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Editorial on the Research Topic

Novel paradigms in cardiothoracic and abdominal disorders in

veterinary practice

Cardiothoracic and abdominal disorders constitute a large proportion of animal

diseases and are the leading causes of considerable deaths in the field of veterinary

medicine. There are continuous research trials to find out simple diagnostic methods to

monitor internal organ functions effectively and easily with time-saving procedures, high

accuracy, and minimum invasiveness. Moreover, recent treatment strategies including

new therapeutic agents and/or surgical techniques as well as diagnostic biomarkers are

currently highly developed. Recent research studies are focusing on new diagnostic

imaging techniques such as novel ultrasonographic approaches, echocardiography-derived

techniques, blood flow dynamics, etc., in addition to new surgical procedures and

laboratory biomarkers. These trendy methods showed enormous potential to improve the

outcome of cardiothoracic and abdominal disorders in animal models and clinical practice.

In this Research Topic, nine articles were published covering the recent approaches in the

aforementioned objectives which may serve as a guidance to researchers and veterinarians

in the field.

The exploration of new treatments for heart failure involves evaluating potential

therapeutic approaches in suitable animal models designed to mimic heart failure

conditions. Over the recent decades, murine models of cardiovascular diseases

have provided efficient strategies for preventing and managing cardiac dysfunctions.

Establishing these models begins with precise surgical techniques and well-designed

anesthetic protocols. Nevertheless, each protocol may exhibit limitations that can impact

the results of the study. In this Research Topic, Farag, Mandour, Hendawy et al. wrote

a systematic review covering the heart failure in murine models, considering the most

common and recent surgical models of heart failure and the anesthetic protocols.

Moreover, they listed the surgical procedures of each model, the proper anesthesia, and

the limitations in each single model, which can guide the researcher during selection of

the model.
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In veterinary cardiology, novel anesthetic protocols that may

save time, money, or overcome restriction on medicinal agents in

certain countries are crucial. Numerous validated anesthetic agents

used to create myocardial infarction (MI) model are currently

controversial with certain restrictions due to ethical concerns.

The combination of medetomidine, midazolam, and butorphanol

(MMB) is frequently employed in various surgical operations in

animals. However, there hasn’t been an exploration of the use of

the MMB combination to create the MI in rats. This is challenging

due to the pronounced respiratory depression and prolonged

recovery observed post-surgery, leading to substantial mortality

rates. Farag, Mandour, Hamabe et al. established a new protocol of

anesthesia to create MI in rat models using a combination of MMB

(0.3/5.0/5.0 mg/kg) and atipamezole (1.0 mg/kg SC). Conclusively,

subcutaneous administration of atipamezole effectively mitigates

the cardiopulmonary side effects of the MMB mixture, facilitating

rapid recovery and consequently enhancing the survival rate during

the establishment of the MI model in rats.

Increasing evidence indicates that dental disorders contribute

to the onset of cardiovascular disease. Several epidemiological

studies have proposed a potential connection between periodontitis

and cardiovascular diseases. In the current paper Research Topic,

Elhaieg et al. used various comprehensive methods including

conventional echocardiography, intraventricular pressure gradient

analysis, Speckle Tracking Echocardiography, and invasive

hemodynamic analysis to evaluate the heart function in rat model

with periodontitis. This study suggests that periodontitis may

compromise systolic function and myocardial relaxation.

Elevated pulmonary artery pressure is known as pulmonary

hypertension (PH). Canine PH is commonly occurring secondary

to myxomatous mitral valve disease (MMVD). Certain

echocardiographic calculation as well as laboratory markers

have been investigated in canine PH, however, they are still not

accurate. Certain blood indices have previously been found to

be indicators for prediction and prognosis of PH in human.

Tangmahakul et al. examined the applicability of the blood indices

in canine patients affected by MMVD with and without PH. The

results confirmed a reduction in MCH and MCHC in dog patient

suffering from MMVD, precapillary PH, and postcapillary PH,

while PDW are associated with MMVD severity but not with the

presence of PH.

In recent years, there has been a notable rise in the occurrence

of hypertrophic cardiomyopathy (HCM) in feline patients

within clinical practice, primarily attributed to advancements

in diagnostic methods and equipment capabilities. Saito et al.

evaluated myocardial function in cats affected by HCM with

and without outflow obstruction (HOCM) using 2D speckle-

tracking echocardiography. Their findings indicated that all

HCM-affected cats exhibited a notable decrease in left ventricular

(LV) longitudinal strain across the endocardial, epicardial, and

overall layers, as well as in LV circumferential strain within the

epicardium, in comparison to healthy cats. Cats with HOCM

showed a significant reduction in both the endocardial and overall

layers of LV circumferential strain when compared to healthy

cats. Consequently, the diminished LV endocardial strain had

a cascading effect on the values of LV strain across the entire

myocardial layer, leading to the conclusion that LV myocardial

function may be more compromised in HCM-affected cats with

concurrent outflow obstruction.

Chronic idiopathic intestinal inflammation is a growing global

health concern affecting both companion animals, especially

dogs, and human patients leading to significant fluid and

electrolyte losses. Interestingly, the differences observed in

the handling of intestinal electrolytes in human and canine

patients imply the existence of species-specific regulatory or

counterregulatory mechanisms. In the context of preserving fluid

and electrolyte balance, the renin-angiotensin-aldosterone system

(RAAS) assumes a pivotal role. It is well-known that RAAS plays

a systemic role in regulating blood pressure and cardiovascular

pathology, however, it has unveiledcomplex roles in the realm

of inflammatory processes. In the perspective article authored

by Heilmann et al., they offered an overview of our current

understanding of electrolyte transport in the context of human

IBD and canine chronic inflammatory enteropathy. Additionally,

they explore the role of RAAS in these conditions and propose

innovative therapeutic strategies.

In the same line, Dengler et al. conducted a study to

explore the gene expression of intestinal electrolyte transporters

that may be implicated in either mitigating or exacerbating

electrolyte losses in dogs with chronic idiopathic enteropathy.

They also investigated the potential activation of the RAAS

system in these dogs and explored the potential associations

between the expression of intestinal electrolyte transporters

and established RAAS components. Serum RAAS fingerprint

analysis, mRNA levels of intestinal electrolyte transporters,

and local RAAS pathway components in tissue biopsies were

analyzed. The results indicated increased levels of components

from both the traditional and alternative RAAS pathways

in dogs with chronic idiopathic enteropathy. The study

illustrated an upregulation of both traditional and alternative

components of RAAS in the serum of dogs with chronic

idiopathic enteropathy.

Park et al. documented an intriguing case involving 9-

month-old female Pomeranian dog suffering from cyst-like lesions

caused by generalized lymphatic anomaly (GLA) which involve

several abdominal organs. The histopathological analysis and

immunohistochemistry (IHC) confirmed that the cells lining these

cyst-like lesions strongly expressed lymphatic vessel endothelial

hyaluronan receptor 1. Notably, GLA should be considered

in young dog when presenting with multiple cysts in various

abdominal organs.

Congenital lobar emphysema (CLE) is an infrequent lower

respiratory tract disorder that predominantly manifests in

young dogs and cats. Edwards et al. detailed the evaluation

and treatment of an 11-week-old, sexually intact female

Catahoula Leopard dog presented with exercise intolerance

and respiratory distress. There was hyperinflated right middle

lung field, resulting in the compression of surrounding lung lobes.

Following lung lobectomy, histopathology revealed the presence

of bronchial cartilage hypoplasia, marked emphysema, and

pleural fibrosis.

The investigations in this Research Topic have demonstrated

the state of knowledge regarding the diagnosis and management

of cardiothoracic disorders in cats and dogs. We anticipate that

these articles will stimulate and motivate additional research

into the development of cutting-edge diagnostic imaging

novel echocardiography methods and the biofluid analysis of

cardiac biomarkers.
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Novel protocol to establish the
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rats using a combination of
medetomidine-midazolam-
butorphanol (MMB) and
atipamezole

Ahmed Farag1,2*, Ahmed S. Mandour1,3*, Lina Hamabe1,

Tomohiko Yoshida1, Kazumi Shimada1 and Ryou Tanaka1*

1Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture

and Technology, Fuchu, Japan, 2Department of Surgery, Anesthesiology, and Radiology, Faculty of

Veterinary Medicine, Zagazig University, Zagazig, Egypt, 3Department of Animal Medicine (Internal

Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt

Background: Myocardial infarction (MI) is one of the most common

cardiac problems causing deaths in humans. Previously validated anesthetic

agents used in MI model establishment are currently controversial with

severe restrictions because of ethical concerns. The combination between

medetomidine, midazolam, and butorphanol (MMB) is commonly used in

di�erent animal models. The possibility of MMB combination to establish the

MImodel in rats did not study yetwhich is di�cult because of severe respiratory

depression and delayed recovery post-surgery, resulting in significant deaths.

Atipamezole is used to counter the cardiopulmonary suppressive e�ect

of MMB.

Objectives: The aim of the present study is to establish MI model in rats using

a novel anesthetic combination between MMB and Atipamezole.

Materials and methods: Twenty-five Sprague Dawley (SD) rats were included.

Rats were prepared for induction of the Myocardial infarction (MI) model

through thoracotomy. Anesthesia was initially induced with a mixture of MMB

(0.3/5.0/5.0 mg/kg/SC), respectively. After endotracheal intubation, rats were

maintained with isoflurane 1% which gradually reduced after chest closing.

MI was induced through the left anterior descending (LAD) artery ligation

technique. Atipamezolewas administered after finishing all surgical procedures

at a dose rate of 1.0 mg/kg/SC. Cardiac function parameters were evaluated

using ECG (before and after atipamezole administration) and transthoracic

echocardiography (before and 1 month after MI induction) to confirm the

successful model. The induction time, operation time, and recovery time were

calculated. The success rate of the MI model was also calculated.

Results: MI was successfully established with the mentioned anesthetic

protocol through the LAD ligation technique and confirmed through

changes in ECG and echocardiographic parameters after MI. ECG data was

improved after atipamezole administration through a significant increase in
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heart rate (HR), PR Interval, QRS Interval, and QT correction (QTc) and a

significant reduction in RR Interval. Atipamezole enables rats to recover

voluntary respiratory movement (VRM), wakefulness, movement, and posture

within a very short time after administration. Echocardiographic ally, MI rats

showed a significant decrease in the left ventricular wall thickness, EF, FS, and

increased left ventricular diastolic and systolic internal diameter. In addition,

induction time (3.440 ± 1.044), operation time (29.40± 3.663), partial recovery

time (10.84 ± 3.313), and complete recovery time (12.36 ± 4.847) were

relatively short. Moreover, the success rate of the anesthetic protocol was

100%, and all rats were maintained for 1 month after surgery with a survival

rate of 88%.

Conclusion: Our protocol produced a more easy anesthetic e�ect and

time-saving procedures with a highly successful rate in MI rats. Subcutaneous

injection of Atipamezole e�ciently counters the cardiopulmonary side e�ect

of MMB which is necessary for rapid recovery and subsequently enhancing the

survival rate during the creation of the MI model in rats.

KEYWORDS

myocardial infarction, rat, MMB, atipamezole, anesthesia, ECG, echocardiography

Introduction

Myocardial infarction (MI) is the main form of ischemic

heart disease which occurs due to the blockage of one or more

coronary vessels leading to myocardial ischemia and necrosis

(1). Acute MI remains the most severe form of coronary artery

disease in humans, accounting for almost 4 million deaths

each year in Europe and Northern Asia (2). The development

of a simple, effective, and time-saving MI animal model is

crucial to enrich our knowledge about its pathophysiology and

finding better therapeutic options. Various methods have been

established in laboratory animal models (3), either by using

chemicals that interrupt the coronary circulation (4), coronary

artery ligation via open thoracic cage surgery (5), or through

non-invasive catheter method (6).

Owing to an increasing concern for laboratory animal

welfare and third-party certification of experimental facilities,

advances in rodent anesthesia are currently a topic of interest. In

MImodels, achieving an appropriate anesthetic effect is not only

essential from the welfare viewpoint but also constitutes a great

challenge that controls the success rate of the model. Generally,

achieving an appropriate anesthetic effect in rodent MI models

requires sufficient anesthetic depth and fewer cardiorespiratory

depression. It has reported that cardiorespiratory depression

affecting recovery and survival rate post-MI, subsequently

affecting experimental data and the statistical power (7). As

a result, an anesthetic protocol that mediates appropriate

anesthetic depth while minimizing cardiorespiratory impact is

worth investigating, suitable for real-time control of anesthetic

depth, and might be used for both short or long durations (8).

In veterinary studies, various anesthetic combinations

have been previously proven to be effective to induce MI

models in rodents such as ketamine and xylazine (9, 10), a

mixture of ketamine, xylazine and acepromazine (11), sodium

pentobarbital (12), chloral hydrate 10% (13, 14) and inhalational

anesthesia as isoflurane (induction: 5%,maintenance: 2.5%) with

buprenorphine was subcutaneously administered for analgesia

(15, 16).

For instance, Isoflurane has the advantages of rapid

induction of anesthesia, rapid recovery, and minimal influence

on hepatic metabolism; however, isoflurane may produce some

unfavorable respiratory depression (7), and is not sufficient to

provide adequate analgesic effect when highly invasive surgical

procedures are needed (17, 18). Although ketamine is widely

used inMImodel induction (19), ketamine is currently classified

as a narcotic drug and many countries have strengthened

restrictions on its purchase, storage, and associated record-

keeping procedures (20). Moreover, pentobarbital sodium is

inappropriate as a general anesthetic due to its minimal

analgesic effect and narrow safety margin with the undesirable

cardiodepressive effects of reducing heart rate, stroke index,

and cardiac index in rodents (19, 20). Consequently, the ethical

restrictions and limitations of some medicines which are crucial

in MI model induction increase the challenges for successful MI

model establishment.

The combination between medetomidine, midazolam, and

butorphanol (MMB) anesthetic is recently used in experimental

animal studies as a substitute for ketamine or pentobarbital

sodium (21). The anesthetic duration of MMB is longer

than those of ketamine or pentobarbital sodium and is often
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associated with depression of respiration and circulation, and

reduction of general motor activity and neuronal activity (21).

These side effects may limit the usability of MMB in MI model

induction. More specifically, medetomidine causes significant

cardio-respiratory depression (22). Atipamezole, a synthetic α2-

adrenergic antagonist, can antagonize medetomidine-induced

respiratory depression and results in rapid recovery from MMB

anesthesia (21). Atipamezole is also effective for reducing

the maintenance concentration of isoflurane which leads to

the amelioration of cardio-respiratory depression induced by

isoflurane (17).

To our knowledge combination between MMB and

atipamezole has never been studied in MI models. The objective

of the study is to provide an easy and successful protocol

to induce the MI model using MMB, and atipamezole. Our

result will be helpful for an easily induced model using

ethically approved medications with a higher success rate for

research purposes.

Materials and methods

Animals and ethical approval

The study was conducted on 25 male Sprague Dawley (SD)

rats, 12 to 15 weeks of age, and weighing between 350 and 400

gm. All procedures followed the Guide for the Care and Use

of Laboratory Animals and were approved by the Institutional

Animal Care and Use Committee of the Tokyo University of

Agriculture and Technology (Approval No R04-185). The rats

had free access to food and water and were housed at 25◦C with

a 12 h light/dark cycle.

Anesthetic agents

The following anesthetics were used: Medetomidine

hydrochloride (Domitor
R©
, Orion Pharma Animal Health,

Helsinki, Finland), Midazolam (Dormicum
R©
, Astellas Pharma

Inc., Tokyo, Japan), Butorphanol (Vetorphale, Meiji Seika

Pharma Co., Ltd.), Isoflurane Inhalation Solution (Isoflurane,

Pfizer Inc., New York, USA) and Atipamezole (ATI) (Antisedan,

Orion Pharma Animal Health).

Anesthesia protocol

Firstly, a mixture was prepared by mixing medetomidine

hydrochloride, midazolam, and butorphanol (MMB) at a dose

rate of 0.3, 5.0, and 5.0 mg/kg BW (23, 24). The anesthetic

mixture was freshly prepared and diluted with sterile saline as

stock solution as described in Table 1. Rats were subcutaneously

injected at a dose rate of 0.5ml of mixture/100 gm BW.

Following the loss of front paw reflex, hind paw reflex, tail

reflex, corneal reflex, and body righting reflex, rats were rapidly

transferred to endotracheal intubation and maintained with

isoflurane 1.0 % using a rodent inhalant anesthesia apparatus.

Induction of MI model

Following the above-mentioned anesthetic protocol, the

animals were intratracheally intubated using a 16-gauge

intravenous catheter before being placed in a supine position on

a temperature-controlled pad at a core temperature of 35.5◦C.

A small incision between the third and fourth intercostal spaces

was made to perform a left-sided thoracotomy. A blunt-ended

retractor was used to expand the incision away from the lung to

avoid its collapse. To access the heart, the pericardial sac was cut

open and the site of coronary artery ligation was determined.

The site of ligation of the left anterior descending (LAD)

coronary artery was determined 8mm away from the origin,

then a 6-0 prolene ligature was passed underneath the LAD

and secured with three knots using a tapered atraumatic needle

(9). Successful ligation was confirmed by visible blanching and

cyanosis of the anterior wall of the left ventricle, as well as

swelling of the left atrium (25). Ribs and muscles were closed

using 3-0 vicryl absorbable sutures leaving a small gap to

aspirate air left in the thoracic cavity. The air was aspirated

through a tube (2mm in diameter) without touching the lungs.

Nonabsorbable suture materials, such as silk 3-0, were used to

suture the skin. The surgical site was dressed daily to prevent

infection and to monitor for suture site dehiscence.

Administration of atipamezole

After LAD ligation and closing of the chest, the maintenance

with isoflurane was reduced to 0.5% till suturing the skin and

finishing the surgical procedures. At this point, atipamezole was

injected subcutaneously at a dose rate of 1.0 mg/kg (Table 1).

Then, isoflurane was stopped, and rats were maintained

with oxygen insufflation (2 l of oxygen per minute). After

observing the initial movement of rats, the endotracheal

tube was removed slowly, and rats were changed to a

nose cone mask (additional oxygen insufflation) till complete

recovery (Figure 1).

Post-operative care

Standard postoperative procedures were followed to control

pain and infection. After recovery, all animals were treated with

gentamicin (Nacalai Tesque Co., Ltd., Tokyo, Japan) which was

injected intraperitoneally (2.4 × 104/kg/day) for 3 days (14)

while carprofen (Rimadyl
R©
, Zoetis Japan K.K., Tokyo, Japan)
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TABLE 1 Concentrations and doses of the used anesthetic agents.

Agent Concentration (mg/ml) Dose (mg/kg) Volume in saline (10ml) Administered volume (ml/kg)

Medetomidine 1.0 0.3 0.3 0.3

Midazolam 5.0 5.0 1.0 1.0

Butorphanol 5.0 5.0 1.0 1.0

Atipamezole 5.0 1.0 2.0 1.0

FIGURE 1

Schematic illustration of the used procedures of anesthetic protocol from induction to recovery and post-MI confirmation.

was used with a pre-surgical dose of 5.0 mg/kg/SC, followed by

two post-surgery injections (26).

Measurement of time intervals during
operation

Induction time was defined as the duration from injection

of anesthetic mixture to the start of the loss of a body-righting

reflex. Operation time was defined as the duration from the

start of MI surgery till the end of all surgical procedures. Partial

recovery time was defined as the duration from the end of the

operation period (atipamezole injection) till trials of animals to

remove the endotracheal tube (initial movement). Meanwhile,

complete recovery time was defined as the duration from the

removal of the endotracheal tube and the change to a nose

cone mask to restore all vital reflexes. All these durations were

recorded and expressed as mean± SD.

ECG monitoring

The ECG signals were recorded with needle electrodes

connected with PowerLab hardware (ML880 PowerLab 16/30,

AD Instruments) and LabChart Pro software (LabChart v8,

AD Instruments) using a previously published protocol (27).

The setting of PowerLab for ECG measurements followed the

instructions provided by the producer. The ECG recording

started 10min after the animal was anesthetized with (MMB;

i.e., before atipamezole injection) and then was conducted
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for 10min and repeated after atipamezole administration for

another 10min. For each record, the most stable continuous

segment was chosen for ECG analysis.

The ECG was recorded in an anesthetized state before and

after atipamezole administration ECG parameters included RR

Interval (s), heart rate (HR), atrial complex (PR interval, P

wave duration, and P wave amplitude), ventricular complexes

(QRS complex, QT and QTc interval duration) were recorded

and analyzed.

Confirmation of MI model

Cardiac functions were evaluated directly before

and 1 month after MI. The echocardiographic machine

(Hitachi-Aloka Medical Ltd., Tokyo, Japan, ProSound F75

ultrasonographic system) with a 12-MHz transducer and

simultaneous ECG was used. The echocardiography was

performed in accordance with the guidelines of the American

Society of Echocardiography (ASE) (28, 29). All animals were

anesthetized with MMB subcutaneously administered for

easy and feasible examination and at the level of the papillary

muscles, a two-dimensional right parasternal short-axis view of

the LV was achieved using M-mode. LV was measured manually

by the same observer using the ASE’s leading-edge method (30),

which has been validated for the rat MI model (31).

The LV internal diameter during diastole (LVIDd), LV

internal diameter during systole (LVIDs), LV posterior wall

diameter during diastole (LVPWd) systole (LVPWs) and (IVSd)

and (IVSs) interventricular septal thickness in end-diastole and

systole, respectively. Ejection fraction (EF%), and fractional

shortening (FS%) were obtained from that view. From each rat,

each echocardiographic parameter was measured five times and

the data were averaged (32).

Statistical analysis

Data analysis was performed using GraphPad Prism8

version 7.01 (GraphPad Software, Inc, San Diego, California).

The normality of the data was tested by the Shapiro–Wilk test.

To compare the cardiac function parameters before and after MI

model induction, the student T-test was used and a P < 0.05 was

considered statistically significant.

Results

Operation intervals and success of the MI
model

Initially, rats were subcutaneously administered MMB at

a dose rate of 0.5 ml/100 gm BW. Anesthetic induction was

TABLE 2 Measurements of the anesthetic protocol durations.

Measurement Mean ± SD

Induction time 3.440± 1.044

Operation time 29.40± 3.663

Partial recovery time 10.84± 3.313

Complete recovery time 12.36± 4.847

generally quick and easy, and most rats were orotracheally

intubated in the range of 2–5min as Mean ± SD (3.440

± 1.044) after MMB administration. Muscle relaxation and

analgesia were sufficient to begin thoracotomy immediately after

anesthetic administration and the recovery time was divided

into two stages: partial as Mean ± SD (10.84 ± 3.313min) and

complete asMean± SD (12.36± 4.847min). The total operation

time was 29.40± 3.663min asMean± SD (Table 2). The success

rate of the anesthetic protocol was 100%. In addition, all animals

used in the current study were maintained for 1 month after

surgery with a survival rate of 88% (22/25), and three rats died

within 24 h after MI induction.

Assessment of ECG

The ECG analysis before and after atipamezole injection

in the operated rats is illustrated in Figures 2, 3. There were

no significant differences in P duration, P amplitude, and QT

interval. However, the RR interval was significantly decreased

after atipamezole administration (P= 0.0001). In contrast, other

ECG parameters such as HR, PR Interval, QRS Interval, and

QTc were significantly increased (P = 0.0001, 0.002, 0.043, and

0.018, respectively) when compared with their values before

atipamezole injection.

Confirmation of MI model

The myocardial infarction model was successfully created

with the aforementioned anesthetic protocol via LAD ligation

approach, as evidenced by apparent blanching and cyanosis

of the anterior wall of the left ventricle and swelling of the

left atrium immediately following artery ligation. No clinical

abnormalities were observed during the observation period.

Three rats died within 24 h post-MI induction and showed rapid

respiration and off food (Figure 4).

The echocardiographic parameters measured before and 1

month after MI induction are summarized in Figure 5. Changes

in echocardiographic parameters can be seen after MI, as a

significant decrease was observed in IVSd, IVSs, LVPWs, EF%

and FS% (P= 0.047, 0.007, 0.007, 0.007, and 0.007, respectively).

In addition, a significant increase was recorded in LVIDd
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FIGURE 2

Electrocardiographic recordings in rats were measured by needle electrodes with Lab chart. The heart rate and RR intervals were significantly

reduced after MMB injection (before atipamezole administration) (A) which were restored to the normal level after atipamezole

administration (B).

and LVIDs after LAD ligation (P = 0.039; 0.007, respectively)

(Figure 6).

Discussion

The rat model is the most commonly used to study

the pathophysiology of cardiovascular diseases including

ischemic heart diseases as well as other models (33, 34).

Limitations regarding the anesthetic protocols because of animal

welfare, ethical concerns, and public health circumstances

limit the usability of well-known medications in MI models,

making the establishment of MI models more difficult. In

addition, scientific publications still cannot be relied upon

to present a detailed description of analgesia and anesthesia

protocols. Most recently, an assessment of anesthetic and

analgesic regimens in publications involving non-human

primates revealed the absence of critical details reporting

(35). In the present study, we have developed a successful

MI induction in all rats with a survival rate of 88%

using the novel protocol of anesthesia (combination of

MMB + Isoflurane and countered with atipamezole). The

success rate of the anesthetic protocol was 100% which

provides quick and easy induction of general anesthesia

with facilitating orotracheally intubated, muscle relaxation and

analgesia were sufficient to perform the surgery recording

a very short recovery time with minimal side effects in

comparison to other previous studies. Our protocol may

be introduced as an alternative to ketamine, xylazine, and

pentobarbital with sufficient anesthetic and time-saving effects

in rats.

Regarding the anesthetic combination, the used MMB

mixture has been created based on previous reports in rats and

mice (23, 24, 36–39).

Midazolam is a benzodiazepine that is water soluble.

In rodents, pigs, and primates, benzodiazepines can cause

significant sedation; however, they are not analgesic and do

not create a true general anesthetic state (40). Midazolam is

used in conjunction with other drugs to induce anesthesia

(41). Medetomidine is a more potent imidazole derivative

than xylazine, with higher alpha2-adrenoceptor selectivity

(41). Butorphanol, a synthetic opioid agonist-antagonist, is

used in veterinary medicine as an analgesic agent (42). The

combination of medetomidine, midazolam, and butorphanol

has been reported as a reliable and safe anesthetic agent

in the dog (43), sea lions (44), and red fox (45). In our

study, we administered MMB in rats by subcutaneous injection

as it is considered a more effective, and induced rapid,
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FIGURE 3

Changes in ECG parameters before atipamezole (i.e., directly after MMB) and after atipamezole administration. Asterisk used to indicate the

significance, Ns P > 0.05 , *P ≤ 0.05, **P ≤ 0.01, ****P ≤ 0.0001.

FIGURE 4

(A) During operation, myocardial infarction was confirmed in rats directly after LAD ligation through apparent blanching and cyanosis of the

anterior wall of the left ventricle and swelling of the left atrium. (B) Color change of the left ventricular wall in survived rats which were

maintained for 1 month with a small infarction size. (C) Large infarction size was observed in rats within 24h following MI induction. red arrow;

the site of infarction.

complete, and stable anesthetic effect than intraperitoneal

injection (23). The intraperitoneal delivery route is the

most commonly used for MMB administration in rats

(37), but according to Sorrenti et al. (39), the induction

time for a single dose of MMB combination administered

subcutaneously in Sprague-Dawley rats was approximately
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FIGURE 5

Echocardiographic measurements in rats before MI induction and 1 month later. Asterisk used to indicate the significance, Ns P > 0.05 , *p <

0.05, **p < 0.01.

FIGURE 6

Left ventricular dimensions and function were evaluated using M-Mode echocardiography at right parasternal short axis in rats before MI

induction (A) and one-month post-MI (B). Reduction in left ventricular wall thickness and cardiac function and increase in left ventricular

diameters were confirmed in MI model rats.

10min; however, with intraperitoneal injection, this duration

increased to 25min and required one or two additional

doses (39).

Isoflurane is known to have a relatively strong respiratory

depression in various species (17, 46). Therefore, the main

purpose of the current novel anesthetic protocol was to
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attenuate cardio-respiratory depression by reduction of

isoflurane concentration and minimizing MMB side effects,

producing more safe and time-saving protocol for induction of

MI in rats.

Atipamezole is a highly selective 2-adrenergic antagonist

that is known to counteract the anesthetic effect of MMB.

We administrated atipamezole with the prescribed dosage as

the recovery from the anesthetic effect and hypothermia was

dosage-dependent, and even after a low dose of atipamezole, the

same as medetomidine, the sedation continued, even after all

reflexes had been restored. As a result, giving atipamezole at the

same dose as medetomidine is insufficient to promote recovery

from MMB anesthesia. In addition, atipamezole’s ability to

counteract MMB-induced anesthesia is partially attributable to

the fact that MMB primarily exerts its anesthetic effect via the

2-adrenoceptor (47). Furthermore, it has been reported that

atipamezole can also counteract the anesthetic effect of the

combination of medetomidine, butorphanol, alfaxalone, and

neurosteroid anesthetic, as well as can counter the anesthetic

effect of MMB (48).

Generally, medetomidine is helpful in central analgesia

while butorphanol is necessary for visceral analgesia (49, 50).

Administration of atipamezole during early surgical procedures

will abolish the analgesic effect of medetomidine and exposes

the rat to pain. To avoid such situation in the current

study, atipamezole was administrated after finishing all surgical

procedures. In other words, during the operation, anesthesia

was achieved through the effect of the used combination with

isoflurane, and postoperative analgesia was achieved successfully

through pain killer.

Rats were kept under oxygen insufflation (2 l of oxygen

per minute) when isoflurane maintenance was stopped

to prevent problems like hypoxia. This is in agreement

with Mechelinck et al., who claimed that rats under

ketamine-xylazine anesthesia are susceptible to hypoxia.

This could result in an increase in delayed mortality from

hypoxia-related lung failure. So they recommend using

additional oxygen insufflation with the prescribed dose (51).

Moreover, Ballard and Spadafora (52) stated that respiratory

depression caused by ketamine-xylazine narcosis seems to

be the key factor in lung damage. In principle, rats’ lungs

can be damaged by hypoxemia. This damage begins 8 h

after the hypoxic incident with pulmonary edema, most

likely due to sympathetic activation, increased vascular

permeability, and hypoxic pulmonary vasoconstriction, and

is followed by inflammation, pulmonary fibrosis, and vascular

hypertrophy (52).

In our study, we reported that the induction time of our

anesthetic protocol was <5min, these results were resemble

that recorded with the ketamine/xylazine protocol (20), but

with a short recovery time in total when compared to other

protocols including ketamine/xylazine (20), MMB alone (23)

and Pentobarbital (35). In other studies, The mean recovery

time without atipamezole injection was 44.5min and 50.0min

in males and females respectively (53).

All the operated rats in the present study were maintained

for 1 month with a survival rate of 88%, and three rats died

within 24 h post-surgery due to surgical errors, Lindsey et al. (54)

stated that perioperative death within 24 h post-MI is usually

due to surgical errors (or very large infarct sizes), and in the

permanent occlusion MI model in mice, postoperative death

may be due to rupture, acute heart failure, or arrhythmias (54).

The normal heart rate of rats has been reported 330–480

beats per minute (55). Kirihara et al. (56) stated that MMB had

decreased heart rate and blood oxygen saturation in rats (56).

The recorded heart rate in our study was in the range of 187

to 226 beats per minute, confirming the bradycardia expected

with the use of an α2-agonist (57). After the administration of

atipamezole, heart rate began to increase within 2min and was

fully restored after 4min to reach 270–352 beats per minute.

According to ECG data from our study, the main advantage

of administering atipamezole is that it allows rats to recover

voluntary respiratory movement, wakefulness, movement, and

posture within a relatively short time after injection, this allows

for faster extubating of operated rats, minimizing the post-

anesthesia recovery period and, as a result, lowering the risk of

side effects and residual effects of the anesthetics (58).

In operated rats, we found typical ischemic changes on

transthoracic echocardiography, particularly significant increase

in left ventricular diameters and a significant decrease in

wall dimensions, EF%, and FS% following post-infarction LV

remodeling in adult rats. Our findings are comparable to those

of earlier studies on rats indicating a successful procedure (59,

60). Changes in cardiac function parameters with no clinical

symptoms in the remaining rats suggest subclinical heart failure.

At 1-month post-infarction, morphological alterations such

as an increase in LVESD and LVEDD, as well as functional

changes such as a decrease in FS and EF, were clearly identified.

Our data are similar to those of other reports (61–64). LAD-

ligation significantly reduced regional contractility not just in

the anterior, anteroseptal, and septal segments. Even adjacent

regions like the lateral and posterior segments were affected.

This can be explained by the distinctions between the geometries

of the coronary arteries in rats and humans as there is no

true circumflex artery and the LAD predominates in rats

(65). As a result, the posterior and lateral regions of the left

ventricle have a significant perfusion deficiency as a consequence

of LAD ligation (64, 66). Differences in age, weight and

echocardiographic transducers or procedures appear to provide

slightly variable results in different laboratories. Based on our

findings, we may conclude that we were successful in creating

a novel anesthetic protocol for producing a MI model in adult

rats and confirmed the efficacy of LAD ligation surgery under

the used protocol.

Various animal models such as rats, rabbits, pigs and non-

human primates, where sparse collateral coronary circulation
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is excisting, have been introduced to study MI; however,

considerable mortalities due to delayed recovery is still

controversial (67–69). Until now, our protocol did not utilized

in any animal model. Therefore, the current protocol worth

studying in other MI or ischemic dysfunction models.

Limitations

In our study, we did not compare our protocol to others

such as ketamine and pentobarbital sodium. These drugs are no

longer available in Japan and their import or use is not ethical

due to being classified as narcotic drugs (20). In the current

study, the effect of the used protocol on pulmonary function and

blood pressure was not investigated. However, other studies have

examined the detailed hemodynamic and respiratory impact of

MMB alone or after antaonizing with atipamezole in rats and

rabitts (23, 70) with no surgical approaches.

Conclusion

To our knowledge, this is the first study to use anesthetic

combination of MMB and a light concentration of isoflurane

with atipamezole in MI rats. Subcutaneous injection of

atipamezole efficiently counters the cardiopulmonary side effect

of MMB which is necessary for rapid recovery and subsequently

enhancing the survival rate during the establishment of the MI

model. Our approach produced a more easily anesthetic effect

and time-saving procedures with a highly successful rate in MI

rats which may be effective in the research field of cardiothoracic

disorders using rat models. Our protocol worth studying in

other animal models as well.
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Heart failure (HF) is a serious health and economic burden worldwide, and its

prevalence is continuously increasing. Current medications e�ectively moderate

the progression of symptoms, and there is a need for novel preventative

and reparative treatments. The development of novel HF treatments requires

the testing of potential therapeutic procedures in appropriate animal models

of HF. During the past decades, murine models have been extensively used

in fundamental and translational research studies to better understand the

pathophysiological mechanisms of HF and develop more e�ective methods to

prevent and control congestive HF. Proper surgical approaches and anesthetic

protocols are the first steps in creating these models, and each successful

approach requires a proper anesthetic protocol that maintains good recovery and

high survival rates after surgery. However, each protocol may have shortcomings

that limit the study’s outcomes. In addition, the ethical regulations of animal

welfare in certain countries prohibit the use of specific anesthetic agents, which

are widely used to establish animal models. This review summarizes the most

common and recent surgical models of HF and the anesthetic protocols used

in rat models. We will highlight the surgical approach of each model, the use of

anesthesia, and the limitations of the model in the study of the pathophysiology

and therapeutic basis of common cardiovascular diseases.

KEYWORDS

heart failure, rats, surgical models, anesthesia, myocardial infarction

1. Introduction

Heart failure (HF) is a leading cause of death worldwide. The mortality rate of HF is very

high, with ∼50% of patients dying within 5 years of their initial diagnosis, which is higher

than the fatality rate of most cancers. The most recent World Health Organization estimates

that cardiovascular disorders kill 17.9 million people each year, accounting for ∼31% of all

global deaths (1), and there is a significant economic burden due to the rising prevalence

of HF in industrialized countries. The enhancement in treatment for acute myocardial

infarction (MI), which has reduced the mortality rate but not morbidity and is based on the

rate of survivors, is at least partly responsible for this increase. Additional factors include an

increased prevalence of comorbidities, which accelerate the progression of HF. Therefore,

it is essential to modify these risk factors and develop new treatment strategies for HF

patients (2).
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The study of HF requires dependable animal models to

evaluate severe changes and pharmacodynamic interactions

in the structure and function of the injured myocardium

and to pursue its progression to HF. In recent decades,

researchers have used small animal models to better understand

the pathophysiology of HF and develop more effective

strategies for managing patients with congestive HF (3).

Therefore, this review aims to describe the different surgical

rat models commonly used for the induction of HF and to

identify the most reliable anesthetic regimes required for

these procedures.

1.1. Circulatory system in rats

Rats are mammals belonging to the Muroidea rodent

superfamily. The cardiac, pulmonary, and systemic circulatory

systems, as well as their valves, are similar to those of

humans. The rat heart has four chambers. On the right side

of the aortic arch, the brachiocephalic trunk branches into the

right common carotid artery and the right subclavian artery.

The left common carotid artery is located in the anterior

part of the aortic arch, while the left subclavian artery is

located to its left (4, 5). Furthermore, the internal mammary

arteries supply coronary blood to the right and left atria (5).

The rat also has no true equivalent of a circumflex artery

besides a small artery such as a ramus intermediate (6); the

arterial and venous systems in rats are illustrated in detail in

Figure 1.

1.2. Anesthesia in rats

Anesthesia is an essential aspect of laboratory animal

research to minimize pain and stress during experimental

procedures and is also essential to ensure the reproducibility of

experimental results. Appropriate anesthesia administration

is crucial in achieving success in surgical experiments

(7, 8). Here is a general overview of anesthesia in rats,

and the various detailed protocols are explained in

Table 1.

1.2.1. Inhalant anesthesia
Isoflurane and sevoflurane are commonly used inhalant

anesthetics in rats. They are administered through a mask or

nose cone to induce and maintain anesthesia. The dose and

concentration of anesthetic gas can vary based on the species,

weight, and age of the rat, as well as the procedure being performed

(61, 62).

