhere in the country or globally. It

also allows for analysis of resistance and virulence markers, which

can unravel the biology and pathogenesis of these species. This

study emphasizes the need for larger studies to comprehend the

molecular epidemiology of these organisms and also the need to

standardize WGS-based typing methods for Mucorales and to

validate interpretive criteria for strain relatedness.
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Rapid identification of enteric 
bacteria from whole genome 
sequences using average 
nucleotide identity metrics
Rebecca L. Lindsey *, Lori M. Gladney , Andrew D. Huang , 
Taylor Griswold , Lee S. Katz , Blake A. Dinsmore , Monica S. Im , 
Zuzana Kucerova , Peyton A. Smith , Charlotte Lane  and 
Heather A. Carleton 

Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental 
Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, United States

Identification of enteric bacteria species by whole genome sequence (WGS) 
analysis requires a rapid and an easily standardized approach. We  leveraged 
the principles of average nucleotide identity using MUMmer (ANIm) software, 
which calculates the percent bases aligned between two bacterial genomes and 
their corresponding ANI values, to set threshold values for determining species 
consistent with the conventional identification methods of known species. 
The performance of species identification was evaluated using two datasets: 
the Reference Genome Dataset v2 (RGDv2), consisting of 43 enteric genome 
assemblies representing 32 species, and the Test Genome Dataset (TGDv1), 
comprising 454 genome assemblies which is designed to represent all species 
needed to query for identification, as well as rare and closely related species. 
The RGDv2 contains six Campylobacter spp., three Escherichia/Shigella spp., one 
Grimontia hollisae, six Listeria spp., one Photobacterium damselae, two Salmonella 
spp., and thirteen Vibrio spp., while the TGDv1 contains 454 enteric bacterial 
genomes representing 42 different species. The analysis showed that, when a 
standard minimum of 70% genome bases alignment existed, the ANI threshold 
values determined for these species were ≥95 for Escherichia/Shigella and Vibrio 
species, ≥93% for Salmonella species, and ≥92% for Campylobacter and Listeria 
species. Using these metrics, the RGDv2 accurately classified all validation strains 
in TGDv1 at the species level, which is consistent with the classification based on 
previous gold standard methods.

KEYWORDS

average nucleotide identity, ANI, species identification, enteric bacteria, WGS

Introduction

Conventional bacterial species identification methods, such as phenotypic testing and gene-
sequencing analysis, have been employed within the scientific community for years. However, 
with the increased use of next generation sequencing, new methods are available to analyze the 
entire DNA of the organisms. This allows for the simultaneous capture of a wide range of 
information, including whole genes, core genes, and ribosomal genes for species identification 
and strain typing, characterization of genes for serotype, virulence, antimicrobial resistance, 
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kmer-typing, and much more (Jolley et al., 2012; Besser et al., 2018; 
Gerner-Smidt et al., 2019a, Gerner-Smidt et al., 2019b; Stevens et al., 
2022). More diversity has been identified with sequencing methods 
than was previously known, due to the limitations of conventional 
identification methods that rely on shared metabolic characteristics 
(phenotypic tests) or gene sequencing, which typically only analyze a 
small fraction of the organism’s DNA. This has led to the taxonomic 
re-classification of entire genera (Yu et al., 2021). The increased use of 
next generation sequencing also enhances the speed and efficiency of 
bacterial identification methods, whereas conventional methods were 
more time-consuming and provided low resolution (Carleton and 
Gerner-Smidt, 2016; Besser et al., 2018; Gerner-Smidt et al., 2019a; 
Gerner-Smidt et al., 2019b; Stevens et al., 2022).

Historically, DNA–DNA hybridization (DDH) had been the gold 
standard for determining prokaryotic species for taxonomic 
classification (Rossello-Mora and Amann, 2001; Richter and Rossello-
Mora, 2009). Rossello discussed the prokaryotic species concept in 
2001, “Today, the accepted species classification can only be achieved 
by the recognition of genomic distances and limits between the closest 
classified (DNA–DNA similarity), and of those phenotypic traits that 
are exclusive and serve as diagnostic of the taxon (phenotypic 
property; Rossello-Mora and Amann, 2001).” This species concept is 
still applicable today; however, the genomic comparisons are now 
based on whole genome sequence (WGS) analysis.

