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Editorial on the Research Topic
Hydro-climate extremes and natural disasters during global warming:
observation, projection, and mitigation

In the face of global warming and its far-reaching consequences, understanding and
mitigating hydro-climate extremes and natural disasters have become critical priorities. This
Research Topic brings together a collection of research papers that shed light on the
observation, projection, and mitigation of these phenomena in the context of a changing
climate. In this editorial, we will delve into three key areas: hydrometeorological forecasting,
climate projection, and climate impacts, drawing insights from the titles and abstracts of the
selected articles.

The first segment of this Research Topic focuses on advancements in
hydrometeorological forecasting. We are thrilled to showcase four research papers that
explore innovative methodologies and techniques in this field. In terms of rainfall
nowcasting methods, Zhu et al. proposes a nowcasting method that utilizes long short-
term memory (LSTM) networks to achieve accurate rainfall predictions up to 6 h ahead. The
method incorporates atmospheric conditions to reduce radar estimate errors, resulting in
improved forecast performance compared to conventional extrapolation approaches. On a
monthly scale, Yan et al. presents a runoff prediction model that combines machine learning
and feature importance analysis, which improved the simulation capability of the monthly
runoff prediction model. The model utilizes mutual information and feature importance
ranking methods to select suitable predictors from global climate factors and local
hydrometeorological information. The results demonstrate improved prediction accuracy
compared to other commonly used models.

In order to enhance the prediction accuracy of local precipitation area and intensity,
Duan et al. explores the impact of the upper gravity-wave damping layer on precipitation
predictions in complex terrain. The study uses the Weather Research and Forecasting model
and conducts sensitivity tests for a strong precipitation event in southern Gansu, China. The
results clarified the influence of the upper gravity-wave damping layer on precipitation over
complex terrain. In addition, Deng et al. conducted a case study in the Poyang Lake Basin of
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China to explore the sensitivity of different parameterization
schemes in the Weather Research and Forecast model (WRF) for
simulating heavy precipitation events. Various combinations of
cumulus schemes, microphysical schemes, and land surface
schemes are evaluated. The findings provide insights into the
optimal parameterization schemes for simulating extreme
precipitation events.

Moving forward, the subsequent editorials will delve into the areas
of climate projection, shedding light on their significance in addressing
hydro-climate extremes. New advances in climatemodelling capabilities
have brought higher-resolution and accurate climate simulations, which
was used by Rettie et al. to provide an overview of projected changes in
climate extremes indices for Ethiopia based on downscaled daily climate
datasets. The analysis examines the magnitude and spatial patterns of
trends in climate extremes under different emission scenarios, which
contributes to a better understanding of the projected changes in
climate extremes in Ethiopia. Focusing on southeast China coast, Li
et al. highlighted the importance of data reliability in estimating changes
in humid-heat extremes. The study compares observational and
reanalysis datasets across China and identifies inhomogeneity in
relative humidity series. The findings reveal underestimation of
increasing rates for frequency and intensity of humid-heat extremes
in southeast China due to data inhomogeneity.

The third segment of this Research Topic focuses on climate
impacts and socioeconomic risks. As accelerated climate change
continues to impact regions worldwide, it is crucial to understand
and address the specific risks posed by extreme events in vulnerable
areas. The Yangtze River basin, with its well-developed economy
and susceptibility to climate extremes, represents a critical region

that requires urgent attention. In a recent study, Sun et al. quantified
the historical and projected population exposure to precipitation
extremes in the basin, projected the expansion process of hazard
zone for precipitation extremes, and revealed the contributing
factors behind climate risk. The study highlighted the tendency
for population growth and migration toward the lower Yangtze
basin, leading to exacerbated socioeconomic risks in megacities
(Figure 1). However, the research also emphasized that a low-
carbon pathway could improve human wellbeing by reducing the
occurrence of extreme events hence up to 14% of total exposure.

The southeastern China coast is a typical region around the
globe that affected by heavy rainstorms. In this Research Topic, Ye
et al. investigated and assessed the comprehensive risk of non-
typhoon rainstorms in Fujian Province of China. By establishing an
index system and employing risk assessment methods, the study
identified the spatial pattern of non-typhoon rainstorm risks,
emphasizing the dominant role of disaster-causing factors and
the influence of topography on hazard distribution. The findings
provide valuable insights for understanding and managing non-
typhoon rainstorm risks in the region.

In southwestern China, wildfires have caused significant losses
of life and property. A paper titled Synthesized assessments of wildfire
risks over southwestern China conducted by Xu et al. contributes to
localized wildfire risk assessments by considering essential elements
such as hazard, vulnerability, and disaster prevention/mitigation
capacity. The study revealed high wildfire risk areas in the western
region of 103°E and the northern region of 28°N, particularly in low-
altitude suburban regions with high climate hazards. These risk
maps facilitate a comprehensive understanding of current and future

FIGURE 1
Population exposure to precipitation extremes in the historical baseline, and its projected evolutions under low, moderate, and high emission
scenarios in the Yangtze River basin around 2050.
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patterns of wildfire risks, aiding in the formulation of effective
prevention and suppression policies.

Urbanization has a significant effect on human perceived
temperatures (HPT). A case study in South China conducted by
Lin and Guo quantitatively assessed the impacts of urbanization on
mean and extreme HPT, highlighting the substantial increases in
mean HPT and the frequency of extreme HPT events, particularly in
highly urbanized areas such as the Pearl River Delta. These findings
emphasize the need to consider human comfort in urban planning
and adaptation strategies for subtropical humid climate zones.

Collectively, these research papers provide valuable insights into
climate risks and extreme events in various regions of China. They
underscore the urgency of addressing these challenges and highlight
the importance of considering factors such as population dynamics,
topography, and urbanization in risk assessments and mitigation
strategies. Policymakers, researchers, and stakeholders must
collaborate to develop sustainable approaches that enhance
climate resilience, protect vulnerable populations, and ensure the
sustainable development of these regions. By combining scientific
knowledge with effective policies and practices, we can strive
towards a more resilient and climate-ready world.

We hope that the findings presented in this Research Topic will
foster further interdisciplinary collaborations, stimulate innovative
research approaches, and contribute to evidence-based strategies for
mitigating the impacts of hydro-climate extremes and natural
disasters amidst global warming. We extend our gratitude to the
authors for their valuable contributions and to the reviewers for their
diligent efforts in ensuring the scientific rigor and quality of the

published research. Most importantly, we would like to express our
appreciation to the editorial team and the reviewers for their
continuous support and guidance throughout the publication
process. Their dedication and expertise have been instrumental in
bringing this Research Topic to fruition.
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Influence of the upper
gravity-wave damping layer on
precipitation over complex
terrain

H. X. Duan1,2,3*, T. J. Zhang1,2,3, C. S. Gong1,2,3, G. L. Zhou1,2,3 and
WeiWei Zhu4

1Institute of Arid Meteorology, China Meteorological Administration, Lanzhou, China, 2Key Laboratory
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Regional Center of Numerical Weather Prediction, China, 4Changdu Meteorological Bureau of Tibet,
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The upper boundary condition of a numerical model can significantly influence

the model prediction results. This study used the Weather Research and

Forecasting model to introduce the Rayleigh damping layer in the complex

terrain of southern Gansu, China. Sensitivity tests are conducted for a strong

precipitation process that occurred in 2016. Meanwhile, the effects of the upper

gravity-wave damping layer and vertical velocity damping term of different

schemes are explored. The results show that the upper gravity-wave damping

layer can effectively reduce the error caused by false gravity waves in the

complex terrain of southern Gansu Province. Moreover, the applicability of this

model in the complex terrain of northwestern China is discussed. Overal,

prediction of the precipitation area and intensity is improved. Specifically,

the introduction of an implicit gravity-wave damping layer has a more

significant damping effect on the upwardly propagating gravity-wave.

KEYWORDS

upper gravity-wave absorption, complex terrain, precipitation,WRFmodel, energy flux

Highlights

• The use of upper gravity-wave damping layer can improve the forecast of

precipitation area in complex terrain area.

• The use of upper gravity-wave damping layer can reduce the number of false

precipitation reports for Tibet plateau slopes.

• Implicit gravity-wave damping layer has a more significant damping effect on the

upwardly propagating gravity-wave.

Introduction

Development of gravity-waves can trigger heavy rain on the mesoscale (Uccellini,

1975; Li 1978; Stobie et al., 1983; Uccellini and Koch, 1987; Xu et al., 2013). Many studies
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have shown that the excitation sources of gravity waves are

mostly located in the troposphere, but the fluctuations can

propagate vertically to the middle and upper levels, affecting

the middle atmosphere circulation and energy balance, and the

material exchange and distribution of the entire atmosphere

(Bretherton 1969; Holton 1982; Huang 1985). It is quite

difficult to accurately reflect the influence of gravity waves on

the upper model boundary in a numerical model, which,

traditionally including rigid covers and constant pressure

surfaces, can completely reflect the energy of upwardly

propagating gravity-waves. A feasible improvement is to add a

damping layer to optimize the influence of gravity wave energy

on the top of the boundary layer. This layer can use the horizontal

diffusion or Rayleigh damping, and its damping coefficient

increases with height (Klemp and Lilly, 1978; Durran and

Klemp, 1983).

Klemp and Durran (1983) proposed a radiation upper

boundary condition for a mesoscale numerical model that

allows vertically propagating internal gravity-waves to be

transmitted out of the computational region with minimal

reflection. Klemp et al. (2008) followed by proposing a new

technique, in which an implicit Rayleigh damping term is applied

only to the vertical velocity, as a final adjustment at the end of

each small (acoustic) time step. This technique has immense

potential in idealistic experiments and practical numerical

forecasting applications.

The damping plays a significant role in the development of

atmospheric circulation at the top of the atmosphere. However,

they are exclusively based on theoretical research and fail to apply

the model in weather forecasting, especially in complex terrains.

Accordingly, this study first introduces the data and the mode

test design. Subsequently, the influence of Rayleigh damping

absorption on a heavy precipitation process in the complex

terrain of the central and southern Gansu Province, China is

analyzed from the perspectives of precipitation pattern and

gravity-wave-related diagnostic quantity. Finally, the influence

of Rayleigh damping absorption on heavy precipitation in the

complex terrain is summarized and discussed.

Model, experimental design, and data

This study applied the Weather Research and Forecasting

model (WRF) 3.9.1, with horizontal resolutions of 27 km, 9 km,

and 3 km, and 40 vertical layers. D03 has a total of 562 × 376 grid

points. Initial and boundary conditions refer to the 6-h data from

the Global Forecast System (GFS) developed by the National

Center of Environmental Prediction (NCEP) (http://www2.

mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.

html). Details about models and areas for simulation can be

found in the study by Duan et al. (2018). The specified physical

models are as follows: Noah Land Surface Model (Ek et al., 2003),

Rapid Radiative Transfer Model (RRTM), Long Wave Radiation

Model (Mlawer et al., 1997), Dudhia Short Wave Radiation

Model (Dudhia, 1989), Asymmetric Convective (ACM 2)

Planetary Boundary Layer Model (Pleim, 2007a; Pleim,

2007b), and Kain-Fritsch Cumulus Convection Scheme (Kain,

2004) and Thompson Microphysics Scheme (Thompson et al.,

2008). We did not employ a convective scheme in our smallest

domain because the grid spacing of 2 km should be fine enough

to handle explicit convection. Table 1 shows the sensitivity test

schemes of the upper gravity-wave damping layer or an implicit

gravity-wave damping layer (3) vertical velocity damping

flagvertical velocity damping.

Zdamp is the damping depth (m) from model

top. Damp_opt is Upper Damping in WRF model: Either a

layer of increased diffusion (damp_opt = 1) or a Rayleigh

relaxation layer (2) or an implicit gravity-wave damping layer

(3), can be added near the model top to control reflection from

the upper boundary.W_damping is vertical velocity damping

flag. Vertical motion can be damped to prevent the model from

becoming unstable with locally large vertical velocities. (0, is no

vertical velocity damping, 1is vertical velocity damping).

Additionally, the data used for verification of gravity-wave

diagnostic quantity was drawn from the ERA5 hourly data

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-

pressure-levels?tab=form).

Results

Impact on precipitation forecasting

An event of large-scale precipitation occurred in the eastern

part of northwestern China from 0800 to 2300 BT 22 June 2016.

There were showers/thunderstorms in the area to the east of

Wuwei City, Gansu Province, China. There were heavy rainfall in

the cities of Dingxi, Longnan, Tianshui, and Pingliang.

Additionally, downpours were reported in three villages and

towns of the Min County, Dingxi City and Dangchang

TABLE 1 Test design Damp_opt:0: no diffusion layer; 1: increased
diffusion layer; 3: implicit gravity-wave damping layer.

W_damping Zdamp(m) Damp_opt

CTRL 0 50 0

TEST 1 0 50 1

TEST 2 1 50 1

TEST 3 0 100 1

TEST 4 1 100 1

TEST 5 0 50 3

TEST 6 1 50 3

TEST 7 0 100 3

TEST 8 1 100 3
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FIGURE 1
24-h precipitation distribution map (0800 BT June 22 to 0800 BT 23 June 2016, units: mm) (A) Observation by the Gansu Provincial Regional
Station (B) CTRL (C–J) TESTs 1–8.
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County, Longnan City (Figure 1A). A total of 24 stations received

short-term heavy precipitation in cities such as Weinan, Dingxi,

Gannan, Pingliang, and Qingyang. The maximum hourly

precipitation intensity reached 38.8 mm in Mazichuan Town,

Min County (at 2200 BT June 22). Among the 1047 towns and

villages that received precipitation in Gansu Province,

342 received moderate rain, 175 heavy rain, 35 rainstorm, and

three downpour. Substantial precipitation occurred in

Mazichuan Town, Min County (120.4 mm); Awu Town,

Dangchang County (111.7 mm); Hadapu Town, Dangchang

County (107.9 mm); Jingning County (89.2 mm); Jiahe Town,

Jingning County (81.7 mm); and Sigou Town, Min County

(78.4 mm). The amount of precipitation in Lanzhou City was

7.7 mm.

The 24-h precipitation predicted by the CTRL mainly

occurred in the eastern part of northwestern China, with

moderate rain mainly received in the eastern part of Qinghai

Province, the central and eastern parts of Gansu Province, and

the central part of Shaanxi Province (Figure 1B). Rainstorms

primarily impacted the Gannan, Dingxi, and Pingliang Areas of

Gansu Province as well as the southern part of Ningxia Province.

Rainstorm-impacted areas in the Longnan and Tianshui Areas of

Gansu Provinces were relatively scattered. The maximum 24-h

precipitation reached 156 mm—the precipitation center being

the Gannan and Ganzi Areas. The CTRL achieved a good forecast

effect in terms of the downpour at a single station in the Longnan

Area as well as the areas where rain fell in the Tianshui Area.

Moreover, two SW-NE extended rainfall belts were successfully

predicted by the CTRL, although their actual locations were more

northwestern. However, the forecast of strong precipitation in

Area A proved to be empty forecasting, and strong precipitation

in southern Dingxi was not predicted. After the upper gravity-

wave damping/diffusion was introduced, significant changes in

the overall precipitation pattern were observed compared to

those in the CTRL, although the precipitation conditions of

the eight TESTs were not much different (Figures 1C–J).

Specifically, precipitation in Area A was significantly reduced

from the level of downpour in the CTRL to the level of moderate

rain. When the upper gravity-wave layer was a diffusion layer

(Figures 1C,D) (that is, TESTs 1 and 2), precipitation in amounts

exceeding 25 cm mainly fell in the central and eastern parts of

Gansu Province, and rainstorms primarily occurred in the

central and southern parts of Dingxi, Tianshui, and west

Pingliang. In contrast, when the upper gravity-wave layer was

an implicit gravity-wave damping layer with a model layer height

of 50 mb (that is, TESTs 5 and 6), the rainfall areas resembled

those in TESTs 1 and 2, with certain deviations in the heavy

precipitation centers; these deviations in TESTs 5 and 6 mainly

occurred in the southern part of the Dingxi Area and the western

part of the Pingliang Area. Moreover, scattered precipitation was

predicted in the central part of Gansu Province, which was closer

to the actual observation. The results show that the precipitation

areas predicted by TEST 3/4 are more concentrated, and the

heavy precipitation centers are mainly concentrated in the

central part of Gansu Province; meanwhile, the prediction

intensity of B and C is relatively small. Strong precipitation

areas predicted by TESTs 7 and 8 were more concentrated mainly

in the northern and central parts of Dingxi, Gansu Province,

while scattered and strong precipitation was observed in the

Tianshui and Pingliang Areas. Overall, the precipitation

predicted in the southern part of Dingxi was actually of weak

density.

In general, all the sensitivity tests significantly improved the

false forecasting of rainstorm in the southwestern part of Area A

in the CTRL, and they had strong predictions regarding the

precipitation in the central parts of Dingxi, Tianshui, and

Pingliang. From the perspectives of precipitation area and

intensity, the results of TESTs 5 and 6 regarding precipitation

area and intensity were closer to the observational data in this

precipitation process.

Influence on gravity-waves and vertical
velocity

Qin et al. (2007) argued that atmospheric gravity-waves at

night are more stable than those during daytime, which is more

conducive to the excitation of gravity-waves. Shear instability in

the lower atmosphere may trigger gravity-waves. Figure 2 shows

the vertical profile of the pseudoequivalent potential temperature

at 1900 BT 22 June 2016, in Area A with the strongest empty

forceasting intensity. This period witnessed the strongest

precipitation in Area A. Specifically, the vertical profile of the

pseudoequivalent potential temperature of ERA5 data at 2200 BT

22 June 2016 reflects the influence of the upper gravity-wave

damping layer on the stability in the complex terrain (Figure 2A).

The middle and lower parts of the atmosphere (450–700 mb)

above Area A are featured by convective unstable stratification,

whereas that at 450–300 mb is characterized by natural

stratification. When the height is 300–150 mb, the contour

map of the pseudoequivalent potential temperature becomes

sparse and relatively flat, with minor fluctuations. In contrast,

the contour map above 150 mb is denser and straighter.

According to the vertical profile of the pseudoequivalent

potential temperature by the CTRL (Figure 2B), the interval

below 500 mb is the main host to the unstable convective

stratification, whereas the interval of 400–150 mb is mainly

dominated by natural stratification, where the contour map of

the pseudoequivalent potential temperature is sparse and

significantly fluctuates in the whole longitude zone.

Meanwhile, the contour map of the pseudoequivalent

potential temperature is denser and accompanied by stronger

disturbances in the interval above 150 mb, with the disturbance

able to reach upwardly until 50 mb. In contrast, the

pseudoequivalent potential temperatures of TESTs 1–4 are

similar in the interval below 150 mb, but they become dense
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and straight in the interval above 150 mb, which, together with

the strong fluctuation above Area A, demonstrate the upward

transmission of the gravity-wave disturbance until 50 mb.

Compared to other sensitivity TESTs and ERA5, TEST 3/4 is

slightly different from other experiments in that it is more stable

in predicting the pseudoequivalent potential temperature over

Area A, and the disturbance above 150MB is straighter than in

other experiments. TESTs 7 and 8 have similar vertical profiles of

pseudoequivalent potential temperatures in the interval below

150 mb. However, the pseudoequivalent potential temperatures

of TESTs 7 and 8 are similar to those of ERA5, the contour map

of which is dense and straight. Regardless of weak fluctuation in

the 150–300 mb interval, there is little fluctuation in the upper

atmosphere, which indicates an implicit gravity-wave damping

layer for the upper gravity-wave damping layer parameter.

Moreover, the model significantly reduces the upward

propagation height of the gravity-wave generated by the

undulating terrain, when the upper adsorption boundary layer

is 100 mb. Correspondingly, the upward propagation of unstable

energy is suppressed, accompanied by the eventually reduced

occurrence of false precipitation. Additionally, the prediction of

the precipitation situation by each TEST suggests the unobvious

influence of the vertical velocity damping term on the TEST

results.

Figure 3 shows the distribution of vertical velocity and

potential temperature at 150 hPa. ERA5 shows that Area A

FIGURE 2
Vertical profiles of the pseudoequivalent potential temperature at 1900 on 22 June 2016 over Area A (units: K) (A) ERA5, (B) CTRL, (C–J)
TESTs 1–8.
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has obvious subsidence movement, whereas Areas B and C have

no obvious vertical movement (Figure 3A). Additionally, the

three areas are not in the high potential temperature area or the

dense potential temperature isoline zone. Area A predicted by the

CTRL still has a strong upward movement at 150 hPa (Figure

1B). Meanwhile, the area is still in the high potential temperature

zone, and the potential temperature isolines are relatively dense.

There is weak upward movement in Area B, and the potential

FIGURE 3
150 hPa pseudoequivalent potential temperature level distribution map (unit: K).
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temperature isolines are relatively dense, whereas there is little

upward movement and no intensive potential temperature

isolines in Area C. TEST 1/2/5/6 is similar, both of them have

ascending movement in Area. The accending movement area is

scattered, and the ascending movement is obviously weaker than

that of the CTRL (Figures 3C, D, G, H). The ascending

FIGURE 4
Vertical section of vertical velocity (shaded, unit: m/s) and vertical wind field (arrow, unit: m/s) over Area A, China at 19:00 on 22 June 2016 (unit:
K) (A) ERA5; (B) CTRL (C-J) TESTs 1–8
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movement in Area B was significantly stronger than that of the

CTRL, and there was no ascending movement in Area C. The

ascending motion of TEST 3/4 in Areas A and B is weaker than

that in other experiments, and there is no obvious vertical motion

in Area C (Figures 3E,F). The obvious difference between TEST

7/8 and other experiments is that their predicted potential

temperature isolines are more sparse (Figures 3I,J).

Additionally, the ascending motion of Areas A and B

predicted by the two methods is obviously weaker at 150 hPa,

which is similar to other experiments. The common feature of all

the experiments is that they can obviously inhibit the strong

upward movement of the CTRL in Area A, and adjust the

intensity of the upward movement in Area B to make it closer

to the actual situation.

Figure 4 shows the vertical profiles of vertical velocity and

wind field over Areas A, B, and C. The result of ERA5 shows a

horizontal movement of southwest wind over Area A; the

vertical velocity is less than 0.2 m/s and there is little upward

movement (Figure 4A). There is an obvious upward movement

in Area B and its northeast. There is a weak subsidence over

Area C. There is a strong upward movement in Area A

predicted by the CTRL without the absorption of upper

gravity wave, and the southwest air flow is uplifted here; so,

strong precipitation is predicted by the CTRL in Area A (Figure

4B). In contrast, the CTRL has predicted weak ascending

motion in Area B, but the ascending motion range is small.

There is no ascending movement in Area C, so the CTRL has no

good forecast effect on precipitation in Areas B and C.

Compared to the CTRL, TEST 1/2 significantly decreased the

vertical velocity in Area A, and increased the intensity of

vertical velocity in Area B (Figures 4C,D). TEST 3/4 has the

smallest prediction of vertical velocity in Areas A, B, and C

(Figures 3E,F). There is little ascending movement in Areas A

and C, and the prediction of vertical velocity in Area B is

obviously weak, which is also a reason for the significant

deviation of precipitation in the three areas. The vertical

velocity profiles predicted by TESTs 5–8 are similar (Figures

4G–J), which obviously weaken the strong upward movement

in Area A of the CTRL, and also enhance the upward movement

in Area B. This is also a reason why the four experiments

weaken the false precipitation in Area A and enhance the

precipitation intensity forecast in Area B. However, none of

FIGURE 5
Variations in maximum vertical velocity with time in Areas (A) a; (B) b; (C) c (units: m/s).
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the eight experiments in TESTs 1–8 predicted a strong upward

movement over Area C; thus, the prediction of precipitation in

Area C was weaker than the actual situation.

Figure 5 shows the variation of the maximum vertical velocity

over time for Area A. There was no obvious upward movement

over Area A during the entire precipitation period from 0000 BT

June 22 to 0000 BT June 23, as shown in the ERA5 data.

Therefore, there was also no obvious precipitation in Area A.

In contrast, the maximum vertical velocity predicted by the

CTRL without the upper gravity-wave damping layer reached

a maximum of 20.7 m/s at 1500 BT June 22, which was the largest

among all experiments, followed by TESTs 8 and 7 (both 18.3 m/

s) and TEST 2/1 (15.8 m/s). The maximum vertical velocity for

TEST 3/4, 17 m/s, occurred at 16:00. After 16:00, the maximum

vertical speed of all tests is gradually decreasing. The maximum

vertical velocity for ERA5, 2.3 m/s, occurred at 2000. At this time,

the closest test to ERA5 is TEST8/7. Throughout the process, the

maximum vertical speed of all tests was larger than that of ERA5.

Therefore, it is safe to conclude that the introduction of upper

gravity-wave adsorption can significantly weaken the vertical

velocity over a complex terrain. Especially for TESTs 7 and 8,

their upper gravity-wave adsorbing layers are implicit gravity-

wave damping layers, and they can more obviously absorb the

upwardly propagating false gravity-wave generated by the

complex terrain, and thus, reduce the false vertical velocity

caused by the terrain.

ERA5 data showed a strong upward movement over Area B

from 1800 to 2000 BT. The upwellingmotion in Area B predicted by

the nine WRF numerical experiments is 2 hours earlier than that

predicted by ERA5, and the intensity is also greater than that

predicted by ERA5. Among them, TEST 2/3 is the strongest and

TEST 7/8 is the weakest. The ascending movement of Area C

reflected by ERA5 was weaker than that reflected by A/B, and there

was a sinking movement from 0100 to 0400 BT on June 23. In the

numerical experiment, the ascending movement of Area C was

continuous from 1600 BT on June 22 to 0400 BT on June 23;

however, the ascending movement was weaker than that of Areas A

and B.

FIGURE 6
Vertical profile of time-averaged energy flux over Areas (A) a; (B) b; (C) c.
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For a more quantitative assessment, we calculated the

vertical energy fluxes from the upper troposphere to the

stratosphere in the Area A predicted by these experiments

(Figure 4). The flux of the upwardly propagating wave

energy is always positive, whereas that of the momentum is

positive for the rightward propagating gravity-wave but

negative for the leftward propagating one. Therefore, the

wave energy flux is more informative than the vertical

momentum flux. The energy flux significantly varies because

of the response to the pulsating convective updraft. Therefore, a

small difference in the evolution of the vertical profile can lead

to a significant change in the energy flux distribution in the

stratosphere (Klemp et al., 2008). According to the vertical

distribution of energy flux in the ERA5 data, all the layers have

positive energy flux, which implies upwardly propagating

energy flux—except for the troposphere in the 300–250 mb

interval. Moreover, the energy flux in the stratosphere above

200 mb is significantly larger than that in the troposphere. For

the CTRL, the energy flux is negative at the upper troposphere

in the 450–375 mb interval, which suggests downwardly

propagating gravity-wave energy; it is positive in the upper

troposphere to the middle layer of the stratosphere above

375 mb, reaching a maximum of 23.7 Nm−1s−1 at 300 mb.

This indicates obvious upwardly propagating energy wave

energy at these heights as predicted by the model. TESTs

1–4 share similar energy flux predictions with the CTRL,

namely, the positive energy flux in the interval above 400 mb

until the middle stratosphere, with a maximum that is much

smaller than that in the CTRL occurring in the 400–350 mb

interval. Therefore, it can be inferred that the diffusion layer,

when used as the wave damping layer, has a certain diffusion

ability for the false gravity-wave energy in the middle and upper

layers, which reduces the propagation height of the false

gravity-wave in the stratosphere generated by the terrain. In

contrast, when an implicit gravity-wave damping layer is used

as the upper gravity-wave damping layer (that is, TESTs 7 and

8), the energy flux is only positive in the intervals of

400–300 mb and in the vicinity of 150 mb; this implies that

upwardly propagating gravity-wave has weak energy and it is

negative in the intervals, suggesting downwardly propagating

wave energy. Therefore, it can be said that the implicit gravity-

wave damping layer can absorb the false gravity-wave in the

middle and upper layers of the model, which further constrains

the upward propagation of false gravity-wave, thus effectively

reducing

Conclusion

It remains highly challenging to prevent the artificial

reflection of gravity-wave energy from the upper boundary of

the mesoscale analog domain for numerical weather prediction

applications. In the past, research in this area paid more attention

to the study of its theory, and less research on its effect in

practical application.This study employs a new scheme for the

upper gravity-wave adsorption layer to analyze an actual

precipitation event. The WRF model is applied to study the

effect of the upper gravity-wave damping layer on the strong

precipitation in complex terrain through sensitivity tests of a

strong precipitation process above the complex terrain of Gansu

Province, China, on June 22–23, 2016. A false gravity-wave can

propagate until the middle layer of the stratosphere over the

complex terrain in the CTRL without introduction of the upper

gravity-wave adsorption layer, which implies a strong prediction

of vertical velocity, and thus, generation of more false

precipitation reports. In contrast, the introduction of an upper

gravity-wave adsorption layer can well suppress the upward

propagation of the false gravity-wave generated by the

complex terrain. Specifically, when the implicit gravity-wave

damping layer is used as the upper gravity-wave damping

layer, the damping effect on the vertically propagating energy

of internal gravity-waves is more significant. Moreover, the

vertical velocity damping term has little effect on the test

results because of the suppression of vertical movement that

improves operational robustness and prevents the model from

becoming unstable when a local large vertical velocity is present.

This only affects the core of a strong updraft, and therefore, has a

minor impact on the results (Klemp et al., 2008).

It is worth noting that as the conclusions of this study are

obtained only through a case of precipitation, more cases are

required for further verification and more comprehensive

evaluation in the future. In addition, the similarities and

differences in the role of this upper gravitational wave

absorber layer in complex terrain and flat terrain will also be

aspects that we need to pay attention to in the future. And, the

global warming has exacerbated the instability of the climate

system, making certain extreme weather events increasingly

likely. Then, what is the effect of this upper gravitational wave

absorption on the process of extreme precipitation, which will

also be a problem that we need to further study.

Plain language summary

To adapt to the characteristics of terrain height fluctuation

and its significant drop in northwest China and to address the

problem of false precipitation reports for the steep terrain area of

plateau slopes, the absorption parameter of upper gravity wave is

added to the model. This parameter can reduce the propagation

of false gravity wave caused by terrain to the upper layer of the

model. When the upper damping layer of gravity wave is an

implicit damping layer, the damping effect on the vertical

propagation of gravity wave energy can be more significant.

The proposed scheme can improve the forecast of heavy rainfall

for the steep terrain of plateau slopes, especially in Area A, while

reducing the number of false precipitation reports.
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The daily precipitation data (20-20 o’clock) of 66 meteorological stations from

1981 to 2020 were collected. According to the definition of rainstorm day and

rainstorm process, 614 non-typhoon rainstorm processes data were obtained

after removing the typhoon rainstorm processes data. Combined with the

topographic data, the geological disaster points data and the social

economic data, this study established an indices system from four aspects:

disaster-causing factors, disaster-formative environment, disaster-affected

bodies, and disaster prevention and mitigation abilities. Based on the analytic

hierarchy process, the entropy method and the correlation coefficient analysis

method, the combinationweightingwas assigned to carry out the non-typhoon

rainstorm disaster risk assessment. The results show that the spatial pattern of

the comprehensive risk of non-typhoon rainstorm in Fujian Province is

completely different from that of typhoon rainstorm in this study area. It

shows a gradually increasing trend from the eastern coastal area to the

mountainous area in the northwest. The risk areas above middle were

observed in the northwestern Fujian and the narrow coastal area of

southeastern Fujian. Risk of most of the areas between the two mountain

ranges in the middle and northwest of Fujian was relatively lower. The disaster-

causing factors were the dominant risk factors of non-typhoon rainstorm. The

spatial pattern of non-typhoon rainstorm hazard is obviously affected by the

topography of Fujian Province. The comprehensive risk pattern of a specific

historical non-typhoon rainstorm case is significantly different from that of the

general comprehensive risk of non-typhoon rainstorm disasters. In terms of

historical cases, most of the higher-risk and high-risk areas of non-typhoon

rainstorm cases were generally small, and were concentrated in northwestern

Fujian, but the comprehensive risk pattern of different cases was significantly

different.

KEYWORDS

non-typhoon rainstorm, risk assessment, combination weighting method, spatial
characteristics, disaster system
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1 Introduction

The intensity and frequency of various natural disaster events

have increased due to the recent climate change (Chen et al.,

2022; Li et al., 2021; Chan et al., 2021; Li et al., 2020; Shang et al.,

2019). The rainstorm flood disasters account for about 40%

(Zhou et al., 2019). Consequently, developing effectively

methods of rainstorm disasters risk assessment and zoning

has increasingly attracted the attention of relevant scholars

and government departments, and has become a hot research

issue (Zhou et al., 2019; Xie and LiuXu, 2022a; Huang et al., 2022;

Qiu et al., 2022; Xu et al., 2022). Located on the southeastern

coast of China (Figure 1), Fujian Province is among the provinces

worst affected by rainstorm disasters. There are twomain types of

rainstorms affecting Fujian Province, the typhoon rainstorm and

the non-typhoon rainstorm. This study carries out risk

assessment research for non-typhoon rainstorm disasters.

There have been many research results on the risk of rainstorm

disaster. Ma et al. (2021) established risk assessment model based on

a set of index system including regional vulnerability, adaptability

and restorability of cities and weighted clustering assessment to

realize the risk assessment of urban rainstorm and flood disaster.

Wu et al. (2021) established an indicator system for urban rainstorm

flooding based on an urban element analysis and determined the

relative importance of the indicators based on the RF algorithm to

identify the urban rainstorm flood disaster-sensitive indicator. Li

et al. (2020) used the Bohai Rim, China, as a case study, and studied

the risk of rainstorms under different return periods. Zhou et al.

(2019) systematically reviewed the research history and the

achievements of research progress on risk assessment of heavy

rainfall and flood disasters in China. Chen et al., 2019b

established the cloud matter-element model by coupling the

cloud model with the matter-element analysis method, and

assessed the risk of urban rainstorm disasters in Nanjing from

2011 to 2016.Wang et al. (2019) established a rainstorm disaster risk

assessmentmodel and conducted a graded assessment, and analyzed

its impact on agriculture. Li et al. (2019) assessed the risk of

rainstorm and flood disasters based on the hazard grades/indices

FIGURE 1
Location of study area and meteorological stations.
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in Qinghai Province. Xu et al. (2018) studied the climate change

characteristics of rainstorm and risk assessment of rainstorm rainfall

in Jinshan of Shanghai in recent 60 years. In recent years, there are

also many studies on the types and characteristics of rainstorm

disasters. Jou (2020) reviewed the non-typhoon heavy rain research

in Taiwan for the past 30 years. Chen et al. (2019) and Lin et al.

(2017) divided the rainstorms in the southeastern coastal areas of

China into the rainstorms that occurred in the pre-flood season

from April to June and the typhoon rainstorms that occurred from

July to September according to the time nodes, and carried out

rainstorm flood researches based on the classification. These studies

provide rich experience, theories andmethods for rainstorm disaster

risk assessment. However, most of the rainstorm disaster risk

assessments did not distinguish different rainstorm types. In fact,

the climatic characteristics of different types of rainstorms are

obviously different, and the risk patterns are significantly

different. On the other hand, researches have shown that the

southeastern coastal areas of China are affected by typhoons

from April to October (Ye, 2015). Typhoon rainstorms may

occur in the pre-flood season, and the frontal rainstorms may

also occur in typhoon season (Ying et al., 2011; Zhao et al.,

2020). Therefore, the classification of typhoon rainstorm and

non-typhoon rainstorm based on time node is not reasonable.

Consequently, distinguishing typhoon rainstorms from non-

typhoon rainstorms scientifically and reasonably, and carrying

out risk assessments based on different types of rainstorm

disasters can improve the pertinence of risk prevention, which

is of great significance for disaster prevention and mitigation

departments. This study collected rainstorm data from 66 major

meteorological stations in Fujian Province from 1981 to 2020.

According to the influence time of each typhoon every year, the

non-typhoon rainstorm data was obtained by excluding the

typhoon rainstorm data. Combined with the ground basic

data, the non-typhoon rainstorm disaster risk assessment was

carried out. The objectives were to: 1) focus on the impact of non-

typhoon rainstorms and discuss the risk assessment methods of

non-typhoon rainstorms, 2) analyze the characteristics of non-

typhoon rainstorms hazard, the sensitivity of disaster-formative

environment, the vulnerability of disaster-affected bodies and the

ability of disaster prevention and mitigation, 3) obtain the spatial

pattern of non-typhoon rainstorm risks. The outcome of this

study can provide effective scientific support for decision-making

of disaster prevention and mitigation departments.

2 Data and methods

2.1 Data source

As shown in Table 1, it lists the main data and their source.

The non-typhoon rainstorm data come from the Fujian Climate

Center. According to the definitions of rainstorm day and

rainstorm process in the Provisional Regulations on Disaster

Weather Forecasting Services in Fujian Province issued by the

Science, Technology and Forecast Division of Fujian

Meteorological Bureau, that is, a rainstorm day refers to at

least three stations with daily rainfall exceeding 50 mm and a

rainstorm process refers to a weather process with more than one

consecutive rainstorm day. The daily precipitation data (20-

20 o’clock) of 66 meteorological stations (Figure 1) from

1981 to 2020 were collected. The rainstorm processes data

were extracted based on the definitions of rainstorm day and

rainstorm process. According to the influence time of each

typhoon every year, 614 non-typhoon rainstorm processes

data were obtained after removing the typhoon rainstorm

processes data. The basic information and disaster data of

non-typhoon rainstorm cases that have affected Fujian

Province during 1981–2020 come from Climatological Bulletin

of Fujian Province (2001–2020) and the Climate of FUJIAN

(Second Edition) (Lu and Wang, 2012). The topographic data of

Disaster-formative environment is a 30 m resolution DEM

generated from the 1:100000 topographic map of Fujian

Province. The geological disaster points data come from the

website of Fujian Provincial Department of Natural Resources,

and the geological disaster points density is obtained by statistical

analysis and calculation with town level administrative region as

the basic unit. Most of the data related to the vulnerability of

disaster-affected bodies and ability of disaster prevention and

mitigation come from the 2021 Fujian Statistical Yearbook and

the 7th National Census Bulletin of nine prefecture-level cities in

Fujian Province, China.

2.2 Methods

2.2.1 Indices system
According to the disaster system theory (Shi, 2002; Shi et al.,

2014), disaster risk is the result of the comprehensive effect of

disaster-causing factors, disaster-formative environment and

disaster-affected bodies. Based on the study on disaster

mechanism of non-typhoon rainstorm and the characteristics

of disaster-formative environment and disaster-affected bodies

in Fujian Province, the characterization indicators of non-

typhoon rainstorm disaster risk were selected from four

aspects: hazard of the disaster-causing factors, sensitivity of

the disaster-formative environment, vulnerability of the

disaster-affected body and disaster prevention and mitigation

ability.

Disaster-causing factor is the direct cause of disaster. It is a

universal natural phenomenon that is generally unavoidable and

difficult to change. Hazard analysis of disaster-causing factor is

the basis of risk assessment. Its core is studying the characteristics

of the spatiotemporal conditions, probability, and intensity of

disaster-causing factors, and then obtaining the hazard results.

The spatiotemporal conditions refer to determining the time

span and spatial scope of the impact of the disaster-causing
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factors. Therefore, this study analyzed the hazard of the disaster-

causing factors based on the intensity and spatiotemporal scope

analysis of non-typhoon rainstorms.

The disaster-formative environment refers to the natural

environment in the area affected by rainstorm, which has

regional differences. The overlay of different disaster-

formative environments, different disaster-causing factors and

different disaster-affected body will produce different types of

disasters. The more sensitive the disaster-formative environment

is, the greater the risk of disasters. Among the influencing factors

of disaster-formative environment, the most important are

terrain factors. The changes of terrain factors will cause a

series of changes in other elements such as hydrology, climate,

soil and vegetation. Therefore, the sensitivity analysis of terrain

factors can be used to reflect the sensitivity of non-typhoon

rainstorm disaster-formative environment. Consequently, this

study selected the elevation, slope, terrain relief and the density of

potential geological disaster points to analyze the sensitivity of

the non-typhoon rainstorm disaster-formative environment in

Fujian.

The disaster-affected body refers to the human socio-

economic system in the rainstorm disaster affected area. Its

characterization indicators include population density, wealth

accumulation, crop sown area, urban morphological

characteristics and infrastructure conditions. The combination

and spatial distribution of their quantity and quality are the main

causes of rainstorm disasters. The vulnerability of non-typhoon

rainstorm disaster-affected bodies refers to the characteristics of

disaster-affected bodies that are easily damaged and injured by

rainstorm. The greater the vulnerability value, the weaker the

ability of the disaster-affected body to resist the impact of

rainstorm disasters, and the greater the risk. On the contrary,

it shows that the stronger the ability of the disaster-affected body

to resist the impact of rainstorm disasters, the smaller the risk.

This study analyzed the vulnerability of non-typhoon rainstorm

disaster-affected bodies in Fujian Province based on the analysis

of population and social economy.

The main purpose of disaster prevention and mitigation is to

reduce the loss of life and property caused by disasters. The

ability of disaster prevention and mitigation is also reflected in

the prediction before disaster, the response and rescue when

disaster occurs, and the recovery and reconstruction after

disaster. According to the National Comprehensive Disaster

Prevention and Mitigation Plan (2016–2020) and the

Emergency Response Law of the People’s Republic of China,

combined with the actual situation of Fujian Province, this study

selected relevant indicators from three aspects: the monitoring

and early warning capabilities, emergency response and rescue

capabilities and post disaster recovery ability to characterize the

disaster prevention and mitigation ability of non-typhoon

rainstorm disasters.

In summary, twenty-four indices from four aspects were

selected to characterize the risk of non-typhoon rainstorm

disaster (Table 2).

2.2.2 Index weight-determination method
Commonly used index weight-determination methods

include subjective weighting and objective weighting.

Subjective weighting method determines the weight of each

index by scoring according to the importance of index. It

includes cycle scoring method, binomial coefficient method,

analytic hierarchy process, etc. Since this method determines

the weight by individual judgment of experts, it has greater

randomness when there are many indicators. Objective

weighting method uses the objective information reflected by

each index to weight, such as correlation coefficient weighting

method, entropy method, etc. Although this method can reflect

the amount of information of each index, it cannot benefit from

the knowledge and experience of decision-makers (Sahoo et al.,

2016). Considering that the combination weighting method

gives each index a different weight based on the data

characteristics and empirical judgment, provides additional

insights into overcoming the one-sidedness of a single

subjective or objective weighting method (Xie et al., 2022b),

and has been commonly employed (Tian et al., 2020; Xie and

LiuXu, 2022a; Xie et al., 2022b; Wu et al., 2022). Therefore, this

study used the combination weighting method to determine the

index weight. Using the idea of analytic hierarchy process

(AHP) for reference, the importance degree was judged in

the first-level indicators layer with less classification, and the

weights were determined by AHP, while the weights of the

second and third-level indicators layer were determined by the

TABLE 1 Data source.

Dataset Source

The non-typhoon rainstorm data of 66 major meteorological stations in Fujian Province
from 1981 to 2020

Fujian Climate Center

The basic information and disaster data of non-typhoon rainstorm cases that have
affected Fujian Province during 1981–2020

Climatological Bulletin of Fujian Province (2001–2020) and the Climate of FUJIAN
(Second Edition)

The geological disaster points data Website of Fujian Provincial Department of Natural Resources

The data related to the vulnerability of disaster-affected bodies and the ability of disaster
prevention and mitigation

2021 Fujian Statistical Yearbook and the 7th National Census Bulletin of nine
prefecture-level cities in Fujian Province
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correlation coefficient weighting method and entropy method

(see Table 2). Among them, the hazard indices of disaster-

causing factors were weighted by correlation coefficient

method, while the sensitivity indices of disaster-formative

environment, vulnerability indices of disaster-affected body

and the ability indices of disaster prevention and mitigation

were comprehensively weighted by correlation coefficient

method and entropy method. The average weight calculated

by the two methods was taken as the weight of the

corresponding indicator.

2.2.2.1 Data standardization

There are many influential factors involved in the

comprehensive risk assessment. Different factors are

represented by different indicators, and the dimensions and

magnitudes of each indicator are also different, so it needs to

be standardized. The range standardization method was used in

this study. The calculation formula is shown in Eqs 1, 2.

rij �
xij −min(xij)

max(xij) −min(xij) (1)

rij �
max(xij) − xij

max(xij) −min(xij) (2)

where rij is the standardized value of the ith evaluating object on

the jth index, and max(xij) and min(xij) are the maximum and

minimum of the ith evaluating object on the jth index,

respectively. Among the indices, Eq. 1 should be used for

those that strengthen the evaluating result, while Eq. 2 should

be used for those that weaken the result.

2.2.2.2 The analytic hierarchy process method

The AHP method is one of the most widely employed

subjective weighting methods. The AHP can integrate the

effects of various variables and comprehensively consider the

subjective experience of the data (Xie et al., 2022b). The weights

TABLE 2 Indices system of the non-typhoon rainstorm disaster risk assessment of Fujian Province, China.

First-level indices Second-level indices Third-level indices

Hazard of disaster-causing factors (0.5246) Hazard of rainstorm intensity (0.5082) Maximum daily rainfall during rainstorm (0.1209)

Maximum accumulated rainfall during rainstorm (0.1211)

Maximum rainfall in 1 h during rainstorm (0.1369)

Maximum rainfall in 3 h during rainstorm (0.1293)

Hazard of rainstorm spatiotemporal scope
(0.4918)

Days of rainstorm (0.1474)

Days of heavy rainstorm (0.1416)

Days of extreme rainstorm (0.2029)

Sensitivity of disaster-formative environment
(0.2082)

Sensitivity of terrain factor (0.8580) Elevation (0.1693)

Slope (0.1807)

Terrain relief (0.2268)

Density of potential geological disaster points (0.2813)

Sensitivity of river factor (0.1420) Distance to river (0.1420)

Vulnerability of disaster-affected bodies (0.1582) Vulnerability of population (0.3989) Density of population (0.1748)

Proportion of female population (0.2241)

Vulnerability of social economy (0.6011) Density of GDP (0.1473)

Density of building (0.2469)

Sown density of crops (0.2069)

Ability of disaster prevention and mitigation
(0.1091)

Ability of monitoring and early warning
(0.3719)

Density of meteorological stations (0.2134)

The number of weathermen per 10,000 people (0.1584)

Ability of emergency response and rescue
(0.3518)

Density of Highway (0.1488)

The number of beds in health institutions per 10,000 people (0.1068)

The number of employees in health institutions per 10,000 people
(0.0962)

Ability of post disaster recovery (0.2763) Per capita budgetary revenue of local government (0.1558)

Annual per capita disposable income of urban households (0.1205)

Note: The values in brackets represent the weight of each indicator.
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of the four first-level indices were calculated by AHP method.

The calculation steps were as follows:

① Construction of judgment matrix

The numbers 1–9 and their reciprocal were used as scales (see

Table 3) to compare the four factors in pairs and construct the

judgment matrix A.in which, A is the judgment matrix, aij
represents the judgment value of the relative importance of

factor ai to factor aj, and n is the number of factors.

② The weight of each index was calculated by sum-product

method.

③ In order to prove the scientific nature and rationality of

weights, a consistency test was required.

A � [aij]n×n(i, j � 1, 2, ...., n) (3)

Firstly, the maximum characteristic root and consistency

index CI of the judgment matrix were calculated. Then the

average random consistency index RI was found to be 0.89.

And then the consistency ratio CR was calculated to be 0.0436,

less than 0.1, indicating that the comparison between the

factors in the judgment matrix was reasonable, which

further indicated that the index weight calculated in step

(2) was reasonable.

2.2.2.3 The correlation coefficient weighting method

Correlation coefficient weighting method determines the

weight according to the internal relationship between

indicators (Li, 2007). It has no clear constraint on factors and

can solve the correlation problem between factors. The

calculation steps were as follows:

① The correlation coefficient matrix U of the m evaluation

indices was obtained.

U �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u11 u12 / u1m

u21 u22 / u2m

/ / / /
um1 um2 / umm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

in which, U is the correlation coefficient matrix, uij (i, j = 1,2, . . . ,

m) is the correlation coefficient between the ith evaluation index

and the jth evaluation index.

② The multivariate correlation coefficients between the ith

evaluation index and other m-1 evaluation indices were

calculated by Eq. 5.

ρi � uT
i U

−1
m−1ui(i � 1, 2,/,m) (5)

in which, U−1
m−1 is the inverse matrix of the correlation coefficient

matrix of m-1 indices excluding the ith index, and ui is the m-1

dimensional column vector of the ith column vector in U after

removing the element i.

③ The weight wi of each evaluation index can be obtained by

normalizing the reciprocal of ρi as Eq. 6.

wi � ∏
j≠i
ρj/∑m

l�1∏j≠i
ρj (6)

2.2.2.4 The entropy method

The entropy method determines the index weight by using

the spatial fluctuations of the data, which can eliminate human

interference and make the evaluation result more objective (Ye

et al., 2020). The calculation steps were as follows:

① Suppose there are l evaluating objects, and each object has

m evaluating indices, then an original indices value matrix X is

formed.

X � [xij]l×m (i � 1, 2, ..., l; j � 1, 2, ..., m) (7)

② Eqs 1, 2 is used to standardize the original indices value

matrix X to generate standardized matrix R, and rij is the

element of R.

③ According to the traditional entropy concept, the entropy

of each evaluating index can be defined as

Hj � −∑l
i�1f ij ln f ij
ln l

(j � 1, 2, . . . , m) (8)

TABLE 3 Scales of Judgment matrix and their meanings.

Scale Meaning

1 Indicates that two factors are of equal importance when compared

3 Indicates that the former is slightly more important than the latter when the two factors are compared

5 Indicates that the former is obviously more important than the latter when the two factors are compared

7 Indicates that the former is strongly more important than the latter when the two factors are compared

9 Indicates that the former is extremely more important than the latter when the two factors are compared

2, 4, 6, 8 Represents the median value of the above adjacent judgments

Reciprocal If the ratio of the importance of factor i to factor j is aij, then the ratio of the importance of factor j to factor i is aji = 1/aij
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Where f ij � rij/∑l
i�1rij, to make ln f ij be meaningful, fij is set as

f ij �
1 + rij

∑l
i�1(1 + rij) (9)

④ The weight of the entropy of each evaluating index can be

expressed as

W � [wj]1 × m,wj � 1 −Hj

m − ∑m
j�1Hj

(j � 1, 2, . . . , m) (10)

in which, 0 ≤ wj ≤ 1, ∑m
j�1wj � 1.

2.2.3 Comprehensive risk assessment method
Weighted comprehensive evaluation method considers the

overall impact of various factors on the assessment object. It

groups various specific indices together, and uses a quantitative

index to express the advantages and weaknesses of the whole

evaluation object. This method is commonly used. It is especially

suitable for comprehensive analysis, evaluation and optimization

of technology, decision-making, or a case study (Zhang and Li,

2007; Ye et al., 2020). The risk of non-typhoon rainstorm disaster

relates to many factors with different influences. Therefore, the

weighted comprehensive evaluation method was used to group

the specific indices together, which can be expressed as

C � ∑m

k�1wkck (11)

where C is the value of the composite risk index; ck is the standard

value of the kth indicator; and wk is the weight of the kth

indicator.

3 Results

According to the characteristics of the non-typhoon rainstorm

disasters in Fujian Province, the risk analysis of non-typhoon

rainstorm disasters was carried out from four aspects: Hazard of

the disaster-causing factors, sensitivity of the disaster-formative

environment, vulnerability of the disaster-affected bodies and

ability of the disaster prevention and mitigation. The risk

assessment indices system and the assessment model based on

GIS were combined to complete the non-typhoon rainstorm

disaster risk assessment in Fujian Province, China.

3.1 Hazard analysis of the disaster-causing
factors

On the basis of obtaining the relevant data of non-typhoon

rainstorm hazard indicators, the standardization process was carried

out according to Eq. 1, and then the non-typhoon rainstorm hazard

index of each site was calculated according to the calculated

indicator weights (Table 2) and Eq. 11. The spatial distribution

pattern of non-typhoon rainstorm hazard in Fujian Province was

obtained by using GIS spatial interpolation method and natural

breakpoint classification method, as shown in Figure 2 and Table 4.

As can be seen from Figure 2 and Table 4, the spatial pattern of

non-typhoon rainstorm hazard in Fujian Province is very different

from that of typhoon rainstorm hazard in this study area (Ye, 2015;

Ye et al., 2020). It generally presents a gradually increasing

distribution pattern from the eastern coastal areas to the

western mountainous areas. In addition to the northwest of

Fujian, the middle or above hazard areas were also observed in

the narrow and long area of the southeast coast of Fujian. The

higher hazard areas and the high hazard areas accounted for 9.45%

and 14.43% of the province’s area respectively, and were mainly

observed in the northwest of Fujian with Wuyishan, Guangze,

Jianning, and Ninghua as the center, and Zhangpu, Yunxiao and

Zhao’an in the southeast corner of Fujian. Themiddle hazard areas

accounted for 22.16% of the province, including some counties

(cities) outside the high hazard areas in the northwest and west of

Fujian, and some counties (cities) in the northeast and southeast

coast of Fujian. The central Fujian province and most of the areas

between the northwestern and central mountain ranges of Fujian

exhibited low and lower hazard, which accounted for 53.96% of the

province. The spatial pattern of non-typhoon rainstorm hazard is

obviously affected by the topography of Fujian Province. Most of

the non-typhoon rainstorms in Fujian province were systematic

frontal precipitation caused by interaction of cold and warm air.

The cold air moving south was blocked by the Wuyi Mountain

Range in the northwest of Fujian and moved slowly. When the

warm and humid air flow from the southeastern sea intruded

Fujian along the twomountain ranges in themiddle and northwest

of Fujian, heavy precipitation occurred and fell on the southeast

side of the twomountain ranges under the combined action of cold

air and topography uplifting. During the rainy season, the

rainstorm started from the southeastern coast, intruded the

inland areas of Fujian along the southeast-northwest direction,

and would be intensified by the uplifting effect of the topography.

Therefore, the distribution of the twomiddle or above hazard areas

in Figure 2 was consistent with the distribution pattern of the

climate characteristics of the non-typhoon rainstorm in Fujian.

The main rainstorm region was in the northwest of Fujian, and the

secondary rainstorm region was in the southeast coast of Fujian.

Most of the areas between the two mountain ranges received

relatively little rainfall, and exhibited relatively lower hazard.

3.2 Sensitivity analysis of the disaster-
formative environment

For the sensitivity of the disaster-formative environment, the

lower the altitude, the smaller the terrain relief, and the closer the

area to the river, the more likely it is to be affected by rainstorm-

flood disasters. The greater the slope and the more potential

geological disaster points, the greater the sensitivity, and the

more likely the rainstorm will cause geological disasters such as
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landslides and debris flows. Therefore, when standardizing the

data related to the sensitivity factors of the disaster-formative

environment, slope and density of potential geological disaster

points were regarded as positive indicators, which were

standardized by Eq. 1. And elevation, terrain relief and

distance to the river were regarded as negative indicators,

which were standardized by Eq. 2. On this basis, the

sensitivity index of disaster-formative environment was

calculated according to the calculated weights (Table 2) and

Eq. 11. The spatial distribution pattern of the disaster-formative

environment sensitivity in Fujian Province was obtained by

natural breakpoint classification method, as shown in Figure 3.

As can be seen from Figure 3, The higher sensitivity areas and

the high sensitivity areas were observed in the eastern coastal

FIGURE 2
Hazard of non-typhoon rainstorm.

TABLE 4 Proportion of different hazard levels over the whole province.

Hazard level The area proportion (%) Typical counties (cities)

Higher 9.45 Wuyishan, Guangze, Jianning, Ninhua

High 14.43 Taining, Qingliu, Shaowu, Shunchang

Middle 22.16 Pucheng, Yanping, Mingxi, Liancheng

Low 35.81 Nanjing, Nan’an, Xianyou, Jiaocheng

Lower 18.15 Zhangping, Dehua, Yontai, Xiapu
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areas and river valley, accounted for 12.96% and 29.43% of the

province’s area respectively. Among them, the southeastern

coastal areas were the most prominent. The middle sensitivity

areas accounted for 29.90% of the province. The low sensitivity

areas and the lower sensitivity areas were mainly located in the

high-altitude areas of the two mountains of central and western

Fujian, and accounted for 28.04% of the province. This

distribution pattern also indicated that the environment-

formative sensitivity of non-typhoon rainstorm disaster was

generally high in Fujian Province due to the fragmented

terrain and numerous rivers.

3.3 Vulnerability analysis of the disaster-
affected bodies

The standardization of the relevant data of disaster-affected

bodies was carried out according to Eq. 1, and then the disaster-

affected bodies vulnerability index of each county (city) was

calculated according to the calculated indicator weights (Table 2)

and Eq. 11. According to the classification of natural breakpoints,

the spatial pattern of vulnerability of non-typhoon rainstorm

disaster-affected bodies in Fujian Province was obtained as

shown in Figure 4 and Table 5.

As can be seen from Figure 4 and Table 5, the spatial

difference of the disaster-affected bodies vulnerability in

Fujian Province is clear, and presents a pattern of higher or

high in the east and lower or low in the west. The areas with

higher and high vulnerability were mostly concentrated in the

southeastern coastal areas, accounting for 14.78% of the

province. The middle vulnerability regions accounted for

26.96% of the province, and were observed in some counties

(cities) in the eastern coast, Nanping city and Longyan city. The

vulnerability of most counties (cities) in central, western and

northeastern Fujian was low or lower, accounting for 58.26% of

the province.

FIGURE 3
Sensitivity of the disaster-formative environment.
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3.4 Ability analysis of the disaster
prevention and mitigation

The impact of disaster prevention and mitigation ability on

rainstorm disaster is negative, that is, a region with strong

disaster prevention and mitigation ability can greatly reduce

the impact of rainstorm disaster. After obtained the relevant

index data of the disaster prevention and mitigation ability, the

standardization process was carried out according to Eq. 2.

Comprehensive calculation was made according to the

calculated index weight (Table 2) and Eq. 11 to obtain the

comprehensive index of disaster prevention and mitigation

ability. The spatial pattern of disaster prevention and

mitigation ability for non-typhoon rainstorm disasters in

FIGURE 4
Vulnerability of the disaster-affected bodies.

TABLE 5 Proportion of different vulnerability levels over the whole province.

Vulnerability level The area proportion (%) Main counties (cities)

Higher 3.32 Cangshan, Chengxiang, Fengze, Siming

High 11.46 Fuqing, Hanjiang, Quangang, Tong’an

Middle 26.96 Shaxian, Nan’an, Xianyou, Fuding

Low 36.21 Changting, Ninghua, Pucheng, Xiapu

Lower 22.05 Pinghe, Datian, Pingnan, Zhenhe
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Fujian Province was obtained according to the classification of

natural breakpoints, as shown in Figure 5 and Table 6.

It can be seen from Figure 5 and Table 6 that the spatial

difference of the ability of disaster prevention and mitigation

in Fujian Province is obvious. Counties (cities) with higher

and high ability of disaster prevention and mitigation were

mostly concentrated in the eastern coastal area north of

Zhangzhou City and Longyan city, accounting for 11.75%

of the province’s area. Counties (cities) with middle ability of

disaster prevention and mitigation accounted for 30.44% of

FIGURE 5
Spatial distribution pattern of the disaster prevention and mitigation ability.

TABLE 6 Proportion of different prevention and mitigation ability levels over the whole province.

Prevention and mitigation
ability level

The area proportion (%) Main counties (cities)

Higher 5.28 Siming, Jinjiang, Fenze, Gulou

High 6.47 Nan’an, Hangjiang, Cangshan, Minqing

Middle 30.44 Tong’an, Xianyou, Fuqing, Xiapu

Low 38.17 Yongding, Jiangle, Shaowu, Shouning

Lower 19.64 Pinghe, Ninghua, Pucheng, Zhouning
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the province. And the disaster prevention and mitigation

ability of the mountainous counties (cities) in Ningde City

and most of the counties (cities) in Zhangzhou city, Sanming

city and Nanping city was low or lower, accounting for 58.08%

of the province.

3.5 Comprehensive risk analysis

Based on the above analysis of non-typhoon rainstorm

disaster-causing factors hazard, disaster-formative

environment sensitivity, disaster-affected bodies vulnerability,

and disaster prevention and mitigation ability, comprehensive

calculation was made according to the related index weight

(Table 2) and Eq. 11. Spatial pattern of the comprehensive

risk of non-typhoon rainstorm in Fujian Province was

obtained according to the natural breakpoint classification, as

shown in Figure 6 and Table 7.

As can be seen from Figure 6 and Table 7, Spatial pattern of

the comprehensive risk of non-typhoon rainstorm in Fujian

Province is completely different from that of typhoon

rainstorm in this study area (Ye, 2015). Its variation trend of

non-typhoon rainstorm is similar to that of non-typhoon

rainstorm hazard mentioned above, and increases gradually

from the southeast coastal area to the mountainous area in

the northwest. The risk areas above middle were observed in

the northwestern Fujian and the narrow coastal area of

southeastern Fujian. Risk of most of the areas between the

two mountain ranges in the middle and northwest of Fujian

was relatively low. It indicated that the disaster-causing factors of

rainstorm were the dominant risk factors of non-typhoon

rainstorm. The areas with higher and high risk were basically

consistent with the corresponding level of non-typhoon

rainstorm hazard, accounting for 9.49% and 13.23% of the

province respectively. In addition to some counties (cities) in

northwestern Fujian and central Fujian, the middle risk was also

FIGURE 6
The spatial distribution pattern of the comprehensive risk of non-typhoon rainstorm disaster.
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TABLE 7 Proportion of different comprehensive risk levels over the whole province.

Risk level The area proportion (%) Main counties (cities)

Higher 9.49 Wuyishan, Guangze, Jianning, Ninhua

High 13.23 Taining, Qingliu, Shaowu, Shunchang

Middle 21.59 Pucheng, Jiangle, Yanping, Mingxi,

Low 34.34 Nanjing, Nan’an, Xianyou, Pingnan

Lower 21.36 Zhangping, Dehua, Yontai, Xiapu

FIGURE 7
Spatial distribution pattern of the comprehensive risk of four non-typhoon rainstorm cases. (A) 19980619-0624. (B) 20100614-0626. (C)
20150519-0520. (D) 20160505-0510.
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observed in some counties (cities) in southeast coastal areas and

Fuding, Zherong in northeastern Fujian, which accounted for

21.59% of the province. Inland mountainous areas along the

eastern coast, most counties (cities) in southwestern Fujian, and

most counties (cities) in central Fujian exhibited low or lower

risk, which accounted for 34.34% and 21.36% of the province

respectively.

The risk assessment results obtained by above methods

reflect the general pattern of the comprehensive risk of non-

typhoon rainstorm disasters in the study area, which can also be

called the climatic characteristics. In fact, for a single rainstorm

case, the spatial pattern of its risk is also different due to

inconsistency of the rainstorm cause and the spatial and

temporal range of impact. Therefore, in order to illustrate the

reliability of the analysis results, four historical cases of non-

typhoon rainstorm were selected for verification, and the results

are shown in Figure 7.

It can be seen from Figure 7 that the spatial pattern of

comprehensive risk of non-typhoon rainstorm disasters in the

four historical cases is significantly different from that of the

general comprehensive risk of non-typhoon rainstorm disasters

in Figure 6. In terms of historical cases, most of the higher-risk

and high-risk areas of non-typhoon rainstorm cases were

concentrated in northwestern Fujian, but the comprehensive

risk pattern of different cases was significantly different.

As can be seen from Figure 7A, the higher-risk and high-risk

areas of rainstorm from June 19 to 24, 1998 were mainly observed

in Nanping City in northern Fujian, and the risk was relatively

low in the southeastern coast of Fujian and most of the areas in

central and western Fujian. According to the relevant records,

due to the continuous precipitation, the reservoirs in northern

Fujian were full, the water level of rivers rose sharply, and Jianxi

and Futunxi had suffered multiple floods that exceeded the

dangerous water level. And Guangzhuang, Shaowu, Jian’ou

and many other counties (cities) were flooded. These flooded

counties (cities) were mostly concentrated in the higher-risk and

high-risk areas in Figure 7A.

As can be seen from Figure 7B, the rainstorm from June 14 to

26, 2010 lasted for nearly half a month and affected a wide range

of areas. Its higher-risk and high-risk areas were widely

distributed, mainly included Sanming and Nanping in the

northwest of Fujian Province and some counties (cities) in

Fuzhou and Putian in the central coastal area. Ningde in the

northeast of Fujian, Zhangzhou and Xiamen in the southeast of

Fujian, and some counties (cities) in the southwest of Fujian

exhibited low or lower risk. According to the Climatological

Bulletin of Fujian Province (2010), the rainstorm process was

characterized by long duration, large amount of rainfall, wide

range of heavy rain, strong rainfall intensity and concentrated

area of heavy rain. Heavy rainstorms and extremely heavy

rainstorms were mostly concentrated in Nanping city and

Sanming city. There were seven counties (cities) of Nanping,

Shaxian, Shunchang, Jiangle, Changting, Jianning and Taining

with process rainfall 300% above normal. And four counties

(cities) of Nanping, Shunchang, Taining and Fuqing ranked the

highest precipitation in the same period since 1961. The

continuous heavy rainstorm brought severe disasters and

losses to Fujian Province. It caused 59,500 houses to collapse,

78 deaths and 79 persons missing, and a direct economic loss of

14.46 billion yuan. These worst-hit areas are the higher-risk and

high-risk areas in Figure 7B.

As can be seen from Figure 7C, the impact area of the

rainstorm from May 19 to 20, 2015 was relatively small. Its

higher-risk and high-risk areas were only observed in Ninghua

and Qingliu of Sanming City, and areas outside Sanming City

were all exhibited low or lower risk. According to the

Climatological Bulletin of Fujian Province (2015), the western

and southern parts of Fujian Province experienced heavy rains or

extremely heavy rains. The daily rainfall of Qingliu broke the

historical maximum precipitation record, and the daily rainfall of

Ninghua ranked the second in the history of this station during

the same period. Some urban areas and towns in Qingliu,

Ninghua and Changting counties were flooded for more than

10 h, with the maximum water depth exceeding 2 m. The flooded

areas recorded here were consistent with the middle-to-higher

risk areas shown in Figure 7C.

It can be seen from Figure 7D that the rainstorm from May

5 to 10, 2016 mainly impacted the Sanming and Nanping cities,

and the middle-risk and high-risk areas were mainly observed in

these areas. According to the Climatological Bulletin of Fujian

Province (2016), From May 5th to 10th, a large-scale heavy rain

process occurred in Fujian Province, which was characterized by

long duration, concentrated heavy rainfall area, and large amount

of rainfall. Sanming and Nanping cities, where the heavy rainfall

was concentrated, were severely affected. The severely affected

areas recorded here were consistent with the middle-high risk

areas shown in Figure 7D.

The risk pattern of the above four historical cases of non-

typhoon rainstorm shows that the higher-risk and high-risk areas

of a single non-typhoon rainstorm case are generally small.

Except for the rainstorm in June 2010, the higher-risk and

high-risk areas of the other three cases were limited to a small

local area. The intensity, duration, scope and concentration of

rainstorm directly affect its hazard, and then affect the spatial

pattern of comprehensive risk.

4 Discussion

As for the natural disaster risk in the study area, previous

studies mainly focused on typhoon disaster (Ye et al., 2020; Zhu

et al., 2017; Ye, 2015; Chen, 2007b), and paid less attention to the

risk of rainstorm disaster. A few risk assessments for rainstorm

disasters did not distinguish different types of rainstorms. Ye

(2015) carried out the risk assessment of typhoon rainstorm

based on different landing paths. The results showed that the risk
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of typhoon rainstorm in Fujian Province gradually decreased

from the eastern coastal area to the western inland area, and the

high-risk areas were mainly concentrated in the coastal areas, but

the risk pattern of typhoon rainstorm notably differ between

different landing paths. The result showed that the spatial pattern

of the comprehensive risk of non-typhoon rainstorm in Fujian

Province is completely different from that of typhoon rainstorm.

It shows a gradually increasing trend from the eastern coastal

area to the mountainous area in the northwest. But the risk areas

above middle were observed in the northwestern Fujian and the

narrow coastal area of southeastern Fujian. Chen (2007a)

constructed the index system and assessment model from two

aspects of disaster-causing factors and disaster-affected bodies,

and carried out the risk assessment of rainstorm flood disasters in

Fujian Province. The study showed that the high-risk areas of

rainstorm flood disasters were mainly distributed in the eastern

coastal areas from north to south and the windward slope areas of

the Wuyi Mountain Range in the northwest, but it did not

distinguish rainstorm types. This paper not only focused on

the study of non-typhoon rainstorm, but also made great

improvements in data acquisition, index selection, evaluation

model construction, etc. It was verified by examples. The results

showed that the high-risk and higher-risk areas in northwestern

Fujian were consistent with the results of Chen (2007a), but the

overall pattern of risk and the high and higher-risk areas in the

east coast were different. The high and higher-risk areas in the

east were only observed in the narrow coastal area of the

southeast. Therefore, it is necessary to distinguish different

types of rainstorm and carry out different types of rainstorm

disaster risk assessment, and the research results are more

scientific and reasonable.

Existing studies have shown that non-typhoon rainstorms in

Fujian Province can be further divided into spring rainstorm,

rainy season rainstorm, summer rainstorm, autumn rainstorm

and winter rainstorm according to different seasons, and the

temporal and spatial distribution and intensity characteristics of

rainstorms in different seasons were significantly different.

Among them, the rainy season rainstorm was the most

intense and the most serious non-typhoon rainstorm. The

cases given in this paper all belonged to the rainy season

rainstorm, which were significantly representative. Further

research may consider classifying non-typhoon rainstorms by

season and carry out more targeted risk assessment based on

non-typhoon rainstorms in different seasons.

5 Conclusion

Based on the non-typhoon rainstorm data of major

meteorological stations in Fujian Province in the recent 40 years,

combined with ground basic data and social economic data, this

study established an indices system from four aspects: Disaster-

causing factors, disaster-formative environment, disaster-affected

bodies, and disaster prevention and mitigation abilities. Based on

the analytic hierarchy process, the entropy method and the

correlation coefficient analysis method, the combination

weighting was assigned to carry out the non-typhoon rainstorm

disaster risk assessment. The main conclusion are as follows:

1) The spatial pattern of the comprehensive risk of non-typhoon

rainstorm in Fujian Province is completely different from that

of typhoon rainstorm in this study area. It shows a gradually

increasing trend from the eastern coastal area to the

mountainous area in the northwest. But the risk areas

above middle were observed in the northwestern Fujian

and the narrow coastal area of southeastern Fujian.

2) The variation trend of the non-typhoon rainstorm

comprehensive risk is similar to that of non-typhoon

rainstorm hazard. It indicated that the disaster-causing factors

were the dominant risk factors of non-typhoon rainstorm. The

spatial pattern of non-typhoon rainstorm hazard is obviously

affected by the topography of Fujian Province. Moreover,

intensity, duration, impact scope and concentration of non-

typhoon rainstorm also directly affect its hazard, and then affect

the spatial pattern of comprehensive risk.

3) The comprehensive risk pattern of a specific historical non-

typhoon rainstorm case is significantly different from that of

the general comprehensive risk of non-typhoon rainstorm

disasters. In terms of historical cases, most of the higher-risk

and high-risk areas of non-typhoon rainstorm cases were

generally small, and were concentrated in northwestern

Fujian, but the comprehensive risk pattern of different

cases was significantly different.

4) The rainy season rainstorm is the most representative non-

typhoon rainstorm. And the temporal and spatial distribution

and intensity characteristics of non-typhoon rainstorms in

different seasons are significantly different. Further research

may consider classifying non-typhoon rainstorms by season

and carry out more targeted risk assessment based on non-

typhoon rainstorms in different seasons.
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Accurate runoff prediction can provide a reliable decision-making basis for

flood and drought disaster prevention and scientific allocation of water

resources. Selecting appropriate predictors is an effective way to improve

the accuracy of runoff prediction. However, the runoff process is influenced

by numerous local and global hydrometeorological factors, and there is still no

universal approach about the selection of suitable predictors from these factors.

To address this problem, we proposed a runoff prediction model by combining

machine learning (ML) and feature importance analysis (FIA-ML). Specifically,

take the monthly runoff prediction of Yingluoxia, China as an example, the FIA-

MLmodel usesmutual information (MI) and feature importance rankingmethod

based on random forest (RF) to screen suitable predictors, from 130 global

climate factors and several local hydrometeorological information, as the input

of ML models, namely the hybrid kernel support vector machine (HKSVM),

extreme learning machine (ELM), generalized regression neural network

(GRNN), and multiple linear regression (MLR). An improved particle swarm

optimization (IPSO) is used to estimate model parameters of ML. The results

indicated that the performance of the FIA-ML is better than widely-used long

short-term memory neural network (LSTM) and seasonal autoregressive

integrated moving average (SARIMA). Particularly, the Nash-Sutcliffe

Efficiency coefficients of the FIA-ML models with HKSVM and ELM were

both greater than 0.9. More importantly, the FIA-ML models can explicitly

explain which physical factors have significant impacts on runoff, thus

strengthening the physical meaning of the runoff prediction model.

KEYWORDS

runoff prediction, mutual information, random forest, feature importance analysis,
teleconnection

OPEN ACCESS

EDITED BY

Peng Sun,
Anhui Normal University, China

REVIEWED BY

Yanlai Zhou,
Wuhan University, China
Abinash Sahoo,
National Institute of Technology, India

*CORRESPONDENCE

Lei Yan,
yanl@whu.edu.cn

SPECIALTY SECTION

This article was submitted to
Atmosphere and Climate,
a section of the journal
Frontiers in Environmental Science

RECEIVED 21 September 2022
ACCEPTED 03 November 2022
PUBLISHED 17 November 2022

CITATION

Yan L, Lei Q, Jiang C, Yan P, Ren Z, Liu B
and Liu Z (2022), Climate-informed
monthly runoff prediction model using
machine learning and feature
importance analysis.
Front. Environ. Sci. 10:1049840.
doi: 10.3389/fenvs.2022.1049840

COPYRIGHT

© 2022 Yan, Lei, Jiang, Yan, Ren, Liu and
Liu. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 17 November 2022
DOI 10.3389/fenvs.2022.1049840

35

https://www.frontiersin.org/articles/10.3389/fenvs.2022.1049840/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1049840/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1049840/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1049840/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.1049840&domain=pdf&date_stamp=2022-11-17
mailto:yanl@whu.edu.cn
https://doi.org/10.3389/fenvs.2022.1049840
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.1049840


1 Introduction

Water resources are important for social and economic

development and the ecological environment, and accurate

runoff forecasting can provide a reasonable decision-making

basis for the optimal allocation and utilization of water

resources (Huang et al., 2014; Xiong et al., 2019; Feng et al.,

2020a; Yan et al., 2021a; Jian et al., 2022). However, under

changing environments, the runoff process and associated

hydrological system have been altered by human activities and

climate change (Song et al., 2018; Sun et al., 2018, 2022; Jiang

et al., 2019; Lu et al., 2020; Yan et al., 2020; Hu et al., 2022), and

the runoff series becomes nonlinear and nonstationary, which

makes it challenging to capture the variation characteristics of

runoff (Sun et al., 2014; Lin et al., 2020; Yan et al., 2021b;

Samantaray et al., 2022a; Samantaray et al., 2022b;

Samantaray et al., 2022c; Zhou et al., 2022). Therefore, there

is an urgent need to develop a runoff prediction model with

robustness and high forecasting accuracy under a changing

environment (Sit et al., 2020; Niu et al., 2021; Zhao et al.,

2021). In recent years, there have been many studies trying to

transform the complex runoff series into stationary sub-

sequences using wavelets or mode decomposition methods,

and then predict the sub-sequences to improve the accuracy

of prediction (Meng et al., 2019; Feng et al., 2020b; Niu et al.,

2020). However, these studies often ignore the relationship

between hydrometeorological factors and the variation

characteristics of runoff.

As revealed by recent studies, the changing characteristics of

runoff process are controlled by numerous factors, such as

astronomy, meteorology, ocean, and underlying surface

conditions (Tang et al., 2018; Shi et al., 2021; Bian et al.,

2022; Ma et al., 2022). When there are no significant changes

for the underlying surface conditions, the runoff process mainly

depends on precipitation and evaporation, which are influenced

by atmospheric circulations (Talaee et al., 2014; Huang et al.,

2017; Luo et al., 2017). On the other hand, the interaction

between the ocean and the atmosphere drives the exchange of

matter and energy between regions of the Earth, which can affect

regional weather and climate change (Nugent and Matthews,

2012; Singh and Roxy, 2022). Therefore, the sea temperature

indices, such as Pacific Decadal Oscillation Index (PDO) and El

Niño–Southern Oscillation index (ENSO), are also important

affecting factors of runoff (Yang et al., 2021; You et al., 2021).

From the analysis of the physical mechanism of runoff,

atmospheric circulation, sea temperature index, precipitation,

and evaporation are all important influencing factors in the

runoff prediction.

Variations of runoff are closely related to large-scale climate

factors in hydrometeorological teleconnection analysis (Lima

and Lall, 2010; Peters et al., 2013; Steinschneider and Lall,

2016; Wang et al., 2022). Therefore, many studies combining

teleconnection analysis have been proposed to strengthen the

physical meaning of runoff prediction. Wang et al. (2020)

established a runoff prediction model by combining

teleconnection analysis and ensemble empirical mode

decomposition (EEMD) and achieved good application results,

but they mentioned the cross-correlation method used in their

paper is not suitable for analyzing nonlinearity and non-

stationary time series. Maity and Kashid (2011) combined

genetic programming (GP) with importance analysis, and

used global climate factors and local meteorological variables

as predictors to carry out the weekly-scale runoff forecasting for

the Mahanadi River in India. It has been proved that the model

derived by GP for a complex runoff system can effectively

improve the accuracy of weekly runoff prediction. Yang et al.

(2017) selected 17 known climate phenomenon indices, such as

PDO and ENSO, and used several machine learning (ML)

regression models to predict and simulate the runoff 1-month

in advance of headwater reservoirs in USA and China. The

results indicated that the climate phenomenon indices are

beneficial for improving the accuracy of monthly or seasonal

reservoir runoff prediction.

Based on the previous studies, we can find that enriching the

input features of regression models is an effective method to

improve the accuracy of runoff prediction. However, since

numerous physical factors are expected to jointly affect the

variation of runoff, there is expected to exist a mutual

correlation among these factors. Thus, finding a suitable set of

predictors from the high-dimensional data, consist of physical

factors, as the input of the runoff prediction model is still a

challenge for medium and long-term runoff prediction. In

information theory, mutual information (MI) method is a

powerful tool for analyzing linear and nonlinear relationships

between variables (Elkiran et al., 2021), but simply selecting

predictors through correlation analysis provided by MI will

introduce many redundant features (Tiwari and Chaturvedi

2022). To solve this problem, in traditional high-dimensional

data preprocessing, principal component analysis (PCA) is

typically used to reduce dimensionality and it can effectively

reduce redundant variables and feature dimensions (Ouyang

et al., 2022). But PCA cannot accurately measure the

importance of each feature on runoff prediction results. Thus,

how to select the input predictors of regression model needs

further investigation. In this study, we attempted to develop a

runoff prediction model by combining ML with importance

analysis for each feature (FIA-ML) to improve the accuracy of

runoff prediction and explain the variation law of runoff from the

view of physical causes.

In a summary, the aims of this study are: 1) to select

appropriate predictors according to the importance measures

computed by random forest (RF) for each feature; and 2) to

construct the runoff prediction models by fitting the correlation

between predictors and monthly runoff based on the MLmodels,

whose hyper-parameters are optimized by an improved particle

swarm optimization (IPSO). To fulfill these aims, the monthly
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runoff data collected from the Yingluoxia station in China was

selected for illustration purposes, and the performance of the

developed FIA-ML models was compared with two widely-used

runoff time series analysis models, i.e., long short-term memory

neural network (LSTM) and seasonal autoregressive integrated

moving average (SARIMA).

2 Study area and data

2.1 Hydrological characteristics of the
study area

The Heihe River Basin (HRB) is the second-largest inland

watershed in Northwest China, whose geographic coordinates

are roughly between 98+ − 101+E and 38+ − 42+N, with a

drainage area of about 142, 900km2. From the upper to the

lower reaches of HRB, the annual average precipitation is:

284, 112, and 41 mm, respectively, and the annual average

water surface evaporation is: 891, 1221, and 1,372–2081 mm,

respectively. The climate of HRB is mainly influenced by the

westerly circulation in the middle and high latitudes and the

polar cold air mass, and the precipitation is sparse and

concentrated.

The HRB originates from the Qilian Mountains in the south,

with a total length of 821 km. It flows through Qinghai, Gansu,

and Inner Mongolia provinces and finally into Juyanhai. In this

study, the Yingluoxia basin (YLX) is selected as the study area,

which is in the upper reaches of the HRB, with a controlled

catchment area of about 10, 018km2 (Figure 1). The main sources

of surface water supply in YLX are the melting of snow and ice in

the mountains and atmospheric precipitation, and the base flow

is mainly supplied by groundwater, and most of the water

resources of YLX concentrate in spring and summer. We

collected 684 months of runoff data at YLX from 1960 to

2016 for the further analysis and research. The average annual

runoff of YLX is 16.41 × 108m3. Meanwhile, the Mann-Kendall

method (Mann, 1945; Kendall, 1975) was used to analyze the

trend of the annual runoff series. The results indicated that the

annual runoff series showed an upward trend after 1980, and a

significant upward trend was detected after 1988. The annual

runoff rising rate is 0.1 × 108m3/yr from 1960 to 2016. The

increasing trend of the annual runoff of YLX is most likely due to

global warming, since YLX is in the upper reaches of the HRB

and is less affected by human activities (Wen et al., 2019; Zou

et al., 2022).

2.2 Meteorological and large-scale
climate factors

The 130 large-scale climate factors used in this study are

provided by the National Climate Center of China

Meteorological Administration (NCC-CMA) (https://cmdp.

ncc-cma.net/cn/download.htm), including 88 atmospheric

circulation indices, 26 sea temperature indices, and 16 other

indices. In this study, these large-scale climate factors are

sequentially numbered for 1–130, which is consistent with the

FIGURE 1
The location of the study area andmeteorological observation stations. YNG denotes Yeniugou (Meteorological station 1), ZY denotes Zhangye
(Meteorological station 2), QL denotes Qilian (Meteorological station 3) and YLX denotes Yingluoxia (Hydrological station).
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serial number of the datasets provided by the NCC-CMA. As for

the local meteorological information, namely the evaporation

(factor numbers: 131–133) and precipitation data (factor

numbers: 134–136) of the Yeniugou (YNG), Zhangye (ZY),

and Qilian (QL) meteorological stations, are collected from

the National Tibetan Plateau/Third Pole Environment Data

Center (https://data.tpdc.ac.cn/zh-hans/). In addition, we also

considered the previous runoff of YLX (factor number: 137) as a

factor. Therefore, a total of 137 physical factors were considered

for further building the monthly runoff prediction model in this

study.

3 Methodologies

3.1 Mutual information based on k-nearest
neighbors

Mutual information (MI) is a nonparametric statistical

method used to measure the degree of correlation between

variables. MI does not have any special requirements for the

distribution type of variables, and it can describe both linear and

nonlinear correlation. Therefore, it has been widely used in

variable selection in hydrology, meteorology, and other fields

(He et al., 2015; Fang et al., 2018). Given variables X and Y, the

MI between them is defined as follows:

I(X;Y) � ∫∫ μ(x, y)log μ(x, y)
μX(x)μY(y)dxdy (1)

where μ(x, y) represents the joint probability density of variables
X and Y. μX(x) and μY(y) are the marginal probability densities

of X and Y, respectively. The greater the MI, the more

information the variable X contains about Y, in other words,

it would demonstrate a stronger dependence between these two

variables.

MI has difficulties in estimating probability density. Thus,

Kraskov et al. (2004) proposed a method based on k-nearest

neighbors to avoid directly estimating the probability density of

the variables. As for the significance test of MI, the method

proposed by Sharma (2000) is applied, and the significance level

is set to be 0.01 in this study.

3.2 Feature importance analysis based on
random forest

Random forest (RF) is an extended variant of the bagging

parallel ensemble learning method (Breiman, 2001). During the

training period, it uses bootstrap sampling to generate a subset of

training samples. Therefore, each base learner only uses about

63.2% of the samples in the initial training set, and the remaining

36.8% of the samples can be used as the validation set to evaluate

the generalizability of RF. This way of assessing the

generalization of the model is called out-of-bag (OOB)

estimation.

As shown in many studies, reasonable predictors can

significantly improve the accuracy and robustness of the

regression model in runoff prediction (Taormina and Chau,

2015; Sharifi et al., 2017). RF can efficiently deal with the

multivariate samples and measure the importance of each

variable (Genuer et al., 2010; Hapfelmeier et al., 2014). The

importance measure of each feature in runoff forecasting is

computed as follows: 1) to obtain the mean square error

vector {MSEt|t � 1, 2, . . . , T} for the T base decision trees in

OOB estimation; 2) shuffling each feature of the OOB samples in

turn, and the variation of MSEt for each feature perturbation is

represented by the following matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
MSE11 MSE12 / MSE1T

MSE21 MSE22 / MSE2T

..

. ..
.

1 ..
.

MSEm1 MSEm2 / MSEmT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where m and T are the number of features and the number of

decision trees, respectively.MSEmt is the OOBmean square error

of the t base decision tree after shuffling the m − th feature.

Therefore, Eq. 3 can be used to measure the perturbation degree

of the m − th feature to the model.

Hoob
m � 1

T
∑T
t�1
(MSEmt −MSEt) (3)

If the feature is shuffled, the greater the accuracy of OOB

estimation decreases, the greater the degree of disturbance to the

model by the feature. By normalizing Hoob
m to the range of [0,1],

the importance measure of each feature (FIM) can be obtained.

In previous studies, the impurity weighted increments of the leaf

nodes of the tree model were mostly used to measure the

importance of features (Zuo et al., 2020). However, the

impurity-based method usually causes the feature importance

to drop rapidly, and the identification of feature importance is

relatively insensitive. Therefore, we used the decreases of

accuracy of OOB estimation to measure the influence of each

feature on the runoff prediction result in this study.

3.3 Regression model

3.3.1 Hybrid kernel support vector machine
Support vector machines (SVM) can solve nonlinear

problems, mainly using the kernel function to map the input

factors to the high-dimensional space and then performing linear

regression. Different kernel functions will significantly affect the

fitting ability of SVM to different kinds of nonlinear problems.

Among the commonly used kernel functions, the polynomial

kernel function κPoly (see Eq. 4) has strong generalization ability
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and weak learning ability. On the contrary, the localized

Gaussian radial basis kernel function κRbf (see Eq. 5) has

robust learning ability, but its generalization ability is

relatively weak. According to the Mercer kernel theory, it

can effectively overcome the shortcomings of the existing

kernel functions by combining these two types of kernel

functions into a new hybrid kernel function (Zheng et al.,

2005; Zhou et al., 2018). Therefore, the polynomial kernel

function and the Gaussian radial basis kernel function are

combined into a hybrid kernel function κHK (see Eq. 6), and

the hybrid kernel support vector machine (HKSVM) is

developed in this study.

κPoly(x, xi) � (γp(x · xi) + 1)3 (4)
κRbf(x, xi) � exp(γr‖x − xi‖2) (5)

κHK(x, xi) � λκPoly + (1 − λ)κRbf (6)

where x is the input predictors, and xi is the input predictors of
the i − th training sample. γp and γr are the kernel parameters.

λ ∈ [0, 1] represents the proportion of κPoly and κRbf in the

hybrid kernel function κHK. It should be noted that HKSVM also

has two important parameters, which are the penalty factor C

and the insensitivity coefficient ε.

3.3.2 Extreme learning machine
Extreme learning machine (ELM) is a machine learning

method based on feedforward neural network. ELM consists

of a three-layer structure: input layer, hidden layer, and output

layer. During the training period, the weights of the output layer

can be obtained by the least square method (LSM). Given the

input predictors x, the runoff prediction value y is calculated by

the following equation:

y(x) � ∑L
l�1
βlG(ωl, bl, x) (7)

where L is the number of hidden layer neurons. ωl and bl are

the input weights and thresholds of the hidden layer neurons,

respectively. G(·) is the activation function. βl is the

connection weight vector connecting the hidden layer

neurons and the output layer neurons, which can be

obtained by the Moore-Penrose generalized inverse method

(Huang et al., 2006).

3.3.3 General regression neural network
Generalized Regression Neural Network (GRNN) is of high

fault tolerance and strong robustness, which is suitable for

solving nonlinear problems and can also handle unstable data.

The network structure of GRNN consists of the input layer, mode

layer, summation layer and output layer. After the input

predictors x is input from the input layer, the following Eq. 8

can express the runoff prediction value.

y(x) �
∑N
i�1
yi exp[ − ‖x − xi‖2/2σ2]
∑N
i�1
exp[ − ‖x − xi‖2/2σ2]

(8)

whereN is the number of training samples, and yi is the observed

runoff corresponding to the i − th training sample. σ is the

smoothing factor.

3.3.4 Multiple linear regression
Multiple Linear Regression (MLR) can be used to fit a linear

relationship between multiple independent and dependent

variables. After the specific MLR equation is obtained through

training, the dependent variable can be predicted by the following

equation:

y(x) � b0 + b1x1 + b2x2 +/ + bmxm + μ (9)

where xi and bi are the i − th input predictor and regression

coefficient, respectively. μ is a random error satisfying the

Gaussian distribution. The solution of the regression

coefficients in Eq. 9 usually adopts the LSM.

3.4 Hyper-parameters optimization for
regression models

The performance of machine learning (ML) may be limited

in practice since its forecasting results are largely influenced by

the choice of hyper-parameters. Therefore, it is critical to obtain

the hyper-parameters combination with the best generalization

performance. In this study, we use the K-Fold cross-validation

method (Soper, 2021) to evaluate the model performance.

However, the cross-validation results of ML models are

sensitive to the choice of hyper-parameters. When using

conventional particle swarm optimization algorithms to

estimate their hyper-parameters, there are problems of

premature maturity and local convergence. To overcome these

problems, we employed an improved particle swarm

optimization algorithm (IPSO) in this study to determine a

set of hyper-parameters that optimize the cross-validation

results. Please refer to Lei et al. (2022) for more details about

IPSO. The hyper-parameters that need to be tuned by IPSO are

displayed in Table 1.

3.5 Model performance evaluationmetrics

In this study, we selected several indicators to quantitatively

analyze the performance of various models, which are Nash-

Sutcliffe efficiency (NSE), root mean square error (RMSE), the

coefficient of correlation (R), and Kling-Gupta efficiency (KGE)

(Gupta et al., 2009).
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The value range of NSE is (−∞, 1]. The closer it is to 1, the

better the prediction effect and the higher the reliability of the

model. It is calculated by the following equation:

NSE � 1 −
∑n
i�1
(yo,i − ys,i)2

∑n
i�1
(yo,i − �yo)2

(10)

where n is the number of testing samples. yo,i and ys,i are the

i − th observed value and predicted value. �yo is the mean of the

observed series.

The smaller the RMSE, the higher the prediction accuracy. It

is calculated by the following equation:

RMSE �
�������������
1
n
∑n
i�1
(yo,i − ys,i)2

√
(11)

R is a statistical indicator that reflects the correlation between the

predictions and the observations. The closer it is to 1, the higher

the prediction accuracy. It is calculated by the following equation:

R �
∑n
i�1
(yo,i − �yo)(ys,i − �ys)����������������������

∑n
i�1
(yo,i − �yo)2∑n

i�1
(ys,i − �ys)2

√ (12)

where �ys is the mean of the predicted series.

KGE is a new metric proposed to address the deficiencies of

NSE in model calibration and evaluation. It is calculated by the

following equation:

KGE � 1 −

���������������������������
(r − 1)2 + (σs

σo
− 1)2

+ (μs
μo

− 1)2

√√
(13)

where r is the linear regression coefficient between the observed

and predicted values. μo, σo, μs, σs correspond to the mean and

standard deviation of the observed and predicted series,

respectively.

3.6 Monthly runoff prediction using the
proposed feature importance analysis and
machine learning model

The main purpose of this study is to screen out suitable input

predictors for the ML models and to explore which physical

factors have a significant impact on the monthly runoff of YLX

station. In this study, the monthly runoff of the first 564 months

(1960–2006) of YLX station was used as training data to train the

model, and the monthly runoff of the last 120 months

(2007–2016) was used as testing data to test the predictive

accuracy of the monthly runoff prediction model. The

flowchart of the monthly runoff prediction model by

combining ML with feature importance analysis (FIA-ML) is

presented in Figure 2.

This study proposed a novel monthly runoff prediction

model combining ML with teleconnection analysis, which is

different from the commonly used time series analysis model

(TSAM). Therefore, to show the superiority of the proposed

FIA-ML model, it is necessary to make a comparison with

some traditional TSAMs. In the following analysis, we

compared the FIA-ML model with the widely used long

short-term memory neural network (LSTM) and seasonal

autoregressive integrated moving average (SARIMA) in

previous studies. LSTM is a variant of recurrent neural

network (RNN), which can effectively solve the gradient

explosion or disappearance of simple RNN, and control the

transfer of runoff time series information through a gating

mechanism (Yuan et al., 2018; Ghose et al., 2022). Considering

that the monthly runoff series is affected by the interaction of

seasonal effects, long-term trend effects and random

TABLE 1 The range of hyper-parameters to be optimized for the model used in this paper.

Model Hyper-parameter Search range Parameter type

RF The number of trees in the forest [10, 200] Integer

The maximum depth of the tree [10, 100] Integer

Min samples split (0, 1] Real

Min samples leaf (0, 0.5] Real

HKSVM Polynomial kernel parameter [2−10, 210] Real

Gaussian radial basis kernel parameter [2−10, 210] Real

The proportion of κPoly and κRbf [0, 1] Real

Penalty factor C [2−10, 210] Real

Insensitivity coefficient ε [0, 1] Real

ELM The number of hidden layer neurons L [1, 100] Integer

Random state [20–1, 232–1] Integer

GRNN Smoothing factor σ [10−10, 10] Real
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fluctuations, SARIMA transforms the nonstationary monthly

runoff series into stationary series by performing trend

difference and seasonal difference operation, and then

establish a statistical analysis model (Valipour, 2015). The

TSAM requires less basin information and is easy to use, so it

has been widely used in practice. However, with the impact of

changing environmental on the stationariness of the runoff

series, the prediction accuracy of TSAM will also be affected to

a certain extent. In contrast, although the FIA-ML model is

more complex, it fully considers a variety of physical factors

affecting runoff, and it has better application prospects in the

context of climate change. It should be noted that when

comparing the runoff prediction accuracy of TSAM and

FIA-ML models below, the input predictors of the FIA-ML

models adopted their corresponding best input scenario.

4 Results and discussion

4.1 selection of model input predictors

The choice of model input predictors will directly affect the

final runoff prediction results. In this study, we aimed to

construct a set of physical predictors for the runoff prediction

model by identifying the key physical factors affecting runoff,

from the 137 physical factors including large-scale climate index,

precipitation, and evaporation, etc. To ensure the quality of the

data and the reliability of this study, we directly discarded the

physical factors with missing data to avoid unreasonable

interpolation. It should be mentioned that the influence of the

physical factors on runoff has a lag effect. Thus, in this study, the

predictors with 1–12-month lags were employed to inform the

FIGURE 2
The flowchart of monthly runoff prediction using the FIA-ML model.
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runoff prediction model, considering the seasonal variation

characteristics of monthly runoff.

