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Editorial on the Research Topic

Single-cell analysis on the pathophysiology of autoimmune diseases
Autoimmune diseases are characterized by a complex interplay of diverse immune cell

types, each fulfilling unique roles and functions. Traditional bulk analysis methods tend to

average signals across mixed cell populations, thereby obscuring the contributions of

individual cell types. In contrast, single-cell analysis enables the precise identification of

specific cell subsets that play pivotal roles in driving disease pathogenesis and progression,

thus providing novel insights into autoimmune disorders. Moreover, this approach

facilitates the detection and characterization of rare cells with significant pathogenic

potential, enhancing our understanding of their functional roles and contributions to

disease mechanisms. By scrutinizing the transcriptome, proteome, or epigenome of

individual cells, researchers can uncover distinct gene expression patterns, protein

profiles, and regulatory mechanisms specific to particular cell types or disease states.

This comprehensive molecular profiling not only aids in identifying biomarkers crucial for

diagnosis, prognosis, and the development of therapeutic targets, but also reveals intricate

details that might be overlooked by bulk analysis methods.

In this Research Topic on single-cell analysis, we present a collection of 15 papers

exploring various aspects of autoimmune diseases, including sequencing methods, genetic

and epigenetic contributions, molecular mechanisms and pathogenesis, biomarkers, and

therapeutic implications. By examining these factors at the single-cell level, we aim to

enhance our understanding of autoimmune diseases and highlight new potential

diagnostics and therapeutics.

Three studies are related to single-cell methods. The cellular indexing of transcriptomes

and epitopes by sequencing (CITE-seq) enables the identification cell types through the

expression of surface markers not captured by single-cell RNA sequencing (scRNA-seq),

while simultaneously quantifying gene and protein surface expressions (1). Colpitts et al.

used paired CITE-seq and flow cytometry to characterize resident immune cells in human
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https://www.frontiersin.org/articles/10.3389/fimmu.2024.1451354/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1451354/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1451354/full
https://www.frontiersin.org/research-topics/46369
https://doi.org/10.3389/fimmu.2023.1107582
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1451354&domain=pdf&date_stamp=2024-07-02
mailto:sjtzeng@ntu.edu.tw
mailto:inkim@knu.ac.kr
mailto:khsun@nycu.edu.tw
https://doi.org/10.3389/fimmu.2024.1451354
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1451354
https://www.frontiersin.org/journals/immunology


Tzeng et al. 10.3389/fimmu.2024.1451354
islets that would have been difficult to detect based on mRNA

expression alone. Their analysis revealed valuable insights into the

cellular dynamics within human islets. In analytic methods, Fritz

et al. reviewed advancements in single-cell computational machine

learning to characterize the heterogeneity of fibroblasts and uncover

novel fibroblast-macrophage interactions driving immune-

mediated inflammatory diseases such as rheumatoid arthritis

(RA) and psoriasis. Their review unraveled promising therapeutic

targets, including CSF1R, PDGFR, and EGFR, which could lead to

new treatment strategies for these diseases. Balog et al. employed

single-cell mass cytometry (or CyTOF, cytometry by time-of-flight)

(2) to comprehensively characterize and compare 17 immune cell

populations in peripheral blood samples from healthy controls,

treatment-naive patients with RA, systemic sclerosis, and systemic

lupus erythematosus (SLE). They utilized 34 markers and analyzed

59 scatter plots to elucidate disease-specific population frequencies

and expression patterns of immune cells. Their study represents a

valuable single-cell data resource that enhances our understanding

of the immune cell landscape in these autoimmune diseases.

Four studies have employed single-cell analysis to investigate

SLE. Patients with lupus nephritis (LN) are susceptible to

irreversible kidney damage or failure. Daamen et al. conducted

scRNA-seq on the kidneys of female lupus-prone NZM2328 mice at

acute, transitional, and chronic stages of the disease. They

compared gene expression profiles between these mice and

human LN patients to elucidate molecular mechanisms driving

LN progression. Utilizing unsupervised gene co-expression network

analysis, such as MEGENA (3), they characterized molecular

profiles correlating with disease severity. Their gene expression

analysis offers a method to stage LN in lupus-prone mice and

translate these findings to human LN patients. Additionally,

Daamen et al. explored the heterogeneity of splenic IL-10

producing regulatory B cells (Breg) across disease stages in lupus-

prone mice, revealing several insights from scRNA-seq analysis:

active disease is marked by a loss of marginal zone-lineage Bregs, an

increase in plasmablast/plasma cell-lineage Bregs, and overall

elevation in inflammatory gene signatures. These findings

underscore the dynamic changes in Breg populations and their

roles in lupus pathogenesis. Filia et al. performed a comprehensive

analysis of hematopoietic stem and progenitor cells (HSPCs) in SLE

patients. Their study revealed a decrease in non-proliferating early

progenitors with an interferon (IFN) signature, implicated in the

functional loss and depletion of HSPCs. The data suggest that

HSPCs act as sensors of IFN-related inflammatory signals, initiating

the inflammatory processes characteristic of SLE. Of interest, Cui

et al. explored the shared mechanisms between SLE and primary

Sjögren’s syndrome (pSS) by analyzing shared hub genes, related

pathways, and transcription factors (TFs) in scRNA-seq datasets

from the peripheral blood of patients with SLE and pSS. They

identified IFI44L, ISG15 and ITGB2 as shared hub genes involved in

the IFN response and ITGB2 signaling pathways. Additionally, they

found that STAT1 and IRF7 are common TFs associated with

monocytes and dendritic cells (DCs) in both SLE and pSS patients.

Three single-cell studies have investigated autoimmune

disorders affecting the skin. Kim et al. analyzed human psoriasis
Frontiers in Immunology 026
lesions before and after 12 weeks of systemic IL-17A blockade using

a multi-omics approach that integrated immune cell-enriched

scRNA-seq, microarray, and immunohistochemistry data. They

discovered that systemic IL-17A inhibition not only blocked the

entire IL-23/T17 cell axis in T cells, DCs, and keratinocytes, but also

promoted regulatory gene expression in regulatory DCs present in

human psoriasis skin, such as BDCA-3 (THBD) and DCIR

(CLEC4A). Gao et al. explored the epigenetic pathogenesis of

psoriasis by analyzing the involvement of long non-coding RNAs

(lncRNAs) known to participate in immune regulation. They

conducted an analysis for differentially expressed lncRNAs, co-

regulated gene patterns, and GO-bioprocess enrichment to identify

lncRNAs that modulate cellular inflammation in psoriasis at the

single-cell level. Their study highlights the therapeutic potential of

lncRNAs in managing this disease. Epidermolysis bullosa acquisita

(EBA) is a chronic autoimmune disorder characterized by

subepidermal blistering of the skin and mucous membranes. The

condition arises from antibodies (Abs) targeting type VII collagen,

the primary constituent of anchoring fibrils responsible for

connecting the basement membrane to dermal structures (4).

Guerrero-Juarez et al. performed scRNA-seq of whole blood and

skin dissociates to characterize the transcriptome of perturbed

neutrophils in patients with EBA. Their findings revealed that the

upregulation of C-type lectin receptors (Clec4n, Clec4d, and

Clec4e) is a hallmark of activated dermal neutrophil populations.

However, despite this upregulation, the individual contribution of

these genes to the pathogenesis of EBA was found to be dispensable.

This highlights the complexity of EBA pathogenesis and

underscores the need for further research to uncover critical

molecular targets for therapy.

Two studies are related to RA. Methylation of adenosine at N6

position (m6A) is mediated by distinct enzymes and occurs on

both coding and non-coding RNAs (5). Geng et al. investigated

the m6A methylation regulators in RA. They identified two m6A

methylation regulators, IGF2BP3 and YTHDC2, as significant

biomarkers for RA. Using consensus feature selection from four

methods, these biomarkers were found to predict RA diagnosis

with high accuracy. Pathway and network analysis revealed a

novel role for IGF2BP3 in M1 macrophage polarization during the

progression of RA, offering new strategies for early diagnosis and

targeted therapy. In a brief report on a case of COVID-19

vaccination, Ishikawa et al.’s scRNA-seq analysis identified a

distinct monocyte population with RA signatures, such as

cathepsin L (CTSL) and CXCL8, in peripheral blood during the

acute phase of encephalitis (day 3). It remains unclear whether

this specific classical monocyte population is commonly observed

in COVID-19 vaccination-related CNS diseases or if it reflects the

enhanced dysregulated immunity unique to each specific disease.

Further studies are needed to determine the generalizability of

these findings across different cases of vaccination-related

CNS diseases.

Anti-N-methyl-D-aspartate receptor encephalitis (anti-

NMDARE) is a rare autoimmune disease characterized by Abs

against the glutamate receptor N1 (GluN1) subunit of NMDAR (6).

Using scRNA-seq, Jiang et al. observed that patients in the acute
frontiersin.org
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phase expressed high levels of DC_CCR7 in peripheral myeloid

cells. DC_CCR7 is known to play crucial roles in T-cell activation,

differentiation, and the expansion of IgG-producing B cells. This

finding implies that DC_CCR7 may contribute to lymphocyte

activation during the acute stage of anti-NMDARE, highlighting

its potential significance in the disease’s pathogenesis.

Lastly, the topic editor Kim et al.’s group addressed the critical

role of immune cells in the development of hypertension (7). They

performed scRNA-seq on peripheral blood and lamina propria cells

from salt-sensitive male rats receiving a high-fructose solution.

Their study pointed out a pivotal role for the upregulation of IFN

pathway in B cells in the development of hypertension. This

suggests a potential autoimmune factor contributing to the

pathogenesis of fructose-induced hypertension in the intestine.

Furthermore, their findings indicate that targeting B cells could

be a potential intervention strategy to reduce blood pressure in

individuals with fructose-induced hypertension, highlighting a

novel therapeutic approach in managing this condition.

In conclusion, the findings presented here contribute

significantly to identifying pathogenic cell populations, elucidating

their interactions, and deciphering the regulatory mechanisms at

play. The precision achieved in understanding disease mechanisms

holds promise for designing more effective treatments tailored to

meet the individual needs of patients. This marks a significant

advancement towards personalized medicine in the field of

autoimmune disease research, paving the way for innovative

therapeutic strategies that could greatly improve patient outcomes.
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Single-cell transcriptomics
reveals cell type–specific
immune regulation associated
with anti-NMDA receptor
encephalitis in humans
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Jiewen Zhang1, Gongxin Peng3 and Wei Li1*

1Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis,
Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of
Zhengzhou University, Zhengzhou, Henan, China, 2Department of Neurology, Henan Provincial
People’s Hospital, Xinxiang Medical University, Zhengzhou, Henan, China, 3China Center for
Bioinformatics, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese
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Introduction: Anti-N-methyl-D-aspartate receptor encephalitis (anti-

NMDARE) is a rare autoimmune disease, and the peripheral immune

characteristics associated with anti-NMDARE antibodies remain unclear.

Methods: Herein, we characterized peripheral blood mononuclear cells from

patients with anti-NMDARE and healthy individuals by single-cell RNA

sequencing (scRNA-seq).

Results: The transcriptional profiles of 129,217 cells were assessed, and 21

major cell clusters were identified. B-cell activation and differentiation, plasma

cell expansion, and excessive inflammatory responses in innate immunity were

all identified. Patients with anti-NMDARE showed higher expression levels of

CXCL8, IL1B, IL6, TNF, TNFSF13, TNFSF13B, and NLRP3. We observed that anti-

NMDARE patients in the acute phase expressed high levels of DC_CCR7 in

human myeloid cells. Moreover, we observed that anti-NMDARE effects

include oligoclonal expansions in response to immunizing agents. Strong

humoral immunity and positive regulation of lymphocyte activation were

observed in acute stage anti-NMDARE patients.

Discussion: This high-dimensional single-cell profiling of the peripheral

immune microenvironment suggests that potential mechanisms are involved

in the pathogenesis and recovery of anti-NMDAREs.

KEYWORDS

anti-N-methyl-D-aspartate receptor encephalitis, peripheral blood mononuclear cell,
single-cell RNA sequencing, B cells, plasma cells
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1 Introduction

Anti-N-methyl-D-aspartate receptor encephalitis (anti-

NMDARE) is a rare autoimmune disorder characterized by a

complex neuropsychiatric condition (1) associated with

antibodies against the glutamate receptor N1 (GluN1) subunit

of NMDAR (2). Steroids and intravenous immunoglobulins

(IVIG) are all used as first-line therapies for anti-NMDAREs

(1, 3). However, approximately 40% of patients with anti-

NMDARE showed no improvement after four weeks of first-

line therapy (3). Due to the lack of disease awareness and late

diagnosis, approximately 70% of anti-NMDARE patients are

admitted to intensive care units with symptoms of persistent

dysautonomia, consciousness fluctuation, or breathing

dysfunction (4). Therefore, a thorough investigation of this

disease is required to identify new markers and underlying

mechanisms to cope with the severity of symptoms.

Susceptibility genes for anti-NMDARE include interferon

regulatory factor 7 (IRF7), B cell scaffold with ankyrin repeats 1

(BANK1), T-Box Transcription Factor Protein 21 (TBX21), and

human leukocyte antigen (HLA), as identified in genome-wide

association studies (GWAS) (5–7). However, the association

between these genes and disease susceptibility is weak; therefore,

a thorough investigation is required to elucidate the exact

mechanism. Tumors and herpes simplex encephalitis are

recognized as the major causes of anti-NMDARE (8, 9), while

molecular mimicry and chronic polyclonal expansions have been

proposed as underlying pathogenic mechanisms (10, 11).

Autoantibodies bind to and cross-link endogenous NMDARs,

disturbing the interaction with the receptor tyrosine kinase

EphB2, which leads to internalization and ultimately affects the
Abbreviations: anti-NMDARE, anti-N-methyl-D-aspartate receptor

encephalitis; ASCs, antibody-secreting cells; BANK1, B cell scaffold with

ankyrin repeats 1; BCR, B cell receptor; BCLs, base call files; CSF,

cerebrospinal fluid; CDR3, complementary determining region 3; CHI3L1,

chitinase-3-like 1; DEGs, differentially expressed genes; DCs, dendritic cells;

GluN1, glutamate receptor N1; GWAS, genome-wide association studies;

GEM, gel bead in emulsion; GO, Gene Ontology; HLA, human leukocyte

antigen; HCs, healthy controls; HVGs, highly variable genes; IVIG,

intravenous immunoglobulins; IRF7, interferon regulatory factor 7; IL,

interleukin; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF,

macrophages; MCs, mast cells; Mgk, megakaryocytes; MBCs, memory B

cells; NK, natural killer; PBMC, peripheral blood mononuclear cell; PBS,

phosphate-buffered saline; PCA, principal component analysis; PBs, patients

prior to first-line therapies; PAs, patients after first-line therapies; PTX3,

pentraxin 3; scRNA-seq, single-cell RNA sequencing; scBCR-seq, single-cell

BCR sequencing; scTCR-seq, single-cell TCR sequencing; SA-PE,

streptavidin-phycoerythrin; TBX21, T-Box Transcription Factor Protein 21;

Th1, type 1 T helper; TCR, T-cell receptor; TLRs, toll-like receptors; TNF,

tumor necrosis factor; UMI, unique molecular identifier; UMAP, uniform

manifold approximation and projection.
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function of NMDARs (12, 13). The reduced function of NMDARs

results in learning and memory deficiencies and prominent

psychiatric or behavioral symptoms in approximately 90% of

patients (14). Some researchers believe that antibody titers can

be used to make better clinical decisions; however, there is no

reliable data to support this notion (15). Although its auto-antigen

and effector mechanisms are well defined, the cellular and

molecular mechanisms involved in anti-NMDARE are still

poorly understood (1). Therefore, greater understanding of the

activation and immune system patterns could provide important

information regarding the pathogenesis of anti-NMDARE.

During the acute phase of anti-NMDARE, the levels of pro-

inflammatory cytokines, such as interleukin (IL)-1b, IL-6, IL-
17, and chemokines, such as CXCL-10, and CXCL-13 in the

cerebrospinal fluid, and the pro-inflammatory cytokine IL-2 in

plasma are elevated (16). Among these pro-inflammatory

cytokines and chemokines, CXCL13 is involved in B cell-

mediated neuroinflammation (17). B- cells differentiate into

plasma cells and are involved in the production of anti-

NMDAR-IgG and neuronal damage (18). The levels of the

type 1 T helper (Th1) axis (IFN-g, TNF-a, CCL3, and

CXCL10), Th2 axis (CCL1, CCL8, CCL17, CCL22), Treg axis

(IL-10), Th17 axis (IL-7), B cell axis (CXCL13), cytokines, and

T cells also contribute to the clinical stages of the disease (16,

19, 20). The immune system comprises a vast variety of cells in

different states; however, previous studies conducting

immunophenotypic analysis were based on low-flux assays

confined to selected cell types and markers (21, 22).

Therefore, a better understanding of immune system

modulation in response to anti-NMDARE using high-flux

assays is required.

In the current study, we performed scRNA-seq of peripheral

blood mononuclear cells (PBMC) using supervised and

unsupervised machine-learning tools to dissect immune

dysregulation in anti-NMDARE. This analysis identified 21

major cell groups, allowing us to assess the primary alterations

in these major cell types. We found that patients with anti-

NMDARE disease expressed high levels of IL-1B, IL-6, IL-8,

TNF, CXCL8, TNFSF13B, TNFSF13, and NLRP3, whereas in the

acute phase, high levels of DC_CCR7 were expressed in human

myeloid cells. Moreover, in the acute phase of disease in patients

with anti-NMDARE antibodies, strong humoral immunity and

positive regulation of lymphocyte activation had developed. This

high-dimensional single-cell profile of the peripheral immune

microenvironment suggests that several potential mechanisms

are involved in the pathogenesis and recovery of anti-

NMDAREs. Moreover, we observed that, compared to HCs,

anti-NMDARE patients produced elevated levels of pro-

inflammatory cytokines and chemokines. The present study

was designed to obtain a better understanding of the

heterogeneity within the immune system related to anti-

NMDARE through high-flux assays, predominantly single-cell

RNA sequencing (scRNA-seq).
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2 Materials and methods

2.1 Processing of patient samples

This study was approved by the Ethics Committee of Henan

Provincial People’s Hospital. 34 suspected anti-NMDARE

patients were enrolled in the Neurology Department of Henan

Provincial Peoples Hospital between December 2020 and

January 2022.

The inclusion criteria for patients with anti-NMDARE were

as follows: (1) diagnosis of anti-NMDARE according to the

Graus and Dalmau criteria (23); (2) in the cerebrospinal fluid

(CSF), antibody titers of more than 1:100–1:320 were considered

for anti-NMDARE. The exclusion criteria were as follows: (1)

definite or suspected central nervous system infection; (2)

definite or suspected peripheral infection; (3) definite or

suspected neuromyelitis optica spectrum disorders or multiple

sclerosis (MS); (4) definite or suspected systemic immune

disease; (5) history of malignant tumor; (6) pregnancy; and (7)

history of high-dose methylprednisolone pulse, intravenous

immunoglobulin, or plasma exchange treatment. Finally, 10

patients were included in the study cohort (Supplementary

Figure 1). In addition, five age- and sex- matched HCs were

enrolled. The first cohort, including anti-NMDARE (n = 5) and

HCs (n = 5), was used for 10X genomics scRNA-sEq. The second

cohort, including anti-NMDARE (n = 10) and HCs (n = 5), was

used for multiple microsphere flow immunofluorescence

analysis (Supplementary Table 1). Ten patients with anti-

NMDARE received high-dose methylprednisolone pulse

therapy and intravenous immunoglobulin. Peripheral blood

was collected the day before and ten days after the onset of

first-line therapy. Informed consent was obtained from all

patients and HCs.
2.2 Generation and sequencing of
single-cell libraries

Fresh blood samples were diluted in phosphate- buffered

saline (PBS), and the PBMC fraction was isolated using SepMate

50 tubes (Stemcell Technologies) and human Lymphocyte

Separation Medium (Cedarlane). The cell pellets were

resuspended at 2-4 × 106 cells/mL in serum-free, animal

protein-free cell freezing medium, immediately cryopreserved

at −80° Celsius for no more than one week. Then they were

transferred to liquid nitrogen storage before further processing.

After resuscitation of frozen aliquots, cell viability was assessed

using 0.4% trypan blue (Thermo Fisher, Cat. no. 14190144) on a

Countess® II Automated Cell Counter (Thermo Fisher

Scientific). ScRNA-seq libraries were constructed with the 5’

Library and Gel Bead Kit and V(D)J Enrichment Kit and

prepared per the Chromium Single Cell 5’ library preparation

kit user guide (10X Genomics). 10X library preparation and
Frontiers in Immunology 03
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sequencing Beads with a unique molecular identifier (UMI) and

cell barcodes were loaded close to saturation so that each cell was

paired with a bead in a gel bead in emulsion (GEM). After

exposure to the cell lysis buffer, polyadenylated RNA molecules

were hybridized to the beads. Beads were retrieved in a single

tube for reverse transcription. For cDNA synthesis, each cDNA

molecule was tagged on the 5’end (corresponding to the 3’ end of

a messenger RNA transcript) with UMI and a cell label

indicating its cell of origin. Subsequently, 10X beads were

subjected to second-strand cDNA synthesis, adaptor ligation,

and universal amplification. Sequencing libraries were prepared

using randomly interrupted whole-transcriptome amplification

products to enrich the 3’ end of transcripts linked to the cell

barcode and UMI. All remaining procedures, including library

construction, were performed in accordance with the

manufacturer’s protocol (CG000206 RevD). ScRNA-Seq

libraries were sequenced on NovaSeq6000 (Illumina) with

paired-end 150bp sequencing.
2.3 The V (d) J library preparation
and sequencing

Individual cells were encapsulated together with gel beads

with a bar code and primer inside an oil droplet using a

microfluidics system. Subsequently, the gel beads within each

oil droplet were dissolved, and the cells were split to release

mRNA. The mRNA was reverse transcribed into cDNA using

the 10X barcode and UMI. After breaking the emulsions, the

cDNA was split into two parts for gene expression and library

construction. The V (d) J sequences of T-cell receptor (TCR) and

B cell receptor (BCR) were amplified by PCR using nested

primers designed for region C. Due to the mRNA information

retaining the 5’-ends of reads, unlike the 10X Genomics

3’mRNA library, the sequencing then allowed accessing to the

large amounts of single-cell gene expression and immune-group

library data.
2.4 ScRNA-seq bioinformatics analysis

2.4.1 Construction, quality control, and filtering
of feature-barcode matrix

During initial procession 10X data “mkfastq” module of the

Cell Ranger (5.0.0) pipeline was operated to demultiplex the

Illumina raw base call files (BCLs) obtained from Illumina

sequencing into FASTQ files. FASTQs generated from the

above workflow subsequently underwent several processing

steps, as shown below. Specifically, according to default and

recommended parameters based on the Cellranger “count”

module (https://support.10Xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/using/count), the FASTQ

sequences were aligned and quantified to the GRCh38 1.2.0
frontiersin.org
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human reference genome obtained from 10X Genomics. The

outputs generated by multiple runs of the Cellranger “count”

were aggregated into a new feature-barcode matrix (barcodes,

features, and count matrix) using the “aggr” pipeline. The matrix

from the above operations was then imputed into the Seurat R

package (4.1.3) for quality control and downstream analyses. To

exclude low-quality cells from all samples, we adopted three

criteria to remove genes detected in less than three cells, cells

with less than 200 or over 6000 expressed genes, and cells

expressing >0.1 of mitochondrial genes. After filtering, 116,916

cells with a median gene count of 18827 genes were maintained

for the subsequent analysis, as shown in Supplementary Table 2.

Finally, we corrected the batch effects between samples using the

R package Seurat prior to clustering.

2.4.2 Feature selection, dimension reduction,
and visualization for high-dimensional data

The “LongNormalize” method was used for normalization

based on the filtered gene-barcode matrices obtained in the

previous step. The “MVP” method was used to identify 494

highly variable genes (HVGs). We retained only the genes that

contributed to group variability after controlling for the strong

relationship between variability and average expression. Next,

data from different samples were identified as ‘anchors’ and

integrated. FindIntegrationAnchors and IntegrateData in the

Seurat package were used to obtain pairs of cell anchor points

when the cells of the query data set and the cells of the reference

data set had common molecular characteristics. We

subsequently performed principal component analysis (PCA)

for linear dimension reduction and reduced the data to the top

20 PCs based on the elbow plot after scaling. Clustering was

further performed using the Seurat FindClusters function with a

resolution of 0.5, and the clusters were visualized on a 2D map

produced with uniform manifold approximation and projection

(UMAP). The final 12 cell clusters were determined using the

above method. For sub-clustering, we applied the same

procedure of scaling, dimensionality reduction, and clustering

to a specific set of data (usually restricted to one type of cell).
2.4.3 Identification of differentially expressed
genes (DEGs) and marker genes

Specific marker genes for each cluster were calculated using

the Seurat “FindAllMarkers” function, with the parameters:

logfc.threshold > 0.25, min.diff.pct > 0.25, min.pct > 0.1. DEGs

were then identified by comparing cells from the target cluster to

all other cells from the remaining clusters using Wilcoxon rank-

sum tests. Finally, according to the statistical test results, the

genes with the highest ranking from DEGs were set as specific

marker genes of that cluster based on LFC > 0.5 and P-value <

0.05. Furthermore, marker genes were simultaneously defined as

those with the highest mean expression in that cluster.
Frontiers in Immunology 04
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2.4.4 Functional enrichment analysis of DEGs
The ClusterRprofile R package (v4.2.2) was used to perform

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis.

2.4.5 Pseudo time-trajectory analysis of
different cell types

We used DDRTree’s reduction method in Monocle3 (R

package) with default parameters to reconstruct pseudo- time

trajectories of ‘target cells’ to predict cellular differentiation

pathways. First, we filtered all the differences of the cell

clusters after converting normalized data to a Monocle object

in R, and reduced the dimension for building minimum

generating trees. Second, we searched for the optimal sorting

of single -cell data in high-dimensional and low-dimensional

spaces. Finally, we fitted the pseudo- time trajectory curve for the

best cell development or differentiation. The criteria applied for

gene selection included the following analysis: Genes expressed

in less than 10 cells, or with a minimum normalized expression

greater than 0.1 were filtered out, 2) q-value<0.01 in DEGs

expression analysis.

2.4.6 BCR and TCR data analysis
The reads of a single barcode from the scRNA-seq were put

into the vdj pipeline from the Cell Ranger V(D)J pipeline (v3.1.0,

10X Genomics), and these reads were glued to assemble a set of

contigs to produce the best estimation of the current

transcriptional sequence. The purpose of V(D)J contig

annotation was to compare V, D, and J fragments to a contig;

thus, we identified complementary determining region 3

(CDR3) sequences and rearranged full-length BCR/TCR V(D)J

segments, as well as clonotype frequency. Next, the following

sequences were obtained for downstream analysis: 1) high-

confidence, detectable V genes, J genes, CDR3 nucleotides, and

2) more than two unique molecular identifier (UMI) counts. In

cases with more than one assembled heavy-light chain pair, the

one with higher UMI counts was chosen as the dominant in the

corresponding cells. T or B cells that shared the same CDR3

nucleotide sequence of the VJ and VDJ chains were considered

to be one clonotype that has the same adaptive immune receptor

and epitopes. The Sc-BCR/Sc-TCR data were analyzed using the

R package scRepertoire v1.5.2., following to the official vignette.

2.4.7 Statistical analysis
Shapiro-Wilk normality test and Levene’s test were used to

determining the normality and variance homogeneity. The

wilcox-test was used for statistical analysis to determine the

genes expression regulation change among multiple cell clusters.

All statistical analyses were performed using the open-source

statistical package R version 4.0.3 (R Project for Statistical

Computing, Vienna, Austria).
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2.5 Cytokine and
chemokine measurement

Several cytokines and chemokines, including IL-1b, IL-2, IL-4, IL-
5, IL-6, IL-8, IL-10, IL-17, IFN-a, IFN-g, and TNF-a, were detected by
multiple microsphere flow immunofluorescence. Cytokine detection

reagent was provided by Qingdao Raisecare Biotechnology Co., Ltd.

(Shandong, China). Briefly, EDTA-K2 anti-coagulated whole blood

was centrifuged at 1,000 g for 30 min, and plasma was collected.

Subsequently, 25 µL each of experimental buffer, centrifuged plasma,

capture microsphere antibody, and detection antibodies were mixed in

flow tubes and placed on a shaker at 500RPM for 2 h at room

temperature. Then, 25 µL of streptavidin-phycoerythrin (SA-PE) was

added to the flow tubes, which were then placed on a shaker at

500RPM for an additional 30 min. Data were then obtained using an

automatic flow cytometer (Raisecare).
3 Results

3.1 Study design and single-cell survey of
major changes in transcriptional profiles
between anti-NMDARE patients and HCs

Ten fresh peripheral blood samples were obtained from five

patients with anti-NMDARE (P1-P5), in whom the diagnosis of

anti-NMDARE was based on the Graus and Dalmau criteria (23).

Blood samples were obtained twice from each patient, once the

day before the onset of first-line therapy (steroids and intravenous

immunoglobulins) and once ten days later. Peripheral blood

samples were collected from five age- and sex- matched healthy

donors as controls (HC1-HC5). The clinical characteristics of the

patients are presented in Supplementary Table 3.

A total of 129,217 cells were analyzed by scRNA-seq using

the 10X genomics sequencing technology. Among these, 37,696

were derived from patients prior to first-line therapies (PBs),

38,396 after therapy (PAs), and 53,125 from HCs (Figure 1A).

The sequencing information of each sample is presented in

Supplementary Table 2. The single-cell profiles were divided

into 21 clusters (Supplementary Figure 2), of which the major

cell types included CD4+T cells, CD8+ T cells, B cells,

monocytes, natural killer (NK) cells, macrophages (MF), mast

cells (MCs), dendritic cells (DCs), and residual megakaryocytes

(Mgk) mixed in PBMCs (Figure 1B). Most marker genes of each

cluster were calculated based on highly DEGs (Supplementary

Table 4). The cell types were identified using known unique

signature and marker genes. Subsequently, 13 cell types

were generated: naïve CD4+ T cells, memory CD4+ T cells,

naïve CD8+ T cells, memory CD8+ T cells, proliferative CD8+ T

cells, B cells, plasma B cells, NK cells, monocytes, MF, MCs,

DCs, and Mgk (Figure 1C). Cluster annotation was confirmed by

gene set enrichment analysis. GO analysis (Supplementary

Figure 3) demonstrated that clusters 8, 9, and 17 were
Frontiers in Immunology 05
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associated with B- cell receptor signaling; c lusters 0, 2, 4, 6,

7,11 and 16 were associated with T- cell activation and

differentiation; clusters 1, 5, and 13 were found to regulate

cytokine production and myeloid cell activation and

differentiation, and c luster 15 was associated with antigen

processing and presentation. These results were consistent

with the KEGG pathway analysis (Supplementary Figure 4).

Compared to HCs, anti-NMDAR patients demonstrated a

notable difference in the amount of cell subtypes (Figure 1D and

Supplementary Figure 5). Compared with HCs, pre-treatment

anti-NMDARE patients showed a higher proportion of

monocytes and DCs, and a lower proportion of B cells and T

cells. (Figure 1E and Supplementary Figure 6). Moreover, we

assessed differences in subtype representations between PBs and

PAs, finding that the population of B cells and myeloid cells

demonstrated a decrease in PAs and DCs, while MF, in terms of

myeloid cells, demonstrated a prominently lower population

than HCs (Figures 1D, E, Supplementary Figure 6).

BCR and TCR information was retained by single-cell BCR

sequencing (scBCR-seq) and single-cell TCR sequencing (scTCR-

seq), based on scRNA-seq libraries. After quality control, 9,992 and

46,420 cells were detected with BCR (IGH) and TCR (TCR a–b
pair) signatures, respectively (Supplementary Tables 5, 6). Among

them, 8,817 B cells with a single productive IGH allele (1,941 from

PBs, 1,899 from PAs, and 4,977 fromHCs) and 41,475 T cells with a

single productive TCRa-b pair (11,691 from PBs, 8,860 from PAs,

and 20,924 fromHCs) were detected. In the remainder of the study,

we focused predominantly on B cells because of their importance in

anti-NMDARE (Figures 1D, E). The proportion of unique clonal

BCRs of HCs, PBs and PAs is 84.49%, 68.61% and 65.67%,

respectively (Figure 1F). A significant decrease in proportion of

unique clonal BCRs was observed in all anti-NMDARE patients

compared to HCs. And this decrease continued after the first-line

therapy. The large and hyperexpanded categories is uncommon in

HCs, according to Supplementary Figure 7. The large and

hyperexpanded categories is significantly taken into consideration

in the PBs and PAs, particularly in P1a_PA and P4b_PB. The

relative abundance of large and hyperexpanded categories

demonstrated an increase in anti-NMDAR patients group

compared to HC group. Our observations suggested that anti-

NMDARE comprises oligoclonal expansions in response to

immunizing antigens. Overall, the major immune cells and

characterized cell proportions in anti-NMDARE patients were

identified and compared to HCs, revealing prominent changes in

B cells and myeloid cells.
3.2 Anti-NMDARE induces strong
humoral immune responses

B cells were further divided into more homogeneous subsets,

and 11 distinct sub-clusters were obtained (Figure 2A). Given

the reported marker genes (24, 25), NRGN+ naive B cells
frontiersin.org
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(cluster 4), NRGN- naive B cells (cluster 5), germinal center B

cells (cluster 2), CD27- memory B cells (cluster 0), CD27+

memory B cells (cluster 1), class-switched memory B cells

(cluster 8), Plasmablast B cells (cluster 7), Plasma B cells

(cluster 3), myeloid-like plasma B cells (cluster 9), CD14+

atypical B cells (cluster 6), and Age-associated B cells (cluster

10) were identified (Figure 2B).

Differential analysis revealed that naive B cells expressed the

marker genes IGHD, IGHM, and CD37, but very low levels of CD27.
Frontiers in Immunology 06
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Memory B cells (MBCs) expressed very low levels of IGHD.

Unbiased analysis revealed two sub-clusters of naive B cells:

NRGNhigh and NRGNlow B cells. Neurogranin, encoded by NRGN,

bidirectionally modulates synaptic plasticity via the calmodulin-

dependent regulation of the neuronal phosphoproteome (26).

Additionally, three sub-clusters of MBCs were identified. Cluster 8

was identified as class-switched memory B cells with upregulated

CD99 and low IGHM levels (27). CD27memory B cells are increased

in the elderly and in patients with specific autoimmune diseases (28).
B C

D E

A

F

FIGURE 1

Assessment of major changes in transcriptional profiles in anti-NMDARE patients and HCs: (A) Schematic representation of scRNA-seq analysis;
(B) Uniform manifold approximation and projection (UMAP) representation of scRNA-seq data; (C) Cluster annotation of expression values of
selected genes (x axis) across each cluster (y axis) was shown by dot plot represents; (D) The alignment of the number of each cell type was
shown by histogram across HCs (n = 5), PB (n = 5) and PA (n = 5); (E) The proportions of the major immune cell types among HCs, PBs and Pas;
(F) Percent of unique clonotype across PBs, PAs and HCs.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1075675
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2022.1075675
Germinal center B Cells had a higher expression of TNFRSF13C, and

persistent germinal center activity may be responsible for the ongoing

production of NR1-IgG, which strongly contributes to the initial

peripheral generation of NR1 antibodies (29, 30). Antibody-secreting
Frontiers in Immunology 07
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cells (ASCs) comprising plasmablasts, plasma cells, and myeloid-like

plasma B cells expressed higher CD27 andCD38, concurrent with the

low expression of CD19 and MS4A1. One cluster of ITGAXhigh

TBX21highIGHDlowCD27lowCD24low B cells was identified as age-
B

C

D E

F G

A

FIGURE 2

Assessment of changes in B cells in transcriptional profiles in anti-NMDARE patients and HCs: (A) The heterogeneous clusters of B cells were
shown by UMAP; (B) The key gene markers across B cell subsets were shown by Violin plots; (C) The DEGs in B cell subsets; (D) Percentage of B
cell types under each condition; (E) Enrichment analysis of DEGs from B cells in PBs, PAs and HCs; (F) B cells sorted using the DDRTree
algorithm and projected onto the different cell states; (G) Key genes related to differentiation in B cell subsets across each state.
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associated B cells (ABCs), which have attracted significant attention

in recent years (31). The high expression of FCER1A in age-

associated B cells suggests increased antigen-presenting activity.

ABCs may be potential triggers for autoimmune diseases (32).

CD14+ atypical B- cells, characterized by the absence of CD21 and

CD27, mainly exist in PAs. MT2A, MT1G, MTIX, and MTIE are

predominantly expressed by CD14+ atypical B cells, which affect

apoptotic and autophagy pathways in various diseases (33).

Furthermore, we characterized the transcriptomic changes

in B cells of all clusters (Figure 2C, Supplementary Tables 7 and

8). GO analysis revealed that cluster 0 was associated with

positive regulation of lymphocyte activation, cytokines, toll-

like receptors (TLRs), and B- cell receptor signaling pathways.

Conversely, cluster 1 was associated with regulation of

lymphocyte proliferation, positive regulation of cell adhesion,

antigen processing, and presentation of peptide antigens. Cluster

3 was associated with intrinsic signaling, including protein

maturation, ERAD pathway, and complement activation.

Cluster 6 was associated with phagocytosis, cell chemotaxis,

and cell migration. Cluster 10 was associated with ATP

metabolic processes and material transport. KEGG analysis

further showed that clusters 3 and 7 shared similar pathways,

such as the cell cycle set, indicating that they were

highly activated.
3.3 Extensive B cell heterogeneity

The B cell compartments differed greatly in composition

across the different cell groups (Figure 2D, Supplementary

Figure 8). Compared with HCs, PBs showed an increased

proportion of class-switched memory B Cells and ASCs, along

with a decreased proportion of MBCs and germinal center B

cells. These proportional changes indicate a strong humoral

immune response induced by anti-NMDARE. After first-line

therapy, the proportion of ASCs and class-switched memory B

cells in total B cells decreased with an increase in ABCs and

CD14+ Atypical B cells. In summary, strong humoral immunity

develops in patients with anti-NMDARE in the acute stage.

Considering that ASCs were significantly expanded in PAs and

demonstrated essential roles at producing high-affinity

antibodies, we were able to transcriptional changes between

anti-NMDARE patients and HCs.

GO analysis suggested that the DEGs were mainly involved

in the positive regulation of lymphocyte activation and humoral

immune response (Figure 2E). Genes involved in lymphocyte

activation, that is, IGHA1, IGHG1, IGHV3-30, IL7R, CCL5,

TYROBP, LGALS1, and IGKC, were upregulated in anti-

NMDARE patients compared to HCs. Genes upregulated in

the humoral immune response in PBs compared to HCs

included S100A4, S100A9, S100A8, S100A12, LYZ, GNLY,

IGHV3-23, and JCHAIN. After therapy, genes involved in the

response to steroids and those involved in the apoptotic process
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of leukocytes were induced, including TSC22D3, DDIT4, GPX1,

and TXNIP. In general, immune response signaling and

lymphocyte activation pathways were activated in PBs,

whereas apoptotic signaling pathways were upregulated in PAs.

Further, we analyzed the trajectory of B cells in each sample

(Figure 2F, Supplementary Figure 9). In HCs, trajectory analysis

revealed a gradual transition from naïve B cells and germinal

center B cells to ASCs or MBCs, with most cells undergoing

differentiation into MBCs. MBCs had low progression along

pseudonyms, indicating a close relationship to naïve B cells,

which marked the beginning of the pseudotime. In anti-

NMDARE patients, although the differentiation pathways were

similar, more cells differentiated into ASCs. After therapy, the

end of the branch generated ABCs and CD14+ Atypical B cells,

which were closely associated with the immune senescence,

including reduced B cell genesis and a dampened immune

responses (34). The branch consisting of ASCs, ABCs, CD14+

Atypical B, and Class-switched memory B cells progressed

further along pseudotime, showing that these cell populations

were differentiated further away from naive B cells compared to

MBCs. ASCs highly expressed JCHAIN, which is required for

immunoglobulin polymerization (Figure 2G), J chain is a small

glycopeptide linked to IgA and IgM by disulfide bonds which has

also been detected in IgG- and IgD-containing cells (35, 36).

Clusters 6 and 8 contained elevated levels of S100A8 and

S100A9, which are considered alarming and damage-

associated molecules, respectively (37). The above analysis

revealed an enhanced propensity for differentiation towards

the ASC phenotype in anti-NMDARE patients, and a highly

activated state of ABCs and CD14+ Atypical B cells.
3.4 Characterization of BCRs

The dynamics of BCR repertoires during acute anti-

NMDARE were dissected (Figure 3A). The PBs of clonally

expanded B cells showed transcriptional homogeneity;

however, a diffusive distribution indicated transcriptional

heterogeneity in the HCs (Figure 3B). Moreover, the number

of clonal BCRs increased significantly in plasma B cells and

myeloid-like plasma B cells (Figure 3C). Prior to undergoing

first-line therapies, the majority of clone types from plasmablast

B cells and myeloid-like plasma B cells were large (5<X<=100),

but exhibited various expression patterns in PAs. However, after

first-line therapy, the proportion of IGHA and IGHG increased

significantly (Figure 3D), indicating that B cell activation led to

the conversion of immunoglobulin from IgM/IgD to IgG/IgA.

Significant oligoclonal expansion in ASCs was observed, among

which the lgG subtype was predominantly found in myeloid-like

plasma B cells and IgA in plasma and plasmablast B cells

(Figure 3E, Supplementary Figure 10). In general, our data

suggested that a larger proportion of ASCs with highly

expanded features and transcriptional homogeneity were
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present in patients with anti-NMDARE antibodies, and that

significant oligoclonal expansions were dominated by IgA and

IgG isotypes.
3.5 Expression of inflammatory cytokines
and chemokines in myeloid subsets

Furthermore, we quantitatively evaluated the anti-

NMDARE-driven changes in myeloid cells. Human peripheral

blood myeloid cells, including monocytes, DCs, and MF,

promote antigen presentation and inflammatory activity (38).

Myeloid cells were sub-grouped into 13 clusters, numbered from

0 to 12 (Figures 4A, B). The three myeloid subsets were defined

as monocytes (clusters 0, 1, and 2), of which Mono1 (Cluster 0)

was the most abundant. The expression levels of S100A8,

S100A9, and LYZ were higher in mono1 (cluster 0). In mono2

cells (cluster 1), the expression levels of IL-32, PRF1, and GNLY

were higher. M ono _THBS1 (cluster 2) was a minor subset

expressing THBS1. The myeloid subset MF (cluster 4) highly

expressed FCGR3A (cluster 4). Myeloid_IGHV2-5 (cluster 11)

highly expressed IGHV2-5 (cluster 11). Mgk (cluster 5) andMCs

(cluster 10) highly expressed surface markers STMN1 and PPBP.

A few cells, defined as B cells, NK cells, and red blood cells were

combined with myeloid cells (clusters 6, 9, and 12). The myeloid
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subsets DC_FCER1A (cluster 8) and DC_CCR7 (cluster 3)

highly expressed FCER1A and CCR7, respect ive ly

(Figures 4A, B).

We subsequently compared the expression levels of different

myeloid clusters (Figure 4C). In both mono1 and mono2,

monocyte expansion was prominent (Figure 4D). After first-

line therapy, mono_THBS1 was highly expressed in patients.

The proportion of mono_THBS1 remained significantly higher

in patients with anti-NMDARE post-treatment than in HCs.

Mono1 showed high expression levels of S100A8 and S100A9,

which exert pro-inflammatory effects in a range of diseases (39).

Mono2 highly expresses IL32 and PRF1. IL-32 may further play

a role in innate and adaptive immune responses, which induce

other cytokines involved in inflammation, including tumor

necrosis factor (TNF)-a, IL-6, and IL-1b, and activate typical

cytokine signaling pathways of NF-kB and p38 MAPK (40).

PRF1 is important for immunity (41). Thus, anti-NMDARE

patients showing an inflammatory state were caused by the

expansion of mono1 and mono2. Moreover, we observed that

during the acute phase in anti-NMDARE patients, higher levels

of DC_CCR7 were expressed in human myeloid cells

(Figure 4C). The composition of mono1 and mono2 in the PB

and PA groups were similar, suggesting that immunological

changes were sustained during convalescence. However, the

increased proportion of mono_THBS1, along with a decreased
B
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E

A

FIGURE 3

Characterization of BCR repertoires during acute anti-NMDARE state: (A) The clonal expansion status in B cells shown by UMAP; (B) The clonal
expansion status of B cell subsets in PBs, PAs and HCs; (C) BCR clonotype tracking in B cell subsets; (D) The percentage of IGHA and IGHG in
BCRs across PBs, PAs and HCs; (E) The IGH isotypes in each B cluster shown by UMAP.
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FIGURE 4

Assessment of changes in myeloid cells in transcriptional profiles between anti-NMDARE patients and HCs: (A) The heterogeneous clusters of
myeloid cells were shown by UMAP; (B) The key gene markers across myeloid cell subsets were shown by violin plots. The dot plot represents
the expression values of selected genes (x axis) across each cluster (y axis). The percentage of cells expressing the marker of interest were
shown by dot size and the mean expression within expressing cells was shown by color intensity. (C) The major myeloid subsets from the HC,
PB, and PA groups were shown by UMAP; (D) Cell abundance across PBs, PAs and HCs; (E) The alignment of the levels of selected cytokines
and chemokines in peripheral blood in HCs (n = 5), PBs (n = 10); (F) The levels of IL-1b, IL-6 and IL-8 in peripheral blood in HCs (n = 5), PBs
(n = 10). P-value was adjusted by false discovery rate; (G) Expression patterns of molecular biomarkers in anti-NMDARE. The dot plot
represented average expression levels and percentage of cells expressing the molecular biomarkers genes across peripheral PBMC; (H)
Expression levels of IL1B, TNFSF13B, TNFSF13 and NLRP3 in PBMCs of HCs (n = 5), PBs (n = 5) and PAs (n = 5).
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proportion of DC_CCR7 in PAs suggests that excessive

inflammatory responses were inhibited.

Furthermore, the levels of several cytokines and chemokines

in the peripheral blood of the anti-NMDARE patients were

measured (Figure 4E, Supplementary Table 1). Compared with

HCs, anti-NMDARE patients had much higher levels of IL-1b,
IL-6, and IL-8 inflammatory cytokines (Figure 4F,

Supplementary Figure 11). The expression of molecular

biomarkers in patients with anti-NMDARE was also measured

(Figure 4G). IL-6 and IL-2 are crucial inflammatory mediators

that stimulate both B and T cells in autoimmune processes, and

have been used as therapeutic targets to treat anti-NMDAREs

(42, 43). Overall, we found that IL6 was predominantly

expressed in B cells, while CXCL8, IL1B, TNFSF13B,

TNFSF13, TNF, and NLRP3 were mainly expressed in myeloid

cells and upregulated in PBs (Figures 4G, H). In addition,

CXCL8 and NLRP3 were mainly expressed in monocytes.

TNFSF13 and TNF were mainly expressed in macrophages,

whereas TNFSF13B was mainly expressed in monocytes, DCs,

and macrophages (Supplementary Figure 12). These results

suggest that as myeloid abundance increases, the production of

total chemokines and other molecular biomarkers in anti-

NMDARE patients is expected to increase.
4 Discussion

Anti-NMDARE is the most frequently recognized neuronal

antibody-mediated encephalitis (44). ASCs enter the central

nervous system through the blood-brain barrier and secrete

antibodies, leading to their internalization and subsequently

reduced functioning of NMDARE, delineating the pathogenesis

of the disease (45, 46). The immune system is dysregulated in anti-

NMDARE patients, and significant efforts have been made in the

research and treatment of anti-NMDARE (47). However, further

investigation of the regulation of the immune system in peripheral

blood is still required to develop novel therapies and to achieve

improved curative effects in less time.

In the current study, we aimed to understand the cellular

transcriptional changes in anti-NMDARE patients. To the best

of our knowledge, this is the first study to create a high-

resolution map of transcriptional changes and systematically

discuss cellular heterogeneity and impaired peripheral tolerance

in anti-NMDARE patients.

We performed scRNA-seq to assess the transcriptional

profiles of 129,217 cells and identified and annotated 21 major

cell clusters, after which we performed by DEG and pathway

analysis. First, we identified 21 cell clusters comprising CD4+T

cells, CD8+ T cells, B cells, monocytes, NK cells, MF, MCs, Mgk,

and DCs. B cell differentiation and activation, plasma cell

expansion, and excessive inflammatory responses in innate
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immunity were all identified. Furthermore, we found some

interesting results: anti-NMDARE promotes B-cell polarization

from naive to ASC with higher CD27 and CD38 expression, and

low expression of CD19 and MS4A1, and anti-NMDARE

induces a dysregulation in the balance of myeloid subsets (e.g.,

a significant increase in mono1, mono2, and DC _CCR7).

NMDAR are taken up by antigen- presenting cells (APCs),

and present to the immune system, resulting in the

differentiation of naive B cells into MBCs, and plasma cells in

local lymph nodes (48, 49). Based on these two studies, we

speculated that in patients with anti-NMDARE, naive B cells

differentiate into more plasma cells with the help of APCs.

Previous studies of pathology in anti-NMDARE have focused

on adaptive immunity (50), finding that monocytes and DCs

were significantly expanded in PBs compared to HCs; this

suggests that, both innate and adaptive immunity are involved

in the occurrence and development of diseases.

In the current study, we identified DEGs and observed

remarkable oligoclonal expansions in anti-NMDARE patients,

which may provide a reference for studying the pathological

roles of immune cell subsets and discovering potential drug

targets to treat these diseases.

B cells are the dominant cell type for maintaining humoral

defenses (51). They are also associated with the development and

control of autoimmunity that targets self-antigens (52, 53).

Various B cell categories exhibit the ability for both self-

protection and self-destruction (52). Patients with anti-

NMDARE carry major B cell alterations, including expansion

of the activated plasma B cell phenotype (54), with higher

concentrations of NR1-IgG in the serum than the CSF (55,

56). These alterations suggest that the periphery is likely the site

of primary immunization. We found that although the total B

cell abundance decreased in anti-NMDARE patients, the

proportion of class-switched memory B cells and ASCs among

the B cells increased.

Moreover, we observed extensive oligoclonal expansion of

BCRs and isotype switching from IgM/IgD to IgG/IgA. All the

evidence supports the hypothesis that due to some specific

antigens, the acquired immune responses thus generated leads

to anti-NMDARE (13, 57). B rain biopsy or autopsy findings

suggested that during anti-NMDARE, B cells and plasma cells

infiltrate brain tissue along with IgG deposits, resulting in little

neuron loss (58, 59), which confirmed that adaptive immunity is

involved in the occurrence of diseases. The detection of synthetic

antibodies based on oligoclonal IgAs and lgGs can be used as a

specific diagnostic test for anti-NMDARE (47, 60, 61). The DEG

analysis in our study indicated that genes involved in positive

regulation of lymphocytes and humoral immune responses such

as IL-7R, CCL5, LYZ, GNLY, JCHAIN, and S100 were

upregulated. The expression levels of IGHA1, IGHG1, IGHV3-

30, and IGHV3-23 encoding immunoglobulin heavy chains were
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high before first-line therapy and returned to normal levels after

therapy, suggesting that the immunomodulatory effect of

steroids and IVIG may be related to the blockage of activated

immunoglobulin (62, 63). In autoimmune disorders, the

expansion of ABCs and CD14+ Atypical B cells is significantly

higher (64, 65); therefore, conditional targeting of the

transcription factor T-bet encoded by TBX21, which is

important and sufficient for ABCs formation (66), could be an

efficient and novel therapeutic target.

Previous studies have focused on adaptive immunity in anti-

NMDARE (1); however, we observed remarkable expansion and

alterations in the differentiation of myeloid cells. In our study, mono1

and mono2 highly expressed S100A8, S100A9, IL32, and PRF1,

indicating an inflammatory state in patients with anti-NMDARE.

S100A8 and S100A9 can also amplify the inflammatory response by

promoting the secretion of pro-inflammatory cytokines (TNF, IL6,

etc.), and exert a chemo-attractive function that allows the

recruitment and adhesion of leukocytes (67).

Our data showed a dysregulation in the balance of myeloid

populations in anti-NMDARE patients, as manifested by a

substantial increase in monocyte subsets and DC_CCR7. The

central chemokine receptor CCR7 plays a role in T-cell

activation, differentiation, and expansion of IgG-producing B

cells (68). Blocking CCR7 signaling seems to reduce both

humoral and immune cell-mediated pathogenic courses,

making CCR7 a potential target for interference with anti-

NMDARE. Thus, we suggest CCR7 as a possible target for

potential future drugs with an antagonistic effect in inhibiting

disease progression by reducing inflammation (69).

Furthermore, we found an increased percentage of

mono_THBS1, a potent inhibitor of T cell and DC activation

which dampens an excessive inflammatory response (70, 71), after

first-line therapy, Therefore, we propose that mono_THBS1 could

be used as an indicator to monitor the curative effect. However,

the increased proportion of mono_THBS1 and the decreased

proportion of DC_CCR7 in PAs suggests that excessive

inflammatory responses were inhibited.

Patients with anti-NMDARE have higher levels of IL-1b, IL-6,
IL-8 and higher expression of inflammatory factors, particularly

CXCL8, IL1B, TNFSF13B, TNFSF13, TNF, and NLRP3, than in

HCs. Our data suggest that myeloid cells in patients with anti-

NMDARE may contribute to local inflammation, and cytokine

storms are associated with disease severity. Moreover, several

studies have confirmed that some cytokines/chemokines and

other molecular biomarkers, such as the NLRP3 inflammasome,

soluble Fas and FasL, chitinase-3-like 1 (CHI3L1), pentraxin 3

(PTX3), and CD40L, are associated with clinical activity,

inflammation, and long-term outcomes (72).
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However, our study has several limitations. The sample size

for scRNA-seq analysis was small and heterogeneous. This study

was carried out on PBMCs, and therefore could not reflect the

inflammatory responses in the cerebrospinal fluid. F actors such

as age, disease severity, and immunoregulatory therapies were

not comprehensively assessed. Moreover, more patients with

herpes simplex encephalitis or teratoma should be included in

future studies to accurately determine the relationship between

different infections and immune responses.
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Diagnostic gene signatures
and aberrant pathway
activation based on m6A
methylation regulators in
rheumatoid arthritis

Qishun Geng1,2, Xiaoxue Cao1,2, Danping Fan3, Xiaofeng Gu4,
Qian Zhang4, Mengxiao Zhang2, Zheng Wang5,
Tingting Deng2* and Cheng Xiao1,2,6*
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Purpose: Rheumatoid arthritis (RA) is a chronic autoimmune disease (AD)

characterized by persistent synovial inflammation, bone erosion and

progressive joint destruction. This research aimed to elucidate the potential

roles and molecular mechanisms of N6-methyladenosine (m6A) methylation

regulators in RA.

Methods: An array of tissues from 233 RA and 126 control samples was profiled

and integrated for mRNA expression analysis. Following quality control and

normalization, the cohort was split into training and validation sets. Five distinct

machine learning feature selection methods were applied to the training set

and validated in validation sets.

Results: Among the six models, the LASSO_l-1se model not only performed

better in the validation sets but also exhibited more stringent performance.

Two m6A methylation regulators were identified as significant biomarkers by

consensus feature selection from all four methods. IGF2BP3 and YTHDC2,

which are differentially expressed in patients with RA and controls, were used to

predict RA diagnosis with high accuracy. In addition, IGF2BP3 showed higher

importance, which can regulate the G2/M transition to promote RA-FLS

proliferation and affect M1 macrophage polarization.
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Conclusion: This consensus of multiple machine learning approaches

identified two m6A methylation regulators that could distinguish patients

with RA from controls. These m6A methylation regulators and their target

genes may provide insight into RA pathogenesis and reveal novel disease

regulators and putative drug targets.
KEYWORDS

rheumatoid arthritis, N6-methyladenosine, IGF2BP3, cell cycle, M1 macrophages
Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease

(AD) characterized by tumour-like hyperplasia of synovial

tissue, persistent synovial inflammation, bone erosion and

progressive joint destruction (1). RA usually occurs in middle-

aged women. Currently, we attribute the development of RA to

genetic and environmental factors, such as smoking, obesity,

stress, neurodepression, and female hormones. Patients with RA

have a higher risk of developing malignancies than the general

population (2). Recently, the management of clinical symptoms

and complications in RA patients has received increasing

attention from medical workers (3, 4). An in-depth

understanding of the mechanisms underlying RA occurrence

and development can help to detect RA and its complications

earlier so that measures can be taken to control the development

and reduce the activity of the disease.

Previous studies have shown that T/B lymphocytes,

macrophages, fibroblast-like synoviocytes (FLSs) and other

cells are involved in the pathogenesis of RA (5). Activated

FLSs in synovial tissue exacerbate the inflammatory response

by secreting proinflammatory factors, chemokines and cell

adhesion molecules, which can recruit additional immune cells

to synovial tissue (6). Although the pathogenesis of RA remains

incompletely elucidated, immune cells and FLSs undoubtedly

play a crucial role in the progressive joint destruction and

inflammatory response (7). Therefore, studying strategies to

inhibit the proliferation and migration of FLSs and the

inflammatory response in RA is highly important for

elucidating the disease mechanism and developing treatments.

The study of epigenetics, especially RNA modifications, is a

hotspot in life science research. Recently, with the development

of the first RNA N6-methyladenosine (m6A) map by Cornell

University and the discovery of its ubiquity in mRNA,

transcriptional modification has gradually become the focus of

the biomedical community (8). Among RNA modifications,

m6A accounts for the largest proportion of base modifications

in mRNAs and functions to regulate RNA stability, protein

synthesis and translation; stem cell stress responses, cytotoxic
02
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stress responses; and mRNA export (9, 10). Currently, the

known m6A methylation regulators consist of eight writers

(METTL3, METTL14, WTAP, KIAA1429, RBM15, RBM15B,

CBLL1 and ZC3H13), two readers (FTO and ALKBH5) and

thirteen erasers (YTHDF1, YTHDF2, YTHDF3, YTHDC1,

YTHDC2, HNRNPC, HNRNPA2B1, IGF2BP1, IGF2BP2,

IGF2BP3, FMR1, ELAVL1 and LRPPRC) (11). Previous

studies have shown that these regulators are involved in

biological processes (BPs) such as cell differentiation and

apoptosis and immune regulation, which are closely related to

cancers and immune diseases (12–14). However, few studies

have addressed the regulatory mechanism of m6A in RA, and

more attention is needed.

In this study, we selected 19 m6A methylation regulators

with expression data in the GSE12021, GSE55235, GSE55457,

GSE55584, GSE77298 and GSE153105 datasets. Based on five

distinct supervised machine learning approaches, we assessed

the potential of these m6A methylation regulators as diagnostic

tools by creating binary predictive classification models and

assessing their accuracy. Then, by analysing the target genes and

pathways of the m6Amethylation regulators, we gained a further

understanding of the roles of m6A methylation regulators in the

pathogenesis of RA (Figure 1). This study is of great significance

for elucidating the potential roles and molecular mechanisms of

m6A methylation regulators in RA and for exploring new

RA biomarkers.
Materials and methods

Dataset collection and processing

Data for 384 samples were accessed via the Gene Expression

Omnibus (GEO) repository (Supplementary Table 1). The data

from GSE12021, GSE55235, GSE55457 and GSE55584 were

retrieved from the Affymetrix® GPL96 platform (Human

Genome U133A Array), and the data from GSE77298 and

GSE153105 were retrieved from the Affymetrix® GPL570

platform (Human Genome U133 Plus 2.0 Array). The raw
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data from the Affymetrix® platforms were processed via the

robust multiarray averaging (RMA) algorithm implemented in

the Affy package. After removal of batch effects with the ComBat

algorithm, the training dataset was generated by combining the

GEO datasets from the Affymetrix® GPL96 platform. Validation

dataset 1 was generated by combining the GEO datasets from the

Affymetrix® GPL570 platform. GSE89408 (platform: GPL1154)

was considered validation dataset 2. In this research, for

comparison with the RA group, we defined healthy individuals

and patients with osteoarthritis (OA) as the control group.

The samples in GSE12021, GSE55235, GSE55457,

GSE55584, GSE77298 and GSE153105 were extracted from

synovial tissues. The samples in GSE90081 were taken from

peripheral blood mononuclear cells (PBMCs). To investigate the

relationship between IGF2BP3 expression andM1 macrophages,

single-cell RNA sequencing (scRNA-seq) data from the

GSE159117 dataset were analysed.
Cell lines and cell transfection

RA-FLSs were isolated from RA synovium. The cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM)

(Gibco, Grand Island, NY, USA) supplemented with 15% foetal

bovine serum (FBS) (Thermo, USA) and cultured at 37°C in 5%
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CO2 and saturated humidity. The ethics committee of China-

Japan Friendship Hospital approved the research (approval

number 2021-153-K111).

To silence the expression of IGF2BP3, an IGF2BP3 siRNA

(siIGF2BP3) and a control siRNA (siNC) were chemically

synthesized by Tsingke Biotechnology Co., Ltd (Beijing,

China) and transfected into RA-FLSs and RAW 264.7 cells.

The siIGF2BP3 target sequences are shown below: human si-

IGF2BP3, 5’- GCAAAGGATT CGGAAACTT -3’; mouse si-

Igf2bp3, 5 ’- GGAGGUGCUGGAUAGUUUACU -3 ’ .

JetPRIME® Transfection Reagent was used for cell transfection

(Polyplus Transfection, USA).
Random forest optimization using boruta

Boruta has high feature variable selection accuracy in

biological data. We used the default settings in the Boruta

package (v7.0.0) to evaluate variable importance with 300

iterations (15). After 300 iterations, the confirmed variables

were identified. Then, these confirmed variables selected by

Boruta were used to construct a random forest model by using

the caret package (v.6.0-92). After tuning and modelling, the

final selected model was obtained and used to determine

whether the subjects were RA patients or non-RA patients.
FIGURE 1

Diagram of the study.
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Regression partition tree

Rpart is a commonly used decision tree modelling method

with a good visualization effect and straightforward results. We

used the Rpart (v4.1-15) package to build a classification tree

model. To avoid overfitting, some rules with weak classification

and descriptive abilities were removed to improve the prediction

accuracy. The classification tree model was optimized based on

the minimum Xerror value, and the optimal classification tree

model was used to determine whether the subjects were RA

patients or non-RA patients.
Least absolute shrinkage and
selection operator

LASSO has the advantage of preserving subset shrinkage and

is a biased estimator for dealing with data with complex

collinearity. Lasso allows a more refined model to be obtained

by constructing a penalty function such that some coefficients

are compressed and some coefficients are set to zero (16).

LASSO-penalized logistic regression was performed with the

glmnet package (version 4.1-4), which then calculated two

automatic l values—one that minimizes the binomial deviance

and one representing the largest l that is still within 1 standard

error of the minimum binomial deviance. Both l values (l-
min=0.02395, l-1se=0.09203) were selected and used to refit the

model, which resulted in a stricter penalty that allowed us to

reduce the number of covariates even further than with the

former l. A probability threshold of > 0.5 was used to determine

whether the subjects were RA patients or non-RA patients.
Extreme gradient boosting

XGBoost is an extreme gradient boosting algorithm that

ranks features from most important to least important and has

been used very effectively in diverse classification problems.

Based on the default parameters, we used the XGBoost

package (version 1.6.0.1) to build the final model for disease

diagnosis and rank the features by importance. Features

contributing to more than a 5% improvement in accuracy to

their branches were selected as ‘important’ (17). The trained

model was used to determine whether the subjects were RA

patients or non-RA patients.
Logistic regression

Logistic regression is a machine learning method used to

solve binary classification problems to estimate the likelihood of
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an event. The glmnet package (version 4.1-4) was used to build

the final model for disease diagnosis, which was used to

determine whether the subjects were RA patients or non-

RA patients.
Pathway analysis

M6A2Target (http://m6a2target.canceromics.org/) is a

comprehensive database for determining the target genes of

writers, erasers and readers (WERs) of m6A modification. It

integrates highly confidential targets validated by low-throughput

experiments and potential targets with binding evidence indicated

by high-throughput sequencing or inferred from m6A WER

perturbation followed by high-throughput sequencing. The gene

targets of the more important m6A regulators in disease diagnosis

were inferred using m6A2Target (18). Then, ClueGO (version

3.0.3) was used for BP functional annotation analysis of the gene

targets (19). The clusterProfiler package (version 4.2.2), a universal

enrichment tool for interpreting omics data, was used for functional

enrichment analysis.
scRNA-seq analysis

First, we imported the H5 file and converted the data to a

Seurat object. Then, with the Seurat (version 4.1.1) package, data

quality control and clustering were performed on the PBMC

population. Each cell subset was annotated based on the celldex

package (version 1.4.0).
Real-time qPCR analysis and
western blot analysis

RNA isolation and RT–qPCR analysis were carried out

according to previous studies (20). b-actin served as an

internal control. The sequences of the primers used in the

experiment are as follows. Human IGF2BP3: 5′- TCGAGG

CGCTTTCAGGTAAA-3′ (forward), 5′- AAACTATCCAGCA

CCTCCCAC-3′ (reverse). Mouse Igf2bp3: 5′- CCTGGTGA

AGACGGGCTAC-3′ (forward), 5′- TCAACTTCCATCGGTT

TCCCA-3′ (reverse).
Protein extraction and Western blot analysis were carried

out according to previous studies (20). The primary antibodies

included rabbit anti-IGF2BP3 (1:1000, Proteintech, Chicago,

USA), anti-CCNB1 (1:1000, Shanghai, China) and anti-C-Myc

(1:2,000, Cell Signaling Technology, Beverly, MA, USA). Band

densities on autoradiograms were densitometrically quantified

(Quantity One software; Bio-Rad), with GAPDH serving as the

internal control.
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Cell viability assay and cell cycle analysis

The cell viability assay was performed 24 h after transfection

of siNC and siIGF2BP3 with a CCK-8 kit from Beyotime

(Beijing, China). After transfection, cells were plated in 96-well

dishes at a concentration of 5 × 103 cells/well and cultured in

DMEM containing 15% FBS for cell attachment. Cell viability

was measured with CCK-8 reagent following the manufacturer’s

protocol at the indicated time points (24, 48 and 72 h).

Cell cycle analysis was performed 48 h after transfection of

siNC and siIGF2BP3. Cells were washed twice with ice-cold PBS,

harvested, and fixed with 70% ethanol at 4°C overnight. Then,

the cells were stained with a Cell Cycle and Apoptosis Analysis

Kit (Beyotime, Beijing, China) at 37°C for 30 minutes and

detected by flow cytometry (Becton-Dickinson, San Jose, CA,

USA). Cell cycle distributions were analysed with ModFit LT 3.1

software (verity Software House, Inc., Topsham, ME, USA).
Flow cytometric analysis and enzyme
linked immunosorbent assay

Analysis was performed 48 h after transfection of siNC and

iIGF2BP3. After 6h of LPS (100ng/ml) stimulation, cells were

collected and washed with PBS. Subsequently, the cells were

directly surface stained using anti-CD86 antibodies (Biolegend,

California, USA) for 20 min at 4°C. Signals were detected by flow

cytometry (Becton-Dickinson, San Jose, CA, USA). Data analysis

was conducted with FlowJo software version 10.0 (Tree Star,

Inc., Ashland, OR, USA).

After transfection and stimulation, the cell supernatant was

collected. According to the protocol of Mouse TNF-alpha ELISA

Kit (ABclonal, Wuhan, China), the content of TNF-a in cell

supernatant was detected.
Immunohistochemistry

The synovium tissues of six RA patients and six OA patients

are obtained from China-Japan Friendship Hospital. Sample

processing and data analysis were performed as previously

described (20). The ethics committee of China-Japan Friendship

Hospital approved the research (approval number 2021-

153-K111).
Statistical analyses

Statistical analyses were performed using GraphPad Prism

Software (GraphPad Software, San Diego, CA) and R version 4.0.4
Frontiers in Immunology 05
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software (Institute for Statistics and Mathematics, Vienna, Austria;

https://www.r-project.org). We used a leave-one-out (LOO) cross-

validation approach to evaluate the performance of the classifiers in

the training set. Student’s t test was used for comparisons between

groups. Measurement data are expressed as the means ± standard

deviations, and P< 0.05 indicates statistical significance.
Results

Performance of RA classification
approaches using the m6A regulators

Considering the important role of m6A methylation

regulators in tumour and immune disease progression, we

used a public dataset to comprehensively explore the

importance of 19 m6A methylation regulators for RA

diagnosis. Based on the expression levels of these 19 m6A

methylation regulators, a disease diagnosis model (RA vs. non-

RA) was constructed using five different machine learning

methods: random forest optimization using Boruta, Rpart,

LASSO, XGBoost and logistic regression. The cross-validation

performance in the training set is presented in Supplementary

Table 2. The accuracy and AUC of all models except for the

Rpart model were greater than 0.8. To compare the performance

of each machine learning method, we observed the performance

of each model as a classifier in the validation sets. The

performance of each machine learning method in the

validation sets was also variable (Tables 1, 2; Figures 2A-F). In

validation dataset 1, the logistic regression model and LASSO_l-
min model had the highest AUC (0.90), but the LASSO_l-min

model had a higher accuracy (0.901). The Rpart model had the

lowest AUC (0.8). In validation dataset 2, the LASSO_l-min

model and LASSO_l-1se model had the highest accuracy (0.89)

and AUC (0.88). Among the models, the Rpart model had the

poorest performance. In addition, the number of m6A

methylation regulators selected by each machine learning

method differed, with Boruta selecting the most (14 regulators)

and the Rpart model selecting just one regulator. Considering

the performance of each machine learning method in the

validation sets and the number of regulators that it selects in

the models, the LASSO_l-1se model not only performed better

in the validation sets but also exhibited more stringent in

variable screening. These results indicate that the LASSO_l-
1se model has good clinical application value and practicality.

Therefore, we further compared the performance of the

LASSO_l-1se model in whole blood samples and calculated an

AUC value of 0.83 (Figure 2G), further suggesting that the

LASSO_l-1se model has clinical application prospects in

blood-based diagnosis of RA.
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The more important m6A methylation
regulators in the RA classification

Different candidate biomarkers were selected by these

multivariable machine learning methods. However, biomarkers

often have equal accuracy and importance (17). Considering the

poorest performance of the Rpart model, we focused on the

overlapping m6A methylation regulators selected by the

different machine learning methods, including of random

forest optimization using Boruta, LASSO, XGBoost and

logistic regression (Figure 3A; Supplementary Table 3). Two of

the overlapping m6A methylation regulators were selected by

every model: IGF2BP3 and YTHDC2. The expression levels of

the 19 m6Amethylation regulators were further compared in the

training dataset. The expression levels of IGF2BP3 and

YTHDC2 were significantly different in RA and non-RA

patients (Figure 3B). More importantly, based on transcript

levels, IGF2BP3 and YTHDC2 also performed well in the

diagnosis of RA in the training set (Figure 3C), with AUC

values of 0.85 and 0.75, respectively. In addition, when the

Boruta (Figure 3D), Rpart (Figure 3E) and XGBoost

(Figure 3F) algorithms were used to calculate the importance
Frontiers in Immunology 06
28
of the 19 m6A methylation regulators, IGF2BP3 and YTHDC2

were ranked high; and IGF2BP3 has the highest importance.
Pathway and network analysis of the
IGF2BP3 and YTHDC2 targets

To investigate the novel roles that these m6A methylation

regulators play in RA and examine the related pathways, we

predicted their target genes using m6A2Target. IGF2BP3 and

YTHDC2 had 287 predicted gene targets in total (Supplementary

Table 4); IGF2BP3 had 16 verified targets and 190 predicted targets,

and YTHDC2 had 9 verified targets and 77 predicted targets. Based

on the predicted gene targets, KEGG pathway enrichment analysis

was performed using the ClusterProfiler package (version 4.2.2) to

analyse the signalling pathways in which IGF2BP3 and YTHDC2

participate. These predicted gene targets were highly enriched in the

following functions and pathways: MYC_TARGETS_V1,

E2F_TARGETS, G2M_CHECKPOINT, MITOTIC_SPINDLE,

ESTROGEN_RESPONSE_LATE, ALLOGRAFT_REJECTION,

OXIDATIVE_PHOSPHORYLATION, DNA_REPAIR,

UNFOLDED_PROTEIN_RESPONSE, MYC_TARGETS_V2, and
TABLE 1 Model performance of the six classifiers in validation set 1: A random forest wrapper (Boruta), LASSO_l-min, LASSO_l-1se, logistic
regression, regression partition trees (Rpart) and extreme gradient boosting (XGBoost).

Random forest LASSO_min LASSO_1se Logistic Rpart XGBoost

Regulators selected by model,
n

14 11 4 13 1 5

Best threshold 0.481 (0.22,0.829) 0.520 (0.28,0.961) 1.280 (0.26,0.895) -293.891 (0.3,0.934) 0.5014 (0.24,0.829) 0.903 (0.22,0.809)

Sensitivity 0.78 0.72 0.74 0.7 0.76 0.78

Specificity 0.8289 0.961 0.8947 0.9342 0.8289 0.8092

Positive predictive value 0.6 0.8571 0.6981 0.7778 0.5938 0.5735

Negative predictive value 0.9197 0.9125 0.9128 0.9045 0.913 0.9179

Acuracy (95%) 0.8168
(0.7565~0.8676)

0.901 (0.8512-
0.9385)

0.8564 (0.8004-
0.9017)

0.8762 (0.8227-
0.9183)

0.812 (0.7511-
0.8633)

0.802 (0.7403-
0.8546)

AUC (95%) 0.811 (0.735-0.888) 0.895 (0.841-0.948) 0.89 (0.830-0.944) 0.899 (0.847-0.95) 0.794 (0.728-0.861) 0.853 (0.792-0.914)
TABLE 2 Model performance of the six classifiers in validation set 2: A random forest wrapper (Boruta), LASSO_l-min, LASSO_l-1se, logistic
regression, regression partition trees (Rpart) and extreme gradient boosting (XGBoost).

Random forest LASSO_min LASSO_1se Logistic Rpart XGBoost

Regulators selected by model,
n

14 11 4 13 1 5

Best threshold 0.693 (0.273,0.778) -2.229 (0.273,0.944) -1.588 (0.273,0.944) -7331.730
(0.091,0.472)

NA 0.007 (0.273,0.556)

Sensitivity 0.7273 0.7273 0.7273 0.9091 1 0.7273

Specificity 0.7778 0.9444 0.9444 0.4722 0 0.5556

Positive predictive value 0.5 0.8 0.8 0.3448 0.234 0.3333

Negative predictive value 0.9032 0.9189 0.9189 0.9444 NA 0.8696

Acuracy (95%) 0.766 (0.6197,
0.877)

0.8936
(0.769,0.9645)

0.8936
(0.769,0.9645)

0.5745 (0.4218-
0.7174)

0.234 (0.123-
0.3803)

0.5957 (0.4427-
0.7363)

AUC (95%) 0.782 (0.641-0.923) 0.884 (0.780-0.988) 0.881 (0.778-0.984) 0.707 (0.525-0.889) 0.5 0.667 (0.518-0.816)
NA, Not Applicable.
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so on (Figure 3G). Interestingly, BP functional enrichment analysis

carried out by ClueGO showed that the predicted gene targets

participated mainly in processes related to the mitotic cell cycle,

translation, cytoplasmic translation and regulation of DNA

metabolic processes, which play key roles in the occurrence and

development of RA (Figure 3H). To better demonstrate the

relationship between IGF2BP3 and YTHDC2, their predicted

gene targets and the related pathways, Cytoscape (version 3.9.0)

was used to construct a network, which indicated that IGF2BP3 and

YTHDC2 can regu l a t e the G2M_CHECKPOINT,

MYC_TARGETS_V1 and E2F_TARGETS pathways by acting on

CDK1, CDK2, MYC and other targets (Figure 4A).
The importance of IGF2BP3 in the
viability and cell cycle of RA-FLSs

Based on the pathway enrichment analysis results, IGF2BP3

and YTHDC2 are closely related to the cell cycle. But, when the

Boruta (Figure 3D), Rpart (Figure 3E) and XGBoost (Figure 3F)

algorithms were used to calculate the importance of the 19 m6A

methylation regulators, IGF2BP3 ranked first, while YTHDC2

ranked lower. In addition, compared with YTHDC2, IGF2BP3

performed better in the diagnosis of RA (Figure 3C). Therefore, we

further explored the regulatory effects of IGF2BP3 on the viability

and cell cycle of RA-FLSs through molecular biology experiments.