In 2005, the average nucleotide identity (ANI) method was shown 
to be a plausible substitute for DDH since a 70% DDH threshold for 
species classification correlated well with a 94% ANI similarity 
threshold. This method, proposed by Kostantinidis et  al., used 
pairwise alignment (BLAST) to identify the best hits of shared 
orthologous gene content between genomes being compared, 
obtaining the ANIb values (Konstantinidis and Tiedje, 2004; Goris 
et al., 2007; Richter and Rossello-Mora, 2009; Rodriguez-R, 2016). 
However, a drawback of ANIb is the need to perform gene prediction 
on the assembly before an ANI score can be determined.

Later methods eliminated the need for this prediction step by 
using local alignments of sequences of varying length and similarity. 
In 2007, Goris et al. expanded on the ANIb method by generating 
1,020 bp fragments of the query genome and compared the ANI 
between the fragments and a reference genome using BLAST (Goris 
et  al., 2007). In 2009, Richter et  al. implemented an ultra-fast 
alignment tool, which compared the entire WGS contigs between 
genomes using the nucmer alignment program in MuMMer software, 
to calculate ANI values, referred to as ANIm (Kurtz et al., 2004). Kurtz 
et al. provided a dnadiff wrapper, which compares the resulting output 
files from the nucmer alignment program, to simplify and summarize 
ANIm output metrics for the differences between two genomes (Kurtz 
et  al., 2004). Jain et  al. further developed ANI methods by 
implementing FastANI, which is a method based on the minHash 
algorithm and read mapping. FastANI, similar to ANIb, aims to 
identify reciprocal or orthologous mappings and has an 80% identity 
cutoff (Ondov et al., 2016; Jain et al., 2018). FastANI has shown results 
that are comparable to the previous methods but has significantly 
improved the overall runtime to just seconds (Jain et  al., 2018). 
GAMBIT was recently described as a kmer-based method comparable 
in accuracy and speed to FastANI (Lumpe et al., 2023). GAMBIT 
computes Jaccard distances based on a subset of the genome’s kmers 
and, similar to FastANI, uses raw sequencing reads (Lumpe 
et al., 2023).

Additional methods for species and subspecies identification have 
also been described. Ribosomal MLST was described by Jolley et al. 
(2012), but this method requires gene prediction, unlike ANIm and 
FastANI (Jolley et  al., 2012). More recently, a new method for 
ribosomal MLST nucleotide identity (r-MLST-NI) has been developed 
for classifying Klebsiella and Raoultella species and may be useful for 
identifying other bacterial species (Bray et al., 2022). Public health 
laboratories in the United  States, including our laboratory, have 
transitioned to WGS analysis from conventional methods for 
identification and surveillance of enteric pathogens. For this 
transition, a rapid and an easily standardized method of species 
identification using WGS was needed, which could be easily integrated 
into the PulseNet national molecular surveillance system [National 
Center for Emerging and Zoonotic Infectious Diseases (NCEZID), 
2021] for enteric pathogens. In this study, we  describe the 
implementation of an accurate, rapid, stand-alone, sequence-based 
method for the identification of Campylobacter, Escherichia/Shigella, 
Listeria, Salmonella, and Vibrionaceae species. This method is 
comparable to previous gold standard methods and utilizes the ANIm 
method. We  compared over 450 genome assemblies to set the 
threshold ANIm values consistent with conventional identification 
methods. This method is currently employed for the precise speciation 
of enteric organisms from WGS using the Reference Genome Dataset 
version 2 (RGDv2) in BioNumerics and on the command-line, for 
routine identification of Campylobacter, Escherichia/Shigella, Listeria, 
Salmonella, and Vibrionaceae species.