As shown in Figure 3, there are several comments should be

noted as follows: 1) among the 88 large-scale circulation factors,

NPVI (factor number 55: Northern Hemisphere Polar Vortex

Intensity Index) with a 1-month lag and EATI (factor number 64:

East Asian Trough Intensity Index) with a 12-month lag are the

most important factors for improving the accuracy of runoff

prediction. 2) The effect of evaporation on runoff is more

important than precipitation, which is consistent with the

climate characteristics of more evaporation and less

precipitation in Northwest China. 3) YLX basin was less

affected by oceanic action, such as ENSO and PDO. Among

the sea temperature indices, the influence of IOWPA (factor

number 101: Indian Ocean Warm Pool Area Index) with a 4-

month lag and WPWPA (factor number 103: Western Pacific

Warm Pool Area Index) with an 11-month lag was relatively

significant.

In this study, we synthesized 10 scenarios (Figure 2) for

4 prediction models, that is HKSVM (M1), ELM (M2), GRNN

(M3), and MLR (M4). Thus, four metrics, namely NSE, KGE,

RMSE and R, are used to find the optimal input scenario for each

model. According to the level of MI (Figure 3A), we selected the

top 50 physical factors, and then RF is used to order the

importance of these factors (Figure 3B). Based on the order of

importance, we sequentially added 5 physical factors each time as

the model input. So, a total of 10 input scenarios was generated

(Figure 2). Synthesizing the prediction accuracy of the four

regression models under 10 input scenarios, the HKSVM and

MLR perform best in scenario 4, and the ELM and GRNN

perform best in scenario 3. It can be seen from Figure 4 that

with the increase of input features, the prediction accuracy of

each model firstly becomes better, but after the optimal input

scenario appears, increasing the input features is not conducive

to further improve the prediction accuracy. There are two main

reasons for this result: 1) the input features are too few to reveal

the complex variation mechanism of runoff, but the increase the

number of input features will introduce some redundant features;

2) if the number of input features are too large, it will increase the

observation error of samples and the complexity of the model,

which is not good for training the model and could weaken its

promotion potential. Therefore, this study adopted the method

of gradually increasing the number of input features in order of

the feature importance, and selected the best predictors set

according to the performance of each model during the

testing period.

4.2 Monthly runoff prediction simulation

The statistical results of the prediction accuracy evaluation

indicators of each model during the training period and the

testing period were summarized in Table 2. The training period is

the learning phase of the model, and the quality of the learning

will directly affect the actual runoff prediction effect. In practical

engineering, the performance of the model during the testing

FIGURE 3
themutual information value among the 137 factors and the observed runoff at a lag of 1–12 months, and the blanks are missing factors (A), and
the importance score of the physical factors whose mutual information values are ranked in the top 50, which are filled with color (B).
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phase is usually more concerned, because it reflects the

generalization ability and practical application effect of the

model. As shown in Table 2, the overall performance of FIA-

ML models showed better during the testing period,

compared with the runoff time series analysis models.

Furthermore, among the FIA-ML models, HKSVM and

ELM have better runoff forecasting ability, which further

demonstrates that choosing an appropriate machine learning

algorithm is also a way to improve the accuracy of runoff

prediction. Besides, we can see that GRNN is the best model

during the training period, but its performance is not good

enough during the testing period. Obviously, GRNN shows

overfitting, which is because GRNN is too sensitive to the

samples appearing in the learning stage, resulting in the lack

of ability to explore the general variation of out-of-sample

data. In contrast, HKSVM combines the advantages of

polynomial kernel and Gaussian radial basis kernel

function, and has relatively strong learning ability and

generalization ability. To further compare the effect of

each model in practical application, we show the fitting

quality of each model during the testing period

Figures 5,6,7,8.

FIGURE 4
The results of NSE (A), KGE (B), RMSE (C), and R (D) of eachmodel for 10 input scenarios. The best input scenario is selected by the red circle. The
models represented by M1-M4 are shown in Table 2.

TABLE 2 Prediction accuracy evaluation metrics of different models during training and testing period.

Model Training period Testing period

NSE KGE RMSE R NSE KGE RMSE R

FIA-ML HKSVM (M1) 0.863 0.924 0.429 0.934 0.908 0.930 0.411 0.956

ELM (M2) 0.844 0.879 0.456 0.919 0.911 0.920 0.406 0.956

GRNN (M3) 0.985 0.955 0.141 0.993 0.873 0.802 0.484 0.948

MLR (M4) 0.817 0.855 0.493 0.904 0.885 0.873 0.460 0.945

TSAM LSTM (M5) 0.839 0.905 0.464 0.918 0.870 0.795 0.490 0.946

SARIMA (M6) 0.831 0.850 0.476 0.912 0.868 0.763 0.494 0.949
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Figure 5 shows the fitting performance of the 120-month

runoff observations and the predictions of the monthly runoff

prediction models during the testing simulation phase. The

monthly runoff of YLX during the wet season fluctuates

obviously across different years. The FIA-ML models can

relatively better capture the variation of monthly runoff,

especially with HKSVM and ELM regression models.

Figure 6A is a boxplot of absolute residuals, which can

describe the distribution of the difference between the

predicted and observed values. Figure 6B is a Taylor diagram

(Taylor, 2001), which skillfully integrates the correlation

coefficient, centered root mean square error, and standard

deviation into a polar plot, avoiding the limitations of a single

evaluation metric. Therefore, it can more intuitively show the

difference between the predicted and observed values. One can

see from Figure 6 that the simulation prediction results of M1

(HKSVM) and M2 (ELM) are closer to the actual runoff

observations. This indicated that ELM and HKSVM have

more robust capabilities to reveal the correlation between

predictors and observed runoff.

Figure 7 shows the linear relationship between the observed

runoff and the simulated value obtained by different prediction

methods during the testing period. It is found that both the FIA-

MLmodels and the runoff time series analysis models are feasible

in tracking the dynamic changes of monthly runoff. In addition,

ELM has the best effect from the perspective of R2, and MLR is

the worst. While if we analyze from the trend line of linear fitting,

HKSVM is closer to the actual trend line, and the runoff time

series analysis models perform worse.

In practical engineering, the prediction accuracy of peak

monthly runoff is more significant than runoff in other

months. For this reason, we compared the prediction effect of

FIGURE 5
Comparison of observed and fitted runoff by different models for 2007–2016 (testing period).

FIGURE 6
Boxplot of absolute residuals (A) and Taylor diagrams (B) of the results of monthly runoff prediction during the testing period. The models
represented by M1–M6 are shown in Table 2.
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each model on peak monthly runoff during the testing period.

According to the standard for hydrological information and

hydrological forecasting formulated by the Ministry of Water

Resources of China, for medium and long-term runoff

prediction, when the relative error of the prediction result is

less than 20%, it is considered a valid prediction value (Zhang

et al., 2011). As displayed in Figure 8, M1 (HKSVM) and M2

(ELM) have eight years to meet the design requirements, but the

performance of M3 (GRNN) and M6 (SARIMA) are relatively

poor, with only five years to meet the design requirements.

FIGURE 7
Scatter plot of observations and predictions by HKSVM (A), ELM (B), GRNN (C), MLR (D), LSTM (E), and SARIMA (F) during the testing period.

FIGURE 8
Observations and predictions of peak monthly runoff with different models during the testing period are displayed in (A), and the number of
years that the predictions of each model meet the design requirements is displayed in (B). The models represented by M1-M6 are shown in Table 2.
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4.3 Discussion

When usingML for runoff prediction, the choice of predictors is

critical. Because the quality of the effective information carried by

the features will directly affect the accuracy of runoff prediction. Our

simulations revealed that appropriately increasing the number of

features can improve the accuracy of monthly runoff prediction.

However, too many input features will increase the complexity of

training the model and reduce the ability to capture the general

changing characteristics of runoff process. In this study, the NSEs of

FIA-ML models (M1-M4) were initially 0.878, 0.866, 0.815, and

0.818. When the optimal number of input features for each model

was reached, their NSEs were improved by 3.4%, 5.2%, 7.1%, and

8.2%, respectively. However, if the number of input features

continue to increase, the accuracy of runoff prediction will not

continue to get better. This should be mainly because too many

inputs will make the model training subject to some abnormal

information interference, and reduce the training efficiency.

AlthoughRF is an effective tool tomeasure the feature importance,

it also has some shortcomings.One of themost important issues is that

if there are too many input features in RF, the efficiency and accuracy

of calculating the importance score of each feature will be affected.

Thus, this study first uses MI to select the top 50 factors related to the

observed runoff, which is equivalent to a rough screening from

numerous possible factors. The method combined RF with MI can

effectively overcome the shortcomings of the single use RF or MI to

select predictors as the inputs of the ML models.

Compared with the TSAM, the FIA-MLmodel can improve the

NSE by up to 5%, and more importantly, can explain the variation

characteristics of runoff from the physical meaning. However, it

should be noted that although the FIA-ML models can improve the

prediction accuracy to a certain extent, some issues should be noted

in the application. One is that the meteorological information we

used is relatively less in this study, so, in future work, we can further

consider more meteorological factors related to prediction of

monthly runoff. Another is that although the IPSO can

effectively improve the global search ability of particles, there is

still the problem of falling into local convergence, so it is necessary to

explore a more efficient methods for improving the global search

ability in selecting model hyper-parameters. In addition, simply

depending on the correlation between the runoff process and these

physical factors is not enough to fully reveal the variation

characteristics of runoff, since the runoff prediction system is

open and complex. Therefore, the system dynamics

characteristics of the runoff process can be considered in

machine learning in further studies.

5 Conclusion

We proposed the model by combining ML with the feature

importance analysis (FIA-ML), which can select key predictors from

the numerous physical factors and effectively integrate

hydrometeorological information and teleconnection climate

factors into the ML models. This paper verified the applicability of

the model in the YLX basin, and compared with the traditional time

series analysis model (TSAM). Under changing environments, the

TSAM cannot accurately capture the impact of climate change on the

characteristics of runoff variability. By contrast, the FIA-ML models

not only have better runoff prediction ability, but can, more

importantly, explain which physical factors have a significant

impact on the runoff in the YLX basin.

The FIA-ML models can effectively improve the learning

efficiency of ML models and the accuracy of runoff prediction.

Especially, HKSVMand ELMoptimized by IPSOhave a good fitting

ability for the relationship between observed runoff and input

predictors. Therefore, the FIA-ML model is a useful attempt to

improve the accuracy of runoff prediction by establishing the

teleconnection between climate change and runoff change.
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Global warming leads to more frequent and more violent extreme weather

events, which cause severe natural disasters. The sensitivity of physical schemes

in numerical weather predictionmodels for extreme precipitation is a significant

challenge. To simulate a heavy precipitation process from 1 July 2020 to 10 July

2020 over the Poyang Lake Basin, where floods occur frequently, the Weather

Research and Forecast model (WRF) was employed. The observation (OBS)

from 92 meteorological stations was applied to evaluate WRF performance. To

assess the optimal parameter, 27 combinations of multiphysics schemes based

on three cumulus schemes (CUs), threemicrophysical schemes (MPs) and three

land surface schemes (LSMs) were employed in WRF simulation. The Euclid

distance (ED) was derived to evaluate the performance of the modelled total

cumulative precipitation (TCP). The results showed that the simulation generally

reproduced the spatial distribution of precipitation and captured the storm

centre. In general, WRF underestimated the observation for most areas but

overestimated the observation in the northeastern part of the basin. For total

cumulative precipitation (TCP), the spatial correlation coefficients ranged from

0.6 to 0.8. M11 had the highest value of 0.796. The scores (TS, POD, FAR) of

M15 were 0.66, 0.79, and 0.21, respectively. With the maximum similarity of

0.518, M7 (BMJ-WDM6-Noah) showed the best performance in ED based on six

evaluation metrics. The mean values of OBS and M19 were 259.34 and

218.33 mm, respectively. M19 (NT-Thompson-Noah) was closest to the OBS

for the range of the TCP. In terms of daily precipitation, the CC of M3 was

maximum (0.96), and the RMSE of M24 was minimum (11.9 mm. day-1). The

minimum error between the simulation and OBS was found for M3 (NT-

Thompson-Noah). Therefore, with a comprehensive evaluation, five optimal

combinations of physical schemes (M22, M19, M9, M3, M21) were found for the

PLB, which is of great significance for extreme precipitation simulation and

flood forecasting.
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Introduction

Global climate change affects the water cycle, which can

easily cause the changes in precipitation and patterns for

different regions, ultimately resulting in extreme precipitation

(Yang Q et al., 2021; O’Gorman 2015). Precipitation is an

important parameter of atmospheric motion as well as the

water cycle. The natural disasters triggered by rainstorms have

brought significant socioeconomic losses and human casualties

(Jonkman 2005; Jia et al., 2022; Qiao et al., 2022). Due to climate

warming, the frequency and intensity of extreme precipitation

events have increased globally for most areas (Sun and Ao 2013;

Stegall and Kunkel 2019; Yin et al., 2021; Yin et al., 2022).

Gradually, several studies have found that extreme

precipitation events increase frequently in China,

concentrating in the southeastern region and the Yangtze

River basin area, especially during the rainy season from April

to September (Bao et al., 2015; Gao et al., 2017; Yao et al., 2022).

With a humid subtropical climate, Poyang Lake Basin (PLB) is

located in the middle and lower reaches of the Yangtze River,

China. However, the PLB often suffers serious floods, drought

and other disasters due to the climatic characteristics and

topography in summer (Wu et al., 2021; Yang X Xet al.

2021). According to the statistics, the No. 1 flood that

occurred in the basin in July 2020 alone affected more than

5.21 million people and 455 thousand hectares of crops.

Therefore, it is important to enhance the forecasting of

extreme precipitation events for the purpose of reducing the

damage caused.

The formation of extreme precipitation is a complex

multiscale process. Although many different definitions have

been adopted to the extreme precipitation, there is no uniform

criteria of extreme precipitation events. Some studies select

percentile and absolute critical value method to identify

extreme precipitation (Liu et al., 2017). For example, the long-

term 90th or 95th percentile of daily precipitation series is

selected as extreme value (Camuffo et al., 2020). According to

the precipitation grading system in China, the rainstorm is

identified when the daily precipitation exceeds 50 mm. In

addition, the series of extreme climate indices are commonly

used (Lei et al., 2021). The precipitation event selected in this

study reached the rainstorm level (average daily precipitation

exceeds 50 mm) according to the criteria from China

Meteorology Administration. Compared with traditional

precipitation observation methods, quantitative precipitation

forecasting (QPF) can obtain more precipitation information

and effectively prevent intense precipitation and floods (Gao

et al., 2022). Therefore, numerical weather prediction (NWP),

which is based on precise physical control equations, can solve

the problem of precipitation dynamics (Sun et al., 2014).

Generally, NWP models are usually divided into global

climate models (GCMs) and regional climate models (RCMs)

at different simulated area ranges (Yi et al., 2018). However, the

global climate models (GCMs) are not ideal for representing the

intensity of extreme precipitation events on a small spatial scale.

Some studies contend that GCMs are generally not capable of

capturing intense precipitation signals due to their coarse

resolutions (Mahajan et al., 2015). Additionally, the physical

processes of the models are not fully expressed. However, the

regional climate models (RCMs), such as the PSU/NCAR

mesoscale model (MM5) and Weather Research and Forecast

(WRF) meet the requirement of high spatial and temporal

resolution for the simulation of complex areas with specific

terrain, and at the same time, they simulate complex local

processes that are easily overlooked and resolve detailed

regional atmospheric and ground processes (Bao et al., 2015).

The RCMs capture fine-scale features such as topographic

precipitation, rain shadows and storms and describe regional-

scale physical and parametric structures (Jin et al., 2010).

Additionally, previous studies found that RCMs were capable

of simulating precipitation in complicated terrain areas (Ji et al.,

2018). However, the simulation is still limited by factors such as

subgrid parameters, which has become a challenge for numerical

weather prediction (NWP) systems (Yang et al., 2019).

As a new generation of mesoscale high-resolution prediction

models, WRF employed for atmospheric research and

operational forecasting describes the land‒atmosphere

continuum processes in detail with higher spatial and

temporal resolutions (Di et al., 2017). Compared to MM5,

WRF has a more source-oriented physical parameterization

scheme and a more complete dynamics framework (Chinta

et al., 2021). With a stable model and an assimilated data

function, it effectively reduces the error of precipitation

forecasting, which works better for extreme precipitation

simulations. In the WRF simulation process, uncertainties

dominated by the initial boundary conditions, spatial

resolution, and physical schemes affect the accuracy of

precipitation prediction. Many previous studies have indicated

that physical schemes play a significant role in climate models,

atmospheric circulation models and mesoscale numerical

prediction models. As the parameters primarily responsible

for calculating atmospheric water vapour, cloud liquid water,

cloud ice, and various types of precipitation, microphysical

schemes (MPs) are highly sensitive in predicting convective

storms and precipitation especially for intense precipitation

simulations (Rajeevan et al., 2010; Cossu and Hocke 2014).

Cumulus schemes (CUs) describe the changes in heat and

water vapour caused by updrafts, downdrafts, and

compensatory movements outside the clouds (Wu et al.,

2019). Therefore, the accuracy of precipitation forecasting can
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be improved by suitable parameter schemes. In addition, the

occurrence of intense precipitation is also influenced by the

subsurface (Jin et al., 2010). Atmospheric circulation has been

influenced by land surface schemes (LSMs), which reveal land‒

air interactions (Di et al., 2015; Lv et al., 2020). The land surface

scheme controls the transport of water and heat fluxes in the soil,

as well as the water vapour and heat exchange between the land

surface and atmosphere. The performance of physical

parameterization combinations varies by study area (Yang

et al., 2019). Therefore, it is necessary to study the region-

specific sensitivity of physical parameterization combinations

to forecast future events.

Many simulations of heavy rainfall or storms in Yangtze

River basin which has a huge water system and complex terrain

have been carried out based onWRF (Wang et al., 2012; Ma et al.,

2015; Yao et al., 2022). Previous studies frequently adopted the

fixed physical parameterization schemes and hardly considered

the combination of physical parameters schemes. It is difficult for

one single set of physical schemes to maintain its best

performance consistently for different areas and accurately

capture the physical processes of extreme precipitation. In

particular, the physical parameterization schemes of

simulation are sensitive to terrain changes. Therefore, it is

necessary to evaluate a set of appropriate physical

parameterization schemes on local scales. This study focused

on the parameterization sensitivity of cloud microphysical

schemes, cumulus schemes, and land surface schemes by

using WRF to improve the understanding of how to

accurately simulate extreme rainfall. Additionally, the suitable

combination members were selected to evaluate the reliability of

WRF in extreme precipitation prediction. The observation

interpolated from 92 meteorological stations were applied to

validate the total cumulative precipitation (TCP). To compare

the performance of WRF combination members, an extreme

precipitation over the PLB was simulated from 1 July 2020 to

10 July 2020.

The objectives of this study include 1) whether WRF

simulations can capture the spatial and temporal

characteristics of extreme precipitation over Poyang Lake

Basin, 2) how sensitive the extreme precipitation is to

different combinations of physical schemes, and 3) which

model is a reliable combination scheme for PLB? It is of great

significance to study extreme precipitation in the PLB.

Data and methods

Observation

The Poyang Lake Basin (PLB) is located in the centre of

Southeast China (Figure 1), between 113.74°-118.47°E and

24.57°–30.01°N, with a total area of 16.22 km2 × 104 km2. The

PLB that is comparatively flat encompasses five subbasins:

Xiushui (subbasin size: 3548 km2), Ganjiang (8048 km2), Fuhe

(15,811 km2), Xinjiang (15,535 km2), and Raohe (6374 km2). The

basin has a humid subtropical climate, which is controlled by the

East Asian monsoon (Lei et al., 2022). Therefore, it has obvious

seasonal characteristics and an uneven spatial distribution for

precipitation, with mainly falling from April to June, leading to

frequent floods in summer. The basin is an important flood

storage and detention area for the Yangzte River, as it connects to

the main stream of the Yangtze River. Additionally, the Poyang

Lake is the largest freshwater lake in China (Wagner et al., 2016;

Zhang et al., 2016).

FIGURE 1
Location of study area. (A)WRFmodel domains with three grids (d01-27, d02-9, d03-3 km). (B) Topographic features of the Poyang Lake Basin,
China.
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TABLE 1 Meteorological stations information.

Id Name Latitude (°N) Longitude (°E) Elevation (m) Id Name Latitude (°N) Longitude (°E) Elevation
(m)

1 Tianmen 30.39 113.19 31.9 47 Wuyi 27.43 118 222.1

2 Wuhan 30.38 114.17 23.6 48 Pucheng 27.55 118.32 276.9

3 Honghu 29.49 113.24 27.4 49 Jianyang 27.2 118.07 169.6

4 Jiayu 29.58 113.50 61.7 50 Jian’ou 27.03 118.19 154.9

5 Yueyang 29.23 113.05 51.6 51 Yunhe 27.58 119.37 150.6

6 Xiushui 29.02 114.34 117.4 52 Shouning 27.32 119.25 815.9

7 Pingjiang 28.43 113.35 106.3 53 Rui’an 27.48 120.37 5.7

8 Yifeng 28.25 114.47 91.7 54 Fuding 27.2 120.12 36.2

9 Youxian 27.00 113.20 102.5 55 Ningdu 26.22 115.50 209.1

10 Zhuzhou 27.50 113.09 74.6 56 Guangchang 26.48 116.11 143.9

11 Lianhua 27.08 113.56 194.5 57 Ninghua 26.14 116.38 342.9

12 Yichun 27.48 114.23 131.3 58 Taining 26.53 117.09 252.2

13 Ji’an 27.05 114.55 71.2 59 Youxi 26.1 118.09 204.8

14 Guidong 26.00 113.56 835.9 60 Xiapu 26.53 120.00 56.8

15 Jinggang shan 26.38 114.06 843.0 61 Ningde 26.4 119.31 32.4

16 Suichuan 26.15 114.20 126.1 62 Fuzhou 26.05 119.17 84.0

17 Ganzhou 25.50 114.50 137.5 63 Changting 25.51 116.22 310

18 Nanxiong 25.08 114.19 149.7 64 Shanghang 25.03 116.25 198.0

19 Yingshan 30.44 115.37 123.8 65 Zhangping 25.18 117.24 205.3

20 Ningguo 30.37 118.58 89.4 66 Longyan 25.06 117.01 376.0

21 Huangshan 30.08 118.09 1840.4 67 Jiuxian 25.43 118.06 1653.5

22 Hangzhou 30.19 120.12 41.7 68 Pingtan 25.31 119.47 32.4

23 Yangxin 29.50 115.10 45.8 69 Shaoguan 24.48 113.35 121.3

24 Lushan 29.35 115.59 1215.0 70 Fogang 23.52 113.32 97.2

25 Wuning 29.16 115.05 116.0 71 Yingde 24.1 113.24 74.5

26 Poyang 29.01 116.40 40.1 72 Longnan 24.53 114.46 206.3

27 Qimen 29.55 117.50 142.0 73 Lianping 24.22 114.29 214.8

28 Jingde 29.10 117.15 61.5 74 Xinfeng 24.03 114.12 198.6

29 Tunxi 29.43 118.17 142.7 75 Xunwu 24.57 115.29 297.8

30 Chun’an 29.37 119.01 171.4 76 Longchuan 24.06 115.15 179.6

31 Jinhua 29.07 119.39 62.6 77 Yongding 24.51 116.49 226.9

32 Shengzhou 29.36 120.49 104.3 78 Dabu 24.21 116.42 81.0

33 Yiwu 29.19 120.04 90.0 79 Meixian 24.18 116.07 116

34 Jing’an 28.51 115.22 78.9 80 Chongwu 24.54 118.55 21.8

35 Nanchang 28.40 115.58 46.9 81 Xiamen 24.31 118.09 139.4

36 Zhangshu 28.01 115.22 30.4 82 Qingyuan 23.43 113.01 79.2

(Continued on following page)
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The meteorological stations (located in the simulated nested

area) were provided by the China Meteorological Center

(Table 1). The stations were distributed with large elevation

differences, ranging from 5.7 to 1840.4 m. Normally, the

station data represent the weather conditions on different

subsurfaces. Generally, a bilinear interpolation method was

employed to compare the accuracy of WRF simulation. The

observations from meteorological stations were interpolated into

the innermost 3 km grid of the WRF by using the Cressman

algorithm (Yin et al., 2014) to validate the simulation results. The

initial and lateral boundary field information of WRF was driven

by Final Operational Global Analysis (FNL) reanalysis from the

National Centers for Environmental Prediction with a horizontal

resolution of 1° × 1° and 34 vertical pressure levels at 6-h intervals

(00, 06, 12, and 18 UTC).

WRF model configuration

The WRF model is a fully compressible, non-hydrostatic

model, with the grid of Arakawa C and terrain following eta-

coordinates. The model system integrates numerical weather

prediction, atmospheric simulation and data assimilation

(Jackson et al., 2008). WRF version 4.3 was used in this study.

Three domains with a grid spacings of 27 (d01), 9 (d02), and

3 km (d03), respectively, were employed for the simulation

(Figure 1). The domain sizes were 115 × 79, 202 × 160, and

280 × 286, respectively. The Lambert conformal conic projection

was used as the model horizontal coordinates. The time steps

were 90 s. Additionally, one-way nesting was applied in this

study. The simulation of the three domains was initialized at

00 UTC 1 on July 2020 to 00 UTC on 11 July 2020. To ensure the

accuracy of the simulated results, the first 36 h of the simulations

were considered the model spin-up time, which was excluded

from the data analysis. The model outputs at every 6 hours were

employed for evaluation. The USGS data were used for

topographic data with resolutions of 5, 2 m and 30 s,

respectively. The regions of domains were set up with full

consideration of the surrounding terrain and the influence of

key weather and climate systems, avoiding cross regions with

vastly different climate characteristics or geographic features in

the simulation. The physical parameter schemes involved in this

precipitation simulation experiment included the cumulus

scheme (CU), microphysical scheme (MP) and land surface

scheme (LSM). The specific combination members of the

WRF model were listed in Table 2. The cumulus schemes

(CUs) selected were Betts-Miller-Janjic (BMJ), Kain-Fritsch

(KF) and New Tiedtke (NT). The microphysical schemes

(MPs) evaluated were WRF Single-Moment 6-class (WSM6),

Thompson and WRF Double-Moment 6 (WDM6), respectively.

The suitable land surface models (LSMs) included Noah, Noah-

MP and CLM4, respectively. In addition, the other WRF physical

parameter schemes were found for the Rapid Radiative Transfer

Model (RRTM) long wave radiation, Dudhia short wave

radiation and Yonsei University (YSU) planetary boundary

layer scheme. The cumulus scheme was not applied to the

d03 domain (3 km) due to the high spatial resolution.

Evaluation criteria

To quantitatively validate the accuracy of the WRF results,

the surface-scale and point-scale evaluation systems for the

simulated results were established. Six statistical metrics were

selected to verify the simulation performance of the precipitation.

The statistical indicators of continuity included the correlation

coefficient (CC), root mean square error (RMSE) and bias

(Moazami et al., 2014; Kumar et al., 2017). The CC was used

TABLE 1 (Continued) Meteorological stations information.

Id Name Latitude (°N) Longitude (°E) Elevation (m) Id Name Latitude (°N) Longitude (°E) Elevation
(m)

37 Dexing 28.51 117.34 88.5 83 Gaungzhou 23.08 113.19 70.7

38 Guixi 28.17 117.06 60.8 84 Dongguan 23.02 113.45 56.0

39 Yushan 28.40 118.15 116.3 85 Heyuan 23.44 114.41 70.8

40 Shangrao 28.22 118.02 118.2 86 Zengcheng 23.18 113.49 30.8

41 Lishhui 28.27 119.54 63.0 87 Huiyang 23.05 114.28 108.5

42 Xianju 28.52 120.44 83.0 88 Wuhua 23.56 115.46 135.9

43 Yongfeng 27.21 115.25 85.7 89 Zijin 23.38 115.11 176.8

44 Nancheng 27.33 116.36 80.8 90 Shantou 23.21 116.40 2.9

45 Nanfeng 27.12 116.23 111.5 91 Huilai 23.02 116.18 14.4

46 Shaowu 27.20 117.28 218.0 92 Nan’ao 23.26 117.02 7.2
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to measure the linear correlations between simulation and

spatially interpolated observations. RMSE was used to

measure the average error. Bias was employed to measure the

precision of the results. The results with high CC and low RMSE

indicate good simulation performance. Categorical statistical

metrics (Sen et al., 2014; Jiang et al., 2021) were employed to

evaluate the detection capacity for simulations, including the

probability of detection (POD), false alarm ratio (FAR) and

threat score (TS). The POD reflects the detection ability of a

certain precipitation magnitude, FAR represents the empty

report of the model on the precipitation magnitude, and TS is

a comprehensive score for checking the performance of the

model for eliminating the impact of random hits. The

definition, formula and optimal value for the indices are

shown in Table 2. The 95th percentile of the corresponding

precipitation fields was selected as the threshold, which providing

the comparison for the spatial distributions of the intense

precipitation (Table 3).

It is difficult to accurately select the parameterized scheme

combination with the best comprehensive performance based

on only one single evaluation and analysis. The emphasis of

each metric was different. Therefore, Euclid distance (ED)

TABLE 2 Combinations of physical parameterization schemes in WRF simulations.

Model number Cumulus scheme (CU) Microphysics scheme (MP) Land surface Scheme (LSM)

M1 BMJ WSM6 Noah

M2 BMJ WSM6 Noah-MP

M3 BMJ WSM6 CLM4

M4 BMJ Thompson Noah

M5 BMJ Thompson Noah-MP

M6 BMJ Thompson CLM4

M7 BMJ WDM6 Noah

M8 BMJ WDM6 Noah-MP

M9 BMJ WDM6 CLM4

M10 KF WSM6 Noah

M11 KF WSM6 Noah-MP

M12 KF WSM6 CLM4

M13 KF Thompson Noah

M14 KF Thompson Noah-MP

M15 KF Thompson CLM4

M16 KF WDM6 Noah

M17 KF WDM6 Noah-MP

M18 KF WDM6 CLM4

M19 NT WSM6 Noah

M20 NT WSM6 Noah-MP

M21 NT WSM6 CLM4

M22 NT Thompson Noah

M23 NT Thompson Noah-MP

M24 NT Thompson CLM4

M25 NT WDM6 Noah

M26 NT WDM6 Noah-MP

M27 NT WDM6 CLM4
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(Van Cooten et al., 2009), which is defined as measuring the

absolute distance between two points in multidimensional

spaces, was employed to quantitatively and comprehensively

evaluate each combination of WRF physical parameterization

schemes. To represent different evaluation metrics, ED was of

great significance in the optimal combination of numerical

weather model parameterization schemes. Specifically, the six

metrics of CC, MSRE, Bias, TS, POD and FAR were

synthesized by a vector Se, defined as follows:

Se � μ CC( ), μ RMSE( ), μ Bias( ), μ TS( ), μ POD( ), μ FAR( ){ }
(1)

The values of the six metrics were further scaled to between

0 and 1. Then, the optimal theoretical values for the metrics were

formed into vector [So (1,01,1,0)]. ED was calculated as the

magnitude of difference of the vector Se and the vector So. With a

lower value of ED, one combination member has better

performance. For a more visual comparison, the similarity S

defined by ED was employed, which can be formulated as

follows:

S � 1
d + 1

(2)

where d represents the value of ED, and S represents similarity.

The range is from 0 to 1. The higher S is, the smaller ED is, which

means better simulation.

Results

Evaluation of TCP in WRF simulations

Figure 2 shows the comparison results of the simulations and

observation (OBS) under different physical parameterization

schemes. The value of reference points (REF) in the taylor

TABLE 3 Definition of evaluation criteria.

Metric Formula Optimal value Range

CC
CC � ∑n

i�1(Oi−Oi)(Mi−Mi)���������∑n

i�1(Oi−Oi )2
√ ����������∑n

i�1(Mi−Mi )2
√ 1 (0,1)

RMSE MRSE �
�������������
1
n∑n

i�1(Mi − Oi)
√

0 (0, +∞)

Bias Bias � Mi−Oi
Oi

× 100 0 (-∞, +∞)

TS TS = hits/(hits + misses + falsealarms) 1 (0,1)

POD POD = hits/(hits + misses) 1 (0,1)

FAR FAR = falsealarms/(hits + falsealarms) 0 (0,1)

Notes:WhereOi presents the observed value for precipitation on a grid point,Mi presents the simulated value on a grid point. n is the numbers of grids for simulations and observation. The

hits indicts the precipitation events are simultaneously detected by the data of models and interpolated observation data. Misses represents the precipitation events detected by interpolated

observation data but not by the model. Falsealarms represents the daily precipitation events detected by the model but not interpolated gauge data.

FIGURE 2
Taylor diagram of TCP for WRF combination members. (A) WRF combinations for BMJ cumulus schemes; (B) KF cumulus schemes; (C) NT
cumulus schemes.
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diagram reached 1, and the central normalized RMSE was 0. In

terms of cumulus schemes (CU), the simulation results were

divided into three groups for comparison. Figure 2A shows the

simulation results fromM1 toM9. The cumulus schemes were all

BMJs. The correlation coefficient for M8 was highest with a value

of 0.793. In terms of the performance of the results from M10 to

M18 with the cumulus schemes of KF, M11 had the highest value

of 0.796, which is shown in Figure 2B. Similarly, Figure 2C shows

the results from M19 to M27, which had the same cumulus

schemes as KF. M19 had a good performance for correlation

coefficient, with a value of 0.781. In terms of standard deviation,

the values of M11, M2, M26, and M1 in the simulations were

closest to 1, which indicated good performance. The distribution

of the standard deviation was more dispersed for the simulated

results of scheme combinations using the cumulus scheme of

BML and KF, which means there was a large difference in

simulation capability. The simulated results using the cumulus

scheme of NT were relatively concentrated, mainly between

0.5 and 1. The spatial correlation coefficients between the

simulated and observed values for 27 combinations were

concentrated from 0.6 to 0.8. The highest correlation

coefficient values were found for M8, M11, M19, and M4.

The combinations with the lowest correlation coefficients

(below 0.65) were M6, M13, and M15. Overall,

M11 performed well in terms of the correlation coefficient

and standard deviation. Among the three CU schemes

investigated in this study, the WRF combination members

using KF displayed larger central root mean square error,

lower correlation coefficient, and poorer standard deviation.

Therefore, the BML and NT schemes performed better for

extreme precipitation over the PLB.

Table 4 shows the performance of categorical statistical metrics

(TS, POD, FAR) for 27 WRF combination members. This revealed

the accuracy of precipitation forecasting. For the TS metric, the

highest score was found for M15, followed by M7, M5, and M22,

which were more than 0.5. However, M13,M14,M17, andM26 had

the lowest scores (below 0.1). For POD, the highest score was found

for M15, followed by M7, M5, and M22, which all exceeded 0.7.

M13, M14, and M17 had the lowest scores (below 0.1). M5, M7,

M15, and M22 showed better FAR scores (below 0.3), especially

M15, which has the lowest value of 0.21, indicating a low false alarm

rate. However, M13, M14, M17, and M26 showed worse

performance with high FAR scores (over 0.8). Overall,

M15 performed best, followed by M7, M5, and M22, while M13,

M14, andM17 performedworst among the three evaluationmetrics.

The combination members using the BMJ and KF schemes were

better than those using KF in precipitation forecasting for WRF

simulations. Additionally, with the same CU and MP schemes, the

precision ofM15was better than those ofM13 (with theNoah LSM)

and M14 (with the Noah-MP LSM), which were mainly controlled

by the land surface scheme.

Table 5 shows the similarity based on ED ranking from

highest to lowest for 27 combinations in terms of TCP. The value

of similarity ranged from 0.333 to 0.518. The values of WRF

combination members were relatively close and concentrated

from 0.4 to 0.5. The highest value was found for M7, which

indicated that M7 displayed the best performance for the

simulation of TCP. The lowest value was found for M14.

TABLE 4 Scores of evaluation metrics for total cumulative precipitation.

Model number TS POD FAR Model number TS POD FAR

M1 0.46 0.63 0.37 M15 0.66 0.79 0.21

M2 0.24 0.39 0.61 M16 0.30 0.46 0.54

M3 0.47 0.64 0.36 M17 0.05 0.09 0.91

M4 0.22 0.36 0.64 M18 0.27 0.43 0.57

M5 0.55 0.71 0.29 M19 0.38 0.55 0.45

M6 0.28 0.44 0.56 M20 0.20 0.34 0.66

M7 0.63 0.77 0.23 M21 0.39 0.57 0.43

M8 0.26 0.42 0.58 M22 0.55 0.71 0.29

M9 0.44 0.61 0.39 M23 0.28 0.44 0.56

M10 0.26 0.41 0.59 M24 0.28 0.44 0.56

M11 0.15 0.26 0.74 M25 0.45 0.62 0.38

M12 0.36 0.53 0.47 M26 0.08 0.16 0.84

M13 0.01 0.02 0.98 M27 0.19 0.32 0.68

M14 0.02 0.05 0.95 - - - -
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M22, M25, and M1 demonstrated high values of similarity,

followed by M7. Among the five combination members with

the highest values, the simulations using WDM6 and WSM6 for

the MP scheme, which configured the same CU scheme options

of BMJ, were more suitable for extreme precipitation forecasting.

In terms of the NT cumulus scheme, Thompson and

WDM6 were more suitable for the simulation configuration.

Noah was found to be the best land surface scheme. Therefore,

the combination member of BMJ-WDM6-Noah performed best.

Figure 3 shows the range and mean value of the TCP for the

observation (OBS) and WRF simulation. The TCP is shown in

Figure 3A. The value of observation was relatively concentrated,

with the quartile (25%–75%) ranging from 200 to 400 mm. The

differences among the simulated results were significant. For

example, M5, M14, M15, and M16 demonstrated relatively

smaller ranges, while M21, M24, and M27 displayed larger

ranges. All simulation members underestimated the median

values compared to the OBS. The median value of M19 was

closest to OBS. For maximum values, all simulation members

were higher than OBS, especially M9 and M21, which had the

largest difference. In terms of mean values (Figure 3B), the

deviation between M19 and OBS was smallest, followed by

M3, M9, M18, M21, M22, M24, and M27 (over 200 mm),

with relatively small differences from OBS. Additionally, M18,

M19, M20, M21, M24, and M27 overestimated the 75th

percentile values compared to OBS. However, the difference

among them was small. In general, the deviation between

M19 and OBS was the smallest. Therefore, M19 was regarded

as the optimal member among the 27 simulation scheme

combinations.

TABLE 5 Similarity by Euclidean distance for WRF combination members.

Model number Similarity Ranking Model number Similarity Ranking Model number Similarity Ranking

M7 0.518 1 M5 0.433 10 M4 0.404 19

M22 0.496 2 M23 0.428 11 M27 0.395 20

M25 0.476 3 M12 0.420 12 M11 0.393 21

M1 0.474 4 M8 0.419 13 M6 0.390 22

M19 0.468 5 M18 0.416 14 M26 0.373 23

M9 0.464 6 M24 0.414 15 M10 0.360 24

M3 0.448 7 M16 0.409 16 M17 0.348 25

M15 0.437 8 M20 0.407 17 M13 0.335 26

M21 0.437 9 M2 0.405 18 M14 0.333 27

FIGURE 3
TCP of observation and WRF simulations. (A) Range of TCP for simulation and observation. Thick horizontal lines in boxes indicate the median
values, and boxes show the inner-quartile (25%–75%). (B) Mean values of the TCP.
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Spatial evaluation of TCP in WRF
simulations

Figure 4 illustrates the spatial distributions of TCP for WRF

combination members and OBS by interpolation. Spatially, the

OBS indicated that the TCP generally increased from south to

north of PLB, exhibiting a clear gradient, with the maximum

precipitation in the northeast and the minimum in the south of

the basin. The low value appeared near Poyang Lake. The storm

centre with high values (over 400 mm) was mainly located in the

northeastern PLB, specifically the Raohe Basin, the western

Xinjiang Basin, and a small part of the northern Ganjiang and

Fuhe Basins. According to the simulated combination members,

the results can basically reproduce the spatial distribution

characteristics of the TCP showing an increasing trend from

south to north as a whole. The storm centre with high values

appeared in the northeastern PLB. The maximum precipitation

(over 600 mm)of the WRF simulation was higher than the

observed value. The high value appeared in Poyang Lake,

which was contrary to the result of OBS. This may be due to

the lack of meteorological stations near Poyang Lake, resulting in

some differences between the observations by spatial

interpolation and simulations. The distribution of the storm

centre (high value) was different from the OBS. The

simulation combination members underestimated the coverage

of the high value area, which was further north relative to the

OBS. The performance of the simulation combination members

was different. In terms of the storm centre, the distributions of

M7 and M1 were relatively small and concentrated in the Raohe

Basin, with the maximum precipitation in the northeastern PLB.

The distribution of M22 was relatively large and mainly

concentrated in the Raohe Basin, Xiushui Basin, and Poyang

Lake, and the maximum precipitation was in the northern Raohe

Basin. M25 was mainly distributed in the Raohe Basin, the

FIGURE 4
Spatial distribution of TCP for OBS and WRF combination members.
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northeastern area of Poyang Lake (more than 400 mm) and the

northern Ganjiang and Fuhe Basins. However, less precipitation

was found in the southwestern PLB. In contrast, the precipitation

centre of M19 covered the largest area with a distribution of five

subbasins, which canmore effectively capture the precipitation of

the PLB.

To more intuitively analyse the spatial difference, Figure 5

describes the bias distribution of WRF simulations compared to

the interpolated observation (simulated value minus the observed

value). Overall, a negative value indicated that the WRF

simulation underestimated the OBS, while a positive value

indicated an overestimation. The largest underestimation was

found in the central and western regions of the PLB, concentrated

in the central and northern parts of the Ganjiang Basin. In

addition, the junction areas of Xinjiang and Fuhe Basin

underestimated precipitation. The overestimated areas were

FIGURE 5
Bias distribution of WRF combination members compared to observed precipitation by interpolation (simulation minus observation).

FIGURE 6
Time series of average daily precipitation for observation and
WRF simulations.
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found in the northeastern part of the BLP, mainly in the Raohe

Basin and Poyang Lake. Specifically, the overestimation areas for

M22 and M19 were larger than those of M7, M25, and M1. The

overestimated area for M22 was distributed in the northern

Raohe Basin, Poyang Lake, and Xiushui Basin. For M19,

overestimation is found at the junction with Xinjiang and the

Fuhe Basin, especially in the Raohe Basin and Poyang Lake.

Additionally, the overestimated areas were scattered in the

middle of the Fuhe Basin but did not appear in other simulations.

Temporal validation of daily precipitation

Figure 6 shows the time series of average daily precipitation

of the observations and 27 combination members over the PLB.

For the OBS (black line), the minimum value appeared on 6 July

2020 with a value of 7.09 mm. The maximum value was found on

9 July 2020 with a value of 68.78 mm. ForWRF simulations, most

of the combination members fit the OBS well from 3 July and

7 July, while the simulated values were underestimated compared

to the OBS from 7 July to 10 July. In particular, the maximum

overestimation occurred at the peak of rainfall. Among the

combination members, M3 demonstrated the best

performance, followed by M21, M22, and M24 (thick lines).

However, M13, M18, and M12 displayed great differences

compared to the OBS, resulting in poor fittings. Figure 7

shows the correlation coefficient (CC) and root mean square

error (RMSE) for 27 WRF simulations. For CC, the maximum

value (0.96) was found for M3, followed by M21, M24, M22, and

M27. In terms of RMSE, the minimum value of M24 was

11.9 mm. day-1, followed by M21, M3, M27, and M22.

Overall, for the change in average daily precipitation, the best

performers were M21, M3, M24, and M22, while the worst

performer was M13.

For those combination members with good performance in

daily precipitation, M22, M3, and M21 performed better in TCP

evaluation, while M24 performed worse. Among the five

combinations (M7, M22, M25, M1, and M19) with the best

performance of TCP, M19, and M25 performed well with small

bias for daily precipitation, while M7 and M1 displayed

large bias.

Discussion

Identification of suitable WRF
combinations for physical schemes

This study selected a typical extreme precipitation event

in the PBL. The study area is located in the lower reaches of

the Yangtze River basin, where the precipitation variation is

large, and the terrain with many mountains is complex,

resulting in difficulty for simulation. In this study, the

high-resolution WRF model was used to simulate

precipitation, which was especially beneficial to the areas

with complex terrain. We found that WRF basically

simulated the spatial distribution of precipitation that the

storm centre was located in the north of the PLB, which was

similar to a previous study. Yu et al. (2011) captured the

rainstorm centre and the main rain belt by using WRF, which

FIGURE 7
The correlation coefficient and RMSE for 27 WRF combination members.
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was distributed from northeast to southwest in the Yangtze

River Basin. Bao et al. (2015) found that WRF showed a high

spatial pattern correlation with observations in extreme

precipitation simulations. Therefore, the WRF model has

been proven to be effective in simulating extreme

precipitation. However, the simulation is influenced by

other factors that can lead to certain deviations. For

example, the deviation near Poyang Lake may be affected

by the lack of meteorological stations. For comparison with

simulations, the meteorological stations were interpolated in

the grid of WRF by bilinear interpolation method. Although

the errors of results were limited by the distances and

numbers of the ground stations, the required spatial

resolution of observation was obtained by interpolation

method (Yang Q et al., 2021). Global or regional

precipitation products such as the Tropical Rainfall

Measuring Mission (TRMM) and China Precipitation

Analysis (CPA) data have been increasingly applied to the

validation of model results, which effectively overcome the

impact of sparse ground stations (Nooni et al., 2022).

Therefore, the precipitation datasets from satellite and

reanalysis product can be also considered in WRF

evaluation in future work. The maximum deviation in the

central and northern parts of the Ganjiang Basin may be

affected by the mountainous terrain (Argüeso et al., 2012;

Bian et al., 2022). In addition, it may also be affected by the

uneven spatiotemporal distribution of precipitation.

Compared with fixed physical parameterization schemes,

the combination of microphysical schemes, cumulus schemes

and land surface schemes performs differently in extreme

precipitation. For extreme precipitation simulations, it is still

a challenge to identify the optimal configuration from a large

number of combined physical schemes (Zhou et al., 2018).

Our findings showed that the performance of WRF

combinations in simulating extreme precipitation is

restricted by evaluation metrics. It is difficult for one

combination to maintain its best performance consistently

in all metrics. In terms of the evaluation of TCP, the

combination of M7 (BMJ-WDM6-Noah) was the most

suitable simulation, followed by M22 (NT-Thompson-

Noah). Combined with the daily precipitation evaluation,

M3 (NT-Thompson-Noah) was the optimal combination due

to the minimum bias of daily precipitation. Although M7,

M25, and M1 performed well in the total rainfall evaluation,

their daily precipitation error was large. M24 and

M27 showed small daily precipitation errors, but displayed

worse performance in the total cumulative precipitation

assessment. This may be related to the serious

underestimation of the simulation value from 7 July to 10

July. The results reveal that the identification of physical

schemes is based on the study area and precipitation

characteristics. The temporal evaluation and spatial

distribution of precipitation have brought uncertainty to

the simulation. Therefore, the appropriate combination

should be determined by the research emphasis. Based on

the comprehensive factor, five optimal WRF combinations

are identified for the extreme precipitation in the PLB

(Table 6). Therefore, the construction of a quantitative and

integrated parametric scheme combination evaluation

method is an important issue for future research on

precipitation simulation.