To explore the effects of IGF2BP3 on RA-FLSs, siRNAs were

transfected into RA-FLSs. The transfection results were confirmed

by RT−qPCR and Western blotting and indicated that the siRNA
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had a good knockdown efficiency (Figures 4B-D). Then, we studied

the effect of IGF2BP3 on RA-FLS viability in vitro. The CCK-8

cytotoxicity assay revealed that downregulation of IGF2BP3 in RA-

FLSs significantly reduced cell viability compared to that of the

control cells (P < 0.05, Figure 4E). The cell proliferation assay also

revealed that downregulation of IGF2BP3 in RA-FLSs significantly

inhibited cell proliferation compared to that of the control cells (P <

0.05, Figure 4F). In addition, the flow cytometry results showed that

low expression of IGF2BP3 had an obvious effect on the G2/M

transition. Compared with that in the control group, the proportion

of G2/M-phase cells in the siIGF2BP3 group was significantly

increased (P < 0.05, Figures 4G, H). We also measured the

expression of cell cycle-related proteins, showing that siIGF2BP3

reduced CCNB1 and C-MYC expression (Figures 4C, D). In

addition, the expression of IGF2BP3 in synovial tissues of

patients with OA and RA was detected. We found that IGF2BP3

expression was significantly higher in synovial tissues of RA

patients, further affirming the importance of IGF2BP3 in the

progression of RA (Figure 4I).
Correlation between IGF2BP3 expression
and inflammatory activity

Increasing evidence suggests that m6A modification is an

important regulator of immune response regulatory mechanisms

and inflammatory regulatory networks (21). To identify the

IGF2BP3-associated immune signature in RA, we determined

the immune scores and the proportions of immune cells with
B C D
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FIGURE 2

ROC curves for validation set 1 and validation set 2, with the model trained on a separate set. The red lines indicate the models trained using a
LOO cross-validation approach across the training set. We used five methods to develop models based on the training set: (A) a random forest
wrapper (Boruta), (B) LASSO_l-min, (C) LASSO_l-1se, (D) logistic regression, (E) regression partition trees (Rpart) and (F) extreme gradient
boosting (XGBoost). (G) ROC curve of the LASSO_l-1se model in whole blood samples.
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xCell (22). First, we found significant differences in the immune

score between the two groups, with higher immune scores in the

RA patient group than in the NC patient group (P < 0.001;

Figure 5A). Then, the proportions of immune cells were

compared between the two groups. There were significant

differences in the proportions of many immune cells, including

interdigitating cells (IDCs), natural killer T (NKT) cells, classical

dendritic cells (cDCs), macrophages, mast cells, M2 macrophages,

Th2 cells, M1 macrophages, andmyocytes (Figures 5B, C). Among

these cell types, we focused on M1 macrophages because of the

closely relationship between M1 macrophages and RA (23). The

proportion of M1 macrophages in RA patients was significantly

higher than that in control patients. In addition, we investigated

the relationship between the proportion of M1 macrophages and

the expression level of IGF2BP3 in RA patients and found that they

were strongly correlated (Figure 5D). IGF2BP3 expression was also

significantly correlated with the expression of M1 macrophage

markers, including IL1A, CD86 and TLR2 (Figures 5E-G).

Therefore, we thought that IGF2BP3 can participate in the

regulation of M1 macrophage polarization.

To further explore the effect of IGF2BP3 on M1 macrophage

polarization, we transfected RAW264.7 cells with Igf2bp3-siRNA
Frontiers in Immunology 08
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or NC-siRNA (negative control). RT−qPCR and Western blot

analysis were performed to confirm the efficiency of gene silencing

and indicated that the siRNA had a good knockdown efficiency

(Figures 5H, I). Forty-eight hours after transfection, RAW264.7

cells were treated with 100 ng/ml LPS for 24 h. Then, by

measuring the expression of the surface marker (CD86) of M1

macrophages by flow cytometry, we found that the expression

level of CD86 in siIgf2bp3 cells was significantly lower than that in

siNC cells (Figure 5J). In addition, we further detected the content

of TNF-a in the cell supernatant, which indicated that the content

of TNF-a in siIgf2bp3 cells was lower than that in siNC cells

(Figure 5K). These results further validated the involvement of

IGF2BP3 in the regulation of M1 macrophage polarization.
scRNA-seq revealed the relationship
between IGF2BP3 expression and M1
macrophage polarization

To further characterize the relationship between IGF2BP3

expression and M1 macrophage polarization, we conducted

scRNA-seq in the GSE159117 dataset. Fourteen cell clusters were
B

C D E F

G H

A

FIGURE 3

The more important m6A methylation regulators in RA classification. (A) Venn diagram of the m6A methylation regulators selected by the
different machine learning methods; (B) the expression levels of 19 m6A methylation regulators in the training dataset; (C) the ROC curves for
IGF2BP3 and YTHDC2 in the training set; the importance of the 19 m6a methylation regulators calculated by the Boruta (D), Rpart (E) and
XGBoost (F) algorithms; KEGG pathway (G) and BP (H) enrichment analyses of the gene targets of IGF2BP3 and YTHDC2 *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, ns (p > 0.05).
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obtained by a combined uniform manifold approximation and

projection (UMAP) analysis (Figure 6A). SingleR (version 1.8.1)

was used to identify 7 cell types: B cells, CD4+ T cells, CD8+ T cells,

dendritic cells, monocytes, NK cells and T cells (Figure 6B).

IGF2BP3 was found to be expressed mainly on monocytes and B

cells among the seven cell types (Figure 6C; clusters 4 and 8).

Macrophages are the main type of cell derived from monocytes.

Therefore, the relationship between CD86 and IGF2BP3 expression

was explored in monocytes, and CD86 and IGF2BP3 were found to

have a coexpression trend (Figure 6D). Then, we preliminarily

investigated the expression of several macrophage markers in

monocytes. M1 macrophage markers (including CD86, IL1B,

TLR2 and TLR4) were significantly upregulated but M2

macrophage markers (including MSR1, IL10, MMP14 and

VEGFA) were downregulated in monocytes (Figure 6E).
Discussion

RA is a systemic autoimmune disorder affecting the

synovium of peripheral joints. The average life expectancy of

patients with RA is shorter than that of the overall population,
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and patients with active disease are also prone to develop various

diseases, such as cardiovascular disease, pulmonary interstitial

disease, and osteoporosis (24, 25). m6A methylation has been

shown to be associated with tumours, neurological disorders,

metabolic diseases, ADs, viral infections and so on (26).

Mutations in the genes encoding m6A methylation regulators

are closely associated with inflammation-related diseases, and

changes in their expression levels have been observed in RA (21,

27). Therefore, exploring the diagnostic value and mechanism of

m6A methylation regulators in RA is highly important for the

effective treatment of RA and the improvement of its prognosis.

In this study, based on m6A methylation regulator expression

profiles and consensus machine learning approaches, we

constructed binary predictive classification models and assessed

their accuracy. Among the models, the LASSO_l-1se model not

only performed better in the validation sets but also exhibited

more stringent performance. In addition, the LASSO_l-1se model

exhibited better performance in whole blood samples, further

suggesting that the LASSO_l-1se model has application prospects

in blood-based diagnosis of RA. Our primary aim in this study

was to investigate the relationships between m6A methylation

regulators and clinical classification rather than to develop a
B C
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FIGURE 4

The importance of IGF2BP3 in the Viability and Cell Cycle of RA-FLSs. (A) The network connecting IGF2BP3 and YTHDC2 pathways and other
targets; (B) RT−qPCR results showing the efficient depletion of IGF2BP3 expression in RA-FLSs compared with siNC-transfected RA-FLSs;
(C, D) Expression of IGF2BP3, c-MYC and CCNB1 in RA-FLSs after transfection; (E) The proliferative ability of RA-FLSs after transfection was
evaluated by a CCK-8 assay; (F) Representative images (left) and histograms (right) showing the effect of siFN1 on the cell proliferation of
RA-FLSs; (G, H) Flow cytometric analysis was used to evaluate the cell cycle distribution of RA-FLSs after transfection; (I) Representative IHC
staining and IHC staining score of Synovial tissues. *p < 0.05, **p < 0.01, ***p < 0.001.
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diagnostic tool. Combined with the comprehensive imaging,

haematological and gene expression analyses, a diagnostic

model of RA has more clinical diagnostic significance and

higher accuracy. This study lays the foundation for the

establishment of diagnostic tools by evaluating the accuracy of

m6A methylation regulators for clinical classification and affirms

the potential diagnostic value of m6A methylation regulators. A

limitation of this study is the relatively small sample size used to

generate and validate the m6A methylation regulators as

classifiers. This may have led to overfitting of some models and

thus to overestimation of effect sizes. To alleviate this issue, we

validated each model’s diagnostic value in different published

datasets and validated potentially interesting genes using

molecular biology experiments. To develop accurate diagnostic

tools, further studies based on larger retrospective and prospective

clinical cohorts are warranted.

Machine learning provides an unbiased approach to predict

patient status while also offering the potential to identify

previously unknown interactions and identify novel biological

signatures (17, 28). Our approach of investigating the

biomarkers identified through multiple feature selection

techniques increases confidence in the generation of

reproducible biomarker panels and reduces the number of
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m6A methylation regulators for potential clinical investigation.

The selected m6A methylation regulators (IGF2BP3 and

YTHDC2) ranked highly in variable importance. Previous

studies have shown that IGF2BP3 and YTHDC2 are closely

related to cell proliferation and migration, cell cycle regulation,

and immune and inflammatory regulation (29–31). In addition,

the study by Fan et al. confirmed that IGF2BP3 not only was

significantly overexpressed in RA synovial tissue but also

might be a therapeutic target of thymopentin (TP) during

RA treatment (32). The above literature reports provide

supporting evidence that IGF2BP3 and YTHDC2, identified

here as candidate biomarkers, may be associated with

disease progression in RA, validating our machine learning

approach to identify relevant m6A methylation regulator

biomarkers. Pathway enrichment analysis showed that

IGF2BP3 and YTHDC2 were involved in the regulation of

MYC_TARGETS_V1, E2F_TARGETS, G2M_CHECKPOINT

and other pathways, which are closely related to the cell cycle.

In particular, IGF2BP3 not only was ranked highest by the

Boruta, Rpart and XGBoost methods but also showed better

diagnostic value in the training set. We focused on verifying the

relationship between IGF2BP3 expression and the cell cycle and

further confirmed that IGF2BP3 may affect the proliferation of
B C
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A

FIGURE 5

Correlation between IGF2BP3 expression and inflammatory activity. Immune scores (A) and proportions of immune cells (B, C) in the RA and NC
groups; (D) correlation between the proportion of M1 macrophages and the expression level of IGF2BP3 in RA patients; (E–G) correlations
between the expression levels of M1 macrophage markers (IL1A, CD86 and TLR2) and IGF2BP3; (H, I) RT−qPCR and Western blot analysis
confirmed the efficiency of gene silencing; (J) expression level of CD86 in RAW264.7 cells after transfection; (K) the content of TNF-a in
RAW264.7 cells after transfection. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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RA-FLSs by regulating the G2/M transition. Inflammatory cells

can secrete a large amount and variety of inflammatory factors

and chemokines, leading to the activation of more FLSs and

promoting their proliferation and migration, thereby further

aggravating the inflammatory response in the disease (33).

Among these immune cell types, M1 macrophages attracted

our attention for the following three reasons: 1. M1

macrophages, also called classical macrophages, can produce

proinflammatory cytokines and thus have potent microbicidal

ability but are also prone to cause tissue destruction and

exacerbate inflammatory processes that are detrimental to

health (34); 2. The synovial lining of RA patients exhibits cell

proliferation and a large amount of inflammatory cell infiltration

in the interstitium. The degree of inflammatory infiltration

determines the severity of the disease (35). 3. Among the

inflammatory cells involved in RA, macrophages play a key

role. These cells can polarize into different phenotypes and

mediate the immune/inflammatory response as well as the
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repair phase when possible (23). By analysing the relationship

between IGF2BP3 expression and M1 macrophage polarization

in RA RNA-seq datasets and scRNA-seq datasets, we found that

IGF2BP3 plays a crucial role in M1 macrophage polarization.

CD86, also known as B7.2, is a T lymphocyte activation antigen

with a molecular weight of 80 kD and can be expressed in

dendritic cells, monocytes, T lymphocytes and B lymphocytes.

Previous studies have shown that CD86 can serve as a marker to

elevate the proportion of M1 macrophages (36, 37). By

measuring the expression of CD86 by flow cytometry, we

found that the expression level of CD86 in siIgf2bp3

RAW264.7 cells was significantly lower than that in siNC

RAW264.7 cells. Yang et al. also showed that siIGF2BP3 can

reduce MALAT1 expression, thereby impeding p38/mitogen-

activated protein kinase phosphorylation and macrophage-

mediated inflammation (38). These studies all further verified

that IGF2BP3 can regulate macrophage polarization and

inflammatory exacerbation during RA progression.
B C
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A

FIGURE 6

Characterization of macrophages by scRNA-seq in PBMCs. (A) UMAP plot showing the sources of the collected scRNA-seq cell samples;
(B) UMAP plot showing 14 cell clusters of 7 cell types in the collected samples; (C) UMAP plot showing the IGF2BP3 expression level in the 14
cell clusters; (D) scRNA-seq analysis revealed the correlation between IGF2BP3 and CD86 expression; (E) UMAP plot showing the expression
levels of M1 and M2 macrophage markers.
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The RA diagnostic model established based on public

databases had good performance in multiple validation sets.

However, further validation of the diagnostic value of

established models in larger independent cohorts is warranted

before considering their clinical application. Furthermore, we used

five machine learning feature selection algorithms on data from

patient synovial tissue to identify two signature m6A methylation

regulators in RA, and our findings may provide a new RAmarker

and reveal novel disease mechanisms. Moreover, this study is the

first to confirm the effect of the m6A reader protein IGF2BP3 on

the progression of RA and verify its biological function through

bioinformatics analysis and molecular biology experiments. This

study provides new ideas and strategies for the early diagnosis and

targeted therapy of RA and has theoretical innovation prospects.

Moreover, it provides theoretical support for the discovery of new

markers and drug targets for RA.
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Recent advances in single-cell sequencing technologies call for greater

computational scalability and sensitivity to analytically decompose diseased

tissues and expose meaningful biological relevance in individual cells with high

resolution. And while fibroblasts, one of the most abundant cell types in tissues,

were long thought to display relative homogeneity, recent analytical and

technical advances in single-cell sequencing have exposed wide variation

and sub-phenotypes of fibroblasts of potential and apparent clinical

significance to inflammatory diseases. Alongside anticipated improvements in

single cell spatial sequencing resolution, new computational biology

techniques have formed the technical backbone when exploring fibroblast

heterogeneity. More robust models are required, however. This review will

summarize the key advancements in computational techniques that are being

deployed to categorize fibroblast heterogeneity and their interaction with the

myeloid compartments in specific biological and clinical contexts. First, typical

machine-learning-aided methods such as dimensionality reduction, clustering,

and trajectory inference, have exposed the role of fibroblast subpopulations in

inflammatory disease pathologies. Second, these techniques, coupled with

single-cell predicted computational methods have raised novel interactomes

between fibroblasts and macrophages of potential clinical significance to many

immune-mediated inflammatory diseases such as rheumatoid arthritis,

ulcerative colitis, lupus, systemic sclerosis, and others. Third, recently

developed scalable integrative methods have the potential to map cross-

cell-type spatial interactions at the single-cell level while cross-tissue
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analysis with these models reveals shared biological mechanisms between

disease contexts. Finally, these advanced computational omics approaches

have the potential to be leveraged toward therapeutic strategies that target

fibroblast-macrophage interactions in a wide variety of inflammatory diseases.
KEYWORDS

computational biology, machine learning, single-cell omics, spatial transcriptomics,
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Introduction

Immune-mediated inflammatory diseases (IMIDs) are roughly

categorized by abnormal or maladaptive inflammation of specific

tissues within the human body and are thought to affect nearly 3%

of the population (1). The increasing prevalence of IMID diseases

such as inflammatory joint disease and inflammatory bowel disease

and their respective subphenotypes has driven additional research

into the genetic and immunogenomic mechanisms involved in their

development, progression, and treatment (2, 3). Because of

fibroblasts’ ubiquity in the lining of interior surfaces of the

human body and their role in mediating the extracellular matrix,

fibroblasts have recently become an area of intense research and a

key component of the study of IMIDs (4, 5).

Fibroblasts play a critical role in inflammatory disease by

directing or suppressing the inflammatory cascade and repair at

sites of injury or invasion through the release of cytokines and other

effector molecules (6). In addition, bone and extracellular metabolic

pathways are also involved in pathogenesis: activated fibroblasts

produce receptor activator of NF-kB ligand (RANKL), which

promotes differentiation of osteoclast precursors into bone-

resorbing osteoclasts, leading to bone erosion in Rheumatoid

Arthritis (RA) (7). They also produce metalloproteinases such as

MMP-1 andMMP-3, which cause cartilage degradation. As a result,

understanding these and other intercellular communications

between fibroblasts and surrounding cell types is an area of rapid

research and critical to understanding the microbiological contexts

of IMID toward developing new drug targets (4, 8, 9). While the

communications between fibroblasts and immune cells such as

macrophages is a common focus of cancer research (10), applying

this framework to the study of IMIDs has also proved consequential

in determining an approach to treatment (11). However, these

interactions are often highly tissue-specific and microenvironment-

specific and require precise study using high-resolution single-cell

multiomic technologies.

The challenge of mapping these cellular interactions in

inflammatory microenvironments, then, becomes one that is

highly dependent on advances in single-cell transcriptomics,
02
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single-cell multimodal techniques, and recent single-cell spatial

transcriptomics (12, 13). While collecting omics data at the

single-cell level has been commonly applied to discrete cellular

suspensions via microfluidics (12, 14–17), collecting single-cell

spatiotemporal data and prevailing tissue microenvironment

intact has proved elusive and high-throughput techniques with

these capabilities are hotly anticipated by the field (18). At

present, technical resolution remains a challenge to mapping

the complex tissue intercellular interactions thought to be

pivotal toward IMID treatments, but this challenge is

exacerbated by the enormous volumes of data that near-single

cell omics technologies create. This review outlines how

computational methods including machine learning and deep

learning approaches are used to analyze high-dimensional data

from existing single-cell technologies, which expand the

capabilities and resolution of these experimental approaches to

uncover novel pathways in fibroblasts. Then, this paper

summarizes the computational approaches to cell-cell

interactions that can be used to uncover these interactomes

underlying IMIDs using single-cell transcriptomics and spatial

transcriptomics, respectively. Further, opportunities and

challenges of integrating single-cell profiles from multiple

tissue sources to reveal shared and unique pathogenic

pathways are described. Lastly, we explore the potential for

developing therapeutic approaches that target pathogenic

fibroblast and macrophage interactions.
Fibroblasts play important roles in
different inflammatory disease
tissue pathology

Long thought to be relatively homogeneous in nature, recent

discoveries (18–22) have uncovered a likely vast number of

fibroblast subpopulations with discrete markers that have been

implicated in mediating inflammation and damage in different

IMIDs (23–25). In RA synovial tissue, Zhang et al. analyzed the

synovial tissues from patients with RA and osteoarthritis (OA)
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using a multi-technology-approach by integrating single-cell

RNA-seq (scRNA-seq), mass cytometry, and bulk RNA-seq

data to identify robust and biologically meaningful cell-state

clusters (26). An integrative computational strategy was

developed based on canonical correlation analysis (CCA) to

align datasets from different technologies into a joint low-

dimensional space by maximizing the correlation between

them, which elucidated significant sublining fibroblast

phenotypes, CD34+ (SC-F1), HLA-DRhi (SC-F2), and DKK3+

(SC-F3), and a type of CD55+ lining fibroblasts (SC-F4). In

parallel, Croft et al. used single-cell transcriptomic analysis in a

mouse model to untangle two pathologically distinct RA

fibroblast subsets FAPa+THY1+ and FAPa+THY1-. Deletion

of fibroblast-activation-protein-alpha-positive (FAPa+)

fibroblasts suppressed both inflammation and bone erosions in

mouse models (27). Separate studies have revealed pathological

functions of stromal cells in other IMID tissues, including the

gut of Ulcerative Colitis (UC) (8), the ileum of Crohn’s Disease

(CD) (28), and the lungs of systemic sclerosis (29) patients,

respectively. Interestingly, similar THY1+ fibroblasts are

revealed in inflamed CD ileum, and an activated fibroblast

phenotype with a strong cytokine-chemokine expression

profile in this tissue may contribute to the resistance to anti-

TNF therapy. In parallel, inflammatory fibroblasts that highly

expressed IL11 and IL24, were identified at 189-fold levels in

inflamed gut compared to non-inflamed/healthy gut; this

phenotype also expressed cancer-associated fibroblast markers,

including FAP and WNT2, indicating the important pathology

underlying multiple disease contexts (8).
Frontiers in Immunology 03
38
In these studies, several computational methods are used to

facilitate the single-cell transcriptomic analysis to reveal fibroblast

heterogeneity (Figure 1). In particular, dimensionality reduction

techniques including principal component analysis (PCA) and

non-linear tSNE are standard approaches to identify meaningful

biological variation. Additionally, graph-based clustering

techniques group fibroblasts with similar transcriptomic profiles

together. To better account for non-linear geometry and time

components in the single-cell data, trajectory inferences have been

widely used to allocate and order cells into lineages as pseudotime

gradients. Pseudotime reflects continuous changes in expression

to quantitatively capture a biological progression, such as cell

differentiation. Based on global topology theory, several

computational methods have been developed, including

Monocle, which is built based on DDRTree (Discriminative

dimensionality reduction via learning a tree) (30, 31). To

predict the future state of individual cells, RNA velocity

algorithms (32) estimate the time derivative of the gene

expression state by distinguishing unspliced and spliced mRNAs

from single-cell transcriptomic data. These trajectory analyses

have been deployed to analyze fibroblast lineages to reveal a

NOTCH3 signaling gradient in RA synovial fibroblasts (33).

As the recent development of single-cell multimodal

technologies, single-cell joint modelings are used to provide

further insights into mesenchymal cell heterogeneity using

single-cell multimodal data, including CITE-seq that quantifies

gene and protein surface expressions simultaneously (34),

single-cell multiome that profiles gene expression and open

chromatin from the same cells, and spatial transcriptomics
FIGURE 1

Computational machine learning algorithms that drive single-cell transcriptomics and other multimodal data analysis to study fibroblast
heterogeneity. Disaggregated cells are sequenced by either multimodal technologies or scRNA-seq technologies to generate a large dataset of
thousands of variables that can be modeled and analyzed via machine learning approaches. Graphical exploration of gene expression variation
across cells can be done through clustering for dimensionality reduction. Continuous gene expression changes for specific cell differentiation
processes can be modeled with trajectory inference.
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(ST) that provides spatial information to the gene expression.

Multimodal data integrations provide additional biological

perspectives, through the combination of proteomics (CITE-

seq), epigenetics (multiome), or spatial locations (ST), in

addition to transcriptomics, which can reveal novel

immunological or disease-driven insights. A very recent study

with a collaborative effort from AMP (Accelerating Medicines

Partnership) RA/SLE network used CITE-seq to reveal 10

distinct stromal populations and emphasized which of these

populations are expanded in a particular patient group (35).

Using three-dimensional spatial transcriptomics, Vickovic et al.

uncovers colocalization of THY1+ fibroblast and synovial

macrophages in seropositive RA synovium samples (36).
Single-cell transcriptomics-driven
computational methods reveal
predicted interactomes between
fibroblasts and myeloid cells

Deciphering cell–cell communications from gene expression is

an area of intensive research (37). Many computational methods

have been developed based on ligand-receptor expression patterns

between cell types, such as fibroblasts and myeloid cells

(macrophages, monocytes, neutrophils, and dendritic cells).

Examples of these techniques are: CellphoneDB (38), NicheNet

(39), CellChat (40), and ICELLNET (41), each of which took a
Frontiers in Immunology 04
39
slightly different methodology to predict potential cell-cell

interactions in scRNA-seq data (Figure 2A). CellphoneDB was

first demonstrated (38), and has since been updated through

multiple iterations of a ligand-receptor mapping tool (42).

NicheNet incorporates prior knowledge on gene regulatory

pathways to generate a biologically meaningful pathway that

propagates the signal from a ligand, through receptors, signaling

proteins, and transcriptional regulators to the targeted genes from

cell types of interest. CellChat, on the other hand, uses network

analysis, and identifies complex patterns in the data from skin or

other tissues; while ICELLNET calculates a communication score to

predict interactions and reveals hypothesized interactions that can

be verified experimentally. In short, these cell-cell interaction

prediction methods are widely used to prioritize putative

interactions between fibroblasts and other immune cells, such as

macrophages, from different disease contexts, including tumor (10),

fibrosis (43), and cardiovascular disease (44). As fibroblasts and

macrophages play indispensable roles in the tissue destruction of

IMIDs, disentangling the fibroblast-myeloid interactions in each

IMID disease context is still forthcoming (45). A recent single-cell

driven research approach identified a MerTK+ macrophage

phenotype in synovial tissues and revealed that a low frequency

of this phenotype in RA remission was associated with increased

risk of disease flare (46). Further examination of which pathogenic

fibroblast phenotypes could interact with the MerTK+ or other

inflammatory and anti-inflammatory macrophage phenotypes is

needed. In another IMID, a single-cell transcriptomics and

histopathology approach to inflammatory bowel disease (IBD)
A B

FIGURE 2

Validated computational packages to predict cell-cell interactions using (A) single-cell transcriptomics and (B) spatial transcriptomics, respectively
Cell-cell interaction prediction algorithms (A) are quite adept at mapping interactions from single-cell transcriptomics where tissue architecture
information was lost in sample preparation. As a result, interactions revealed in analysis are theoretical and merely suggest that cells co-located in
the sample tissue. However, combining these interaction-prediction-algorithms with spatial cell-type deconvolution modeling (B). The sample
tissue’s spatial architecture is conserved by modeling cells that are both co-locating in the tissue and interacting.
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revealed an IL-1+ driven fibroblast-neutrophil interaction in a

subset of patients with IBD that did not respond to therapies

(47), which highlights another fibroblast-neutrophil IL-1 signaling

pathway for ulcerating disease.
Novel computational approaches to
spatial transcriptomics reveal spatial
interactions across cell types

While CellPhoneDB and similar packages are useful for

revealing interactomes in scRNA-seq data, decomposing the

data spatially within tissues remains a challenge. Spatial

Transcriptomics (ST) technology development and the

improvement of its resolution enabled the identification of

cross-cell type interactions from both gene expression co-

varying patterns and spatial information. The widely used

commercialized ST technologies include 10X Visium,

Nanostring GeoMX, and single-molecule fluorescent in situ

hybridization (smFISH)-based technology such as MERFISH

commercialized by Vizgen (48, 49). These ST datasources

require new computational algorithms to infer biologically

meaningful findings and to spur further widespread adoption

of these techniques across IMIDs.

Given the constraint of greater-than-single-cell resolution of

many commercialized ST technologies, more than 16

computational methods have been developed to perform cell-

type deconvolution for ST data to infer single-cell interactions

(50). As a result (Figure 2B), Cell2location (51), SpatialDWLS

(52), and RCTD (53) are particularly powerful approaches that

perform cell-type deconvolution. Cell2location is developed to

integrate scRNA-seq data from an adjacent tissue slice with the

spatial information from the microarray, which can effectively

identify the spatial co-occurrence of diverse cell types in complex

tissues such as lymph nodes (51). SpatialDWLS adapts the idea

of dampened weighted least squared to infer cell-type

composition while minimizing the overall relative error rate.

RCTD fits the raw counts using Poisson-based statistical model

to leverage cell-type mixtures while accounting for artifact from

sequencing platforms. Many groups have demonstrated that

these techniques work well in tumors from the well-

characterized organs such as brain (54, 55), but in some

heterogeneous or not well-characterized tissue structures such

as synovium and kidney tissues it remains to be evaluated

whether these techniques can be deployed. Ongoing efforts

from the AMP-AIM (Accelerating Medicines Partnership-

Autoimmune and Immune-Mediated Diseases) network are

actively testing multiple ST technologies on IMIDs disease

tissues. We look forward to both the deployment of newer and

higher-resolution techniques that might be better suited to these

IMID tissue-structures and to further benchmarking of existing

and forthcoming computational models. With these efforts,
Frontiers in Immunology 05
40
more in-depth spatial-aware interactions between fibroblasts

and myeloid cells will be revealed using ST data with the

assistance of more robust computational methods.
Cross-tissue single-cell integrative
analysis reveals shared mechanisms

Recent developments of computational integration algorithms

enable the cross-tissue, cross-disease comparisons for IMIDs to

reveal shared mechanisms and pathways using single-cell datasets

(Figure 3A). To facilitate unbiased integrative analysis, two major

types of methods have been developed including joint clustering

and reference mapping (Figures 3B, C). In joint clustering, batch

correction methods, such as soft clustering-based mixed effect

models (56), canonical correlation analysis (57), mutual nearest-

neighbors and manifold learning (58), have been developed to

enforce projecting the cells from different tissues, donors, and

clinical cohorts into a joint low-dimensional embeddings (i.e.

multiple variables captured on a 2D graph) (Figure 3B).

Additionally, recent single-cell reference mapping methods,

including PCA-based approaches, transfer learning, and

autoencoder, enable an automatic way to map query cells to an

existing reference with cell-type annotations (59–62) (Figure 3C).

These offer a more efficient framework to compare query cell

phenotypes with an existing cell reference. A recent study

performed joint clustering analysis to reveal two shared

pathogenic phenotypes of fibroblasts, a CXCL10+ CCL19+

inflammatory fibroblast phenotype localizing to a T cell enriched

niche and a SPARC+ COL3A1+ fibroblast phenotype localizing to a

perivascular niche, from four chronic inflammatory diseased tissues

including lung, intestine, salivary gland, and synovium (63).

Another study built fibroblast atlases using around 230,000

fibroblasts across 17 mouse tissues and revealed that many

fibroblast transcriptional states were conserved between humans

and mice (64). In parallel, we identified shared inflammatory

macrophage phenotypes from five inflamed tissues, including

synovium, ileum, colon, lung, and kidney (65). These recent

cross-tissue single-cell computation-driven transformative

research open new possibilities beyond well-known cell types

and pathways.

However, key aspects of these techniques need to be validated to

interpret single-cell integrative results more precisely regarding

disease-specific implications. First, sufficient power is required to

reveal statistical significance of associating single-cell results

with clinical metrics and demographic features. A large-scale

cohort with balanced disease and healthy controls and well

characterized medications is ideal. Second, reproducible analysis

of computational pipelines is sometimes neglected. For example, it

remains largely under-explored whether the same common

fibroblast phenotypes can be recapitulated in another clinical

cohort. It is possible that the tissue-specific fibroblast phenotypes
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1076700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fritz et al. 10.3389/fimmu.2022.1076700
found in a certain diseased context are actually due to unbalanced

cell numbers in the cross-sample analysis. Yet, as an active

computational and systems immunology area, we expect these

computational machine learning algorithms and future

developments will boost the transformative research to elucidate

shared pathogenic pathways and treatment areas.
Opportunities for developing
therapeutical strategies targeting
fibroblast and macrophage
interactions for
inflammatory diseases

Remarkable recent advances in understanding the molecular

pathogenesis of IMIDs have elucidated relevant pathophysiological

pathways and therapeutic targets. Inhibition of TNF and IL6

signaling, for example, has shown some efficacy in treating

various IMID contexts, including RA and ulcerative colitis (66–

68). Similarly, in systemic sclerosis, in which fibroblasts and

macrophages are deeply involved in the pathogenesis of lung

damage, IL6 blockade delayed decline in key lung function

measures compared with the placebo groups in a double-blind

phase II randomized clinical trial (69, 70). Additionally, although

strong evidence from experimental models and human data in vivo

and in situ suggested potential of anti-IL17 blockade as a

therapeutic target in RA (71, 72), psoriasis (73), and

spondyloarthritis (74), strong efficacy for RA and other similar

diseases has not shown in comparison to placebo (75). Thus,

ineligible patients with IMIDs still suffer from progressive
Frontiers in Immunology 06
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functional disability from a substantial burden of lifelong

treatment—highlighting the existence of the remaining

pathological molecular signatures and the urgent need to link

them to targeted core-pathogenic phenotypes, such as

mesenchymal and immune cell interactions at the site

of inflammation.

A precise understanding offibroblasts and macrophages, major

tissue components in IMIDs, may promote the development of

novel therapeutic targets. Key interactions based on the well-known

pathways and new mechanisms revealed by single-cell

computational omics are summarized in Figure 4. Fibroblasts and

macrophages produce CSF1 (Colony Stimulating Factor 1) and

PDGFs (platelet-derived growth factors), respectively, and bind to

each other’s receptors to promote survival, maintenance, and

proliferation, forming a synergistic loop in a steady-state (76, 77)

and upon activation (78, 79). In a radiation-induced pulmonary

fibrosis model, depletion of tissue-infiltrating macrophages, but not

alveolar macrophages, using a clinically available CSF1R

neutralizing antibody ameliorated fibrosis (79). Similarly, Aran

et al. demonstrated that inhibition of Pdgf-aa produced by the

inflammatory macrophage identified by single-cell sequence

suppressed fibroblast growth in bleomycin-induced lung fibrosis

in mice (78). Accumulating evidence of clinical efficacy of inhibition

of tyrosine-kinase, which is a downstream molecule of CSF1R and

PDGFR, for IMIDs suggests that targeting the interactions between

fibroblasts and macrophages are highly promising strategies

towards individualized and targeted treatments of IMIDs (80–82).

Using single-cell transcriptomics, Kuo et al. reported that a

particular HBEGF (Heparin Binding EGF Like Growth Factor)+

inflammatory macrophage phenotype was induced by fibroblasts

and TNF in RA synovium, subsequently promoted fibroblast
A B

C

FIGURE 3

Across IMID single-cell integrative analysis. (A) Multiple IMIDs (organ systems) where inflammatory and pathogenic cells display both heterogeneity
and similarity between tissue types and within disease contexts. Computational approaches can be deployed to disentangle the shared and specific
pathways between IMIDs while also controlling for tissue heterogeneity. Two main computational frameworks include (B) integrative and joint
clustering analysis and (C) reference mapping approach. (B, C) indicate the low-dimensional projections of cells across IMIDs.
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invasiveness (83). They also found that this interaction was

inhibited by anti-EGFR (Epidermal Growth Factor Receptor)

antibody, which decreased pathogenic fibroblast invasiveness in

the destruction of cartilage and bone. Further experimental

evidence and case reports support the potential of EGFR as a

promising therapeutic target for RA (84–86).

In IBD, anti-TNF agents bring about clinical response in about

two-thirds of patients, but around 30% of patients are resistant to

treatment (87, 88). Using single-cell omics, inflammatory fibroblasts

and inflammatory monocytes were identified to be expanded in

inflamed colon lesion and expressed Oncostatin M (OSM) and

OSM receptor (8), respectively, which is associated with anti-TNF

response, suggesting that the inflammatory fibroblasts and

monocytes might be implicated in OSM-mediated anti-TNF

resistance (89). Methods that not only inhibit interactions but

also exploit interactions with anti-inflammatory effects may

be promising therapeutic targets. The addition of GAS6 from

THY1+CXCL14+ sublining synovial fibroblasts, reduced

proinflammatory cytokines produced by MerTK+ macrophages

in synovial tissues of RA (46). On the flip side, GAS6 and MerTK

are reported to be overexpressed in tumor which could promote

tumorigenesis (90–92). It is necessary to clarify the difference

between malignancy and inflammation in this pathway and to

examine what route of administration, such as intra-articular

injection, is appropriate for therapeutic targeting.
Frontiers in Immunology 07
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So far, no drugs targeting specifically fibroblasts have been

approved by the U.S. Food and Drug Administration (FDA). Thus,

identification of promising across cell-type interactome targets, such

as fibroblasts and macrophages in inflammatory lesions, using

single-cell technologies combined with powerful computational

tools could lead to the development of effective therapeutics for

IMIDs, as in the area of oncology (43). If markers characteristic of

disease-specific cell types that play a central role in the pathogenesis

utilizing single-cell high granular results can be identified, more

accurate therapeutic agents can be developed to minimize the

adverse event and improve precision medicine.
Future directions

Most of these computational methods described above can be

generalized to many inflammatory disease studies. For example, t-

SNE and UMAP are used widely for dimensionality reduction

analysis for many IMID research projects. Additionally, techniques

like graph-based clustering and trajectory analysis are umbrella

classifications that are highly modified and adapted depending on

data type and context. Yet, each computational method may have

specific limitations derived from disease tissue (e.g., tissue

disaggregation approaches) or technology (e.g., high dropout

rates, non-single-cell resolution in the recent spatial
FIGURE 4

Potential targets of fibroblast-macrophage interacting revealed by single-cell computational methods using existing receptor-ligand pairs in
IMIDs. Targets of novel therapeutics: potential sites of inhibition are indicated by an upside-down T while sites of activation are indicated by a
lightning bolt. Different colors of each fibroblast and macrophage indicate different phenotypes of each cell type. Pill icons indicate potential,
experimental, or existing therapeutics.
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transcriptomics) when applied across multiple IMID contexts. This

review summarizes the most recent computational advancements

and major novel disease-specific findings combined with cutting-

edge single-cell techniques to IMIDs, so we expect more generalized

applications of these interdisciplinary approaches along with

computational machine learning algorithms can be adapted to

more understudied IMIDs. Taking advantage of the power of

these computational algorithms helps generate novel cell

phenotype and highlight theoretical cell-cell interactions in

humans. More in-depth functionally validations (e.g., knockout

specific target, in vivo or in vitro stimulation) are needed, however,

to determine the function mechanisms of these interactions and

disease etiology in human and non-human models.

To develop personalized treatment for IMIDs, it is necessary to

identify the cell-type that forms the core of the pathogenesis in

stratified patient groups. For example, analysis of bulk RNA-seq

from skin lesions from systemic sclerosis patients using cell-type

deconvolution methods demonstrated that certain types of serum

autoantibodies were associated with dysregulated molecular

pathways as well a predictable abundance of fibroblasts and

macrophages at the skin lesion (93). In RA, bulk RNA-seq studies

defined three histological subgroups or “pathotypes”: lympho-

myeloid, diffuse-myeloid, and pauci-immune (94, 95). The

myeloid signature is associated with response to TNF inhibition,

while the pauci-immune group, predominated with fibroblasts, is

associated with refractory to multi-drugs (94). This indicates that

mesenchymal cell compartment is a key population for further

study using higher-resolution technologies, such as single-cell

omics, as it is unclear whether the specific high-granularity

pathogenic subphenotypes underlying these pathotypes are

targetable therapeutically.

More recently, Zhang et al. demonstrated that in-depth

stratification of RA synovial biopsies based on single-cell

multimodal integrative analysis combined with covarying

neighborhood analysis can associate cellular heterogeneity to

stratified RA synovial phenotypes. Specifically, RA synovial

heterogeneity was classified into six distinct subgroups or “cell

type abundance phenotypes” (CTAPs) based on major cell-type

abundance (35): 1) endothelial, fibroblast, and myeloid cells, 2)

fibroblasts, 3) T cells and fibroblasts, 4) T and B cells, 5) T and

myeloid cells, and 6) myeloid cells. Three of the CTAPs have

associations with fibroblast and their immune interaction

abundances suggesting that different patients, even with the same

disease, have different tissue phenotypes at the core of their

pathology, and accordingly, different molecules to be targeted for

therapy. Notably, CTAPs are associated with disease-relevant

cytokines, histology, and serology metrics, which indicates that

the CTAP classification schema could guide appropriate targeted

therapeutic treatment.

Yet, knowledge in this area is limited by the availability of

biopsies from inflamed lesions derived from IMID patients. To

address this, better single-cell power analysis of study design,

demographic information, and technical confounders need to be
Frontiers in Immunology 08
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considered to strengthen biologically relevant findings. Moreover,

identifying the right computational and machine learning

approaches is critical for downstream analysis. For example, more

reproducible single-cell analytical methods with open-source code

and well-benchmarked machine learning methods regarding

stability and accuracy need to be provided and further improved.

Given the complexity of the immunological questions, new

computational and disease-driven tools using AI approaches may

provide further insights into disease etiology. In all, comprehensive

characterization of cellular and molecular heterogeneity in inflamed

lesions using single-cell computational machine learning

approaches will enhance our understanding of disease

heterogeneity, which will provide a promising way to stratify

patient cohorts to optimize personalized therapies for IMIDs.
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Single-cell RNA-seq analysis
identifies distinct myeloid cells
in a case with encephalitis
temporally associated with
COVID-19 vaccination
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Hisatake Matsumoto2,4, Hiroshi Ogura4, Keigo Kihara3,
Hideki Mochizuki3, Tatsusada Okuno3, Shuhei Sakakibara4,
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Recently accumulating evidence has highlighted the rare occurrence of COVID-

19 vaccination-induced inflammation in the central nervous system. However,

the precise information on immune dysregulation related to the COVID-19

vaccination-associated autoimmunity remains elusive. Here we report a case

of encephalitis temporally associated with COVID-19 vaccination, where single-

cell RNA sequencing (scRNA-seq) analysis was applied to elucidate the distinct

immune signature in the peripheral immune system. Peripheral blood

mononuclear cells (PBMCs) were analyzed using scRNA-seq to clarify the

cellular components of the patients in the acute and remission phases of the

disease. The data obtained were compared to those acquired from a healthy

cohort. The scRNA-seq analysis identified a distinct myeloid cell population in

PBMCs during the acute phase of encephalitis. This specific myeloid population

was detected neither in the remission phase of the disease nor in the healthy

cohort. Our findings illustrate induction of a unique myeloid subset in

encephalitis temporally associated with COVID-19 vaccination. Further

research into the dysregulated immune signature of COVID-19 vaccination-

associated autoimmunity including the cerebrospinal fluid (CSF) cells of central

nervous system (CNS) is warranted to clarify the pathogenic role of the myeloid

subset observed in our study.

KEYWORDS

single-cell RNA-seq, myeloid cells, COVID-19, vaccination, encephalitis
frontiersin.org0147

https://www.frontiersin.org/articles/10.3389/fimmu.2023.998233/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.998233/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.998233/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.998233/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.998233/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.998233&domain=pdf&date_stamp=2023-02-23
mailto:mkinoshita@neurol.med.osaka-u.ac.jp
mailto:dokuzaki@biken.osaka-u.ac.jp
https://doi.org/10.3389/fimmu.2023.998233
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.998233
https://www.frontiersin.org/journals/immunology


Ishikawa et al. 10.3389/fimmu.2023.998233
Introduction

The outbreak of severe acute respiratory syndrome called

coronavirus disease-2019 (COVID-19) was caused by a novel

coronavirus (SARS-CoV-2) infection (1). The SARS-CoV-2

infection has spread rapidly worldwide by high human-to-human

transmission, resulting in a public health emergency of

international concern. The ongoing COVID-19 pandemic has

been described as ‘an explosive pandemic of historic proportions’,

with over 200 million confirmed cases and over 5 million confirmed

deaths worldwide (2). Several mRNA vaccination applications have

prevented severe SARS-CoV-2 disease outcomes (3). Accumulating

evidence demonstrates that mRNA vaccination is highly effective in

eliciting the production of antibodies against SARS-CoV-2 (3–5).

Despite the well-acknowledged efficacy of mRNA vaccination of

SARS-CoV-2, the precise alteration of immune responses elicited by

mRNA vaccination remains to be clarified. Although several studies

suggest the safety of mRNA vaccination for patients suffering from

autoimmune neurological diseases (6, 7), reports showing the rare

occurrence of autoimmune diseases affecting peripheral or central

nervous system is accumulating (8–10). The frequency of

encephalitis after COVID-19 mRNA vaccination is estimated to

be 2 in 10 million (11). Thus, it is crucial to clarify the immune

dysregulation triggered and identify the cellular population

contributing to the development of COVID-19 vaccination

associated-autoimmunity. Improvements in DNA library

preparation technology for sequencing have enabled RNA

sequencing to comprehensively analyze gene expression levels at

the single-cell level (12). Single cell RNA-sequencing (scRNA-seq)

provides information on both the proportion of each specific

cellular subset, and the gene signature of the cells (13). Here, we

describe a case where augmentation of autoimmune encephalitis

was observed after COVID-19 vaccination using scRNA-seq of

peripheral blood mononuclear cells (PBMCs), and further

demonstrate distinct myeloid cell population identified in PBMCs

at the acute phase of the disease.
Materials and methods

Subjects and PBMC preparation

PBMCs were chronologically collected from the patient at the

onset of encephalitis (day 0), two days after the onset of the disease

(day 3), and at the remission of the disease (day 17). Written

informed consent was obtained from the participant prior to the

participation in the study. The protocol was reviewed and approved

by the Ethics Committee of Osaka University and in accordance

with the tenets set forth in the Declaration of Helsinki.
Isolation of PBMCs

PBMCs were isolated using Histopaque 1077 (Sigma) by

centrifugation at 800g for 15 min at room temperature. PBMCs at

the interface were collected, rinsed twice with phosphate buffered
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saline (PBS) and 2% bovine serum albumin (BSA), and cryopreserved

in fetal bovine serum with 10% dimethyl sulfoxide. All samples were

processed within 4 hours of collection. The preserved PBMCs were

thawed immediately at 37°C, transferred to a 50-ml tube, and ten

volumes of prewarmed PBS was added slowly and dropwisely,

followed by centrifugation at 500g for 5 min. The pellet was

resuspended in 1 ml of PBS with 2% BSA, and the viability of each

sample was assessed by counting using trypan blue and a Countess II

FL Automated Cell Counter (Thermo Fisher Scientific).
TotalSeq-C hashtag antibody staining,
single cell library preparation
and sequencing

The PBMCs from each donor were stained with Human

TruStain FcX Fc Blocking Reagent (BioLegend, 422302) for

10 min at 4°C. Subsequently, the cells were then stained with a

TotalSeq-C hashtag (BioLegend) for 30 min at 4°C. The cells were

then washed twice using centrifugation at 500g for 5 min at 4°C

with PBS supplemented with 2% (vol/vol) BSA. Each sample’s cell

number and viability were determined using trypan blue and a

Countess II FL Automated Cell Counter, then pooled together in

equal numbers. The cells were counted again and processed

immediately for a 10x 5’ single-cell system followed by

Chromium Next GEM Single Cell V(D)J Reagent Kit v2 with

Feature Barcoding technology for Cell-Surface Protein-Rev D

protocol. Gene expression and feature barcode libraries were

prepared according to the manufacturer’s protocol (10x

Genomics). All libraries were sequenced using the DNBSEQ-

G400 (MGI) to achieve a minimum of 20,000 paired-end reads

per cell for gene expression and 5,000 paired-end reads per cell for

cell-surface protein.
Bioinformatics analysis

Sequencing data obtained from MGISEQ-G400 were aligned to

the GRCh38 genome using Cell Ranger (v.6.1.0). We have also

obtained the public data from Wang et al. (2022) (reference

number: OMIX001295) as healthy subjects, which samples were

analyzed immediately after the second dose of mRNA-1273

vaccination (14). Filtered matrices were loaded into the R package

Seurat (v.4.0) (15) and conducted data filtering, normalization,

scaling, dimensional reduction, clustering, and visualization were

conducted using Seurat. After clustering, cell types were

automatically determined by using ScType (16). The gene

expression information of surface proteins is shown in

Supplementary Table 1. Differential gene expression (DE) analysis

was conducted by FindMarker script implemented in Seurat. The

results of DE analysis were used in volcano plot and Gene Ontology

(GO) enrichment analysis. The figure of the volcano plot was

plotted by hand-made scripts, and GO enrichment analysis was

conducted by using the compareCluster function in the R package

clusterProfiler (17). Genes differentially expressed were identified as

p_val_adj < 0.1 and |Log2 FC| > 1.
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Data availability

Data that support the findings of this study are available from

the corresponding author upon reasonable request. Data for all

scRNA-seq will be available through GEO at accession number

GSE205606 and GSE205607.
Results

Case presentation

A 25-year-old Asian woman had been experiencing swelling

and pain in her right toe interphalangeal joint and finger proximal

interphalangeal joint. She was diagnosed with rheumatoid arthritis

and commenced treatment with methotrexate after a positive blood

test for rheumatoid factor and joint echo results. Subsequently, she

developed a generalized convulsive seizure and was transferred to

her previous physician. MRI T2-weighted head images showed

high-signal areas just below the cerebral cortex in the right

frontal and parietal lobes, and both symptoms and imaging

findings improved with antiepileptic drugs and oral steroids.

Accordingly, the patient was discharged with a diagnosis of

autoimmune encephalitis associated with the extra-articular

manifestation of rheumatoid arthritis. Four months later, the

seizures recurred again, and the patient was transferred to our

hospital for specialist care with increased doses of oral steroids and

antiepileptic drugs. At the time of transfer, there were no obvious

neurological abnormalities, and CSF examination was normal. The

patient was scheduled for discharge from the hospital after a gradual

reduction of steroids. However, when the second dose of COVID-

19 vaccination (mRNA-1273) was administered in the same month,

the patient developed fever during the night on the same day and

generalized tonic-clonic seizures in the early morning of the next

day (day 0). MRI images of the head revealed a high-signal area in

the subcortical white matter in the fluid-attenuated inversion

recovery scan (Figure 1A), and CSF examination showed an

elevated cell count of 32 cells/mL (Figure 1B). The patient was

ventilated for seizures and treated with diazepam, fosphenytoin,

midazolam, and propofol. Three days later (day 3), the patient was

extubated and treated with steroid pulse therapy, and tacrolimus

was introduced in addition to oral steroids to prevent further

relapses of encephalitis. No residual neurological symptoms were

observed, and the patient was discharged from the hospital. On day

17 spinal fluid findings were normalized, and the lesion had

markedly resolved on head MRI imaging (Figures 1A, B).
Distinct myeloid cell population can be
observed in the acute phase of encephalitis

We generated single-cell transcriptome data of PBMCs

obtained from the patient at day 0, day 3 and day 17 (Figure 2A).

We obtained 16,295 cells in total from the 3 conditions after doublet

removal. Figure 2B shows the landscape of each immune subset
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after analyzing the combined scRNA-seq results of the 3 samples.

When scRNA-seq results of each sample were analyzed respectively,

PBMCs obtained at day 0 and day 3 of the patient revealed the

appearance of a distinct cellular population compared to those of

day 17 in the cluster island annotated as classical monocytes

(Figure 2C). There were no other distinct cellular subsets or

clonal predominance observed in the acute phase of the disease

(Supplementary Tables 2, 3).
Immunological pathways specific to the
distinct myeloid cell population at the
acute phase of encephalitis

To clarify whether the distinctive classical monocytes observed

at the acute phase of the disease in our patient was not the immune

alteration shared with healthy subjects receiving vaccination,

PBMCs obtained at day 0 were compared with the healthy

controls receiving COVID-19 vaccination from public database.

Both samples were obtained one day after the mRNA-1273 vaccine.

Figure 3 shows the distinct monocyte clusters between day 0 of the

patient and the healthy controls. Differential expression gene (DEG)

analysis was further performed among the classical monocytes

between day 0 of the patient and the healthy controls. DEGs were

defined by the threshold as p_val_adj < 0.1 and |Log2Fold| > 1. The

most highly up-regulated genes of the classical monocytes of day 0

were G0S2 (G0/G1 Switch 2), TIMP1 (TIMP Metallopeptidase

Inhibitor 1), ASPH (Aspartate Beta-Hydroxylase), and HMOX1

(Heme Oxygenase 1), whereas the most prominently down-

regulated genes were FOS (Fos Proto-Oncogene), DUSP1 (Dual

Specificity Phosphatase 1), RHOB (Ras Homolog Family Member

B), and MNDA (Myeloid Cell Nuclear Differentiation Antigen)

(Supplementary Table 4).

To further elucidate the molecular pathway representing the

overall gene signature characteristic to the distinct monocyte cluster

observed at the acute phase of day 0, Kyoto Encyclopedia of Genes

and Genomes Enrichment analysis (KEGG) Enrichment analysis

was performed. As shown in Figure 4A, the pathway term

“Rheumatoid arthritis” represented the up-regulated gene

signature of the monocyte cluster observed at day 0. No pathway

terms were enriched for genes down-regulated in the

monocyte cluster.

The DEGs which contributed to the pathway term “Rheumatoid

arthritis” were CXCL8 (C-X-C Motif Chemokine Ligand 8), CTSL

(Cathepsin L), CXCL2 (C-X-C Motif Chemokine Ligand 2), and

CCL2 (C-C Motif Chemokine Ligand 2) (Figure 4B).
Discussion

In the COVID-19 pandemic era, clinical trials have revealed

that mRNA vaccines, a novel vaccine modality, prevent COVID-19

infection at a high rate and reduce the risk of severe disease (3).

Adverse reactions are not severe in the majority of vaccine

recipients; however, rare adverse reactions of autoimmune

neurological diseases have been reported (8–10).
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Typical COVID-19 vaccination-related autoimmune

neurological diseases reported include cranial nerve palsies (18),

Guillain-Barré syndrome (9, 19), myelitis (20), and encephalitis

(10), but the details of the altered immune responses that contribute

to their pathogenesis remain unresolved.

Our patient is a rare case of rheumatoid encephalitis with acute

exacerbation, which was observed after the vaccine booster

immunization. It remains elusive whether the specific classical
Frontiers in Immunology 0450
monocyte population identified in our case is observed in COVID-19

vaccination-related CNS diseases in general, or is rather reflecting

enhanced dysregulated immunity of each specific disease.

Accumulating evidence is warranted to clarify the potential role of the

specific classical monocyte population to utilize as the surrogate marker

of immune flare in COVID-19 vaccination-related CNS diseases.

Recent reports of detailed single-cell analysis after mRNA

vaccine administration have revealed that vaccination induces
A

B

FIGURE 1

MRI images and clinical course. (A.a) FLAIR image of the brain obtained 2 days before the vaccination. (A.b) FLAIR image of the brain on day 0 show
extensive development of high intensity lesions predominantly at the white matter. (A.c) FLAIR image of the brain on day 24 reveals the amelioration
of high intensity lesions observed at the acute phase of the disease. (B) The closed squares and open circles represent CSF cell count and protein
concentration of each timepoint respectively.
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A B

C

FIGURE 2

Single-cell RNA-seq analysis of PBMCs obtained at day 0, day 3, and day 17 from the patient. (A) Experimental design of the study. Figure was
created using BioRender.com. (B) UMAP projection of all PBMCs with major subsets annotated. (C) UMAP projection of all PBMCs split by samples.
FIGURE 3

Single-cell RNA-seq analysis of classical monocyte cell population. UMAP visualization of classical monocytes colored by sample conditions. “Day 0”
depicts the samples obtained from the patient on day 0. “Healthy” depicts the samples obtained from the public healthy control data OMIX001295.
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specific acquired immune activation, including antigen-specific

CD4-positive T cells and CD8-positive T cells, while booster

vaccination induces notably enhanced innate immune responses

(21). The enhanced responses of CD4- and CD8-positive T cells

after the booster vaccination is also demonstrated in another study

(22), while memory B cells are also demonstrated to be primed by

mRNA vaccine (23). Furthermore, immunosuppressant medication

is shown to inhibit the efficacious germinal center responses elicited

by mRNA vaccine (24).

The specific classical monocyte population we identified in this

study is characterized by high expression of CXCL8, CTSL, CXCL2,

and CCL2, all of which are molecules associated with rheumatic

disease activity, and we hypothesized that the COVID-19 vaccination

may have been the trigger for the rheumatic activity in our patients.

CXCL8 is known to be elevated in PBMCs of patients with active

rheumatoid arthritis (25). The cathepsins including CTSL is known

to be expressed at high levels in the joints of rheumatoid arthritis (26).
Frontiers in Immunology 0652
It is also reported that CXCL2 is significantly elevated in the serum of

rheumatoid arthritis compared to healthy controls (27). In addition,

CCL2 has been reported to be elevated in the serum of rheumatoid

patients compared to healthy controls (28).

Large clinical studies of rheumatoid arthritis have reported that

COVID-19 vaccine does not clearly increase the risk of recurrence

(29), but there are rare reports of increased disease activity and

recurrence (30). Rheumatoid arthritis is mainly characterized by

joint symptoms, but can be complicated by various central nervous

system symptoms, including meningitis and encephalitis (31).

It remains to be clarified whether the specific classical monocyte

population we identified in this study directly contributes to the

development of encephalitis by infiltrating the brain or by

enhancing systemic production of inflammatory cytokines,

leading to brain lesions. In this regard, further analysis of CSF

cells, which was not feasible in our study due to insufficient number

of cells collected, will provide more convincing evidence to show the
A

B

FIGURE 4

KEGG pathway and DEG analysis of classical monocytes. (A) Bar plot of KEGG pathway enriched in significantly (p_val_adj < 0.1 and |avg_log2FC| >
1) up-regulated genes among classical monocytes at day 0 and day 3 of the patient. (B) Violin plot of the genes related to KEGG pathway term
“Rheumatoid arthritis” in (A). “Day 0” depicts the samples obtained from the patient on day 0. “Healthy” depicts the samples obtained from the public
healthy control data OMIX001295.
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pathogenic immune subsets responsible for encephalitis

development after COVID-19 vaccination.

Another limitation of this study is that the patients were under

treatment with various types of medication at the time of sample

collection. In this regard, we cannot exclude the possibility that

these multi-factorial effects altered the gene expression pattern of

our scRNA-seq results of the patient.

Considering the autoimmune background of rheumatoid

arthritis in our patient, it is also interesting to elucidate whether

COVID-19 vaccination can activate the immune signature

underlying the pathogenesis characteristic of each disease related

to autoimmunity in the future studies.
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Introduction: Pathologic inflammation is a major driver of kidney damage in

lupus nephritis (LN), but the immunemechanisms of disease progression and risk

factors for end organ damage are poorly understood.

Methods: To characterize molecular profiles through the development of LN, we

carried out gene expression analysis of microdissected kidneys from lupus-prone

NZM2328 mice. We examined male mice and the congenic NZM2328.R27 strain

as a means to define mechanisms associated with resistance to chronic nephritis.

Gene expression profiles in lupus mice were compared with those in human LN.

Results: NZM2328 mice exhibited progress from acute to transitional and then to

chronic glomerulonephritis (GN). Each stage manifested a unique molecular profile.

NeithermalemicenorR27miceprogressedpast theacuteGNstage,with the former

exhibiting minimal immune infiltration and the latter enrichment of

immunoregulatory gene signatures in conjunction with robust kidney tubule cell

profiles indicative of resistance to cellular damage. The gene expression profiles of

human LN were similar to those noted in the NZM2328 mouse suggesting

comparable stages of LN progression.

Conclusions: Overall, this work provides a comprehensive examination of the

immune processes involved in progression of murine LN and thus contributes to

our understanding of the risk factors for end-stage renal disease. In addition, this

work presents a foundation for improved classification of LN and illustrates the

applicability of murine models to identify the stages of human disease.
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disorder

that can affect a variety of tissues, including the kidney (1). Lupus

nephritis (LN) affects approximately 40% of adult lupus patients

with 10-20% of patients developing end-stage renal disease (ESRD)

(2). Disease is thought to initiate in the kidney glomerulus with

immune complex (IC) deposition and complement activation

leading to the release of damage associated molecular patterns

(DAMPS), cytokine production, and the infiltration of

inflammatory cells that amplify and sustain inflammation (3, 4).

Damage to the kidney glomerulus promotes ischemic damage and

chronic hypoxia, compromising the downstream blood supply to

the tubulointerstitium (TI) and reducing tubule cell viability, which

serve as prognostic markers for the development of ESRD (5–7).

Despite advances in understanding of LN, there remains no clear

indication of factors controlling the conversion of acute to chronic

nephritis and no proven treatments to prevent ESRD (8–10).

Previous studies established the NZM2328 lupus-prone mouse

strain as a model of human LN, with severe IC-mediated nephritis

and early mortality predominantly affecting female mice (11–13).

These studies determined that disease in female NZM2328 mice

presents in two stages termed acute glomerulonephritis (AGN) with

pathology largely confined to the glomerulus, and chronic GN

(CGN) in which inflammation and tissue damage are also found

amongst and between the tubules (12, 13). AGN and CGN were

associated with a genetic loci on chromosome 1, theAgnz1 andCgnz1

regions respectively. In addition, the NZM2328.Lc1R27 (R27)

recombinant strain was generated by replacing the Cgnz1 region of

NZM2328 with that from the C57BL/J strain, such that female R27

mice develop AGN but do not progress to CGN. Similarly, male

NZM2328 mice develop a milder, acute form of nephritis but do not

exhibit severe proteinuria or progress to chronic disease (14, 15).

The heterogeneity in disease presentation among LN patients

and difficulty in predicting therapeutic responses have highlighted

the utility of molecular profiling to improve classification of lupus

kidney pathology (10, 16). Here, to understand the pathogenesis of

LN and especially the relationship between acute and chronic

disease in greater detail, we utilized transcriptome analysis to

define the stages of GN in NZM2328 mice and identify

pathologic immune populations and processes associated with

disease progression. In addition, we identified distinct

mechanisms of resistance to chronic disease based on differences

in gender and genetics and demonstrated similarities in gene

expression profiles between human and murine LN, suggesting

comparable progression with implications for elucidating risk

factors for development of ESRD in human lupus patients.
Materials and methods

Mice

NZM2328 and NZM2328.R27 congenic mice were obtained/

generated as previously described (11, 13). All mice were housed at
Frontiers in Immunology 0256
the University of Virginia (UVA) Center of Comparative Medicine

under pathogen-free conditions.
Histological characterization

Kidneys of NZM2328 and R27 mice were harvested and the

stage of GN was confirmed by histological classification

(Supplementary Table 1) as previously described (11, 13). Briefly,

mice were sacrificed at 8-9 weeks for the control group and 26-38

weeks for diseased mice. Before sacrifice, the presence of nephritis

in diseased mice was assayed using proteinuria test strips. Mice were

classified into AGN, TGN, or CGN stages by assessment of

glomerular size and cellularity, mesangial expansion, glomerular

sclerosis, kidney fibrosis, tubular cell dilation, tubular atrophy, and

immune cell infiltration. IgG, C3, and ANA staining were

performed as previously described.
Laser microdissection and
microarray hybridization

LMD of snap frozen kidney sections was performed as

previously described (17). Frozen sections were cut by Cryostat to

5-micron thickness and placed on dry ice. The sections were fixed in

70% ethanol followed by hematoxylin and eosin (H&E) staining.

LMD was performed along and including the Bowman’s capsule to

isolate kidney glomeruli while tubulointerstitial tissue was collected

from approximately 3-4 layers of cells outside of the microdissected

glomeruli. For each mouse, 40 glomeruli/tissue picks were collected

and pooled to prepare each RNA sample.

Total RNA was isolated from LMD-derived cells using PicoPure

RNA isolation kit (Applied Biosystems). RNA quality was detected by

Agilent Pico Gel. Array hybridization was carried out by the UT

Southwestern Microarray Core facility for the Affymetrix Clariom D

Array of NZM2328 female and R27 mice and by the UVA Genome

Analysis and Technology Core for the GeneChipMouse 430 v2.0 array

of NZM2328 female and male mice according to standard

Affymetrix protocols.
Microarray data processing

Raw CEL files from the publicly available murine IFNa-NZB
(GSE86423) and human microdissected kidney (GSE32591)

microarray datasets were derived from GEO using the R/

Bioconductor package GEOquery. Processing of raw microarray

data from all murine and human microarray datasets was carried

out with the R/Bioconductor packages oligo, affy, affycoretools, and

simpleaffy. Affymetrix CEL files were background corrected and

normalized using the Robust Multiarray Average (RMA) or

GeneChip Robust Multiarray Average (GCRMA) methods

depending on the microarray platform. Normalized data was

transformed into log2 intensity values and formatted as R

expression set objects (E-sets). Principal component analysis
frontiersin.org
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(PCA) was used to inspect the datasets for outliers. E-sets were

annotated using chip definition files (CDFs) corresponding to

Affymetrix Clariom D (NZM2328 female and R27 mice), Mouse

430 v2.0 (NZM2328 male mice), HT_MG-430_PM (IFNa-NZB
mice), HGU133A_CDF_ENTREZG_10 (human microdissected

kidney), or HG-U133_Plus_2 (human whole kidney) arrays. Low

intensity probes were filtered by visual selection of thresholds at the

dip in histograms of binned log2-transformed probe intensities.

Variance correction was carried out using the ebayes function in the

R/Bioconductor LIMMA package. Resulting p-values were adjusted

for multiple comparisons using the Benjamini-Hochberg correction

that produced a false discovery rate (FDR) for each comparison.

Probes were distilled down to differentially expressed (DE) probes

with FDR < 0.2 which were considered statistically significant.
Gene set variation analysis (GSVA)

The R/Bioconductor package GSVA (18) (v1.36.3) was used as a

non-parametric, unsupervised method to estimate the variation in

enrichment of pre-defined gene sets in microarray data from

NZM2328 mice. The input for GSVA was a matrix of log2
expression values for all samples and a collection of gene signatures

for immune cell types and functional pathways. Genes with multiple

Affymetrix identifiers were selected based on the highest interquartile

range (IQR) and probes with IQR=0 were filtered out. GSVA

enrichment scores were calculated on a per sample basis, without

specifying the sample labels, using a Kolgomorov-Smirnoff (KS)-like

random walk statistic comparing the distribution of genes in the

specific gene modules to those not in the module and were scaled

across all samples to values between -1 and +1 indicative of negative

enrichment and positive enrichment, respectively.
GSVA gene set generation

Gene sets used as input for GSVA are listed in Supplementary

Table 2. Cell type and pathway gene signatures were generated

based on literature mining, Mouse Genome Informatics (MGI) (19)

gene ontology (GO) terms, and immune cell-specific expression

derived from the Immunological Genome Project Consortium

(ImmGen) (20). The glycolysis, oxidative phosphorylation, amino

acid metabolism, and fatty acid oxidation gene signatures have been

previously described (21). The cell type gene signatures were

derived from Mouse CellScan, a tool for identification of cellular

origin from mouse gene expression datasets. The pathway gene

signatures were derived from the Mouse Biologically Informed

Gene Clustering (BIG-C) tool for categorization of biological

functions in mouse gene expression datasets.
Linear regression analysis

Linear regression analysis between GSVA enrichment scores

and log2 gene expression values was carried out using GraphPad
Frontiers in Immunology 0357
Prism software (v9.3.1). The goodness of fit is displayed as the R2

value. The p-value indicates the significance of the slope of the

regression line.
Ingenuity pathway analysis (IPA)

Molecules upstream of selected Cgnz1 locus genes were identified

using IPA upstream regulator (UPR) analysis (Qiagen) (22). UPRs

with an overlap p-value < 0.01 were considered significant.
Multiscale embedded gene co-expression
network analysis (MEGENA)

The MEGENA R package (23) was used to generate gene co-

expression networks for NZM2328 mouse glomerulus and TI by

inputting the top 5,000 row variance genes from the respective gene

expression matrices. A planar filtered network (PFN) was formed

using a false discovery rate (FDR) of 0.2. MEGENA multi-scale

clustering analysis (MCA) used the PFN to form lineages of gene

modules which were assigned “lineage” names based on their

descendance from the root MEGENA module. Modules were

functionally annotated by overlapping their gene symbols with

curated mouse-specific functional signatures, immune cell, and

kidney tissue cell signatures as well as the top GO terms (24)

exhibiting the greatest coverage for each module. Annotations of

MEGENAmodules were considered significant if there were at least

3 overlapping gene symbols between the module gene symbols and

annotation signature gene symbols, and the Fisher’s p-value statistic

of the overlap was p<0.2. A module eigengene (ME) was calculated

for each module equivalent to the first principal component of a

module’s gene expression. Intracorrelations of sample traits were

calculated for brief inspection. MEs were correlated to all sample

traits and correlations were zeroed out where the p-value of the

correlation was >=0.2. All second generation (gen2) MEGENA

modules were retained for ensuing analysis. A gene expression set

from human whole kidney biopsies was subjected to MEGENA

analysis in a similar manner. Gen2 MEGENA modules from

NZM2328 glomerulus and TI were examined for preservation in

the MEGENA human kidney modules by utilizing an algorithm

that generates z.summ composite scores of 20 preservation

metrics (25).
K-means clustering

GSVA enrichment scores of gen2 MEGENA modules

(Supplementary Table 4) or 22 curated immune cell, kidney cell,

and metabolic pathway gene signatures (Supplementary Table 2)

were used as input for k-means clustering performed with 1000

iterations to identify the most stable clusters for each dataset.

Clustering results were visualized using the R package

ComplexHeatmap (v 2.12) (26).
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Statistical analysis

P-values and odds ratios (ORs) for the overlap of DEGs with

inflammatory cell types and pathways were calculated with a two-sided

fisher’s exact test in Rwith a confidence level of 0.95. All other statistical

tests were carried out with GraphPad Prism (v9.3.1). Comparisons for

two groups (CTL, AGN) were calculated using an unpaired, two-sided

Welch’s t-test. Comparisons for more than two groups (CTL, AGN,

TGN, CGN) were calculated using Brown Forsythe and Welch’s

ANOVA followed by Dunnett’s T3 multiple comparisons test.
Study approval

Mice were kept at the University of Virginia Center of

Comparative Medicine. All experimental protocols were approved

by the Institutional Animal Care and Use committee.
Data availability

The murine microarray dataset generated for the current study is

available fromNCBI’s GEO database under accession GSE206806. The

human microarray dataset generated for the current study has been

submitted to ArrayExpress with accession E-MTAB-12257. The

publicly available murine and human microarray datasets analyzed in

the current study can be found under GEO accessions GSE86423 and

GSE32591, respectively.
Results

Renal disease of NZM2328 mice is
characterized by escalating stages
of inflammation

To identify different stages of GN in the kidneys of female

NZM2328 mice, we carried out histological studies at regular

intervals throughout disease progression (Figures 1A–D;

Supplementary Table 1). Tissues from young mice, before disease

development and without evidence of kidney pathology were used as a

control (Figure 1A). At theAGN stage, glomeruli were increased in size

with evidence of immune cell infiltration and immune complex

deposition including IgG, C3, and anti-nuclear antibody (ANA)

deposits (Figure 1B). There were no changes to tubule cells of AGN

mice and they exhibited mild immune cell infiltration in the

interstitium. We identified an additional intermediate stage of

disease progression not previously reported termed transitional GN

(TGN) at which, like the AGN stage, glomeruli exhibited immune cell

infiltration, but levels of IgG and C3 deposition as well as serum levels

of anti-DNA antibodies were elevated over AGN mice (Figure 1C).

The interstitium of TGNmice hadmore inflammatory cells than at the

AGN stage and tubular cells showed some dilation and atrophy.

However, tubule damage was not evident histologically. At the CGN

stage, mice exhibited glomerular sclerosis, fibrosis with interstitial
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inflammation, and the highest level of immune complex deposition

as compared to earlier disease stages (Figure 1D). In CGN stage mice,

>80% of tubular cells had tubular dilation with increased evidence of

atrophy and tubular casts as compared to the TGN stage.
Transcriptional profiling uncovers immune
populations present at the onset of GN in
NZM2328 mice

To establish the inflammatory environment in the kidney at

disease onset, we analyzed the transcriptomes of microdissected

glomeruli and TI from the kidneys of female NZM2328 mice.

Tissues from 8-9 week-old (CTL) mice were used as a control

(11–13). Using Gene Set Variation Analysis (GSVA) (18) with a

battery of curated gene sets (Supplementary Table 2), glomeruli of

histologically-defined AGN mice were found to be enriched for

gene signatures of a number of immune/inflammatory cell types,

including myeloid cells, M1 macrophages (Mfs), antigen presenting
cells (APCs), CD8 T cells, and T follicular helper (Tfh) cells

(Figure 1E). In addition, genes encoding immune cell receptors,

including pattern recognition receptors (PRRs) as well as major

histocompatibility complex (MHC) class I and II were significantly

elevated in AGN glomeruli. The TI of AGN mice was enriched for

many of the same immune signatures, including myeloid cells, M1

Mfs, APCs, and MHC class II as well as the IG chain signature

indicative of the presence of a plasma cell (PC) infiltrate (Figure 1F).

However, despite the presence of signatures indicative of immune

cells, gene signatures of podocytes in the glomeruli (Figure 1G) and

of tubule cells in the TI (Figure 1H) were not significantly different

than CTL. Thus, the kidneys of mice with AGN are enriched for

predominantly innate immune cell gene signatures with no

evidence of damage to the kidney cells.
Transcriptomic analysis reveals distinct
immune profiles of acute, transitional, and
chronic GN in NZM2328 mice

Next, we compared the transcriptomes of glomeruli and TI

from pre-disease CTL mice to mice with progressively more severe

stages of disease. Overall, we found that the more robust gene

signature enrichment in later stages of disease decreased the

significant differences between AGN and CTL mice (Figures 2A,

C). The immune profile of glomeruli of TGN mice reflected an

intermediate stage of renal disease and the peak of inflammatory

signature enrichment. We found enrichment of gene signatures of

germinal center (GC) B cells, myeloid cells, andMfs, including both
M1 and M2 subsets, as well as signatures of interferon (IFN)

stimulated genes, MHC class I, the cell cycle, and the Hif1a

signaling pathway (Figure 2A). In addition, the inflammatory

signatures enriched in AGN mice were increased further at the

transitional stage. Glomeruli of CGN mice were enriched for

platelets and WNT signaling and de-enriched for gene signatures

of mitochondrial function and amino acid metabolism (Figure 2A).
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Along with the enrichment of gene signatures of inflammatory cells

and pathways, we also found evidence of kidney damage in TGN

and CGN mice with de-enrichment of the gene signature for

podocytes (Figure 2B).
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Relative gene expression results from the TI of NZM2328

kidneys showed a progressive pattern of inflammation and kidney

cell loss. The TI regions of TGN kidneys were enriched for

numerous immune and inflammatory signatures, including Th17
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C

FIGURE 1

Histologic and transcriptional analysis of immune populations in NZM2328 mice with GN. (A-D) H&E staining of kidneys from normal/CTL (A)
NZM2328 females and mice with acute (B), transitional (C), and chronic (D) stage GN. Individual sample gene expression from glomeruli (E, G) and TI
(F, H) of CTL and AGN mice was analyzed by GSVA for enrichment of immune cells/inflammatory pathways (E, F) and kidney tissue cells (G, H).
Enrichment scores are shown as violin plots. *p<0.05, **p<0.01, ***p<0.001.
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cells, PRRs, MHC class I and II, myeloid cells, and M1 and M2 Mfs
(Figure 2C). The TI of CGN mice exhibited enrichment of IFN

stimulated genes, the cell cycle, and WNT signaling as well as

decreases in gene signatures for mitochondria, amino acid

metabolism, and oxidative phosphorylation (Figure 2C). We

found further indicators of damage to the kidney tubules in CGN

mice with decreases in kidney tubule cell gene signatures

(Figure 2D) that correlated with significant increases in the

expression of the kidney tubule damage-associated genes, Havcr1

and Lcn2 (Figures 2E, F). Overall, these results suggest that renal

disease in female NZM2328 mice progresses from the glomerulus to

the tubules and that inflammation established in the acute and

transitional stages promotes a decrease in kidney cell signatures,

indicative of cell damage.
Frontiers in Immunology 0660
Lack of a robust inflammatory signature in
glomeruli of NZM2328 male mice is
associated with absence of progression to
chronic renal disease

To gain insight into the basis of the difference in gender-based

resistance to chronic disease, we evaluated the transcriptomes of

glomeruli from male NZM2328 mice with AGN at 10 months of age

as compared to pre-disease, 8-9-week-oldmice (Figure 3). Even though

male mice were selected because they had evident immune complex

deposition, male AGN mice, in contrast to the females, were not

enriched for gene signatures indicative of a robust adaptive immune

response or increased inflammation in the kidneys (Figure 3A).

