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Introduction

Most of the disease-associated single nucleotide polymorphisms (SNPs) lie in non- coding regions of the human genome. Many of these variants have been predicted to impact the expression and function of long non-coding RNAs (lncRNA), but the contribution of these molecules to the development of complex diseases remains to be clarified.



Methods

Here, we performed a genetic association study between a SNP located in a lncRNA known as LncTGM2 and the risk of developing type 2 diabetes (T2D), and analyzed its implication in disease pathogenesis at pancreatic beta cell level. Genetic association study was performed on human samples linking the rs2076380 polymorphism with T2D and glycemic traits. The pancreatic beta cell line EndoC-bH1 was employed for functional studies based on LncTGM2 silencing and overexpression experiments. Human pancreatic islets were used for eQTL analysis.



Results

We have identified a genetic association between LncTGM2 and T2D risk. Functional characterization of the LncTGM2 revealed its implication in the transcriptional regulation of TGM2, coding for a transglutaminase. The T2Dassociated risk allele in LncTGM2 disrupts the secondary structure of this lncRNA, affecting its stability and the expression of TGM2 in pancreatic beta cells. Diminished LncTGM2 in human beta cells impairs glucose-stimulated insulin release.



Conclusions

These findings provide novel information on the molecular mechanisms by which T2D-associated SNPs in lncRNAs may contribute to disease, paving the way for the development of new therapies based on the modulation of lncRNAs.
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1 Introduction

Type 2 diabetes (T2D) is a complex metabolic disease that develops in genetically susceptible individuals (1). Indeed, the trigger of T2D development is presumed to be a combination of lifestyle and environmental factors working together with the genetic background (2). Genome-wide association studies (GWAS) have identified several genomic regions associated with the risk of T2D (3). Although these studies have provided a better understanding of T2D genetics, most of the genetic variants identified so far fall into non-coding regions of the genome. The molecular mechanism by which these variants increase risk of T2D remains to be clarified.

Transglutaminase 2 (TGM2) is a calcium-dependent multifunctional enzyme that can act as GTPase or transamidase, and that participates in several cellular processes, including apoptosis, cell adhesion or insulin release, among others (4). Disruption of TGM2 in mice has been associated with increased glucose levels, and reduced insulin release in response to glucose (5). In addition, missense mutations in TGM2 have been associated with early onset T2D and maturity onset diabetes of the young (MODY) (6).

A recent study identified a lncRNA (LOC107987281 or LncTMG2) located within the first intron of the TGM2 gene. The same study revealed that the expression of the lncRNA was tightly correlated with the expression of the TGM2 coding gene in several cell lines and tumor tissues, suggesting its role as a cis acting transcriptional regulatory lncRNA (7).

LncRNAs are non-coding RNA molecules of more than 200 nucleotides in lenght that participate in several cellular and biological processes, including transcriptional regulation (8). Most of the complex disease-associated variants are located in non-coding regions of the human genome, and more specifically, in lncRNAs. The presence of disease-associated single nucleotide polymorphism (SNPs) in exonic regions of lncRNAs usually disrupt their secondary structure, affecting their capacity to interact with other macromolecules, and eventually altering their function (9). Although the function of most lncRNAs has not been annotated yet, there is already accumulating evidence of their implication in the development of several diseases, including metabolic disorders (10–12).

In the present work, we have described a genetic association between a SNP located in the coding sequence of LncTGM2 and T2D and related traits. In addition, we have characterized the relation between LncTGM2 and TGM2 in pancreatic beta cells and unveiled the mechanisms by which LncTGM2 might induce beta cell dysfunction in T2D.



2 Materials and methods


2.1 Association study

Cohort 1 consisted of 725 individuals (47 ± 11 years, 54% men) recruited in the northwest of Spain, including general population, and obesity and diabetes outpatient clinics in which the percentage of obese individuals was 72% and the percentage of type 2 diabetic individuals was 11% (13). Cohort 2 included 616 Caucasian subjects selected for a study of non-classic cardiovascular risk factors performed in the northwest of Spain (Asturias) (14). Participants (52 ± 12 years, 45% men, 26% obesity, 11% T2D) were randomly identified from a census and invited to participate.

Clinical characterization of human cohorts included a standardized questionnaire, physical examination and the performance of routine laboratory tests. Height and weight were measured by trained personnel using calibrated scales and a wall-mounted stadiometer, respectively, and with the participant in light clothing and without shoes. Body mass index (BMI) was calculated by dividing weight in kilograms by the square of the height in meters (kg/m2). Obesity was set at BMI≥30 kg/m2. The waist of the subjects was measured with a soft tape midway between the lowest rib and the iliac crest, hip circumference was measured at the widest part of the gluteal region, and waist-to-hip ratio was then calculated. Together with clinically relevant information and subsidiary data, the number of cigarettes/day (if any) and the use of hormonal contraceptives were recorded. In those participants that agree (>75%), oral glucose tolerance test (OGTT) was performed to measure glucose tolerance. Blood samples from all the participants were collected, and after 15 minutes, tubes were centrifuged at 4,000 r.p.m. at room temperature. The serum and peripheral blood leukocytes were separated and immediately frozen at –80°C. Genomic DNA was extracted from blood samples following standard purification methods (QIAamp DNA Blood Mini Kit, Qiagen, Hilden, Germany) and DNA quantity and purity was determined using a spectrophotometer (GeneQuant, GE Health Care, Piscataway, USA). The targeted single nucleotide polymorphism (SNP) rs2076380 was genotyped by means of a predesigned rhAmp™ allelic discrimination assay (Hs.GT.rs2076380.A.1; Thermo Fisher Scientific, Massachusetts, USA) and the rhAmp Genotyping Master Mix (IDT, Coralville, USA), using a LightCycler 480 RT-qPCR System sequence detector (Roche Diagnostics, Barcelona, Spain). Replicates and positive and negative controls were included in all reactions.



2.2 Cell cultures and human cDNA samples

The EndoC-βH1 human pancreatic cell line (Univercell Biosolutions, Paris, France) was cultured in plates coated with Matrigel-fibronectin (100 mg/ml and 2 mg/ml, respectively; Sigma-Aldrich, Burlington, USA) in Opti-β1 medium (Univercell Biosolutions). DMEM containing 5.6 mmol/l glucose, 2% vol/vol Fetal Bovine Serum, 50 μmol/l 2-mercaptoethanol (Bio-Rad, Hercules, USA), 10 mmol/l nicotinamide (Calbiochem, Darmstadt, Germany), 5.5 μg/ml transferrin and 6.7 ng/ml selenite (Sigma-Aldrich) was used for transfection.

EndoC-βH1 cell line was Mycoplasma free as determined by the MycoAlert Mycoplasma Detection kit (Lonza). For the prevention of Mycoplasma contamination, Plasmocin Prophylactic (Invivogen, Toulouse, France) was added to the culture medium on a regular basis.

cDNA samples from human pancreatic islets were obtained from Cisanello University Hospital, Pisa, Italy. All the islets were isolated and cultured using the same experimental conditions and following established isolation procedures (15). Characteristics of islet preparations are described in Table S1. The Ethical Committee of Cisanello University Hospital approved experiments using human islets.



2.3 Silencing experiments

LncTGM2 silencing in the EndoC-βH1 cell line was performed by transfecting 30 nmol/l of a siRNA targeting LncTGM2 (CD.Ri.214258.13.13, IDT) using Lipofectamine RNAimax reagent (Thermo Fisher Scientific) following the manufacturer’s instructions.



2.4 Plasmid construction and transfection

For overexpressing plasmids, LncTGM2 was purchased as a gBlock (IDT) and cloned into a modified pCMV6 vector using KpnI and FseI restriction enzymes (New England Biolabs, Ipswich, USA). Plasmids were transfected using Lipofectamine 2000 Transfection Reagent (Invitrogen, Carlsbad, USA) following the manufacturer’s instructions.



2.5 Cell treatments

EndoC-βH1 cells were exposed to Actinomycin D (Sigma-Aldrich) at a final concentration of 5 μg/ml for 2, 4 or 6h. Palmitate treatment was performed by adding BSA-palmitic acid (0.5 mmol/l; 1:1) to DMEM/F-12, complemented with 0.25% vol/vol FBS, 50 μmol/l 2-mercaptoethanol (Bio-Rad), 10 mmol/l nicotinamide (Calbiochem), 5.5 μg/ml transferrin, 6.7 ng/ml selenite (Sigma-Aldrich), 100 units/ml penicillin and 100 μg/ml streptomycin (Lonza) for 4 or 8h.



2.6 Cellular fractionation

For LncTGM2 RNA quantification in subcellular fractions of EndoC-βH1 cells, nuclei were isolated using C1 lysis buffer (1.28 mol/l sucrose, 40 mmol/l Tris -HCl pH 7.5, 20 mmol/l MgCl2, 4% vol/vol Triton X-100). LncTGM2, MEG3 (nuclear control) and RPLP0 (cytoplasmic control) expression levels were measured by RT-qPCR and compared to the total amount of those RNAs in the whole cell lysate.



2.7 RNA isolation and RT-qPCR

RNA extraction was performed using the NucleoSpin RNA Kit (Macherey Nagel, Düren Germany) and expression values were determined by RT-qPCR using iTaq Universal SYBR Green Supermix (Bio-Rad) using specific primers for each target RNA (Table S2). All RT-qPCR measurements were performed in duplicates and expression levels were analyzed using the 2–ΔΔCt method. A commercially available RNA panel set (Human total RNA master panel II, Clontech, Saint-Germain-en-Laye, France) was used to assess LncTGM2 and TGM2 expression levels in different human tissues.



2.8 Western blot analysis

EndoC-βH1 cells were washed with cold PBS and lysed in Laemmli buffer (62 mmol/l Tris-HCl, 100 mmol/l dithiothreitol (DTT), 10% vol/vol glycerol, 2% wt/vol SDS, 0.2 mg/ml bromophenol blue, 5% vol/vol 2-mercaptoethanol). Proteins in the lysate were separated by SDS-PAGE. After electrophoresis, proteins were transferred to nitrocellulose membranes using a Transblot-Turbo Transfer System (Bio-Rad) and blocked in 5% wt/vol non-fatty milk diluted in TBST (20 mmol/l Tris, 150 mmol/l NaCl and 0.1% vol/vol Tween 20) at room temperature for 1h. The membranes were incubated overnight at 4°C with a primary antibody specific for TGM2 (15100-1-AP, Proteintech Group, Rosemont, USA) diluted 1:1000 in 5% wt/vol BSA or anti-α-tubulin (Cat #T9026, Sigma-Aldrich) diluted 1:5000 in 5% wt/vol BSA. Immunoreactive bands were revealed using the Clarity Max Western ECL Substrate (Bio-Rad) after incubation with a horseradish peroxidase-conjugated anti-rabbit (1:1000 dilution in 5% wt/vol non-fatty milk) or anti-mouse (1:5000 dilution in 5% wt/vol non-fatty milk) secondary antibody for 1h at room temperature. The immunoreactive bands were detected using a Bio-Rad Molecular Imager ChemiDoc XRS and quantified using ImageLab software (Bio-Rad).



2.9 TGM2 promoter reporter assay

TGM2 promoter sequence was cloned into an empty pBV-Luc plasmid (Addgene, Watertown, USA) using KpnI and EcoRI restriction enzymes. EndoC-βH1 cells were transfected with a control vector (ovCTRL) or a vector overexpressing LncTGM2 (ovLncTGM2), and co-transfected with the TGM2 promoter reporter vector plus a pRL-CMV plasmid (used as an internal control) using Lipofectamine 2000 Transfection Reagent (Invitrogen). Dual-Luciferase Reporter Assay System (Promega, Madison, USA), was used to measure bioluminescence following the manufacturer’s protocol.



2.10 In silico secondary structure prediction

Secondary structure of LncTGM2 harboring the different alleles of rs2076380, rs7275079 and rs2067027 SNPs was predicted using the RNAsnp Web Server tool (16).



2.11 RNA mobility shift assay

LncTGM2 harboring rs2076380-A or rs2076380-G alleles were in vitro transcribed using T7 RNA Polymerase kit (TaKaRa, Kusatsu, Japan). RNAs were run in a native TBE 2% wt/vol agarose gel and migration profile was analyzed in a ChemiDoc XRS apparatus (Bio-Rad).



2.12 Insulin release

For insulin release experiments, LncTGM2-silenced EndoC-βH1 were left in Opti-β2 (Univercell Biosolutions) starving medium for 24h. After glucose starvation, cells were incubated in KREBS medium (Univercell Biosolutions) for 1h, and consecutively exposed to 0 or 20 mmol/l glucose for 40 minutes. Supernatant and lysate were harvested and insulin release and content measured by a commercial human insulin ELISA kit (Mercodia, Uppsala, USA) according to the manufacturer’s instructions.



2.13 Statistics

The association between the rs2076380 single variation in the TGM2 gene, clinical parameters and the risk of T2D was assessed using SPSS Statistics (IBM). Departures from Hardy-Weinberg equilibrium were tested in all groups using a chi-square goodness of fit test with one degree of freedom. The risk of developing T2D under exposure to rs2076380 TGM2 genotypes was evaluated using logistic regression to estimate Odd Ratios (OR), considering a dominant model in which G-allele carriers (i.e., AG-heterozygotes plus GG-homozygotes) were the reference group. To compare groups with respect to continuous variables, one-way ANOVA for multiple comparisons was used. Other statistical tests and plots were performed using GraphPad Prism 8 software (Dotmatics). Significance-level was set at p-value <0.05. Results for in vitro functional studies are represented as means ± standard error of mean (S.E.M.).




3 Results


3.1 An exonic SNP in LncTGM2 is associated with T2D risk

In order to determine the potential association of LncTGM2 with T2D clinical parameters, we performed an association study by genotyping a SNP located in the exonic region of LncTGM2 (rs2076380; chr20:38,165,027-38,165,227, hg38). This SNP can be considered as a tagSNP since it is in high linkage disequilibrium (LD>0.8) with other SNPs in the region (Figure S1). The LncTGM2 SNP rs2076380 was tested in association with measures of T2D and other metabolic and clinical parameters in two independent cohorts (Table S3). In cohort 1, the frequency of AA-individuals for the LncTGM2 SNP was 8.6%, similarly to the observed frequency in Cohort 2 (8.3%). These frequencies are in line with the observed frequency of the minor allele (A) in Caucasian populations (1000 Genomes Europe; A allele frequency = 0.32) (17) and Spanish control individuals (Medical Genome Project healthy controls from Spanish population; A allele frequency = 0.225) (18).

As observed in Figure 1, the percentage of known type 2 diabetic individuals was increased in individuals harboring the rs2076380-AA genotype in both cohorts (Cohort 1: OR=1.13 [0.999-1.27], Pearson’s Chi-square p=0.006, two-sided Fisher’s exact test p=0.013); and Cohort 2: OR=1.08 [0.996-1.18], Pearson’s Chi-square p=0.018, two-sided Fisher’s exact test p=0.026). For both cohorts, regression analyses depicted the impact of the polymorphism in LncTGM2 on T2D incidence (ANOVA p-value of 0.026 in Cohort 1, and p=0.013 in Cohort 2) after correcting for sex and age. A codominant genetic model that included age, weight and sex effects was fitted to estimate the ORs between the exposure to the AA, AG and GG genotypes, the later as the reference group. The similar ORs for AG and GG genotypes obtained for the codominant model suggested the possibility of fitting a recessive model for AA-genotype carriers. This model allowed us to determine the OR between carriers of the AA genotype in relation to the G-allele porters. In this case, the residual deviance of the genotype, once age, weight and sex were added to the model, reached a p-value <0.05, indicating that the genotype effect was significant.




Figure 1 | An exonic SNP in LncTGM2 is associated with T2D risk. The graph shows the percent of T2D in two independent cohorts segregated according to their rs2076380 genotype.



In addition, we observed that in Cohort 1, fasting glucose (p=0.005) and insulin levels (p=0.006) were increased compared to G-allele carriers (Table S3). However, in Cohort 2, association with fasting glucose only reached statistical significance in female participants (Table S3).



3.2 LncTGM2 expression is correlated with TGM2 expression in several human tissues and regulated by lipotoxicity in pancreatic beta cells

Previous studies have correlated LncTGM2 and TGM2 expression in tumor tissues and some human cell lines, including lymphoblast (K562), promyeoloblast (HL60) and monocyte (THP-1) cell lines (7). In order to clarify whether LncTGM2 and TGM2 expression was also correlated in healthy human tissues and in pancreatic beta cells, we first evaluated the expression of both genes in EndoC-βH1 cells and a set of human tissues. The highest expression of both, LncTGM2 and TGM2, was found in lung, placenta and heart, and the expression in the EndoC-βH1 cell line was similar to that of intestine and liver (Figure S2). Spearman’s correlation analysis showed a significant correlation between LncTGM2 and TGM2 expression across the tissues analyzed (R=0.87 (0.59-0.9); p<0.0001). Interestingly, a correlation was also seen in EndoC-βH1 cells using siRNA-driven inhibition of LncTGM2. As shown in Figure 2A, a 70% decrease of LncTGM2 expression reduced TGM2 mRNA expression by 20%, suggesting a potential implication of LncTGM2 in the transcriptional regulation of TGM2.