1.2.2. Intraperitoneal injection
A combination of ketamine (50–100mg/kg) and xylazine (5–10

mg/kg) is a commonly used anesthetic protocol for intraperitoneal

injections in rats. This method provides a rapid onset of anesthesia

and is often used in short procedures (63, 64).

1.2.3. Intramuscular injection
A combination of ketamine (50–100mg/kg) and xylazine (5–10

mg/kg) is a commonly used anesthetic protocol for intramuscular

injections in rats. This method also provides a rapid onset of

anesthesia and is often used as a backup when inhalant anesthesia

is impossible (65).

1.2.4. Intravenous injection
Propofol (2–4 mg/kg) is a commonly used anesthetic for

intravenous injections in rats. This method provides rapid and

controlled induction of anesthesia and is often used for more

invasive procedures (66).

Unfortunately, some countries have prohibited some anesthetic

drugs and classified them as narcotics; for instance, Ketamine

is currently classified as a narcotic medication in Japan, and

numerous other countries have reinforced limitations on its

purchase, possession, and related record-keeping methods (67).

These decisions represent a big obstacle to their researchers

and thus increase the challenges of finding alternative anesthetic

protocols. Therefore, we have recently published a paper describing

a novel protocol for induction of general anesthesia in rats for

cardiac surgery using a mixture of injectable and inhalation

anesthesia along with antagonists (60).

It is important to note that the correct protocol can vary

greatly depending on the individual animal and the procedure

being performed. Additionally, closemonitoring of an animal’s vital

signs, such as heart rate, respiratory rate, and body temperature,

is crucial during anesthetic procedures to ensure the safety and

wellbeing of the animal.

2. Surgical models

2.1. Myocardial infarction

Coronary circulation is the main supply of blood to the cardiac

tissues, and effective coronary circulation is crucial for the health

of the myocardium. Constriction or blockage of one or more

branches of the coronary artery is life-threatening and may cause

irreversible heart damage and MI; therefore, MI is the main type of

ischemic heart disease, characterized by unbalanced ischemia and

myocardial necrosis (68, 69).

Despite significant improvements in prognosis, acute

myocardial infarction remains the most severe manifestation

of coronary artery disease, affecting over seven million people

worldwide and contributing to over four million fatalities annually

in Northern Asia and Europe (70, 71). MI is described as necrosis

of the cardiac muscle cells caused by a prolonged lack of oxygen

supply. Because of the decrease in blood circulation, there is

insufficient oxygen and nutrition supply to fulfill tissue demand.

As a result, cardiomyocyte death occurs (72). Furthermore, in

chronic situations, MI may worsen hemodynamics, resulting in

patient death. When an acute MI occurs, the patient typically has

extensive pain in the chest, upper abdomen, and other regions for

at least 20 mins, accompanied by symptoms such as dyspnea (73).

FollowingMI, myocardial cells undergo acute necrosis, and fibrotic

scars form during the repair phase. The formation and build-up of
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FIGURE 1

Circulatory system in rats.

fibrotic scars over time may damage the structure and function of

the heart (74).

2.2. Surgical methods of MI

2.2.1. Coronary artery ligation
CAL in a rat model is a research technique commonly used

to induce MI (heart attack) in rats to study the pathophysiology

of the disease, test potential therapeutic interventions (75, 76),

evaluate the efficacy of stem cell therapy (9), investigate changes in

BM-MSCs in vivo and their ability to differentiate into contractile

myocytes (77), and explore the effect of autophagy on acute MI and

its mechanism in rats (78).

Permanent CAL results in total blood flow blockage and

irreversible hypoxia, leaving most of the area at risk of infarction

and a massive and permanent scar in the myocardium. This

damaged area is susceptible to pathological remodeling, which

leads to the progression of HF. Furthermore, the site of the

artery blockage influences the size of myocardial ischemia, with

ligation closer to the heart’s base causing more severe damage.

The use of a well-proven procedure performed by a qualified

surgeon lowered the variation in infarct size based on the ligation

site (79).

2.2.1.1. Surgical technique

The procedure began with the injection of an anesthetic

drug into the animal, followed by the use of a mechanical

ventilator to secure the airway. A left thoracotomy was performed,

the heart was rapidly exposed, and the initial ligation site was

determined (80).

Once the site of ligation of the left anterior descending coronary

artery (LAD) was identified, a cotton earbud was gently pressed

onto the artery slightly below the site of ligation, immobilizing

the heart, while simultaneously making the artery noticeable and

easy to recognize. A non-absorbable ligature passes below the

LAD and is secured with three knots using a tapered atraumatic

needle. Blanching and cyanosis of the anterior wall of the left

ventricle, as well as enlargement of the left atrium, are signs of

successful ligation. Due to direct vision and observation of the

process and targeted area of infarction, CAL provides accurate

time, location, and extent of the coronary event. The ribs and

muscles were closed with dissolvable sutures, with a small gap left

to aspirate any remaining air in the thorax, and air was aspirated

to keep the lungs from collapsing. At the time of closure, the

muscle and skin stitch sites were treated with neomycin powder

and betadine, respectively. Before extubation, the lungs were

deflated by submerging the exit tube connected to the endotracheal

tube in an underwater seal with adequate postoperative care

(Figure 2) (9).

Extubation was conducted before the rats were fully awake,

and a 1mL syringe was used to carefully suction the endotracheal

catheter to prevent bronchial occlusion due to heavy mucus.

The rats were then placed in a recovery cage with an oxygen

source for around 30min. Analgesia (0.025 mg/kg body weight

subcutaneously every 12 h) was planned for up to 72 h (81).
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TABLE 1 Di�erent anesthetic protocols used for the induction of experimental surgical models of heart failure in rats.

Anesthetic protocols Surgical models References

A mixture of ketamine hydrochloride and

xylazine hydrochloride (intraperitoneal

injection)

Myocardial infarction (MI) model (80 mg/kg ketamine and 10 mg/kg xylazine) (9, 10)

Cryoinjury-induced MI model (100 mg/kg ketamine and 10 mg/kg xylazine) (11)

Ischemia-reperfusion (IR) model (40 mg/kg ketamine and 10 mg/kg xylazine) (12)

Arteriovenous shunt (AVS) model (90 mg/kg ketamine and 10 mg/kg xylazine) (13, 14)

Aortic regurgitation (AR) model (50 mg/kg ketamine and 10 mg/kg xylazine) (15, 16)

Sodium pentobarbital (intraperitoneal

injection)

MI model (50 mg/ kg sodium pentobarbital) (17–19)

Cryoinjury-induced MI model (50 mg/ kg sodium pentobarbital) (20)

IR model (50–60 mg/kg sodium pentobarbital) (21–23)

Aortic constriction (AC) model (40 mg/kg sodium pentobarbital) (24, 25)

AR model (50 mg/ kg sodium pentobarbital) (26, 27)

PAB model (50–60 mg/ kg sodium pentobarbital) (28–31)

AVS model (50 mg/ kg sodium pentobarbital) (32, 33)

Two kidneys, one clip (2K1C) model (40 mg/kg sodium pentobarbital) (34–36)

Chloral hydrate 10 % (intraperitoneal

injection)

MI model (37, 38)

IR model (350 mg/kg chloral hydrate 10 %) (39, 40)

AC model (300 mg/kg chloral hydrate 10 %) (41, 42)

2K1C model (0.3 ml/100 g 10% chloral hydrate) (43)

Isoflurane (inhalational anesthesia) MI model (induction: 5%, maintenance: 2.5%) (44)

AC model (induction: 4%, maintenance: 2.5%) (45)

AVS model (induction: 4%, maintenance: 1.5%) (32, 46)

AR model (maintenance: 1.5%) (47)

PAB model (induction: 4% isoflurane in a mixture of 50% O2 and 50% N2O) (48)

A mixture of ketamine, xylazine, and

acepromazine.

MI model (50 mg/kg ketamine, 4 mg/kg xylazine, and 1 mg/kg acepromazine). (49)

Intraperitoneal injection of sodium

pentobarbital followed by an Intramuscular

administration of ketamine hydrochloride.

Cryoinjury-induced MI model (30 mg/kg sodium pentobarbital and 22 mg/kg ketamine

hydrochloride)

(50)

Intramuscular ketamine injection followed by

an intraperitoneal injection of pentobarbital.

Cryoinjury-induced MI model (22 mg/kg ketamine and 30 mg/kg pentobarbital). (51)

Diethyl ether (inhalational anesthesia) Cryoinjury-induced MI model (52)

A mixture of ketamine and medetomidine

intramuscular injection

2K1C model (60 mg/k ketamine and 250 µg/kg medetomidine) (53)

Ketamine intraperitoneal injection 2K1C model (90 mg/kg ketamine) (54, 55)

A mixture of injectable and inhalational

anesthesia ketamine hydrochloride and

isoflurane

AVS model (10mg per rat ketamine hydrochloride and subsequently anesthetized using 5%

isoflurane for the first minute followed by 2–3% during the remainder of the surgery).

(56)

A mixture of ketamine and midazolam AVS model (57)

Methohexital sodium intraperitoneal

injection

AVS model (50 mg/kg methohexital sodium). (58)

A mixture of pentobarbital and xylazine

intraperitoneal injection

PAB model (50 mg/kg pentobarbital and 5 mg/kg xylazine) (59)

A mixture of medetomidine-

midazolam-butorphanol (MMB) and

isoflurane followed by atipamezole

MI model MMB (0.3/5.0/5.0 mg/kg/SC) with isoflurane 1% encountered by atipamezole 1.0

mg/kg/SC

(60)
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FIGURE 2

Surgical techniques and limitations for some experimental rat models of heart failure (coronary artery ligation myocardial infarction [MI], cryoinjury

MI, ischemia-reperfusion, and aortic constriction models).

FIGURE 3

Surgical approach and shortcomings in some heart failure models in rats (two kidneys-one clip, arteriovenous shunt, aortic regurgitation, and

pulmonary artery banding models).

2.2.1.2. Limitations

These procedures are reported to have a mortality rate of more

than 50% due to malignant ventricular tachycardia in the acute

phase. Furthermore, infarctions are usually mild (averaging 21% of

the left ventricle), which may be due to the large amount of sub-

pericardial collateral circulation in this species. Consequently, only
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minor hemodynamic changes were observed (82). Furthermore,

creating the model is time-consuming and has been increasingly

criticized in terms of animal protection (83). Reichert et al. (84)

mentioned that the main limitation of this technique is the risk of

postoperative mortality, mostly caused by the occurrence of cardiac

arrhythmias, hemorrhage, and pneumothorax.

However, the MI model using the ligation technique produces

a wide variation in infarct size (85, 86). According to Pfeffer

et al. (87), the extent of the infarct ranges from 8 to 65%.

Widely varying results have minimal statistical significance and

limited utility, and infarct size is a significant predictor of left

ventricular remodeling and death. Survival, cardiac remodeling,

and hemodynamic dysfunction are frequently proportional to the

infarct size (88). The site of the occluding suture influences the size

of the infarct and the outcomes of coronary occlusion, and it is

difficult to identify the path of the LAD and the optimal ligation

site in small-sized rats (49, 88).

2.2.2. Cryoinjury-induced MI
Cryoinjury is another technique used to create anMI rat model.

It involves applying a cold probe to the surface of the heart,

typically the left ventricle, to freeze and damage a small area of

heart tissue. The resulting injury leads to a local inflammatory

response and scar formation, mimicking the pathophysiological

changes observed in human MI. This technique is commonly used

to study the effects of different therapeutic interventions on cardiac

repair and regeneration (89), as well as the underlying molecular

and cellular mechanisms involved in cardiac remodeling after

injury (90), evaluate the therapeutic effectiveness of biomaterials

for cardiac repair in the MI model (91), and examine the effect of

embryonic cardiomyocyte transplantation on HF progression (92).

According to Van Den Bos et al. (93), this is an ideal model

for studying therapeutic interventions to restore heart function or

cardiac regeneration following MI. They compared the results of

myocardial injury created by cryoinjury with the CAL method and

concluded that both resulted in a comparable loss of contractility

and diastolic dysfunction, but the cryoinjury model demonstrated

milder LV remodeling with no obvious heart failure. No obvious

cardiac failure due to a minor necrotic disc-shaped lesion caused

by the cryoprobe was observed. The generated lesion has cellular

characteristics, such as coagulation necrosis of myocardium. Thus,

it is an appropriate model for demonstrating myocardial repair

(93, 94).

The pathophysiology of MI in the cryoinjury approach differs

from that in other methods, such as LAD ligation, in that acute

cell death occurs without accompanying ischemia. It is caused by

mechanical stresses generated by the development of ice crystals

in the intracellular and extracellular spaces, as well as in the

vasculature (93). This technique has been employed in studies

involving intracardiac cell transplantation for myocardial repair

(89). Transplanted cells are easily injected at predetermined sites,

and the presence of vascular reperfusion is favorable for cellular

repair (93, 94).

2.2.2.1. Surgical technique

Three consecutive exposures to a liquid nitrogen-cooled

cryoprobe, a 6mm stainless steel cylinder, resulted in acute LV MI.

Blanching of the wall followed by hyperemia indicated the onset

of MI in the heart. In addition, the cryoinjury region of an MI

heart is distinguished by its pale appearance compared with the

surrounding tissue (Figure 2) (89).

2.2.2.2. Limitations

This method does not result in apparent HF following

cryoinjury, which is most likely due to the smaller infarct size

compared with coronary ligation. As a result, when an observable

HF model is required, the cryo-infarction model is not a choice; in

other words, cryo-infarction cannot replace the currently available

HF models. Instead, it can be used as a model for evaluating

medical treatments aimed at reducing cardiac remodeling and

improving heart function after myocardial infarction, such as drugs

that promote cardiac regeneration through progenitor cells or

growth factors (93), and invasive surgical procedures involving

thoracotomy, as in the LAD ligation technique (72).

2.2.3. Ischemia-reperfusion model
The IR rat model is a widely in used research to study the

pathophysiology of ischemic injury and test potential therapeutic

interventions. Its creation involves interrupting blood flow to

a specific organ or tissue (ischemia) for a period of time and

then restoring blood flow (reperfusion). In the case of the heart,

a common approach is to temporarily occlude the coronary

artery, induce myocardial ischemia, and then re-perfuse the

tissue by removing the occlusion (95). This process results in

a series of pathophysiological events, including oxidative stress,

inflammation, and cell death, which can be studied to better

understand the mechanisms of ischemic injury and identify

potential therapeutic targets. The IR rat model is used to

simulate ischemia-reperfusion injury that occurs in many clinical

conditions, such as MI, stroke, and organ transplantation (96),

and to evaluate the efficacy of human amniotic membrane

mesenchymal stem cell-derived conditioned medium against IR

injury (97).

Inducing MI in rodents with IR was originally tested in

experimental in vivo organs before being used in dogs in 1988 (98).

Initial apoptosis following hypoxia, as well as a smaller second wave

of necrosis, causes an infarct after IR, which is, therefore, regarded

as damage caused by reactive oxygen species and the opening of the

mitochondrial permeability transition pores (95).

The implementation of early reperfusion in the clinical

management of acute MI results in lower mortality and

enhanced cardiac function (99). The period between occlusion

and reperfusion ranged from 15min to 2 h, with 30min being the

most common (100). However, there is insufficient information

to support this conclusion. Some of the variances, as with

the permanent CAL procedure, can be explained by factors

such as operator experience and animal strain; however, the

time of reperfusion adds another major level of variance and

unpredictability to the outcome. As a result, 30min after IR, the

model may show infarct sizes of as low as 4%, indicating modest

damage with no influence on heart function or eventual pathology,

or as high as 30%, indicating minimal infarct size to significantly

impair function (100, 101).
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In all cases, the infarct size produced by IR was significantly

smaller than that produced by the permanent CALmethod because

blood flow restoration rescues a portion of the affected area. One

significant distinction between IR and permanent ligation (PL) is

the secondary onset of reperfusion damage. This occurs as a direct

result of the rapid return of blood flow to the damaged region, and

is a secondary cause of cell damage and death after ischemia. In

general, IR is more technically challenging than PL, resulting in

smaller andmore variable infarcts that frequently do not advance to

other cardiovascular pathologies. However, it allows researchers to

study the second wave of injury associated with blood reperfusion,

which applies to clinical interventions in human acute MI patients

but is not currently a therapeutic target (95).

2.2.3.1. Surgical technique

The same applies to the MI model, with a difference in the

ligation technique. After the heart was already visible, the LAD was

temporarily ligated using a piece of tubing. The suture was cut,

and the tubing was removed for reperfusion once the appropriate

period of ischemia had passed (Figure 2) (39).

2.2.3.2. Limitations

The most significant limitation of the IR model is that the

majority of damage is still caused by ischemia, with reperfusion

injury accounting for a considerably smaller second wave of post-

MI injury. Therefore, reperfusion injury may have no apparent

effect on the overall severity of MI (12). In addition, significant

variations in the results and outcomes were mainly dependent on

the IR time-course (102).

2.2.4. Aortic constriction model (pressure
overload)

The AC model is a commonly used experimental model of left

ventricular hypertrophy that involves partial constriction of the

aorta to increase the pressure in the left ventricle. Thismodel is used

to study the mechanisms underlying cardiac hypertrophy and HF,

to test potential therapeutic interventions (103), and to characterize

the immunomodulatory response in a pressure overload model of

HF (104).

Initially, banding had little or no effect on aortic flow, but

as the animal grew, the relative severity of the constriction

increased, resulting in heart hypertrophy, which has been utilized to

mechanically replicate the cardiac consequences of aortic stenosis,

systemic hypertension, and aortic coarctation in a variety of sites

(3, 105).

The constriction may be thoracic, near the aortic origin

(ascending AC [AAC]), or in the aortic arch between the first

and second trunks (transverse AC [TAC]). The constriction can

also be used in the abdominal aorta, either below or above

the renal arteries, with the latter inducing hypertension due to

renal hypoperfusion and concurrent LV hypertrophy. The main

distinction among these models is the anatomic position of the

constriction (106).

TAC and suprarenal AC cause a more gradual increase in

pressure, hypertrophy, and HF, whereas AAC is frequently used

to assess the effects of an early insult caused by pressure overload

(107). The severity of the disease varies according to the species,

age, and sex of the animal (108–110).

TAC surgery that reduces aortic diameter by 50%, causes a

systolic pressure gradient of 50–60 mmHg between the aorta

and the LV, resulting in clear echocardiographic evidence of LV

hypertrophy and an increase in left atrial pressure around the

eighth week (111). According to Weinberg et al. (109), after

18–20 weeks of compensatory LV hypertrophy, a subgroup of

rats eventually showed reduced LV systolic pressure, higher LV

volume, decreased ejection fraction, and clinical symptoms of overt

congestive HF.

2.2.4.1. Surgical technique

The anesthetized rats were placed in the supine position for

TAC. Following the skin incision, the upper half of the sternum

was separated in the midline using scissors, and the thymus was

removed. The aortic arch was carefully dissected from surrounding

tissues. A stylet (bent and blunted) 16G intravenous catheter was

tied securely to the aorta between the brachiocephalic trunk and

left common carotid artery using a 4.0 silk and then removed,

creating partial AC. Sutures were used to close the sternotomy and

skin incisions. Rats were extubated and placed in an incubator at

28–30◦C for recovery (Figure 2) (45).

Rats were intraperitoneally injected with buprenorphine (0.1

mg/kg) for postoperative analgesia. In addition, the rats were

administered oxytetracycline (500 mg/L of water) via drinking

water for 7 days (112).

2.2.4.2. Limitations

In the TAC model, although the onset of HF development

differs significantly from that of patients with hypertension or

aortic stenosis, the initiation of hypertension in this model is

sudden and results in a 50% increase in LV mass within 2 weeks;

thus, this is an ideal model to investigate intervention strategies that

affect the development of cardiac hypertrophy (113).

AC (abdominal AC in the infrarenal and suprarenal positions)

can also produce chronic LV pressure overload, which eventually

leads to cardiac hypertrophy and dysfunction. The progression of

this model to HF is more gradual, making it more appropriate for

hypertension-related HF. Because it does not require chest opening

or artificial breathing, it is more routinely utilized in rats than TAC

(114, 115).

2.2.5. Two kidneys-one clip (2K1C) model (renal
failure-induced hypertension, renovascular
hypertension)

The 2K1C model is an experimental model of renovascular

hypertension that involves placing a clip on one of the renal arteries

to reduce blood flow to one of the kidneys. This reduction in blood

flow stimulates the renin-angiotensin-aldosterone system, leading

to increased blood pressure. This model was used to study the

mechanisms of hypertension, test the efficacy of antihypertensive

therapies (116), and study the significance of stem cell therapy in

the remodeling of fibrotic kidney parenchyma (117).

The physiological function of the kidney includes maintaining

electrolyte and fluid balance as well as secretion of renin, a key

component of the renin-angiotensin system. Thus, its role in blood
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pressure regulation and the development of hypertension is widely

acknowledged. Since Goldblatt et al. (118) created an elevation in

blood pressure by partially closing the renal artery in dogs in 1934,

many renal-generated hypertension models have been successfully

established in rats, rabbits, sheep, and cats.

According to Weber et al. (119), within 2–4 weeks of clipping

the kidney, the model is characterized by significant elevations in

plasma renin activity, as well as elevated circulating angiotensin II

concentrations and blood pressure. After 4 weeks, plasma renin

activity and angiotensin II levels returned to near-normal levels,

regardless of the presence of interstitial fibrosis in the heart,

particularly around the intramural coronary arteries. Within a

few months, a chronic phase developed, marked by increased

plasma renin activity and myocardial perivascular and interstitial

fibrosis (119).

Junhong et al. used 2K1C to simulate a rat model of

diastolic dysfunction and studied its biochemical alterations using

proteomic techniques. They found that diastolic dysfunction was

observed in hypertensive rats 8 weeks after the operation, as

evidenced by increased wall thickness, fibrosis, impaired relaxation,

and increased chamber stiffness (54). Another experiment was

conducted in our laboratory to induce renovascular hypertension

in rats to study novel echocardiographic techniques and herbal

medicines in this model (120).

2.2.5.1. Surgical technique

The anesthetized rats are subjected to a flank abdominal

incision to expose the left renal hilum, and the renal artery and

vein are carefully identified by blunt dissection. To prevent vessel

compression during clip placement, an insulin needle tip with an

outer diameter of 0.23mm is employed in each of the rats. A

titanium vascular clip is also gently placed around the left renal

artery. After that, the needle tip is carefully removed, the contents

of the abdomen are gently returned to their original location, the

abdominal wall and skin are sutured, and the animals are allowed

to recover (Figure 3) (43, 55). Non-steroidal anti-inflammatory

flunixin meglumine (2.5 mg/kg, subcutaneously) and antibiotic

enrofloxacin (5 mg/kg, subcutaneously) can be administered as

postoperative treatment (121).

2.2.5.2. Limitations

Renovascular hypertension created by this model usually

produces a complex HF model, in which myocardial hypertrophy

is eccentric due to overloading and concentric due to hypertension

that develops in addition to renal failure. Although this model

somewhat mimics complex renal failure-induced HF to some

extent, there are some issues regarding the success rate and rapid

change in the geometry of the heart, which limit the study of

detailed hemodynamic investigations of the heart. In a study by

Ma et al. the feasibility of a novel IVPG assessment did not show

significant benefits in this model within 8 weeks. However, his data

revealed clear evidence of rapid changes in myocardial strain and

the efficiency of a new medicine (salvianolic acid B) to ameliorate

the pathological consequences of the heart in this model (120).

The 2K1C approach is not always successful in rats; for

example, in the Dussaule experiment, 19 rats did not acquire

hypertension, 27 had malignant hypertension, and 12 died; only

47 (45%) established stable hypertension (122). In addition,

Amann et al. (123) found that after 14 months of uremia,

ventricular hypertrophy in operated rats was not accompanied

by an increase in the capillary number. Although this model

undoubtedly enables the analysis of hypertension following renal

failure, it is difficult to determine how it may be used for human

essential hypertension (124).

2.2.6. Arteriovenous shunt model (volume
overload)

The AVS model is an experimental model that involves the

surgical creation of a direct connection between an artery and vein,

bypassing the capillary bed. This results in increased blood flow

and pressure in the vein, mimicking the hemodynamic changes

observed in certain pathological conditions, such as arteriovenous

fistulas. The AVS model was used to study the effects of increased

blood flow and pressure on vascular function and to test potential

therapeutic interventions (32).

Aortocaval fistula (ACF)-induced chronic volume overload

in rats is a well-studied rodent HF model (106). This model

is simple and reliable, and it features several crucial aspects of

human HF, including a gradual change from the asymptomatic to

the decompensated phase, considerable neurohumoral activation

(125), fluid retention, and changes in myocardial phenotype typical

of HF (126).

An artificial shunt between the abdominal aorta and the

inferior vena cava causes a significant increase in cardiac

output and venous return, which causes compensatory, initially

asymptomatic ventricular hypertrophy (127), prolonged

hemodynamic overload, redistribution of cardiac output, and

activation of the neurohumoral response, causing HF to appear

8–10 weeks after ACF induction (57).

AVS have been used to cause volume overload, dilated

cardiomyopathy, and HF in rodents (128). Despite the limitation of

requiring laparotomy, the more recent aortocaval shunt technique

is a comparably faster and easier way to induce HF with good

survival rates (3, 129).

The hemodynamic data in these models suggest a persistent

increase in the LV diastolic volume. The Frank–Starlingmechanism

is responsible for maintaining a high output status in the early

stages following the development of the AV shunt. This variable

represents an abrupt increase in wall stress caused by volume

overload, whereas changes in LV end-diastolic pressure indicate

that the development of cardiac hypertrophy and dilation of the

cardiac chamber tend to regulate wall stress (6).

2.2.6.1. Surgical technique

Flaim et al. established aHF ratmodel of a chronic AVS between

the abdominal aorta and the inferior vena cava, and surgical

introduction of an arteriovenous fistula between the abdominal

aorta and the inferior vena cava at a point ∼5mm caudal to the

left renal vein was used to induce a high cardiac output state. After

general anesthesia, a midline incision in the abdominal wall was

made to expose the peritoneal cavity, and the abdominal aorta

and vena cava were exposed and isolated for ∼20mm before all

branches were occluded using bulldog clamps A 10mm segment

of the aorta and vena cava were isolated under a dissecting

microscope by placing two bulldog clamps across the main vessels,
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and openings of approximately comparable size (width, 1mm)

were made through the medial walls at the midpoint of the isolated

segments. Three interrupted microsurgical sutures (9-O Ethilon)

were used to unite the opposing sides of the two apertures; the

clamps were removed, and the patency of the fistula was visually

confirmed by the presence of mixed arterial blood in the vena cava.

After closing the abdominal incision, the animal was allowed to

recover (Figure 3) (125, 130).

On the other hand, Garcia and Diebold developed a simple,

rapid, and effective method for exposing the vena cava and

abdominal aorta by opening the abdominal cavity with a midline

incision, placing a 18-gauge needle into the abdominal aorta and

progressing through themedial wall into the vena cava, constricting

the aorta is momentarily below the origin of the right renal artery,

and quickly repairing the aortic puncture using a cyanoacrylate

glue. To confirm the patency of the shunt, a pulsatile flow of

oxygenated blood into the inferior vena cava is visually observed.

A standard method is used to close the abdominal cavity using an

absorbable suture (131).

2.2.6.2. Limitations

In rats, an AV fistula is formed by a side-to-side anastomosis

of the aorta and vena cava (125) or by end-to-side anastomosis

of the left iliolumbar vein (56). Both operations necessitate

microvascular surgery, and the circulatory system is occluded for

15–30min. Furthermore, because these surgical procedures take

40 mins to complete, mortality rates range from 47 to 76% (56,

125). In addition, shunt size and hypertrophic and hemodynamic

characteristics have been inconsistent (13).

2.2.7. Aortic regurgitation model (volume
overload)

AR models are often created through surgical interventions

such as aortic valve leaflet perforation or cusp removal. These

procedures can lead to increased retrograde blood flow, resulting

in AR. The severity of regurgitation can be assessed using various

imaging techniques, such as echocardiography or MRI. These

models can be used to study the pathophysiology and potential

treatments of AR (132) and to study biological and tissue-

engineered valvular and cardiovascular grafts in vivo (133).

AR is another volume overload model of HF that is induced by

ventricular volume regurgitation and is thus directly related to the

severity of aortic insufficiency. Mild AR causes only minor volume

overload, whereas severe AR causes considerable LV volume

overload and increasing chamber dilatation. AR can be classified as

compensated or decompensated. In compensated AR, the LV first

responds to volume overload by eccentric hypertrophy, preserving

LV diastolic compliance and allowing LV filling pressures to

stay normal or mildly elevated despite a substantial regurgitation

volume. Decompensated AR is defined as LV systolic dysfunction

and poor LV diastolic compliance as a result of hypertrophy and

fibrosis, resulting in excessive filling pressures and HF (6, 134).

Although not the most frequently encountered valvular disease,

it has been estimated based on the findings of the Framingham

study that 13% of the population suffers from some degree

of AR (135). While mild AR normally does not cause any

significant problems, the disorder can grow silently for decades and

worsen. This stealthy progression results in increased LV dilatation,

hypertrophy, and, finally, HF (136, 137).

2.2.7.1. Surgical technique

AR is established in anesthetized animals by exposing the

right carotid artery through a right lateral neck incision. The

distal common carotid artery is ligatured using a 4.0 nylon suture,

followed by a arteriotomy to allow the insertion of a 0.9-mm guide

wire. The thorax is scanned with an echocardiographic probe to

obtain a clear view of the left ventricle, aortic valve, and ascending

aorta, which is equal to a parasternal long-axis view in standard

human echocardiography. Under continuous echocardiographic

observation, an arterial leader catheter is moved retrogradely

toward the aortic valve, and the position and passage of the catheter

through the aortic valve leaflet and into the left ventricle are guided

by the sonographer; an acute AR is caused by a tear in the leaflet

(Figure 3) (138).

The following echocardiographic criteria were used to

determine AR at the time of surgery: the color Doppler ratio

of regurgitation jet width to left ventricular outflow tract

obstruction diameter was 50–70%, and pulsed-wave Doppler

proved reversed diastolic flow in the abdominal aorta (139). When

the echocardiographic criteria determined that the severity of the

regurgitation jet in the abdominal aorta was insufficient, leaflet

perfusion was repeated. After the AR was established, the proximal

carotid artery was ligated using 4.0 nylon sutures (140). In the first

few hours following surgery, the animals were observed for any

signs of respiratory distress that could indicate severe HF. They

were weighed daily to check for excessive weight gain, which could

be a sign of pending HF (138).

2.2.7.2. Limitations

This rat model has various drawbacks in terms of AR.

One of the most serious complications is the extremely high

mortality rate associated with acute AR secondary to HF. Multiple

aortic valve leaflet perforations can cause serious valve damage,

uncontrollable HF, and death. Therefore, wire perforations should

be performed while echocardiography is being monitored, and

repeated perforations should be avoided (140).

Another challenge is the wire size of the perforations. Some

researchers prefer thicker wires (0.9mm), which can result in

multiple leaflet injuries with severe AR, while others prefer thinner

wires (0.3mm), which result in relatively moderate AR (138, 141).

Thus, a wire diameter of 0.6mm may be more acceptable for

creating a modest AR model (6).

2.2.8. Pulmonary artery banding model (right
ventricle pressure overload models)

PAB is a surgical model used in rats to induce right ventricular

(RV) pressure overload and study the development of RV

hypertrophy and HF. In this model, a band is placed around the

pulmonary artery, restricting blood flow to the lungs and causing

an increased RV afterload. The severity of RV pressure overload can

be adjusted by varying the tightness of the band. PAB is commonly

used in cardiovascular research to investigate the molecular and

cellular mechanisms involved in RV hypertrophy and HF to test

potential therapies for these conditions (28) and to explore the
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efficacy of stem cell therapy for RV failure in pulmonary arterial

hypertension (142).

Pulmonary arterial hypertension (PAH) is a chronic and

frequently fatal condition (143). Although the primary pathology

originates in the pulmonary vasculature, mortality is determined

by RV remodeling, dysfunction, and eventual failure (144). Several

animal models of RV pressure overload and PAH have been

developed to study the pathophysiology of PAH and RVs, as well

as their response to prospective treatments. PAB, Sugen-5416 plus

hypoxia (SuHx)-induced PAH, andmonocrotaline (MCT)-induced

PAH are some of the models used (145–148). Several studies have

demonstrated that these models produce distinct RV responses in

terms of adaptive RV hypertrophy in the PAB model, in contrast

to the maladaptive failure in the SuHx and MCT models (28,

149). Several characteristics of maladaptive RV remodeling in the

PAH model have been proposed, including RV dilation, reduced

function, fibrosis, and capillary rarefication (29, 150). However, as

of the confounding effects of potentially altered pulmonary vascular

resistance, hypoxia, molecular modulation (e.g., VEGF inhibition),

or toxins on RV function, the MCT and SuHx models cannot be

used to investigate isolated RV effects of potential therapies, and

the PAB model is relevant in this regard (29, 151, 152).

PAB involves constricting the pulmonary artery using a band

or clip to increase the workload on the right ventricle and

simulate the effects of pulmonary hypertension. A pre-adjusted

hemostatic clip is the most widely used approach in small animal

models of rats and mice (48, 153, 154), or a ligature tightened

around the pulmonary artery (155–157). Both procedures are

effective; however, the clipping approach may be easier to learn

and more reproducible, whereas the ligature method does not use

metal, making it better suited for MRI or ultrasound evaluation

of pulmonary artery flow (158). The banding method has the

advantage of allowing for accurate titration of afterload to produce

RV hypertrophy, compensated RV failure, or decompensated RV

failure owing to the precise diameter of the band/clip (159, 160), as

evidenced by hypertrophy with preserved hemodynamics, altered

hemodynamics without extracardiac symptoms of RV failure, and

altered hemodynamics with extracardiac signs of RV failure (158).

2.2.8.1. Surgical technique

The anesthetized animals are mechanically ventilated after

intubation using a volume-controlled respirator and oxygen-

enriched room air. After induction left thoracotomy, the

pulmonary artery (PA) is gently torn free from the aorta using a silk

thread that is threaded beneath the PA, then an 18-gauge needle is

threaded alongside the PA, and the suture is securely tied around

the needle and swiftly released, leaving a fixed, constricted aperture

in the lumen equal to the needle’s diameter. The combination of

a fixed banding around the PA and the animal’s growth results

in dramatically elevation RV afterload over time (Figure 3)

(28, 161, 162). In another technique using a clip applier with a

stopper, a small clip is half-closed around the PA, and blood flow

via the PA is restricted to the inner segment of the half-closed clip

(59). Buprenorphine (15 g/kg sc) is used to relieve postoperative

pain (28).

2.2.8.2. Limitations

A challenge with the banded model is to include RV failure,

rather than simply a well-adapted hypertrophic RV. The difficulty

is that a tight band causes abrupt RV failure and mortality in

adult animals, whereas a loose band causes compensatory RV

hypertrophy. To overcome this, most models begin operations with

weaning. This causes stenosis to worsen as the animal develops,

allowing for catastrophic RV failure over time (158, 163).

Author contributions

Review design: AF, AM, and RT. Investigation: AF, AM, HH,

and AElh. Data collection: AF, AElf, and HH.Writing and drafting:

AF, AM, AElh, and AElf. Critical editing: AM. Supervision: RT. All

authors reviewed and edited the final version.

Acknowledgments

This research was supported by a full scholarship provided by

the Egypt-Japan Education Partnership (EJEP) of the Ministry of

Higher Education, Egypt.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Crespo CJ, di Angelantonio E, Group WHOCVDRCW. World health
organization cardiovascular disease risk charts: revised models to estimate risk
in 21 global regions. Lancet. (2019) 7:e1332–45. doi: 10.1016/S2214-109X(19)30
318-3

2. Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res.
(2019) 115:1838–49. doi: 10.1093/cvr/cvz161

3. Gomes AC, Falcao-Pires I, Pires AL, Brás-Silva C, Leite-Moreira AF. Rodent
models of heart failure: an updated review. Heart Fail Rev. (2013) 18:219–
49. doi: 10.1007/s10741-012-9305-3

4. Halpern MH. The azygos vein system in the rat. Anat Rec. (1953) 116:83–93.
doi: 10.1002/ar.1091160108

5. Halpern MH. The dual blood supply of the rat heart. Am J Anat. (1957) 101:1–16.

Frontiers in Veterinary Science 10 frontiersin.org28

https://doi.org/10.3389/fvets.2023.1103229
https://doi.org/10.1016/S2214-109X(19)30318-3
https://doi.org/10.1093/cvr/cvz161
https://doi.org/10.1007/s10741-012-9305-3
https://doi.org/10.1002/ar.1091160108
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Farag et al. 10.3389/fvets.2023.1103229

6. Katz MG, Fargnoli AS, Gubara SM, Chepurko E, Bridges CR, Hajjar RJ. Surgical
and physiological challenges in the development of left and right heart failure in rat
models. Heart Fail Rev. (2019) 24:759–77. doi: 10.1007/s10741-019-09783-4

7. Fish RE, Brown MJ, Karas AZ. Anesthesia and analgesia in laboratory animals.
2nd (ed): American coll of Lab Ani.Med Serv. (2008) 302:305.