Instead, males exhibited enrichment for signatures of mRNA splicing
A
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FIGURE 2

Transcriptomic analysis of GN disease stages in glomeruli and TI of NZM2328 mice. (A) Heatmap of GSVA scores for enrichment of immune cell and
pathway gene signatures in glomeruli of CTL, AGN, TGN, and CGN mice. Asterisks indicate significant comparisons with CTL mice. (B) GSVA
enrichment of podocytes in cohorts shown in (A). (C) Heatmap of GSVA scores in the TI of cohorts shown in (A). (D) GSVA enrichment of kidney
tubule cell gene signatures in cohorts from (C). (E) Log2 expression values of kidney tubule damage-associated genes for cohorts from (C). (F) Linear
regression between log2 expression of kidney tubule damage genes and GSVA scores of kidney tubule cells. *p<0.05, **p<0.01, ***p<0.001,
****p<0.000.
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and transcription factors and de-enrichment of metabolic pathways,

including glycolysis, oxidative phosphorylation, and fatty acid

oxidation. In addition, there was no difference in expression of

kidney tissue signatures in male AGN mice as compared to normal

controls (Figure 3B).

To assess the role of sex hormones in renal disease in NZM2328

mice, we developed signatures of estrogen- and androgen-regulated

genes and compared their enrichment in female and male mice with

AGN as compared to normal controls (Figure 3C). Female AGNmice

exhibited no differences in enrichment of hormone-regulated gene

signatures. However, in males, androgen-regulated genes were

decreased in AGN mice. Furthermore, most androgen-regulated

genes de-enriched in male mice were related to mitochondrial

function and metabolic pathways, including Akap1, Cox6b1, Iapp,

Mrps6, Mybbp1a, Ndufa1, Phkg2, Prelid1, Sord, and Tmem86a. This

result suggested that decreased expression of male hormone response
Frontiers in Immunology 0761
genes in AGN mice may contribute to resistance to disease

progression by regulating metabolism and dampening inflammation.
Inflammatory gene signatures in
glomeruli of R27 mice differ from those in
NZM2328 mice

We next examined the R27 congenic mouse strain as female

R27 mice develop AGN with similar kidney pathology to NZM2328

mice, but do not progress further to severe proteinuria and ESRD.

We compared gene expression profiles from glomeruli and TI of

normal, CTL R27 mice (8-9 weeks) and R27 mice with AGN (12

months). R27 mice were selected for the presence of proteinuria and

glomerular deposi ts of immunoglobul in detected by

immunofluorescence. Examination of differentially expressed
A

B

C

FIGURE 3

Male NZM2328 mice lack inflammatory signature enrichment associated with progression to chronic GN. (A) Heatmap of GSVA scores for
enrichment of immune cell and pathway gene signatures in glomeruli of male CTL and AGN mice. Asterisks indicate significant comparisons with
CTL mice. (B) GSVA enrichment of podocytes in cohorts shown in (A). (C) GSVA enrichment of signatures for estrogen-regulated and androgen-
regulated genes in glomeruli of female and male AGN mice. *p<0.05, **p<0.01.
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genes (DEGs) from glomeruli of NZM2328 and R27 mice relative to

their respective CTLs (Supplementary Table 3, Supplementary

Figure 1A) revealed significant overlaps with increased expression

of APC, myeloid cell, Mf, and MHC signatures. In contrast, DEGs

from NZM2328 but not R27 AGN mice showed overexpression of

PRRs and IFN stimulated genes, suggesting a more severe

inflammatory environment.

GSVA analysis of R27 AGN glomeruli (Figures 4A, C)

demonstrated enrichment of gene signatures indicative of

inflammation, including APCs, IG Chains, Mfs, and MHC class I

and II (Figure 4A). Notably, analysis of Mf subsets revealed

enrichment of anti-inflammatory M2, but not pro-inflammatory

M1 Mfs in R27 mice. No enrichment of IFN stimulated genes,
Frontiers in Immunology 0862
PRRs, or Hif1a signaling between R27 control and AGN mice was

detected. Moreover, no evidence of change in kidney cell-specific

gene signatures was found in R27 AGN (Figure 4B).
NZM2328.R27 mice exhibit resistance to
kidney tubule damage

Next we compared DEGs expressed in the TI of R27 AGN mice

relative to NZM2328 mice with AGN (Supplementary Table 3,

Supplementary Figure 1B). DEGs from the TI of NZM2328 AGN

mice were indicative of APCs, myeloid cells, Mfs, andMHC class II,

indicating the presence of some immune infiltrates but not to the
A
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FIGURE 4

Molecular profiles of R27 mice differ from NZM2328 mice and indicate resistance to kidney tubule damage. (A) Heatmap of GSVA scores for
enrichment of immune cell and pathway gene signatures in the glomeruli of R27 CTL and AGN mice. Asterisks indicate significant comparisons with
CTL mice. (B) GSVA enrichment of podocytes in cohorts shown in A. (C) Heatmap of GSVA scores in the TI of cohorts shown in A. (D) GSVA
enrichment of kidney tissue cell signatures in cohorts shown in C. (E) Log2 expression values of kidney tubule damage-associated genes for cohorts
from C. (F) Linear regression between GSVA scores of kidney tubule cell and metabolic pathway gene signatures. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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same extent as the inflammation in the glomeruli at this early point

in disease. In contrast, DEGs from R27 AGN mice were only

indicative of APC and MHC class II and were not associated with

other inflammatory signatures.

Similarly, GSVA of the TI of R27 AGN mice confirmed the

enrichment of APCs, IG chains, and myeloid cell signatures, but not

Mfs, denoting a less extensive infiltration of immune/inflammatory

cells in the R27 mice. (Figure 4C). Previous studies using the R27

strain found evidence that resistance to end organ damage might

contribute to their decreased development of CGN (13). In support

of this, we found that kidney tubule cell signatures were significantly

increased in R27 AGN mice (Figure 4D), whereas the kidney

damage-associated genes, Havcr1 and Lcn2, were unchanged

(Figure 4E). We also found that gene signatures related to

mitochondria, glycolysis, and lipid metabolism were increased

(Figure 4C) and were significantly correlated with the kidney

tubule cell gene signature (Figure 4F), suggesting that robust

mitochondrial function may contribute to the kidney tubule cell

enrichment observed in R27 AGN mice.
Kidney cell signatures enriched in
NZM2328.R27 mice correlate with
expression of chronic GN risk locus genes

The risk for progression to CGN in NZM2328 mice was

associated with a 1.34 Mb region of chromosome 1 (Cgnz1)

containing 45 genes (13). We analyzed differential expression of

these CGN susceptibility genes in glomeruli and TI of female

NZM2328 AGN/TGN/CGN, and R27 AGN mice as compared to

normal controls to determine their contribution to renal disease

progression (Figure 5). In the glomerulus, we found that genes

encoding receptors expressed on immune cells and associated with

inflammation, including Cd244, Fcer1g, Fcgr3, Fcgr4, and Slamf7,

were significantly increased in NZM2328 AGN, whereas none was

overexpressed in R27 kidneys (Figure 5A; Supplementary Figure 2).

Expression of these genes as well as additional immune-associated

Cgnz1 locus genes was further increased at the height of

inflammatory cell and pathway gene signature enrichment at the

TGN stage and either maintained or decreased at the CGN stage in

glomeruli of NZM2328 mice.

In the TI, there were no significant differences in expression of

Cgnz1 locus genes in NZM2328 or R27 female AGN mice as

compared to normal controls (Supplementary Figure 3).

Furthermore, this result was consistent with the minimal

inflammatory signature observed in AGN mice. However, at the

TGN stage of NZM2328 mice, expression of immune-associated

Cgnz1 locus genes increased significantly over normal control mice,

providing further evidence for the critical role of the CGN risk locus

in progression to chronic disease (Figure 5B)

To investigate the relationship between CGN risk locus gene

expression and kidney tubule cell enrichment in R27 female AGN

mice, we carried out linear regression analysis (Figure 5C), and

found that log2 expression values for 7 of the 45 genes composing

the Cgnz1 locus (Apoa2, Fcer1g, Ncstn, Ndufs2, Nit1, Pex19, Sdhc)

were significantly correlated with GSVA scores for kidney distal
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tubule cells and thus could play a role in promoting resistance to

kidney damage. Notably, we found that the proteins encoded by

these genes were involved in mitochondrial respiration (Ndufs2,

Sdhc), metabolite processing (Apoa2, Ncstn, Nit1, Pex19) and

immune signaling (Fcer1g). Furthermore, log2 expression values

for 4 of these genes (Apoa2, Ndufs2, Nit1, and Sdhc) were

significantly correlated with kidney tubule cell GSVA scores and

significantly decreased in the TI of NZM2328 CGN mice as

compared to normal controls (Figures 5D, E).

To delve further into the functional pathways involving these

kidney cell-associated genes, we identified upstream regulators

(UPRs) using Ingenuity Pathway Analysis (IPA) (22)

(Supplementary Table 4). Notable UPRs predicted to drive

expression of the 7 Cgnz1 genes correlated to kidney tubule cell

enrichment included Rb1, Rictor, Wnt3a, Ctnnb1, and Hif1a and

thus reflected the involvement of cell growth regulation, WNT

signaling, and hypoxic stress response pathways in the kidneys of

R27 AGN mice. These results suggest that the cellular functions

associated with expression of some of the Cgnz1 risk locus genes in

R27 mice could contribute to robust mitochondrial function and

promote resistance to kidney tissue damage in the context of

acute nephritis.
Gene co-expression network analysis
identifies molecular profiles correlating
with disease progression in NZM2328 mice

As an orthogonal approach to identify molecular patterns

reflective of disease stage in NZM2328 mice in an unsupervised

manner, we generated a network of co-expressed gene modules

using multiscale embedded gene co-expression network analysis

(MEGENA) (23) and correlated individual gene modules with

mouse GN stages (Figure 6). MEGENA of gene expression results

from NZM2328 mice generated 60 co-expressed gene modules for

the glomerulus and 48 modules for the TI that were divided into

three megaclusters and annotated based on gene overlap with

curated gene signatures as well as gene ontology (GO) terms

(Supplementary Table 5). Overall, the MEGENA-derived gene

modules were representative of the major cell types and processes

we had previously associated with GN using curated gene

signatures, including inflammatory myeloid cells, kidney tissue

cells, and metabolic processes. Furthermore, k-means clustering

based on the MEGENA modules successfully separated mice into

cohorts based on disease severity. In the glomerulus (Figure 6A), the

coral cluster of CTL and AGN mice was positively correlated with

gene modules associated with kidney cells and metabolic processes,

and negatively correlated with gene modules related to the immune/

inflammatory response. Two clusters (maroon and green)

contained a combination of TGN and CGN mice and were

positively correlated with immune response modules and

negatively correlated with kidney cell and metabolism modules.

The final cluster of CGNmice (blue) had a negative correlation with

immune response and kidney/metabolic modules but retained a

high positive correlation with secreted immune factors. MEGENA

results and correlations with disease stage in the TI (Figure 6B) were
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similar to the glomerulus, but the resulting gene modules were more

heavily skewed toward mitochondrial metabolism and the blue

cluster of CGN mice was still positively correlated with the immune

response-associated modules. In summary, this unsupervised

approach employing co-expressed gene modules yielded results

that closely resemble our previously identified molecular profiles

of disease progression in NZM2328 mice.
Identification of gene signatures
characterizing GN stages in NZM2328 mice

We next sought to assemble a panel of curated gene signatures

that would characterize the inflammatory environment in different
Frontiers in Immunology 1064
stages of murine GN and determine whether similar immune profiles

could be identified in human LN kidneys. To accomplish this, a core

set of 22 GSVA gene signatures was selected based on significant

enrichment in AGN, TGN, or CGNNZM2328mice (Supplementary

Table 2; Figures 2A, C). GSVA scores were then used as input for k-

means clustering to form 4 clusters of mice from the glomerulus and

TI gene expression datasets (Figures 7A, B). In the glomerulus, AGN

mice in the maroon cluster were characterized by slightly increased

enrichment of inflammatory immune cells compared to CTL mice

but retained enrichment of kidney tissue cell and metabolism gene

signatures (Figure 7A). TGN mice in the green cluster exhibited the

highest enrichment of all inflammatory gene signatures accompanied

by a decrease inmetabolic and kidney cell signatures. CGNmice were

divided among multiple clusters and thus reflected heterogeneity in
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FIGURE 5

Expression of chronic risk locus genes is associated with disease severity and kidney tubule resistance in NZM2328 and R27 AGN mice. (A, B) Log2
expression values of immune receptor genes in the Cgnz1 risk locus from glomeruli (A) and TI (B) of NZM2328 CTL, AGN, TGN, and CGN mice.
(C) Linear regression between log2 expression of Cgnz1 locus genes and GSVA scores of kidney tubule cells from the TI of R27 mice. All statistically
significant correlations are shown. (D) Linear regression between log2 expression of Cgnz1 locus genes from C and GSVA scores of kidney tubule
cells from the TI of NZM2328 mice. All statistically significant correlations are shown. (E) Log2 expression values Cgnz1 locus genes from C in the TI
of NZM2328 CTL, AGN, TGN, and CGN mice. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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immune profiles among mice at this stage of disease. Two CGNmice

were placed in the coral cluster with CTL mice reflecting waning

inflammation and retention of metabolic and kidney cell signatures.

Another group of CGN mice with continued evidence of

inflammatory gene signatures were found in the green cluster with

TGNmice. Finally, the blue cluster of CGNmice exhibited a relative

de-enrichment of immune cells, kidney cells, and metabolic

pathways indicative of a post-inflammatory state with evidence of

end organ damage.

Gene expression-based clustering of the TI yielded similar

results as the glomerulus with increasing inflammation and

decreasing metabolism and kidney tubule cell gene signatures
Frontiers in Immunology 1165
marking progression in disease severity (Figure 7B). However, in

the TI, the AGN mice clustered with CTLs and more of the CGN

mice appeared to retain immune cell enrichment, reflecting

persistent immune cell infiltration.
Validation of NZM2328 gene expression
patterns in an unrelated dataset

To validate the findings in NZM2328 mice in another lupus-

prone strain, we applied the same approach to analysis of publicly

available gene expression data from whole kidney tissue of the IFNa-
A

B

FIGURE 6

Unsupervised gene co-expression network analysis defines molecular profiles of NZM2328 mice correlated with disease severity. (A, B) K-means
clustering (k=4) of NZM2328 CTL, AGN, TGN, and CGN mouse glomeruli (A) and TI (B) based on GSVA enrichment scores of MEGENA modules. The
optimal number of module clusters was defined by the silhouette method and annotated by gene overlap with curated immunologic signatures and
GO terms. Heatmap visualizations depict positive to negative GSVA scores on a red to blue gradient and positive to negative correlations between
GSVA scores and disease classification on a gold to blue gradient.
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accelerated NZB/W model (IFNa-NZB, GSE86423). Notably, the 22
curated gene expression signatures used to separate disease stages in

NZM2328 mice, followed a similar enrichment pattern over a 9-week

time course in IFNa-NZB mice indicating that this result was not

unique to the gene expression dataset we generated from the

NZM2328 strain (Supplementary Figure 4).
Gene signatures characterizing GN stages
in NZM2328 mice identify analogous
subsets of human LN patients

To determine whether immune profiles of NZM2328 mice with

different stages of GN would translate to human lupus patients, we

analyzed a publicly available gene expression dataset of
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microdissected glomeruli and TI from kidneys of patients with

International Society of Nephrology (ISN) class II-IV LN as

determined by histological classification (GSE32591) (27). We

carried out GSVA using human orthologs of the 22 curated

mouse gene signatures and identified 4 molecular endotypes by k-

means clustering based on the pattern of enriched gene signatures

in each individual patient (Supplementary Table 1; Figures 7C–E).

GSVA results of glomeruli and TI from kidneys of LN patients

formed 4 patient clusters that exhibited similar gene set enrichment

profiles to the nephritic kidneys of NZM2328 mice (Figures 7C, D).

In both the glomerulus and TI, we observed a clear progression with

increased enrichment of inflammatory cells corresponding with de-

enrichment of kidney tissue cells as well as metabolic pathway

signatures. In addition, the cohort correlations between LN

classification and gene signature enrichment revealed increased
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FIGURE 7

Gene signature-based clustering of GN stages in NZM2328 mice translates to human LN patients. (A, B) K-means clustering (k=4) of NZM2328 CTL,
AGN, TGN, and CGN mouse glomeruli (A) and TI (B) based on GSVA enrichment scores of selected immune cell, kidney cell, and metabolic pathway
gene sets. (C-E) K-means clustering (k=4) of microdissected glomeruli (C), TI (D), and whole kidney (E) from human LN patients based on GSVA
score from human orthologs of the mouse gene sets used in (A, B). Heatmap visualizations depict positive to negative GSVA scores on a red to blue
gradient and positive to negative correlations between GSVA scores and disease classification on a gold to blue gradient.
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correlations with pro-inflammatory cells in proliferative nephritis,

particularly in the glomerulus, and corresponding negative

correlations with kidney tissue cell signatures. However, whereas

in the mouse kidneys we observed a post-inflammatory cluster of

CGN stage mice, human LN samples with the greatest de-

enrichment in metabolic and kidney cell signatures also retained

a relatively high enrichment of immune/inflammatory

cell signatures.

To confirm these results, we generated and analyzed a second

gene expression dataset from whole kidneys of human LN patients

in a similar manner (Figure 7E). Notably, gene signature

enrichment profiles of each human whole kidney subset more

closely resembled clusters from mouse GN, including a cluster of

samples that exhibited both de-enrichment of inflammatory

signatures and metabolic signatures. GSVA of human whole

kidney gene expression using the unsupervised MEGENA

modules generated for NZM2328 mouse kidneys (Figure 6) also

yielded similar patterns of gene expression enrichment across LN

patient clusters (Supplementary Figure 5). As an additional

approach to establish similarities between mouse and human

kidney gene expression profiles, we carried out MEGENA using

the human LN whole kidney dataset. Then, MEGENA modules

generated for the NZM2328 mouse (Figure 6) were used as a

reference to determine the preservation of gene module

assignment between the mouse and human kidney gene co-

expression networks (Supplementary Table 5). The results

indicated that 22 MEGENA modules from the mouse glomerulus

and 31 MEGENA modules from the mouse TI had a significant

module preservation score (z-score > 2) with human kidney

modules indicating a high degree of overlap in their gene

expression profiles. Overall, these results demonstrate that gene

expression analysis can be used to classify stages of GN in lupus-

prone mice and that mouse kidney endotypes can be translated to

human LN patients.
Discussion

The challenge of classifying disease pathology in heterogeneous

presentations of LN has highlighted the need for a better

understanding of disease progression in the kidneys of lupus

patients and the risk factors for ESRD. To begin to address this, we

utilized gene expression analysis to characterize stages of

autoimmune inflammation leading up to the development of

chronic disease in an established murine model of human GN.

Mice were classified in disease stages by histological comparison,

matching mice by level of disease pathology and amount of IC

deposition. This analysis revealed distinct immune profiles for acute

disease, after initial IC deposition in the kidney glomerulus,

transitional disease in which inflammatory cell and pathway

enrichment is at its peak, and chronic disease in which the

accumulated insults result in irreversible damage to the kidney tissue.

We found evidence of selective immune cell infiltration in

glomeruli of AGN mice, including enrichment for Monocyte/Mf,
APC, MHC Class II, and Tfh cell gene signatures. This result reflects

a limited set of immune/inflammatory cells present in the tissues at
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the initiation of AGN and likely reflects the cellular response to IC

deposition (1, 12, 28). Enrichment of apoptosis and PRR gene

signatures at the AGN stage may reflect the widening innate

immune response triggered by early DAMP release from the

kidney tissue. At the AGN stage, glomeruli of NZM2328 mice

were also enriched for CD8 T cells, which studies have found to be

elevated in both human and mouse GN and have been linked with

disease severity (29–31). However, it is possible that in the context

of AGN, these CD8 T cells act in a more regulatory rather than

effector cell capacity, as previously suggested (32).

Our classification of the progression of GN in NZM2328 mice

uncovered a newly recognized transitional stage during which we

observed the greatest level of immune activity. As NZM2328 mice

progressed to TGN, we observed a striking increase in innate

immune response pathways and evidence of significant myeloid

cell infiltration in the kidney tissue. Previous molecular studies of

LN report a robust IFN response as the key feature distinguishing

kidneys of lupus patients from healthy individuals and the TGN

stage is when we first observed significant enrichment of an IFN

signature in glomeruli of diseased mice (33–35). In line with this

result, we also found significant enrichment of Mf populations in

TGN mice and, in particular, those with a pro-inflammatory, M1

rather than an alternatively activated, M2 gene signature. Mfs with
both an M1 and an M2 phenotype have been described in mouse

models of LN and associated with disease pathogenesis (36–39).

However, despite the production of anti-inflammatory molecules by

M2 Mfs, the amplification of inflammatory cytokine production by

immune and kidney tissue cells was found to overwhelm any

regulatory response and promote disease progression. Kidney-

infiltrating Mfs are also important mediators of damage to the

kidney tissue and we found that increases in Mf signatures in TGN

mice were accompanied by decreases in kidney cell signatures and,

in particular, podocytes. Podocytes are frequent targets of immune

infiltration in the glomerulus and podocyte injury has been

associated with proteinuria in lupus patients and is regarded as a

precursor to end organ renal damage (40–42).

It has been reported that the low oxygen tension environment in

the kidney becomes more hypoxic in LN, correlates with disease

severity, and is associated with mitochondrial dysfunction in lupus

mouse models (43, 44). In addition, several studies supporting the

“chronic hypoxia hypothesis” have identified hypoxia-induced

damage in the TI as the final critical pathway leading to ESRD in

human patients (3, 5, 45). Our results align with these studies as we

observed enrichment of the hypoxia response pathway through

Hif1a in the glomeruli of TGN mice. Furthermore, heightened

severity of disease pathology in CGN mice was accompanied by

evidence of further damage to the kidney tissue, as well as a loss of

mitochondrial and metabolic gene signatures suggestive of

mitochondrial dysfunction. Therefore, our results support

previous assertions that targeting the hypoxia response and

mitochondrial dysfunction may be beneficial in the treatment of

lupus patients (44, 46).

Glomeruli serve as the first connection points of kidney

nephrons with the vasculature before disease progresses

downstream to the kidney tubules such that kidney tubule

damage is regarded as a diagnostic marker for progression to
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ESRD (7, 47). In line with this, enrichment of inflammatory cell and

pathway gene signatures was delayed in the TI as compared to

glomeruli of nephritic mice and resulted in de-enrichment of kidney

tubule cell gene signatures in the TI of CGN mice. We also found

that the expression of kidney-damage associated genes Havcr1 and

Lcn2 (48–51) was significantly elevated in the TI of CGN mice. In

addition, de-enrichment of metabolic gene signatures indicative of

mitochondrial dysfunction was more prevalent in the TI of CGN

mice suggesting that mitochondrial stress contributed to kidney

tubule damage in late-stage disease.

Here, we also examined the mechanism(s) of resistance to

chronic disease based on differences in gender and genetic

background of lupus-prone NZM2328 mice. The increased

prevalence of SLE in females over males in both human lupus

patients and certain lupus mouse models implicates sex hormones

in the pathogenesis of LN (52–55). Our analysis by both histology

and gene expression-based approaches confirmed that male

NZM2328 lupus-prone mice develop a milder form of AGN than

female mice that does not progress to CGN (14). In addition, critical

metabolic signatures, including glycolysis and oxidative

phosphorylation, were decreased in male AGN mice suggestive of

a dampened inflammatory response. Analysis of sex hormone-

regulated gene signatures in the kidney did not indicate a

difference in the estrogen response of female or male mice, which

has been associated with lupus pathogenesis in both humans and

mouse models (56–59). However, in many cases, the effects of

estrogen regulation have been on immune cell populations and,

therefore, we cannot discount an influence of estrogen regulation on

circulating immune cells outside of the kidney tissue. In contrast to

estrogens, androgens have been implicated in immunosuppression

with decreased levels found in autoimmunity (60, 61). In line with

this, androgen-regulated genes were de-enriched in male NZM2328

AGN mice and the genes contributing to this decrease were

involved in cellular metabolism, suggesting a mechanism of

androgen regulated immunosuppression through targeting

metabolic pathways that is decreased in NZM nephritic mice.

We investigated the genetic-based resistance to chronic disease

using female mice of the congenic strain, NZM2328.R27 (13).

Interestingly, glomeruli of R27 mice exhibited evidence of anti-

inflammatory, M2 Mf infiltration with no enrichment of the pro-

inflammatory, M1, gene signature observed in the base strain. This

result suggests that the altered nature of the inflammatory response

in R27 AGN mice contributes to end organ resistance to disease.

Furthermore, the TI of R27 AGN mice exhibited enrichment of

gene signatures indicating a resistance to damaging pathologic

processes stemming from inflamed glomeruli including increased

kidney tubule cell signatures in conjunction with increased

mitochondrial and metabolic gene signatures.

Since the R27 strain was derived by replacing the chronic

disease risk locus, Cgnz1, of NZM2328, we examined the

potential contribution of the 45 genes within this locus to

resistance to CGN. We uncovered several pro-inflammatory genes

with elevated expression in NZM2328 female mice, that would

promote the activation of pathogenic immune populations such as

M1 Mfs and have been implicated in GN (62, 63). Furthermore, 7
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risk locus genes that significantly correlated with kidney tubule cell

signature enrichment in R27 AGN mice were involved in cell

growth, metabolism, and WNT signaling. Involvement in

boosting mitochondrial function could counteract the risk of

mitochondrial stress and loss of function that were present in

late-stage NZM2328 female mice. In addition, WNT signaling has

been shown to have a positive role in resolving acute kidney injury,

whereas it may promote maladaptive responses during chronic

disease (64).

We have identified multiple mechanisms by which lupus-prone

mice acquire resistance to chronic nephritis with implications for

identifying risk factors for ESRD in human lupus patients.

Interestingly, these mechanisms appear to be independent of the

amount of IC deposition as all AGN mice (NZM2328 female,

NZM2328 male, and R27 female) were matched by the level of

pathology before monitoring disease progression. Resistance to

chronic disease in male NZM2328 mice may have occurred at the

initial point of IC deposition in the glomerulus, which failed to elicit

a potent inflammatory response, possibly related to androgen-

dependent suppression of energy-producing metabolic pathways.

Resistance to chronic disease in R27 mice was associated with an

altered composition of immune cells in the glomerulus that resulted

in a lack of immune pathology downstream in the tubules.

Moreover, the tubules in the R27 mice appear to be resistant to

damage, as manifested by enhanced metabolic signatures. The

resistance of tubules to damage related to immune activity in the

glomerulus and/or hypoxia could play a pivotal role in preventing

the typical inflammatory infiltrate in the TI of CGN, Thus, the

absence of tubular dysfunction may have limited the inflammatory

infiltrate in the TI and ultimately prevented additional damage to

the kidney tissue.

Using a gene expression-based clustering approach, we have

identified a core set of curated gene signatures able to classify

disease stages of murine GN into molecular endotypes that

effectively translate to human LN patients. Notably, human

orthologs of the murine GN gene signatures identified a similar

pattern in two independent cohorts of human LN patients

consisting of increased enrichment of inflammatory cells and

corresponding de-enrichment of metabolic pathways and kidney

tissue cells associated with more advanced stages of kidney

pathology. In current practice, the severity of LN pathogenesis is

determined by histological classification, which is used to drive

therapeutic decisions and assess the potential for terminal kidney

damage (27, 65, 66). We found only modest correlation between

ISN histological classification of renal pathology in human LN

patients and molecular classification by gene expression profiling

and the gene signature correlations that were identified were

inconsistent across patients with the same ISN class and between

datasets. This result emphasizes the subjectivity of histological

assessment of renal pathology, and suggests that molecular

classification may be a more robust and reproducible approach to

classification of human LN.

An orthogonal, unsupervised approach to generate co-

expressed gene modules (MEGENA) also identified similar

molecular patterns that effectively classified mouse GN stages,
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human LN patients, and were highly conserved between species.

This unsupervised approach supplies further validation for gene

expressed-based profiles derived from curated gene signatures as

well as the utility of lupus mice to recapitulate human LN at the

molecular level. In summary, this work provides a comprehensive

examination of the immune processes involved in progression of

murine GN to chronic disease resulting in renal failure. In addition,

this work presents a foundation for improved classification of LN

based on molecular endotypes and illustrates the applicability of

murine models to better understand the stages of human disease.
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Defining the immunological landscape of human tissue is an important area of

research, but challenges include the impact of tissue disaggregation on cell

phenotypes and the low abundance of immune cells in many tissues. Here, we

describe methods to troubleshoot and standardize Cellular Indexing of

Transcriptomes and Epitopes by sequencing (CITE-seq) for studies involving

enzymatic digestion of human tissue. We tested epitope susceptibility of 92

antibodies commonly used to differentiate immune lineages and cell states on

human peripheral blood mononuclear cells following treatment with an enzymatic

digestion cocktail used to isolate islets. We observed CD4, CD8a, CD25, CD27,

CD120b, CCR4, CCR6, and PD1 display significant sensitivity to enzymatic

treatment, effects that often could not be overcome with alternate antibodies.

Comparison of flow cytometry-based CITE-seq antibody titrations and

sequencing data supports that for the majority of antibodies, flow cytometry

accurately predicts optimal antibody concentrations for CITE-seq. Comparison

by CITE-seq of immune cells in enzymatically digested islet tissue and donor-

matched spleen not treated with enzymes revealed little digestion-induced

epitope cleavage, suggesting increased sensitivity of CITE-seq and/or that the

islet structure may protect resident immune cells from enzymes. Within islets,

CITE-seq identified immune cells difficult to identify by transcriptional signatures

alone, such as distinct tissue-resident T cell subsets, mast cells, and innate

lymphoid cells (ILCs). Collectively this study identifies strategies for the rational

design and testing of CITE-seq antibodies for single-cell studies of immune cells

within islets and other tissues.
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CITE-seq, tissue immunity, flow cytometry, pancreas, single cell RNA seq
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1 Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterized by

T-cell mediated destruction of insulin-producing beta cells in

pancreatic islets (1). The balance between beta cell function and

regeneration versus dysfunction and death is influenced by a variety

of islet-proximal immune cells such as macrophages and other innate

cells, as well as effector and regulatory T cells and other lymphoid

populations (2–7). However, much of our current understanding

comes from studies in mice (8–12) and there is a need to better

understand cellular-cross talk mechanisms that control the function

of human islets in both health and T1D. Characterization of human

islet-resident immune cells and their interactions has proven

challenging, however, due to low frequency of immune cells within

islets and effects of dissociating tissue that can impact surface antigens

(13–17).

Phenotyping of human tissue-resident immune cells has been

significantly advanced by the advent of Cellular Indexing of

Transcriptomes and Epitopes by sequencing (CITE-seq). This method

allows simultaneous capture of cell surface protein and messenger RNA

(mRNA) expression of single cells (18), and is particularly useful for

detecting immune cell lineage markers with low mRNA expression (19)

as well as unbiased capture of the transcriptome of novel cell types (20).

For example, T cell populations such as g/d and mucosal-associated

invariant T cells, and cell types such as innate lymphoid cells (ILCs) and

neutrophils are not well identified by single-cell RNA sequencing due to

low RNA content of lineage defining transcripts, high levels of RNase

(20–22), and mRNA expression patterns that do not correlate with

protein expression (19). Thus, annotating immune populations solely on

the basis ofmRNA expression can lead tomisidentification or an inability

to distinguish distinct populations with overlapping transcriptional

characteristics.

Despite the advantages of assessing surface protein expression

using CITE-seq, there are several methodological challenges. One

obstacle is the identification of optimal antibody titrations, as hyper-

concentration can lead to high background signal and increased

sequencing costs without adding sequencing depth, whereas

insufficient antibody can lead to insufficient signal to distinguish

positive expression patterns (23). Flow cytometry is often used as a

surrogate to define CITE-seq antibody titrations, on the basis of the

assumption that the signals of oligo-tagged antibodies correlate to

those from the same clone in a fluorochrome-tagged format (18).

However, due to differences in antibody lots, tissue source,

fluorescence spillover, tissue autofluorescence, and non-specific

background binding, optimal concentrations of flow cytometry

versus CITE-seq antibodies may differ.
Abbreviations: CITE-seq, Cellular indexing of transcriptomes and epitopes by

sequencing; EDTA, Ethylenediaminetetraacetic acid; FACS, Fluorescence-activated

cell sorting; FBS, Fetal bovine serum; ILC, Innate lymphoid cell; mRNA, Messenger

RNA; PBMC, Peripheral blood mononuclear cell; PCA, Principal component

analysis; RC, Relative change; T1D, Type 1 diabetes; UMAP, Uniform manifold

approximation and projection; UMI, Unique molecular identifier; ADT, Antibody-

derived tags; DEGs, Differentially expressed genes; DEPs, Differentially

expressed proteins.
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Another challenge in studying human tissue samples is the use of

enzymatic digestion to create single cell suspensions. The type of

enzymes used and length of digestion time can significantly affect the

presence of cell surface proteins (24). For islets, a variety of purified

digestive enzymes can be used during the isolation process for clinical

or research applications, including collagenase NB1 (Nordmark;

Uetersen, Germany), Liberase™ (Roche; Basel, Switzerland) and/or

Collagenase Gold (Vitacyte; Indianapolis IN, USA) (25, 26). The

comparison between these collagenase enzymes used in islet isolation

shows that they produce similar islet purity and viability (27). During

the tissue digestion process, cell surface molecules on both immune

and parenchymal populations may be damaged (17, 24), necessitating

assessment of the digestion-induced destruction of epitopes of

interest to accurately assess the phenotype of resident immune

cells (17).

Herein, we assessed the impact of pancreas digestion and islet

isolation on extracellular immune cell lineage and phenotype

markers, and identified antibody clones that are sensitive or

resistant to the digestion process. We also optimized titration of

antibodies for CITE-seq using flow cytometry, and characterized

expression of immune cell markers in healthy human islets by

paired flow cytometry and CITE-seq.
2 Materials and methods

2.1 Experimental design

To evaluate the effect of digestive enzymes used during islet

isolation on CITE-seq oligo-antibodies, peripheral blood

mononuclear cells (PBMCs) were treated with enzymes to mimic

the process used by the University of Alberta IsletCore (26).

Splenocytes were used in during CITE-seq antibody titrations. All

donor information can be found in Supplemental Table S1. Cells were

incubated for 30 minutes, with or without digestion enzymes, and

then stained with a variety of antibody panels to comprehensively

classify and characterize T cell-, myeloid-, and ILC-derived

subpopulations. We then compared the proportion of cells positive

for each antibody stain in a common parent cell type: either lymphoid

or myeloid, depending on the marker of interest (Figure 1A and

Supplemental Figure S1).
2.2 PBMC and spleen preparation

Human tissue specimens were collected in accordance with

biosafety and ethical protocols approved by the University of

British Columbia Clinical Research Ethics Board (B22-0075 and

H18-02553, respectively) and Canadian Blood Services, and the

University Health Networks Research Ethics Board and biosafety

protocols (17-6229 and 20-5206, respectively). PBMCs were derived

from venous blood and cryopreserved in aliquots as previously

described (28).

For digestion experiments, PBMCs were thawed in a 37°C water bath

and transferred to pre-warmed (37°C) X-VIVO cell culture media

containing 5% human serum at a concentration of 1 million cells/mL.

For panels consisting of markers requiring immune activation, cells were
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divided into two equal-volume aliquots, one of which was activated with

CytoStim™ polyclonal T cell stimulant to a concentration of 1:200

(stimulant to media) and cultured for 48 hours at 37°C.

Islet perfusion solution was prepared following a standardized

protocol from the University of Alberta (26) from HBSS with 3.6 mM

calcium chloride, 0.81 mM magnesium sulfate, 4.2 mM sodium

bicarbonate, 10 mM HEPES, and 100 U penicillin-streptomycin

adjusted to a pH value of 7.35. Perfusion buffer was combined with a

digestion solution of 2.8 mg/mL Collagenase Gold, 12,500 U/g BP

Protease, and 5.6 mg/mL DNAse I, Grade II. Up to 2x106 PBMCs

were then incubated for 30 min at 37°C in the combination perfusion

buffer/digestive solution. The vials were gently agitated at 10-minute

intervals. After digestion cells were washed in PBS containing 0.5 mM

EDTA and resuspended in 4.5 mL PBS/EDTA. Trypsin (390 μL of

0.25%) was added to the cell suspension and incubated at 37°C for 10

min. The reaction was stopped by adding 10 mL PBS containing 1% fetal

bovine serum (FBS), 1 mM EDTA, and 11 mM GlutaMAX™. Finally,

cells were transferred to a 96-well V-bottom polystyrene plate for flow

cytometry staining.

Spleens were received from the University of Alberta IsletCore or

the Ajmera Transplant Centre Islet Transplant Program. Samples
Frontiers in Immunology 0374
were cut into small pieces using a sterile scalpel then placed into

gentleMACS C-tubes with 10 mL PBS plus 2% FBS and placed in a

gentleMACS dissociator using the m_spleen_01_01 setting. After

dissociation, the slurry was mashed through a 70 μm cell strainer

and ACK lysed to remove red blood cells (29). Cell pellets were

resuspended in 50 mL RPMI media and 1x106 cells were removed per

well, centrifuged and resuspended in 50 μL master mixes containing

cell staining buffer and either flow cytometry or CITE-seq antibodies.
2.3 Flow cytometry of PBMCs to assess
clonal sensitivity to enzymatic digestion

PBMCs, either exposed to islet perfusion solution or unexposed

controls, were stained with a combination of the 61 anti-human

antibodies listed in Supplemental Table S2. Each staining panel was

selected to distinguish key subpopulations of myeloid cells and

lymphocytes. For each cell surface marker, at least one of the

antibody clones tested matched that of the corresponding marker in

BioLegend’s TotalSeq™-C Human Universal Cocktail selection kit.

Panels were designed to allow standard lineage gating of immune cell
A

B

FIGURE 1

Flow cytometry reveals T cell specific, deleterious effects of islet digestive enzymes on staining of antibody clones used for generation of TotalSeq-C
oligo-antibodies. (A) Activated or non-activated PBMCs were treated with a digestive enzyme solution and stained with flow cytometry antibodies
corresponding to clones used in the TotalSeq-C commercial antibody catalogue of oligo-antibodies used for CITE-seq. (B) Markers were selected to
identify key cellular subsets of T lymphocytes, monocytes, and innate lymphoid cells, in addition to other antibodies used for e.g., leukocyte selection,
stress indicators, and immune activation.
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phenotypes whenever possible. Samples for flow cytometry were

acquired on the FACS Symphony A5 platform and analyzed using

FlowJo software (BD Biosciences; version 10.8.1). All events were

gated on live, single lymphoid or myeloid populations as applicable

(gating strategy shown in Supplemental Figure S1). Gates were set on

undigested cells and then applied to the digested cells. Markers were

assigned to either a myeloid lineage or activated/non-activated

lymphocyte lineage, and percent positive of parent populations

reported. Figures were generated with Prism 9 (GraphPad Software;
Frontiers in Immunology 0475
version 9.3.1) and the R statistical computing environment (version

4.2.0). Figure 2 was generated using the ComplexUpset package (30).

All data pertaining to fluorophore-conjugated antibody staining

of cells treated with digestion enzymes were considered for quality-

related inclusion or exclusion from the study at the time of data

collection and analysis. Our a priori criteria for inclusion of data in

the final assessment were as follows: 1) Data for n=2 or more PBMC

donors; 2) a population of positive cells clearly identifiable in the

undigested cell sample; 3) for markers on activated cells, a sufficient
A

B

C

FIGURE 2

UpSet plot of clones included in the study, organized by immune cell lineage (T cell, NK/ILC, or monocyte).(A) Relative proportions of sensitive, partially
sensitive, and insensitive clones per grouping. (B) Histogram representing number of clones tested per grouping. (C, left) From top to bottom, total
number of clones tested for markers that are expressed by T cells, NK/ILCs, and monocytes, respectively. Line plot (right) signifies groupings of markers
for data in (A, B) that are expressed by one, two, or all three cell types, as indicated by connected dots (e.g., the first column describes data for markers
that are expressed by all three cell types, the second column for markers expressed only by T cells and NK/ILCs, etc.). Groupings are exclusive.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1107582
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Colpitts et al. 10.3389/fimmu.2023.1107582
activation signal, determined via CD69 staining, must be visible in the

flow cytometry output.

Readings of identical clone-fluorophore combinations during a

single flow cytometry experiment (e.g., repeat measurements from

different staining panels on the same day) were used to determine

mean values and recorded in the final dataset. Digestion sensitivity of

technical replicates (or the mean value for repeated measurements)

for each antibody was assessed by calculating the relative change (RC)

of the positive population in digested cells (to undigested cells) and

converting to a percentage (see Equation 1).

RC = 100 ∗
%   positive   (undigested) −%   positive   (digested)

%   positive   (undigested)

Equation 1. Expression for quantifying relative change in positive

staining for flow cytometry antibodies in digested and

undigested cells.

A sample was considered sensitive if the RC was ≥ 50, and

partially sensitive if 25 ≤ RC ≤ 50. As the equation is biased to

output large values for small inputs (e.g., markers for rare cell

populations), replicates with ≤ 5% positivity of the undigested cells

were assessed for sensitivity via standard flow gating. If a positive

population for the antibody was visible, it was considered insensitive

to digestion.

Subsequently, overall clone sensitivity to digestion was assessed by

computing the proportion of replicates for each clone with full or

partial sensitivity. Antibody clones were considered sensitive if the

majority of replicates had an RC ≥ 50; partially sensitive if the majority

of clones had an RC ≥ 25 but ≤ 50; and insensitive if the majority of

replicates had an RC ≤ 25. Clones with a 50% split between full/partial

or partial/insensitive replicates were categorized as partially sensitive.
2.4 Human islet preparation

Human islets were received in accordance with research ethics

protocols 20-5206 (UHN) and H20-01930 (UBC). Human islets

(~10,000 islet equivalents) were obtained from the IsletCore

(University of Alberta) and shipped overnight in CMRL 1066

media. Prior to CITE-seq staining, islets were dissociated into a

single cell suspension by centrifugation (800 rpm, 5 min),

resuspended in 5 mL trypLE, and incubated in a 37°C water bath.

After 2 minutes, the islets were removed, pipetted vigorously, and

returned to the water bath for an additional 3 minutes. Islets were

counted and immune cells enriched using an Easysep human CD45

Depletion kit II. Cells were resuspended at 1.0x108 cells/mL in

EasySep™ buffer and 12.5 μL/mL EasySep Human CD45 Depletion

Cocktail II was added and incubated for 5 minutes at room

temperature. EasySep Dextran RapidSpheres (20 μL/mL) were then

added and incubated for 3 minutes at room temperature. The mixture

was then topped up to 2.5 mL with EasySep buffer and placed in an

EasySep purple magnet for 5 minutes. The CD45-negative fraction

was decanted, and the positive fraction added to the magnet for an

additional 5 minutes in 2.5 mL EasySep buffer. The resulting CD45-

positive fraction was then counted, 1x106 cells were removed,

centrifuged, and resuspended in 50 μL master mix containing cell

staining buffer and flow cytometry antibodies or TotalSeq-C

antibodies for CITE-seq, or a mix of both for ILC enrichment.
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As ILCs are present in very low abundance and display significant

overlap in protein and RNA level expression of molecules expressed

by T cells, we also performed an ILC enrichment on the same sample.

CD45-enriched islet cells (1x106) were stained with flow cytometry

antibodies as well as the TotalSeq™-C antibody cocktail (at a 1:1

ratio) and flow sorted before sequencing. FITC-conjugated antibodies

against B cells, T cells, and myeloid cells were used to differentiate

these immune cells from ILCs. Antibodies used for lineage exclusion

are listed in Table 1. We also used a live/dead dye (FVS700) and

antibodies directed against CD45 (APC Cy7, clone HI30), CD56

(BV605, clone HCD56), and CD127 (PE, clone hIL-7R-M21) to

differentiate helper ILCs from NK cells. Cells were sorted as Live,

CD45+, Lineage- (Supplemental Figure S2) washed as above and sent

for sequencing.
2.5 Assessing optimal antibody titrations
using splenic samples

To capture tissue-resident myeloid populations, such as those

seen in islets, we used human splenocytes for flow cytometry-based

CITE-seq antibody titrations. Splenocytes were thawed in pre-

warmed, serum-free RPMI, washed and resuspended at 5x106 cells/

mL in RPMI containing 5% human serum and 1% penicillin/

streptomycin. Since some markers of interest were only expressed

upon activation, cells were either activated (with LPS + IFNg or PMA/

ionomycin) or rested for 6 hours in complete RPMI at 37°C. If the

marker of interest was expressed more abundantly on myeloid lineage

cells, cells were activated with 10 ng/mL LPS + 100 ng/mL IFNg. If the
marker of interest was expressed more abundantly on ILCs or T cells,

cells were activated in PMA/Ionomycin cell stimulation cocktail.

After stimulation, 3x106 cells were washed with PBS plus 2% FBS

(FACS buffer), resuspended in 75 μL Human TruStain FcX™ Fc

Blocking reagent (at a 1:10 dilution in FACS buffer) and 1x106 cells

(25 μl of Fc blocked cells) were plated in a V-bottom plate for 15

minutes at 4°C. Each antibody was tested in 3 dilutions: 2x, 1x and

0.5x the recommended dilution and added to 25μl of FACS buffer.

Samples were stained for 30 minutes at 4°C and washed in FACS

buffer. Acquisition was performed on a BD LSRFortessa flow

cytometer and analyzed using FlowJo software (BD Biosciences;

version 10.8.1).
2.6 CITE-seq staining of spleen and islets

Surface staining was performed as described in the BioLegend

protocol (31). Briefly, 1x106 cells were resuspended in 45 mL Cell

Staining Buffer in 1.5 mL microcentrifuge tubes. Human TruStain

FcX™ Fc Blocking reagent (5 μL) was added, and cells were incubated

for 10 minutes at 4°C. TotalSeq™-C antibody cocktails were made

during the incubation using concentrations determined by previous

flow-cytometry-based CITE-seq titrations. All TotalSeq™-C

antibodies added can be found in Supplemental Table S3. The

resulting cocktail was then added to cells and incubated for 30

minutes at 4°C. After incubation, cell pellets were resuspended with

1 mL PBS plus 0.05% BSA and centrifuged for 5 minutes at 400*g. The

wash was repeated twice more for a total of 3 washes, and the final
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concentration was adjusted to 1200 cells/μL and sent for sequencing

to a local biomedical research core.
2.7 CITE-seq data analysis pipeline

Samples were prepared for sequencing using the 10X Genomics

Single Cell 5’ v2 platform in accordance with manufacturer’s

instructions for capture of 12,000 cells per sample. Reverse

transcription, cDNA amplification and sequencing libraries were

generated using 10X Genomics Single Cell 5’ v2 reagents. Across

samples, cells were sequenced to a target depth of 40,000 reads per

cell. Read alignment to the reference human genome (GRCh38/hg38)

and gene expression matrices were generated by the 10X Genomics

CellRanger pipeline (version 6.1.2) 7. In line 640 please remove “to

generate UMAPS.

Data were loaded into R and Seurat objects were created individually

for both islets and spleen. High mitochondrial content cells were

removed from the islet clusters by removing cells with >10% of

Unique Molecular Identifiers (UMIs) mapped to mitochondrial genes

and <200 unique genes. For splenocytes, cells which had >20% of UMIs

mapped to mitochondrial genes and <200 unique genes were removed.

Data were normalized with SCTransform (32), principal component

analysis was used for dimensionality reduction (RunPCA) and cells were

clustered using the Louvain algorithm with 30 principal components

(FindNeighbors and FindClusters) in Seurat (33). Clusters were

visualized using the Uniform Manifold Approximation and Projection

(UMAP) algorithm (34).

In each object, immune cells (identified as clusters expressing

PTPRC), were used to create an immune cell-only object. The
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individual datasets were then merged and integrated using harmony

(RunHarmony) (35). Cell type-specific thresholds were set to remove

low quality cells and all cells with >10% of UMIs mapped to

mitochondrial genes, as above. Cells with low transcript abundance

(<200 features) and high antibody expression indicative of antibody

aggregates were removed. Integrated data was then normalized

following the same process above. Cell types and lineages were

annotated by analysing the top differentially expressed genes and/or

proteins (FindMarkers) and manually labelled. T cell UMAPs were

generated by selecting cells which expressed either CD3E or CD3 and

re-clustered.
3 Results

3.1 Epitopes for several antibody clones
in the TotalSeq™-C kit are affected by
digestive enzymes

We performed flow cytometry on PBMCs which were or were not

exposed to a mock islet digestion protocol using a total of 92 antibody

clones specific for 64 immune cell markers (Figure 1). Surface marker

expression by cell type is displayed in Figure 1B. Up to five antibody

clones were tested per marker, with 2-18 replicates per clone on cells

from 2-4 PBMC donors. In the final analysis, data from 75/92 (82%)

of tested clones, specific for 61 immune cell markers were included.

To assess epitope sensitivity to digestive enzymes, we first

analyzed data via traditional flow cytometry to identify potentially

problematic clones/markers for which no positive population was

observed in the digestion condition. We then assessed the quantity of

cells positive for each marker as a proportion of the parent

cell population.

Across all replicates included in the final analysis (n=216), we

observed a median relative change of 8.2 (IQR: -1.1 to 52.7), with

values ranging from –188% to 100% (Note: RC values correspond to

relative change of mean fluorescence intensity for the marker of

interest in digested versus undigested cells). We found that 37/216

(17%) replicates displayed low, but quantifiable, relative expression in

the parent population of cells in both the digested and undigested

samples, and we treated these replicates for reporting purposes as

non-sensitive. A total of 116/216 (54%) replicates were non-sensitive

with >5% positivity in the undigested parent cells (i.e. true non-

sensitives), 20/216 (9%) partially sensitive, and 43/216 (20%)

significantly sensitive. A summary of these observations stratified

by immune cell type is provided in Figure 2.

We found that most (47/75, 63%) antibody clones tested using

flow cytometry that align with TotalSeq-C oligo-antibodies were not

sensitive to the enzymatic digestion process, with some notable

exceptions (Figure 3; Table 2). We observed partial sensitivity in

n=16 (21%) of clones tested, and high sensitivity in n=12 (16%) of

clones. A library of figures for each marker is included as a

supplementary download, indicating the proportion of parent cells

positive for each antibody stain and subsetted by clone tested. Of the

n=12 clones found to be highly sensitive, n=8 (75%) belonged to the

TotalSeq-C library, summarized in Table 2. Additionally, Figure 4

summarizes the sensitivity of each clone included in our final results

in a hierarchical heatmap format.
TABLE 1 Flow cytometry antibodies used to identify cells positive for
classical immune cell lineage markers.

Antibody Clone

CD3 OKT3

CD3 UCHT1

CD4 RPA-T4

CD8a RPA-T8

CD14 M5E2

CD15 W6D3

CD19 HIB19

CD20 2H7

TCR a/b IP26

TCR g/d B1

CD33 HIM3-4

CD34 583

CD203c NP4D6

FceR1a AER37

CD79a HM47

CD138 MI15
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3.2 Flow cytometry antibody titrations allow
estimates of antibody concentrations for
CITE-seq studies

Flow-based antibody titrations were used to determine the

optimal concentration for CITE-seq staining, as prior studies

suggested flow-based signal would be analogous to CITE-seq signals

(18). PE-conjugated antibodies corresponding to the same markers

and epitopes (clones) as the TotalSeq-C antibodies were utilized.

Three titrations were performed on each antibody of interest with the

middle concentration being that recommended by the vendor

(BioLegend). Flow cytometric analysis was used to determine the

lowest amount of PE-conjugated antibody needed to generate a

positive signal (Table 3; Figure 5). As some populations of interest

are rare or absent in PBMCs, we used human splenocytes to perform

the antibody titrations. For markers which were more highly

expressed upon activation, cells were activated for 6 hours before

staining. For activation markers on myeloid cells (e.g., CD80, CD86

and CD163), cells were stimulated with a combination of LPS and

IFNg, and for those on T cells and/or ILCs (e.g. CD69, ICOS, and

CD107a), cells were activated with PMA/Ionomycin. Concentrations

were assessed by the ratio of percent positive signal plus noise (gated

based on unstained) to the percent positive signal (gated based on

peak separation). The optimal antibody concentration was

determined to be that which gave a positive peak with the lowest
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positive signal plus noise (Figure 5A). Titration results for each

marker are listed in Table 3 and Figure 5B gives examples of

titration plots for markers affected by enzymatic digestion and

Figure 5C is the legend for these plots, with the titration

concentration selected to move forward with shown in blue. For 15

antibodies, the recommended dilution (titration concentration #2)

was appropriate. However, for only 1 marker (CD11b), the highest

concentration (titration concentration #3) gave a positive signal

without substantial background staining (signal – (signal + noise)

ratio). For the remainder and majority of antibodies (47), we noted

the lowest concentration, titration #1, to be optimal. We therefore

moved forward with the appropriate concentration based on these

results for CITE-seq studies.
3.3 CITE-seq antibody concentrations
determined by flow cytometry allow
identification of islet-resident
immune populations

To test the effects of enzymatic digestion on CITE-seq samples,

enzymatically dissociated islets and donor-matched spleen

(mechanically dissociated only) from one individual were stained

with a panel of 67 oligo-tagged antibodies associated with myeloid, T

cell and ILC populations (Supplemental Table S3) and sequenced. As
FIGURE 3

The effects of enzymatic digestion on key phenotypic markers of concern in the TotalSeq-C antibody library. White and blue circles indicate pre- and
post-digestion values, respectively. Each pairing signifies an independent experimental replicate of pre- and post-treatment measurements, and the
proportion of cells positive for the marker of interest was determined using standard flow gating. Parent cells were total live lymphocytes after applying
quality control gating as outlined in Supplemental Figure S1.
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we were primarily focused on how enzymatic digestion impacted

epitopes on immune cells and how CITE-seq could aid in better

delineation of immune cell subsets, the panel of antibodies selected

included markers commonly used to distinguish immune cell subsets

and activation states.

To ensure sufficient immune cells were captured by sequencing,

CD45-enrichment using magnetic separation was performed on islets,

as immune cells account for only 1-2% of cells within human islets

(15). To further enrich for rare ILC populations, which can have

overlapping transcriptomic signatures with CD4+ T cell subsets, ILCs
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were isolated via flow cytometry sorting by negatively gating on

expression of lineage markers (Table 1) on islet-resident CD45+ cells

(Supplemental Figure S2). This ILC-enriched sample was sequenced

along with the donor-matched CD45-enriched sample (Figure 6A).

Donor-matched spleen was also sequenced to serve as a control for

assessing epitopes negatively impacted by enzymatic digestion and to

aid in annotation of immune populations.

After sequencing, islet CD45-enriched and islet ILC-enriched

samples were integrated (Figure 6B) and populations defined by

RNA expression and antibody-derived tags (ADT) were compared
TABLE 2 List of clones tested for key markers of concern.

Clone
tested

Clone with best
observed
staining

Number of donors> clone
was tested with

Number of
replicates
included

Proportion of
replicates

sensitive (%)

Proportion of
replicates partially

sensitive (%)

Proportion of
replicates not
sensitive (%)

CD4 OKT4

OKT4 4 16 0 0 100

RPA-T4 2 3 67 33 0

CD8a SK1

RPA-T8 2 3 100 0 0

SK1 3 9 22 22 56

CD25 (IL2R) 4E3

2A3 2 2 100 0 0

4E3 2 2 0 0 100

B1.49.9 2 2 0 50 50

BC96 3 3 67 0 33

M-A251 3 5 20 20 60

CD27 O323

O323 2 4 75 25 0

CD120b
(TNFRSF1B)

3G7A02

3G7A02 2 2 100 0 0

CD194
(CCR4)

1G1

1G1 2 2 0 50 50

L291H4 3 4 75 0 25

CD196
(CCR6)

11A9

11A9 2 2 50 0 50

G034E3 3 4 75 25 0

R6H1 2 2 100 0 0

CD279
(PD1)

PD1.3

eBioJ105 2 2 100 0 0

EH12.1 2 2 100 0 0

EH12.2H7 3 3 100 0 0

PD1.3 2 2 50 0 50
TotalSeq-C clones highlighted in bold text.
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to those observed in donor-matched spleen (Figure 6B). Individual

islet and spleen UMAPs with clustering based on combined RNA

expression and ADT were annotated based on cell types and origin

(CD45-enriched or sorted) (Figure 6B). Next, islet-resident immune

cells were merged with the splenocytes and normalization, PCA and

cell-clustering analysis performed. Clusters in the merged islet and

spleen dataset were then manually annotated based on cell lineage

and cell type and compared across tissue of origin (islet or spleen)

(Figure 6C). We noted the contribution and proportion of each cell

type from islets or spleen differed (Figure 6D). Mast cells originated

primarily from islets whereas B cells and plasma cells were

predominantly from the spleen (Figure 6D). To annotate subsets of

immune cell lineages, the expression of genes and proteins associated

with T cells and ILCs (Figure 6E), myeloid cells (Figure 6F) and

plasma cells, B cells and mast cells (Figure 6G) were assessed. Unique

to islets, we also identified a CD8 T cell population with surface

protein expression of NKG2D and CD94 (Figure 6E).

We noted, however, that although flow cytometric titrations were

performed to optimize antibody dilutions for CITE-seq, the

concentrations used based on this optimization were not always ideal,
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with some markers displaying a large degree of non-specific background

signal. In particular, 4-1BBL, CD138, TCR g/d, CD64, NKp44 and OX40
contained notable background contamination. To correct this, minimum

cut-offs were used to eliminate background signal from non-specific

binding of oligo-tagged antibodies (Supplemental Figure S3).

To validate the CITE-seq protein data based on ADT, flow

cytometry analysis was performed on islets from n=4 donors.

Proportions of immune cells in healthy human islets (Figure 7A)

were used to compare expression patterns in myeloid, T cell and ILC

populations (Figures 7B–D). CD14 and CD68 were used to identify

myeloid populations (Figure 7B) and the expression of HLA-DR and

CD206 was validated in healthy human islets in comparison to PBMC

control myeloid cells. CD3, CD4, and CD8 were used to identify T cell

populations. CITE-seq revealed that islet-resident CD4+ T cells

expressed CCR4 and CD45RO, which was also observed via flow

cytometry (Figure 7C). In CD8+ T cells, high expression of CD103

and CD45RO was observed via both CITE-seq and flow cytometry

(Figure 7C). Thus, there was concordance in positive expression

between protein detected by flow cytometry and protein detected

by CITE-seq in islet resident immune cells.
FIGURE 4

Circle packing heat map of clone sensitivity to digestive enzymes. The colour scale indicates relative proportion of replicates sensitive or partially
sensitive to digestion, and the size of each circle indicates the number of replicates included in analysis. Circle containers indicate successive levels of
hierarchy, where clones are grouped according to immune marker (the colour of these encapsulating hierarchy circles, which contain multiple daughter
clones, is not indicative of daughter clone sensitivity).
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TABLE 3 List of antibodies titrated, stimulation condition, recommended titration from the vendor and 3 point titration values.

Antibody Stimulation condition Recommended Titration Titration 1 Titration 2 Titration 3

CD56 – 0.05 - 0.8 0.05 0.425 0.8

CD161 – 0.125 - 2 0.125 1.0625 2

CD117 (c-kit) – 0.25-1 0.25 0.625 1

CD16 – 0.025 - 0.4 0.025 0.2125 0.4

TIGIT (VSTM3) – 0.125 - 2 0.125 1.0625 2

CD335 (NKp46) – 0.05 - 0.8 0.05 0.425 0.8

CD294 (CRTH2) – >0.5 0.5 1.25 2

CD127 (IL-7Ra) – 0.05 - 0.8 0.05 0.425 0.8

CD196 (CCR6) – 0.0125 - 0.2 0.0125 0.106 0.2

CD314 (NKG2D) PMA 0.0625 - 1 0.0625 0.53125 1

CD336 (NKp44) – >0.5 0.5 1.25 2

CD94 – 0.025 - 0.4 0.025 0.2125 0.4

KLRG1 (MAFA) – 0.1-0.5 0.1 0.3 0.5

CD183 (CXCR3) – 0.05 - 0.8 0.05 0.425 0.8

TCR g/d – N/A 0.05 0.425 0.8

CD45 – 0.01-0.1 0.01 0.055 0.1

TCR Va24-Ja18 (iNKT cell) – N/A 0.5 1.25 2

TCR a/b – 0.015 - 0.24 0.015 0.1275 0.24

CD8a – N/A 0.025 0.2125 0.4

CD3 – 0.0125 - 0.2 0.0125 0.106 0.2

CD4 – 0.025 - 0.4 0.025 0.2125 0.4

CD138 (Syndecan-1) – N/A 0.05 0.425 0.8

CD14 – 0.025 - 0.4 0.025 0.2125 0.4

CD206 (MMR) – 0.25-1 0.25 0.625 1

HLA-DR – 0.0125 - 0.2 0.0125 0.106 0.2

CD45RA – 0.03125 - 0.5 0.03125 0.2656 0.5

CD45RO – 0.125 - 2 0.125 1.0625 2

CD25 PMA 0.025 - 0.4 0.025 0.2125 0.4

CD223 (LAG-3) PMA 0.125 - 2 0.125 1.0625 2

CX3CR1 – 0.0625-1 0.0625 0.53125 1

TSLPR (TSLP-R) – >0.5 0.5 1.25 2

CD49b – 0.025 - 0.4 0.025 0.2125 0.4

CD38 PMA 0.05 - 0.8 0.05 0.425 0.8

CD57 Recombinant – 0.025 - 0.4 0.0.25 0.2125 0.4

CD49a – 0.025 - 0.4 0.025 0.2125 0.4

CD278 (ICOS) PMA 0.0625 - 1 0.0625 0.53125 1

CD357 (GITR) PMA N/A 0.5 1.25 2

CD39 PMA 0.0125 - 0.2 0.0125 0.10625 0.2

CD69 PMA 0.025 - 0.4 0.025 0.2125 0.4

CD279 (PD-1) PMA 0.125 - 2 0.125 1.0625 2

(Continued)
F
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To examine whether combined RNA and protein data allowed for

better delineation of cell types than either individually, we performed

normalization and UMAP projections based on either RNA or ADT

data alone from the merged islet and spleen dataset (Supplemental

Figure S4). Manual annotation of the UMAPs was informed by

heatmaps of select differentially expressed genes (DEGs) or

differentially expressed proteins (DEPs) present in clusters defined

by RNA, ADT, and/or combined RNA and ADT (Supplemental

Figure S5). We found that analysis using RNA, ADT or RNA with

ADT all generated UMAPs with 14 clusters (Supplemental Figure

S4A). Populations labelled as ‘Unclear’ in Supplemental Figure S4B

were those which lacked lineage defining markers by either RNA or

ADT. Notably, manual annotation with information from either RNA

or ADT alone did not match annotations derived from RNA and

ADT (Supplemental Figure S4B). Specifically, clusters 0, 1, 2, 3, 4, 5, 8,

9, 11, and 14 were not accurately annotated using RNA or ADT data

alone. Further, UMAPs derived from combined RNA and protein

data were necessary to identify CD4+ T cells, NK/CD8+ T cells, NK

cell/ILCs and CD8+ T cells as key lineage markers were not highly

expressed at the RNA level. These findings emphasize the importance
Frontiers in Immunology 1182
of including protein data to accurately distinguish T cell, ILC and NK

cell types.

We also assessed how protein and mRNA expression levels were

correlated in human islet-resident immune cells by comparing lineage

markers associated with T cells, ILCs, myeloid and plasma cells, as

well as molecules associated with activation or inhibition (Figure 8A).

Of the markers included in our CITE-seq panel, 15/67 had positive

mRNA expression levels that overlapped with positive protein levels,

37/67 had some overlap between protein and corresponding mRNA

expression and 10/61 did not overlap in either islet and spleen

populations (visualized by FeaturePlot and DotPlot). Markers not

assessed did not have RNA level equivalents, such as CD45RA. For

example, consistent expression patterns of CD3, CD127 and CD14

were observed at both the protein and mRNA levels. In contrast CD8,

CD4, CD56 and CD138 were not highly expressed at the mRNA level

but could be readily detected at the protein level. (Figure 8A).

Importantly, protein level data within the CITE-seq dataset

increased the resolution and accuracy of our annotations. For

example, T cell populations can be more clearly delineated by

distinct surface level CD4 and CD8 expression and likewise,
TABLE 3 Continued

Antibody Stimulation condition Recommended Titration Titration 1 Titration 2 Titration 3

CD152 (CTLA-4) PMA 0.25-1 0.25 0.625 1

CD107a (LAMP-1) PMA 0.0625 - 1 0.0625 0.53125 1

CD95 (Fas) PMA 0.125 - 2 0.125 1.0625 2

CD134 (OX40) PMA 0.125 - 2 0.125 1.0625 2

CD137L (4-1BB Ligand) PMA >0.5 0.5 1.25 2

CD40 LPS/IFN 0.025 - 0.4 0.025 0.2125 0.4

CD137 (4-1BB) PMA 0.125 - 2 0.125 1.0625 2

CD194 (CCR4) – 0.0125-0.2 0.0125 0.10625 0.2

CD27 – 0.005 - 0.08 0.005 0.0425 0.08

CD28 – 0.03125 - 0.5 0.03125 0.2656 0.5

GARP (LRRC32) – 0.125-0.5 0.125 0.375 0.5

CD122 (IL-2Rb) – 0.0625 - 1 0.0625 0.53125 1

CD184 (CXCR4) – >0.5 0.5 1.25 2

CD49d PMA 0.0125 - 0.2 0.0125 0.10625 0.2

CD274 (B7-H1, PD-L1) PMA 0.0625-1 0.0625 0.53125 1

CD120b LPS/IFN N/A 0.01 0.255 0.5

CD80 LPS/IFN 0.25-1 0.25 0.625 1

CD32/Fcg RII LPS/IFN 0.0125 - 0.2 0.0125 0.10625 0.2

CD11b LPS/IFN 0.0125 - 0.2 0.0125 0.10625 0.2

CD64 (FCGR1A) LPS/IFN 0.0125 - 0.2 0.0125 0.10625 0.2

CD86 LPS/IFN 0.005 - 0.08 0.005 0.0425 0.08

CD163 LPS/IFN 0.0625 - 1 0.0625 0.53125 1

CD197 (CCR7) – >0.5 0.5 1.25 2
All titration values are mg per 100ml with 1 million splenocytes. Chosen titration values are bolded. N/A stands for Not Available.
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FIGURE 5

Titrations of flow cytometry antibodies corresponding to oligo-antibody clones in the TotalSeq-C catalogue reveals optimal staining conditions. PBMCs
were stained using PE antibodies against the marker of interest and performed in 3-fold serial dilutions. Dilution chosen is shown in blue. (A) Example
titrations showing percent positive noise + signal and percent positive signals. The titration chosen is the dilution that does not lose positive signal yet
has the least signal + noise percent positive. (B) 3-point titrations performed on markers affected by enzymatic digestion. (C) Example legend for
histograms shown in B, where the top plot is titration #1 and the lowest dilution, middle plot is titration #2 and the middle concentration, and the
bottom plot is titration #3 and highest concentration of antibody.
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FIGURE 6

Workflow and combined islet and spleen lineage maps. (A) Example workflow of CITE-seq. Spleen and islet samples were enriched for CD45+ immune
cells. Immune cells from spleen were stained with oligo-antibody conjugated TotalSeqC antibodies and sent for 10x sequencing. Islet immune cells were
either were stained with oligo-antibody conjugated TotalSeqC antibodies or stained for both oligo-antibody conjugated TotalSeqC and flow cytometry
antibodies at the same time and FACS sorted to enrich for NK cells and ILCs and then sent for 10x sequencing. (B) UMAPs of islet cell types, islet cell
origin (FACS sorted or CD45-enriched), and spleen cell types. (C) Merged islet and spleen lineage, cell types and tissue of origin UMAPs. (D) Composition
of cell types from each organ. (E) T, NK and ILC lineage markers. (F) Myeloid lineage markers. (G) B cell, plasma cell and mast cell lineage markers.
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cytotoxic T cell and NK cell populations can be delineated with clear

expression of surface CD56.

We also compared mRNA to protein expression on islet- and

spleen-derived T cells to determine whether protein level

quantification may have been affected by digestion (Figures 8B, C).

T cells from the merged spleen and islet Seurat object were re-

clustered (Figure 8B), and T-cell-associated gene and protein

expression were compared between digested (islet), and undigested

(spleen) tissue. While all 67 CITE-seq proteins were assessed, we

focused on analysis of CD4, CD8A, CD25, PD1, CD27 and CCR6

(Figure 8C), since flow cytometry studies identified these markers as

being highly susceptible to digestion (Figure 3). Minimal differences

in protein expression between the two measurement methods

were observed.
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In this study we examined strategies to optimize CITE-seq of

resident immune cells by testing epitope susceptibility to an

enzymatic digestion cocktail commonly used to isolate islets,

titrating antibodies for CITE-seq by flow cytometry, and comparing

CITE-seq data generated with 67 oligo-conjugated antibodies in

parallel samples of spleen and islet immune cells. This work

revealed epitopes that are highly susceptible to enzymatic digestion,

but that were still detectable on cells within the islet capsule. Parallel

analysis of flow cytometry and CITE-seq-detected protein expression

revealed good data concordance and enabled identification of islet

resident immune cells that would have been difficult to detect on the

basis of mRNA expression alone.
A B

D

C

FIGURE 7

CITE-Seq protein expression is validated by flow cytometry on healthy human islets. Healthy human islets were analyzed by CITE-seq and flow
cytometry. Surface marker proteins found to be expressed by islet-resident immune cells by CITE-seq were analyzed by flow cytometry in order to
validate CITE-seq findings. PBMCs were used a staining control for flow cytometry analysis. (A) human islet UMAP, (B) Myeloid population analysis of
CD14, CD206 and HLA-DR expression. (C) T cell population analysis of CD4, CD8, CD45Ro, CCR4 and CD103. (D) ILC analysis of CD56 and CD127.
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Digestion of the exocrine pancreas in collagenase is a well-

established method for human islet isolation in preparation for

transplantation or for laboratory studies of islets, beta cells and/or

islet-resident immune cells (27, 36). To determine whether this

process could affect cell surface proteins on immune cells, we

performed flow cytometry with PBMCs experimentally exposed to

enzymes commonly used in the preparation of islets. These data

showed that depending on the antibody clone, the ability to detect

CD4, CD8a, CD25, CD27, CCR6, and PD-1 can be affected by

enzymatic digestion. In accordance with our findings, CD4, CD8a,

CD25, and CD27 have also been observed by other groups to be

sensitive to digestion (24).

To further assess the impact of collagenase on cell surface marker

expression by CITE-seq, we compared protein and mRNA expression

in digested islets and mechanically dissociated spleen, focusing on the

proteins found to be most cleavage-susceptible by flow cytometry.

Contrary to flow cytometry data, protein expression of CD8a and PD-

1 was higher in islets (digested) than in spleen (undigested). These

findings suggest that while these epitopes are sensitive to enzymatic

digestion, CITE-seq has sufficient sensitivity to detect expression.

Similar expression of CD4 in islets and spleen at the protein and

mRNA was observed, suggesting that digestion did not negatively

affect the ability to detect this marker by CITE-seq. We did not detect

CD25 or CD27 protein expression on immune cells from human islets

but could observe immune cells expressing these markers in spleen.

This may be a result of collagenase-induced cleavage, but as reported
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by other groups (15) it is more likely that CD25+ cells are not present

in islet-resident immune cells from people without T1D, as it was also

not detected by flow cytometry or at the mRNA level. Further, FOXP3

mRNA (expressed by CD25hi Tregs) was not detected. We noted low

CD27 gene expression in both tissues, making it unclear if the

difference in CD27 expression between islets and spleen are a result

of collagenase-induced cleavage or reflective of biological differences

in immune cells from these distinct tissues. Finally, we observed no

CCR6 protein or mRNA expression in either islets or spleen, so while

this marker is sensitive to digestion, it was likely not expressed by

immune cells within tissues studied within this donor.

Surface protein cleavage by collagenase can be impacted by the

length of digestion time and concentration of the enzyme. In human

islet isolation protocols, collagenase is typically delivered via the

common bile duct for dispersal throughout the pancreas (26, 36).

Exposure of islet-resident immune cells to collagenase during this

process varies among donors, collagenase lots (36), and islet

preparations. We theorize that the epitopes of immune cells within

islets may have been shielded by cells that comprise the islet mantle,

minimizing the exposure of immune cells to digestion enzymes and

mitigating any potential proteolytic effect. Thus, our assessment of the

impact of collagenase on PBMCs may not enable direct comparison to

islet-resident immune cell cleavage after digestion. Nonetheless,

identifying the epitopes most susceptible to cleavage is still

important to determine whether differences in cell surface

expression might be biological or related to the islet digestion
A B

C

FIGURE 8

CITE-seq allows identification cell types through the expression of surface markers not captured by single cell RNA sequencing. (A) RNA (genes shown in
green) and protein (surface markers shown in blue) expression of matched molecules. (B) Markers shown to be sensitive to digestion by flow cytometry
on T cells. T cells subsets were extracted from the combined islet/spleen objects and (C) titration markers were compared between the digested (islets)
and non-digested (spleen) samples.
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protocol. Our study highlights the utility of parallel sequencing of

control tissues (e.g., splenocytes) that do not require enzymatic

digestion to create single cell suspensions, whenever possible.

Titrating oligo-conjugated antibodies for multimodal single-cell

analysis is important for improving sensitivity, lowering background

signal, and reducing sequencing costs (23). In our study, we did 3-

point serial dilutions with the middle concentration being suggested

by the manufacturer (BioLegend) using PE-conjugated versions of the

same clones used for CITE-seq. We noted that the manufacturer’s

recommended antibody staining concentration, which had been

optimized on circulating immune cells in blood, was only optimal

for 15 of 67 antibodies, suggesting antibody optimization may have to

be tailored for tissue studies. By using splenocytes rather than PBMCs

for optimizations, we were better able to select a concentration which

had the optimal balance between positive signal and low background.

This observation is of note, as unlike antibody titrations for flow

cytometry, with CITE-seq it is important to not use saturating

amounts of antibody, as this may result in sequencing of unbound,

aggregated antibodies and reduced overall sequencing depth (23).

Due to the high cost of sequencing and the rarity of human islet

donors, we performed our antibody titrations using flow cytometry

analysis of human splenocytes, rather than with human islets and

sequencing. While this enhanced our ability to select optimal antibody

dilution for most markers, it may also have led to sub-optimal selection

of CITE-seq antibody concentrations for islet studies. We noted that

while helpful for many epitopes, the use of PE-conjugated antibodies as

a proxy for CITE-seq oligo-tagged antibodies was imperfect. This could

in part be due to the variance in conjugation stoichiometry that is often

not consistent between varying formats and batches of fluorescent

antibodies (37). It may also be due to differences in sensitivity of ADT

sequencing as compared to fluorescent antibody detection (38). While

flow based titration methods are used widely as an economical and

relatively quick method of antibody optimizations for CITEseq studies,

this may lead to using sub-optimal CITE-seq antibody concentrations.

Despite this, in cases where there was a background signal, we were able

to perform manual modifications of signal expression to visualize the

differential expression, leading us to conclude that oligo-conjugated

antibody titration by flow cytometry is for the most part a helpful

technique to obtain concentrations needed for CITE-seq but the source

of immune cells can influence selection of appropriate concentration.

CITE-seq allows for optimal annotation of cell populations and

identification of rare cells that cannot be identified by RNA

sequencing alone. We found that protein expression data from 67

surface markers increased our ability to annotate myeloid cells, T

cells, NK cells and other ILCs, as well as mast cells in human islets. As

ILCs are present in low abundance in islets, and can have very similar

profiles at the RNA level to T cell populations, including expression of

CD3 at the transcriptional level (39, 40), we enriched NK cells and

helper ILCs by flow cytometry-sorting prior to sequencing. CITE-seq

enabled clear differentiation of helper ILCs from T cells by positive

expression of CD127 without high surface CD4 and CD8 protein

expression. There were discrepancies between mRNA and protein

expression for ILC markers including IL7R and CD127, KLRD1 and

CD94, and CD56 and NCAM1. The latter is particularly relevant, as

CD56 is expressed by several ILCs – NK cells, key among – but also

natural killer T cells and activated T cells. The poor capture of
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NCAM1 in mRNA data illustrates the benefit of CITE-seq versus

single cell RNA sequencing to identify CD56-expressing cells (41).