Figure 2 | LncTGM2 co-expresses with TGM2 and regulates its transcriptional activity in pancreatic beta cells. (A) LncTGM2 was silenced in the EndoC-βH1 cell line using a siRNA, and (B) EndoC-βH1 cells were exposed to palmitate (0.5 mM) for 4 or 8h. LncTGM2 and TGM2 expression was assessed by RT-qPCR and normalized by the reference gene RPLP0. The results are means ± S.E.M. of 3-4 independent experiments; *p < 0.05, **p < 0.01, and ***p < 0.001 by Student’s t-test. (C) RT-qPCR analysis of LncTGM2, MEG3 (as nuclear marker) and RPLP0 (as cytoplasmic marker) in nuclear and cytoplasmic fractions in EndoC-βH1 cells. (D) HEK-293 cells were transfected with a control vector (ovCTRL) or a vector overexpressing LncTGM2 (ovLncTGM2), and co-transfected with a TGM2 promoter luciferase reporter construct plus a pRL-CMV plasmid (used as internal control). After 48h of recovery, bioluminescence was measured.



In order to simulate the pathophysiological conditions of T2D in pancreatic beta cells, we next exposed EndoC-βH1 cells to palmitate (PA) as an in vitro model of lipotoxicity (19). As shown in Figure 2B, 4 and 8h PA exposure decreased both LncTGM2 and TGM2 expression in EndoC-βH1 cells, suggesting that in the presence of a lipotoxic insult the expression of both genes is reduced.



3.3 LncTMG2 regulates the transcriptional activity of TGM2

Knowledge of the subcellular localization of lncRNAs is crucial to understand and characterize their function. In contrast to protein-coding mRNAs, lncRNA themselves should be located in their site of action, and thus, their location within the cell is crucial for their function. While nuclear lncRNAs are usually implicated in the regulation of transcriptional activity, cytoplasmic lncRNAs can participate for example, in the regulation of mRNA stability or in protein translation (20). Having this in mind, we next decided to analyze the subcellular localization of LncTGM2 in EndoC-βH1 cells. As shown in Figure 2C, LncTGM2 was detected in both nuclear and cytoplasmic fractions, but its expression level was significantly higher in the nuclear compartment, suggesting its potential implication in transcriptional regulation. Since expression of LncTGM2 and TGM2 was significantly correlated in pancreatic beta cells, we performed a promoter reporter assay to clarify whether LncTGM2 was directly regulating the promoter activation of TGM2 gene. To this aim, we constructed an expression vector coding for a luciferase under the control of the promoter of TGM2. The luciferase vector was then co-transfected in EndoC-βH1 cells with an empty overexpression plasmid (ovCTRL) or with the overexpression plasmid of LncTGM2 (ovLncTGM2) and the activation of TGM2 promoter was determined by measuring bioluminiscence. As shown in Figure 2D, the activation of the TGM2 promoter was 1.5-fold higher in LncTGM2-overexpressing cells than in control cells, pointing out a role of LncTGM2 in the activation of TGM2 promoter, and consequently in the transcriptional activation of TGM2.



3.4 The T2D-associated risk allele in LncTGM2 disrupts its secondary structure impacting on its stability, and correlates with decreased expression of TGM2 in beta cells

Disease-associated SNPs located within lncRNAs can affect their function through the disruption of their secondary structure (21, 22). As previously shown (Figure S1), the T2D-associated rs2076380 SNP is in high LD with other two SNPs located in the exonic region of LncTGM2 (rs7275079 and rs2067027). To assess whether these SNPs alter the secondary structure of LncTGM2, we performed an in silico prediction analysis using the RNAsnp webserver from the Center for non-coding RNA in Technology and Health (23). Interestingly, rs2076380 was predicted to significantly alter the secondary structure of LncTGM2 (p=0.0803), while the software did not predict any significant change in the structure of the lncRNA when the different alleles of rs7275079 or rs2067027 SNPs were present (p>0.2) (data not shown). As shown in Figure 3A, the predicted secondary structures of LncTGM2 carrying the T2D protective (rs2076380-G) or risk allele (rs2076380-A) were significantly different. Consistent with the prediction, in vitro–transcribed forms of T2D protective and risk allele–harboring LncTGM2 revealed different motilities on a native agarose gel (Figure 3B), suggesting a different conformation of the lncRNA in the presence of one or other allele in rs2076380.




Figure 3 | The T2D-associated risk allele in LncTGM2 disrupts its secondary structure impacting on its stability, and correlates with decreased expression of TGM2 in beta cells. (A) In silico prediction of the secondary structure of LncTGM2 harboring each allele for rs2076380; T2D protective allele (G) or T2D risk allele (A). (B) Electrophoretic mobility profiles of in vitro-transcribed LncTGM2 molecule harboring the T2D protective allele (rs2076380-G) or the risk allele (rs2076380-A). (C) EndoC-βH1 cells were transfected with overexpression plasmids of LncTGM2 harboring the protective (ovLncTGM2-G) or risk allele (ovLncTGM2-A) for T2D, and mRNA levels of LncTGM2 and TGM2 were determined by RT-qPCR and normalized to RPLP0. The results are means ± S.E.M. of 3 independent experiments; *p < 0.05 by Student’s t-test. (D) EndoC-βH1 cells were transfected with LncTGM2 overexpression plasmids harboring the protective (ovLncTGM2-G) or risk allele (ovLncTGM2-A) for T2D. EndoC-βH1 cells were exposed to Actinomycin D (ActD) (5 μg/ml) for 2, 4 or 6h and LncTGM2 mRNA level was determined by RT-qPCR. The results are means ± S.E.M. of 3 independent experiments. *p < 0.05 ovLncTGM2-G vs. ovLncTGM2-A at the same time-point.



Taking into account that the secondary structure of a lncRNA is crucial for its interaction with other macromolecules, and thus, for its function (9), we next decided to determine whether the genotype of the T2D-associated SNP in LncTGM2 affected TGM2 expression in human pancreatic islets. To this aim we genotyped rs2076380 SNP and measured TGM2 expression in 16 cDNA samples from human islets, and performed an eQTL analysis. As shown in Figure S3, there was a trend for higher expression of TGM2 in islets harboring the protective rs2076380-GG genotype compared to islets harboring the risk allele in heterozygosis (rs2076380-AG) or homozygosis (rs2076380-AA), although the differences did not reach statistical significance, probably due to the limited number of islets.

Next, to characterize the potential effect of each allele in rs2076380 SNP on the expression of both, LncTGM2 and TGM2, we constructed two LncTGM2 overexpression plasmids, one harboring the T2D risk allele (ovLncTGM2-A), and the other harboring the T2D protective allele (ovLncTGM2-G). Interestingly, allele-specific upregulation of LncTGM2 in beta cells revealed that the expression level reached by transfecting ovLncTGM2-G plasmid was higher than the expression level obtained with ovLncTGM2-A plasmid (Figure 3C), suggesting that the T2D risk allele might be affecting the stability of LncTGM2 RNA molecule.

In order to directly test whether the T2D-associated polymorphism affected LncTGM2 stability, we next performed an allele-specific overexpression of LncTGM2 and exposed the EndoCβ-H1 cells to Actinomycin D, a drug that inhibits transcription. As shown in Figure 3D, LncTGM2 harboring the protective allele (rs2076380-G) was more stable than the lncRNA harboring the risk allele (rs2076380-A) at all time-points, although the differences only reached statistical significance at 4h of Actinomycin D treatment (p<0.05). These results confirmed that the LncTGM2 risk allele in the T2D-associated rs2076380 SNP reduced the stability of the lncRNA.

To clarify whether the decreased stability of LncTGM2-A affected its capacity to regulate TGM2 expression, we next analyzed the expression of TGM2 in EndoC-βH1 cells overexpressing LncTGM2-A or LncTGM2-G. As observed in Figure 3C, only the upregulation of the lncRNA harboring the protective allele (ovLncTGM2-G) increased the expression of TGM2 mRNA. These results were also confirmed at the protein level (Figure S4).

In summary, these results suggested that the LncTGM2 harboring the T2D risk allele induced less TGM2 expression due to its reduced stability.



3.5 LncTGM2 downregulation affects glucose-stimulated insulin secretion

Previous studies have shown that TGM2 might be implicated in insulin release through different mechanisms, including cytoplasmic actin remodeling and regulation of the action of other proteins during granule movement (24). Taking into account that our present results suggest that the T2D risk allele in LncTGM2 might induce a decrease in TGM2 expression in pancreatic beta cells, we next decided to determine the potential contribution of LncTGM2 in insulin release.

To this aim, we silenced LncTGM2 with a specific siRNA in EndoC-βH1 cells and determined glucose-stimulated insulin release. As shown in Figure 4, high glucose stimulation in siCTRL-transfected EndoC-βH1 cells increased insulin secretion. In siLncTGM2-transfected beta cells, however, high glucose-induced insulin secretion (GSIS) was no longer statistically significant, suggesting that disruption of LncTGM2 in pancreatic beta cell might affect GSIS through diminished expression of TGM2.




Figure 4 | LncTGM2 downregulation affects glucose-stimulated insulin secretion. LncTGM2 was silenced using a siRNA and EndoC-βH1 cells were exposed to 0 or 20 mmol/l glucose. Insulin release was determined by ELISA. The results are means ± S.E.M. of 4 independent experiments; *p<0.05 by Student’s t-test.






4 Discussion

In the current study, we identified a genetic association between LncTGM2 and T2D and glycemic traits in two independent cohorts. Previous GWAS in larger Caucasian populations have not detected a genetic association between rs2076380 and T2D, however based on phenotype-wide association data (T2D knowledge portal), this polymorphism has been associated with T2D-related complications (e.g. microalbuminuria). Moreover, based on the T2D knowledge portal, the genomic region in which LncTGM2 is located (also containing TGM2, RPRD1B and KIAA1755 genes) has been associated with several metabolic and glycemic traits, including cardiovascular disease related parameters, cholesterol and type 2 diabetes. The main reason for the discordance between our findings and GWAS data may lie on the fact that our two cohorts are enriched for obese individuals (especially Cohort 1), and in our both cohorts, T2D incidence seem to be associated with obesity (data not shown). In this sense, several studies have described a link between TGM2 and obesity and associated glycemic traits. For example, a study found that loss of TGM2 sensitizes for diet-induced obesity-related inflammation and insulin resistance (25). Moreover, a network-based approach to assess the cellular processes associated with protein–protein interaction subnetworks of glycemic traits showed that TGM2 was associated with both, HOMA-β and HOMA-IR, suggesting a potential role of this protein in pancreatic beta cell function and insulin resistance (26). The same study concluded that HOMA-β-associated GWAS genes (which include TGM2) enriched pathways of fat metabolism, especially in adipose tissues, supporting the “lipotoxicity theory” of beta cell failure in T2D.

In line with this hypothesis, in the present study, we have observed a co-expression between LncTGM2 and the coding gene TGM2 in pancreatic beta cells under basal and lipotoxic conditions. Our data suggest that lipotoxicity, a typical feature of obesity-associated T2D, reduces LncTGM2, which in turn provokes a reduction of TGM2 in pancreatic beta cells. Indeed, lipotoxicity (e.g. high fat diet) has been previously associated with TGM2 expression reduction in other tissues, including liver (27).

Moreover, we propose a mechanism by which LncTGM2 may affect glucose-stimulated insulin release through TGM2 expression reduction in an allele-specific manner. The lncRNA LncTGM2 lies within the first intron of the TGM2 gene (9), which encodes a multifunctional enzyme that has been implicated in the pathogenesis of early onset T2D and MODY (6). Interestingly, early onset T2D and MODY-associated TGM2 mutants have altered enzymatic activities, such as reduced transamidation and kinase activity that impact in glucose-stimulated insulin release (28). Transcriptional regulation of TGM2 is controlled by several transcription factors, including nuclear factor-kappa B, RA receptor/retinoid X receptor, liver X receptor and Sp1 (4). Here, we show for the first time that LncTGM2 participates in the transcriptional regulation of TGM2 in pancreatic beta cells. We observed that the T2D-associated risk allele in LncTGM2 correlates with a reduction of TGM2 expression in pancreatic beta cells. Moreover, our results suggest that a reduction in TGM2 expression in human beta cells impair glucose-stimulated insulin release. These observations are in line with studies in rodents, in which reduced TGM2 activity has been linked to impaired glucose-stimulated insulin secretion (GSIS) (28), and also with data showing that naturally occurring mutations altering TGM2 enzymatic activities correlate with reduced insulin secretion (29). Interestingly, TGM2 has also been shown to interact with nuclear proteins (e.g. BAF and H3) immediately upon a glucose stimulus, suggesting that it may be involved not only in insulin secretion, but also in the regulation of glucose-induced gene transcription (30).

Although the molecular mechanisms by which LncTGM2 participates in the regulation of TGM2 transcription remain to be fully clarified, our results demonstrate that a T2D-associated polymorphism affects the secondary structure of the lncRNA, and, eventually, disrupts its function. Several other disease-associated SNPs that alter the secondary structure of lncRNAs affect the regulation of genes that participate in important pathways for disease pathogenesis, including type 1 diabetes and cardiovascular disease (31, 32). Here we demonstrate that the T2D risk allele in LncTGM2 reduces its stability, affecting TGM2 expression in pancreatic beta cells. Some studies have suggested that disease-associated SNPs in lncRNAs may affect RNA-turnover through disruption of the binding of proteins that regulate stability, and thus, affecting their biological function (33–35).

In conclusion, our results show that LncTGM2 is associated with T2D and suggest that it might be implicated in disease pathogenesis through an allele-specific downregulation of TGM2 in pancreatic beta cells. Our findings provide new information on the molecular mechanisms by which T2D-associated SNPs in lncRNAs cause disease and open the door to the development of novel diagnostic tools and therapeutic approaches based on lncRNA modulation.
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   Aim

Rare genetic variants in the CUBN gene encoding the main albumin-transporter in the proximal tubule of the kidneys have previously been associated with microalbuminuria and higher urine albumin levels, also in diabetes. Sequencing studies in isolated proteinuria suggest that these variants might not affect kidney function, despite proteinuria. However, the relation of these CUBN missense variants to the estimated glomerular filtration rate (eGFR) is largely unexplored. We hereby broadly examine the associations between four CUBN missense variants and eGFRcreatinine in Europeans with Type 1 (T1D) and Type 2 Diabetes (T2D). Furthermore, we sought to deepen our understanding of these variants in a range of single- and aggregate- variant analyses of other kidney-related traits in individuals with and without diabetes mellitus.


 Methods

We carried out a genetic association-based linear regression analysis between four CUBN missense variants (rs141640975, rs144360241, rs45551835, rs1801239) and eGFRcreatinine (ml/min/1.73 m2, CKD-EPIcreatinine(2012), natural log-transformed) in populations with T1D (n ~ 3,588) or T2D (n ~ 31,155) from multiple European studies and in individuals without diabetes from UK Biobank (UKBB, n ~ 370,061) with replication in deCODE (n = 127,090). Summary results of the diabetes-group were meta-analyzed using the fixed-effect inverse-variance method.


 Results

Albeit we did not observe associations between eGFRcreatinine and CUBN in the diabetes-group, we found significant positive associations between the minor alleles of all four variants and eGFRcreatinine in the UKBB individuals without diabetes with rs141640975 being the strongest (Effect=0.02, PeGFR_creatinine=2.2 × 10-9). We replicated the findings for rs141640975 in the Icelandic non-diabetes population (Effect=0.026, PeGFR_creatinine=7.7 × 10-4). For rs141640975, the eGFRcreatinine-association showed significant interaction with albuminuria levels (normo-, micro-, and macroalbuminuria; p = 0.03). An aggregated genetic risk score (GRS) was associated with higher urine albumin levels and eGFRcreatinine. The rs141640975 variant was also associated with higher levels of eGFRcreatinine-cystatin C (ml/min/1.73 m2, CKD-EPI2021, natural log-transformed) and lower circulating cystatin C levels.


 Conclusions

The positive associations between the four CUBN missense variants and eGFR in a large population without diabetes suggests a pleiotropic role of CUBN as a novel eGFR-locus in addition to it being a known albuminuria-locus. Additional associations with diverse renal function measures (lower cystatin C and higher eGFRcreatinine-cystatin C levels) and a CUBN-focused GRS further suggests an important role of CUBN in the future personalization of chronic kidney disease management in people without diabetes.




 Keywords: genetics, CUBN , cubilin, kidney function, eGFR, diabetes, non-diabetes, chronic kidney disease (CKD) 

  1. Introduction.

Urine albumin or albuminuria is one of the most important biomarkers of kidney damage in individuals with or without diabetes. In healthy individuals, the glomerular filter in the kidneys retains most of the albumin, although a small amount can usually pass through to the tubular system (1). Reabsorption of albumin is facilitated by the kidney’s proximal tubular cells (PTCs), ensuring that almost no albumin is excreted in urine under normal conditions (2, 3). Elevated excretion of albumin in the urine - initially coined as “microalbuminuria” - is one of the earliest signs of chronic kidney disease (CKD) and may be the kidney-related manifestation of general endothelial damage, where scarring of the glomerulus causes chronic leakiness through the filter of albumin and other proteins (4).