8. Luca C, Salvatore F, Vincenzo DP, Giovanni C, Attilio ILM. Anesthesia protocols
in laboratory animals used for scientific purposes. Acta Bio Med Atenei Parmens.
(2018) 89:337. doi: 10.23750/abm.v89i3.5824

9. Srikanth G, Prakash P, Tripathy N, Dikshit M, Nityanand S. Establishment of
a rat model of myocardial infarction with a high survival rate: a suitable model
for evaluation of efficacy of stem cell therapy. J Stem Cells Regen Med. (2009)
5:30. doi: 10.46582/jsrm.0501006

10. Gonçalves MSS, Silva EAP, Santos DM, Santana IR, Souza DS,
Araujo AM, et al. Nerolidol attenuates isoproterenol-induced acute
myocardial infarction in rats. Naunyn Schmiedebergs Arch Pharmacol. (2022)
395:353–63. doi: 10.1007/s00210-022-02202-w

11. Jin J, Jeong SI, Shin YM, Lim KS, Shin H, Lee YM, et al. Transplantation of
mesenchymal stem cells within a poly (lactide-co-ε-caprolactone) scaffold improves
cardiac function in a rat myocardial infarction model. Eur J Heart Fail. (2009)
11:147–53. doi: 10.1093/eurjhf/hfn017

12. Yücel A, Aydogan MS, Ucar M, Sarici KB, Karaaslan MG. Effects of
apocynin on liver ischemia-reperfusion injury in rats. Transpl Proc. (2019) 14:1180–
3. doi: 10.1016/j.transproceed.2019.01.108

13. Wang XI, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS. Characterization of
cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol.
(2003) 94:752–63. doi: 10.1152/japplphysiol.00248.2002

14. Sethi R, Saini HK, Guo X, Wang X, Elimban V, Dhalla NS. Dependence
of changes in β-adrenoceptor signal transduction on type and stage of cardiac
hypertrophy. J Appl Physiol. (2007) 102:978–84. doi: 10.1152/japplphysiol.00921.2006

15. Noma T, Nishiyama A, Mizushige K, Murakami K, Tsuji T, Kohno M, et al.
Possible role of uncoupling protein in regulation of myocardial energy metabolism in
aortic regurgitation model rats. FASEB J. (2001) 15:1206–8. doi: 10.1096/fj.00-0569fje

16. Murakami K, Mizushige K, Noma T, Kimura S, Abe Y, Matsuo H. Effects of
perindopril on left ventricular remodeling and aortic regurgitation in rats assessed by
echocardiography. Angiology. (2000) 51:943–52. doi: 10.1177/000331970005101107

17. Dai Y, Chen Y, Wei G, Zha L, Li X. Ivabradine protects rats against myocardial
infarction through reinforcing autophagy via inhibiting PI3K/AKT/mTOR/p70S6K
pathway. Bioengineered. (2021) 12:1826–37. doi: 10.1080/21655979.2021.1925008

18. Moon C, Krawczyk M, Ahn D, Ahmet I, Paik D, Lakatta EG, et al.
Erythropoietin reduces myocardial infarction and left ventricular functional decline
after coronary artery ligation in rats. Proc Natl Acad Sci. (2003) 100:11612–
7. doi: 10.1073/pnas.1930406100

19. Chen R, Chen W, Huang X, Rui Q. Tanshinone IIA attenuates heart failure
via inhibiting oxidative stress in myocardial infarction rats. Mol Med Rep. (2021)
23:1–10. doi: 10.3892/mmr.2021.12043

20. Huwer H, Rissland J, Vollmar B, Nikoloudakis N, Welter C, Menger MD,
et al. Angiogenesis and microvascularization after cryothermia-induced myocardial
infarction: a quantitative fluorescence microscopic study in rats. Basic Res Cardiol.
(1999) 94:85–93.

21. Najafi M. Effects of postconditioning, preconditioning and perfusion of L-
carnitine during whole period of ischemia/reperfusion on cardiac hemodynamic
functions and myocardial infarction size in isolated rat heart. Iran J Basic Med Sci.
(2013) 16:648.

22. Ma N, Bai J, Zhang W, Luo H, Zhang X, Liu D, et al. Trimetazidine
protects against cardiac ischemia/reperfusion injury via effects on cardiac miRNA-
21 expression, Akt and the Bcl-2/Bax pathway. Mol Med Rep. (2016) 14:4216–
22. doi: 10.3892/mmr.2016.5773

23. Bakhta O, Blanchard S, Guihot A-L, Tamareille S, Mirebeau-Prunier D, Jeannin
P, et al. Cardioprotective role of colchicine against inflammatory injury in a rat
model of acute myocardial infarction. J Cardiovasc Pharmacol Ther. (2018) 23:446–
55. doi: 10.1177/1074248418763611

24. Liu Q, Hu H, Hu T, Han T, Wang A, Huang L, et al. STVNa
attenuates right ventricle hypertrophy and pulmonary artery remodeling in
rats induced by transverse aortic constriction. Biomed Pharmacother. (2018)
101:371–8. doi: 10.1016/j.biopha.2018.02.078

25. Ke Q, Liu F, Tang Y, Chen J, Hu H, Sun X, et al. The protective effect of
isosteviol sodium on cardiac function and myocardial remodelling in transverse aortic
constriction rat. J Cell Mol Med. (2021) 25:1166–77. doi: 10.1111/jcmm.16182

26. Droogmans S, Roosens B, Cosyns B, Hernot S, Weytjens C,
Degaillier C, et al. Echocardiographic and histological assessment of age-
related valvular changes in normal rats. Ultrasound Med Biol. (2009)
35:558–65. doi: 10.1016/j.ultrasmedbio.2008.10.006

27. Rafiq K, Noma T, Fujisawa Y, Ishihara Y, Arai Y, Nabi AHMN,
et al. Renal sympathetic denervation suppresses de novo podocyte injury
and albuminuria in rats with aortic regurgitation. Circulation. (2012)
125:1402–13. doi: 10.1161/CIRCULATIONAHA.111.064097

28. FaberMJ, DalinghausM, Lankhuizen IM, Steendijk P, HopWC, Schoemaker RG,
et al. Right and left ventricular function after chronic pulmonary artery banding in rats
assessed with biventricular pressure-volume loops. Am J Physiol Heart Circul Physiol.
(2006) 291:H1580–6. doi: 10.1152/ajpheart.00286.2006

29. Akazawa Y, Okumura K, Ishii R, Slorach C, Hui W, Ide H, et al. Pulmonary
artery banding is a relevant model to study the right ventricular remodeling and
dysfunction that occurs in pulmonary arterial hypertension. J Appl Physiol. (2020)
129:238–46. doi: 10.1152/japplphysiol.00148.2020

30. Song J, Shen S, Wei Y, Li W, Wang N. Hemodynamic characteristics of the right
ventricle following gradient pulmonary artery banding in rats.World Acad Sci J. (2021)
3:1–8. doi: 10.3892/wasj.2021.125

31. Pan LC, Wilson DW, Segall HJ. Strain differences in the response of Fischer
344 and Sprague–Dawley rats to monocrotaline induced pulmonary vascular disease.
Toxicology. (1993) 79:21–35.

32. Aimoto M, Yagi K, Ezawa A, Tsuneoka Y, Kumada K, Hasegawa T, et al.
Chronic volume overload caused by abdominal aorto-venocaval shunt provides
arrhythmogenic substrates in the rat atrium. Biol Pharm Bull. (2022) 45:635–
42. doi: 10.1248/bpb.b22-00031

33. Brower GL. Chronic Volume Overload: Contribution of Ventricular Remodeling
to the Pathogenesis of Heart Failure in Rats. Auburn: Auburn University (1998).

34. Bartosiewicz J, Kaminski T, Pawlak K, Karbowska M, Tankiewicz-Kwedlo A,
Pawlak D. The activation of the kynurenine pathway in a rat model with renovascular
hypertension. Exp Biol Med. (2017) 242:750–61. doi: 10.1177/1535370217693114

35. Zhuang Y, Sun L, Zhang Y, Liu G. Antihypertensive effect of long-term oral
administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular
hypertension.Mar Drugs. (2012) 10:417–26. doi: 10.3390/md10020417

36. Castoldi G, di Gioia CRT, Travaglini C, Busca G, Redaelli S, Bombardi C, et al.
Angiotensin II increases tissue-specific inhibitor of metalloproteinase-2 expression in
rat aortic smooth muscle cells in vivo: evidence of a pressure-independent effect. Clin
Exp Pharmacol Physiol. (2007) 34:205–9. doi: 10.1111/j.1440-1681.2007.04573.x

37. Fu Y, Wang S, Cui Q. Mechanism of atorvastatin in improving cardiac function
in a rat model of myocardial infarction. Indian J Pharm Sci. (2020) 14:38–44.
doi: 10.36468/pharmaceutical-sciences.spl.121

38. Jiang J, Gu X, Wang H, Ding S. Resveratrol improves cardiac function and
left ventricular fibrosis after myocardial infarction in rats by inhibiting NLRP3
inflammasome activity and the TGF-β1/SMAD2 signaling pathway. PeerJ. (2021)
9:e11501. doi: 10.7717/peerj.11501

39. Zhao T, Chen S, Wang B, Cai D. L-Carnitine reduces myocardial oxidative
stress and alleviates myocardial ischemia-reperfusion injury by activating nuclear
transcription-related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) signaling pathway.
Med Sci Monit. (2020) 26:e923251–1. doi: 10.12659/MSM.923251

40. Chen C, Hu L-X, Dong T, Wang G-Q,Wang L-H, Zhou X-P, et al. Apoptosis and
autophagy contribute to gender difference in cardiac ischemia–reperfusion induced
injury in rats. Life Sci. (2013) 93:265–70. doi: 10.1016/j.lfs.2013.06.019

41. Zhang Y-J, Zhang X-L, Li M-H, Iqbal J, Bourantas C, Li J-J, et al. The ginsenoside
Rg1 prevents transverse aortic constriction–induced left ventricular hypertrophy and
cardiac dysfunction by inhibiting fibrosis and enhancing angiogenesis. J Cardiovasc
Pharmacol. (2013) 62:50–7. doi: 10.1097/FJC.0b013e31828f8d45

42. Chen Y, Li Y, Guo L, Chen W, Zhao M, Gao Y, et al. Effects of wenxin
keli on the action potential and L-type calcium current in rats with transverse
aortic constriction-induced heart failure. Evid Based Compl Alternat Med. (2013)
2013:1447. doi: 10.1155/2013/572078

43. Li L, Zhang J, Wang R, Li J, Gu Y. Establishment and evaluation of a reversible
two-kidney, one-clip renovascular hypertensive rat model. Exp Ther Med. (2017)
13:3291–6. doi: 10.3892/etm.2017.4386

44. Sugiyama A, Ito R, Okada M, Yamawaki H. Long-term administration
of recombinant canstatin prevents adverse cardiac remodeling after myocardial
infarction. Sci Rep. (2020) 10:1–11. doi: 10.1038/s41598-020-69736-y

45. Songstad NT, Johansen D, How O-J, Kaaresen PI, Ytrehus K, Acharya G. Effect
of transverse aortic constriction on cardiac structure, function and gene expression in
pregnant rats. PLoS ONE. (2014) 9:e89559. doi: 10.1371/journal.pone.0089559

46. Cao X, Aimoto M, Nagasawa Y, Zhang H-X, Zhang C-S, Takahara
A. Electrophysiological response to acehytisine was modulated by
aldosterone in rats with aorto-venocaval shunts. Biol Pharm Bull. (2021)
14:b20–00974. doi: 10.1248/bpb.b20-00974

47. El Oumeiri B, van de Borne P, Hubesch G, Herpain A, Annoni F, Jespers P,
et al. The myosin activator omecamtiv mecarbil improves wall stress in a rat model
of chronic aortic regurgitation. Physiol Rep. (2021) 9:e14988. doi: 10.14814/phy2.
14988

48. Schou UK, Peters CD, Kim SW, Frøkiær J, Nielsen S. Characterization
of a rat model of right-sided heart failure induced by pulmonary trunk
banding. J Exp Anim Sci. (2007) 43:237–54. doi: 10.1016/j.jeas.2006.
10.004

49. Samsamshariat SA, Samsamshariat ZA, Movahed M-R. A novel method for safe
and accurate left anterior descending coronary artery ligation for research in rats.
Cardiovasc Revascul Med. (2005) 6:121–3. doi: 10.1016/j.carrev.2005.07.001

Frontiers in Veterinary Science 11 frontiersin.org29

https://doi.org/10.3389/fvets.2023.1103229
https://doi.org/10.1007/s10741-019-09783-4
https://doi.org/10.23750/abm.v89i3.5824
https://doi.org/10.46582/jsrm.0501006
https://doi.org/10.1007/s00210-022-02202-w
https://doi.org/10.1093/eurjhf/hfn017
https://doi.org/10.1016/j.transproceed.2019.01.108
https://doi.org/10.1152/japplphysiol.00248.2002
https://doi.org/10.1152/japplphysiol.00921.2006
https://doi.org/10.1096/fj.00-0569fje
https://doi.org/10.1177/000331970005101107
https://doi.org/10.1080/21655979.2021.1925008
https://doi.org/10.1073/pnas.1930406100
https://doi.org/10.3892/mmr.2021.12043
https://doi.org/10.3892/mmr.2016.5773
https://doi.org/10.1177/1074248418763611
https://doi.org/10.1016/j.biopha.2018.02.078
https://doi.org/10.1111/jcmm.16182
https://doi.org/10.1016/j.ultrasmedbio.2008.10.006
https://doi.org/10.1161/CIRCULATIONAHA.111.064097
https://doi.org/10.1152/ajpheart.00286.2006
https://doi.org/10.1152/japplphysiol.00148.2020
https://doi.org/10.3892/wasj.2021.125
https://doi.org/10.1248/bpb.b22-00031
https://doi.org/10.1177/1535370217693114
https://doi.org/10.3390/md10020417
https://doi.org/10.1111/j.1440-1681.2007.04573.x
https://doi.org/10.36468/pharmaceutical-sciences.spl.121
https://doi.org/10.7717/peerj.11501
https://doi.org/10.12659/MSM.923251
https://doi.org/10.1016/j.lfs.2013.06.019
https://doi.org/10.1097/FJC.0b013e31828f8d45
https://doi.org/10.1155/2013/572078
https://doi.org/10.3892/etm.2017.4386
https://doi.org/10.1038/s41598-020-69736-y
https://doi.org/10.1371/journal.pone.0089559
https://doi.org/10.1248/bpb.b20-00974
https://doi.org/10.14814/phy2.14988
https://doi.org/10.1016/j.jeas.2006.10.004
https://doi.org/10.1016/j.carrev.2005.07.001
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Farag et al. 10.3389/fvets.2023.1103229

50. Sakai T, Li R-K, Weisel RD, Mickle DAG, Kim E-J, Tomita S, et al. Autologous
heart cell transplantation improves cardiac function after myocardial injury. Ann
Thorac Surg. (1999) 68:2074–80.

51. Li R-K,Mickle DAG,Weisel RD, Rao V, Jia Z-Q. Optimal time for cardiomyocyte
transplantation to maximize myocardial function after left ventricular injury. Ann
Thorac Surg. (2001) 72:1957–63. doi: 10.1016/S0003-4975(01)03216-7

52. Ciulla MM, Paliotti R, Ferrero S, Braidotti P, Esposito A, Gianelli U, et al. Left
ventricular remodeling after experimental myocardial cryoinjury in rats. J Surg Res.
(2004) 116:91–7. doi: 10.1016/j.jss.2003.08.238

53. Oliveira-Sales EB, Colombari DSA, Davisson RL, Kasparov S,
Hirata AE, Campos RR, et al. Kidney-induced hypertension depends on
superoxide signaling in the rostral ventrolateral medulla. Hypertension. (2010)
56:290–6. doi: 10.1161/HYPERTENSIONAHA.110.150425

54. Junhong W, Jing Y, Jizheng M, Shushu Z, Xiangjian C, Hengfang W, et al.
Proteomic analysis of left ventricular diastolic dysfunction hearts in renovascular
hypertensive rats. Int J Cardiol. (2008) 127:198–207. doi: 10.1016/j.ijcard.2007.07.003

55. Lee T-M, Lin M-S, Tsai C-H, Chang N-C. Effect of pravastatin on left ventricular
mass in the two-kidney, one-clip hypertensive rats. Am J Physiol Heart Circul Physiol.
(2006) 291:H2705–13. doi: 10.1152/ajpheart.00224.2006

56. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM. Regional changes in
hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1 Developing
and established hypertrophy. Circ Res. (1991) 69:52–8.

57. Melenovsky V, Skaroupkova P, Benes J, Torresova V, Kopkan L, Cervenka L. The
course of heart failure development and mortality in rats with volume overload due to
aorto-caval fistula. Kidney Blood Press Res. (2012) 35:167–73. doi: 10.1159/000331562

58. Nath KA, Kanakiriya SKR, Grande JP, Croatt AJ, Katusic ZS.
Increased venous proinflammatory gene expression and intimal hyperplasia
in an aorto-caval fistula model in the rat. Am J Pathol. (2003) 162:2079–
90. doi: 10.1016/S0002-9440(10)64339-8

59. Hirata M, Ousaka D, Arai S, Okuyama M, Tarui S, Kobayashi J, et al. Novel
model of pulmonary artery banding leading to right heart failure in rats. Biomed Res
Int. (2015) 2015:1552. doi: 10.1155/2015/753210

60. Farag A, Mandour AS, Yoshida T, Hamabe L, Shimada K, Tanaka R. Novel
protocol to establish the myocardial infarction model in rats using a combination of
medetomidine-midazolam-butorphanol (MMB) and atipamezole. Front Vet Sci. (1880)
9:4836. doi: 10.3389/fvets.2022.1064836

61. Conzen PF, Vollmar B, Habazettl H, Frink EJ, Peter K, Messmer K. Systemic
and regional hemodynamics of isoflurane and sevoflurane in rats. Anesth Analg.
(1992) 74:79–88.

62. Ruxanda F, Gal AF, Ratiu C, Miclăuş V, Rus V, Oana LI. Comparative
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A 9-month-old, female Pomeranian dog presented with vomiting and lethargy.

Ultrasonography revealed multilobulated anechoic round shape structures at

the ovarian and uterine locations. Through computed tomography scan, an

extensive non-contrast multilobulated fluid-filled mass suspected of originating

from the walls of the ovary, uterus, urinary bladder and rectum was

observed. Ovariohysterectomy and urinary bladder biopsy were performed.

Histopathological examination revealed numerous cystic lesions lined by plump

cuboidal cells believed to be of epithelial origin. Immunohistochemical staining

showed that the cyst-like lesions lining cells were strongly positive for lymphatic

vessel endothelial hyaluronan receptor 1. Based on these results, lesions were

identified as generalized lymphatic anomaly (GLA), in which lymphangiomas

develop in multiple organs. After 6 months follow-up, the size of the cysts

remaining in the region of the bladder did not undergo much change. GLA

should be included in the di�erential diagnosis when multiple cystic lesions are

interspersed in multiple organs.

KEYWORDS

lymphangiomatosis, lymphangioma, lymphatic malformation, multi-organs, canine,

cystic lesions

1. Introduction

Lymphatic anomaly (lymphangioma, lymphatic malformation, lymphangiomatosis), a

rare congenital disorder of the lymphatic system, is considered to arise from a failure of

primitive lymphatic systems to adequately separate from or communicate with the venous

system (1). These malformations cause dilation and proliferation of lymphatic vessels in

animal & human.

Canine lymphatic anomalies have most commonly been reported in the skin, soft tissue,

and retroperitoneum (2–7). It is seldom observed in parenchymal organs, and only two cases

have been reported in the liver and spleen (8, 9).

In human, according to the International Society for the Study of Vascular Anomalies

(ISSVA), Lymphatic anomlies can be divided into cystic lymphatic anomaly and complex

lymphatic anomaly, depending on whether they occur in solitary lesions or multiple organs.

Cystic lymphatic anomaly mainly occurs in the head, neck and extermities, and is divided

into macro and micro depending on the size. Complex anomalies have been reported in

<1% of humans and have not yet been reported in animals. It occurs in various organs such

as various bones, liver, and spleen. There are three types of complex anomaly, GLA, Gorham-

Stout disease (GSD), and Channel type lymphatic anomaly (CCLA), and there is a subtype
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of GLA, Kaposiform lymphangiomatosis (KLA). KLA is

characterized by being surrounded by Kaposi-form cells, and

mainly causes diseases in the chest. GSD is a disease that

causes bone destruction and CCLA is a disease known as

lymphangiectasia, which occurs when lymphatic vessels are

damaged by obstruction of lymphatic vessels. GLA can also occur

in bone, but it does not cause destruction (10, 11).

The clinical symptoms and prognosis of lymphatic anomaly

varies depending on the locations of the affected organ and sizes

of cystic lesions. Leakage of lymph or chyle may be intraperitoneal

or intrathoracic, and hypoalbuminemia, hypoproteinemia, and

lymphocytopenia may occur due to lymphangiectasia (11).

Lymphatic malformation is characterized by cystic lesions on

Ultrasonography (US), Computed tomography (CT), andMagnetic

resonance imaging (MRI). The existence and location of the cystic

structures can be determined using US, and information about

the range of lesions and adhesion of the surrounding tissues can

be obtained through CT. In human, when GLA is suspected,

MRI is used to identify abdominal and thoracic lesions and to

identify mesenteric and retroperitoneal cyst-like lesions. MRI can

evaluate soft tissues with good resolution and without radiation

exposure. Also, MRI is known to be good for detecting minimal

lymphatic lesions, and it is known to show hyper signal intensity

in fat-saturated T2-weighted MRI and intense enhancement in

gadolinium contrast agent (12–14).

However, immunostaining such as lymphatic vessel endothelial

hyaluronan receptor 1 (LYVE-1), podoplanin, and Vascular

endothelial growth factor receptor 3 (VEGFR-3) specific to

lymphatic vessels is required for diagnosis. In humans, studies on

genes related to lymphatic anomaly have been conducted, but no

studies have been conducted in dogs yet (15, 16).

This is the first case of a dog with lymphatic anomaly in several

parenchymal organs including ovary, uterus, intestine and bladder.

Imaging diagnosis and immunohistochemistry was performed, and

follow-up was performed 6 months later.

2. Case description

A 9-month-old Pomeranian dog presenting with vomiting and

lethargy, was admitted to a local animal hospital. No abnormal

findings were observed in body temperature, blood pressure,

respiration rate, or pulse. Also, No remarkable abnormal findings

were observed in the serum biochemistry panel and complete

blood count.

Abdominal radiography (1417WGC, Rayence Co., Ltd.,

Hwaseong-si-, South Korea) was performed. In the lateral view,

a tubular structure of soft tissue opacity with a size of 11.17 ×

5.92mmwas observed in the ventral aspect of the descending colon

in the caudoventral aspects of abdominal cavity at L1 to pelvis level.

Abbreviations: GLA, generalized lymphatic anomaly; CLA, complex

lymphatic anomaly; US, ultrasonography; CT, computed tomography;

LYVE-1, lymphatic vessel endothelial hyaluronan receptor 1; UB, urinary

bladder; FFPE, formalin-fixed and para�n-embedded; GSD, Gorham-

Stout disease; CCLA, Channel type lymphatic anomaly; KLA, Kaposiform

lymphangiomatosis.

Therefore, the small intestine was cranially displaced (Figure 1A).

In the chest radiography, increased opacity of the cranial lung

lobe was observed in the lateral view, but this was considered to

be due to summation of the muscles of the forelimb. In the VD

view, the opacity of the left cranial lung lobe was increased, but

the left deviation of the heart was observed, so atelectasis was

considered first.

Abdominal US (ACUSON juniper, Siemens Healthineers,

Erlangen, Germany) using 3.6–12.9 MHz linear transducers

identified multiloculated anechoic structures with acoustic

enhancement at the ovarian and uterine locations (Figure 1B),

which was similarly observed near the urinary bladder (UB). Due to

the size and range of the cystic lesion, the exact location could not

be determined by US. The walls of the cysts were thin (< 1mm)

and of various sizes and shapes with the largest being 2.37 ×

2.27 cm. The boundary between the organs and cystic lesions was

unclear due to displacement and obscuring by the structures.

CT was performed using a multislice CT scanner (TSX-031A;

Toshiba Medical Systems Co., Ltd., Tochigi, Japan). The imaging

parameters were as follows: 120 kVp, 200 mAs; matrix size, 512 ×

512; rotation time, 0.75 s; and, slice thickness, 1mm. For CT scans,

the dog was induced with propofol (6 mg/kg, IV), and anesthesia

was maintained by isoflurane. After obtaining the pre-contrast

images, iohexol (750mg iodine/kg) was manually injected into

the cephalic vein. Postcontrast images were obtained after 120 s.

Multilobulated structures were observed, starting from the vagina

and extending to the uterine cervix and horns. The septa of the

cystic structures were connected to the uterine wall, and the margin

of the uterus was spiculated (Figures 1D, E). Therefore, the lesions

were considered to originate from the uterine wall. In addition,

they were observed to be in contact with the ventral aspect of the

rectum, caudolateral aspect of the UB, both ovaries, part of the

small intestine, and both sides of the anal sac, so the possibility of

adhesion as the origin of the cystic structures could not be excluded.

The lumens of multiple cystic lesions (up to 3.83 × 2.93 × 5.58 cm

[L × H × W]) were observed with fluid attenuation (HU:13), and

no significant enhancement was observed, but the walls showed

significant enhancement. A multilobulated cystic structure similar

to that observed in the uterus was also observed at the location

presumed to be the left sublumbar lymph node, which expanded to

the left gluteus medius muscle through the pelvic canal (Figure 1C).

No bone lesion or ascites was observed around the mass, and

no significant enlargement of the surrounding lymph nodes was

observed. This mass was supplied with blood by the bilateral

ovarian and vaginal arteries. No obvious abnormal findings were

observed in the lung parenchyma and bronchus, and neither pleural

effusion nor pneumothorax was observed.

Ovariohysterectomy and biopsy of the UB were performed

to remove and diagnose the lesions. The dog was induced with

propofol (6 mg/kg, IV), and anesthesia was maintained using

isoflurane. Multiple cystic lesions originating from the walls of the

uterine, ovary, urinary bladder, and intestine were widely observed,

and cyst-like lesions and adjacent organs adhered to each other.

Therefore, it was difficult to clearly demarcate and remove the

lesions. After ventral median celiotomy, the ovarian pedicles and

uterine body were clamped and ligated with polydioxanone. As

complete resection of the cysts was impossible; debulking was
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FIGURE 1

Radiographic image (A), ultrasonography (B, F), post-contrast CT (C, D, E) in a dog with lymphatic anomaly. (A) The tubular structure of soft tissue

opacity (asterisk) in the caudoventral abdomen, (B) Ultrasonographic image shows multiple anechoic structures in the ovary and uterus, (C)

Multilobulated cystic lesions originating from the left sublumbar lymph node expand through the pelvic canal to the left gluteus medius muscle, (D, E)

Multiple cystic lesions were observed extensively in contact with the urinary bladder (UB), ovary, uterine, rectum, making it di�cult to determine the

origin and (F) Ultrasound image 6 months post-surgery, the size of cystic lesions remaining around the bladder was similar to that of 6 months prior.

performed. Tissues of the ovaries, uterine horns, and UB were

fixed in 10% neutral-buffered formalin and sent for histological

evaluation in a laboratory (IDEXX Laboratories Inc., Seoul,

South Korea).

Grossly, multiple pale yellow, clear-to-serous cystic structures

were observed in the ovary and uterus (Figure 2A). Histological

examination of the three organs confirmed numerous cystic

structures lined by spindle to cuboidal cells. The ovary

contained cyst-like lesions within the mesovarium and the

ovarian parenchyma (Figure 2B). The uterus exhibited cyst-

like leisons penetrating the myometrium (Figure 2C). The

UB contained cystic structures within its smooth muscle wall

(Figure 2D). Immunostaining using LYVE-1 in the ovary, uterus,

and bladder tissue was performed to confirm whether it was

derived from the lymphatic system. The cystic structures were

Pancytokeratin AE1/AE3 negative throughout all the tissue, ruling

them out as classically defined cysts: expansile spaces lined by

epithelium. Rather, they exhibit intermediate to strong cytoplasmic

immunoreactivity for LYVE-1, supporting endothelium lined

spaces supportive of GLA (Figures 3A–C). The control tissue

showed strong immunoreactivity in the lymphatics, but the

arterioles showed no immunoreactivity (Figure 3A). However,

intermediate immunoreactivity is also noted within endothelial

cells lining blood-filled vascular spaces (Figures 3B, C).

DNA was extracted from the formalin-fixed and paraffin-

embedded (FFPE) samples through the MagMAXTM FFPE

DNA/RNA Ultra Kit (Thermo Fisher Scientific, Waltham, MA,

USA) and QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden,

Germany) for Neuroblastoma RAS viral oncogene homolog

(NRAS) gene sequencing. The NRAS coding region was amplified

twice using forward (TACAAACTG GTGGTGGTTGG) and

reverse (TCCAACAGACAGGTTTCACC) primers by HotStarTaq

master mix kit (Qiagen, Hilden, Germany).

As a result, the peak size of the our patient was observed to be

44 base pairs both the times, instead of 150 base pairs with NRAS

gene in a normal dog.

At the 6-months follow-up, the vomiting had disappeared and

no significant change in the size of the cystic lesions remaining in

the region of the bladder was seen (Figure 1F).

3. Discussion

In human medicine, lymphangiomatosis refers to lymphatic

anomaly occuring in multiple organs and is known as CLA. GLA,

one of the CLAs, is distinguished from other types like GSD,

CCLA in that there are no bone destruction and no leakage

of lymph (10, 11). Our patient was considered GLA because

lymphatic anomaly occurred in multiple organs and there were

no ascites or bone lesions. Since the previously reported canine

lymphangiomatosis was a case of multiple cysts in one organ

rather than multiple organs (3, 9, 17, 18), the use of the term

lymphangiomatosis may cause confusion as to whether it is a single

organ or multiple organs. So the authors referred to our case

as GLA.

Lymphatic anomalies in humans, most commonly

occurs in the neck (75%) and axillary sites (20%) and

have rarely been reported in the mediastinum, omentum,

mesentery, retroperitoneum, colon, pelvis, and bone. Less

than 1% of cases are reported in internal organs, and
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FIGURE 2

Intra-operative photographs of the ovary and uterus and histopathological findings after hematoxylin and eosin staining of the ovary, uterine horn,

and urinary bladder. (A) The multiple thin-walled cystic structures expand the uterine smooth muscle, ovary and are see on the serosa. Cyst-like

lesions and adjacent organs adhered to each other, so it was di�cult to clearly demarcate and remove the lesions, (B) left ovary, approximately five

cyst-like structures are seen peripheral to the ovum (*) (×20), (C) left uterine horn, the structures multifocally expand the myometrium. Most were

empty and contained intraluminal pale eosinophilic proteinaceous material. Low to moderate numbers of neutrophils are noted bordering the

vasculature with no associated necrosis, inflammation, or reactive vessels (×20). (D) Within the smooth muscle wall of the urinary bladder, the

structures are lined by spindle cells (long arrow) and hypertrophied cuboidal cells (short arrow) (×20).

involvement of three or more intra-abdominal organs is

extremely rare in humans (19). Canine lymphatic anomalies

have most commonly been reported in the skin, soft

tissue, and retroperitoneum (2–6). It is seldom observed

in parenchymal organs, and only two cases have been

reported in the liver and spleen (8, 9). There have been no

reports of urinary bladder, ovary, uterus, or rectum, and

no lymphatic anomaly has been reported in more than two

parenchymal organs.

Cystic structures are observed in various orgnas on US

and CT in our case. In Considering the patient’s age, the

possibility of neoplastic cyst was considered low. Since the

lumen was intact on CT, the possibility of intraluminal

lesions was considered low. Considering that the wall of

the uterus is irregularly observed in connection with the

septa of the cystic lesions, it was considered that the cyst

originated from the wall of the organ rather than from the

mesentery or peritoneal lesion. Therefore, GLA, adenomyosis

and paramesonephric cyst were considered as differential

diagnoses, which can’t be ditinguished by imaging alone, and

immunostaining tests are required. Becase GLA has been

reported not only in young human patients, but also in older

human patients, care should be taken not to misdiagnose GLA

as metastatic cancer when cystic lesions occur in multiple

organs (20, 21).

In human, the presence of chylous fluid in cysts with high

triglycerides is pathognomonic for lymphangioma, and according

to what has been reported so far, it has a common feature

that small lymphocytes are mainly seen (22, 23). Therefore, fluid

analysis can provide good information for diagnosing GLA. But

depending on the location of the lymphatic anomaly, the fluid

within the cyst may be clear transudate or chylous (24). Similarly,

as a result of fluid analysis in a dog with lymphangioma in a

previous report, it was considered as a transudate, and small

lymphocytes were mainly observed (7). Fluid collections, whether

chylorous or not, are mostly anechoic on ultrasound, and it is

difficult to distinguish between simple fluid and chylous even

on CT.

Lymphangiography can reveal leakage or obstruction of

the lymphatic pathway. If a patient presents with pleural

effusion or ascites, lymphangiography may be helpful to

identify the lymphatic pathway for diagnosis and treatment

planning (25). However, this is a major feature seen in

CCLA, and in GLA, lymphangiography may not show any

special findings.
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FIGURE 3

Lyve-1 immunostaining of the ovary, uterine horn, urinary bladder, and normal canine lymph node. (A) In the normal canine lymph node (control

tissue), strong immunoreactivity is seen within lymphatics with nonspecific staining of leukocytes within the lymphatics (short arrow). Neither the

arterioles nor interstitial leukocytes show immunoreactivity (long arrow) (×20). (B) In the urinary bladder, Lyve-1 reveals strong cytoplasmic

immunoreactivity within the spindle cells both lining the cystic spaces (short arrow) and within the endothelial cells lining blood-filled vascular

spaces (long arrow) (×20). (C) In the left ovary, Lyve-1 reveals strong cytoplasmic immunoreactivity lining the cystic spaces (short arrows).

Intermediate immunoreactivity is also noted within endothelial cells lining blood-filled vascular spaces (Long arrows) (×20). (D) In nonspecific

staining of leukocytes is seen (short arrows) in the left uterine horn, cells lining the cystic spaces show intermediate to strong immunoreactivity to

Lyve-1 (long arrow) (×20).

Histopathology and immunostaining of LYVE-1, a marker

associated with lymphatic vessels, must be performed to distinguish

whether it is derived from lymphatic vessels vs. vascular

endothelium (18). Caution is warranted while interpreting LYVE-1

and other Immunohistochemical findings. The H&E findings with

the immunohistochemistry must be weighed together. LYVE-1, a

CD44 homolog was thought to be restricted to lymphatics and did

not stain endothelial cells, but subsequent studies showed non-

lymphatic endothelial cells within hepatic sinusoids. Embryonic

lymphangiogensis is under debate, but both vasculature and

lymphatics are lined by endothelium. Other markers previously

thought to be specific to lymphatics have been shown to lack

specificity: VEGFR-3 has been seen in a subset of angiogenic

vessels associated with pathologic conditions (26). Podoplanin is

seen in smaller lymphatics lacking smooth muscle and not in

high endothelial venules, and is also expressed in osteoblasts, renal

podocytes and type I pulmonary alveolar cells. LYVE-1 has also

been identified in hepatic sinusoids in normal livers and down

regulated in sinusoids in some pathologic hepatic conditions (27).

In our case, LYVE-1 staining was seen in blood filled vessels with

intermediate staining (Figure 3C) and in empty endothelial lined

vessels with intermediate to strong staining. These findings in

conjunction with multiple empty cystic spaces seen in Figure 2

support a lymphatic origin.

In humans, the PIK3CA gene and NRAS gene are known to

be associated with generalized lymphatic anomaly, but there is no

study on the related genes in animals (15, 16). Therefore, in the

present case, DNA was extracted and PCR was performed using

FFPE tissue for NRAS gene sequencing, but the peak size was

observed to be 44bp instead of 150, which was the base pairs of

the target gene. This is considered as an amplification occurring

by attaching primer dimers to each other, given that the same

result was obtained both times and target gene was not detected.

This may be because of deterioration due to oxidation of nucleic

acid as the surface of the paraffin sections was exposed to the air,

since PCR was performed more than 6 months after the paraffin-

embedded sample was made. In addition, factors like formalin,

tissue processing, sectioning and staining procedures, incubation

at high temperature during the paraffin embedding process are also

thought to have influenced DNA damage (28).

In humans, five out of six patients with lymphatic anomaly

of the UB showed clinical signs of hematuria (29). To reduce the

possibility of recurrence in most cases, partial cystectomy with

complete resection rather than transurethral resection or laser
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ablation was performed as a treatment method. A patient with

lymphatic anomaly in the uterine corpus showed clinical symptoms

of back pain, leg edema, and abdominal distension, and was treated

surgically through hysterectomy (30). In our case, there were no

specific clinical symptoms, other than vomiting and lethargy. Since

that there was no vomiting after debulking, it was considered to be

due to an increase in abdominal pressure caused by cysts occupying

most of the abdominal cavity.

The best treatment for lymphatic anomalies is surgical removal.

However, since lymphangioma often includes deep tissue, complete

resection may not be possible, and if only the superficial

part is removed, the recurrence rate is approximately 20%

in humans (29). If complete removal is not possible, medical

treatment is available. In humans, sclerotherapy with OK-432,

doxycycline, and bleomycin is the most commonly used alternative

treatment for lymphangioma, because sclerotherapy is safe and

has no serious side effects (10). Sclerotherapy destroys the vessel’

endothelium, causing obstruction and fibrosis. Radiation therapy

and sirolimus, which suppress the activity of the mTOR and

promote lymphangiogenesis, have also been used as treatments

in humans. However, there are few cases in which these

treatments have been applied to dogs. Recently, there has been

a case of canine lymphatic anomaly treated with sclerotherapy,

electrochemotherapy, and radiation therapy (6) and a case of

lymphangiosarcoma treated with toceranib, a tyrosine kinase

inhibitor (15, 31).

Our study has several limitations. First, biopsy of the rectum

was not performed. However, the US and CT showed the

same pattern as the cysts in other organs, and since the same

immunostaining results were obtained in all other five sites,

the cyst observed in the rectum was also considered to be

caused by GLA. Second, complete resection was not achieved

in our case. Only debulking was performed because the cysts

were so extensive that complete resection was impossible. In

addition, sclerotherapy was not performed, because the cyst was

multilobulated. Radiation therapy can be applied, but radiation

hazards can occur in the heart and lungs, and since there is

a case that showed a good prognosis without treatment other

than debulking in humans, only debulking was performed in

our case (14, 32). At 6 months follow-up, the size of the

remaining cysts was maintained, and no clinical symptoms or

specific findings were observed. Third, genetic testing didn’t work

properly. Further studies on GLA-related genes through fresh

frozen tissue or blood are considered necessary. Fourth, fluid

analysis of the cyst was not performed. However, It is considered

that there was no significant effect on the diagnosis because the

higher-level examination, such as biopsy and immunostaining, was

performed. Finally, follow-up period was short. Thus, it is difficult

to judge the effectiveness of the treatment and the prognosis of

the GLA.