In summary, we found that although digestion of immune cells

with islet isolation enzymes has the potential to significantly affect cell

surface expression of several epitopes, the structure of islets might

mitigate any proteolytic effects on resident immune cells. With the use

of accurately titrated antibodies, CITE-seq adds a valuable layer of

information to single-cell RNA sequencing in the characterization of

islet-resident immune cell subsets. This work sets the stage for a more

comprehensive investigation of how these cells change in health

and disease.
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Exploring the shared molecular
mechanisms between systemic
lupus erythematosus and
primary Sjögren’s syndrome
based on integrated
bioinformatics and single-cell
RNA-seq analysis

Yanling Cui1,2†, Huina Zhang1,2†, Zhen Wang1,2†,
Bangdong Gong3, Hisham Al-Ward1,2, Yaxuan Deng1,2,
Orion Fan1,2, Junbang Wang1, Wenmin Zhu1 and Yi Eve Sun1,2*

1Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University,
Shanghai, China, 2Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East
Hospital, School of Medicine, Tongji University, Shanghai, China, 3Division of Rheumatology, Tongji
Hospital of Tongji University School of Medicine, Shanghai, China
Background: Systemic lupus erythematosus (SLE) and primary Sjögren’s

syndrome (pSS) are common systemic autoimmune diseases that share a wide

range of clinical manifestations and serological features. This study investigates

genes, signaling pathways, and transcription factors (TFs) shared between SLE

and pSS.

Methods: Gene expression profiles of SLE and pSS were obtained from the Gene

Expression Omnibus (GEO). Weighted gene co-expression network analysis

(WGCNA) and differentially expressed gene (DEG) analysis were conducted to

identify shared genes related to SLE and pSS. Overlapping genes were then

subject to Gene Ontology (GO) and protein-protein interaction (PPI) network

analyses. Cytoscape plugins cytoHubba and iRegulon were subsequently used to

screen shared hub genes and predict TFs. In addition, gene set variation analysis

(GSVA) and CIBERSORTx were used to calculate the correlations between hub

genes and immune cells as well as related pathways. To confirm these results,

hub genes and TFs were verified in microarray and single-cell RNA sequencing

(scRNA-seq) datasets.

Results: FollowingWGCNA and limma analysis, 152 shared genes were identified.

These genes were involved in interferon (IFN) response and cytokine-mediated

signaling pathway. Moreover, we screened six shared genes, namely IFI44L,

ISG15, IFIT1, USP18, RSAD2 and ITGB2, out of which three genes, namely IFI44L,

ISG15 and ITGB2 were found to be highly expressed in both microarray and

scRNA-seq datasets. IFN response and ITGB2 signaling pathway were identified

as potentially relevant pathways. In addition, STAT1 and IRF7 were identified as

common TFs in both diseases.
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Conclusion: This study revealed IFI44L, ISG15 and ITGB2 as the shared genes and

identified STAT1 and IRF7 as the common TFs of SLE and pSS. Notably, the IFN

response and ITGB2 signaling pathway played vital roles in both diseases. Our

study revealed common pathogenetic characteristics of SLE and pSS. The

particular roles of these pivotal genes and mutually overlapping pathways may

provide a basis for further mechanistic research.
KEYWORDS

systemic lupus erythematosus, primary Sjögren’s syndrome, bioinformatics, hub genes,
TFs, scRNA-seq
Introduction

Systemic lupus erythematosus (SLE) and primary Sjögren’s

syndrome (pSS) are among the most common systemic

autoimmune diseases and exhibit numerous shared clinical

symptoms, serological profiles and immunological characteristics

(1–3). Both SLE and pSS exhibit a predominance in females, and

cases frequently present overlapping clinical symptoms, such as

arthralgia, myalgia, and leukopenia (4). SLE and pSS preferentially

target specific organs. SLE is characterized by a variety of disease-

specific clinical manifestations, including skin rash, arthritis, lupus

nephritis and hematological symptoms (5, 6). The pSS is a chronic

inflammation condition that primarily affects the exocrine glands

(salivary and lacrimal glands), resulting in oral and ocular dryness

(7). Beyond affecting organs, peripheral blood plays an

indispensable role in manifesting the immune pathophysiology

for SLE and pSS. Peripheral blood mononuclear cells (PBMCs)

are the immune cells most responsible for initiating the

autoimmune inflammatory process against the target organs (8).

Thus, the transcriptomic profiles of PBMC could provide pertinent

insights into the molecular characteristics of the immune cells in

SLE and pSS.

The etiologies and pathogeneses of SLE and pSS remain elusive

and may be related to various factors, such as genetic

predisposition, environmental triggers and epigenetic mechanisms

(9). Genetic risk loci, including HLA class II, IL12A and BLK

(associated with adaptive immunity), IRF5 and STAT4 (associated

with innate immunity) are shared in these two diseases (10–12).

Environmental factors such as Epstein-Barr virus (EBV) infection

and alterations in gut microbial composition have been frequently

observed in individuals with SLE and pSS (13–16). Various studies

have reported that viral infections promote the development and

progression of pSS through type I interferon (IFN). It has been

demonstrated that the gene regulation by type I IFN is linked to an

escalation disease activity in both SLE and pSS (9, 17–19). In recent

studies, widespread changes in DNA methylation have been

identified in SLE and pSS by epigenome-wide association studies

(EWAS) (1, 20–22). Although these findings suggest the presence of

common pathogenetic mechanisms between SLE and pSS,

systematic cross-comparative analyses at the genetic level have yet

to be conducted.
0290
The rapid development of bioinformatics approaches has

facilitated a more robust comprehension of disease pathobiology

at the genetic level (23). The identification of common

transcriptional features between SLE and pSS may provide

valuable insights into shared pathogenetic characteristics of these

two diseases. To this end, we performed comprehensive

bioinformatics analyses in microarray and single-cell RNA

sequencing (scRNA-seq) datasets to identify shared hub genes,

related pathways and transcription factors (TFs) in SLE and pSS.

We further investigated the correlation between hub gene and

immune cell as well as related pathway, and validated their

expression and location using scRNA-seq data. Finally, we

predicted and verified TFs both in microarray and scRNA-seq

datasets. Collectively, the shared hub genes, relevant pathways

and TFs identified in this study have the potential to provide new

insights to the genetic etiologies of SLE and pSS.
Materials and methods

Data source

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/

geo/) is an extensive and publicly available database that contains

numerous high-throughput sequencing and microarray datasets

related to many diseases. The keywords “systemic lupus

erythematosus” and “primary Sjögren’s syndrome” were used to

search SLE and pSS gene expression datasets. The selected datasets

for analysis strictly consisted of gene expression profiles for both cases

and controls, generated from the same sequencing platform and

exclusively from human specimens. Datasets GSE50772 (24),

GSE81622 (25) and GSE135779 (26) were selected for SLE;

GSE84844 (27), GSE48378 (28) and GSE157278 (29) were selected

for pSS. The datasets were downloaded from GEO for subsequent

analyses. For SLE, dataset GSE50772 includes 61 SLE samples and 20

healthy control samples (Platform: GPL570 Affymetrix Human

Genome U133 Plus 2.0 Array); GSE81622 contains 30 SLE samples

and 25 healthy control samples (Platform: GPL10558 Illumina

HumanHT-12 V4.0 expression bead chip); and GSE135779 consists

of 42 SLE samples and 17 control samples (Platform : GPL20301

Illumina HiSeq 4000). For pSS, dataset GSE84844 includes 30 pSS
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samples and 30 healthy control samples (Platform : GPL570);

GSE48378 contains 11 pSS samples and 16 healthy control samples

(Platform: GPL5175 Affymetrix Human Exon 1.0 ST Array); and

GSE157278 consists of 5 pSS samples and 5 control samples

(Platform: GPL24676 Illumina NovaSeq 6000). For microarray

datasets, the series matrix files provided by the contributors include

data processed by MAS5 or RMA algorithms. We read the data with

the GEOquery package and matched the probes to their gene symbols

according to the annotation documents of corresponding platforms.

Finally, the gene matrix with row names as gene symbols and column

names as sample names was obtained for subsequent analyses.
Weighted gene co-expression
network analysis

To identify gene co-expression modules associated with SLE

and pSS, we conducted weighted gene co-expression network

analysis (WGCNA) on the GSE50772 and GSE84844 datasets.

The WGCNA R package was used to conduct the analysis (30).

We selected the top 5000 genes of the median absolute deviation in

the expression matrix of the dataset for WGCNA. Prior to the

analysis, the ‘Hclust’ function was used to eliminate outlier samples.

The parameters were networkType = “signed” and TOMType =

“signed”. We then selected an optimal soft threshold ranging from 1

to 20 using the ‘pickSoftThreshold’ function to build an adjacency

matrix, which was then transformed into a topological overlap

matrix (TOM). Co-expression modules were identified through

hierarchical clustering, followed by Pearson correlation analysis to

compute the correlation between the module eigengene and clinical

feature to obtain the expression profile of each module. We then

chose the modules with high correlation coefficients with SLE and

pSS and obtained genes from these modules for further analysis.
Identification of DEGs

The differentially expressed genes (DEGs) in SLE and pSS were

determined by using the limma R package (31). First, the GSE50772

and GSE84844 datasets were converted into an expression matrix

and grouped. Next, the limma package was used to normalize and

analyze the datasets to obtain DEGs. Genes with adjusted p-value

[false discovery rate (FDR)] < 0.05 and |log2FC (fold change) | ≥ 0.5

were considered as DEGs (32). Furthermore, genes were classified

as upregulated or downregulated based on their log2FC value being

greater than 0.5 or less than -0.5, respectively. The overlapping

DEGs of SLE and pSS were identified by using an online Venn

diagram tool.
Functional enrichment analysis

Gene ontology (GO) is a comprehensive resource regarding the

functions of genes and gene products, providing annotations for

gene products related to molecular functions, biological processes,

and cellular components (33). Hallmark gene sets represent
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biological states or processes derived from the Molecular

Signatures Database (MSigDB) (34). The “clusterProfiler” R

package was used to conduct GO and Hallmark functional

annotation analyses. Significantly enriched outcomes were

recognized by p-values less than 0.05.
PPI network construction and
module analysis

STRING is an online search tool for the retrieval of interacting

genes (STRING; http://string-db.org) (35). WGCNA results and

DEGs were combined and imported into the STRING database to

construct the protein- protein interaction (PPI) network; the

interaction score used for the PPI network was set at > 0.4.

Analysis of the PPI network and visualization were carried out

using Cytoscape (http://www.cytoscape.org) (36). The molecular

complex detection technology (MCODE), a Cytoscape plug-in, was

used to conduct key functional module analysis. The employed

parameters were as follows: degree cutoff = 2, max depth = 100,

node score cutoff = 0.2 and K-core = 2.
Selection and validation of hub genes

The 96 common module genes and 91 common DEGs were

combined and subsequently imported into the STRING database to

construct a PPI network. To identify hub genes, the cytoHubba

plug-in Cytoscape was applied (37). Five algorithms (MCC

[maximal clique centrality], MNC [maximum neighborhood

component], Closeness, Radiality and EPC [edge percolated

component]) were used from cytoHubba to identify and validate

the hub genes.

In order to verify the hub genes expression, the GSE81622 and

GSE48378 datasets were downloaded. The GSE81622 dataset

includes PBMC expression data from 25 patients diagnosed with

SLE and 30 healthy controls. The GSE48378 dataset contains

expression data of 11 patients diagnosed with pSS and 16 healthy

controls. The Shapiro-Wilks test was performed in R to test for the

normality of the variables. The w-value was close to 1, and p-value

> 0.05. The comparison was then performed using the t-

test in these two datasets, separately (38); p-values < 0.05 were

considered significant.
Pathways analysis and the correlation with
hub genes

Gene Set Variation Analysis (GSVA) is a non-parametric and

unsupervised methodology that is employed to evaluate gene set

enrichment (GSE) in gene expression microarray and RNA-seq

data (39). The GSVA R package was used to find the related

pathways in SLE and pSS, by quantifying the activities of the 50

hallmark pathways. Correlations between hub gene and pathway

were evaluated by Pearson correlation coefficient. R packages

“ggplot2” and “pheatmap” were used for visualization.
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Single-cell RNA-Seq data analysis

The scRNA-seq datasets GSE135779 for SLE and GSE157278

for pSS were downloaded from GEO. Down-stream analyses were

performed using the Seurat R package (version 4.1.0) (40).

Following quality control (QC), cells with fewer than 200

expressed genes and >10% mitochondria-related genes were

excluded. After normalization, the top 3000 highly variable genes

(HVGs) in each Seurat object were selected for subsequent analysis,

including ScaleData, RunPCA, RunTSNE and RunUMAP. The cells

were then clustered using the FindNeighbors and FindClusters

functions. The generated clusters were visualized using uniform

manifold approximation and projection (UMAP) plot. Cell types

were identified using classical marker genes and the SingleR

algorithm (41). The gene list used to generate IFN-response score

comprises the following IFI27, IFI6, RSAD2, IFI44, IFI44L, IFITM1,

IFNGR1, IFIT2, MX2, OASL, GBP1, USP18, LY6E, OAS1, SIGLEC1,

ISG15, IFIT1, OAS3, HERC5, MX1, LAMP3, EPSTI1, IFIT3, OAS2,

RTP4, PLSCR1, DNAPTP6, TYK1 and CXCL10 (42–45). The

AddModuleScore function in Seurat R was used to calculate the

IFN-response score. Differential expression analysis was performed

on scRNA-seq datasets using the “FindMarkers” function in the

Seurat package with default parameters. This analysis aimed to

compare the expression profiles of different cell types between

different groups (SLE/HC and pSS/HC). Adjusted p-value < 0.05

and |log2FC| > 0.25 was used to define significant DEGs.
Estimation of immune cell fractions and
the correlation with hub genes

CIBERSORTx is a suite of machine learning tools designed for

detecting the abundance of cell types in bulk RNA-seq and

microarray data (46, 47). We used the GSE135779 and

GSE157278 scRNA-seq datasets to build scRNA-seq signature

matrices with CIBERSORTx, respectively. After following the

instruction to format and upload the single-cell reference matrix

file, we ran the “Create Signature Matrix” module to build the

scRNA-seq signature matrix (47). We used the generated signature

matrices to perform CIBERSORTx deconvolution on the GSE50772

and GSE84844 datasets, separately. p-value < 0.05 was considered

statistically significant. To visualize the proportion of each immune

cell type, boxplots were constructed, with red and blue color-coding

to indicate disease and healthy control (HC) status, respectively.

The correlation between each hub gene and immune cell type was

evaluated by Pearson correlation coefficient. R packages “ggplot2”

and “pheatmap” were used for visualization.
Cell-cell communication analysis

The CellChat package is a powerful tool that facilitates the

quantitative inference and analysis of intercellular communication

networks from scRNA-seq data. CellChat is capable of predicting

the major signaling inputs and outputs for cells, as well as how these

signals coordinate for various cellular functions. Once cell types
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have been identified, CellChat can be further used to analyze cell-

cell communication (48). In this study, we generated new CellChat

objects from the Seurat objects. The CellChatDB was set as the

reference database. The two scRNA-seq data were further divided

into two groups each based on their respective conditions (HC vs

SLE, HC vs pSS). Thereafter, the variations in ligand-receptor

interactions and signaling pathways among these states were

thoroughly examined.
Prediction and verification of
transcription factors

iRegulon is a computational method to reverse-engineer the

transcriptional regulatory network underlying a co-expressed gene

set using cis-regulatory sequence analysis. This method utilizes a

genome-wide ranking-and-recovery approach to detect enriched

transcription factor (TF) motifs and their optimal sets of direct

targets (49). In this study, we employed iRegulon to predict the TFs

of hub genes, and their expression levels were subsequently

validated in microarray datasets. Furthermore, we confirmed the

expression and localization of these TFs in scRNA-seq data. The

major parameters in iRegulon were the following: Species and gene

nomenclature = “Homo sapiens, HGNC symbols”, Motif collection

= “10K (9713 PWMs)”, Track collection = “1120 ChIP-seq tracks

(ENCODE raw signals)”, Putative regulatory region = “20kb

centered around TSS”, Enrichment score threshold = 3.0, ROC

threshold for AUC calculation = 0.03 and the rank threshold

= 5000.
Gene regulatory network

Single-cell regulatory network inference and clustering

(SCENIC) is a computational method to infer cell type-specific

gene regulatory networks (GRNs) from scRNA-seq data (50). The

input matrices were the raw unique molecular identifier (UMI)

counts for each sample obtained from Seurat. Genes present in

RcisTarget’s databases (hg19-500 bp-upstream-7species. mc9nr.

feather and hg19-tss-centered-10 kb-7species. mc9nr.feather) were

utilized. Following the SCENIC pipeline, the GENIE3 method and

GRNBoost were used to identify potential TF targets, and the

regulon-specific score (RSS) was generated. Only significantly

upregulated regulons were involved in further analysis.
Results

GEO information

The workflow of this study is illustrated in Figure 1. Four

microarray datasets, including GSE50772, GSE81622, GSE84844

and GSE48378, along with two scRNA-seq datasets, namely

GSE157278 and GSE135779, were downloaded from GEO.

Information from these datasets, including GSE number,

detection platforms, samples and source types, is provided in
frontiersin.org
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Supplementary Table 1. WGCNA, DEGs, GSVA and immune cell

analyses were performed on GSE50772 and GSE84844 datasets.

Expression levels for hub genes and TFs were validated using

GSE81622 and GSE48378. Additionally, the hub genes and TFs

expression patterns were further validated in scRNA-seq datasets,

namely GSE135779 and GSE157278.
Weighted gene co-expression network
analysis of SLE and pSS

In WGCNA, the module-trait relationship heatmap according

to the Pearson correlation coefficient showed the correlation

between each module and the clinical trait. After processing with

‘Hclust’, one SLE sample was eliminated in GSE50772 dataset, and

two pSS samples were eliminated in GSE84844 (Supplementary

Figure 1). A total of 12 modules were identified in GSE50772, and

11 modules were identified in GSE84844. Afterwards, the

correlation between each module and clinical trait was calculated.
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In GSE50772 database, the ME3, ME5 and ME6 modules had high

positive correlations with SLE (r = 0.62, 0.65 and 0.57), comprising

1120 genes. The ME10 and ME11 modules were negatively

correlated with SLE (r = -0.72 and -0.55), and comprised a total

of 453 genes (Figure 2A). In GSE84844 database, the ME1 and ME2

modules showed high positive correlation with pSS (r = 0.73 and

0.65), containing 2796 genes. The ME6 and ME7 modules had

negative correlations with pSS (r = -0.71 and -0.39), comprising a

total of 637 genes (Figure 2C).

Further, we performed GO enrichment analysis on the

positively related modules. For SLE, our results showed that the

ME3 module was mainly associated with type I IFN response and

innate immune response. The ME5 module was mainly related to

cell chemotaxis and cytokine-mediated signaling pathway.

Additionally, the ME6 module was involved in immune response

(Figure 2B). For pSS, functional enrichment analysis indicated that

the ME1 module was mainly associated with T cell activation and

differentiation, and ME2 module was related to type I IFN response

and cytokine production (Figure 2D). Therefore, type I IFN
FIGURE 1

Workflow diagram of this work.
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response and cytokine-mediated signaling pathway collectively

participated in the pathogenesis of SLE and pSS.
Enrichment analysis of common gene
from WGCNA

The common genes were screened between SLE positively

related modules (ME3, ME5 and ME6 modules) and pSS

positively related modules (ME1 and ME2 module). 96 genes

overlapped in positively related modules from SLE and pSS

(Figure 3A). Enrichment analysis results showed that the 96 genes

were mainly associated with type I IFN response and cytokine-

mediated signaling pathway (Figure 3B). There were 4 genes that

overlapped in negatively related modules from SLE and pSS

(Supplementary Figures 2A, B).
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Identification and function analyses of
common DEGs

The limma R package was utilized to perform an analysis of DEGs

on the GSE50772 and GSE84844 datasets. Volcano plots showed the

identified DEGs. For SLE dataset GSE50772, 2918 DEGs were

identified, among which 1366 genes were upregulated and 1552

genes were downregulated (Figure 4A; Supplementary File 1). 1597

DEGs were obtained from the pSS dataset GSE84844, out of which

1315 DEGs were upregulated and 282 DEGs were downregulated

(Figure 4B; Supplementary File 2). After examining the intersection for

the DEGs, 91 shared upregulated DEGs and 11 shared downregulated

DEGs were identified. The overlapping DEGs were visualized by Venn

diagrams (Figure 4C; Supplementary Figure 2C, Supplementary File

3). To further analyze the underlying biological information associated

with the common DEGs, GO analysis was performed. The results
A

B D

C

FIGURE 2

Weighted gene co-expression network analysis (WGCNA) and GO (Gene ontology) analysis of GSE50772 and GSE84844 datasets. (A) Heatmap of
module-trait relationships in SLE. Each cell contains the corresponding correlation and p-value. (B) GO biological process analyses of three positively
related modules with SLE. (C) Heatmap of module-trait relationships in pSS. Each cell contains the corresponding correlation and p-value. (D) GO
biological process analyses of two positively related modules with pSS. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome.
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showed that the commonly upregulated DEGs were mainly enriched

in type I IFN and cytokine stimulus response, which were consistent

with the results of WGCNA (Figure 4D). These findings strongly

indicated that type I IFN response and cytokine stimulus jointly

participated in the development and progression of these two

autoimmune diseases. We also performed the GO analysis on the
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upregulated DEGs in SLE and pSS, respectively. In addition to type I

IFN response, inflammatory, immune response and T cell activation

were also significantly enriched in SLE (Supplementary Figure 3A).

For the upregulated DEGs in pSS, response to tumor necrosis factor

(TNF), I-kappa B kinase/NF−kappa B signaling were also enriched

(Supplementary Figure 3B).
A B

FIGURE 3

Venn diagrams and enrichment analysis of common genes from WGCNA. (A) Venn diagrams showing the overlap genes in positive related modules
in SLE and pSS. (B) GO enrichment analysis of the 96 common genes. GO, gene ontology; SLE, systemic lupus erythematosus; pSS, primary
Sjögren’s syndrome.
A B

DC

FIGURE 4

Identification common DEGs and functional enrichment analysis. (A) Volcano plot of GSE50772. (B) Volcano plot of GSE84844. Red dots indicate
upregulated genes and blue dots indicate downregulated genes. (C) 91 upregulated DEGs overlapped in the two datasets. (D) GO enrichment
analysis of common upregulated DEGs. DEGs, differentially expressed genes; GO, gene ontology; SLE, systemic lupus erythematosus; pSS, primary
Sjögren’s syndrome.
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Selection and analysis of hub genes

The 91 commonly upregulated DEGs and 96 shared genes

determined by the positively correlated modules in both

autoimmune diseases were combined to yield 152 candidate genes

for the subsequent analyses. Subsequently, a PPI network of the

candidate genes was constructed, and the three clustering modules

from closely connected genes were further extracted through

MCODE analysis (Figure 5A). Cluster 1 contained 42 nodes and

789 edges. Enrichment analysis results showed that the genes in

cluster 1 were mainly associated with type I IFN and cytokine

stimulus response. Cluster 2 comprised 38 nodes and 282 edges, and

linked to cellular organismal processes. Cluster 3 contained 13

nodes and 33 edges, and involved in leukocyte activation

(Figure 5B). Thus, clusters 1 and 3 were considered as key
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modules that may play crucial roles in disease development. To

identify the top 15 genes in cluster 1, we utilized five algorithms of

the plug-in cytoHubba (MCC, MNC, EPC, Closeness and Radiality)

(Supplementary Table 2). By intersecting the Venn diagrams, we

identified 5 common genes (IFI44L, ISG15, IFIT1, USP18 and

RSAD2) in cluster 1 (Figure 5C). For cluster 3, we selected the

top three genes (PTPRC, CXCR8 and ITGB2) for subsequent

analyses (Figure 5D).
Validation of hub genes expression

The expression levels of eight genes were verified in SLE dataset

GSE81622 and pSS dataset GSE48378. The results demonstrated

that IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2 were
A

B

D

C

FIGURE 5

PPI network and Venn diagram of shared genes among SLE and pSS. (A) PPI network of combined common module genes and DEGs. The network has
140 nodes and 1610 edges. (B) GO analysis of three clusters. (C) The Venn diagram showed 5 overlapping genes screened by 5 algorithms. (D) PPI
network of cluster 3. DEGs, differentially expressed genes; GO, gene ontology; SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome.
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significantly upregulated in SLE (Figure 6A). Additionally, the

expression levels of these genes in pSS were also higher than

those in healthy control samples (Figure 6B). The expression of

PTPRC and CXCR8 showed no significant difference in both

diseases. Consequently, IFI44L, ISG15, IFIT1, USP18, RSAD2 and

ITGB2 were identified as hub genes for subsequent analyses

(Supplementary Table 3). A t-test was conducted to compare

the two subsets in these each dataset, separately. A significance

level of p < 0.05 was applied.
Pathways involvement and correlation with
hub genes

GSVA was performed to identify the relevant pathways, and

Pearson correlation analysis was employed to evaluate the correlation

between hub gene and relevant pathway in SLE and pSS (Figure 7). A

total of 50 hallmark pathways were subjected to GSVA analysis.

Overall, the results suggested a strong and consistent correlation

between the hub genes (IFI44L, ISG15, IFIT1, USP18, and RSAD2)

and the INTERFERON_ALPHA_RESPONSE, INTERFERON_

GAMMA_RESPONSE pathways in both SLE and pSS.
The expression of hub genes in single-cell
RNA-Seq datasets

The PBMC scRNA-seq datasets GSE135779 and GSE157278

were downloaded for subsequent analyses. We selected 5 healthy

controls and 7 adults with SLE from the GSE135779 dataset, while

the GSE157278 dataset contained 5 pSS patients and 5 normal

controls. The two datasets were analyzed separately. Following the

Seurat pipeline, and combining the SingleR algorithm with

canonical gene markers including CD3E, CD3D, CD4, CD8A,

CCR7, SELL, S100A4, CD79A, MS4A1, GNLY, NCAM1, NKG7,

GZMK, GZMB, CD14, LYZ, FCGR3A, MS4A7, FCER1A, CD1C,
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CLEC4C, LILRA4, PPBP, PF4, SLC4A10, TRDC, TRDV2, FOXP3 as

well as IL2RA, we identified cell populations. Among the identified

populations were CD4 naïve T cells, CD4 memory T cells, CD8

naïve T cells, CD8 memory T cells, CD8 effector T cells, monocytes,

NK cells, B cells, DCs and some other cells in the two datasets

(Figures 8A, B). The dot plot depicted the cell-type-specific markers

(Supplementary Figure 4). Cell composition analysis revealed that

monocytes (HC, 16.3%; SLE, 28.1%) and CD8 effector T cells (HC,

13.3%; SLE, 17.3%) were expanded, while CD4 naïve T cells (HC,

33.5%; SLE, 22.2%.) were decreased in SLE patients compared to

HCs (Figure 8C). For the pSS dataset, NK cells (HC, 12.9%; pSS,

20.6%), B cells (HC, 5.4%; pSS, 7.5%) and CD8 effector T cells (HC,

8.0%; pSS, 11.3%) were expanded, while CD4 naïve T cells (HC,

17.7%; pSS, 10.9%) and CD8 naïve T cells (HC, 12.0%; pSS, 5.5%)

were decreased in pSS patients compared to HCs (Figure 8D). The

violin plot showed that the expression levels of three hub genes

(IFI44L, ISG15 and ITGB2) were elevated in both SLE and pSS in

most cell types, especially in monocytes, NK cells and CD8 effector

T cells. (Figures 8E, F). In summary, the results showed that the

proportion of CD8 effector T cells increased, however the

proportion of CD4 naïve T cells decreased in SLE and pSS

patients. We performed DEG analysis in scRNA-seq datasets. For

SLE dataset GSE135779, 230 DEGs were upregulated, meanwhile

537 DEGs were upregulated in pSS dataset GSE157278. After

performing an intersection of the upregulated DEGs, 97 shared

upregulated DEGs were identified (Supplementary Figure 5A). The

GO results showed that the shared upregulated DEGs were mainly

associated with IFN response (Supplementary Figure 5B), which

was consistent with the results of WGCNA and DEGs analysis in

GSE50772 and GSE84844 datasets. The results of GO analysis on

the upregulated DEGs in SLE and pSS were highly consistent with

the previous results (Supplementary Figures 5C, D). We conducted

Hallmark annotation analysis on the upregulated DEGs in all cell

types (Supplementary Figures 5E, F). The results consistently

showed enrichment in the IFN response across all cell types in

both SLE and pSS.
A B

FIGURE 6

Verification of hub genes expression. (A) Expression of hub genes verified in GSE81622. (B) Expression of hub genes verified in GSE48378. The
comparison in the two sets of data used the mean t-test, separately; p -value < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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Immune cell fractions and the correlation
with hub genes

The CIBERSORTx method was used to evaluate the immune

cell (IC) composition in peripheral blood using GSE135779 and

GSE157278 scRNA-seq datasets as reference matrices for

deconvolution on the SLE (GSE50772) and pSS (GSE84844)

datasets separately. The boxplot showed that the proportion of

CD4 naïve T cells in SLE samples was lower than that in HC

samples, despite lack of statistical significance. Interestingly, CD8

effector T cells and monocytes were significantly increased in SLE

patients compared to HCs (p < 0.05) (Figure 9A). Furthermore,

Pearson correlation analysis was performed to investigate the

correlations between hub genes and ICs in SLE. The heatmap

revealed that three hub genes (IFI44L, ISG15 and ITGB2) had

positive correlations with monocytes and CD8 effector T cells,

while having negative correlations with CD4 naïve T cells

(p < 0.05) (Figure 9B).

In comparison to HCs, the proportion of monocytes exhibited

significant increase in pSS samples (p < 0.05). Additionally, B cells

and CD8 effector T cells displayed increasing trend in pSS, though

statistically insignificant. More importantly, CD4 naïve T cells

exhibited significant decrease in pSS (Figure 9C). The correlations
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between hub genes and ICs in pSS demonstrated that three hub

genes (IFI44L, ISG15 and ITGB2) had positive correlations with

monocytes, B cells and CD8 effector T cells, while had significant

negative correlations with CD4 naïve T cells (p < 0.05) (Figure 9D).

In summary, the results showed a consistent pattern of increase in

CD8 effector T cells, and decrease in CD4 naïve T cells in both SLE

and pSS patients, which was consistent with our results of scRNA-

seq analysis. Meanwhile, hub genes (IFI44L, ISG15 and ITGB2)

exhibited positive correlations with monocytes in SLE and pSS,

especially ITGB2. The correlations between genes (IFIT1, USP18

and RSAD2) and ICs are provided in Supplementary Figure 6.
Single-cell analysis for the expression of
related pathways

According to the previous GSVA results (Figures 7A, B), hub

genes (IFI44L and ISG15) exhibited significant positive

correlations with INTERFRON_ALPHA_RESPONSE and

INTERFRON_GAMMA_RESPONSE pathways. Therefore, an

evaluation of the expression level of INTERFRON RESPONSE in

SLE and pSS was performed. We discovered that the INTERFRON

RESPONSE was increased in both SLE and pSS patients,
A

B

FIGURE 7

Correlation matrix between hallmark pathways and hub genes. (A) Correlation matrix of hallmark pathways and hub genes in SLE. (B) Correlation
matrix of hallmark pathways and hub genes in pSS. Red: positive correlation; Blue: negative correlation. SLE, systemic lupus erythematosus; pSS,
primary Sjögren’s syndrome. *p < 0.05, **p < 0.01, ***p < 0.001.
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particularly in monocytes (Figures 10A, B). Besides INTERFRON

RESPONSE, we also explored and identified ITGB2 as a hub gene.

Furthermore, we used CellChat to investigate the putative

interactions among the major cell types in disease versus control.

The results showed that the activity of ITGB2 signaling pathway
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was increased in SLE and pSS patients, and the ITGB2 signaling

pathway was most enriched from monocytes to CD4 T cells and

CD8 effector T cells (Figures 10C, D). The ITGB2, ICAM1, ICAM2,

CD226 and ITGAL expression levels related to ITGB2 signaling

pathway were verified both in scRNA-seq and microarray datasets
A B
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FIGURE 8

Validation of hub genes in scRNA-seq datasets. (A) UMAP visualization GSE157278 scRNA-seq datasets. (B) UMAP visualization GSE135779 scRNA-
seq datasets; Different colors indicate distinct cell types. (C) Cellular composition in SLE and HCs group (D) Cellular composition in pSS and HCs
group. The colors represent different cell types. (E) Violin plot of hub genes expression in different cell types in SLE. (F) Violin plot of hub genes
expression in different cell types in pSS. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome.
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between disease conditions and healthy controls (51, 52)

(Supplementary Figure 7). The results demonstrated that ITGB2

signaling pathway related genes were upregulated both in SLE and

pSS patients, though some were not statistically significantly so.

Further analysis showed monocytes are the prominent sender and

influencer of the ITGB2 signaling pathway (Figures 10E, F). The

results indicated that monocytes may play vital roles in IFN

response and ITGB2 signaling pathway in the pathogenesis of
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SLE and pSS, which were consistent with our results of immune

cell analysis.
Prediction and verification of TFs

Based on the iRegulon algorithm, we have identified the top 6 TFs

that may regulate the expression of hub genes (IFI44L, ISG15 and
A
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C

FIGURE 9

Landscape map of IC in SLE and pSS datasets. (A) Boxplot showing the differences of IC between SLE and HC. (B) Correlation matrix between IC and
hub gene in SLE. (C) Boxplot showing the differences of IC between pSS and HC. (D) Correlation matrix between IC and hub gene in pSS. Red:
positive correlation; blue: negative correlation. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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ITGB2) (Figure 11A). We found that three TFs (STAT1, STAT2 and

IRF7) were highly expressed in SLE and pSS validation datasets

(Figure 11B). To further validate our findings, we employed

SCENIC to infer the TF regulatory information underlying each cell

type. Remarkably, the SCENIC analysis revealed that STAT1 was

upregulated in both diseases and mainly concentrated in monocytes

and DCs. Additionally, IRF7 was upregulated and concentrated in

DCs in SLE (Figures 12A, B). The violin plot showed that expression
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levels of 3 TFs (STAT1, STAT2 and IRF7) were significantly elevated

in SLE and pSS, especially IRF7 in DCs (Figures 12C, D).
Discussion

SLE and pSS are chronic autoimmune diseases predominantly

affecting women and exhibit overlapping clinical and serologic
A
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FIGURE 10

Verification of related pathways in scRNA-seq datasets. (A) Violin plot of INTERFERON_RESPONSE expression in SLE. (B) Violin plot of
INTERFERON_RESPONSE expression in pSS. (C) Circos plot showing the ITGB2 signaling pathway network across major cell types in SLE and HCs.
(D) Circos plot showing the ITGB2 signaling pathway network across major cell types in pSS and HCs. (E) Heatmap showing the relative importance
of each cell type based on the computed four network centrality measures of the ITGB2 signaling pathway in SLE. (F) Heatmap showing the relative
importance of each cell type based on the computed four network centrality measures of the ITGB2 signaling pathway in pSS. SLE, systemic lupus
erythematosus; pSS, primary Sjögren’s syndrome.
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characteristics. In a subset of pSS patients, the disease may progress

to clinical manifestations, serological profiles and immunological

characteristics shared with SLE, leading to fulfillment of

classification criteria for both diseases. This condition is

commonly referred to as pSS/SLE overlap (53). Despite the

increasing knowledge regarding environmental triggers and

epigenetic mechanisms, the genetic factors underlying SLE and

pSS remain elusive. In this study, we aimed to investigate common

target genes, relevant pathways and TFs in SLE and pSS through

integrative bioinformatic analyses of transcriptomes. Firstly, we

conducted analyses of common genes in the WGCNA module

genes and shared DEGs of SLE and pSS. Enrichment analysis

showed that these genes were involved in both type I IFN

response and cytokine-mediated signaling pathway. Subsequently,

we combined the common genes in WGCNA and DEGs, and

obtained 152 shared candidate genes. Next, we identified 6 hub

genes (IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2) by the PPI

network and cytoHuba algorithms, and verified their expression

levels. The expression of hub genes was further verified in scRNA-

seq datasets. The results showed that 3 hub genes- IFI44L, ISG15

and ITGB2- were upregulated in disease groups. Additionally, we

evaluated the correlations between hub genes and ICs as well as

related pathways. The results showed that hub genes (IFI44L and

ISG15) had positive correlations with monocytes, as well as the IFN

response pathway. ITGB2 had a significant positive correlation with

monocytes and mainly involved in ITGB2 signaling pathway. The

IFN response and ITGB2 signaling pathway were increased and

enriched in monocytes in SLE and pSS. Finally, TFs (STAT1,

STAT2 and IRF7) were predicted and verified, and only STAT1

and IRF7 were upregulated in scRNA-seq data. Notably, IRF7 was

specially enriched in DCs.

The biological processes involved in the IFN response,

inflammatory, immune response and T cells activation were
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enriched among the upregulated DEGs in SLE. Activated IFN

response has been well recognized as an important feature in SLE

(54). The abnormal activation of T cells appears to be involved in

the pathogenesis of SLE. An analysis of lymphocyte composition

revealed a reduction in naïve CD4 T cells and an increase in CD8 T

cells in SLE patients (55). The autoantibodies and immune complex

mediated cytokines, such as IL-1, would cause persistent

inflammatory response in SLE (56). Besides, the neutrophil

extracellular traps and neutrophil to lymphocyte ratio played

essential roles in the pathogenesis of SLE (57, 58). Besides IFN

response, the upregulated DEGs associated with TNF response, I-

kappa B kinase/NF-kappa B signaling were also identified by GO

analysis in pSS patients. Serum level of TNF-a has been identified as

the most discriminating factor associated with the presence of

interstitial lung disease (ILD) in pSS patients (59). B cell-

activating factor of the TNF family (BAFF) may contribute to

focal lymphocytic infiltration and is an essential cytokine in pSS

physiopathology (60). In PBMC from pSS patients, phosphorylated

inhibitor of kB (IkB) kinase (IKK) ϵ (IKKϵ), total IKKϵ, pIKKa/b
and pNF-kB p65 were significantly increased compared to healthy

controls (61). Knockdown of RSAD2 attenuated pSS B cell

hyperactivity via suppressing NF-kB signaling (62). Owing to the

multitude of influencing factors observed in previous studies as well

as our own analyses, comprehensive understanding of the

pathogeneses of SLE and pSS remains an ongoing project. The

high IFN response plays a critical role both in SLE and pSS.

IFNs are a class of cytokines that exhibit antiviral effects and are

induced by viral infections, ultimately leading to the expression of

IFN-stimulated genes (ISGs) and further exerting antiviral effects

(63, 64). Type I IFNs, including IFN-a, IFN-b, IFN-ϵ and IFN-k,
are the primary interferons capable of exerting antiviral effects.

Studies have reported that IFNs can not only act on viruses to

interfere with their replication but enhance cellular immunity by
A B

FIGURE 11

Prediction and verification of TFs. (A) iRegulon plug-in predicted TFs of hub genes. (B) Expression of TFs verified in GSE81662 and GSE48378. SLE,
systemic lupus erythematosus; pSS, primary Sjögren’s syndrome. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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acting on T/B cell proliferation and differentiation (65, 66). Type I

IFNs stimulate monocytes differentiation and induce immature

DCs to express chemokines and costimulatory molecules, which

contributes to the pathogenesis of SLE (67). BAFF is stimulated by

type I IFNs and promotes B-cell activation, involved in the

pathogenesis of pSS (68). Our enrichment analysis of common

upregulated DEGs and overlapping genes from positively correlated

modules further demonstrates the importance of the type I IFN

response in diseases. We also employed GSVA and found hub genes

exhibited significant positive correlations with IFNa and IFNg
response pathways. Moreover, a meta-analysis of transcriptomes

has identified shared type I IFN- stimulated genes among

rheumatoid arthritis (RA), SLE and pSS, such as IFI44L, IFI44,
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IFI27 and IFIT1 (9). Unlike previous studies, our research employed

comprehensive and improved bioinformatic methods, and paid

more attention to the exploration of hub genes, related pathways

and TFs in peripheral blood that are common in SLE and pSS (69,

70). We identified 3 hub genes (IFI44L, ISG15 and ITGB2). IFI44L is

a type I IFN-stimulated gene, which has benn found to be

upregulated in patients with pSS and was markedly increased

following with either IFN-a or IFN-b stimulation (71). STAT3

promoted the overexpression of IFI44L in monocytes, which

contributes to the pathogenesis of SLE. IFI44L is expected to

become a new therapeutic target for SLE treatment (67, 72).

Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein

that is conjugated to intracellular target proteins upon activation by
A B
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FIGURE 12

Verification of TFs in scRNA-seq datasets. (A) SCENIC analysis revealed TF regulatory information of each cell type in SLE. (B) SCENIC analysis
revealed TF regulatory information of each cell type in pSS. Red: up-regulated TFs; blue: down-regulated TF. (C) Violin plot of TF expression in
different cell types in SLE. (D) Violin plot of TF expression in different cell types in pSS. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s
syndrome.
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IFN-a and IFN-b (73). The expression level of ISG15 was higher in

saliva and serum from pSS patients than from controls. The

expression of ISG15 is relatively high in patients with SLE and

correlates with disease activity prior to treatment (74). We

identified IFI44L and ISG15 as common hub genes in the

two diseases.

However, the pathogeneses of SLE and pSS are exceptionally

complicated. Besides IFN response, we also explored and

identified ITGB2 as a hub gene. Integrin subunit b2 (ITGB2)

encodes integrin b2 protein (CD18) (75). Integrins are

heterodimeric transmembrane proteins consisting of alpha and

beta subunits. Integrins regulate immune cell trafficking by

modulating leukocyte adhesion to blood vessels and facilitating

their extravasation into tissues. These proteins play important roles

in inflammatory and autoimmune responses (76, 77). Behera and

colleagues reported that osteopontin can bind avb3 integrin and

induce JAK2/STAT3 activation in human breast cancer cells (78).

Mastrangeli and colleagues reported the binding properties of

deamidated IFN-b to avb3 integrin in triple-negative breast

cancer (79). The link between interferons and integrins remains

for further investigation. Beta2-integrins are leukocyte-specific

adhesion molecules that are essential for leukocyte trafficking and

immune cell activation. As a result, beta2-integrins may be involved

in many autoimmune diseases. ITGB2 was upregulated in PBMCs

from systemic sclerosis (SSc) patients, which may participate in

immune cell migration to involved tissues. Splenic B cells from

NZB/NZW F1 lupus mice showed ITGB2 activation compared to

normal C57Bl/6 mice (75, 80, 81). However, there are no studies

reporting its role in pSS, which provides a springboard for future

research. Our results are the first to demonstrate increased ITGB2

signaling pathway activity, and upregulated ITGB2 expression in

both SLE and pSS patients. Vedolizumab (targets integrin a4b7),
and etrolizumab (anti b7) have been approved by the FDA for the

treatment of inflammatory bowel disease (IBD), namely ulcerative

colitis (UC) and Crohn’s disease (CD). These drugs have

demonstrated efficacy with minimal systemic adverse effects (82,

83). The research about integrins antagonists underscores the

central role of these proteins in autoimmune diseases.

Additionally, organ-specific delivery of drugs to targeted tissue

may further increase the therapeutic potential for anti-integrin

agents (84). Lifitegrast, a small-molecule inhibitor that targets

integrin aLb2 has been approved for the topical treatment of dry

eye disease (DED). Topical application of lifitegrast provides

improvement in inferior corneal staining score and eye dryness

(85). Our study revealed that ITGB2 may be a novel therapeutic

target in SLE and pSS. Development of drug delivery strategies will

provide greater therapeutic opportunities for targeting integrins.

In addition, we also analyzed TFs and verified their expression

levels in microarray and scRNA-seq datasets. We found that 6 TFs

may regulate the expression of hub genes. Upon further verification,

two TFs (STAT1 and IRF7) are highly expressed in SLE and pSS.

Signal transducer and activator of transcription (STAT) families

and IFN regulatory factor (IRF) have been demonstrated to play

essential roles in regulating type I IFN response (86). All STAT

family members primarily function within the Janus kinase-signal

transducer and activator of transcription (JAK-STAT) pathway
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(87). IFNs cause STAT activation and subsequently trigger ISG

expression (88, 89). STAT1, STAT2 and IRF9 are capable of

amplifying JAK-STAT signaling to reinforce IFN response (90).

The JAK-STAT pathway transduces intracellular signals of multiple

cytokines, and is critical to the pathogenesis of autoimmune

diseases. SLE patients showed substantially higher STAT1 in B

cells and plasmablasts (91). STAT1 expression is also increased in

labial salivary glands from pSS patients (92). Our study confirmed

the essential role of STAT1 in both SLE and pSS. STATs, as JAK

substrates, have been investigated as attractive therapeutic targets in

autoimmune diseases. However, challenges in the development of

STAT inhibitors include issues with bioavailability, in vivo efficacy

and selectivity (93). Thus, Janus kinase inhibitors (Jakinibs),

targeting JAK-STAT pathways, hold promise to block STAT

expression. Currently, Jakinibs are most commonly used for RA

treatment. In SLE, tofacitinib has been used in phases of clinical

trials. Lee and colleagues (94) performed a series of experiments to

determine the safety and efficacy of filgotinib for pSS treatment, and

suggested that filgotinib has potential for pSS treatment. The

mammalian IRF family proteins (IRF1-9) are TFs that play

crucial roles in connecting microbial signaling to the responses of

IFNs, pro-inflammatory cytokines and innate immune responses

(95, 96). IRF3 and IRF7 play pivotal roles in the induction of type I

IFN gene transcription (97). IRF7 is a lymphoid TF that is

constitutively expressed only in B cells, monocytes and

plasmacytoid dendritic cells (pDCs), and is particularly highly

expressed in pDCs (98), which was consistent with our study.

IRF7 was specifically concentrated in DCs from both SLE and

pSS. IRFs can induce the expression of ISGs through a pathway that

may depend on or be independent of JAK-STAT signaling (99).

IRF7 as transcriptional regulators of type I IFNs and certain single

nucleotide polymorphisms (SNPs) in IRF7 to the onset of SLE have

been substantiated in previous literature (100). However, the

limited studies about IRF7 function regulation in SLE are mainly

on murine models. With respect to pSS, IRF7 was upregulated in B

cells from patients compared from healthy controls (101). In our

study, IRF7 was identified as a pivotal TF in both SLE and pSS.

Firstly, the functions of TFs need to be further verified with in vitro

models. Secondly, STAT1 and IRF7 might act as reporter genes for

preliminary screening of drug candidates in SLE and pSS diseases in

the future.

There are some limitations in our study. Although we employed

comprehensive and improved bioinformatic methods and verified

our results in other gene expression profiles, the analysis remains

speculative. Further experimental research is needed to confirm the

findings in this study, which provides a theoretical basis for future

research in the field.
Conclusions

In summary, we explored and identified the shared hub genes,

related pathways and TFs in peripheral blood from SLE and pSS

patients for the first time. The hub genes (IFI44L, ISG15 and ITGB2)

were identified, and relevant pathways (IFN response and ITGB2

signaling pathway) were found in SLE and pSS. In addition, STAT1
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and IRF7 were identified as common TFs, associated with

monocytes and DCs. Moreover, IRF7 was predominantly

expressed in DCs. This study provides novel insights for further

pathogenesis studies of SLE and pSS. In conclusion, a better

understanding of the pathogenesis of each disease is of

fundamental importance for identifying new therapeutic targets

and immunomodulatory agents in future management of SLE

and pSS.
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A corrigendum on

Exploring the shared molecular mechanisms between systemic lupus
erythematosus and primary Sjögren’s syndrome based on integrated
bioinformatics and single-cell RNA-seq analysis

by Cui Y, Zhang H, Wang Z, Gong B, Al-Ward H, Deng Y, Fan O, Wang J, Zhu W and Sun YE
(2023). Front. Immunol. 14:1212330. doi: 10.3389/fimmu.2023.1212330
In the published article, there was an error in Figures 8C, 9A, 9B, 10C, 10E and

Supplementary Figures S5E, S6A, S7E as published. We noticed that a cell type was

incorrectly described. The “gd T cells” should be “CD8 memory T cells” in our article since

the R codes were not revised in time. The corrected Figures 8, 9, 10 and Supplementary

Figures 5, 6 and 7 and their captions “FIGURE 8 Validation of hub genes in scRNA-seq

datasets”, “FIGURE 9 Landscape map of IC in SLE and pSS datasets”, “FIGURE 10

Verification of related pathways in scRNA-seq datasets”, “Supplementary Figure 5

Functional analysis of upregulated DEGs in scRNA-seq”, “Supplementary Figure 6

Heatmap of correlation matrix”, “Supplementary Figure 7 The expression levels of

ITGB2 signaling pathway related genes (ITGB2, ICAM1, ICAM2, CD226 and ITGAL)”

appear below or can be found in the Supplementary Material of the original article.

The authors apologize for this error and state that this does not change the scientific

conclusions of the article in any way. The original article has been updated.
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FIGURE 8

Validation of hub genes in scRNA-seq datasets. (A) UMAP visualization GSE157278 scRNA-seq datasets. (B) UMAP visualization GSE135779 scRNAseq
datasets; Different colors indicate distinct cell types. (C) Cellular composition in SLE and HCs group (D) Cellular composition in pSS and HCs group.
The colors represent different cell types. (E) Violin plot of hub genes expression in different cell types in SLE. (F) Violin plot of hub genes expression
in different cell types in pSS. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome.
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FIGURE 9

Landscape map of IC in SLE and pSS datasets. (A) Boxplot showing the differences of IC between SLE and HC. (B) Correlation matrix between IC and
hub gene in SLE. (C) Boxplot showing the differences of IC between pSS and HC. (D) Correlation matrix between IC and hub gene in pSS. Red:
positive correlation; blue: negative correlation. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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FIGURE 10

Verification of related pathways in scRNA-seq datasets. (A) Violin plot of INTERFERON_RESPONSE expression in SLE. (B) Violin plot of
INTERFERON_RESPONSE expression in pSS. (C) Circos plot showing the ITGB2 signaling pathway network across major cell types in SLE and HCs.
(D) Circos plot showing the ITGB2 signaling pathway network across major cell types in pSS and HCs. (E) Heatmap showing the relative importance
of each cell type based on the computed four network centrality measures of the ITGB2 signaling pathway in SLE. (F) Heatmap showing the relative
importance of each cell type based on the computed four network centrality measures of the ITGB2 signaling pathway in pSS. SLE, systemic lupus
erythematosus; pSS, primary Sjögren’s syndrome.
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Multi-omics segregate different
transcriptomic impacts of
anti-IL-17A blockade on type
17 T-cells and regulatory
immune cells in psoriasis skin

Jaehwan Kim1,2,3*, Jongmi Lee2, Xuan Li1, Norma Kunjravia1,
Darshna Rambhia1, Inna Cueto1, Katherine Kim2,3,
Vasuma Chaparala2, Younhee Ko3,4, Sandra Garcet1,5,
Wei Zhou6, Junyue Cao6 and James G. Krueger1*

1Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States,
2Dermatology Section, Veterans Affairs Northern California Health Care System, Mather,
CA, United States, 3Department of Dermatology, University of California, Davis, Sacramento,
CA, United States, 4Division of Biomedical Engineering, Hankuk University of Foreign Studies,
Seoul, Republic of Korea, 5Research Bioinformatics, Center for Clinical and Translational Science,
The Rockefeller University, New York, NY, United States, 6Laboratory of Single-cell Genomics and
Population Dynamics, The Rockefeller University, New York, NY, United States
Durable psoriasis improvement has been reported in a subset of psoriasis

patients after treatment withdrawal of biologics blocking IL-23/Type 17 T-cell

(T17) autoimmune axis. However, it is not well understood if systemic blockade of

the IL-23/T17 axis promotes immune tolerance in psoriasis skin. The purpose of

the study was to find translational evidence that systemic IL-17A blockade

promotes regulatory transcriptome modification in human psoriasis skin

immune cell subsets. We analyzed human psoriasis lesional skin 6 mm punch

biopsy tissues before and after systemic IL-17A blockade using the muti-

genomics approach integrating immune cell-enriched scRNA-seq (n = 18),

microarray (n = 61), and immunohistochemistry (n = 61) with repository

normal control skin immune cell-enriched scRNA-seq (n = 10) and microarray

(n = 8) data. For the T17 axis transcriptome, systemic IL-17A blockade depleted

100% of IL17A+ T-cells and 95% of IL17F+ T-cells in psoriasis skin. The expression

of IL23A in DC subsets was also downregulated by IL-17A blockade. The

expression of IL-17-driven inflammatory mediators (IL36G, S100A8, DEFB4A,

and DEFB4B) in suprabasal keratinocytes was correlated with psoriasis severity

and was downregulated by IL-17A blockade. For the regulatory DC

transcriptome, the proportion of regulatory semimature DCs expressing

regulatory DC markers of BDCA-3 (THBD) and DCIR (CLEC4A) was increased

in posttreatment psoriasis lesional skin compared to pretreatment psoriasis

lesional skin. In addition, IL-17A blockade induced higher expression of CD1C

and CD14, which are markers of CD1c+ CD14+ dendritic cell (DC) subset that

suppresses antigen-specific T-cell responses, in posttreatment regulatory
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semimature DCs compared to pretreatment regulatory semimature DCs. In

conclusion, systemic IL-17A inhibition not only blocks the entire IL-23/T17 cell

axis but also promotes regulatory gene expression in regulatory DCs in human

psoriasis skin.
KEYWORDS

psoriasis, multi-omics, single-cell RNA sequencing, IL-17, biologics impacts of IL-17A
blockade on skin immune cell subsets
Introduction

Psoriasis is one of the most common organ-specific

autoimmune diseases in the human population affecting 3.2% of

the adult population (1–3). Psoriasis originates from the skin, but it

progressively induces systemic inflammation that may accompany

psoriatic arthritis, metabolic syndrome, diabetes, overt vascular

inflammation, and cardiovascular disease (4–7). Increasing

evidence indicates that the systemic impact of psoriasis shortens

the lifespan of affected individuals by at least 3–5 years (8).

Psoriasis persists as a lifelong disease that rarely improves

without treatment, but systemic administration of recent

monoclonal antibodies targeting the IL-23/Type 17 T-cell (T17)

autoimmune axis is highly effective for psoriasis treatment (3). In

the current model of psoriasis immunopathogenesis, IL-23 from

dendritic cells (DCs) triggers T-cells (T17 cells) to produce IL-17,

and IL-17 induces inflammatory mediators in keratinocytes (KCs)

such as IL-36g. The inflammatory mediators from KCs amplify DC

and T-cell recruitment and activation completing the feed-forward

inflammatory loop.

Genomic medicine mapping of psoriasis-associated immune

pathways in the human skin enabled the therapeutic success of IL-

23/IL-17 antagonists. The high efficacy of most IL-23/IL-17

antagonists was identified through early phase IIb studies that

incorporated total skin gene expression profiles on relatively small

numbers of patients, often with <10 in a treatment cohort (9–11).
02113
Large phase II and III studies were needed mainly to develop safety

profiles on a sufficient number of patients for new drug registration.

However, total skin gene expression profiling is confronting

limitations to dissect the IL-23/T17 autoimmune axis for explaining

recent clinical trial findings (1): systemic administration of an anti-

IL-17A monoclonal antibody increased the expression of genes

involved in skin homeostasis promotion and KC stem cell

activation in psoriasis skin (10). (2) systemic administration of an

anti-IL-17A or anti-IL-23p19 monoclonal antibody produced

durable psoriasis improvement maintenance even after treatment

withdrawal in a subset of psoriasis patients (9, 12–15). To

understand immune tolerance promotion induced by IL-23/T17

autoimmune axis blockade, we need to segregate and compare the

transcriptome of regulatory immune cell subsets in human psoriasis

skin before and after blocking the IL-23/T17 autoimmune axis.

We recently used RT-PCR analyses of total skin from a

randomized placebo-controlled clinical trial (ClinicalTrial.gov

identifier: NCT03131570) to study psoriasis skin transcriptome

modifications induced by systemic IL-17A blockade (10). Here,

we used archived samples from this trial for further analysis,

applying a multi-omics approach. We performed single cell RNA-

sequencing (scRNA-seq) analyses of T-cell, DC, and KC subsets

isolated from psoriasis skin. We also used whole psoriasis skin for

microarray, RT-PCR, and IHC analyses (Figure 1). Our multi-

omics approach provides novel translational evidence in human

psoriasis skin that systemic anti-IL-17A monoclonal antibody
FIGURE 1

Schematic view of multi-omics strategy for mapping human psoriasis skin transcriptome.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1250504
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kim et al. 10.3389/fimmu.2023.1250504
administration not only blocks the entire feed-forward

inflammatory amplification loop between T-cells, DCs, and KCs,

but also promotes regulatory transcriptome modification in

regulatory DCs.
Materials and methods

Human psoriasis skin before and after
systemic IL-17A blockade

23 adult psoriasis patients received anti-IL-17A monoclonal

antibody (secukinumab) injections for more than 12 weeks in the

phase II clinical trial (ClinicalTrial.gov identifier: NCT03131570).

Patients received the anti-IL-17A monoclonal antibody at a dose of

300 mg with injections administered once weekly at baseline and at

weeks 1, 2, 3, and 4 and then every 4 weeks. The clinical responses of

patients and RT-PCR analyses of psoriasis skin were previously

published (10).

For this study, psoriasis skin biopsy samples obtained from the

clinical trial (10) were further analyzed by immune cell-enriched

scRNA-seq (n = 18; GSE183047), microarray (n = 61; GSE226244),

and immunohistochemistry (n = 61) together with our repository

normal control skin immune cell-enriched scRNA-seq data (n = 10)

(16) and microarray data (n = 8) (Supplementary Table 1). To

minimize the batch effects, all the molecular experiments from the

initial sample processing to cDNA library construction were

performed by the same investigators under the same protocol.

Lesional biopsy specimens were harvested with a 6 mm punch

biopsy from areas with representative psoriasis lesions. The

individual skin sample information, including age, gender,

psoriasis versus (vs.) control, and timepoint of biopsy is

summarized in Supplementary Table 1. Psoriasis lesional skin

biopsy samples before anti-IL-17A monoclonal antibody

injections (pretreatment) and psoriasis lesional skin biopsy

samples after 12 weeks of anti-IL-17 monoclonal antibody

injections (posttreatment) were compared for this study.

Harvested skin samples were bisected immediately after the skin

biopsy. Half of the two bisected skin tissue was incubated in a

culture medium for single-cell RNA sequencing (scRNA-seq)

experiments. Another half of the bisected skin tissue was snap-

frozen and embedded in the Optimal Cutting Temperature (OCT)

compound (Ted Pella, Redding, CA) for microarray and

immunohistochemistry experiments.
Immune cell-enriched single-cell
RNA sequencing analyses of human
psoriasis skin

Harvesting emigrating cells from skin biopsy
tissues for immune cell-enriched scRNA-seq

Skin biopsy samples were incubated in culture medium for

harvesting emigrating cells (16). To split the epidermis and dermis

where most of the inflammatory cells were located, harvested skin

tissue was immediately placed in 0.2% Dispase II (Sigma-Aldrich,
Frontiers in Immunology 03114
St. Louis, MO) and incubated in a humidified incubator at 37°C and

5% CO2 for 3 hours. Then, the epidermis and dermis were separated

with forceps and sliced into small pieces with #10 blade scalpels.

The epidermis and dermis were separately incubated in RPMI-1640

medium with L-glutamine (Cytiva, Marlborough, MA)

supplemented with 10% human albumin serum (Sigma-Aldrich,

St. Louis, MO) in a humidified incubator at 37°C and 5% CO2.

Nonplastic adherent cells that had emigrated out of the epidermis

and dermis were harvested after 48 hours. The harvested cells from

the epidermis and dermis were filtered through a 40-µm cell strainer

(Corning, Glendale, AZ) and stored on ice. The cell numbers and

viability were determined using a Countess automated cell counter

(Invitrogen, Carlsbad, CA) and trypan blue staining (BioRad,

Hercules, CA).

Single-cell capture and cDNA library preparation
The 10x Genomics Chromium Single Cell 3′ Reagents Kit user

guide (https://support.10xgenomics.com) was used to prepare the

single-cell suspension. The appropriate volume of each sample was

diluted to recover 10,000 cells. Subsequently, the single-cell

suspension, gel beads, and oils were added to the 10X Genomics

single-cell chip. After droplet generation, samples were transferred

into PCR tubes and we performed reverse transcription using a

ProFlex PCR Thermocycler System (Applied Biosystems, Foster

City, CA). After reverse transcription, cDNA was recovered using a

recovery agent, provided by 10X Genomics, followed by silane

DynaBead clean-up as outlined in the user guide.

Single-cell RNA sequencing data generation
The raw sequencing data for individual samples were processed

using the 10X Genomics standard sequencing protocol without

modifications. The FASTQ files were aligned to the human genome

reference sequence GRCh38. Cell Ranger was applied to FASTQ

files to generate files containing a barcode table, a gene table, and a

gene expression matrix. The number of reads, mean reads per cell,

valid barcodes, sequencing saturation, and other scRNA-seq

parameters are detailed in Supplementary Table 1. The scRNA-

seq data have been deposited in NCBI’s Gene Expression Omnibus

and are publicly accessible through GEO Series accession number

GSE183047. There is no restriction on the use of the data.

Single-cell data quality control
We used the Seurat R package (version 4.0) installed in R

(version 4.0.2) for the downstream single-cell analyses (17–19).

Before data integration, single-cell data quality control was

performed separately for each sample as previously described for

human skin single-cell RNA sequencing analyses (16, 20–22).

Genes expressed in <3 cells, and cells with <100 or >5,000 genes

and a mitochondrial gene percentage of >25% were filtered out to

eliminate partial cells and doublets. Ubiquitously expressed

ribosomal protein-coding (RPS and RPL) and MALAT noncoding

RNA, miRNA, and snoRNA genes were excluded from the analysis

as we described in our prior single-cell analysis publication with the

publicly available R scripts (16). Seurat objects were created

followed by normalizing data, scaling data, and finding variable

2,000 genes.
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Single-cell data integration and harmonization
We first merged single-cell data of samples with the identical

reagent kit version and the identical sequencer. To harmonize

merged groups into a single dataset reducing batch effects,

correspondences between cells in merged datasets were identified

by the FindIntegrationAnchors function, and the correspondences

were used for data integration with the IntegratedData function as

detailed by Stuart et al. (18).

Non-linear dimension reduction and
clustering analysis

Principal component analysis and graph-based clustering

analysis were performed, and sixty principal components (PCs)

were selected for Uniform Manifold Approximation and Projection

for Dimension Reduction. With a resolution of 0.8, cells were

clustered by the FindClusters function. The average gene

expression of psoriasis vs. control cells within a cluster was

calculated by the AverageExpression function.

When 10,000 cells are submitted to a microfluidic platform for

droplet-based single-cell library construction, 2.3% to 4.6% of

single-cell data could be technical artifacts caused by cell doublets

formed during cell capture (Chromium Next GEM Single Cell 3′
Reagent Kits User Guide, 10X Genomics, USA). To remove clusters

with possible doublets for downstream single-cell analysis, we

excluded clusters expressing gene signatures of more than two

different immune cell types (Supplementary Figure 1). We also

excluded clusters of a minimal number of cells that were spatially

separated from the analogous type of cells. To compare psoriasis

and control cells within clusters representing each type of skin

immune cells, we merged adjacent clusters of common immune

cell subsets.
Microarray analyses of human skin

Skin biopsy samples were frozen and then mechanically

disaggregated before RNA extraction. RNA was extracted with

RNA isolation kits (Qiagen) according to the manufacturer’s

protocol. A total of 100 ng of biotinylated cDNA was hybridized

to the GeneChip Human Genome U133 Plus 2.0 Array

(Affymetrix). The expression values were obtained using the

GCRMA algorithm (23), while normalization across samples was

carried out using quantile normalization. The raw microarray data

have been deposited in NCBI’s Gene Expression Omnibus (GEO)

and are accessible through accession number GSE226244.
RT-PCR analyses of human skin

Total RNA was extracted from frozen skin biopsies by the

Qiagen miNeasy Mini Kit (Valencia, CA, USA). DNA was removed

with on-column DNase digestion by the Qiagen RNase-free DNase

Set (Valencia, CA, USA). The quality of extracted RNA was

examined using Agilent Bioanalyzer 2100 (Agilent Technologies,

Palo Alto, CA). Real-time PCR was performed on QuantStudio 7

Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham,
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MA) with TaqMan Array Cards (384-well plates preloaded with

TaqMan assays, Thermo Fisher Scientific, Waltham, MA). All

primers are listed in Supplementary Table 2.
Immunohistochemistry analyses of
human skin

For immunostaining, vertical sections were cut to a thickness of

6 mm (+/- 1 mm) from the frozen skin biopsy tissues embedded in

the OCT compound. Frozen sections were dried at room

temperature and then fixed for 2 minutes in acetone. Next, the

samples were blocked with 10% normal serum of the species in

which the secondary antibody was made, and then the samples were

incubated overnight at 4°C with the appropriate primary antibody.

Primary antibodies used in this study were all mouse antibodies:

KRT16 (LSBio, Seattle, WA; clone 7A4, dilution 1:500), CD3 (BD

Biosciences, San Jose, CA; clone SK7, dilution 1:100), and CD11c

(BD Biosciences, San Jose, CA; clone Bly6, dilution 1:100). Biotin-

labeled horse anti-mouse antibodies (Vector Laboratories,

Burlingame, CA) were used to detect the primary antibodies. The

staining signal was amplified with avidin-biotin complex (Vector

Laboratories, Burlingame, CA) and developed using chromogen 3-

amino-9-ethyl carbazole (Sigma-Aldrich, St. Louis, MO). Section

images were acquired at ×10 magnification. The number of

immunostaining-positive cell counts per section was manually

counted using computer-assisted image analysis software (ImageJ

V1.48, National Institute of Health, Bethesda, MD). 61 sections

were quantified for CD3 immunostaining (n = 40 for pretreatment

sections and n = 21 for posttreatment sections) and 60 sections were

quantified for CD11c immunostaining (n = 40 for pretreatment

sections and n = 20 for posttreatment sections).
Statistics

Statistical analyses of scRNA-seq data at the level of total T-

cells, DCs, or KCs were performed under the general framework of

the Seurat R package (17–19). We used a Wilcoxon rank sum test to

define differentially expressed genes. A value of p < 0.05 was

considered statistically significant.

Statistical analyses of scRNA-seq data at the level of T-cell and

KC subsets were performed under the trajectory inference

framework of Monocle3 R package (24, 25). We used a spatial

autocorrelation analysis called Moran’s I (25) with the graph-test

function, which Cao et al. (24) showed to be effective in finding

genes that are differentially expressed in single-cell RNA sequencing

data. A p-value that has been adjusted for the False Discovery rate <

0.05 was considered statistically significant (Supplementary

Tables 3, 4). Spearman’s rank correlation coefficient was

calculated to test inter-correlations between the single-cell data.

For statistical analyses of microarray data, log2-transformed

expression values were modeled using linear mixed-effects models.

P-values frommoderated t-tests were adjusted for multiple hypotheses

across genes using the Benjamini-Hochberg procedure. A value of p <

0.05 and a fold change ratio > 2 was considered statistically significant.
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For statistical analyses of RT-PCR data, RT-PCR results were

modeled with the delta Ct (DDCt) method for relative quantification

to a housekeeping gene RPLP0 (Ribosomal Protein Lateral Stalk

Subunit P0) and calibration with a reference sample Control01

under the general framework of pcr_analyze R package (26) as we

described in our prior publication (10). Two-sided Wilcoxon rank-

sum test was used to compare RT-PCR experiment results between

group 1 and group 2. A value of p < 0.05 was considered

statistically significant.

For statistical analyses of immunohistochemistry data, we used

a Wilcoxon rank sum test to compare measures between groups. A

value of p < 0.05 was considered statistically significant.
Study approval

The study protocol and informed consent were approved by the

Institutional Review Board of the Rockefeller University, New York,

NY, USA. The study was conducted in accordance with Good

Clinical Practice and the Declaration of Helsinki, and all subjects

provided written informed consent before entering the study.
Results

IL-17A blockade reduces T-cell signatures,
dendritic cell signatures, and keratinocyte
hyperproliferation signatures and increases
regulatory molecular expression in
psoriasis lesional skin at total skin
transcriptome levels

We first studied how the immune cell numbers are changed in

psoriasis skin after systemic IL-17A blockade, and how the immune

cell number changes are reflected in total skin transcriptome. KC

hyperproliferation [KRT16 staining (27)], T-cell numbers (CD3

staining), and DC numbers (ITGAX (CD11c) staining) were

decreased in psoriasis lesional skin after 12 weeks of anti-IL-17A

monoclonal antibody injections (posttreatment) compared to

pretreatment psoriasis lesional skin of the same patients

(Figure 2A, p < 0.05).

Reflecting the decreased T-cell numbers by systemic IL-17A

blockade, total skin transcriptome of T17 responses (IL17A, IL26,

IL12B, and IL20) (3, 28), T-cell regulation (IL24 and CTLA4) (29,

30), resident memory T-cells (Trms) [ITGAE (CD103)] (31) and

regulatory T-cells (Tregs) (FOXP3) (32) was decreased in

posttreatment psoriasis lesional skin compared to pretreatment

psoriasis lesional skin in both microarray and RT-PCR

experiments (Figures 2B, C, p < 0.05).

Reflecting the decreased DC numbers by systemic IL-17A

blockade, total skin transcriptome of T17 cell-stimulating DCs

(IL23A) (3) and mature DCs (LAMP3 (DC-LAMP), CD274 (PD-
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L1) and IDO1) (16, 33, 34) were decreased in posttreatment

psoriasis lesional skin compared to pretreatment psoriasis lesional

skin in both microarray and RT-PCR experiments (Figures 2B, C,

p < 0.05).

Reflecting the decreased KC hyperproliferation by systemic IL-

17A blockade, total skin transcriptome of KC cytokines that

stimulate DCs and T-cells in feed-forward mechanisms (S100A8

and IL36G) (3) was decreased in posttreatment psoriasis lesional

skin compared to pretreatment psoriasis lesional skin in both

microarray and RT-PCR experiments (Figures 2B, C, p < 0.05).

In contrast, total skin transcriptome of Treg-specific cytokine

that mediates immune tolerance [IL34 (35–37)], an anti-

inflammatory cytokine that inhibits innate immune signaling

[IL37 (38, 39)], and KC stem cell marker of quiescence [KRT15

(40)] were increased in posttreatment psoriasis lesional skin

compared to pretreatment psoriasis lesional skin in both

microarray and RT-PCR experiments, albeit the decreased T-cell,

DC, and KC numbers (Figures 2B, C, p < 0.05).
IL-17A blockade reduces type 17 T-cell
signatures in psoriasis lesional skin at
single-cell cluster levels.

We next studied how systemic IL-17A blockade modified

transcriptome of T17 cells and transcriptome of Tregs differently

with single-cell analyses. Clustering analysis of 40,026 single cells

from 28 samples of 20 subjects identified clusters of NK cells,

CD161+ T-cells, CD8+ T-cells, CD4+ T-cells, Tregs, mature DCs,

semimature DCs, melanocytes, KCs in different layers of Stratum

(S.) corneum, S. granulosum, S. spinosum, S. basale, endothelial

cells, and fibroblasts without subclustering (Figure 3A and

Supplementary Figure 2). The identity of each cluster was

determined by the expression of established cell type markers

(Figure 3B). To characterize T17 cell transcriptome in psoriasis

skin, we segregated T-cell (CD161+ T-cell, CD8+ T-cell, CD4+ T-

cell, and Treg) clusters in the scRNA-seq data and tested if psoriasis

T-cells express more T17 cell genes than control T-cells. The

expression of T17 cell genes [KLRB1 (CD161) (41), IL17A, IL17F,

and IL26 (42, 43)], a cytokine that represents a particularly T17-

specific abnormality and positively associates with psoriasis severity

(CXCL13) (44–47), and Treg genes (FOXP3, IL2RA (CD25), and

TIGIT) was increased in pretreatment psoriasis lesional skin T-cells

compared to control skin T-cells (Figure 4A, p < 0.05).

When we defined T17 cells as T-cell cluster cells expressing

IL17A and/or IL17F, the majority of T17 cells were within the

CD161+ T-cell cluster. 5.5% of total T-cells were CD161+ T-cell

cluster cells and 15.0% of CD161+ T-cell cluster cells were T17 cells

(Figure 4C). 76.5% of IL17A+ T-cells, 61.4% of IL17F+ T-cells, and

100% of IL17A+ IL17F+ T-cells were within the CD161+ T-cell

cluster in pretreatment psoriasis lesional skin. In addition, 84.7% of

CD161+ T-cell cluster cells expressed CXCL13, while only 1.6% of
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A

B C

FIGURE 2

IL-17A blockade reduces T-cell signatures, dendritic cell signatures, and keratinocyte hyperproliferation signatures and increases regulatory molecular
expression in psoriasis lesional skin at total skin transcriptome levels. (A) Immunohistochemistry of keratinocyte hyperproliferation (KRT16), CD3+ T-cells, and
ITGAX (CD11c)+ dendritic cells (DCs) before (PreTx) and after (PostTx) 12 weeks of systemic anti-IL-17A monoclonal antibody (secukinumab) administration.
Bar graphs display CD3+ T-cell (n = 40 for PreTx and n = 21 for PostTx) and ITGAX (CD11c)+ DC (n = 40 for PreTx and n = 20 for PostTx) number changes
induced by systemic anti-IL-17A blockade. *p < 0.05. Black dotted lines delineate the junction between the epidermis and dermis (Scale bar = 200 mm). (B,
C), Differentially expressed genes (DEGs) between PreTx and PostTx at total skin transcriptome levels. DEGs that are relevant to psoriasis pathogenesis and
statistically significant in both microarray (B, fold change ratio > 2 and p < 0.05) and RT-PCR (C, p < 0.05) experiments are displayed.
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CD8+ T-cell cluster cells, 2.5% of CD4+ T-cell cluster cells, and 0.6%

of Treg cluster cells expressed CXCL13 in pretreatment psoriasis

lesional skin (Figure 4B).

After systemic IL-17A blockade (12 weeks of anti-IL-17A

monoclonal antibody injections), the expression of IL17A in the

CD161+ T-cell cluster was decreased to zero in psoriasis lesional skin
Frontiers in Immunology 07118
(Figures 4B, C, and Supplementary Table 3; p< 0.05). Although anti-IL-

17Amonoclonal antibodydoesnotdirectly target IL-17F, theexpression

of IL17F was also decreased in the CD161+ T-cell cluster in psoriasis

lesional skin after IL-17A blockade (Figure 4B and Supplementary

Table 3, p < 0.05). When all T-cell cluster cells were considered, IL-

17A blockade decreased 95% of IL17F+ T-cells (Figure 4C).
A

B

FIGURE 3

Human skin immune cell subset single-cell transcriptome comparison between psoriasis pretreatment (PreTx), psoriasis posttreatment (PostTx), and
control (healthy volunteers). Psoriasis posttreatment is after anti-IL-17A monoclonal antibody (secukinumab) subcutaneous injections at a dose of
300 mg at baseline and weeks 1, 2, 3, 4, 8, and 12 (12 weeks of injections). (A) The Uniform Manifold Approximation and Projection plot (UMAP). (B)
Dot plots displaying expression levels of cluster-defining genes.
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IL-17A blockade increases regulatory
dendritic cell signatures in psoriasis
lesional skin at single-cell cluster levels

We next studied how systemic IL-17A blockade modified

transcriptome of different DC subsets that we previously described in

our prior single-cell studies of human psoriasis skin (16). When we

segregated DC subset (mature DC and semimature DC) clusters in the

scRNA-seq data and compared their transcriptome, mature DCs in
Frontiers in Immunology 08119
psoriasis skin were characterized by relatively high expression of MHC

class II molecules (HLA-DRA and HLA-DPB1) and upregulated

maturation markers [CD86 (48) and DC-LAMP (LAMP3) (49)] (16)

(Figure 5A). In contrast, semimature DCs in psoriasis skin were

characterized by relatively low expression of MHC class II molecules

(HLA-DRA andHLA-DPB1) and upregulated inflammatory monocyte

receptor markers [CD14 and CD64 (FCGR1A) (50)] (Figure 5B, p <

0.05). Semimature DCs were characterized as regulatory DCs

expressing high levels of IL10, THBD (BDCA-3), LILRB2, and
A

B

C

FIGURE 4

IL-17A blockade reduces Type 17 T-cell signatures and modifies regulatory T-cell signatures in psoriasis lesional skin at single-cell cluster levels. (A)
Volcano plots displaying differentially expressed genes between control skin T-cells, psoriasis lesional skin T-cells before treatment (PreTx), and
psoriasis lesional skin T-cells after 12 weeks of systemic anti-IL-17A monoclonal antibody (secukinumab) administration (PostTx). (B) Heatmap
illustrating the average gene expression in clusters of NK cell and T-cell subsets, split by psoriasis PreTx, psoriasis PostTx, and control skin. (C) (Left)
Number of cells per sample and (Right) proportion of IL17A+ and IL17F+ cells in NK cell and T-cell subset clusters, split by control, psoriasis PreTx,
and psoriasis PostTx.
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CLEC4A (DCIR) (51, 52) (Figure 5B, p < 0.05). We previously reported

that both mature and semimature DCs in psoriasis lesional skin

expressed high levels of IL23A compared to control skin (16)

(Figure 5A). Our current study showed that the expression of IL23A

in both mature and semimature DCs was decreased after systemic IL-

17A blockade in posttreatment psoriasis lesional skin compared to

pretreatment psoriasis lesional skin (Figure 5A, p < 0.05).