Over the past decades, the number of people with diabetes mellitus has more than doubled to a global prevalence of 537 million in 2021 (5), with serious consequences for the healthcare system and society. According to a recent European study (6), one in four hospitalized patients has diabetes. Up to 40% of individuals with diabetes develop diabetic kidney disease (DKD), which is associated with elevated cardiovascular morbidity and mortality and progresses to dependency on kidney replacement therapies such as dialysis and transplantation and is a leading cause of CKD (7).

In the recent years, studies have begun to unravel genetic aspects of albuminuria. Recently, we and others identified that genetic variants (single nucleotide variants (SNVs)) in the gene encoding for cubilin (CUBN) – the main albumin-transporter in PTCs (1, 8) – are associated with microalbuminuria and higher urine albumin levels in populations with and without diabetes (8–14). Four variants in the C-terminal end of cubilin have been of particular interest (rs141640975 (c.5069C>T; p.Ala1690Val), rs144360241 (c.6469A>G; p.Asn2157Asp), rs45551835 (c.8741C>T; p.Ala2914Val), and rs1801239 (c.8950A>G, p.Ile2984Val)); these are functional (missense) variants that have been proposed to alter the function of cubilin, leading to a form of albuminuria that may reflect a lack of tubular reabsorption of albumin (i.e., tubular albuminuria) (8). In silico structural and damage prediction analyses of the variants indicate their potential to change secondary or even tertiary structure(s) in the cubilin protein and to have different degrees of damaging effects on protein function, disease, or both (8). Our recent study further suggests that the effect of some of these variants on urine albumin levels is 2-3 times higher in diabetes compared to non-diabetes (11).

However, the role of these CUBN variants in relation to estimated glomerular filtration rate (eGFR), a clinically used marker of kidney function, is largely unexplored, and most genetic studies have focused on the general population (8, 9, 11). Recent efforts to uncover the role of these variants specifically in diabetes – and to clearly separate the effect seen here from the effect in the non-diabetes-proportion of the general population – have been performed as relatively small secondary analyses without including rs144360241 or diabetes subtypes (8). Thus far, only rs45551835 has been connected to higher levels of eGFR in type 2 diabetes and rs141640975 in non-diabetes (8). Therefore, we investigated the relationship between the four CUBN variants and eGFR in different contexts: First, we meta-analyzed studies of SNV-eGFRcreatinine regressions in Europeans with type 1 (T1D) or type 2 diabetes mellitus (T2D). We then examined single- and aggregate-variant associations separately in diabetes and non-diabetes populations of a large, nationally representative cohort facilitating application of identical phenotype definitions, including the dependency of albuminuria-stage in SNV-eGFRcreatinine associations, generation of a CUBN-specific genetic risk score (GRS), and identification of associations between individual SNVs and cystatin C-based measures of kidney function. Together, these analyses both seek to replicate previous associations in DM and NDM populations and to provide novel insights into the link between CUBN and eGFR.


 2. Methods.

 2.1. Study design and cohorts.

For the genetic association meta-analysis in diabetes mellitus (DM), we included data collected via three approaches ( Figure 1 ): First, we acquired summary statistics from up to 15,200 individuals of European origin with either type 1 diabetes (T1D) or type 2 diabetes (T2D) subsetted from six cohorts: AfterEU (T1D) (15–18), Rotterdam (T2D) (19), DiaGene (T2D) (20), UK-ROI (T1D) (21), Genesis (T1D) (22) and ANDIS (T2D) (23). These studies (hereafter referred to as “DM cohorts”) were invited to the study and given a harmonized analysis plan provided that any subset of the requested genetic variants was available. A description of each cohort can be found in the  Supplemental text .

 

Figure 1 | Flow chart of SNV-eGFRcreatinine meta-analyses in Diabetes. UKBB, UK Biobank; T2D, Type 2 diabetes; DM, diabetes mellitus; T1D, Type 1 diabetes; NDM, without diabetes mellitus; SNV, single nucleotide variant; eGFRcreatinine, Estimated glomerular filtration rate, natural log-transformed; PCs, Principal components of population structure; HbA1C, hemoglobin A1C; SBP, Systolic blood pressure; m1: model 1 (eGFRcreatinine ~ genotype + sex + age + 0-10 PCs); m2: model 2 (m1 + HbA1c + SBP + diabetes duration); * Sample sizes (n) reflect the maximal number of individuals (out of the total number of individuals in  Table 1 ) available for rs45551835, model 1. ** See  Supplementary Figure 1  for a flow chart of additional analyses. Figure made with LucidChart (lucid.app). 



Second, we applied the same analysis plan to a subset of individuals with T2D (n ~ 14,860) from the UK Biobank (24) (henceforth referred to as “UKBB-T2D”). The approach we used to extract the T2D subset has been described previously (25, 26).

Third, we did a lookup in a subset of an exome-wide association study (henceforth referred to as “ExWas”) that included 3,990 individuals with T2D from three Danish studies (Inter99, Vejle biobank and Addition-DK) described previously (11).

We also searched the Type 2 Diabetes Knowledge Portal [at time of search: www.type2diabetesgenetics.org, now: https://t2d.hugeamp.org/ (27)] for large-scale studies with publicly available summary statistics fulfilling the following criteria: Summary statistics should a) be readily available through the knowledge portal or a direct link to a study website; b) be available for diabetes-stratified and European-only populations; c) include at least one target genotype; d) be based on natural log-transformed eGFR values rather than non-transformed eGFR values; and e) be based on regression models with covariate adjustments comparable to those in the other cohorts in this study. However, as of 10 July 2020, no studies in the portal fulfilled our criteria, and no additional studies were included.

For additional analyses, we used 1) a group of individuals without diabetes from UKBB (n ~ up to 370,000 individuals), henceforth referred to as “UKBB-NDM”) and 2) the UKBB-T2D group, which was also part of the meta-analysis ( Supplementary Figure 1 ). 127,090 non-diabetes individuals from the Icelandic study deCODE participated as the replication cohort ( Supplemental text ).

This research work was conducted in accordance with the Helsinki Declaration. Ethical approval was previously obtained locally for individual studies. All participants gave written informed consent before participating.


 2.2. Phenotype details.

For the DM cohorts and UKBB (both NDM and T2D groups), we calculated the creatinine-based estimated glomerular filtration rate (eGFRcreatinine) with the Chronic Kidney Disease Epidemiology Collaboration creatinine equation (CKD-EPIcreatinine(2012), ml/min/1.73 m2 (28), natural log-transformed). We included it here as a continuous variable. Other measures of kidney function were also calculated for UKBB; see section 2.4.2.4.


 2.3. Genotyping, imputation, quality control and variant selection.

We obtained information on genotyping, imputation, and quality control of each cohort and summarized it in  Supplementary Tables 1 ,  2 .

Four variants were selected for further analysis: rs141640975 (Chromosome (chr) 10, position (pos) 16992011 (genome-build GRCh37.p13)) with minor allele frequency (MAF) 0.002-0.009; rs144360241 (chr 10, pos 16967417) with MAF 0.006-0.010; rs45551835 (chr 10, pos 16932384) with MAF 0.016-0.021; and rs1801239 (chr 10, pos 16919052) with MAF 0.097-0.114. For the deCODE study, the MAFs were in the same range except rs144360241 (MAF: 0.002). The minor alleles of these variants (A, C, A, and C, respectively) were used as effect alleles.

We used LDlink version 5.1 (29) with the European (CEU + GBR) reference panel to confirm the independent relationship (Linkage Disequilibrium (LD) r2< 0.1) between these SNVs.

The SNVs were first used in single-variant analyses and were then combined into a genetic risk score (GRS; see description below).


 2.4. Statistical methods.

A flow chart of the meta-analyses is shown in  Figure 1 , and one of the additional analyses is shown in  Supplementary Figure 1 .

 2.4.1. Study-level SNV-eGFR.creatinine association analysis in diabetes and subsequent meta-analysis

In each DM cohort and UKBB-T2D, associations between eGFRcreatinine and genetic variants were assessed assuming an additive genetic model. We used natural log-transformed eGFRcreatinine in a linear regression model (model 1) adjusted for traditional clinical and genetic factors, i.e. age, gender, and study-specific covariates (i.e., 0-10 principal components of population structure to account for population stratification). To control for potential bias on kidney function in the diabetes population, another model was further adjusted for HbA1C, systolic blood pressure (a proxy for medication with Angiotensin receptor blockers (ARBs) or Angiotensin-converting enzyme inhibitor (ACEi) frequently used in diabetes treatment) and diabetes duration (model 2). Some of the cohorts used summary statistics calculated prior to our query, so we allowed minor deviations in the included covariates ( Supplementary Table 3 ). A list of software used for association analysis can be found in  Supplementary Table 1 . Each study dealt with missing data separately. Once all summary results were collected, we performed study-level quality control. Summary results were meta-analyzed using a fixed-effect inverse-variance method in the “Metagen” package in R (version 3.6.3). We report results in any diabetes mellitus subtype (denoted “combined”) and in T1D and T2D subsets. Significant heterogeneity (Phet< 0.05) indicated variation across studies. Effect sizes (betas) are presented with 95% confidence intervals. We evaluate statistical significance at an FDR-corrected level of 0.05/4 = 0.0125 considering the number of tested SNVs.


 2.4.2. Additional analyses in UKBB populations with diabetes and non-diabetes.

To explore the interplay between CUBN-variants and kidney-related traits in more detail, we did a range of additional linear regressions in the UKBB NDM and T2D groups. Further, we also applied a combined genetic risk score (GRS). We based the analyses on model 1 and model 3. The latter was very similar to model 2, in that it included adjustment for model 1 and SBP but not HbA1c and diabetes duration. The last two adjustments were absent from this model because they are less relevant in non-diabetes. We applied the same models in DM and NDM to provide consistency. Individuals were excluded if they had missing data for any variable.

 2.4.2.1. SNV-eGFR.creatinine association analysis in the UKBB population without diabetes and replication in the deCODE study

We examined SNV-eGFRcreatinine associations in the UKBB NDM and T2D populations. It was advantageous to use the UKBB dataset here as it is a well-powered, phenotypically homogenous dataset (n ~ up to 370,000 individuals without diabetes). Since effects are based on natural log-transformed eGFR (trait) values, we also calculated the percental difference in mean, non-transformed eGFR per added effect allele for significant effects as follows: % difference =(e  beta−1)*100%. . Again, we evaluated statistical significance at an FDR-corrected level of 0.0125.

SNV-eGFRcreatinine associations identified in the UKBB NDM group were also examined in the Icelandic deCODE study (nNDM=127,090) applying model 3.


 2.4.2.2. Interaction with albuminuria.

In order to examine whether the SNVs associated with eGFRcreatinine in an albuminuria-dependent fashion, we assessed albuminuria-SNV interactions in SNV-eGFRcreatinine regression models in individuals with T2D (nT2D = 7,777) and without DM (nNDM = 107,276) for whom continuous urine albumin levels were available (derived from the UKBB “microalbumin” field). The interaction term in the regression models included albuminuria groups as a factor defined from these albumin levels as follows: i) normoalbuminuria: =< 30 mg/L (nDM = 5,566, nNDM = 93,728), ii) microalbuminuria: 30-300 mg/L (incl. lower but not upper threshold, nNDM = 1,954, nNDM = 12,690), and iii) macroalbuminuria: >300 mg/L (incl. lower threshold, nDM = 257, nNDM = 858). We used regression models based on model 1 and 3 (i.e., model 1: ln(eGFRcreatinine) ~ SNV + albuminuria group + age + sex + SNV*albuminuria group and model 3: model 1 + SBP). A significant p-value (< 0.05) for the SNV*albuminuria interaction term was considered evidence for interaction. Interaction analysis was done whenever primary SNV-eGFRcreatinine analyses were well-powered.


 2.4.2.3. Genetic risk score association with microalbuminuria and eGFR.creatinine 

We estimated an albuminuria genetic risk score (GRS) using the four albuminuria-associated CUBN missense SNVs. The GRS was generated for each study participant using the sum of individual SNV effect alleles in the UKBB dataset. We then examined the associations between GRS CUBN  and continuous urine microalbumin levels (mg/L) and eGFRcreatinine. 


 2.4.2.4. SNV vs. other kidney function-related traits in UKBB.

We examined the associations between the study SNVs and 1) circulating serum Cystatin C levels (mg/L) and 2) the more recent eGFRcreatinine-cystatin C equation (30) that uses both serum creatinine and cystatin C levels and applies to all ethnicities.



 2.4.3. Power calculations.

We used Quanto (version 1.2.4) (31) to calculate post-hoc power for main SNV-eGFRcreatinine associations in DM and NDM groups.

For all power calculations in Quanto, we: a) chose a continuous design for independent individuals; b) assumed a gene-only hypothesis; c) assumed an additive inheritance mode; and d) set the two-sided type I error-rate to 0.05.

For the remaining options in Quanto, we typed in information specific to each variant and population ( Supplementary Tables 13 - 14 ): For each variant, we used allele frequencies of the effect allele; for meta-analyses, this was done as a range of calculations spanning the frequencies reported by individual cohorts. We used effect sizes obtained through DM and NDM SNV-eGFRcreatinine association analyses (main effect). Means and standard deviations of ln(eGFRcreatinine) were derived from UKBB subsets. Unless otherwise specified, total DM sample sizes were used.




 3. Results.

 3.1. Clinical characteristics.

Up to 34,743 individuals with diabetes mellitus (type 1 diabetes (T1D), n ~ 3,588, or type 2 diabetes (T2D), n ~ 31,155) and up to 370,061 without diabetes participated in the current study ( Figure 1  and  Supplementary Figure 1 ). Clinical characteristics of participating studies can be found in  Table 1  and  Supplementary Tables 4 – 7 .

 Table 1 | Clinical characteristics of participating studies. 




 3.2. .CUBN variants are not associated with eGFRcreatinine in a diabetes meta-analysis

The effect of rs144360241 on eGFRcreatinine was studied in 32,904 individuals with diabetes. The variant was not available in UK-ROI ( Supplementary Figures 2 ,  6 ). All eight studies contributed to the 34,050 individuals analyzed for rs45551835 ( Supplementary Figures 3  and  7 ). The rs141640975 variant was available for 32,993 individuals and was unavailable in UK-ROI ( Supplementary Figures 4 ,  8 ). The common variant, rs1801239, was available in all eight studies in 34,070 individuals ( Supplementary Figures 2 ,  9 ).

After meta-analysis, none of the four CUBN variants were significantly positively associated with eGFRcreatinine in the DM group, neither in the T1D or T2D subgroup [ Table 2  (Model 1) and  Table 3  (Model 2)]. However, the positive directionality of the effect for the T2D group was consistent with the directionality of effect for the combined group for all variants with non-zero effects. The T2D group carried the largest weight in the combined meta-analyses and UKBB carried the largest weight within the T2D group ( Supplementary Figures 2 – 5 ). There was no evidence of heterogeneity across studies, except in model 2 for rs45551835 and rs1801239 ( Table 3 ).

 Table 2 | meta-analysis of SNV-eGFRcreatinine summary data in diabetes mellitus and its subtypes (model 1). 



 Table 3 | meta-analysis of SNV-eGFRcreatinine summary data in diabetes mellitus and its subtypes (model 2). 




 3.3. .CUBN variants are associated with higher eGFRcreatinine in non-diabetes

In UKBB-NDM, we observed larger eGFRcreatinine-levels for minor alleles compared to major alleles for all four CUBN variants in both models, except for rs1801239 in NDM, model 3 ( Table 4  and  Supplementary Table 8 ): The effect and standard deviation of rs144360241 was, for model 1 (model 3), 0.008 ± 0.002 (0.007 ± 0.002), corresponding to a difference of +0.8% (+0.7%) in mean eGFRcreatinine (ml/min/1.73 m2) for each additional copy of the affect allele, C. For rs45551835, the effect was 0.005 ± 0.001 (0.004 ± 0.001), corresponding to a difference of +0.5% (+0.4%) in mean eGFRcreatinine per copy of the A-allele. rs141640975 had the largest effect size, 0.02 ± 0.003 (0.02 ± 0.003), corresponding to a +2.02% (+2.02%) difference in mean eGFRcreatinine for each additional A-allele. The common variant, rs1801239, had the smallest effect size of 0.001 ± 0.0005, corresponding to a +0.1% difference in eGFRcreatinine for each C-allele. We replicated the finding that rs141640975 was significantly associated with higher eGFRcreatinine in non-diabetes in an Icelandic study (deCODE, n = 127,090, effect = 0.026, SE = 0.007, PeGFR_creatinine = 7.7 × 10-4, model 3,  Supplementary Table 8 ). None of the other SNVs were replicated (data not shown). Meta-analysis for the rs141640975-eGFR-association in the NDM studies (UKBB and deCODE) is depicted in  Supplementary Figure 10 .