Applicability of physical schemes

Research on physical schemes has received extensive

attention, such as the comparison of microphysical schemes,

radiation schemes, cumulus schemes and the performance of

WRF ensembles. Many studies have confirmed that the

magnitude and distribution of precipitation are sensitive to

the CU and MP schemes (Zhou et al., 2018; Ma et al., 2019).

Our findings demonstrated that the performance of the KF

evaluated in this study was the worst, which is different from

the results of previous studies. One possible reason is the regional

dependencies for different cumulus schemes (Yu et al., 2011). By

comparing the three microphysical schemes of WSM6,

WDM6 and Thompson, we found that Thompson was the

best for the simulation in the PLB, which indicated that the

scheme containing more complete and complex cloud physical

processes in the high-resolution simulation was more

advantageous. The investigation was also similar to previous

evaluation studies. Merino et al. (2022) found that the Thompson

scheme had the best performance in the verification of extreme

precipitation in the Mediterranean by using the station data. For

the microphysical parameter evaluation of extreme precipitation

in the central Himalayas, the model results driven by the

Thompson scheme were found to have the best consistency

with the observation results (Karki et al., 2018).

Few relevant studies have focused on parameter schemes

over PLB, especially for the sensitivity of microphysical schemes

(Wagner et al., 2013). Previous studies have found that the

WSM6 scheme has a good simulation effect in most areas of

China. Our results demonstrated that WDM6 of MP

outperforms WSM6 in the case of the same cumulus scheme.

WDM6 and Thompson have advantages in simulating

convective clouds of precipitation due to the double moment

method scheme (Xue et al., 2021).

The WRF members behaved differently for each of the

evaluation metrics, resulting in a challenge in identifying the

suitable combination of physical schemes. Therefore, the

confirmation of the physical scheme was based on actual

needs, which gradually became an indicative factor. As

physical processes in atmospheric simulations are susceptible

to topographic and climatic conditions, the physical scheme

plays a decisive role in the simulation process. The accuracy

of WRF simulation is influenced by driving conditions, domain
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scales and terrains. Therefore, the NWP precipitation evaluation

index system needs to be constructed to improve the simulation

accuracy. By optimizing the combination of parameterization

schemes, the simulation results are more reliable than the default

parameters of the model. These investigations demonstrate a

reference for regional extreme precipitation forecasting. The

limitation of this study was the number of extreme

precipitation events. The extreme precipitation events selected

in this study was a typical event, which has more serious negative

impact on Poyang Lake Basin. Previous studies have shown that

the rainstorm in the first 10 days of July is an important reason

for the flood in the PLB, accounting for a large proportion of

historical disasters. Therefore, this rainstorm is a typical event, it

can represent the basic law of rainstorm (similar atmospheric

physical mechanisms) and flood in this basin. We set up

comparative ensemble tests as many as possible to reduce the

errors caused by this typical event. In general, our research is

universal and representative. In addition, the different initial and

lateral boundary conditions for WRF should also be explored for

more accurate forecasting of extreme weather events at the local

scale.

Conclusion

This study simulated extreme precipitation events over the

PLB by numerical weather forecasting from 1 July to 10 July

2020. To reproduce the extreme precipitation process,

27 combination members of WRF physical schemes were

designed, with three CU schemes (KF, BMJ, GF), three MP

schemes (WDM6, WSM6, Thompson) and three land surface

schemes (Noah, Noah-MP, CLM4). Additionally, compared to

the observations interpolated by data from 92 meteorological

stations data, the appropriate WRF configurations were

identified by spatial and temporal evaluation. Then, the major

findings were summarized as follows.

1) The spatial comparison showed that theWRFmodel basically

simulated the spatial and temporal distribution of extreme

precipitation over the PLB and captured the precipitation

centre in the northeast of the PLB. However, compared with

the observed value, the WRF combinations showed the

overestimation mainly in the Raohe Basin and Poyang

Lake. The largest underestimation was found in the central

and western regions of the PLB, concentrated in the central

and northern parts of the Ganjiang Basin.

2) For TCP, the metrics of CC, RMSE, Bias, TS, POD, and

FAR were employed to validate the performance of WRF

combination members. The spatial correlation coefficients

ranged from 0.6 to 0.8 for WRF combination members.

And M11 has the highest value of 0.796. For standard

deviation, the values of M11, M2, M26, and M1 in the

simulations were closest to 1. In terms of categorical

statistical metrics, the highest scores (TS, POD, FAR)

were found for M15, followed by M7. The TS, POD and

FAR of M15 were 0.66, 0.79, and 0.21, respectively. Based

on the comprehensive ED metric, the value of similarity

ranged from 0.333 to 0.518. M7 with maximum similarity

(0.518) demonstrated the best performance in extreme

precipitation simulation. The quartile (25%–75%) of

observation ranged from 200 to 400 mm. The mean

value of OBS and M19 were 259.34 and 218.33 mm,

respectively. The deviation between M19 and OBS was

smallest. In addition, M19 performed well in the range of

the TCP.

3) For the error analysis of daily precipitation, the maximum

value of CC was 0.96, which was found for M3. The

minimum value of RMSE was 11.9 mm. day-1, which was

found for M24. The simulated values were underestimated

compared to the OBS from 7 July to 10 July. M3 (BMJ-

WSM6-CLM4) and M21 (NT-WSM6-CLM4) were optimal

among the members. In general, five optimal combinations

of WRF physical schemes (M22, M19, M9, M3, M21) were

selected for extreme precipitation simulation over the PLB

in this study.
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TABLE 6 Optimal combinations of WRF physical schemes.

Ranking Model
number

Cumulus
scheme

Microphysics
scheme

Land surface
scheme

Lw
radiation

SW
radiation

Planetary boundary
layer scheme

1 M22 NT Thompson Noah RRTMG Dudhia YSU

2 M19 NT WSM6 Noah RRTMG Dudhia YSU

3 M9 BMJ WDM6 CLM4 RRTMG Dudhia YSU

4 M3 BMJ WSM6 CLM4 RRTMG Dudhia YSU

5 M21 NT WSM6 CLM4 RRTMG Dudhia YSU
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Underestimated increase and
intensification of humid-heat
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inhomogeneity
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When co-occurring with elevated levels of ambient relative humidity (RH), hot
extremes are more perceivable and consequently more health-damaging.
Quantifying changes in humid-heat extremes has therefore gained considerable
scientific and societal attention, but a fundamental yet critical aspect to the
estimation—data reliability—has been largely downplayed in previous analysis. By
comparing ~10 observational and reanalysis datasets to fully-homogenized
observations across China, we report ubiquitous inhomogeneity in RH series in
these popularly-used datasets [including HadISD(H) and ERA5], which accordingly
produce unrealistically strong drying trends 2–3 times the homogenized dataset-
based estimate during 1979–2013 in warm-moist southeast China. Locally, an
inhomogeneity-caused exaggeration of drying by a magnitude of 1% decade−1

translates into a significant underestimation of increasing rates for frequency and
intensity of humid-heat extremes by more than 1.2 days decade−1 and .07% decade−1

respectively. From a regional perspective, these inhomogeneous records have
underestimated the frequency increase of extremes by up to 2 days decade−1 and
their intensification by up to .4°C decade−1 in southeast China. Extremes identified via
homogenized and non-homogenized datasets also differ in the bivariate joint
distribution structure, with former cases featuring similarly hot temperatures yet
discernably lower humidity.

KEYWORDS

humid-heat extremes, data inhomogeneity, relative humidity, drying bias, multivariate
compound events

1 Introduction

It is unequivocal that human influence has warmed the atmosphere, leading to more
frequent, more intense, longer-lasting, and more widespread hot temperature extremes
worldwide (IPCC, 2021). These hot extremes are a major cause of suffering and death as
punctuated by some of the deadly cases such as the 2003 European event (~70,000 mortality)
and the 2010 Russian event (~50,000 mortality, Hoag, 2014). The combination of extremely
high temperatures with high humidity, i.e., the so-called humid-heat stress, represents a greater
threat to human health, as it lowers the cooling efficiency of sweat, therefore making it difficult
or even impossible for the body to prevent overheating (Mora et al., 2017; Buzan and Huber,
2020; IPCC, 2021; Vecellio et al., 2022). Hence, considerable efforts have been devoted to
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defining, monitoring and understanding extreme humid-heat events,
based on diverse metrics configuring temperature and humidity as
well as other relevant variables (e.g., winds and radiation) in different
ways (Delworth et al., 1999; Diffenbaugh et al., 2007; Stull, 2011;
Willett and Sherwood, 2012; Fischer and Knutti, 2013).

Regardless of metrics used, humid heat extremes have exhibited
significantly increasing trends for frequency and intensity in most
continents (Rogers et al., 2021; Tuholske et al., 2021). When
incorporating humidity into the indices in a highly non-linear
manner, these increases are markedly larger than their
temperature-only counterparts (Delworth et al., 1999; Wang and
Zhu, 2020; Rogers et al., 2021). Even at the current level of global
warming, several populous regions, including North and South China,
Eastern India, and the Middle East (Freychet et al., 2020; Saeed et al.,
2021; Raymond et al., 2020; Mora et al., 2017), have experienced
humid-heat extremes very close to or even above upper physiological
limit. Though the survivability limits are still exceeded only on the
rarest of occasions for now, the likelihood of exceedance is expected to
grow rapidly in future warmer climates in these hotspots (Dunne et al.,
2013; Mora et al., 2017; Kang and Eltahir, 2018; Saeed et al., 2021).

For the bivariate extremes, data quality of both air temperature
and relative humidity (RH) matters to the accuracy of estimate for
their long-term changes, and hence to assessments of related human
health impacts and risks as well as adaptation planning (Sherwood,
2018; Brouillet and Joussaume, 2019). In contrast to high-quality air
temperature datasets provided by multiple agencies, observational
records of relative humidity are subject to large uncertainties
resulting primarily from data inhomogeneity, and thus should be
used with caution (IPCC, 2021; Schröder et al., 2019). It has been
observed that global mean and boreal midlatitude summer-mean
surface RH slightly increased during 1973–2000, followed by a
steep decline based on the HadISDH (Willett et al., 2014; Douville
and Plazzotta, 2017; Dunn et al., 2017); however, none of the
CMIP5 models could capture such evolution. It is not yet clear if
this discrepancy is related to the misrepresentation of internal
variability in simulations or observational data inhomogeneity.
Byrne and O’Gorman (2018) provided a candidate theory
suggesting that the observed negative trends for relative humidity
over midlatitude continents were linked to warming over the
neighbouring oceans. The observational and theoretical
uncertainties along with the observation-simulation discrepancy,
preclude any robust detection and attribution conclusion with
respect to relative humidity changes (IPCC, 2021).

The inhomogeneity issue in relative humidity records stands out
starkly over China, the southeastern parts in particular, which may be
related to the technical defects of humidity sensors under high
temperature and humidity environments there (Yu and Mu, 2008;
Zhu et al., 2015). The dielectric parameter of the humicap varies
volatilely at high humidity and even more drastically combined with
high temperatures, making observed humidity deviating far from real
values. Using quality-controlled yet non-homogenized observations,
the annual China Climate Bulletin released before 2014 used to report
a significant decreasing trend in nationwide surface RH (China
Climate Bulletin, 2014); whilst turning to a homogenized RH
dataset instead, RH is believed to remain essentially unchanged
since 1961 as concluded in the post-2014 Bulletins. Zhu et al.
(2015) detected break points in the RH series observed in more
than 68% of stations across China, mainly occurring during
2000–2005, coincident with the massive automation of the

observing system. Without diving into the history of instrument
replacement, conventional homogenization procedures by
automatic software are reluctant to accurately detect and properly
address potential region-wide inhomogeneities from the source (e.g.,
homogenized HadISDH, Willett et al., 2014).

Despite improved awareness of RH inhomogeneity (Li et al.,
2020c; Wang and Sun, 2021; Zhang et al., 2021), the extent to
which such inhomogeneity distorts the estimate for past and future
changes in humid-heat extremes has been seldomly quantified
(Freychet et al., 2020). The ERA5 (Hersbach et al., 2018) and
HadISD (Dunn et al., 2016), are the most widely-used datasets to
analyze humid-heat extremes at impact-relevant scales (sub-daily to
daily) worldwide (Li et al., 2020b; Raymond et al., 2020; Speizer et al.,
2022), with in-situ observations adding values to understanding on the
regional heterogeneity (Luo and Lau, 2018; Wang et al., 2019; Li et al.,
2020a). If RH is inhomogeneous in these datasets, the derived
quantification of long-term changes in extremes would be biased.
The recent availability of two homogenized RH datasets covering the
domain of mainland China (Zhu et al., 2015; Li et al., 2020a) offers us a
unique chance to revisit the existing understanding of humid-heat
extremes in the populous region as a showcase, calling for more
emphasis on the importance of RH data quality in characterizing the
multivariate extreme event worldwide.

We do this by comprehensively comparing homogenized
observations with popularly-used ~10 datasets including raw
station-based observations, gridded observations and reanalysis
(detailed information see Supplementary Table S1). In addition to
the differences in local-to-regional changes in RH and humid-heat
extremes, we will also compare the T-RH joint distribution during
humid-heat extremes, i.e., the impact-relevant nature of events, in
homogenized and non-homogenized datasets.

2 Materials and methods

2.1 Data

There are currently two homogenized datasets including daily
mean T and RH, available in China. One is based on raw daily records
observed at 2,479 meteorological stations and was homogenized by
using the PMTred and PMFT methods (Wang, 2008a; Wang, 2008b),
with identified “break points” in the time series further manually
double-checked with metadata to pin down its origin from any of site
relocation, replacement/upgrading of observing instruments, or
changes in observing timing and reporting protocol (Zhu et al.,
2015, referred to as OBS-1 and used as the reference hereafter).
The other is homogenized with respect to a dataset containing
756 stations, alternatively using the MASH method but not
compared to the metadata (Li et al., 2020a; termed as OBS-2
hereafter). Raw daily observations from 2,479 stations across China
are used for comparison, named OBS-3. Notably, the OBS-3 is most
commonly used to study humid-heat as well as other types (e.g.,
precipitation) of weather extremes across China. It was often claimed
as “a homogenized dataset” (Luo and Lau, 2018; Kong et al., 2020) by
referring to Xu et al. (2013). As a matter of fact, the homogenization in
Xu et al. (2013) was conducted with respect to daily temperatures only,
and other variables in the datasets including RH were only quality-
controlled by the data developer—National Meteorological
Information Center—by means of detecting, flagging and
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correcting suspect/wrong values if possible (Zhu et al., 2015; Xu et al.,
2021).

Three gridded datasets produced by site observations are also
considered, including the CN05.1 (Wu and Gao, 2013) covering
mainland China at a resolution of .25°, the HadISD v3.3.0—global
sub-daily station dataset based on the ISD dataset from NOAA’s
NCEI, where temperature, dewpoint temperature, sea-level pressure
are quality controlled (Dunn et al., 2016), and the
HadISDH—homogenized global gridded (5° × 5°) monthly mean
land surface air temperature and humidity datasets based on the
HadISD dataset (Smith et al., 2011; Willett et al., 2014).

As a supplement or sometimes proxy to observations, reanalysis
data with greater spatial coverage and fewer missing values is also
broadly taken for the analysis of humid-heat extremes both globally
and regionally. The potential inhomogeneity of reanalyzed relative
humidity, however, has been seldomly noted and examined. To this
end, we also collected reanalysis data for RH as many as possible,
including ERA5 (.25° × .25°, Hersbach et al., 2018), ERA-Interim
(.75° × .75°, Dee et al., 2011), JRA-55 (.8° × .8°, Kobayashi et al., 2015),
NCEP-DOE 2 (2.5° × 2.5°, Kanamitsu et al., 2002), and CRA-40
(.125° × .8°, Liao et al., 2021). Detailed information on datasets
used could be found in Supplementary Table S1.

Given that period common to observations and reanalysis datasets
started in 1979 and the formal homogenization for OBS-1 was
conducted with respect to raw records before 2014, a 35-year
period over 1979–2013 is selected for comparison amongst
datasets. Though the homogenized dataset—OBS-1 is claimed to be
extended to the very recent, the extension was actually made by simply
concatenating post-2013 automatic observations, which are found
potentially inhomogeneous again due to the re-parameterization of
the automatic observing instrument. So further homogenization
efforts are needed to reconcile period-specific inhomogeneities
stemming from different sources.

2.2 Data pre-processing, metrics, extremes
and methods

Before conducting the analysis, all reanalysis data are adjusted by
their scaling and offsetting factors specified in the netcdf files. Also, the
time zone of each dataset is converted to local standard time of
homogenized station observations to guarantee the consistency of
follow-up comparisons.

Given closer relevance of summertime humid heat stress to human
health impacts, we put our focus on the summer season spanning from
June to August. In the OBS-1 and OBS-3 datasets, we only use
2,270 stations that operate continuously throughout the study
period without missing values. Since HadISDH only provides
monthly-mean data and unknown errors of CRA-40 temperature
data occur in 2013 (details see below), these two sets of data are
not involved in the calculation of extreme events.

Heat stress indicators that characterize human thermal discomfort
due to high air temperature and humidity are diverse, with varying
levels of equation complexity, input parameters and their weightings,
and physiological assumptions (e.g., a person of average height,
weight, health, and in moderate clothing). All indices consider T
and RH. We here adopt three representative indices, including wet-
bulb temperature (Tw), wet-bulb globe temperature (WBGT), and
NOAA-developed heat index (HI), to account for linear and non-

linear combinations between heat and humidity (Supplementary
Figure S1) as well as their distinct impacts on human health
(Buzan and Huber, 2020). The multi-indices comparison also
acknowledges their different sensitivities to RH (Sherwood, 2018),
especially in extreme states (Buzan and Huber, 2020), thus acting to
strengthen the robustness of our quantification of influences from RH
inhomogeneity on trend estimates for humid-heat extremes.

The thermodynamic wet bulb temperature (Tw) refers to the
temperature of wet air when it changes adiabatically to the
saturated state, and is usually measured by a wet bulb
thermometer. Given Tw above 31°C physical labor becomes
difficult (Sherwood and Huber, 2010); while, when its value
approaches or even exceeds 35°C, evaporative cooling from
sweating is no longer effective as a means of dissipating body heat.
Some recent pieces of evidence also point to the danger of much lower
Tw values to even young, healthy people (Asseng et al., 2021; Vecellio
et al., 2022). Considering the availability of observational
meteorological variables, we follow the empirical expression of Tw
proposed by Stull (2011) that:

Tw � T × atan 0.151997 RH% + 8.313659( ) 1 /

2[ ] + atan T + RH%( )
− atan RH% − 1.676331( ) + 0.00391838 × RH%( ) 3 /

2

× atan 0.023101RH%( ) − 4.686035

WBGT is another typical measure of heat stress expressed as a
linear combination of wet-bulb temperature, black globe temperature,
and air temperature (Yaglou and Minard, 1957). The WBGT is
employed as the ISO standard for thermal comfort (ISO, 1989) and
is in use by a number of bodies including the military, civil engineers,
and sports associations, with established thresholds relating directly to
levels of physical activity (Willett and Sherwood, 2012). Considering
the availability of variables used for calculation, we here adopt a
“simplified WBGT” (sWBGT) version, developed by the Australian
Bureau of Meteorology (ACSM, 1984), which depends only on T and
humidity and represents heat stress for average daytime shady
conditions outdoors (Willett Sherwood, 2012; Fischer and Knutti,
2013):

sWBGT � 0.56T + 0.393e + 3.94

where water vapor pressure e (hPa) is expressed as a function of air T
and RH:

e � RH
100

( )*6.105e 17.27T/237.7+T( )
The third index used here is the HI developed by Rothfusz (1990)

and further refined and recommended by the National Oceanic and
Atmospheric Administration (NOAA) with explicit thresholds
warning of different levels of danger (Diffenbaugh et al., 2007).
The HI is directly comparable to air temperature, with their
difference informing the feels-like amplification effect of moisture
on T (Delworth et al., 1999). The index is expressed as a polynomial
equation composed of T and RH:

HI � −42.379 + 2.04901523*T + 10.14333127*RH

− 0.22475541*T*RH − 0.00683783*T*T

− 0.05481717*RH*RH + 0.00122874*T*T*RH

+ 0.00085282*T*RH*RH − 0.00000199*T*T*RH*RH
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where T is air temperature in degrees F and RH is RH in percent.
If the RH is less than 13% and the temperature falls between 80° and

112°F, then the following adjustment needs to be subtracted from HI:

Adjustment � 13 − RH( )/4[ ]*SQRT 17 − ABS T − 95( )[ ]/17{ }
On the other hand, if the RH is greater than 85% and the

temperature is between 80° and 87°F, then the following adjustment
is added to HI:

Adjustment � RH − 85( )/10[ ]* 87 − T( )/5[ ]
In case that conditions of temperature and humidity warrant a HI

value below 80°F, HI is re-calculated as:

HI � 0.5* T + 61.0 + T − 68.0( )*1.2[ ] + RH*0.094( ){ }
All heat stress indices are finally converted to values in °C.
For each station or grid, summertime daily heat stress values are

firstly calculated based on the aforementioned three indices respectively,
and then all samples during 1979–2008 (a 30-year reference period) are
pooled and empirically ranked to obtain local 95th percentiles of each
heat stress index used as thresholds to identify their extremes.

With respect to the index considered, we count the number of
threshold-exceeding days in each summer as the frequency of extreme
humid-heat events, and the average amongst these extreme heat stress
values represents the mean intensity of extremes of the year.

Given the same network density of OBS-1 and OBS-3, biases in the
trend estimate for T, RHand extreme heat stress due to data inhomogeneity
could be measured by a direct site-to-site comparison; whilst as with the
comparison between station observations and gridded observations/
reanalysis of different resolutions, we prepare a box-average series using
all stations or grids at a scale of 5° × 5°, and calculate the areal-weighted
mean of box values across a region to produce the regional-mean series.We
did not interpolate station- and gridded- data onto the same mesh grid, to
avoid untraceable uncertainties from interpolation algorithms.

We use ordinary least squares scheme to quantify linear trends for T,
RH and extreme events, along with students’ t-test to evaluate the
significance (at the .05 level). As a cross-validation, we additionally
employ Kendall’s tau slope estimator (results now shown), and report
highly consistent results in terms of both trend magnitude and
significance. To isolate and quantify the influence of RH
inhomogeneity on the estimate for changes in extreme humid-heat
events at a local scale (Figure 3), we configure homogenized T from
the OBS-1 to both homogenized RH (OBS-1) and raw RH (OBS-3).
More specifically, we regress station-based differences in trends for
extremes evaluated via homogenized and non-homogenized data onto
the underlying differences in RH trends.

3 Results

During 1979–2013, daily mean air temperature exhibits significant
warming trends across China in both homogenized and raw site
observations (Figures 1A, B), characteristic of highly similar spatial
patterns and local-to-regional magnitudes for trends between the two
(Figure 1C). This suggests a minor influence of potential temporal
inhomogeneity in T on the estimate for long-term changes of the
variable. By contrast, the pattern, magnitude, significance and even
the sign of trends for RH differ pronouncedly between homogenized
and non-homogenized station-based observational datasets. The

inhomogeneity issue in relative humidity is particularly stark in
southeast China (south of 30N, east of 105E, black rectangle in
Figures 1D, E), leading to widespread biases in trend estimates for
RHwith incorrect signs there (Figure 1F). The region (black rectangle) is
typical of humid-hot subtropical climates in favor of the occurrence of
oppressive heat (Supplementary Figure S1; Vargas Zeppetello et al.,
2022) with the two variables playing equivalently important roles to
cause extremes there (Buzan and Huber, 2020).

With respect to the identified RH inhomogeneity hotspot, we
further expand the comparison to gridded observations and widely-
used reanalysis data at a regional scale. Large interannual to inter-
decadal variability could be found in the domain-average RH series in
homogenized observations (black curve, OBS-1, Figure 2A),
experiencing a relatively wet regime before 2000 followed by a shift
to a dry episode. This might be explained via a moist static energy
balance perspective in the context of equal fractional changes in specific
humidity over land and neighboring oceans (Byrne and O’Gorman,
2018) through remote moisture transport and local evapotranspiration
processes (Byrne and O’Gorman, 2016; Douville et al., 2020).

Though the regional variability is generally captured by other
datasets, the RH drop around 2000, when coincidentally the
observational network across China shifted from manual to
automatic practices (2000–2005), is exaggerated in non-homogenized
datasets (except for CRA-40). This is mainly because of the systematic
difference in manual and automatic observing instruments, with the
lower values recorded in the latter period (e.g., Supplementary Figure S2,
RH) deemed more accurate and used since then (Zhu et al., 2015). The
inhomogeneity gives rise to long-term drying trends of unrealistically
high magnitude and significance (Figure 2B). Specifically, the regional
drying rate estimated by OBS-1 is around −.47%/decade; while the
estimate based on OBS-3 is −1.43%/decade, almost three times sharper
than the correct one. In particular, the HadISDHwas commonly used as
homogenized observations to calculate heat stress indices globally
(Raymond et al., 2020; Rogers et al., 2021). Our analysis brings into
question the homogeneity of HadISDH over southeastern China,
suggesting that detecting region-wide inhomogeneities by automated
methods (Dunn et al., 2014) without knowing detailed histories of
station information (e.g., relocation and instrument replacement) might
be less effective than expected. Another extensively-used
dataset—ERA5 also suffers from severe inhomogeneities in RH for
the region, and is therefore not suitable to characterize humid-heat
extremes at sub-daily to daily scales in the region (Freychet et al., 2020).
Encouragingly, incorporating into homogenized station observations
(OBS-1), the CRA-40 reanalysis newly released by the China
Meteorological Administration performs well in reproducing both
variability and trends of RH in southeastern China. Though
expanding the study region northward to 35N does not alter the
comparison of trend magnitude and significance amongst datasets in
any significantmanner (figure omitted), itmight introduce confounding
factors related to differential representation of irrigation in the 30–35N
latitudinal band, an intensely irrigated region (Kang and Eltahir, 2018).
So, to distinguish influences of data inhomogeneity from other similar
confounding factors, southeastern China to the south of 30N is a better
candidate study area.

Though air temperature records were also subject to changes in
observing sites, instruments and timing, the inhomogeneities from these
sources seemed to pose a trivial influence on the temporal variability and
long-term trends as well as their significance of domain-averaged series of
air temperature (Supplementary Figure S3, OBS-1 andOBS-2 vs. OBS-3).
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The differences in magnitudes and significances of trends for air
temperature amongst datasets are much less conspicuous than those
for relative humidity. Notably, despite better performance in representing
RH during 1979–2013 in CRA-40, for unknown reasons, its temperature

records in 2013 are inconsistent with counterparts from any of other
datasets. This year’s error in temperature records has reported back to the
data developer for improvement, and the flaw also excludes CRA-40 for
participation in follow-up analysis on extremes.

FIGURE 1
Trends for summertime T and RH in China during 1979–2013. (A,B) show T trends (°C per decade) estimated by OBS-1 (homogenized) and OBS-3 (non-
homogenized), respectively. The box-and-whisker plots shown in (C) presents the distribution of T trends amongst stations within each 5°latitudinal band,
including the 5th, 25th, median, 75th, and 95th percentiles in OBS-1 (black) and OBS-3 (red). The numbers labeled to the negative/positive side of the x-axis
indicate the fraction of stations observing negative/positive trends within the latitudinal band, in which the fraction of station registering significant trends
are bold-highlighted in the second column. (D–F) are the same as (A–C) but for RH.

FIGURE 2
Domain-averaged series of RH over southeastern China during 1979–2013 based on eleven datasets (A) and their linear trends (B). The RH series is pre-
processing into anomalies with respect to the 1979–2008 climatology. The error bars in (B) enclose the 95% confidence interval of trend estimates, with
symbols “**” and “***” indicating their significance at the .05 and .01 levels respectively.
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We next quantify extent to which the RH inhomogeneity in
observation and reanalysis datasets distorts the trend estimate for
humid-heat metrics, similarly starting with a site-by-site comparison
(OBS-1 vs. OBS-3). We do this by regressing the differential trends for
extremes in homogenized and non-homogenized observations onto
the differences of RH trends in them (homogeneous trend minus non-
homogeneous one). As indicated by Figures 3A–C, given the same
atmospheric warming (local trends for T from OBS-1), an
exaggeration of drying trend by 1% decade−1 due to RH
inhomogeneity translates into an underestimation of increasing
trends for humid-heat extremes’ frequency by more than 1.2 days
decade−1, with extreme sWBGT events influenced most. The RH
inhomogeneity also significantly abates the intensification rates of
extreme humid-heat events, especially those resulting from the highly
non-linear combination between T and RH as showcased by the HI
index (Figures 3D–F; also Supplementary Figures S4A–C). Locally, an
1% decade−1 drying bias caused by the RH inhomogeneity leads to an
underestimation of intensification rates (absolute trends normalized
by local index climatology, for the purpose of objective comparison
amongst indices) for HI extremes by around .19% decade−1, equivalent
to a bias around .07°C decade−1 there (Supplementary Figure S4).

For the domain-average series of frequency, with reference to the
trend evaluated via homogenized data, all non-homogenized datasets
discernably underestimate the increase, by themagnitudes ranging from
.5 to 2 days decade−1, basically proportional to the regional drying biases
(both the X-axis and Y-axis represent the homogenized OBS-1 minus
other datasets). The limited sample size (~9 datasets) prohibits us from

further evaluating the significance of such relationship. Despite being
widely used, the HadISD and ERA5 datasets are amongst the worst that
considerably underestimate past increases in the frequency of humid-
heat extremes (Figure 4). Their bad performance arises jointly from an
overestimation of the RH drying rate and an underestimation of the
warming trend (Supplementary Figure S5).

Notably, despite significant negative correlation between air
temperature and relative humidity at the regional scale, we did not find
the cancellation or say compensation effect between greater warming and
stronger RH reduction biases in the same dataset (Supplementary Figure
S5) as reported in historical simulations and future projections (Fischer
and Knutti, 2013), except for NCEP2 which shows the strongest negative
correlation between the two variables. Rather, slightly weaker warming
trends and drying bias in RH trends in tandem contribute to an
underestimation of regional increases in humid-heat extremes in
frequency and intensity, with the “out-of-range” RH bias (outside the
grey shadings in Supplementary Figure S5) dominating in most datasets.
Even forNCEP2 seeminglymost faithfully reproducing extremes’ statistics,
such better performance apparent arises from the wrong reason, and
therefore should not be further leveraged as a reliable benchmark formodel
evaluation and impact quantification (Casanueva et al., 2019). Similar
“right statistics for wrong reason” might exist at local scales where the
T-RH anti-correlation is even stronger (e.g., <−.85).

When referring to extreme humid-heat conditions, the combination
in a fashion of high temperature and high humidity comes to one’s mind
first and naturally. But as a matter of fact, extreme humid-heat events
represent a typical case that not all of its components are necessarily

FIGURE 3
Influences of local RH trend bias (homogenized OBS1 minus non-homogenized OBS3) on the estimate for trends for frequency (A–C) and intensity
(D–F) of humid-heat extremes across southeast China, identified using three indicators. To improve comparability in intensity amongst indicators (D–F), the
trend for intensity at each station is normalized by local indicator climatology. Linear regressions are shown by black curves and the 95% regression
confidence intervals are shaded in grey, with regression coefficients (Slope) and significance (P) indicated at the lower-right of each panel.
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extreme, but their combination leads to an extreme impact (Zscheischler
et al., 2018). Different forms of joint distributions of temperature and
humidity during extreme humid-heat events are worth further sorting
out, because they might cause distinct impacts on human health (Mora
et al., 2017; Asseng et al., 2021).

Compared to humid-heat extremes previously identified by non-
homogenized observations (OBS-3), counterparts from homogenized
observations are similarly warm (mostly within the range of 25–33°C,
Supplementary Figure S6) but not necessarily that moist, regardless of
indicators selected (Figure 5). Quantitatively, we used to believe that
the majority of extremes (around 60%–80% events across the region)
occurred in the context of RH wetter than 70%; while subject to the
homogenization correction, the understanding is revised into that the
conventionally favorable thermodynamic environment host only half
of extremes. Such a contrast in the RH constituent to extremes is also
ubiquitous amongst other observation and reanalysis datasets
(Supplementary Figure S7). In particular, though the bivariate
distribution difference is largely determined by RH biases, the
temperature difference also plays a non-trivial role in shaping the
differential joint distribution structure in some datasets, e.g., ERA5
(Supplementary Figure S7E) and NCEP2 (Supplementary Figure
S7G). In addition to the absolute magnitude for humid-heat
extremes, the accurate mapping of typical bivariate configuration
constituting the extremes, based on homogenized datasets, matters
to identification of key thresholds for early warning against health-

damaging events (Han et al., 2022; Vecellio et al., 2022). In light of the
distinct bivariate distribution structures (Supplementary Figure S7)
along with the harder-detectable inhomogeneity in the bivariate
combined indices (e.g., Supplementary Figure S2, Tw), a
component-wise bias correction technique might be superior to an
“one-step” correction scheme with respect to the combined index, for
both observations and simulations (Casanueva et al., 2019).

4 Discussion and conclusion

4.1 Discussion

We here addressed the issue of ubiquitous inhomogeneity of
relative humidity in most observational and reanalysis datasets,
with a specific focus on its influences on the estimate for changes
in daily humid-heat extremes in China. We acknowledge that the
intrinsic diurnal cycle of humid heat stress, resulting from quasi out-
of-phase variations of air temperature and relative humidity (Fischer
and Knutti, 2013), makes the daily-mean value conservative to
represent daily maxima, the most concerning value to human
health (Schär, 2016; Kang and Eltahir, 2018; Raymond et al., 2020).
The current unavailability of homogenized hourly to sub-daily (e.g., 6-
h) RH observations, however, prohibits us from moving forward in
this regard (Wang and Sun, 2021), Our analysis clearly demonstrates

FIGURE 4
Scatter plot–between regional-mean (southeast China) RH trend bias and extreme events’ frequency (A–C)/intensity (D–F) trend bias, amongst
inhomogeneous datasets with reference to homogenized one (OBS-1, black dot in the center).
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that using sub-daily records from ERA-5 or raw HadISD observations
to achieve the goal is problematic. As a result, efforts are badly needed
to collect, quality-control and homogenize hourly temperature and
relative humidity, to revisit and better inform changing risks of
impact-relevant heat stress in the populous region, as well as in
other vulnerable regions around the world.

The data inhomogeneity-caused bias in the estimate for past changes
in humid-heat extremes would propagate into their future projections, as
all of model validation, bias correction (Casanueva et al., 2019), selection
(Ridder et al., 2022) and weighting scheme (Ribes et al., 2021) as well as
the design of emergent constraints (Freychet et al., 2021) are contingent
on thorough comparisons of historical simulations to observations. By
leveraging homogenized RH records as an observational constraint,
follow-up efforts are therefore worth extending into projection
analyses, in terms of both magnitudes and width of the uncertainty
range for projected frequency and intensity of humid-heat extremes.

To the other end of spectrum of T-RH configuration, low relative
humidity combined with high temperatures aggravates risks for
wildfire occurrence and agricultural impacts (Chiodi et al., 2021;
Balch et al., 2022). The unrealistically strong drying trend for RH
is expected to result in an overestimation of increasing fire risks, which
also remains under-appreciated in the region because of little attention
paid to hot-dry-fire compound events there for now.

5 Conclusion

We present the most comprehensive comparison to date on long-
term changes in relative humidity across China, based on ~10 widely-
used observational and reanalysis datasets subject to different levels of
homogenization. We report an artificially sharp decline in RH around
2000–2005 in most datasets due mainly to the massive transition from
manual observation practices to automatic observations with
observational instruments replaced at the time. The inhomogeneity
issue stands out particularly stark in warm-moist southern China,
leading to unrealistically strong and significant drying trends there.

The biased drying trends in these inhomogeneous datasets lead to
underestimation of changes in humid-heat extremes, with a drying bias of
1% decade−1 attenuating the magnitude for increases in extremes’
frequency (intensity) by more than 1.2 days decade−1 (.07% decade−1)

locally, regardless of metrics considered. For the region as a whole, these
inhomogeneous records have underestimated domain-averaged frequency
(intensity) of extremes by .47–1.95 days decade−1 (−.04%~.41% decade−1).
Humid-heat extremes identified by homogenized and non-homogenized
datasets also differ in the T-RH joint anomalies, with most cases in the
latter equivalently hot or slightly cooler yet discernably moister.

Our results call for emphasis on data quality of observed/reanalyzed
relative humidity, not only in China but also in other parts of the world,
and the need of re-evaluating past changes of humid-heat extremes to
improve projections of deadly heat stress worldwide.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the authors, without undue reservation.

Author contributions

YC designed the research; XL carried out most calculations and
result interpretations, created all figures and wrote the original draft,
further reviewed and edited by YC and YZ developed and provided the
homogenized observation dataset, and took part in result discussion.
NA and ZL participated in result discussion.

Funding

The research is financially supported by the National Key Research
and Development Program of China (Grant No. 2018YFC1507700).
The study is also supported by S&T Development Fund of CAMS
(2021KJ014).

Acknowledgments

We thank the data developer, i.e., National Meteorological
Information Center, for collecting, quality controlling,
homogenizing and kindly providing the observational data.

FIGURE 5
The difference (homogenizedminus non-homogenized) in the bivariate joint distribution of T and RHwhich produce three type extreme events (A-C) of
corresponding indicators. Temperature and humidity are firstly binned by 2°C and 2% intervals, and the fraction of extreme-producing (all cases during the
study period across the domain) T-RH configurations that fall into corresponding bivariate bins are calculated and presented.

Frontiers in Environmental Science frontiersin.org08

Li et al. 10.3389/fenvs.2022.1104039

72

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1104039


Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1104039/
full#supplementary-material

References

ACSM (1984). Prevention of thermal injuries during distance running.Med. J. Aust. 141
(12-13), 876–879.

Asseng, S., Spänkuch, D., Hernandez-Ochoa, I. M., and Laporta, J. (2021). The upper
temperature thresholds of life. Lancet Planet. Health 5 (6), e378–e385. doi:10.1016/S2542-
5196(21)00079-6

Balch, J. K., Abatzoglou, J. T., Joseph, M. B., Koontz, M. J., Mahood, A. L., McGlinchy, J.,
et al. (2022). Warming weakens the night-time barrier to global fire. Nature 602 (7897),
442–448. doi:10.1038/s41586-021-04325-1

Brouillet, A., and Joussaume, S. (2019). Investigating the role of the relative humidity in
the Co-occurrence of temperature and heat stress extremes in CMIP5 projections.
Geophys. Res. Lett. 46 (20), 11435–11443. doi:10.1029/2019GL084156

Buzan, J. R., and Huber, M. (2020). Moist heat stress on a hotter earth. Annu. Rev. Earth
Planet. Sci. 48 (1), 623–655. doi:10.1146/annurev-earth-053018-060100

Byrne, M. P., and O’Gorman, P. A. (2018). Trends in continental temperature and
humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. 115 (19), 4863–4868.
doi:10.1073/pnas.1722312115

Byrne, M. P., and O’Gorman, P. A. (2016). Understanding decreases in land relative
humidity with global warming: Conceptual model and GCM simulations. J. Clim. 29 (24),
9045–9061. doi:10.1175/JCLI-D-16-0351.1

Casanueva, A., Kotlarski, S., Herrera, S., Fischer, A. M., Kjellstrom, T., and Schwierz, C.
(2019). Climate projections of a multivariate heat stress index: The role of downscaling and
bias correction. Geosci. Model Dev. 12 (8), 3419–3438. doi:10.5194/gmd-12-3419-2019

China Climate Bulletin (2014). China climate Bulletin 2014. Beijing: China
Meteorological Administration.

Chiodi, A. M., Potter, B. E., and Larkin, N. K. (2021). Multi-decadal change in western
US nighttime vapor pressure deficit. Geophys. Res. Lett. 48 (15), e2021GL092830. doi:10.
1029/2021GL092830

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al.
(2011). The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system. Q. J. R. Meteorological Soc. 137 (656), 553–597. doi:10.1002/qj.828

Delworth, T. L., Mahlman, J. D., and Knutson, T. R. (1999). Changes in heat index
associated with CO2-induced global warming. Clim. Change 43 (2), 369–386. doi:10.1023/
A:1005463917086

Diffenbaugh, N. S., Pal, J. S., Giorgi, F., and Gao, X. (2007). Heat stress intensification in
the Mediterranean climate change hotspot. Geophys. Res. Lett. 34 (11), L11706. doi:10.
1029/2007GL030000

Douville, H., Decharme, B., Delire, C., Colin, J., Joetzjer, E., Roehrig, R., et al. (2020).
Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in
CNRM-CM6-1. Clim. Dyn. 55 (5), 1613–1629. doi:10.1007/s00382-020-05351-x

Douville, H., and Plazzotta, M. (2017). Midlatitude summer drying: An underestimated
threat in CMIP5 models? Geophys. Res. Lett. 44 (19), 9967–9975. doi:10.1002/
2017GL075353

Dunn, R. J. H., Willett, K. M., Ciavarella, A., and Stott, P. A. (2017). Comparison of land
surface humidity between observations and CMIP5 models. Earth Syst. Dyn. 8 (3),
719–747. doi:10.5194/esd-8-719-2017

Dunn, R. J. H., Willett, K. M., Morice, C. P., and Parker, D. E. (2014). Pairwise
homogeneity assessment of HadISD. Clim. Past 10 (4), 1501–1522. doi:10.5194/cp-10-
1501-2014

Dunn, R. J. H., Willett, K. M., Parker, D. E., and Mitchell, L. (2016). Expanding HadISD:
Quality-controlled, sub-daily station data from 1931. Geoscientific Instrum. Methods Data
Syst. 5 (2), 473–491. doi:10.5194/gi-5-473-2016

Dunne, J. P., Stouffer, R. J., and John, J. G. (2013). Reductions in labour capacity from
heat stress under climate warming. Nat. Clim. Change 3 (6), 563–566. doi:10.1038/
nclimate1827

Fischer, E. M., and Knutti, R. (2013). Robust projections of combined humidity and
temperature extremes. Nat. Clim. Change 3 (2), 126–130. doi:10.1038/nclimate1682

Freychet, N., Hegerl, G., Mitchell, D., and Collins, M. (2021). Future changes in the
frequency of temperature extremes may be underestimated in tropical and subtropical
regions. Commun. Earth Environ. 2 (1), 28. doi:10.1038/s43247-021-00094-x

Freychet, N., Tett, S. F. B., Yan, Z., and Li, Z. (2020). Underestimated change of wet-bulb
temperatures over east and South China. Geophys. Res. Lett. 47 (3), e2019GL086140.
doi:10.1029/2019GL086140

Han, Q., Liu, Z., Jia, J., Anderson, B. T., Xu, W., and Shi, P. (2022). Web-based data to
quantify meteorological and geographical effects on heat stroke: Case study in China.
GeoHealth 6 (8), e2022GH000587. doi:10.1029/2022GH000587

Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., et al. (2018).
Operational global reanalysis: Progress, future directions and synergies with NWP, 27.
doi:10.21957/tkic6g3wm

Hoag, H. (2014). Russian summer tops ‘universal’ heatwave index. Nature 2014, 16250.
doi:10.1038/nature.2014.16250

ISO (1989). Hot Environments – estimation of the heat stress on working man, based on
the WBGT-index (wet bulb globe temperature). Geneva: International Standards
Organization. ISO 7243.

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., et al.
(2002). NCEP–DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorological Soc. 83 (11),
1631–1644. doi:10.1175/BAMS-83-11-1631

Kang, S., and Eltahir, E. A. B. (2018). North China Plain threatened by deadly heatwaves due
to climate change and irrigation. Nat. Commun. 9 (1), 2894. doi:10.1038/s41467-018-05252-y

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al. (2015). The
JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorological Soc.
Jpn. Ser II 93 (1), 5–48. doi:10.2151/jmsj.2015-001

Kong, D., Gu, X., Li, J., Ren, G., and Liu, J. (2020). Contributions of global warming and
urbanization to the intensification of human-perceived heatwaves over China. J. Geophys.
Res. Atmos. 125 (18), e2019JD032175. doi:10.1029/2019JD032175

Li, C., Sun, Y., Zwiers, F., Wang, D., Zhang, X., Chen, G., et al. (2020a). Rapid warming in
summer wet bulb globe temperature in China with human-induced climate change.
J. Clim. 33 (13), 5697–5711. doi:10.1175/JCLI-D-19-0492.1

Li, D., Yuan, J., and Kopp, R. E. (2020b). Escalating global exposure to compound heat-
humidity extremes with warming. Environ. Res. Lett. 15 (6), 064003. doi:10.1088/1748-
9326/ab7d04

Li, Z., Yan, Z., Zhu, Y., Freychet, N., and Tett, S. (2020c). Homogenized daily relative
humidity series in China during 1960−2017. Adv. Atmos. Sci. 37 (4), 318–327. doi:10.1007/
s00376-020-9180-0

Liao, J., Wang, H., Zhou, Z., Liu, Z., Jiang, L., and Yuan, F. (2021). Integration, quality
assurance, and usage of global aircraft observations in CRA. J. Meteorological Res. 35 (1),
1–16. doi:10.1007/s13351-021-0093-3

Luo, M., and Lau, N.-C. (2018). Increasing heat stress in urban areas of eastern China:
Acceleration by urbanization. Geophys. Res. Lett. 45 (2313), 13060–13069. doi:10.1029/
2018GL080306

IPCC (2021). “Chapter 3: Human influence on the climate system,” in Climate change
2021: The physical science basis, contribution of working group I to the sixth assessment
report of the intergovernmental panel on climate change. Editors V. Masson-Delmotte,
P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, et al. (Cambridge University Press),
3–31. –3-33 In press Available at: https://www.ipcc.ch/report/sixth-assessment-report-
working-group-i/.

Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., et al.
(2017). Global risk of deadly heat. Nat. Clim. Change 7 (7), 501–506. doi:10.1038/
nclimate3322

Raymond, C., Matthews, T., and Horton, R. M. (2020). The emergence of heat and humidity
too severe for human tolerance. Sci. Adv. 6 (19), eaaw1838. doi:10.1126/sciadv.aaw1838

Ribes, A., Qasmi, S., and Gillett, N. P. (2021). Making climate projections conditional on
historical observations. Sci. Adv. 7 (4), eabc0671. doi:10.1126/sciadv.abc0671

Frontiers in Environmental Science frontiersin.org09

Li et al. 10.3389/fenvs.2022.1104039

73

https://www.frontiersin.org/articles/10.3389/fenvs.2022.1104039/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1104039/full#supplementary-material
https://doi.org/10.1016/S2542-5196(21)00079-6
https://doi.org/10.1016/S2542-5196(21)00079-6
https://doi.org/10.1038/s41586-021-04325-1
https://doi.org/10.1029/2019GL084156
https://doi.org/10.1146/annurev-earth-053018-060100
https://doi.org/10.1073/pnas.1722312115
https://doi.org/10.1175/JCLI-D-16-0351.1
https://doi.org/10.5194/gmd-12-3419-2019
https://doi.org/10.1029/2021GL092830
https://doi.org/10.1029/2021GL092830
https://doi.org/10.1002/qj.828
https://doi.org/10.1023/A:1005463917086
https://doi.org/10.1023/A:1005463917086
https://doi.org/10.1029/2007GL030000
https://doi.org/10.1029/2007GL030000
https://doi.org/10.1007/s00382-020-05351-x
https://doi.org/10.1002/2017GL075353
https://doi.org/10.1002/2017GL075353
https://doi.org/10.5194/esd-8-719-2017
https://doi.org/10.5194/cp-10-1501-2014
https://doi.org/10.5194/cp-10-1501-2014
https://doi.org/10.5194/gi-5-473-2016
https://doi.org/10.1038/nclimate1827
https://doi.org/10.1038/nclimate1827
https://doi.org/10.1038/nclimate1682
https://doi.org/10.1038/s43247-021-00094-x
https://doi.org/10.1029/2019GL086140
https://doi.org/10.1029/2022GH000587
https://doi.org/10.21957/tkic6g3wm
https://doi.org/10.1038/nature.2014.16250
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1038/s41467-018-05252-y
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1029/2019JD032175
https://doi.org/10.1175/JCLI-D-19-0492.1
https://doi.org/10.1088/1748-9326/ab7d04
https://doi.org/10.1088/1748-9326/ab7d04
https://doi.org/10.1007/s00376-020-9180-0
https://doi.org/10.1007/s00376-020-9180-0
https://doi.org/10.1007/s13351-021-0093-3
https://doi.org/10.1029/2018GL080306
https://doi.org/10.1029/2018GL080306
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://doi.org/10.1038/nclimate3322
https://doi.org/10.1038/nclimate3322
https://doi.org/10.1126/sciadv.aaw1838
https://doi.org/10.1126/sciadv.abc0671
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1104039


Ridder, N. N., Ukkola, A. M., Pitman, A. J., and Perkins-Kirkpatrick, S. E. (2022).
Increased occurrence of high impact compound events under climate change. Npj Clim.
Atmos. Sci. 5 (1), 3. doi:10.1038/s41612-021-00224-4

Rogers, C. D. W., Ting, M., Li, C., Kornhuber, K., Coffel, E. D., Horton, R. M., et al.
(2021). Recent increases in exposure to extreme humid-heat events disproportionately
affect populated regions. Geophys. Res. Lett. 48 (19), e2021GL094183. doi:10.1029/
2021GL094183

Rothfusz, L. (1990). The heat index equation. Camp Springs, Maryland, USA: National
Weather Service Technical Attachment, 23–90.