Reflecting thedecreasedDCnumbersafter systemic IL-17Ablockade

in the immunohistochemistry experiment (Figure 2A), bothmature and

semimature DC numbers were decreased in posttreatment psoriasis

lesional skin compared to pretreatment psoriasis lesional skin in
Frontiers in Immunology 09120
scRNA-seq data (Figure 5C). Although semimature DC cell numbers

were decreased after systemic IL-17Ablockade, regulatory transcriptome

expression of the semimature DCs was increased after systemic IL-17A

blockade – 1) The proportion of semimature DCs expressing regulatory

DC markers of BDCA-3 (THBD) (51) and DCIR (CLEC4A) (52) was

increased in posttreatment psoriasis lesional skin compared to

pretreatment psoriasis lesional skin (Figure 5C). 2) The expression of

CD1C and CD14, which are genes of a CD1c+ CD14+ DC subset that

suppresses antigen-specific T-cell responses (53, 54), was increased in

posttreatment psoriasis lesional skin semimature DCs compared to

pretreatmentpsoriasis lesional skinsemimatureDCs(Figure5B,p<0.05).
A B

C

FIGURE 5

IL-17A blockade increases regulatory dendritic cell signatures in psoriasis lesional skin at single-cell cluster levels. (A) Heatmap illustrating the average gene
expression in clusters of mature DCs and semimature DCs, split by control skin DCs, psoriasis lesional skin DCs before treatment (PreTx), and psoriasis
lesional skin DCs after 12 weeks of systemic anti-IL-17A monoclonal antibody (secukinumab) administration (PostTx). (B) Volcano plots displaying differentially
expressed genes between control skin DCs, psoriasis PreTx DCs, and psoriasis PostTx DCs. (C) (Left) Number of cells per sample and (Right) proportion of
THBD (BDCA-3)+ and CLEC4A (DCIR)+ cells in DC subset clusters, split by control, psoriasis PreTx, and psoriasis PostTx.
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IL-17A blockade reduces IL-17-driven
inflammatory mediator expression in
suprabasal keratinocytes and increases
keratinocyte stem cell marker expression
in basal keratinocytes in psoriasis lesional
skin at single-cell cluster levels

We next studied how systemic IL-17A blockade modified

transcriptome of KCs in different layers of epidermis. We
Frontiers in Immunology 10121
segregated KC clusters representing different layers of the

epidermis (S. corneum, S. granulosum, S. spinosum, and S.

basale) and tested if psoriasis KCs express more IL-17-driven

inflammatory mediators than control KCs. The expression of

inflammatory mediators induced by IL-17 in keratinocytes

(IL36G, S100A8, DEFB4A, and DEFB4B (3)) was increased in

pretreatment psoriasis lesional skin KCs compared to control skin

KCs (Figure 6A, p < 0.05). After systemic IL-17A blockade, the

expression of those inflammatory mediators (IL36G, S100A8,
A

B

C

FIGURE 6

IL-17A blockade reduces IL-17-driven inflammatory mediator expression in suprabasal keratinocytes and increases keratinocyte stem cell marker
expression in basal keratinocytes in psoriasis lesional skin at single-cell cluster levels. (A) Volcano plots displaying differentially expressed genes
between control skin KCs, psoriasis lesional skin KCs before treatment (PreTx), and psoriasis lesional skin KCs after 12 weeks of systemic anti-IL-17A
monoclonal antibody (secukinumab) administration (PostTx). (B) Heatmap illustrating the average gene expression in KC clusters representing
different layers of epidermis (Stratum (S.) corneum, S. granulosum, S. spinosum, and S. basale), split by psoriasis PreTx, psoriasis PostTx, and control
skin. Bar graphs displaying IL36G+ and DEFB4A+ cell numbers in KC clusters, split by control, psoriasis PreTx, and psoriasis PostTx. (C) Correlation
plots displaying inter-correlations between Psoriasis Area-and-Severity Index (PASI), IL-23/T17 axis gene expression in total skin, and IL-17-driven KC
inflammatory mediator expression in different epidermal layers. Circled numbers = correlation coefficients with p < 0.05.
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DEFB4A, and DEFB4B) was decreased in posttreatment psoriasis

lesional skin KCs compared to pretreatment psoriasis lesional skin

KCs (Figure 6A, p < 0.05).

When we compared KC transcriptome in different epidermal

layers, the expression of IL-17-driven inflammatory mediators

(IL36G, S100A8, DEFB4A, and DEFB4B) was localized to

suprabasal layers (S. corneum, S. granulosum, and S. spinosum)

in pretreatment psoriasis lesional skin (Figure 6B). A high

proportion of IL36G expressing KCs co-expressed DEFB4A in

suprabasal layers (37.7% in S. corneum, 39.9% in S. granulosum

and 56.7% in S. spinosum). Reflecting that inflammation in the

upper layers of the epidermis determines psoriasis disease severity

(erythema, thickness, and scaling components of Psoriasis Area-

and-Severity Index (PASI)), KC expression of IL36G, DEFB4A, and

DEFB4B in S. corneum and S. granulosum was correlated with PASI

(Figure 6C, p < 0.05). After IL-17A blockade, KC expression of

IL36G, S100A8, DEFB4A, and DEFB4B in S. corneum and S.

granulosum decreased in posttreatment psoriasis lesional skin

compared to pretreatment psoriasis lesional skin (Figure 6B and

Supplementary Table 4, p < 0.05). The number of IL36G and/or

DEFB4A expressing KCs in S. corneum and S. granulosum was

decreased by 3 times from pretreatment psoriasis lesional skin to

posttreatment psoriasis lesional skin (Figure 6B).

In contrast to the inflammatory mediators induced by IL-17, the

expression of the KC stem cell marker (KRT15) was decreased in

pretreatment psoriasis lesional skin KCs compared to control skin

KCs (Figure 6A, p < 0.05). After systemic IL-17A blockade, the

expression of KRT15 was increased in posttreatment psoriasis

lesional skin KCs compared to pretreatment psoriasis lesional

skin KCs (Figure 6A, p < 0.05). The expression of KRT15 in

pretreatment psoriasis lesional skin was localized to the basal

layer in pretreatment psoriasis lesional skin (Figure 6B). After IL-

17A blockade, KC expression of KRT15 in S. basale increased in

posttreatment psoriasis lesional skin compared to pretreatment

psoriasis lesional skin (Figure 6B and Supplementary Table 4, p

< 0.05).
Discussion

In this study, we applied multi-omics to human psoriasis skin

providing a unique opportunity to compare the transcriptome of

total skin (microarray and RT-PCR) and the transcriptome of skin

immune cell subsets (scRNA-seq) generated from the same tissues

with different techniques. When skin transcriptome changes by

systemic IL-17A blockade were compared between total skin and

skin immune cell subsets, IL-23/T17 axis cytokine expression was

downregulated at both total skin levels and skin immune cell subset

levels. The quantity of overall immune cells, including both

pathogenic and regulatory subsets , was decreased in

posttreatment psoriasis lesional skin compared to pretreatment

psoriasis lesional skin (Figure 2A). Since the IL-23/T17 axis

cytokine sources (T-cells, DCs, and KCs) were decreased in the

predetermined volume of skin biopsy tissue (6 mm punch), total

skin transcriptome of IL-23/T17 axis cytokines (IL17A and IL26

from T-cells, IL23A, IL12B, and IL20 from DCs, and S100A8 and
Frontiers in Immunology 11122
IL36 from KCs) was decreased in posttreatment psoriasis lesional

skin compared to pretreatment psoriasis lesional skin (Figure 2B).

Paired skin immune cell subset transcriptome analyses with

scRNA-seq further elucidated which immune cell subsets were

expressing the IL-23/T17 axis cytokines and how their

transcriptome was affected by systemic IL-17A blockade. For T-

cell subsets, our study showed that 1) CD161+ T-cell cluster was the

major T17 cell cluster, but only 15.0% of CD161+ T-cell cluster cells

were T17 cells. Single-cell clustering of immune cell subsets

presented in this study was consistent with our previous single-

cell paper (16), but T-cell clustering evolved as we increased the

total number of single-cells for dimension reduction analyses from

23,220 to 40,026 (Figure 3). Our new dimension reduction and

clustering analyses revealed that the majority of T17 cells in

psoriasis skin were contained in the CD161+ T-cell cluster

consistent with previous CD161+ T-cell studies (55) (Figure 4C).

CD161 is a marker of all human T-cell subsets with the ability to

produce IL-17, and it has been reported that IL-17-producing cells

exclusively originate from naïve CD161+ T-cell precursors (56). In

psoriasis, it has been reported that more CD161+ T-cells are present

in psoriasis lesional skin compared to psoriasis nonlesional skin or

normal skin (57, 58), and the greater frequency of CD161+ T-cells

are present in prepsoriatic skin compared to normal skin,

suggesting the role of CD161+ T-cells in the initial development

of psoriatic lesions (57, 59). 2) CD161+ T-cell cluster was the major

T-cell subset cluster expressing CXCL13, which is a cytokine that

represents a particularly T17-specific abnormality and positively

associates with psoriasis severity (44–47) (Figure 4B). In our single-

cell dataset, 70.2% of CXCL13-expressing cells was T-cell cluster

cells, and 73.2% of CXCL13-expressing T-cell cluster cells were

CD161+ T-cell cluster cells.

For single-cell transcriptome modification of the IL-23/T17 cell

axis induced by systemic IL-17A blockade, our study showed that 1)

The expression of IL23A in dendritic cell subsets in psoriasis skin

lesions was downregulated by systemic IL-17A blockade, potentially

by blocking the entire feed-forward inflammatory amplification

loop between T-cells, DCs, and KCs (Figure 5A), 2) Systemic IL-

17A blockade removed 100% of IL17A-expressing T-cells. Although

anti-IL-17A monoclonal antibody does not directly target IL-17F,

systemic IL-17A blockade also removed 95% of IL17F-expressing T-

cells in psoriasis skin, potentially mediated by IL-23 reduction in

dendritic cells (Figure 4C). 2) The expression of IL-17-driven

inflammatory mediators (IL36G, S100A8, DEFB4A, and DEFB4B)

in KCs was localized to suprabasal KCs (Figure 6B). The expression

of those IL-17-driven inflammatory mediators in suprabasal KCs

was correlated with psoriasis severity (Figure 6C) and was

downregulated by systemic IL-17A blockade (Figure 6B).

Mapping regulatory DC transcriptome is challenging because a

master regulator of regulatory DCs is not identified. All regulatory

DC markers of BDCA-3 (THBD) (51), DCIR (CLEC4A) (52),

LILRB1 (60), LILRB2 (ILT4) (61), LILRB4 (ILT3) (61) and

combination of CD1C and CD14 (53, 54) are surface markers that

are not specific for DCs. Since the markers are expressed in other

skin cells, total skin transcriptome changes of those markers did not

represent transcriptome changes of regulatory DCs (Figure 2B).

Instead, skin immune cell subset transcriptome analyses of the
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semimature DC cluster, which we previously reported as regulatory

DCs in psoriasis skin (16), showed regulatory transcriptome

promotion by systemic IL-17A blockade in regulatory DCs – 1)

The proportion of semimature DCs expressing regulatory DC

markers of BDCA-3 (THBD) (51) and DCIR (CLEC4A) (52) was

increased in posttreatment psoriasis lesional skin compared to

pretreatment psoriasis lesional skin (Figure 5C). 2) The

expression of CD1C and CD14 [markers of CD1c+ CD14+ DC

subset that suppresses antigen-specific T-cell responses (53, 54)]

was increased in posttreatment psoriasis lesional skin semimature

DCs compared to pretreatment psoriasis lesional skin semimature

DCs (Figure 5B, p < 0.05).

Clinically, when moderate-to-severe psoriasis patients were

treated with systemic anti-IL-17A monoclonal antibody

(secukinumab) administration for 52 weeks and then stopped the

treatment, 16.0% of them maintained response after treatment

withdrawal over the next 52 weeks without need for retreatment

(12, 13). Our study may explain how those patients restored immune

tolerance to psoriasis autoantigens that may have prevented

recurrence of psoriasis off the treatment. In addition to the co-

modulation of IL-17A and IL-17F by direct and indirect effects on T-

cells including IL-23 reduction in dendritic cells, systemic IL-17A

blockade may have effectively modified regulatory transcriptome of

regulatory DCs (Figures 5B, 6C) in those patients.

Our study has limitations: 1) Our single-cell analysis approach

relied on immune cell emigration from the skin biopsies in culture.

Whilst this is a recognized approach to isolate immune cells from the

skin (16), some skin resident immune cells may not be migratory and

may have been excluded in the immune cell subset analyses. 2) The

unique challenges of scRNA-seq data analysis, including the sparsity of

the scRNA-seq dataset and the dropout of lowly expressed genes, are

widely acknowledged (62–67). In particular, differentially expressed

gene analyses of scRNA-seq data are biased towards highly expressed

genes (68), while the target genes investigated in the study (T17 axis

cytokines) are lowly expressed genes in specific T-cell or DC subsets

(16). To maximize the recovery of differentially expressed genes, we

used aWilcoxon rank sum test at total immune cell (T-cell, DC, or KC)

levels and a spatial autocorrelation analysis (24, 25) at immune cell

subset levels. However, we observed the discrepancies of IL23R status

between the average expression visualized in the heatmap (Figure 4B)

and the spatial autocorrelation test results (Supplementary Table 3) in

Treg cluster analyses. The average expression of IL23R was higher in

posttreatment Tregs compared to pretreatment Tregs (Figure 4B) but

the difference was not statistically significant in the spatial

autocorrelation test. 3) The transcriptome analyses were not

validated by functional studies at protein levels. 4) Different body

sites can harbor differentmicrobes andmay have different immune cell

compositions, but the location of skin biopsies was not matched

between comparison groups (Skin biopsy location of each sample is

listed in Supplementary Table 1).
Conclusion

Our study provides an early demonstration that systemic anti-IL-

17A monoclonal antibody administration blocks the entire IL-23/
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T17 cell axis depleting or modulating 100% of IL17A+ T17 cells and

95% of IL17F+ T17 cells at single-cell levels (Supplementary

Figure 3). In addition, systemic anti-IL-17A monoclonal antibody

administration promotes regulatory DCs, while strongly

downregulating the expression of IL23A in dendritic cells in

psoriasis skin lesions. Thus, we hypothesize that a monoclonal

blockade of pathogenic T-cells, such as an IL-17A blockade or an

IL-23p19 blockade, may induce expansion of regulatory immune

cells subsets or expression of cytokines involved in skin homeostasis

(9, 10, 69). To further test the hypothesis, we are currently conducting

a clinical trial of short-term anti-IL-23p19 monoclonal antibody

administration to induce long-term disease remission that

incorporates scRNA-seq analyses of human skin before/after the

monoclonal antibody administration (NCT04630652). We are

hoping to better understand the regulatory immune cell promotion

by blocking the IL-23/T17 cell axis and develop personalized

medicine approaches to cure psoriasis without recurrence.
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SUPPLEMENTARY FIGURE 1

The Uniform Manifold Approximation and Projection plot (UMAP) of the initial
non-linear dimension reduction and clustering analysis (A) and the final

clusters for the downstream differential expression testing (B).

SUPPLEMENTARY FIGURE 2

Alluvial diagram visualizing how individual immune cells in single-cell RNA

sequencing data are allocated across categorical dimensions. Left column:

Patients -10 psoriasis patients and 10 control healthy volunteers. Middle
column: Treatment - psoriasis pretreatment (Psoriasis_preTx), psoriasis

posttreatment (Psoriasis_postTx) after weeks 12, 24, and 48 of systemic anti-
IL-17A administration, and control, Right column: immune cell clusters – NK

cell, CD161 T-cell, CD8 T-cell, CD4 T-cell, regulatory T-cell (Treg), mature
dendritic cell (DC), semimature DC, melanocyte, Keratinocyte in S (Stratum)

corneum, S. granulosum, S. spinosum, S. basale, and fibroblast clusters.

SUPPLEMENTARY FIGURE 3

A summary of different transcriptomic impacts of anti-IL-17A blockade on
human psoriasis skin at the levels of total skin and clusters of T-cell, dendritic

cell, and keratinocyte subsets. DC = dendritic cell, KC = keratinocyte.
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C-type lectin receptor
expression is a hallmark of
neutrophils infiltrating the skin in
epidermolysis bullosa acquisita
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Introduction: Inflammatory epidermolysis bullosa acquisita (EBA) is characterized

by a neutrophilic response to anti-type VII collagen (COL7) antibodies resulting in

the development of skin inflammation and blistering. The antibody transfer model

of EBA closely mirrors this EBA phenotype.

Methods: To better understand the changes induced in neutrophils upon

recruitment from peripheral blood into lesional skin in EBA, we performed

single-cell RNA-sequencing of whole blood and skin dissociate to capture

minimally perturbed neutrophils and characterize their transcriptome.

Results: Through this approach, we identified clear distinctions between

circulating activated neutrophils and intradermal neutrophils. Most strikingly,

the gene expression of multiple C-type lectin receptors, which have previously

been reported to orchestrate host defense against fungi and select bacteria,

were markedly dysregulated. After confirming the upregulation of Clec4n,

Clec4d, and Clec4e in experimental EBA as well as in lesional skin from

patients with inflammatory EBA, we performed functional studies in globally

deficient Clec4e−/− and Clec4d−/− mice as well as in neutrophil-specific Clec4n−/

− mice. Deficiency in these genes did not reduce disease in the EBA model.
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Discussion: Collectively, our results suggest that while the upregulation of

Clec4n, Clec4d, and Clec4e is a hallmark of activated dermal neutrophil

populations, their individual contribution to the pathogenesis of EBA is

dispensable.
KEYWORDS

epidermolysis bullosa acquisita, pemphigoid, neutrophil, single cell RNA seq, C-type
lectin receptor (CLRs)
Introduction

Epidermolysis bullosa acquisita (EBA) is a rare chronic skin

condition caused by autoantibodies to type VII collagen (COL7).

Within EBA, there are several distinct clinical phenotypes (1, 2).

The inflammatory (bullous pemphigoid-like) phenotype is

characterized by pruritis, dermatitis, and bullae. Histologically,

inflammatory EBA is characterized by an abundance of

neutrophils that release, among others, reactive oxygen species

(ROS), leukotriene B4 (LTB4), and proteases at the cutaneous

basement membrane zone, resulting in skin blistering (3–7).

Neutrophils are the most abundant leukocyte in human blood.

Circulating neutrophils demonstrate limited antimicrobial activity

(8). However, after priming with various molecules, such as

proinflammatory cytokines and chemokines, as well as microbial

products, neutrophils gain improved phagocytic capacity and ROS

production, and demonstrate a distinct surface phenotype (9, 10).

CD54, dectin-2, and IL-1b expression is acquired by neutrophils

during the late phase of priming as they prepare for migration to

inflammatory sites (11). Dectin-2 (CLEC6A/CLEC4N) belongs to

the C-type lectin-like family of receptors (CTLR) (12), a family of

transmembrane pattern recognition receptors expressed on

myeloid cells. These CTLRs recognize pathogen-associated

molecular patterns as well as certain modified self-antigens,

such as damage-associated molecular patterns released from

dead cells.

While neutrophil priming was previously thought to occur in

the absence of transcription or translation, several studies have

refuted this notion (11). Recent technological advances have

allowed detection of neutrophil transcriptomes in spite of their

low RNA content, revealing their heterogeneity in the blood and in

host defense (13). Yet, the distinction between skin-infiltrating

versus blood neutrophils remains largely unknown. While several

phenotypic neutrophil activation markers have been identified, it is

likely that these skin-infiltrating neutrophils have a distinct

phenotype from blood and even activated blood neutrophils, as

has been shown in other tissues (14).
ace area; CTLR, C-type

FFPE, Formalin-fixed

cRNA-seq, Single-cell

ation and Projection.
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As neutrophils play a central role in innate immunity, the

concept of global therapeutic inhibition of neutrophils would be

associated with significant potential side effects. However, targeting

markers present only on neutrophils contributing towards disease

pathology would potentially bypass this risk. Aside from identifying

targetable surface markers on neutrophils, identification of

intradermal function is of great importance in disease, as they

may contribute to local inflammation. In psoriasis, for example,

neutrophils are a source of IL-17 (15).

The identification of novel disease-specific neutrophil markers

is complicated, among others, by the fact that neutrophils are

sensitive cells, susceptible to both swift activation and apoptosis

in response to manipulation. To identify characteristic markers of

cutaneous neutrophils in EBA, we performed single-cell RNA-

sequencing (scRNA-seq) on unsorted blood and skin from mice

in the antibody transfer model of EBA. By minimizing enrichment

steps and manipulation time, this approach permitted us to capture

viable neutrophils, allowing bioinformatic analysis of neutrophil

activation from blood to skin.
Materials and methods

Animal experiments

Animal experiments were approved by the Animal Care and

Use Committee at the Rush University Medical Center (IACUC No

20-079) or the state government of Schleswig-Holstein (Protocol

119-10/17), depending on where the experiments were conducted.

All experiments were performed by certified personnel.
Human samples and ethics statement

Tissue from five patients with confirmed inflammatory EBA,

defined as a neutrophilic inflammatory infiltrate, positive direct

immunofluorescence, and positive dermal side indirect

immunofluorescence with corresponding anti-COL7 IgG, was

retrospectively collected. All patients involved in this study

provided written informed consent. All experiments with human

samples were approved by the ethical committee of the Rush

University Medical Center (IRB No. 20121406) and were

performed in accordance with the Declaration of Helsinki.
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Mice

C57BL6/J were purchased from Jackson Laboratories (Bar

Harbor, ME, USA) (JAX stock 000664). Sperm of C57BL/6-

Clec4dtm1.1Cfg/Mmucd (Clec4d−/−; MMRRC stock: 031935-UCD) and

C57BL/6-Clec4etm1.1Cfg/Mmucd (Clec4e−/−) mice (MMRRC stock

031936-UCD), designated with the MMRCR stock numbers

031935-UCD and 031936-UCD, respectively, were purchased

from the Mutant Mouse Research and Resource Center

(MMRRC; Davis, CA, USA). The sperm was used for in vitro

fertilization. The heterozygous progeny was used to breed Clec4d−/−

and Clec4e−/− mice and their respective wild-type littermates.

MRP8-Cre-ires/GFP (MRP8-Cre) mice were obtained from the

Jackson Laboratory (Bar Harbor, ME, USA). A conditional

knockout of Clec4n was generated using Clec4ntm2a(KOMP)Wtsi

embryonic stem (ES) cells acquired from the KOMP Repository

(Davis, CA, USA). Using the fully verified and karyotyped C57BL/

6N ES cells, chimeric founder mice were generated by

microinjection into BALB/c blastocysts. The resulting mice with

the “knockout first allele” were crossed with a C57BL/6N-Tg(CAG-

Flpe) deleter mouse to remove the selection cassette and create the

conditional Clec4ntm1c allele, hereafter referred to as Clec4nfl allele.

Polymorphonuclear neutrophil (PMN)-specific Clec4n−/−

(Clec4nDPMN) mice were generated by crossing homozygous

Clec4nfl/fl with MRP8-Cre mice inducing an MRP8 promotor-

driven Cre recombination excision event during neutrophil

differentiation of precursors. To confirm the gene knockout in

neutrophils, bone marrow neutrophils were isolated using the

Neutrophil Isolation Kit (Miltenyi, Teterow, Germany), and their

RNA was isolated using the RNA Mini Kit (Analytik Jena AG, Jena,

Germany). cDNA was generated using the Thermo Scientific Revert

Aid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,

Bremen, Germany). cDNA was used for quantitative PCR using the

SYBR™ Select Mastermix (Thermo Fisher Scientific, Bremen,

Germany). Data were acquired using the RealPlex (Eppendorf,

Hamburg, Germany) cycler (data not shown).
Generation of COL7 vWFA2

Recombinant murine von Willebrand factor A-like domain 2

(vWFA2) of the NC1 domain of collagen 7 (aa1048-1238) was

produced, as previously described (16, 17).
Development of anti-murine
COL7vWFA2 IgG

New Zealand white rabbits were immunized with COL7vWFA2

as previously described (18). IgG was purified from rabbit serum

using Protein G Sepharose Fast Flow affinity column

chromatography (Amersham Biosciences, Freiburg, Germany) as

previously described (18). Reactivity of IgG fractions was analyzed

by the immunofluorescence microscopy on murine skin.
Frontiers in Immunology 03128
Concentrations of purified rabbit IgG were measured at 280 nm

by a spectrophotometer. Total rabbit IgG underwent an additional

purification step of antigen affinity purification using COL7vWFA2

coupled Affi-Gel 10 (Bio-Rad, Munich, Germany) as previously

described (19).
Induction of experimental EBA

Mice were housed under specific pathogen-free conditions at

Rush University (Chicago, IL, USA) or at the University of Lübeck

(Lübeck, Schleswig-Holstein, Germany) and were provided standard

mouse chow and acidified drinking water ad libitum. Mice were

conditioned at least 2 weeks prior to experiments and were under 12

h:12 h light/dark cycles. Sex-matched mice, age 6–12 weeks were used

for the experiments. For transcriptomic analyses, antibody transfer

EBA was performed, as previously described (17). Affinity-purified

anti-COL7vWFA2 IgG (200 µg) was injected intraperitoneally thrice

weekly for 2 weeks. In experiments examining the contribution of

Dectin-2, Dectin-3, and Mincle to experimental EBA, disease was

induced and evaluated, as previously described (4, 20). Briefly, New

Zealand rabbits were immunized against three epitopes of type VII

collagen. IgG directed to the epitope C (anti-COL7c) was affinity

purified, and 50 mg of anti-COL7c was injected subcutaneously on

days 0, 2, and 4 of the experiment. The percentage of the total body

surface area affected by skin lesions (erythema, blisters, erosions,

crusts, or alopecia) was determined by an investigator blinded to the

experimental conditions. All clinical examinations and bleedings

were performed under anesthesia.
Histology and immunofluorescence

For mouse tissue, additional perilesional tissue from previous

passive transfer experiments and optimizations were used to

minimize animal numbers. Hematoxylin and eosin stains were

performed using standard protocols. For both human and mouse,

FFPE blocks were sectioned routinely and stained with the

following antibodies: CLE4D (MBS9607710, rabbit polyclonal,

Mybiosource, San Diego, CA, USA), CLEC4E (BS08541R, rabbit

polyclonal, Bioss, Woburn, Massachusetts, USA), and CLEC4N

(clone IMG3D1, ab107572, mouse IgG3 monoclonal, Abcam,

Boston, Massachusetts, USA). Human neutrophils were stained

for MPO (AF3667, goat polyclonal, R&D Systems, Minneapolis,

Minnesota, USA), while mouse samples were stained for Ly6G

(clone RB6-8C5, SC-53515, rat monoclonal IgG2b, Santa Cruz,

Dallas, Texas). Secondary antibodies and DAPI counterstain were

purchased from ThermoFisher (Rockford, IL, USA). Mouse direct

immunofluorescence was performed as previously described, using

anti-rabbit secondary antibody to confirm successful passive

transfer (17). All slides were immediately photographed following

staining using an Evos FL microscope (ThermoFisher, Rockford, IL,

USA). The frequency of dual-positive cells was quantified in ImageJ

v1.52 (Bethesda, Maryland, USA)
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Flow cytometry

Surface antigen staining was performed according to standard

flow cytometry procedures. The following antibodies and reagents

were used: Zombie aqua viability stain, anti-Ly6G (clone 1A8, 127628,

Rat IgG2a), anti-CD45 (clone 30-F11, 103151, Rat IgG2b), and anti-

CD11b (clone M1/70, 101243, Rat IgG2b), all of which were

purchased from BioLegend (San Diego, CA, USA). Anti-CLEC4D

(cloneMA5-24152, mouse IgG2b) was purchased from ThermoFisher

(Rockford, IL, USA) and conjugated with APC using the Lightning-

Link APC Conjugation Kit (Abcam, Boston, Massachusetts, USA).

Recombinant anti-CLEC4N targeting the extracellular domain

(50267-R001, Rabbit IgG, Sino Biological, Wayne, PA, USA), was

conjugated with PE using the Lightning-Link PE Conjugation Kit

(Abcam, Boston, Massachusetts, USA) and anti-CLEC4E (BS-8541R,

Rabbit polyclonal, ThermoFisher, Rockford, IL, USA), was conjugated

with Alexafluor-488 using the Lightning-Link Alexafluor488

Conjugation Kit (Abcam, Boston, Massachusetts, USA). Flow

cytometry was performed on an LSRFortessa (BD Biosciences, San

Jose, CA, USA), using compensation beads (BioLegend, San Diego,

CA, USA) and FACSDiva software (BD Biosciences, San Jose, CA,

USA). Gating was performed by removing doublets and dead cells,

followed by use offluorescent minus one control. Flow cytometry data

were analyzed using FCS Express 7 Plus software (De Novo Software,

Pasadena, CA, USA).
Tissue harvesting for single-cell
RNA-sequencing

Blood was collected by retrobulbar bleeding from anesthetized

mice, and immediately followed by RBC lysis (BioLegend, San

Diego, CA, USA). Lesional (ear) skin from anesthetized mice was

harvested by punch biopsies and enzymatically digested using the

whole skin digestion kit (Miltenyi, Auburn, CA, USA) per

manufacturer instructions with minor modifications. Following

addition of enzymes, samples were incubated in a water bath at

37°C for 2 h and shaken every 15 min. Mechanical dissociation by

pipetting was only performed at the end of the incubation. Cells

were then filtered using a 70-mm filter, centrifuged at 300g for 10

min at 4°C, washed and resuspended in 0.04% BSA/HBSS

(ThermoFisher, Rockford, IL, USA). Cell viability was

immediately assessed by trypan blue (ThermoFisher, Rockford,

IL, USA). Single-cell suspensions of 1,000 cells/mL were run into

the chromium Controller (10x Genomics, Pleasanton, CA, USA) to

encapsulate 5,000 and 10,000 cells for blood and skin samples,

respectively. Ambion RNase inhibitor (Invitrogen, Waltham,

Massachusetts, USA) was added to the master mix. Samples were

processed using the Chromium Single Cell 3′ GEM, Library & Gel

Bead Kit v3 (10x genomics, Pleasanton, CA, USA) per

manufacturer’s instructions. Library QC was performed using the

Agilent Tape station. Sequencing was performed using two

NovaSeq 6000 SP lanes (Illumina, San Diego, CA, USA). Cell

capture, RT, library preparation, and sequencing were performed

at the University of Illinois at Chicago.
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Single-cell RNA-sequencing
and bioinformatics

Raw FASTQ reads were mapped to mouse mm10 reference

genome (GRCm38.93.dna/GRCm38.93.gtf) using Cell Ranger

Version 3.0.0. Web summary alignment metrics are provided in

Supplementary Table 3.
Doublet/multiplet simulation and
low-quality cell pruning

Raw, digitized count matrices were pre-processed and doublets/

multiplets were simulated using Single-Cell Remover of Doublets

(Scrublet) (21) (version 0.2.1) with standard parameters enabled.

Putative singlets were filtered in Seurat to remove low-quality cells

and kept for downstream analysis if and only if they met the following

user-defined, collective quality control metrics criteria: (a) 350 < genes/

cell < 5,000, (b) cells contained no more than 10% mitochondrial gene

expression, and (c) cells were not defined as outliers (22).
Anchoring, integration, and
downstream analysis

We performed anchoring and integration of pathogenic IgG or

non-pathogenic IgG-treated mouse blood or pathogenic IgG or

non-pathogenic IgG-treated mouse skin datasets using the Seurat

package (Version 3.2.2, R Studio version 3.6.1) (23) as suggested by

the developer. Briefly, Seurat objects were created using Scrublet-

pre-processed individual, raw digitized count matrices and merged.

Individual gene expression digital matrices were normalized, and

the top 2,000 variable genes/features were identified. Integration

anchors were identified using the dimensions set to 30, and datasets

were integrated with dimensions set to 30. The integrated object was

scaled, and significant principal components used for clustering and

finding neighbors were identified using a combination of statistical

and heuristic methods. Neighbors and clusters were then identified

with dimensions specified by user and visualized using Uniform

Manifold Approximation and Projection (UMAP). Putative cell

identities were identified based on differential gene expression

profiles (cluster markers) (log fold change of 25% with a

minimum of 25% of cells expressing such gene in either one

cluster). Genes were log-normalized and visualized as two-

dimensional feature plots or bubble plots.
Differential gene expression analysis

Differentially expressed genes between cell types across

treatments were calculated with Seurat. Differentially expressed

genes for a particular comparison were filtered using a p-adjusted

threshold of 0.05 and a Log2 fold-change of 0.58 or greater in

either direction.
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Gene class and GO analysis

Differentially expressed genes were used to calculate Gene

Ontologies (GOs). Manual curation of GOs was performed using

Enrichr (24) and visualized as bubble plots. A list of significant GOs

(p-adjusted < 0.05) is included in Supplementary Table 4.
Marker gene module scoring

Aggregate, composite gene scores were assigned to neutrophils

using the AddModuleScore function in Seurat. This “Neutrophil

aggregate score” was defined by a core set of known neutrophil-

associated marker genes, including S100a8, S100a9, and Ly6g.

Aggregate, composite gene scores were log-normalized and

visualized as two-dimensional feature plots.
Pseudotime analysis

Pseudo-ordering of individual cells was performed using

Monocle2 (Version 2.10.1) (25). Briefly, neutrophils were

bioinformatically gated in Seurat and a cellDataSet object was

created in Monocle2. Subclustered cells were ordered based on

variable features and dimensionality reduction was performed with

the reduction method = ’DDRTree’ argument enabled and then

ordered. To identify pseudotime-dependent gene expression

changes in neutrophils in the putative blood–skin transition, we

applied the single-cell Energy path (scEpath; Version 1; MATLAB

Version 9.5) (26) algorithm on a subset of Monocle2-ordered

neutrophils. To identify statistically significant pseudotime-

dependent gene changes, we compared the standard deviation of

the observed smoothed expressions with a set of similarly permuted

expressions by randomly permuting the cell order (i.e., 100

permutations) as suggested by the developer. We considered all

genes with a standard deviation greater than 0.01 and a

Bonferroni-corrected p-value below a significance level a = 0.05 to

be pseudotime-dependent. To analyze pseudotime-dependent mouse

transcription factors, we used genes annotated in the Animal

Transcription Factor Database (AnimalTFDB 3.0) (27) in scEpath.

Pseudotime-dependent genes were represented and visualized using a

rolling wave plot with user-defined optimal K clusters.
Statistical analyses

Percentages of CLEC4-positive neutrophils between blood in EBA

versus control or EBA blood versus skin were determined by log-

transformation of the percentage of dually positive cells, followed by

Student’s t-test. Comparisons of the body surface area affected by skin

lesions were performed by two-way ANOVA using GraphPad Prism 9

(GraphPad, San Diego, CA, USA), and comparisons of the area under

the curve of the affected body surface area over time were performed

using Student’s t-test. All tests were two sided with a p < 0.05. Given
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the relatively few numbers of comparisons and lack of statistically

significant results, correction for multiplicity was not performed. All

data are reported as mean ± SEM.
Results

A single-cell repertoire of whole blood and
lesional skin in experimental EBA

Mice were injected thrice weekly for 2 weeks with pathogenic

rabbit anti-mouse antigen affinity-purified COL7vWFA2 IgG or with

non-pathogenic rabbit IgG, as previously described (17). As

expected, the group treated with pathogenic IgG consequently

developed a characteristic disease phenotype with positive direct

immunofluorescence against the basement membrane zone. We

then performed scRNA-seq on unsorted cells from RBC-lysed

blood (Figure 1A) or ear skin (Figure 2A) in experimental EBA

mice or controls at day 14. Following doublet removal and quality

control filtering (Supplementary Figure 1), 7,143 cells (kEBA = 2,878

vs. kIgG = 4,265) were anchored and integrated and included in our

blood analysis (Figures 1B, C), and 8,173 cells (kEBA = 3,445 vs. kIgG
= 4,728) in our skin analysis (Figures 2B, C).
Assessment of immune cell heterogeneity
in experimental EBA reveals a signature-
activated neutrophil transcriptome

Unsupervised clustering of blood cells was performed with Seurat

(28), revealing eight distinct clusters. Using differentially expressed

gene signatures, we assigned clusters based on their putative identities

and hierarchical similarities. As expected, these clusters were primarily

composed of immune cells (Figures 1C, D), of which lymphocytes

were most abundant followed by neutrophils (Supplementary

Figure 2). We next compared the ratio of immune cells per cluster

post-normalization between the pathogenic IgG and the non-

pathogenic IgG-treated groups to identify shifts in immune

populations because of disease. Neutrophils and myeloid cells

appeared in larger amounts in samples from pathogenic IgG-treated

mice relative to non-pathogenic IgG-treated mice (Supplementary

Figure 2). Putative neutrophils were identified based on an aggregate,

composite gene score including S100a8, S100a9, and Ly6g. Notably,

two-dimensional UMAP demonstrates an apparent neutrophil

activation in EBA samples that is absent in IgG control samples,

seen in an expanding population emanating from the basal neutrophil

populations (Figure 1E). Bioinformatic gating was subsequently

performed to isolate neutrophils based on these putative markers,

with resolution decreased to consider neutrophils as a single, granular

population for each treatment condition. Wilcoxon Rank Sum Test

revealed 148 upregulated and 375 downregulated genes between

neutrophils from the pathogenic IgG and the non-pathogenic IgG-

treated groups, defined as >0.25 fold-change difference, and a p-

adjusted < 0.05 (Supplementary Table 1).
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Assessment of cellular heterogeneity in
experimental EBA skin identifies the
transcriptome of a cutaneous
neutrophil population

We next characterized the cutaneous transcriptome in active

lesions, with an emphasis on capturing viable lesional-skin

neutrophils. Given neutrophil fragility following skin dissociation

and flow sorting, dead cell depletion, or alternative dissociation

protocols (unpublished), we capitalized on our scRNA-seq

workflow to minimize such manipulation. Thus, following

dissociation, whole skin dissociates were immediately processed

for single-cell capture. Viability threshold of >80% was set without

dead cell depletion to minimize dead cell background signal but

allow capture of viable neutrophils. Using differentially expressed

gene signatures, we assigned clusters based on their putative

identities and hierarchical similarities as before (Figure 2D,

Supplementary Table 2). Use of our putative neutrophil aggregate

marker score highlighted a cutaneous neutrophil population in

diseased but not IgG control skin (Figure 2E).
Trajectory analysis reveals activation of
neutrophils from blood to lesional skin

To better understand the trajectory of neutrophil activation,

whole blood and skin neutrophils were combined into a single

object using bioinformatic gating. Cells were then aligned in

pseudotime using Monocle2 (25), with pseudotime-dependent

genes identified in scEpath (26). Trajectory analysis revealed

pseudo-infiltration from activated blood to intralesional
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neutrophils (Figures 2H, I). Control blood, EBA blood, and EBA

skin each exhibited unique transcriptomes, of which the top 10

differentially expressed genes between each comparison are shown

(Figure 2F). Gene ontology analyses with Enrichr (24) of the

activated and cutaneous neutrophils versus basal neutrophils

revealed increased neutrophil degranulation in blood and

enhanced cytokine signaling in the skin (Figure 2G). While

several genes demonstrated pseudotemporal activation from

blood to skin, genes for CTRLs collectively displayed a clear

pattern of regulation with several stimulatory CTLRs upregulated

and inhibitory CTLRs downregulated (Figure 2J; Supplementary

Figure 3). This intriguing finding prompted us to investigate these

markers and their functional significance in more detail.
Validation of Dectin-2, Dectin-3, and
Mincle expression on neutrophils

Next, we characterized the protein expression levels of Dectin-3,

Mincle, and Dectin-2, the proteins encoded by Clec4d, Clec4e, and

Clec4n, respectively, on neutrophils. To this end, skin sections from

mice with EBA were stained for Ly6G and either Dectin-3, Mincle,

or Dectin-2 revealing co-expression in the skin (Figure 3B). To

distinguish whether this activation occurred in the blood or in the

skin, we performed flow cytometry on blood from mice treated with

COL7 antibodies or corresponding isotype controls. As previously

described (17), the frequency of CD45+Ly6G+ neutrophils increased

significantly in the EBA compared to the control group (Figure 3A).

Dectin-2 was highly expressed in both basal and activated blood

neutrophils (>95%), while much lower levels of Dectin-3 and

Mincle were detected. There was no significant difference between
B C

D E

A

FIGURE 1

Single-cell transcriptome of mouse blood in experimental EBA. (A) Schematic of blood cell isolation, processing, and capture by droplet-based
device, 3′-scRNA-seq, and downstream analyses. (B) Anchoring of EBA or control mouse leukocytes into a single object and visualized in two-
dimensional UMAP space. (C) Clustering and neighbor identification of anchored datasets. Eight putative immune cell populations were identified
and color coded. Putative cluster identity based on bona fide marker gene expression is defined on the bottom. (D) Dot plot of key markers of each
immune population with Figure 1C. (E) Two-dimensional feature plot showing expression of aggregate, composite neutrophil gene score. Light
green—low, black—high gene expression based on normalized counts. Data shown are from n = 3 pooled biologic replicates per condition. EBA,
epidermolysis bullosa acquisita; IgG, immunoglobulin G; UMAP, Uniform Manifold Approximation and Projection; NKC, natural killer cell; Treg,
regulatory T cell; Norm. exp., normalized expression; Lo, low; Hi, high; Norm, Cts, normalized counts.
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control and EBA neutrophils (Figure 3C) The percentage of

neutrophils expressing Mincle and Dectin-3 was significantly

increased in the skin relative to blood neutrophils (p < 0.001). We

next sought to confirm the expression of these three CLTRs in

human EBA patients by assessing formalin-fixed paraffin-

embedded (FFPE) sections retrospectively. These sections were
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co-stained for myeloperoxidase (MPO) and either Dectin-2,

Dectin-3, or Mincle. Skin neutrophils from patients with

inflammatory EBA demonstrated consistent co-expression of

Dectin-2, Dectin-3, and Mincle (Figure 3D). MPO-positive cells

were uniformly positive for each CTLR. CTLRs were also detectable

in few MPO-negative cells with a mononuclear morphology.
B C

D E F
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J

FIGURE 2

Single-cell transcriptome profiling of skin lesions in experimental EBA. (A) Schematic of ear skin cell isolation workflow. (B) Anchoring of skin cells
from EBA or control mice into a single object and visualized in two-dimensional UMAP space. (C) Clustering and neighbor identification of anchored
datasets. Eleven putative cell populations were identified and color coded. Putative cluster identity based on bona fide marker gene expression is
defined on the bottom. Major cellular identities of recovered cells reveal a unique population of immune cells in the EBA relative to control group
(circled). (D) Relative frequency of putative cellular identities of each cluster in EBA (magenta) and IgG control groups (blue). Cells from the EBA
group contributed to a far greater number of immune cells, while a greater frequency of keratinocytes were recovered from the control group as
expected. (E) Two-dimensional feature plot showing expression of aggregate, composite neutrophil gene score demonstrates the immune
population unique to EBA skin to be neutrophils. Light green—low, black—high gene expression based on normalized counts. Data shown are from
n = 3 pooled biologic replicates per condition. (F) Heatmap of differentially expressed genes between neutrophils from the skin and whole blood
(LogF.C. = 0.25×, 25% cell/cluster, Wilcoxon Rank Sum Test p < 0.05). The top 10 upregulated genes from the following three comparisons are
shown: control blood neutrophils versus EBA blood neutrophils; EBA blood neutrophils versus control blood neutrophils; and EBA skin neutrophils
versus all blood neutrophils (control and EBA). (G) Gene ontology for biological process of differentially expressed genes (LogF.C. = 0.25×, 25% cell/
cluster, Wilcoxon Rank Sum Test p < 0.05) in the cutaneous and activated neutrophil population respectively versus basal neutrophils. (H) Trajectory
analysis in pseudotime depicting a pseudo-infiltration of neutrophils from blood into ear skin. (I) Rolling wave plot of pseudotemporal total gene
(k=4) expression. Pseudotemporal gene expression is based on normalized counts. Blue—downregulated genes; Red—upregulated genes. (J) Violin
plots demonstrate a relative increase in stimulator CTLR gene expression and decrease in inhibitory CTRL in EBA skin relative to blood neutrophils.
EBA, epidermolysis bullosa acquisita; IgG, immunoglobulin G; UMAP, Uniform Manifold Approximation and Projection; EPI, epithelium; SG,
sebaceous gland; MUSC, muscle; FIB/FIB-like, fibroblast/fibroblast-like; ENDO, endothelial; LYM, lymphatic; IMM, immune; SCH, Schwann; Norm.
exp., normalized expression; WB, whole blood; Avg. Exp., average expression; Lo, low; Hi, high; Norm, Cts, normalized counts.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1266359
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guerrero-Juarez et al. 10.3389/fimmu.2023.1266359
Genetic deficiency in Clec4d and Clec4e
and neutrophil-specific deficiency in
Clec4n do not alter the course of EBA

We analyzed the functional significance of Dectin-3, Mincle,

and Dectin-2 in EBA. To this end, we examined the course of EBA

in globally genetically deficient Clec4d−/− and Clec4e−/− mice as
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well as in neutrophil-specific Clec4n−/− mice. The latter were

generated by breeding Clec4nfl/fl with Mrp8+/Cre mice. The

c l in ica l course of sk in inflammation as wel l a s the

histopathology of skin lesions were analyzed, as described in the

Materials and methods section. Genetic deficiency of each CTLR

did not change the course of disease at the clinical or the

histopathological level (Figure 4).
B

C

D

A

FIGURE 3

Expression of CLEC4 markers in human and experimental EBA neutrophils. (A) Flow cytometry of blood demonstrates an increased percentage of
Ly6G+CD45+ cells in EBA relative to control mice. (B) Immunofluorescent staining of FFPE from mice with EBA reveals co-expression of Ly6G
(green) and CLEC4 markers (red) overlaid with DAPI. Dectin-2, Dectin-3, and Mincle are expressed on a majority of neutrophils in experimental EBA.
(C) Flow cytometry of blood neutrophils demonstrates that CLEC4N and CLEC4D are expressed on both control and EBA neutrophils, while CLEC4E
is expressed only on a small number of neutrophils in both EBA and control mice (n = 3–4). (D) Immunofluorescent staining of FFPE from patients
with inflammatory EBA demonstrates expression of CLEC4N/D/E (green) on MPO+ cells (red). Notes: Epidermis and dermis are demarcated by a
white line. The inset demonstrates characteristic nuclear morphology of neutrophils on dually stained cells. Images from mouse tissue are
representative of n = 10 from three independent experiments. Flow cytometry density plots are shown of a single biologic replicate and are
representative of n = 3–4 mice. Images shown from patients with inflammatory EBA are representative of n = 5. Scale bars, 300 mm (B); 300 mm (D).
EBA, epidermolysis bullosa acquisita; IgG, immunoglobulin G; FMO, fluorescent minus one.
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Discussion

In recent years, evidence has accumulated that neutrophils are

plastic cells phenotypically adapting to inflammatory conditions much

more than previously anticipated and thus, at least temporarily,

becoming a more heterogenous cell population. Understanding the

plasticity and heterogeneity of neutrophils under inflammatory

conditions is presumably key to elucidate the role of neutrophils in

the pathogenesis of disease. Furthermore, they may offer the

opportunity for therapeutic interventions specifically targeting those

neutrophil subpopulations and functions driving disease.

Our knowledge of neutrophil heterogeneity is, however, still

scarce, and predominantly generated from models of infectious

diseases instead of sterile chronic inflammatory diseases. The latter,

which include autoimmune diseases, are still mostly treated with

immunosuppressive strategies associated with significant adverse

events, particularly a high susceptibility to infections. They may

therefore benefit the most from novel approaches specifically

targeting pathogenic neutrophil subpopulations. The development

of such approaches requires in-depth knowledge of neutrophil

phenotypes under specific disease conditions. Our study reveals

that in EBA, as a prototypical example of an organ-specific

autoimmune disease affecting the skin, neutrophils significantly

change their phenotype both at the transcriptional and protein

level. These changes proceed both in the peripheral blood and in the
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skin, suggesting that both systemic and local signals initiate these

shifts in the transcriptome.

Importantly, these findings lay the path to specifically target

neutrophils responding to molecular signals derived from site of

emerging peripheral sterile tissue inflammation. These strategies

may, e.g., either inhibit select effector or regulatory functions or

exploit cell surface markers unique among neutrophils for the

pathogenic subpopulations for targeted cell depletion. In addition,

the changes in the transcriptome of neutrophils in the peripheral

blood may be of interest for the development of new biomarkers for

the early detection of emerging tissue inflammation in autoimmune

and other sterile inflammatory diseases.

A most striking difference between neutrophils in the peripheral

blood and in lesional skin was the induction of the three stimulatory

CTLRs, i.e., Dectin-2, Dectin-3, and Mincle. All three receptors

were also expressed on neutrophils in lesional skin from EBA

patients, suggesting that our mouse model faithfully reflects an

aspect of the human situation. Collectively, these findings highlight

these CTLRs as markers for activated neutrophils in lesional skin in

EBA. They are in line and extend the findings of Yao et al. (11),

which uncovered that Dectin-2 is upregulated on murine

neutrophils upon migration into peripheral tissues. CTLRs play a

critical role in host defense against fungal and bacterial pathogens.

Dectin-2, for example, regulates Th17 responses to histoplasmosis

and coccidioidomycosis and plays a protective role in streptococcal
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FIGURE 4

Genetic deficiency in Clec4d, Clec4e, and Clec4n in experimental EBA. (A) Affected Body Surface Area (BSA; clinical score) in antibody transfer-induced
EBA in neutrophil-specific Clec4n (Clec4nDPMN) mutant mice). (B) Area under the curve analysis (AUC) of BSA over time. (C) Representative histology of
CLEC4MUT and CLEC4WT following 2 weeks of antibody transfer reveals comparable inflammatory infiltrate. Similar findings are noted in the (D) BSA, (E)
AUC, and (F) histology of Clec4d−/− vs. Clec4e+/+ WT, as well as (G) BSA (H) AUC, and (I) histology of Clec4e−/− vs. Clec4e+/+ WT. All results are
presented as mean ± SEM. Data were merged from two to three independent experiments (n = 10–11 mice/group). (A, D, G) were analyzed by two-way
ANOVA; (B, E, H) were analyzed by Student’s t-test. EBA, epidermolysis bullosa acquisita; BSA, body surface area; IgG, immunoglobulin G; AUC, area
under the curve; n.s., not significant.
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immunity (29–31). Dectin-2 additionally regulates ROS production

and NADPH oxidase-independent NETosis in Candida infection

(32–34). Mincle has a critical function in mycobacterial immunity

(35). Dectin-2 and Mincle represent pattern recognition receptors,

binding to polysaccharide moieties and resulting in activation of

CARD9 and the Myd88 signaling cascade (36, 37). Dectin-3 has

additionally a crucial role in mycobacterial immunity as well as in

Gram-negative lung infections (38, 39). More recently, CTLRs have

also been implicated in the pathogenesis of certain types of sterile

tissue inflammation. For example, blockade of Mincle and Dectin-1

binding decreases murine neutrophil cytotoxicity towards tumor

cells by inhibiting binding of CTLRs with nidogen-1 (40). Inhibition

of Dectin-2 additionally confers resistance to house dust mite

airway inflammation with decreased neutrophil influx (41).

Dectin-2 can also regulate Th2 immunity through the generation

of cysteinyl leukotrienes (42).

In our EBA mouse model, Dectin-2, Dectin-3, and Mincle

were upregulated on neutrophils but genetic deficiency in mice for

one or the other receptor did not alter the course of skin

inflammation. This finding indicates that none of the receptors

play a critical, non-redundant role in the regulation of neutrophil

activities in EBA. However, as all three receptors were

upregulated, we still cannot exclude that they might play a

significant redundant role in this process. While neutrophil

activation in experimental EBA occurs in a Syk-dependent

manner (43), activation appears to occur through a different

pathway than CTLR coupling with Syk kinase (44). The

upregulation of multiple CTLR likely represents a conserved

host response initiated by molecular signals shared by both

microbial and sterile tissue inflammation rather than a disease-

specific neutrophil phenotype. It is plausible that neutrophils

recruited to barrier organs start expressing receptors, allowing

the detection of a broad spectrum of pathogens, especially fungi

and bacteria. We additionally identified a decrease in the

inhibitory CTLRs Clec4a2, Clec12a, and particularly Clec1b (also

known as CLEC-2) (45, 46). It is possible that the loss of inhibitory

CTLRs may be the contributing factor towards the inflammatory

response seen with antibody transfer. For example, Clec1b

deficiency has been linked to systemic edema (46). Further

mechanistic studies would provide insight into the role of

inhibitory CTLRs.

In summary, we demonstrate the transformation of the neutrophil

transcriptome from blood to blister in a well-characterized model of

EBA.While we have demonstrated that Dectin-2, Dectin-3, andMincle

are most notable on skin-infiltrating neutrophils, our knockout models

suggest that they do not individually contribute to the pathogenic role

of neutrophils in EBA.
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SUPPLEMENTARY FIGURE 1

Quality control metrics of scRNA-seq data from blood and ear skin. (Left)
Probability density scores showing putative doublets/multiplets demarcated at

the bimodal distribution of cells’ doublet score. (Middle) Doublets/multiplets

were projected on two-dimensional UMAPs and colored black. Singlets were
then processed for quality control filtering. Singlets with abnormal gene

numbers (350 > genes/cell < 5,000), high mitochondrial gene percentage
(<10%), and outliers were removed. Viable singlets were used for downstream

query and comparative analyses. (Right) Violin plots showing distribution of
features and counts expression levels, and mitochondrial gene percentage in

viable singlets used for downstream analyses. EBA, epidermolysis bullosa

acquisita; IgG, immunoglobulin G; UMAP, Uniform Manifold Approximation
and Projection; WBC, whole blood cells; QC, quality control.

SUPPLEMENTARY FIGURE 2

Immune populations in whole blood. (A) Relative percentage of immune cells
in EBA (red) and control treatment (yellow), demonstrate a relative increase in

immune cells in neutrophils, mast, and myeloid cells in EBA. Percentage of

immune cells in EBA (B) and control-IgG injections (C) demonstrates shift
from lymphocytes to myeloid cells in EBA. EBA, epidermolysis bullosa

acquisita; IgG, immunoglobulin G; WB, whole blood; NKC, natural killer
cell; Treg, regulatory T cell.

SUPPLEMENTARY FIGURE 3

Expression of CLEC genes on gated neutrophils in experimental EBA blood

neutrophils. Two-dimensional feature plots showing expression of CLEC
genes, including Clec4d, Clec4e, Clec4n, Clec4a2, Clec12a, and Clec1b in

EBA skin versus EBA blood versus IgG control ear, blood, and skin neutrophils.
Data are shown as a function of total bioinformatically gated, S100a8+,

S100a9+, and Ly6g+ neutrophil cells on skin (left) and of gated neutrophils
(right). Gray Light green, low normalized gene expression based on

normalized counts; black, high normalized gene expression based on

normalized counts. EBA, epidermolysis bul losa acquisita; IgG,
immunoglobulin G; UMAP, Uniform Manifold Approximation and

Projection; Lo, low; Hi, high; Norm, Cts, normalized counts.

SUPPLEMENTARY TABLE 1

Differentially expressed genes between EBA and control blood neutrophils.

SUPPLEMENTARY TABLE 2

Differentially expressed genes between lesional and blood neutrophils in

experimental EBA.

SUPPLEMENTARY TABLE 3

Summary alignment metrics for each group.

SUPPLEMENTARY TABLE 4

List of significant gene ontology findings for neutrophils.
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Psoriasis is a complex, chronic autoimmune disorder predominantly affecting the

skin. Accumulating evidence underscores the critical role of localized cellular

inflammation in the development and persistence of psoriatic skin lesions,

involving cell types such as keratinocytes, mesenchymal cells, and Schwann

cells. However, the underlying mechanisms remain largely unexplored. Long

non-coding RNAs (lncRNAs), known to regulate gene expression across various

cellular processes, have been particularly implicated in immune regulation. We

utilized our neural-network learning pipeline to integrate 106,675 cells from

healthy human skin and 79,887 cells from psoriatic human skin. This formed the

most extensive cell transcriptomic atlas of human psoriatic skin to date. The

robustness of our reclassified cell-types, representing full-layer zonation in

human skin, was affirmed through neural-network learning-based cross-

validation. We then developed a publicly available website to present this

integrated dataset. We carried out analysis for differentially expressed lncRNAs,

co-regulated gene patterns, and GO-bioprocess enrichment, enabling us to

pinpoint lncRNAs that modulate localized cellular inflammation in psoriasis at the

single-cell level. Subsequent experimental validation with skin cell lines and

primary cells from psoriatic skin confirmed these lncRNAs’ functional role in

localized cellular inflammation. Our study provides a comprehensive cell

transcriptomic atlas of full-layer human skin in both healthy and psoriatic

conditions, unveiling a new regulatory mechanism that governs localized

cellular inflammation in psoriasis and highlights the therapeutic potential of

lncRNAs in this disease’s management.
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psoriasis, lncRNA, single cell, skin, transcriptomic atlas, localized inflammation
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Introduction

Psoriasis is a genetically related, immune-mediated chronic

inflammatory systemic disease character ized by skin

manifestations, with a prevalence rate of approximately 2% to 3%

worldwide, leading a significant burden of disease (1). Psoriasis can

cause skin redness, swelling, scales, and other systems such as joints,

blood vessels, and intestines, and relate to the occurrence of

metabolic diseases such as diabetes.

An increasing number of cell subtypes have been implied to

contribute to psoriasis pathogenesis. These cell subtypes interact

and form a complicated regulatory network, impacting one another

in numerous ways. Key genetic loci within skin-resident cell types

can directly affect non-immune cell immune regulation, resulting in

localized skin cell inflammation (2). This persistent inflammatory

state, either directly or indirectly, contributes to psoriasis onset.

Therefore, the localized inflammation in the skin is a distinct

hallmark of psoriasis. Despite substantial strides in understanding

the underlying mechanisms of psoriasis, effective treatments

specifically addressing the localized inflammation seen in

psoriatic skin are yet to be discovered. Notably, the epigenetic

regulatory mechanisms governing inflammation within resident

skin cells remain largely elusive.

Non-coding RNAs (ncRNAs), a class of RNA molecules that do

not encode proteins, have emerged as critical regulators of gene

expression, and aberrant ncRNA expression has been implicated in

various diseases, including psoriasis (3). Among ncRNAs, long non-

coding RNAs (lncRNAs) have garnered considerable attention for

their diverse functions in regulating gene expression, ranging from

transcriptional and post-transcriptional regulation to epigenetic

modulation. Recent studies have shown that lncRNAs can

modulate various cellular processes involved in inflammation and

immune regulation, suggesting a potential role for lncRNAs in

psoriasis pathogenesis (4, 5).

The advent of single-cell transcriptomics has revolutionized the

field of genomics, enabling the study of gene expression at the

resolution of individual cells. It can define cell subpopulations with

potential therapeutic targets and characterize the specific responses

of cell subpopulations to drugs or other stimuli (6). In the context of

psoriasis, single-cell transcriptomic (scRNAseq) datasets generated

from different research groups have revealed the cellular diversity of

psoriasis lesions and identified novel cell populations involved in

the pathogenesis of psoriasis (2, 7, 8). scRNAseq can discover new

cell subpopulations and evaluate organ- or tissue-specific

transcriptomic features of keratinocytes (KCs), fibroblasts,

endothelial cells, and immune cells that are involved in

inflammation or infiltration, elucidating the functional

heterogeneity of cells in psoriasis. It is also used to analyze cell

distribution and cell-to-cell communication, providing new clues to

the complex interactions between components involved in disease

response (9). However, the data batch exists across these datasets,

obstacle the skin cell classification and the accuracy of exploring the

underlying pathogenesis of psoriatic skin.

In this study, we employed our neural-network learning

pipeline to integrate 106,675 cells from healthy human skin and

79,887 cells from psoriatic human skin. This integration resulted in
Frontiers in Immunology 02139
the most comprehensive cell transcriptomic atlas of human

psoriatic skin so far. Cross-validation, grounded on neural-

network learning, affirmed the validity of our reclassified cell-

types, portraying full-layer zonation in human skin. We also

launched a publicly accessible website featuring this consolidated

dataset (https://yz-studio.shinyapps.io/psoriaticskincellatlas2/).

Furthermore, this study pioneers the use of single-cell

transcriptomics of entire skin tissue to pinpoint lncRNAs that

modulate localized inflammation in psoriasis at the cellular level.

We profiled transcriptomes of individual cells isolated from

psoriatic lesions and healthy skin, identifying novel differentially

expressed lncRNAs involved in localized inflammation. These

lncRNAs, previously not associated with psoriasis, constitute

promising candidates for future research and therapeutic

development. Our study furnishes novel insights into the

regulatory mechanisms at the heart of psoriasis pathogenesis, and

underscores the power of single-cell transcriptomics in discerning

disease-relevant cell populations and molecular targets.
Materials and methods

Single-cell data analysis

The single-cell data analysis was described in our previous study

(10, 11), including neural network learning and visualization,

differential gene expression in each cell-type, GO enrichment.

Most analysis tools have been integrated in the toolkit scCAMEL

with tutorials online: https://sccamel.readthedocs.io/. The website

representing our integrated cell atlas were constructed by using

Shinny apps. To strike a balance between accuracy and efficient

website navigation, we downsampled the cell number to maximum

300 for each cell type (12), under each condition, and for each

donor. This resulted in a total of 49,237 cells available for

website visualization.
Improved SWAPLINE integration
and projection

We enhanced the SWAPLINE package by augmenting its

adaptability during dataset integration and projection, thus

generating an updated version, as detailed in our recent

publication (10, 11). Briefly, we utilized an interpretable neural

network for training each dataset and predicting all other datasets.

The probabilistic scores derived from both trained and predicted

datasets form the latent space for subsequent analysis. Using this

approach, we successfully integrated a healthy skin reference dataset

and reclassify the cell types to reflect the full-layer skin zonation.

The improved SWAPLINE and the integration case study will be

published separately.

For projecting human healthy and psoriatic skin datasets in this

study, we computed the probabilistic score for each cell within each

query dataset in the trained reference datasets, building the latent

space for label transfer analysis in nearest neighbor model. At the

same time, gene expression normalization and denoising were
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carried out using an interpretable learning nearest neighbor model.

Feature weights for each reference cell type were estimated using the

DeepLift algorithm in the Captum package for PyTorch. The gene

expression for each cell, either learned or predicted in a trained

reference dataset, was inferred through matrix multiplication of the

feature weights and cell-type probabilistic scores. In the end, the

gene-cell expression matrix was computed by averaging non-empty

values across all datasets. Therefore, with a ready-built reference

skin cell transcriptomic atlas, we successfully project the healthy

and psoriatic skin cells from three public datasets, recovered the

expression of most protein-coding genes and lncRNAs (2, 8, 9).
Sample collection and ethics approval

This experiment recruited volunteers with diagnosed psoriasis

and healthy controls, all of whom signed an informed consent form

and underwent ethical review declaration. Typical lesion sites on the

trunk were selected, and after disinfection, full-thickness skin

samples were surgically excised and excess subcutaneous tissue

and fat were removed. Cell digestion solution was prepared in

RPMI 1640 10% FBS medium with collagenase IV (VETEC, USA)

200 U/ml and DNase I (Solarbio, CHN) 200 µg/ml at appropriate

concentrations. The tissue was minced and digested overnight in a

37°C, 5% CO2 incubator. The resulting single-cell suspension was

obtained after centrifugation and filtration and was used for flow

cytometry cell sorting.
Flow cytometry

For the flow cytometric analysis sorting, skin cells were sorting

according to Propidium Iodide (Biosharp, China). The PI-negative

cells were immunolabeled with IL-20RB Polyclonal antibody

(Proteintech, USA), then immunolabeled with Goat Anti Rabbit

IgG(H&L)-Alexa Fluor 488 and PE anti-human CD140b (PDGFRB)

Antibody (Biolegend, USA). IL20RB-positive and PDGFRB-positive

cells were collected on Beckman MoFloXDP for RT-qPCR analysis

of gene expression levels, the result was analyzed by FlowJo.

For flow cytometry, live DCs were immunolabeled with APC-

CY7-livedead (Thermo Fisher Scientific, Massachusetts, USA),

Brilliant Violet 605™ anti-mouse CD11C (BioLegend, CA), PE

anti-mouse CD80 (Thermo Fisher Scientific), FITC anti-mouse

CD86 (Thermo Fisher Scientific) at 4°C for 30 min. All cells were

detected on Beckman Cytoflex LX and the result was analyzed

by FlowJo.
RT-qPCR

Dispersed cell suspensions or cell samples were extracted with

TRIzol (Invitrogen, Australia) to obtain total RNA. All-in-one First

Strand cDNA Synthesis Kit (Seven, CHN) was used to prepare the

DNA library. The reaction was terminated by incubating at 85°C for

5 seconds. Quantitative real-time PCR was performed using the 2×

SYBR Green kit (Seven, CHN) on a fluorescence quantitative PCR
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detection system (Hangzhou Bori, CHN). The reaction was

performed according to the manufacturer’s instructions. Relative

gene expression was calculated using the 2-DDCT method. All

experiments were repeated three times.

P r ime r s equenc e a s f o l l ows : SNHG9 human F :

G A C T G C A G A C C C C T A A C C T T ; R :

ACCCGCATGCAGTGAGTTA. CALML3-AS1 human F:

T G C A G T G T C A C T C T G G A A G C ; R :

CACTGTCTCAGGCCAGGTTT . CARMN human F :

A G G A G A G C A A C G G C T G T A A C ; R :

TCTCTGACATCAGCATGGCG. GAPDH human F :

C A T G T T C G T C A T G G G T G T G A A ; R :

GGCATGGACTGTGGTCATGAG. CXCL8 human F :

TTTTGCCAAGGAGTGCTAAAGA; CXCL8 human R:

AACCCTCTGCACCCAGTTTTC . CCL20 human F :

TGCTGTACCAAGAGTTTGCTC ; CCL20 human R :

CGCACACAGACAACTTTTTCTTT. IL-17B human F:

AGCCCCAAAAGCAAGAGGAA ; I L - 1 7B human R :

TGCGGGCATACGGTTTCATC . I L - 1 B h um a n F :

ATGATGGCTTATTACAGTGGCAA; IL-1B human R:

G T C GGAGA T T C G T AGC TGGA . I L 6 h u m a n F :

ACTCACCTCTTCAGAACGAATTG; I L6 human R :

CCATCTTTGGAAGGTTCAGGTTG.
Cell culture and RNA interference

HACAT cells were cultured in DMEMmedium containing 10%

fetal bovine serum. HSF cells were cultured in F12 medium

containing 10% fetal bovine serum. siRNAs were used to silence

SNHG9/CALML3-AS1 in the HACAT cell line and CARMN in the

HSF, transfected with Lipo8000 transfection reagents (Beyotime,

CHN) following the product manual, with cells treated with blank

siRNA serving as negative controls. Cells were stimulated with

recombinant human TNF-a protein (Abcam) 50ng/ml to simulate

localized inflammation.

siRNA sequences targeting the lncRNA as follow: CALML3-

AS1 -Homo-2405 : GGUGUUCCUCGCAUGACUUTT ;

AAGUCAUGCGAGGAACACCTT. CARMN-Homo-899 :

C C U G U G C U C U G U G A C A A U A T T ;

UAUUGUCACAGAGCACAGGTT. SNHG9-Homo-78 :

C C C G A A G A G U G G C U A U A A A T T ;

UUUAUAGCCACUCUUCGGGTT.
Co-culture of skin resident cells and
dendritic cells

pDCs purchased from ATCC, and were cultured in 1640

medium containing 10% fetal bovine serum, 1% penicillin/

streptomycin, 10ng/ml recombinant human IL-4 protein, and

20ng/ml granulocyte-macrophage colony-stimulating factor (GM-

CSF) under 37°C and 5% CO2 for 7 days. After washing and

collecting the cells, they were mixed with dendritic cells and

cultured overnight in 1640 medium containing 10% fetal bovine

serum under 37°C and 5% CO2. Dendritic cells were labeled with
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CD11C, and CD80 and CD86 were used as activation markers. Flow

cytometry was used to detect the cells, and the proportion of CD80

and CD86 positive cells in CD11C positive dendritic cells was

calculated to evaluate the degree of DCs activation by skin-resident

cells in different groups.
Statistical analysis

Statistical analysis was performed by GraphPad Prism 9

software. All the data values were presented as means ± SEM.

The statistical significance was assessed by Student’s unpaired two

taied t test for the two-group comparison. Each experiment was

repeated at least three times. P < 0.05 was considered statistically

significant (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001).
Results

Neural-network learning based integrative
analysis constructs the cell transcriptomic
atlas of psoriatic skin

By employing our recently developed interpretable neural-

network analysis toolkit, we successfully integrated 106,675 cells

from healthy human skin and 79,887 cells from psoriatic human

skin across three public datasets (2, 7, 8). Through this, we construct

the largest transcriptomic cell atlas of human psoriatic skin to date.

To make an insight further into the role of localized

inflammation in resident skin cells during psoriasis, we

performed an extensive clustering of epidermal and mesenchymal

cells, revealing 21 main skin cell subtypes (Figures 1A, B).

Employing interpretable learning, we recovered over 30,000
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features of protein coding genes and lncRNAs, and assessed the

marker genes for each cell type (Figure 1C). Various cell types and

subtypes were defined by distinct markers. CLDN5 and PECAM1

distinguished two types of endothelial cells, with lymphatic

endothelial cells (Endo_Endo-Lymph) highly expressing TFF3

and MMRN1, and regular endothelial cells expressing CD34 and

EMCN. Nine epidermal cell subtypes were identified following skin

cell zonation, and we observed a gradient change in marker genes

(KRT14, KRT5, SBSN, CALML5, GRHL1, TGM3) from basal layers

to granular layers, including basal cell (EpD_KRT1_Basal), basal-

spinous intermedia cell (EpD_KRT3_earlySpinous), differentiating

spinous-granular cell (EpD_KRT4_diffSpinous), granular cell

(EpD_ERT5_Granular), and a few cells of basal-granular

intermedia cell type (EpD_KRT6_BasalGranular). Inflammatory

basal cell (EpD_KRT2_Basalinflammatory) were branched out

from basal cell types due to the high expression of immune driver

genes like JUNB and JUND. Our machine learning strategy also

identified a small group of cells similar to hair follicle cells

(EpD_HF_HairFollicle), but we could not identify any specific

markers for this cell type due to the limited cell number.

We identified six mesenchymal cell subtypes, which could be

classified into either PDGFRA-high/PDGFRB-low fibroblasts or

PDGFRB-high/PDGFRA-low perivascular mural cells. Fibroblast

cell types include fibroblast dermal papillae (Mes_FibroDS,

labeled by COL11A1 , TNN ) , inflammatory fibroblast

(Mes_FibroInflammatory, labeled by CXCL12, IGFBP7), Papillary

fibroblast (Mes_FibroPapillary, labeled by COL13A1-high/

COL18A1-high), and Reticular fibroblast (Mes_FibroReticular,

labeled by COL13A1-low/COL18A1-high). Perivascular mural

cells include two main types: Mes_PeriV (ACTA2-high/TAGLN-

high), and Mes_PeriVInflammatory (STAT3-high/CCL2-high).

Immune cells comprised two main subtypes: lymphocytes

(Imm_Lymphocyte, labeled by PTPRC-high/HCST-high) and
B
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FIGURE 1

Neural-network learning based integrative analysis constructs the cell transcriptomic atlas of psoriatic skin. (A, B) UMAP visualization of the
integrated cell transcriptomic atlas of human healthy and psoriatic skin. Each cell marked by “.”, colored by cluster names (A). Original datasets are
colored in an integrated visualization and separated visualization (B). (C) Normalized gene expression defining each cell type of human healthy and
psoriatic skin. Blue-to-red color gradient and dot size from small to large represent expression level and cell percent from low to high. (D, E) UMAP
visualization of the integrated cell transcriptomic atlas of human healthy (D) and psoriatic skin (E). Each cell marked by “.”, colored by cluster names
at the left side. Each donor colored at the right side.
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myeloid cells (Imm_MyeloidCell, CD74-high/AIF1-high). Lastly,

Schwann cells and melanocytes were grouped together as

Schwann_Melano (SOX10, MLANA), and erythrocytes and a few

undefined cells were categorized as Mixed_Erythrocytes with no

typical maker genes.

The distribution of these cell subtypes was consistent across

different datasets, indicating the reliability of the classification

(Figure 1B). Furthermore, we visualized the cell clustering and

individual distribution in both healthy and psoriatic skin, and the

results were consistent with our clustering definitions

(Figures 1D, E).
The robustness of our current skin
cell classification

Next, we examined the robustness of our redefined clusters.

Firstly, we compared the redefined cell subgroups with the previous

cell classifications of our published dataset (2). We found that the

new epidermal and mesenchymal cell subtypes were more specific,

while all cell subtypes remained consistent with the previous

findings (Figure 2A). Furthermore, we employed the machine

learning to evaluate the assignment accuracy under the condition

of current cell-type classification and observed more than 90%

accuracy in our defined cell-types under both healthy and psoriasis

condition (Figures 2B, C). We used this ready-built learning model

to predict the other two datasets involved in our study (Figures 2D,

E), and all defined cell-types were correctly predicted except two

cell-types (EpD_HF_HairFollicle and EpD_KRT6_BasalGranular)

(7, 8). Both of these two cell-types are more specific to mouse hair

skin, and rarely observed in human skin (data will be published

separately). Interestingly, our redefined cell-types also correctly
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recognized the layer zonation that confirmed that Cho dataset (7)

is only from human epidermis.
The differential expression of lncRNAs in
each cell-type between health and
psoriatic skin

Through further analysis and experimental validation, our

previous study uncovered that several subtypes of skin resident

cells from epidermal and mesenchymal origins can participate in

localized inflammation through alternative immune pathways and

contribute to the development of psoriasis (2). To further study the

differential expression and function of long non-coding RNAs in

psoriasis at the single-cell level, we analyzed the expression of

lncRNAs in all cell subgroups from our integrated psoriasis skin

cell atlas and identified all lncRNAs that were specifically

upregulated or downregulated in each skin cell type during the

disease state. All lncRNAs identified are presented in SI_Table 1.

To expand upon the differential expression patterns of

lncRNAs, we meticulously parsed our dataset to focus on

individual cell subtypes of epidermal and mesenchymal cells,

particularly under psoriasis conditions, as detailed in SI_Table 1.

From this analysis, we have earmarked highly specific marker genes

within the epidermal and mesenchymal cell clusters, setting them

aside for deeper exploration in forthcoming experiments.