 Table 4 | Summary results for SNV-eGFRcreatinine analyses in UKBB (model 1). 



In UKBB-T2D, none of the variants had statistically significant associations with eGFRcreatinine, although the effects of three of the variants (except rs141640975) were in the same direction as in NDM ( Table 4  and  Supplementary Table 8 ).


 3.4. Associations of .rs141640975 with eGFRcreatinine depend on albuminuria-status in non-diabetes

To examine whether the SNVs are associated with eGFRcreatinine in an albuminuria-dependent fashion, we included albuminuria*SNV interactions in two regression models. For the first model, we observed significant interaction for rs141640975 in UKBB-NDM (Pinteraction = 0.03,  Table 5 ). This was also observed in the other model (Pinteraction = 0.04,  Supplementary Table 9 ). An interaction plot showed that for the eGFR-SNV-association, the effect on eGFR was even higher for more elevated albuminuria-levels ( Supplementary Figure 11 ).

 Table 5 | Interaction with albuminuria in SNV-eGFRcreatinine analyses in UKBB (model 1). 




 3.5. A .CUBN-based GRS for albuminuria is associated with eGFRcreatinine in non-diabetes

We combined the four CUBN variants into a genetic risk score for albuminuria, verified its associations with continuous urine albumin levels and tested it against eGFRcreatinine in UKBB-T2D and UKBB-NDM. The GRS was associated with higher levels of both traits, except for eGFR in T2D ( Tables 6 ,  7 ).

 Table 6 | Summary results for GRSCUBN-eGFRcreatinine and -ALB analyses in UKBB (model 1). 



 Table 7 | Summary results for GRSCUBN-eGFRcreatinine and -ALB analyses in UKBB (model 3). 




 3.6. .rs141640975 is associated with additional markers of kidney function in non-diabetes

We examined the associations between the study SNVs and two additional markers of kidney function. The SNV rs141640975 was associated with higher levels of eGFRcreatine-cystatin C [a more recent ethnicity-independent GFR-estimator (28)] and lower levels of cystatin C, both observed in NDM ( Supplementary Tables 10 – 12 ). The eGFRcreatinine-cystatin C association of rs144360241 was borderline significant in NDM.


 3.7. Estimated power.

 3.7.1. Meta-analysis (diabetes mellitus).

Given the ranges of EAFs obtained from individual studies participating in meta-analyses, we reached a power level of 35-43% for rs45551835, 16-23% for rs1444360241, and 9-21% for rs141640975 in the DM group ( Supplementary Table 14 ). Effect sizes were assumed from the individual meta-analysis eGFRcreatinine-associations of each SNV. We did not calculate power for rs1801239 as the effect in the DM meta-analysis was 0.0.


 3.7.2. Association of SNVs with eGFR (UKBB population without diabetes).

In NDM, the power for main eGFRcreatinine analyses was between 70-99% for the four variants ( Supplementary Table 15 ).




 4. Discussion.

Recently, we demonstrated that individuals carrying the minor allele of the CUBN missense variant rs141640975 had higher albuminuria-levels than non-carriers. The effect of this variant was stronger in individuals with diabetes (DM) compared to those without diabetes (NDM) (11). In continuation of these findings, Bedin et al. (8) performed secondary lookups for CUBN-variants in the CKDGen eGFR GWAS study population, reporting that missense variants in CUBN may also be associated with higher levels of eGFR in the general population. Our current large-scale study aimed to examine the effect of minor alleles of three rare CUBN missense variants (rs144360241 (c.6469A>G; p.Asn2157Asp), rs45551835 (c.8741C>T; p.Ala2914Val) and rs141640975 (c.5069C>T; p.Ala1690Val)) and one common variant (rs1801239 (c.8950A>G; p.Ile2984Val)) on eGFRcreatinine levels separately in people with and without diabetes (nDM ~ 34,000 individuals, nNDM ~ 370,000 individuals), including stratification for diabetes-type and supplemented by tests on circulating cystatin C levels, the recently updated eGFR-equation based on creatinine and cystatin C (30), and aggregate-variant tests. We were able to replicate the association between creatinine-based eGFR and rs141640975 in NDM and report new insightful connections with the alternative measures of kidney function for all four SNVs.

Previously, a borderline association between rs45551835 and higher eGFR-levels has been reported in a smaller type 2 diabetes (T2D) population from Denmark (8, 11), a finding which we could not replicate in our meta-analysis of up to 34,432 individuals with diabetes and its subtypes. Like the initial study (8), we could not establish a link between eGFR and the three other variants within the diabetes group. As for rs45551835, it was surprising to be unable to replicate the earlier findings as the current study has a larger sample size compared to earlier efforts. Our post-hoc power assessment indicated that insufficient power might be at play, even with a larger sample size for the diabetes group (8). We also speculated whether the apparent lack of association between CUBN and eGFR in our diabetes meta-analysis could be due to use of Angiotensin receptor blockers (ARBs) or Angiotensin-converting enzyme inhibitor (ACEi) medication which is frequently used in diabetes treatment. As part of our sensitivity analyses, we included models adjusted for systolic blood pressure (a proxy for such medication) and did not find evidence that this could explain why no association was found in the diabetes group. Another reason could be the allele frequency of the variants may differ between Danish and UK populations. We need further validation in well-powered populations to confirm the relationship between the rs45551835 and eGFR in diabetes, especially in T2D. In case of a true lack of association, CUBN may be associated with higher levels of urine albumin (11) with no pleiotropic effect to eGFR in this population.

We proceeded to single- and aggregate-variant analyses in the UK Biobank (UKBB), shifting focus to non-diabetes populations. For all four CUBN variants, we report significantly higher eGFRcreatinine-levels in individuals without diabetes harboring more copies of the minor alleles compared to individuals with fewer or no copies of the minor alleles in the same group. For rs141640975, we observed the strongest association with eGFRcreatinine (P = 2.2 × 10-9) with replication in the Icelandic study (deCODE, P = 7.7 × 10-4), confirming what has previously been observed for this SNV in NDM (8) – but also a significant interaction between the SNV and albuminuria stages (PINT< 0.05). Taken together with the already known associations of the minor alleles with higher albuminuria (11), this not only demonstrates genetic pleiotropy of CUBN for albuminuria and eGFR in non-diabetes but also implies that these two associations are intertwined for this SNV, where the effect on eGFR is even higher for more elevated albuminuria-levels. Here, CUBN demonstrates a classic genetic pleiotropy phenomenon where a DNA variant influences multiple traits, usually in the same domain with concordant or sometimes discordant effects as observed earlier in complex disorders (32). Further validation of independent biological or related causal effects might be required in additional follow up studies.

This finding is unusual as there is no obvious clinical or pathophysiological explanation for such an albuminuria-eGFR pattern in the context of non-diabetes. It has been suggested that the tubular albuminuria observed in presence of C-terminal variants in CUBN has a benign or even slightly protective effect on kidney function in chronic kidney disease if glomerular albuminuria is also present (8, 33, 34). Another recent study on chronic isolated proteinuria suggests that different C-terminal CUBN variants uncouple proteinuria from glomerular filtration barrier through declined cubilin expression accompanied by aberrant amnionless (AMN) localization in renal tubules. AMN is part of the receptor complex (along with cubilin and megalin) necessary for tubular reabsorption of albumin. This is suggested to create a benign condition, not requiring any further proteinuria lowering treatment (35). In non-diabetes, where the population can be assumed to consist mostly of healthy individuals, a concept of such protectiveness is less relevant. However, it is possible that an undetected subpopulation with relevant comorbidities exists in the non-diabetes group.

Our CUBN aggregate-variant method – which was defined as a genetic risk score (GRS) combining the four variants – showed that a higher number of C-terminal CUBN risk alleles is associated with higher urine albumin and eGFRcreatinine levels and confirms both the single-variant association with higher urine albumin levels reported previously in diabetes and non-diabetes (11, 14), and the consistency of the overall effects on urine albumin levels being greater in diabetes compared to non-diabetes (10, 11). Through GRS CUBN , we also saw that a higher number of minor alleles across the four variants was associated with higher eGFRcreatinine-levels in the UKBB population without diabetes, which is in line with our single-variant findings and the previous findings for rs45551835 (8). Using aggregate-variant methods is an optimal way to examine combined genetic effects and has been used extensively for polygenic traits (13, 36). Using GRS is highly relevant here as three of the four variants are rare and mostly present as heterozygous variants in our populations. This might substantiate with some additional power to detect effects and adds further certainty to the presence of a CUBN-eGFR relationship in non-diabetes. Nevertheless, we still do not find an association with eGFR in T2D, even when the variants are combined in a GRS.

Finally, we examined the association between the study SNVs and two alternative markers of kidney function. In non-diabetes, the minor alleles of rs141640975 and rs144360241 were associated with higher levels of eGFRcreatinine-cystatin C. This measure was estimated using a recent update to the equation, CKD-EPI2021, which does not include ethnicity and is a more precise indicator of kidney function in comparison to the CKD-EPIcreatinine(2012) equation which is based only on creatinine. Our results using the conventional eGFRcreatinine equation are concordant with our results from the updated equation in terms of directionality of effect and with our finding that rs141640975 is associated with lower cystatin C levels, which is another indicator of kidney function. It should be noted, though, that considering  Table 1  and  Supplementary Tables 4 – 6 , the 0.1% – 2.02% higher mean eGFR we report for each minor allele is modest and may reflect that individual harboring these genetic variants have normal kidney function rather than a better kidney function.

A strength of our study is the restriction to specifically diabetes- and non-diabetes-only subgroups so that effects from mixed diabetes-status are minimized. Heterogeneity is likely to be present in meta-analyses of a diverse set of cohorts originally used for different research purposes. Indeed, some of the cohorts included in our meta-analyses differ regarding available covariates and/or kidney disease status. However, we did not observe heterogeneity in our meta-analyses. In addition to this, we could minimize heterogeneity in the remainder of our analyses by using data from the UKBB, which is a nationally representative cohort facilitating application of identical phenotype definitions across subgroups. Another strength is the broad spectrum of additional analyses that we explored in the UKBB population to nuance our findings on the relationship between eGFR and CUBN. The judicious use of UKBB leveraging individual-level genotype information to investigate interaction-analyses based on albuminuria groupings is a great strength of the current study, especially for rare variants.

A major limitation is that we did not have sufficient statistical power for our meta-analyses in the diabetes group due to the limited availability of suitable datasets. Consequently, interpretations of T2D findings should not be overstated and we thus could not demonstrate, nor disprove, the presence of a CUBN-eGFR relationship in this population. Although we demonstrate that C-terminal missense variants in CUBN are associated with different measures of normal (or even higher) kidney function in non-diabetes, we emphasize that the current study is insufficient to establish causality. Finally, using multiple-testing-corrected significance thresholds might be too conservative when testing a very small number of variants from the same locus as it may remove true associations. In genome-wide studies, a conservative threshold of 5 × 10−8 is generally agreed upon for novel associations. There is less consensus on when and how to appropriately apply multiple testing correction in smaller-scale genetic studies dealing with a mixture of new and known associations. Nevertheless, we deemed that it would be fair to apply FDR-correction of the significance threshold to our primary analyses in DM and NDM.

In conclusion, the current study identifies the existence of pleiotropic genetic effects of CUBN on two facets of kidney function – albuminuria and eGFR – by reporting SNV-eGFR associations in a large study population without diabetes. The interaction between rs141640975 and albuminuria-status on eGFRcreatinine in this population and its associations with lower cystatin C and higher levels of eGFRcreatinine-cystatin C expands our knowledge of these variants in relation to measures of kidney function. The demonstration of a CUBN-focused GRS in relation to albuminuria and eGFRcreatinine further suggests an important role of CUBN-variants in the future personalization of chronic kidney disease management.
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Introduction

Non-alcoholic steatohepatitis (NASH), an advanced subtype of non-alcoholic fatty liver disease (NAFLD), has becoming the most important aetiology for end-stage liver disease, such as cirrhosis and hepatocellular carcinoma. This study were designed to explore novel genes associated with NASH.





Methods

Here, five independent Gene Expression Omnibus (GEO) datasets were combined into a single cohort and analyzed using network biology approaches.





Results

11 modules identified by weighted gene co-expression network analysis (WGCNA) showed significant association with the status of NASH. Further characterization of four gene modules of interest demonstrated that molecular pathology of NASH involves the upregulation of hub genes related to immune response, cholesterol and lipid metabolic process, extracellular matrix organization, and the downregulation of hub genes related to cellular amino acid catabolic, respectively. After DEGs enrichment analysis and module preservation analysis, the Turquoise module associated with immune response displayed a remarkably correlation with NASH status. Hub genes with high degree of connectivity in the module, including CD53, LCP1, LAPTM5, NCKAP1L, C3AR1, PLEK, FCER1G, HLA-DRA and SRGN were further verified in clinical samples and mouse model of NASH. Moreover, single-cell RNA-seq analysis showed that those key genes were expressed by distinct immune cells such as microphages, natural killer, dendritic, T and B cells. Finally, the potential transcription factors of Turquoise module were characterized, including NFKB1, STAT3, RFX5, ILF3, ELF1, SPI1, ETS1 and CEBPA, the expression of which increased with NASH progression.





Discussion

In conclusion, our integrative analysis will contribute to the understanding of NASH and may enable the development of potential biomarkers for NASH therapy.





Keywords: non-alcoholic steatohepatitis, weighted gene co-expression network analysis, hub genes, immune response, transcription factors





Introduction

Non-alcoholic fatty liver disease (NAFLD) is likely to become the most common chronic liver disease, affecting about 25% in the adult population (1). It is characterized by excessive accumulation of hepatic triacylglycerol (TG) and encompasses a spectrum of liver pathologies ranging from isolated steatosis (non-alcoholic fatty liver, NAFL) to non-alcoholic steatohepatitis (NASH), a more severe form of fatty liver disease featured by lobular inflammatory infiltrates, hepatocyte ballooning and fibrosis (2). Up to 30% of the patients with NAFLD will process to NASH (3), which may eventually progress to cirrhosis, hepatocellular carcinoma (HCC) and liver failure (4). Moreover, NASH is considered the hepatic manifestation of metabolic syndrome, commonly alongside serious extrahepatic diseases, such as dyslipidemia, hypertension, obesity and type 2 diabetes mellitus (T2DM) (5, 6), and multiple pathogenic pathways are involved in NASH progression.

Previous studies have contributed greatly to our understanding of genetic and environmental risk factors in the pathogenesis of NAFLD. Genome-wide association studies (GWAS) have revealed genetic variants in several loci (PNPLA3, TM6SF2, GCKR, MTARC1 and HSD17B13) that promote NAFLD risks in humans (7–11), which highlights the dysregulation of gene expression and/or function as an important players in the development and progression of NASH. Integrating multi-omics approaches including genomics, transcriptomics, proteomics and metabolomics have provided additional insights (12–15), which may not be elucidated by genomics analysis alone. In addition, previous bioinformatics analyses in cross-sectional studies have facilitated the exploration of potential biomarkers related to NAFLD/NASH (16–19). However, for complex disease trait, the comprehensive molecular characterization of NASH are still not entirely deciphered. As a consequence, no effective pharmacological therapies targeting NASH are presently available. Hence, further exploration into the molecular pathogenesis of NASH and diagnostic biomarkers are essential to build novel approaches for management of NASH.

Network biology approaches have proven effective for uncovering new perturbed pathways underlying molecular pathology (18, 20, 21). Contrary to traditional differential expression analysis methods based on gene expression profiling, network-based approaches investigate the correlation among changing genes from a systematic perspective. Weighted gene co-expression network analysis (WGCNA) has become a frequently used method for multigene analysis, which establishes gene sets (modules) from observed gene expression data using unsupervised hierarchical clustering. WGCNA is widely used for exploring the relationship between diverse gene sets and clinical features (22, 23), providing insights into functions of co-expression gene modules and detecting hub genes related to the clinical characteristics of various diseases (24, 25).

In the present work, we aimed to identify deregulated modules, hub genes and transcription factors (TFs) associated with NASH by integrating transcriptomic data with biological network analysis between normal liver tissues and NASH tissues. We obtained five liver transcriptome datasets from the Gene Expression Omnibus (GEO) database (26). We first generated MergeCohort by merging five pre-processed datasets. Based on the combining expression matrix, differentially expressed gene (DEG) analysis was performed to identify genes associated with NASH. After that, through integrative analyses of co-expression gene network, functional annotation, TF-target regulatory network and validation analysis, we detected several promising candidate biomarkers for NASH. Our integrative study provides a comprehensive view on the molecular processes of NASH and may discover potential therapeutic target for NASH treatment.