Saeed, F., Schleussner, C.-F., and Ashfaq, M. (2021). Deadly heat stress to become
commonplace across south asia already at 1.5°C of global warming. Geophys. Res. Lett. 48
(7), e2020GL091191. doi:10.1029/2020GL091191

Schär, C. (2016). The worst heat waves to come. Nat. Clim. Change 6 (2), 128–129.
doi:10.1038/nclimate2864

Schröder, M., Lockhoff, M., Shi, L., August, T., Bennartz, R., Brogniez, H., et al. (2019).
The GEWEX water vapor assessment: Overview and introduction to results and
recommendations. Remote Sens. 11 (3), 251. Article 3. doi:10.3390/rs11030251

Sherwood, S. C. (2018). How important is humidity in heat stress? J. Geophys. Res.
Atmos. 123 (2111), 11808–11810. doi:10.1029/2018JD028969

Sherwood, S. C., and Huber, M. (2010). An adaptability limit to climate change due to
heat stress. Proc. Natl. Acad. Sci. 107 (21), 9552–9555. doi:10.1073/pnas.0913352107

Smith, A., Lott, N., and Vose, R. (2011)., 92. JSTOR, 704–708. doi:10.1175/
2011bams3015.1The integrated surface database: Recent developments and
partnershipsBull. Am. Meteorological Soc.6

Speizer, S., Raymond, C., Ivanovich, C., and Horton, R. M. (2022). Concentrated and
intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49 (5),
e2021GL097261. doi:10.1029/2021GL097261

Stull, R. (2011). Wet-bulb temperature from relative humidity and air temperature.
J. Appl. Meteorology Climatol. 50 (11), 2267–2269. doi:10.1175/JAMC-D-11-0143.1

Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., et al. (2021). Global
urban population exposure to extreme heat. Proc. Natl. Acad. Sci. 118 (41), e2024792118.
doi:10.1073/pnas.2024792118

Vargas Zeppetello, L. R., Raftery, A. E., and Battisti, D. S. (2022). Probabilistic
projections of increased heat stress driven by climate change. Commun. Earth Environ.
3 (1), 183. doi:10.1038/s43247-022-00524-4

Vecellio, D. J., Wolf, S. T., Cottle, R. M., and Kenney, W. L. (2022). Evaluating the 35°C
wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT
Project). J. Appl. Physiology 132 (2), 340–345. doi:10.1152/japplphysiol.00738.2021

Wang, D., and Sun, Y. (2021). Long-term changes in summer extreme wet bulb globe
temperature over China. J. Meteorological Res. 35 (6), 975–986. doi:10.1007/s13351-021-
1080-4

Wang, P., Leung, L. R., Lu, J., Song, F., and Tang, J. (2019). Extreme wet-bulb
temperatures in China: The significant role of moisture. J. Geophys. Res. Atmos. 124
(22), 11944–11960. doi:10.1029/2019JD031477

Wang, S., and Zhu, J. (2020). Amplified or exaggerated changes in perceived temperature
extremes under global warming. Clim. Dyn. 54 (1), 117–127. doi:10.1007/s00382-019-
04994-9

Wang, X. L. (2008b). Accounting for autocorrelation in detecting mean shifts in climate
data series using the penalized maximal t or F test. J. Appl. Meteorology Climatol. 47 (9),
2423–2444. doi:10.1175/2008JAMC1741.1

Wang, X. L. (2008a). Penalized maximal F test for detecting undocumented mean shift
without trend change. J. Atmos. Ocean. Technol. 25 (3), 368–384. doi:10.1175/
2007JTECHA982.1

Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E.,
et al. (2014). HadISDH land surface multi-variable humidity and temperature
record for climate monitoring. Clim. Past 10 (6), 1983–2006. doi:10.5194/cp-10-
1983-2014

Willett, K. M., and Sherwood, S. (2012). Exceedance of heat index thresholds for
15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol.
32 (2), 161–177. doi:10.1002/joc.2257

Wu, J., and Gao, X. J. (2013). A gridded daily observation dataset over China region and
comparison with the other datasets. Chin. J. Geophys. 56 (4), 1102–1111. doi:10.6038/
cjg20130406

Xu, F., Chan, T. O., and Luo, M. (2021). Different changes in dry and humid heat waves
over China. Int. J. Climatol. 41 (2), 1369–1382. doi:10.1002/joc.6815

Xu, W., Li, Q., Wang, X. L., Yang, S., Cao, L., and Feng, Y. (2013). Homogenization of
Chinese daily surface air temperatures and analysis of trends in the extreme temperature
indices. J. Geophys. Res. Atmos. 118 (17), 9708–9720. doi:10.1002/jgrd.50791

Yaglou, C. P., and Minard, D. (1957). Control of heat casualties at military training
centers. Ama Arch. Ind. Health 16 (4), 302–316.

Yu, J., and Mu, R. (2008). Research on the cause of difference between AWS-and MAN-
relative humidity observations. Met. EOROLOGICAL Mon. 34 (12), 96–102. In Chinese.
(with English abstract).

Zhang, J., Zhao, T., Li, Z., Li, C., Li, Z., Ying, K., et al. (2021). Evaluation of surface
relative humidity in China from the CRA-40 and current reanalyses. Adv. Atmos. Sci. 38
(11), 1958–1976. doi:10.1007/s00376-021-0333-6

Zhu, Y. N., Cao, L., Tang, G., and Zhou, Z. (2015). Homogenization of surface
relative humidity over China. Clim. Change Res. 11 (6), 379. In Chinese. (with English
abstract).

Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J.,
Pitman, A., et al. (2018). Future climate risk from compound events. Nat. Clim. Change 8
(6), 469–477. doi:10.1038/s41558-018-0156-3

Frontiers in Environmental Science frontiersin.org10

Li et al. 10.3389/fenvs.2022.1104039

74

https://doi.org/10.1038/s41612-021-00224-4
https://doi.org/10.1029/2021GL094183
https://doi.org/10.1029/2021GL094183
https://doi.org/10.1029/2020GL091191
https://doi.org/10.1038/nclimate2864
https://doi.org/10.3390/rs11030251
https://doi.org/10.1029/2018JD028969
https://doi.org/10.1073/pnas.0913352107
https://doi.org/10.1175/2011bams3015.1
https://doi.org/10.1175/2011bams3015.1
https://doi.org/10.1029/2021GL097261
https://doi.org/10.1175/JAMC-D-11-0143.1
https://doi.org/10.1073/pnas.2024792118
https://doi.org/10.1038/s43247-022-00524-4
https://doi.org/10.1152/japplphysiol.00738.2021
https://doi.org/10.1007/s13351-021-1080-4
https://doi.org/10.1007/s13351-021-1080-4
https://doi.org/10.1029/2019JD031477
https://doi.org/10.1007/s00382-019-04994-9
https://doi.org/10.1007/s00382-019-04994-9
https://doi.org/10.1175/2008JAMC1741.1
https://doi.org/10.1175/2007JTECHA982.1
https://doi.org/10.1175/2007JTECHA982.1
https://doi.org/10.5194/cp-10-1983-2014
https://doi.org/10.5194/cp-10-1983-2014
https://doi.org/10.1002/joc.2257
https://doi.org/10.6038/cjg20130406
https://doi.org/10.6038/cjg20130406
https://doi.org/10.1002/joc.6815
https://doi.org/10.1002/jgrd.50791
https://doi.org/10.1007/s00376-021-0333-6
https://doi.org/10.1038/s41558-018-0156-3
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1104039


Effects of urbanization on multiple
human perceived temperatures in
South China

Lijie Lin1 and Meiyu Guo2*
1School of Management, Guangdong University of Technology, Guangzhou, China, 2Department of
Geography, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China

Under the combined effects of global warming and local human activities such as
urbanization, increasing populations are exposed to the threat of extreme heat
events. While the effects of regional urbanization on the changes in air temperature
and its extremes have been well studied, the effects on mean and extreme human
perceived temperatures (HPT) are still to be explored. Based on a dynamic
meteorological station classification approach, this study quantitatively assessed
the impacts and relative contribution of urbanization on the mean and extreme
human perceived temperatures in South China by analyzing ten different human
perceived temperatures indicators and taking Guangdong Province as an example. It
was found that for all human perceived temperatures indicators, the mean human
perceived temperatures and the frequency of extreme human perceived
temperatures events in South China notably increased from 1971 to 2020,
especially in the regions with comparatively higher levels of local urbanization
(e.g., the Pearl River Delta). Urbanization contributed significantly to the long-
term changes in both mean and extreme human perceived temperatures in
Guangdong. On average, the relative contributions of urbanization to the total
increases in mean human perceived temperatures and the frequency of extreme
human perceived temperatures events were 15.5% and 15.1%, respectively. These
contributions vary across different human perceived temperatures indicators, and
the urbanization contributions to the human perceived temperatures indicators that
consider the combined effects of wind speed were even higher than those merely
related to near-surface air temperature and humidity. Among different seasons, the
contributions of urbanization to mean and extreme human perceived temperatures
in both fall and winter were greater than that in spring and summer. The findings
reported here provide scientific advice for governments’ policy-making and adaption
for human-perceived thermal comfort in subtropical humid climate zones.

KEYWORDS

urbanization effects, extreme weather events, South China, compound heat-humidity
extremes, human perceived temperature

1 Introduction

In the context of global climate change, air temperatures have been increasing and will
continue to rise worldwide, with posing impacts on human society and the ecological
environment (Sun et al., 2014; Mishra et al., 2015; Hua et al., 2021; IPCC, 2021; Tuholske
et al., 2021; Wang and Yan, 2021). Accordingly, extreme heat events are becoming more frequent
and intense and will exhibit a significant increase tendency in the near future (Liu et al., 2018;
Perkins-Kirkpatrick and Lewis, 2020; Ning et al., 2022). With rapid economic growth and
urbanization since the reform and opening up, China has become one of the most vulnerable
and sensitive regions suffering from extreme heat (Lin et al., 2020;Wang et al., 2021a; Luo and
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Lau, 2021; Tian et al., 2021). The increasing risk of high temperature
has been a growing threat to China’s social environment and
ecosystem over the past half-century (Chen and Zhai, 2017; You
et al., 2017).

Land use changes together with the anthropogenic release of
greenhouse gases and heat during the process of urbanization
have contributed to increasing the occurrence of extreme heat
events in Guangdong, especially in the Pearl River Delta (PRD)
(Hao et al., 2018; Lin et al., 2020). People living in urban areas are

exposed to both global warming and urbanization effects, such as
the Urban Heat Island (UHI), which intensifies the risk of urban
residents to heat events (Oke, 1973; Oke, 1982; Kim, 1992; Li et al.,
2019). Additionally, the low albedo of the urban subsurface leads
to increased absorption of short-wave radiation, creating a
heating effect on urban areas. Also, urban buildings increase
surface roughness and frictional resistance, thus leading to
lower surface wind speeds and inhibiting heat exchange at the
air-land interface. The slowed wind speed hinders the exchange of

FIGURE 1
Spatial distribution and classification of urban and rural meteorological stations in Guangdong Province. (A) Spatial distribution of 86 meteorological
stations in Guangdong Province, with red and cyan dots representing urban and rural stations in 2015, respectively; (B) Changes in urban and rural stations
from 1980 to 2015, with red and cyan representing the number of urban and rural stations, respectively.

TABLE 1 Summary of multiple human perceived temperature (HPT) indicators in this study.

Indicators Full name Equation Reference

ATin Apparent
Temperature
(indoors)

ATin � −1.3 + 0.92 × T + 2.2 × Ea Steadman
(1979)

ATout Apparent
Temperature
(outdoors, in the
shade)

ATout � −2.7 + 1.04 × T + 2 × Ea − 0.65 × V

DI Discomfort
Index

DI � 0.5 × WBT + 0.5 × T Epstein and
Moran (2006)

ET Effective Index ET � T − 0.4 × (T − 10) × (1 − 0.001 × RH) Gagge et al.
(1972)

HI Heat Index HI � −8.784695 + 1.61139411 × T − 2.338549 × RH − 0.14611605 × T × RH − 1.2308094 × 10−2 × T2

−1.6424828 × 10−2 × RH2 + 2.211732 × 10−3 × T2 × RH + 7.2546 × 10−4 × T × RH2 + 3.582 × 10−6 × T2 × RH2

Rothfusz
(1990)

HMI Humidex HMI � T + 0.5555 × (0.1 × Ea − 10) Masterton
et al. (1979)

MDI Modified
Discomfort
Index

MDI � 0.75 × WBT + 0.38 × T Moran et al.
(1998)

sWBGT Simplified Wet
Bulb
Temperature

sWBGT � 0.567 × T + 0.0393 × Ea + 3.94 Willett and
Sherwood
(2012)

NET Net Effective
Temperature

NET � 37 − 37−T
0.68−0.0014 × RH+ 1

1.76+1.4 × V0.75
− 0.29 × T × (1 − 0.01 × RH) Houghton

and Yaglou
(1923)

WCT Wind Chill
Temperature

WCT � 13.12 + 0.6215 × T − 11.37 × (V × 3.6)0.16 + 0.3965 × T × (V × 3.6)0.16 Osczevski and
Bluestein
(2005)

Frontiers in Environmental Science frontiersin.org02

Lin and Guo 10.3389/fenvs.2023.1117443

76

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1117443


heat and air emitted from the human surface, making the
temperature felt by the human body higher (Wang et al., 2021b).

Compared with extensive studies on surface temperature or near-
surface temperature warming, fewer studies have focused on the
effects of rapid urbanization on the changes in human perceived
temperature (HPT) (Liu et al., 2018; Wang et al., 2021b; Luo and Lau,
2021), which describes the joint influences of multiple surrounding
atmospheric factors, including air temperature, relative humidity, and
wind speed, etc. HPT is a bio-meteorological indicator that measures
human comfort in different environments from a meteorological
perspective based on the heat exchange between the human
organism and the surrounding environment. It plays an important
role in urban environmental meteorological services. However, there is
still no universally accepted or unified indicator of HPT currently

(Blazejczyk et al., 2012; Li et al., 2018; Zhang et al., 2022). On the one
hand, previous studies on extreme high temperatures mainly focused
on near-surface air temperature, such as daily maximum and
minimum temperatures, yet few considered the combined effects of
multiple environmental factors on HPT (Liu et al., 2018; Wang et al.,
2021b). On the other hand, previous studies mostly focused on a single
indicator of HPT, but there was a scarcity of cross-sectional
comparisons of HPT defined by multiple methods.

With more and more people moving to urban areas, the world’s
urbanization level has climbed from 36.6% in 1970% to 56.6% in 2021.
It is projected to reach 60.4% in 2030 (United Nations Department of
Economic Social Affairs, 2018). As the largest provincial economy in
China, Guangdong Province has a high urbanization level of 74.63%.
The high level of industrialization and urbanization attracts a large

FIGURE 2
Spatial distribution of the long-term trends in annual mean HPT and actual air temperature (T) in Guangdong from 1971 to 2020: (A) ATin, (B) ATout, (C)DI,
(D) ET, (E) HI, (F) HMI, (G) MDI, (H) sWBGT, (I) NET, (J) WCT, and (K) T.
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number of labor force extremely concentrated in Guangdong.
However, it is still unclear whether and to what extent regional
urbanization affects the long-term changes in HPT in Guangdong
and its extremes as defined by multiple indicators. It is also unclear
whether the distinctions exist in the effects of urbanization on
various definitions of HPT under global warming. Therefore, it is
of great significance to examine the changes in multiple HPT
indicators and their extremes to understand regional climate
change with urbanization effects comprehensively.

This study aims to examine the spatial and temporal changes in
HPT based on multiple definitions and their extremes in South China
from 1971 to 2020 by taking Guangdong Province as an example, and
to quantitatively assess the effect of urbanization on the long-term
changes of mean and extreme HPT. Exploring the risk of increasing

HPT and its extremes under global warming and regional
urbanization has great implications for governmental decision-
makers and urban planners in mitigating extreme weather events
and severe thermal conditions.

2 Data and methods

2.1 Study area

In southern China, Guangdong Province is characterized by a
subtropical monsoon climate with long, hot, and humid summers and
relatively short and cool winters. Although Guangdong accounts for only
1.87% of the country’s land area, it holds the largest provincial economy in

FIGURE 3
Temporal changes of the annual mean of HPT and T in the urban (red) and rural (cyan) areas of Guangdong from 1971 to 2020: (A) ATin, (B) ATout, (C) DI,
(D) ET, (E)HI, (F)HMI, (G)MDI, (H) sWBGT, (I)NET, (J)WCT, and (K) T. The red and cyan straight lines indicate the linear trends of urban and rural mean series,
respectively, with the shading denoting their corresponding 95% confidence intervals.
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China, contributing 10.87% of its Gross Domestic Product (GDP). In
2021, the resident population in Guangdong reached 126.84 million,
accounting for 8.23% of the country’s total population. The urbanization
level in Guangdong reached 74.6% in 2021, notably 87.5% in the PRD in
central Guangdong. PRD gathers 53.35% of the total population of the
whole province but with less than one-third of the provincial land area
(National Bureau of Statistics of China, 2020; Statistics Bureau of
Guangdong Province, 2020). As one of the most highly urbanized and
populated provinces in China, Guangdong Province has been
experiencing pronounced regional climate change extremes, resulting

in severe impacts on the local human social and economic development
(Luo and Lau, 2017; Lin et al., 2020).

2.2 Classification of urban and rural sites

In this study, meteorological observations were collected from the
China Meteorological Data Service Center (http://data.cma.cn/). The
data have been homogenized, homogeneity-checked, and widely
used in climate change studies (Xu et al., 2013). To ensure time

FIGURE 4
Long-term trends in urban (red) and rural (cyan) means of HPT and T in Guangdong from 1971 to 2020 and their urbanization effects (black): (A) ATin, (B)
ATout, (C)DI, (D) ET, (E)HI, (F)HMI, (G)MDI, (H) sWBGT, (I)NET, (J)WCT, and (K) T. The percentage number in black color indicates the corresponding relative
urbanization contribution (UC).
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continuity and data completeness, a total of 86 meteorological
observations in Guangdong from 1971 to 2020 were selected
(Figure 1A).

To classify urban and rural stations and then further quantify the
urbanization effects on HTP changes, land use change data were obtained
from the Resources and Environmental Science Data Center, the Chinese
Academy of Sciences (http://www.resdc.cn/). This dataset contains the
land use information of China in nine individual years (i.e., 1980, 1990,
1995, 2000, 2005, 2008, 2010, 2013, and 2015) at a horizontal resolution of
30 m. As suggested by previous studies (Yang et al., 2017; Luo and Lau,
2019; Tong et al., 2022), a circular buffer zone with a radius of 7 km was
first established at the center of each station, and then the built-up area
fraction (BAF) within each buffer zone was calculated. A larger value of
BAF indicates a higher level of urbanization around the station
and vice versa. A station is considered as an urban type only if its
BAF within the buffer zone of the site is greater than 20%, and vice
versa for a rural station (Yang et al., 2017; Luo and Lau, 2019;
Tong et al., 2022). Figure 1A maps the spatial distribution of
urban and rural sites in Guangdong in 2015, showing that urban
stations in Guangdong are mainly distributed within the PRD
region and the Chaozhou-Shantou region, suggesting the high
level of urbanization in these regions. Rural stations are mainly
distributed in the mountainous areas of northern Guangdong.
Figure 1B depicts the time-varying classification of urban sites
and rural stations from 1980 to 2015, and shows that a large
number of rural stations have been transformed into urban types
during the process of urbanization since the 1970s.

2.3 Definition of HPT indicators

To ensure a comprehensive investigation, we compared the
HPT changes based on ten different definitions in this study. As
listed in Table 1, most of these HPT indicators are calculated from
temperature (T, unit: °C) and relative humidity (RH, unit: %) or
water vapor pressure (Ea), and outdoor apparent temperature
(ATout), net effective temperature (NET) and wind chill
temperature (WCT) consider the additional effect of wind
velocity (V, unit: m/s). In this study, we first calculated daily
HPT values from daily T, RH, and V values, and then aggregated
daily HPT to monthly means.

To exclude the possible influence of the absolute HPT
magnitudes in different subregions of Guangdong, we
examined the HPT anomalies in this study. The yearly and
seasonal mean HPT anomalies were obtained by averaging the
monthly anomalies, which were calculated by subtracting the
multi-year climatological mean in the same calendar month of
the reference period of 1971–2000 from the original monthly HPT
value. For example, the HPT anomalies for January 1971 are equal
to the HPT value in January 1971 minus the average of 30 HPT
values in 30 Januaries of 1971–2000. In addition to the mean HPT,
this paper also explored the long-term changes and effects of
extremely high HPT events. An extremely high HPT day was
defined as when daily HPT exceeds the 90th quantile of HPT over a
15-day window centering the same calendar day of the reference
period (Wang et al., 2019; Wang et al., 2021b).

TABLE 2 Long-term trends in seasonal mean HPT in Guangdong from 1971 to 2020 and their urbanization effects and contributions. It includes the average urban trend
(Tu, °C/10a), average rural trend (Tr, °C/10a), urbanization effect (UE, °C/10a), and urbanization contribution (UC, %), and the HPTmean column indicates the mean value
by averaging all HPT indicators (by excluding T). All trends are significant at the 0.05 level, as evaluated by the modified non-parametric Mann-Kendall trend test.

Season ATin ATout DI ET HI HMI MDI sWBGT NET WCT T HPTmean

Spring Tu 0.3 0.33 0.23 0.18 0.39 0.37 0.24 0.22 0.27 0.3 0.33 0.28

Tr 0.26 0.3 0.21 0.15 0.32 0.35 0.22 0.21 0.19 0.26 0.3 0.25

UE 0.04 0.03 0.02 0.03 0.07 0.02 0.01 0.01 0.08 0.04 0.03 0.04

UC 12.4 10.1 9 17.9 17.7 5.6 4.4 3.2 28.9 34.1 18.9 14.3

Summer Tu 0.3 0.3 0.22 0.17 0.58 0.4 0.23 0.24 0.23 0.32 0.27 0.30

Tr 0.26 0.28 0.19 0.13 0.49 0.38 0.21 0.24 0.19 0.23 0.2 0.26

UE 0.05 0.02 0.03 0.04 0.09 0.02 0.01 0 0.04 0.09 0.07 0.04

UC 15 8 12.4 24 16.2 5.1 6.4 1.8 17.2 28.6 25.8 13.5

Autumn Tu 0.49 0.52 0.39 0.29 0.62 0.63 0.41 0.38 0.42 0.53 0.47 0.47

Tr 0.41 0.46 0.34 0.23 0.5 0.57 0.38 0.35 0.33 0.38 0.36 0.4

UE 0.08 0.06 0.05 0.06 0.13 0.06 0.04 0.03 0.09 0.15 0.11 0.08

UC 16.1 11.6 12.9 21.8 20.6 9.4 8.7 7.1 21.1 28.6 22.9 15.8

Winter Tu 0.43 0.47 0.36 0.26 0.44 0.54 0.39 0.32 0.39 0.44 0.42 0.4

Tr 0.34 0.39 0.3 0.2 0.35 0.45 0.33 0.27 0.25 0.25 0.32 0.31

UE 0.09 0.08 0.06 0.06 0.09 0.09 0.06 0.05 0.14 0.18 0.1 0.09

UC 20 17.5 16.7 22.8 20.8 16.8 14.2 15.7 36.3 42 23.2 22.3
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2.4 Evaluation of urbanization effects

In this study, the urbanization effect (UE) was quantified as the
difference in the long-term trends between urban and rural time series
of HPT (Ren and Zhou, 2014; Sun et al., 2016; Luo and Lau, 2018):
UE � Tu − Tr, where Tu and Tr represent the HPT trends in urban
and rural areas (by averaging the corresponding urban and rural
stations), respectively, over the whole study period of 1971–2020. The
relative urbanization contribution (UC) was calculated from UE and
Tu: UC � |(Tu − Tr)/Tu| × 100%. Here, the long-term trends were
estimated by simple linear regression, and their significance was
assessed by a modified non-parametric Mann-Kendall trend test
(Hamed and Rao, 1998).

3 Results

3.1 Long-term changes in mean HPT and
urbanization effects

Figure 2 shows the spatial distribution of the long-term trend in
annual mean HPT based on different definitions from 1971 to 2020.
Figures 2A–J represent trends of different HPT indicators in
Guangdong Province, and Figure 2K represents the actual air
temperature (T) for comparison. As the figure shows, all T and
HPT indicators exhibit increasing trends during 1971–2020, and
the warming trends of mean HPT and T in the PRD and
Chaozhou-Shantou regions are generally stronger than those in

FIGURE 5
Spatial distribution of the long-term trends in annual frequencies of extremely hot HPT and T days in Guangdong from 1971 to 2020: (A) ATin, (B) ATout,
(C) DI, (D) ET, (E) HI, (F) HMI, (G) MDI, (H) sWBGT, (I) NET, (J) WCT, and (K) T.
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other regions. Among different HPT indicators, HI and HMI have
stronger increasing tendencies, while ET and DI exhibit relatively
smaller increases. Also, compared with other indicators, NET and
WCT that consider the combined effect of wind speed warm even
faster, especially in more urbanized areas such as the PRD region.
Rural areas such as northern Guangdong experienced a relatively
slower warming trend in all temperature indicators. These
differences suggest that urbanization may have a greater effect
on wind speed-related HPT, such as NET and WCT, than other
HPT indicators.

Figure 3 shows the temporal changes of annual mean HPT and T
in urban and rural areas of Guangdong. All temperature indicators in
both rural and urban areas show significant increasing trends since the
1970s. Interestingly, the magnitudes of the increasing HPT trend in

urban areas are stronger than those in rural areas, demonstrating a
prominent urbanization effects on increasing temperature, either for
actual air temperature or human perceived ones. Comparatively, the
increasing tendencies and fluctuation of HI, HMI, and NET were
much stronger than other temperature indicators, and that of ET and
DI were much weaker. The differences between urban and rural series
are also larger in HI, HMI, and NET.

Themagnitudes of the long-term trend of annual mean of multiple
HPTs and T from 1971 to 2020, as well as the effect and contribution
of urbanization on these trends, are depicted in Figure 4. In urban
areas, HI exhibits the largest increase of 0.499°C/10a, while ET receives
the smallest increase of 0.219°C/10a. In rural areas, HMI has the largest
increasing trend of 0.435°C/10a, and ET gets the smallest increase of
0.175°C/10a. Clearly, both urban and rural temperatures show

FIGURE 6
Temporal changes in urban (red) and rural (cyan) means frequencies of extremely hot HPT and T days in Guangdong from 1971 to 2020 and their
urbanization effects (black): (A) ATin_90p, (B) ATout_90p, (C)DI90p, (D) ET90p, (E)HI90p, (F)HMI90p, (G)MDI90p, (H) sWBGT90p, (I)NET90p, (J)WCT90p, and (K) T90p.
The red and cyan straight lines indicate the linear trends of urban and rural mean series, respectively, with the shading denoting their corresponding 95%
confidence intervals.
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growing trends, and the growth is even higher in urban than rural
areas. This difference characterizes the significant effects of local
urbanization, which exists in all temperature indicators.

By averaging the relative urbanization contributions for all HPT
indicates, it is estimated that regional urbanization contributed to 15.5%
of the total increases in HPT since the 1970s. It is also noted that various
HPT indicators receive different urbanization effects and relative
contributions. For example, urbanization effects contributed to 31.8%
of the total increase inWCT, while it contributed to only 4.9% of the rise
in sWBGT. Also, urbanization induced a relatively larger contribution
to the increases in NET by 24.5% (0.077°C/10a), which is higher than
that to air temperature (0.075°C/10a, 21.1%). The larger contributions to
WCT and NET are due to the fact that both indicators consider the
combined effects of wind velocity, which is often slowed down by the

increases in surface roughness caused by the presence of built-ups in
urban areas. In particular, the higher roughness of the sub-bedding
surface of the urban areas and the higher friction have a deceleration
effect on wind speed; and the higher density of buildings in urban areas
forms a natural baffle, which has a hindering and gridding effect on
wind speed (Xu et al., 2017; Li et al., 2019; Moon et al., 2020). Note that
wind speed can accelerate the airflow around the human body, speeding
up the heat exchange between the human body surface and the air to
play a cooling effect (Edwards et al., 2015; Roshan et al., 2020), so the
wind speed in urban areas is reduced due to the impact of urbanization,
which in turn leads to a higher local body temperature than the
surrounding areas. The urbanization contribution to other HPT
indicators without considering the effect of wind speed is generally
smaller than that on air temperature, which may be related to the urban

FIGURE 7
Long-term trends in urban (red) and rural (cyan) means of the annual frequency of extreme HPT and T days in Guangdong from 1971 to 2020 and their
urbanization effects (black): (A) ATin_90p, (B) ATout_90p, (C)DI90p, (D) ET90p, (E)HI90p, (F)HMI90p, (G)MDI90p, (H) sWBGT90p, (I)NET90p, (J)WCT90p, and (K) T90p.
The percentage number in black color indicates the corresponding relative urbanization contribution (UC).
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dry island (UDI) effect due to urbanization, which may reduce the
atmospheric humidity and thus offsetting the HPT increases to some
extent (Hao et al., 2018; Luo and Lau, 2019; Huang et al., 2022; Wang
et al., 2022).

Table 2 summarizes the mean urban trend (Tu), rural trend (Tr),
urbanization effect (UE), and urbanization contribution (UC) of the
HPT under different seasons by averaging all HPT indicators. In this
study, spring refers to March, April, and May, summer includes June,
July, and August, autumn comprises September, October, and
November, and winter includes December, January, and February.
The HPT trend in both urban and rural areas was significantly greater
than zero in all four seasons, indicating a significant increasing trend
in four seasons. In all four seasons, the increases in mean HPT in urban
areas were again greater than in rural areas. Seasonally, the increases in
mean HPT in both urban and rural areas in the fall and winter were
greater than in the spring and summer. The largest gains in both urban
(0.47°C/10a) and rural mean HPT (0.39°C/10a) were observed in
autumn, and the smallest increases were observed in spring,
i.e., 0.29°C/10a and 0.24°C/10a for urban and rural series,
respectively. Among different HPT indicators, the fastest increases in
mean HPT in both urban and rural were observed in HI and HMI in all
seasons, i.e., 0.62°C/10a and 0.63°C/10a for HI and HMI, respectively.

Urbanization has a significant effect onmeanHPT changes in all four
seasons, with the magnitudes of 0.04°C/10a, 0.04°C/10a, 0.08°C/10a, and
0.09°C/10a and the corresponding relative contributions of 14.3%, 13.5%,
15.8%, and 22.3%, for spring, summer, autumn, and winter, respectively.
It can be seen that the effects and contributions of urbanization onHPT in
autumn and winter were greater than those in spring and summer.
Among them, the impacts and contributions of urbanization on wind
speed-related HPT indicators (i.e., NET and WCT) are higher in the
spring and winter seasons than the air temperature T. The UE and UC
values for WCT in all seasons are higher than in T. In spring, summer,

and fall, sWBGT tends to receive the smallest relative contribution of
urbanization (i.e., 3.2%, 1.8%, 7.1%, respectively), compared with other
HPT indicators, whereas, in the winter season, MDI receives the smallest
urbanization effect and contribution.

3.2 Long-term changes in extreme HPT and
the effects of urbanization

Compared with mean HPT, extreme HPT poses even greater
threats to the human body (Wang et al., 2019; Wang et al., 2021b).
This subsection defines an extremely hot HPT day (HPT90p) when the
daily HPT value exceeds the 90% quantile of the reference period
(recall Section 2). Figure 5 shows the spatial distribution of the long-
term trend of the annual occurrence frequency of HPT90p in
Guangdong Province from 1971 to 2020. It is observed in Figure 5
that the annual frequency of extremely hot days in Guangdong
Province exhibited an increasing trend over the past 5 decades, and
such an increase appears in all temperature indicators (including both
HPT and T). Spatially, the growing frequency of HPT90p in the coastal
areas (especially in densely populated and highly urbanized regions
such as the Pearl River Delta and Chaozhou-Shantou) was higher than
in the northern regions of mountainous Guangdong. This regional
disparity indicates that urbanization may be one of the inducing
factors for increasing the occurrence of HPT90p. Figure 6 shows the
long-term changes in the average annual frequencies of HPT90p and
T90p in both urban and rural areas of Guangdong Province. Overall,
the average annual HPT90p and T90p in both rural and urban areas
showed a fluctuating but upward trend, and the increases in urban
areas (including both HPT90p and T90p) were greater than those in
rural areas, proving that the urbanization effect contributed to the
occurrence of both HPT90p and T90p.

TABLE 3 As Table 2 but for the frequencies of extreme HPT and T days. All trends are significant at the 0.05 level, as evaluated by the modified non-parametric Mann-
Kendall trend test.

Season ATin_90p ATout_90p DI90p ET90p HI90p HMI90p MDI90p sWBGT90p NET90p WCT90p T90p HTPmean_90p

Spring Tu 1 0.98 0.98 1.04 1.03 0.97 0.96 0.96 0.79 1.02 1.06 0.97

Tr 0.9 0.9 0.91 0.86 0.88 0.94 0.95 0.95 0.59 0.76 0.85 0.86

UE 0.11 0.08 0.07 0.18 0.15 0.02 0.01 0.01 0.21 0.26 0.2 0.11

UC 12.4 10.1 9 17.9 17.7 5.6 4.4 3.2 28.9 34.1 18.9 14.3

Summer Tu 2.11 1.68 2.11 2.16 2.02 1.98 2.03 1.96 1.42 2.18 2.14 1.97

Tr 1.82 1.53 1.85 1.66 1.82 1.96 1.93 1.99 1.06 1.64 1.61 1.73

UE 0.29 0.15 0.26 0.5 0.2 0.03 0.1 −0.04 0.36 0.55 0.52 0.24

UC 13.9 9 12.1 23.1 10.1 1.3 5 −1.8 25.5 25 24.5 12.3

Autumn Tu 1.74 1.44 1.64 2.03 1.84 1.48 1.51 1.43 1.04 1.98 2.1 1.61

Tr 1.48 1.28 1.46 1.55 1.53 1.41 1.42 1.39 0.76 1.36 1.56 1.36

UE 0.26 0.16 0.18 0.48 0.31 0.07 0.09 0.04 0.27 0.62 0.53 0.25

UC 15 11.3 11 23.6 16.7 4.4 6.3 2.6 26.3 31.3 25.4 14.9

Winter Tu 0.98 0.92 0.92 1.11 1.04 0.88 0.85 0.84 0.62 0.92 1.13 0.91

Tr 0.77 0.73 0.73 0.82 0.79 0.72 0.71 0.71 0.41 0.48 0.84 0.69

UE 0.22 0.19 0.19 0.29 0.25 0.16 0.14 0.14 0.21 0.45 0.29 0.22

UC 22.1 21 20.2 26.1 23.9 18.3 16.8 16.3 33.8 48.5 25.9 24.7
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Figure 7 shows the quantitative trends of the average frequency of
HPT90p and T90 in urban and rural areas of Guangdong. The frequency
trend of HPT90p in urban and rural areas exceeded 1.0 days/10a for all
HPT indicators except for NET. On average, the frequencies of HPT90p
were 1.37 days/10a in urban areas and 1.16 days/10a in rural areas. This
difference measures an urbanization effect of 0.21 days/10a, and the
relative contribution of urbanization was 15.1%. Among different
indicators in urban areas, the largest increase is seen in extreme ET
(1.59 days/10a), while the smallest increase is in extreme NET (0.97 days/
10a). In rural areas, the largest increases are observed in extremeHMI and
sWBGT (both at 1.26 days/10a), and the smallest increase is still in
extreme NET (0.7 days/10a). The largest urbanization contribution to the
change of HPT90p wasWCT (30.7%), while the smallest contribution was
in sWBGT (2.9%). Notably, the relative contribution of urbanization to
the HPT90p changes in both NET and WCT is higher than the relative
contribution made by the T90p changes.

Table 3 summarizes the quantitative long-term trends of
urbanization contribution to HPT90p in Guangdong in different
seasons. It is seen that the trends of the frequencies of HPT90p in
both urban and rural areas are greater than 0 in all four seasons,
indicating increasing risks of HPT90p throughout the calendar year. As
expected, the increases in HPT90p in urban areas are even stronger
than those in rural areas in all four seasons, demonstrating the
remarkable role of urbanization in intensifying HPT90p risks.
Seasonally, the increases in HPT90p in urban and rural areas are
greater in summer and autumn than in spring and winter. On average,
the summer season experienced the largest increase of HPT90p in
urban (1.97 days/10a) and rural areas (1.73 days/10a), and winter
witnessed the smallest increase, i.e., 0.91 days/10a and 0.69 days/
10 for urban and rural areas, respectively. Urbanization had posed
significant effects on increasing HPT90p in all four seasons, with the
exception of extreme sWBGT days in the summer season.

Regarding the relative contribution of urbanization, by averaging
all HPT90p indicators, the HPT90p frequency in the winter (24.7%)
and autumn (14.9%) and seasons receive a larger relative
urbanization contribution than spring (14.3%) and summer
(12.3%). Similarly, the contribution of urbanization to the
frequency of extreme events based on wind speed-related HTP
indicators (i.e., NET and WCT) is notably higher than that of
other HPT indicators with the consideration of wind. Among all
HPT indicators, the HPT90p based on sWBGT receives the smallest
contribution of urbanization in all four seasons.

4 Conclusion and discussion

Over the past half-century, China has experienced rapid
urbanization, which has brought about significant changes in urban
structure and land use (Fang, 2015). These changes have exerted
profound effects on local a regional climate change in terms of
increasing temperature and extreme heat events (Sun et al., 2014; Sun
et al., 2016). However, fewer studies have fully delved into the extent to
which urbanization affects human perceived temperature changes
(HPT), especially the comparison of multiple HPT indicators is not
yet clear. Hence, this study explored the long-term changes in mean and
extremeHPT based on ten different HPT indicators in South China from
1971 to 2020 by taking Guangdong Province as an example, and further
quantitatively assessed the impact of urbanization on long-term changes

in mean HPT and extreme HPT on the basis of a dynamic classification
of urban and rural weather stations.

The analysis results show that the mean HPT and extreme HPT
(i.e., HPT90p) in Guangdong have increased significantly, with higher
increases in more urbanized and populated regions such as the Pearl
River Delta and Chaozhou-Shantou region. The increasing trends in
annual mean HPT based on HI and HMI are ~0.5°C/10a, which is
much higher than the warming trend of air temperature (0.354°C/10a).
Seasonally, the average increase in HPT was higher in autumn and
winter than in spring and summer for both urban and rural areas. In
contrast, the increasing trend of HPT90p was greater in summer and
autumn than in spring and winter. Urbanization contributed
significantly to the long-term changes in both mean HPT and
HPT90p. On average, urbanization contributed to 15.5% of the
increase in annual mean HPT and 15.1% of the rise in the HPT90p

frequency. In addition, the relative contributions of urbanization to
both mean HPT and HPT90p were larger in fall and winter than in
spring and summer. Specifically, the urbanization contributions to
HPT and HPT90p exceeded 20% in winter.

We also noted that the contribution of urbanization to wind
speed-related HPT indicators (for both mean HPT and
HPT90p), such as NET and WCT exceeds the contribution to
air temperature. In contrast, the contribution to the other
indicators is smaller than that to air temperature. The possible
reasons are discussed as follows. Firstly, the UDI effect offsets the
role of increasing air temperature in increasing HPT, thus leading
to a lower contribution of urbanization to HPT than to air
temperature. Secondly, the high wind resistance caused by the
higher roughness of urban areas and the natural blocking effect of
tall urban buildings lead to a significant decrease in wind speed in
urban areas compared to the surrounding areas, which
consequently leads to a rise in heat sensation in urban areas,
thus leading to a stronger urbanization contribution to wind
speed relative HPT indicators.

Our examinations of the spatio-temporal changes in multiple HPT
indicators and their extremes, and the urbanization effects on
these changes are based on the observations recorded at
86 weather stations across Guangdong. We also discussed
possible reasons for these changes. It should be acknowledged
that further investigations based on regional climate model
simulations are also of interest and significance. Such
examinations help reveal the underlying mechanism of
urbanization effects on various meteorological parameters, and
warrant further investigations in the future.
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High-resolution radar rainfall data have great potential for rainfall predictions up to

6 h ahead (nowcasting); however, conventional extrapolation approaches basedon

in-built physical assumptions yield poor performance at longer lead times (3–6 h),

which limits their operational utility. Moreover, atmospheric factors in radar

estimate errors are often ignored. This study proposed a radar rainfall

nowcasting method that attempts to achieve accurate nowcasting of 6 h using

long short-term memory (LSTM) networks. Atmospheric conditions were

considered to reduce radar estimate errors. To build radar nowcasting models

based on LSTM networks (LSTM-RN), approximately 11 years of radar, gauge

rainfall, and atmospheric data from the UK were obtained. Compared with the

models built onoptical flow (OF-RN) and random forest (RF-RN), LSTM-RNhad the

lowest root-mean-square errors (RMSE), highest correlation coefficients (COR),

and mean bias errors closest to 0. Furthermore, LSTM-RN showed a growing

advantage at longer lead times, with the RMSE decreasing by 17.99% and 7.17%

compared with that of OF-RN and RF-RN, respectively. The results also revealed a

strong relationship between LSTM-RN performance and weather conditions. This

study provides an effective solution for nowcasting radar rainfall at long lead times,

which enhances the forecast value and supports practical utility.

KEYWORDS

nowcasting, radar, rainfall, atmospheric conditions, deep learning, long short-term
memory
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1 Introduction

Nowcasting is defined as local detailed forecasting at lead

times of 1–6 h using any method, along with a full description of

the current weather (Wang et al., 2017). It is a key instrument for

predicting rapidly changing and severe weather (Sun et al., 2022),

such as heavy rain and violent thunderstorms (Pulkkinen et al.,

2019). It is also critical for small, mountainous, and urban

watersheds, where stream flow responds rapidly to rainfall

(Imhoff et al., 2020). Generally, nowcasting offers benefits to

many sectors of the real world, such as emergency services,

energy management, and flood early warning systems (Wilson

et al., 2010).

Numerical weather prediction (NWP) and radar-based

rainfall prediction (radar nowcasting) are the two main

approaches to nowcasting with different application scales

(Pulkkinen et al., 2019). By feeding current weather

conditions into atmospheric models, NWP models try to

simulate atmospheric behavior and provide rainfall

predictions on a global and mesoscale (Cuo et al., 2011).

However, the predictions offered by NWP systems for short

lead times (0–2 h) are often unsatisfactory because of their

coarse temporal resolution and low update frequency (Imhoff

et al., 2020), along with the difficulties in model spin-up and

data assimilation (Sun, 2005; Pierce et al., 2012; Sun et al.,

2014; Buehner and Jacques, 2020). Consequently, alternative

methods based on radar that provide more timely and

accurate predictions have been widely used. With high

spatial and temporal resolutions, typically 1 km and 5 min,

respectively, radar rainfall products are regarded as having

great potential for short-term rainfall forecasts (Ravuri et al.,

2021). Radar nowcasting is the process of extrapolating

rainfall based on apparent motion that has been analyzed

using the most recent radar images (Wang al., 2017).

Currently, radar extrapolation methods can be classified as

object- or pixel-based (Zahraei et al., 2013). The object-based

methods, as represented by Storm Cell Identification and

Tracking (SCIT) and Thunderstorm Identification,

Tracking, Analysis and Nowcasting (TITAN) proposed by

the US, consider storm events as separate objects thus

performing well in detecting and tracking specific

thunderstorm cells (Dixon and Wiener, 1993; Vila et al.,

2008). The pixel-based methods, on the contrary,

outperform in forecasting convective storms and

precipitation in stratocumulus clouds by using full motion

fields (Grecu and Krajewski, 2000; Berenguer et al., 2011). One

recent progress is the optical flow-based method. It introduces

computer vision techniques to make extrapolation of radar

maps, and displays high flexibility and accuracy (Bowler et al.,

2004).

However, owing to the separated tracking and extrapolation

steps, as well as the in-built non-linear physical assumptions, the

conventional extrapolation approaches have limited success.

They struggle to capture complex rainfalls, and show a

decreasing skill at longer lead times (Golding, 1998; Liguori

and Rico-Ramirez, 2013; Ravuri et al., 2021). In this context,

machine learning methods, especially artificial neural networks

(NNs), have been introduced in nowcasting. Based on self-

adaptive principles that learn from samples and grasp

functional relationships between data, NN has been widely

used to predict, recognize, and classify a wide range of

weather events, and is also one of the most appealing

strategies for nowcasting (Valverde Ramírez et al., 2005;

Hernández et al., 2016). Koizumi (Koizumi, 1999) found that

models built on NN have higher skill scores than other

nowcasting models, when using weather data of 1 year for

training. Apart from the improved prediction accuracy, the

NN trained by Foresti et al. (2019) using 10-year weather

radar data in the Swiss Alps effectively learned and

reproduced growth and decay patterns in the atmosphere,

which is intrinsically challenging to predict. With the

development of computer science, deep learning has risen

drastically and expanded swiftly in many data-rich scientific

disciplines, including nowcasting (Ayzel et al., 2020).

Composed of multiple processing layers, the improved

networks support the exploration of insight and complex

structures of datasets. They overcome the drawbacks of

traditional NNs, such as ineffective training practices and

inability to manage extensive data, thus, becoming popular in

handling complicated issues (Jia et al., 2017; Van et al., 2020). For

example, Agrawal et al. (2019) presented a nowcasting model

based on convolutional NN that, compared with other

commonly used methods, performed favorably. For time-

series problems, Chen et al. (2021) used long short-term

memory (LSTM) networks to build a nowcasting model, and

the results exhibited an evidently reduced prediction error. A

wide variety of fantastic networks have been proposed and have

made significant progress in nowcasting (Shi et al., 2015; Shi

et al., 2017; Tian et al., 2019; Kumar et al., 2020; Luo et al., 2020),

but a critical problem is that lead times in past studies have been

relatively short (usually 0–2 h) (Schmidhuber, 2015; Kang et al.,

2020). In fact, deep learning, particularly LSTM networks with

fantastic memory ability (Gers et al., 2002), have great promise

for achieving longer lead times in nowcasting.