Through this analysis, we pinpointed pronounced fluctuations

in the expression of SNHG9 in an array of epidermal cell subtypes,

including EpD_Basal2, EpD_Basal3, EpD_Corneum, EpD_Foli,

EpD_Granular-spinous, EpD_Granular, and EpD_Spinous. In

addition, our scrutiny unveiled distinct expression variations in

CALML3-AS1 within the EpD_Basal1 cell subtype, coupled with
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FIGURE 2

The robustness of our current skin cell classification. (A) Sankey plot visualization of the cell-type assignment between our original cell-types (left)
and the currently redefined cell-types (right). Sankey flows between left and right are colored by the original cell-types. (B) Learning curve (Black)
indicates the classification accuracy, blue line indication the threshold of 80% accuracy. (C–E) Radar plot visualization of the cell-type scores of skin
cells from Gao dataset (C), Reynold dataset (D) and Cheng/Cho dataset (E) in relation to the trained reference cell types (Gao dataset). Color coding
based on cell types (left) as shown at the right side. The position of each dot indicates the cell-type score between that cell and the trained
reference cell types, which are indicated outside each wheel bend.
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marked differentiation in the expression of CARMN in

mesenchymal clusters, namely Mes_DP-DS1 and Mes_Fibro.

To experimental validate the immunoregulatory potential of cell-

type specific lncRNAs, we selected three lncRNAs (SNHG9, CALML3-

AS1, and CARMN), and in silico examined their expression levels in

different cell clusters under healthy and psoriasis conditions

(Figures 3A, B). We found that SNHG9 exhibited significantly higher

expression in the EpD_KRT0_StemCyclingKeratinocyte,

EpD_KRT1_Basal, EpD_KRT2_ Basalinflammatory and EpD_

KRT3_earlySpinous clusters in psoriasis skin. CALML3-AS1 showed

increased expression in the EpD_HF_HairFollicle, EpD_

KRT0_StemCyclingKeratinocyte, EpD_KRT1_Basal, EpD_KRT2_

Basalinflammatory, EpD_KRT3_earlySpinous, EpD_KRT4_

diffSpinous, EpD_KRT5_Granular and EpD_KRT6_BasalGranular

clusters in both normal and psoriasis skin, with significant

upregulation observed in psoriasis. CARMN demonstrated elevated

and significant expression in EpD_KRT2_ Basalinflammatory,

EpD_KRT3_earlySpinous, EpD_KRT4_diffSpinous, Mes_

PeriVInflammatory and Mes_PeriV clusters in both normal and

psoriasis skin (Figure 4A). For detailed expression patterns of all

lncRNAs in different cell clusters, please refer to SI_Table 1.
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Experimental validation of the expression
change of lncRNAs SNHG9, CALML3-AS1
and CARMN in psoriatic skin

To further confirm the expression patterns and potential

functions of these lncRNAs in psoriasis and healthy skin cell

subtypes, we performed the following experiments. First, we

collected full-thickness skin tissue from patients with moderate to

severe psoriasis and healthy volunteers, respectively, and obtained

cell suspensions after digestion and dissociation. Then, we sorted

the cells according to their cell type maker genes by flow cytometry

(Figure 4B). IL20RB was used as a marker for epidermal cells, and

PDGFRB was used as a marker for mesenchymal-derived cells. It

has been previously validated that IL20RB and PDGFRB can be used

as markers for epidermal and dermal mesenchymal cells,

respectively, which is consistent with the single-cell RNA

sequencing results in our experiment (13–15). We then used

fluorescent quantitative PCR to detect the expression of specific

lncRNAs in sorted epidermal and mesenchymal-derived cells. We

found that in clinical skin samples, the expression levels of SNHG9,

CALML3-AS1 in epidermal cell types were significantly higher in
B

A

FIGURE 3

The differential expression of lncRNAs in each cell-type between health and psoriatic skin. (A) Normalized gene expression defining each cell type of
human healthy and psoriatic skin. Blue-to-red color gradient and dot size from small to large represent expression level and cell percent from low
to high. (B) UMAP visualization of comparing the lncRNAs’ expression between human healthy and psoriatic skin. LncRNA names are listed at the top
of each sub plot. Blue-to-red color gradient represent expression level.
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psoriasis than in the healthy group. Similarly, the expression of

CARMN in psoriatic mesenchymal-derived cell types was higher

than in the healthy group. All results showed significant differences,

as shown in the Figure 4C.
Cell-specific lncRNAs SNHG9, CALML3-AS1
and CARMN regulate localized
inflammatory responses in skin resident
cell clusters

Psoriasis is characterized by inflammation in the epidermis and

dermis, and the regulation of localized inflammatory responses in

epidermal and dermal cells by lncRNAs is of great importance for

disease occurrence. EpD cells and Mes cells, as important resident

cells in the epidermis and dermis, have been extensively studied and

shown to play crucial roles in inflammation in psoriasis. Here, we

further demonstrate the regulatory effects of SNHG9, CALML3-AS1

and CARMN on the inflammatory responses of their respective

cell types.

To further investigate the mechanisms of action of these cell

subtype-specific expressed lncRNAs in psoriasis, we performed

correlated genes analysis of SNHG9, CALML3-AS1, CARMN and

GO enrichment analysis on the integrated single-cell data. We
Frontiers in Immunology 07144
found that SNHG9 and CALML3-AS1 correspond to a high

coexpression ratio with NFKB1 and STAT3 in the EpD cell

clusters. CARMN correspond to a high co expression ratio with

NFLB1, STAT3, STAT5B, and STAT6 in Mes_PeriVInflammatory

and Mes_PeriV clusters. The coexpression of lncRNAs and genes

detail was showed in SI_Table 2. NF-kappa B (nuclear factor-kappa

B) is a rapidly acting primary transcription factor found in all cell

types. It is involved in cellular responses to stimuli such as cytokines

and stress and plays a key role in regulating the immunological

response to infections (16, 17). STATs (signal transducers and

activators of transcription) are a family of seven transcription

factors that form part of the JAK-STAT signaling cascade, which

serves as the basis for the signal transduction mechanism of many

cytokine receptors (18). STATs are activated by phosphorylation by

JAKs. STAT3, in particular, has been implicated in several

autoimmune diseases, including psoriasis (19, 20).

GO enrichment analysis revealed that these three lncRNAs are

associated with biological processes related to excessive

proliferation and inflammation observed in psoriasis skin in their

respective cell clusters. The results of GO enrichment analysis are

detailed in SI_Tables 3–5. Specifically, SNHG9 in EpD cells is

involved in leukocyte migration. CALML3-AS1 in EpD cells

functions in the activation of immune response, regulation of

lymphocyte activation, regulation of leukocyte cell-cell adhesion,
B C

A

FIGURE 4

Experimental validation of the expression changes of lncRNAs SNHG9, CALML3-AS1 and CARMN in psoriatic skin. (A) Box plot visualization of the
expression change of lncRNAs SNHG9, CALML3-AS1 and CARMN between health and psoriatic skin. lncRNA names are listed at the top of each plot,
and the cell types with significantly altered lncRNA expression are highlighted with red box. (B) Representative images of flow cytometry sorting showing
PDGFRB-positive mesenchymal cells (Q1 region) and IL20RB-positive epidermal cells (Q3 region) isolated from psoriasis and healthy control skin tissues.
The numerical values within the boxes indicate the percentage of cells in each cell population (%). (C) Relative expression levels of lncRNAs SNHG9,
CALML3-AS1, and CARMN in their respective cell types from psoriasis and healthy skin tissues. *P < 0.05, ***P < 0.001, ****P < 0.0001, t-test, n = 3
(mean ± SD).
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leukocyte migration, leukocyte mediated immunity, neutrophil

activation, innate immune response, and inflammatory response.

CARMN in Mes cell population is associated with lymphocyte

migration and immune system process (Figure 5A). These

biological processes indicate that SNHG9, CALML3-AS1, and

CARMN have immune-related functions in their respective cell

clusters. To further validate their roles in psoriasis, functional

experiments were performed on these lncRNAs in cell lines.

Numerous studies have confirmed TNF-a as one of the key

pathogenic cytokines in psoriasis and extensively used for inducing

inflammatory conditions in epidermal cell lines (21–24). TNF-a
can activate myeloid dendritic cells, induce epidermal proliferation

and incomplete keratinization, and release host defense proteins

and chemokines such as CCL20 and CXCL8, leading to local skin

thickening and inflammatory reactions that sustain the psoriatic

phenotype (25–27). IL1B and IL6 are potent pro-inflammatory

cytokines that can induce Th1 generation of IFNG and

synergistically promote inflammation and angiogenesis along with

TNF-a (28–31). Our previous results have confirmed the

involvement of IL17B in localized inflammation in psoriatic skin

(2). Based on these experimental foundations, we treated HACAT

and HSF cell lines with exogenous TNF-a to simulate the localized

inflammatory response of epidermal and mesenchymal-derived

cells in psoriasis, and analyzed the levels of CXCL8, CCL20, IL1B,

IL6, and IL17B expression to assess the extent and status

of inflammation.

We treated the immortalized human epidermal cell line

HACAT and human dermal fibroblast cell line HSF with TNF-a
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and examined the expression levels of the aforementioned lncRNAs

under inflammatory conditions. We found that after TNF-a
treatment, the expression of SNHG9, CALML3-AS1 in HACAT,

and CARMN in HSF were all significantly upregulated compared to

the control group, and all results showed statistical significance (P <

0.05) (Figure 5B). This finding is consistent with the expression

results observed in the integrated atlas dataset of psoriatic skin and

cell subtypes extracted from tissues, indicating elevated expression

of SNHG9 , CALML3-AS1 and CARMN under localized

inflammatory conditions in the skin.

Next, we further investigated the role of these lncRNAs in the

TNF-a-induced inflammatory response in HACAT and HSF cell

lines. RNA interference was used to knockdown the expression of

SNHG9, CALML3-AS1 in the epidermal HACAT cell line, and

CARMN in the mesenchymal HSF cell line, respectively. qPCR

analysis demonstrated that the expression of these lncRNAs in both

the HACAT and HSF cell lines was significantly lower in the siRNA

group compared to the control group, confirming successful

interference, as shown in the Figure 5C.

Following TNF-a treatment of the successfully knocked-down

lncRNA cell lines, we evaluated the mRNA expression levels of the

inflammatory factors CXCL8, CCL20, IL1B, IL6, and IL17B using

qPCR. We observed that, after lncRNA knockdown, the expression

levels of TNF-a-induced CXCL8, CCL20, IL1B, IL6, and IL17B were

all lower than those in the control group, and all results showed

statistical significance (P < 0.05) (Figure 5D). Based on the above

results, we can infer that these lncRNAs have the ability to regulate

the localized inflammatory response in both epidermal and
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FIGURE 5

lncRNAs SNHG9, CALML3-AS1, and CARMN exhibit immune regulatory functions in skin-resident cell types. (A) GO enrichment analysis of SNHG9,
CALML3-AS1, and CARMN on the integrated single-cell data. Immune-related functions are highlighted in red. (B) Relative expression levels of
lncRNAs SNHG9, CALML3-AS1 (in HACAT), and CARMN (in HSF) before and after treatment with TNF-a in cell lines. (C) Relative expression levels of
lncRNAs SNHG9, CALML3-AS1 (in HACAT), and CARMN (in HSF) before and after RNA interference in cell lines. (D) Relative expression levels of
various cytokine mRNAs in cell lines from the TNF-a-treated group and the RNA interference group compared to the control group. (E) Flow
cytometry analysis of CD11C-positive dendritic cells co-cultured with cell lines from the RNA interference group and the control group, showing the
percentage of CD80 and CD86-positive cells (%). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, t-test, n = 3 (mean ± SD).
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mesenchymal cell lines induced by TNF-a. Knocking down these

lncRNAs leads to a reduction in the production of inflammatory

factors induced by TNF-a.
LncRNA SNHG9, CALML3-AS1, and
CARMN can regulate the activation
ability of corresponding skin cell types
on dendritic cells

Dendritic cells (DCs) play a crucial role as upstream initiating

cells in the localized inflammatory response in the skin, and their

activation is essential for the pathogenesis of psoriasis, which is

considered a key link in both the initiation and the maintenance

phases of psoriasis (32). Based on previous sequencing results, we

selected cell types expressing lncRNAs SNHG9, CALML3-AS1, and

CARMN. After silencing lncRNA SNHG9 and CALML3-AS1 in the

HACAT cell line, we co-cultured it with primary dendritic cells.

Here, we used CD11C as a marker to identify dendritic cells.

CD11C, as a classical marker for dendritic cells, has been widely

employed in research studies (33). The expression of CD80/CD86

stimulatory molecules on dendritic cells can indicate their

activation and their ability to initiate and regulate immune

responses. We found that the levels of CD80 and CD86 expressed

by dendritic cells induced by the epidermal cell line after

lipopolysaccharide (LPS) 50ng/ml stimulation were regulated by

SNHG9 and CALML3-AS1, respectively. Specifically, interfering

with the expression of SNHG9 and CALML3-AS1 in epidermal

cells resulted in a decrease in the activation ratio of dendritic cells.

We first used flow cytometry to measure the frequency of CD80/

CD86 in CD11C, which represents the activation level of dendritic

cells, in primary dendritic cells before co-culture. We observed that

untreated CD11C-positive dendritic cells exhibited a low proportion

of CD80/CD86-positive cells, indicating that these dendritic cells

were in an inactivated state.

To simulate the localized inflammation state in psoriasis, we

treated HACAT and HSF cells with LPS respectively and then co-

cultured them with dendritic cells. Flow cytometry was performed

to assess the proportions of CD80 and CD86-positive cells in

CD11C-positive dendritic cells. This analysis allowed us to

evaluate the activation level of dendritic cells and assess the

extent of localized inflammation induced by skin-resident cells.

Following siRNA-mediated knockdown of SNHG9, CALML3-AS1

in HACAT cells, and CARMN in HSF cells, we repeated the

aforementioned experiments. By measuring the activation level of

dendritic cells, we analyzed the impact of SNHG9, CALML3-AS1,

and CARMN on localized inflammation in skin cells. We observed a

significant decrease in the proportion of CD80 and CD86-positive

cells in CD11C-positive dendritic cells upon knockdown of SNHG9,

CALML3-AS1 in HACAT cells, and CARMN in HSF cells,

indicating an attenuation of dendritic cell activation (Figure 5E).

These results suggest that lncRNAs SNHG9, CALML3-AS1, and

CARMN in skin tissues can regulate the activation ability of

respective cell types on dendritic cells. Interfering with the

expression of these lncRNAs can inhibit the activation of
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dendritic cells, which may have potential regulatory effects on

localized inflammation in psoriasis.
Discussion

Psoriasis, characterized by excessive proliferation and abnormal

differentiation of epidermal cells, involves a complex regulatory

network with various cellular and molecular players. Even after the

remission of clinical symptoms, psoriasis can relapse due to

continued inflammatory reactions from certain skin-resident cells.

This localized inflammation operates in tandem with known

psoriasis immune pathways, causing a secondary immune

response that prolongs skin inflammation (34). While biologics

targeting IL-23, IL-17A, and TNF-a have shown effectiveness,

discontinuation of treatment often leads to disease recurrence.

This points towards the potential of localized skin inflammation,

possibly fueled by epigenetic regulation within skin-resident cells, as

an independent mechanism contributing to the persistence of

the disease.

The advent of scRNAseq technology allows the uncovering of

rare cell subpopulations playing significant roles in psoriasis,

extending our understanding beyond the traditional classification

boundaries of the epidermis and dermis (35–39). Thanks to

scRNAseq, a variety of single-cell atlases such as the Human Cell

Atlas and Tabula Muris have been established. These atlases,

comprising samples from different tissues, laboratories, and

experimental conditions, inevitably carry batch effects. Therefore,

the development of integration methods to overcome these batch

effects has become a priority in recent years. By meticulously

merging 106,675 cells from healthy human skin and 79,887 cells

from psoriatic human skin, we have crafted the most detailed and

expansive transcriptomic cell atlas of human psoriatic skin to date,

distinctly surpassing the boundaries set by previous datasets. The

core strength of our study lies in the sophisticated integration of a

sizable cell atlas facilitated by our neural-network learning pipeline.

This integrated approach mitigates the batch effects that have been a

persistent challenge in other datasets and enhances the accuracy

and depth of skin cell classification, thus uncovering the underlying

mechanisms of psoriatic skin pathogenesis. Furthermore, our

pioneering approach in employing interpretable learning enabled

us to mine over 30,000 features of protein-coding genes and

lncRNAs, setting a new benchmark in the depth and breadth of

cellular analysis, distinguishing our dataset as a markedly superior

tool in the quest to unravel the mysteries of psoriasis.

Our approach has spotlighted a rich diversity of skin cell

subtypes, accentuating the finer nuances that govern the complex

dynamics of psoriasis. The robustness and specificity in our newly

defined epidermal and mesenchymal cell subtypes are a testament

to our integrated dataset’s heightened accuracy and reliability,

distinctly setting it apart from earlier studies. Notably, our

methodology demonstrated an accuracy exceeding 90%,

showcasing our significant advancements in cell classification and

underscoring the potential to venture deeper into uncharted

territories of cellular dynamics in psoriasis.
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Beyond identifying cellular subtypes, our study has honed in on

the critical role of long non-coding RNAs (lncRNAs) in modulating

localized inflammation in psoriasis. This focus, previously

underexplored, now opens up a new frontier for research and

therapeutic development, underscoring the advantage of our

integrated approach in spotlighting promising candidates for

further investigation.

As we advance, we remain responsible to unravel the regulatory

mechanisms underlying psoriasis pathogenesis. Our consolidated

dataset is a novel and powerful resource that promises to catalyze

the next wave of breakthroughs in this field. Moreover, the public

online accessibility of our dataset ensures that it serves as a

collaborative platform, promoting further innovation and

discoveries in psoriasis research.

In our previous report, we demonstrated that local resident

cells, including epidermal cells and mesenchymal cells, display an

immune-priming profile that amplifies inflammation in psoriatic

skin (2). As a key player in this network, epidermal cells are

impacted by multiple factors including genetics, cytokines,

receptors, metabolism, cell signaling pathways, transcription

factors, non-coding RNAs, antimicrobial peptides, and diverse

functional proteins (40). These factors collectively contribute to

the onset and progression of psoriasis. In concert with

mesenchymal-derived fibroblasts and endothelial cells, Epidermal

cells instigate tissue remodeling through endothelial cell activation

and proliferation, as well as extracellular matrix deposition (41, 42).

Recent studies have also found that inhibitors of glucose transporter

1 (Glut1), pyruvate kinase M2 (PKM2), and 2-deoxy-D-glucose

(2DG) can alleviate the severity of psoriasis-like skin inflammation

(43–45).

Mesenchymal cells are widely present in connective tissues, as

well as in the skin and subcutaneous tissues, including dermal

fibroblasts and pericytes in the dermis, and adipocytes in

subcutaneous tissues (46, 47). Dermal fibroblasts, once activated,

have the potential to play an important role in the development of

psoriasis. They can be recruited to skin tissue that is damaged,

inflamed, or healing, and they can activate immune cells and

modulate inflammation levels. In addition, activated fibroblasts

are capable of secreting cytokines, leading to excessive

proliferation of keratinocytes, a crucial factor in the progression

of psoriasis (46, 48).

Furthermore, immune cells, especially dendritic cells, play

pivotal roles in both the initiation and maintenance phases of

psoriasis (32, 41). DCs, activated by epidermal cells, release

inflammatory cytokines such as TNF-a, IL-12, and IL-23, which

further activate Th1 and Th17 cells. These immune cells then

secrete additional inflammatory cytokines, forming a positive

feedback loop that exacerbates psoriasis-associated inflammation

and epidermal hyperproliferation (40, 49).

Emerging evidence points towards long non-coding RNAs

(lncRNAs) as critical epigenetic regulators in psoriasis (49–51).

Through high-throughput sequencing, numerous differentially

expressed lncRNAs have been identified in psoriasis skin tissues,

indicating their crucial roles in psoriasis pathogenesis (52–57). Yet,

previous RNA sequencing largely focused on cell types with the
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largest changes in psoriasis, leading to an underrepresentation of

other important cell subtypes.

Through this integrated dataset, we identify differentially

expressed lncRNAs in cell subtypes implicated in psoriasis and

experimentally validate the functions of lncRNAs SNHG9,

CALML3-AS1 in epidermal cells, and CARMN in mesenchymal

cells. At present, study on these lncRNAs is very limited, and the

mechanism by which they participate in regulating immune

function is still unclear. SNHG9, affiliated with the lncRNA class,

is an RNA gene that is currently believed to promote the

proliferation of various types of tumor cells through multiple

pathways, including phosphatidylinositol binding, inhibition of

autophagy, and participation in methylation regulation (58–60).

SNHG9 secreted by adipocyte-derived exosomes can alleviate

inflammation and endothelial cell apoptosis by inhibiting TRADD

expression (61). However, it is unclear whether this anti-endothelial

cell apoptosis property is related to the microvascular endothelial

proliferation observed in psoriasis. Existing research on the

CALML3-AS1 is relatively sparse, and the principal focus of

existing studies is cancer biology. Current hypotheses suggest that

CALML3-AS1 may exert a regulatory influence on tumorigenesis

via mechanisms that may include functioning as a molecular sponge

for microRNAs or operating as a transcriptional regulator (62).

CARMN plays a role in smooth muscle-related diseases and tumors.

CARMN can maintain a contractile phenotype by binding to

myosin (17). CARMN in smooth muscle cells regulates cell

plasticity and atherosclerosis by interacting with serum response

factors (63), and its deficiency can accelerate atherosclerosis

progression (64). We sorted epidermal and mesenchymal cell

types from the skin tissues of patients with psoriasis and healthy

volunteers, and verified that these lncRNAs were significantly

increased in the corresponding cell types under disease conditions

compared to healthy controls. They have been confirmed to have

immune function through in vitro cell experiments, silencing these

lncRNAs in skin resident cell clusters can attenuate the expression

of inflammatory cytokines and inhibit dendritic cell activation

under inflammatory conditions, suggesting a potential therapeutic

strategy to reduce localized inflammation in psoriasis. This research

provides valuable insights into the development of psoriasis at the

s ing le-ce l l l eve l and indica tes potent ia l targe ts for

therapeutic interventions.
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Rationale: While the immune system plays a crucial role in the development of

hypertension, the specific contributions of distinct immune cell populations

remain incompletely understood. The emergence of single-cell RNA-

sequencing (scRNA-seq) technology enables us to analyze the transcriptomes

of individual immune cells and to assess the significance of each immune cell

type in hypertension development.

Objective: We aimed to investigate the hypothesis that B cells play a crucial role

in the development of fructose-induced hypertension.

Methods and Results: Eight-week-old Dahl salt-sensitive (SS) male rats were

divided into two groups and given either tap water (TW) or a 20% fructose

solution (HFS) for 4 weeks. Systolic blood pressure was measured using the tail-

cuff method. ScRNA-seq analysis was performed on lamina propria cells (LPs)

and peripheral blood mononuclear cells (PBMCs) obtained from SS rats

subjected to either TW or HFS. The HFS treatment induced hypertension in the

SS rats. The analysis revealed 27 clusters in LPs and 28 clusters in PBMCs,

allowing for the identification and characterization of various immune cell

types within each cluster. Specifically, B cells and follicular helper T (Tfh) cells

were prominent in LPs, while B cells and M1 macrophages dominated PBMCs in

the HFS group. Moreover, the HFS treatment triggered an increase in the number

of B cells in both LPs and PBMCs, accompanied by activation of the interferon

pathway.

Conclusions: The significant involvement of B cells in intestinal and PBMC

responses indicates their pivotal contribution to the development of

hypertension. This finding suggests that targeting B cells could be a potential

strategy to mitigate high blood pressure in fructose-induced hypertension.
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Abbreviations: SS, Dahl salt-sensitive; TW, tap wate

solution; Th, helper T; Tfh, follicular helper T cells; T

LPs, lamina propria cells; PBMCs, peripheral blood mon

Uniform Manifold Approximation and Projection; GSEA

Assay; NES, normalized enrichment score.
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Moreover, the simultaneous increase in follicular B cells and Tfh cells in LPs,

along with the upregulation of interferon pathway genes in B cells, underscores a

potential autoimmune factor contributing to the pathogenesis of fructose-

induced hypertension in the intestine.
KEYWORDS

single-cell RNA-sequencing, immunity, hypertension, B cell, interferon pathway
GRAPHICAL ABSTRACT
1 Introduction

The consumption of a high-fructose solution (HFS) is

associated with an increase in blood pressure. Furthermore,

combining a high-fructose with a high-salt diet induces salt-

sensitive hypertension. These processes involve the activation of

the renin-angiotensin-aldosterone system, changes in gut

microbiota, increased sympathetic nervous system activity,

enhanced reactive oxygen species (ROS), an increase in uric acid

levels mediated by fructokinase, which leads to an upregulation of
r; HFS, high-fructose

reg, regulatory T cells;

onuclear cells; UMAP,

, Gene Set Enrichment

02151
ion channels like Na+ -H+ exchanger 3 and Na+ -K+ -2Cl-

cotransporter (1).

The immune system plays a crucial role in the pathogenesis of

hypertension (2, 3). The hallmarks of hypertension include the

infiltration of innate and adaptive immune cells into perivascular

fat, kidney, and myocardium, accompanied by elevated levels of

cytokines, chemokines, adhesion molecules, and ROS. Studies using

knock-in and knock-out mouse models have demonstrated the

involvement of macrophages, monocytes, B cells, and T cells in

hypertension (2). Moreover, excess fructose intake induces the

secretion of pro-inflammatory cytokines, such as interleukin-6

(IL-6), tumor necrosis factor-a (TNF-a), and plasminogen

activator inhibitor-1 (PAI-1) (4). Previous research has shown

that administering a high-fructose diet induces the expression of

serum/glucocorticoid-regulated kinase 1 (SGK1). In consequence,

the induction of SGK1 expression leads to the phosphorylation of

forkhead box O 1/3. As a result, this suppresses the expression of the
frontiersin.org
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master transcription factor forkhead box P3 (FoxP3) in regulatory T

(Treg) cells and activates T helper 17 (Th17) cells to secrete IL23,

further contributing to development of hypertension (5, 6).

The gastrointestinal (GI) tract, which is the largest mucosal

tissue in both humans and animals, comprise epithelial,

immunological, and vascular barriers and hosts a diverse

community of gut microorganism (7, 8). The GI tract is

continuously exposed to antigenic stimuli, and the epithelial layer

and the lamina propria play crucial roles in immune responses. In

particular, the lamina propria contains various immune cells,

including cytotoxic T cells, B cells, Th cells, eosinophils, dendritic

cells (DCs), and macrophages, which are key effector cells of the

immune response. Furthermore, the intestinal immune cells are

organized to form gut-associated lymphoid tissue, which comprise

lymphoid structures such as Peyer’s patches, lymphoid follicles, and

mesenteric lymph nodes (7, 9, 10). These organized structures

regulate responses to both self and non-self-antigens.

Dysregulated immune responses can lead to conditions such as

food allergies and inflammatory bowel disease (7, 11).

Mounting evidence highlights the substantial involvement of

the gut microbiome in the development and progression of

hypertension, which is mediated by interactions with immune

cells (12). Moreover, this link between the gut microbiome and

hypertension is not limited to specific species (13). A study

involving both mice and humans has found that a high-salt diet

leads to a reduction in Lactobacillus spp. levels and an increase in

blood pressure. Notably, the significance of using pro-biotic

lactobacillus treatment should be emphasized, as it can suppress

Th17 cells and ameliorate salt-sensitive hypertension (13, 14).

B cells recognize antigens and interact with Tfh cells,

subsequently releasing cytokines that drive their differentiation

into plasma cells responsible for antibody production (15). In

murine models, the interaction between follicular helper T (Tfh)

cells and germinal center (GC) B cells promotes the selection of B

cells with the highest affinity for antigens through the expressions of

CD40L, inducible T cell costimulatory (ICOS), and B cell activating

factor (BAFF). However, B-cell immune responses extend beyond

the GC environment. Extra-follicular B cell responses serve as early

antibody sources during infection, maintaining elevated levels of G

protein-coupled receptor 183 (GPR183) to avoid the GC milieu and

increasing CXCR4 expression to facilitate their migration to lymph

nodes (16–18). Dysregulation of GC and extra-follicular responses

can result in the production of autoantibodies against self-antigens,

contributing to the development of autoimmune diseases such as

lupus and rheumatoid arthritis (17, 19).

While T cells have been well-recognized for their crucial role in

the pathophysiology of hypertension, research into the connection

between B cells and hypertension remains limited (20). Mice with

simultaneous knockout of both T cells and B cells exhibit a blunted

hypertensive response to angiotensin II (Ang II) stimulation.

Interestingly, when wild type (WT) T cells and B cells are

transplanted into the T cell-deficient and B cell-deficient mice,

respectively, only the T cell transplantation exhibits a restoration of

the hypertensive response to Ang II (21). However, depletion of B

cells using anti-CD20 antibody and knocking out BAFF-receptor

(BAFF-R) in mice result in a reduced increase in blood pressure
Frontiers in Immunology 03152
induced by Ang II compared to WT mice. Furthermore, when WT

B cells are transplanted into mice lacking BAFF-R, the hypertensive

response is restored upon Ang II infusion (22).

In this study, we aimed to elucidate the immunological

mechanisms underlying the development of hypertension induced

by HFS in Dahl salt-sensitive (SS) rats. We performed single-cell

RNA sequencing (scRNA-seq) on peripheral blood mononuclear

cells (PBMCs) and lamina propria cells (LPs) isolated from SS rats

receiving HFS (hereafter, “HFS group”). Our findings indicate an

enlarged B cell population in the HFS group compared to the tap

water (TW) group. Furthermore, our analysis using Gene Set

Enrichment Assay (GSEA) and Differentially Expressed genes

(DEGs) revealed a significant increase in interferon-related genes

within B cells of the HFS group compared to the WT group.
2 Materials and methods

2.1 Animals

The in vivo experiments were conducted with the approval of

the Kyungpook National University Institutional Review Board

(Approval No. 2022-0456), following the guidelines outlined in

the National Institutes of Health Guide for the Care and Use of

Laboratory Animals. The study design aimed to minimize the

number of animals used and to reduce the suffering of the

experimental animals. Six-week-old Dahl-Iwai salt-sensitive (SS,

DIS/EisSlc) male rats were purchased from Japan SLC, Inc

(Hamamatsu, Shizoka, Japan). The rats had free access to a chow

diet containing 0.4% NaCl (SAFE® D 40, Paris, France) for one

week to acclimate and were trained weekly for tail-cuff

plethysmography. Subsequently, they were randomly assigned to

either the high-fructose solution (HFS; 20% D-fructose; MB-F4695,

Kisanbio, Korea) or tap water (TW) group for 4 weeks. The rats

were anesthetized with sodium pentobarbital (50 mg/kg

intraperitoneally) for euthanization, followed by the collection of

tissues and PBMCs.
2.2 Blood pressure measurements

We measured the systolic blood pressure (SBP) of the SS rats

using the tail-cuff method. The SS rats were placed on a hot plate

(35°C) in a restraining device for 10 minutes. A cuff with a

pneumatic pulse sensor was then attached to their tails. The

CODA system (Kent Scientific Corporation, Torrington, CT,

U.S.A.) was used to record blood pressure levels. To calculate the

average blood pressure, at least five consecutive readings were

obtained from each rat.
2.3 Isolation of LPs

LPs were isolated as described by Joo et al. (23). Briefly, jejunum

tissues were cut into 0.5-cm pieces and washed with phosphate-

buffered saline (PBS) containing 10 mM 4-[2-hydroxyethyl]-1-
frontiersin.org
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piperazineethanesulfonic acid (HEPES), 1 mM DL-dithiothreitol

(DTT), and 30 mM ethylene-diamine-tetra acetic acid (EDTA; all

from Thermo Fisher Scientific, Waltham, WA, U.S.A.) at 37°C for

10 minutes. Subsequently, the tissue samples underwent another

wash in PBS containing 10 mM HEPES and 30 mM EDTA at 37°C

for 10 minutes. After the wash, the tissues were transferred into 5

mL of RPMI 1640 (Gibco, Carlsbad, CA, U.S.A.) containing 10%

fetal bovine serum (FBS) and inverted for 2 minutes. Following this

step, the tissues were digested in RPMI 1640 containing 10% FBS

with 0.5 mg/ml collagenase VIII (Sigma-Aldrich, St. Louis, MO,

U.S.A.) at 37°C for 1 hour. After the digestion, isolated cells were

applied to Percoll (GE Healthcare, Chicago, IL, U.S.A.) gradient

centrifugation. LP samples were obtained after the removal of

Peyer’s patches.
2.4 Isolation of PBMCs

Peripheral blood was collected from each rat, and PBMCs were

isolated using Ficoll-Paque Plus® gradient centrifugation (GE

Healthcare, Chicago, IL, U.S.A.). The isolated PBMCs were

washed with PBS and stored at room temperature for

subsequent experiments.
2.5 Single-cell RNA library preparation
and sequencing

The single-cell RNA library preparation and sequencing were

performed by E-Biogen Inc. (Seoul, South Korea). The sequencing

was conducted using the Nova-Seq 600 platform in a paired-end

100bp format, with 5000 cells sampled per sample. The library

preparation method employed was the 10x Genomics Next

Gem technology.
2.6 LPs and PBMCs clustering
and annotation

We conducted the analysis using the filtered Cell Ranger files

obtained from E-Biogen. The clustering of LPs and PBMCs was

performed using the Seurat R Package (Seurat 4.4.0 version, https://

satijalab.org/seurat/), a clustering tool developed for the merged

matrix for scRNA-seq data. Potential doublets and low-quality cells

(less than 200 genes or more than 10% of mitochondrial expression)

were filtered out based on gene expression. The data were then

normalized and combined. Variable genes were identified using the

Seurat function “FindVariableGenes”. The previously identified

variable genes were used for principal component analysis (PCA)

to reduce the data dimensions. Subsequently, 30 principal

components were utilized in the Uniform Manifold Approximation

and Projection (UMAP) algorithm to further reduce the dimensions

based on the neighborhood relationship. In the first round (pre-

clustering; resolution = 0.8), major cell types were identified. In the

second round (sub-clustering; resolution = 0.2), T cell or B cell

subsets were further subdivided using specific signature genes. Gene
Frontiers in Immunology 04153
expression was visualized using DotPlot, FeaturePlot, and VlnPlot

functions from the Seurat package’s guidelines. Volcano plots were

generated using the R package EnhancedVolcanoPlot.
2.7 Gene set enrichment assay

To explore the potential roles of B cells in both LPs and PBMCs,

we utilized the Molecular Signature Database (MSigDB) and

conducted GSEA. Data were analyzed using Seurat, dplyr, presto,

msigdbr, fgsea, tibble, tidyverse, and data.table package in R. This

analysis involved calculating a normalized enrichment score (NES),

and was performed focusing on the most significant hallmark genes.

GSEA results were visualized to identify functional or pathway

differences. We used Rattus norvegicus as the species and

categorized the results into the “H” category to specifically

identify hallmark pathways in the HFS group.
2.8 Statistics

Blood pressure values were presented as the mean ± standard

error of mean (SEM). Statistical analyses were performed using

GraphPad Prism 7 (GraphPad Software, San Diego, CA, U.S.A.),

and significance was determined with a p value of lower than 0.05.

The Vlnplot of interferon-related genes was evaluated for

significance using the Wilcoxon signed rank test.
3 Results

3.1 High-fructose intake increased blood
pressure in SS rats

To determine the effect of a high-fructose solution on blood

pressure, we conducted weekly measurements of systolic blood

pressure (SBP) in SS rats over a 4-week period. The rats were

divided into two groups: one group receiving tap water (TW) and

the other receiving a 20% high-fructose solution (HFS). The results

showed a significant increase in SBP and mean blood pressure in the

HFS group for 4 weeks, but no significant change was observed in

the TW group (Figures 1A and S1B). There were no significant

differences in diastolic blood pressure, heart rate, calorie intake,

body weight, and water intake between the groups (Figures 1B, C,

S1A, S1C, S2). However, the HFS group exhibited a decrease in food

intake (Figure 1D).
3.2 Landscape of major cell types in LPs of
TW and HFS group

We performed scRNA-seq on PBMCs (n = 3) and LPs (n = 4)

obtained from the TW and HFS groups (Figure 2A). The datasets

from these groups were combined for further analysis. After quality

control, we successfully processed an average of 3445 cells and 3481

cells in the LPs of the TW and HFS groups, respectively. The major
frontiersin.org
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cell types were classified and identified as B cells, helper T (Th) cells,

cytotoxic T cells, natural killer (NK) cells, and macrophages. These

cell types were visualized using a UMAP plot (Figure 2B), with their

identification based on specific marker genes. B cells were

characterized by the marker genes Cd19, Cd79a, and Cd79b, while

Th cells were distinguished by Cd3d, Cd3e, and Cd3g. Cytotoxic T

cells were marked by Cd3d, Cd3g, and Cd8a, NK cells by Cd8a,

Nkg7, and Klrd1, and macrophages by Cd14, Cd68, Cd86, and

Cd163. These cell types and their corresponding marker genes

were visualized through dot plots and feature plots (Figures 2C,

D). A comparison of UMAP plots between the groups highlighted a

greater abundance of B cell clusters in the HFS group compared to

the TW group (Figure 2E). This observation was further

corroborated through a bar graph, illustrating the increased

proportion of B cells in the HFS group compared to the TW

group (Figures 2F, G).
3.3 Increased follicular helper T cells in the
T cell subsets of LPs from the HFS group

To explore the diversity of T cell subsets within the major LP

clusters, we conducted sub-clustering with a focus on the Th cell

and cytotoxic T cell clusters. As a result, T cell subsets, including

Th1, Th17, Tfh, Treg, and cytotoxic T cells, were identified. The

identification of T cell subsets was based on specific marker genes.

Th1 cells were identified by Ccr5, Cxcr3, Stat4, and Tbx21. Th17
Frontiers in Immunology 05154
cells were defined by Ccr6, Il23r, Il17a, and Il17f. Tfh cells were

delineated by Cxcr5, Il6r, and Stat3. Treg cells were categorized

using Il2ra, Ctla4, and Foxp3. Cytotoxic T cells were pinpointed

through Cd8a, Gzmm, and Nkg7. These T cell subsets, along with

their characteristic marker genes, were visually presented through a

dot plot and feature plots (Figures 3A and S3). Visualization of these

T cell subsets were achieved through UMAP plots, and a

comparison between the two groups revealed a higher presence of

Tfh cells in the HFS group (Figure 3B). This observation was further

supported by the bar graph, which displayed a higher proportion of

Tfh cells within LPs from the HFS group compared to the TW

group (Figures 3C, D).
3.4 Elevated levels of follicular B cells
in the B cell subsets of LPs from the
HFS group

Our exploration of B cell diversity within the major LP clusters

involved sub-clustering, focusing particularly on the B cell clusters.

By referencing established works (24–26), we conducted the

annotation of B cell subsets and identified distinct B cell subsets:

follicular B, memory B, Naïve B, regulatory B (Breg), immature B,

and plasma cells. The B cell subsets were further visualized using

UMAP plots. The characterization of B cell subsets was based on

specific marker genes. Follicular B cells were classified by their high

expression of Cxcr5, Cd24, and Cd38. Memory B cells were
B

C D

A

FIGURE 1

High-fructose intake induced hypertension. Dahl salt-sensitive (SS) rats were given either 20% high-fructose solution (HFS) or tap water (TW) for 4
weeks. (A) The HFS significantly increased systolic blood pressure (SBP). (B, C) There were no significant differences observed in body weight and water
intake. (D) Conversely, the HFS group exhibited a notable reduction in food intake. The graph represents the mean ± SEM of eight independent
experiments. The statistical analysis involved conducting a repeated measures ANOVA followed by Tukey’s post-hoc multiple comparisons test. The
asterisk (*) indicates statistical significance (p < 0.05) compared to the TW group. The study was conducted with a sample size of n = 4.
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identified based on their high expression of Cd27 and Cd38. Naïve B

cells were recognized by their high expression of Cxcr5 and Cd24,

accompanied by low expression of Cd38. Breg cells were identified

through their high expression of Cd24 and Cd38. Immature B cells
Frontiers in Immunology 06155
were identified by their high expression of Ybx3 and Cd38. Plasma

cells were categorized by their high expression of Sdc1 and Ighm,

coupled with low expression of Ptprc and Cd24. These B cell subsets,

along with their associated marker genes, were visually presented
B

C

D

E

F G

A

FIGURE 2

High-fructose intake increased B cells within the lamina propria cells (LPs). (A) Schematic representation of the experimental strategy. (B) The UMAP
plot of LPs revealed five major immune cell types, along with CD45 (protein tyrosine phosphatase receptor type C; Ptprc)-negative cells,
undetermined T cells, and unknown cell types. (C) The feature plots demonstrate pronounced expression of CD68 in macrophages, Nkg7 in NK
cells, Cd3d in Th cells, Cd8a in cytotoxic T cells, and Cd79b in B cells. (D) The dot plot of selected marker genes for each cell type. The size of dots
represents the percentage of gene expression in each cell subset, while the color of dots indicates the expression levels. (E) The HFS group showed
an increase in B cells (in red) compared to the TW group. The UMAP plots compare the distribution of the cell types across the TW and HFS groups.
(F, G) The proportion of B cells was notably higher in the HFS group than in the TW group. (F) Depiction of the cell type proportions in each group.
(G) The relative quantification of each cell type between the two groups.
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through a dot plot and feature plots (Figures 4A and S4). A

comparative analysis of these B cell subsets between the two

groups revealed a higher abundance of follicular B cells in the

HFS group (Figure 4B). This trend was supported by a bar graph,

which showed a higher proportion of follicular B cells in LPs from

the HFS group compared to the TW group (Figures 4C, D).
3.5 Landscape of major cell types from
PBMCs of TW and HFS group

We analyzed scRNA-seq datasets from PBMCs of the TW and

HFS groups. Subsequently, these datasets were merged for

comprehensive scrutiny. Following rigorous quality control

measures, an average of 5255 cells in the TW group and 5886

cells in the HFS group were successfully acquired within the

PBMCs. Among these, major cell types were identified and

classified as B cells, Th cells, cytotoxic T cells, NK cells,
Frontiers in Immunology 07156
macrophages, and monocytes. B cells were identified using Cd19,

Cd79a, and Cd79b. Th cells were confirmed using Cd3d, Cd3e, and

Cd3g. Cytotoxic T cells were validated through Cd3d, Cd3g, and

Cd8a. NK cells were pinpointed using Cd8a, Nkg7, and Klrd1.

Macrophages and monocytes were precisely identified using Cd14,

Cd68, Cd86, and Lgals3, Gm2a, Itgam, respectively. This

comprehensive categorization was visually presented in a dot plot

(Figure 5A). These cell types were visualized using bar plots

(Figures 5B, C), and their identification was based on specific

marker genes.

To further explore T cell and B cell subsets, we visualized them

through UMAP plots. The classification of T cell subsets included

undifferentiated T cells, cytotoxic T cells, Tfh cells, and Treg cells.

These distinctions were made based on specific marker genes.

Cytotoxic T cells were defined by Cd8a, Cd8b, Gzmm, and Nkg7.

Tfh cells were identified using Cxcr5, Icos, and Il6r. Treg cells were

identified using Il2ra, Ctla4, and Foxp3. The results of this

comprehensive categorization were summarized in a dot plot
B

C D

A

FIGURE 3

High-fructose intake increased the follicular helper T cell subset in LPs. (A, B) The HFS group displayed an increased presence of Tfh cells (in green)
compared to the TW group. (A) The feature plots demonstrate high expression of Tbx21 in Th1 cells, Cxcr5 in Tfh cells, Il17a in Th17 cells, Foxp3 in
Treg cells, and Cd8a in cytotoxic T cells. (C, D) The proportion of Tfh and regulatory T (Treg) cells was higher in the HFS group compared to the TW
group. (B) The UMAP plot enables a visual comparison of the distribution of T cell subsets between the TW and HFS groups. (C) Depiction of the
proportions of T cell subsets in each group. (D) The relative amount of each T cell subset between the two groups.
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(Figure S5A). Similarly, B cell subsets exhibited a wide range of

diversity, including plasma cells, Breg cells, naïve B cells, follicular B

cells, mature B cells, memory B cells, immature B cells, and pre B

cells. The identification of these subsets was based on distinct

marker genes. Breg cells were identified by their high expression

of Cd19, Cd24, Ms4a1, and Cd38. Mature B cells were classified by

their high expression of Cd19 and Pax5, with low expression of

CD79a. Follicular B cells exhibited high expression of Cxcr5 and

Cd19, coupled with low expression of Cd27. Immature B cells were

recognized by their high expression of Ybx3 and Cd38. Memory B

cells were classified based on high expression of Cd27 and Cd38.

Plasma cells were distinguished by their high expression of Sdc1 and

Ighm, alongside low expression of Ptprc and Cd24. Pre B cells were

identified based on their high expression of Cd19 and low

expression of Ms4a1. The diversity of B cells was illustrated in a

dot plot (Figure S6). Further investigation of UMAP plots and bar
Frontiers in Immunology 08157
plots between the two groups in PBMCs revealed a noteworthy

trend: within T cell subsets, the HFS group exhibited a higher

abundance of Treg cells, while nearly all B cells in the HFS group

displayed a greater prevalence (Figures 5D-G and S5B, S5C).
3.6 Activation of the interferon signaling
pathway in B cells of PBMCs and LPs from
the HFS group

To elucidate the differences between the TW and HFS groups,

we conducted gene set enrichment analysis (GSEA) on B cells. The

GSEA results unveiled the upregulation of hallmark pathways

“INTERFERON_ALPHA_RESPONSE” and “INTERFERON_

GAMMA_RESPONSE” in B cells from the HFS group

(Figures 6A, B). In addition, Differentially Expressed Genes
B

C D

A

FIGURE 4

High-fructose intake increased the follicular B cell subset in LPs. (A, B) The HFS group exhibited an increase in follicular B cells compared to the TW
group. (A) The feature plots demonstrate high expression of Cxcr5 and Cd38 in follicular B cells, Sdc1 in plasma cells, Ybx3 in immature B cells, Cd27
in memory B cells, Cd24 and Sdc1 in regulatory B cells, and Cd24 in naïve B cells, with low expression of Cd38. (B) The UMAP plot compares the
distribution of B cell subsets across the TW and HFS groups. (C, D) The proportion of follicular B cells was higher in the HFS group than in the TW
group. (C) The proportion of B cell subsets in each group. (D) The relative amount of each B cell subset between the two groups.
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(DEGs) analysis was performed on T cells and B cells to investigate

the gene expression differences between the TW and HFS groups.

The enhanced volcano plots unveiled elevated expression of ISGs, in

the enhanced volcano plots of T cells from both the TW and HFS

groups, genes associated with Treg cells and ISGs, such as Foxp3
Frontiers in Immunology 09158
and Ifitm1, exhibited higher expression in PBMCs. Furthermore, in

B cells, such as Ifi30, Mx1, and Mx2 were found to be increased

(Figures S7A, S7B). Moreover, genes related to Treg and Tfh cells

that were found to be increased in LPs included Icos and Foxp3, and

genes such as Ifitm1 and Ifitm3 in B cells were also increased in the
B C

D E
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A

FIGURE 5

High-fructose intake increased B cells, monocytes, and macrophages within peripheral blood mononuclear cells (PBMCs). (A-C) The HFS group
exhibited an increase in B cells, macrophages, and monocytes compared to the TW group. (A) The dot plot of selected marker genes for each cell
type. Dot size indicates the percentage of each gene expressed in each cell type, while dot color indicates expression levels. (B) The proportion of
cell types in each group. (C) The relative amount of each cell type between the two groups. (D) The UMAP plot compares the distribution of the T
cell subsets across the TW and HFS groups. (E-G) HFS increased almost all B cell subsets in HFS group compared to TW group in PBMCs. (E) The
UMAP plot compares the B cell subsets distribution across TW and HFS groups. (F) The proportion of B cell subsets in each group. (G) The relative
amount of each B cell subtype between the two groups.
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FIGURE 6

High-fructose intake upregulated the expression of interferon-related genes in B cells found in PBMCs and LPs. (A, B) The hallmark pathways,
including “INTERFERON_ALPHA_RESPONSE” and “INTERFERON_GAMMA_RESPONSE”, were upregulated in B cells from the HFS group. (A) Utilizing
gene set enrichment analysis (GSEA) and normalized enrichment score (NES), enriched hallmark gene sets in B cells from PBMCs of the HFS group
were identified compared to the TW group. (B) Similarly, GSEA and NES were applied to identify enriched hallmark gene sets in B cells from LPs from
the HFS group compared to the TW group. Gene sets with a NES < 0 are shown as leftward bars (in blue), whereas gene sets with NES > 0 are
shown as rightward bars (in red). (C-F) Notably, the expression of ISGs was increased in B cell subsets of both PBMCs and LPs from the HFS group
compared to the TW group. (C) The violin plots display the ISG expression, including myxovirus resistance-1 (Mx1) and myxovirus resistance-2 (Mx2),
within each B cell subset of PBMCs. The TW group is depicted in red and the HFS group in blue on the vln plots. (D) The violin plots display the
expression of ISGs such as Mx1 and Mx2 within each B cell subset of LPs. The TW group is depicted in red and the HFS group in blue on the vln
plots. (E) The feature plots illustrate the expression of ISGs such as Mx1 and Mx2 within each B cell subset of PBMCs. (F) The feature plots illustrate
the expression of ISGs such as Mx1 and Mx2 within each B cell subset of LPs.
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HFS group compared to the TW group (Figures S7C, S7D).

Comparative analysis of B cell clusters from PBMCs and LPs

using violin (vln) plots reveled distinct expression of IFN-

stimulated genes (ISGs). Specifically, in PBMCs, Mx1 showed

significantly elevated expression in Breg, while Mx2 was

significantly upregulated in Breg and naïve B in the HFS group.

In LPs, Mx1 showed significantly elevated expression in follicular B

cells in the HFS group (Figures 6C, D). These observations were

further supported by the feature plots, which depicted an increased

proportion of ISGs in B cells of both PBMCs and LPs from the HFS

group (Figures 6E, F). When comparing the expression levels of

other interferon-related genes using vln plots in T cell subsets of

PBMCs, we observed elevated Ifnar2 and Ifngr1 were significantly

upregulated in Tfh cells of PBMCs from the HFS group (Figure S8).

In B cells, Ifi30 and Ifngr1 were significantly upregulated in plasma

cells, and Ifngr1 showed significantly elevated expression in

follicular B cells of PBMCs from the HFS group compared to the

TW group (Figure S9). Moreover, further analysis of the interferon-

related genes in the T cell subsets of LPs revealed that Irf1, Ifi30,

Ifitm1, Ifnar1, and Ifngr2 were significantly upregulated in Tfh cells

in the HFS group (Figure S10). In B cells, Irf1, Stat2, Ifi30, Ifngr1,

Ifngr2, Ifnar1 and Ifnar2 were significantly upregulated in follicular

B cells of LPs from the HFS group compared to the TW group

(Figure S11). Furthermore, a significant increase in IFN-g was

observed in Th1 cells from LPs with HFS (Figure S12). These

results collectively suggest a comprehensive activation of interferon-

related genes in B cells from PBMCs and LPs in the context of

hypertension induced by HFS.
4 Discussion

In this study, we provide evidence that HFS leads to an increase in

blood pressure, linked to the activation of the IFN signaling pathway

in B cells within both LPs and PBMCs. Notably, we observed that the

administration of HFS led to an augmented population of B cells

among the major cell types in both LPs and PBMCs. Moreover, our

investigation uncovered distinct subsets within T cells and B cells: Tfh

and Treg cells exhibited an increase within T cell subsets, while

follicular B cells showed an elevation in B cell subsets from LPs in the

HFS group. Moreover, Treg cells demonstrated an increase in T cell

subsets, and B cells (excluding pre B cells) were elevated in B cell

subsets from PBMCs in the HFS group.

Our findings indicate that HFS increases SBP through the

activation of both the type I and type II IFN signaling pathways in

B cells derived from both LPs and PBMCs. The IFN family consists

of twomain classes: type I IFNs (IFN-a, b, d, ϵ, k, t, andw), and type
II IFN (IFN-g) (27, 28). Type I IFNs are produced by various cell

types. For instance, IFN-a is produced by plasmacytoid DCs, while

IFN-b originates from fibroblasts, epithelial cells, macrophages, and

monocytes (29, 30). Recent studies have reported that B cells can

autonomously produce IFN-a and IFN-b (31, 32). Interestingly, type
I IFN has been associated with pulmonary arterial hypertension

(PAH) and autoimmune diseases in both humans and mice (33, 34).

On the other hand, the predominant producers of type II IFN are

Th1 cells, cytotoxic T cells, and NK cells (35, 36), and this cytokine
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has been associated with the development of hypertension.

Intriguingly, the absence of IFN-g has been shown to result in a

blunted increase in SBP in animal models of hypertension induced

by Ang II or deoxycorticosterone acetate (DOCA) in combination

with salt (37, 38). Previous studies have demonstrated that B cells

also secrete both types of IFNs as well as various cytokines (36, 39,

40). Furthermore, both type I and type II IFNs induce the expression

of ISGs, which possess diverse immunomodulatory activities and are

associated with hypertension (41). Among the ISGs, Ifi30, derived

from DEGs of monocytes and macrophages, has been correlated

with hypertension in patients with abdominal aortic aneurism or

intracranial aneurism (42). The upregulation of the Mx1 and Mx2

genes has also been linked to inherited stress-induced arterial

hypertension in rats (43).

We have observed an increase in Tfh cells in the LPs of the HFS

group. These Tfh cells play a crucial role in assisting B cells,

particularly follicular B cells, within germinal center (GC)

reactions. GC reactions are important for effective immune

responses against invading pathogens, but the dysregulation of

Tfh cells has been implicated in various autoimmune diseases,

inflammatory conditions, and B cell-related malignancies (19).

Furthermore, Tfh cells have been linked to the development of

hypertension (44, 45). Tfh cells are recognized for their secretion of

IL-21, which fosters the activation of GC B cells within secondary or

tertiary lymphoid organs. The IL-21 derived from Tfh cells plays a

critical role in processes such as immunoglobulin (Ig) class

switching and the generation of high-affinity antibodies by GC B

cells (46, 47). Notably, when Ang II is administered into IL-21

knockout mice versus WT mice, IL-21 deficiency is associated with

lower blood pressure, diminished vascular and end-organ damage,

and reduced levels of IL-17A and IFN-g compared to WT mice.

Moreover, the neutralization of IL-21 results in decreased blood

pressure, alleviation of vascular inflammation, and improvement in

endothelial dysfunction. Importantly, human subjects with

hypertension exhibit higher levels of IL-21 in their PBMCs

compared to individuals with normal blood pressure (46).

Our research demonstrates that the consumption of HFS leads

to an increase in B cells in both LPs and PBMCs. Recent evidence

underscores the potential contribution of B cells in the development

and progression of hypertension and vascular injury. The infusion

of Ang II has revealed a surge in activated B cells and plasma cells.

Moreover, studies using mice lacking the B cell activating factor

receptor (BAFF-R) have shown prevention of blood pressure

elevation and a reduction in aortic macrophage infiltration.

Remarkably, the adoptive transfer of B cells from WT mice into

those lacking BAFF-R reinstates their susceptibility to hypertension.

Notably, the depletion of B cells by anti-CD20 antibodies in

combination with Ang II administration results in a significant

decrease in blood pressure (22). Furthermore, mice deficient in the

B cell transcription factor c-myb, which is essential for the

development of mature B cells, exhibit lower blood pressure

compared to their WT littermates (48).

Hence, when implementing a high-fructose diet, blood pressure

elevates through non-immune mechanisms. Subsequently, the

activation of macrophages and DC cells is induced by specific

antigens associated with hypertension, including neo-antigens and
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damage associated molecular patterns (DAMPs). These activated

immune cells then proceed to stimulate T cells in the spleen, which,

in turn, activate B cells to produce auto-antibodies. Consequently,

this process leads to more extensive damage to various tissues such

as blood vessels, kidneys, and the heart, ultimately progressing into

more severe hypertension (49). Furthermore, a high-fructose diet

may induce changes in gut microbiota composition, potentially

activating B cells. For example, in a systemic sclerosis mouse model,

when a high-fructose diet was administered for 4 and 12 weeks,

Bifidobacterium pseudomonas and Muribacterium intestinale

species in the gut microbiota decreased while Olsenella timonensis

and Desulfovibrio vulgaris species increased. Subsequently, we

observed a trend of increased B cells and Treg cells in the ileum 4

weeks after the high-fructose diet (50). Another example can be

seen in non-alcoholic steatohepatitis (NASH), where a 20-week

high-fructose diet resulted in the significant accumulation of pro-

inflammatory B cells in the liver. This was attributed to factors

induced by changes in gut microbiota (51). Consequently, we

speculate, based on our experimental findings, that alterations in

gut microbiota composition due to a high-fructose diet may activate

B cells, potentially impacting not only systemic sclerosis and non-

alcoholic fatty liver disease (NAFLD), but also hypertension.

Our study reveals a notable increase in the Treg population in both

LPs and PBMCs from the HFS group. Treg cells not only play a crucial

role as key regulators of inflammation but also have a dual role in

maintaining self-tolerance and protecting against autoimmune

diseases. The stability and function of the Treg cell lineage rely on

the signalingmediated by the transcription factor Foxp3 (52, 53). These

cells employ diverse mechanisms to suppress antigen presentation,

including the induction of IL-10 expression as well as the inhibition of

DC maturation (54, 55). Moreover, Treg cells control T cell

proliferation and differentiation through upregulation of the

expression of granzyme B and CD73, while simultaneously

dampening the production of multiple cytokines such as IL-2, IFN-g,
and TNF-a (56). Previous investigations have reported the role of Treg

cells in inhibiting B cell activity, both in vitro and in vivo, through

mechanisms that depend on cellular contact (57, 58). Other studies

have suggested that B cells are essential for the proliferation and

expansion of not only antigen-primed effector Th cells but also Treg

cells (40, 59, 60). Based on our findings, it is reasonable to propose that

the observed augmentation in Treg cells could serve as a compensatory

response aimed at counterbalancing the effects of B cells in LPs and

PBMCs. The elevated expression of IFNs and ISGs within these B cells

implies a connection to immune regulatory processes, potentially

associated with autoimmunity. This aligns with recent evidence

highlighting the connection between inflammation, autoimmunity,

and the development of hypertension (34).

In our previous findings, the application of an HFS induced an

imbalance in SGK1-Foxo1/3 signaling. Th17 cells increased in PBMCs

and the spleen of Dahl salt-sensitive rats, while the Treg cells remained

unaffected (6). However, upon verification through scRNA-Seq data,

we observed that in the LP, there was no significant difference in the

expression of SGK1 and Foxo1/3 when a HFS was applied. Th17 cells

exhibited a tendency to decrease as compared to the WT. Although we

were unable to pinpoint the exact causes, it is speculated that Th17 cells

play a minimal role in the LP when hypertension occurs. This is likely
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due to tissue and environmental characteristics. For example, in

previous studies, it has been well-documented that in rodent models,

when CD8+ T cells are transferred or high-salt diets are administered,

CD8+ T cells become established in the kidneys, contributing to the

induction of hypertension (61). Moreover, whenmice with knockout of

IFN-g, a cytokine secreted by CD8+ T cells, were subjected to DOCA-

salt treatment, they showed lower blood pressure as compared to WT

mice. Additionally, there was a reduced presence of CD8+ T cells in the

kidneys (38). This evidence strongly supports the association of CD8+

T cells with the development of hypertension in the kidneys. However,

a study examining the relationship between hypertension history and

the gut in humans revealed a reduction in CD8+ T cells in the intestines

of individuals with hypertension as compared to those with healthy

intestines (62).

In summary, our study demonstrates that high fructose intake

leads to an increase in blood pressure. This increase is driven by the

activation of the IFN signaling pathway in B cells in both LPs and

PBMCs. These findings suggest that targeting B cells could be a

potential intervention strategy to reduce blood pressure in

individuals with fructose-induced hypertension.
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Single-cell RNA sequencing
analysis reveals the
heterogeneity of IL-10
producing regulatory
B cells in lupus-prone mice
Andrea R. Daamen1†, Razan M. Alajoleen2†,
Amrie C. Grammer1, Xin M. Luo2* and Peter E. Lipsky1*

1AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States,
2Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary
Medicine, Virginia Tech, Blacksburg, VA, United States
Introduction: B cells can have both pathogenic and protective roles in

autoimmune diseases, including systemic lupus erythematosus (SLE).

Deficiencies in the number or immunosuppressive function of IL-10

producing regulatory B cells (Bregs) can cause exacerbated autoimmune

inflammation. However, the exact role of Bregs in lupus pathogenesis has not

been elucidated.

Methods: We carried out gene expression analysis by scRNA-seq to

characterize differences in splenic Breg subsets and molecular profiles

through stages of disease progress ion in lupus-prone mice.

Transcriptome-based changes in Bregs from mice with active disease were

confirmed by phenotypic analysis.

Results: We found that a loss of marginal zone (MZ) lineage Bregs, an

increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall

increases in inflammatory gene signatures were characteristic of active

disease as compared to Bregs from the pre-disease stage. However, the

frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly

decreased in active-disease mice.

Conclusion: Overall, we have identified changes to the repertoire and

transcriptional landscape of Breg subsets associated with active disease

that provide insights into the role of Bregs in lupus pathogenesis. These

results could inform the design of Breg-targeted therapies and interventions

to restore Breg suppressive function in autoimmunity.
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Introduction

B cells are typically thought of as positive effectors of

autoimmunity through the production of autoantibodies and

inflammatory cytokines. However, subsets of B cells generally

characterized by the production of interleukin-10 (IL-10) and

broadly labeled regulatory B cells (Bregs) can also function as

negative regulators of the immune response (1). Multiple

populations of suppressive B cells have been described and

defined by the expression of a variety of B-lineage and context-

dependent markers (2), including transitional 2-marginal zone

precursors (T2-MZP) (3), mature MZ B cells (4, 5), TIM-1 B cells

(6), Plasmablasts (PBs) (7), Plasma Cells (PCs) (8), and B1a B cells

(9). The immunosuppressive function of Bregs is primarily

mediated by inhibition of T cell activation and pro-inflammatory

responses (10). This may occur through direct or indirect

mechanisms, including production of anti-inflammatory

cytokines such as IL-10, IL-35, and transforming growth factor

receptor b (TGF-b), inhibition through cognate interactions with

pro-inflammatory immune cells, or by promoting Treg cell

differentiation (11). Notably, the absence or loss of Bregs has

been associated with increased inflammation in mice with a

variety of autoimmune disorders, including experimental

autoimmune encephalomyelitis (EAE) (12–14), ulcerative colitis

(UC) (15, 16), collagen-induced arthritis (3), and SLE (17, 18).

Despite evidence of an important role for suppressive B cells in

modulating aberrant immune responses, however, their origins and

regulatory mechanisms are poorly understood.

The important role of B cell regulatory function for maintaining

immune tolerance has driven research on Bregs and their potential

as targets for treatment of various autoimmune diseases, including

SLE (19). However, deciphering the exact role of Bregs in SLE

pathogenesis has been complicated by heterogeneity in lupus

patients and Breg subsets described in the context of each study.

Multiple studies have found increased serum IL-10 levels as well as

increased numbers of circulating Bregs in SLE patients (20–22).

However, others have described decreased Bregs in specific cohorts

of SLE patients, including those with active lupus nephritis (LN)

(23) and decreases in individual marker-defined Breg subsets (24,

25) indicating that specific Breg populations may be important for

counteracting specific manifestations of SLE pathogenesis. Even

when Bregs are present in sufficient numbers in SLE patients, they

appear to be functionally impaired suggesting that defects in Breg-

mediated suppression may contribute to autoimmunity (26–28).

Thus, many questions remain as to the role of Bregs in SLE,

including how specific Breg populations function in the context

of autoimmunity and how this may be exploited to inform better

treatment of SLE patients.

In previous work, we utilized the autoimmune-prone MRL/Mp-

Faslpr (MRL/lpr) mouse strain, which spontaneously develops

lupus-like disease, to investigate the role of gut microbiota in

autoimmunity (29, 30). Interestingly, early treatment with the

antibiotic vancomycin before disease onset exacerbated disease

pathogenesis and concomitantly lead to reduced numbers of

splenic Bregs as well as decreased circulating IL-10 and IL-35.

Moreover, adoptive transfer of Bregs pre-disease improved disease
Frontiers in Immunology 02165
pathology, whereas transfer during active disease was not protective

(30). This result emphasizes the importance of Bregs in preventing

autoimmunity, but also suggests that these effects are disease-

context dependent.

Here, we used a combination of phenotypic and single-cell

transcriptional analysis of MRL/lpr mice as a model to examine the

role of Bregs and heterogeneity of Breg subsets generated from mice

at different stages of lupus disease progression. We identified

deficiencies in the overall number of IL-10+ Bregs as well as

differences in the proportion and transcriptional profiles of

specific Breg subsets derived from mice with active disease as

compared to mice before disease onset. This result suggests that

not only deficiencies in Bregs as a whole, but alterations to the

repertoire of Bregs may play a critical role in lupus pathogenesis and

that enhancing the function of specific Breg subsets could be

exploited to restore Breg-mediated suppression in the context

of autoimmunity.
Materials and methods

Mice

MRL/lpr mice (MRL/Mp-Faslpr, stock number 000485) were

purchased from The Jackson Laboratory (Bar Harbor, ME) and

kept in a pathogen-free facility per the requirements of Virginia

Tech’s Institutional Animal Care and Use Committee (IACUC).

Female MRL/lpr mice aged six weeks were used to represent the

pre-disease stage and female MRL/lpr mice aged ten weeks were

used to represent the active disease stage. Only female mice were

used as these mice get earlier and more severe disease as compared

to male mice in a manner similar to human patients with lupus and

other autoimmune diseases.
Flow cytometry

Spleens were collected and pressed through 70-mm cell strainers

with complete medium (RPMI 1640, 10% fetal bovine serum, 1 mM

sodium pyruvate, 1% 100 MEM non-essential amino acids, 10 mM

HEPES, 55 mM 2-mercaptoethanol, 2 mM L-glutamine, 100 U/ml

penicillin-streptomycin, all from Life Technologies, Grand Island,

NY). Red blood cells (RBCs) were excluded using previously

published methods (30). Single-cell suspensions were stimulated for

24 hours with 10 mg/ml LPS, followed by 5 hours of 50 ng/ml PMA

and 500 ng/ml ionomycin, blocked for 10 minutes on ice with the Fc

receptor block anti-CD16/32 (eBioscience), then stained for 15

minutes in the dark with fluorochrome-conjugated antibodies and

analyzed with a BD FACS Aria II flow cytometer (BD Biosciences,

San Jose, CA). Foxp3 Fixation/Permeabilization kit (eBioscience) was

used for intracellular staining. To exclude dead cells, a Zombie Aqua

fixable viability kit (Biolegend) was used. The following monoclonal

anti-mouse antibodies were used in this study: AF700 or APC

conjugated anti-CD19 diluted 1:800, PE-Cy7 conjugated anti-CD23

diluted 1:60, APC-Cy7 conjugated anti-CD21 diluted 1:80, FITC

conjugated anti-CD24 diluted 1:200, PE conjugated anti-IL-10
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diluted 1:80, BV711 conjugated anti-CD138 diluted 1:800, and APC

conjugated anti-IgH (m chain) diluted 1:800 (BioLegend).
Cell preparation for analysis of Breg
populations and IL-10 production

Enriched B cells were stimulated for 24 hours with 10 mg/ml

LPS, followed by 5 hours of 50 ng/ml PMA and 500 ng/ml

ionomycin. Stimulated cells were labeled with Miltenyi Biotec’s

Regulatory B Cell Catch Reagent and incubated for 45 minutes.

After removing the supernatant, the cells were resuspended in

buffer and labeled with Regulatory B Cell Detection Antibody.

Anti-PE microbeads were mixed into the cell suspension before

magnetic separation on LS columns (Miltenyi Biotec) to capture IL-

10 secreting Breg cells through positive selection.
Cell preparation for single-cell RNA-seq

The splenocytes of three pre-disease female MRL/lpr mice were

pooled into each of two samples (a total of 6 pre-disease mice) and

the splenocytes of two active-disease female MRL/lpr mice were

pooled into each of two samples (a total of 4 active-disease mice).

Cells were stimulated for 24 hours with 10 mg/ml LPS, followed by 5

hours of 50 ng/ml PMA and 500 ng/ml ionomycin. IL-10 producing

B cells were isolated using the Mouse Regulatory B Cell Isolation Kit

purchased fromMiltenyi Biotec (Gladbach, Germany) following the

manufacturer’s protocol. In summary, single cell suspensions from

spleens were enriched using the Regulatory B cell Biotin-Antibody

cocktail, followed by the addition of Anti-Biotin MicroBeads and

magnetic separation on LD Columns (Miltenyi Biotec).
Single-cell RNA-seq

Single-cell RNA-seq was performed using 10X Genomics’

Chromium Single Cell 3′ V3.1 chemistry (Dual index). The

experiment was designed to target 1,000 cells. Gel-Bead in

Emulsions (GEMs) were made and the RT reaction was carried out

in the Nexus GX2 PCR instrument (Eppendorf). Post-GEM RT-

cleanup was used to obtain barcoded cDNA from the GEMs, which

was then amplified for 12 cycles. According to the manufacturer’s

protocol, amplified cDNA was subjected to enzymatic fragmentation,

end-repair, A tailing, adaptor ligation, and 10X specific sample

indexing. Bioanalyzer analysis was used to determine the quality

and quantity of libraries. Following that, libraries were pooled and

sequenced on the Illumina HiSeq platform (Novogene).
Single-cell RNA-seq sample pre-
processing, clustering, and
dimensionality reduction

Sequencing reads were processed with 10x Genomics Cell

Ranger software (v 7.0.1) using the standard pipeline. FASTQ files
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were generated and demultiplexed with the cellranger mkfastq

command. Read alignment to mouse reference genome mm10 and

gene quantification were carried out with cellranger count.

Downstream analysis of output count, gene/feature, and barcode

matrices was done using the R/BioConductor package Seurat (v

4.2.0). Quality control analysis was carried out to filter for high-

quality cells with unique molecular identifier (UMI) counts per cell >

1000, genes per cell > 1000, log10 genes per UMI < 0.75, and ratio of

cell reads from mitochondrial genes < 0.1 (all thresholds were set

using empirical distributions). Doublet discrimination was carried

out on filtered samples using DoubletFinder (v 2.0.3) and predicted

doublets were removed for downstream analysis. Cell cycle scores

were calculated using the CellCycleScoring function to ensure that

cell cycle phase was not a significant source of variation in the data.

Filtered datasets were split into Seurat objects corresponding to each

cohort (pre-disease and active-disease) and count normalization and

variance stabilization was carried out for each object using the

SCTransform function. Integrated analysis was performed using

the most highly variable shared genes to identify analogous

populations and facilitate direct comparison of differential gene

expression (DEG) between cohorts. Cell clustering was performed

with Seurat using the top 15 principal components (PCs) as

determined by the elbow method with a cluster resolution of 0.8

for separate cohort analysis and resolution of 0.4 for integrated

analysis. Clusters were visualized with the Uniform Manifold

Approximation and Projection (UMAP) method. Cluster markers

were identified using the FindAllMarkers function with

logfc.threshold of 0.5 for separate cohort clusters and of 0.25 for

integrated clusters. DEGs in active-disease cells from integrated

clusters were identified using the FindMarkers function with the

Wilcoxon rank sum test. DEGs with p<0.05 were considered

statistically significant.
Single-cell cluster annotation

Single-cell clusters were annotated based on enrichment of

cluster marker genes with pre-defined Breg subset and immune/

cellular pathway gene sets listed in Supplementary Table 1. Curated

gene sets were generated based on a combination of literature

mining, Mouse Genome Informatics (MGI) gene ontology (GO)

terms, and immune cell-specific expression compiled from the

Immunological Genome Project Consortium (ImmGen).

Enrichment statistics for overlap of cluster markers with curated

gene sets were calculated by a two-sided Fisher’s Exact Test in R

using the function fisher.test(). Enrichments with p<0.05 were

considered statistically significant. The unannotated clusters,

representing populations with cluster-defining marker genes that

were not informative in identifying specific Breg subsets, were

removed from downstream analyses.
Ingenuity pathway analysis

The canonical pathway function of IPA core analysis (Qiagen)

was used as an independent method of annotated differentially
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expressed genes (DEGs) between active-disease and pre-disease IL-

10+ B cells within integrated single-cell clusters. Overlap p-values of

p<0.05 were considered statistically significant.
Single-cell pseudotime trajectory analysis

Trajectory analysis was carried out to estimate developmental

relationships between the Seurat-generated IL-10+ B cell clusters

from pre-disease and active-disease MRL/lpr mice using the R/

Bioconductor package Monocle 3 (v 1.3.1). Trajectories were

constructed using the learn_graph() function and cells were

ordered in pseudotime using the IgDmid Naïve B Cell cluster

(cluster 6) as the root cluster for pre-disease cells and the Naïve B

Cell Cluster (cluster 2) as the root cluster for active-disease cells.

Cells were visualized based on pseudotime in a trajectory heatmap

using the plot_cells() function and displayed as boxplots depicting

the range of pseudotime values for each cluster using ggplot().
Gene set variation analysis (GSVA)

Gene sets used as input for GSVA are listed in Supplementary

Table 1. The R/Bioconductor package GSVA (31) (v1.36.3) was

used as a non-parametric method to estimate variation in

enrichment of these gene sets in publicly available microarray

data from isolated murine CD138+ PB-PCs (GSE103458) as

previously described (32).
Statistical analysis

Enrichment statistics (p-values and odds ratios) for the overlap

of single-cell cluster markers and pre-defined gene sets were

calculated using a two-sided Fisher’s Exact Test in R with

confidence level of 0.95. Statistical tests and graphs comparing

GSVA enrichment scores for isolated CD138+ IL-10+ and IL-10-

cells were calculated using an unpaired, two-sided Welch’s t-test in

GraphPad Prism (v9.3.1).
Study approval

The study was approved by the Virginia Tech IACUC under

protocol number 21-003.
Results

Bregs are numerically and functionally
impaired in lupus-prone mice with
active disease

To investigate the role of regulatory B cells (Bregs) in the

establishment and progression of disease in MRL/lpr mice, we

chose to focus on differences in the number and suppressive
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function of Bregs generated from mice at two disease stages:

before disease onset (pre-disease; 6-8 weeks) and after

establishment of autoimmunity (active-disease; 10-12 weeks).

Therefore, splenic B cells were isolated from pre-disease and

active-disease mice, stimulated with 10 mg/ml LPS for 24 h

followed by 5 h of 50 ng/ml PMA and 500 ng/ml ionomycin and

the numbers of IL-10+ B cells and IL-10 production were assessed.

The frequency of splenic IL-10+ B cells was significantly decreased

in mice with active disease as compared to the pre-disease stage

(Figure 1A). In addition, levels of serum IL-10 were significantly

decreased in active-disease mice (Figure 1B). To identify potential

deficiencies in IL-10 mediated Breg suppression during the active-

disease stage, levels of IL-10 were assessed in the supernatant of in

vitro stimulated splenic B cells. As with total serum IL-10 levels,

production of IL-10 by B cells from mice with active disease was

also significantly reduced (Figure 1C). Overall, these results indicate

that the development of autoimmunity in lupus-prone mice is

accompanied by both numerical and functional defects in

regulatory B cells.
scRNA-seq analysis identifies Breg cell
subsets in lupus-prone mice at the pre-
disease stage

To define variations in Bregs from lupus-prone mice at different

stages of disease progression, we carried out single-cell RNA

sequencing (scRNA-seq) on IL-10+ CD19+ B cells generated from

spleens of female MRL/lpr mice at the pre-disease stage (6-8 weeks

old) or active-disease stage (10-12 weeks old). To account for the

increased expansion of splenic B cells in active-disease mice, IL-10+

B cells were pooled from 3 pre-disease mice or 2 active-disease mice

per sample to yield approximately 10,000 total cells in duplicate for

each disease cohort. Quality control and doublet discrimination

were carried out separately on each sample before singlets

from each disease stage were combined to yield a final total of

12,130 pre-disease and 13,895 active-disease cells retained for

downstream analyses.