Methods




Data collection

We obtained the expressing profiles of mRNA of NASH and normal control from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/) (26). We searched the microarray and next-generation sequencing (NGS) studies with the keywords: “Fatty liver”, “Non-alcoholic”, “Gene expression”, “Homo sapiens”, “Microarray” and “RNA sequencing”. Datasets were selected based on the following criterial (1): Containing at least 10 total samples (2); Samples must Contain at least five patients in both NASH group and healthy control group (3); Raw data or gene expression profiles were available in GEO (4). Pathways related to lipid metabolism, inflammation and fibrosis were significantly (normalized enrichment score (NES) more than 1.0 and a false discovery rate (FDR) below 0.25) enriched between the two groups in the gene set enrichment analysis (GSEA) (Supplementary Tables S2, S3), which was carried out with the Java GSEA (version 3.0) (27) platform with the ‘Signal2Noise’ metric to create a ranked list and a ‘gene set’ permutation type. The flowchart was shown in Figure 1.




Figure 1 | Flowchart.







Data processing

For each dataset, we download raw expression data and pre-processed using standard approaches. Specially, gene chip datasets were normalized by the robust multi-average (RMA) method with oligo/Bioconductor (28). For RNA-seq datasets, reads count information were generated by StringTie using a Python script (prepDE.py) and raw counts were normalized across samples following TMM method in edgeR package. After filtering low abundance expression genes and outlier samples, we applied the ComBat (version 3.20.0) method in the sva R package to remove the batch effects (29) from five datasets (GSE48452, GSE37031, GSE61260, GSE63067 and GSE130970) and combined these five datasets into a single cohort (MergeCohort), which contains 67 normal and 97 NASH tissue samples. Subsequently, the expression matrix of MergeCohort was used for differentially expressed genes (DEGs) identification between NASH and healthy control samples. It is worth noticing that we applied Wilcoxon’s rank-sum test to assess the differential expression, the corrected threshold was p less than 0.05, and the absolute difference of means more than 0.3. Gene ontology (GO) and Reactome enrichment analyses were performed for DEGs using hypergeometric test, which is conducted by the python package gseapy (version 0.9.16; https://github.com/zqfang/gseapy), all gene sets of GO term and Reactome pathway were obtained from database source of Enrichr (30). Only GO terms or Reactome pathways were considered as significantly enriched by using the criterion with a corresponding p value less than 0.05.





Weight gene co-expression network construction, module detection and preservation analysis of theco-expression modules

5,000 transcripts with maximal variability across all patients (n = 164) based on the median absolute deviation in the MergeCohort were kept for WGCNA and tested by the WGCNA R package (22). In our work, the power threshold of 5 was selected to calculate biweight midcorrelations and weighted adjacency matrix, the soft thresholding parameter was defined using the scale-free topology fit model. We identified the gene modules based on the ‘hybrid’ method and parameters deepSplit = 4, mergeCutHeight = 0.15 and minModuleSize = 50. Modules are identified as branches in the dendrogram with Dynamic Tree Cut algorithm (22). Subsequently, we assessed the relevance of a module eigengene (ME) to the disease status using the Pearson correlation. An intramodular connectivity (Kin) was defined to measure for each gene on the base of its correlation with the remaining genes in a given module. Genes with highest Kin are identified as hub genes. Cytoscape version 3.8.2 was used for visualization. In order to understand the extent of module preservation in MergeCohort, a publicly available expression profiling of high throughput RNA sequencing dataset GSE135251 including 10 controls, 51 NAFL and 155 NASH was used, processed as described above. Module preservation analysis was carried out by using Module preservation function in WGCNA package introduced by Langfelder et al. (31) and described in detail in Oldham et al. (32). Moreover, to investigate the module similarity among different cohorts, we applied hypergeometric test to evaluate whether the genes from each MergeCohort module significantly overlapped with the genes from each of GSE135251 module. The overlap was regarded as significant when p value below 0.05.





Functional annotation of the modules

In order to determine the functional significance of the identified modules, we firstly performed GO and KEGG pathway enrichment analysis for the gene lists of each module of co-expression network on the basis of Enrichr (30) as described above. Moreover, we carried out disease enrichment analysis for the gene lists of each module by using DisGeNet (33). The statistical significance threshold level for all disease terms was p value less than 0.05 (Benjamini-Hochberg corrected for multiple comparisons) and we presented top 20 for each disease-associated module. Additionally, to obtain regulatory information of transcription factors (TFs) and target genes, Transcriptional Regulatory Relationships Unraveled by Sentence based Text mining (TRRUST) v2 database (https://www.grnpedia.org/trrust/) (34) were supplied for Enrichr (30), conducted by the python package gseapy (version 0.9.16; https://github.com/zqfang/gseapy). In addition, ChIP-X Enrichment Analysis 3 (ChEA3) database (https://maayanlab.cloud/chea3/) (35) was adopted to further validate the significantly enriched transcription factors over module genes. After obtaining TF–target regulatory relationships, a TF-target network, which contained TFs regulating Turquoise modules’ genes, was reconstructed.





Single cell RNA-sequencing analyses

We investigated the expression patterns of top 25 hub genes in Turquoise module using scRNA-seq analyses of human liver tissues from public scRNA-seq data (GSE136103) (36). In our study, only four samples including two healthy liver tissue samples (GSM4041156 and GSM4041159) and two NAFLD liver tissue samples (GSM4041162 and GSM4041163) were analyzed with Seurat package (version 3.1.5) (37). First, 2000 highly variable genes (n = 2,000) were identified using the R package SCTransfom (version 0.2.1). Subsequently, principal component analysis was performed, and the appropriate principal components (PCs) for dimensionality reduction were decided using the JackStraw function. Clusters were identified with the Seurat function FindClusters with the resolution set at 0.4. This method resulted in 18 clusters, which were visualized by Uniform Manifold Approximation and Projection (UMAP) analysis. Clusters were then annotated by using the expression of known genes. We annotated cell types based on cell markers and the R package SingleR (36, 38).






Results




Information of included GEO datasets

According to the previously established inclusion criteria, GSE48452, GSE37031, GSE61260, GSE63067 and GSE130970 were included in this study. There are 104 NASH patients and 70 controls in these five datasets. After outlier removal, 97 NASH patients and 67 controls were retained in the following analysis. The detail information of the five datasets was shown in Supplementary Table S1. In order to eliminate the bath effect from different platforms and batches, we used the combat function to eliminate the batch effect from five datasets. A total of 12579 genes were detected by merging different platforms. Before removing the batch effect, samples were clusters in batch according to the top two principal components (PCs) of the expression values before normalization (Figure S1A). In contrast, when the samples from five platforms were merged, the overall expression in the samples was uniformly distributed based on principal component analysis, suggesting that the batch effect caused by different platforms that had effect on the estimation of molecular biological differences was successfully corrected (Figure S1B). In addition, we used dataset GSE135251 as the validation dataset in this study.





Identification of DEGs in the NASH patients

Principle component analysis plot of the gene expression matrix of five combined dataset (MergeCohort) distinguished between NASH and control group is shown in Figure 2A. Total of 831 DEGs (Benjamin-Hochberg adjusted p value < 0.05, absolute difference of mean > 0.3) among control and NASH in MergeCohort were identified, consisting of 600 upregulated and 231 downregulated DEGs (Figure 2B; Supplementary Table S4).




Figure 2 | Overview of combining gene expression profiles in healthy controls and nonalcoholic steatohepatitis (NASH) patients. (A) Principle component plot of samples based on top 500 most variable gene expression from combining gene expression profiles (MergeCohort). NASH patients are marked in red; healthy controls are marked in green. (B) Volcano plot of differentially expressed genes (DEGs) between NASH patients and healthy controls. DEGs are listed in Supplemental Table S4. 600 genes upregulated and 200 genes downregulated are shown in red and blue, respectively. (C) Top 10 enriched biological functions of DEGs determined by Gene Ontology (GO) enrichment analysis. (D) Top 10 enriched Reactome pathways of DEGs determined by Reactome pathway enrichment analysis.







Function and pathway enrichment analysis of DEGs

In the present study, we performed GO and Reactome pathway enrichment analysis to determine the potential functions of 831 DEGs in the pathogenesis of NASH. The biological process analysis (Figure 2C; Supplementary Table S5) revealed that in the NASH, these genes were associated with multiple immunity-related pathways, such as the cytokine-mediated signaling pathway, cellular response to cytokine stimulus and neutrophil activation involved in immune response. Several ECM-related pathways were also enriched such as extracellular matrix organization and extracellular structure organization. Moreover, metabolic process, such as cholesterol metabolic process, fatty acid metabolic process, cholesterol biosynthetic process and other biological process (Supplementary Table S5) were also identified. Reactome pathway analysis was performed to investigate the pathway based on the DEGs (Supplementary Table S6). The top 10 pathways are shown in Figure 2D. Among them, metabolism, metabolism of lipids and lipoproteins, extracellular matrix organization, immune system, chemokine receptors bind chemokines were significantly enriched. Therefore, the outcomes above suggested that metabolism, ECM-related pathways and immunity-related pathways play an important role in development and procession of NASH.





WGCNA and identification of module associated with NASH disease status

To capture discrete groups of co-expression genes correlated with NASH status and to integrate the identified expression divergences into a higher system level context, a co-expression network analysis (WGCNA) was conducted based on the top 5000 median absolute deviation (MAD) genes from the MergeCohort. Keep to the scale-free topology criterion, β=5 was considered in this study (Figure 3A). According to dynamic tree cut, the hierarchical clustering dendrogram resulted in 17 different gene modules, as displayed in Figure 3B. 909 genes failed to fit within a distinct group and were assigned to the Grey module which was neglected in the present study. The size of modules ranged from 86 (Grey60 module) to 734 (Turquoise module) (Figure 3C). DEGs enrichment in each module was shown in Figure 3D, in which upregulated genes was mostly significantly enriched in Turquoise (n = 233, p = 1.93 × 10-44), and followed by Cyan (n = 54, p = 1.24 × 10-15), Grey60 (n = 40, p = 2.05 × 10-13), Tan (n = 48, p = 1.59× 10-9) and Magenta (n = 47, p =2.77 × 10-4), downregulated genes was significantly enriched in Black (n = 107, p = 9.25 × 10-86) and Brown module (n = 68, p = 1.07 × 10-24). To investigate which co-expression modules are associated with NASH status, we then correlated the expression of eigengenes (genes representing the expression profile of each module) with NASH status. The relationship between all the modules and the NASH status are displayed in a correlation heatmap, in which Y-axis corresponds to groups of genes (modules) and the X-axis represents the NASH status (Figure 3E). Of the 17 co-expression modules, 11 WGCNA modules to be correlated with NASH status at a Pearson correlation (p < 1.47 × 10-3), which is determined based on Bonferroni correction. Among them, nine modules (Cyan, Grey60, Turquoise, Magenta, Purple, Lightcyan, Tan, Midnightblue and Blue) were positively correlated with NASH disease status, two modules (Black and Brown) were negatively associated with NASH disease status (Figure 3E).




Figure 3 | WGCNA network and module identification. (A) Soft-thresholding calculation of MergeCohort. The left panel displays the scale-free fit index versus soft-thresholding power. The right panel shows the mean connectivity versus soft-thresholding power. Power 5 was selected, for which the fit index curve flattens out upon reaching a high value (> 0.9). (B) The Cluster dendrogram of co-expression network modules from WGCNA depending on a dissimilarity measure (1-TOM). The leaves in the tree represent genes and the colors in the horizontal bar indicate co-expression module determined by the dynamic tree cut algorithm. (C) Number of genes in each module. (D) Enrichment of upregulated and downregulated DEGs in each module. (E) Heatmap showing the association between module eigengenes (rows) and NASH disease status (column). Associated p values were computed using the cor.test R function. The color scale in the heat map represents the magnitude of the Pearson correlation coefficients. Number in each cell contained corresponding correlation coefficient and p value (in brackets). WGCNA, weighted gene correlation network analysis; TOM, topological overlap matrix.







Functional characterization of co-expression modules of interest

Because we were more concerned about the modules whose expression was different between NASH and control group, we compared the eigengenes from NASH samples to the expression of control in every module, and these results were used to further assess whether the modules were associated with NASH status. Modules Cyan, Grey60 and Turquoise exhibited an upregulation of the eigengenes in NASH, whereas module black showed lower expression in NASH (Figure 4A). In order to investigate whether the co-expression modules cover the information associated with validated networks, the existing data on protein-protein interactions from the STRING database was used to test the biological characteristics of the detected modules in this study. All the modules showed significant enrichment in interactions (p < 0.01), therefore indicating that the modules detected in the present work are biologically relevant (Supplementary Table S7). In addition, the NASH status positively correlated modules showed much higher average node degree (AND), particularly module Turquoise (AND = 22.4).




Figure 4 | Functional characterization of co-expression modules of interest identified by WGCNA. (A) Box and Whisker plots representing the expression of module eigengenes Turquoise, Grey60, Cyan, Black between NASH (n = 97) and healthy control (n = 67) samples. Data are presented as median with first and third quartiles as the box edges. Differences between group were estimated by Student’s t test. (B–E) The network of hub genes (module genes within the top 25 genes with the highest intromodular connectivity values (kWithin)) (left panel) and top GO terms (right panel) of the modules Turquoise (B), Grey60 (C), Cyan (D) and Black (E) are shown. In the network diagrams, node sizes correspond to kWithin in the module. For the bars plot, the bars in the GO enrichment results represent the -log10(pvalue). (F) Scatterplots of module eigengenes show positive correlation between Turquoise and Cyan, and negative correlation between Grey60, Cyan, Turquoise and Black, respectively.



We then conducted GO and KEGG pathway enrichment of the NASH-associated modules to further investigate the gene functions by Enrichr. Top biological process and KEGG pathway in each module are shown in Table 1. Turquoise module was upregulated in NASH patients, contained hub genes related to immune response (CD53, LAPTM5, LCP1, NCKAP1L, C3AR1 and FGL2) (Figure 4B), and enriched for GO categories to cytokine-mediated signaling pathway, neutrophil activation involved in immune response and neutrophil degranulation (Figure 4B). Grey60 module with hub genes such as FDFT1, NSDHL, IDI1, SQLE, ACSS2, SREBF2, HMGCR, FASN, LSS, ACAT2, FADS1, FADS2 and ELOVL6 was upregulated in NASH (Figure 4C), which were mainly participating in cholesterol and lipid metabolic process (Figure 4C). The majority of the GO terms enriched in module Cyan were primarily related to extracellular matrix organization and extracellular structure organization (Figure 4D), including hub genes related to fibrosis (PDGFA, LOXL4, MSN, LAMA3 and AKR1B10) (Figure 4D). However, the majority of the GO terms enrich in Black module were related to cellular amino acid catabolic and primary alcohol metabolic process (ACADSB, AASS and ALDH6A1) (Figure 4E). The complete annotation for each module can be found in Supplementary Tables S8, S9.


Table 1 | Top GO and pathway enrichment in each module.



We next explored the relationship of eigengenes among the annotated modules. Upregulated immune Turquoise module was positively correlated with Cyan module related to fibrosis (r = 0.32, p = 3.0 × 10-5) (Figure 4F), suggesting that Turquoise module related to immune response that drives fibrosis in NASH, which confirmed the results of previous studies (20). Interestingly, Cyan, Grey60 and Turquoise modules was negatively correlated with Black module that is enriched in amino acid metabolic processes (Figure 4F). The high negatively correlation (r = -0.77, p = 2.0 × 10-33) between the upregulated fibrosis module Cyan and downregulated Black module that is enriched in metabolic processes (Figure 4F), which indicated that perturbations in amino acid metabolism are likely involved in NASH pathogenesis (39, 40).





Module preservation analysis indicates the presence of NASH-associated co-expression module function in immune response

To find out whether the identified modules were common in another dataset, we examined the module preservation statistics between the MergeCohort and one recently published large NASH datatset GSE135251 (13). In particular, we assumed co-expression modules of MergeCohort as reference dataset and the co-expression modules of GSE135251 as test dataset. We utilized the principle described in (22). The score of Zsummary more than 10 represents strongly preserved module, less than 2 denotes non-preserved module while the value between 2 and 10 implies moderately preserved module. We plotted the scatterplot of Zsummary scores against the sizes of MergeCohort modules (Figure 5A). All modules have a Zsummary statics greater than 2, suggesting that all modules were preserved in GSE135251. The lowest preservation is the Red module (Zsummary = 6.37). Particularly, MergeCohort module Turquoise (MergeCohort_Turquoise) exhibited Zsummary preservation score (Zsummary = 42.68) higher than 40. To provide a more intuitive picture of the preservation of each co-expression module identified, we evaluated module overlaps of MergeCohort and GSE135251 (Figure 5B), we found that MergeCohort_Turquoise show the most significantly overlapping with GSE135251 module Turquoise (GSE135251_Turquoise). Moreover, we discovered a highly positively correlation between the intromodular connectivity of 289 genes overlapped in MergeCohort_Turquoise and GSE135251_Turquoise (Spearman’s correlation = 0.62, p = 1.3 × 10-9) (Figures 6A, B), which indicated those two modules have similar co-expression pattern.