Materials and methods

Genome selection for ANI detection

For this study, we selected two sets of genomes which included the 
Reference Genome Dataset version 2 (RGDv2, Supplementary Table 1) 
and the Test Genome Dataset version 1 (TGDv1, Supplementary Table 2). 
The strains were selected from genome assemblies available on NCBI or 
from the PulseNet Reference Outbreak Surveillance Team’s (PROST) 
enteric bacteria reference collections to represent the diversity of enteric 
bacteria. These well-characterized strains were previously identified by 
methods, such as phenotypic characterization, gene sequencing, 
phylogenetic analysis of the rpoB gene, and Accuprobe® (Listeria 
monocytogenes). All sequences met the standard PulseNet QAQC metrics, 
including a minimum Q score of 30, and sequencing coverages for 
downstream analysis: 40× for Escherichia, Vibrio, and Shigella, 30× for 
Salmonella and Campylobacter, and 20× for Listeria (Tolar et al., 2019).

The RGDv2 (Supplementary Table  1) included all species 
characterized as part of PulseNet, and the set was minimized for rapid 
analysis. It comprised 43 genome assemblies representing 32 enteric 
species, consisting of 10 assemblies representing 6 Campylobacter spp., 
3 assemblies representing 3 Escherichia/Shigella spp., 11 assemblies 
representing 6 Listeria spp., 2 Salmonella assemblies representing 2 
species, and 15 Vibrionaceae assemblies representing 11 Vibrio species, 
1 Grimontia species, and 1 Photobacterium species. The RGDv2 
assemblies were sequenced by Illumina, PacBio, or both instruments. 
The WGS reads for RGDv2 references were assembled using SPAdes 
for Illumina data (Bankevich et al., 2012) and HGAP (University M, 
2014) for PacBio data. Escherichia and Vibrio genomes are larger and 
more complex due to phage regions; these assemblies were generated 
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using both Illumina and PacBio sequencers. The NCBI BioSample 
data include additional information regarding sequencing chemistry 
and assembly methods for all strains.

The TGDv1 consists of 454 genome assemblies from 42 different 
enteric bacterial species (Supplementary Table  2), including the 
RGDv2 genome assemblies, and it is designed to represent all species 
necessary for querying identification, as well as rare and closely related 
species, to confirm the accuracy of ANIm for correct identification of 
species. The TGDv1 genomes were assembled using SPAdes v3.11 
with default options (Bankevich et al., 2012).

Development of custom ANI scripts

We developed custom scripts to utilize the dnadiff workflow in 
MUMmer v3.23 (Kurtz et al., 2004), facilitating pairwise comparisons 
with references and generating results in a tabular format. These 
scripts were developed for the command line. These scripts are 
published on our GitHub site (NCEZID-biome, 2021). The ANIm 
script runs on dnadiff and parses the field “AvgIdentity” to detect the 
percent identity. Additionally, to measure the breadth of the alignment, 
the script parses the AlignedBases field. To ensure consistency, the 
same ANIm script runs on both the command line (ani-m.pl) and as 
a plugin for BioNumerics (ani-m-bionumerics.pl).

Determination of ANI metrics

The TGDv1 genomes were supplied as the reference and the 
query; the genomes were compared in a pairwise, all-vs-all fashion. 
The RGDv2 genomes, our gold standard set of references, were 
included in TGDv1 and the threshold analysis.

We used the ggplot2 and dplyr modules in R to analyze and 
generate a scatter plot of the values for ANI and percent aligned bases 
for all comparisons. Additionally, a violin plot was created from the 
ANI values for a subset of species represented in RGDv2. For the 
violin plot, only ANI comparisons with a minimum of 70% aligned 
bases were examined to ensure that percent ANI was being calculated 
over significant portions of the genome and to avoid spurious high 
percent ANI matches over repetitive regions.