To the best of our knowledge, in veterinary medicine, this is

the first case of lymphatic anomaly of the ovary, uterus, bladder,

and rectum, and the first case of GLA involving more than two

parenchymal organs. In the case of multiple cysts inmultiple organs

of the abdominal cavity in young dogs, GLA should be included in

the differential diagnosis.
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Comparative study of myocardial 
function in cases of feline 
hypertrophic cardiomyopathy 
with and without dynamic 
left-ventricular outflow-tract 
obstruction
Takahiro Saito , Ryohei Suzuki *, Yunosuke Yuchi , Haru Fukuoka , 
Shuji Satomi , Takahiro Teshima  and Hirotaka Matsumoto 

Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary 
Science, Nippon Veterinary and Life Science University, Tokyo, Japan

In recent years, hypertrophic cardiomyopathy (HCM) in cats has become much 
more common in clinical practice due to improvements in diagnostic techniques 
and equipment performance. One phenotype is obstructive HCM with left 
ventricular (LV) outflow tract obstruction (DLVOTO). It has been reported that the 
presence or absence of DLVOTO does not affect long-term prognosis in cats with 
HCM. In this study, we evaluated and compared myocardial function in HCM-
affected cats with and without DLVOTO using the two-dimensional speckle-
tracking echocardiography. LV longitudinal strain of the endocardial, epicardial, 
and whole layer and LV circumferential strain of the epicardium were significantly 
decreased in all HCM-affected cats compared to healthy cats. However, these 
values were not significantly different between those with and without DLVOTO. 
In contrast, the endocardial and whole layers of LV circumferential strain were only 
significantly decreased in HCM-affected cats with DLVOTO compared to healthy 
cats. This could be attributed to the fact that the LV pressure load associated with 
DLVOTO affected the endocardial myocardium more in the LV endocardial layer, 
and that lower values of LV endocardial strain lowered the values of LV strain in 
the whole layer. In conclusion, our results suggest that LV myocardial function 
may have been more compromised in the HCM-affected cats with DLVOTO.

KEYWORDS

cat, cardiomyopathy, speckle tracking echocardiography, myocardial function, strain

1. Introduction

Hypertrophic cardiomyopathy (HCM) in the cat is a cardiac disease that is frequently 
encountered in the clinical practice. HCM is characterized by myocardial hypertrophy and its 
phenotype is diverse. The prognosis of cats with HCM also varies from asymptomatic cases to 
cats with congestive heart failure even at a young age (1–5). One phenotype, systolic anterior 
motion of the mitral valve leaflet, is an event in which the tip of the mitral valve septal apex is 
pulled toward the aortic outflow tract during systole. This event involved in mitral regurgitation, 
as well as dynamic left-ventricular (LV) outflow-tract obstruction (DLVOTO), which results in 
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pressure overload in the left ventricle (6). DLVOTO causes an 
increased left ventricular pressure, which leads to increased wall stress 
and myocardial ischemia (7). The presence of DLVOTO in humans 
aggravates the pathogenesis of HCM and is a poor prognostic factor 
(8); however, it has been reported that the presence or absence of 
DLVOTO in feline HCM does not affect the long-term prognosis (4).

Recently, two-dimensional speckle-track echocardiography 
(2D-STE) has been widely performed to evaluate HCM in cats and 
humans (9–14). 2D-STE studies in cats with HCM have shown that 
assessment of segmental radial and circumferential deformities in 
systole (12) and torsion (14), as well as diastolic deformities (12, 13), 
can be helpful in distinguishing cats with HCM from healthy cats.

Therefore, we  hypothesized that myocardial function in 
HCM-affected cats with DLVOTO (HOCM) would be  decreased 
compared to HCM-affected cats without DLVOTO (HNCM). This 
study aimed to analyze myocardial function using 2D-STE and 
compared the results between the HNCM and HOCM.

2. Materials and methods

A prospective cross-sectional design was used in this study. This 
study was conducted in accordance with our institution’s guidelines 
(Guidelines for the Care and Use of Animals at Nippon Veterinary and 
Life Science University) and was approved by the university’s ethics 
committee (approval number: R2-4). With prior informed consent 
and agreement, all cat owners participated in the study.

2.1. Animals

Sixty-seven client-owned cats (healthy cats: n = 16; HCM-affected 
cats: n = 51) were included in this study. All cats underwent a physical 
examination, blood pressure measurement, electrocardiogram, chest 
radiograph and echocardiography. The cats classified as healthy cats 
had no abnormal findings on these examinations. Some HCM-affected 
cats were already on medication. No history of medication, cardiac 
disease, or clinical signs were noted in the other cats. The diagnosis of 
HCM was made by confirming LV hypertrophy on echocardiography 
and excluding diseases that might cause LV hypertrophy. LV 
hypertrophy was defined as LV wall thickness ≥ 6 mm at end-diastole 
as evaluated by echocardiography. LV wall thickening was confirmed 
using LV short-axis images averaged over three consecutive heartbeats 
(15). The following previously reported criteria were used to diagnose 
HOCM: Peak LV outflow-tract velocity (LVOT Vmax) > 2.5 m/s and 
systolic anterior motion of mitral valve leaflet on B-mode (14, 16). 
Other cardiomyopathies were ruled out by checking for normal to 
near-normal LV systolic function using allometric scaling, referring 
to previous reports (17, 18). Cats with suspected dehydration, 
hypertension (Systolic blood pressure greater than 160 mmHg), or 
other cardiovascular or systemic disease were excluded.

2.2. Echocardiography

Conventional echocardiography was performed by experienced 
researchers using Vivid E95 echocardiography scanner and 12 MHz 
transducer (GE Healthcare, Tokyo, Japan). During the examination, 

the lead II electrocardiogram was concurrently acquired and 
monitored on the screen. Holding during echocardiography was 
performed with an assisting human hand, and all cats were not 
sedated. Data were obtained for at least 5 heartbeats. Analysis of the 
echocardiographic data was performed on a separate day from the 
acquisition of the images by one researcher using an offline 
workstation (EchoPAC PC, version 204, GE Healthcare, Tokyo, Japan). 
The left atrial-to-aortic diameter ratio was measured in the right 
parasternal short-axis view at the level of basal heart. The end-diastolic 
interventricular septal thickness (IVSd), LV end-diastolic posterior 
wall thickness (LVPWd), LV end-diastolic internal diameter (LVIDd), 
LV end-systolic internal diameter, and fractional shortening were 
measured in the right parasternal short-axis view at the level of the 
chordae tendineae. Relative LV wall thickness (RWT) was calculated 
using the following formula:

 RWT IVSd mm LVPWd mm LVIDd mm� � � � � �� � � �� �/

Trans-mitral inflow in the left apical four-chamber view was 
measured by pulsed-wave Doppler, and the peak velocities of the early 
diastolic wave (E-wave) and late diastolic wave (A-wave) were 
determined. The E-wave to A-wave velocity ratio (E/A) was also 
calculated. In the case of fusion of E- and A-waves, values for cases 
containing these waves were excluded.

2.3. Two-dimensional speckle-tracking 
echocardiography

An overview of the 2D-STE analysis for cats has been previously 
described (9, 14, 15, 19, 20). 2D-STE analysis is performed using high-
quality images obtained from conventional echocardiography. For 
evaluation of LV myocardial deformation, images of the left ventricle 
at the level of the papillary muscle were acquired in the right 
parasternal short-axis view and the left apical four-chamber view. Left 
apical four-chamber view images modified for right heart 
measurements were also obtained to analyze right myocardial 
deformations (21). Longitudinal and circumferential systolic strain 
peaks (SL and SC, respectively) were obtained in the endocardium, 
the entire layer, and the epicardium of the LV (LV-SL and LV-SC, 
respectively) (21). SC was measured at the papillary muscle level of the 
LV (14, 22). The endocardial-to-epicardial strain ratio (Endo/Epi), 
which is believed to reflect compensatory mechanisms of cardiac 
function in patients with HCM, was also calculated (23, 24). Previous 
studies have shown observer variability in 2D-STE analysis in our 
laboratory (14, 19–21).

2.4. Statistical analysis

Variables in each table are expressed as mean ± standard deviation 
values. Commercially available software (R 2.8.1; https://www.r-
project.org/) was used for statistical analyses. One-way analysis of 
variance followed by Tukey’s multiple comparison test for normally 
distributed data or Kruskal–Wallis test followed by Steel–Dwass test 
for non-normally distributed data was used to compare continuous 
variables between groups. The significance level was set at p < 0.05.

41

https://doi.org/10.3389/fvets.2023.1191211
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.r-project.org/
https://www.r-project.org/


Saito et al. 10.3389/fvets.2023.1191211

Frontiers in Veterinary Science 03 frontiersin.org

3. Results

3.1. Demographic data

Data regarding demographic characteristics and physical 
examination results are summarized in Table 1. Nineteen of the 51 cats 
with HCM belonged to the HNCM, while the remaining 32 belonged 
to the HOCM. There were no significant differences in age, weight, 
heart rate, or blood pressure between the two groups. There were 
significant differences in LVOT Vmax between healthy cats and the 
HNCM, healthy cats and the HOCM, and the HNCM and HOCM.

3.2. Echocardiography

The echocardiographic variable data are summarized in Table 2. 
IVSd, LVPWd, and RWT were significantly higher in the HNCM and 
HOCM than in healthy cats (all p < 0.01). E-wave velocity of the 
HOCM was increased compared to healthy cats and HNCM (p < 0.05). 
E-wave and E/A analyses were partially excluded because of waveform 
fusion in some cases.

3.3. Two-dimensional speckle-tracking 
echocardiography

The 2D-STE results are summarized in Table 3. Representative 
results of the 2DSTE method in the endocardium are shown in 
Figure 1. In addition, box-and-whisker diagrams of the LV-SL and 
LV-SC are also shown in Figures 2, 3, respectively. The LV-SL of whole 
layer was significantly decreased in the HNCM and HOCM compared 
to healthy cats (p < 0.05). There was no significant difference in LV-SL 
in any layer between the HNCM and HOCM. LV-SC in the epicardium 
was significantly decreased in the HNCM and HOCM compared to 
healthy cats (both p < 0.01). LV-SC in the HOCM of the endocardium 
and whole layers were decreased compared to healthy cats (p = 0.01, 
p < 0.01 respectively). There was no significant difference in LV-SC in 
any layer between the HNCM and HOCM. The LV-SL Endo/Epi was 
increased in the HNCM and HOCM compared to healthy cats 
(p < 0.01, p = 0.02 respectively). In comparison, there was no significant 
difference in LV-SC Endo/Epi between the HNCM and HOCM.

4. Discussion

In this study, the HNCM and HOCM had decreased LV-SL in 
whole layers and LV-SC in the epicardium, which is consistent with 
the results of previous studies (20). Previous 2D-STE studies in cats 
with HCM have reported lower longitudinal strain in asymptomatic 
HCM cats than in healthy cats (13, 19). This has been shown to 
be caused by myocardial dysfunction and histopathologic changes (10, 
11, 25, 26). Along with histopathological changes such as modifications 
in myocardial fiber orientation, myocardial compensatory 
mechanisms are believed to be linked with these dysfunctions (14, 19, 
27). Even in human HCM, there are cases in which LV-SL in whole 
layers is decreased, even if the left ventricular ejection fraction appears 
normal. These cases have been reported to have a poor prognosis (28) 
and should not be judged as having normal LV systolic function based 

on conventional echocardiography only. However, in this study, there 
was no significant difference in LV-SL between the HNCM and 
HOCM in whole layer, so it was unlikely that the HOCM would have 
a worse prognosis based on LV-SL results. Previous studies on cats 
reported no differences in survival between the HNCM and HOCM 
(4). In contrast, in humans, HOCM is reported to be associated with 
a shorter survival time and worse prognosis owing to DLVOTO than 
HNCM (7). The detailed cause of why DLVOTO has a poorer 
prognosis in HCM is unknown. However, the mechanism has been 
discussed in previous papers as follows (7); The increased left 
ventricular pressure due to DLVOTO is expected to result in increased 
wall stress. Myocardium also devotes more effort to contraction, 
which can lead to myocardial ischemia. These abnormalities may 
contribute to eventual cardiomyocyte death and scarring (29–31). 

TABLE 1 Clinical characteristics in healthy cats and cats with 
cardiomyopathy.

Variables Healthy 
cats (n = 16)

HNCM 
(n = 19)

HOCM 
(n = 32)

Age (year) 6.7 ± 4.4 6.2 ± 3.6 3.6 ± 2.7

Sex (male/female) 9/7 11/8 19/13

Body weight (kg) 4.4 ± 1.6 4.2 ± 0.7 4.0 ± 1.3

Heart rate (bpm) 200 ± 32.0 183.1 ± 37.3 182.6 ± 24.7

Systolic blood 

pressure (mmHg)
136.4 ± 14.3 133.3 ± 15.2 130.0 ± 16.4

LVOT Vmax (m/s) 0.9 ± 0.3 1.0 ± 0.3* 4.0 ± 0.9*†

ACVIM (B1, B2, C) – 12, 4, 3 21, 7, 4

Medication (yes/no) 0/16 (0%) 15/19 (79%) 9/32 (28%)

ACE inhibitor – 5/19 (26%) 3/32 (9%)

Beta Blocker – 11/19 (58%) 5/32 (16%)

Pimobendan – 2/19 (11%) 1/32 (3%)

Diuretic – 1/19 (5%) 2/32 (6%)

LVOT Vmax, peak velocity of left-ventricular outflow-tract; ACVIM, American College of 
Veterinary Internal Medicine. Continuous variables are displayed as mean ± standard 
deviation. *: Values that was significantly different from the healthy cats (p < 0.05). †: Values 
that was significantly different from the HNCM (p < 0.05).

TABLE 2 Results of conventional echocardiographic indices in cats.

Variables Healthy 
cats (n = 16)

HNCM 
(n = 19)

HOCM 
(n = 32)

LA/Ao 1.3 ± 0.2 1.4 ± 0.4 1.4 ± 0.3

IVSd (mm) 3.8 ± 0.4 4.8 ± 1.8* 6.2 ± 1.5*

LVPWd (mm) 4.1 ± 0.7 5.3 ± 1.8* 6.2 ± 1.9*

LVIDd (mm) 14.5 ± 1.5 11.8 ± 4.6 13.3 ± 1.8

RWT 0.5 ± 0.1 0.8 ± 0.1* 1.0 ± 0.3*

FS (%) 47.5 ± 7.6 42.3 ± 6.9 48.6 ± 11.6

E-wave (m/s) 0.6 ± 0.2 0.6 ± 0.1 0.9 ± 0.3*†

E/A 0.1 ± 0.2 1.2 ± 0.8 1.2 ± 1.1

LA/Ao, left atrial-to-aortic diameter ratio; IVSd, end-diastolic interventricular septal 
thickness; LVPWd, end-diastolic LV free-wall thickness; LVIDd, end-diastolic LV internal 
diameter; RWT, relative left ventricular wall thickness; FS, fractional shortening; E/A, 
E-wave to A-wave ratio. Continuous variables are displayed as mean ± standard deviation.  
*: The value is significantly different from the healthy cats (p < 0.05). †: The value is 
significantly different from the HNCM (p < 0.05).
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FIGURE 1

Myocardial motion analysis results of endocardium by 2D-STE method (representative data). LV-SL, peak systolic strain in the longitudinal direction at 
left ventricles; LV-SC, peak systolic strain in the circumferential direction at left ventricles. Arrows indicate the peak of the endocardium.

These changes are thought to result in stiffening of the myocardium, 
leading to diastolic dysfunction (32–34) as well as increased 
susceptibility to electrical instability and sudden death. DLVOTO of 
HCM-affected cats may reduce endocardial myocardial function 
through a mechanism similar to that reported in humans (7). In 
addition, the decreased LV-SC in the endocardial may have inevitably 
decreased LV-SC in the whole layer. The aforementioned human study 
also reported that older patients with HOCM (age ≥ 40 years) were 
more likely to experience deterioration than younger patients with 
HOCM by a similar mechanism (7). It is unclear whether it is 

appropriate to extrapolate this mechanism directly to cats, and the fact 
that the duration of obstruction is different in cats than in humans 
may be related to the finding that survival is not affected in the former. 
Nevertheless, based on this mechanism and the results of this study, 
we believe that careful evaluation of the long-term prognosis of cats 
with HOCM is warranted in the future.

In this study, LV-SL Endo/Epi was significantly increased in the 
HOCM and HNCM compared to the healthy cats, but there was no 
significant difference in LV-SC Endo/Epi. However, LV-SC Endo/Epi 
was decreased in the HOCM and HNCM compared to the healthy 
cats, although the difference was not significant. LV-SC Endo/Epi in 
asymptomatic cats-affected HCM was increased compared to healthy 
cats in a previous study, although there was no significant difference 
in LV-SL Endo/Epi (20). Increased LV-SC Endo/Epi is considered to 
be circumferential endocardial compensation for depressed epicardial 
contraction (20, 23, 24). Therefore, the HCM-affected cats included in 
this study were relatively severe and the compensatory mechanisms 
may have become dysfunctional. Although this study included cats 
with HCM of various American College of Veterinary Internal 
Medicine stages and thus the results should be  interpreted with 
caution, a lower LV-SC Endo/Epi may be  associated with worse 
prognosis in cats-affected HCM.

There were several limitations to the study. The sample size was 
small, which may have affected the results owing to case bias. In 
addition, some affected cats were prescribed oral medications, which 
may have affected the results. Furthermore, diagnosis was based on 
echocardiography, and not pathological findings. The study also 
included cats with HCM of varying severities, which may have affected 
the results. Specifically, it is possible that pathological severity was 
milder in the HNCM, resulting in a significant difference only in the 
HOCM compared to the healthy cats. However, no significant 

TABLE 3 Strain assessed by two-dimensional speckle tracking 
echocardiography in healthy cats and cats with cardiomyopathy.

Variables Healthy 
cats (n = 16)

HNCM 
(n = 19)

HOCM 
(n = 32)

LV-SL (%)

Whole layer 20.3 ± 3.5 14.8 ± 5.1* 14.7 ± 4.3*

Endocardium 23.3 ± 3.8 18.9 ± 5.5* 18.1 ± 4.9*

Epicardium 17.6 ± 3.3 12.7 ± 3.7* 12.3 ± 3.7*

Endo/Epi 1.3 ± 0.1 1.5 ± 0.1* 1.5 ± 0.3*

LV-SC (%)

Whole layer 20.1 ± 4.3 16.5 ± 2.8 15.6 ± 4.2*

Endocardium 38.7 ± 7.3 32.8 ± 6.2 30.6 ± 7.8*

Epicardium 7.4 ± 3.0 6.3 ± 1.5* 6.0 ± 2.4*

Endo/Epi 6.4 ± 3.8 5.4 ± 1.8 5.7 ± 2.3

LV-SL, peak systolic strain in the longitudinal direction at left ventricles; LV-SC, peak systolic 
strain in the circumferential direction at left ventricles; End, endocardium; Epi, epicardium. 
Continuous variables are displayed as mean ± standard deviation. *: The value is significantly 
different from the healthy cats (p < 0.05).
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FIGURE 2

Results of longitudinal strain by 2D-STE method (box-and-whisker diagram). *The value is significantly different from the healthy cats (p < 0.05).

FIGURE 3

Results of circumferential strain by 2D-STE method (box-and-whisker diagram). *The value is significantly different from the healthy cats (p < 0.05).
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differences were found between the HNCM and HOCM with respect 
to left ventricular wall thickness or American College of Veterinary 
Internal Medicine stage. Therefore, it is considered that there is no 
extreme difference in severity of disease.

5. Conclusion

Our results also indicate that 2D-STE is useful for detecting HCM, 
as shown in previous studies, and that cats with HOCM may have 
worse myocardial function than those with HNCM. However, 
predicting prognosis requires caution, and further studies are 
warranted to clarify these aspects.
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Glossary

2D-STE Two-dimensional speckle-tracking echocardiography

A-wave Peak velocity of the late diastolic wave

DLVOTO Dynamic left-ventricular outflow-tract obstruction

E-wave Peak velocity of the early diastolic wave

E/A E-wave to A-wave velocity ratio

FS Fractional shortening

HCM Hypertrophic cardiomyopathy

HNCM Non-obstructive HCM

HOCM Obstructive HCM

IVSd End-diastolic interventricular septal thickness

LA/Ao Left atrium to aortic diameter ratio

LV Left-ventricular

LVIDd End-diastolic LV internal diameter

LVOT Vmax Peak velocity of left-ventricular outflow-tract

LVPWd End-diastolic LV free-wall thickness

RWT Relative left-ventricular wall thickness

SC Circumferential strain

SL Longitudinal strain
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Case report: Treatment of
congenital lobar emphysema with
lung lobectomy in a puppy

Lauren M. Edwards†, Cassie N. Lux*†, Matthew Everett and

Silke Hecht

Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine,

Knoxville, TN, United States

An 11-week-old, sexually intact female Catahoula Leopard dog was evaluated

for a multiple-week history of exercise intolerance and intermittent periods

of respiratory distress. Thoracic radiographs revealed a markedly hyperinflated

right lung field, with compression of the surrounding lung lobes. Thoracic

computed tomography further localized the hyperinflation to the right middle

lung lobe, with suspicion of congenital lobar emphysema. A right intercostal

thoracotomy with right middle lung lobectomy was performed successfully.

Histopathology results confirmed bronchial cartilage hypoplasia with marked

emphysema and pleural fibrosis. The puppy recovered from surgery uneventfully

and was discharged from the hospital without any postoperative complications.

At 18 months postoperatively, the dog was clinically normal with no return of

respiratory distress. This case report describes successful surgical treatment of

a large breed puppy with the uncommonly reported condition of congenital

lobar emphysema.

KEYWORDS

canine, lung lobectomy, lobar emphysema, congenital, computed tomography

Introduction

Congenital lobar emphysema (CLE) is a rare lower respiratory tract disease that most

commonly presents in young dogs and cats, with age ranges in the literature from 6 weeks to

24 months of age (1–8). The literature predominately reports CLE in small or toy breed

dogs, with rare reports in large breed dogs (9). Clinical signs reported in the literature

include respiratory signs such as exercise intolerance, coughing, tachypnea or dyspnea,

and cyanosis (1, 3–6, 8–13). Additionally, subcutaneous emphysema, pneumothorax, and

pneumomediastinum have been noted on imaging and physical examination (3, 4, 7, 8, 13,

14). Congenital lobar emphysema is characterized by alveolar air accumulation resulting

in hyperinflation of the affected lung lobes, most commonly due to bronchial cartilage

hypoplasia, dysplasia, or aplasia leading to bronchial collapse (1–6, 8, 10, 11, 13–18). In the

human literature, there are 3 recognized etiologies of lobar emphysema: bronchial cartilage

dysplasia, which may range from hypoplastic and flaccid cartilage to a complete absence

of tissue; external bronchial compression; and idiopathic (19, 20). Idiopathic etiologies have

also been reported in veterinary patients, in which no bronchial abnormalities were identified

on histopathology (7, 9, 10, 12). While many cases reported in the veterinary literature

have bronchial abnormalities, ∼80% of people diagnosed with CLE have an undetermined

etiology, and only 20% have associated bronchial abnormalities (19). Surgical intervention

with lung lobectomy of the affected lobes has been reported to result in successful treatment

and recovery; however, older literature predominantly reported death or euthanasia in dogs
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FIGURE 1

Ventrodorsal (A) and lateral (B) radiographic projections of an

11-week old, sexually intact, female Catahoula Leopard dog with

congenital lobar emphysema. Noted in image (A), is a left

mediastinal shift, and images (A, B) depict a hyperlucent right lung

lobe and displacement of the cardiac silhouette.

affected with CLE (10–14, 16, 21). The case report described here

details diagnosis and treatment of a large-breed puppy with CLE.

Case presentation

Informed consent was obtained from the owner for publication

of this case report. An 11-week-old, sexually intact, female

Catahoula Leopard dog with a weight of 6 kg was evaluated for

a multiple-week history of exercise intolerance and intermittent

periods of respiratory distress. At 8 weeks of age, the primary

veterinarian performed thoracic radiographs to investigate for

causes of exercise intolerance and respiratory distress (Figures 1A,

B). The thoracic radiographs revealed amarkedly hyperinflated and

hyperlucent right lung lobe with compression of the surrounding

lobes, displacement of the cardiac silhouette, and a leftward

mediastinal shift. The dog was subsequently referred to a specialty

hospital for further diagnostics and care with a differential

diagnosis including congenital lobar emphysema based on the

above radiographic changes.

On presentation to the soft tissue surgery service at the

referral hospital, physical examination revealed absent right

lung sounds and increased, harsh left lung sounds on thoracic

auscultation. The dog’s respiratory effort was moderately increased

on presentation. Her temperature (100.4◦ F, 38◦C), pulse (150 beats

per min), and the remainder of her physical examination were

within normal limits. Bloodwork abnormalities were consistent

with the young age of the patient, including a mild anemia

(hematocrit 35.1%; reference range 40.5–59.9%), lymphocytosis

(lymphocytes 5.18 x 103/µL; reference range 1.10–3.96 x 103/µL),

mild panhypoproteinemia (albumin 2.9 g/dL; reference range

3.2–4.3 g/dL and globulins 1.5 g/dL; reference range 1.9–3.1

g/dL), hyperphosphatemia (7.8 mg/dL; reference range, 2.5–5.9),

hyperkalemia (4.9 mmol/L; reference range, 2.-4.7 mmol/L) and

a mild elevation in ALP (295 U/L; reference range, 13–240

Abbreviations: CLE, congenital lobar emphysema; CT, computed

tomography.

U/L). To further characterize the pulmonary pathology, a thoracic

computed tomography (CT) scan was performed under general

anesthesia with the intention to proceed directly to surgery pending

the results of the CT scan. The patient was sedated with an

intramuscular injection of butorphanol (0.4 mg/kg) and alfaxalone

(2 mg/kg), after which anesthesia was induced with an intravenous

injection of ketamine (5 mg/kg) and midazolam (0.25 mg/kg).

General anesthesia was maintained with vaporized sevoflurane

and continuous rate infusions of ketamine (10–20 mg/kg/h) and

fentanyl (5–10 µg/kg/h).

A transverse multislice submillimeter helical dataset was

obtained from the thoracic inlet to the cranial abdomen with a 40-

slice helical CT scanner (Philips Brilliance-40, Philips International

B.V., Amsterdam, Netherlands). To decrease risk of pulmonary

rupture and pneumothorax, a breath hold was not utilized when

acquiring the CT images. A pre- and post-contrast study was

completed using iodinated contrast material (Optiray, 0.45 mL/kg

of 350mg I/mL IV).

Images revealed a severely distended right middle lung lobe

with hypoattenuating parenchyma relative to the remaining lung

lobes. Furthermore, the pulmonary vessels throughout the right

middle lung lobe were decreased in size and the primary bronchus

was mildly dilated, with abrupt narrowing in the distal bronchus.

Distension of the right middle lung lobe resulted in a marked

leftward displacement of the heart and other mediastinal structures

as well as the right cranial, right caudal and accessory lung

lobes (Figure 2). Consequential compression of the left caudal

and left cranial lung lobes also occurred. Multifocal regions

of increased pulmonary attenuation and ground glass patterns

throughout the displaced and compressed lung lobes were noted

and attributed to atelectasis. A diagnosis of CLE was suspected

based on hyperinflation of the right middle lung lobe and abrupt

narrowing of the bronchus within the right middle lung most

likely related to bronchial hypoplasia and less likely bronchial

compression. The remaining changes of the thoracic cavity were

deemed likely to be secondary to compression and displacement

from the right middle lung lobe.

With careful consideration for the age of the patient and

prognosis without treatment, it was elected to continue with

surgical intervention. The dog proceeded to surgery immediately

following the CT scan under the same anesthetic event. A fentanyl

loading dose of 5 µg/kg was administered intravenously, and

Normosol-R intravenous fluids were administered at a rate of

3 ml/kg/h. In addition to the vaporized sevoflurane, continuous

rate infusions of ketamine (10–20 mg/kg/h) and fentanyl (5–10

µg/kg/h) were utilized to maintain a surgical plane of anesthesia.

Following aseptic preparation of the right lateral thoracic wall,

the patient was positioned for surgery in left lateral recumbency.

Mechanical ventilation was started prior to incision of the thoracic

wall. A right lateral intercostal thoracotomy was performed with

a 12 cm incision made in a dorsoventral direction along the 5th

intercostal space. A standard intercostal thoracotomy approach

with sharp and blunt dissection of the subcutaneous tissues

and thoracic wall musculature was performed, and finochietto

retractors were used for retraction of the ribs to aid in visualization.

The markedly inflated right middle lung lobe was manipulated

to access the hilus, resulting in a majority of the lobe being
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FIGURE 2

Thoracic CT dorsal reconstruction images from an 11-week old,

sexually intact, female Catahoula Leopard dog with congenital lobar

emphysema. Note the hyperinflated right middle lung lobe (RM)

with an abrupt narrowing of the main stem bronchus (asterisk);

leftward deviation of the heart, mediastinal structures, and

accessory lung lobe (Ac); and di�use increased attenuation/ground

glass pattern within remaining right cranial (RCr) and right caudal

(RCd) lung lobes as well as left lung.

externalized from the thoracic cavity (Figure 3). A DST SeriesTM

TATM Stapler (Medtronic, Minneapolis, MN) with a 30mm V3

Vascular (Medtronic, Minneapolis, MN) cartridge was used to seal

the bronchus, artery and vein at the hilus of the right middle

lung lobe. A scalpel was then used to excise the lung lobe distal

to the staples. An exploratory exam of the right hemithorax was

performed and was within normal limits except for notation of an

atelectatic right caudal lung lobe.

A local block of bupivacaine (6mg; 1 mg/kg) and lidocaine

(6mg; 1 mg/kg) was placed into the intercostal muscles cranial to,

at the level of, and caudal to the incision. A red rubber catheter

connected to a 3-way stopcock and 20mL syringe was passed

through the incision prior to closure for evacuation of air from the

thorax. The ribs were apposed using simple interrupted sutures of

3-0 PDS, and the musculature of the thoracic wall was apposed with

3-0 Monocryl in a simple continuous pattern. Prior to closure of

the skin, the anesthetist was consulted as to whether substantial

resistance was noted during hand-ventilation. Air was suctioned

from the thoracic cavity until anesthesia noted minimal resistance

to ventilation. Negative pressure was not re-established within

the thoracic cavity due to concern of re-expansion injury to the

remaining lung lobes. The thoracic catheter used for air evacuation

was removed prior to closure of the skin, and the skin was apposed

in an intradermal pattern using 4-0 Monocryl.

Histopathology was performed including hematoxylin and

eosin (H&E) stain, Masson’s trichrome stain to identify collagen,

and immunohistochemistry antibodies for AE1/AE3 cytokeratin

to identify epithelial cells and α-smooth muscle actin (α-SMA) to

evaluate bronchial smooth muscle of the resected right middle lung

lobe (Figures 4–7). Results revealed bronchial cartilage hypoplasia

characterized by variable quality cartilage to the absence of

FIGURE 3

(A–D) Intraoperative images from an 11-week old, sexually intact,

female Catahoula Leopard dog with CLE. The head is to the right

and dorsal is on the bottom of all images. The right middle lung lobe

(asterisk in all images) is occupying a majority of the right thoracic

cavity (A) and is hyperinflated (A, B). A lung lobectomy was

performed with a DST Series TA Stapler using a 30mm V3 vascular

stapler (C). The right middle lung hilus can be seen with the staple

line (white arrow) following lobectomy, and the right caudal lung

lobe has an area of atelectasis (+) (D).

FIGURE 4

Gross (A) and histopathologic (B) images of the right middle lung

lobe a�ected by CLE are depicted. Ruptured alveoli are present in

the lung lobe: grossly this is visible as air pockets within the lung

tissue (surrounding the arrow, A) and microscopically as

discontinuity of the alveolus wall (arrow within alveolus, B). In image

(B), bronchial cartilage is present as a small discontinuous basophilic

band (arrow head), which should fully surround a normal bronchus.

This represents bronchial cartilage hypoplasia and is the cause of

the bronchus in image (B) (star) being partially collapsed instead of

rounded.

cartilage, dilated and coalescing alveoli consistent with marked

emphysema, abnormal bronchial smooth muscle architecture, and

expanded connective tissues and collagen with pleural fibrosis

(Figures 4–7). The microscopic findings were consistent with the

suspected clinical diagnosis of congenital lobar emphysema.
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FIGURE 5

Masson’s trichrome staining of the right middle lung lobe highlights

the abundant collagen/connective tissues (arrow) surrounding the

bronchus B with no cartilage present. A, alveolus.

FIGURE 6

Immunohistochemistry AE1/AE3 cytokeratin of the right middle lung

lobe highlights the bronchial epithelium with multilayered columnar

to cuboidal epithelium and invaginations (arrowheads). The

bronchus is identified as B. The alveoli are identified as A and

contain ruptured septa with clubbed ends (double arrow).

The dog recovered uneventfully from anesthesia and was

maintained on a fentanyl constant rate infusion (2–5 µg/kg/h

IV, titrated to effect), gabapentin (10 mg/kg PO every 8 h), and

carprofen (2 mg/kg PO every 12 h). Oxygen supplementation

at an FiO2 of 30–40% was provided for 8 h via an oxygen

cage, and the dog had a normal respiratory rate and effort

the following day out of oxygen supplementation. The dog was

discharged 24 h postoperatively with no apparent complications.

The owners reported the dog continued to recover well from

surgery. As of 18 months postoperatively, the dog was doing

clinically well, with no dyspnea or exercise intolerance per

owner communication.

FIGURE 7

Immunohistochemistry α-SMA for smooth muscle of the right

middle lung lobe highlights the abnormal bronchial smooth muscle

architecture as the discontinuous smooth muscle bundles (asterisks)

surrounding the bronchus B. A, alveoli.

Discussion

This case report details the clinical treatment of a young

dog diagnosed with CLE and undergoing successful surgical

management of this condition. The diagnostic imaging, surgical,

and histopathologic findings were all considered characteristic of

CLE. Congenital lobar emphysema is a rare lower respiratory tract

disease that is characterized by alveolar air accumulation with

resulting hyperinflation of the affected lung lobes. Air accumulation

is believed to be due to dynamic airway collapse, in which entry of

air on inspiration occurs normally, however, abnormal bronchial

collapse during expiration does not allow air to escape (1, 2, 9, 13,

19). It is this overdistension due to hyperinflation that causes the

lung to be generally non-functional. Abnormal bronchial collapse

and obstruction on expiration has been reported to be associated

with bronchial cartilage hypoplasia, dysplasia, and aplasia; external

bronchial compression; and idiopathic etiologies (1–7, 10–12, 14,

17, 18).

Histopathology of the lung lobe removed from the dog

reported here revealed bronchial cartilage hypoplasia with marked

emphysema and pleural fibrosis. The microscopic findings of

this lung lobe including the abundant collagen with no cartilage

around the bronchus on the Masson’s trichrome stain, the

abnormal bronchial smooth muscle architecture on the α-SMA

immunostaining, the cuboidal and invaginated epithelium lining

the bronchus on the AE1/AE3 immunostaining, and the many

areas of discontinuous ruptured alveolar septa were consistent

with a diagnosis of CLE and previously reported (7, 8, 14). The

pathologist commented that the deficient bronchial cartilage and

bronchial atresia resulting in defects in the bronchial walls caused

greater volumes of air to enter the affected lobe on inspiration

than exited on expiration, resulting in air trapping and the clinical

presentation of a hyperinflated lung lobe. The bronchial hypoplasia

diagnosed here has been previously documented as associated with
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CLE in 10 reported cases in the literature (4–6, 14–17). Pleural

fibrosis has been noted in other dogs with histopathologic analysis

of the affected lung lobes, however the clinical significance of

pleural fibrosis, as it pertains to CLE in dogs, is not described

(7, 8, 14). Although some reported cases in dogs have determined

CLE to be idiopathic in nature, it appears the dog in this report

developed CLE due to the aforementioned bronchial abnormalities

(7, 9, 10, 12).

The dog in this report was 11 weeks old at the time of surgery

with clinical signs starting as early as 8 weeks old. Although CLE

is often diagnosed in young animals, the dog in this report is

one of the youngest dogs to have been clinically affected by CLE

and successfully treated with surgical excision of the affected lung

lobe. The 10 previous CLE patients with descriptions of successful

surgical treatment consisted of nine dogs, ranging from 6 weeks

to 10 years of age, and one 5-month-old kitten (1–9, 18). On

evaluation of the previously reported cases, the median age at

the time of successful treatment of CLE in the nine dogs was 20

weeks and was also 20 weeks in the only reported cat (1–9, 18).

Importantly, this case report highlights a successful anesthetic

and invasive surgical event for a pediatric puppy (<12 weeks

old), which comes with additional risks due to the immature age

including reduced ability to respond to cardiovascular changes;

immature renal, hepatic, and thermoregulatory functions; and

reduced pulmonary reserve with high oxygen consumption (22,

23).

Of the 10 case reports with successful surgical treatment

described previously, lobectomy has been performed on the

following affected lung lobes in dogs and cats with CLE: 7/10 for

the right middle lung lobe, 2/10 for the left caudal subsegment of

the left cranial lung lobe, and 1/10 for the left caudal subsegment

of the left cranial lung lobe and accessory lobe simultaneously (1–

9, 18). A recent retrospective study of 14 dogs and 3 cats with lobar

emphysema suspected a congenital etiology in 14/17 animals (17).

In the same report, 8/17 animals underwent lung lobectomy with

confirmed CLE diagnosis of the right middle lung lobe in all 8

cases, though one dog and one cat also had the right cranial and

right caudal lobes affected, respectively (17). The dog in the case

reported here, similar to other cases, was affected with CLE in the

right middle lung lobe.