Figure 5 | Module preservation of MergeCohort in GSE135251 dataset. (A) Preservation Zsummary statistics of MergeCohort in GSE135251 dataset. Each point represents a module. Point color reflects the module color as used in Figures 3B–E of MergeCohort. Points are also labeled by the name of the module. The dashed blue and red lines indicate the rough thresholds for week (Z = 2) and strong (Z = 10) evidence of module preservation. (B) Overlaps of MergeCohort and GSE135251 modules. Each axis is labelled by the corresponding module name. The size of each dot represents the number of overlapping genes in the intersection of corresponding MergeCohort and GSE135251 modules while the color implies -log10 of the hypergeometric enrichment p value.






Figure 6 | Functional enrichment of MergeCohort_Turquoise and GSE135251_Turquoise module. (A) Venn diagram displays number of genes overlapped between MergeCohort_Turquoise and GSE135251_Turquoise module. (B) Spearman’s correlation between the kWithin of common genes (n = 289) overlapped between each module. Top 25 hub genes with the highest kWithin from MergeCohort_Turquoise module are shown. (C) Dot-plot heatmap shows top 20 significantly enriched disease by genes in each module. The size of each dot represent the gene counts enriched in each disease term. (D) Dot-plot heatmap shows top 20 significantly enriched KEGG pathways by genes in each module. The size of each dot represents the -log10 of p value for each KEGG pathway term.



To comprehensively evaluate the biological functions related to MergeCohort_Turquoise and GSE135251_Turquoise, we next calculated the statistical significance of enrichment of genes with the association in disease-related gene sets from the DisGeNET database (33) and KEGG pathway gene sets. We observed that genes in MergeCohort_Turquoise and GSE135251_Turquoise were significantly enriched by liver disease-related gene sets (liver cirrhosis) and multiple immune disease-related gene sets (autoimmune disease, immunosuppression and inflammatory bowel disease) (Figure 6C; Supplementary Tables S10, S11). Interestingly, these two modules were also significantly enriched in atherosclerosis and arteriosclerosis. Notably, we observed that genes in MergeCohort_Turquoise, which shows the highest module similarity with GSE135251_Turquoise (289 out of 734; hypergeometric test p value = 5.33 × 10-168) (Figure 6A) are both significant enriched in phagosome, osteoclast differentiation, cell adhesion molecules, antigen processing and presentation, B cell receptor signaling pathway (Figure 6D). In addition, the MergeCohort_Turquoise was upregulated in NASH and is also the third most significant module, and showed the greater number of statistically differential expressed genes, with 233 of the 734 genes being upregulated (fold change > 1.2; p < 0.05) and none significantly downregulated (Figure 3D). Considering all these results, we will choose the co-expression Turquoise module from MergeCohort for further analysis.





Validation of hub genes in Turquoise module

Hub genes were upregulated in the liver from NASH patients. Focusing on the MergeCohort_Turquoise module, we firstly explored the top 25 hub genes including CD53, LCP1, LAPTM5, NCKAP1L, C3AR1, PLEK, FCER1G, HLA-DRA and SRGN that had a high intramodular connectivity (K.in). The expression level of those core genes were all upregulated in four cohorts (GSE130970, GSE48452, GSE61260 and GSE63067) involved in this study Figure 7A, suggesting that these hub genes may play fundamental role in NASH development. The PPI network of these 25 hub genes was showed in Figure 7B.




Figure 7 | Validation of hub genes in MergeCohort_Turquoise module. (A) Heatmap shows the expression patterns of top 25 hub genes in human liver tissues according to four datasets (GSE130970, GSE48452, GSE61260 and GSE63067). The numbers in heatmap represent log2 value of fold change between NASH patients and healthy controls. (B) The protein-protein interactions among top 25 hub genes were retrieved by the STRING database. (C) Heatmap shows the Person correlation coefficients of top 25 hub genes and clinical parameters of NAFLD according to GSE130970 dataset. p values are overlaid on the heatmap (**p < 0.01 and ***p < 0.001). (D) Heatmap shows the expression patterns of top 25 hub genes in mouse liver tissue according to GSE120977 dataset. The numbers in heatmap represent log2 value of fold change between the CDAHFD and chow diet control group. CDAHFD, choline deficient L-amino acid defined high fat diet.



Hub genes were positively correlated with clinical characteristics. We further investigated the relationship between the changes in expression of these 25 hub genes and the histological phenotype in GSE130970 (Figure 7C). Our results demonstrated that each of the 25 key genes were positively correlated with the NAFLD activity score, and FPR3 has the highest correlation (r = 0.53, p = 1.49 × 10-4). LCP1 gene was the most associated gene with steatosis grade (r = 0.46, p = 1.16 × 10-3) and the lobular inflammation grade (r = 0.32, p = 3.06 × 10-2). Moreover, FPR3 associated most with the cytological ballooning grade (r = 0.53, p = 1.82 × 10-4). SRGN was the most relevant gene with the fibrosis stage (r = 0.35, p = 1.84 × 10-2). Additionally, C3AR1 showed significant correlation with all the clinical parameters, especially higher correlation with the cytological ballooning grade (r = 0.51, p = 2.94 × 10-4).

Hub genes were upregulated in the liver from the choline deficient L-amino acid defined high fat diet (CDAHFD) model of NASH in mouse. Furthermore, to explore the significance of the hub genes in mouse, we mined public available microarray data (GSE120977) (41) to validate the mRNA levels of the abovementioned genes, except Hla-dra, Clic2 and Fpr3 gene which was lacking in the dataset. Intriguingly, several of the hub genes displayed either a significant or a trending higher expression in mouse individuals fed with CDAHFD diets at 12 weeks compared with the controls. For instance, 14 genes, namely Cd53, Laptm5, Nckap1l, C3ar1, Hck, Mpeg1, Cybb, Iqgap1, Dock2, Plek, Fcer1g, Igsf6, Ptprc and Havcr2, which were strongly upregulated in mouse fed with CDAHFD chow (Figure 7D), supporting the notion that these hub genes were also activated during progression of mouse NASH model.





Identification of cell clusters contributions to the NASH-associated Turquoise module integrating single-cell RNA-seq analysis

To investigate how potential hub genes identified in MergeCohort_Turquoise module change within specific cell populations during NASH progression, we carried out an integrated scRNA-seq analysis using publicly available scRNA-seq data from healthy and cirrhotic liver samples. Clustering revealed 17 populations of cells comprising 10 distinct cell types (Figures 8A, B; Supplementary Figure S2). We identified Endothelial cells, macrophages, cholangiocytes, NK cells, T cells, mesenchyme, dendritic cells, B cells, fibroblasts, and hepatocytes within the scRNA-seq data based on the expression of lineage specific markers as annotated with integration of discoveries from human liver cell atlas and the annotation analysis with SingleR. The expression patterns of the top 25 genes in the MergeCohort_Turquoise module were analyzed by scRNA-seq analyses of liver tissues. Those key genes in MergeCohort_Turquoise module including CD53, LCP1, LAPTM5, PTPRC and SRGN expressed by distinct immune cells such as microphages, NK cells, T cells, dendritic cells and B cells, and most of them, namely FGL2, HCK, MPEG1, CYBB, CSF1R, IGSF6, CPVL and HLA-DRA were mainly expressed by macrophages, dendritic cells (Figure 8C; Supplementary Figure S3), which indicated that the macrophages and dendritic cells play an important role in the pathogenesis of NASH.




Figure 8 | Assessment of the expression patterns of hub genes in MergeCohort_Turquoise module in different types of cells using publicly available healthy and cirrhotic scRNA-seq from dataset GSE136103. (A) UMAP visualization of different cell clusters from healthy (n = 2) and cirrhotic (n = 2) human livers. (B) UMAP visualization of cell types from healthy (n = 2) and cirrhotic (n = 2) human livers. Cells were annotated as endothelial cells, macrophages, cholangiocytes, NK cells, T cells, mesenchyme, dendritic cells, B cells, fibroblasts, and hepatocytes based on the expression of lineage markers. (C) Dot plot shows the expression patterns of top 25 hub genes in different types of liver cells. Size of the dot indicates proportion of the cell population that expresses each gene. Color represents level of expression. UMAP, uniform manifold approximation and projection.







Identification of TFs that regulate the Turquoise modules

The results of the analysis above showed that hub genes in MergeCohort_Turquoise module were enriched in immunity. Because co-expressed genes tend to be co-regulated by the common transcription factors (TFs), we further conducted TFs enrichment analysis (hypergeometric test) using the genes from the MergeCohort_Turquoise and GSE135251_Turquoise modules to obtain key regulatory genes, based on TRRUST database (34). Our results indicated that NFKB1, SPI1, RELA, CIITA, HIVEP2, SP1, RFXANK, RFXAP, RFX5, IRF1 are the top 10 most significantly enriched TFs in MergeCohort_Turquoise module (Figure 9A). Moreover, we adopted ChEA3 database (35) to validate the significantly enriched transcription factors over MergeCohort_Turquoise module genes. As a result, ChEA3 analysis identified 27 of the 33 significant TFs for MergeCohort_Turquoise module genes with TRRUST database, the other six TFs were part of their targets (Table S12). We also found that NFKB1, SPI1, RELA, CIITA, SP1, RFXANK, RFXAP, RFX5, TRERF1, ELF1, STAT3, ERG, ETS1, ILF3, CEBPA, HDAC1 and IRF8 are significantly enriched TFs in both MergeCohort_Turquoise and GSE135251_Turquoise module (Figure 9A). Furthermore, we observed significantly increased of hepatic expression of RFX5, ILF3, NFKB1, STAT3, ELF1, SPI1, ETS1 and CEBPA in NAFL and NASH compared to the control group (p < 0.05) (Figure 9B).




Figure 9 | Regulatory relationship between enriched transcription factors and their target genes in NASH-associated module. (A) Dot-plot heatmap shows enriched transcription factors in MergeCohort_Turquoise and GSE135251_Turquoise module. The size of each dot represents the -log10 of adjusted p value for each transcription factor. (B) Boxplots shows mRNA hepatic expression of the enriched transcription factors including RFX5, ILF3, NFKB1, STAT3, ELF1, SPI1, ETS1 and CEBPA according to GSE135251 dataset. The p value was calculated by Student’s t test. (C, D) The regulatory networks between enriched transcription factors and associated target genes in MergeCohort_Turquoise (C) and GSE135251_Turquoise module (D), respectively. Red color represents transcription factors, blue color represents target hub genes, grey color represents other target genes. (E) Pearson correlations for mRNA hepatic expression of transcription factors (RFX5 and ILF3) and associated target genes (HLA-DQB2, HLA-DOA, HLA-DMA, HLA-DQA1, HLA-DMB, HLA-DPB1, HLA-DPA1 and HLA-DRA) in GSE135251 dataset. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.



Next, the regulatory networks were constructed for the enriched TFs and associated target genes in each of the modules (Figures 9C, D). We observed that RFX5 and ILF3, an important transcriptional factor mainly expressed in the liver, upregulated from mild to advanced NASH, regulates the expression of genes involved in antigen processing and presentation of exogenous peptide antigen via MHC class II, including HLA-DQB2, HLA-DOA, HLA-DMA, HLA-DQA1, HLA-DMB, HLA-DPB1, HLA-DPA1 and HLA-DRA. Notably, the gene expression of RFX5 and ILF3 positively correlated with MHCII gene expression (Figure 9E). We found 41 genes are regulated by the NFKB1 transcription factor. As known, NFKB1 regulates the expression of genes associated with cytokine-mediated signaling pathway (e.g., TNF, CXCL10, MMP9 and TGFB1) and immune response (e.g., CD74, CD58, CD80 and CD86) (Figure 9C). Moreover, STAT3 regulates the expression of gene in Wound healing involved in inflammatory response, including HMOX1, TIMP1, TGFB1 and F2R. Interestingly, SPI1 regulated gene involved in immune effector process (e.g., CTSG, CD68, IFIT3 and IL18) including hub genes (CYBB and HCK) in MergeCohort_Turquoise module. SP1 regulated gene involved in cell activation (e.g., TIMP1, LTF, FGL2 and LYZ).

For further analysis the expression of the hub genes and key TFs in vitro models of NASH, we retrieved public available RNA-seq data (the RNA-seq data of L02 hepatocytes (PRJNA726826) and murine primary hepatocytes (PRJNA726846) treated with palmitic acid and oleic acid (PAOA) for 0h, 12h and 24h, respectively (42)), we found hub genes (CD53 and SRGN) and key TFs (NFKB1, ELF1 and EST1) displayed higher expression in L02 hepatocytes treated with PAOA (Figure S4A). Moreover, we observed that hub genes (Lcp1 and Fcer1g) and key TFs (Ilf3, stat3 and Est1) showed increased expression in murine primary hepatocytes with PAOA treatment (Figure S4B). Together, these TFs and target genes identified in our study provide a promising list for investigators or companies interested in conducting preclinical study into the mechanisms of and treatments for NASH both in vitro and in vivo.






Discussion

The global epidemic of NASH is a serious public health problem, the pathogenesis of NASH still remains unclear. Moreover, although liver biopsy currently remains the reference standard for diagnosis of NASH, it is an intrusive operation with risks and many shortcomings. Thus, identifying novel non-invasive biomarkers in NASH is of paramount importance in the prevention and therapy of this disease.

Thanks to the rapid development of high-throughput sequencing technology and gene chip technology, more and more researchers are actively pursuing molecular markers using data mining and analysis of sequencing data or gene chips to the diagnosis and treatment of disease (19, 43, 44). In our study, we analyzed gene expression profiles of NASH patients and normal controls from five independent GEO data sets. The batch of various platforms or batches is removed. DEGs were identified between normal liver tissues and NASH tissues, based on 831 DEGs between Normal-NASH group, we performed GO and Reactome pathway analysis to explore underlying mechanism of NASH. The results showed that enriched pathways were involved in metabolism pathways, inflammatory response and immune response, extracellular matrix organization (Figures 2C, D), conforming their association with NASH development and progression.

Subsequently, we constructed a co-expression network and identified 17 different modules by WGCNA, among which 11 modules were significantly associated with the status of NASH. DEG numbers showed a significant enrichment in seven important modules (Figure 3D). The results of this study indicated that the identified modules are biologically rational, majority of which are enriched for specific GO terms and KEGG pathways, sharing some commonality with the existing literature. For example, module Black and Brown, are markedly negative correlated with NASH status. Both the Black and Brown were most significantly enriched in cellular amino acid catabolic process. Recent studies showed that deregulation in amino acid metabolism seem to be involved in the appearance of NASH (39, 45). In addition, previous research has demonstrated that lipid metabolism significantly altered during NASH progression (46). Our data found Grey60 module that was significantly upregulated in NASH, enriched in the lipid metabolism pathways, encompassing hub genes related to cholesterol metabolism (FDFT1, NSDHL, IDI1, SQLE, MVD, HMGCS1, HMGCR and LSS) as well as fatty acid metabolism (FASN, ELOVL6, FADS1, FADS2, ACACA, ELOVL6, PKLR and THRSP) (Figure 4C). Similarly, previous biological network analysis identified cholesterol synthesis genes in human NAFLD (e.g., FDFT1, NSDHL, IDI1, SQLE, MVD, HMGCS1 and HMGCR) and fatty acid metabolism genes (e.g., Fasn, Thrsp and Pklr) in NAFLD mouse model that were also reported to be deregulated by (47) and (18), respectively. Thus, despite the differences in study design, the three studies coverage on a number of key biological findings.

Inflammation is an important factor driving NASH progression. Our current systematic transcriptomic analysis also highlighted the importance of the Turquoise module in modulating NASH occurrence and development. This study found that the immune-related pathways were mostly enriched in the Turquoise module, which contained the highest number of differentially deregulated genes (Figure 3D). Moreover, we demonstrated the highest preservation of the Turquoise module between the MergeCohort and validation dataset GSE135251 (Figure 5A). The top hub genes overexpression in NASH samples and linking immune-related pathways belonged to CD53, LCP1, LAPTM5, NCKAP1L, C3AR1, FGL2, PLEK, HLA-DRA, FPR3 and SRGN, which also showed positive correlation with histological grade (Figure 7C). Further validation by mouse NASH model, the expression of CD53, LCP1, LAPTM5, NCKAP1L, C3AR1, FGL2, PLEK and SRGN were significantly upregulated (Figure 7D). The role of CD53, C3AR1, NCKAP1L and FGL2 genes in regulation of immune responses has recently been proposed in previous studies. CD53 is a member of the tetraspanin membrane protein family that may be involved in transmembrane signal transduction (48). CD53 has been reported to associate with liver inflammation and insulin sensitivity (49). LAPTM5 is a transmembrane protein which is preferentially expressed in immune cells, and it acts as a positive regulator of proinflammatory signaling pathways in macrophages (50). Previous study revealed that LAPTM5 could interact with CDC42, and promote its degradation, then suppressed the activation of MAPK signaling pathway, hence ameliorated NASH in mouse (51). Besides, LAPTM5 has been shown to be significantly upregulated in HCC tissues compared to normal liver tissues, and Pan et al. reported that LAPTM5 could remarkably accelerate autophagic flux by promoting fusion of lysosomes with autophagosomes to drive lenvatinib resistance in HCC (52). Moreover, C3AR1 is a G protein-coupled receptor (GPCR) protein, which participates in the complement system and can stimulate the production of IL-1β and TGFβ (53). Interestingly, Han et al. found that C3ar1 knockout mice showed drastically less severe fibrosing steatohepatitis, concomitantly with reduced hepatic stellate cells (HSCs) activation when compared with the wildtype littermates (54). In addition, the mRNA level of LCP1 in liver tissue of NAFLD patients was strongly increased (300%) compare to the control group in a previous GWAS study (55), and Miller et al. used proteomic method to describe the proteome of NAFLD and observed that LCP1 performed well in distinguishing the disease state from control group, NAFL from NASH and fibrosis grading (56). Notably, our study also found that the Turquoise module including hub gene HLA-DRA, displayed higher expression in NASH, which associated with NAFLD loci found by GWAS, and genetic variants of HLA−DRA has been recently reported to affect hepatitis development in a Korean population (57). Additionally, it has been shown that SRGN, CD53, NCKAP1L, LCP1, EVI2B, MPEG1 and TYROBP may be potential pathological target gene for NAFLD and NASH, which is highly similar to our Turquoise module (58).