Down sampling for limits of detection

The reads for representative species of RGDv2 including two 
Campylobacter, three Escherichia, one Listeria, two Salmonella, and 
three Vibrio were downsampled to various coverage levels: 0.5×, 1×, 
5×, 10×, 15×, 20×, 30×, 40×, and 50×. A 1× coverage was calculated 
as the total assembly size of the original coverage SPAdes assembly. 
The desired coverage and the total number of bases in the raw reads 
were used to calculate a percentage of the reads needed for that 
coverage level. Subsequently, we used the Fasten package (lskatz, 2023) 
to sample enough reads to meet the expected coverage. The coverage 
level was verified using the read metrics script in CG-Pipeline (Kislyuk 
et al., 2010). These downsampled reads were used to assemble each 
genome as previously described in this study. Most genomes at 0.5× 
and 1× could not be assembled with SPAdes and could not be used as 
assemblies for the 0.5× and 1× coverage level analyses.

At each downsampling level of every genome, we recorded the 
N50, a standard assembly metric. Then, we  computed the ANIm 
method against the reference genome for each coverage level. 
We  noted the change in the ANI value received at the different 
coverage levels as compared to the 50× downsampled assembly.

Comparison of ANI methods: time trials 
and method compatibility

Pairwise ANI comparisons were generated using TGDv1 
genomes, which were run in an all-vs-all fashion using the ANIm, 
FastANI, and ANIb algorithms, to evaluate the amount of time each 
method took from the launch of the script to report of the result. This 
workflow is encoded on our GitHub site (NCEZID-biome, 2021) as 
the launch_all_ani shell script. For each algorithm, we computed the 
ANI value and recorded the duration of each analysis using GNU 
time. Pairwise scatterplots for each pair of algorithms were plotted 
using ANI results, and a trend line was computed in Microsoft Excel; 
only algorithm pairs involving ANIm were included. Additionally, the 
frequency of the analysis durations for each algorithm were computed 
and plotted in Microsoft Excel.

Results

Determination of ANI metrics

Computing the ANI of a query genome against a reference 
genome yields both the ANI value and the percentage of bases aligned. 
The percent bases aligned metric conveys what percentage of the 
reference genome is shared with the query. In this study, we compared 
the 454 TGDv1 genome assemblies in an all-vs-all comparison using 
ANIm (Supplementary Table  2), which resulted in 206,116 total 
comparisons. We plotted the percent bases aligned against the ANI for 
all genera and color-coded the between-species and within-species 
values (Figure 1). We noted that all the within-species ANI values 
appeared when the percent bases aligned was above 70%, consistent 
with our percent bases aligned threshold for excluding spurious high 
ANI matches.

By plotting all-vs-all ANI, we observed that the ANIm method 
effectively distinguished within-species comparisons from between-
species comparisons, enabling the determination of thresholds for 
relevant species (Figure 2). The ANI threshold values were ≥ 95% for 
Escherichia/Shigella and Vibrionaceae species, ≥93% for Salmonella 
species, and ≥ 92% for Campylobacter and Listeria species; the ANIm 
method accurately classified all validation strains in the TGDv1 at the 
species level, when considering comparisons across >70% of bases 
aligned (Table 1). In this study, we identify an ANI threshold for each 
genus as shown in Table 1 based on the results of the ANIm analysis. 
Notably, Vibrionaceae and Escherichia species have a 95% threshold, 
while species from Salmonella, Campylobacter, and Listeria have a 
lower ANI threshold for distinguishing within-species from between-
species comparisons (92–93%) when a ≥70% alignment threshold is 
met. We used traditional taxonomic definitions of these species that 
rely on phenotypic tests to verify these within-species and between-
species comparisons (Ciufo et al., 2018). Some of these lower ANI 
thresholds may be  the attributed to the greater diversity that 
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WGS-based methods can capture compared to the conventional 
naming of Salmonella, Campylobacter, and Listeria species.

Down sampling for limits of detection

To determine the robustness of the ANIm method at different 
coverage levels, an experiment was conducted to determine the lowest 
depth of coverage of a genome assembly required for accurate species 
identification. Several assemblies from representative species were 
assembled from coverage depths of 50× to 0.5× to find where an ANI 
value starts deviating (Figure 3). After down sampling, most genomes 
at 0.5× and 1× could not be assembled with SPAdes. In some cases, 
identification was made at 5× coverage, especially for Salmonella and 
Listeria genomes. For all enteric species in RGDv2, we determined a 
minimum of 10× depth-of-coverage for genome assemblies. In the 

standard bioinformatic analysis for molecular surveillance within 
PulseNet, the sequencing depth cutoffs are 40× for Escherichia, 
Vibrionaceae and Shigella, 30× for Salmonella and Campylobacter, and 
20× for Listeria, which makes ANIm compatible with this public 
health usage (Tolar et al., 2019).