Initially, pre-disease and active-disease cells were evaluated

separately to identify groups of Breg cells with shared

transcriptional profiles from lupus-prone mice at each stage of

disease progression. IL-10+ B cells from pre-disease mice formed 12

cell clusters (Figure 2A), that were annotated based on enrichment

of cluster-defining gene markers in pre-defined gene sets

representative of previously identified Breg subsets, cellular

processes, and inflammatory pathways Supplementary Table 1. As

a result, we identified that 7 of the 12 clusters had significant cluster

marker overlaps with Breg subset genes indicating that these

clusters represented transcriptionally distinct subpopulations of

IL-10+ B cells from pre-disease lupus mice (Figure 2B). These

clusters were selected for further investigation and unannotated

clusters, in which cluster markers were not informative in defining

Breg subsets, were removed. The combined cell type and pathway

gene set enrichments and key cluster marker genes were then used

to label each annotated Breg subpopulation (Figure 2C;

Supplementary Figure 1). The highest proportion of annotated
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Breg cells (11.94%) in cluster 3 were designated as Plasmablasts

(PBs) by enrichment of the Plasmablast/Plasma Cell (PB-PC), Ig

Chain, Pro-Cell Cycle, and UPR & Stress gene sets, including

increased expression of Irf4, Prdm1, Ighm, Il10, and Ebi3. Two

populations in clusters 4 and 6 of pre-disease cells were

representative of naïve B cells, although they also manifested

enrichment of the Activated B Cell gene set and increased

expression of Ighd relative to other clusters. As cluster 4 had the

highest Ighd expression, these cells were designated IgDhigh Naïve B

Cells and cluster 6 cells as IgDmid Naïve B Cells. Pre-disease Bregs in

cluster 5 were enriched for markers of T2-MZP/MZ B Cells,

including Cd24a as well as metabolic pathway genes involved in

Glycolysis and Mitochondrial Oxidative Phosphorylation

(OxPhos). Cluster 7 cells were enriched for gene sets for PB-PCs

(Mzb1, Xbp1, Prdm1), Ig Chains (Ighm, Ighg3), MHC Class II, N-

and O-linked Glycosylation, and UPR & Stress indicative of a mixed

population of PBs and class-switched PCs. Interestingly, this cluster

was also enriched for the Phagocytosis gene set and thus was

designated as the Phagocytic PB-PC subset. Because of the high

expression of Havcr1 as compared to other clusters, cluster 8 cells

were labeled TIM-1 B Cells. Finally, the lowest proportion of

annotated Bregs in pre-disease mice was a population of activated

B cells that expressed the highest levels of Il10 as compared to other

clusters in conjunction with other anti-inflammatory molecules,

including Ebi3, Cd274 encoding PD-L1, Siglecg, and Cd300lf and,

therefore, was designated Suppressive B Cells.
Transcriptionally-defined IL-10+ B cell
subsets are altered in lupus-prone mice
with active disease

Single-cell gene expression profiles of IL-10+ B cells from active-

disease mice exhibited a distinct spatial pattern from pre-disease

mice that resulted in 14 clusters of cells in similar molecular states

(Figure 3A), 8 of which were enriched for pre-defined B cell subset
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markers (Figure 3B). Overall, cluster enrichments in active disease

reflected a heightened inflammatory state with an increased number

of clusters enriched for Type I/II IFN signature genes with or

without enrichment of TNF signature genes as compared to pre-

disease mice (Figure 3B). Cluster annotations for Breg cells from

active-disease mice also exhibited key variations from pre-disease

mice indicative of the more pro-inflammatory environment present

during active autoimmunity (Figure 3C; Supplementary Figure 2).

Several of the Breg clusters found in pre-disease mice were also

present during active disease, but in differing proportions of the

total analyzed population, and we found key variations in markers

defining these subsets. Unlike in pre-disease mice, the Naïve B Cell

cluster of active-disease cells expressing Ighd (cluster 2) was

confined to one cluster and represented the greatest proportion of

total Bregs (14.84%). The Breg cluster enriched for the PB-PC and

Phagocytosis gene signatures (cluster 3) was present at a greater

percentage (13.61%) in active-disease as compared to pre-disease

(4.89%) mice and unlike in pre-disease mice, appeared to be a pre-

class switched population expressing Ighm and was also the lone

active-disease cluster with Cd274 as a significant cluster marker.

The TIM-1 B Cell cluster (cluster 6) was more highly represented in

active-disease mice (6.51%) whereas the T2-MZP Cell cluster

(cluster 8) was less represented (3.30%) and appeared more

skewed to a MZP population through increased expression of

Cd23a as compared to other clusters.

Two clusters unique to IL-10+ cells from active-disease mice

were annotated with GC B Cell (cluster 9) and/or PC markers

(cluster 11). Cluster 9 cells were identified as GC B Cells/PCs

because of expression of Rgs13 as well as Igha and Ighg1 and cluster

11 cells were labeled PCs because of expression of Sdc1, Ighm, Igha,

and Ighg2b/c. This was particularly notable as in pre-disease mice

the only cells with evidence of class-switching were found in the

Phagocytic PB-PC cluster and expressed Ighg3. The final two cell

marker-annotated clusters of active-disease Bregs (cluster 7 and

cluster 11) were characterized by expression of unique

inflammatory signatures and markers. Cluster 7 was enriched for
A B C

FIGURE 1

Bregs are numerically and functionally impaired in lupus-prone mice with active disease. Female MRL/lpr mice were assessed at the pre-disease
(6-8 weeks) and active-disease (10-12 weeks) stages. Splenic IL-10 producing B cells were generated by stimulation with 10 mg/ml LPS for 24 h
followed by 5 h of 50 ng/ml PMA and 500 ng/ml ionomycin. (A) Percentage of splenic IL-10 producing B cells. (B) Serum level of IL-10.
(C) Supernatant level of IL-10 from stimulated splenic B cells. *p < 0.05, ** p < 0.01.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1282770
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Daamen et al. 10.3389/fimmu.2023.1282770
the IL-10 Pathway and TNF Signaling gene signatures and had

increased expression of Tnfrsf13b encoding the B cell survival factor

receptor TACI and thus was designated as the TNF/TACI B cell

cluster. Finally, cluster 11 represented a minor outlier population

(0.31%) of innate-like B1a cells expressing Cd5, Itgam, and Gzmb

and enriched for the Pattern Recognition Receptor (PRR) and UPR

& Stress gene signatures. Thus, gene expression-derived Breg

subsets from lupus-prone mice with active disease were more

represented by PB-PC populations than in pre-disease mice and

had a lower proportion of MZ-like cells expressing markers

indicative of a more naïve developmental stage.
Single-cell trajectory analysis suggests
developmental relationships among Breg
subsets from lupus-prone mice at pre-
disease and active-disease stages

Breg cells are generally defined by expression of IL-10, but it is

unclear how Bregs are induced and whether or how Breg subsets are

developmentally linked (1). In addition, it is not known how Breg
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development or differentiation may be altered in the context of

autoimmunity. To investigate the relationships among Breg subsets

and to compare differences in populations identified at different

stages of disease progression in lupus-prone mice, we carried out

single-cell trajectory analysis to order IL-10+ B cells in pseudotime

based on changes in gene expression (Figure 4A). Initially, we noted

the increase in overall complexity of cellular trajectories between

active-disease as compared to pre-disease cells which could arise

from the greater variety of inflammatory stimuli inducing B cell

production of IL-10. Because of the critical role of autoantibody

producing PCs in lupus disease pathology, Breg subsets from pre-

disease and active-disease mice were divided into PB-PC and non-

PB-PC annotated clusters. Learned trajectories for each group of

clusters were created and rooted in the Naïve B cell cluster as we

predicted this subset to be the least developmentally advanced B cell

population at each disease stage. Then other clusters were ordered

by relative pseudotime distance along the trajectory from the root

population and displayed as heatmaps detailing the trajectory paths

and boxplots depicting the range of pseudotime encompassed by

each Breg cluster. From pre-disease mice, the PB-PC annotated

clusters followed three branching trajectories stemming from the
A B

C

FIGURE 2

Single-cell transcriptional analysis identifies subsets of IL-10+ Bregs from lupus-prone mice prior to disease onset. Splenic IL-10 producing B cells
(Bregs) were generated from pre-disease female MRL/lpr mice and analyzed by single-cell RNA-seq. (A) UMAP plot showing 12 clusters of pre-
disease Bregs. (B) Bubbleplot depicting the overlap of pre-disease Breg cluster markers with pre-defined cell type and pathway gene sets.
(C) Annotation of 7 pre-disease clusters that had significant overlap of cluster marker genes with Breg subset gene sets. Key markers used to define
each cluster annotation and percentage of cells in each cluster out of total Bregs are displayed.
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Naïve B cell cluster (Figure 4B). The Phagocytic PB-PC population

exhibited a wide pseudotime range that was split into two groups,

one of less differentiated cells likely representing PBs and one of

highly differentiated cells likely representing class-switched PCs. In

contrast, the PB cluster from pre-disease appeared to be in an

intermediate developmental state between the two subsets of

Phagocytic PB-PC cells. The Non-PB-PC pre-disease clusters

followed two distinct developmental trajectories stemming from

the IgDmid Naïve B Cell cluster (Figure 4C). Along one trajectory

were the T2-MZP/MZ B cells, which represented a range of

pseudotimes representing the differentiation from a precursor

population to a mature IL-10+ MZ B cell. Along the second

trajectory, the TIM-1 B cell cluster appeared to be more proximal

in pseudotime to naïve cells as compared to the Suppressive B cell

population which was the furthest cluster along the pseudotime

trajectory in pre-disease mice.

Single cell trajectory analysis of IL-10+ B cells from mice with

active disease revealed notable differences in Breg developmental

states as compared to pre-disease mice. Notably, trajectories in

active-disease mice were much more complex. Anchored in the
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Naïve B Cell cluster, PB-PC annotated clusters formed two

branching trajectories (Figure 4D). Similar to pre-disease mice, the

Phagocytic PB-PC population of active-disease cells was divided into

a less differentiated, early subpopulation representing PBs and a

more differentiated, late subpopulation representing PCs. However,

unlike pre-disease mice, we also observed a second trajectory of GC

B cells and class-switched PCs indicative of a robust and ongoing

production of autoantibody producing cells during the height of

disease activity. Trajectory analysis of Non-PB-PC, active-disease IL-

10+ B cells was carried out to predict the developmental pathways of

other unique Breg subets present in mice with ongoing disease

pathology (Figure 4E). Interestingly, as suggested by the differences

in cluster marker expression, the T2-MZP cell cluster in active-

disease mice appeared to be a less differentiated population nearly

identical to the Naïve B cell cluster in pseudotime and with no

indication of a more developed population of MZ B cells as observed

in pre-disease mice. More advanced populations in pseudotime

exhibited a split trajectory between the TACI/TNF B cell cluster

and the TIM-1 B cell cluster that included cells with a wide

pseudotime range indicative of within-cluster heterogeneity in
frontiersin.o
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FIGURE 3

Single-cell analysis reveals differences in transcriptional profiles IL-10+ Bregs present in mice with ongoing autoimmune inflammation. Splenic Bregs
were generated from active-disease female MRL/lpr mice and analyzed by single-cell RNA-seq. (A) UMAP plot showing 14 clusters of active-disease
Bregs. (B) Bubbleplot depicting the overlap of active-disease Breg cluster markers with pre-defined cell type and pathway gene sets. (C) Annotation
of 8 active-disease clusters that had significant overlap of cluster marker genes with Breg subset gene sets. Key markers used to define each cluster
annotation and percentage of cells in each cluster out of total Bregs are displayed.
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gene expression profiles. Finally, the outlier cluster of B1a cells,

unique to active-disease mice, was the most advanced in pseudotime

as compared to the naïve population and appeared to be

developmentally distinct and unlinked to the developmental
Frontiers in Immunology 08171
trajectory of other Breg subsets. Thus, pseudotime trajectory

analysis of IL-10+ B cells from lupus-prone mice revealed multiple

pathways leading to the development of transcriptionally diverse

Breg subsets present at different stages of disease progression.
A
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FIGURE 4

Trajectory analysis reveals relationships between Breg subsets from lupus-prone mice at pre-disease and active-disease stages. Breg subset marker-
annotated single-cell clusters from pre-disease and active-disease mice were ordered in pseudotime using Monocle 3. (A) Trajectory plots of pre-
disease and active-disease Breg clusters. (B, C) Trajectory mapping of pre-disease plasmablast/plasma cell (PB-PC) and non-PB-PC annotated
clusters. Clusters were ordered in pseudotime distance originating from the IgD-mid Naïve B Cell annotated cluster. (D, E) Trajectory mapping of
active-disease PB-PC and non-PB-PC annotated clusters. Clusters were ordered in pseudotime distance originating from the Naïve B Cell annotated
cluster. Boxplots show the pseudotime range of each Breg cluster in relation to the root cluster.
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Integrated single-cell analysis of pre-
disease and active-disease lupus-prone
mice identifies stage-dependent alterations
in IL-10+ B cell populations

To compare IL-10+ B cells generated from lupus-prone MRL/lpr

mice at different stages of disease progression directly, scRNA-seq

datasets of pre-disease and active-disease cells were integrated and

co-clustered based on shared sources of transcriptional variation

(Figure 5A). With this approach, each integrated cluster represents

a population of Breg cells in a shared biological state between pre-

disease and active-disease mice. Then, cluster markers were

identified separately from pre-disease and active-disease cells

within each integrated cluster in order to highlight differences in

co-clustered Breg cells generated from each disease stage, and used

to assign Breg subset annotations. Integrated cluster markers

derived from pre-disease cells identified 6 clusters with significant

marker overlaps with pre-defined Breg subset genes and cellular

pathways that were used to assign each cluster identity (Figures 5B,

C. The highest proportion of pre-disease cells (19.65%) in cluster 0

represented Naïve B cells with expression of Ighd, the Activated B

Cell markers Cd69 and Cd86, and MHC Class II genes H2-Aa and

H2-Ab1 (Figure 5C; Supplementary Figure 3). Cluster 3 contained

11.76% of pre-disease Bregs and was designated the Suppressive B

Cell cluster as these cells expressed the highest levels of Il10 and,

interestingly, were also enriched for the Lipid Metabolism gene set,

including high expression of Apoe. The PB annotated cluster

(cluster 4) consisted of 15.78% of pre-disease cells and was

designate PB based on enrichment of the PB-PC (Mzb1, Xbp1,

Prdm1, Ms4a1) and Ig Chains (Ighm) gene sets. Pre-disease Bregs in

cluster 6 (2.37%) represented T2-MZP/MZ B cells with high

expression of Cd24a and were also highly enriched for Pro-Cell

Cycle genes. The final two cell-annotated integrated clusters

represented minor populations of pre-disease Bregs including

0.66% of cells in cluster 8 annotated as PCs and the outlier

population of B1a cells (0.11%) in cluster 10. Pre-disease PCs

were enriched for Activated B cell (Cd28), PB-PC (Mzb1, Xbp1,

Prdm1, Cd274), Ig Chains (Ighm, Ighg1, Ighg2b, Ighg2c), N-linked

glycosylation, and UPR & Stress gene sets, whereas pre-disease B1a

cells were marked by high expression of the pro-inflammatory

markers Itgam, C3, Ifng, Il1b, and Gzmb.

Integrated cluster marker enrichment analysis and annotation

of active-disease IL-10+ B cells resulted in shared labels for the 6

clusters of pre-disease cells, but with key differences in the

proportion of total cells and marker genes in each cluster

(Figures 5D, E). The Naïve B cell cluster (cluster 0) consisted of a

similar proportion of total active-disease cells (20.54%) as

compared to pre-disease cells and was still characterized by

enrichment of the Activated B cell markers Cd69 and Ighd, but

unlike pre-disease Naïve B cells, active-disease B cells were not

enriched for MHC Class II genes. Active-disease Suppressive B cells

in cluster 3 shared representative cluster markers with pre-disease

cells, but contained a higher proportion of total cells (20% vs.

11.76%). In contrast, a lower proportion of active-disease cells were

PBs in cluster 4 and further differed from analogous pre-disease

cells through enrichment of MHC Class II genes (H2-Aa, H2-Eb1),
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markers of the Naïve B cell cluster of pre-disease cells. A lower

proportion of active-disease cells as compared to pre-disease cells

were found in the T2-MZP/MZ B cell annotated cluster (cluster 6,

0.55% vs. 2.37%) and active-disease cells in this cluster also uniquely

expressed marker genes Stat1 and Il6. The PC cluster of active-

disease Bregs in cluster 8 was a modestly smaller proportion of total

cells than in pre-disease (0.47% vs. 0.66%) and exhibited differences

in expression of class-switched Ig Chain genes, including Igha in

place of Ighg1 on pre-disease cells and were not enriched for

expression of Cd274. In contrast, the B1a cell-annotated cluster

10 represented a larger proportion of total active-disease cells

(0.29% vs. 0.11%) and further differed in expression of Fasl as a

cluster marker.

We also noted that a new, cell-annotated, integrated cluster

emerged from active-disease IL-10+ B cells that was not observed in

pre-disease mice. Active-disease Bregs in cluster 5 exhibited

increased expression of Activated B cell markers as compared to

other clusters and were further distinguished by enrichment of the

PB-PC and TNF Signaling gene sets (Figure 5E; Supplementary

Figure 4). Key marker genes defining this cluster included increased

expression of Tnf and Tnfrsf13b encoding TACI and thus this

cluster was designated the TACI/TNF B cell cluster. Overall,

integrated clustering and separate cluster marker identification of

pre-disease and active-disease IL-10+ B cells in similar biological

states revealed key variations in analogous populations of regulatory

B cells through disease progression in lupus-prone mice.
Transcriptomic comparison of integrated
single cell datasets reveals pathologic
inflammatory gene signatures associated
with IL-10+ B cells from active-
disease mice

To evaluate differences in gene expression profiles between co-

clustered populations of pre-disease and active-disease IL-10+ B

cells, we identified differentially expressed genes (DEGs) in active-

disease Bregs as compared to their pre-disease counterparts within

the same integrated cluster. For this analysis, we focused on 4 of the

6 clusters found in both active-disease and pre-disease mice. These

included cluster 4 PBs, cluster 5 TACI/TNF B cells, cluster 6 T2-

MZP/MZ B cells, and cluster 8 PCs. For each cluster, up and down-

regulated genes in active-disease cells were used as input for

Ingenuity Pathway Analysis (IPA) to identify significant overlaps

with canonical pathways (Figure 5F). As a whole, we found that

active-disease Bregs exhibited increased expression of genes

involved in inflammatory and stress response pathways and

decreased expression of genes involved in cell cycle and DNA

repair pathways. Specifically, in cluster 4 PBs from mice with

active disease, up-regulated DEGs were enriched for TREM1

Signaling, Th1 response, IL-6 signaling, and phospholipid

synthesis, whereas down-regulated DEGs were enriched for cell

cycle regulation and DNA damage response pathways (Figure 5F).

Active-disease cells in the TACI/TNF cluster (cluster 5) manifested

increased expression of several immune activation pathways and

pro-inflammatory signaling pathways through CD40, IL-6, TNFR2,
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FIGURE 5

Single-cell integration compares analogous Breg subsets present through stages of disease progression in lupus-prone mice. Single-cell datasets of
Bregs from pre-disease and active-disease mice were integrated and co-clustered to facilitate comparison of cells with shared biological states.
(A) Split UMAP plots of 11 integrated clusters of pre-disease and active-disease Bregs. (B, D) Bubbleplots depicting the overlap of integrated pre-
disease (B) and active-disease (D) Breg clusters with pre-defined cell type and pathway gene sets. (C, E) Annotation of 6 pre-disease (C) and 7
active-disease (E) integrated clusters exhibiting significant overlap of cluster marker genes with Breg subset gene sets. Key markers used to define
each cluster annotation and percentage of cells in each cluster out of total Bregs are displayed. (F) IPA canonical pathway analysis of differentially
expressed genes in active-disease Bregs as compared to pre-disease Bregs from selected integrated single-cell clusters.
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B Cell Activating Factor, iNOS, and IFN. Like the PB cluster, active-

disease cells in the TACI/TNF cluster had decreased expression of

genes involved in DNA damage repair and cell cycle arrest

pathways. In addition to inflammatory mediator signaling

pathways, DEGs in active-disease cells in the T2-MZP/MZ B cell

cluster (cluster 6) were indicative of cellular dysfunction and stress

with involvement in pathways including autophagy, the unfolded

protein response, p53 signaling, and telomerase signaling. Finally,

DEGs from cluster 8 PCs were largely decreased in active-disease

mice and were enriched for pathways related to cell cycle

checkpoint control and metabolic regulation, including protein

ubiquitination, mRNA degradation, and sirtuin signaling.

Conversely, upregulated genes in active-disease cluster 8 PCs were

involved in cellular senescence and the oxidative stress response

(Figure 5F). Notably, we found that expression of Il10 and IL-10

Signaling Pathway genes were consistently upregulated in active-

disease Bregs from all clusters (Supplementary Figure 5), indicating

that pathologic autoimmunity in these mice was not related to a

deficiency in expression of Il10 transcript, but rather a separate

source of regulatory dysfunction. Thus, DEGs from IL-10+ B cells in

the context of active autoimmunity were indicative of response to a

heightened inflammatory environment resulting in immune

activation and exposure to intra- and extra-cellular stressors

that could affect the ability of these cells to function as

immune regulators.
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Validation of transcriptionally defined
alterations to the landscape of Breg
subsets in lupus-prone mice with
active disease

To confirm the changes we observed in representation of

specific Breg subsets using single-cell gene expression analysis, we

carried out flow cytometric staining of splenic IL-10+ B cells from

MRL/lpr mice at the pre-disease or active-disease stages. We

focused on changes in the proportion of MZ and PB-PC lineage

cells, as these populations showed the greatest difference based on

expression of canonical marker genes. Notably, both T2-MZP

(CD19+IL10+CD21+CD24hiIgM+CD23+) and MZ B cells

(CD19+IL10+CD21+CD24hiIgM+CD23-) were significantly

decreased in the spleens of active-disease as compared to pre-

disease mice (Figure 6A; Supplementary Figure 6). In contrast, we

observed significant increases in the proportion of splenic PBs

(CD19+CD138+) and PCs (CD19-CD138+) in active-disease mice

(Figure 6B; Supplementary Figure 6). Both of these results were in

line with differences in the proportion of cells expressing a T2/

MZP/MZ B cell or PB-PC gene signature as determined by scRNA-

seq. However, despite increases in total PB-PCs in active-disease

mice, the percentage of both PBs and PCs expressing IL-10 was

significantly decreased (Figure 6C; Supplementary Figure 6). This

result suggests that the the imbalance between pathogenic and
A B

DC

FIGURE 6

Transcriptionally defined disease-dependent alterations to Breg subsets are confirmed in lupus-prone mice. Splenic Breg subsets generated from
female MRL/lpr mice were assessed at the pre-disease (6-8 weeks) and active-disease (10-12 weeks) stages. (A) Percentage of T2-MZP cells and
MZ B cells from total IL-10+ cells. (B) Percentage of PBs and PCs from total IL-10+ cells. (C) Percentage of IL-10 producing PBs and IL-10 producing
PCs from total PBs and total PCs. (D) Mean fluorescence intensity (MFI) of IL-10 expression from splenic Breg subsets in A-C. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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regulatory, IL-10 producing PB-PCs contributes to the progression

of autoimmune disease in lupus-prone mice.

Our initial measurement of serum IL-10 and IL-10 produced by

activated IL-10+ B cells indicated that both were significantly

decreased in lupus-prone mice with active disease. However,

expression of Il10 and IL-10 signaling pathway transcripts were

consistently upregulated in active-disease Bregs from integrated

single cell clusters. To investigate this further, we carried out

intracellular staining for IL-10 in isolated MZ and PB-PC lineage

B cells from pre-disease and active-disease mice (Figure 6D). As a

result, we found no difference in mean fluorescent intensity (MFI)

of IL-10 in T2-MZP or MZ B cells based on disease stage. However,

in line with the decreased secreted IL-10 from total splenic Bregs,

both PBs and PCs from active-disease mice expressed significantly

reduced levels of intracellular IL-10. Therefore, this result

demonstrates that the dominant populations of IL-10 producing

B cells present in active-disease mice also display the greatest

evidence of deficiency in IL-10 mediated immunoregulation.

To explore the differences in IL-10 producing PB-PCs from

mice with active lupus that could render these cells unable to

suppress autoimmunity effectively, we sought to establish a

baseline of gene signatures expressed by Bregs from the PB-PC

lineage in a normal immune response. To achieve this, we analyzed

publicly available bulk gene expression data from a population of

IL-10 producing PB-PCs induced in response to bacterial infection

(33). These cells were initially characterized as CD138+IL10+ cells

that exhibited increased expression of the inhibitory receptors

LAG3, CD200, PD-L1, and PD-L2 as compared to CD138+IL10-

cells and were the predominant source of IL-10 produced in

response to infection. Our analysis of these mice confirmed that

log2 gene expression of Lag3 and Cd274 were significantly increased

in CD138+IL10+ cells (Figure 7A). Interestingly, we found similar

populations of IL-10 producing cells from scRNA-seq of lupus-

prone mice as these markers were expressed by the Phagocytic PB-

PC and TIM-1 B Cell populations from pre-disease mice and the

TACI/TNF B Cell and TIM-1 B Cell populations from active-

disease mice. Next, to characterize the immune profiles of

CD138+IL10+ PB-PCs induced in a normal response to infection,

we carried out gene set variation analysis (GSVA) with pre-defined

gene sets comprising cellular and inflammatory pathways

(Figure 7B). As a result, we found that CD138+IL10+ cells were

de-enriched for inflammatory signatures of Type I IFN, Type II

IFN, and MHC Class II and also exhibited decreased enrichment of

proliferation and metabolism-related signatures as compared to

CD138+IL10- cells. Notably, this was in contrast to gene expression

profiles of IL10-producing PB-PCs from lupus-prone mice, which

were enriched for pro-inflammatory gene signatures and thus

appeared more like IL10- cells from mice post-infection. This

result suggested that differences in Breg induction in the context

of autoimmunity as compared to a normal immune response may

alter the anti-inflammatory nature of IL-10 producing cells. Overall,

we have demonstrated that disease stage-dependent differences in

the single-cell transcriptional profiles of IL-10+ B cells directly

translate to differences in the proportion of these subsets present

in lupus-prone mice and that this likely contributes to their inability

to control the onset or severity of autoimmunity.
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Discussion

Deficiencies in number and/or function of IL-10 producing,

suppressive B cells or Bregs have been found both in mouse models

of SLE and human SLE patients suggesting an important role for

Bregs in controlling autoimmunity (34). However, because of the

heterogeneity in subset markers and mechanisms of suppression, it

remains unclear how Bregs are phenotypically and functionally

altered in lupus and how this contributes to disease pathology. In

this study, we utilized single-cell RNA sequencing to identify

disease stage-dependent changes to the transcriptional profiles of

Bregs generated from lupus-prone mice that were further validated

by phenotypic analyses. As a result we have identified specific Breg

subsets and inflammatory gene signatures associated with active

disease that provide insights into the role of Bregs in

lupus pathogenesis.

Our past work revealed that Bregs isolated from lupus-prone

MRL/lpr mice before disease onset, but not Bregs from mice with

active disease, were able to attenuate autoimmunity suggesting that

active-disease Bregs were functionally impaired (30). In the present

work, we confirmed that numbers of Bregs, levels of total serum IL-

10, and production of IL-10 by Bregs induced from mice with active

disease were all significantly decreased as compared to pre-disease

mice. This result is in line with numerous studies that have

demonstrated associations between numerical and functional

impairment of Bregs and increased risk for development or

enhanced severity of murine models of autoimmune disease (13,

14, 17, 28). However, these studies did not investigate the relative

roles of different subsets of Bregs and their contributions to

controlling or exacerbating disease.

We previously demonstrated the utility of gene expression

analysis by bulk RNA-seq to construct immune profiles of lupus-

prone mice and directly translated these results to human lupus

patients (32, 35). Single-cell sequencing technology offers an

advantage over bulk sequencing when studying rare cell

populations or identifying and comparing subsets of select cell

populations, such as Bregs (36). A previous study carried out

scRNA-seq to characterize Bregs in different murine organs, but

did not isolate IL-10 producing cells before sequencing and instead

relied on marker genes to separate Bregs from total B cells (37).

Previous studies have also used scRNA-seq to profile the

heterogeneity in cell populations derived from blood and tissues

of lupus mouse models and human lupus patients (38–41). Here we

report the first study that employs the unique advantages of single-

cell sequencing technology to demystify the heterogeneity in Breg

subsets present in lupus-prone mice before disease onset and in the

context of active autoimmune disease.

Overall, scRNA-seq revealed that IL-10 producing B cells

generated from lupus-prone mice at the active-disease stage

exhibited unique spatial transcriptomic profiles as compared to

cells from mice before disease onset that reflected a heightened pro-

inflammatory environment and evidence of increased activation of

cell stress response pathways. The most striking differences we

found in the distribution of Breg subsets from active-disease mice

were decreased representation of MZ B cell subsets and increased

representation of PB-PC subsets as compared to pre-disease mice.
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MZ B cells are innate-like cells that typically retain poly-reactive/

self-reactive B cell receptors (BCRs), rapidly produce natural

antibodies, and participate in clearance of pathogens and cellular

debris (42). Exposure to apoptotic cells can induce MZ B cells to

secrete IL-10 and take on regulatory functions, such that IL-10

producing T2-MZP and MZ B cells have been shown to have a

protective role in murine models of collagen-induced arthritis (3, 5,

43). The increased proportion of Bregs of the MZ lineage generated

from lupus-prone mice before disease onset raises a few interesting

possibilities. Because of the innate-like nature of MZ B cells and
Frontiers in Immunology 13176
their roles in the rapid immune response to pathogens, it is not

surprising that MZ lineage cells would also be among the first Breg

subsets to be induced in response to early autoimmune stimuli.

Then, the decreased capacity to induce production of IL-10

producing MZ B cells as disease progresses could be caused by

exposure to increasing inflammation that would promote egress of

MZ-lineage Bregs to the periphery and/or the expansion of

autoreactive PB-PC subsets in the spleen. Importantly, our

observation that B cells from active-disease mice exhibited

decreased numbers but not decreased IL-10 production by MZ B
A

B

FIGURE 7

IL-10 producing PB-PCs induced by infection differ in inflammatory gene expression from those derived from autoimmune mice. Gene expression
analysis by bulk RNA-seq of splenic CD138+IL10- and CD138+IL10+ cells isolated from mice 24 hours after bacterial infection. (A) Log2 expression
values of selected inhibitory receptor genes. (B) Gene set variation analysis (GSVA) comparing enrichment of inflammatory and cellular pathway gene
sets between IL10- and IL10+ PB-PCs from infected mice. *p < 0.05, ** p < 0.01, **** p < 0.0001.
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cell subsets as compared to pre-disease mice suggests that this

subset may be particularly important to control autoimmune

disease pathogenesis in this model.

B cells of the PB-PC lineage have also been attributed with

regulatory function through production of IL-10 and IL-35 and

suppression of pro-inflammatory and autoinflammatory responses

(7, 44). Importantly, PB-PCs do not inherently produce IL-10 at

steady state, but they may be induced to produce IL-10 by

inflammatory environments present during infection or disease

(45). It has also been noted that splenic B10 cells are capable of

differentiation into antibody-secreting cells (ASCs) after in vitro or

in vivo stimulation (46). Thus, in addition to their well-established

contribution to lupus pathogenesis through the production of

autoantibodies, PB-PCs also have the capacity to act as

suppressors of autoimmunity although the origins and functions

of IL-10 producing PB-PCs in SLE patients or lupus-prone mice

have not been elucidated.

The MRL/lpr lupus-prone mouse strain is characterized by

elevated lymphoproliferation, including the outgrowth of PB-PCs

(47), and in line with this, we observed an increased percentage of

IL-10 producing PB-PCs induced from B cells originating from the

autoinflammatory environment present during active disease.

However, evidence from our work and others would suggest that

these Bregs are more inflammatory in nature and ineffective

mediators of immunosuppression. Single-cell transcriptional

analysis revealed that PB-PCs from active-disease mice exhibited

increased expression of inflammatory pathway genes, which

differed from IL-10 producing PB-PCs induced in a normal

immune response to bacterial infection (33). We also found

greater evidence of terminally differentiated, class-switched PC

generation including the presence of a Breg cluster expressing GC

B cell markers in active-disease but not pre-disease mice, a finding

that supports the conclusion that a population of IL-10 producing

PCs was increased within the Breg population in active disease.

Even though the percentage of IL-10 producing PCs was increased

in the Breg population, the fraction of total PCs that produced IL-10

was significantly decreased in active disease, consistent with the

conclusion that the onset of autoimmunity in MRL/lpr mice was

associated with an expansion of PCs but a decrease in differentiation

toward the Breg phenotype in this population. This could

contribute to an imbalance in the ratio of pro-inflammatory and

regulatory influences and lead to the progression from the pre-

disease to active-disease stage. Regarding the regulatory function of

active-disease PB-PCs, we found no evidence for defective Il10

transcription, but did observe decreased IL-10 MFI in PB-PCs from

active-disease mice suggesting that they may transcribe Il10 but not

produce IL-10 protein (48). This could be because of defects in IL-

10 translation, deficiencies in positive signals needed for IL-10

secretion, or improper negative regulation of IL-10. It is also

possible that PB-PCs from active-disease mice are ineffective at

immunosuppression because of improper localization and, thus, not

positioned to interact with and suppress autoreactive T cells.

This study provides insights into differences in IL-10 producing

B cells generated from lupus-prone mice before disease onset and in

the context of active autoimmune inflammation. However, there are

limitations to the study design that might narrow the interpretation
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of these results. Because of the low numbers of endogenous splenic

Bregs, in particular in an environment with low inflammatory

stimuli, we chose to boost the overall numbers of IL-10

producing cells for use in downstream analyses through in vitro

stimulation. Thus, the populations of Bregs identified by single-cell

sequencing are not a definitive survey of Breg development in vivo,

but rather are indicative of the potential landscape of Breg subsets

that may develop through the course of disease progression. In

addition, due to our focus on changes to IL-10 producing B cells, we

cannot identify potential relationships between changes to the

composition of Bregs and changes to the total B cell population

in the spleen that occur in the context of active disease. Therefore,

this work represents compelling justification for future studies

utilizing larger numbers of IL-10+ cells analyzed ex vivo.

Furthermore, analysis of Bregs from lupus-prone mice could then

serve as references for analogous Breg populations derived from

human lupus patients.

The role of Bregs in the suppression of autoimmune

inflammation and impaired functionality in SLE patients

emphasizes the importance of improving our understanding of

the heterogeneity of Breg subsets and how changes to Breg subset

composition and function could impact lupus pathogenesis. We

have utilized scRNA-seq to transcriptionally profile Bregs present at

different disease stages in lupus-prone MRL/lpr mice and identified

Breg subsets associated with increased inflammatory gene

signatures specific to mice with active disease. Future studies are

needed to investigate the functional competence and localization of

IL-10+ Bregs, and in particular Bregs from the MZ B cell and PB-PC

lineages, from pre-disease and active-disease mice to further

elucidate their contributions to disease onset and progression.

This work may better inform investigation of Breg subsets and

functional capacity in human lupus patients and support the

development of therapies targeting deficiencies in Breg-mediated

regulation to improve clinical outcomes of autoimmune pathology.
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Comparative single-cell
multiplex immunophenotyping
of therapy-naive patients with
rheumatoid arthritis, systemic
sclerosis, and systemic lupus
erythematosus shed light on
disease-specific composition of
the peripheral immune system
József Á. Balog1,2, Ágnes Zvara1,2, Vivien Bukovinszki3,
László G. Puskás1,2, Attila Balog3*† and Gábor J. Szebeni1,2,4,5*†

1Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre,
Szeged, Hungary, 2Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary,
3Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health
Centre, University of Szeged, Szeged, Hungary, 4Department of Internal Medicine, Hematology
Centre, Faculty of Medicine University of Szeged, Szeged, Hungary, 5Astridbio Technologies Ltd.,
Szeged, Hungary
Introduction: Systemic autoimmune diseases (SADs) are a significant burden on

the healthcare system. Understanding the complexity of the peripheral

immunophenotype in SADs may facilitate the differential diagnosis and

identification of potential therapeutic targets.

Methods: Single-cell mass cytometric immunophenotyping was performed on

peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and

therapy-naive patients with rheumatoid arthritis (RA), progressive systemic

sclerosis (SSc), and systemic lupus erythematosus (SLE). Immunophenotyping

was performed on 15,387,165 CD45+ live single cells from 52 participants

(13 cases/group), using an antibody panel to detect 34 markers.

Results: Using the t-SNE (t-distributed stochastic neighbor embedding)

algorithm, the following 17 main immune cell types were determined: CD4+/

CD57– T cells, CD4+/CD57+ T cells, CD8+/CD161– T cells, CD8+/CD161+/CD28+

T cells, CD8dim T cells, CD3+/CD4–/CD8– T cells, TCRg/d T cells, CD4+ NKT cells,

CD8+ NKT cells, classic NK cells, CD56dim/CD98dim cells, B cells, plasmablasts,

monocytes, CD11cdim/CD172dim cells, myeloid dendritic cells (mDCs), and

plasmacytoid dendritic cells (pDCs). Seven of the 17 main cell types exhibited

statistically significant frequencies in the investigated groups. The expression

levels of the 34 markers in the main populations were compared between HCs

and SADs. In summary, 59 scatter plots showed significant differences in the

expression intensities between at least two groups. Next, each immune cell

population was divided into subpopulations (metaclusters) using the FlowSOM

(self-organizing map) algorithm. Finally, 121 metaclusters (MCs) of the 10 main
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immune cell populations were found to have significant differences to classify

diseases. The single-cell T-cell heterogeneity represented 64MCs based on the

expression of 34 markers, and the frequency of 23 MCs differed significantly

between at least twoconditions. The CD3– non-T-cell compartment contained

57 MCs with 17 MCs differentiating at least two investigated groups. In summary,

we are the first to demonstrate the complexity of the immunophenotype

of 34 markers over 15 million single cells in HCs vs. therapy-naive patients

with RA, SSc, and SLE. Disease specific population frequencies or expression

patterns of peripheral immune cells provide a single-cell data resource to the

scientific community.
KEYWORDS

rheumatoid arthritis, progressive systemic sclerosis, systemic lupus erythematosus,
mass cytometry, autoimmunity
1 Introduction

Inflammatory, rheumatic, and systemic autoimmune diseases

collectively contribute to a significant burden on healthcare

systems. Treatments are only partially effective, and disease

severity and therapeutic responses in individual patients are

unpredictable. The complexity of systemic autoimmune disease

(SAD) etiology, an incomplete list of causative agents,

environmental factors, and polygenetic predispositions make both

the diagnosis and clinical management of these pathologies difficult

(1). The known fundamentals of the pathological mechanisms of

these SADs are beyond the scope of our study; however, the latest

findings have been reviewed elsewhere for rheumatoid arthritis

(RA) (2), systemic sclerosis (SSc) (3), and systemic lupus

erythematosus (SLE) (4). The differential diagnosis of spectrum

disorders, such as SADs with similar signs and symptoms, including

RA, SSc, and SLE, remains a major challenge for clinicians. The

progression of these diseases is unpredictable, and if any damage is

fatal or chronic, it can lead to a substantial combined impact on

premature mortality (5, 6). Therefore, early diagnosis of SADs is

highly important before irreversible damage to several organs, such

as the joints, kidneys, and lungs, which are frequently involved in

autoimmune attacks, develops. The introduction of disease-

modifying antirheumatic drugs (DMARDs) with the high

importance of biological DMARDs (bDMARDs) and the advent

of targeted inhibitors have reached a breakthrough, leading to

disease stabilization and improved quality of life (7–9). However,

a lack of treatment response occurs in severe cases or therapeutic

resistance can develop (10–12). Therefore, stratifying patients with

clinically heterogeneous diseases, such as SADs, has become a novel

approach to understanding the complexity of imbalances in

immune homeostasis, molecular profiling, and the integration of

multi-omics data. Analyzing the immunophenotype in early,
02181
untreated SADs may provide information for precision medicine

approaches and may suggest diverse underlying pathology leading

to similar phenotype. Mass cytometry has been used earlier

studying a wide list of human spectrum diseases with deep insight

into the heterogeneity of the immunophenotype (13, 14).

In line with this assumption, the complex immunophenotyping of

SADs can facilitate the prediction of the severity of the disease and

therapeutic response, in addition to suggestions for future precision

medicine. Mulhearn et al. reviewed the potential of peripheral blood

immunophenotyping to predict therapeutic outcomes in response

to biologics in RA (15). Papadimitriou et al. summarized the link

between the innate and adaptive arms of the immune system in the

pathological mechanisms of SSc in the context of the currently

available treatment regimen (16). Nagafuchi et al. and Nakayamada

et al. recently reviewed the influence of immunophenotyping on

therapeutic strategy planning for SLE (17, 18).

The multiparametric immunophenotyping of peripheral

immunity may assist in better understanding the pathobiology of

SADs because the heterogeneity of inherent and external factors can

influence the pathological mechanism and therapeutic response (19).

An earlier immunophenotyping study published by Nagafuchi et al.

reported a link between the HLA-DRB1 genotype and a higher

frequency of peripheral memory CXCR4+CD4+ T cells in patients

with RA (20). Furthermore, a multidimensional analysis of the

peripheral immunophenotype of 311 patients with RA revealed

that the expansion of effector memory follicular helper T cells

(Tfh) correlated with disease activity (21). Bader et al. analyzed the

peripheral blood of 20 therapy-naive RA patients using a 23-marker

mass cytometry (CyTOF) antibody panel and reported the following

markers: p-p38, IkBa, p-cJun, p-NFkB, and CD86 in the cells of both

the myeloid innate and adaptive branches (memory CD4+ T cells) of

the immune system as potential markers for discriminating patients

with RA from healthy donors (22). Koppejan et al. used a 36-marker
frontiersin.org
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CyTOF panel for the immunophenotyping of treatment-naive

patients with early ACPA+ (anti-citrullinated protein antibodies)

and ACPA-RA and found a reduced frequency of CD62L+

basophils in patients with ACPA-RA (23).

Immunophenotyping of 20 systemic sclerosis cases using a 36-

marker CyTOF panel revealed 18 significant alterations in

peripheral blood mononuclear cells (PBMCs), highlighting the

involvement of CD4+, CD8+, mucosal-associated invariant T cells,

and B-cell subsets in pathogenic chronic inflammation (24).

In a mass cytometric study by Kroef et al., hierarchical clustering

of PBMCs from 88 patients with SSc was performed using a 34-

marker antibody panel. They found altered cell populations in four

clusters: cluster 1 (n = 16) with high CD16+ monocytes and low

memory B-cell subsets, cluster 2 (n = 25) with increased classical

monocytes, cluster 3 (n = 8) with higher memory B-cell counts, and

cluster 4 (n = 37) with lower circulating classical monocyte counts

(25). Multiparametric flow cytometric investigation of 88 patients

with early SSc showed a decrease in CD8+ T cells and an expansion

of CD28− and CD319+ within the CD4+ subset in the SSc group

compared with HCs (26). Agarbati et al. analyzed 46 patients with

SSc using an eight-color FACS panel and showed a higher ratio of

CD38+ T cells and CD4+CD25+FOXP3+ regulatory T cells in

patients with SSc (27). Agarbati et al. also investigated the

humoral arm of the adaptive immune system in SSc and found a

higher frequency of CD24highCD19+CD38high regulatory B cells,

more circulating CD38highCD27+ plasmablasts, and peripheral

CD138+CD38high plasma cells than in HCs (27).

An early immunophenotyping study revealed reduced

expression of CD3+ and CD4+ T-cell markers and increased

expression of CD8+ cytotoxic T-cell and CD20+ B-cell markers in

SLE based on traditional flow cytometry of 21 SLE patients vs. HCs

(28). Later, Perry et al. showed a higher ratio of CD38+HLA-DR+ T

cells in SLE in a flow cytometric study analyzing samples from 35

patients with SLE compared with samples from HCs (29). Lee et al.

also used traditional flow cytometry to compare the peripheral

immune signatures of 13 patients with SLE and nine HCs. They

found 29 immune subsets discriminating SLE from HCs, with the

emphasis on lower DC and NK cell ratios in SLE, but elevated CD8+

NK Treg cells in lupus (30). Recently, Sasaki et al. published the

most comprehensive immunophenotyping of lupus in nine early

and 15 established SLE patients compared with controls using two

CyTOF panels measuring 38–39 parameters. Their key findings

were an increased frequency of ICOS+Ki-67+CD8+ T cells, Ki-67+

regulatory T cells, CD19intermediateKi-67high plasmablasts, and

PU.1highKi-67high monocytes in patients with early SLE (31).

In this study, single-cell mass cytometric immunophenotyping

of over 15 million single cells was performed on PBMC samples of

healthy controls (HCs, n = 13) and therapy-naive patients with RA

(n = 13), SSc (n = 13), and SLE (n = 13) using an antibody panel

detecting 34 markers. DMARDs can influence the peripheral

immunophenotype. Therefore, we enrolled therapy-naive patients,

which makes this study unique in the field of clinical rheumatology.

Our aim was to decipher the complex alterations in the peripheral

immunity in SADs and to reveal disturbances in immune

homeostasis that may contribute to our understanding of the

specific pathobiology of RA, SSc, or SLE.
Frontiers in Immunology 03182
2 Materials and methods

2.1 Human participants

Patients were recruited during visits to the Department of

Rheumatology and Immunology at the University of Szeged.

Healthy controls were voluntary staff members of the BRC or the

University of Szeged. The participants were informed of the

research by a physician. Written informed consent was obtained

from all the participants, and the study was reviewed and approved

by the independent ethics committee of the university. Details

regarding the study design and handling of biological materials

were submitted to the Human Investigation Review Board of the

University of Szeged under the 149/2019-SZTE Project

Identification code. Laboratory studies and interpretations were

performed on coded samples with personal and diagnostic

identifiers removed. The study adhered to the principles of the

most recent revision of the Declaration of Helsinki.
2.2 Study design

Multiplex protein analysis of 52 drug-naive patients with SADs

[RA (n = 13; median: 57 years; range: 29–73 years; Supplementary

Table 1), SSc (n = 13; median age: 63 years; range: 29–75 years;

Supplementary Table 2), and SLE (n = 13; median: 50 years; range: 20–

72 years; Supplementary Table 3) patients and age- and sex-matched

healthy controls (n = 13; median: 54 years; range: 22–77 years) was

performed. We enrolled newly diagnosed drug-naive patients with RA,

SSc, and SLE who had not received antirheumatic treatment, including

non-steroidal anti-inflammatory drugs (NSAIDs), DMARDs, or

glucocorticoids, until the time of blood sampling. Patients with RA

were diagnosed according to the latest American College of

Rheumatology/European League Against Rheumatism criteria (32)

(Supplementary Table 1). Thirteen newly diagnosed patients who

fulfilled the criteria proposed by the 2013 American College of

Rheumatology/European League Against Rheumatism classification

criteria for SSc were enrolled (33). Four out of 13 patients were

further classified as having limited cutaneous SSc, and nine out of 13

were classified as having diffuse cutaneous scleroderma according to

LeRoy et al. (34) (Supplementary Table 2). Patients with SLE who met

the 2012 Systemic Lupus Collaborating Clinics (SLICC) criteria and

had active, newly diagnosed SLE were considered eligible (35). Several

clinical and immunological parameters were assessed at the time of SLE

diagnosis (Supplementary Table 3). Healthy controls were age- and

sex-matched to patients and had a negative history of rheumatic

symptoms and negative status upon detailed physical and laboratory

examinations. No comorbidities were detected in the patients or

controls that could have influenced our investigation, nor did they

take any medication that could have interfered with the measurements.
2.3 PBMC isolation

PBMCs were isolated as previously described (36). Briefly, after

the collection of 20 ml of blood in an EDTA vacutainer (Becton
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Dickinson, Franklin Lakes, New Jersey, USA), PBMCs were purified

using Leucosep tubes (Greiner Bio-One, Austria) according to the

manufacturer’s instructions. If the pellet was light red, 2 ml of ACK

Lysing Buffer (ACK) was added at room temperature (RT, 20°C) for

2 min. Samples were washed twice with 10 ml of PBS, and cell count

and viability were checked using Trypan Blue. PBMCs were

cryopreserved in stocks of 4 × 106 cells in 1 ml of FCS

(Euroclone, Milano, Italy) supplemented with 1:10 DMSO

(Merck, Darmstadt, Germany) [v/v] in liquid nitrogen.

2.4 Cell preparation

Cells were processed for CyTOF as described previously by our

groupwithminormodifications (37). Briefly, cryotubes were thawed in a

37°C water bath for 2 min, and cells were transferred into 14 ml of

cRPMI at 37°C and centrifuged at 350g for 6 min at room temperature

(RT). PBMCs were washed once more with 10 ml of cRPMI, cells were

counted, and viability was determined by Trypan Blue exclusion.

PBMCs including up to 2–3 × 106 cells/sample were plated onto a 96-

well repellent plate separately in 200 µl of cRPMI and rested overnight in

an incubator with 5% CO2 at 37°C. The rested cells were collected and

washed twice with Maxpar Cell Staining Buffer (MCSB; Fluidigm, now

Standard BioTools, South San Francisco, California, USA).
2.5 Barcoding and antibody staining

Mass cytometry was performed as previously described by our

group with minor modifications (38, 39). Briefly, cells were

resuspended in 50 µl of MCSB supplemented with 1:20 v/v Human

TruStain FcX Fc Receptor Blocking Solution (BioLegend, San Diego,

California, USA) and incubated at RT for 10 min. Anti-CD45

antibody-based live cell barcoding was performed as described

previously by Fish et al. (40). Without the washing step, 50 µl of

different metal-tagged (89Y, 106Cd, 114Cd, 116Cd) CD45 antibodies

(clone: HI30; Fluidigm) at a final concentration of 1:100 [v/v] per

antibody were added separately and incubated at 4°C for 30 min.

PBMCs were washed twice with MCSB and 1 × 106 cells from all four

samples were pooled into 100 µl of MCSB. Cells were stained with

1:100 [v/v] offive markers, CD32, CD47, CD98, CD172a, and CD335

(Fluidigm), and incubated at RT for 20 min in MCSB. PBMCs were

diluted by 200 µl of MCSB and transferred into a single tube of

Maxpar Direct Immune Profiling Assay (Fluidigm) and incubated at

RT for 30 min. The panel of antibodies used is listed in

Supplementary Table 4. Cells were washed twice with MCSB,

prefixed with 1 ml of Pierce™ 16% formaldehyde (w/v) (Thermo

Fisher Scientific, Waltham, Massachusetts, USA) solution diluted in

PBS to 1.6%, and incubated at RT for 10 min. Stained and prefixed

cells were centrifuged at 800g at RT for 6 min and resuspended in 800

µl of Fix & Perm solution (Fluidigm) supplemented with 1:1,000 [v/v]
191Ir-193Ir DNA intercalator (Fluidigm) for overnight incubation.
2.6 CyTOF data acquisition

CyTOF samples were acquired as described previously by our

group with minor modifications (36, 41). Samples were washed
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three times with MCSB and filtered through a 30-mm CellTrics

gravity filter (Sysmex, Görlitz, Germany), and the cell concentration

was adjusted to 7 × 105/ml in CAS (cell acquisition solution) for the

WB injector. Finally, EQ four-element calibration beads (Fluidigm)

were added at a 1:10 ratio [v/v] and acquired using a properly tuned

Helios mass cytometer (Fluidigm). From the pooled samples, 1.2 ×

106 events (3 × 105/individual PBMC) were collected to identify

rare cell subsets. The generated flow cytometry standard (FCS)

files were randomized and normalized with the default settings

of the internal FCS-processing unit of the CyTOF software

(Fluidigm, version:7.0.8493).
2.7 Data processing

The randomized and normalized FCS files were uploaded to the

Cytobank Premium analysis platform (Beckman Coulter). Exclusion

of normalized beads, dead cells, debris, and doublets and manual

debarcoding were performed as described in Supplementary

Figures 1, 2. No significant differences in the cell counts

between the examined groups were observed. FCS files with CD45-

positive living singlets were exported and further analyzed in

R. Compensation methodology, FlowSOM clustering, and

dimensionality reduction were adapted from Crowell et al. (42).

FlowSOM was chosen following the publication of Weber et al.

about the unsupervised analysis of CyTOF data (43). Data analysis

was performed as described by Nowicka et al. (44). Using the

BioConductor CATALYST and FlowCore R packages, the FCS files

were integrated, compensated, and transformed. After signal spillover

compensation, the CyTOF marker intensities were inverse-

hyperbolic sine-transformed (arcsinh) with cofactor 5. For the

main population definition, we performed self-organizing map-

based method metaclustering on the compensated and transformed

files. We identified 17 main different metaclusters as different cell

types that were separately subclustered in another round of

FlowSOM. High-dimensional reduction and visualization were

performed using the (t-SNE) algorithm/method. In total, 300,000

cells and 34 markers were used to create a t-SNE map of the human

peripheral immune system. The event numbers in the identified main

immune cell populations and in the immune cell-related metaclusters

are listed in Supplementary Table 5 for each human subject. The

minimum criteria for the cell number for the 17 main immune cell

populations was at least 150 cells in each of the 10 subjects from the

13 participants meeting at least one of the conditions (HCs, RA, SSc,

or SLE). The minimum criteria for the cell number for the

metaclusters to move forward with the analysis was at least 50 cells

in each of the 10 subjects from the 13 participants meeting at least one

of the conditions (HCs, RA, SSc, or SLE).
2.8 Statistical analysis

Median signal intensities, cell frequencies, and subpopulation

frequencies were analyzed using GraphPad Prism 8.0.1. The

normality of distributions was tested using the D’Agostino and

Pearson test and passed if all the groups’ alpha values were <0.05.
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Normally distributed datasets were compared using ordinary one-

way ANOVA or Brown–Forsythe ANOVA when standard

deviations were not equal. For non-parametric analysis, the

Kruskal–Wallis test was used. All significance tests were corrected

for multiple comparisons by controlling the false discovery rate

(FDR) using the two-stage Benjamini, Krieger, and Yekutieli

approach, with an FDR cutoff of 10%. Differences were

considered significant at p <0.05.
3 Results

3.1 Enrollment of therapy-naive SAD
patients and the workflow of single-
cell immunophenotyping

Our aim was to perform single-cell immunophenotyping of

SADs, namely, RA, SSc, SLE, and HCs. For better clarity, a

schematic cartoon of the project workflow is summarized in
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Figure 1. The enrollment of therapy-naive SAD patients allowed

unprecedented insight into the early stage of disease development

without the masking effect of disease-modifying antirheumatic

drugs following therapy.
3.2 Determination and characterization
of the 17 main immune populations
in HCs and therapy-naive patients
with RA, SSC, and SLE

The 34-marker antibody panel for the single-cell mass

cytometric investigation and the subsequent FlowSOM analysis

identified 17 immune cell types among the 15,387,165 cells from

the 52 participants. Visualization of single-cell data delineated the

17 main immune cell populations in the viSNE plots (Figure 2A).

The following seven T-cell types were identified: CD4+/CD57− T

cells, CD4+/CD57+ T cells, CD8+/CD161− T cells, CD8+/CD161+/
FIGURE 1

Schematic cartoon of the workflow of the study. Thirteen subjects were enrolled per group, namely, therapy-naive RA, SSc, and SLE patients and
HCs. The PBMCs were purified from the peripheral blood by Ficoll-density gradient centrifugation. Immunophenotyping was performed using a 34-
membered antibody panel optimized for single-cell mass cytometry. The PBMCs of four subjects were labeled separately with anti-CD45 antibodies
conjugated with different metal tags. Subsequently, the cells of the four barcoded subjects were stained simultaneously in one tube. The CyTOF was
performed by the Helios system. Data analysis was carried out using Cytobank Premium and Catalyst package in R software as described in the
Materials and methods section.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1376933
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Balog et al. 10.3389/fimmu.2024.1376933
CD28+ T cells, CD8dim T cells, CD3+/CD4−/CD8− (DN = double

negative) T cells, and TCRg/d T cells. The following four NK cell

types were characterized: CD4+ NKT cells, CD8+ NKT cells, NK

cells (classic NK), and CD56dim/CD98dim cells. The following two

B-cell types were analyzed: cells and plasmablasts. Three myeloid

cell types were studied: monocytes, CD11cdim/CD172dim cells, and

myeloid dendritic cells (mDCs). Finally, innate lymphoid

plasmacytoid dendritic cells (pDCs) were also involved in patient

immunophenotyping. The expression profiles of the 17 immune cell

populations for the 34 investigated markers are shown on a

heatmap (Figure 2B), where data were aggregated from 52 FCS

files (13 participants/group). This expression analysis supplemented

the viSNE plot for the discrimination of the 17 immune cell
Frontiers in Immunology 06185
populations, highlighting both common and cell-type-specific

marker expression.

Next, we examined the distribution of the identified peripheral

immune cell types among the HC, RA, SSc, and SLE groups.

Significant differences in the population percentages are shown in

Figure 3. Seven populations showed significantly different

frequencies: CD4+/CD57+ T cells, CD8+/CD161+/CD28+ T cells,

DN T cells, CD4+ NKT cells, CD56dim/CD98dim cells, plasmablasts,

and CD11cdim/CD172adim cells. CD4+/CD57+ aging T cells showed

the lowest frequency in the SLE group (0.402% in SLE vs. 3.089% in

SSc or 2.819% in HCs). CD8+/CD161+/CD28+ mucosal-associated

invariant T cells (MAIT) were at the highest frequency in healthy

controls (1.351% in HCs vs. 0.405% in RA, 0.323% in SSc, and 0.286%
A

B

FIGURE 2

Single-cell immunophenotyping of leukocytes using 34 antibodies. (A) Representative viSNE diagram of the distribution of 17 main immune subsets
with a single-cell resolution. Each dot represents one cell, and the size of one cloud is proportional to the size of that population. For visualization,
the algorithm chose 3,000 cells randomly from each of the 52 samples. (B) The heatmap of the 17 main immune subsets showing their marker
expression profile. Coloration indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to
low expression.
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in SLE). DN T cells showed the highest incidence in SLE (0.867% in

SLE vs. 0.279% in HCs, 0.421% in RA, or 0.307% in SSc). CD4+ NKT

cells were significantly decreased in SLE (0.432% in SLE vs. 1.083% in

HCs or 0.968% in SSc). CD56dim/CD98dim NK cells were reduced in

RA (0.657% in RA vs. 2.133% in HCs or 1.967% in SLE). The

percentage of plasmablasts was significantly higher in SLE (0.686% in

SLE vs. 0.053% in HCs, 0.101% in RA, or 0.097% in SSc).
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CD11cdim/CD172dim monocytes (with low expression of CD32,

CD47, CD98, and HLA-DR) were also more prevalent in SLE

(2.008% in SLE vs. 1.187% in HCs, 0.682% in RA, and 1.178%

in SSc). The remaining 10 of the 17 main populations did not

show differential distributions among the investigational

groups. The distribution of these 10 populations is shown in

Supplementary Figure 3.
FIGURE 3

The percentage of the main immune subsets within the matured living peripheral CD45+ leukocytes. Only significant changes are shown here, and non-
significant differences are illustrated in Supplementary Figure 3. The groups were compared using the Kruskal–Wallis (KW) test, and the results are shown
on the top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05,
**p < 0.01, ***p < 0.001. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart =
lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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A

B

FIGURE 4

The subpopulations of CD4+/CD57− helper T cells. (A) Marker expression heatmap of the CD4+/CD57− helper T cells divided into 20 MCs by the FlowSOM
algorithm. Coloration indicates the intensity of the cell surface marker density. Dark red refers to the highest expression; dark blue refers to the lowest
expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different
frequencies among the studied groups. The differences between groups were evaluated using the Kruskal–Wallis (KW) test, and the results are shown on the
top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart =
lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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3.3 Disease-specific expression intensities
of single-cell mass cytometry data
comparing peripheral immune cells
in HCs, RA, SSc, and SLE

Characterization of the 34-marker expression of the 17 main

populations is shown in the viSNE plots in Supplementary Figure 4.

The areas of the t-SNE plots correspond to the main 17 immune

subsets, as shown in Figure 2A. Next, the individual expression data

(only significant changes among the four groups) were plotted on

the scatter plots as follows: CD4+/CD57− T cells, CD4+/CD57+ T

cells, CD8+/CD161− T cells (Supplementary Figure 5); CD8+/

CD161+/CD28+ T cells, CD8dim T cells (Supplementary Figure 6);

DN T cells (Supplementary Figure 7); TCR g/d T cells, CD4+ NKT

cells, CD8+ NKT cells (Supplementary Figure 8); NK cells,

CD56dim/CD98dim cells (Supplementary Figure 9); B cells and

plasmablasts (Supplementary Figure 10); monocytes, CD11cdim/

CD172adim cells (Supplementary Figure 11); and mDCs and pDCs

(Supplementary Figure 12).

Here, we highlight the primary differences. Except for helper T

cells, CD38 expression in all cell types was higher in at least one

autoimmune disease than in HCs. In the case of DN T cells

(Supplementary Figure 7), TCRg/d+ T cells, CD8a+ NKT cells

(Supplementary Figure 8), NK cells (Supplementary Figure 9), and

monocytes (Supplementary Figure 11), all three patient groups had

significantly higher CD38 expression compared with HCs (in the case

of NK cells, there was no significant difference between RA vs. HCs, p

= 0.0681). The results were similar for the CD8adim/CD47dim

population, with the addition of the SLE group showing

significantly higher CD38 expression than the other two patient

groups (Supplementary Figure 6). In the case of CD8a+/CD161−

cytotoxic T cells, the SLE group expressed significantly higher levels

of CD38 compared with all the three other groups (Supplementary

Figure 5), whereas in the case of mDCs, the difference between HCs

and SLE was significant (Supplementary Figure 12). In patients with

SLE, in contrast to CD38, CD45RA had the lowest expression in

immune cells. We observed a significantly lower expression of

CD45RA compared with the HC, RA, and SSc groups in the

following cell types: CD4+/CD57+ T cells (Supplementary Figure 5),

CD8adim/CD47dim T cells (Supplementary Figure 6), CD56dim/

CD98dim cells (Supplementary Figure 9), and B cells

(Supplementary Figure 10). Comparing HCs vs. SLE, we detected

significantly lower expression of CD45RA in CD8a+ NKT cells

(Supplementary Figure 10), NK cells (Supplementary Figure 9), and

pDCs (Supplementary Figure 12) in the SLE group. There was only

one exception: CD45RA expression was higher in SLE and the other

two autoimmune patient groups than in HCs in DN T cells

(Supplementary Figure 7). In patients with SSc, the expression of

the two markers was significantly higher than that in the other three

groups: CD57 expression in CD4+/CD57+ T cells (Supplementary

Figure 5) and CD16 expression in NK cells (Supplementary Figure 9).

Patients with RA were also differentiated from the other conditions

by significantly different expressions as follows: in CD11cdim/

CD172adim cells, the expression of CD32 and CD98 was

significantly higher than in the other three groups (Supplementary

Figure 11). CD98 expression in CD56dim/CD98dim cells was higher in
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the RA group than in the other three groups (Supplementary

Figure 9). CD47 expression in CD11cdim/CD172adim cells was

significantly higher (Supplementary Figure 11), whereas in CD8a+/

CD161+/CD28+ T cells, it was significantly lower in patients with RA

than in the HC, SSc, and SLE groups (Supplementary Figure 6). The

expression of HLA-DR in TCRg/d+ T cells (Supplementary Figure 8),

B cells (Supplementary Figure 10), and mDCs (Supplementary

Figure 12) was also significantly lower in the RA group compared

with the other three groups.

Taken together, 59 scatter plots demonstrated significant marker

expression differences in the 17 main immune populations

differentiating therapy-naive patients with RA, SLE, and SSc from

HCs and between the SADs (Supplementary Figures 5–12). However,

a detailed explanation of these data is beyond the scope of our

research paper; rather, these Supplementary Data provide a resource

and repository for the scientific community. Next, the authors

preferred to thoroughly analyze and explain the unsupervised

FlowSOM data of the subsequent analysis of the cell-type

heterogeneity of the 17 main populations, the distribution of

metaclusters (subpopulations), and significant differences in their

marker expressions.
3.4 Characterization of the specific RA,
SSc, and SLE differences in the single-cell
immunophenotype of the subpopulations
of the 17 main immune cell types of
peripheral blood

Analysis of FlowSOM metaclusters of mass cytometry data

revealed intracell-type heterogeneity of each main immune cell type

in therapy-naive cases of RA, SSc, and SLE vs. HCs. First, the CD4+/

CD57− T cells were divided into 20 subpopulations (MCs =

metaclusters), and the heatmap of the marker expression profile of

the MCs is shown in Figure 4A. Visualization and a viSNEmap of the

MCs of CD4+/CD57− T cells are shown in Supplementary

Figure 13A. The size of the MCs in the viSNE plot is proportional

to the number of cells within anMC, and the proximity of the MCs is

proportional to the common marker expression profile

(Supplementary Figure 13A). The cell density plots highlighted HC

and disease-specific MC distribution (Supplementary Figure 13A).

Seven MCs (red arrows) showed significant differences within CD4+/

CD57− T cells (Figures 4A, B, Supplementary Figure 13A). One Treg

subpopulation (CD4+/CD25+/CD45RA−/CD127−) and MC03

(CD25+CD38−CD127−CD194+) were the lowest in HCs (HCs:

1.554%; RA: 2.520%; SSc: 2.520%; SLE: 2.675%). One effector

memory (TEM) T-cell (CD45RA−/CD197−) subpopulation, MC08

(CD4+/CD27+/CD28+/CD38−/CD127−/CD197−), was the lowest in

HCs and the highest in SLE (HCs: 1.797%; RA: 3.156%; SSc: 3.320%;

SLE: 5.396%). TheMC10 (CD27+CD28+CD38+CD127−CD197+) and

CD4+ central memory (TCM) T-cell (CD45RA−CD197−)

subpopulations were the highest in SLE (HCs: 0.648%; RA: 1.040%;

SSc: 1.049%; SLE: 1.634%). The other TEM subpopulation, MC11

(CD27−CD28+CD38+CD127−CD197−), was also the highest in SLE,

highlighting the discrimination from RA and SSc, not only from HCs

(HCs: 0.624%; RA: 0.593%; SSc: 0.716%; SLE: 2.675%). MC17
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(CD27−CD28+CD38−CD127+CD161+CD183+CD197−) was elevated

in HCs (HCs: 5.793%; RA: 2.523%; SSc: 2.747%; SLE: 2.605%). Two

populations (MC18 and MC19) were significantly lower in RA

patients with a common lack of CD98, CD28, and CD27, and

MC18 (CD27−CD28dimCD98dimCD127−CD197−) was the lowest in

RA patients (HCs: 2.718%; RA: 0.749%; SSc: 1.278%; SLE: 2.514%).

MC19 differed from MC18 in the expression of the CCR7 receptor

(CD27−CD28dimCD98dimCD127−CD197+), which was significantly

decreased in RA (HCs: 1.223%; RA: 0.277%; SSc: 0.570%;

SLE: 1.227%).

CD8+/CD161− cells were divided into 16 MCs, and six MCs

differed significantly from the other three groups (Figure 5A and

Supplementary Figure 13B). The expression pattern of CD8+/
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CD161− MCs is summarized on the heatmap (Figure 5A). The

MC01 (CD27−CD28−CD38+CD57+CD127−HLA-DR+) was the

highest in SLE (HCs: 0.408%; RA: 1.004%; SSc: 1.300%; SLE:

5.383%). MC05 (CD27−CD28−CD38−CD57+CD127+HLA-DR−),

which differed in CD38− and CD127+ from MC01, was the lowest

in SLE (HCs: 3.803%; RA: 2.407%; SSc: 4.731%; SLE: 1.289%)

(Figure 5B). The MC05 is a subpopulation within CD8+ TEMRA:

CD45RA+CD197− (terminally differentiated effector memory cells

re-expressing CD45RA). MC06 (CD27+CD28+CD38−CD57+

CD127−HLA-DR−) differed from MC01 and MC05 in terms of

CD27+CD28+ and CD38−CD127− and showed the highest

prevalence in HCs (HCs: 2.492%; RA: 1.083%; SSc: 0.921%; SLE:

0.910%) (Figure 5B; Supplementary Figure 13B). Similar to MC01,
A

B

FIGURE 5

The subpopulations of CD8+/CD161− cytotoxic T cells. (A) Marker expression heatmap of the CD8+/CD161− helper T cells divided into 16 MCs by the
FlowSOM algorithm. Coloration indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low
expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly
different frequencies among the studied groups. The differences between groups were evaluated using the Kruskal–Wallis (KW) test, Welch-ANOVA
(WA), or one-way ANOVA (ANOVA), and the results are shown on the top of each column bar. Significance was determined when the q-value of the
false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. The values shown on the column bar from the bottom to
the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3),
upper bar = maximum value.
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MC13 (CD27+CD28+CD38+CD57−CD127−HLA-DR+) was the

highest in SLE (HCs: 0.866%; RA: 1.075%; SSc: 0.991%; SLE:

1 . 809%) : CD27+CD28+ and CD57− . MC14 (CD27+

CD28+CD45RO+CD127+CD183+CD197+) (HCs: 15.719%; RA:

8.301%; SSc: 7.556%; SLE: 5.911%) and MC15 (CD27+CD28+

CD45RA+CD127+CD183+CD197+) were the highest in HCs

(HCs: 7.087%; RA: 4.167%; SSc: 3.941%; SLE: 5.065%).

CD8adim/CD47dim T cells represented 10 MCs, in which four

MCs differentiated into HCs and therapy-naive RA, SSC, and SLE.

A heatmap of the expression intensities of the 34 markers in

CD8adim/CD47dim T cells is shown in Figure 6A. The viSNE

diagram and cell density plots of CD8adim/CD47dim T cells are

shown in Supplementary Figure 13C. MC02 (CD45RA+CD57+)
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cells in patients with SLE were min. half (or less) than those in the

other three groups (HCs: 32.482%; RA: 39.018%; SSc: 38.138%; SLE:

14.912%) (Figure 6B). The other three MCs that dominated in SLE

were MC07 (CD38+CD197−HLA-DR+) (HCs: 5.081%; RA: 7.228%;

SSc: 5.179%; SLE: 13.378%), MC08 (CD38+CD57−CD197−HLA-

DR−) (HCs: 3.209%; RA: 3.461%; SSc: 5.072%; SLE: 12.104%), and

MC10 (CD38+CD197+) (HCs: 1.963%; RA: 2.981%; SSc: 2.501%;

SLE: 6.404%) (Figure 6B).

CD3+/CD4−/CD8− (DN) T cells were divided into six

subpopulations (Figure 7; Supplementary Figure 14A). Red

arrows on the expression heatmap indicate MCs that

differentiated SADs from each other (Figure 7A). MCs were also

observed in the viSNE and cell density plots (Supplementary
A

B

FIGURE 6

The subpopulations of CD8adim/CD47dim cytotoxic T cells. (A) Marker expression heatmap of the CD8adim/CD47dim helper T cells divided into 10
MCs by the FlowSOM algorithm. Coloration indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue
refers to low expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with
significantly different frequencies among the studied groups. The differences between the groups were evaluated using the Kruskal–Wallis test (KW)
or one-way ANOVA (ANOVA), and the results are shown on the top of each column bar. Significance was determined when the q-value of the false
discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The values shown on the column bar from the
bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle line = median, top line of the chart = upper
quartile (Q3), upper bar = maximum value.
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Figure 14A). MC02 (CD27+CD28+CD38+CD57−CD161−), similar

to CD38+CD8 T cells, was the lowest in HCs (HCs: 5.868%; RA:

16.456%; SSc: 12.705%; SLE: 12.568%) (Figure 7B). The CD38−

MC03 (CD27+CD28+CD38−CD57−CD161−), similar to MC02, was

also the lowest in HCs (HCs: 29.748%; RA: 52.147%; SSc: 48.745%;

SLE: 54.712%). In contrast to MC02 and MC03, MC06

(CD38−CD127+CD161+) was the highest in HCs (HCs: 50.881%;

RA: 12.540%; SSc: 13.452%; SLE: 8.154%) (Figure 7B).

The FlowSOM algorithm revealed 12 MCs in the TCRg/d T-cell
compartment. The heatmap of the expression of 34 markers in the

TCR g/d T-cell population is shown in Figure 8A. The viSNE and

cell density plots of the frequency of MCs are shown in

Supplementary Figure 14B. One populat ion of naive

(CD27+CD45RA+) TCRg/d T cells, the MC01 (CD27+CD197+),

was the highest in SLE (HCs: 7.254%; RA: 6.665%; SSc: 10.563%;

SLE:19.745%) (Figure 8B). One effector memory TCRg/d T-cell

population was the lowest in HCs (HCs: 3.024%; RA: 8.301%; SSc:

7 .405%; SLE: 12.351%). In contrast to MC01, MC12

(CD45RA+CD56+CD57+) was significantly lower in SLE patients

(HCs: 11.691%; RA: 12.172%; SSc: 10.995%; SLE: 4.929%).

Classical CD3−/CD56+ NK cells represented 14 MCs. Clustering

of MCs based on the expression patterns of 34 markers is shown in

Figure 9A. The viSNE and cell density plots of the MCs are shown

in Supplementary Figure 14C. MC03 (CD38−CD57−CD161−) was

almost two times higher in HCs than in RA and SSc and three times

higher in HCs than in SLE (HCs: 5.624%; RA: 3.384%; SSc: 2.131%;
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SLE: 1.379%). MC05 (CD56brightCD45RA−) cells were more than

double in the PBMCs of SLE patients compared to those in the other

three groups (HCs: 4.559%; RA: 5.354%; SSc: 6.066%; SLE:

12.501%) (Figure 9B). MC07 (CD16+CD38+CD57+CD161+)

showed double the frequency in SSc compared with HCs, RA, or

SLE (HCs: 11.864%; RA: 11.810%; SSc: 19.294%; SLE: 11.811%). In

contrast to MC05, MC10 (CD8a+CD38+CD57+) was the lowest in

patients with SLE (HCs: 10.642%; RA: 12.004%; SSc: 13.058%;

SLE: 8.152%).

CD56dim/CD98dim NK cells were divided into seven MCs. The

expression profiles of the 34 markers are shown in Figure 10A. The

viSNE plots of the seven MCs and cell density plots are shown in

Supplementary Figure 15A. Only one MC, MC05 (CD16+/CD57+/

CD183−), showed a significant difference, and the percentage of

cells in MC05 was almost half of that in the HC, RA, and SSc groups

(HCs: 4.921%; RA: 4.077%; SSc: 5.249%; SLE: 2.049%).

CD19+ B cells showed high heterogeneity, with 19 identified

MCs. Seven MCs differentiated patients with SADs from each other

or from HCs. The expression of 34 markers among the 19 MCs is

shown in Figure 11A. The viSNE and cell density plots of 19 MCs of

conventional peripheral B cells are shown in Supplementary

Figure 15B. Two MCs were the lowest in RA, MC02 (CD98dim/

CD185+/IgD+) (HCs: 4.320%; RA: 1.871%; SSc: 3.223%; SLE:

5.761%) and MC03 (CD38−/CD98dim/CD185−/IgD−) (HCs:

2.606%; RA: 0.490%; SSc: 0.975%; SLE: 1.662%). The number of

MC07 (CD38+/CD196+/IgD−) B cells was significantly higher in the
A

B

FIGURE 7

The subpopulations of CD8a−/CD4− cytotoxic T cells. (A) Marker expression heatmap of the CD8a−/CD4− helper T cells divided into six MCs by the
FlowSOM algorithm. Coloration is proportional to the intensity of the cell surface marker density. Dark red refers to the highest expression; dark blue
refers to no expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with
significantly different frequencies among the studied groups. The differences between groups were evaluated using the Kruskal–Wallis test (KW), and
the results are shown on the top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1
and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The values shown on the column bar from the bottom to the top: lower bar =
minimum value, bottom line of the chart = lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar =
maximum value.
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SLE group (HCs: 0.914%; RA: 0.802%; SSc: 0.988%; SLE: 2.638%)

(Figure 11B). The number of MC08 (CD25+/IgD+) B cells was

double in HCs than in RA or SSC and three times higher in HCs

than in SLE (HCs: 16.239%; RA: 9.337%; SSc: 8.581%; SLE: 5.493%).

The two CD11c+ B-cell populations were significantly higher in the

SLE group than in the other three groups: MC09 (CD11c+/CD38−/

CD185−) (HCs: 0.562%; RA: 0.785%; SSc: 0.571%; SLE: 2.312%) and

MC16 (CD11c+/CD183+) (HCs: 0.337%; RA: 0.356%; SSc: 0.364%;

SLE: 0.838%). The CD20−/CD25+ MC19 B cells were the highest in

HCs (HCs: 2.772%; RA: 0.998%; SSc: 0.897%; SLE: 0.949%).