It should be noted that NASH is regarded as an inflammatory subtype of NAFLD with steatosis and evidence of hepatocyte injury and interactions between multiple immune cells. Increasing evidence has demonstrated the high heterogeneity and plasticity of macrophage populations in human liver (59). For example, Ramachandran et al. adopted scRNA-seq approach to discover a disease-associated TREM2+/CD9+ macrophage population that was remarkably expanded in human cirrhotic livers. Therapeutic inhibition of CCR2+ bone marrow-derived macrophages has been reported to alleviate inflammation and fibrosis in mouse NASH and fibrosis in human disease (36, 60). Similarly, our integrated scRNA-seq analysis revealed that the hub genes in the Turquoise module were mainly enriched in macrophage and dendritic cells, conforming the importance of which during NASH progression. For instance, our study found that expression of FGL2 was elevated in macrophages and dendritic cells (Figure 8C). A recent study demonstrated that Fgl2 expression in the livers of both humans and mice with NASH was significantly increased along with the accumulation of hepatic macrophages (61). Moreover, we found that the expression of CSF1R gene, a marker for pan-macrophages reported to be involved in hepatic fibrosis, was also considered as a potential marker for hepatocarcinogenesis (62). By analyzing the association between LCP1 and immune cells, Zhang et al. found LCP1 was significantly positively related to memory B cells as well as M1 macrophages (58). Our study also observed that hub gene HLA-DRA was higher expressed in both macrophages and dendritic cells (Figure 8C). Intriguingly, previous reports examining human NASH livers using single-cell RNA sequencing reported that M-Mac-1 included three genes, HLA-DRA, HLA-DQA2 and HLA-DQB2 (63), which was related to NAFLD loci (57, 64, 65). Further, recent study reported that cDC-related gene expression signatures in human livers were associated with NASH pathology (66). These findings emphasized the importance of further studies of the subpopulations of inflammatory macrophages and dendritic cells in NASH progression. However, more single-cell transcriptome data focusing on NASH progression among NASH patients are needed in future studies.

Several studies involving transcription factors have indicated therapeutic effects in NASH (67, 68), for example, transcription factors including PPARs, LXR and FXR are mainly known for their roles in altering lipid metabolism in NAFLD/NASH development. Agonists of PPARs and FXR have been investigated extensively in mouse models (69, 70), clinical trials presently are ongoing to test the effects of these drugs for potential NASH treatments. In addition, PPARs, LXR and FXR not only regulate lipid metabolism but also exert anti-inflammatory functions via direct and indirect mechanisms as shown by the suppression of several proinflammatory genes (71–74). Therefore, the detection of an immune-related transcription factor seems to be essential for the identification of novel therapeutic targets in NAFLD/NASH. In present study, we observed that the immune-related module enriched TFs including NFKB1, STAT3, RFX5, ILF3, ELF1, SPI1, ETS1 and CEBPA, the expression of which enhanced with NASH progression (Figure 9B). Among the TFs, NFKB1, STAT3, SPI1, ETS1, CEBPA and ELF1 have been reported to be linked to NAFLD/NASH by literature searching.

NF-κB is a protein complex that plays a central role in regulating the expression of cytokines and chemokines, and recent studies suggest that NF-κB is highly activated both in mice and patients with NASH (75, 76). NFKB1 (p105/p50), a member of NF-κB family, emerging evidence suggests that NF-κB1-gene-coded proteins p105 and p50 have critical regulatory activities of inflammatory responses (77, 78). Previous study have showed that Nfkb1-deficient mice enhanced NASH progression to fibrosis by favouring NKT cell recruitment (79). In addition, Jurk et al. reported that loss of Nfkb1 in mouse promoted ageing-related chronic liver disease, featured by steatosis, hepatitis, fibrosis and HCC (80), which point to the possible relevance of polymorphisms in human NFKB1 gene as a risk factor for the progression of inflammatory disease (81).

STAT family members with inflammatory biological functions notably STAT1 and STAT3 have been linked to NAFLD and NASH. Grohmann and colleagues demonstrated that the oxidative hepatic environment in obesity restrained the STAT1 and STAT3 phosphatase TCPTP, which led to potentiate STAT1 and STAT3 signaling, and further increase the risk of developing NASH and HCC in the setting of nutritional excess (82). On the other hand, the suppression of TCPTP, coupled with heightened STAT1 and STAT3 signaling, were easily detectable events in the livers of patients with NASH (82). Moreover, a recently study revealed that dampening IL6/STAT3 activity alleviated the I148M-mediated susceptibility to NAFLD, while boosting it in wild-type liver cultures enhanced the development of NAFLD (83). Additionally, downregulation of STAT3 expression can activate autophagy and inhibit the inflammatory response of NASH (84, 85). Interestingly, other transcription factor such as SPI1, ETS1 and CEBPA have been described to be a promising target for NASH prevention and treatment. Liu et al. applied proteomics strategy to identify SPI1 as critical TF, SPI1 expression was positively related to resistance indicator HOMA-IR and the inflammatory marker TNFA in human liver biopsies, and inhibition of SPI1 ameliorated metabolic dysfunction and NASH (86). It has been proven that Ets1 acted as a positive regulator of TGF-β1 signaling, which accelerated the development of NASH in mice (87). Notably, Vujkovic et al. recently presented a GWAS study and identified 77 genome-wide loci significantly associated with NAFLD (diagnosed using elevated ALT as a proxy for NAFLD), of interest is that for nine SNPs, the cATL risk allele was associated with lower BMI including CEBPA (65).

There are few studies of RFX5, ELF1 and ILF3 that have been reported at present in the field of NAFLD and NASH. RFX5, a classical transcription regulator of MHCII gene expression in the immune system. It has been previously shown that RFX5 displayed higher transcriptional activity in both human NASH and mouse model of NASH (68). Interestingly, RFX5 mRNA has previously been shown overexpressed in HCC compared with non-tumor tissue, which promoted HCC progression via transcriptionally activating KDM4A, TPP1 and YWHAQ (88–90). Moreover, our results also showed that RFX5 are the prominent regulators of expression of HLA class II genes in the immune-related module. Interestingly, RFX5 was recently reported to enhance surface expression of HLA-DR molecules, which promoted tissue macrophages-dependent expansion of antigen-specific T cells in rheumatoid arthritis (91). In addition, ELF1 regulated hub gene CYBB in MergeCohort_Turquoise module, the mechanism of TAZ-induced Cybb leading to liver tumor formation in NASH has been well defined (92).

ILF3, also known as NF90/NF110, encodes a double-stranded RNA (dsRNA)-binding protein which can regulate gene expression and stabilize mRNA (93, 94). Recent studies have reported insights into the possible physiological roles of ILF3 in dyslipidemia, the cardiovascular system, neurodegenerative disorder as well as in tumorigenesis and progression of different cancers. Zhang et al. demonstrated that ILF3 together with another eight transcription regulators control late-onset Alzheimer’s disease (LOAD) risk genes HLA-DRB1 and HLA-DQA1 expression in human microglial cells (95). Moreover, there is evidence that ILF3 could have an important role in inflammatory pathophysiology in vivo, Nazitto et al. identified ILF3 as negative regulator of innate immune response and dendritic cell (DC) maturation, and found that knockdown of ILF3 led to significantly elevated expression of genes (CD86, CD80 and HLA-DR) associated with DC maturation in the primary human monocyte-derived DCs during stimulation with viral mimetics or classic innate agonists (96). In addition, previous studies have revealed the essential roles of deregulated lncRNA ILF3 divergent transcript (ILF3-AS1) in HCC, Bo et al. found that ILF3-AS1 expression was significantly increased in HCC tissues and also associated with prognosis of HCC patients, and knockdown of ILF3-AS1 expression suppressed HCC cell proliferation, migration and invasion (97). Yan et al. also observed that ILF3-AS1 silencing inhibited the hepatocellular carcinoma tumor growth (98). However, the regulation roles of RFX5 and ILF3 on HLA-DR molecules in the progression of NASH have also not been well defined. Therefore, our results provide a very meaningful direction for future research.

In summary, unlike previous studies with limitation of a few human NASH transcriptome data or focusing on individual genes influencing NASH progression, our network-driven strategy generated a comprehensive and unbiased view of the modules, hub genes and critical transcriptional factors associated with NASH. In particular, the Turquoise module and regulators involving immune-related pathways especially transcription factor RFX5 coordinating antigen processing and presenting function in NASH progression deserve further attention. The main limitation of present study is that all conclusions are based on transcriptomic data from human and lack verification from relevant experiments in vitro/in vivo disease models. Nevertheless, it provides useful and novel molecular candidates in dysregulated pathways for NASH prognosis and therapeutic targets.
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Introduction

MiR-196a2 and miR-27a play a key role in the regulation of the insulin signaling pathway. Previous studies have indicated that miR-27a rs895819 and miR-196a2 rs11614913 have a strong association with type 2 diabetes (T2DM), but very few studies have investigated their role in gestational diabetes mellitus (GDM).





Methods

A total of 500 GDM patients and 502 control subjects were enrolled in this study. Using the SNPscan™ genotyping assay, rs11614913 and rs895819 were genotyped. In the data treatment process, the independent sample t test, logistic regression and chi-square test were used to evaluate the differences in genotype, allele, and haplotype distributions and their associations with GDM risk. One-way ANOVA was conducted to determine the differences in genotype and blood glucose level.





Results

There were obvious differences in prepregnancy body mass index (pre-BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP) and parity between GDM and healthy subjects (P < 0.05). After adjusting for the above factors, the miR-27a rs895819 C allele was still associated with an increased risk of GDM (C vs. T: OR=1.245; 95% CI: 1.011-1.533; P = 0.039) and the TT-CC genotype of rs11614913-rs895819 was related to an increased GDM risk (OR=3.989; 95% CI: 1.309-12.16; P = 0.015). In addition, the haplotype T-C had a positive interaction with GDM (OR=1.376; 95% CI: 1.075-1.790; P=0.018), especially in the 18.5 ≤ pre-BMI < 24 group (OR=1.403; 95% CI: 1.026-1.921; P=0.034). Moreover, the blood glucose level of the rs895819 CC genotype was significantly higher than that of the TT and TC genotypes (P < 0.05). The TT-CC genotype of rs11614913-rs895819 showed that the blood glucose level was significantly higher than that of the other genotypes.





Discussion

Our findings suggest that miR-27a rs895819 is associated with increased GDM susceptibility and higher blood glucose levels.





Keywords: gestational diabetes mellitus (GDM), miR-196a2, miR-27a, rs11614913, rs895819, case-control study




1 Introduction

Gestational diabetes (GDM) is a common disease in pregnancy that is determined by the first diagnosis of hyperglycemia (1). GDM is harmful to the health of pregnant women and fetuses to a certain extent. For pregnant women, it may increase the incidence of complications, such as pregnancy hypertension, cardiovascular disease and glucose metabolism inhibition (2). For the fetus, there is a risk of premature birth and neonatal hypoglycemia (3). Therefore, to prevent and treat the occurrence of GDM, it is necessary to explore its pathogenesis and risk factors. The pathogenesis of GDM may include impaired insulin secretion and insulin resistance (2). Dietary, environmental and genetic factors contribute to GDM development (4), among which single nucleotide polymorphisms (SNPs) are an important genetic variation factor (5).

MicroRNAs (miRNAs) play a key regulatory role in the metabolic signaling pathway during pregnancy (6), which may influence islet β-cell differentiation and islet development (7). A growing number of studies have shown that SNPs in miRNAs have an impact on their maturation, expression and function. The dysregulation of miRNA expression is associated with cancer, diabetes and cardiovascular disease development (8, 9). It has been reported that miR-196a2 and miR-27a are involved in the regulation of the insulin signaling pathway and have a strong correlation with diabetes mellitus (DM) (10–20). There have been many previous studies on the association of miR-196a2 rs11614913 and miR-27a rs895819 polymorphisms with type 2 diabetes (T2DM) (21–29), but very few studies have investigated the association of these miRNAs with GDM (20).

The Oral Glucose Tolerance Test (OGTT) is currently regarded as the gold standard for diagnosing GDM (30), yet it is a cumbersome process, requiring fasting and multiple blood draws, and is associated with nausea and vomiting, resulting in reduced patient compliance. Additionally, the OGTT is performed between 24-28 weeks of gestation, providing a limited timeframe to implement interventions to improve pregnancy outcomes. Therefore, it is essential to find ways to increase patient compliance and facilitate early detection. In recent years, SNPs have been explored as potential molecular biomarkers for GDM screening (31). While the correlation between miR-27a rs895819, miR-196a2 rs11614913 and gestational diabetes has been less studied, the identification of sensitive and specific biomarkers through the detection of these SNPs may offer potential for GDM risk prediction and intervention strategies.

Therefore, this study evaluated the association between the single SNPs rs11614913 and rs895819, SNP-SNP and GDM risk and further explored the correlation between genotype and blood glucose level. We conducted a Chinese case-control study to assess whether miR-196a2 rs11614913 and miR-27a rs895819 are associated with GDM risk. Further meta-analysis was performed to estimate the relationships between rs11614913 and rs895819 and DM.




2 Materials and methods



2.1 Study subjects

This study protocol was approved by the Ethics Committee of Shunde Women and Children’s Hospital of Guangdong Medical University, and subjects for this study were selected through the following criteria: (i) voluntary informed consent; (ii) never diagnosed with diabetes; (iii) Han ethnicity; (iv) age not less than 18 years; (v) no pregnancy complications; and (vi) no glucose-lowering medication. A total of 1002 pregnant Chinese Han women were recruited, including 500 in the GDM group and 502 in the control group. Based on the GDM diagnostic criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG), during 24-28 weeks of pregnancy, pregnant women took 75 g glucose for the glucose tolerance test (OGTT), and subjects with at least one glucose level measurement equal to or above the threshold value (fasting blood glucose level, FBP ≥ 5.1 mmol/L, 1 hour blood glucose level, 1 h-PG ≥ 10.0 mmol/L or 2 hour blood glucose level, 2 h-PG ≥ 8.5 mmol/L) were diagnosed with GDM, while subjects with normoglycemic levels were deemed healthy controls. This study was performed based on the principles of the Declaration of Helsinki.




2.2 Data collection

General clinical information, such as age, ethnicity, height, systolic blood pressure (SBP), diastolic blood pressure (DBP), prepregnancy weight, and parity (primipara or multipara) were gathered. The prepregnancy body mass index (pre-BMI, Kg/m2) was calculated as prepregnancy weight (Kg) divided by the square of the height (m2). According to BMI, the obesity criteria of Chinese people were divided into the following groups: obesity (≥28 Kg/m2), overweight (24 Kg/m2 ≤ BMI <28 Kg/m2), normal (18.5 Kg/m2 ≤ BMI <24 Kg/m2), and underweight (<18.5Kg/m2).




2.3 SNP genotyping

The QIAamp DNA blood kit (Qiagen, Germany) was used to extract genomic DNA. Genotypes of individual SNPs were detected using the SNPscan method, and the raw data were collected on an ABI3730XL sequencer and analyzed with GeneMapper 4.1 software (Applied Biosystems, USA) (Genesky Technologies Inc., Shanghai, China). The accuracy of genotyping results was ensured by further quality control.




2.4 Statistical analyses

All statistical analyses were performed using SPSS 20.0 software (SPSS, Chicago, IL, USA). Independent sample t test was used for comparison of continuous variables (mean ± standard deviation); discontinuous variables, including Hardy-Weinberg equilibrium (HWE) in the control group, were compared using chi-square tests. After adjusting for potential confounders (including age, pre-BMI, blood pressure, and parity), the association of SNP, SNP-SNP and risk of GDM was assessed by dominance ratio (OR) and 95% confidence interval (CI) using binary logistic regression analysis. One-way ANOVA was used to analyze the correlation between SNP, SNP-SNP and blood glucose levels. The least significant difference (LSD) method was used for multiple comparisons. Bilateral P < 0.05 was statistically significant.