Comparison of ANI methods: time trials 
and method compatibility

We compared several methods to calculate ANI: ANIb, ANIm, 
and FastANI. We first compared these three methods in a speed trial 
(Figure  4), examining the range of ANI runtimes for pairwise 
comparisons. An all-vs-all comparison of the TGDv1 showed that 
FastANI trials produced the fastest results, followed by ANIm and 
ANIb. Peak frequency runtimes for FastANI (approximately 0.75 and 

FIGURE 1

ANI limits for enteric detection. Scatter plots of average nucleotide identity versus percent aligned bases for four genera and one family: 
Campylobacter, Escherichia, Listeria, Salmonella, and Vibrionaceae. Each plot displays the relationship between ANI and percent aligned bases (e.g., 
reference genome alignment coverage) for both within-species and between-species in each group.
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2 s), ANIm (approximately 2 and 4 s), and ANIb (approximately 9 s) 
were observed; two different frequency peaks were noted for ANIm 
and FastANI. FastANI, while being an order of magnitude faster than 

ANIm, lacks an alignment report that includes the number or 
percentage of aligned bases, similar to ANIb. We selected ANIm as a 
preferred method due to speed, and it has provided the desired 
output of ANI score and percent genome alignment.

Using the same results from the time trials, we next measured the 
similarity between the results when comparing FastANI to ANIm and 
ANIb to ANIm (Figure 5). We plotted the percent identity of ANIb 
and FastANI against ANIm to form a scatterplot. This benchmark 
shows a trendline with FastANI: y = 1.2376× − 23.245 (R2 = 0.9741) 
and ANIb: y = 1.463× − 45.49 (R2 = 0.9124). The R2 scores suggest a 
correlation between ANIb, ANIm, and FastANI. However, ANIb and 
FastANI often reported ANI scores of 0, a null value, when compared 
against distantly related species; instances of null ANI scores were 
excluded in our benchmark analysis. ANIb and FastANI do not 
consider low identity regions in their calculations, and ANIb and 
FastANI report these null ANI scores when the scores fall below 60 
and 80%, respectively (Konstantinidis and Tiedje, 2005; Jain et al., 
2018). Alternatively, ANIm does not have this requirement and null 
ANI values were never reported for ANIm.

FIGURE 2

ANI values for five genera. Violin plots show ANI ranges for five genera: Campylobacter, Escherichia, Listeria, Salmonella and Vibrio. Each plot displays 
the variation in ANI values for both within a species (blue) and between a species (red) in each group.

TABLE 1 Taxon-specific values for identification by ANI.

Taxon ANI value 
(%)

Aligned 
bases (%)

Genome 
size (Mb.)

Campylobacter spp. ≥92 ≥70 1.4 to 2.2

Escherichia spp. ≥95 ≥70 4.5 to 5.5

Listeria spp. ≥92 ≥70 2.7 to 3.1

Salmonella spp.1 ≥93 ≥70 4.56 to 5.5

Vibrionaceae spp. ≥95 ≥70 3.8 to 6.2

Species level identification results are reported for query assemblies with ANI values listed 
below for Campylobacter, Escherichia, Listeria, Salmonella, and Vibrionaceae species. Taxon, 
ANI value (% value for ANI lower cutoff), aligned bases (%) and genome size (in megabases) 
for each species are listed. 1ANI can be used to identify one clinically important subspecies, 
Salmonella enterica subspecies enterica when the ANI score against the Salmonella enterica 
reference is >98%. Individual species thresholds may ultimately differ for Salmonella bongori, 
as all isolates tested to date result in >98% ANI score, >85% coverage, and lengths up to 5.0 Mb.
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FIGURE 3