Although a variety of large-breed dogs with CLE have been

reported (9, 11, 12, 17), descriptions of successful surgical

intervention in the literature for large breed dogs are limited to

a single case report of an Old English Sheepdog (9). Therefore,

the description of successful surgical intervention for the dog in

this report supplements the literature for surgical intervention in

large-breed dogs. Although it is possible that other large-breed dogs

were treated surgically, breed descriptions for dogs undergoing

surgery were not available for one report (17). The majority of

reports with successful surgical treatment are in small breed dogs

(1, 3–8, 18).

Hyperinflation of the affected lung lobe on the thoracic

radiographs resulted in pursuit of a CT scan to further define

pulmonary pathology in the dog described here. Evidence of

hyperinflation and hyperlucency of the affected lung lobes,

mediastinal shift, pulmonary atelectasis, and elevation of the

cardiac silhouette from the sternum were common findings in

15 previous cases that utilized radiography in their diagnosis

of CLE (1–13, 16, 18). Of the 15 cases diagnosed by thoracic

radiography and supporting clinical signs, only five went on to

utilize CT for surgical planning (2, 3, 5, 6, 8). The CT scan

in this dog revealed severely expanded pulmonary parenchyma

with hypoattenuation compared to the surrounding lung lobes

consistent with hyperinflation, which was also seen in all previously

reported cases undergoing CT (2, 3, 5, 6, 8). The value of CT

lies in the ability to diagnose other concurrent conditions in the

pulmonary parenchyma and thoracic cavity such as pneumothorax,

pneumomediastinum, bullae or blebs, bronchial abnormalities, and

concurrent abnormalities in other lung lobes, which are all variably

reported in the literature (2, 3, 5, 6, 8). It is important to note

that multiple cases have been reported involving more than one

lung lobe based on CT diagnosis (5, 17). Therefore, if a CT

scan is not performed prior to surgical intervention, consideration

should be made to approach the thoracic cavity via a median

sternotomy instead of an intercostal thoracotomy if there is any

concern that additional lung lobes on opposite sides of the thoracic

cavity may be affected. This will allow for effective exploration of

both hemithoraces. The additional findings in the dog of this case

report due to use of the CT scan included abrupt narrowing of the

bronchus in the affected lung lobe, compression with atelectasis of

local lung lobes, and displaced thoracic structures.

It should be noted that not all patients are immature at the

time of CLE diagnosis, and some patients may be asymptomatic for

CLE (4, 8, 16–18). However, most patients do exhibit clinical signs

related to CLE and at an immature age, similar to the dog of this

report. Out of the total 18 cases with surgical intervention for CLE

reported in the literature (1–9, 18), only one case of perioperative

death has been reported (1–9, 17, 18). In addition, 7/18 reported

cases also detail long-term follow-up revealing clinically normal

dogs (1–6, 8). Given the reported good short- and long-term

outcomes, the literature supports surgical removal of affected lung

lobes as treatment of choice for CLE, particularly for clinically

affected dogs. Prognosis for the dog of this case report is excellent

given the lack of dyspnea or exercise intolerance at 18 months

postoperatively, as well as confirmation on preoperative imaging

that the remaining lung lobes were within normal limits.
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Time to eRAASe chronic 
inflammation: current advances 
and future perspectives on 
renin-angiotensin-aldosterone- 
system and chronic intestinal 
inflammation in dogs and humans
Romy M. Heilmann 1*, Georg Csukovich 2, Iwan A. Burgener 2 and 
Franziska Dengler 3

1 Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany, 
2 Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria, 3 Institute of 
Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria

Chronic idiopathic intestinal inflammation is an increasing worldwide problem that 
affects companion animals, especially dogs, and human patients. Although these 
disease entities have been intensely investigated recently, many questions remain, 
and alternative therapeutic options are needed. Diarrhea caused by dysregulation 
of intestinal electrolyte transport and subsequent fluid and electrolyte losses often 
leads to secondary consequences for the patient. Currently, it is not exactly clear 
which mechanisms are involved in the dysregulation of intestinal fluid absorption, 
but differences in intestinal electrolyte shifts between human and canine patients 
suggest species-specific regulatory or counterregulatory mechanisms. Several 
intestinal electrolyte transporters are differentially expressed in human patients 
with inflammatory bowel disease (IBD), whereas there are virtually no studies 
on electrolyte transporters and their endocrine regulation in canine chronic 
inflammatory enteropathy. An important mechanism involved in regulating 
fluid and electrolyte homeostasis is the renin-angiotensin-aldosterone-system 
(RAAS), which may affect intestinal Na+ transport. While RAAS has previously been 
considered a systemic regulator of blood pressure, additional complex roles of 
RAAS in inflammatory processes have been unraveled. These alternative RAAS 
pathways may pose attractive therapeutic targets to address diarrhea and, thus, 
electrolyte shifts in human IBD and canine chronic inflammatory enteropathy. 
This article comparatively summarizes the current knowledge about electrolyte 
transport in human IBD and canine chronic inflammatory enteropathy and the 
role of RAAS and offers perspectives for novel therapeutic avenues.

KEYWORDS

alternative RAAS, chronic inflammatory enteropathy, inflammatory bowel disease, 
electrolyte transport, enteroids, tight junctions
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1. Chronic intestinal inflammation—a 
one-health perspective

Human IBD—comprising mainly Crohn’s disease (CD) and 
ulcerative colitis (UC)—has a high prevalence in industrialized 
countries, and patients often experience severe distress and 
significantly reduced quality of life. Healthcare costs to treat IBD in 
humans are immense, amounting to 15–30 billion US dollars annually 
in the United States and about 5 billion Euros in Europe (1). The exact 
prevalence of chronic inflammatory enteropathy (CIE) in dogs is 
currently unknown, but it is estimated at 1%–2% in referral settings 
(2). CIE in dogs can range in severity and is subcategorized based on 
the response to treatment (2). In contrast to canine CIE, different 
compartments of the intestines are predominantly affected in patients 
with CD and UC, likely reflecting differences in the disease 
pathogenesis. Overt inflammatory responses are a common 
characteristic, resulting from environmental factors (dietary and 
microbial antigens) combined with a genetic predisposition (3). Dogs 
have accompanied humans and shared the human lifestyle for over 
1,000 years, and it is thus not surprising that they develop similar 
civilization diseases. The prevalence of idiopathic IBD—either 
responsive (immunosuppressant-responsive enteropathy, IRE) or not 
responsive (non-responsive enteropathy, NRE) to immunosuppressive 
treatment—as a form of chronic inflammatory enteropathies (CIE) in 
dogs increased simultaneously with the rise of IBD in humans and 
both diseases share many characteristics, including pathogenesis and 
clinical signs (4–7). In dogs, CIE is characterized by chronic 
gastrointestinal signs, exclusion of other underlying diseases, and 
confirmation of gastrointestinal inflammation together with a 
response to treatment with either an elimination diet alone (food-
responsive enteropathy, FRE) or in combination with 
immunosuppressant medication (IRE or NRE) (2, 6, 7). The resulting 
diarrhea and accompanying shifts in plasma electrolytes can severely 
compromise the dogs’ and their owners’ quality of life.

A hallmark of IBD is diarrhea due to intestinal hypersecretion and 
hampered reabsorption of electrolytes and fluid, often accompanied 
by serum electrolyte changes. Although the clinical signs are similar 
and largely overlapping, reports suggest different compensatory 
mechanisms to be activated both in the intestinal epithelium and on 
the systemic level in affected humans and dogs (8–10), which might 
also call for different therapeutic approaches. While hyponatremia is 
the most common electrolyte change in human IBD (11), hypokalemia 
appears more prevalent in canine CIE (9), suggesting species-specific 
compensatory mechanisms. A better understanding of the 
pathophysiologic mechanisms in dogs with CIE is expected to help 
identify novel therapeutic targets that could ameliorate diarrhea in 
affected dogs and be valuable for treating human IBD patients. While 
IBD in people has been under investigation for decades, significantly 
less is currently known about the pathophysiology of chronic 
idiopathic intestinal inflammation (CIE) in dogs.

2. Pathophysiology of diarrhea—
gastrointestinal electrolyte transport 
and barrier formation

Central functions of the intestinal epithelium are the formation of 
a tight barrier to shield the host from luminal microbiota and other 

noxae and the vectorial transport of nutrients, electrolytes, and water. 
Uptake and secretion of nutrients and electrolytes are the major 
driving force for the (mostly paracellular) absorption and secretion of 
water. The gastrointestinal tract faces large fluid and electrolyte shifts, 
and the healthy intestinal mucosa absorbs about 98% of that fluid (12, 
13). The (passive) movement of water is driven by the (active) uptake 
or secretion of electrolytes, primarily Cl− and Na+. Due to its high 
absorptive capacity, the colonic epithelium can compensate for an 
increased secretion and/or defective absorptive capacity in the small 
intestine (14). Diarrhea develops if the compensatory capacity of the 
colon is exceeded and is often accompanied by serum electrolyte 
changes. The highest fecal water output is thus seen with disease 
involving the colon (12). Not surprisingly, diarrhea is invariably seen 
in humans with IBD, particularly in UC (15). In dogs, the lesions are 
typically more heterogeneously distributed in the gastrointestinal 
tract, and about 80% of affected animals show diarrhea (9). This lower 
prevalence of diarrhea [80% in dogs vs. 100% in people (9, 15)] might 
indicate a slightly more efficient compensation of intestinal 
malabsorption in dogs than in people.

Both increased secretion and reduced absorption of electrolytes 
cause diarrhea in human IBD patients (16). However, colonic 
absorption could still compensate for this if the colonic absorptive and 
re-absorptive transport mechanisms remain intact (17, 18). The main 
mechanisms for the uptake of luminal electrolytes—and thus the 
absorption of water—in the mammalian intestine is Na+-coupled 
cotransporters, particularly the Na+/H+-exchanger family (NHE) and 
the epithelial Na+ channel (ENaC). Both are downregulated in human 
IBD (19, 20) and rodent models of dextran-sulfate-sodium-induced 
colitis, along with the Na+/K+-ATPase that generates the gradient for 
the effective uptake of Na+ from the intestinal lumen (11, 20, 21), 
causing a decreased (re-)absorption of water. A knockout of NHE3, 
but not of NHE2, leads to diarrhea in a mouse model (22), and NHE3 
was demonstrated to be the major isoform for Na+ absorption across 
the canine ileum epithelium (23).

This finding is especially interesting in conjunction with reports 
of increased serum aldosterone levels in human IBD patients (11, 24), 
suggesting a systemic attempt at a counter-regulation mediated by the 
renin-angiotensin-aldosterone system (RAAS) as ENaC, NHE3 and 
Na+/K+-ATPase are upregulated by aldosterone (25–27). Other 
transport proteins might also be  involved in the dysregulation of 
intestinal fluid absorption, such as the anion exchangers putative 
anion transporter 1 (PAT1), down-regulated in adenoma (DRA), the 
Cl− channel cystic fibrosis transmembrane conductance regulator 
(CFTR) (16, 28), monocarboxylate transporter 1 (MCT1) (11, 21), and 
anion exchanger 2 (AE2). The Na+/K+/2Cl− cotransporter (NKCC) on 
the basolateral side of the epithelium might have a pivotal role in 
regulating the driving force for intestinal secretion [e.g., by CFTR and 
chloride channel 2 (CLC2)]. Similarly, basolateral K+ channels might 
be important in driving colonic secretion. The K+ channel KCNN4 is 
specifically upregulated in human IBD patients (29), and additional 
K+ channels or pumps may be located in the intestinal epithelial brush 
border membrane (16), but their role in human IBD (and canine CIE) 
is poorly understood. The effect of CIE on intestinal electrolyte 
transport in dogs has not been investigated to date.

Following established electrolyte gradients, the secretion and 
reabsorption of water mainly take the paracellular route. Therefore, 
the epithelial barrier formed by tight junction proteins is an 
important factor in the pathogenesis of diarrhea. Tight junctions and 
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other cell–cell contacts are essential components located between 
adjacent epithelial and endothelial cells throughout the mammalian 
organism. In human IBD, the barrier-forming claudins 3, 4, 5, 7, and 
8 are downregulated and disoriented from the plasma membrane, as 
are occludin and ZO-1, whereas the pore-forming claudin 2 is 
upregulated (30) along with increased paracellular permeability (20). 
In dogs with CIE, the expression of claudins or occludin is not altered 
in the duodenum, but colonic occludin mRNA levels are decreased 
(31). Apart from these findings, the regulation of tight junction 
proteins has yet to be  investigated in dogs with CIE (32), but a 
thorough understanding of their role would be a major premise for 
further studying the pathomechanisms of CIE-related diarrhea in 
dogs. The colonic expression of occludin and claudin 8 is regulated 
(along with ENaC) by aldosterone (33), which may imply an 
additional therapeutic potential for RAAS in IBD and potentially also 
CIE in dogs.

3. Classical and alternative RAAS 
pathways—great complexity and 
far-reaching effects

RAAS has been extensively studied in cardiovascular and renal 
pathophysiology, and it appears to have much greater non-linear 
complexity than previously known (34). It acts on intestinal transport 
and barrier function, as described above. In addition, RAAS is 
involved in other intestinal functions, including the absorption of 
glucose and peptides, gastrointestinal motility, and the regulation of 
mesenteric blood flow (35, 36). Given the differences in electrolyte 
imbalances between canine CIE and human IBD patients, RAAS 
pathways might be differentially activated in these conditions.

Classically, renin cleaves angiotensinogen to angiotensin I (Ang 
I), which is then processed by angiotensin-converting enzyme (ACE) 
to the vasoconstrictor Ang II that activates aldosterone. This 
“traditional RAAS” has been well characterized as a circulatory blood 
pressure regulator (Figure  1A) and has presented a 
pharmacotherapeutic target for decades. In contrast, the existence of 
additional peptides derived from Ang I  and II that constitute the 
“alternative RAAS” and their role in cardiovascular physiology and 
disease pathogenesis has long been neglected. The involvement of 
these recently discovered factors (Figure 1B) challenges the former 
simple concept of RAAS but also lends itself to potential novel 
therapeutic avenues beyond managing cardiovascular pathologies. 
Recent evidence also supports the coexistence of localized “tissue 
RAAS” mediating local (paracrine) effects.

Renin, a peptidase, represents the rate-limiting step in the RAAS 
cascade. After release from epithelioid cells of the renal 
juxtaglomerular apparatus into the circulation, renin cleaves an 
N-terminal decapeptide from angiotensinogen, a glycoprotein of the 
globulin superfamily synthesized in the liver and (though 
controversial) adipose tissue (37, 38), resulting in Ang I. The 
biologically active octapeptide Ang II results from the cleavage of Ang 
I  by ACE, which is expressed primarily by pulmonary and renal 
endothelial cells and has also been detected in other tissues, including 
the myocardium and intestines (39). ACE is most active when bound 
to cell membranes. Together with the short half-life of Ang I and II, 
this indicates localized actions of RAAS (40). Similarly, an effect of 

renin and/or Ang II at the tissue level, rather than in the circulation, 
is supported by detecting (pro-)renin receptors in several tissues, such 
as the heart, brain, placenta, kidney, and liver (41).

The main effect of Ang II is an increase in systemic blood pressure 
by regulating vasoconstriction and cardiac output (42). As an 
intermediate effect, increased Na+ reabsorption in the proximal renal 
tubules (via NHE3) and induction of thirst and salt appetite, 
subsequently increasing extracellular volume and, thus, blood 
pressure, are induced (43–45). As a longer-term effect, Ang II 
stimulates (a) the expression and secretion of aldosterone, thus 
increasing the reabsorption of Na+ in the renal collecting ducts via 
ENaC on the gene expression level and (b) hypothalamic antidiuretic 
hormone (ADH, vasopressin) secretion leading to the insertion of 
aquaporins in the renal collecting ducts (25). Together, these 
mechanisms increase water reabsorption and thus blood volume and 
systemic blood pressure (Figure  1). It is important to recognize, 
however, that the enhanced reabsorption of Na+ in the collecting ducts 
causes a concurrent loss of K+ due to the extrusion of K+ via apical 
channels into the lumen of the renal collecting ducts, which is driven 
by the electrochemical gradient that increases with the reabsorption 
of Na+ (46).

Beyond these direct and indirect effects on systemic blood 
pressure, Ang II also elicits immunomodulatory effects by inducing 
proinflammatory cytokines and chemokines (e.g., TNFα, IL-6, and 
TGF-β1) in renal tubular cells and cells of the immune system (47–
49). Ang II is also involved in hypertrophic remodeling (e.g., of the 
myocardium) by inducing cell proliferation and growth, but a direct 
effect of Ang II on extracellular matrix synthesis has also been 
observed (24, 47, 50). Thus, Ang II is presumed to be involved in the 
pathologic process of fibrogenesis (e.g., cardiac, renal, and hepatic 
fibrosis) (51, 52), which is also a major factor in the pathogenesis of 
human IBD (53). The binding of prorenin to its tissue receptor further 
contributes to myocardial fibrosis via the activation of intracellular 
signaling pathways (54, 55).

Four angiotensin-receptor (ATR) isoforms have been described, 
AT1R–AT4R. The ATRs are G-protein coupled transmembrane 
receptors (40) that might dictate the effects of Ang II by spatial 
differences in tissue abundance. AT1R is the primary receptor 
mediating the effects of Ang II and is expressed in most tissues, 
particularly the liver, adipose tissue, and placenta (39, 56). While 
AT1R is well characterized, the exact functions of the remaining three 
isoforms of ATR remain currently unknown. AT2R is found primarily 
during fetal development but may be upregulated under pathological 
conditions in adulthood (43), especially those affecting the lungs or 
smooth muscle (56). A vasodilatory effect of AT2R (i.e., opposing 
AT1R-mediated effects) has also been reported (40, 57, 58) and may 
provide a “safety net” preventing exaggerated and counterproductive 
effects of Ang II via AT1R.

Besides these traditional RAAS components, additional enzymes 
are described to act on Ang I and Ang II, representing the “alternative 
RAAS” (Figure 1B). To date, the best characterized is ACE2, which can 
cleave a nonapeptide, Ang (1–9), from Ang I or a heptapeptide, Ang 
(1–7), from Ang II (59, 60). Interestingly, one of the first observations 
of an alternative route of Ang I breakdown to Ang (1–7), independent 
from ACE, was in dogs (61). Ang (1–9) can also be converted to Ang 
(1–7) by ACE. Ang (1–7) responses can counteract those of Ang II 
[i.e., vasorelaxant, anti-proliferative, anti-inflammatory, anti-fibrotic, 
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and thus likely (cardio-)protective] (59, 62, 63), presumably via 
binding to AT2R (54, 59). In hypertensive rats, Ang (1–7) reduced the 
heart rate but not systemic blood pressure (63). Simultaneously, the 
formation of Ang (1–7) from Ang II is inherent in decreased Ang II 
concentrations. With the discovery of Mas, an additional RAAS 
receptor was identified that might act as the main receptor for Ang 
(1–7) and thus the “alternative arm” of RAAS (59, 62, 64). The 

pathophysiologic role and effects of Ang (1–7) have raised hopes for 
a therapeutic application to address the adverse effects of Ang II in 
various pathologies. However, the pathways and effects of Ang II are 
currently still controversial and remain first to be  clarified (63). 
Formation of Ang (2–8) (also referred to as Ang III) and Ang (3–8) 
(also known as Ang IV) has also been described (40). These peptides 
bind to AT1R and elicit similar effects as Ang II (54).

FIGURE 1

Evolution of the complexity of the renin-angiotensin-aldosterone system (RAAS). (A) Traditional simple view of the RAAS involving mostly 
cardiovascular and renal effects. (B) More recent complex view on classical and alternative RAAS pathways that might play a role in human 
inflammatory bowel disease (IBD) and/or canine chronic inflammatory enteropathy (CIE). Whereas the activation of the classical arm leads to 
vasoconstrictive, proinflammatory, profibrotic, and prothrombotic effects (green dashed box), components of the alternative RAAS pathways result in 
vasodilatory, anti-inflammatory, antifibrotic, and antithrombotic responses (blue dashed box). ACE, angiotensin-converting enzyme; ATR, angiotensin 
receptor; MR, mineralocorticoid receptor; PRR, prorenin receptor. Images created with BioRender.com.
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4. RAAS crossroads between 
adaptation, disease, and novel 
therapeutic targets

Components of the RAAS have paracrine and/or autocrine 
cytokine-like effects and regulate inflammation, tissue repair, and 
fibrosis (21, 65, 66), all important factors in the pathogenesis of canine 
CIE and human IBD. In addition to upregulating adhesion molecules, 
Ang II is chemotactic for inflammatory cells, particularly of the 
mononuclear lineage. These cells produce RAAS components 
following activation (mediated by IL-1, TNF-α, NF-κB, and/or 
PPARγ), resulting in a positive-feedback loop with the potential to 
perpetuate chronic inflammatory responses (66–68). Ang II also has 
profibrotic effects via TGF-β, connective tissue growth factor 
stimulation, and inhibition of matrix metalloproteinase (MMP)-
mediated extracellular matrix degradation (69). While conflicting data 
exist on TGF-β expression in canine CIE depending on the 
gastrointestinal segment affected (4, 70–73), and unlike in humans 
stricturing behavior is not observed in affected dogs, intestinal 
mucosal MMP-2 and -9 activities are increased in canine CIE (74). 
Toll-like receptor (TLR) and RAGE (receptor for advanced glycation 
end products) expression are dysregulated in canine CIE (5, 75, 76), 
and RAAS blockade has anti-inflammatory effects by suppression of 
TLR2 and TLR4 in humans (77).

Inhibition of RAAS pathways [e.g., Ang II production by ACE 
inhibitors (ACEIs) or its effects by ATR blockers (ARBs)] could 
downregulate inflammatory mediators and the innate immune 
receptors TLR2, TLR4, and RAGE. This concept presents a novel 
therapeutic strategy that targets the inflammatory response in 
canine CIE and warrants further study. Classical and alternative 
RAAS pathways (Figure 1B) are complementary systems with the 
potential to oppose or compensate for the actions of the 
contralateral arm (60, 77, 78), and their balance (or imbalance) 
might play an important role in the pathogenesis of intestinal 
inflammation. Thus, a (receptor) specific approach is most 
promising for therapeutically targeting the RAAS. The alternative 
RAAS has anti-inflammatory properties (59, 60). Ang (1–7) is a 
promising therapeutic target that attenuated intestinal 
inflammation in a rodent model of IBD (78). Components of 
classical and alternative RAAS are expressed in the intestinal 
mucosa in humans (34, 78, 79), with disparate ACE2 imbalances 
in the small intestine (downregulation) and colon (upregulation) 
in IBD patients (59, 62, 79). ACE2, as the main enzyme for cleavage 
of Ang II to Ang (1–7) which neutralizes the pro-inflammatory 
and pro-fibrotic effects of Ang II, might be critical for mounting 
pro- vs. anti-inflammatory responses (80). It is expressed in the 
gastrointestinal tract in cats (81) but has not been investigated in 
dogs. Circulating ACE and ACE2 act as decoy receptors, and the 
plasma ACE2/ACE ratio is increased in people with IBD. Cleavage 
of ACE2 is controlled by the metalloprotease ADAM17 (34), and 
ACE2 induction by cardiovascular pathology—shifting the balance 
between Ang peptides in plasma—is more pronounced in dogs 
than people (82). MasR is expressed in the canine ileum (83) but 
remains to be investigated in canine CIE. Likewise, tissue prorenin 
receptor (PRR) and mineralocorticoid receptor (MR) expression 
(e.g., by macrophages), as well as chymase activation (e.g., by mast 

cells), can modulate local RAAS effects (Figure  1B) and 
inflammatory responses (43) but remain to be studied in canine 
CIE. ACEIs (decreasing the production of Ang II), Ang II blockade 
(antagonizing AT1R signaling), MR or PRR antagonists, and/or 
chymase inhibitors could be useful and inexpensive alternative or 
adjunct therapeutic options for chronic intestinal inflammation 
(39, 84, 85) and potentially other autoinflammatory diseases (e.g., 
autoimmune hepatitis) in dogs.

5. Discussion and conclusions

Humans and dogs are close companions and share several 
civilization diseases, including idiopathic IBD and CIE. Although 
the shared Western lifestyle is proposed as a common denominator 
in the etiology of both conditions, there appear to be some species-
specific differences in the disease characteristics, including the 
primary disease localization and distribution, resulting electrolyte 
changes, and potentially corresponding (counter-)regulatory 
mechanisms. While the current body of knowledge and research is 
more extensive for human IBD than canine CIE, a complete 
understanding of the underlying pathophysiology and possible 
mechanistic approach to therapy needs to be  improved in both 
species. Exploration of alternative treatment options for dogs with 
CIE is needed as currently available drugs—particularly 
corticosteroids—carry significant side effects and biologicals (e.g., 
monoclonal antibodies against receptors or inflammatory cytokines) 
are not currently available (and very unlikely available soon) as a 
treatment option for canine CIE (86). Understanding commonalities 
and species-specific differences can be  expected to result in the 
development of improved treatment strategies, and targeting RAAS 
might be one of these options. A thorough understanding of the role 
of RAAS pathways in the pathophysiology of canine CIE is needed 
to assess the therapeutic potential and potential side effects. Novel 
research methods, particularly canine intestinal organoids (Figure 2) 
that provide a reproducible and stable in vitro system for disease 
modeling and drug development (87–90), will be vital to further 
evaluate the effects of RAAS modifiers on epithelial ion transport, 
inflammatory responses, and intestinal barrier function 
comparatively. Organoids will allow to implement the 3R principles 
(6) and pave the way for urgently needed novel disease-specific 
treatment strategies in canine CIE and human IBD.
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Chronic diarrhea is a hallmark sign of canine chronic inflammatory enteropathy 
(CIE), leading to fluid and electrolyte losses. Electrolyte homeostasis is regulated 
by the renin-angiotensin-aldosterone-system (RAAS), which might be  involved 
in (counter-)regulating electrolyte losses in canine CIE. Whether and which 
electrolyte transporters are affected or if RAAS is activated in canine CIE is 
unknown. Thus, intestinal electrolyte transporters and components of the RAAS 
were investigated in dogs with CIE. Serum RAAS fingerprint analysis by mass 
spectrometry was performed in 5 CIE dogs and 5 healthy controls, and mRNA 
levels of intestinal electrolyte transporters and local RAAS pathway components 
were quantified by RT-qPCR in tissue biopsies from the ileum (7 CIE, 10 controls) 
and colon (6 CIE, 12 controls). Concentrations of RAAS components and mRNA 
expression of electrolyte transporters were compared between both groups 
of dogs and were tested for associations among each other. In dogs with CIE, 
associations with clinical variables were also tested. Components of traditional and 
alternative RAAS pathways were higher in dogs with CIE than in healthy controls, 
with statistical significance for Ang I, Ang II, and Ang 1–7 (all p  <  0.05). Expression 
of ileal, but not colonic electrolyte transporters, such as Na+/K+-ATPase, Na+/
H+-exchanger 3, Cl− channel 2, down-regulated in adenoma, and Na+-glucose-
cotransporter (all p  <  0.05) was increased in CIE. Our results suggest that the dys- 
or counter-regulation of intestinal electrolyte transporters in canine CIE might 
be associated with a local influence of RAAS. Activating colonic absorptive reserve 
capacities may be a promising therapeutic target in canine CIE.
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diarrhea, dog, inflammatory bowel disease, intestinal epithelial transport, mRNA 
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1. Introduction

Both inflammatory bowel disease (IBD) in humans and chronic 
inflammatory enteropathy (CIE) in dogs show an increasing incidence 
that poses an immense burden on the healthcare system (1). A 
frequent clinical sign that significantly negatively impacts the patient’s 
quality of life is chronic diarrhea, the discharge of loose to watery feces 
causing electrolyte losses, plasma electrolyte shifts, and secondary 
systemic consequences (2, 3). Because the intestinal absorption of 
electrolytes is extensively regulated, it would be  expected that 
counterregulatory mechanisms to balance fluid and electrolyte 
deficiencies caused by the disease are activated. A major regulator of 
electrolyte and fluid homeostasis is the renin-angiotensin-aldosterone 
system (RAAS), which controls systemic blood pressure and volume 
by regulating vascular tone and the reabsorption of Na+ and water. 
Beyond this traditional systemic role, RAAS has recently gained 
increasing attention as a local autocrine and paracrine mediator. 
Within that scope, RAAS effects beyond the classical modulation of 
(primarily renal and intestinal) electrolyte transport may include 
developing and perpetuating inflammation and fibrotic tissue 
remodeling (4, 5). An upregulation of individual components of 
RAAS has been observed in human IBD patients (6). Altered 
expression patterns and dysfunction of several ion transporters, 
especially Na+/H+-exchanger (NHE) 3, epithelial Na+-channel (ENaC), 
Na+/K+-ATPase, down-regulated in adenoma (DRA), and putative 
anion transporter 1 (PAT1), appear to occur in human patients with 
IBD (7–9). This might be a consequence of inflammatory signaling or 
be regulated directly or indirectly by the multimodal effects of RAAS 
and contribute to the plasma electrolyte shifts observed in IBD 
patients. While hyponatremia is the most important electrolyte shift 
in human IBD patients, dogs with CIE more commonly show 
hypokalemia (3), suggesting differences in the pathophysiology and 
compensatory mechanisms between species. This difference may also 
be  associated with a difference in the primary localization of the 
inflammatory lesions along the gastrointestinal tract between human 
IBD and canine CIE patients. However, neither the possible activation 
of RAAS nor lack thereof or the intestinal expression of electrolyte 
transporters has been investigated in canine CIE thus far.

As a prelude to further functional analyses, our study aimed to 
investigate (i) the gene expression of intestinal electrolyte transporters 
with a putative role in salvaging or contributing to electrolyte losses in 
dogs with CIE, (ii) the possibility of activation of the RAAS in dogs 
with CIE, and (iii) the possible association between the expression of 
intestinal electrolyte transporters and currently known 
RAAS components.

2. Materials and methods

2.1. Animals

Healthy control dogs were required to be free from having any 
clinical signs of gastrointestinal disease or receiving medication 
known to affect the gastrointestinal tract, to be regularly vaccinated 
and dewormed, and – for the serum controls – to have a normal 
complete blood cell count and serum biochemistry profile.

Dogs with CIE had clinical signs of chronic enteropathy (i.e., 
vomiting, diarrhea, and/or weight loss for ≥3 weeks); other possible 
etiologies of these clinical signs (e.g., atypical hypoadrenocorticism, 

exocrine pancreatic insufficiency) were excluded. Intestinal 
inflammation was documented histologically, and the response to 
treatment supported a diagnosis of CIE (10). These dogs could not 
have (i) received any anti-inflammatory and/or immunosuppressive 
medication or RAAS-acting agent (i.e., angiotensin-converting 
enzyme [ACE] inhibitor, angiotensin receptor blocker, aldosterone-
antagonist or other diuretic, ß-blocker, calcium channel blocker, or 
mineralocorticoid) within 4 weeks prior to enrollment and sampling 
and (ii) evidence of cardiac disease or renal insufficiency. Clinical 
disease severity was determined using the canine chronic enteropathy 
clinical activity index (CCECAI), which includes the 3-point-scale 
evaluation of the dog’s attitude/activity, appetite, frequency of 
vomiting, stool consistency, frequency of defecation, weight loss, 
serum albumin concentration, peripheral edema/ ascites, and pruritus 
score (11). Gastrointestinal tissue biopsies were histologically 
evaluated by a 3-point scale grading structural and inflammatory 
lesions (12).

Serum samples (n = 5) and endoscopic tissue biopsies from the 
ileum (n = 7) and colon (n = 6) of dogs with CIE were from a previous 
study (13) that was approved by the Regional Council of the State of 
Saxony, Chemnitz/Leipzig, Germany (#TVV 06–17). Control tissues 
were full-thickness biopsies from the ileum (n = 10) and colon (n = 12) 
of purpose-bred healthy dogs that were euthanized for an unrelated 
project at the School of Veterinary Medicine and Biomedical Sciences 
at Texas A&M University, United  States (Animal Use Protocol 
#TAMU 2009–0123). Serum from age- and sex-matched healthy 
controls (n = 5) were surplus materials from the blood donor bank at 
the Department for Small Animals, University of Leipzig, Germany.

2.2. Real-time quantitative polymerase 
chain reaction (RT-qPCR) analyses

Biopsies were stored in RNAlater® (Qiagen, Hilden, Germany) at 
−80°C until RNA isolation. Total RNA was isolated from the tissue, 
and cDNA was prepared as described previously (14). Briefly, total 
RNA was extracted with the ReliaPrep™ RNA Miniprep System 
(Promega GmbH, Mannheim, Germany) according to the 
manufacturer’s protocol, including treatment with DNase. RNA 
concentration and quality were determined spectrophotometrically 
(DeNovix DS-11, Wilmington, DE, United States), and 1 μg of high-
quality RNA was used for cDNA synthesis using the GoScript™ 
Reverse Transcriptase Kit (Promega, Mannheim, Germany).

For qPCR, a ready-to-use SYBR green master mix (GoTaq®, 
Promega, Mannheim, Germany) with 112 nM primer mix was used. 
Primers were designed with the Primer BLAST tool from the National 
Center for Biotechnology Information (NCBI, Bethesda, MD, 
United States) using known sequences from the Basic Local Alignment 
Search Tool (BLAST) in the NCBI gene bank database (Table 1) and 
were synthesized by Microsynth (Balgach, SG, Switzerland). A 
no-template control (NTC) with DNase-free water instead of cDNA 
was included in each run. For each sample and gene, qPCR reactions 
were run in duplicates, and the amplification specificity was checked 
by melting curve analysis. Following denaturation at 95°C, extension 
and annealing were performed at 60°C, and the quantification cycle 
was determined using the CFX Maestro software (Biorad, Vienna, 
Austria). The ΔΔCt method was used to analyze the data and compare 
the mRNA expression of the electrolyte transporters Na+/K+-ATPase 
(ATP1A1), ENAC, NHE3, renal outer medullary K+ channel (ROMK), 
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cystic fibrosis transmembrane conductance regulator (CFTR), NHE2, 
CLC-2, DRA, monocarboxylate transporter 1 (MCT1), and Na+-
glucose co-transporter 1 (SGLT1); as well as the local RAAS 
components angiotensin II receptor type 1 (AGTR1) and a disintegrin 
and metalloproteinase (ADAM). Samples were normalized using the 
same amounts of RNA and cDNA for processing. Hypoxanthine 
guanine phosphoribosyltransferase 1 (HPRT1), peptidylprolyl-
isomerase D (PPID), and succinate dehydrogenase subunit A (SDHA) 
served as reference genes after their stability was confirmed using 
Reffinder (15). The geometric mean of all reference genes’ Ct values 
was calculated for each sample and used for normalization. 
Additionally, vimentin (VIM) expression was used to normalize 
mesenchymal tissue content across intestinal biopsy specimens.

2.3. Mass spectrometry-based serum RAAS 
profiling

Serum samples stored at −20°C were submitted to a commercial 
laboratory (Attoquant Diagnostics, Vienna, Austria) to quantify 
equilibrium concentrations of RAAS components (angiotensin I [Ang 

I], Ang II, Ang III, Ang IV, Ang (1-7), Ang (1-5), and aldosterone) by 
liquid chromatography–tandem mass spectrometry (LC–MS/MS) as 
previously described (16, 17). Briefly, serum samples were equilibrated 
for 1 h at 37°C prior to stabilization, spiked with stable isotope-labeled 
Ang peptides and deuterated aldosterone (internal standard), 
subjected to C18-based solid-phase extraction and LC–MS/MS 
analysis using a reverse-analytical column in a triple quadrupole MS 
(Xevo TQ-S; Waters, Eschborn, Germany). After normalizing the 
recovered RAAS components against their internal standards, the 
concentrations of these analytes were calculated based on calibration 
curves using integrated chromatograms (16, 17). PRA-S (a marker for 
serum renin activity), ACE-S (a marker for serum ACE activity), AA2 
ratio (a marker for adrenocortical responsiveness), and ALT-S (a 
marker for renin-independent alternative serum RAAS activity) were 
calculated as described (18–20).

2.4. Statistics

A commercial statistical software program (JMP® v.13, SAS Institute, 
Cary, NC, United States) was used for all statistical analyses. Data were 
assessed for normality using a Shapiro–Wilk test, and the summary 
statistics were reported as medians and ranges (continuous data) or 
counts and percentages (categorical data). Non-parametric two-group 
comparisons were performed using a Wilcoxon rank-sum test, and a 
Spearman correlation coefficient (ρ) was calculated to assess for possible 
correlations. Statistical significance was set at p < 0.05 and a Bonferroni 
correction for multiple comparisons was applied if indicated.

3. Results

3.1. mRNA expression of electrolyte 
transporters and local RAAS components

Significant upregulation of the ileal epithelial mRNA expression 
of the electrolyte transporters ATP1A1 (p = 0.0218), NHE3 (p = 0.0491), 
CLC-2 (p = 0.0009), and DRA (p = 0.0128), along with the glucose 
transporter SGLT1 (p = 0.0015), was detected in dogs with CIE 
compared to healthy controls (Figure 1A). No significant difference 
was observed for ileal ENAC (p = 0.1571), ROMK (p = 0.3562), and 
CFTR (p = 0.6961) expression between CIE and healthy controls. 
Furthermore, no differences were detected between both groups of 
dogs in the colonic epithelial expression of ATP1A1 (p = 0.8513), 
NHE3 (p = 0.4260), ROMK (p = 1.0000), CFTR (p = 0.4824), DRA 
(p = 0.6734), MCT1 (p = 0.6473), ENAC (p = 0.2059), CLC-2 
(p = 0.2229), and NHE2 (p = 0.3024) in dogs with CIE compared to the 
control group (Figure 1A).

Significant downregulation of the ileal epithelial AGTR1 and 
ADAM expression (both p = 0.0359) was seen in dogs with CIE 
compared to healthy controls (Figure  1B), which was also not 
mirrored in the colon (p = 0.7078 and p = 0.3487).

3.2. Serum concentrations of RAAS 
components

Components of both traditional and alternative RAAS 
pathways were increased in serum from dogs with CIE compared 

TABLE 1 Primers used for qPCR.

Gene 
name

Gene bank 
accession no.