The plasmablasts in the peripheral blood represented two MCs

depending on their expression (MC02) or lack of CD27 (MC01)

(Figure 12A). The viSNE and cell density plots of plasmablasts are

shown in Supplementary Figure 15C. The MC01 (CD27−) was the

highest in SLE (HCs: 33.527%; RA: 20.424%; SSc: 26.482%; SLE:

48.871%). In contrast, MC02 (CD27+) was significantly lower in

patients with SLE (HCs: 66.472%; RA: 79.575%; SSc: 73.517%; SLE:

51.128%) (Figure 12B).

The monocytes were classified into 15 types of MCs using the

FlowSOM algorithm (Figure 13A). A heatmap of the expression

profiles is shown in Figure 13A. The distribution of MCs in the

viSNE and cell density plots is shown in Supplementary Figure 16.

One group of classical monocytes (CD14++/CD16−) and MC10

(CD16−CD25+CD127−HLA-DR−) were higher in RA, SSc, and SLE

than in HCs (HCs: 3.977%; RA: 8.902%; SSc: 9.207%; SLE: 9.176%)
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(Figure 13B). Two transitional monocyte populations (CD14++/

CD16+) showed a higher percentage of SSc with double frequency

than the other three groups: MC11 (CD16+CD25+CD197−) (HCs:

1.369%; RA: 1.101%; SSc: 2.457%; SLE: 0.994%) and MC12

(CD16+CD25+CD197+) (HCs: 1.081%; RA: 0.844%; SSc: 1.786%;

SLE: 0.845%).
4 Discussion

To the best of our knowledge, this is the first study to

characterize the detailed immunophenotypes of patients with

three different newly diagnosed SADs at the same time.

Additionally, all patients were investigated before starting

immunosuppressive therapy; therefore, we can rule out the

potential immuno-modifying effects.

First, the distribution of the main populations within the CD45+

living cells was determined and compared among the investigated

groups. The seven main cell types showed significant differences

(Figure 3). Among the main immune populations, CD4−/CD8−

double-negative (DN) T cells, plasmablasts, and CD11cdim/

CD172adim cells showed a significantly higher average population

percentage in patients with SLE than in all the other groups. No

publications are available on the CD11cdim/CD172adim in the

context of SLE. In contrast, CD4+/CD57+ T cells and CD4+ NKT
A

B

FIGURE 8

The subpopulations of TCRgd T cells. (A) Marker expression heatmap of the TCRgd T cells divided into 12 MCs by the FlowSOM algorithm. Coloration
indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight the
MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the studied
groups. The differences were evaluated using the Kruskal–Wallis (KW) test or one-way ANOVA (ANOVA), and the results are shown on the top of each
column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01. The
values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle line =
median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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cells were present in significantly lower numbers in patients with

SLE than in healthy controls and the SSc group. The average

population of CD8+/CD161+/CD28+ cytotoxic T cells was

significantly higher in healthy individuals than in patients with

SADs. Two populations were identified, CD8adim/CD47dim and

CD56dim/CD98dim, with the mean population percentages within

CD45+ single cells being the lowest in the RA group. In the case of

the CD56dim/CD98dim population, the difference was significant

compared with the SLE and HC groups. This observation is also

considered novel.

Second, the expression levels of the 34 markers in the main

populations were compared between the groups. In summary, 59

scatter plots showed significant differences between at least two
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groups (Supplementary Figures 4–12). The most potent marker is

cyclic ADP-ribose hydrolase (CD38). It was highly expressed in a

variety of immune cells in all three therapy-naive patient groups

compared with HCs: DN T cells, TCRg/d+ T cells, CD8a+ NKT cells,

NK cells, and monocytes. Similarly, the CD8adim/CD47dim

population in the SLE group showed significantly higher CD38

expression than those in the RA and SSc groups. CD38 expression

was also significantly higher in CD8a+/CD161− cytotoxic T cells in

the SLE group than in the other groups. CD38 as a targeted therapy

(daratumumab) has been approved for multiple myeloma, but it has

also been suggested for SADs, particularly SLE, where plasma cells

do not express CD20, leading to rituximab resistance; however, they

highly express the CD38 (Figure 12A) (45–47).
A

B

FIGURE 9

The subpopulations of NK cells. (A) Marker expression heatmap of the NK cells divided into 14 MCs by the FlowSOM algorithm. Coloration indicates
the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight the MCs
with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the studied
groups. The differences between groups were evaluated using the Kruskal–Wallis (KW) test, and the results are shown on the top of each column
bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001.
The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle
line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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Third, each immune cell population was divided into

subpopulations (MCs) using the FlowSOM algorithm (Figures 4–

13; Supplementary Figures 13–16). Subpopulation percentages were

compared among the populations in different groups. We identified

121 MCs from 10 major immune cell populations. In addition, T

cells were classified into 64 MCs based on the expression of 34

markers. Twenty-three T-cell subpopulations were found with

significantly different percentages between at least two groups

(Figures 4–8). Tregs are known to be present at lower frequencies

in HCs than in the SSc group (48, 49), and we identified a

subpopulation of Tregs (MC03: CD25+CD38−CD127−CD194+)

within CD4+CD57− T cells with a decreased ratio in HCs. Burnst

et al. reported elevated expression of CD38 in effector memory

CD4+ T cells (50). We identified two CD4+ TEM which were present

in higher percentages in SLE: CD38 negative (MC08:

CD45RA−CD4+CD27+CD28+CD38−CD127−CD197−) and CD38

pos i t i v e (MC11 : CD45RA−CD4+CD27−CD28+CD38+

CD127−CD197−), differentiating SLE from therapy-naive RA and

SSc. Lima et al. reported that CD38+HLA-DR+ cytotoxic T cells

were elevated in patients with SLE (51). We demonstrated that the

MC01 (CD27−CD28−CD38+CD57+CD127−HLA-DR+) population

in CD8+CD161− T cells was the best in differentiating SLE from RA

and SSc. Comte et al. did not observe differences in the ratio of

CD8+ TEMRA (CD45RA+CD197−) between HCs and patients with

SLE (52). In contrast, we demonstrated that one subpopulation of

CD8+ TEMRA, the MC05 (CD27−CD28−CD38−CD57+CD127+), was
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the lowest in SLE compared with HCs, RA, and SSc. Yuan et al.

showed a higher percentage of naive CD8+ T cells in HCs vs. SLE

(53). In addition, the highest percentage of naive CD8+ T-cell

s ubpopu l a t i on wa s f ound in HCs , whe r e a s MC15

(CD27+CD28+CD45RA+CD45RO−CD127+CD183+CD197+) was

higher in HCs than in SADs. Cho et al. reported that DN MAIT

cells were more prevalent in HCs than in patients with RA and SLE

(54). Our results also confirmed a lower ratio of MC06 DN T cells

(CD38−CD127+CD161+) in patients with SLE. The unequivocal

role of TCRg/d T cells in the pathogenesis of SADs has been

described recently (55, 56). We identified three subpopulations of

TCRg/d T cells differentiating SLE from HCs, RA, and SSc. Two of

these were significantly higher in SLE (MC01: CD27+CD197)

(MC04: CD45ROdimCD45RAdimCD57−) , and one was

significantly lower in SLE (MC12: CD45RA+CD56+CD57+).

Subsequently, 57 subpopulations (MCs) of non-T-cell

compartments were demonstrated in CD3− cells; among these, 17

populations showed significantly different subpopulation

percentages between at least two investigated groups (Figures 9–

13). A lower proportion of CD56+ NK cells has been reported in

patients with RA and SLE (57, 58). In line with this, we identified

one subpopulation of NK cells, MC03 (CD38−CD57−CD161−), with

the highest percentage in HCs. Schepis et al. reported an increased

frequency of CD56brightCD16− NK cells in patients with SLE

compared to HCs (59). Based on our study, the number of MC05

(CD56brightCD45RA−CD16low) cells was the highest in SLE. In
A

B

FIGURE 10

The subpopulations of CD56dim/CD98dim cells. (A) Marker expression heatmap of the CD56dim/CD98dim cells divided into seven MCs by the
FlowSOM algorithm. Coloration indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low
expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly
different frequencies among the studied groups. The differences between the groups were evaluated using the Kruskal–Wallis (KW) test, and the
results are shown on the top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and
p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom
line of the chart = lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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contrast to MC05, the MC10 (CD8a+CD38+CD57+) NK cell

population was the lowest in patients with SLE. A lower ratio of

CD56+CD57+ NK cells in SLE compared to HCs was reported

previously by Lu et al. (60); however, our data also included
Frontiers in Immunology 16195
comparisons with RA and SSc. We identified a subpopulation of

CD56dim/CD98dim MC05 (CD16+/CD57+/CD183−) cells with a

significant decrease in SLE, but there is a lack of data on these

cells in the context of SADs. Amu et al. showed that
A

B

FIGURE 11

The subpopulations of B cells. (A) Marker expression heatmap of the B cells divided into 19 MCs by the FlowSOM algorithm. Coloration indicates the
intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight the MCs with
significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the studied groups.
The differences among the groups were evaluated using the Kruskal–Wallis (KW) test, and the results are shown on the top of each column bar.
Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. The
values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle line
= median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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CD25+CD20+CD27+ B cells were the lowest in patients with SLE

compared with HCs (61). Our results also supported the lowest

percentage of MC08 (CD25+CD20+CD27+IgD+) B cells in SLE

compared with that in HCs, RA, and SSc. Rincon-Arevalo et al.

reported an increased proportion of CD11c+ B cells in patients with

SLE (62). Additionally, we differentiated two CD11c subsets of B

cells with the highest frequency in SLE: MC09 (CD11c+

CD38−CD185−) and MC16 (CD11c+CD183+). B cells expressing

CD11c and lacking CD21 expression (age-associated B cells =

ABCs) are reported as an increasing population in SLE (63).

Indeed, our MC16 population expresses CD11c, but we

highlighted the co-expression of CD183 (or panel missed CD21),

which differentiates it from the ABCs. The M16 B-cell population

(IgD−CD27+) is different also from the double-negative

IGD−CD27− population that was described by Wang et al. in SLE

(64). The peripheral composition of plasmablasts was shared with

CD27− and CD27+ MCs with the highest and lowest frequencies in

SLE, respectively. Toapanta et al. reported the induction of CD27

plasmablasts after Shigella LPS treatment, with a correlation

between IgA and IgG production (65). However, limited data are

available on CD27− plasmablasts in SLE. Lesco et al. showed that

CD14brightCD16− classic monocytes were increased in SSc patients

compared with HCs (66). A subpopulation of classic monocytes was

identified by our research group, MC10 (CD16−CD25+

CD127−HLA-DR−), with elevated levels in all investigated SADs

compared with HCs. Additionally, we found two intermediate

(CD14b r i g h t /CD16+ ) monocy t e popu l a t i on s , MC11
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(CD16+CD25+CD183−) and MC12 (CD16+CD25+CD183+),

which were higher in SSc than in HCs, RA, and SLE.

In summary, we highlight seven metaclusters, each

differentiating one group from the other three. In HCs, compared

with patients with SADs, the following subpopulations showed

significantly lower subpopulation percentages: MC08 (CD27+/

CD28+/CD38−CD127−/CD197dim) in CD4+/CD57− T cells, and

the SLE group also differed from the other two SAD groups. The

subpopulations MC04 (CD45ROdim/CD45RAdim/CD57−) of TCRg/
d+ T cells and MC10 (CD16−/CD25+/CD127−/HLA-DR−) of

monocytes had the lowest percentage in HCs. In contrast, the

following subpopulation percentages were significantly higher in

HCs than in SADs: MC06 (CD27+/CD28+/CD38−CD57+/CD127−)

in CD8a+/CD161− T cells and MC03 (CD38−/CD57−/CD161) in

NK cells. In patients with SLE, we detected a significantly higher

subpopulation percentages of MC07 (CD38+/CD196−/IgD−) in B

cells and MC01 (CD27−) in plasmablasts compared with the other

three groups. The findings of our study showed that the peripheral

immune landscape demonstrated circulating immune cell attributes

that discriminated the three SADs, therapy-naive RA, SSc, and SLE,

from each other, as well as from HCs.

This study is based on several years of patient sample

collection. For all inflammatory rheumatic diseases, the time

between the initial symptoms and the actual diagnosis can be

years. In addition, patients are almost invariably admitted to

specialist care centers following a certain form of anti-

inflammatory or immunosuppressive treatment. Both the
A

B

FIGURE 12

The subpopulations of plasmablasts. (A) Marker expression heatmap of the plasmablasts divided into two MCs by the FlowSOM algorithm. Coloration
indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight
the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the
studied groups. The differences between the groups were evaluated using the Welch-ANOVA test (WA), and the results are shown on the top of
each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, ***p < 0.001,
****p < 0.0001. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile
(Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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prolonged duration of illness and the treatments used can

significantly alter the patient’s immunophenotype. Mapping the

immunophenotype of early and untreated patients can be of

importance in several ways. In the early stages of the disease,

there can be a lot of overlap between different syndromes. In many

cases, they are identified as an undifferentiated autoimmune

syndrome. Early mapping of the immunophenotype can help in

early diagnosis. Knowledge of the immunophenotype prior to

therapy can also be a prognostic marker for subsequent response

to therapy. Changes in disease activity can be used to identify

markers of disease severity. This may provide the basis for further

prospective analysis following the current study. Identifying

difficult-to-treat patient groups is another major clinical

challenge. Furthermore, the results of our present study may

help to map this patient group, including various possible

organ-specific immunological processes. Our results, including

significant differences in several main cell populations, marker

expression intensities, and metaclusters, may contribute to clarify

the prior described, challenging autoimmune diseases.

Additionally, our dataset about early, untreated patients may
Frontiers in Immunology 18197
show overt disease pathology related to the etiology of the

disease unveiling potential therapeutic targets that could

contribute to the development of novel therapies.
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FIGURE 13

The subpopulations of monocytes. (A) Marker expression heatmap of the monocytes divided into 15 MCs by the FlowSOM algorithm. Coloration
indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight the
MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the studied
groups. The differences between the groups were evaluated using the Kruskal–Wallis (KW) test or one-way ANOVA (ANOVA), and the results are shown
on the top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05,
**p < 0.01. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile
(Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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Writing – original draft. ÁZ: Investigation, Methodology, Writing

– original draft. VB: Investigation, Writing – original draft. LP:

Conceptualization, Funding acquisition, Project administration,

Resources, Writing – original draft. AB: Conceptualization,

Funding acquisition, Investigation, Resources, Supervision,

Writing – original draft, Writing – review & editing. GS:

Conceptualization, Funding acquisition, Project administration,

Resources, Supervision, Visualization, Writing – original draft,

Writing – review & editing.
Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

research was funded by the GINOP-2.3.2-15-2016-00030, 2020-
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(AB). This work was supported by the János Bolyai Research

Scholarship of the Hungarian Academy of Sciences BO/00582/
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SUPPLEMENTARY FIGURE 1

Determination of live single cells and debarcoding of the CyTOF FCS files.

Cells were gated first negative for 140Ce and 142Ce calibration bead specific

metal tags (upper row on the left). Singlets were gated based on 191Ir DNA
labeling (upper row in the middle). Live cells were gated based on negativity

for 103Rh cationic nucleic acid intercalator Live/Dead reagent (Fluidigm)
(upper row on the right). Debarcoding of the patients was carried out using

the gating on CD45+ positive cells such as the following: HC: 116Cd CD45+,
RA: 89Y CD45+, SSc: 114Cd CD45+, SLE: 106Cd CD45+.

SUPPLEMENTARY FIGURE 2

Data clarification of CyTOF FCS files based on manual gating excluding cell

doublets. Double negative cells were processed further during the data
analysis for CD56-/CD294-, CD3-/CD14-, CD19-/CD14-, CD19-/CD3-,

CD56-/CD19-, CD20-/CD16-.

SUPPLEMENTARY FIGURE 3

The percentage of the main immune subsets within the matured living

peripheral CD45+ leukocytes. The non-significant differences are

demonstrated here, significant differences are demonstrated in Figures 2.
The values shown on the column bar are from the bottom to the top: lower

bar = minimum value, bottom line of the chart = lower quartile (Q1), middle
line = median, top line of the chart = upper quartile (Q3), upper bar =

maximum value.

SUPPLEMENTARY FIGURE 4

The tSNE plots of the expression profile of 34 markers. The areas of the tSNE
plots corresponds to the main 17 immune subset described in Figures 1A. The

red coloration is proportional with the higher, the blue coloration is
proportional with the lower expression levels within the 17 immune

subsets. Aggregated data of the 52 cases.

SUPPLEMENTARY FIGURE 5

The significant differences in the marker expression profile (median metal
intensity) of CD4+/CD57- T-cells (upper row) and the CD8a+/CD161- T-cells

(lower row). The statistical method (WA = Welch-ANOVA, or ANOVA = one
way ANOVA) is shown on the top of each column bar. Significance was

accepted when the q value of the false discovery rate (FDR) was below 0.1 and
*p<0.05, **p<0.01. The values shown on the column bar are from the bottom

to the top: lower bar = minimum value, bottom line of the chart = lower

quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3),
upper bar = maximum value.

SUPPLEMENTARY FIGURE 6

The significant differences in the marker expression profile (median metal
intensity) of CD8+/CD161+/CD28+ T-cells (upper row) and the CD8a+dim

T-cells (lower row). The statistical method (KW= Kruskal Wallis test; WA =

Welch-ANOVA, or ANOVA = one way ANOVA) is shown on the top of each
column bar. Significance was accepted when the q value of the false

discovery rate (FDR) was below 0.1 and *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001. The values shown on the column bar are from the bottom

to the top: lower bar = minimum value, bottom line of the chart = lower
quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3),

upper bar = maximum value.

SUPPLEMENTARY FIGURE 7

The significant differences in the marker expression profile (median metal
intensity) of CD3+/CD4-/CD8a-T-cells. The statistical method (KW= Kruskal

Wallis test; WA = Welch-ANOVA, or ANOVA = one way ANOVA) is shown on
the top of each column bar. Significance was accepted when the q value of

the false discovery rate (FDR) was below 0.1 and *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001. The values shown on the column bar are from
the bottom to the top: lower bar = minimum value, bottom line of the chart =

lower quartile (Q1), middle line =median, top line of the chart = upper quartile
(Q3), upper bar = maximum value.
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SUPPLEMENTARY FIGURE 8

The significant differences in the marker expression profile (median metal
intensity) of TCRgd+ T-cells (upper row), CD4+ NKT, or CD8a+ NKT cells

(lower row). The statistical method (KW= Kruskal Wallis test; WA = Welch-

ANOVA, or ANOVA = one way ANOVA) is shown on the top of each column
bar. Significance was accepted when the q value of the false discovery rate

(FDR) was below 0.1 and *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The
values shown on the column bar are from the bottom to the top: lower bar =

minimum value, bottom line of the chart = lower quartile (Q1), middle line =
median, top line of the chart = upper quartile (Q3), upper bar =

maximum value.

SUPPLEMENTARY FIGURE 9

The significant differences in the marker expression profile (median metal
intensity) of NK cells (upper row), CD56dim/CD98 dim cells (lower row). The

statistical method (KW= Kruskal Wallis test; WA =Welch-ANOVA, or ANOVA =
one way ANOVA) is shown on the top of each column bar. Significance was

accepted when the q value of the false discovery rate (FDR) was below 0.1 and

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The values shown on the
column bar are from the bottom to the top: lower bar = minimum value,

bottom line of the chart = lower quartile (Q1), middle line = median, top line
of the chart = upper quartile (Q3), upper bar = maximum value.

SUPPLEMENTARY FIGURE 10

The significant differences in the marker expression profile (median metal

intensity) of B-cells (upper and middle rows), plasmablasts (lower row). The
statistical method (KW= Kruskal Wallis test; ANOVA = one way ANOVA) is

shown on the top of each column bar. Significance was accepted when the q
value of the false discovery rate (FDR) was below 0.1 and *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001. The values shown on the column bar are from the
bottom to the top: lower bar = minimum value, bottom line of the chart =

lower quartile (Q1), middle line =median, top line of the chart = upper quartile

(Q3), upper bar = maximum value.

SUPPLEMENTARY FIGURE 11

he significant differences in the marker expression profile (median metal

intensity) of Monocytes (upper row), CD11cdim/ CD172adim cells (middle and
lower rows). The statistical method (KW= Kruskal Wallis test; WA = Welch-

ANOVA, or ANOVA = one way ANOVA) is shown on the top of each column

bar. Significance was accepted when the q value of the false discovery rate
(FDR) was below 0.1 and *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The

values shown on the column bar are from the bottom to the top: lower bar =
minimum value, bottom line of the chart = lower quartile (Q1), middle line =

median, top line of the chart = upper quartile (Q3), upper bar =
maximum value.

SUPPLEMENTARY FIGURE 12

The significant differences in the marker expression profile (median metal

intensity) of mDCs cells (upper row), pDCs cells (lower row). The statistical
method (KW= Kruskal Wallis test; WA = Welch-ANOVA, or ANOVA = one way

ANOVA) is shown on the top of each column bar. Significance was accepted
when the q value of the false discovery rate (FDR) was below 0.1 and *p<0.05,

**p<0.01, ***p<0.001. The values shown on the column bar are from the

bottom to the top: lower bar = minimum value, bottom line of the chart =
Frontiers in Immunology 20199
lower quartile (Q1), middle line =median, top line of the chart = upper quartile
(Q3), upper bar = maximum value.

SUPPLEMENTARY FIGURE 13

Visualizations, tSNE maps of the subpopulations (metaclusters, MCs) defined

by the FlowSOM analysis. (A) The 2–dimensional viSNE plots of the 20 MCs of
CD4+/CD57- T-cells (left). (B) The 2–dimensional viSNE plots of the 16 MCs

of CD8+/CD161- T-cells (left). (C) The 2–dimensional viSNE plots of the 10
MCs of CD8adim/CD47dim T-cells (left). One dot corresponds to one cell

(left). The different colors represent the different MCs (left). The red arrows

highlight the significant differences in the distribution of MCs among the
studied groups. The cell density plots demonstrate the number of cells in the

MCs within the studied groups (right). Red color is proportional with high,
blue color is proportional with low cell density (right). Red boxes and Arabic

numbers demonstrate the distribution of MCs with significant differences
among the studied groups.

SUPPLEMENTARY FIGURE 14

Visualisations, viSNE maps of the subpopulations (metaclusters, MCs) defined

by the FlowSOM analysis. (A) The 2–dimensional viSNE plots of the 6 MCs of
CD4-/CD8- T-cells (left). (B) The 2–dimensional viSNE plots of the 12 MCs of

TCRgd+T-cells (left). (C) The 2–dimensional viSNE plots of the 14 MCs of NK
cells (left). One dot corresponds to one cell (left). The different colors

represent the different MCs (left). The red arrows highlight the significant
differences in the distribution of MCs among the studied groups. The cell

density plots demonstrate the number of cells in the MCs within the studied

groups (right). Red color is proportional with high, blue color is proportional
with low cell density (right). Red boxes and Arabic numbers demonstrate the

distribution of MCs with significant differences among the studied groups.

SUPPLEMENTARY FIGURE 15

Visualisations, viSNE maps of the subpopulations (metaclusters, MCs) defined

by the FlowSOM analysis. (A) The 2–dimensional viSNE plots of the 7 MCs of

CD56dim/CD98dim cells (left). (B) The 2–dimensional viSNE plots of the 19
MCs of B-cells (left). (C) The 2–dimensional viSNE plots of the 2 MCs of

plasmablasts (left). One dot corresponds to one cell (left). The different colors
represent the different MCs (left). The red arrows highlight the significant

differences in the distribution of MCs among the studied groups. The cell
density plots demonstrate the number of cells in the MCs within the studied

groups (right). Red color is proportional with high, blue color is proportional

with low cell density (right). Red boxes and Arabic numbers demonstrate the
distribution of MCs with significant differences among the studied groups.

SUPPLEMENTARY FIGURE 16

Visualisations, viSNE maps of the subpopulations (metaclusters, MCs) defined

by the FlowSOM analysis. The 2–dimensional viSNE plots of the 15 MCs of
Monocytes (left). One dot corresponds to one cell (left). The different colors

represent the different MCs (left). The red arrows highlight the significant

differences in the distribution of MCs among the studied groups. The cell
density plots demonstrate the number of cells in the MCs within the studied

groups (right). Red color is proportional with high, blue color is proportional
with low cell density (right). Red boxes and Arabic numbers demonstrate the

distribution of MCs with significant differences among the studied groups.
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Single-cell transcriptomic
analysis of hematopoietic
progenitor cells from patients
with systemic lupus
erythematosus reveals
interferon-inducible
reprogramming in
early progenitors
Anastasia Filia1*†, Ioannis Mitroulis2†, Catherine Loukogiannaki1,
Maria Grigoriou1,2, Aggelos Banos1, George Sentis1,
Stavroula Giannouli3, Vassiliki Karali4, Emmanouil Athanasiadis5,
Ioannis Kokkinopoulos1*† and Dimitrios T. Boumpas1,4†

1Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and
Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece, 21st
Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of
Thrace, Alexandroupolis, Greece, 32nd Department of Internal Medicine, Ippokrateion Hospital,
National and Kapodistrian University of Athens, Athens, Greece, 44th Department of Internal Medicine,
Attikon University Hospital, National and Kapodistrian University of Athens Medical School,
Athens, Greece, 5Medical Image and Signal Processing Laboratory, Department of Biomedical
Engineering, University of West Attica, Athens, Greece
Introduction: Immune cells that contribute to the pathogenesis of systemic

lupus erythematosus (SLE) derive from adult hematopoietic stem and progenitor

cells (HSPCs) within the bone marrow (BM). For this reason, we reasoned that

fundamental abnormalities in SLE can be traced to a BM-derived HSPC

inflammatory signature.

Methods: BM samples from four SLE patients, six healthy controls, and two

umbilical cord blood (CB) samples were used. CD34+ cells were isolated from

BM and CB samples, and single-cell RNA-sequencing was performed.

Results: A total of 426 cells and 24,473 genes were used in the analysis.

Clustering analysis resulted in seven distinct clusters of cell types. Mutually

exclusive markers, which were characteristic of each cell type, were identified.

We identified three HSPC subpopulations, one of which consisted of proliferating

cells (MKI67 expressing cells), one T-like, one B-like, and two myeloid-like

progenitor subpopulations. Differential expression analysis revealed i) cell

cycle-associated signatures, in healthy BM of HSPC clusters 3 and 4 when

compared with CB, and ii) interferon (IFN) signatures in SLE BM of HSPC

clusters 3 and 4 and myeloid-like progenitor cluster 5 when compared with

healthy controls. The IFN signature in SLE appeared to be deregulated following
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between SLE and healthy controls in HSPC subpopulations.

Discussion: This study revealed both quantitative—as evidenced by decreased

numbers of non-proliferating early progenitors—and qualitative differences—

characterized by an IFN signature in SLE, which is known to drive loss of function

and depletion of HSPCs. Chronic IFN exposure affects early hematopoietic

progenitors in SLE, which may account for the immune aberrancies and the

cytopenias in SLE.
KEYWORDS

single cell RNA sequencing, SLE, bone marrow, hematopoiesis, interferon signaling
1 Introduction

Hematopoietic stem and progenitor cells (HSPCs) represent a

primitive multipotent population that gives rise to all blood cell

types (1). HSPCs reside in the bone marrow (BM) niche and remain

in a quiescent state. Under hematopoietic stress, including

inflammation, these cells respond with proliferation and

differentiation, in order to replenish any progeny needed (2, 3).

HSPCs are an integral part of the immune response with the ability

to sense inflammatory stimuli in infectious and chronic inflammatory

diseases, since they are equipped with receptors for pathogen-derived

stimuli, several cytokines, such as interferons and IL-1b, or myeloid-

related growth factors. Studies in animal models have shown that

HSPCs are important players in the initiation and perpetuation of the

inflammatory processes in systemic lupus erythematosus (SLE) (4),

rheumatoid arthritis (5), and spondyloarthritis (6).

A prolonged exposure to inflammatory stimuli during chronic

inflammatory diseases has long-lasting effects on the BM cell

output’s nature through epigenetic modifications in HSPCs (1, 7,

8). The reprogramming of HSPCs by inflammatory stimuli can alter

mature cell output, resulting in the generation of effector cells with

inflammatory properties (7, 9, 10).

It has been demonstrated that an interplay between

environmental, genetic, and epigenetic factors promotes SLE (11).

A key observation in SLE is that most cells participating in its

pathogenesis such as lymphocytes, monocytes, and neutrophils

originate from HSPCs (11). We have reasoned that the

fundamental molecular aberrations in SLE may be traced back in

the HSPCs within the BM. To this direction, we collected human

CD34+ cells from healthy and SLE patients as well from newborn

umbilical cord blood (CB) and we performed deep RNA sequencing

analysis, at the single-cell level. We report that interferon signaling,
Cs, hematopoietic stem

d; IFN, interferon; TF,

is; FDR, false discovery

pliced in.

02203
which is a major player in disease pathogenesis, already affects early

hematopoietic progenitors in SLE. Differential mRNA splicing

analysis underscored alterations in the cell cycle and DNA repair

machineries in SLE BM-derived HPSCs, when compared with

healthy-derived HSPCs. These data suggest that HSPCs act as

sensors of interferon-related inflammatory signals, initiating the

inflammatory process that characterizes SLE.
2 Methods

2.1 Human samples

BM aspirates were obtained from four SLE individuals and six

age- and sex-matched healthy volunteers. Patients’ clinical and

serological characteristics are summarized in Supplementary

Table 1. Informed consent was obtained from all patients prior to

sample collection (Athens, Greece, protocol 10/22-6-2017). Two

umbilical CB samples were donated from the Hellenic Cord Blood

Bank, Biomedical Research Foundation of Academy of

Athens (BRFAA).
2.2 Isolation of human CD34+
progenitor cells

Human heparinized BM aspirate (10 ml) was collected from

healthy and SLE patients and subjected to density gradient

centrifugation using Histopaque-1077 (Sigma-Aldrich). Briefly,

blood was diluted 1:3 PBS and carefully layered over Histopaque

medium. Tubes were centrifuged at 500 g for 30 min (no break) at

room temperature. BM mononuclear cells were isolated using

Histopaque-1077 (Sigma-Aldrich). BM mononuclear cells were

washed, and erythrocytes were lysed with RBC buffer (420301,

BioLegend). CD34+ cells were isolated using EasySep™ Human

CD34 Positive Selection Kit II (18056, StemCell Technologies).

Purity was tested and was >95%.
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2.3 Single cell RNA sequencing
data processing

Human CD34+ cells were loaded on Fluidigm C1 IFC. Single-

cell capture and RNA extraction were performed on the IFC.

Reverse transcription and amplification were performed using the

SMART-Seq v.4 cDNA synthesis kit, and libraries were prepared

using the Illumina Nextera XT kit. Libraries were sequenced 75 bp

or 150 bp paired-end on the Illumina MiSeq or NextSeq500

platforms. Single-cell RNA-sequencing experiments were carried

out at the Greek Genome Center, BRFAA.

Sequencing files were demultiplexed and converted to FASTQ

format using Illumina bcl2fastq software. FASTQC v.0.11.7

software was used for quality control. Adapters and low-quality

bases (Q<30) were trimmed from the 3′ end of the reads using

Cutadapt v.1.18 (12). Alignment was performed against the primary

assembly of GRCh38 using STAR v.2.6.1b (13), and quantification

was performed using gencode_v29 annotation using HTSeq

v.0.11.1 (14).

Quality control analysis was performed in order to remove

poor-quality cells, which could be dead or dying. Cells were

excluded if the alignment rate was <50%, the numbers of detected

genes (at least one count) were <200 and >6,000, and the percentage

of reads mapping to mitochondrial genes was >20%. Following

filtering with the above criteria, 426 were used for further analysis.

The Seurat R package (v.4) (15) and harmony (16) were used for

normalization and graph-based clustering. A resolution of 0.7 was

used for UMAP clustering. The FindMarkers function was used for

marker identification using the wilcox.test method (cell fraction in

each subpopulation >0.2, logFC >0.2, and p < 0.01). The cell-cycle

state of each cell was predicted by scoring cells for their cell cycle

phase using Seurat’s CellCycleScoring function. The stemness score

of each cell was calculated using the UCell R package (17) with a

gene set as reported elsewhere (18). Pairwise Mann–Whitney rank-

sum tests were performed for the stemness score between clusters.

The interferon (IFN) score was calculated accordingly using a gene

set, which is a union of modules M1.2, M3.4, and M5.12 as reported

elsewhere (19).
2.4 Gene regulatory network analysis

The single-cell RNA-seq data were further analyzed by using

SCENIC (20). SCENIC is a computational method that reconstructs

gene regulatory networks and identifies cell states from single-cell

RNA-seq data. There are three major R/Bioconductor packages that

SCENIC depends on GENIE3 (21), RcisTarget (20), and AUCell

(20). GENIE3 identifies potential transcription factor (TF) targets

that are coexpressed with those TFs. Then, RcisTarget identifies the

direct targets via cis-regulatory motif analysis and creates the

regulons (transcription factor regulatory networks). Lastly,

AUCell scores the activity of each regulon on single cells. It

should be noted that all graphs except violin plots were

constructed using the binary values of the AUCell algorithm.

Specifically, SCENIC was utilized to create the regulons, estimate

the transcription factors’ activity scores, and perform an
Frontiers in Immunology 03204
enrichment analysis on them. Differential regulon activity analysis

between SLE and healthy controls was performed in each regulon

cluster. Differential regulon activity was considered significant when

p < 0.05. Results were visualized by UMAPs, heatmaps, pie charts,

and violin plots. Scripts were based on the work of Zhu et al. (22)

and the SCENIC vignettes offered by Aibar et al. (20).
2.5 Differential expression

The Seurat FindMarkers function was used for differential

expression analysis using the wilcox.test method between a) SLE

and H controls and b) H vs. CB in each cluster. No DE was

performed If cells per condition per cluster were less than 10. Gene

set enrichment analysis (GSEA) (23) was performed in order to

reveal enriched signatures in our gene sets based on the Molecular

Signatures Database v.2022.1.Hs collections (Hallmark gene sets,

GO Biological Processes, KEGG, and REACTOME pathways).

Gene sets were ranked by taking the –log10 transform of the p-

value multiplied by the fold change. Significantly upregulated genes

were at the top and significantly downregulated genes were at the

bottom of the ranked list. GSEA pre-ranked analysis was then

performed using the default settings. Enrichment was considered

significant when false discovery rate (FDR) < 0.05.
2.6 Differential alternative splicing

Differential alternative splicing (DAS) was performed between

SLE and healthy controls for each cluster separately using rMATS

turbo v4.1.2 (24). BAM files were merged for each participant per

cluster and used as input for the detection of differential alternative

splicing (DAS) events between SLE and healthy controls in each

cluster. Briefly, the number of supporting reads was counted by the

junction reads only. For each event, the difference in the percent-

spliced-in (PSI) values, which represent the fraction of transcripts

that include a particular exon or spliced site, between SLE and

healthy controls was calculated. A likelihood ratio test within

rMATS was performed, and DAS events between SLE and healthy

controls were considered significant when FDR <0.05. Enrichment

analysis was performed using the gene names showing significant

DAS events using enrichR (25). Enrichment was considered

significant when FDR <0.05. Sashimi plots were created to

visualize the splicing patterns of genes between SLE and healthy

controls using the function rmats2sashimiplot (https://github.com/

Xinglab/rmats2sashimiplot#usage).
3 Results

3.1 Single-cell transcriptomes of HSPCs in
CB and BM

We sought to assess the molecular changes that take place in the

HSPC signature from early life to adulthood, as well as to address the

effect of SLE-dependent inflammation in this modulation at the single-
frontiersin.org
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cell level. To this end, single-cell RNA sequencing was performed in

isolated CD34+ umbilical cord blood (CB) (n = 2) and bone marrow

(BM) cells from healthy adult individuals (n = 6) and patients with SLE

(n = 4) (Figure 1A). The use of CB-derived cells would be acting as a

“naive” CD34+ hematopoietic progenitor cell population that has not

been affected by the BM microenvironment, therefore providing a

reference point for BM-derived CD34+ HPSC intrinsic differences

between healthy and SLE patients. In total, we obtained transcriptomes

of 426 single cells following quality control filtering (see Methods), 177

of which were healthy BM, 141 were SLE BM, and 108 were CB cells.

The median number of reads was 1,259,063 (range 73,279–6,281,814).

There was no statistically significant difference in the total number of

reads between the three sample types (Kruskal–Wallis chi-squared =

0.33, p = 0.85, Supplementary Figure 1). However, there was a

statistically significant difference in the total number of detected

genes between the three sample types (Kruskal–Wallis chi-squared =

14.7, p < 0.001) with SLE samples expressing more genes compared

with the other two sample types (Supplementary Figure 2).

Unsupervised clustering partitioned the cells in seven clusters

(Figure 1B). Clusters were further defined based on the expression

of lineage markers (26, 27), differentially expressed genes in each

cluster compared with all others (Figure 1C; Supplementary

Table 2) as well as annotation against a reference dataset

(Supplementary Figure 3). Specifically, we identified a cluster

characterized by T-cell markers (cluster 0; T-like progenitors

instead of T-like prog), including IL32, CD3E, TRBC1, and

TRBC2; three clusters that comprised cells expressing HSPC-

related genes (cluster 2, 3, 4; HSPCs), such as CD164, MSI1,

IKFZ1, GATA2, and CD34; two clusters characterized by the

expression of myeloid-related genes (clusters 1 and 5; myeloid-

like progenitors instead of myeloid-like prog), such as MP8,
Frontiers in Immunology 04205
CLEC4C and CD117, LGALS1, CSF2RB, IRF8, FCER1G, and

ANXA2; and finally a cluster characterized by B-cell markers

(cluster 6; B-like progenitors instead of B-like prog), such as

CD79A, CD79B, VPREB3, CD22, CD19, and CD10 (Figure 1C).

Of note, HSPC cluster 4 was characterized by the expression of the

cell-cycle genes MKI67 and CCND2, suggesting characterization of

proliferating HSPCs (Figure 1C). Based on the expression of genes

associated with HSPC stemness (stemness score), we were able to

confirm that clusters 2, 3, and 4 included cells that were

characterized by a stem cell signature (Figure 1D). We then

focused on these three HSPC clusters and assessed the cell-cycle

state of each cell, by scoring cells for their cell-cycle phase (see

Methods). This analysis revealed that HSPC cluster 4 was formed by

proliferating cells (Figure 1E). For instance, increased frequency of

cells expressing MKI67, CDK4, CDK6, CDKN2C, and TP53 and

higher expression of these genes was observed in HSPCs cluster 4 (p

< 0.01, Figure 1F).
3.2 Single-cell transcriptomes of HSPC
subpopulations in SLE BM

We then studied whether SLE-dependent inflammatory signals

act specifically to subpopulations of progenitor cells in the BM. To

do so, we initially assessed the distribution of CB, healthy BM, and

SLE BM CD34+ cells (Figure 2A). Regarding the HSPC clusters 2, 3,

and 4, CD34+ cells from healthy adults were equally distributed to

the three HSPC clusters, whereas the majority of CD34+ CB cells

and only few SLE cells were present in HSPC cluster 2 compared

with clusters 3 and 4, suggesting that this cluster corresponds to a

primitive cell population (Figures 2A, B). Additionally, there was an
B C

D E F

A

FIGURE 1

Lineage-specific alterations in HSPCs using single-cell transcriptomics in patients with SLE. (A) Diagram of analysis pipeline. (B) Uniform manifold
approximation and project (UMAP) visualization of HSPC cells (CD34+) irrespective of disease or developmental stage (cord blood, n = 2, healthy
bone marrow (BM), n = 6, SLE BM, n = 4) based on single-cell transcriptomes. Each dot represents a single cell; colors indicate cell clusters with
numbered labels and cell type annotations. (C) Dot plot of selected marker genes in each identified cluster. (D) Violin plots of stemness signature
score of each cluster (Mann–Whitney rank-sum test p values, **p < 0.01, ***p < 0.001, ****p < 0.0001). (E) Bar plot of cell-cycle phase assignments
for captured cells in the HSPC clusters 2, 3, 4. (F) Dot plot of selected cell-cycle genes in HSPC clusters 2, 3, 4.
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underrepresentation of CD34+ SLE and CB cells in B-like cluster 6.

Taken together, from the naive state of CB cells to HSPCs derived

from the BM of control subjects and then of patients with SLE, there

is an underrepresentation of the primitive cells of cluster 2. In

parallel to these quantitative changes, we addressed whether there

are changes in gene expression within different clusters of HSPCs

using differential expression analysis. GSEA showed a positive

enrichment of cell-cycle-associated signatures, including cell cycle

and DNA replication, regulation of nuclear division, E2F targets,

and G2M checkpoints in healthy BM of HSPCs cluster

4 (Figures 2C, D; Supplementary Table 3) and E2F targets

in healthy BM of HSPCs cluster 3 when compared with

CB of HSPCs cluster 4 and 3, respectively (Figures 2C, E;

Supplementary Table 3).

GSEA between SLE and healthy cells per cluster showed a

positive enrichment of interferon signatures in the SLE HSPCs

cluster 3 and 4 and myeloid-like cluster 5 cells (Figures 3A–D;

Supplementary Table 4; Supplementary Figure 4). This was

accompanied by a positive enrichment of proliferation and

differentiation in HSPCs, including oxidative phosphorylation and

G2-M checkpoint signatures in the SLE myeloid-like cluster 5 cells

(Figure 3A). Of note, when we compared the cell-cycle state of

control and SLE HSPCs in clusters 3 and 4, we observed that the

vast majority of SLE HSPCs in cluster 4 was in the S/G2-M phase

(Figure 3E), whereas the gene expression and the frequency of cells

expressing the cell-cycle-associated genes CDK4, CDK6, CCND2,

and TP53 were increased in SLE HSPCs within cluster 4 compared

with healthy HSPCs although these changes did not reach statistical

significance (Figure 3F).

Transcription factors (TFs) are critical regulators of HSPC

phenotype and lineage bias. In order to study the TFs that could

act as regulators of the transcriptomic changes observed in patients
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with SLE, we performed TF regulatory network analysis of the

single-cell data, which resulted in the identification of six clusters–

regulons (Figure 4A). Regulon 0 included the HSPC clusters 2, 3, 4

(Figure 4A). Regarding the distribution of cells in the regulons,

regulon 4 was enriched with healthy cells (mainly B-like cluster 6),

which is characterized by the SMAD1, EBF1, LEF1, FOXO1, and

KLF6-regulated networks. Regulon 5 was enriched with SLE cells

(mainly myeloid-like cluster 5 cells), characterized by SPIB and the

interferon-inducible IRF7, IRF8, IRF9-regulated networks

(Figures 4B, C). Differential TF activity analysis between SLE and

healthy controls within regulon 0, which includes the HPSC

clusters, showed increased predicted activity of the TFs IRF7 and

IRF9 as regulators of transcriptomic changes in SLE (p < 0.05,

Figure 4D; Supplementary Table 5), further supporting that HSPCs

in SLE are targeted by IFNs.
3.3 Differential alternative splicing in
SLE HSPCs

Alternative splicing represents a vital component of the gene

regulation process through the reduction of mRNA translation or

the production of non-functional or malfunctional proteins.

Previous studies have shown that SLE-related genes are subject to

alternative splicing (28, 29). Therefore, we sought to identify

whether alternative splicing events might affect hematopoiesis in

patients with SLE. In total, we observed a larger number of splicing

events in HSPC cluster 4 compared with other clusters (Figure 5A).

Significant differential alternative splicing events between patients

with SLE and healthy controls was observed in HSPC cluster 4 cells

only with the most frequent type of event being skipped exon

(Figure 5B). There were 383 genes affected by differential alternative
B

C D E

A

FIGURE 2

Quantitative differences per condition and qualitative differences in patients with SLE versus CB. (A) Uniform manifold approximation and project
(UMAP) visualization of HSPC cells (CD34+) per sample type (cord blood, n = 2, healthy bone marrow (BM), n = 6, SLE BM, n = 4) based on single-
cell transcriptomes. (B) Bar plot of cluster assignments for captured cells in each sample type. (C) Dot plot of GSEA-enriched terms following
differential expression analysis between healthy controls and CB samples in HSPC clusters 2, 3, 4. (D, E) Heatmap of genes supporting the enriched
cell-cycle-related pathways in healthy controls vs. CB in HSPC clusters 3 and 4.
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splicing (DAS) in HSPC cluster 4, and these genes were enriched in

pathways associated with cell proliferation, such as G2-M

checkpoint, replication, translation and DNA repair, and

interferon pathways (Figure 5C), providing supportive evidence
Frontiers in Immunology 06207
that these mechanisms are dysregulated in SLE HSPCs. Particularly,

IFN-related genes such as SELL and CD74 were found to be affected

by DAS giving rise to different proportions of two isoforms per gene

in SLE when compared with healthy controls (Figures 5D, E).
B C D

E F

A

FIGURE 3

Qualitative differences in patients with SLE compared with healthy controls. (A) Dot plot of GSEA enriched terms following differential expression
analysis between SLE and healthy controls in HSPC clusters 3 and 4 and myeloid-like cluster 5. (B–D) Heatmaps of genes supporting the enriched
IFN-related pathways in SLE BM vs. healthy controls in HSPC clusters 3 and 4 and myeloid-like cluster 5, respectively. (E) Pie charts showing the
composition of each cell-cycle phase in healthy BM and SLE BM in HSPC clusters 3 and 4. (F) Dot plot of selected cell-cycle genes in healthy BM
and SLE BM in HSPC clusters 4.
B

C D

A

FIGURE 4

Transcription factor regulatory network analysis in HSPCs. (A) UMAP visualization of HSPC clustering based on regulons. Each pie chart shows the
composition of each regulon cluster by cell type (defined based on single-cell gene expression). (B) Pie charts showing the composition of each
regulon cluster by sample type. (C) Representative display of transcription factor regulon activity as binary outcome (blue: present, white = non-
present) in each regulon. (D) Violin plots of IRF7 and IRF9 activity scores per sample type in regulon 0 (mainly HSPC clusters 2, 3, 4).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1383358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Filia et al. 10.3389/fimmu.2024.1383358
4 Discussion

Hematopoietic progenitor cells are considered important

players in the regulation of inflammation, being responsive to

several inflammatory stimuli (7). Previous studies in preclinical

mouse models of rheumatic diseases have shown that HSPCs

are activated giving rise to inflammatory cells of the myeloid

lineage (4–6, 10). Herein, we engaged single-cell RNA-seq to

study, at the single-cell level, the molecular changes of human

bone marrow-derived CD34+ progenitor cells in SLE. Based on the

transcriptomic profile of this heterogeneous cell population (27),

which includes both hematopoietic and myeloid progenitors, we

were able to identify three clusters of cells with HSPC-like

molecular profile. We observed that cells derived from two of

these clusters, clusters 3 and 4, were enriched for genes associated

with IFN signaling. Additionally, analysis for upstream regulators

identified the interferon-dependent TFs IRF7 and IRF9 as possible

TFs that drive the transcriptional modulation of HSPCs in SLE.

Interestingly, there was a decrease in the number of cells in cluster 2

in SLE, which includes cells with increased quiescence, suggesting a

transition of the HSPCs toward a proliferative state. Also, there was

a decrease in the number of B-like cluster 6 cells in SLE and CB

compared with healthy adults. In SLE, this is possibly due to the

inflammation-driven myelopoiesis bias. On the other hand, in CB,

due to the lack of exposure in environmental factors and
Frontiers in Immunology 07208
inflammation, this is possibly due to the fact that these cells are

more lineage primed based on their decreased stemness score.

Type I interferons (IFNs) are key players in steady state and

autoimmunity. Interferon signaling is important for functional

innate immunity, whereas various cell types produce interferons

and express ISGs (interferon-stimulated genes) (30, 31). Terminally

differentiated cells such as monocytes/macrophages, dendritic cells,

and plasmacytoid cells produce IFNs in infection and

autoimmunity. The type I-IFN pathway is genetically and

mechanistically important for lupus pathogenesis (32–34).

Transcriptomic analyses, both bulk and single-cell, have shown

that high ISG expression represents a key signature for lupus

pathogenesis (35–37). Interferon-targeted therapies (e.g.,

anifrolumab) (38) or cell-targeted therapies toward types

producing type-I IFNs (e.g., belimumab) (39) have a constantly

augmenting role in the armamentarium against SLE.

HSPCs are affected by IFN signaling, as shown in animal models

(40–42). Chronic exposure to IFN-a is known to induce cell cycle

entry and impair the stem cell activity in hematopoietic stem cells

by inducing DNA damage (41), whereas dormant HSCs are

protected from IFN-induced attrition by a circular RNA that

binds and blocks the activity of the DNA sensor cGAS (43). To

this direction, we show in the present study that SLE-dependent

IFN signaling results in enhanced expression of cell cycle-related

genes in cluster 4, a cluster that includes cells with enhanced
B

C D E

A

FIGURE 5

Alternative splicing events in HSPCs. (A) Number of total alternative splicing events in each cluster irrespective of disease or developmental stage.
Each pie chart shows the composition of each cluster by alternative splicing event types (SE, skipped exon; RI, retained intron; MXE, mutually
exclusive exons; A5SS, alternative 5′ splicing site; A3SS, alternative 3′ splicing site). (B) Number of differential alternative splicing (DAS) events in HSPC
cluster 4 for each event type. Orange color represents the DAS events with higher inclusion level of exons in SLE and blue DAS events with lower
inclusion level in SLE (C) Dot plot of EnrichR-enriched terms following differential alternative splicing analysis between SLE and healthy controls in
HSPCs cluster 4. (D, E) Representative display of differential SELL and CD74 (IFN-related genes) exon usage in SLE versus healthy controls,
respectively. The arcs connecting exons in the plot represent splice junctions, and their thickness provides a visual representation of the read
coverage supporting those junctions. Differential splicing is measured in terms of the difference in the per cent spliced in dPSI. For example, the
inclusion level of the splice site of SELL is 11% higher in SLE; therefore, the difference in PSI (SLE vs. healthy; dPSI) is 0.11.
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proliferative potential. Except for the effect of type I interferons in

cell-cycle entry, they can drive epigenetic changes in progenitor

cells, which are reflected in their progeny. For instance, type I

interferon signaling in progenitor cells in response to induction of

trained immunity imprinted an inflammatory signature, which

resulted in the generation of granulocytes with inflammatory and

tumor suppressing properties (44). Based on this observation, we

show herein that IFN signaling in SLE acts on bone marrow HSPCs,

which could drive the generation of inflammatory cells of the

myeloid lineage that can fuel disease activity and prime them to

respond to secondary stimuli, contributing in the development of

disease flares.

Even though peripheral destruction is the main cause of

cytopenias in SLE, bone marrow failure has been also described.

IFN signaling is the causal factor of aplastic anemia (AA),

a prototypic autoimmune bone marrow failure disorder (45, 46).

In AA, IFN-g released in the bone marrow inflicts damage and

attrition of CD34+ progenitor cells, causing pancytopenia (22, 46).

Based on the effect of chronic IFN signaling in the suppression of

HSC function, our data support a possible contribution of HSC

dysfunction in SLE-associated cytopenias. Interestingly, altered

alternative splicing events have been observed in HSPCs from

patients with AA (22), further supporting a possible shared

mechanism between the two disorders.

In addition to HSPCs, we identified a cluster of cells with

myeloid transcriptomic features (myeloid-like cluster 5) that was

significantly altered in patients with SLE. Specifically, within this

cluster, genes associated with pathways associated with

inflammation, including IFN and TNF signaling, the cell cycle-

related pathway G2/M transition and hypoxia, and reactive oxygen

species pathway, were upregulated in SLE. Previous studies have

shown that there is a myeloid cell signature in bone marrow

progenitor cells in SLE (4), whereas neutrophils and monocytes

are critical effector cell populations in the pathogenesis of severe

disease complications, such as nephritis (32). In this direction, in

addition to HSPCs, we show that progenitor cells with a myeloid

bias based on the transcriptomic signature are affected by IFN,

whereas other clusters of cells such as cells with a T- and B-like

signature are unaffected.

A fundamental question is whether the IFN-related signature in

HSPCs acts as the initiator of disease phenotype, or it is a secondary

effect that further amplifies the cascade of events that characterize

SLE-dependent inflammation. This study cannot be addressed by

our experimental setting, since BM samples from asymptomatic

subjects that will develop SLE in the future are needed to distinguish

whether HSPCs are the starting point of the inflammatory process

in SLE, which makes this type of experimental process not possible.

Taken together, single-cell analysis of BM cells from patients

with SLE demonstrated that interferon signaling, a major player in

disease pathogenesis, affects early hematopoietic progenitors. Early

imprinting of the interferon signature in HSPCs is likely to affect

their progeny downstream, promoting the initiation and

progression of the disease. Together, these data suggest that the

fundamental aberrancies in SLE could be traced back to the HSPCs.

Whether novel therapies that target IFNs can reverse the imprinted

inflammatory signature in HSPCs and to what extent this reversal
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can result in the modulation of the function of the generated

immune cells is to be shown.
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20. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: Single-cell regulatory network inference and
clustering. Nat Methods. (2017) 14:1083–6. doi: 10.1038/nmeth.4463

21. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory
networks from expression data using tree-based methods. PloS One. (2010) 5:e12776.
doi: 10.1371/journal.pone.0012776

22. Zhu C, Lian Y, Wang C, Wu P, Li X, Gao Y, et al. Single-cell transcriptomics
dissects hematopoietic cell destruction and T-cell engagement in aplastic anemia.
Blood. (2021) 138:23–33. doi: 10.1182/blood.2020008966

23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50.
doi: 10.1073/pnas.0506580102

24. Shen S, Park JW, Lu Z, Lin L, Henry MD, Wu YN, et al. rMATS: robust and
flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc
Natl Acad Sci U.S.A. (2014) 111:E5593–5601. doi: 10.1073/pnas.1419161111

25. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr:
interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf.
(2013) 14:128. doi: 10.1186/1471-2105-14-128

26. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, et al. Human
haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol.
(2017) 19:271–81. doi: 10.1038/ncb3493

27. Pellin D, Loperfido M, Baricordi C, Wolock SL, Montepeloso A, Weinberg OK,
et al. A comprehensive single cell transcriptional landscape of human hematopoietic
progenitors. Nat Commun. (2019) 10:2395. doi: 10.1038/s41467-019-10291-0

28. Dam EM, Habib T, Chen J, Funk A, Glukhova V, Davis-Pickett M, et al. The
BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling
and development in humans. Clin Immunol. (2016) 173:171–80. doi: 10.1016/
j.clim.2016.10.018

29. Papanikolaou S, Bertsias GK, Nikolaou C. Extensive changes in transcription
dynamics reflected on alternative splicing events in systemic lupus erythematosus
patients. Genes (Basel). (2021) 12:1260. doi: 10.3390/genes12081260

30. Jiang J, Zhao M, Chang C, Wu H, Lu Q. Type I interferons in the pathogenesis
and treatment of autoimmune diseases. Clin Rev Allergy Immunol. (2020) 59:248–72.
doi: 10.1007/s12016-020-08798-2
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1383358/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1383358/full#supplementary-material
https://doi.org/10.1038/nri3062
https://doi.org/10.1016/j.it.2010.12.003
https://doi.org/10.1016/j.it.2010.12.003
https://doi.org/10.1038/nri2726
https://doi.org/10.1136/annrheumdis-2019-215782
https://doi.org/10.3324/haematol.2018.197210
https://doi.org/10.3324/haematol.2018.197210
https://doi.org/10.1038/s41467-019-13853-4
https://doi.org/10.1038/s41590-019-0402-5
https://doi.org/10.1161/ATVBAHA.120.314215
https://doi.org/10.1084/jem.20201541
https://doi.org/10.1016/j.cell.2022.03.043
https://doi.org/10.1136/ard-2022-223741
https://doi.org/10.1136/ard-2022-223741
https://doi.org/10.14806/ej.17.1
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1016/j.csbj.2021.06.043
https://doi.org/10.1038/s41421-021-00296-9
https://doi.org/10.1038/s41421-021-00296-9
https://doi.org/10.1002/art.38628
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1182/blood.2020008966
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.1419161111
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1038/ncb3493
https://doi.org/10.1038/s41467-019-10291-0
https://doi.org/10.1016/j.clim.2016.10.018
https://doi.org/10.1016/j.clim.2016.10.018
https://doi.org/10.3390/genes12081260
https://doi.org/10.1007/s12016-020-08798-2
https://doi.org/10.3389/fimmu.2024.1383358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Filia et al. 10.3389/fimmu.2024.1383358
31. Crow MK, Ronnblom L. Type I interferons in host defence and inflammatory
diseases. Lupus Sci Med. (2019) 6:e000336. doi: 10.1136/lupus-2019-000336

32. Caielli S, Wan Z, Pascual V. Systemic lupus erythematosus pathogenesis:
interferon and beyond. Annu Rev Immunol. (2023) 41:533–60. doi: 10.1146/annurev-
immunol-101921-042422

33. Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the
mystery of the disease. Lupus Sci Med. (2019) 6:e000270. doi: 10.1136/lupus-2018-
000270

34. Bradford HF, Haljasmägi L, Menon M, McDonnell TCR, Särekannu K, Vanker
M, et al. Inactive disease in patients with lupus is linked to autoantibodies to type I
interferons that normalize blood IFNa and B cell subsets. Cell Rep Med. (2023)
4:100894. doi: 10.1016/j.xcrm.2022.100894

35. Panousis NI, Bertsias GK, Ongen H, Gergianaki I, Tektonidou MG, Trachana M,
et al. Combined genetic and transcriptome analysis of patients with SLE: distinct,
targetable signatures for susceptibility and severity. Ann Rheum Dis. (2019) 78:1079–
89. doi: 10.1136/annrheumdis-2018-214379

36. Nehar-Belaid D, Hong S, Marches R, Chen G, Bolisetty M, Baisch J, et al.
Mapping Systemic Lupus Erythematosus heterogeneity at the single-cell level. Nat
Immunol. (2020) 21:1094–106. doi: 10.1038/s41590-020-0743-0

37. Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and
other autoimmune diseases. Immunity . (2006) 25:383–92. doi: 10.1016/
j.immuni.2006.08.010

38. Vital EM, Merrill JT, Morand EF, Furie RA, Bruce IN, Tanaka Y, et al.
Anifrolumab efficacy and safety by type I interferon gene signature and clinical
subgroups in patients with SLE: post hoc analysis of pooled data from two phase III
trials. Ann Rheum Dis. (2022) 81:951–61. doi: 10.1136/annrheumdis-2021-221425
Frontiers in Immunology 10211
39. Wilkinson C, Henderson RB, Jones-Leone AR, Flint SM, Lennon M, Levy RA,
et al. The role of baseline BLyS levels and type 1 interferon-inducible gene signature
status in determining belimumab response in systemic lupus erythematosus: a post hoc
meta-analysis. Arthritis Res Ther. (2020) 22:102. doi: 10.1186/s13075-020-02177-0
40. Essers MAG, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA,

et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. (2009)
458:904–8. doi: 10.1038/nature07815
41. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, et al.

Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem
cells. Nature. (2015) 520:549–52. doi: 10.1038/nature14131
42. Pietras EM, Lakshminarasimhan R, Techner J-M, Fong S, Flach J, Binnewies M,

et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect
of chronic exposure to type I interferons. J Exp Med. (2014) 211:245–62. doi: 10.1084/
jem.20131043

43. Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z, et al. A circular RNA protects dormant
hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity.
(2018) 48:688–701.e7. doi: 10.1016/j.immuni.2018.03.016

44. Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A, Grinenko T,
et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell.
(2020) 183:771–785.e12. doi: 10.1016/j.cell.2020.09.058

45. Lin F, Karwan M, Saleh B, Hodge DL, Chan T, Boelte KC, et al. IFN-g causes
aplastic anemia by altering hematopoietic stem/progenitor cell composition and
disrupting lineage differentiation. Blood. (2014) 124:3699–708. doi: 10.1182/blood-
2014-01-549527

46. Smith JNP, Kanwar VS, MacNamara KC. Hematopoietic stem cell regulation by
type I and II interferons in the pathogenesis of acquired aplastic anemia. Front
Immunol. (2016) 7. doi: 10.3389/fimmu.2016.00330
frontiersin.org

https://doi.org/10.1136/lupus-2019-000336
https://doi.org/10.1146/annurev-immunol-101921-042422
https://doi.org/10.1146/annurev-immunol-101921-042422
https://doi.org/10.1136/lupus-2018-000270
https://doi.org/10.1136/lupus-2018-000270
https://doi.org/10.1016/j.xcrm.2022.100894
https://doi.org/10.1136/annrheumdis-2018-214379
https://doi.org/10.1038/s41590-020-0743-0
https://doi.org/10.1016/j.immuni.2006.08.010
https://doi.org/10.1016/j.immuni.2006.08.010
https://doi.org/10.1136/annrheumdis-2021-221425
https://doi.org/10.1186/s13075-020-02177-0
https://doi.org/10.1038/nature07815
https://doi.org/10.1038/nature14131
https://doi.org/10.1084/jem.20131043
https://doi.org/10.1084/jem.20131043
https://doi.org/10.1016/j.immuni.2018.03.016
https://doi.org/10.1016/j.cell.2020.09.058
https://doi.org/10.1182/blood-2014-01-549527
https://doi.org/10.1182/blood-2014-01-549527
https://doi.org/10.3389/fimmu.2016.00330
https://doi.org/10.3389/fimmu.2024.1383358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores novel approaches and diagnoses to treat 

immune disorders.

The official journal of the International Union of 

Immunological Societies (IUIS) and the most cited 

in its field, leading the way for research across 

basic, translational and clinical immunology.

Discover the latest 
Research Topics

See more 

Frontiers in
Immunology

https://www.frontiersin.org/journals/immunology/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Single-cell analysis on the pathophysiology of autoimmune diseases
	Table of contents
	Editorial: Single-cell analysis on the pathophysiology of autoimmune diseases
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Single-cell transcriptomics reveals cell type–specific immune regulation associated with anti-NMDA receptor encephalitis in humans
	1 Introduction
	2 Materials and methods
	2.1 Processing of patient samples
	2.2 Generation and sequencing of single-cell libraries
	2.3 The V (d) J library preparation and sequencing
	2.4 ScRNA-seq bioinformatics analysis
	2.4.1 Construction, quality control, and filtering of feature-barcode matrix
	2.4.2 Feature selection, dimension reduction, and visualization for high-dimensional data
	2.4.3 Identification of differentially expressed genes (DEGs) and marker genes
	2.4.4 Functional enrichment analysis of DEGs
	2.4.5 Pseudo time-trajectory analysis of different cell types
	2.4.6 BCR and TCR data analysis
	2.4.7 Statistical analysis

	2.5 Cytokine and chemokine measurement

	3 Results
	3.1 Study design and single-cell survey of major changes in transcriptional profiles between anti-NMDARE patients and HCs
	3.2 Anti-NMDARE induces strong humoral immune responses
	3.3 Extensive B cell heterogeneity
	3.4 Characterization of BCRs
	3.5 Expression of inflammatory cytokines and chemokines in myeloid subsets

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Diagnostic gene signatures and aberrant pathway activation based on m6A methylation regulators in rheumatoid arthritis
	Introduction
	Materials and methods
	Dataset collection and processing
	Cell lines and cell transfection
	Random forest optimization using boruta
	Regression partition tree
	Least absolute shrinkage and selection operator
	Extreme gradient boosting
	Logistic regression
	Pathway analysis
	scRNA-seq analysis
	Real-time qPCR analysis and western blot analysis
	Cell viability assay and cell cycle analysis
	Flow cytometric analysis and enzyme linked immunosorbent assay
	Immunohistochemistry
	Statistical analyses

	Results
	Performance of RA classification approaches using the m6A regulators
	The more important m6A methylation regulators in the RA classification
	Pathway and network analysis of the IGF2BP3 and YTHDC2 targets
	The importance of IGF2BP3 in the viability and cell cycle of RA-FLSs
	Correlation between IGF2BP3 expression and inflammatory activity
	scRNA-seq revealed the relationship between IGF2BP3 expression and M1 macrophage polarization

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Single-cell computational machine learning approaches to immune-mediated inflammatory disease: New tools uncover novel fibroblast and macrophage interactions driving pathogenesis
	Introduction
	Fibroblasts play important roles in different inflammatory disease tissue pathology
	Single-cell transcriptomics-driven computational methods reveal predicted interactomes between fibroblasts and myeloid cells
	Novel computational approaches to spatial transcriptomics reveal spatial interactions across cell types
	Cross-tissue single-cell integrative analysis reveals shared mechanisms
	Opportunities for developing therapeutical strategies targeting fibroblast and macrophage interactions for inflammatory diseases
	Future directions
	Author contributions
	Funding
	Acknowledgments
	References

	Single-cell RNA-seq analysis identifies distinct myeloid cells in a case with encephalitis temporally associated with COVID-19 vaccination
	Introduction
	Materials and methods
	Subjects and PBMC preparation
	Isolation of PBMCs
	TotalSeq-C hashtag antibody staining, single cell library preparation and sequencing
	Bioinformatics analysis
	Data availability

	Results
	Case presentation
	Distinct myeloid cell population can be observed in the acute phase of encephalitis
	Immunological pathways specific to the distinct myeloid cell population at the acute phase of encephalitis

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Molecular mechanisms governing the progression of nephritis in lupus prone mice and human lupus patients
	Introduction
	Materials and methods
	Mice
	Histological characterization
	Laser microdissection and microarray hybridization
	Microarray data processing
	Gene set variation analysis (GSVA)
	GSVA gene set generation
	Linear regression analysis
	Ingenuity pathway analysis (IPA)
	Multiscale embedded gene co-expression network analysis (MEGENA)
	K-means clustering
	Statistical analysis
	Study approval
	Data availability

	Results
	Renal disease of NZM2328 mice is characterized by escalating stages of inflammation
	Transcriptional profiling uncovers immune populations present at the onset of GN in NZM2328 mice
	Transcriptomic analysis reveals distinct immune profiles of acute, transitional, and chronic GN in NZM2328 mice
	Lack of a robust inflammatory signature in glomeruli of NZM2328 male mice is associated with absence of progression to chronic renal disease
	Inflammatory gene signatures in glomeruli of R27 mice differ from those in NZM2328 mice
	NZM2328.R27 mice exhibit resistance to kidney tubule damage
	Kidney cell signatures enriched in NZM2328.R27 mice correlate with expression of chronic GN risk locus genes
	Gene co-expression network analysis identifies molecular profiles correlating with disease progression in NZM2328 mice
	Identification of gene signatures characterizing GN stages in NZM2328 mice
	Validation of NZM2328 gene expression patterns in an unrelated dataset
	Gene signatures characterizing GN stages in NZM2328 mice identify analogous subsets of human LN patients

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Strategies for optimizing CITE-seq for human islets and other tissues
	1 Introduction
	2 Materials and methods
	2.1 Experimental design
	2.2 PBMC and spleen preparation
	2.3 Flow cytometry of PBMCs to assess clonal sensitivity to enzymatic digestion
	2.4 Human islet preparation
	2.5 Assessing optimal antibody titrations using splenic samples
	2.6 CITE-seq staining of spleen and islets
	2.7 CITE-seq data analysis pipeline

	3 Results
	3.1 Epitopes for several antibody clones in the TotalSeq&trade;-C kit are affected by digestive enzymes
	3.2 Flow cytometry antibody titrations allow estimates of antibody concentrations for CITE-seq studies
	3.3 CITE-seq antibody concentrations determined by flow cytometry allow identification of islet-resident immune populations

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sj&ouml;gren’s syndrome based on integrated bioinformatics and single-cell RNA-seq analysis
	Introduction
	Materials and methods
	Data source
	Weighted gene co-expression network analysis
	Identification of DEGs
	Functional enrichment analysis
	PPI network construction and module analysis
	Selection and validation of hub genes
	Pathways analysis and the correlation with hub genes
	Single-cell RNA-Seq data analysis
	Estimation of immune cell fractions and the correlation with hub genes
	Cell-cell communication analysis
	Prediction and verification of transcription factors
	Gene regulatory network

	Results
	GEO information
	Weighted gene co-expression network analysis of SLE and pSS
	Enrichment analysis of common gene from WGCNA
	Identification and function analyses of common DEGs
	Selection and analysis of hub genes
	Validation of hub genes expression
	Pathways involvement and correlation with hub genes
	The expression of hub genes in single-cell RNA-Seq datasets
	Immune cell fractions and the correlation with hub genes
	Single-cell analysis for the expression of related pathways
	Prediction and verification of TFs

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Corrigendum: Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sj&ouml;gren’s syndrome based on integrated bioinformatics and single-cell RNA-seq analysis
	Publisher’s note

	Multi-omics segregate different transcriptomic impacts of anti-IL-17A blockade on type 17 T-cells and regulatory immune cells in psoriasis skin
	Introduction
	Materials and methods
	Human psoriasis skin before and after systemic IL-17A blockade
	Immune cell-enriched single-cell RNA sequencing analyses of human psoriasis skin
	Harvesting emigrating cells from skin biopsy tissues for immune cell-enriched scRNA-seq
	Single-cell capture and cDNA library preparation
	Single-cell RNA sequencing data generation
	Single-cell data quality control
	Single-cell data integration and harmonization
	Non-linear dimension reduction and clustering analysis

	Microarray analyses of human skin
	RT-PCR analyses of human skin
	Immunohistochemistry analyses of human skin
	Statistics
	Study approval

	Results
	IL-17A blockade reduces T-cell signatures, dendritic cell signatures, and keratinocyte hyperproliferation signatures and increases regulatory molecular expression in psoriasis lesional skin at total skin transcriptome levels
	IL-17A blockade reduces type 17 T-cell signatures in psoriasis lesional skin at single-cell cluster levels.
	IL-17A blockade increases regulatory dendritic cell signatures in psoriasis lesional skin at single-cell cluster levels
	IL-17A blockade reduces IL-17-driven inflammatory mediator expression in suprabasal keratinocytes and increases keratinocyte stem cell marker expression in basal keratinocytes in psoriasis lesional skin at single-cell cluster levels

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	C-type lectin receptor expression is a hallmark of neutrophils infiltrating the skin in epidermolysis bullosa acquisita
	Introduction
	Materials and methods
	Animal experiments
	Human samples and ethics statement
	Mice
	Generation of COL7 vWFA2
	Development of anti-murine COL7vWFA2 IgG
	Induction of experimental EBA
	Histology and immunofluorescence
	Flow cytometry
	Tissue harvesting for single-cell RNA-sequencing
	Single-cell RNA-sequencing and bioinformatics
	Doublet/multiplet simulation and low-quality cell pruning
	Anchoring, integration, and downstream analysis
	Differential gene expression analysis
	Gene class and GO analysis
	Marker gene module scoring
	Pseudotime analysis
	Statistical analyses

	Results
	A single-cell repertoire of whole blood and lesional skin in experimental EBA
	Assessment of immune cell heterogeneity in experimental EBA reveals a signature-activated neutrophil transcriptome
	Assessment of cellular heterogeneity in experimental EBA skin identifies the transcriptome of a cutaneous neutrophil population
	Trajectory analysis reveals activation of neutrophils from blood to lesional skin
	Validation of Dectin-2, Dectin-3, and Mincle expression on neutrophils
	Genetic deficiency in Clec4d and Clec4e and neutrophil-specific deficiency in Clec4n do not alter the course of EBA

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Integrative single-cell transcriptomic investigation unveils long non-coding RNAs associated with localized cellular inflammation in psoriasis
	Introduction
	Materials and methods
	Single-cell data analysis
	Improved SWAPLINE integration and projection
	Sample collection and ethics approval
	Flow cytometry
	RT-qPCR
	Cell culture and RNA interference
	Co-culture of skin resident cells and dendritic cells
	Statistical analysis

	Results
	Neural-network learning based integrative analysis constructs the cell transcriptomic atlas of psoriatic skin
	The robustness of our current skin cell classification
	The differential expression of lncRNAs in each cell-type between health and psoriatic skin
	Experimental validation of the expression change of lncRNAs SNHG9, CALML3-AS1 and CARMN in psoriatic skin
	Cell-specific lncRNAs SNHG9, CALML3-AS1 and CARMN regulate localized inflammatory responses in skin resident cell clusters
	LncRNA SNHG9, CALML3-AS1, and CARMN can regulate the activation ability of corresponding skin cell types on dendritic cells

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Single cell transcriptome analyses reveal the roles of B cells in fructose-induced hypertension
	1 Introduction
	2 Materials and methods
	2.1 Animals
	2.2 Blood pressure measurements
	2.3 Isolation of LPs
	2.4 Isolation of PBMCs
	2.5 Single-cell RNA library preparation and sequencing
	2.6 LPs and PBMCs clustering and annotation
	2.7 Gene set enrichment assay
	2.8 Statistics

	3 Results
	3.1 High-fructose intake increased blood pressure in SS rats
	3.2 Landscape of major cell types in LPs of TW and HFS group
	3.3 Increased follicular helper T cells in the T cell subsets of LPs from the HFS group
	3.4 Elevated levels of follicular B cells in the B cell subsets of LPs from the HFS group
	3.5 Landscape of major cell types from PBMCs of TW and HFS group
	3.6 Activation of the interferon signaling pathway in B cells of PBMCs and LPs from the HFS group

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Single-cell RNA sequencing analysis reveals the heterogeneity of IL-10 producing regulatory B cells in lupus-prone mice
	Introduction
	Materials and methods
	Mice
	Flow cytometry
	Cell preparation for analysis of Breg populations and IL-10 production
	Cell preparation for single-cell RNA-seq
	Single-cell RNA-seq
	Single-cell RNA-seq sample pre-processing, clustering, and dimensionality reduction
	Single-cell cluster annotation
	Ingenuity pathway analysis
	Single-cell pseudotime trajectory analysis
	Gene set variation analysis (GSVA)
	Statistical analysis
	Study approval

	Results
	Bregs are numerically and functionally impaired in lupus-prone mice with active disease
	scRNA-seq analysis identifies Breg cell subsets in lupus-prone mice at the pre-disease stage
	Transcriptionally-defined IL-10+ B cell subsets are altered in lupus-prone mice with active disease
	Single-cell trajectory analysis suggests developmental relationships among Breg subsets from lupus-prone mice at pre-disease and active-disease stages
	Integrated single-cell analysis of pre-disease and active-disease lupus-prone mice identifies stage-dependent alterations in IL-10+ B cell populations
	Transcriptomic comparison of integrated single cell datasets reveals pathologic inflammatory gene signatures associated with IL-10+ B cells from active-disease mice
	Validation of transcriptionally defined alterations to the landscape of Breg subsets in lupus-prone mice with active disease

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Comparative single-cell multiplex immunophenotyping of therapy-naive patients with rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus shed light on disease-specific composition of the peripheral immune system
	1 Introduction
	2 Materials and methods
	2.1 Human participants
	2.2 Study design
	2.3 PBMC isolation
	2.4 Cell preparation
	2.5 Barcoding and antibody staining
	2.6 CyTOF data acquisition
	2.7 Data processing
	2.8 Statistical analysis

	3 Results
	3.1 Enrollment of therapy-naive SAD patients and the workflow of single-cell immunophenotyping
	3.2 Determination and characterization of the 17 main immune populations in HCs and therapy-naive patients with RA, SSC, and SLE
	3.3 Disease-specific expression intensities of single-cell mass cytometry data comparing peripheral immune cells in HCs, RA, SSc, and SLE
	3.4 Characterization of the specific RA, SSc, and SLE differences in the single-cell immunophenotype of the subpopulations of the 17 main immune cell types of peripheral blood

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Single-cell transcriptomic analysis of hematopoietic progenitor cells from patients with systemic lupus erythematosus reveals interferon-inducible reprogramming in early progenitors
	1 Introduction
	2 Methods
	2.1 Human samples
	2.2 Isolation of human CD34+ progenitor cells
	2.3 Single cell RNA sequencing data processing
	2.4 Gene regulatory network analysis
	2.5 Differential expression
	2.6 Differential alternative splicing

	3 Results
	3.1 Single-cell transcriptomes of HSPCs in CB and BM
	3.2 Single-cell transcriptomes of HSPC subpopulations in SLE BM
	3.3 Differential alternative splicing in SLE HSPCs

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