Downsampling for limits of detection. Representative species of Campylobacter, Escherichia, Listeria, Salmonella, and Vibrio were downsampled from 
50× to 0.5× and analyzed with the ANIm algorithm. Genome coverage is plotted on the x-axis; the natural log of N50 (lnN50) is plotted on the left 
y-axis; and percent change from ANI at 50× is plotted on the right y-axis. The dotted blue line shows the average N50 for all the assemblies. The dark 
green line indicates the aggregate ANI values, or the average percentage that each ANI value deviated from what it was at 50×. Coverage cutoff of 10× 
was established based on this analysis, as species identification is not reliable below 10×. Additionally, the aggregate ANI begins accruing below 10×, 
gaining larger standard deviations.

FIGURE 4

Individual Query Speed by ANI Method. Time trials were conducted to compare the runtime of three different ANI methods: ANIb, ANIm, and FastANI. 
TGDv1 genomes were compared against each other, and 206,116 total comparisons were generated along with their associated runtimes. 
Approximately 0.10% (ANIm) and 0.02% (ANIb) of the comparisons were excluded because they exceeded the maximum graphical runtime of 100  s; 
there were no comparisons excluded for FastANI. The most common runtimes were approximately 9  s for ANIb, 2 and 4  s for ANIm, and 0.75 and 2  s 
for FastANI; two different frequency peaks were noted for ANIm and FastANI.
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When removing null percentages, ANIb scores ranged from 
73.43 to 100.00 with Q1, median, and Q3 being 77.01, 79.55, and 
89.00, respectively (Supplemental Table 3). Similarly, FastANI scores 
ranged from 76.76 to 100.00 with a median of 82.15, Q1 of 81.75, and 
Q3 of 95.11. Similarly, the associated ANIm scores ranged from 82.42 
to 100.00 with a median of 84.98 (Q1 and Q3: 84.47 and 95.23) for 
the FastANI trendline and ANIm scores from 82.29 to 100.00 with a 
median of 85.15 (Q1 and Q3: 84.45 and 90.21) for the ANIb trendline. 
Inclusion of additional ANIm scores, which were associated with null 
percentages in either ANIb or FastANI, had an adjusted range of 
78.51100.00 with a median of 83.48, Q1 of 81.53, and Q3 of 85.6 
(Supplemental Table 3).

An outline of the ANIm species identification method is 
illustrated in Figure  6. For routine identification, ANI values are 
calculated for genome assemblies that meet or exceed the alignment 
criteria of 70% aligned bases with an RGDv2 reference(s). If the 
threshold meets the cutoffs per species (Table  1), then a species 
identification is reported.

Discussion

The ANIm method described here allows for rapid, quantitative, 
and accurate species identification using the WGS data from enteric 
bacteria. We  have implemented an ANIm methodology on the 
UNIX command line and in BioNumerics version 7.6 for routine 
identification of Campylobacter, Escherichia/Shigella, Listeria, 
Salmonella, and Vibrionaceae species. The ANIm value and percent 
bases aligned describe the extent to which one genome assembly is 
identical to another and can be  used to determine the species 
identity of an assembled query genome by comparing it to a 
database of reference genomes with historically described 
taxonomy. To generate this reference genome database for ANIm 
species identification, we assembled the RGDv2, which contains 43 
high-quality representative genomes for relevant PulseNet species, 
whose species identity had been established with previous gold 
standard methods (Supplementary Table 1). Any genome assembly 

can be  compared against the reference genomes found in the 
RGDv2 for species identification. This smaller representative set of 
reference genomes was chosen to make this identification faster. To 
expand ANI speciation to other species, a representative genome or 
genomes of the species of interest, after validation, can be added to 
the RGDv2 (Supplementary Table 1).