In addition, previous research has focused on upgrading

nowcasting algorithms while disregarding the many errors in

radar rainfall estimates, which could result in numerous

uncertainties. These uncertainties in radar data are carried

over into radar nowcasting and grow with increasing rainfall

rates (Ebert et al., 2004; Liguori et al., 2012). It is well known that

the accuracy of radar rainfall estimates is affected by various

factors, such as spurious echoes (e.g., from the ground, sea, and

aero-planes), attenuation of the radar signal (Krämer et al., 2005;

Villarini and Krajewski, 2009), and beam blockage (Joss and Lee,

1995). Actually, apart from the radar measurement instruments,

weather conditions can also lead to radar estimation errors,
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which have rarely been explored in previous studies (Seo et al.,

1999; Song et al., 2017). Recently, researchers have begun to focus

on this issue. Dai and Han (Dai and Han, 2014) were the first to

incorporate the wind field into the construction of a radar rainfall

uncertainty model, and the proposed model improved the

correlation coefficients of most rainfall events by over 10%.

Yang et al. (2020) considered multiple atmospheric fields to

build a radar rainfall uncertainty adjustment model, and the

results indicated a satisfactory performance of the model under

high relative humidity and wind speed.

Therefore, this study incorporated atmospheric data into radar

rainfall nowcasting with the aim of reducing radar estimate errors

and improving prediction accuracy. A framework for nowcasting

radar rainfall with long lead times of 1–6 h using LSTM networks

was established. To investigate the performance of the proposed

models at different altitudes and weather conditions, models were

built using approximately 11 years of radar, gauge rainfall, and

atmospheric data across the UK. Two other methods, optical flow

(OF) and random forest (RF), were also built to further demonstrate

the strengths of the proposed models.

2 Study area and data

The UK is located on Europe’s western shore, between 49°N and

61°N. Influenced by the west wind and the Atlantic Ocean, the UK

has a cloudy and rainy climate, with an average of 1,000 mm rainfall

every year. Rainfall in the UK is affected by geographic location to

some extent; generally, the further west and the higher the altitude,

the greater the rainfall. Extreme rainfall events are predicted to

become more common as global temperatures rise, and the

increased intensity of rainfall affects the frequency and severity of

surface water floods, particularly in urban areas.

The radar rainfall data used in this study, with a spatial

resolution of 1 km and temporal resolution of 5 min, were

downloaded from the website (https://catalogue.ceda.ac.uk/)

supplied by the UK Met Office. Sufficient data were collected

from 2007 to 2017. The data were subjected to extensive

processing by the NIMROD system for corrections with

regards to several sources of radar errors (Song et al., 2017).

The NIMROD radar rainfall data are one of the best available

sources of rainfall information (Zhu et al., 2014). The 5-min

radar rainfall data were adjusted at a 1-h rate to make it

compatible with the hourly gauge data. Then, the radar

rainfall value of the corresponding gauge was extracted for

modelling at each station.

Gauge rainfall data with resolutions of .2 mm and 1 h from

40 tilting bucket rain gauges between 2007 and 2017 (except for

very few sites) were collected from theMet Office Integrated Data

Archive System Land and Marine Surface Stations dataset.

Atmospheric data, including air pressure, relative humidity,

temperature, wind direction, and wind speed, were obtained

from the same source (Met Office, 2019). The Met Office built

the Meteorological Monitoring System at each station to collect

data at a resolution of 1 min. The data were then aggregated into

hourly data. The Met Office was responsible for ensuring the

quality of the data (Met Office, 2012). Forty gauging stations were

used for modeling, as shown in Figure 1 (the labeled stations KOI

and EGDMwere used as demonstration examples in Section 4.1).

The lowest and highest altitudes of these stations were 4.27 m,

and 246.21 m, respectively. These stations were separated into

three classes depending on altitude for subsequent analysis

(Sections 4.2–4.4).

3 Methodology

3.1 Radar rainfall nowcasting models
based on LSTM networks (LSTM-RN)

The basic architecture of a NN includes the input, output,

and hidden layers. Recurrent NNs (RNNs) are a variant of

traditional NNs that introduce a cyclic structure. Owing to

this structure, the outputs of a given input can be influenced

not only by the current input but also by the residual state left

over from prior calculations (Warner and Misra, 1996). RNNs

are, thus, well-suited in simulating time series and other

dynamical processes that are clearly reliant on history (Le

et al., 2017). LSTM, an improved type of RNN, replaces the

neurons in a regular RNN with an upgraded memory unit; each

LSTM memory unit includes an input gate, output gate, a forget

gate, and memory cells. Compared with RNN, LSTM can solve

complicated, artificial long-time-lag challenges that earlier RNNs

could not (Hochreiter and Schmidhuber, 1997).

The LSTM architecture used in this study consisted of three

layers: an input layer (radar rainfall and atmospheric data at each

time step), a hidden layer, and an output layer (gauge rainfall at a

certain lead time). Figure 2 shows the LSTM architecture used for

modeling at 1-h lead time. Themodels were constructed based on

this architecture according to the following steps:

Step 1: Build the initial model (the selection of hyper-

parameters can be found in Section 4.1).

Step 2: Normalize the data. Perform MinMaxScaler

normalization on the datasets x (input) and h (output). The

MinMaxScaler normalization formula is as follows:

Xijstd � Xij −Xjmin

Xjmax −Xjmin
(1)

Xijscaled � Xijstd × max −min( ) +min (2)

Where Xijscaled and Xij are the data before and after

normalization, respectively, at time i and of variable j, Xijstd is

the temporary standardization result. Xjmin and Xjmax are the

minimum and maximum values, respectively, of variable j; max

andmin are the maximum andminimum values of the interval to

be mapped, which are typically 0 and 1, respectively.
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FIGURE 1
Locations of 40 stations in the UK study area with terrain elevation.

FIGURE 2
Architecture of the LSTM networks used in this study: xt, ht, and Ct are the input, output, and cell state at time step t, respectively; s is the length
of input nodes at a time, while inputting the sequence xt−s to xt−1, the model outputs the predicted rainfall ht (at 1 h lead time); ft: forget gate; it: input
gate; ~Ct: cell update; Ot: output gate.
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Step 3: Divide the data. Take normalized datasets x and h

before 2016 as training data and the rest as test data.

Step 4: Organize the data and train the model. The training

data and test data were organized as the architecture illustrated in

Figure 2. The radar rainfall series and corresponding atmospheric

data were used as input nodes, with the gauge rainfall serving as

the target variable. To improve the generalization ability of the

model and avoid overfitting, the organized data were randomly

shuffled. The rainfall predicted by this model was denormalized

before it was used as the final result.

The LSTM-RN models of the 40 stations with 1-h lead time

were generated using the prior process. Similar procedures were

performed to build the LSTM-RN models with lead times

of 2–6 h.

3.2 Radar rainfall nowcasting models
based on RF (RF-RN)

Random forest (Breiman, 2001) is a conceptually simple

machine-learning algorithm that combines the bagging

ensemble learning theory with the random subspace method.

It is made up of numerous decision tree classification modules

and is highly efficient with large datasets. The tree-based machine

learning method displayed high prediction accuracy (Speiser

et al., 2019); therefore, it was adopted in this study to build

comparative models.

The RF-RN models used in this study were constructed as

follows:

Step 1: Randomly select N separate sample datasets from the

training datasets as the training subset of each decision tree (the

selection of N is discussed in Section 4.1).

Step 2: Establish a categorical regression tree for each sample

dataset to generate N decision trees. For each node of the decision

tree, the variable subset was randomly sampled from the original

dataset, and the optimal variable was selected from the subset using

the Gini index minimum criterion for node splitting and branching.

Step 3: Each categorical regression tree grew recursively from

top to bottom, and stopped growing when the minimum size of

the leaf nodes was reached. Subsequently, all the decision trees

were combined into a random forest.

Step 4: The radar rainfall data and atmospheric data from the

test sets were fed into the constructed model, and N decision trees

were used to predict. The regression value was the average of the

predicted outcomes of each decision tree.

3.3 Radar rainfall nowcasting models
based on OF (OF-RN)

In the field of computer vision, OF is typically considered as a

collection of techniques to infer velocity patterns or fields from a

series of image frames (Liu et al., 2015; Woo and Wong, 2017). For

rainfall prediction, Ayzel et al. (2019) developed a set of tracking

models based on two OF formulations, Sparse (Lucas and Kanade,

1981) and Dense (Kroeger et al., 2016), as well as two extrapolation

techniques. The OF models built were an open benchmark for radar

nowcasting. In this study, we used the dense model, which utilized a

dense inverse search (DIS) algorithm to construct a continuous

displacement field from two consecutive radar images. The DIS, a

global OF algorithm proposed by Kroeger et al. (2016), can explicitly

estimate the velocity of each image pixel based on the analysis of two

continuous radar images.

This study used the “rainymotion” codebase, provided by

Ayzel et al., to build the second type of comparative models,

which is available at the following link: https://github.com/

hydrogo/rainymotion.

3.4 Experimental design and evaluation
indicators

Figure 3 shows the experimental flowchart. The data

division and model construction processes have been

described above, and the following paragraphs describe the

three analysis parts.

First, the accuracy of the LSTM-RN models at different lead

times and altitudes was investigated to better understand the

performance pattern and further explore the causes of the

difference in accuracy. The lead times ranged from 1 h to 6 h,

as described in Section 3.1. Owing to the large number of gauges,

it was impossible to obtain the exact performance of each model;

however, roughly averaging the error indicator results of all

models would miss the underlying causes of the models’

varied performance. Thus, we divided the stations into three

classes based on their altitude (Figure 2) and compared the

performance of the models at different altitude classes. Models

with altitudes <75 m, >75 m and <150 m, and >150 m
and <250 m were classified as low, medium, and high

altitudes, respectively. Similar studies have also divided the

gauge stations into three altitude classes (Milewski et al.,

2015). The thresholds in this study were determined based on

the characteristics of the data. With such thresholds, the number

of data points in each class was approximately the same, and the

differences between classes were enlarged as much as possible.

The corresponding results are presented in Section 4.2.

Second, we constructed two types of comparative models, the

RF-RN and OF-RN models, and ran identical rainfall nowcasting

experiments. Four rainfall events were chosen to visually evaluate the

prediction abilities of themodels, and error indices were calculated to

quantitatively assess the performance of themodels from1 to 6 h lead

times. The corresponding results are presented in Section 4.3.

Finally, to investigate the relationship between the LSTM-RN

model performance and diverse weather conditions, the test sets

were divided into five classes depending on the rainfall rate (R)

and relative humidity (H): classes A1–A5: R = (0, .2] (.2, .4] (.4,
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.8] (.8, 1.6], and R > 1.6 mm/h by rainfall rate; classes B1–B5: H =

[0,80) [80,85) [85,90) [90,95), and H > 95% by relative humidity.

The corresponding results are presented in Section 4.4.

Three error indices, namely, root-mean-square error

(RMSE), mean bias error (MBE), and correlation coefficient

(COR), were selected to evaluate the models. The RMSE,

MBE, and COR were defined as follows:

RMSE �
������������∑N

i�1 yi − xi( )2
N

√
(3)

MBE � ∑N
i�1 yi − xi( )

N
(4)

COR � ∑N
i�1 xi − �x( ) yi − �y( )�����������∑N

i�1 xi − �x( )2
√ �����������∑N

i�1 yi − �y( )2√ (5)

where yi and xi are the rainfall at time i predicted by the model and

obtained from the rain gauge, respectively; �y and �x are the average

rainfall of the series predicted by the model and obtained from the

rain gauge, respectively; and N is the length of the rainfall series.

The RMSE is the square root of the average of squared errors and

is often used to measure the differences between the predicted or

simulated values and the true values. This metric was chosen to

quantify the accuracy of the prediction results, and a lower RMSE

suggested a better match to the true value. The MBE assesses the

average overestimation or underestimation of accumulated rainfall,

with a perfect score of 0. This index was selected to investigate the

deviation direction and extent of the model’s prediction, that is, the

model’s tendency to underestimate or overestimate rainfall. TheCOR

provides correlation information between the predicted or simulated

values and the true values, which can indicate the model’s ability to

capture the subsequent rain-fall trends in this study. COR ranges

from –1 to 1, with a higher COR indicating better recognition.

Moreover, to eliminate the effect of magnitude, we used relative

bias to explore the bias at different rainfall rates as follows:

σR � ∑N
i�1

yi − xi( )
yi

(6)

where yi and xi are the rainfall at time i predicted by the model

and obtained from the rain gauge, respectively; and N is the

length of the rainfall series.

4 Results and discussion

4.1 Selection of hyper-parameters of the
LSTM-RN and RF-RN models

The performance of the LSTM-RN models is significantly

influenced by the hyper-parameters selection, such as data

division, the number of hidden layer nodes, and epochs. We

used identical hyperparameters (excluding epochs) for all 240 LSTM-

FIGURE 3
Schematic diagram of the experimental design.

TABLE 1 Hyper-parameters of the LSTM-RN models.

Hyper-parameter Value

Training data division 80%/20%

Hidden nodes 9

Initial learning rate 0.01

Loss function Mean square error

Batch size 256

Timesteps 7

Epochs 100–150
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RN models (40 stations with 6 different lead times) in this study, as

listed in Table 1. After training, it was assumed that this setting was

appropriate for almost all the models.

As described in Section 3.1, the data were divided into

training and testing sets. Furthermore, a reasonable 20% of

the training set was treated as a validation set, which was used

to optimize the network parameters during the training

process. The number of hidden layer nodes was a key

hyperparameter; if it was small, the data characteristics

could not be fully retrieved and if it was large, the

network’s complexity would increase and eventually

overfit. Based on the empirical formula proposed by Xia

et al. (2005), nine hidden layer nodes were determined;

overfitting or underfitting phenomena were not apparent.

The initial learning rate was set to .01, and it gradually

decayed during the training process. The batch size

determined the frequency with which the weights of the

network were updated. It was set to 256 owing to the large

amount of data used in this study.

The mean-square error (MSE) was used as the loss of the

LSTM-RN models, which decreased with increasing epochs,

and the epochs where both validation loss and training loss

converged was used as the final epochs. Figure 4 shows the

training progress of two randomly selected models, station

KOI and EGDM. After training, all the LSTM-RN models in

this study converged when the epochs were between 100 and

150. Timesteps was the lengths of the input nodes at a time

(Figure 2). The RMSEs of the training sets of all the LSTM-

RN models at different time steps were averaged, and the

results are shown in Figure 5. In this study, the timesteps of

all models were determined to be seven according to the

results, while considering the correlation between rainfall

periods.

Error backpropagation algorithms were used to update the

parameters of the networks during training. These included

stochastic gradient descent (Graves and Schmidhuber, 2005),

adaptive gradient (AdaGrad), root mean square prop (RMSProp)

(Duchi et al., 2011), and adaptive moment estimation (Adam).

The Adam optimization algorithm is an effective gradient-based

stochastic optimization method. It combines the advantages of

the AdaGrad and RMSProp algorithms to calculate adaptive

learning rates for different parameters while using less storage

space. It outperformed other stochastic optimization methods in

practical applications (Kingma and Ba, 2014); hence, it was used

in this study.

For the RF-RN models, the critical parameters were Ntree

and Mtry. Ntree represents the number of decision trees (N in

Section 3.2). A larger number of decision trees will develop more

accurate results, but require more memory. Mtry, the number of

input features per leaf node, was usually set to 1/3 of the total

number of variables. In our RF-RN models, Ntree was set to 400,

according to the out-of-bag error (Figure 6), and Mtry was set to

FIGURE 4
Training progress of the LSTM-RN models at stations KOI and EGDM.

FIGURE 5
Average RMSE of the training sets of all LSTM-RN models at
different timesteps.
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2. The out-of-bag error served as an indicator of the

generalization error, and was used to determine the

parameters of an RF model.

4.2 Model performance at different lead
times and altitudes

As rain gauges vary in geographical location, the ability of the

LSTM-RN models may be influenced by a variety of

environmental conditions. As described in Section 3.4, the

RMSE, MBE, and COR of LSTM-RN at different altitudes

were calculated. In addition, because the LSTM-RN models

have long memory ability and are suitable for multi-step-

ahead prediction, three metrics of the models at lead times of

1–6 h were also calculated.

Table 2 shows the RMSE, MBE, and COR of the test sets of

the models at different altitudes. It is evident that the RMSE

of the low-altitude models was lower than that of the

medium- and high-altitude models, possibly because

rainfall in low-altitude areas is usually small, so even if the

model fails to predict accurately, the results would not

significantly deviate from the actual value. However, in

medium- and high-altitude areas, where heavy rainfall

occurs frequently, the predicted results could deviate more

from the real values when the model fails to predict

accurately, leading to a high RMSE.

The MBE of the models was positive at low altitude, zero at

middle altitude, and negative at high altitude. It demonstrated

that the models showed a tendency to overestimate rainfall at low

altitude while underestimating it at high altitude, with the highest

variation at high altitude.

The COR of the models between the predicted values and the

true values was slightly smaller at low and medium altitudes

compared with that at high altitude. The results indicated that the

models could perform better when recognizing heavy rainfall

trends.

The RMSE, MBE, and COR of the test sets of the LSTM-RN

models at different lead times are listed in Table 4. The results

revealed that the RMSE increased as the lead time extended, from

.72 at 1-h lead time to .77 at 6-h lead time, an increase of 6.94%.

The COR decayed with increasing lead time, from .68 at 1-h lead

time to .36 at 6-h lead time, a decrease of 47.06%. In general, the

performance of the designed models was satisfying, with a slight

decay at long lead times.

4.3 Comparison of the three radar rainfall
nowcasting models

To assess the performance of the LSTM-RN models, we

constructed RF-RN and OF-RN models for comparison. The

LSTM-RN and RF-RN models were constructed using radar,

gauge rainfall, and atmospheric data, whereas the OF-RNmodels

used only radar rainfall. Four rainfall events were selected from

the test sets to visually present the predictive ability of the three

types of models at 1-h lead time. To ensure the spatial diversity of

the selected events, four randomly selected rainfall events at four

stations with large altitude differences were included (see

Table 3). The four events almost covered all seasons, with

accumulated rainfall ranging from 22.4 mm to 60.4 mm.

Figure 7 depicts the gauge rainfall and the predicted results

using the three types of models for the four rainfall events.

FIGURE 6
The out-of-bag error of the RF-RN models at stations KOI and EGDM.

TABLE 2 RMSE, MBE, and COR of the LSTM-RNmodels at different altitudes.

Classes RMSE (mm) MBE (mm) COR

Low-altitude 0.66 0.02 0.47

Medium-altitude 0.78 0.00 0.48

High-altitude 0.79 -0.05 0.57
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Generally, the LSTM-RN models exhibited the best performance

compared to the other two models. This was supported by the

fact that the LSTM-RN models were able to predict rainfall more

accurately at both high and low rainfall rates as well as precisely

capture rainfall trends. The performance of the RF-RN model

was the second best. They tended to underestimate rainfall at

FIGURE 7
The gauge rainfall and the predicted results using three types of models of four rainfall events.

TABLE 3 Durations and accumulated rainfall of selected storm events.

Event ID Station height (m) Start time End time Duration (h) Accumulated rainfall (mm)

1 11.04 2017-08-22 15:00:00 2017-08-23 07:00:00 16 60.4

2 64.67 2017-02-22 05:00:00 2017-02-23 03:00:00 22 31.0

3 120.72 2017-06-27 14:00:00 2017-06-28 14:00:00 24 22.4

4 133.09 2017-12-10 01:00:00 2017-12-10 17:00:00 16 31.6

TABLE 4 RMSE, MBE, and COR of three types of models at different lead times.

Lead time (h) RMSE (mm) MBE (mm) COR

OF-RN RF-RN LSTM-RN OF-RN RF-RN LSTM-RN OF-RN RF-RN LSTM-RN

1 0.84 0.77 0.72 0.10 0.10 −0.01 0.33 0.63 0.68

2 0.88 0.78 0.73 0.07 0.09 −0.02 0.37 0.58 0.59

3 0.90 0.80 0.75 0.07 0.09 0.00 0.36 0.51 0.52

4 0.91 0.81 0.76 0.06 0.11 −0.01 0.35 0.46 0.47

5 0.94 0.83 0.77 0.06 0.11 −0.03 0.34 0.39 0.40

6 0.96 0.84 0.77 0.06 0.12 0.01 0.32 0.34 0.36
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high rainfall rates and overestimate rainfall at low rainfall rates

(Figure 7C). However, they could recognize the rainfall trends to

some extent. The OF-RN models performed the worst, deviating

severely from the gauge rainfall, and sometimes even failing to

capture the rainfall trends (Figure 7B).

To quantitatively evaluate the prediction performance of the

different models, the RMSE, MBE, and COR were calculated at

different lead times for the three types of models. Models were

categorized into three classes based on altitude, similar to the

classification in Section 4.2. Thus, we can compare the

performances of the three types of models more easily.

Figure 8 shows the RMSE, MBE, and COR of the three types

of models at different lead times and altitudes. In terms of RMSE,

it can be seen that the LSTM-RN models performed the best at

any lead time and altitude, followed by the RF-RN and OF-RN.

As the lead time increased, the RMSE of all models increased,

among which the LSTM-RN grew the slowest, followed by RF-

RN, while OF-RN grew rapidly. As the altitude increased, the

RMSEs of all models also increased, but the LSTM-RN had the

smallest gain, while the OF-RN had the largest gain. The results

demonstrate that although the accuracy of the models decayed

with increasing lead time and altitude, the LSTM-RN models

consistently outperformed the others. This may be attributed to

the strong memory and excellent learning abilities of LSTM

networks, which allow the LSTM-RN to adapted better to

changing conditions. The RF-RN models also performed

well, with RF being a popular machine-learning method.

The OF-RN models, however, showed large errors,

especially at longer lead times, owing to a lack of learning

ability and reliance solely on the correlation between adjacent

frames in the image sequence.

In terms of MBE, it can be seen that LSTM-RN models

generally fluctuated around 0 at low and medium altitudes and

were <0 at high altitudes. For the other two models, the MBE

values were >0 at all altitudes. In other words, the RF-RN and

OF-RN models tended to overestimate rainfall compared to

LSTM-RN. In general, the LSTM-RN with the minimum

deviation performed the best, implying that it rarely

FIGURE 8
Comparison of RMSE, MBE, and COR of three types of models at different lead times and altitudes.
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overestimated or underestimated rainfall, or the accumulated

overestimation and underestimation were virtually equal.

The CORs of the OF-RN were maintained at a low level

between .31 and .33, while those of the LSTM-RN and RF-RN

decayed with increasing lead time, from ~.70 to .30. There was no

significant difference between the LSTM-RN and RF-RN, except

at the 1-h lead time, where the LSTM-RN performed slightly

better. In general, both the RF-RN and LSTM-RN performed well

at short lead times (1–2 h) with CORs ranging from ~.50 to .70,

and at long lead times (3–6 h) with CORs between ~.30 and .50.

OF-RN was underperforming, with consistently low CORs.

To further compare the performances of the three types ofmodels,

we averaged the three metrics for all stations. The RMSE, MBE, and

COR of the three types of models at different lead times are listed in

Table 4. In terms of RMSE, compared with the OF-RN, the LSTM-RN

decreased by 14.15%, 16.72%, 16.45%, 16.98%, 18.80%, and 19.73% at

lead times of 1 h–6 h, respectively. Generally, the LSTM-RN decreased

by 15.43% at short lead times (1–2 h) and by 17.99% at long lead times

(3–6 h). Similarly, compared with that of RF-RN, the RMSE of LSTM-

RNdecreased by 6.52%, 6.60%, 6.73%, 6.80%, 7.22%, and 7.96% at lead

times of 1–6 h, respectively. The RMSE of the LSTM-RN decreased by

6.56% at short lead times (1–2 h) and by 7.17% at long lead times

(3–6 h). In other words, although the prediction accuracy of the three

types of models decreased as lead time increased, the LSTM-RN with

FIGURE 9
RMSE, relative bias (MBE), and COR of three classes of models at different rainfall rate and relative humidity, respectively.

TABLE 5 Comparison of RMSE, relative bias, and COR among the five
rainfall rate classes (A1–A5).

Classes RMSE (mm) Relative bias COR

A1 0.42 74.66 0.40

A2 0.31 −5.06 0.41

A3 0.35 −31.52 0.42

A4 0.70 −50.51 0.51

A5 2.05 −45.48 0.66

TABLE 6 Comparison of RMSE, MBE, and COR among the five relative
humidity classes (B1–B5).

Classes RMSE (mm) MBE (mm) COR

B1 0.38 0.22 0.40

B2 0.44 0.17 0.46

B3 0.55 0.09 0.53

B4 0.72 −0.03 0.63

B5 0.85 −0.16 0.69
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strong learning and memory ability performed best, with the lowest

RMSEs at any given lead time, and a growing advantage at longer lead

times.

In terms of COR, compared with the OF-RN, the LSTM-RN

increased by 106.99%, 60.41%, 47.21%, 32.62%, 17.15%, and

12.72% at lead times of 1 h–6 h, respectively, with an average

of 46.18%. Similarly, compared with the RF-RN, the LSTM-RN

increased by 7.04%, .98%, 3.20%, 3.06%, 3.48%, and 4.80% at lead

times of 1 h–6 h, respectively, with an average of 3.76%. In

general, the OF-RN did not perform satisfactorily in capturing

the rainfall trends, and both the RF-RN and LSTM-RN

performed well, with the LSTM-RN showing a slight advantage.

4.4 Relationship between the model
performance and weather conditions

In Section 4.2, the performance of the LSTM-RN model at

different lead times and altitudes was discussed, and it was

apparent that model performance displayed regular patterns at

different altitudes. Since altitude is highly relevant to weather

conditions, this study investigated the relationship between

LSTM-RN models and weather conditions. Through pre-

experiments, we discovered that the model performance was

related to rainfall rates and relative humidity; therefore, we

focused on these two factors to further evaluate the model

performance under various weather conditions.

As described in Section 3.4, the test sets were divided into five

classes based on rainfall rate, and three metrics (RMSE, relative

bias, and COR) were calculated. Similar to the division in Section

4.2, the models were divided into three classes based on altitude,

and the metrics were averaged for each class of models.

Figure 9A shows the RMSE, relative bias, and COR of the

three classes of models at different rainfall rates. The blue, yellow,

and orange lines represent the low-altitude, medium-altitude,

and the high-altitude models, respectively. It can be clearly

observed that the curves are highly similar in terms of

altitude. The RMSE generally increased as the rainfall rate

increased, from ~.40 to 2.00. We noted that the smallest

rainfall rate (A1) did not correspond to the lowest RMSE, that

is, light rain was more difficult to predict accurately than

moderate rain (A2–A3). Furthermore, the relative bias of light

rain (A1) was more pronounced than that of heavy rain (A5–A6).

In addition, COR increased as the rainfall rate increased, which is

consistent with the explanation in Section 4.2.

As the atmospheric factors are complicated, this study

selected temperature, relative humidity, and wind speed for

pre-experiments and discovered that relative humidity showed

an obvious correlation with the model performance. Figure 9B

shows the RMSE, MBE, and COR of the three classes of models at

different relative humidities. As relative humidity increased, the

RMSE increased from ~.40 to .80, the MBE decreased from

~.20 to –.20, and the COR increased from ~.40 to .70. The results

demonstrated that the models showed low RMSEs at low relative

humidity, low bias at medium relative humidity, and high CORs

at high relative humidity.

As the results show a similar tendency in terms of altitude

(Figure 9), error metrics were averaged at different rainfall rate

and relative humidity classes, excluding the altitude (Tables 5, 6).

The results revealed that the RMSE improved by 388.10% from

A1 to A5 and by 123.68% from B1 to B5. COR improved by 65%

from A1 to A5 and by 72.50% from B1 to B5. In general, the

models showed a higher accuracy under light rain and low

relative humidity, lower uncertainty under moderate rain and

medium relative humidity, and better recognition of rainfall

trends under heavy rain and high relative humidity.

Although the proposed LSTM-RN models achieved reasonable

performance, the prediction at stations still has limitations. In future

work, meteorological forecast fields, such as the European Centre for

Medium-Range Weather Forecasts (ECMWF), the global forecast

system from China T639, and the National Centers for

Environmental Prediction (NCEP) Global Forecast System (GFS),

will be employed to investigate regional predictions (Li et al., 2021).

Using these data for radar nowcasting could produce more accurate

and practical results over precipitation areas.

5 Conclusion

In this study, we constructed radar rainfall nowcasting models

using LSTM networks, with radar rainfall data as input and rain

gauge data as ground references. To correct radar estimate errors

and improve the nowcasting ability under various weather

conditions, atmospheric data were also used as input. The

40 scattered stations used for modeling roughly represented the

various environments of the study area. Approximately 11 years of

data from the stations were employed as training and test sets to

confirm its adequacy. After adjusting the hyperparameters, we

determined the optimal settings for all stations. The performance

of the LSTM-RN was evaluated at various lead times and altitudes

and was compared with that of the OF-RN and RF-RN. We also

investigated the relationship between the performance of the LSTM-

RN and weather conditions. The results are summarized as follows:

(1) The performance of LSTM-RN displayed regular patterns at

different altitudes. The RMSEs of the models at high altitudes

were generally higher than those at low altitudes; however, the

CORs were also generally higher at high altitudes. Moreover,

models at high altitudes tended to underestimate rainfall, while

models at low altitudes tended to overestimate rainfall, with the

highest variation at high altitudes.

(2) Compared with OF-RN and RF-RN, LSTM-RN

demonstrated the highest accuracy in nowcasting, with the

lowest RMSEs and MBEs closest to 0 at any lead time.

Furthermore, the LSTM-RN had a growing advantage in

longer lead times, with the RMSE decreasing by 15.43% and
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6.56% at short lead times (1–2 h) and by 17.99% and 7.17% at

long lead times (3–6 h). In addition, the LSTM-RN significantly

outperformed the others in recognizing rainfall trends, with the

highest CORs at any given lead time. On average, the COR of the

LSTM-RN increased by 46.18% and 3.76%, compared with that

of the OF-RN and RF-RN, respectively.

(3) A strong relationship between the performance of the LSTM-

RN and weather conditions was observed. The models

showed a higher accuracy under light rain and low

relative humidity, lower uncertainty under moderate rain

and medium relative humidity, and better recognition of

rainfall trends under heavy rain and high relative humidity.

This study proposes a reliable and effective solution to

nowcast radar rainfall at long lead times using an advanced

deep learning technique, as well as considering the

atmospheric impact on radar data. The results demonstrate

that the designed models outperform traditional methods in

prediction ability and are valuable for long lead-time

nowcasting. However, owing to data limitations and the

computational expenses for model training, this study can

only realize nowcasting on stations. In future work, we intend

to collect gauge data from more stations to achieve regional

nowcasting.
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Wildfire events in southwestern China resulted in catastrophic loss of property and
human life, and the localized wildfire risks show differentiated trends under global
warming scenarios. In the case of quantitating climate impacts and localizing
wildfire risks, synthesized assessments of wildfire risks of high-incident areas in
southwestern China are established and mapped in this article, constituted by
three essential elements: hazard, vulnerability, and disaster prevention/mitigation
capacity. The hazard group includes vegetation ignitability and fire spreading
related to climate and topography factors. Public and economic characteristic
elements belong to the vulnerability and disaster prevention/mitigation capacity
group based on their functions and influences on wildfire events. Each aspect and
group are rated by the historical wildfire site records and weighted by the entropy
weight method and analytic hierarchy process. Assessments indicate that most
very high wildfire risk girds are distributed in the west of 103°E and the north of
28°N, covering an area of over 26,500 km2, mainly in low-altitude suburban
regions in basins and valleys with high climate hazards. The highly localized
wildfire risk maps specified both stresses of fire prevention/mitigation in each
grid cell and general spatial patterns of wildfire risks, thereby enhancing the
understanding of both current and future patterns of wildfire risks and thus
helping improve suppression and prevention policies.

KEYWORDS

wildfire, climate change, hazard, vulnerability, risk mapping, Southwest China

1 Introduction

Under the background of global warming, exposure to wildfire is a growing public
health concern worldwide (Flannigan and Harrington, 1988; Flannigan et al., 2000;
Ozturk et al., 2010; Diffenbaugh et al., 2017; Hallema et al., 2018; AghaKouchak et al.,
2020). In southwestern China, frequency, severity, and extent of wildfire events have
increased with the warming and drying trends over this region (Sun et al., 2014). The
population growth and expansion of inhabited areas also amplify the risks and
vulnerabilities to wildfires (Jolly et al., 2015; Gong et al., 2019a; Artés et al., 2019;
Gong et al., 2019b). During 2004–2020, the total burnt areas in the high-wildfire
frequency region of southwestern China increased at a rate of nearly 2 km2 per year
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(Wang et al., 2018), while the annual period of wildfire, referred
to as “fire weather season,” extends, with an earlier beginning
date and a delayed ending date of wildfire events. Growing risks
and vulnerabilities to wildfire result in unprecedented damage
and public health problems in both the southwestern region and
the whole of China.

Recent evidence suggests that the critical inducing factors of
wildfires in southwestern China aim to increase disaster risks
under a changing climate (IPCC, 2012; Ma, 2020; Zhao et al.,
2021). As the most variable and most prominent drivers of
regional wildfires, warmer and dryer weather conditions have
led to more severe fires in recent years (Petoukhov et al., 2018;
Ball et al., 2021). Since the 1970s, the temperature in
southwestern China has been rising at the rate of 0.1°C–0.3°C
per decade, and high-latitude areas have become warmer.
Precipitation reduces at the rate of 9.4 mm per decade, with
an increase in maximum continuous rain-free days, and related
humidity decreases at the rate of 0.4% per decade, especially after
2010 (Ma, 2020; Zhao et al., 2021; Zhao et al., 2022). The increase
in the number of climate extremes, like heat waves and aridity,
also affect wildfire frequency and severity (Gao et al., 2017; Taufik
et al., 2017; Wu et al., 2017).

Risk mappings are effective ways to manage natural disaster
risks (Jaiswal et al., 2002; Pan et al., 2016; Pickell et al., 2017; Shi
and Touge, 2022). Extensive research has shown that wildfire risk
mappings can point out locations where a fire is likely to start and
locations which enable easy fire spreading, thereby providing
precise assessments of wildfire disasters and decisions on
solution methods (Goetz et al., 2006; McKenney et al., 2008;
Hijmans et al., 2010). Previous research on wildfire risk mapping
mainly focuses on topography and vegetation factors (Bessie and
Johnson, 1995; Jaiswal et al., 2002; Gralewicz et al., 2012; Collins
et al., 2013; Salaheddine et al., 2017) but does not consider
climate factors, especially spatial patterns of climate indices, in
much detail.

The specific objective of this study is to provide a comprehensive
and strict wildfire risk mapping in the areas with exceptionally high
wildfire rates in southwestern China. The basic theoretical
framework of risk assessment applied in this manuscript follows
the natural disaster risk-based zonation method. The analysis of
wildfire hazard refers to the probability distribution assessment of
natural characteristics of the wildfire-formative environment and
inducing factors, and vulnerability refers to the likelihood and
severity of wildfire damage (Flannigan et al., 2000). Prevention/
mitigation capacities represent the ability to avoid and mitigate
possible wildfire damage. The risk of wildfire is the synthesis of
hazard, vulnerability, and prevention/mitigation capacities,
representing the levels of wildfire damage probability of specific
space units. The multi-factor complete analysis method includes the
assessments and interactions of climate and environmental inducing
factors, vulnerabilities, and disaster prevention/mitigation capacities
in this area. The paper is organized as follows: Section 2 provides
method description. Section 3 deals with the factors responsible for
wildfire risks, vulnerability, and disaster prevention. Section
4 describes each factor group’s weighting processing and
mapping results. Section 5 deals with relevant discussion and
conclusion.

2 Data and methods

2.1 Study area

The study area is the wildfire high-incident areas in
southwestern China, at 25.3°N~29°N, 99°E~104°E, covering an
area of 120,440 km2, neighboring the Tibet Plateau. Topographic
features vary from the western mountain plateau to the eastern
valley plain, which stretches over 39 county-level administrative
units. Altitudes decline from west to east, and the highest point is
located in the northeastern part of the study area with an altitude of
5,958 m (Figure 1). Climate data from 36 gauges are applied in this
study, which are evenly distributed in the study area. According to
the climatic regionalization of China, the four dominant climatic
regions over the study area are the southern subtropical sub-humid
zone, the northern and central subtropical humid zones, and the
highland temperate humid-sub-humid zone. Most of the study area
falls in the middle of the Jinsha River valley, featuring four obscure
seasons and clear rainy and dry seasons, abundant sunshine, and
intense evaporation; the annual evaporation in this region reaches
three times the annual precipitation; 92% of the precipitation in this
region falls from June to October, namely, the rainy season.
March–May is the driest period in the year, with an average
relative humidity of less than 40%.

The study area belongs to the southwestern forest zone. The
vegetation in the sunny slope regions is mainly Pinus densata and
Chinese pine (Pinus tabuliformis) while in the shady slope and gorge
regions is theropencedrymions constituted by hemlocks (Tsuga
chinensis), Acer spp., and Betula spp. Subalpine coniferous forests
are also distributed in the high-latitude area.

2.2 Data sources

All the climate models are resolved using a 90 m*90 m digital
elevation model of the study area, which is constructed using the
2000 global version 4 SRTM 90 m digital elevation data downloaded
from the National Tibetan Plateau Data Center.

The observation datasets of daily temperature, precipitation,
wind speed, and relative humidity for the period 1981–2021 are
provided by the Sichuan Climate Center and Yunnan Climate
Center, referring to 36 meteorological stations.

The land cover dataset is obtained from FROM-GLC (Finer
Resolution Observation and Monitoring of Global Land Cover) which
produces the first 30m resolution global land cover maps using Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)
data (http://data.ess.tsinghua.edu.cn/). The data sets of population density,
settlements and road networks are provided by the Geographic Data
Sharing Infrastructure of Peking University (http://geodata.pku.edu.cn).

2.3 Interpolation

Partial thin plate splines implemented in ANUSPLIN are applied
for smoothing in this study (Hutchinson, 1991; Hutchinson, 1993;
Hutchinson, 1995; Hutchinson, 2004). ANUSPLIN is a suite of
programs that employs a multi-dimensional Laplacian partial thin
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FIGURE 1
Topography and location of the study area.

TABLE 1 Weights assigned to factors and groups for wildfire risk modeling.

Element Group Factor

Hazards (weighting coefficient = 0.725) Climate (weighting coefficient = 0.4601) Ensemble mean of average daily temperature (weighting coefficient =
0.1327)

Annual maximum of daily temperature maximum (weighting coefficient =
0.1549)

Annual minimum of daily temperature minimum (weighting coefficient =
0.1517)

Wind speed (weighting coefficient = 0.1691)

Relative humidity (weighting coefficient = 0.1598)

Annual consecutive precipitation-free days maximum (weighting
coefficient = 0.2319)

Topography (weighting coefficient =
0.2649)

Altitude (weighting coefficient = 0.6964)

Slope (weighting coefficient = 0.215)

Aspect (weighting coefficient = 0.0886)

Vulnerability (weighting coefficient = 0.1684) Vegetation type (weighting coefficient = 0.4228)

Vegetation coverage (weighting coefficient = 0.3383)

Population density (weighting coefficient = 0.0648)

Distance from habitats and settlements (weighting coefficient = 0.1742)

Prevention/mitigation capacity (weighting coefficient =
0.1066)

Distance from roads (weighting coefficient = 0.3889)

Distance from waterbodies (weighting coefficient = 0.6111)
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plate smoothing spline method. The equation of the theoretical statistic
model is listed as follows:

Zi � f xi( ) + bTyi + ei i � 1,/,N( ), (1)
where Zi is the dependent variable at i point of the specified

space, f (xi) is the unascertained smooth function of xi, xi is the
independent variable, yi is the p-dimensional independent
concomitant variable, b is the p-dimensional coefficient of yi,
and ei is the random error.

In Eq. 1, the function of f (xi) and coefficient b are estimated by
the least square method:

∑N
i�1

zi − f xi( ) − bTyi
wi

[ ]2

+ ρJm f( ), (2)

where Jm(f ) is the roughness measure function of f (xi),
defined as the m-order partial derivative of function f , namely,
the order of spline (roughness) function. ρ is the positive
smoothing parameter.

2.4 Weighting functions

The entropy weight method estimates the weighting coefficient
based on the variability of indices. For a specified index, the less the
information entropy (Ej) it holds, the higher the variability, the
information it carries, its significance in synthesized evaluation, and
vice versa. The entropy weight method is applied in the following
manner:

If there are n factors and m indices, the orthogonal matrix is

X �
x11, x12,/, x1m
x21, x22,/, x2m
..
. ..

.
1 ..

.

xn1, xn2,/, xnm

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (3)

If Z is the standardized matrix (3), then

Zij � xij������∑n
i�1x

2
ij

√ . (4)

FIGURE 2
Spatial pattern of climate hazard factors in historical baseline (1981–2020) over high wildfire incident area of southwestern China. (A) Ensemble
means of daily temperature average. (B) Annual maximum of daily temperature maximum. (C) Annual minimum of daily humidity. (D) Wind speed. (E)
Relative humidity. (F) Annual consecutive precipitation-free days maximum.
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If P is the probability matrix, then

Pij � Z̃ij∑n
i�1Z̃ij

. (5)

The information entropy of index j is

ej � − 1
ln n

∑n
i�1
pij ln pij( ) j � 1, 2,/,m( ). (6)

dj is defined as the information utility and given as

dj � 1 − ej (7a)

Then, the entropy weight Wjof index j is

Wj � dj∑m
j�1dj

. (7b)

2.5 Weighting coefficients

The synthesized wildfire risk mapping over the study area
integrates weighted elements of hazard, vulnerability, and
prevention/mitigation capacity. Each aspect is sub-superposed
by weighted factors. The entropy weight method is applied
when there is a linear correlation between a factor and the
related risk element. Otherwise, an analytic hierarchy process is
employed. Once the weighting results pass the consistency check,
all the factors are rated on a scale of 1–5 except the factor of
vegetation type (rated on a scale of 1–4). The weighting coefficients
of chosen factors and risk mapping elements are listed in Table 1.

The weighting result indicates that the dominant factors are
altitude and annual consecutive precipitation-free days maximum,
followed by relative humidity, wind speed, and vegetation coverage.
The factor rating of altitude reflects both human activities and

FIGURE 3
Spatial pattern of topography hazard factors over the high-wildfire incident area in southwestern China. (A) Slope. (B) Aspect.

TABLE 2 Classifications of altitudes.

Altitude/m Frequency of fire site records Proportion of fire site records/% Risk level

956–1,356 63 29.03 4

1,356–1,776 66 30.41 5

1,776–2,196 39 17.97 3

2,196–2,576 31 14.29 2

2,576–3,048 18 8.3 1
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vegetation inflammability. Factors that point to vegetation
desiccation and wildfire spreading also play essential roles in risk
mapping. Prevention/mitigation capacity holds the lowest weight
due to its uncertainty and high dependency on public infrastructures
in actual situations.

2.6 Synthesized risk assessment model

According to the forming and spreading conditions of wildfire
and hazard criticality assessment methodology, the synthesized
assessment model is comprised of three main modules
representing the core of the wildfire risk assessment: the
hazard (comprising the climate group and topology group),
vulnerability, and prevention modules. The modules and each
element inside are composed based on the integrated weight
linear method. The synthesized wildfire risk assessment model of
southwestern China is listed as follows (all of the elements are
normalized):

Hazard module: H = 0.4601*(0.1327* ensemble mean of daily
temperature average + 0.1549* annual maximum of daily
temperature maximum + 0.1517* annual minimum of daily
temperature minimum + 0.1691* wind speed − 0.1598* relative
humidity + 0.2319* annual consecutive precipitation-free days
maximum) + 0.2649*(0.6964* altitude + 0.215* slope + 0.0886*
aspect).

Vulnerability module: V = 0.4228* vegetation type + 0.3383*
vegetation coverage + 0.0648* population density.

Prevention/mitigation capacity module: p = 0.1742* distance
from habitats and settlements + 0.3889* distance from roads +
0.6111* distance from waterbodies.

The synthesized risk assessment model: Risk = 0.725*H +
0.1684*V – 0.1066*P.

3 Factors applied in the risk assessment

3.1 Wildfire hazard criticalities

3.1.1 Climate
The literature on wildfires has highlighted several climate-

inducing factors: temperature, wind speed, relative humidity, and
precipitation (Sun et al., 2014; Jolly et al., 2015; Pan et al., 2016;
Pickell et al., 2017). All of these factors act on vegetation water
content and ignition points. Wildfires are easy to start and spread
in a high-temperature dry environment and vice versa. This study
divides temperature factors into an ensemble mean of the daily
average, annual maximum, and annual minimum. A significant
advantage of this division is ensuring complete consideration of
the effects of extreme temperature spatial patterns of wildfires.
With the rapid increase in extreme precipitation events in this
area, annual consecutive precipitation-free days maximum

TABLE 4 Classifications of aspects.

Aspect Frequency of fire site records Proportion of fire site records/% Risk level

Flat 0 0 1

North 11 5.07 2

Northeast 19 8.76 3

East 17 7.83 3

Southeast 15 6.91 2

South 41 18.89 5

Southwest 40 18.43 5

West 43 19.82 5

Northwest 31 14.29 4

TABLE 3 Classifications of slopes.

Slope/° Frequency Proportion of fire site records/% Risk level

0–11 59 27.19 4

11–22 65 29.95 5

22–33 53 24.42 3

33–44 32 14.75 2

44–54 8 3.69 1
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characterize the status of vegetation moisture content better than
a single index of precipitation amount. The wind speed affects
both combustible contents and wildfire spread by expediting
evaporation and airflow. The aforementioned three factors are
positive indices. Wildfire risks increase with an increase in the

three factors. The relative humidity factor is an exception. With
the increase in relative humidity, the moisture of vegetation
increases, and ignitability declines after that.

All the aforementioned climate factors in a historical baseline
of 1981–2020 are interpolated to the study area at a resolution of

FIGURE 4
Spatial pattern of vulnerability factors over the high-wildfire incident area in southwestern China. (A) Vegetation type. (B) Vegetation coverage. (C)
Population density. (D) Distance from habitats and settlements.
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100 m*100 m using partial thin plate smoothing splines, as
implemented in ANUSPLIN (Hutchinson, 1991; Hutchinson,
2004). These temperature maps show that the southern part

of the study area experiences the highest ensemble mean of
annual average temperature, especially in the belting river
valley area. By comparison, the low-temperature area is
mainly distributed in high-altitude localities. It is worth
noting that in the northeastern part of the study area, the
variations arising between the ensemble means of annual
minimum and maximum are relatively less than those arising
in the other factors (Figures 2A–C).

Annual consecutive precipitation-free day maximum of rain
gauge records in the study area ranges from 7.8 to 37.6 d/a, with
the highest exceeding 26.9 d/a in the southwestern part andwest valley
of the study area. Meanwhile, the lowest annual consecutive
precipitation-free day maximum, i.e., less than 13.4 d/a, is
recorded in the northeastern and eastern mountain areas (Figure 2D).

The ensemble mean of average daily wind speed records ranges
from 1.0 to 9.1 m/s. Wind speed greater than 8.2 m/s is reported in
the northern and central parts of the study area, which decreases
toward the periphery. The lowest wind speed, i.e., less than 3.4 m/s,
mainly occurs in the outer ring of the study area. The spatial pattern
of wind speed is distinctly different from other climate factors
(Figure 2E).

According to previous research, a wildfire is likely to occur when
the relative humidity is below 65% (Pan et al., 2016). Relative
humidity below 65% occurs in over 69.4% of the study area.
Unlike the spatial patterns of temperature, the relative humidity
of the study area decreases from west to east in general. Particularly,
in the southwestern part, the low relative humidity occurs in low-
altitude areas with intensive drainage networks abnormally
(Figure 2F).

TABLE 5 Classifications of distance from habitats and settlements.