Primer sequence (5′ – 3′)

ATP1A1 NM_001389224.1
F: ACTCAGAACCGGATGACCGT

R: ATCGAACGAGACACCACTCTG

AE2 XM_003639553.5
F: AGAGCAAGCGGGTTATGCC

R: AGAAAGAATCTGCGCCCGAG

CFTR NM_001007143.1
F: GGACAGAGAGCTGGCATCAA

R: CTGCTTTGGTGACTTCCCCT

CLC2 XM_038445731.1
F: CCGGTCTTTGTTATCGGAGC

R: ATCCGGTAAGTGCTGCTGTC

DRA XM_038423776.1
F: CTGGGATTCTCTCTGCGGTC

R: GAGCTGCCAGGACAGACTTTT

ENAC XM_038439216.1
F: GGGATCAAAAATGGCCTGTCC

R: CATCCTGCCCATGCACCATT

HPRT1 NM_001003357.2
F: CCCAGCGTCGTGATTAGTGA

R: CACTTTTTCCAAATCCTCAGCGT

MCT1 XM_038423242.1
F: CCGCGCATAACGGTATTTGG

R: CCTCCATCTGGGGGAGTGTA

MCT4 XM_038675356.1
F: ATCGTGGGCACCCAGAAGTT

R: CAAGAGCTTGCCTCCCGAT

NHE2 XM_038680184.1
F: CCCTGGCGAAGATAGGCTT

R: CTAGCAGCAGGCCAACCATT

NHE3 XM_038462883.1
F: GTGGTCACCTTCAAATGGCAC

R: GTGTGATAGGTGGAAGCCGAT

PPID XM_038688725.1
F: TGGAAATGTCGCATCCGTCC

R: CAATTCGACCAACTCGCTCC

ROMK XM_038664232.1
F: GCACGCACTCTCCAGATCAGA

R: CTTTGCCGAGAATGCCCAAA

SDHA XM_535807.6
F: TCCGTGTGGGAAGTGTGTTA

R: GTGTTCCAGACCATTCCTCG

VIM NM_001287023.1
F: GGATGCACTCAAAGGGACTAATG

R: GTCTTGGTAGTTAGCAGCTTCG
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to healthy control dogs (Figure 2A). Ang I, Ang II, Ang IV, and 
Ang 1–7 as well as PRA-S were significantly upregulated in CIE 
(all p = 0.0367) compared to healthy dogs, whereas statistical 
significance was not reached for the differences in serum Ang III 
and Ang 1–5 (both p = 0.0947) or aldosterone (p = 0.2101; 
Figure 2B). Mildly but insignificantly decreased ACE-S and AA2 
ratios (both p = 0.6761) and ALT-S (p = 0.2963) were seen in dogs 
with CIE. Traditional and alternative RAAS components were 
highly correlated in dogs with CIE, with few significant 
correlations in healthy dogs (Figure 2C).

3.3. Association of serum RAAS 
components with patient characteristics 
and intestinal electrolyte transporter and 
local RAAS component mRNA expression

Few correlations of serum RAAS components with patient and 
disease characteristics were seen in the CIE group of dogs (Figure 3A). 
Lower serum AA2 ratios, reflecting decreased adrenal responsiveness 
to Ang II, were strongly correlated with higher K+, lower corrected 
Cl−, higher histologic lesion scores in the ileum, and lower serum 
cobalamin concentrations. Notably, SGLT1 mRNA expression was 
highly correlated with several RAAS components (Ang I, Ang III, Ang 
IV, aldosterone, PRA-S, and AA2 ratio) and the severity of diarrhea in 
dogs with CIE (Figure 3B). No other significant correlations were seen 

between the expression of ileal electrolyte transporters, endogenous 
glucocorticoid (serum cortisol), and RAAS components in the serum.

4. Discussion

Chronic diarrhea is a hallmark of canine CIE and a major factor 
impairing affected dogs’ and their owners’ quality of life. Thus, a more 
detailed understanding of the mechanisms involved in the 
pathogenesis of diarrhea and the corresponding counterregulatory 
mechanisms is of urgent interest to improve the therapeutic approach 
in affected dogs. This preliminary study aimed to characterize possible 
changes in the expression of intestinal electrolyte transporters in 
canine CIE and to investigate the potential role of RAAS in 
their regulation.

The results demonstrate an upregulation of electrolyte transporter 
mRNA expression in the ileum, which is usually more affected than 
the colon in canine CIE. Particularly the Na+-transporters ATP1A1 
and NHE3 were significantly upregulated in dogs with CIE compared 
to healthy dogs. ENAC appeared numerically upregulated, but the 
difference between CIE and healthy controls did not reach statistical 
significance. This upregulation could be interpreted as a compensatory 
attempt to increase Na+ and thus also water absorption in the diseased 
intestine. DRA was also increased in CIE and might be involved in 
NaCl absorption, cooperating with NHE3 (7), and contribute to water 
reabsorption. These findings contrast with the reduced expression and 

FIGURE 1

Electrolyte transporter and selected tissue RAAS component mRNA expression in the ileal and colonic mucosa from dogs with CIE compared to 
healthy controls. The expression of ileal ATP1A1, NHE3, CLC-2, DRA, and SGLT1 mRNA was increased in dogs with CIE (all p  <  0.05), whereas there were 
no differences in the expression of ENAC, CFTR, and ROMK mRNA in the ileum. No differences in the expression of any of the transporters were 
detected in the colonic mucosa. Local RAAS imbalance comprised a downregulated ileal (but not colonic) AGTR1 and ADAM mRNA expression in dogs 
with CIE (* indicates significance at p  <  0.05, ** indicates significance at p  <  0.01, *** indicates significance at p  <  0.001). ADAM: a disintegrin and 
metalloproteinase; AGTR1: angiotensin II receptor type 1; ATP1A1: Na+/K+-ATPase; CFTR: cystic fibrosis transmembrane conductance regulator; CLC-2: 
Cl− channel 2; DRA: down-regulated in adenoma; ENAC: epithelial Na+ channel; MCT1: monocarboxylate transporter 1; NHE2: Na+/H+-exchanger 2; 
NHE3: Na+/H+-exchanger 3; ROMK: renal outer medullary K+ channel; SGLT1: Na+-glucose co-transporter 1; n.a.: not abundant.
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function of DRA, ENAC, and ATP1A1 in rodent colitis models and 
human IBD patients (7–9, 21–25), suggesting species-specific 
differences in the dysregulation or counter-regulation of 
these transporters.

Another explanation for these discrepant results among dogs, 
humans, and experimental rodents might be the primary location of 
the disease. Human IBD, including Crohn’s disease (CD) and 
ulcerative colitis, mostly affects the colon and disease localization 
strictly to the ileum is seen in only approximately 30% of CD cases 
(26). In contrast, canine CIE has a more heterogenous distribution 

along the gastrointestinal tract and lesions often predominate in the 
small intestine, particularly in the ileum (27, 28). Along with these 
species-specific differences, it is reasonable to assume that the sites 
and mechanisms of dysregulation or counter-regulation would also 
differ. In human CD, the differentiation between ileal and colonic 
disease has been proposed to account for differences in the 
pathogenesis, optimal therapeutic approaches, and the corresponding 
treatment success rates (26, 29). Thus, the results obtained for canine 
CIE may generally resemble human ileal CD more closely than CD 
with predominantly colonic inflammatory lesions. Differential 

FIGURE 2

Upregulation of serum RAAS components in canine CIE. (A) Serum RAAS fingerprint visualizing the upregulation of both the traditional and alternative RAAS 
arms in dogs with CIE (n = 5; left panel) compared to healthy controls (n = 5; right panel). Individual colored dots (and numbers) reflect the median 
concentrations for each analyte. (B) Correlation among serum RAAS components in dogs with CIE and healthy controls. The Spearman correlation 
coefficients (ρ) for the individual correlations are shown, with the color scheme (indicated below the table) reflecting the respective significance levels for 
each correlation. (C) Two-group comparisons for the individual analytes in serum show traditional and alternative RAAS components to be increased in 
dogs with CIE compared to controls, with statistical significance reached for Ang I, Ang II, Ang IV, and Ang 1–7 as well as PRA-S (* indicates significance at 
p < 0.05). Ang I (1-10): angiotensin I; Ang II (1-8): angiotensin II; Ang III (2-8): angiotensin III; Ang IV (3-8): angiotensin IV; Ang 1–7: angiotensin 1–7; Ang 1–5: 
angiotensin 1–5; PRA-S: marker of plasma renin activity (calculated); ACE-S: ratio of Ang II (1-8) to Ang I (1-10) = marker of angiotensin-converting enzyme 
(ACE) activity; AA2 ratio: ratio of aldosterone to Ang II (1-8) = marker of adrenal responsiveness to Ang II (1-8); ALT-S: ratio of [Ang 1–7 + Ang 1–5] to [Ang 
I (1-10) + Ang II (1-8) + Ang 1–7 + Ang 1–5] = marker of renin-independent alternative serum RAAS activity.

FIGURE 3

Association of serum RAAS activation with patient and disease characteristics, intestinal electrolyte transporter, and local RAAS component expression 
in canine CIE. (A) Correlations of serum RAAS components with patient and disease characteristics. Only the calculated serum AA2 ratio was 
significantly positively correlated with serum corrected Cl− and cobalamin concentrations and was inversely correlated with serum K+ concentrations 
and histologic lesion scores in the ileum. (B) Correlations of serum RAAS components with the mRNA expression of electrolyte transporters, ADAM, 
and AGTR1. Shown are the Spearman correlation coefficients (ρ) for the individual correlations, with the color scheme (indicated below the table) 
reflecting the respective significance levels for each correlation.

66

https://doi.org/10.3389/fvets.2023.1217839
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Dengler et al. 10.3389/fvets.2023.1217839

Frontiers in Veterinary Science 06 frontiersin.org

investigation of the transepithelial electrolyte transport in human ileal 
and colonic CD is lacking thus far and these hypotheses warrant 
further study in canine CIE and human IBD.

Upregulation of the NaCl uptake mechanisms might be an attempt 
to compensate for electrolyte and free water losses associated with the 
maldigestion and malabsorption resulting from the exacerbated 
immune response of the intestinal mucosa. These counterregulatory 
mechanisms could be induced, exacerbated, or otherwise modulated 
by the RAAS as a regulator of systemic blood pressure activated by low 
plasma NaCl concentrations (30). A regulatory effect of RAAS on 
colonic electrolyte transport has been established, specifically an 
upregulation of ENAC and ATP1A1 by aldosterone (31). This 
regulatory effect appears to be mediated both on the functional and 
transcriptional level (32). Also, an upregulation of NHE3  in the 
proximal colon, but not the ileal or renal epithelium, was demonstrated 
in aldosterone-treated rats (33). These transport mechanisms 
stimulate NaCl and free water absorption, leading to an increase in 
blood pressure. Stimulation of the Na+ absorption by RAAS would 
also explain the predominance of hypokalemia in dogs with CIE (3), 
as K+ losses usually accompany renal and intestinal Na+ absorption 
and is in line with the strong inverse correlation of K+ plasma levels 
with serum AA2 ratios we  found in this study. Human IBD, in 
contrast, is mostly associated with hyponatremia (3), further 
supporting our hypothesis of differential regulation of electrolyte 
transporters in canine CIE and human IBD.

In addition to aldosterone, Ang II has been shown to affect 
intestinal electrolyte absorption (34), such as via activation of ENaC 
by AGTR1 stimulation (34). However, its effects may be dose- and 
receptor-dependent (34, 35): while low to moderate Ang II levels 
stimulate Na+ and thus water absorption, presumably via the 
sympathetic and enteric nervous system, high levels of Ang II inhibit 
absorptive processes, which is proposed to be mediated by increased 
prostaglandin concentrations in the intestinal mucosa (35) and 
indicate an ambivalent effect of RAAS depending on the local mucosal 
microenvironment. As the primary site of intestinal RAAS-mediated 
regulation of electrolyte homeostasis, the colon has an enormous 
absorptive reserve capacity to compensate for fluid losses in the 
proximal gastrointestinal tract. Therefore, it is surprising that no 
changes in the expression of any colonic electrolyte transporters 
investigated – at least on the mRNA level – were seen in the dogs with 
CIE, given the finding of significant upregulation of the traditional 
and alternative RAAS arms in these dogs and their presentation with 
diarrhea of varying severity. We can only speculate as to the possible 
reasons for this finding. The extent of RAAS activation might not 
be  sufficient to induce an upregulation of electrolyte transporter 
transcription in the colon, which would be consistent with the overall 
mild plasma electrolyte alterations reported (3). Furthermore, the 
sampling site of the colonic tissue biopsies might have been too far 
proximal, because the regulatory response was observed to vary 
between the proximal and distal colon in rats (36). In addition, serum 
concentrations of electrolytes and RAAS components might 
be affected by regulatory efforts of other organs (e.g., kidneys) and/or 
dietary Na+ concentrations.

Only very few significant correlations were detected between 
the overexpressed electrolyte transporter genes in the intestinal 
mucosa and the concentrations of RAAS components in serum. 
While this does not exclude a RAAS-mediated upregulation of the 
ileal electrolyte transporters, a direct effect on their transcription 
levels appears less likely. Still, translational or functional effects of 

certain traditional and/or alternative RAAS components could 
be mediated by AGTRs. In contrast, the strong correlation observed 
between mucosal SGLT1 mRNA levels and several serum RAAS 
components supports a regulatory effect of RAAS on intestinal 
SGLT1 expression. A relationship between SGLT1 activity and 
RAAS has been reported previously, but the effects of RAAS appear 
to be  receptor-dependent (37–39). While activation of AGTR1 
inhibits the activity of SGLT1, AGTR2 activation enhances SGLT1 
activity (37). To our knowledge, an effect of RAAS on SGLT1 gene 
expression has not previously been reported. Similar to the 
upregulation of NHE3 and ATP1A1, an increased expression and 
activity of SGLT1 would enhance the absorption of osmotically 
active Na+ and glucose, thus ameliorating diarrhea. Whether this 
concept lends itself to an effective adjunct or even a sole nutritional 
approach requires further investigation.

The varying effects of RAAS on SGLT1 activity reported in the 
literature and the lack of correlations between the mucosal expression 
of most investigated electrolyte transporters and serum RAAS 
components in our study could also point to a local action of 
RAAS. Such a local RAAS activity could be mediated by the locally 
expressed AGTRs and be only partially dependent on or completely 
independent of systemic RAAS control. Local effects of the AGTR1-
agonist losartan have been shown in the canine stomach (40), 
suggesting a functional local RAAS in the canine gastrointestinal tract. 
The downregulation of AGTR1 in the inflamed ileal mucosa in canine 
CIE could be interpreted as a local counterregulatory mechanism to 
negate the increased availability of ligands either as a negative feedback 
loop or an effort to limit the effects of these ligands to specific target 
tissues. Compared to the results of this study on canine CIE, only 
some systemic RAAS components were found to be increased (ACE2, 
Ang 1–7, and Ang II), and aldosterone concentrations decreased in 
humans with IBD compared to healthy controls (6). Increasing 
evidence supports the existence of alternative (local) RAAS activity 
that counteracts the systemic effects of traditional RAAS pathways 
(41, 42). This alternative RAAS consists of small peptides derived from 
Ang I or II, such as Ang (1–9) and Ang (1–7), and additional receptors 
for RAAS components including Mas (4, 42, 43). While systemic 
RAAS effects are predominantly pro-inflammatory, these alternative 
pathways appear to be primarily anti-inflammatory and anti-fibrotic, 
promoting epithelial recovery (44). Whether these opposing effects 
apply to canine CIE and offer therapeutic potential, however, requires 
further investigation.

Similar to the ambivalent effects on local SGLT1 activity, binding 
of Ang II to AGTR1 elicits pro-inflammatory effects, whereas it may 
have anti-inflammatory effects via AGTR2 (45). Hence, differential 
regulation and pleiotropic effects of RAAS on intestinal mucosal 
electrolyte transport can be reasonably assumed.

In conclusion, our results indicate an upregulation of ileal, but not 
colonic, electrolyte transport mechanisms to enhance distal intestinal 
absorption of Na+ and free water in dogs with CIE. Hence, targeting 
colonic electrolyte uptake mechanisms to modulate its absorptive 
reserve capacity might pose a novel therapeutic avenue for CIE 
patients. We could also demonstrate an upregulation of traditional and 
alternative RAAS components in serum specimens from diarrheic 
dogs with CIE. Although a relationship between systemic RAAS and 
intestinal electrolyte transporter levels would appear plausible, a direct 
association and regulatory effects remain to be  proven in future 
studies. Targeting the traditional and alternative RAAS pathways may 
be a novel therapeutic avenue to ameliorate diarrhea in dogs with CIE.
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Background: Pulmonary hypertension (PH) is a common complication of 
cardiopulmonary disease. In dogs, PH commonly occurs secondary to myxomatous 
mitral valve disease (MMVD). Red blood cell and platelet indices including mean 
corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular 
hemoglobin concentration (MCHC), red cell distribution width (RDW), mean platelet 
volume (MPV) and platelet distribution width (PDW), have previously been found to be 
indicators for predicting and prognosing PH in humans. Therefore, this study aimed 
to investigate whether these indices are associated with MMVD and/or PH in dogs.

Methods: Two hundred and forty-six dogs were retrospectively recruited for the 
study and classified into 4 groups: normal (n  =  49), MMVD (n  =102), PH (n  =17), 
MMVD+PH (n  =78). A sub-analysis was performed in dogs with MMVD without 
evidence of PH according to stage B1 (n  =20), stage B2 (n  =15), stage C (n  =67). 
The data are expressed as median (interquartile range).

Results and discussion: No significant differences (p    <  0.05) were found in 
MCV, RDW and MPV among all groups (normal, MMVD, PH and MMVD+PH). 
However, decreases in MCH and MCHC were found in MMVD [22.40 (20.90-
23.50) pg and 35.25 (33.08-36.90) g/dL], MMVD+PH [22.25 (20.85-23.98) 
pg and 35.65 (33.30-37.33) g/dL] and PH groups [21.20 (20.60-22.20) pg 
and 33.80 (32.75-35.70) g/dL] compared to the normal dogs [24.29 (23.55-
24.90) pg and 38.20 (37.50-39.05) g/dL] (p    < 0.001). Decreases in PDW were 
found in dogs in the MMVD+PH [15.10 (14.98-15.30) %] groups compared 
to dogs in the normal group [15.30 (15.10-15.50) %] (p    = 0.004). Sub-analysis 
of MMVD dogs without PH showed a decrease in MCH in dogs with stage 
B2 MMVD [21.00 (20.50-22.90) pg] and stage C MMVD [22.40 (20.90-
23.20) pg] compared to normal dogs [24.29 (23.55-24.90) pg] (p    < 0.001). 
MCHC of dogs with stage B1 [36.55 (33.53-37.78) g/dL] (p     = 0.004), B2 
[32.90 (32.00-35.00) g/dL] (p    < 0.001) and C MMVD [35.30 (33.30-36.80)  
g/dL] (p    < 0.001) were lower than those of normal dogs [38.20 (37.50-39.05) 
g/dL]. PDW in the stage C MMVD group [15.10 (15.00-15.30) %] was reduced 
compared to the normal group [15.30 (15.10-15.50) %] (p      = 0.042) and the 
stage B1 MMVD group [15.35 (15.23-15.68) %] (p   = 0.002). MCH, MCHC and 
PDW were negatively correlated with the left atrial and left ventricular size.

Conclusion: Decreases in MCH and MCHC are related to MMVD, precapillary PH 
and postcapillary PH while PDW are associated with MMVD severity but not with 
the presence of PH.
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Introduction

The consensus statement guideline of the American College of 
Veterinary Internal Medicine categorizes pulmonary hypertension 
(PH) into six groups: pulmonary arterial hypertension, PH due to left 
heart disease, PH secondary to respiratory disease/hypoxia, 
pulmonary emboli/thrombi/thromboembolism, parasitic disease, and 
PH with multifactorial or unclear mechanism (1). In older small breed 
dogs, PH commonly occurs secondary to myxomatous mitral valve 
disease (MMVD) (2). However, PH is also commonly found as a 
complication of respiratory and heartworm disease in dogs (3–5). 
Several studies in human patients have focused on the relationship 
between red blood cells (RBC) and platelet indices and disease 
progression and prognosis (6–14).

Red cell distribution width (RDW) measures size-heterogeneity 
of the circulating red blood cells (15). Red cell distribution width can 
be  routinely reported as part of the complete blood count. This 
parameter is altered in various diseases such as anemia (16), cancer 
(17), and inflammatory diseases (18). Red cell distribution width has 
also been mentioned as a predictive and prognostic biomarker for 
heart failure, myocardial infarction, and PH in human patients 
because it positively correlates with the adverse outcomes of these 
cardiovascular diseases (6, 7, 9, 19, 20). The studies in human patients 
with heart failure showed that RDW had a positive correlation with 
N-terminal pro B-type natriuretic peptide, a powerful prognostic 
biomarker for heart failure (6). Moreover, increased RDW was related 
to the progression of complications and a decrease in survival time (7, 
19). The study in human patients with PH revealed that an elevated 
RDW decreased the survival time (9). Consequently, RDW was a 
predictive or prognostic marker for morbidity and mortality of heart 
failure. An association between elevated RDW and adverse outcome 
has also been noted in dogs with MMVD (21). Therefore, RDW may 
be a candidate for detecting the progression of cardiovascular disease. 
RBC indices can be used to differentiate the type of anemia (22). Mean 
corpuscular volume (MCV) quantifies the average volume of RBC, 
while mean corpuscular hemoglobin (MCH) indicates the calculated 
hemoglobin amount per a single RBC, and mean corpuscular 
hemoglobin concentration (MCHC) reflects the calculated 
hemoglobin concentration in RBC (22, 23). Changes in RBC count, 
hemoglobin, hematocrit, MCH, MCHC, and RDW were reported 
previously in human with PH (24). Furthermore, negative correlation 
between RDW and MCV was found in dogs with MMVD (21).

Platelets play an important role in the inflammatory process because 
activated platelets secrete various inflammatory mediators (25, 26). The 
determination of platelet indices such as mean platelet volume (MPV) 
and platelet distribution width (PDW) can be routinely performed using 
an automated hematologic analyzer (25). The MPV reflects platelet 
production, activation, and function. PDW provides information on the 
variability of platelet size, which may also reflect platelet activation. 
Increased MPV and PDW have been found in several diseases associated 
with inflammatory conditions, including many cardiac diseases (27). 
Increases in MPV and PDW have been associated with increased 
severity of heart disease, heart failure, and adverse progressive cardiac 
outcome in human patients (10, 12, 28, 29). MPV was increased in 

human patients with mitral regurgitation (MR) from various causes and 
correlated with the severity of MR (13). An increased PDW was found 
in patients with heart failure (12). Furthermore, increased MPV and 
PDW were observed in patients with left-sided heart disease (28). MPV 
and PDW were prognostic biomarkers for cardiac diseases and heart 
failure. In addition, increases in these platelet indices have been noted 
in patients with PH (8, 11, 14). An increased MPV was revealed in 
various causes of PH (8). Elevated MPV and PDW were found in human 
patients with precapillary PH, and MPV may be a prognostic marker for 
PH due to positive association with the severity of PH (11, 14).

A study of RDW in dogs with PH has been published (30, 31). 
However, there is no study investigating both red blood cell and platelet 
indices that primarily focuses in MMVD dogs with PH. Therefore, this 
study aimed to investigate the changes in MCV, MCH, MCHC, RDW, 
MPV and PDW in normal dogs and dogs with PH or MMVD, or both.

Materials and methods

Animals

Data of dogs were retrieved retrospectively from the electronic 
medical records of the Small Animal Teaching Hospital, Faculty of 
Veterinary Science, Chulalongkorn University, Thailand. Signalment, 
history, physical, radiographic and echocardiographic findings, and 
hematologic and blood chemical profiles were noted. Since MMVD 
commonly occurs in senior small breed dogs, the inclusion criteria 
included dogs older than 6 years and weighing up to 15 kg. To assess 
the changes in RBC and platelet indices in dogs with PH, the dogs were 
divided into four groups of healthy dogs (normal group), dogs with 
MMVD (MMVD group), dogs with MMVD and PH (MMVD+PH 
group), and dogs with PH caused by other causes (PH group). The 
normal group consisted of healthy dogs that attended the Small Animal 
Teaching Hospital for a health checkup, and no abnormalities and 
diseases were found on physical examination, radiography, and 
echocardiography. Based on the criteria for PH secondary to left-sided 
heart disease (1), only dogs with left heart enlargement or MMVD 
stage B2 or greater were included in the MMVD+PH group. To clarify 
whether the severity of MMVD affected the change in RBC and platelet 
indices, a sub-analysis was performed in MMVD dogs without 
evidence of PH according to stage B1, stage B2 and stage C.

Diagnosis and staging of MMVD and PH

The diagnosis and staging MMVD and PH were performed 
following the American College of Veterinary Internal Medicine 
guidelines (1, 32). Briefly, dogs were diagnosed with MMVD based on 
clinical presentation, radiography, and echocardiography. Dogs with 
stage B1 MMVD had mitral regurgitation without evidence of 
congestive heart failure (CHF) and structural changes in the heart. Dogs 
with stage B2 MMVD had left atrium to aorta ratio (LA/Ao) in the right 
parasternal short-axis view in early diastole >1.6, normalized left 
ventricular internal dimension at end-diastole (LVIDd) >1.7, and mitral 
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regurgitation without evidence of heart failure. Dogs with stage C 
MMVD had mitral regurgitation, left atrial and ventricular enlargement, 
and previous history of pulmonary edema. Dogs with stage C MMVD 
responded to standard treatment with furosemide, spironolactone, 
angiotensin- converting enzyme inhibitor and pimobendan. Dogs with 
stage D MMVD exhibited clinical signs that were unresponsive to 
standard treatment of stage C MMVD and required additional 
medications such as antiarrhythmic drug and other diuretics (32). The 
underlying causes of PH were evaluated and classified. The peak 
tricuspid regurgitation (TR) velocity and the number of different 
anatomic sites with echocardiographic signs of PH were used to identify 
PH which included from low (≤3.0 m/s peak TR velocity, and no or 1 
different anatomic site with echocardiographic signs of PH) to high 
(≤3.0 m/s peak TR velocity with 3 different anatomic sites of 
echocardiographic signs, 3.0–3.4 m/s peak TR velocity with ≥2 different 
anatomic sites of echocardiographic signs, or > 3.4 m/s peak TR velocity 
with ≥1 different anatomic site of echocardiographic signs of PH) 
probability of PH (1). The anatomic sites of echocardiographic signs of 
PH were investigated in the ventricles, pulmonary artery, and right 
atrium and caudal vena cava (1). Dogs with pregnancy and/or other 
systemic and inflammatory diseases, diagnosed through history taking, 
physical examination, hematology, and radiography were excluded.

Red blood cell indices, platelet indices, and 
echocardiographic data collection

Hematological and blood chemistry profiles, and 
echocardiographic data were collected. The complete blood count and 
blood chemistry were performed by automated analyzers (BC-5000 
Vet and BS-800, Mindray, China). The recorded complete blood count 
included red blood cell (RBC) count, hematocrit, MCV, MCH, 
MCHC, RDW, platelet count, MPV, PDW, and white blood cell (WBC) 
count. Thin blood smears were performed for screening blood 
morphology. Echocardiographic examination was conducted by an 
investigator (SS) utilizing a 4–12 MHz phased array transducer and an 
ultrasound machine (M9, Mindray, China). Echocardiographic data 
included left atrial size (LA) size, aorta size (Ao), the ratio of the left 
atrial dimension to the aortic annulus dimension, interventricular 
septum thickness at end-diastole (IVSd), LVIDd, left ventricular 
posterior wall thickness at end-diastole (LVPWd), interventricular 
septum thickness at end-systole (IVSs), left ventricular internal 
dimension at end-systole (LVIDs), left ventricular posterior wall 
thickness at end-systole (LVPWs), fractional shortening (FS), peak TR 
velocity, and calculated pulmonary arterial pressure (PAP).

Statistical analysis

The computer-based program, SPSS version 22 (IBM, 
United States) was used for statistical analysis. Data distribution was 
analyzed with the Shapiro–Wilk test. Differences in hematologic and 
echocardiographic data between groups were assessed with the 
Kruskal-Wallis and Dunn post-hoc tests. The Mann–Whitney U test 
was used to analyze the differences in peak TR velocity between the 
MMVD+PH and PH groups. The receiver operating characteristic 
(ROC) curves with area under curve (AUC) were performed to 
determine whether the significant RBC and platelet indices could 
predictor MMVD and PH. An AUC value indicates the discriminatory 

power of these indices, where an AUC ≤ 0.75 implies no clinical utility, 
0.75 < AUC < 0.97 indicates a moderately discriminative value, and an 
AUC of 0.97 represents an extremely clinical value (33). The optimal 
cut-point values for these significant RBC and platelet indices were 
calculated using Youden’s index and were used to estimate the 
sensitivity and specificity (34). Spearman’s rank correlation and 
multivariable regression analysis were used to examine the relationship 
between the quantitative and qualitative variables, respectively. 
Evidence of a difference for all tests was at p < 0.05. All data were 
expressed in median (interquartile range).

Results

Animals

The normal group (n = 49) consisted of 21 males and 28 females, 
including 21 Shih Tzus, 12 Chihuahuas, 6 Yorkshire Terriers, 3 
Pomeranians, 1 Dachshund, and 6 mixed breeds. The MMVD group 
(n = 102) was composed of 20 dogs with stage B1, 15 dogs with stage B2 
and 67 dogs with stage C MMVD. This group comprised 62 males and 40 
females, with 31 Chihuahuas, 19 Pomeranians, 15 Poodles, 8 Shih Tzus, 
4 Yorkshire Terriers, 2 Maltese, 2 Miniature Pinschers, 1 Beagle, 1 Chinese 
Crested Hairless Dog, 1 Finnish Splitz, 1 Miniature Schnauzer, 1 
Dachshund and 16 mixed breeds. The MMVD+PH group (n = 78) 
included 7 dogs with stage B2, 68 dogs with stage C, and 3 dogs with stage 
D MMVD and PH. This group had 7 dogs with low probability of PH, 51 
dogs with intermediate probability of PH, and 20 dogs with high 
probability of PH. There were 41 males and 37 females in the MMVD+PH 
group including 26 Chihuahuas, 14 Pomeranians, 10 Poodles, 9 Shih 
Tzus, 2 Miniature Pinchers, 1 Jack Russell Terrier, 1 Maltese, 1 Shetland 
Sheepdog, and 14 mixed breeds. The PH group (n = 17) included 14 dogs 
with PH due to respiratory problems and 3 dogs with PH due to 
heartworm disease. This group had 2 dogs with low probability of PH, 13 
dogs with intermediate probability of PH, and 2 dogs with high probability 
of PH. There were 10 males and 7 females with 7 Pomeranians, 5 
Chihuahuas, 1 Miniature Pincher, 1 Shih Tzu, 1 Jack Russell Terrier, 1 
French Bulldog and 1 mixed breed dog. The age of the normal dogs was 
lower than that of the other groups (p < 0.05). No significant difference in 
age was found between the disease groups (Tables 1, 2).

Echocardiographic results showed the greater LA/Ao and LVIDd 
in the MMVD and MMVD+PH groups compared with the normal 
and PH groups (p < 0.001). The peak TR velocity and calculated PAP 
of MMVD+PH was greater than those of PH group (p = 0.017) 
(Table 1). In sub-analysis of MMVD group, the greater LA/Ao, LVIDd 
and %FS were found in dogs with stage B2 and C MMVD compared 
with the normal dogs (p < 0.001). Moreover, LA/Ao and LVIDd, and 
%FS of dogs with stage C MMVD were greater than those of dogs with 
stage B1 MMVD (p < 0.001) (Table 3).

Analysis of red blood cell and platelet 
indices

No difference in MCV and RDW was observed among groups. 
MCH and MCHC of dogs in MMVD, MMVD+PH, and PH groups 
were lower than those of normal dogs (p < 0.001) (Table  1 and 
Figure 1). Comparison of neither MCH nor MCHC between the 
disease groups revealed any significant difference. Analysis of 
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platelet indices, MPV and PDW, revealed lower PDW in MMVD+PH 
groups compared to the normal group (p = 0.004) (Table  1 and 
Figure 2). There was no significant difference in PDW, neither in 
comparison between MMVD+PH and MMVD groups nor in 
comparison between MMVD+PH and PH groups. The results of 
hematologic profiles are shown in Table 1. To clarify whether the 
changes in MCH, MCHC, and PDW were associated with MMVD, 
a comparison of MCH, MCHC, and PDW between the different 
stages of MMVD was performed in dogs that were included in the 

MMVD group from the first analysis. The dogs in stage B2 had lower 
MCH compared to normal dogs (p < 0.001) and dogs in stage B1 
MMVD (p = 0.006). The dogs in stage C MMVD had lower MCH 
compared to normal dogs (p < 0.001) and dogs in stage B1 MMVD 
(p = 0.009). MCHC of normal dogs was greater than dogs with stage 
B1 (p = 0.004), B2 (p < 0.001), and C (p < 0.001) (Table  3 and 
Figure 3). The dogs with stage C MMVD had lower PDW compared 
to normal dogs (p = 0.042) and dogs with stage B1 MMVD (p = 0.002) 
(Table 3 and Figure 4). Analysis of WBC revealed no significant 

TABLE 1 Signalment, hematological profiles, and echocardiographic data of dogs in the present study.

Normal (n  =  49) MMVD (n  =  102) MMVD + PH (n  =  78) PH (n  =  17) p-value

Age (years) 8.00 (7.00–10.00) 12.00 (10.00–13.00)a 11.50 (10.00–13.00)a 11.00 (9.00–13.50)a <0.001

Gender (M/F) 21/28 62/40 41/37 10/7

Weight (kg) 5.50 (2.92–6.80) 4.32 (3.40–5.50) 4.62 (3.34–6.06) 4.00 (2.50–5.95) 0.215

RBC (×106 cells/μL) 6.57 (6.16–7.44) 7.15 (6.39–7.62) 6.77 (6.01–7.54) 7.12 (6.11–7.94) 0.120

Hematocrit (%) 42.80 (38.80–47.00) 44.85 (40.00–48.50) 42.60 (38.55–46.50) 43.20 (39.10–48.45) 0.124

MCV (fL) 63.80 (61.80–64.95) 63.95 (60.90–65.78) 63.80 (60.58–66.58) 62.80 (60.30–66.25) 0.901

MCH (pg) 24.29 (23.55–24.90) 22.40 (20.90–23.50)a 22.25 (20.85–23.98)a 21.20 (20.60–22.20)a <0.001

MCHC (g/dL) 38.20 (37.50–39.05) 35.25 (33.08–36.90)a 35.65 (33.30–37.33)a 33.80 (32.75–35.70)a <0.001

RDW (%) 14.00 (13.05–14.55) 13.85 (13.10–14.70) 14.10 (13.20–15.03) 14.10 (13.45–14.45) 0.480

Platelet count (×103 cells/μL) 283.00 (228.50–341.00) 325.50 (257.25–414.00) 395.00 (294.50–468.75)a 389.00 (283.00–454.00) 0.001

MPV (fL) 10.10 (9.05–11.35) 10.70 (9.70–11.40) 10.35 (9.70–11.33) 11.00 (9.15–12.50) 0.233

PDW (%) 15.30 (15.10–15.50) 15.20 (15.00–15.40) 15.10 (14.98–15.30)a 15.20 (15.00–15.40) 0.008

WBC (×103 cells/μL) 8.37 (6.98–10.82) 8.63 (7.42–10.96) 9.59 (7.79–11.65) 8.79 (7.15–10.80) 0.230

Neutrophil (×103 cells/μL) 5.87 (4.05–7.31) 6.09 (4.95–7.69) 6.98 (5.29–8.58) 6.51 (5.56–8.16) 0.064

Eosinophil (×103 cells/μL) 0.31 (0.20–0.30) 0.31 (0.21–0.48) 0.37 (0.22–0.54) 0.28 (0.22–0.43) 0.848

Basophil (×103 cells/μL) 0.02 (0.01–0.03) 0.01 (0.00–0.02)a 0.01 (0.00–0.02)a 0.01 (0.00–0.02) 0.006

Lymphocyte (×103 cells/μL) 1.53 (1.18–1.94) 1.33 (1.06–1.77) 1.44 (1.11–1.87) 1.32 (1.00–1.79) 0.393

Monocyte (×103 cells/μL) 0.57 (0.44–0.83) 0.50 (0.25–0.76) 0.49 (0.21–0.89) 0.44 (0.17–0.88) 0.071

LA (cm/kg) 0.92 (0.81–1.04) 1.96 (1.62–2.42)a,c 1.90 (1.53–2.43)a,c 1.43 (1.33–1.75)a <0.001

Ao (cm/kg) 0.76 (0.68–0.86) 1.15 (0.91–1.32)a 0.97 (0.79–1.15)a,b 1.04 (0.96–1.18)a <0.001

LA/Ao 1.20 (1.11–1.35) 1.75 (1.47–2.15)a,c 2.10 (1.77–2.40)a,b,c 1.43 (1.22–1.67) <0.001

IVSd (cm/kg) 0.47 (0.40–0.52) 0.43 (0.38–0.49) 0.42 (0.36–0.49) 0.47 (0.41–0.59) 0.053

LVIDd (cm/kg) 1.22 (1.17–1.37) 1.77 (1.50–1.94)a,c 1.83 (1.65–2.00)a,c 1.30 (1.19–1.51) <0.001

LVPWd (cm/kg) 0.38 (0.33–0.43) 0.40 (0.36–0.46) 0.41 (0.35–0.46) 0.44 (0.36–0.49) 0.181

IVSs (cm/kg) 0.61 (0.52–0.67) 0.64 (0.56–0.72) 0.68 (0.59–0.77)a 0.60 (0.56–0.74) 0.011

LVIDs (cm/kg) 0.74 (0.62–0.80) 0.88 (0.74–1.01)a,c 0.86 (0.69–1.04)a 0.76 (0.61–0.85) <0.001

LVPWs (cm/kg) 0.64 (0.56–0.71) 0.67 (0.60–0.75) 0.69 (0.59–0.79) 0.59 (0.53–0.69) 0.018*

%FS 39.86 (34.75–45.68) 47.49 (41.86–53.12) 51.13 (44.50–55.47)a 47.50 (38.67–50.47)a <0.001

TR (m/s) – – 3.70 (3.29–4.32)c 3.52 (2.86–3.76) 0.017

Calculated PAP (mmHg) – – 54.97 (43.24–74.62)c 49.51 (32.82–56.55) 0.017

Values are median (interquartile). 
Ao, aorta; FS, fractional shortening; IVSd, interventricular septum thickness at end-diastole; IVSs, interventricular septum thickness at end-systole; LA, left atrium; LA/Ao, the ratio of the left 
atrial dimension to the aortic annulus dimension; LVIDd, left ventricular internal dimension at end-diastole; LVIDs, left ventricular internal dimension at end-systole; LVPWd, left ventricular 
posterior wall thickness at end-diastole; LVPWs, left ventricular posterior wall thickness at end-systole; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin 
concentration; MCV, mean corpuscular volume; MPV, mean platelet volume; PAP, pulmonary arterial pressure; PDW, platelet distribution width; RBC, red blood cell; RDW, red cell 
distribution width; TR, tricuspid regurgitation; WBC, white blood cell. 
The p values represent the significant difference among 4 groups by the Kruskal-Wallis test. 
The peak TR velocity was analyzed by Mann–Whitney U test. 
*No significant difference was found after analysis with Dunn’s test. 
aIndicates significant difference from the normal group. 
bIndicates significant difference from the MMVD group. 
cIndicates significant difference from the PH group.
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difference among the groups, except for lower monocyte count in 
dogs with stage B2 MMVD compared to the normal group 
(p = 0.010) (Table 3). The results of hematological profiles of all dogs 
are shown in Tables 1, 3.