We determined the thresholds for species identification with 
ANIm by comparing the enteric bacterial genomes from TGDv1, 
which comprised 454 genomes, including the RGDv2 genomes, 
whose species identity had also been previously established using 
gold standard methods. The analysis showed that ANI threshold 
values of ≥95% for Escherichia/Shigella and Vibrionaceae species, 
≥93% for Salmonella species, and ≥ 92% for Campylobacter and 
Listeria species classified all validation strains in TGDv1 accurately 
at the species level, when considering comparisons across >70% of 
bases aligned. The ANIm thresholds reported in this study are similar 
to the previously published species boundaries for ANIb (94%), 
ANIm (95–96%), and FastANI (95%; Konstantinidis and Tiedje, 
2005; Richter and Rossello-Mora, 2009; Jain et al., 2018). The lower 
ANI boundaries (92–93%) observed in this study for Salmonella, 
Campylobacter, and Listeria may be due to a wider degree of diversity 
within the species of those genera. As new species may be identified 
for these genera, we will re-evaluate our ANI thresholds. Moreover, 
we performed downsampling experiments to examine how genome 
coverage levels affect the ability of the ANIm tool to provide a result 
consistent with gold standard methods, and we found that reliable 
speciation using ANIm can be achieved with genomes assembled 
from ≥ sequencing read coverage of 10× or greater.

We compared three different methods for computing ANI: ANI 
using BLAST (ANIb), ANI using MuMMer (ANIm), and 
FastANI. We focused our comparison on these ANI methods and 
evaluated them for speed, accuracy, and easy interpretation. While 
all three of the ANI methods tested were comparable in speed and 
accuracy, ANIm was the easiest to standardize and interpret using the 
ANI and percent bases aligned metrics provided by the dnadiff 
wrapper script. We  compared ANIm to ANIb and FastANI by 
correlating the ANI values from pairwise comparisons across the 

FIGURE 5

Pairwise comparisons of ANIb and FastANI to ANIm. ANIm is plotted on the x-axis while ANIb and FastANI are plotted on the y-axis. All data satisfied 
the ANIm metric of greater than 70% aligned bases. A goodness-of-fit was detected for each method. FastANI’s slope is close to one (FastANI: 
y  =  1.2376–23.245with an R2  =  0.9741), while ANIb’s slope is also close to one (ANIb: y  =  1.463×  −  45.49 with an R2  =  0.9124).
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TGDv1 genome set. All three methods produced comparable ANI 
results with correlation coefficients of 1.24 and 1.46 and high R2 
scores (>0.9), for both the correlation of FastANI to ANIm and ANIb 
to ANIm. Additionally, we evaluated the differences in speed of the 
three distinct tools. All three of the ANI methods had median run 
times of less than 10 s for a pairwise comparison. To the best of our 
knowledge, this is the first comparison of the runtime for ANIm and 
FastANI. FastANI analyses were generally completed faster than 
ANIm and ANIb, and ANIm was somewhere in the middle from job 
submission to result. However, overlap was observed in runtimes 
among all three tools. As all tools demonstrate efficient performance 
within the range of 10 s or less, the variations in runtimes are likely 
not significant until a large number of comparisons are being 
analyzed. While other methods, such as ribosomal MLST, ribosomal 
MLST nucleotide identity (r-MLST-NI), and k-mer based methods 
like GAMBIT, hold promise for bacterial species identification, it is 
important that these methods were not evaluated in this study.

In this study, we have implemented ANI for enteric species 
identification using MUMmer (ANIm) and demonstrated the 
utility of ANI for species identification. Furthermore, we simplified 
ANI-based enteric species identification using a new standard 
database, RGDv2, built from reference genomes identified with 
previous gold standard methods and demonstrated its robustness. 
We also showed that only 10× sequencing coverage is needed to 
reliably detect species using RDGv2. This low coverage 
requirement and the speed of the ANIm analysis are advantageous 
when turnaround time is crucial, as is common in public health 
settings. For further variant analysis, we  have higher coverage 
requirements in PulseNet. An opportunity for future development 
may include evaluating the robustness of ANI with additional 
genome assembly methods compatible with both short-and long-
read sequencing methods. The approach here is also generalizable 

for any situation, where a set of organisms need to be  rapidly 
identified for species by adding and validating reference species 
genomes to an ANIm database.
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