Distance from habitats
and settlements (m)

Proportion of fire
site records (%)

Vulnerability
level

<1,500 45.35 4

1,500–3,000 47.21 5

3,000–4,500 6.28 3

4,500–6,000 0.93 2

>6,000 0.23 1

TABLE 6 Classifications of distance from roads.

Distance from roads (m) Prevention/mitigation capacity
level

<500 5

500–1,000 4

1,000–1,500 3

1,500–2,000 2

>2,000 1

FIGURE 5
Spatial pattern of wildfire prevention/mitigation capacity factors over the high-wildfire incident area in southwestern China. (A)Distance from roads.
(B) Distance from waterbodies.
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3.1.2 Topography
Since the relationship between topographical factors and

wildfire risks is non-linear, in this study, the wildfire risk
levels of altitude, slope degrees, and aspects are grouped based
on the study area’s 2017–2021 historical wildfire records, the
spatial patterns of topographical factors can be seen in Figure 3.
Detailed classifications of altitude, slope degrees, and aspects are
listed in Tables 2–4.

3.2 Vulnerability

3.2.1 Vegetation types
According to the inflammability of different vegetation types

(Dimitrakopoulos and Papaioannou, 2001; Hall et al., 2010;
Corona et al., 2014), the study area is divided into grasslands,
bushlands, forests, and other underlying surfaces, and the
vulnerabilities of each type decrease in turn. Forests stretch over
57.54% of the study area and account for the most significant
proportion. Grasslands hold the highest vulnerability level,
accounting for 25.63% of the study area (Figure 4A).

3.2.2 Vegetation coverage
The vegetation proportion raster dataset is constituted by the

vegetation coverage of each 100 m*100 m grid (Figure 4B). The
vegetation coverage in the northeastern part is relatively higher than
that in other parts. The distribution illustrates the urbanization rate
of the study area as well. The details with low vegetation coverage
often refer to urbanized regions.

3.2.3 Population exposure
With the densification of the population, the vulnerability to

wildfires increases. The distribution of population density is in
accordance with urbanization rates. The lowest population density

TABLE 7 Classifications of distance from waterbodies.

Distance from
waterbodies (m)

Prevention/mitigation capacity
level

<500 5

500–1,000 5

1,000–1,500 4

1,500–2,000 3

2,000–2,500 2

2,500–3,000 1

>3,000 1

FIGURE 6
Spatial pattern of climate hazards.
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occurs in the northeastern part of the study area, with a population
density of less than 54 people/km2. By comparison, the economic
center located in the southern study area has a population density of
over 1,000 people/km2 (Figure 4C).

3.2.4 Distance from habitats and settlements
Human activities of habitation and culture can lead to accidental

wildfires (Moreira et al., 2012). Meanwhile, the losses of wildfire
disasters tend to increase with the distances from habitats and
settlements. Wildfires rarely break out or spread very close (e.g.,
within a distance of 500 m) to habitats and colonies because of the
cautious fire use and the rapid putting out. Hence, the correlation
between vulnerability and distances from habitats and settlements is
non-linear. Based on previous research, wildfire disasters most
frequently occur between 1,500 and 3,000 m, followed by a space
of less than 1,500 m. No wildfire records are found beyond 9,000 m
from habitats and settlements (Figure 4D). The vulnerability levels
of distances from habitats and settlements are listed in Table 5.

3.3 Wildfire prevention/mitigation capacity

3.3.1 Distance from roads
Distance from roads is the index that refers to both wildfire

proneness and mitigation capacities. On the one hand, frequent
human activities near roads induce accidental fire opportunities.
On the other hand, emergency departments can monitor wildfires

near roads at the preliminary stage, and fire engines and other fire
control equipment can rapidly respond to fire alarms. As a factor of
wildfire prevention/mitigation capacities, the effect of distances of
2 km from roads could be neglected. In this study, the county-level
road networks and distances from roads are considered the
practical parts of wildfire prevention/mitigation capacity due to
the applicabilities of firefighting infrastructures. The prevention/
mitigation capacity levels of distances from roads are listed in
Table 6, and the spatial patterns are shown in Figure 5A.

3.3.2 Distance from waterbodies
As the source of the fire water system, the location and

availability of natural waterbodies are important elements of
wildfire prevention/mitigation capacity. The availability of a
natural waterbody declines as the distance between fire points
and the waterbody increases. The prevention/mitigation capacity
levels of distance from waterbodies are listed in Table 7, and the
spatial patterns are shown in Figure 5B.

4 Results

4.1 Hazard criticalities

The element of hazard manifests both ignition possibility and
wildfire spreading. High and very high climate hazard areas are
mainly located west of 103°E, with belts distributed along valleys and

FIGURE 7
Spatial pattern of topography hazards.

Frontiers in Environmental Science frontiersin.org10

Xu et al. 10.3389/fenvs.2023.1137372

111

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1137372


basins, accounting for 45.81% of the study area. Universal features of
high and very high climate hazard areas are relatively high
temperatures, low relative humidity, and long consecutive
precipitation-free days. Very low and low climate hazard areas
fall in the northeastern study area, east of 103°E, between 27 and
29°N, accounting for 30.44% of the study area. These areas have
relatively high relative humidity, low wind speed, and short
consecutive precipitation-free days. Moderate climate hazard
areas mainly fall in suburban areas and regions with a relatively
low level of development, relatively high temperatures, long
consecutive precipitation-free days but low wind speed, and high
relative humidity (Figure 6).

Distributions of topography hazards are relatively scattered.
Areas with above-moderate-level topography hazards mainly
occur in canyons and cliffy mountain regions. Altitudes and
slope degrees of these areas are easy for ignition and wildfire
spreading, accounting for 47.93% of the study area. Very low
topography hazard areas, with belts distributed mainly in valleys
with gentle slopes and relatively low altitudes, account for
12.01% of the study area. The exception is the northwestern
end of the study area. Although the terrain of this area is
eminently steep, the altitude here is overly high for wildfires,
making low topography hazards dominant here. Significantly,
most very low topography hazard areas have coincided with very

high-climate hazard areas except the northeastern corner of the
study area (Figure 7).

4.2 Vulnerability

Grids with high vulnerability levels dominate the entire classified
vulnerability distribution, accounting for 57.64% of the study area due
to the high vegetation coverage. Divided by the line of 102°E, very high-
vulnerability areas in the eastern part are vast stretches, while in the
western region, they are more scattered since the habitats and
settlements are more concentrated, and the vegetation type of
grasslands (with the highest vulnerability level) hold a significant
proportion in these regions. Low- and very low-vulnerability areas
mainly occur in urban areas and waterbodies, with scarce vegetation
coverage and the most inferior vulnerability level surfaces, accounting
for 19.86% of the study area. Areas with themoderate vulnerability level
account for only 5.48% of the study area, formed in different ways:
divided by the lines of 102°E and 27°N, moderate vulnerability areas in
the eastern and southern parts are formed by relatively low vegetation
coverage and vegetation ignitability, under the background of dense
population and habitats/settlements, while in the western and northern
parts, vegetation coverage and ignitability are relatively high, but
population and habitat/settlement density are relatively low (Figure 8).

FIGURE 8
Spatial pattern of vulnerability.
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4.3 Wildfire prevention/mitigation capacity

Prevention/mitigation capacity is a negative factor in wildfire risk
mapping. With the increasing prevention/mitigation capacity, wildfire
risks decline. Grids with very high prevention/mitigation levels mainly
occur at the intersection of road networks andwaterbody surroundings,
accounting for 11.53% of the study area. High and moderate
prevention/mitigation capacity grids, accounting for 21.57% and
18.09% of the study area, respectively, are areas alongside roads but
far away fromwaterbodies. Themost significant proportion held by low
prevention/mitigation capacity grids is 25.16%, which mainly occurs in
areas with inaccessible waterbody surroundings. Very low prevention/
mitigation capacity grids occur in deep forests and upper mountain
areas far away from fire water systems. Once these regions get ignited, it
is hard to rescue. In general, the prevention/mitigation capacity of the
study area is higher in the east of 102°E and the south of 27°N. These
two lines can be regarded as the demarcations of wildfire risk mapping
over the study area (Figure 9).

4.4 Synthesized risk mapping

Synthesized risk mapping in this study (Figure 10) reflects the
probability of ignition, spreading, and rescue of wildfire: the climate
hazard and topography hazard factors influence the inflammability of

vegetation and spreading possibility. Vulnerability factors that describe
the case of wildfire-inducing damage, combined with the ability of
wildfire rescue, constitute the synthesized wildfire risk mapping over
the high-incidence area of southwestern China. Most very high wildfire
risk girds are distributed in the west of 103°E and the north of 28°N and
intensively distributed in 101°E~102.5°E, 28°N~26°N. Broad similarities
of very high-risk grids are urban area surroundings with relatively
frequent human activities and high climate hazard levels, basins and
valleys with altitudes between 1,500 and 3,000 m, high vegetation
coverage, and areas away from waterbodies and road networks. Very
high-risk grids account for 22.05% of the study area, covering over
26,500 km2. There are 14 county-level regions with a very high wildfire
risk area proportion of over 50% inside their administrative boundaries.
High- and moderate-risk grids dominate the study area, accounting for
28.56%and 26.83%, respectively, covering a total area of over 66,600 km2.
Broad similarities between high- and moderate-risk grids are high–very
high climate hazards and under-moderate topography hazards, whereas
the difference is high andmoderate grids at the west of 102.5°E under the
background of above-moderate vulnerabilities and under-moderate
prevention/mitigation capacities.

Nonetheless, in the eastern part, the reverse applies. Low- and very
low-risk grids are mainly concentrated in the east part of 102°E, with
minorities located in a small area between 100°E~100.5°E and
27°N~28°N, mainly for high mountain regions and waterbodies. The
sum of low- and very low-risk grids accounts for 22.57% of the study

FIGURE 9
Spatial pattern of wildfire prevention/mitigation capacity.
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area, covering an area of 27,000 km2. Low- and very low-risk areas
mainly occur in urban areas with low vegetation and dense public fire
prevention infrastructures or humid regions in the northeastern study
area. The risk mapping results are in general accordance with the
climate regionalization. Areas with wildfire risks above moderate are
mainly distributed in the southern subtropical sub-humid zone, while
regions with risks below moderate occur in the northern and central
subtropical humid zones. The northwestern end of the study area is
located at the junction of the highland temperate humid zone and the
highland temperate sub-humid zone. The contradictory vulnerability
factors, namely, a large number of high ignitability grassland stretches
and tiny population exposure, make this region unique over the
study area.

5 Discussion and conclusion

Most previous studies of wildfire risk mapping emphasize
topography factors, and climate factors are ignored or applied in
low-resolution ways, thereby failing to notice some important details
of wildfire risks. One instance is, in previous studies, the northwestern
end of the study area (ranging from 28°N to 29°N and 100.5°E to
101.5°E) is classified as a low-fire risk area due to its low temperature.
When the elevation model-related climate factors are applied, high-
and very high-risk regions distributed in the belting ravines are

revealed, which coincides with the actual wildfire records. Another
fact is that with climate change and increasing precipitation extremes,
the ensemble mean of annual precipitation accumulation, which is
applied in most previous studies, is insufficient to characterize the
humidity of vegetation solitarily. Our study suggests that the annual
precipitation accumulation and annual consecutive precipitation-free
day maximum are increasing, with a trend of expanded wildfire scales
over the study area in recent years. The relationship between
precipitation factors and wildfire needs advanced research.

The potential changes in climate hazards are the most critical and
predictable factor among all the risk factors. The analysis of climate
factors indicates that wind speed and relative humidity decline due to
the changes in underlying surfaces under the background of large-scale
urbanization. Meanwhile, the synchronous increase in precipitation
accumulation and consecutive precipitation-free days points to more
intense precipitations and longer dry seasons. Increasing human
activities, combined with warming and drying climate conditions,
uplift the frequency of wildfires. Nonetheless, wind speed declines
limit wildfire spreading, explaining the synchronous increments in
occurrences and reductions in scales of wildfire events in actual records.

The wildfire mapping result suggests that the hotspots of wildfire
are mainly distributed in the area ranging 101°E~102.5°E and
26°N~28.5°N and stretch over 14 county-level administration units.
The highly localized wildfire risk maps specified fire prevention/
mitigation stresses in each grid cell and general spatial patterns of

FIGURE 10
Spatial pattern of synthesized risk assessment.
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wildfire risks. With the skyrocketing expansion of population and
urbanization in southwestern China, policymakers should take
changing climate hazards, localized vulnerabilities, and socio-
economic characteristics into full consideration to manage wildfire
risks and make tendentious construction policies of transportation
systems and fire water systems toward existing and potential wildfire
hotspots under the background of global warming.
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Climate extremes have more far-reaching and devastating effects than the mean
climate shift, particularly on the most vulnerable societies. Ethiopia, with its low
economic adaptive capacity, has been experiencing recurrent climate extremes
for an extended period, leading to devastating impacts and acute food shortages
affecting millions of people. In face of ongoing climate change, the frequency and
intensity of climate extreme events are expected to increase further in the
foreseeable future. This study provides an overview of projected changes in
climate extremes indices based on downscaled high-resolution (i.e., 10 ×
10 km 2) daily climate data derived from global climate models (GCMs). The
magnitude and spatial patterns of trends in the projected climate extreme
indices were explored under a range of emission scenarios called Shared
Socioeconomic Pathways (SSPs). The performance of the GCMs to reproduce
the observed climate extreme trends in the base period (1983–2012) was
evaluated, the changes in the climate projections (2020–2100) were assessed
and the associated uncertainties were quantified. Overall, results show largely
significant and spatially consistent trends in the projected temperature-derived
extreme indices with acceptable model performance in the base period. The
projected changes are dominated by the uncertainties in the GCMs at the
beginning of the projection period while by the end of the century
proportional uncertainties arise both from the GCMs and SSPs. The results for
precipitation-related extreme indices are heterogeneous in terms of spatial
distribution, magnitude, and statistical significance coverage. Unlike the
temperature-related indices, the uncertainty from internal climate variability
constitutes a considerable proportion of the total uncertainty in the projected
trends. Our work provides a comprehensive insight into the projected changes in
climate extremes at relatively high spatial resolution and the related sources of
projection uncertainties.
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1 Introduction

There is unequivocal and overwhelming evidence for the
ongoing climate change. The projected 1.5°C increase in global
average temperature by 2050s poses risks to humans and
ecosystems (IPCC, 2022). The changing climate has manifested
itself in higher climate extremes events (Myhre et al., 2019;
Madakumbura et al., 2021). Climate extremes usually have
more devastating effects than the mean shift in the climate.
Expected increases in flash flood events following more
frequent and extreme precipitation events, or droughts as a
result of prolonged periods of extremely low precipitation are
situations that may cost countries a huge price (IPCC, 2022).
Extreme heat or cold waves have far-reaching socioeconomic and
mental effects on the most vulnerable societies (IPCC, 2022).
Since 2005, the world has witnessed 9 warmest years, and 2019 has
been recorded as one of the three warmest years since the records
have begun. This global phenomenon has significant implications,
particularly for the most vulnerable part of the world’s economy.
Kemp et al. (2022) suspect that, together with other global threats,
the changing climate may become catastrophic even at modest
levels of warming.

Ethiopia’s economy depends largely on agriculture and it is
considered to be among the countries that are most vulnerable to
climate extremes. The agricultural sector second contributes ~ 38%
to the GDP (Gross Domestic Product) of the country but employs
67% of the population and contributes about 86% of export earnings
(Eshetu and Mehare, 2020; World Bank, 2022b; World Bank,
2022c). Moreover, the largely subsistence agriculture relies on
seasonal rains. The proportion of irrigated land was only 2.1% in
2018 (World Bank, 2022a) and agricultural mechanization was
below 1% (Berhane et al., 2017). Ethiopia has faced recurrent
climate extreme effects for a long period usually resulting in a
devastating impact and leaving millions in acute food shortage
(Kiros, 1991; Mohammed et al., 2018). The 2022 drought was
one of the worst in 50 years, leaving 2.2 million livestock dead
(FEWS NET, 2022). Considering the projected population of >
200 million by 2050 (World Bank, 2022d), the challenge of
comparable drought periods for the already vulnerable economy
would be enormous. Against this background, detailed
quantification of climate extremes is particularly relevant for
Ethiopia.

For the past climate, studies have documented consistent
increasing temperature trends both in mean and extremes in East
Africa in general (Gebrechorkos et al., 2019b; Muthoni et al.,
2019; Afuecheta and Omar, 2021) and Ethiopia in particular
(Gummadi et al., 2018; Gebrechorkos et al., 2019b; 2019a).
However, precipitation has been reported as inconsistent
across the region (Viste et al., 2013; Tierney et al., 2015;
Cattani et al., 2018; Gummadi et al., 2018). For instance,
Tierney et al. (2015) documented unusual drying of March-
May rainfall in East Africa during the past century.
Meanwhile, their assessment based on 23 CMIP5 models by
the end of the 21st century show largely increasing seasonal as
well as annual precipitation totals under high emission (RCP 8.5)
scenario (Tierney et al., 2015). Drying spring and summer
seasons have also been reported for southern Ethiopia. The
drying springs have affected most parts of the country (Viste

et al., 2013). However, local scale studies identified higher spatial
variability both in the observed and projected climate trends,
particularly for precipitation (Brown et al., 2017; Muthoni et al.,
2019; Alaminie et al., 2021; Bayable et al., 2021). High spatial
variability was also visible in past climate extremes (Cattani et al.,
2018; Esayas et al., 2018; Ademe et al., 2020; Gemeda et al., 2021;
Ali Mohammed et al., 2022; Birhan et al., 2022; Dendir and
Birhanu, 2022). Understanding the time evolution of extreme
climate events is of large interest for designing potential
adaptation options and informed decision-making (Kemp
et al., 2022). Ethiopia is characterized by diverse climate
regimes modulated by its complex topography exerting strong
elevation gradients (Diro et al., 2011; Van den Hende et al., 2021),
which require finer spatial resolution to produce relevant results
(El Kenawy et al., 2016).

The basic sources of projected climate data are the Global
Climate Models (GCMs) running on coarse spatial resolution
at > 70 × 70 km 2. The projected data are highly uncertain,
mainly due to the structural and parametrization differences
among the models (Murphy et al., 2004; Her et al., 2019; Lee
et al., 2021). Therefore, adaptation to climate extremes should be
based on multi-model-based simulation at high spatial
resolution taking into account several emission scenarios
(Fatichi et al., 2016). For Ethiopia, these GCM projections
were recently downscaled to 10 × 10 km 2 spatial resolution
for temperature and precipitation (Rettie et al., 2023). The
data were derived from the most current GCMs in the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
under three Shared Socioeconomic Pathways (SSPs) by
employing a statistical downscaling technique (Hamlet et al.,
2010; Maurer et al., 2010).

The present study provides an overview of observed and
projected changes in climate extremes indices derived from the
downscaled high-resolution daily climate data by Rettie et al. (2023).
For this, we compared the historical simulation of the
CMIP6 models and analyzed the temporal and spatial
distributions of projected changes. The skill of the individual
models in reproducing the observed trends of climate extremes
in the base period (i.e., 1983–2012) was evaluated, and the
uncertainties associated with the projected (i.e., 2020–2100)
trends were quantified.

2 Materials and methods

2.1 Climate data

The climate hazards group database provides free daily
climate data with a 5 × 5 km 2 spatial resolution with quasi-
global coverage (50°S–50°N, ftp://ftp.chg.ucsb.edu/pub/org/chg/
products/). Daily climate data is available for the study area
(Figure 1A) from CHIRPS (Climate Hazards Group InfraRed
Precipitation with Stations) for precipitation (Funk et al., 2015)
and from CHIRTS (Climate Hazards Group InfraRed
Temperature with Stations) for temperature (Verdin et al.,
2020) (Figures 1B–D). The data were generated in several
stages by blending satellite records and in situ station data
and are available since 1981 for precipitation and from
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1983 to 2016 for temperature. The data has been evaluated for its
ability to reliably reproduce the climatology and major
meteorological systems of Ethiopia (Dinku et al., 2018; Belete
et al., 2020; Taye et al., 2020; Kabite Wedajo et al., 2021; Malede
et al., 2022) and other regions (Zambrano-Bigiarini et al., 2017;
Saeidizand et al., 2018; Muthoni et al., 2019; Muthoni, 2020).

This work was conducted based on previously downscaled
climate projections covering the period of 2020–2100 from a list
of CMIP6 GCMs under three emission scenarios known as shared
socioeconomic pathways (SSPs) (Rettie et al., 2023). The data was
produced by applying a geospatial statistical downscaling technique
to downscale the original coarse spatial resolution (i.e., > 70 ×
70 km2) GCM outputs to 10 × 10 km2 spatial resolution covering
entire Ethiopia (3oN—15oN and 32oE—48oE). The data includes
projections of temperature and precipitation from 13 to
9 CMIP6 GCMs, respectively (Table 1). For a detailed
description of the downscaling procedure and evaluation see
there. In this study, we considered the downscaled climate
projections datasets under three SSPs. The selected SSPs are
SSP2-4.5, SSP3-7.0, and SSP5-8.5, which represent medium,

medium-high, and high-forcing scenarios based on middle-of-
the-road, regional rivalry, and fossil-fueled socioeconomic
development scenarios, respectively (O’Neill et al., 2017;
Meinshausen et al., 2020). The emission scenarios span a broad
range of CO 2 concentration, with radiative forcing level of
4.5 Wm −2 and 8.5 Wm −2 by 2100 for SSP2-4.5 and SSP5-8.5,
respectively (IPCC, 2021).

2.2 Climate extreme indices

Table 2 lists the 23 climate extreme indices investigated in
this study. The indices were among the 27 climate change
indicators which were developed by the Expert Team on
Climate Change Detection, Monitoring Indices (ETCCDMI)
and have been recommended by the World Meteorological
Organization (WMO) (Zhang et al., 2011). The R package
climdex.pcic (Pacific Climate Impacts Consortium (2020),
http://cran.r-project.org/web/packages/climdex.pcic/index.html)
was used to derive the climate indices at 10 × 10 km 2 grid

FIGURE 1
Maps of Ethiopia showing elevation (A), annual total precipitation in mm (B), and annual maximum (C) and minimum (D) temperatures based on
observation data (1982–2012).
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resolution covering entire Ethiopia (i.e., 3oN - 15oN and 32oE -
48oE). To assess the skill of the GCMs in reproducing the
observed climate extremes, the indices were calculated for a
common 30-year period for which CHIRPS and CHIRTS data
were both available. Hence, for each grid cell, the 23 climate
extreme indices (Table 2) were calculated for the observed climate
data (i.e., for the CHIRPS and CHIRTS data) and the historic
GCMs climate outputs for the common 30-year period
(i.e., 1983–2012). Similarly, the same climate extreme indices
were calculated for the projected climate period (i.e., 2020–2100)
for each GCM under each SSP. The indices were computed on
High-Performance Cluster bwUniCluster 2.0.

2.3 Evaluation of models’ skill

The performance of the GCMs in reproducing the observed
climate extremes was evaluated based on the Taylor diagram
(Taylor, 2001). Taylor diagram is a widely used tool to evaluate
how well a model matches observed climate states (Guo et al.,
2018; Rao et al., 2019; Li et al., 2021; Yang et al., 2021; Liu et al.,
2022). A Taylor diagram simultaneously visualizes three
summary statistics: the standard deviation (σ) of simulated
(Y) data normalized to that of the observed (X) data, the
correlation coefficient (r) between simulated and observed
data, and the centered root mean squared error (RMSE c)
between simulated and observed data (Table 3). For the
Taylor diagrams, we computed the model skills of climate
extreme indices over the area-averaged data across the entire
grid cells for 30 years (i.e., 1983–2012).

2.4 Trend estimation and test

We used the Mann-Kendall (MK) method (Mann, 1945;
Kendall, 1962; Pohlert, 2020) to test the trends in the respective
climate extreme indices for both the baseline climate and future
projections. The MK is a non-parametric test (i.e., the data does not
have to meet the normality assumption) and widely used method
because of its simplicity (Cattani et al., 2018; Esayas et al., 2018;
Afuecheta and Omar, 2021; Li et al., 2021; Simanjuntak et al., 2022).
The MK test determines the presence of monotonic (i.e., consistent)
increasing or decreasing tendency of data in a given time. The
magnitude of the trend is determined by using Sen’s slope estimator
(Sen, 1968) which is a non-parametric approach to estimate the
overall slope in a data series (Beyene et al., 2022; Malaekeh et al.,
2022; Pervin and Khan, 2022). All the MK tests and slope estimates
were computed using the “trend” R software package (Pohlert,
2020).

2.5 Partitioning sources of uncertainty in the
projected climate extremes

Climate change projections usually involve three main sources
of uncertainty, namely: uncertainty due to GCMs (M t), SSPs (S t),
and internal climate variability (V). Using the method proposed by
Hawkins and Sutton (2009); Hawkins and Sutton (2011), we
evaluated the projected climate extreme indices from the GCMs
(Table 1) under the three emission scenarios (SSPs) for the period
from 2020 to 2100. For the temperature-related indices, this gives a
total of 39 projections from the 13 GCMs (Nm = 13) and 3 SSPs

TABLE 1 List of GCMs and availability of data with respect to maximum (Tmax) and minimum (Tmin) temperatures and precipitation (Pr).

Model
name

Institution name Tmax Tmin Pr Resolution (lon.
by lat.)

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of
Meteorology (BOM), Australia

✓ ✓ ✓ 1.9° × 1.3 °

ACCESS-
ESM1-5

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of
Meteorology (BOM), Australia

✓ ✓ ✓ 1.9° × 1.2°

AWI-CM-1-
1-MR

AlfredWegener Institute, Helmholtz Centre for Polar andMarine Research, AmHandelshafen 12,
27570 Bremerhaven, Germany

✓ ✓ o 1.1° × 1.1 °

EC-Earth3-Veg EC-Earth-Consortium ✓ ✓ o 0.7° × 0.7 °

EC-Earth3 EC-Earth-Consortium ✓ ✓ o 0.7 ° × 0.7 °

GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory ✓ ✓ ✓ 1.3° × 1.0 °

INM-CM4-8 Institute for Numerical Mathematics ✓ ✓ ✓ 2.0° × 1.5 °

INM-CM5-0 Institute for Numerical Mathematics ✓ ✓ ✓ 2.0° × 1.5 °

IPSL-CM6A-LR Institut Pierre Simon Laplace, Paris 75252, France ✓ ✓ o 2.5° × 1.3 °

MIROC6 Japan Agency for Marine-Earth Science and Technology, Kanagawa 236–0001, Japan ✓ ✓ ✓ 1.4° × 1.4 °

MPI-ESM1-
2-HR

Max Planck Institute for Meteorology, Hamburg 20146, Germany ✓ ✓ ✓ 0.9° × 0.9 °

MPI-ESM1-
2-LR

Max Planck Institute for Meteorology, Hamburg 20146, Germany ✓ ✓ ✓ 1.9° × 1.9 °

MRI-ESM2-0 Meteorological Research Institute ✓ ✓ ✓ 1.1° × 1.1 °
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TABLE 2 List of ETCCDMI-defined precipitation and temperature extreme indices computed and evaluated in this study.

Label Index name Index definition Units

TN10p Cold nights Percentage of days when TN < 10 th percentile: Let TN ij be the daily minimum temperature on day i in period j
and let TN in 10 be the calendar day 10 th percentile centred on a 5-day window for the period. The percentage of

time the period is determined where: TN ij < TN in 10

%

TX10p Cold days Percentage of days when TX < 10 th percentile: Let TX ij be the daily maximum temperature on day i in period j
and let TX in 10 be the calendar day 10 th percentile centred on a 5-day window for the period. The percentage of

time the period is determined where: TX ij < TX in 10

%

TN90p Warm nights Percentage of days when TN > 90 th percentile: Let TN ij be the daily minimum temperature on day i in period j
and let TN in 90 be the calendar day 90 th percentile centred on a 5-day window for the period. The percentage of

time the period is determined where: TN ij > TN in 90

%

TX90p Warm days Percentage of days when TX > 90 th percentile: Let TX ij be the daily maximum temperature on day i in period j
and let TX in 90 be the calendar day 90 th percentile centred on a 5-day window for the period. The percentage of

time the period is determined where: TX ij > TX in 90

%

WSDI Warm spell duration Warm spell duration index: Annual count of days with at least 6 consecutive days when TX > 90 th percentile: Let
TX ij be the daily maximum temperature on day i in period j and let TX in 90 be the calendar day 90 th percentile
centred on a 5-day window for the period. Then the number of days per period is summed where, in intervals of at

least 6 consecutive days: TX ij > TX in 90

days

CSDI Cold spell duration Cold spell duration index: Annual count of days with at least 6 consecutive days when TN < 10 th percentile: Let
TN ij be the daily maximum temperature on day i in period j and let TN in 10 be the calendar day 10 th percentile
centred on a 5-day window for the period. Then the number of days per period is summed where, in intervals of at

least 6 consecutive days: TN ij < TN in 10

days

TXx Max TX Monthly maximum value of daily maximum temperature: Let TXx be the daily maximum temperatures in month
k, period j. The maximum daily maximum temperature each month is then: TX xkj = max(TX xkj)

°C

TXn Min TX Monthly minimum value of daily maximum temperature: Let TXn be the daily maximum temperatures in month
k, period j. The minimum daily maximum temperature each month is then: TX nkj = min(TX nkj)

°C

TNx Max TN Monthly maximum value of daily minimum temperature: Let TNx be the daily minimum temperatures in month
k, period j. The maximum daily minimum temperature each month is then: TN xkj = max(TN xkj)

°C

TNn Min TN Monthly minimum value of daily minimum temperature: Let TNn be the daily minimum temperatures in month
k, period j. The minimum daily minimum temperature each month is then: TN nkj = min(TN nkj)

°C

SU Summer days Number of summer days: Annual count of days when TX (daily maximum temperature) > 25°C. Let TX ij be daily
maximum temperature on day i in year j. Count the number of days where: TX ij > 25°C.

days

TR Tropical nights Number of tropical nights: Annual count of days when TN (daily minimum temperature) > 20°C. Let TN ij be
daily minimum temperature on day i in year j. Count the number of days where: TN ij > 20°C.

days

Rx1day Max 1-day precipitation Monthly maximum 1-day precipitation: Let RR ij be the daily precipitation amount on day i in period j. The
maximum 1-day value for period j are: Rx1day j = max (RR ij)

mm

Rx5day Max 5-day precipitation Monthly maximum consecutive 5-day precipitation: Let RR kj be the precipitation amount for the 5-day interval
ending k, period j. Then maximum 5-day values for period j are: Rx5day j = max (RR kj)

mm

SDII Simple daily intensity
Simple precipitation intensity index: Let RR wj be the daily precipitation amount on wet days, w (RR = 1 mm) in

period j. If W represents number of wet days in j, then: SDII j =
∑W

w�1RRwj

W

mm

R1mm Number of wet days Annual count of days when PRCP = nn mm, nn is a user defined threshold: Let RR ij be the daily precipitation
amount on day i in period j. Count the number of days where: RR ij = nnmm

days

R10 mm Heavy precipitation days Annual count of days when PRCP = 10 mm: Let RR ij be the daily precipitation amount on day i in period j.
Count the number of days where: RR ij = 10 mm

days

R20 mm Very heavy precipitation days Annual count of days when PRCP = 20 mm: Let RR ij be the daily precipitation amount on day i in period j.
Count the number of days where: RR ij = 20 mm

days

CDD Consecutive dry days Maximum length of dry spell, maximum number of consecutive days with RR < 1 mm: Let RR ij be the daily
precipitation amount on day i in period j. Count the largest number of consecutive days where: RR ij < 1 mm

days

CWD Consecutive wet days Maximum length of wet spell, maximum number of consecutive days with RR = 1 mm: Let RR ij be the daily
precipitation amount on day i in period j. Count the largest number of consecutive days where: RR ij = 1 mm

days

R95p Very wet days total precipitation Annual total PRCP when RR > 95p. Let RRwj be the daily precipitation amount on a wet day w (RR = 1.0 mm) in
period i and let RR wn95 be the 95 th percentile of precipitation on wet days in the reference period. If W

represents the number of wet days in the period, then: R95p j = ∑W

w�1RRwj where RRwj >RRwn95

mm

(Continued on following page)
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(Ns = 3). For the precipitation-related indices, the total was 27 with
Nm = 9 andNs = 3, because three GCMs simulations did not include
precipitation.

The decomposition of the uncertainty was computed on the
changes (denoted as Ys,m,t) of climate extreme indices between a
future and a baseline climate period for each grid cell following the
studies of Hawkins and Sutton. (2011); Zhang and Chen (2021).
Here, the period 1983–2012 was considered as a baseline period to
calculate the changes (Ys,m,t) due to climate change. The changes in
temperature derived indices are expressed in terms of absolute
changes as follows:

Ys,m,t � ps,m,t − 1
30

× ∑2012

t�1983p
s,m,t (1)

and the changes in precipitation-related extreme indices are defined
as percentage ratio:

Ys,m,t � 100 ×
ps,m,t

1
30 × ∑2012

t�1983ps,m,t
− 1⎛⎝ ⎞⎠% (2)

where s = 1, . . . , Ns, m = 1, . . . ,Nm, and t = 1, . . . ,Nt refer to the
number of SSPs, GCMs, and years, respectively, and ps,m,t refer to
the projected extreme indices for the sth SSPs, mth GCM, and
tth year.

Subsequently, the resulting changes (Ys,m,t) were then smoothed
into rolling decadal (i.e., 10 years) means and subjected to
uncertainty decomposition. The uncertainty decomposition
procedures are summarized as follows. To quantify and
decompose the uncertainty, the smoothed mean change (Ys,m,t)
for all GCMs and SSPs was partitioned into a climate change
signal (the smooth fit, is,m,t) and a residual (εs,m,t) by fitting
fourth-order and second-order polynomial models to
precipitation and temperature indices, respectively (Hawkins and
Sutton, 2011; Zhang and Chen, 2021).

Ys,m,t � is,m,t + εs,m,t (3)

The respective means of is,m,t and εs,m,t were calculated as follows
(Eqs. 4–6); (Eq. 7):

�i
M
s,t �

1
Nm

∑Nm

m�1i
s,m,t (4)

�i
m,t
S � 1

Ns
∑Ns

s�1i
s,m,t (5)

�i
t
S,M � 1

Nm × Ns
∑Ns

s�1∑Nm

m�1i
s,m,t (6)

�ε � 1
Nm × Ns × Nt

∑Ns

s�1∑Nm

m�1 ∑Nt

t�1 ε
s,m,t (7)

The component of the uncertainty due to the GCMs was then
estimated as the variance of the multi-scenario averages:

Mt � 1
Nm

∑Nm

m�1
�i
m,t
S − �i

t
S,M)2( (8)

Likewise, the component of the uncertainty due to the SSPs was
then estimated as the variance of the multi-model averages:

St � 1
Ns

∑Ns

s�1
�i
s,t
M − �i

t
S,M)2( (9)

On the other hand, the uncertainty due to the internal climate
variability corresponds to the variance of the residuals from the fits over
all GCMs, SSPs, and projection period (i.e., 2020–2095, Nt = 75).

V � 1
Nm × Ns × Nt

∑Ns

s�1∑Nm

m�1∑Nt

t�1 �ε − εs,m,t( )2 (10)

In our present study, we assumed no interaction effects between
GCMs and SSPs, and equal weights were given for all GCMs despite
the different performances (Zhang and Chen, 2021). The total
uncertainty (Tt) is, therefore, the sum of the uncertainty due to
GCMs, SSPs, and internal climate variability.

Tt � St +Mt + V (11)

TABLE 2 (Continued) List of ETCCDMI-defined precipitation and temperature extreme indices computed and evaluated in this study.

Label Index name Index definition Units

R99p Extremely wet days total
precipitation

Annual total PRCP when RR > 99p: Let RRwj be the daily precipitation amount on a wet day w (RR = 1.0 mm) in
period i and let RR wn99 be the 99 th percentile of precipitation on wet days in the reference period. If W

represents the number of wet days in the period, then: R99p j = ∑W

w�1RRwj where RRwj >RRwn99

mm

PRCPTOT Total wet-day precipitation Annual total precipitation in wet days: Let RR ij be the daily precipitation amount on day i in period j. If I
represents the number of days in j, then PRCPTOT j = ∑I

i�1RRij

mm

TABLE 3 Performance statistics on which the Taylor diagrams are based.

Symbol Description Notation

X, Y Observed and simulated climate extreme indices

σx, σy Standard deviations of observed and simulated climate extreme indices
σx �

��������∑N

n�1(Xn− �X)
N

√
, σy �

��������∑N

n�1(Yn− �Y)
N

√

r Correlation coefficient between observed and simulated climate extreme indices
r � 1

N
∑N

n�1(Xn− �X)(Yn− �Y)
σxσy

RMSE c Centered root mean squared error between observed and simulated climate extreme indices RMSEc �
��������������������������
1
N∑N

n�1[(Xn − �X) − (Yn − �Y)]2
√
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The signal-to-noise (S/N) ratio was calculated to understand the
influence of uncertainties on projected climate extreme indices over
time (Hawkins and Sutton, 2009).

S/N( )t � �i
t

1.65 ×
��
Tt

√ (12)

A larger S/N ratio implies that the projected uncertainties are
smaller relative to the average climate change signal (Hawkins
and Sutton, 2011; Zhang et al., 2011). The uncertainty of
projected climate extreme indices was analyzed for the nine
sub-regions (denoted as R1-R9) of Ethiopia that were
identified based on homogeneous rainfall zones by Rettie et al.
(2023).

3 Results and discussion

3.1 Temperature indices

Measuring the performance of the climate models in
capturing the observed climate extreme indices is an
important part of climate studies. Figure 2 shows the Taylor
diagrams comparing the performance of the GCMs and their
ensemble average in reproducing the different temperature
extreme indices in the observation data (i.e., CHIRPS and
CHIRTS) during 1983–2012. For most of the temperature-
related extreme indices, the correlation coefficients range
from 0.2 to 0.60. A larger range of correlation coefficients is
found for extremes such as TN10p, TX90p, TN10p, TN90p, SU,
and TR (refer Table 2). For absolute temperature indices like
TNn, TXn, WSDI, and CSDI, the correlation coefficients (r) are
very low. However, the interannual variation expressed by the
standard deviations (SD) of the observation was well reproduced
by most of the GCMs. Most of the indices simulated were well
below 1.5 SD relative to the SD of the observations. For TX10p,
WSDI and CSDI indices, many of the GCMs produced lower
variability compared to the observations. The diagrams also
show that the centered RMSE is well below 1.5 units relative
to the SD of observations. The smallest error was found for
TX90p and TX10p. The centered RMSE quantified the
differences in two fields, in our case the indices in the
observation data and the indices simulated by the GCMs. The
diagram further shows that the GCMs ensemble average reduced
both the errors (centered RMSE) and the interannual variability
(SD) while the correlation coefficients (r) were increased for
majority of the temperature-related indices indicating that the
GCMs ensemble average performance was better than individual
GCMs. The individual model as well as their ensemble average
performance also varied at the regional level (Supplementary
Figures S1, S2). In their multi-model study in China, Wei et al.
(2022) also reported that GCMs ensemble averages of climate
extreme outperform those by individual models. The models’
skill was much better for the drier and hotter sub-regions
(i.e., R1, R2, and R4) compared to the cooler highland
regions. More importantly, the improvement from the GCMs
ensemble average was more pronounced at the regional scale
(Supplementary Figure S2).

Figures 3–5 show the spatial distribution of annual trends in
temperature-related extreme indices in the projected climate
(2020–2100) under the three SSPs in comparison to the
corresponding trends in the observed climate (1982–2012). The
figures clearly show significant trends in both observations and
projections for all indices except for projected cold spell duration
indices (CSDI). Looking at the percentile indices, higher warm
extreme indices (TX90p and TN90p) are expected in future
climate ranging from 4% (SSP2-4.5) to 10% (SSP5-8.5) per
decade compared to approximately 3% per decade increase in the
observation period. Based on the CHIRPS data (i.e., the same
observed data as in our study), Gebrechorkos et al. (2019b)
reported similar patterns of extreme temperature trends for the
pasty climate (1979–2010). Changes of higher magnitude of
temperature extremes were reported at local level studies (Birhan
et al., 2022). The increasing trend in warm extreme indices is
confirmed by increasing trends in other warming indicators such
as summary days (SU), tropical nights (TR), and warm spell
duration (WSDI). The number of summer days (SU) and tropical
nights (TR) are expected to increase by up to 35 days and 50 days,
respectively, particularly in the highland regions under the SSP5-
8.5 scenario. Similar increasing trends are expected for the warm
spell duration index (WSDI), which could increase by up to 45 days
per decade under the SSP5-8.5 scenario. The results also indicate
that the magnitude the warm percentile indices expected to increase
would be higher than the magnitude the cold percentile indices are
expected to decrease. The relatively stronger downward trend of cold
extreme indices (i.e., TX10p and TN10p) over the observation
period (~4% per decade) is expected to decrease in future climate
by ~1% per decade under the SSP5-8.5 scenario. On the other hand,
the absolute extreme maximum and minimum temperature indices
(TXx, TXn, TNn, and TNx) show spatially heterogeneous patterns,
not solely, but particularly in the observations. However, largely
significant increasing trends of the absolute extreme maximum and
minimum temperature indices are expected in the future climate,
especially under the higher emission scenarios (SSP3-7.0 and SSP5-
8.5). For instance, under the SSP5-8.5 emission scenario, the
predicted absolute maximum of maximum temperature (TXx)
and minimum of minimum temperature (TNn) trends could
reach up to 6° C (8° C) per decade in the warmest (northeastern)
region of the country (see Figure1). This is a very relevant finding
since a few incidences of such magnitude of extreme temperatures
have harmful effects on crop growth (He and Chen, 2022) and would
have a devastating impact on crop yields (Vogel et al., 2019). As to be
expected, the projected trends consistently increase from lower
(SSP2-4.5) to higher (SSP5-8.5) emission scenarios.

3.2 Precipitation indices

The Taylor diagrams in Figure 6 indicate the performance of
the individual GCMs with respect to the precipitation-related
extreme indices in the observation data (i.e., CHIRPS) during
1983–2012. The GCMs had difficulties reproducing the observed
data even at the sub-regional level (Supplementary Figures S3,
S4). The correlation coefficients (r) of most precipitation-related
extreme indices were below 0.4. The simulated variability in
precipitation was considerably higher than the observed one
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where the standard deviations normalized to the observations are
mostly around 2, with R20mm, R95pTOT, and R99pTOT
showing values up to 3. The errors between the GCMs and the
observation (centered RMSE) were within 2 units. The diagrams
reveal that the GCMs ensemble average reduced both the error
(centered RMSE) and the interannual variability (SD). However,
for the majority of the indices, the correlation coefficients did not
improve. Overall, regarding the precipitation-related indices, the
GCMs performed much less well than for the temperature-
related indices. The spatial distribution of the trend in
precipitation-related extreme indices in the observed climate
(1982–2012) and the projected climate (2020–2100) under the
three SPSs are presented in Figures 7–9. The spatial patterns show
that the observed trends were largely statistically significant
(i.e., shown as areas with patches) across most of the indices
except for R1mm, R10mm, R20mm, and Rx5day for some pocket
areas in the western and southeastern parts of the country. The
southeastern part of the country which belongs to the driest
regions of the country [see Figure 1A; also refer to Rettie et al.
(2023)] exhibited a significant increase in maximum 5-day
precipitation (Rx5day), which is equivalent to an increase of
10 days per decade. Beyene et al. (2022) also found a significantly
increasing trend in Rx5day the southern region, mainly Omo-
Gibe and Rift Valley lake basins. Whereas the western part

bordering Sudan showed a significantly increasing number of
wet days (R1mm) by roughly 5 days per decade. The trends in
number of wet days were however not significant in all scenarios.
Largely increasing trends were also reported in Beyene et al.
(2022) for R10 mm indices for Ethiopia of which 20% of the grids
were statistically significant. Cattani et al. (2018) analyzed
seasonal rainfall variability and trends over East Africa for
1983–2015. They found that R1mm and R20 mm show
decreasing trend during October-December and an increasing
trend during March-May seasons for the larger part of East
Africa. On the other hand, as in the observed climate,
significantly increasing trends are projected for maximum 5-
day precipitation (Rx5day) where the trends were significant
across the large parts of the country. Likewise, generally
increasing trends were projected for number of days with
more than 10 mm (R10 mm) and 20 mm (R20 mm) indices.
They were significant across large parts of the country.
Regarding the precipitation totals and wet days, exceptionally
higher increases were projected under SSP3-7.0 in a small pocket
region in the northwestern part of the country, which was
statistically significant as well (Figure 9). The projected change
for the indicated pocket region was more than 25 days per year
increase both for very wet (R95pTOT) and extremely very wet
(R99pTOT) days. Our results are in line with Gebrechorkos et al.

FIGURE 2
Taylor diagrams comparing the skill of theGlobal ClimateModels (GCMs) in reproducing the observed (1983–2012) temperature related indices. The
azimuthal axis shows the correlation coefficients. The radial distance from the origin represents the variability (SD), while the distance from the “Ref” point
is the centered RMSE (brown dashed lines) difference between the GCMs and observed temperature related indices.
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(2019a), who found a significantly increased trend in R99pTOT
and R99pTOT in southern Ethiopia for the period of 1981–2010.
Unlike the temperature indices, the trends in precipitation are

generally heterogeneous in terms of spatial distribution,
magnitude, and statistical significance as well as across the
different emission scenarios (SSPs). Despite the large spatial

FIGURE 3
Spatial distribution of annual historical (1983–2012) and projected (2020–2100) trends (Sen’s slope) in multi-GCMs averaged temperature indices
(TN90p, TX90p, TX10p, and TN10p in % units) under the three SSPs. The areas under patches (depicted as signs) show significant (p < 0.05, MK test) trends.

FIGURE 4
Same as Figure 3 but for indices: TXx, TNx, TNn and TXn in °C.
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inconsistency, the overall results suggested that there are
indications for an increase in the frequency of the most
intense precipitation events.

3.3 Projection uncertainty

We assessed the three components of climate change
uncertainty (i.e., model (GCM), scenario (SSP), and internal
climate variability) for all climate extreme indices for the 9 sub-
regions defined by Rettie et al. (2023); Figures 10–13 present the
evolution of the three components over time for the
temperature-related indices (Figure 10; Figure 11) and
precipitation-related indices (Figure 12; Figure 13). The
figures show that, for temperature-related indices, a general
decreasing contribution of uncertainties from the GCMs and
internal variability to the total uncertainty while the reverse was
true for the uncertainty from SSPs. These findings were largely
consistent across the different regions of the country.
Accordingly, the uncertainty from the GCMs accounts for
about 64%–88% of the total uncertainty at the beginning of
the projection period (i.e., 2020). This proportion decreased to
about 45%–67% by the end of the projection period (i.e., 2100).
Meanwhile, the contribution from the internal variability
decreased from about 11%–32% at the beginning of the
projected climate to less than 15% by the end of the century.
Summer days (SU) are an exception here, with a slight projected
increase. On the other hand, the fraction of uncertainty from the

SSPs increased from less than 1% in 2020 to 18%–54% by the end
of the century. Our results are consistent with previous studies
that in the beginning projections are usually dominated by
uncertainties from GCMs and internal variability (Zhang and
Chen, 2021). The results were consistent across the temperature
indices except for the cold spell duration index (CSDI) where
the SSPs’ contribution to the total uncertainty remained
negligible.