The sensitivity and specificity for discriminating between normal 
dogs and diseased dogs including dogs with MMVD (both with and 
without PH), as well as dogs with PH from other causes, were 91.80 
and 67.50%, respectively, for MCH, and 87.80 and 77.20%, respectively 
for MCHC. The AUC values of MCH and MCHC were 0.83 and 0.87, 
indicating a discriminative value in distinguishing between normal 
dogs and those with MMVD. The optimal cut-off values 23.05 pg. for 
MCH, and 37.05 g/dL for MCHC (Figure 5). However, PDW values 
were unable to differentiate between normal dogs and diseased dogs.

Greater blood urea nitrogen (BUN) was found in dogs with 
MMVD (p < 0.001) and MMVD+PH (p < 0.001) compared to the 
normal dogs. Moreover, sub-analysis in MMVD dogs showed that the 
stage C MMVD dogs had greater BUN compared to normal dogs 
(p < 0.001) and stage B1 MMVD dogs (p = 0.011). Creatinine levels of 
MMVD+PH group were higher than those in PH group (p = 0.010). 
Sub-analysis of MMVD dogs showed that creatinine levels in stage C 
MMVD dogs were also higher than those in stage B1 MMVD dogs 
(p = 0.010). Comparison of the albumin level to normal dogs revealed 

a decrease in albumin levels in all disease groups (p < 0.001). The 
blood chemical profiles of all dogs are presented in Tables 2, 4.

Correlation analysis revealed no relationship between RBC and 
platelet indices, and age, weight, and breed of the dogs in the present 
study. MCH had a weak negative correlation with RBC count 
(r = −0.38, p < 0.001), a moderate positive correlation with MCV 
(r = 0.48, p < 0.001), and a strong positive correlation with MCHC 
(r = 0.72, p < 0.001). Weak negative correlations were found between 
MCH and LA/Ao (r = −0.26, p < 0.001) and LVIDd (r = −0.29, 
p < 0.001), as well as weak correlations between MCHC and LA/Ao 
(r = −0.24, p < 0.001) and LVIDd (r = −0.27, p < 0.001). RBC count had 
a weak negative correlation with peak TR velocity and calculated PAP 
(r = −0.279, p = 0.006) (Figure 6). PDW of dogs in the present study had 
a weak positive correlation with MPV (r = 0.23, p < 0.001) but had a 
weak negative correlation with platelet count (r = −0.32, p < 0.001), LA/
Ao (r = −0.30, p < 0.001), and LVIDd (r = −0.31, p < 0.001) (Figure 7).

Discussion

Pulmonary hypertension due to respiratory problems and 
heartworm disease is classified as precapillary PH, while PH secondary 

TABLE 2 Blood chemistry profiles of dogs in the present study.

Normal (n  =  49) MMVD (n  =  102) MMVD + PH (n  =  78) PH (n  =  17) P-value

ALT (U/L) 45.00 (34.00–56.50) 54.00 (37.00–80.75) 56.50 (36.00–90.00) 53.00 (38.00–69.00) 0.050

ALP (U/L) 50.00 (24.00–87.00) 56.50 (38.00–100.00) 67.00 (45.00–119.75) 69.00 (37.50–143.00) 0.047*

BUN (mg/dL) 17.60 (13.95–23.25) 25.30 (19.18–32.90) a 31.00 (22.93–39.68)a,c 19.50 (10.60–31.00) <0.001

Creatinine (mg/dL) 0.80 (0.70–0.90) 0.80 (0.60–1.00) 0.85 (0.70–1.10)c 0.60 (0.50–0.90) 0.017

Total protein (g/dL) 6.40 (6.00–6.90) 6.70 (6.40–7.10) 6.70 (6.03–7.00) 6.90 (6.25–7.30) 0.061

Albumin (g/dL) 3.20 (3.00–3.50) 2.80 (2.60–3.20)a,c 2.80 (2.50–3.00)a 2.60 (2.42–2.67) a <0.001

Values are median (interquartile). 
ALP, alkaline phosphatase; ALT, alanine aminotransferase; BUN, blood urea nitrogen. 
*No significant difference was found after analysis with Dunn’s test. 
aIndicates significant difference from the normal group. 
bIndicates significant difference from the MMVD group. 
cIndicates significant difference from the PH group.

FIGURE 1

Dot plot of (A) mean corpuscular hemoglobin (MCH) and (B) mean corpuscular hemoglobin concentration (MCHC) of normal dogs (n  =  49), dogs with 
MMVD (n  =  102), MMVD dogs with PH (n  =  78), and PH dogs without MMVD (n  =  17). The MCH and MCHC of all disease groups were less than normal 
dogs (p  <  0.001). The single asterisk presents a significant difference from the normal group.
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to MMVD is postcapillary PH (1). A previous study found increased 
RDW in dogs with precapillary PH compared to normal dogs but not 
in dogs with post-capillary PH (30). On the other hand, another study 
revealed increased RDW in both dogs with precapillary and 
postcapillary PH compared to normal dogs (31). However, an increase 
in RDW was not associated with the severity of PH (31, 35). In this 
study, we found no difference in RDW among normal and dogs with 
precapillary and postcapillary PH. The reason for RDW alteration 
remains unclear in both human patients and dogs with PH. Besides, 
RDW can be  altered by other diseases and conditions including 
immune-mediated diseases, hormonal diseases, lung worms, 
pulmonary fibrosis, thromboembolism, systemic-to-pulmonary 
shunts, aging, and unknown causes (30, 31, 36). Therefore, concurrent 
diseases may also affect RDW. However, we made efforts to exclude 

dogs with other diseases from the study. Although an increase in 
RDW values was found in dogs with several diseases and conditions, 
the values were still within the normal reference interval.

MCV reflects the RBC size, while MCH and MCHC define the 
weight and concentration of hemoglobin per RBC, respectively, (23). 
Decreases in MCH and MCHC were found in human patients with 
pulmonary arterial hypertension compared to the healthy controls, 
and these changes may be  affected by decreases in RBC count, 
hemoglobin and hematocrit, and an increase in RDW (24). Moreover, 
decreased MCHC or hypochromasia in anemic dogs may indicate 
iron deficiency (22). In the present study, MCH and MCHC were 
reduced in MMVD, MMVD+PH, and PH groups compared to the 
normal dogs. Even though the AUC values of the ROC curves of these 
two indices suggest moderate discriminatory power, caution might 

TABLE 3 Signalment, hematological profiles and echocardiographic data of dogs with myxomatous mitral valve disease.

Normal (n  =  49) MMVD B1 (n  =  20) MMVD B2 (n  =  15) MMVD C (n  =  67) P-value

Age (years) 8.00 (7.00–10.00) 11.00 (8.25–13.00) a 11.00 (10.00–13.00)a 12.00 (10.00–13.00)a <0.001

Gender (M/F) 21/28 9/11 13/2 40/27

Weight (kg) 5.50 (2.92–6.80) 4.09 (2.50–5.95) 3.80 (3.25–4.90) 4.60 (3.50–5.80) 0.240

RBC (×106 cells/μL) 6.57 (6.16–7.44) 6.95 (6.35–7.55) 7.15 (6.62–7.50) 7.19 (6.36–7.66) 0.164

Hematocrit (%) 42.80 (38.80–47.00) 44.75 (39.60–49.60) 45.00 (43.20–47.60) 44.90 (39.70–48.20) 0.223

MCV (fL) 63.80 (61.80–64.95) 64.90 (62.33–66.70) 63.90 (60.30–67.40) 63.60 (60.90–65.50) 0.327

MCH (pg) 24.29 (23.55–24.90) 23.75 (22.00–24.63) 21.00 (20.50–22.90)a,b 22.40 (20.90–23.20)a,b <0.001

MCHC (g/dL) 38.20 (37.50–39.05) 36.55 (33.53–37.78) a 32.90 (32.00–35.00)a 35.30 (33.30–36.80)a <0.001

RDW (%) 14.00 (13.05–14.55) 13.70 (13.08–14.25) 13.30 (12.80–14.50) 14.10 (13.20–14.90) 0.383

Platelet count (×103 cells/μL) 283.00 (228.50–341.00) 315.50 (229.00–386.75) 346.00 (290.00–413.00) 328.00 (249.00–432.00) 0.167

MPV (fL) 10.10 (9.05–11.35) 11.05 (10.25–11.88) 10.90 (10.20–11.90) 10.50 (9.50–11.30) 0.098

PDW (%) 15.30 (15.10–15.50) 15.35 (15.23–15.68) 15.10 (14.90–15.40) 15.10 (15.00–15.30) a,b 0.001

WBC (×103 cells/μL) 8.37 (6.98–10.82) 8.33 (7.21–10.80) 8.41 (7.40–9.37) 8.74 (7.52–11.30) 0.651

Neutrophil (×103 cells/μL) 5.87 (4.05–7.31) 6.14 (4.14–8.02) 6.08 (5.06–7.71) 6.21 (4.97–7.66) 0.595

Eosinophil (×103 cells/μL) 0.31 (0.20–0.30) 0.29 (0.22–0.48) 0.26 (0.21–0.34) 0.34 (0.22–0.56) 0.439

Basophil (×103 cells/μL) 0.02 (0.01–0.03) 0.01 (0.00–0.03) 0.00 (0.00–0.01) a 0.01 (0.00–0.02) a 0.005

Lymphocyte (×103 cells/μL) 1.53 (1.18–1.94) 1.43 (1.06–1.86) 1.47 (1.21–2.28) 1.28 (1.03–1.70) 0.196

Monocyte (×103 cells/μL) 0.57 (0.44–0.83) 0.62 (0.35–0.90) 0.32 (0.17–0.56) a 0.53 (0.29–0.75) 0.015

LA (cm/kg) 0.92 (0.81–1.04) 1.30 (0.98–1.66) 1.71 (1.62–2.25) a 2.17 (1.85–2.59) a,b <0.001

Ao (cm/kg) 0.76 (0.68–0.86) 0.88 (0.74–1.38) 1.18 (0.89–1.31) a 1.16 (0.97–1.31) a <0.001

LA/Ao 1.20 (1.11–1.35) 1.37 (1.13–1.49) 1.70 (1.46–2.03) a 1.88 (1.59–2.37) a,b <0.001

IVSd (cm/kg) 0.47 (0.40–0.52) 0.41 (0.38–0.50) 0.44 (0.42–0.48) 0.43 (0.38–0.49) 0.152

LVIDd (cm/kg) 1.22 (1.17–1.37) 1.30 (1.25–1.45) 1.80 (1.55–1.94) a,b 1.78 (1.60–1.99) a,b <0.001

LVPWd (cm/kg) 0.38 (0.33–0.43) 0.40 (0.36–0.45) 0.45 (0.35–0.50) 0.39 (0.36–0.45) 0.235

IVSs (cm/kg) 0.61 (0.52–0.67) 0.60 (0.51–0.67) 0.70 (0.59–0.76) 0.64 (0.55–0.73) 0.027*

LVIDs (cm/kg) 0.74 (0.62–0.80) 0.79 (0.62–0.90) 0.91 (0.67–0.98) 0.90 (0.76–1.06) a <0.001

LVPWs (cm/kg) 0.64 (0.56–0.71) 0.62 (0.54–0.69) 0.66 (0.61–0.76) 0.69 (0.61–0.76) 0.025*

%FS 39.86 (34.75–45.68) 39.80 (31.97–48.43) 49.17 (45.47–54.48)a 48.85 (43.48–53.51)a,b <0.001

Ao, aorta; FS, fractional shortening; IVSd, interventricular septal thickness at end diastole; IVSs, interventricular septal thickness at end systole; LA, left atrium; LA/Ao, the ratio of the left 
atrial dimension to the aortic annulus dimension; LVIDd, left ventricular internal diameter at end diastole; LVIDs, left ventricular internal diameter at end systole; LVPWd, left ventricular 
posterior wall thickness at end diastole; LVPWs, left ventricular posterior wall thickness at end systole; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin 
concentration; MCV, mean corpuscular volume; MPV, mean platelet volume; PDW, platelet distribution width; RBC, red blood cell; RDW, red cell distribution width; WBC, white blood cell. 
The p-values represent the significant difference among four groups by the Kruskal-Wallis test. 
*No significant difference was found after analysis with Dunn’s test. 
aIndicates significant difference from the normal group. 
bIndicates significant difference from the MMVD B1 group.
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be warranted when considering their use as markers for distinguishing 
between normal dogs, dogs with MMVD (with and without PH), and 
dogs with PH from other causes. This is due to the fact that the values 
of MCH and MCHC remained within the normal limits for all groups 
of dogs, whether they were normal or diseased. Furthermore, MCH 
was found to be correlated to RBC count and MCV. However, no 
differences in RBC count, MCV and RDW were observed among the 
groups. This evidence indicates that MMVD and PH may alter the 
concentration of hemoglobin in dogs, but these conditions may not 
affect the size and number of RBCs. A study in humans demonstrated 
that anemia was commonly observed in patients with advanced stages 
of PH (37). In current study, weak negative correlations were observed 
between RBC count and both peak TR velocity and estimated 
PAP. Furthermore, the RBC count for all groups in the present study 
fell within the normal reference range, and there were no differences 

in RBC count among the groups. Collectively, it can be inferred that 
the severity of PH, as assessed by TR velocity and estimated PAP, may 
have a weak relationship with RBC numbers, which may not hold 
clinical significance.

Increased MPV has been detected in human patients with 
mitral stenosis (38), mitral regurgitation (13), ischemic heart 
disease (29), and PH (8, 11, 14). On the other hand, decreased MPV 
was found in children with congenital heart disease and PH 
compared to those without PH (39). In this study, no change in 
MPV was detected in dogs with MMVD without PH, MMVD with 
PH (post-capillary PH) and PH due to other causes (pre-capillary 
PH). Due to the conflicting findings in humans and dogs, the 
usefulness of MPV as an indicator for monitoring MMVD and PH 
in dogs is uncertain.

In the present study, a reduction in PDW was observed in the 
MMVD+PH groups compared with the normal group. However, there 
was no difference in PDW between MMVD dogs with and without 
PH. To clarify whether decreased PDW was related to MMVD, 
we assessed PDW according to the severity of MMVD. A decrease in 
PDW was found in dogs with stage C MMVD, along with a negative 
correlation between PDW and left atrial and ventricular size without 
correlation with peak TR velocity. Therefore, decreased PDW may 
be related to the severity of MMVD, but not the occurrence of PH 
because the change in PDW was not found in dogs with PH secondary 
to MMVD and other causes. Previous studies showed that PDW was 
increased in human patients with PH, and positively correlated with 
left ventricular hypertrophy and dysfunction (14, 28). In another 
previous study, children with PH due to congenital heart disease were 
found to have lower PDW than children without PH (39). In general, 
PDW reflects variation in platelet sizes and platelet activation (40). 
Therefore, a decrease in PDW may indicate that activated platelets are 
being consumed or destroyed in blood vessels (39). Based on the result 
of the present study, it is speculated that the platelet consumption and/
or destruction was increased in dogs with MMVD with increased 
severity. Platelet fragmentation and decreased function can be caused 
by shear stress from mitral regurgitation (41, 42). However, this event 

FIGURE 2

Dot plot of platelet distribution width (PDW) of normal dogs (n  =  49), 
dogs with MMVD (n  =  102), MMVD dogs with PH (n  =  78), and PH 
dogs without MMVD (n  =  17). The PDW of normal dogs was greater 
than those of MMVD dogs with PH (p  =  0.04). The single asterisk 
presents a significant difference from the normal group.

FIGURE 3

Dot plot of mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) of normal dogs (n  =  49), dogs with stage 
B1 MMVD (n  =  20), dogs with stage B2 MMVD (n  =  15), and dogs with stage C MMVD (n  =  67). (A) MCH of dogs with stage B2 and C MMVD groups were 
lower than those of normal dogs (p  <  0.001) and dogs with stage B1 MMVD (p  =  0.006 and p  <  0.001 respectively). (B) MCHC of dogs with stage B1 
(p  =  0.004), B2 (p  <  0.001) and C MMVD (p  <  0.001) were lower than that of normal dogs. The single asterisk presents a significant difference from the 
normal group. The double asterisk presents a significant difference from the MMVD B1 group.
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FIGURE 4

Dot plot of platelet distribution width (PDW) of normal dogs (n = 49), 
dogs with stage B1 MMVD (n = 20), dogs with stage B2 MMVD 
(n = 15), and dogs with stage C MMVD (n = 67). The PDW of dogs 
with stage C MMVD was lower than those of normal dogs 
(p = 0.042) and dogs with stage B1 MMVD (p = 0.02). The single and 
double asterisk presents a significant difference from the normal 
group and stage B1 MMVD, respectively.

may not relate to PH in dogs. Further investigation of the role of 
platelets in canine MMVD and PH is needed to improve the 
understanding of the association between platelets and MMVD and PH.

This study investigated the changes in RBC and platelet indices in 
dogs with PH. Because many diseases, including neoplasia and 
inflammatory diseases in other organs, can affect RBC and platelet 
indices, data of dogs with these concurrent diseases were excluded in 
this study (27, 43, 44). A significant age difference was found between 
the normal group and the other groups. However, there was no 
correlation between age and RBC and platelet indices suggesting that 
age may not affect these indices.

Monocytes are the mononuclear cells that play an essential role in 
the immune response. In addition to their involvement in immunity, 
monocytes also have a part in inflammation and tissue remodeling, 
including myocardial tissue (45). A previous study reported that 
monocytes were increased in dogs with CHF compared to control 
dogs, which may indicate cardiac remodeling in heart failure (46). 
Monocyte-to-lymphocyte ratio (MLR) is one of the inflammatory 
markers indicating the severity of heart diseases such as, human 
myocarditis (47). A greater MLR was revealed in dogs with CHF due 
to MMVD (48). However, this study found a decreased monocyte 

FIGURE 5

Receiver operating characteristic (ROC) curve for ascertaining the prediction of MCH and MCHC to distinguish normal dogs from dogs with MMVD 
and/or PH. The positive actual state is normal dogs. (A) ROC curve of MCH showed the area under the curve (AUC) value of 0.83 and the cut-point 
value of 23.05  pg. Therefore, dogs with MCH  >  23.05  pg. can be predicted as normal dogs with the sensitivity of 91.80% and specificity of 67.50%. 
(B) ROC curve of MCHC showed the AUC value of 0.87 and the cut-point value of 37.05  g/dL. Therefore, dogs with MCHC>37.05  g/dL can be predicted 
as normal dogs with the sensitivity of 87.80% and specificity of 77.20%.

TABLE 4 Blood chemistry profiles of dogs with myxomatous mitral valve disease.

Normal (n  =  49) MMVD B1 (n  =  20) MMVD B2 (n  =  15) MMVD C (n  =  67) P-value

ALT (U/L) 45.00 (34.00–56.50) 49.00 (30.00–66.00) 50.00 (30.00–79.00) 58.00 (38.00–86.00)a 0.013

ALP (U/L) 50.00 (24.00–87.00) 55.00 (27.00–84.00) 51.00 (29.00–100.00) 58.00 (39.50–107.00) 0.556

BUN (mg/dL) 17.60 (13.95–23.25) 19.00 (13.40–27.60) 24.00 (19.10–29.30) 27.35 (22.25–37.60)a,b <0.001

Creatinine (mg/dL) 0.80 (0.70–0.90) 0.70 (0.50–0.80) 0.70 (0.60–0.90) 0.85 (0.68–1.10)b 0.014

Total protein (g/dL) 6.40 (6.00–6.90) 6.60 (6.30–6.80) 6.40 (6.10–6.80) 6.70 (6.50–7.20)a 0.005

Albumin (g/dL) 3.20 (3.00–3.50) 3.00 (2.70–3.50) 2.50 (2.40–2.70)a,b 2.80 (2.60–3.20)a,c <0.001

Values are median (interquartile). 
ALP, alkaline phosphatase; ALT, alanine aminotransferase; BUN, blood urea nitrogen. 
aIndicates significant difference from the normal group. 
bIndicates significant difference from the MMVD B1 group. 
cIndicates significant difference from the MMVD B2 group.
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count of dogs with stage B2 MMVD compared to the normal dogs, 
while no difference of monocyte count between stage C MMVD and 
normal dogs was found. This finding is not consistent with previous 
studies. Therefore, the change in monocyte count of dogs with stage 
B2 MMVD in the present study may have occurred accidentally and 
does not provide clinical significance.

In the present study, alterations of BUN and albumin levels were 
found. BUN levels were elevated in dogs with MMVD and 
MMVD+PH compared to the normal dogs, and sub-analysis in 

MMVD dogs revealed that BUN levels were increased in stage C 
MMVD dogs. This finding is in accordance with a previous study in 
dogs with precapillary and postcapillary PH, where BUN 
concentration was increased without an elevation of creatinine levels 
(31). Increased BUN in heart disease can be a complication of CHF 
(49). Furthermore, the treatment of CHF using the diuretics and 
angiotensin converting enzyme inhibitors can cause an increase in 
BUN levels (31, 50). Creatinine levels of dogs enrolled in the present 
study were increased in MMVD+PH dogs compared to PH dogs, and 

FIGURE 6

Correlation of RBC indices, RBC count, LA/Ao LVIDd and peak TR velocity. (A) MCH was negatively correlated with RBC count (r  =  −0.377, p  <  0.001). 
(B) MCH was positively correlated with MCV (r  =  0.484, p  <  0.001). (C) MCH was positively correlated with MCHC (r  =  0.717, p  <  0.001). (D) MCH was 
negatively correlated with LA/Ao (r  =  −0.263, p  <  0.001). (E) MCH was negatively correlated with LVIDd (r  =  −0.291, p  <  0.001). (F) MCHC was negatively 
correlated with LA/Ao (r  =  −0.237, p  <  0.001). (G) MCHC was negatively correlated with LVIDd (r  =  −0.266, p  <  0.001). (H) RBC count was negatively 
correlated with peak TR velocity (r  =  −0.279, p  =  0.006).
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stage C MMVD dogs compared to stage B1 MMVD dogs. These 
findings indicated that elevated creatinine levels were found in dogs 
with CHF due to MMVD. Azotemia and decreased glomerular 
filtration rate can be found in dogs with advanced stage of chronic 
valvular disease and associated with the severity of the disease (51). 
For this reason, greater BUN and creatinine levels can arise from CHF 
owing to progressive MMVD.

Decreased albumin levels were found in dogs with MMVD, 
MMVD+PH and precapillary PH, and sub-analysis of MMVD dogs 
showed that low albumin levels were related to severity of the disease. 
Several diseases and abnormalities including chronic heart failure and 
PH, were associated with low levels of albumin as a result of 
hemodilution caused by volume overload (52). Consequently, the 
evidence of decreased BUN and albumin in dogs with CHF and PH 
may reveal the progression of MMVD and PH.

A limitation of the study is the small sample size, which may affect 
the statistical significance of the RBC and platelet indices. A larger 
number of dogs could provide more accurate results, depicting the 
changes in these indices in dog populations.

In conclusion, the present study found that the decrease in 
PDW of dogs with MMVD was related to the severity of MMVD 
but not PH. No changes in platelet indices were not found in dogs 
with PH from other causes when compared to normal dogs. 
However, the RBC indices, MCH and MCHC, were associated with 
MMVD, precapillary and postcapillary PH. Further investigation of 
the role of RBC and platelets in canine MMVD and PH may 

improve the understanding of the association between PDW and 
MMVD and PH.
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FIGURE 7

Correlation of PDW and platelet count, MPV, LA/Ao and LVIDd. (A) PDW was negatively correlated with platelet count (r  =  −0.317, p  <  0.001). (B) PDW 
was positively correlated with MPV (r  =  0.233, p  <  0.001). (C) PDW was negatively correlated with LA/Ao (r  =  −0.304, p  <  0.001). (D) PDW was negatively 
correlated with LVIDd (r  =  −0.312, p  <  0.001).
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Glossary

Ao Aorta

ALP Alkaline phosphatase

ALT Alanine aminotransferase

BUN Blood urea nitrogen

CHF Congestive heart failure

FS Fractional shortening

IQR Interquartile range

IVSd Interventricular septal thickness at end diastole

IVSs Interventricular septal thickness at end systole

LA Left atrium

LVIDd Left ventricular internal diameter at end diastole

LVIDs Left ventricular internal diameter at end systole

LVPWd Left ventricular posterior wall thickness at end diastole

LVPWs Left ventricular posterior wall thickness at end systole

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MCV Mean corpuscular volume

MMVD Myxomatous mitral valve disease

MPV Mean platelet volume

PAP Pulmonary arterial pressure

PDW Platelet distribution width

PH Pulmonary hypertension

RBC Red blood cell

RDW Red cell distribution width

TR Tricuspid regurgitation

WBC White blood cell
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Effect of experimental 
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hemodynamic analysis, and 
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a rat model
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Introduction: Periodontitis is a prevalent and severe dental condition 
characterized by the gradual degradation of the bone surrounding the teeth. 
Over the past two decades, numerous epidemiological investigations have 
suggested a potential link between periodontitis and cardiovascular disease. 
However, the complex mechanistic relationship between oral health issues 
and cardiovascular disorders remains unclear.

Aim: This study aimed to explore comprehensively the cardiac function through 
various methods, including conventional echocardiography, intraventricular 
pressure gradient (IVPG) analysis, speckle tracking echocardiography (STE), 
and hemodynamics analysis.

Methods: Ligature-induced periodontitis was established in a group of rats 
while the second group served as sham. The successful establishment of 
the periodontitis model was confirmed through staining and radiographic 
examination of the affected mandibles.

Results: X-ray films and methylene blue staining revealed alveolar bone 
resorption in the affected first molar in the model rats, confirming the 
successful induction of periodontitis. The rats with periodontitis displayed a 
decrease in ejection fraction compared to the sham group, accompanied by 
a decrease in mid-to-apical IVPG and mid IVPG. Lower values of strain rate 
were recorded in the apical segment of the septum, the middle segment of 
the septum, and the basal segment of the lateral free wall in the periodontitis 
group, which was associated with histopathological examination showing 
some degree of myocardial tissue damage. Conversely, rats with periodontitis 
showed an increase in heart rate, end-systolic volume, and arterial elastance 
when compared to the sham rats. However, they also exhibited a decrease 
in stroke work, stroke volume, cardiac output, and end-systolic pressure.

Conclusion: This study suggests that experimental periodontitis may lead to 
cardiac dysfunction especially compromised systolic function and myocardial 
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relaxation, potentially indicating an increased risk of cardiovascular events in 
clinical periodontitis cases. The comprehensive assessment of cardiac function, 
hemodynamics, and histopathological evaluation underscores the profound 
impact of periodontitis on heart functions within this specific experimental model.

KEYWORDS

experimental periodontitis model, alveolar bone, cardiac function, intraventricular 
pressure gradients, speckle-tracking echocardiography, pressure-volume analysis

Introduction

Cardiovascular disease (CVD) represents a substantial public 
health concern in various communities, resulting in approximately 17 
million fatalities each year (1). In recent times, there has been growing 
consensus that chronic inflammatory ailments, which induce a 
widespread inflammatory state, can elevate the susceptibility to CVD 
alongside traditional risk factors like diabetes, smoking, elevated 
cholesterol levels, and a lack of physical activity (2–4).

Periodontal disease is a persistent, infectious, and inflammatory 
ailment arising from an unbalanced subgingival biofilm. As time 
progresses, it has the potential to lead to the deterioration of the 
supportive structures around the teeth, encompassing connective 
attachment loss and the absorption of alveolar bone (5). The 
progression of periodontal disease is influenced by a multifaceted 
etiopathology, marked by complex interactions between 
microorganisms within dental biofilms and the host’s immune-
inflammatory response, these microorganisms within dental plaque 
impact periodontal tissues through both direct and indirect 
mechanisms, releasing molecules that induce tissue damage and, in 
turn, initiate the immune-inflammatory response (6).

At the molecular level, cases of active periodontitis exhibit an 
inflammatory response that can disrupt the overall homeostasis of the 
individual. This systemic inflammatory reaction may extend to areas 
beyond the oral cavity (7). Considering the systemic ramifications of 
periodontal disease, it undeniably wields a substantial influence on 
overall health, potentially exerting a profound impact on an 
individual’s quality of life (8, 9).

Remarkably, individuals afflicted with severe chronic periodontitis 
have shown a significantly heightened risk of developing 
cardiovascular disease, a correlation that persists even after accounting 
for various traditional risk factors (10). A meta-analysis involving over 
200,000 individuals revealed that periodontal disease (PD) increases 
the risk of CVD by 35%, underscoring its significant impact on public 
health (11).

A substantial and increasing body of evidence has established an 
epidemiological association between periodontal inflammation and 
cardiovascular diseases, including conditions like arterial 
hypertension, myocardial infarction, stroke, and atherosclerotic 
vascular disease (12–14). This relationship has been suggested to 
occur through both indirect and direct pathways. Indirectly, it may 
involve shared risk factors that contribute to both periodontitis and 
cardiovascular diseases (15). On the other hand, a direct mechanism 
has been postulated, where oral bacteria from periodontal infections 
can enter the bloodstream, triggering a systemic inflammatory 
response (16).

Despite the growing evidence supporting the link between 
periodontitis and cardiovascular disease, the precise mechanisms 
underpinning this relationship are not yet fully comprehended. 
Further research is needed to better understand the complex interplay 
between these conditions and identify the specific pathways involved 
in their association. Given the limited investigation into the role of 
periodontal disease in causing cardiovascular dysfunctions, the 
objective of this study was to evaluate the cardiovascular consequences 
in a rat model of induced periodontitis. To achieve this goal, various 
approaches were employed, including echocardiographic assessment 
of cardiac performance, histopathological examination of 
myocardium, and hemodynamic recordings. By utilizing these 
methodologies, the current research aimed to gain insights into the 
potential impact of periodontitis on cardiac functions in the rat model.

Materials and methods

Animal housing and experimental design

The study involved 16 male Sprague–Dawley rats, weighing 
between 300 and 350 grams and aged 12 to 16 weeks. The 
experimentation took place in specific laboratories at Tokyo University 
of Agriculture and Technology. All procedures adhered to the 
guidelines outlined in the Guide for the Care and Use of Laboratory 
Animals, as issued by the US National Institute of Health (NIH). The 
protocols were thoroughly reviewed and approved by the Institutional 
Animal Care and Use Committee of Tokyo University of Agriculture 
and Technology (Approval No. R05-159).

The rats were housed in conventional cages, with two rats per 
cage, and utilized Aspen Shavings as bedding. The housing conditions 
included an air-conditioned room maintained at (24 ± 2°C), operating 
on a 12 h light/dark cycle with a relative humidity of 58%. Food and 
water were provided ad libitum, and the rat diets were sourced from 
the commercial company Oriental Yeast Co., Ltd., based in 
Tokyo, Japan.

The rats were divided into two groups, with eight rats in each 
group: sham operated group and the group with experimentally 
induced periodontitis (IP). For periodontitis induction, the rats were 
anesthetized using a combination of medetomidine hydrochloride 
(Domitor, Orion Pharma Animal Health, Helsinki, Finland), 
midazolam (Dormicum, Astellas Pharma Inc., Tokyo, Japan), and 
butorphanol (Vetorphale, Meiji Seika Pharma Co., Ltd.) at the dose 
rate of 0.3, 5.0, and 5.0 mg/kg body weight, administered 
subcutaneously, following the completion of all surgical procedures, 
atipamezole was administered at a dose rate of 1.0 mg/kg 
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subcutaneously to promote a smooth and rapid recovery (17, 18) and 
the mandibular first molar was ligatured with 3-0 sterile silk sutures 
as illustrated in Figure 1 (3, 19, 20).

.After 5 weeks of periodontitis induction, the animals underwent 
anesthesia, followed by echocardiographic and hemodynamic 
examinations. Subsequently, the rats were euthanized using isoflurane 
overdose via inhalation, and both mandibles and heart tissues were 
collected for further analysis.

Conventional echocardiography

After 5 weeks following surgery, cardiac functions were evaluated 
in 16 animals (sham and IP groups) one day before euthanasia using 
an ultrasonographic ProSound 7 system equipped with a 12-MHz 
transducer supported by CMME and simultaneous ECG from 
Hitachi-Aloka Medical Ltd., Tokyo, Japan. The echocardiography 
followed the American Society of Echocardiography (ASE) guidelines 
(21, 22).

To assess the left ventricle (LV), a two-dimensional right 
parasternal short-axis view was obtained at the level of the papillary 
muscles using M-mode. All LV structures were manually measured by 
the same observer following the leading-edge method of the ASE (22). 
The recorded values represented the average of a minimum of five 
consecutive cardiac cycles on the M-mode tracings. Using this 
perspective, the following parameters were derived: left ventricular 
internal diameter during diastole (LVIDd), left ventricular internal 
diameter during systole (LVIDs), left ventricular posterior wall 
diameter during diastole (LVPWd), left ventricular posterior wall 
diameter during systole (LVPWs), ejection fraction (EF%), and 

fractional shortening (FS%). Furthermore, trans-mitral inflow indices, 
encompassing early (E) and late (A) velocities, along with the E/A 
ratio, were acquired through pulsed-wave (PW) Doppler 
echocardiography from the left apical four-chamber view. Tissue 
Doppler imaging (TDI) was also obtained from the same view. PW 
TDI echocardiography, utilizing a sample volume of 0.5 mm, was 
employed to capture the movement of the left ventricular (LV) septal 
and posterior walls. The TDI velocity profile comprised systolic (s′) 
and diastolic velocities [early (e′) and late (a′)] at the point of 
attachment of the mitral valve to the septal and lateral walls of the LV, 
and these velocities were recorded.

The E/e′ ratio was calculated using the following formula: 
E/e′ = (E/e′ lateral + E/e′ septal)/2.

Color M-mode echocardiography

The color M-mode echocardiography (CMME) technique was 
employed to evaluate the intraventricular pressure gradient (IVPG). 
To ensure accurate tracing of the continuous mitral valve inflow 
(CMME), the ultrasound machine was set with a sweep speed of 
300 mm/s and a color baseline shift of −64, effectively elevating the 
Nyquist limit. This configuration enhanced the visualization of the 
blood flow pathway from the left atrium to the left ventricular (LV) 
apex through the mitral valve in the left apical four-chamber view. 
Following this, M-mode was activated to capture the inflow, and color 
M-mode images were saved for subsequent offline analysis using 
MATLAB (The MathWorks, Natick, MA, United States).

The calculation of IVPG was carried out using the following 
formula (23, 24): IVPG (mmHg/cm) = IVPD/LV length.

FIGURE 1

(A) Visual representation of the healthy gum tissue before the ligature application. (B) Figure depicting the placement of the ligature around the first 
mandibular molar. Ligatures remained in place throughout the study, with regular assessments and repositioning as needed. (C) Clinical observation of 
the gum tissue at the experiment’s end revealed the presence of the ligature, accompanied by inflammation, food residue, and necrotic tissue. 
(D) Macroscopic images of the molar displaying normal tissue in the sham group. (E,F) Macroscopic views of the molar illustrate ligature placement 
post-soft tissue removal and the resulting alveolar bone loss caused by the ligature around the affected molar.
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The IVPD, commonly characterized as the pressure disparity 
occurring in the initial phase of diastole between specific segments 
within the left ventricle (LV), arises when the pressure at the LV 
apex falls below that at the base (25). The total IVPG was then 
divided into two segments, based on dividing the LV length into 
three equal parts. The smaller segment near the mitral valve was 
termed basal IVPG, while the mid-to-apical segment, covering the 
other two-thirds near the apex, was considered the other IVPG 
segment, as shown in Figure 2. For precision and dependability, 
each data point was measured a minimum of five times at every 
interval, and the resultant average values were documented and 
reported for analysis.

Speckle tracking echocardiography

The study involved acquiring loops of left ventricle (LV) 
movement from four apical views. To analyze these movements, 
speckle tracking analysis was conducted using an algorithm 
incorporated into EchoPAC PC DAS-RSI from Hitachi Aloka Co., 
Tokyo, Japan.

In the analysis process, Manual tracing of the endocardium 
was performed for both the end-systole and end-diastole phases. 
Subsequently, the software algorithm automatically segmented 
each imaging plane of the left ventricle (LV) into three equally 
circular sections: basal, midventricular, and apex on both the 
septal and lateral aspects (Figure 3). The longitudinal strain rate 
was calculated and obtained in six sections for further examination 

(26). This comprehensive analysis aimed to assess the LV 
movement and longitudinal strain in different regions of the 
heart, allowing for a detailed evaluation of cardiac function.