In contrast to the temperature indices, the total projection
uncertainty of precipitation-related indices was dominated by
the contribution from the GCMs and the internal climate
variability, with marginal contribution from the SSPs.
However, the fractional contribution from the GCMs and
internal variability varies among the different indices. For
CDD, CWD, R1mm, and Rx1day, a large proportion
(~57–87%) of the total uncertainty was due to the internal
climate variability whereas, for the rest of the precipitation
indices, the contribution from the GCMs is considerable.
Mendoza Paz and Willems. (2022) also found that the larger
proportions of the uncertainty in the projected precipitation
extremes were related to the GCMs. In addition, the
contribution of model uncertainty increases with a lead time
for most of the precipitation indices except for CDD, CWD,
R1mm, and Rx1day. Results were consistent across the different
sub-regions. Compared to the temperature indices, internal
climate variability was an important source of uncertainty
for precipitation-related indices. Previous studies also
showed the relative importance of the uncertainty from

FIGURE 5
Same as Figure 3 but for indices: SU, TR, WSDI and CSDI in days.
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the internal climate variability for precipitation-related indices
(e.g., Hawkins and Sutton, 2011; Fatichi et al., 2016; Gu et al.,
2018).

To reduce the high uncertainty associated with the
precipitation indices, we suggest further investigation based on
multiple reference data sets (Grusson and Barron, 2021;
Madakumbura et al., 2021) and as far as possible, station-based
observation data (Cattani et al., 2018; Kim et al., 2019). Fatichi
et al. (2016) claimed that the rigorous assessment of historic
climate variability may give sufficient information about future
changes in precipitation extremes. In addition, seasonal level
analysis (Cattani et al., 2018; Ademe et al., 2020; Gemeda
et al., 2021; Ali Mohammed et al., 2022; Beyene et al., 2022;
Teshome et al., 2022) could also help to reduce the uncertainty
compared to annual level analysis (this study) given the high
spatial variability in the country.

3.4 Robustness of the projections

Finally, we quantified the signal-to-noise ratio (S/N) to
demonstrate the influence of uncertainties on projected climate
extreme indices over time (Hawkins and Sutton, 2009) and hence
to evaluate the robustness of the projected changes in climate

extremes (Hawkins and Sutton, 2009; 2011; Zhang et al., 2011).
Figure 14 and Figure 15 present the S/N ratio for the temperature
and precipitation-related indices, respectively, for the different sub-
regions.

Largely consistent across the temperature-related indices, the
signal-to-noise values increased in general with time, but with
considerable regional variation (Figure 14). This implies that the
magnitude of projected changes was greater than the magnitude
of the associated uncertainty and hence the projected changes are
reliable. However, the S/N ratio reaches peak values by the mid of
the century (i.e., between 2050–2060) for temperature intensity
indices (TXx, TXn, TNx, and TNn) with slightly decreasing
values with projection time. The peaks around the mid of the
century could be related to the shift in the contribution of
uncertainties from the different sources (i.e., GCMs, SSPs, and
internal climate variability). Zhang et al. (2011) reported a
similar period where the shift in the contribution of
uncertainty among the various sources occur. Regional
comparisons show that sub-region R8 (which is the wettest
region in the country, cf. Rettie et al. (2023)) shows a higher
S/N ratio for most of the temperature-related indices while sub-
region R1 (which belongs to the driest regions in the country)
shows relatively lower S/N, particularly for coldness indices
(i.e., CSDI, and TX10p).

FIGURE 6
Taylor diagrams comparing the skill of the Global Climate Models (GCMs) in reproducing the observed (1983–2012) precipitation related indices.
The azimuthal axis shows the correlation coefficients. The radial distance from the origin represents the variability (SD), while the distance from the “Ref”
point is the centered RMSE (brown dashed lines) difference between the GCMs and observed precipitation related indices.
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FIGURE 7
Spatial distribution of observation (1983–2012) and projected (2020–2100) trends (Sen’s slope) in multi-GCMs averaged precipitation indices (CDD
and CWD in days, and Rx1day and Rx5day in mm) under the three SSPs. The patches show significant (p < 0.05, MK test) trends.

FIGURE 8
Same as Figure 7 but for indices: Number of heavy precipitation days with at least 10 mm (R10 mm) and 20 mm (R20 mm), number of wet days
(R1mm), and simple daily intensity (SDII, mm).
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Precipitation-related extremes are key for climate change
adaptation as the country’s economy is heavily dependent on
rainfed agriculture. The S/N ratio was below unity despite a
slight increment with projection time (Figure 15) for most of the
precipitation indices indicating that the magnitude of projected
changes was smaller than the associated uncertainty. This implies

that the projected changes are associated with high uncertainty and
make the projection less reliable and not well-suited as a basis for
decision-making. Achieving reliable projections for precipitation
has been a challenge due to its associated higher uncertainties
compared to temperature (Madakumbura et al., 2021; Zhang and
Chen, 2021; Birhan et al., 2022). On the other hand, located near the

FIGURE 9
Same as Figure 7 but for indices: Total wet-day precipitation (PRCPTOT), very wet days total (R95pTOT), and extremely wet days total (R99pTOT) all
in mm.

FIGURE 10
Percentage share of uncertainty for temperature indices depicted by sub-regions over 2020–2100.
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equator and the Indian Ocean, the effects of the bi-annual migration
of the Inter-Tropical Convergence Zone (ITCZ) and the El
Niño–Southern Oscillation (ENSO) are the most important
climate systems governing precipitation across Ethiopia (Korecha
and Barnston, 2007). In this regard, one of the limitations of the

current study is attributed to the structural deficiency of the climate
models used in the study in reasonably simulating these major
climate systems. The majority of state-of-the-art GCMs fail to
simulate realistic ENSO characteristics (Beobide–Arsuaga et al.,
2021) and the double- ITCZ bias remains one of the most

FIGURE 11
Same as Figure 10 but for indices: TNn, TXn, WSDI, CSDI, SU, and TR.

FIGURE 12
Percentage share of uncertainty for precipitation indices depicted by sub-regions over 2020–2100.
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outstanding errors in the models (Tian and Dong, 2020). Given these
model deficiencies, their long-term prediction of climate extremes
might be affected as well. Therefore, the results of our study particularly
those of precipitation-derived extreme indices should be taken with
caution. Despite these limitations, the regional comparisons suggest
that fewer homogeneous clusters could be sufficient for the kind of
studies treated in this paper (Ware et al., 2022).

4 Conclusion

Climate extremes in Ethiopia were comprehensively assessed
until the end of the 21st century by producing and evaluating a large
set of extreme climate indicator indices. The study constitutes a large
number of state-of-the-art CMIP6 models covering a spectrum of
emission scenarios at high spatial resolution. By evaluating the

FIGURE 13
Same as Figure 12 but for indices: SDII, Rx1day, Rx5day, CDD, and CWD.

FIGURE 14
Signal-to-noise ratios for temperature indices depicted by sub-
regions over 2020–2100.

FIGURE 15
Signal-to-noise ratios for precipitation indices depicted by sub-
regions over 2020–2100.
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individual model performance during the base period, we estimated
the possible change in the trends of projected climate extremes. The
results were supplemented by a rigorous assessment of the
uncertainties associated with the projected extremes. The
projected trends for temperature-related indices are largely
statistically significant and spatially consistent and much more
reliable than the precipitation-related indices. Our study on
projected changes in climate extremes at the national level was
produced to serve as a baseline for future national or regional level
analysis. In this context, we recommend further assessments to
evaluate the effects of projected climate extremes on crop model
and/or hydrological model outputs.
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The Yangtze River basin is a typical region of the world that has a well-developed 
economy but is also greatly affected by multiple climate extremes. An improved 
understanding of future climate trends and associated exposures in this region 
is urgent needed to address socioeconomic risks. This research aims to quantify 
historical and future projected population exposure to precipitation extremes 
in the Yangtze basin using meteorological records and downscaled climate 
models. The study found that the hazard zone for precipitation extremes during 
baseline period was primarily located in the mid-lower Yangtze basin, particularly 
around the Poyang Lake watershed. Climate projections for 2050 indicate 
a further increase in the occurrence of precipitation extremes in this hazard 
zone, while a decrease in extreme events is detectable in the upper Yangtze 
basin under higher radiative forcing. Future socioeconomic scenarios suggest 
a tendency for population growth and migration towards the lower Yangtze 
basin, resulting in aggravated climate risks in megacities. Multi-model simulations 
indicate that population exposure to precipitation extremes in the lower Yangtze 
basin will increase by 9–22% around 2050, with both climate and population 
factors contributing positively. Shanghai, Changsha, Hangzhou, Ganzhou, and 
Huanggang are identified as hotspot cities facing the highest foreseeable risks of 
precipitation extremes in the Yangtze basin.
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Highlights

  -  Climate warming leads to intensified precipitation extremes in the Yangtze basin.
  -  City clusters in the mid-lower Yangtze basin face elevated population exposure.
  -  A low-carbon pathway could substantially mitigate socioeconomic risks.
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1. Introduction

The widespread emergence of precipitation extremes triggers off 
acute stresses on natural and human systems, and has caused extensive 
losses of human life, property, and infrastructures (Coumou and 
Rahmstorf, 2012; James et al., 2014). A warmer climate is believed to 
accelerate water cycle and alter precipitation patterns, leading to more 
extreme events in the coming future (Scoccimarro et al., 2013; Toreti 
et al., 2013). Recent decades, trends in the frequency, intensity, and 
duration of precipitation extremes have already been detected (Allan 
and Soden, 2008; Donat et al., 2013; Diffenbaugh et al., 2017), along 
with the amplified hazards and liability of climate related risks 
(Carleton and Hsiang, 2016). Clarification of regional complexities of 
extreme events has become an explicit motivation for decision makers 
and the public, which proves the urgency and necessity of localized 
climate projections.

The research into precipitation extremes has progressed 
enormously, partly due to the increasing number of unprecedent 
extreme events (Westra et al., 2014; Prein et al., 2016). Previous 
studies suggest that inland floods derived by precipitation 
extremes are likely to ascend in both frequency and magnitude as 
global warming (Arnell and Gosling, 2016; Wobus et al., 2017; 
Tellman et al., 2021). In the past half century, a rising trend of 
both average and extreme precipitation in China has been 
detected, especially in the Yangtze River basin (Guan et al., 2016; 
Zhou et al., 2016). Future simulations suggest that the frequency 
and intensity of precipitation extremes over the Yangtze basin will 
continue to enhance under radiative forcing (Pan et al., 2016; Li 
et al., 2021).

Precipitation extremes and associated secondary hazards  
(e.g., flash floods, landslides) are among the most destructive hazards 
in China. Intensified precipitation demonstrates the importance of 
risk projection, and population exposure is a widely used indicator 
to quantify potential socioeconomic risks (Jones et al., 2015). Under 

moderate-emission scenario, population exposure to precipitation 
extremes in China is expected to increase by nearly 22% by the end 
of 21st century (Chen and Sun, 2020), and the Yangtze Basin is 
identified as a global hotspot region threatened by precipitation 
extremes (Li et al., 2018; Sun et al., 2021). In the foreseeable future, 
urban land expansion and population aggregation will lead to 
elevated exposure to climate extremes in metropolitan regions 
(AghaKouchak et al., 2020). Hence, a city-level assessment of climate 
risks is critical for the formulation of land-use planning and urban 
adaptation measures.

Given that previous studies on climate risk projections are 
primarily conducted at global or national scales, here we take Yangtze 
basin, the largest river basin in China, as study region, to investigate 
whether there will be a significant trend in climate risks under future 
scenarios. We use historical observations, multi-model simulations, 
and socioeconomic pathways to identify (a) changes in the spatial 
pattern of precipitation extremes, (b) hotspot cities confronting higher 
socioeconomic risks, and (c) sources causing the changes in 
population exposure. According to hydrological and geographical 
differentiations, the Yangtze basin is divided into 3 sub-basins  
(i.e., upper, middle, and lower Yangtze basin) and 11 watersheds, as 
shown in Figure 1.

2. Materials and methods

2.1. Data sources

The observation dataset of gridded daily precipitation over 1981–
2010 is provided by National Meteorological Information Center, 
China Meteorological Administration, with a spatial resolution of 
0.25° × 0.25°. The dataset is constructed by anomaly approach method 
based on 2,472 meteorological stations in China, which has been 
widely applied as a reference to evaluate and calibrate model 
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simulations over China (Chen et al., 2014; Wu et al., 2017). Here, 
we  define 1981–2010 as baseline period, in consistent with the 
historical simulations of climate models.

The simulations from 10 climate models in the CMIP6 project 
(Supplementary Table S1) are selected through the availability of daily 
precipitation for historical run and future scenario runs (i.e., SSP1-2.6, 
SSP2-4.5, and SSP3-7.0; Taylor et al., 2012). The multimodel ensemble 
(MME) method can effectively reduce the uncertainty of the 
simulations, and well presents the observed patterns of daily 
precipitation extremes, which has been verified in numerous 
researches (Kharin et al., 2013; Scoccimarro et al., 2013; Sillmann 
et al., 2013). Only the first ensemble member (“r1i1p1f1”) of each 
model simulation is adopted. To facilitate the intercomparison of 
different models, we reformat all outputs to a common 0.25° × 0.25° 
resolution by bi-linearly interpolation, and only the values over the 
Yangtze basin are involved.

Shared Socioeconomic Pathways (SSPs) are coupled with 
representative concentration pathways (RCPs), and are often applied 
to project future scenarios of socioeconomic development (O'Neill 
et  al., 2017). The projected population dataset is available at 
Socioeconomic Data and Applications Center (SEDAC), with 10-year 
intervals for 2010–2100 and a resolution of 1 km × 1 km on global land. 
SSP1, SSP2 and SSP3 scenarios in Shared.

Socioeconomic Pathways are selected to present population 
changes, which are corresponding to low-, moderate-, and high-
emission scenarios (i.e., RCP2.6, RCP4.5, and RCP7.0), respectively.

2.2. Downscaling method

The Delta method is applied to calibrate and downscale the 
outputs of global climate models, in order to enhance resolution and 
reduce uncertainty of simulations at regional scales (Ramirez-
Villegas and Jarvis, 2010). It is assumed the deviation between 
scenario and historical simulations is more reliable than both of 
them, and the observational datasets present local climate 

characteristics better than model simulations. For each output of 
climate models, the downscaling process consists of the following 
steps: (1) calculating the average of climate extremes in observational 
datasets of historical baseline period; (2) calculating the average of 
climate extremes in historical simulations of baseline period;  
(3) calculating the annual anomalies as absolute difference between 
scenario values and baseline values of model simulations;  
(4) interpolating annual anomalies into a higher-resolution grids in 
consistent with observation dataset by bi-linearly method;  
(5) appending the interpolated anomalies to observation baseline;  
(6) repeating the above steps for other model outputs; and  
(7) creating ensemble datasets of climate extremes under future 
scenarios by multi-model ensemble mean (MME) method.

2.3. Calculation of population exposure

The Expert Team on Climate Change Detection and Indices 
(ETCCDI) has defined a set of indices to facilitate analysis of the 
characteristics and evolution of climate extremes. Considering the 
warning criterion for meteorological hazards in the Yangtze basin, 
we  adopt r20mm (count of days with daily precipitation 
amount ≥ 20 mm, also refer to as heavy precipitation days), r20mmtot 
(total precipitation within r20mm days), cr20mmd (maximum length 
of consecutive r20mm days), and rx5day (maximum 5-day 
precipitation) as extreme indices to reveal the changes in precipitation 
extremes over the Yangtze River basin. The historical baseline period 
is defined as 1981–2010, and the projected period is set as 2036–2065 
to present climate state around 2050, driven by different future  
scenarios.

The population exposure is defined as the count of extreme events 
multiplied by the total population in each region (Jones et al., 2015). 
Gridded population datasets for 2000 and 2050 are used to represent 
population in baseline and future period, respectively. In order to 
avoid new errors in upscaling of gridded population, we resample all 
the extreme indices onto the same grid networks consistent with 

FIGURE 1

The watershed divisions and capital cities in the (I) upper, (II) middle, and (III) lower Yangtze River basin.
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population data, then all the spatial calculations and mappings are 
conducted on 1 km × 1 km grid cells.

Changes in population exposure to climate extremes are linked to 
climate change, population growth, and their interaction effects. By 
factorization formula (Equations 1), the contribution of climate factor, 
population factor, and interaction factor can be  separated and 
quantitatively estimated. Specifically, climate factor is represented as 
baseline population multiplied by extreme events anomaly, population 
factor is represented as baseline extreme events multiplied by 
population growth, and interaction factor is represented as extreme 
events anomaly multiplied by population growth.

 P b bE P C C P C P∆ = ×∆ + ×∆ + ∆ ×∆  (1)

where ΔEP presents the change in population exposure between 
baseline period and projected period, Pb presents baseline population, 
ΔC presents extreme events anomaly, Cb presents baseline extreme 
events, and ΔP presents population growth.

3. Results

3.1. Precipitation extremes in historical 
observation

The spatial average of r20mm in baseline period is 13.4 days/year 
in the Yangtze basin, while the spatial pattern shows significant 
regionality between sub-basins (Figure 2A). For the lower basin, the 
average of r20mm reaches 22.8 days/year, with 40% grids above 
25 days, chiefly located in Poyang Lake watershed. The middle basin 
has an annual r20mm of 17.7 days in baseline period, in which the 
Dongting Lake watershed exceeds 20 days and Hanjiang River 
watershed holds less than 15 days. The frequency of heavy precipitation 
is comparatively lower in the upper basin, with an average of 8.5 days/
year in baseline, among which the northern parts of Jinsha River and 
Mintuo River watershed occur less than 5 days/year.

The spatial pattern of r20mmtot is highly consistent with that of 
r20mm, and their correlation coefficient reaches 0.98 (Figure 2B). The 
averages of r20mmtot in the upper, middle, and lower basin are 314.7, 
692.2, and 912.6 mm/year, respectively. Most of the Poyang Lake 
watershed has an annual r20mmtot of more than 1,000 mm in 
baseline. A range from 600 to 1,000 mm takes place in the mid-lower 
Yangtze basin, as well as Taihu and Dongting Lake watersheds. The 
rest of Yangtze basin broadly receives a r20mmtot below 600 mm/year, 
in which the northern part of Jinsha watershed less than 100 mm/year.

From the perspective of the maximum length of consecutive 
r20mm days, the lower Yangtze basin is still detected as the hazard 
zone in historical period, and the correlation coefficient is 0.83 
between the spatial pattern of r20mm and cr20mmd (Figure 2C). The 
spatial averages of cr20mmd in the upper, middle, and lower basin are 
3.0, 4.5, and 5.6 days/year, respectively. Broadly, the mid-lower basin 
has recorded a r20mm of more than 3 days/year in baseline period, 
among which the central and northern parts of Poyang Lake watershed 
exceed 5 days/year.

Rx5day reveals the peak intensity of heavy rainfall and is widely 
adopted in water-related hazard assessment. The spatial pattern of 

rx5day in the Yangtze basin is similar to that of r20mm, with a 
correlation coefficient of 0.87 (Figure 2D). The spatial averages of 
rx5day in the upper, middle, and lower basin are 138.9, 235.8, and 
321.9 mm/year, respectively. About 80% grid cells in the lower basin 
have recorded a rx5day of more than 250 mm/year, and the most of 
Dongting Lake and Jialing River watersheds has also exceeded 
200 mm/year in historical observation.

3.2. Future projection of precipitation 
extremes

Multi-model ensemble reveals the spatial pattern of precipitation 
extremes around 2050 under different emission scenarios. Given the 
highly correlation between extreme indices, we  adopt r20mm as 
dominant indicator to investigate the changes in precipitation 
extremes across the Yangtze basin. Along the low-emission pathway, 
r20mm will reach 14.8 (±0.3) days in the Yangtze basin around 2050, 
among which the grids with r20mm > 25 days and > 30 days accounts 
for 11.2% and 2.3%, respectively, principally distributed in the Poyang 
Lake watershed (Figure 3A). Under moderate-emission scenario, the 
Yangtze basin will experience an additional increase of r20mm to 15.4 
(±0.5) days around 2050, and the proportion of grids with r20mm 
>25 days and > 30 days will rise to 13.7% and 3.0%, respectively 
(Figure 3B). As for high-emission scenario, the proportion of grids 
with r20mm > 30 days will further expand to 23.7% in the lower 
Yangtze basin, or 3.9% in the whole basin (Figure 3C).

While the hazard zone expands in the mid-lower basin, it is 
notable that the pattern of upper basin remains basically stable, with 
only a very slight increase under the highest emission scenario. It 
indicates that the response of precipitation extremes to climate 
warming in the Yangtze basin is regionally varying. By comparing 
the spatial differences between SSP3-7.0 and SSP1-2.6 scenarios, 
about one-third of grids in the upper basin show a decrease in 
r20mm, whereas almost all the grids in the mid-lower basin show 
varying degrees of increment (Figure  3D). In summarize, 
precipitation extremes in the Yangtze basin are projected to show a 
Matthew effect in radiative forcing, that is, the high-intensity zone 
(i.e., the mid-lower basin) will continue to expand, whereas the 
low-intensity zone (i.e., the upper basin) will remain stable or even 
gradually weaken in a warmer world.

3.3. Changes in population exposure

Population exposure to climate extremes delineates potential 
socioeconomic risks in the future. The combinations of socioeconomic 
pathways and emission pathways (e.g., SSP1-2.6) are adopted to 
estimate the future changes in population exposure. The SSPs are 
reference pathways that describe plausible alternative trends in 
socioeconomic evolution independently with climate change, of which 
SSP1, SSP2, and SSP3 denote low, intermediate, and high challenges for 
mitigation and adaptation, respectively (O'Neill et al., 2017). Given the 
limitations of visual identification caused by discontinuous population 
distribution in the Yangtze basin, the mappings are carried out on 
prefecture-level cities by spatial summation, while all the calculations 
are based on the population grids with a precision of 1 km × 1 km.
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Under future scenarios, the evolution of population distribution 
in the Yangtze basin also shows a Matthew effect, that is, the 
population move toward coastal megacities and provincial capitals, 
while the population among small-medium cities outflows gradually, 
particularly in the upper and middle basin. The prefectural average 
of population exposure to precipitation extremes is 68.7 million 
person-days (hereafter mpd) in baseline. High-exposure cities are 
principally scattered among Poyang and Dongting Lake watersheds, 
as well as the two megacities of Shanghai and Chongqing (Figure 4A). 
Along the low-emission pathway, about two-thirds of cities show a 
decrease in population exposure by 2050, among which the cities of 

Chongqing, Enshi, Liangshan, and Dazhou in the upper basin drop 
by more than 15 mpd (Figure 4B). The cities with increased exposure 
are broadly located in the lower basin and Taihu Lake watershed, 
among which the big cities such as Shanghai, Changsha, Hangzhou, 
and Nanjing experience an increase of more than 30 mpd in 
population exposure.

Along the moderate pathway, an increased exposure to 
precipitation extremes is detected in about two-thirds of cities around 
2050 that mainly concentrated in the mid-lower Yangtze basin 
(Figure 4C). The prefectural average of population exposure raises to 
74.3 (±2.8) mpd, and large coastal cities and provincial capitals remain 

FIGURE 2

Spatial pattern of observed precipitation extremes in historical baseline. (A) Annual r20mm, (B) annual r20mmtot, (C) cr20mmd, and (D) rx5day.

FIGURE 3

Spatial pattern of projected precipitation extremes around 2050 under (A) SSP1-2.6, (B) SSP2-4.5, and (C) SSP3-7.0 future scenarios over the Yangtze 
River basin. (D) The spatial difference between SSP3-7.0 and SSP1-2.6 scenarios.
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the most exposed areas. Under the influence of population loss, some 
large cities in the upper basin, such as Chongqing and Liangshan, are 
expected to experience a decrease in total exposure.

As for high-emission scenario (i.e., SSP3-7.0), which assumes a 
continuous increase in greenhouse gases and a maintenance of high 
fertility in the future, it seems unlikely to happen from current situation. 
However, revealing the potential changes under SSP3-7.0 scenario has 
important implications for understanding the worst situation. In this 
scenario, the exposure is projected to reach 78.3 (±2.9) mpd at prefectural 
average, with more than 90% cities experiencing increased exposure to 
precipitation extremes, and the increment of some majority cities in the 
lower basin exceeds 10 mpd (Figure 4D).

3.4. Regional evolution and contributing 
factors

The changes in total population exposure can be decomposed into 
climate contribution, population contribution and their interaction. 
There are large differences between future scenarios regarding 
exposure changes in the Yangtze basin. Along the low-emission 
pathway, the total exposure in whole basin will remain unchanged 
around 2050 due to counteraction between intensified extremes and 
reduced population (Figure 5A). Under moderate-emission scenario, 
the exposure will increase by 600 (±201) mpd on baseline, of which 
climate change brings a positive contribution of 888 (±210) mpd, 
whereas population growth brings a negative contribution of 255 
mpd. As for high-emission scenario, the total exposure is projected to 
increase by 1,032 (±202) mpd on baseline, of which climate factor 
holds major contribution at 91%, while population factor only 
accounts for less than 8% of positive contribution.

By comparing the exposure changes from three sub-basins, it can 
be seen that their climate contribution rates are relatively close under 
multiple scenarios, while the population contributions are quite different 
or even opposite. The upper basin is projected to face the greatest 
population decline by 2050, followed by the middle basin, whereas the 

lower basin shows an overall increase in population simulations. In the 
upper basin, the climate contribution is around 200–280 mpd, while the 
total exposure varies with population contributions ranging from −188 
(±39) mpd under low-emission scenario, to 20 (±66) mpd under 
moderate-emission scenario, and then to 162 (±70) mpd under high-
emission scenario (Figure 5B). In the middle basin, the total exposure 
increment is generally higher than that of the upper basin, despite the 
negative contribution of population growth (Figure 5C). To be specific, 
the positive contribution of intensified climate is not enough to offset 
population decline under low-emission scenario; under moderate-
emission scenario, climate contribution greatly exceeds population effect; 
under high-emission scenario, exposure increment is almost entirely 
contributed by climate change. In the lower basin, both climate factor 
and population factor contribute positively to the elevated exposure, 
which is projected to increase by 200–517 mpd under multiple scenarios 
around 2050 (Figure  5D). From low to high emission forcing, the 
absolute contribution of climate factor increases step-wisely in the range 
of 150–337 mpd, and the population contribution also shows a 
positive response.

3.5. Hot spots in the future

Hot spots refer to areas that response dramatically to climate 
change and confront great risk of extreme events in the coming future 
(Piontek et al., 2014; Turco et al., 2015; Diffenbaugh et al., 2017; Xu 
et al., 2019). Here, we take totally 113 prefecture-level cities in the 
Yangtze basin as basic units to analyze the baseline state of population 
exposure to precipitation extremes, and further project its changes by 
2050 under moderate-emission scenario (Supplementary Table S2). In 
terms of precipitation extremes, Chongqing is a big city in Southwest 
China with the highest population exposure in both historical baseline 
and future scenarios, but its absolute amount is projected to decrease 
from 457 to 440.4 (±20.9) mpd due to population decline (Figure 6). 
Shanghai, the most developed city on China’s east coast, has about half 
of Chongqing’s population but only a tenth of its total area. The 

FIGURE 4

Spatial pattern of population exposure to precipitation extremes in (A) historical baseline, and differences from historical baseline under (B) SSP1-2.6 
scenario, (C) SSP2-4.5 scenario, and (D) SSP3-7.0 scenario at prefecture level in the Yangtze River basin around 2050.
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population of Shanghai is growing rapidly which is expected to reach 
22.2 million by 2050. As a result, the exposure to precipitation 
extremes nearly doubled from 268.6 to 433.1 (±14.5) mpd, ranking it 
top on the city list for intensified socioeconomic risks. The following 
hotspot cities are Changsha, Hangzhou, Ganzhou, Huanggang, 
Shangrao, Hengyang, Shaoyang, Wuhan, and Yichun. Most of these 
hotspots are provincial capitals and mid-sized cities with a population 
between 6 and 8 million, which are projected to confront a higher 
hazard intensity in the future, with more than 20 days of heavy 
precipitation per year, resulting in significantly higher population 
exposure than other cities in the Yangtze basin.

4. Conclusion

The incremental public understanding of explicit climate extremes 
assessments generates the urgency of calibrated and downscaled 
climate simulations. In this article, the Yangtze basin is taken as the 
study area, and the changes in precipitation extremes are analyzed on 
the basis of historical precipitation observations and the ensemble of 
multi-models. A series of assessments are established through 
quantitative models to reveal the evolution trends of precipitation 
extremes and population exposure in the Yangtze basin, laying a 
foundation for hotspot identification.

Historical observations indicate the hazard zone of precipitation 
extremes in the Yangtze basin are mainly located in the mid-lower 
basin and Dongting Lake watershed, where the indices of heavy 
precipitation, peak intensity, and maximum duration are ahead of the 
rest parts. Extreme precipitation events in the Yangtze basin are also 
observed with a broadly increasing trend in the past decades, among 
which the Poyang Lake watershed has seen the most significant 

changes. Future projections suggest a consistent intensification of 
precipitation extremes in the mid-lower basin as radiative forcing 
increases, while a stable or even slightly weakened trend has been 
detected in the upper Yangtze basin.

Population exposure to precipitation extremes represents 
potential socioeconomic risks under a combination of population 
growth pathways and carbon emission scenarios. The simulation 
shows that the future population distribution is expected to gather 
toward large cities in the lower Yangtze basin, while small and 
medium-sized cities in the middle and upper basins will face long-
term population loss. As a result, although the total population 
exposure is expected to increase compared to baseline period, 
there are significant differences among the three sub-basins. To 
be specific, the population exposure in the upper Yangtze basin 
declines under low-emission scenario, remains unchanged under 
moderate-emission scenario, and goes up under high-emission 
scenario; the population exposure in the middle Yangtze basin 
shows a slight decrease along low-emission scenario, but increases 
significantly under both moderate- and high-emission scenarios; 
the population exposure in the lower Yangtze basin increases in all 
scenarios with both population and climate factors contribute  
positively.

From the perspective of socioeconomic risks, the top three hotspot 
cities are Shanghai, Changsha and Hangzhou, where the risk 
management of floods, waterlogs, and water-related compound hazards 
should be listed as priority issues. Other hotspot cities with higher hazard 
intensity (e.g., Ganzhou, Huanggang, Shangrao, Hengyang, Shaoyang, 
Wuhan) should also update their prevention standards in line with 
accelerated climate warming, while improving early-warning capabilities 
and developing emergency protocols to mitigate the risk of water-
related disasters.

FIGURE 5

The changes in total population exposure to precipitation extremes around 2050 and its components under moderate-emission scenarios in (A) the 
whole Yangtze basin, (B) upper Yangtze basin, (C) middle Yangtze basin, and (D) lower Yangtze basin. The deviation range shows multi-model 
uncertainty.

141

https://doi.org/10.3389/fevo.2023.1127875
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Sun et al. 10.3389/fevo.2023.1127875

Frontiers in Ecology and Evolution 08 frontiersin.org

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

YaZ: conceptualization, resources, and supervision. SS: data curation, 
writing—original draft preparation, and visualization. SS and YaZ: 
methodology. SS, YH, and SC: formal analysis. YaZ and ZX: investigation. 
YiZ and QS: validation. YH and SC: writing—review and editing. All 
authors contributed to the article and approved the submitted version.

Funding

This research was supported by the National Key Research and 
Development Program of China (grant no. 2022YFD2300200), the 
National Natural Science Foundation of China (grant no. 41701103), 
the Basic Research Fund of Chinese Academy of Meteorological 
Sciences (grant no. 2021Z010), and Hubei low-carbon pioneer project 
“Action plan for climate change adaptation in Hubei Province” and 
“Climate change facts and impact analysis in Hubei Province.”

Acknowledgments

The authors would like to thank World Climate Research 
Programme for providing multimodel simulations based on 

representative concentration pathways (https://esgfnode.llnl.
gov/), and the NASA Socioeconomic Data and Applications 
Center (SEDAC) for providing the population projections based 
on the Shared Socioeconomic Pathways (https://sedac.ciesin.
columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base- 
yearprojection-ssp-2000-2100-rev01).

Conflict of interest

The authors declare that the research was conducted  
in the absence of any commercial or financial relationships  
that could be  construed as a potential conflict of  
interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fevo.2023.1127875/
full#supplementary-material

FIGURE 6

Top 10 cities with increased population exposure to precipitation extremes around 2050 in the Yangtze basin under moderate-emission scenario. The 
deviation range shows multimodel uncertainty.

142

https://doi.org/10.3389/fevo.2023.1127875
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://esgfnode.llnl.gov/
https://esgfnode.llnl.gov/
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-yearprojection-ssp-2000-2100-rev01
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-yearprojection-ssp-2000-2100-rev01
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-yearprojection-ssp-2000-2100-rev01
https://www.frontiersin.org/articles/10.3389/fevo.2023.1127875/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2023.1127875/full#supplementary-material


Sun et al. 10.3389/fevo.2023.1127875

Frontiers in Ecology and Evolution 09 frontiersin.org

References
AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., 

Mazdiyasni, O., et al. (2020). Climate extremes and compound hazards in a warming 
world. Annu. Rev. Earth Planet. Sci. 48, 519–548. doi: 10.1146/annurev-
earth-071719055228

Allan, R. P., and Soden, B. J. (2008). Atmospheric warming and the amplification of 
precipitation extremes. Science 321, 1481–1484. doi: 10.1126/science.1160787

Arnell, N., and Gosling, S. (2016). The impacts of climate change on river flood risk 
at the global scale. Clim. Change 134, 387–401. doi: 10.1007/s10584-014-1084-5

Carleton, T. A., and Hsiang, S. M. (2016). Social and economic impacts of climate. 
Science 353:aad9837. doi: 10.1126/science.aad9837

Chen, H., and Sun, J. (2020). Increased population exposure to precipitation extremes 
in China under global warming scenarios. Atmospher Ocean Sci Lett 13, 63–70. doi: 
10.1080/16742834.2020.1697168

Chen, X. C., Xu, Y., Xu, C. H., and Yao, Y. (2014). Assessment of precipitation 
simulations in China by cmip5 multi-models. Adv. Clim. Chang. Res. 10:217. doi: 
10.3969/j.issn.1673-1719.2014.03.011

Coumou, D., and Rahmstorf, S. (2012). A decade of weather extremes. Nat. Clim. 
Chang. 2, 491–496. doi: 10.1038/nclimate1452

Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L., Touma, D., 
et al. (2017). Quantifying the influence of global warming on unprecedented extreme 
climate events. Proc. Natl. Acad. Sci. 114, 4881–4886. doi: 10.1073/pnas.1618082114

Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., et al. 
(2013). Updated analyses of temperature and precipitation extreme indices since the 
beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. Atmos. 118, 
2098–2118. doi: 10.1002/jgrd.50150

Guan, Y., Zheng, F., Zhang, X., and Wang, B. (2016). Trends and variability of daily 
precipitation and extremes during 1960-2012 in the Yangtze River basin, China. Int. J. 
Climatol. 37, 1282–1298. doi: 10.1002/joc.4776

James, R., Otto, F., Parker, H., Boyd, E., Cornforth, R., Mitchell, D., et al. (2014). 
Characterizing loss and damage from climate change. Nat. Clim. Chang. 4:938939, 
938–939. doi: 10.1038/nclimate2411

Jones, B., O'Neill, B. C., Mcdaniel, L., Mcginnis, S., Mearns, L. O., and Tebaldi, C. 
(2015). Future population exposure to US heat extremes. Nat. Clim. Chang. 5, 652–655. 
doi: 10.1038/nclimate2631

Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M. (2013). Changes in temperature 
and precipitation extremes in the cmip5 ensemble. Clim. Change 119, 345–357. doi: 
10.1007/s10584-013-0705-8

Li, H., Chen, H., Wang, H., and Yu, E. (2018). Future precipitation changes over China 
under 1.5°C and 2.0°C global warming targets by using cordex regional climate models. 
Sci. Total Environ. 640-641, 543–554. doi: 10.1016/j.scitotenv.2018.05.324

Li, X., Zhang, K., Gu, P., Feng, H., Yin, Y., Chen, W., et al. (2021). Changes in 
precipitation extremes in the Yangtze River basin during 1960–2019 and the association 
with global warming, ENSO, and local effects. Sci. Total Environ. 760:144244. doi: 
10.1016/j.scitotenv.2020.144244

O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., 
et al. (2017). The roads ahead: narratives for shared socioeconomic pathways describing 
world futures in the 21st century. Glob. Environ. Chang. 42, 169–180. doi: 10.1016/j.
gloenvcha.2015.01.004

Pan, Z., Zhang, Y., Liu, X., and Gao, Z. (2016). Current and future precipitation 
extremes over Mississippi and Yangtze River basins as simulated in CMIP5 models. J. 
Earth Sci. 27, 22–36. doi: 10.1007/s12583-016-0627-2

Piontek, F., Müller, C., Pugh, T. A. M., Clark, D. B., Deryng, D., Elliott, J., et al. (2014). 
Multisectoral climate impact hotspots in a warming world. Proc. Natl. Acad. Sci. 111, 
3233–3238. doi: 10.1073/pnas.1222471110

Prein, A., Rasmussen, R., Ikeda, K., Liu, C., Clark, M., and Holland, G. (2016). The 
future intensification of hourly precipitation extremes. Nat. Clim. Chang. 7, 48–52. doi: 
10.1038/nclimate3168

Ramirez-Villegas, J., and Jarvis, A. (2010). Downscaling global circulation model 
outputs: the Delta method decision and policy analysis. Working paper no. 1. Policy 
Anal. 1, 1–18.

Scoccimarro, E., Gualdi, S., Bellucci, A., Zampieri, M., and Navarra, A. (2013). Heavy 
precipitation events in a warmer climate: results from cmip5 models. J. Climate 26, 
7902–7911. doi: 10.1175/JCLI-D-12-00850.1

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D. (2013). Climate 
extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the 
present climate. J. Geophys. Res. Atmos. 118, 1716–1733. doi: 10.1002/jgrd.50203

Sun, S., Shi, P., Zhang, Q., Wang, J., Wu, J., and Chen, D. (2021). Evolution of future 
precipitation extremes: viewpoint of climate change classification. Int. J. Climatol. 42, 
1220–1230. doi: 10.1002/joc.7298

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the 
experiment design. Bull. Am. Meteorol. Soc. 93, 485–498. doi: 10.1175/
BAMS-D-11-00094.1

Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R., 
et al. (2021). Satellite imaging reveals increased proportion of population exposed to 
floods. Nature 596, 80–86. doi: 10.1038/s41586-021-03695-w

Toreti, A., Naveau, P., Zampieri, M., Schindler, A., Scoccimarro, E., Xoplaki, E., et al. 
(2013). Projections of global changes in precipitation extremes from coupled model 
intercomparison project phase 5 models. Geophys. Res. Lett. 40, 4887–4892. doi: 
10.1002/grl.50940

Turco, M., Palazzi, E., Hardenberg, J., and Provenzale, A. (2015). Observed climate 
change hotspots. Geophys. Res. Lett. 42, 3521–3528. doi: 10.1002/2015GL063891

Westra, S., Fowler, H., Evans, J., Alexander, L., Berg, P., Johnson, F., et al. (2014). 
Future changes to the intensity and frequency of short duration extreme rainfall. Rev. 
Geophys. 52, 522–555. doi: 10.1002/2014RG000464

Wobus, C., Gutmann, E., Jones, R., Rissing, M., and Martinich, J. (2017). Climate 
change impacts on flood risk and asset damages within mapped 100-year floodplains of 
the contiguous United States. Nat. Hazards Earth Syst. Sci. 17, 2199–2211. doi: 10.5194/
nhess-2017-152

Wu, J., Gao, X., Giorgi, F., and Chen, D. (2017). Changes of effective temperature and 
cold/hot days in late decades over China based on a high resolution gridded observation 
dataset. Int. J. Climatol. 37, 788–800. doi: 10.1002/joc.5038

Xu, L., Wang, A., Wang, D., and Wang, H. (2019). Hot spots of climate extremes in the 
future. J. Geophys. Res. Atmos. 124, 3035–3049. doi: 10.1029/2018JD029980

Zhou, B., Xu, Y., Wu, J., Dong, S., and Shi, Y. (2016). Changes in temperature and 
precipitation extreme indices over China: analysis of a high-resolution grid dataset. Int. 
J. Climatol. 36, 1051–1066. doi: 10.1002/joc.4400

143

https://doi.org/10.3389/fevo.2023.1127875
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1146/annurev-earth-071719055228
https://doi.org/10.1146/annurev-earth-071719055228
https://doi.org/10.1126/science.1160787
https://doi.org/10.1007/s10584-014-1084-5
https://doi.org/10.1126/science.aad9837
https://doi.org/10.1080/16742834.2020.1697168
https://doi.org/10.3969/j.issn.1673-1719.2014.03.011
https://doi.org/10.1038/nclimate1452
https://doi.org/10.1073/pnas.1618082114
https://doi.org/10.1002/jgrd.50150
https://doi.org/10.1002/joc.4776
https://doi.org/10.1038/nclimate2411
https://doi.org/10.1038/nclimate2631
https://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.1016/j.scitotenv.2018.05.324
https://doi.org/10.1016/j.scitotenv.2020.144244
https://doi.org/10.1016/j.gloenvcha.2015.01.004
https://doi.org/10.1016/j.gloenvcha.2015.01.004
https://doi.org/10.1007/s12583-016-0627-2
https://doi.org/10.1073/pnas.1222471110
https://doi.org/10.1038/nclimate3168
https://doi.org/10.1175/JCLI-D-12-00850.1
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1002/joc.7298
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1038/s41586-021-03695-w
https://doi.org/10.1002/grl.50940
https://doi.org/10.1002/2015GL063891
https://doi.org/10.1002/2014RG000464
https://doi.org/10.5194/nhess-2017-152
https://doi.org/10.5194/nhess-2017-152
https://doi.org/10.1002/joc.5038
https://doi.org/10.1029/2018JD029980
https://doi.org/10.1002/joc.4400


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores the anthropogenic impact on our 

natural world

An innovative journal that advances knowledge of 

the natural world and its intersections with human 

society. It supports the formulation of policies that 

lead to a more inhabitable and sustainable world.

Discover the latest 
Research Topics

See more 

Frontiers in
Environmental Science

https://www.frontiersin.org/journals/environmental-science/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Hydro-climate extremes and natural disasters during global warming: Observation, projection, and mitigation

	Table of contents

	Editorial: Hydro-climate extremes and natural disasters during global warming: observation, projection, and mitigation
	Author contributions
	Conflict of interest
	Publisher’s note

	Influence of the upper gravity-wave damping layer on precipitation over complex terrain
	Highlights
	Introduction
	Model, experimental design, and data
	Results
	Impact on precipitation forecasting
	Influence on gravity-waves and vertical velocity

	Conclusion
	Plain language summary
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Comprehensive risk assessment of non-typhoon rainstorms over the southeastern coastal region of China
	1 Introduction
	2 Data and methods
	2.1 Data source
	2.2 Methods
	2.2.1 Indices system
	2.2.2 Index weight-determination method
	2.2.2.1 Data standardization
	2.2.2.2 The analytic hierarchy process method
	2.2.2.3 The correlation coefficient weighting method
	2.2.2.4 The entropy method
	2.2.3 Comprehensive risk assessment method


	3 Results
	3.1 Hazard analysis of the disaster-causing factors
	3.2 Sensitivity analysis of the disaster-formative environment
	3.3 Vulnerability analysis of the disaster-affected bodies
	3.4 Ability analysis of the disaster prevention and mitigation
	3.5 Comprehensive risk analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Climate-informed monthly runoff prediction model using machine learning and feature importance analysis
	1 Introduction
	2 Study area and data
	2.1 Hydrological characteristics of the study area
	2.2 Meteorological and large-scale climate factors

	3 Methodologies
	3.1 Mutual information based on k-nearest neighbors
	3.2 Feature importance analysis based on random forest
	3.3 Regression model
	3.3.1 Hybrid kernel support vector machine
	3.3.2 Extreme learning machine
	3.3.3 General regression neural network
	3.3.4 Multiple linear regression

	3.4 Hyper-parameters optimization for regression models
	3.5 Model performance evaluation metrics
	3.6 Monthly runoff prediction using the proposed feature importance analysis and machine learning model

	4 Results and discussion
	4.1 selection of model input predictors
	4.2 Monthly runoff prediction simulation
	4.3 Discussion

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Sensitivity of WRF multiple parameterization schemes to extreme precipitation event over the Poyang Lake Basin of China
	Introduction
	Data and methods
	Observation
	WRF model configuration
	Evaluation criteria

	Results
	Evaluation of TCP in WRF simulations
	Spatial evaluation of TCP in WRF simulations
	Temporal validation of daily precipitation

	Discussion
	Identification of suitable WRF combinations for physical schemes
	Applicability of physical schemes

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Underestimated increase and intensification of humid-heat extremes across southeast China due to humidity data inhomogeneity
	1 Introduction
	2 Materials and methods
	2.1 Data
	2.2 Data pre-processing, metrics, extremes and methods

	3 Results
	4 Discussion and conclusion
	4.1 Discussion

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Effects of urbanization on multiple human perceived temperatures in South China
	1 Introduction
	2 Data and methods
	2.1 Study area
	2.2 Classification of urban and rural sites
	2.3 Definition of HPT indicators
	2.4 Evaluation of urbanization effects

	3 Results
	3.1 Long-term changes in mean HPT and urbanization effects
	3.2 Long-term changes in extreme HPT and the effects of urbanization

	4 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Long lead-time radar rainfall nowcasting method incorporating atmospheric conditions using long short-term memory networks
	1 Introduction
	2 Study area and data
	3 Methodology
	3.1 Radar rainfall nowcasting models based on LSTM networks (LSTM-RN)
	3.2 Radar rainfall nowcasting models based on RF (RF-RN)
	3.3 Radar rainfall nowcasting models based on OF (OF-RN)
	3.4 Experimental design and evaluation indicators

	4 Results and discussion
	4.1 Selection of hyper-parameters of the LSTM-RN and RF-RN models
	4.2 Model performance at different lead times and altitudes
	4.3 Comparison of the three radar rainfall nowcasting models
	4.4 Relationship between the model performance and weather conditions

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Wildfire risks under a changing climate: Synthesized assessments of wildfire risks over southwestern China
	1 Introduction
	2 Data and methods
	2.1 Study area
	2.2 Data sources
	2.3 Interpolation
	2.4 Weighting functions
	2.5 Weighting coefficients
	2.6 Synthesized risk assessment model

	3 Factors applied in the risk assessment
	3.1 Wildfire hazard criticalities
	3.1.1 Climate
	3.1.2 Topography

	3.2 Vulnerability
	3.2.1 Vegetation types
	3.2.2 Vegetation coverage
	3.2.3 Population exposure
	3.2.4 Distance from habitats and settlements

	3.3 Wildfire prevention/mitigation capacity
	3.3.1 Distance from roads
	3.3.2 Distance from waterbodies


	4 Results
	4.1 Hazard criticalities
	4.2 Vulnerability
	4.3 Wildfire prevention/mitigation capacity
	4.4 Synthesized risk mapping

	5 Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Comprehensive assessment of climate extremes in high-resolution CMIP6 projections for Ethiopia
	1 Introduction
	2 Materials and methods
	2.1 Climate data
	2.2 Climate extreme indices
	2.3 Evaluation of models’ skill
	2.4 Trend estimation and test
	2.5 Partitioning sources of uncertainty in the projected climate extremes

	3 Results and discussion
	3.1 Temperature indices
	3.2 Precipitation indices
	3.3 Projection uncertainty
	3.4 Robustness of the projections

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Exacerbated climate risks induced by precipitation extremes in the Yangtze River basin under warming scenarios

	Highlights
	1. Introduction
	2. Materials and methods
	2.1. Data sources
	2.2. Downscaling method
	2.3. Calculation of population exposure

	3. Results
	3.1. Precipitation extremes in historical observation
	3.2. Future projection of precipitation extremes
	3.3. Changes in population exposure
	3.4. Regional evolution and contributing factors
	3.5. Hot spots in the future

	4. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Back Cover