Hemodynamic measurements

After evaluation of all echocardiographic parameters, pressure 
and volume measurements were calibrated using the MPVS-Ultra 
system (Millar Inc., Houston, TX, United States). Anesthetized 
rats were placed in a supine position on a heated pad. A midline 
incision along the anterior neck exposed the trachea. Following 
this, the right carotid artery was dissected, and a Millar catheter 
was inserted through the artery and guided into the left ventricle 
(LV) via the aortic valve. After a stabilization period of 5–10 min, 
pressure-volume (PV) loop signals were continuously recorded at 
a sampling rate of 1,000 Hz using the MPVS-Ultra Single Segment 
Pressure-Volume unit (Millar Inc., Houston, TX, United States) 
(27). Through dedicated PV loop analysis software (Millar Inc., 
Houston, TX, United  States), numerous LV parameters were 
computed and derived. These encompassed end-systolic volume, 
LV end-diastolic volume, end-systolic pressure, end-diastolic 
pressure, the time constant of left ventricular pressure decay 
(Tau), stroke work (SW), stroke volume (SV), and cardiac 
output (CO).

Furthermore, an assessment of the relationship between LV and PV 
was undertaken via the occlusion of the caudal vena cava. Essential 
indices such as the slope of the end-systolic pressure-volume 

FIGURE 2

Methodology for IVPG analysis using Matlab. Color M-mode echocardiography was captured and sampled (A), followed by the assessment of time 
distribution (B). Utilizing Matlab, the spatial distribution of intraventricular pressure gradients was computed, yielding basal IVPG and mid-to-apical 
IVPG values (C).
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relationship (ESPVR), preload recruitable stroke work (PRSW), and the 
slope of the end-diastolic PV relationship (EDPVR) were computed to 
gain insights into the cardiovascular dynamics. Upon the conclusion of 
each experiment, an intravenous injection of 10 μL of a 15% saline 
solution was administered to establish a parallel conductance volume. 

This volume ascertained from the alteration of PV loop relations, was 
employed to rectify the cardiac mass volume (28, 29). The volume 
calibration process employed a Millar volume calibration cuvette. All 
measurements were analyzed using LabChart8 software 
(ADInstruments, Colorado Springs, CO, United States) (Figure 4).

FIGURE 3

Speckle tracking echocardiography from left apical four-chamber view. (A) Segmentation of the left ventricle. APS, the apical segment of the septum; 
MS, the middle segment of the septum; BS, the basal segment of the segment; APL, the apical segment of the lateral free wall; ML, the middle segment 
of the lateral free wall; BL, the basal segment of the lateral free wall. (B) The strain rate of each segment.

FIGURE 4

Representative left ventricular (LV) pressure-volume (PV) loops: (A) LV PV-loop from sham rats. (B) LV P-V loop from rats with induced periodontitis, 
subsequent to caudal vena cava occlusion. The reduction in pressure signal amplitude within the P-V loop signifies reduced contractility. (C) Illustration 
depicting alterations in pressure and volume following preload reduction achieved by caudal vena cava occlusion.
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Histopathological examination

Following euthanasia through the inhalation method of isoflurane 
overdose (5%), all animals underwent necropsy. Subsequently, the 
heart was dissected into smaller fragments and then preserved in a 
solution of 10% neutral buffered formalin to facilitate fixation. In 
preparation for analysis, the heart tissue underwent a series of steps: 
it was sectioned into slices measuring 5 μm using an automated 
benchtop tissue processor (LEICA TP 1020, Biosystem Tokyo, Japan), 
followed by deparaffinization and rehydration. The tissue was then 
subjected to hematoxylin and eosin (H&E) staining, which enabled 
the assessment of potential inflammatory changes within the 
cardiac tissue.

To analyze these slides, a light microscope was utilized. To 
capture these visual insights, image software (CellSens Standard; 
Olympus, Tokyo, Japan) was employed. Following this, a 
histopathologist, who remained blind to the experimental groups, 
assessed 10 sections per group. The analysis encompassed the 
identification of specific features, including mononuclear cell 
infiltration, interstitial edema, necrosis, and the arrangement of 
myocardial cells (whether organized or disorganized and the 
direction of alignment) (30).

Evaluation of alveolar bone loss 
(confirmation of model induction)

Methylene blue staining
Macroscopic assessment was employed to evaluate the extent of 

bone resorption on the lingual and buccal surfaces of the first molars. 
The specimens were retrieved from alcohol, dried, and subsequently 
immersed in a solution comprising 0.7 g/L of methylene blue (Sigma, 
MO, United States) for a duration of 5 min. Excess dye was eliminated 
by rinsing the samples with tap water (31).

Digital photographs of the lingual and buccal sides of stained 
first molars were taken from a uniform 90-degree perspective 
utilizing a stereomicroscope (Leica M60) configured at a 20× 
magnification level. In these visuals, we conducted an assessment 
of the region lying between the junction of the cementoenamel 
and the crest of the alveolar bone on both the buccal and lingual 
surfaces. This measurement accounts for the entirety of the 
exposed root surfaces stained in a blue hue, except the enamel on 
the crown, and was subsequently quantified. This measurement 
was performed by an examiner who was unaware of the 
experimental groups, utilizing Image Tool 3.0 software. An 
increase in the exposed root area, compared to sham, non-ligated 
teeth, signifies the presence of alveolar bone resorption (20, 
31, 32).

Radiographic analysis
Radiographs of the affected hemimandibles were taken to 

evaluate the alveolar bone loss and validate the successful 
establishment of the animal model. For each rat within the two 
experimental groups, radiographic assessments were conducted 
using an X-ray machine (Collimator Type R-20J, Shimadzu 
Corporation, Japan). The X-ray tube operated at 30 kW, with a 
current of 6 mA, for 0.01 s, and the distance from the source to the 
sensor was set at 50 cm. Upon the conclusion of the experiment, 

the radiographs were utilized to evaluate the dental alveolar bone 
level, represented by the amount of alveolar bone present and 
wrapped around the root (33–35).

Statistical analysis

All statistical analyses were performed using GraphPad Prism 
8.0 software (GraphPad Software, San Diego, California). The 
Mann–Whitney test was utilized for the analysis, and the results are 
presented as mean ± SD. Differences were deemed statistically 
significant when the p-value was less than 0.05. Spearman’s rank 
correlation and linear regression analysis were employed to evaluate 
the relationships between hemodynamic, IVPG, and STE 
measurements. The coefficient of determination (R2) was calculated 
based on the sum of the squares of the distances of the data points 
from the best-fit curve.

Results

Conventional echocardiography

The assessment of cardiac function through conventional 
echocardiography is presented in Table 1. The findings reveal that in 
rats with ligature-induced periodontitis, there was a statistically 
significant increase in LVIDs. Conversely, there were significant 
reductions in EF% and Sm when compared to the sham group. 
Nevertheless, parameters such as IVSd, LVIDd, LVPWd, IVSs, 
LVPWs, FS%, early mitral velocity (E), late mitral velocity (A wave), 
E/A ratio, Em, Em/Am ratios, and E/Em ratio exhibited comparable 
values in both groups.

IVPG measurements

The findings from the analysis of IVPG data are outlined in 
Table  2. Notably, the mid-to-apical IVPG in the IP group 
(0.577 ± 0.047) exhibited a significant reduction compared to the sham 
group (0.717 ± 0.108). Similarly, the mid IVPG in the IP group 
(0.515 ± 0.052) was significantly lower than that observed in the sham 
group (0.637 ± 0.099). Conversely, no statistically significant 
differences were detected in Total IVPG, Basal IVPG, and 
Apical IVPG.

Speckle tracking echocardiography

Table 3 presents the strain rates obtained through speckle tracking 
echocardiography. Notably, the IP group exhibited significantly 
reduced strain rates in specific segments compared to the sham group. 
Specifically, the apical segment of the septum in the IP group 
(−3.175 ± 0.696) showed a significant decrease compared to the sham 
group (−4.663 ± 1.208) with a p-value of 0.025. Similarly, the middle 
segment of the septum in the IP group (−8.411 ± 2.403) displayed a 
significant reduction compared to the sham group (−13.29 ± 4.009) 
with a p-value of 0.014. Additionally, the basal segment of the lateral 
free wall in the IP group (−2.811 ± 0.690) exhibited a significantly 
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lower strain rate than the sham group (−7.959 ± 0.689) with a p-value 
of 0.0002. Conversely, in the remaining segments, the IP group 
demonstrated myocardial movement levels comparable to those 
observed in the sham-operated rats.

Pressure-volume loop analysis

Table 4 provides a comprehensive overview of the hemodynamic 
data in the rats. Notably, the IP group demonstrated significant 

TABLE 1 Assessment of cardiac function using conventional echocardiography.

Sham group IP group p-value

IVSd (mm) 1.713 ± 0.112 1.675 ± 0.183 0.96

LVIDd (mm) 8.238 ± 0.702 8.675 ± 0.523 0.08

LVPWd 2.163 ± 0.396 1.988 ± 0.155 0.39

IVSs (mm) 2.275 ± 0.243 2.288 ± 0.28 0.97

LVIDs (mm) 5.288 ± 0.458 5.713 ± 0.419* 0.04

LVPWs (mm) 2.763 ± 0.199 2.475 ± 0.349 0.08

EF % 74.83 ± 2.932 71.11 ± 3.647* 0.04

FS % 36.03 ± 2.100 33.89 ± 2.553 0.06

eV 72.10 ± 5.530 70.84 ± 8.835 >0.99

aV 32.23 ± 3.991 33.10 ± 3.122 0.39

E/A 2.266 ± 0.329 2.066 ± 0.199 0.22

Sm 5.150 ± 0.484 4.575 ± 0.395* 0.02

Em 5.350 ± 0.730 5.300 ± 0.282 0.62

Am 4.213 ± 0.502 4.14 ± 0.551 0.88

Em/Am 1.273 ± 0.127 1.276 ± 0.153 0.89

E/Em 12.09 ± 1.929 13.52 ± 2.286 0.19

Data are presented as the mean ± standard deviation (SD) for each group (n = 8).  
IVSd and IVSs: interventricular septal thickness in end-diastole and systole, respectively. LVIDd and LVIDs: left ventricular diastolic and systolic internal diameter, respectively. LVPWd and LVPWs: 
left ventricular diastolic and systolic posterior wall thickness, respectively. EF: ejection fraction. FS: fractional shortening. eV: early diastolic transmitral flow velocity. aV: late diastolic transmitral flow 
velocity. E/A: ratio of early to late diastolic transmitral flow velocities. Sm: left ventricular wall velocity at systole. Em: left ventricular wall velocity at early diastole. Am: left ventricular wall velocity at 
late diastole. Em/Am: ratio of early to late diastolic velocity of the left ventricular wall. E/Em: ratio of early diastolic velocity mitral to early diastolic velocity of the LV wall.

TABLE 2 Variability of CMME indices.

Sham group IP group p-value

Total IVPG 1.714 ± 0.130 1.635 ± 0.089 0.3282

Basal IVPG 1.047 ± 0.119 1.013 ± 0.103 0.8785

Mid to apical IVPG 0.717 ± 0.108 0.577 ± 0.047* 0.0104

Mid IVPG 0.637 ± 0.099 0.515 ± 0.052* 0.0047

Apical IVPG 0.080 ± 0.038 0.061 ± 0.037 0.2786

Data are presented as the mean ± standard deviation (SD) for each group (n = 8).  
TIVPG, total intraventricular pressure gradient; BIVPG, basal intraventricular pressure gradient; mid-to-apical IVPG, middle-to-apical intraventricular pressure gradient; MIVPG, middle 
intraventricular pressure gradient; AIVPG, apical intraventricular pressure gradient.

TABLE 3 2D-speckle tracking echocardiography measurements.

Sham Group IP Group p-value

APS −4.663 ± 1.208 −3.175 ± 0.696* 0.025

MS −13.29 ± 4.009 −8.411 ± 2.403* 0.014

BS −11.73 ± 2.504 −11.63 ± 2.261 0.899

APL −5.782 ± 2.790 −4.338 ± 1.055 0.368

ML −7.675 ± 1.388 −7.583 ± 1.749 0.823

BL −7.959 ± 0.689 −2.811 ± 0.690* 0.0002

Data are presented as the mean ± standard deviation (SD) for each group (n = 8).  
APS, strain rate of the apical segment of the septum; MS, strain rate of the middle segment of the septum; BS, strain rate of the basal segment of the septum; APL, strain rate of the apical 
segment of the lateral free wall; ML, strain rate of the middle segment of the lateral free wall; BL, strain rate of the basal segment of the lateral free wall.
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differences in the majority of parameters when compared to the sham 
group. Specifically, stroke work, stroke volume, cardiac output, and 
end-systolic pressure in the IP group exhibited a significant decrease 
compared to their respective values in the sham group. In contrast, 
heart rate, end-systolic volume, arterial elastance, and the time 
constant of left ventricular pressure decay (Tau) in the IP group 
demonstrated a significant increase compared to their values in the 
sham group. However, no statistically significant changes were 
observed in end-diastolic volume and end-diastolic pressure between 
the two experimental groups.

In Figure 4, representative original P-V loops obtained during the 
reduction of preload (achieved through transient occlusion of the 
caudal vena cava) are shown for both sham and IP animals. Functional 
indices were computed through P-V loop analysis at various preloads 
during this transient occlusion. Furthermore, it was observed that the 
end-systolic pressure-volume relationship (ESPVR) was steeper in 
sham rats compared to IP rats. Conversely, the end-diastolic pressure-
volume relationship (EDPVR) showed a tendency to increase in IP 
rats, although this difference did not reach statistical significance. 
Moreover, the preload recruitable stroke work (PRSW) values were 
notably lower in IP rats in comparison to the sham rats.

Histopathological findings

In terms of the histological alterations observed in the hearts of 
the sham and IP groups, a distinct contrast was evident. The 
myocardial tissues within the sham group exhibited a normal and 
unremarkable structure and morphology, as depicted in 
Figures 5A,B. However, clear histopathological changes were evident 
in the cardiac tissues of the IP group. These alterations included 
evident cell degeneration, notable modifications in the shape of 
cardiac myocytes accompanied by a loss of organized arrangement, 
and a discernible absence of nucleation. Additionally, there was a 
noticeable increase in the interstitial tissues, and inflammatory cells 
were observed around the arterioles, as illustrated in 

Figures  5C,D. These histological findings substantiate our initial 
hypothesis. They collectively imply that the observed myocardial 
tissue damage within the IP group may indeed exert an influence on 
both the structural integrity and functional aspects of the heart.

Establishment of the periodontitis model in 
experimental rats

At the initiation of the experiment, the gingival tissues exhibited 
a standard appearance characterized by a smooth texture and a light 
pink hue. The attached gingiva firmly adhered to the underlying 
structures, while the free gingival margin displayed a distinct outline 
aligned with the cementoenamel junction (CEJ) of neighboring teeth.

Upon completion of the experiment, notable changes were 
observed in the clinical state of the gingiva. The macroscopic view 
showed a cyanotic shift, accompanied by pronounced edema 
encompassing the observed teeth. Furthermore, the free gingival 
margin displayed irregularities, including the presence of food debris 
(Figure 1).

Alveolar bone resorption stands as a defining characteristic of 
periodontitis triggered by the ligature. The contrast between ligature-
induced periodontitis rats and the sham group is illustrated in 
Figure 6, displaying a comprehensive comparison of morphometric 
measurements. Notably, substantial bone loss is evident on both 
surfaces, as indicated by significantly increased areas extending from 
the cementoenamel junction to the alveolar bone crest in ligature-
induced periodontitis rats when contrasted with their counterparts 
that underwent sham procedures (1.313 ± 0.172 vs. 0.362 ± 0.106 for 
lingual side) and (1.238 ± 0.140 vs. 0.275 ± 0.103 for buccal side).

X-ray images revealed evident alveolar bone resorption around 
the affected molars in the rats with experimentally induced 
periodontitis, as compared to the sham rats. Notably, the alveolar bone 
of the sham rats displayed a continuous wrapping around the root, 
confirming that successful induction of periodontitis had been 
achieved by the fifth week of the modeling process (Figure 7).

TABLE 4 Hemodynamic measurements.

Sham group IP group p-value

HR (bpm) 301.8 ± 6.573 322.2 ± 1.413 <0.001

SW (mmHg*uL) 3,608 ± 628.6 2,302 ± 751.4 <0.01

CO (uL/min) 8,490 ± 4,057 3,875 ± 148.0 <0.01

SV (uL) 49.66 ± 11.11 31.56 ± 6.708 <0.001

ESV (uL) 241.9 ± 12.18 255.6 ± 7.380 <0.01

EDV (uL) 280.4 ± 11.81 281.2 ± 19.81 0.8785

ESP (mmHg) 119.8 ± 5.928 78.53 ± 10.12 <0.001

EDP (mmHg) 4.326 ± 0.972 5.271 ± 1.726 0.2657

Ea (mmHg/uL) 2.342 ± 0.295 2.845 ± 0.479 0.02

Tau (ms) 19.10 ± 2.253 21.59 ± 1.856 0.047

ESPVR (mmHg/uL) 1.262 ± 0.279 0.880 ± 0.185 0.01

EDPVR 0.032 ± 0.011 0.046 ± 0.028 0.3282

PRSW 99.14 ± 6.771 72.83 ± 12.21 <0.001

The values are presented as means ± standard deviations (SD).  
HR, heart rate; SV, stroke volume; SW, stroke work; CO, cardiac output; ESV, end-systolic volume; EDV, end-diastolic volume; ESP, end-systolic pressure; EDP, end-diastolic pressure; Ea, 
arterial elastance, Tau, time constant of left ventricular pressure decay; ESPVR, end-systolic pressure-volume relationship; PRSW, preload recruitable stroke work; EDPVR, end-diastolic 
pressure-volume relationship.
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Correlation and regression analysis 
between P-V measurements and IVPG 
indices

Table 5 summarizes the correlation and linear regression analysis 
results between PV-loop measurements and IVPG indices.

Significant correlations were found between HR, SW, CO, and 
ESP with both the mid-apical IVPG and mid IVPG segments 
(p < 0.001, 0.01, 0.01, and 0.01, respectively, for the mid-apical IVPG 
segment; and p < 0.001, 0.02, 0.03, and 0.016, respectively, for the mid 
IVPG segment). Additionally, Ea and PRSW showed significant 
correlations with the mid-apical IVPG segment only (p = 0.005 and 
0.05, respectively).

Similarly, a statistically significant effect of HR, SW, CO, and 
ESP was observed on both the mid-apical IVPG and mid IVPG 
segments (p = 0.0001, 0.0118, 0.0105, and 0.0132, respectively, for 
the mid-apical segment; and p < 0.0001, 0.0237, 0.0314, and 
0.0164, respectively, for the mid IVPG segment). Moreover, there 
was a significant effect of EDV and ESP on mid and mid-to-
apical IVPG.

Correlation and regression analysis 
between P-V measurements and STE 
parameters

Table  6 summarizes the correlation outcomes between P-V 
measurements and STE parameters. It also presents the coefficient of 
determination (R2) derived from linear regression analysis, indicating 
the extent of its impact on the corresponding parameters.

HR exhibited significant correlations with APS, MIS, and BAL 
segmental regions (p = 0.04, 0.02, and <0.001, respectively). SW, CO, 
and ESV were also correlated with the BAL segment (p = 0.002, 0.01, 
and 0.041, respectively). Additionally, SV showed significant 
correlations with APS, MIS, and BAL segmental regions (p = 0.04, 
0.01, and 0.0006, respectively). Furthermore, Ea correlated with MIS 
and BAL (p = 0.03 and 0.01), while Tau correlated with APS, MIS, and 
ApL regions (p = 0.03, 0.08, and 0.03, respectively). ESPVR exhibited 
correlations with APS and BAL (p < 0.01 for both), and PRSW 
correlated with MIS and BAL regions (p = 0.02 and <0.001).

Moreover, HR, SV, and ESP demonstrated significant effects 
on APS, MIS, and BAL segmental regions (p = 0.04, 0.04, and 

FIGURE 5

Microscopic comparison of myocardial sections between the sham (A,B) and induced periodontitis (C,D) groups. Inflammatory cells are highlighted 
with green arrows, degenerated cells with yellow arrows, and interstitial edema with blue arrows. Cardiac myocytes are denoted as My, and their nuclei 
as Nc. Histological examination of heart tissue in both groups is presented at two magnification levels [10× for (A,C) and 20× for (B,D)].
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0.004, respectively, for APS; 0.02, 0.01, and 0.02, respectively, for 
MIS; and <0.001 for all for BAL segmental region). Ea had a 
significant effect on MIS and BAL (p = 0.03 and 0.0132), while Tau 
exhibited a significant effect on APS and APL (p = 0.03 for both). 
ESPVR showed significant effects on APS and BAL (p < 0.01), and 
PRSW also had significant effects on MIS and BAL (p = 0.02 and 
<0.001).

Discussion

In this study, the bone loss seen in rats subjected to dental ligation 
indicated that the examined model of periodontitis was 
straightforward. Through the evaluation of cardiac function (using 
echocardiography), hemodynamics (via PV loop analysis), and 
histopathological examination of myocardial tissue structure, the 
impact of periodontitis on the cardiovascular system was revealed in 
this experimental periodontitis model.

In this study, we employed an anesthetic protocol involving a 
combination of MMB and atipamezole. Numerous studies on the use 
of MMB in mice and rats have been documented (18, 36–38). Beyond 
these species, the anesthetic efficacy of MMB has been explored in 
other laboratory animals, including monkeys (39), cotton rats (40), 
and hamsters (41).

According to Kirihara et al. (42), following the administration 
of MMB, a reduction in blood pressure was observed until the 
20 min mark, after which it stabilized during anesthesia. MMB, 
acting as an alpha2-adrenergic receptor agonist, is known to 
decrease blood pressure (43). However, Kirihara et al. (42) noted 
a significant increase in systolic blood pressure at 10 min post-
administration in the MMB group compared to the KX group. 
This contradictory effect may be attributed to MED’s specificity 
as an alpha2-adrenergic receptor agonist in comparison to XYL 
(44). The elevated blood pressure at 10 min post-MMB 
administration suggests MED’s interaction with alpha2B receptors, 
causing a temporary peripheral vessel constriction (45). 

FIGURE 6

Effect of periodontitis on alveolar bone loss (methylene blue staining). The alveolar bone loss area was macroscopically measured on the lingual (A,B) 
and buccal (C,D) surfaces in rats with sham (A,C) or induced periodontitis (B,D). Bar graphs show the alveolar bone loss area from the lingual (E) and 
buccal (F) surfaces. Yellow solid lines depict the alveolar bone loss region. Data are presented as mean  ±  standard deviation (SD) ***p  <  0.001. IP, 
induction of periodontitis through ligation of the left mandibular first molar.

FIGURE 7

Radiographic exploration of mesial root areas in the first mandibular molar for two groups. (A) Sham rats, (B) rats with induced periodontitis. Sham rats 
demonstrate the absence of alveolar bone loss, as the alveolar bone is displayed continuously wrapping around the root, in contrast to their 
counterparts in the model group. Alveolar bone loss is indicated by the white arrow.
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Baumgartner et al. (46) also reported a transient increase in blood 
pressure with the anesthetic mixture of MED, mid, and fentanyl, 
attributed to MED’s initial peripheral vasoconstrictive properties. 
Notably, this temporary rise in blood pressure post-MMB 
administration was documented in dogs (47) but not in monkeys 
(48) and mice (42).

Kirihara et al. (42) further observed a decrease in heart rate from 
approximately 240 beats/min to around 170 beats/min for the initial 
20 min post-MMB administration, with stability thereafter. The heart 
rate gradually increased after the surgical anesthesia duration, with no 

significant differences between MMB and KX groups. In a separate 
investigation, it was documented that following the administration of 
the MMB anesthetic mixture, the respiratory rate in the SD strain was 
lower compared to that observed after saline administration. 
Conversely, the respiratory rates in the WST and F344 strains did not 
show any significant difference following the administration of the 
anesthetic mixture compared to saline. Subsequent to the 
administration of the anesthetic mixture, the respiratory rates across 
the three distinct rat strains became nearly identical and remained 
stable for the duration of the experiment (49).

TABLE 5 Correlation and regression analysis between P-V measurements and IVPG indices.

HR SW CO SV ESV EDV ESP

r R2 r R2 r R2 r R2 r R2 r R2 r R2

Total IVPG −0.495* 0.245 0.184 0.034 0.491 0.241 0.225 0.05 −0.579* 0.335* 0.155 0.024 0.312 0.097

Basal IVPG −0.177 0.031 0.107 0.011 0.228 0.052 0.261 0.068 −0.31 0.096 −0.109 0.011 0.178 0.031

Mid-Apical IVPG −0.611* 0.373* 0.818* 0.67*** 0.619* 0.384* 0.326 0.106 −0.305 0.093 0.222 0.049 0.604* 0.365*

Mid IVPG −0.538* 0.289* 0.85* 0.723*** 0.561* 0.315* 0.386 0.149 −0.282 0.079 0.353 0.124 0.588* 0.346*

Apical IVPG −0.338 0.114 0.115 0.013 0.301 0.091 −0.078 0.006 −0.134 0.017 −0.288 0.082 0.185 0.034

EDP Ea Tau ESPVR EDPVR PRSW

r R2 r R2 r R2 r R2 r R2 r R2

Total IVPG −0.082 0.006 −0.416 0.173 −0.012 0.0001 0.154 0.023 −0.133 0.017 0.266 0.07

Basal IVPG −0.242 0.058 −0.242 0.058 −0.053 0.002 −0.171 0.029 −0.299 0.089 −0.129 0.016

Mid-Apical IVPG 0.0002 0.0004 −0.539* 0.291* −0.16 0.025 0.395 0.156 −0.047 0.002 0.617* 0.381*

Mid IVPG −0.058 0.003 −0.483* 0.233 −0.074 0.005 0.233 0.054 0.11 0.012 0.661* 0.437**

Apical IVPG 0.152 0.023 −0.276 0.076 −0.263 0.069 0.517 0.268* −0.424 0.18 0.034 0.001

*, **, *** Respectively represent significance p < 0.05, p < 0.001, and p < 0.0001 and are shown in bold.

TABLE 6 Correlation and regression analysis between P-V measurements and STE parameters.

HR SW CO SV ESV EDV ESP

r R2 r R2 r R2 r R2 r R2 r R2 r R2

ApS 0.501* 0.251* −0.255 0.065 −0.379 0.143 −0.499* 0.249* 0.32 0.102 0.07 0.004 −0.66** 0.443**

MIS 0.573* 0.328* −0.384 0.147 −0.231 0.053 −0.577* 0.333* 0.409 0.167 −0.034 0.001 −0.542* 0.294*

BIS 0.078 0.006 −0.143 0.02 −0.056 0.003 −0.058 0.003 −0.073 0.005 −0.299 0.089 0.011 0.0001

ApL 0.329 0.108 −0.342 0.117 −0.312 0.097 −0.034 0.001 0.1 0.01 0.245 0.06 −0.354 0.125

MAL −0.084 0.007 −0.331 0.11 0.005 0.00002 −0.151 0.022 0.039 0.001 −0.092 0.008 −0.073 0.005

BAL 0.872*** 0.761*** −0.694** 0.482** −0.621* 0.385* −0.757*** 0.573*** 0.513* 0.263* −0.101 0.01 −0.908 0.824***

EDP Ea Tau ESPVR EDPVR PRSW

r R2 r R2 r R2 r R2 r R2 r R2

ApS 0.284 0.08 0.353 0.125 0.522* 0.272* −0.629** 0.396** 0.479* 0.229 −0.34 0.115

MIS 0.164 0.026 0.541* 0.293* 0.442* 0.196 −0.395 0.156 0.323 0.104 −0.552* 0.305*

BIS 0.029 0.0008 0.001 0.0001 −0.201 0.04 0.106 0.011 −0.279 0.078 −0.393 0.154

ApL −0.101 0.01 0.238 0.057 0.519* 0.269* −0.346 0.119 0.222 0.049 −0.119 0.014

MAL −0.298 0.088 0.038 0.001 0.057 0.003 0.31 0.096 −0.454 0.207 −0.187 0.035

BAL 0.402 0.161 0.604* 0.365* 0.47 0.221 −0.639** 0.408** 0.346 0.12 −0.856*** 0.734***

*, **, *** Respectively represent significance p < 0.05, p < 0.001, and p < 0.0001 and are shown in bold.
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Top of form

Alveolar bone loss stands out as a significant characteristic of 
periodontitis. This deterioration of bone structure results from a 
complex interplay of immune and inflammatory processes, as our 
body seeks to combat oral bacterial dysbiosis (50). The outcomes of 
our study illustrated that the bone loss detected in rats undergoing 
dental ligation, as evidenced by both methylene blue staining and 
radiographic analysis, faithfully recreated the periodontitis model. 
These findings are consistent with earlier research, which affirms the 
successful establishment of a periodontitis model through the 
induction of alveolar bone resorption (20, 31, 51).

The conventional echocardiographic analysis showed a significant 
reduction in ejection fraction and a decrease in fractional shortening, 
although the fractional shortening did not reach a statistical 
significance level. This suggests a potential compromise in left 
ventricular systolic function in rats with ligature-induced 
periodontitis. This finding is in line with Ribeiro and colleagues’ 
research (20), which demonstrated that experimental periodontitis 
leads to cardiac dysfunction, elevated cardiac cytokines, and 
sympathetic overactivity. These results align with epidemiological 
studies that indicate an elevated risk of cardiovascular events in 
clinical periodontitis cases. Furthermore, several studies have 
highlighted the correlation between the severity of periodontitis and 
cardiac dysfunction in human subjects (52, 53). On the other hand, in 
our study, most of the conventional echocardiographic parameters 
were not found to be  statistically significant between the two 
experimental groups. This suggests that conventional 
echocardiographic examination may not be  suitable for detecting 
subtle changes in systolic and diastolic function, emphasizing the need 
for the use of other advanced examination methods such as IVPG and 
STE analysis.

Echocardiography is a prevalent diagnostic tool in cardiovascular 
research trials and clinical settings (54). Furthermore, there is a 
growing interest in noninvasive diagnostic tools. Currently, IVPG 
stands out as a reliable, noninvasive, preload-independent, and highly 
precise indicator of diastolic function. This is particularly pertinent in 
the evaluation of cardiac structure and function in cases of myocardial 
pathology. It is calculated by dividing the intraventricular pressure 
decay (IVPD) by the left ventricular (LV) length (25). Our study 
findings underscore a decrease in IVPG (specifically Mid, and Mid-to-
apical regions) in rats with ligature-induced periodontitis. Earlier 
research by Courtois et  al. (55) investigating IVPG determinants 
showcased significant reductions in IVPG during acute coronary 
occlusion, along with a correlation between diminished IVPG and 
extensive regional systolic dysfunction. This, combined with their 
prior research, contributed to their hypothesis concerning the 
interaction between IVPG and the left ventricle’s (LV) elastic recoil. 
This suggests a mechanism that supports LV filling at lower diastolic 
pressures. Impairments in regional systolic function could lead to 
reduced energy release during diastole, subsequently resulting in 
abnormal or decreased intraventricular flow. In addition, our 
hemodynamic measurements, especially end-systolic volume (ESV), 
support this hypothesis. In animals with periodontitis, ESV increased, 
these findings are in accordance with Steine et al. (56), who compared 
results from color M-mode echocardiography with invasively acquired 
pressure gradients. In their study, they observed a decrease in IVPG 
along with an inverse relationship with end-systolic volume (ESV). 

However, it remains uncertain from these findings whether isolated 
changes in systolic function, such as ESV, can manifest independently 
of alterations in diastolic function, or if these two properties are 
interconnected through the elastic recoil properties of the LV (57).

Speckle-tracking echocardiography operates by tracing the 
movement of speckle patterns generated by the interference of 
ultrasound beams within the myocardium over time (26). This 
technique captures the degree and velocity of deformation within a 
particular myocardial area in relation to its initial dimensions. One of 
the key advantages of speckle-tracking echocardiography lies in its 
ability to evaluate cardiac function across both long and short-axis 
viewing planes, enabling the assessment of longitudinal, radial, and 
circumferential strain for any selected area of interest. This method 
has proven valuable in detecting ischemic regions, particularly in 
studies related to myocardial infarction (58, 59). Moreover, it holds 
promise for advancing our comprehension of regional cardiac 
dysfunction within chronic disease conditions (60).

While the application of speckle tracking echocardiography as a tool 
for in vivo assessment of myocardial strain in mice was introduced over 
15 years ago (61), only a limited number of studies have utilized this 
technique to examine specific measures of cardiac function in rodents. 
In our study, the regional analysis of longitudinal strain rate unveiled 
noteworthy findings, particularly within the apical and middle segments 
of the septum, as well as the basal segment of the lateral free wall. These 
regions appear particularly susceptible to diastolic dysfunction caused by 
periodontitis, suggesting that they could potentially serve as indicators 
of early systolic impairment in the longitudinal plane.

The examination of pressure-volume loops (PV loops) in 
hemodynamics has emerged as the widely accepted method for 
studying intricate, in vivo cardiac function. This approach facilitates 
the concurrent measurement of pressure and volume signals in the 
beating hearts of intact rodents. On one hand, PV-loop analysis has 
significantly enhanced our understanding of molecular cardiac 
physiology by facilitating the identification of crucial functional 
relationships. On the other hand, it permits the examination of the 
cardiovascular effects of particular therapeutic interventions or 
specific signaling pathways through the use of transgenic disease 
models (62). Regarding hemodynamic measurements, we observed 
tachycardia in rats with periodontitis, which aligns with the findings 
of Ribeiro and colleagues (20), lending support to the concept of 
sympathetic overactivation. It is widely recognized that persistent 
sympathetic overactivity is linked to the development of organ 
damage, including cardiac hypertrophy and compromised kidney 
function (63). Within this context, the outcomes of our present study 
bolster the notion of an elevated cardiovascular risk associated with 
gingival infection in the evaluated model especially compromised 
systolic function and myocardial relaxation.

Both load-dependent parameters (including stroke volume, stroke 
work, and cardiac output) and load-independent parameters (such as 
ESPVR and preload recruitable stroke work) derived from pressure-
volume (P-V) loops indicated a gradual decline in left ventricular (LV) 
function in the periodontitis rat models. This decline is evidenced by 
a reduction in the amplitude of the P-V loops, signifying waning 
contractility in the affected hearts. The overall deterioration in LV 
function seems to stem from an initial substantial decline in systolic 
function (manifested as reduced end-systolic pressure—ESP, SV, CO, 
and SW). In addition, throughout the cardiac cycle, the heart’s work 
operates within the boundaries delineated by the End-diastolic 
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pressure-volume relationship (EDPVR) and the ESPVR. Within the 
normal physiological range of LV systolic and diastolic pressures, 
ESPVR remains relatively unaffected by preload and afterload 
variations, making it a dependable marker of LV contractility. Notably, 
the slope of the ESPVR was significantly reduced in the periodontitis 
rat models. This trend, in conjunction with other contractility 
measures (such as PRSW), clearly indicates a subtle deterioration in 
contractility and subsequent systolic function (64).

Our investigation also encompassed an examination of the impact 
of induced periodontitis on the left ventricular muscle tissue, with a 
specific focus on myocyte morphology, histopathological assessments 
following 5 weeks of induced periodontitis revealed a range of 
noteworthy observations. These included instances of inflammatory 
cell infiltration, myocyte degeneration, and a loss of organized 
arrangement. Furthermore, interstitial changes were also noted. 
Notably, comparable studies employing similar experimental designs 
have reported substantial inflammatory cell infiltration in various 
cardiac tissues. For instance, IP was found to induce significant 
inflammatory cell infiltration in myocardial tissue (19), the aortic wall 
(4), and the atrium (65).

The research conducted by Köse et al. (19) provided insights into 
the early chronic phase effects of periodontitis on heart tissue, revealing 
degenerative and hypertrophic changes. Furthermore, the authors 
posited that extended exposure to systemic inflammatory stress might 
elevate the risk of hypertrophic alterations. Miyajima et  al. (4) 
demonstrated that periodontitis triggers the adherence of monocytes 
and macrophages to aortic endothelial cells, achieved through an 
increase in p65 NF-kΒ-mediated vascular cell adhesion molecule-1 
expression. This adhesion mechanism is postulated to also apply to 
ventricular endothelial cells, potentially influencing muscle tissue. The 
consequential release of a multitude of cytokines and growth factors by 
these adhered cells is believed to contribute to the histopathological 
changes mentioned earlier. In another study, Yu et al. (65) discovered 
hypertrophy, particularly in left atrial myocytes, during histopathological 
evaluations conducted 90 days after exposure to experimental 
periodontitis in dogs. Notably, this hypertrophy was not significantly 
observed in ventricular myocytes. From this perspective, it is plausible 
to consider that histopathological changes in heart tissue due to 
periodontitis entail degenerative changes during the initial phase, which 
potentially transition to hypertrophic changes during the chronic stage, 
dependent on the extent of exposure to inflammatory stress.

Conclusion

The study highlights the potentially significant role of periodontitis 
in causing cardiovascular dysfunction. Comprehensive cardiac 
assessments showed subtle changes in cardiac parameters, 
demonstrating how periodontal inflammation may functionally 
compromise CVD progression. Advanced cardiac evaluation 
techniques such as pressure gradient analysis, speckle tracking, and 
PV loop analysis were employed to emphasize the importance of using 
cutting-edge methods to understand complex biological relationships. 
This research marks a crucial step in comprehending the intricate 
links between periodontal health and cardiovascular well-being, with 
the potential to advance clinical practices and improve patient 
outcomes in these interconnected domains.

Limitations

While our study has yielded valuable insights, it is important 
to acknowledge certain limitations. We  did not elucidate the 
intricate mechanistic pathways responsible for the observed 
cardiac changes, potentially overlooking crucial components 
that contribute to the link between periodontitis and 
cardiac dysfunction. This omission underscores the need for 
further investigations into the molecular underpinnings of 
this relationship. Nevertheless, our research has provided 
valuable non-invasive data on cardiac function and structure. 
This data serves as a foundation for future research endeavors 
aiming to delve deeper into the molecular intricacies of this 
connection and the relationship between the severity of 
periodontitis and the degree of impairment in heart function 
requires further research.
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