2.5 Bioinformatics analyses

Utilized the UCSC database (http://genome.ucsc.edu/) to locate SNPs with a minimum allele frequency of one percent or higher. The effect of variation on RNA folding and the stability of mRNA secondary structure was analyzed using RNAfold Web Servers (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). In addition, the miRWalk (http://mirwalk.umm.uni-heidelberg.de/) online tool was used to predict the GDM-related genes that were coregulated by miR-196a2 and miR-27a.




2.6 Meta-analysis

Different combinations of the terms rs11614913, rs895819, gestational diabetes mellitus, GDM, type 2 diabetes mellitus, T2DM and type 1 diabetes mellitus, T1DM were used to comprehensively search the literature through the PubMed, Chinese National Knowledge Infrastructure and Google Scholar databases with no limitations. The inclusion criteria were case-control or cohort studies that assessed the association of rs11614913 and rs895819 with GDM/T2DM/T1DM with sufficient raw data. Studies that did not meet the diagnostic criteria and studies with data that were not in HWE were excluded. Two authors supervised each other to extract the basic data in the article. The overall and subgroup meta-analysis of five genetic models used the fixed or random effects model according to the level of heterogeneity (32). Publication bias was determined using Egger’s and Begg’s tests. All meta-analyses were performed using STATA v.16.0 software (Stata Corporation, TX, USA).





3 Results



3.1 General clinical characteristics of the subjects

This case-control study included 500 GDM and 502 healthy controls for whom the genotypes of miR-27a rs895819 and miR-196a2 rs11614913 were detected. Clinical baseline information is listed in Table 1. The mean age, pre-BMI, SBP, DBP, and blood glucose levels were significantly higher in the GDM group than in the control group (P < 0.05). Moreover, the parity of the GDM group was significantly different from that of the control group (P < 0.05).


Table 1 | Basic and stratified characteristic of participants of the study.






3.2 The association of rs11614913 and rs895819 with GDM risk



3.2.1 Overall analysis results

Table 2 shows the results of Hardy-Weinberg equilibrium (HWE) analysis and minor allele frequencies (MAF) for the 2 SNPs in the control group. The results were consistent with HWE (P > 0.05). The (unadjusted and adjusted) OR and 95% CI of the correlation between genotype and GDM were estimated in five models (codominant homozygous, codominant heterozygous, dominant, recessive and allele models) for each polymorphism. Before adjustment, the results showed the rs895819 dominant model (CC+TC vs. TT: OR=1.293; 95% CI: 1.008-1.658; P = 0.043) and the rs895819 allele model (C vs. T: OR=1.257; 95% CI: 1.032-1.532; P = 0.023) associated with increased GDM risk. After adjusting for age, pre-BMI, SBP, DBP, and parity, the results of the rs895819 allele model (C vs. T: OR=1.245; 95% CI: 1.011-1.533; P = 0.039) remained significantly associated with increased GDM risk (Table 3). However, no significant correlation with GDM risk was found for rs11614913 (Table 3).


Table 2 | SNPs information and HWE test in the controls.




Table 3 | The associations between SNPs and GDM risk in overall subjects.






3.2.2 Stratified analysis results

Subsequently, the association of the 2 SNPs in 5 models with GDM susceptibility was tested using stratified analysis by age or pre-BMI. Notably, for the rs895819 dominant model (CC+TC vs. TT: OR=1.515; 95% CI: 1.053-2.179; P = 0.025), rs895819 codominant heterozygote model (TC vs. TT: OR=1.514; 95% CI: 1.036-2.214; P = 0.032) and rs895819 allele model (C vs. T: OR=1.353; 95% CI: 1.015-1.802; P = 0.039) the results showed a significantly increased GDM risk in subjects younger than 30 years of age. In the 18.5 ≤ pre-BMI <24 group, the results of the rs895819 dominant model (CC+TC vs. TT: OR=1.434; 95% CI: 1.064-1.933; P = 0.018), rs895819 codominant heterozygote model (TC vs. TT: OR=1.402; 95% CI: 1.024-1.918; P = 0.035) and rs895819 allele model (C vs. T: OR=1.335; 95% CI: 1.052-1.693; P = 0.017) showed that rs895819 was significantly related to increased GDM risk; however, after correction, no significant difference was found. In addition, no significant correlation with GDM risk was found for rs11614913 (Supplementary Table 1-4).





3.3 The association between rs11614913-rs895819 and GDM risk

We further investigated the effect of rs11614913-rs895819 interactions. The model included three genotypes and alleles of miRNA polymorphisms. The results after adjusting for age, pre-BMI, SBP, DBP, and parity showed that the TT-CC genotype of miR-196a2 rs11614913 and miR-27a rs895819 was associated with increased GDM risk (OR=3.989; 95% CI: 1.309-12.16; P = 0.015). In addition, the haplotype T-C was significantly associated with increased GDM risk (OR=1.376; 95% CI: 1.075-1.790; P = 0.018) (Table 4), especially in the group with 18.5 ≤ pre-BMI < 24 (OR=1.403; 95% CI: 1.026-1.921; P = 0.034) (Supplementary Tables 5, 6).


Table 4 | The associations between combined genotype/aelle and GDM risk.






3.4 Association between genotype and blood glucose level

The results of the OGTT experiment showed that the 2-hour blood glucose level of the CC genotype of rs895819 was significantly higher than those of the TT and TC genotypes (P < 0.05)(Table 5). For the interaction genotype of rs11614913-rs895819, the fasting blood glucose level of the CC-TC genotype was higher than that of TC-TT (P < 0.05), and the 1-hour and 2-hour blood glucose levels of the TT-CC genotype were significantly higher than those of the TT-TC, TC-TC and CC-TT genotypes (P < 0.05) (Table 6).


Table 5 | Relationship between polymorphisms genotype and blood glucose levels.




Table 6 | Relationship between polymorphisms combined genotype and blood glucose levels.






3.5 Effects of variants on miRNA secondary structure

The locations of the SNP mutation sites in the studied miRNAs are shown in Figure 1. The analysis of the effect of SNPs on the local miRNA structure showed that the centroid secondary structure in dot-bracket notation with a minimum free energy (MFE) of the T and C rs895819 alleles are -34.3 kcal/mol and -30.4 kcal/mol, respectively, and the size of the miRNA hairpin loop increases when the T allele is replaced by the C allele. (Figures 2A, B). Thermodynamically, the lower the MFE, the more stable the miRNA structure. Thus, these variations may affect the processing of pre-miRNAs.The centroid secondary structure in dot-bracket notation with an MFE of the C and T rs11614913 alleles are −49.9 kcal/mol and -44.3 kcal/mol, respectively (Figures 2C, D). This suggests that the local miRNA structure of the C allele may be more stable than that of the T allele. Figure 3 shows the base pair probabilities of wild-type and mutant-type, suggesting the difference between wild-type and mutant-type.




Figure 1 | RNA precursor sequence and mutation sites (marked with asterisk). A hsa-miR-27a (reference), B hsa-miR-27a (mutant), C hsa-miR-196a2 (reference), D hsa-miR-196a2 (mutant).






Figure 2 | Centroid secondary structure of pre-mir-27a and pre-mir-196a2. The size of the miRNA hairpin loop increases when the rs895819 T allele is replaced by the C allele. (A) hsa-miR-27a (reference), (B) hsa-miR-27a (mutant), (C) hsa-miR-196a2 (reference), (D) hsa-miR-196a2 (mutant).






Figure 3 | Base pair probability of local region. (A) miR-27a rs895819 T>C, (B) miR-196a2 rs11614913 C>T.






3.6 Meta-analysis results

The final analysis included 12 studies (including our study): 6 studies related to rs11614913 and GDM/T2DM/T1DM (1/4/1) and 7 studies related to rs895819 and GDM/T2DM (2/5). Table 7 shows the characteristics of the studies. In the overall analysis, no significant associations were found between rs11614913 and rs895819 and DM. In the subgroup meta-analysis, the results of the rs895819 dominant model (CC+TC vs. TT: OR=0.699; 95% CI: 0.518-0.943; P = 0.019), rs895819 recessive model (CC vs. TC+TT: OR=0.365; 95% CI: 0.190-0.701; P = 0.002), rs895819 codominant homozygous model (CC vs. TT: OR=0.305; 95% CI: 0.156-0.595; P <0.001) and rs895819 allele model (C vs. T: OR=0.667; 95% CI: 0.524-0.848; P = 0.001) showed that the tested models were associated with decreased T2DM risk in a Caucasian population (Figure 4). No significant difference was found in other groups (data not shown).


Table 7 | Characteristics of each study included in the meta-analysis.






Figure 4 | Subgroup meta-analysis for the association between miR-27a rs895819 and T2DM susceptibility in a Caucasian population in fixed effects model. (A) Dominant model, CC+TC vs. TT. (B) Recessive model, CC vs. TC+TT. (C) co-dominant homozygous model, CC vs. TT. (D) Allele model C vs. T. OR odds ratio, CI, confidence interval; I2: measurement to quantify the degree of heterogeneity in meta-analyses.







4 Discussion

MiRNAs affect gene expression through posttranscriptional regulation and are involved in many important physiological processes (21). Polymorphisms of miRNAs may affect their maturation, expression and function, which may lead to human disease susceptibility (22). It has been found that miRNA polymorphisms are associated with a variety of cancers, T2DM, GDM and cardiovascular diseases (23–25). In this study, we evaluated the associations between miR-27a rs895819 and miR-196a2 rs11614913 and GDM susceptibility in a Chinese population.

The results showed that the miR-27a rs895819 C allele was associated with increased GDM risk, and a previous study indicated that the miR-27a CC genotype was associated with increased T2DM risk in an overweight Chinese population (18). Zhu et al. showed that miR-27a rs895819 variant genotypes were also associated with an increased risk of T2MD in both the age ≥ 60 years (GG genotype) and male subgroup (AG genotype and dominant model) (26). MiRNA SNPs may contribute to the development of GDM by changing the expression of target genes. The results of this study showed that the rs895819 mutant C allele increased the production of mature miR-27a and suppressed the expression of its target genes compared to the wild T allele (27). Furthermore, human Drosha selectively cleaves RNA hairpins with larger terminal loops (28). Thus, as long as the size of the miRNA loop is altered by mutation or deletion, the maturation process of Drosha is affected. The miR-27a secondary structure analysis found that the size of the miRNA hairpin loop increases when the T allele is replaced by the C allele. This enlargement has been shown to accelerate the maturation of miR-27a, resulting in the upregulation of miR-27a (28). Interestingly, the expression of the miR-27a rs895819 AG and GG genotypes was significantly higher than that of the AA genotype (29). The peroxisome proliferator-activated receptorγ(PPARγ) is the target gene of miR-27a, and miR-27a rs895819 variants may further negatively regulate the expression of the PPARγ gene, it may directly down-regulates the adiponectin (33). Adiponectin deficiency is strongly associated with insulin resistance in pregnancy, Khosrowbeygi et al. showed that the adiponectin level of the GDM group was significantly lower than that of healthy pregnant women (34). Thus miR-27a rs895819 variants is considered to be associated with insulin resistance and diabetes.

However, the results of studies in Caucasians were in contrast to these results. Ciccacci et al. showed that the miR-27a rs895819 G allele played a protective role against T2DM in an Italian study (17), and Ghaedi et al. also found that the miR-27a rs895819 C allele played a protective role against T2DM in an Iranian cohort (16). Our meta-analysis verified the above results. These conflicting results with those of our study may be related to ethnic differences in the study populations. In a recent study of a Korean population, it was found that the G allele in a recessive model and the GG genotype of miR-27a rs895819 were significantly associated with decreased T2DM risk, but the sample sizes of T2DM and healthy controls were only 238 and 247, respectively (15). The results of only one study on GDM showed that the miR-27a rs895819 C allele decreased GDM risk in a Chinese population (20), which is contrary to our results. After summarizing the data of our study and the above study, we conducted a meta-analysis and found no correlation between rs895819 and GDM. Therefore, more research on GDM is especially important.

Moreover, miR-196a2 may regulate the insulin signaling pathway, and miR-196a2 variants are involved in T2DM development (10, 35). Rs11614913 is located in the 3p arm of miR-196a2 (36), which may affect the maturation of pre-miRNAs and target gene binding (37). Previous studies showed that the miR−196a2 rs11614913 T allele and CT genotype were associated with an increased T2DM risk in the Saudi Arabian population. Huang et al. showed that the rs11614913 C allele was significantly associated with decreased T2DM susceptibility in the smoking subgroup (13), but a study of a Pakistani population found an increased association between the miR−196a2 rs11614913 C allele and T2DM risk. Our results did not find a significant correlation between miR-196a2 rs11614913 and GDM in the Chinese population. The meta-analysis results did not find a significant association between miR-196a2 rs11614913 and DM risk. These contradicting findings may be related to the different sample sizes of studies and ethnic differences.

The combined SNP genotype analysis indicated that the TT-CC genotype of miR-196a2 rs11614913 and miR-27a rs895819 was associated with an increased risk of GDM susceptibility. This detection of the interaction of rs11614913 and rs895819 in GDM was defined as an epistatic influence, which generally explains the absence or underestimation of heritability when only a single SNP is included in a disease susceptibility study (38). According to the results of our research, miR-196a2 rs11614913 probably has no impact on GDM. However, miR-196a2 rs11614913 and miR-27a rs895819 may jointly affect the development of GDM. Remarkably, the combined genotype and haplotype methods have high potential for application in association research (39). In the haplotype results, the allele combination T-C haplotype of miR-196a2 rs11614913 and miR-27a rs895819 was significantly associated with increased GDM risk, especially in the group with 18.5 ≤ pre-BMI <24. The results of the miRWalk database analysis showed that both miR-196a2 and miR-27a can target the Adiponectin gene, which is related to GDM. MiR-196a2 rs11614913 and miR-27a rs895819 variants may negatively regulate Adiponectin gene expression and increase susceptibility to GDM. Therefore, further functional verification is necessary.

The results of correlation analysis between genotype and blood glucose level showed that the 2-h blood glucose level of the miR-27a rs895819 CC genotype was significantly higher than that of the TT and TC genotypes. The 1-h and 2-h blood glucose levels of the TT-CC genotypes of rs11614913 and rs895819 were significantly higher than those of other combinations. Previous studies have shown that miR-27a in cluster C was positively correlated with fasting blood glucose level, which may play a key role in early hyperglycemia and contribute to the development of diabetes (40).




5 Conclusions

In general, our research is the first to confirm that miR-27a rs895819 may contribute to GDM susceptibility in pregnant Chinese women. However, one of the limitations of this study is the limited sample size. In addition, multicenter and further functional studies are needed to gain more insight into the association between rs895819 and GDM. Importantly, future research should verify some selected targets through luciferase analysis and evaluate the regulatory effect of these miRNA mutations on target gene expression.
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Background

Numerous studies have demonstrated that rheumatoid arthritis (RA) is related to increased incidence of heart failure (HF), but the underlying association remains unclear. In this study, the potential association of RA and HF was clarified using Mendelian randomization analysis.





Methods

Genetic tools for RA, HF, autoimmune disease (AD), and NT-proBNP were acquired from genome-wide studies without population overlap. The inverse variance weighting method was employed for MR analysis. Meanwhile, the results were verified in terms of reliability by using a series of analyses and assessments.





Results

According to MR analysis, its genetic susceptibility to RA may lead to increased risk of heart failure (OR=1.02226, 95%CI [1.005495-1.039304], P=0.009067), but RA was not associated with NT-proBNP. In addition, RA was a type of AD, and the genetic susceptibility of AD had a close relation to increased risk of heart failure (OR=1.045157, 95%CI [1.010249-1.081272], P=0.010825), while AD was not associated with NT-proBNP. In addition, the MR Steiger test revealed that RA was causal for HF and not the opposite (P = 0.000).





Conclusion

The causal role of RA in HF was explored to recognize the underlying mechanisms of RA and facilitate comprehensive HF evaluation and treatment of RA.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease with a worldwide lifetime prevalence of 1% (1), and more common in women, which accounts for 75% of all RA cases (2). RA is typically indicated by the presence of autoantibodies, including anti-cyclic citrullinated peptide and rheumatoid factor, years before the disease can be detected (3), and the most common clinical manifestations caused by these autoantibodies are distal joint pain and joint deformity caused by involvement of synovial joints. Current therapies for RA include antirheumatic drugs (DMARDs), anti-tumor necrosis factor-alpha inhibitors (e.g., adalimumab, etanercept, and infliximab) and non-tumor necrosis factor inhibitors (e.g., ababtreotide, rituximab, toximab) (4). If untreated or poorly controlled, it may lead to interrupted physical function and increased mortality owing to increased cardiovascular risk.

Despite progress in the treatment of RA, which achieves disease activity control in most patients, the life expectancy of RA patients remains low due to the complications of cardiovascular diseases (5, 6). It was found that RA patients had a risk of heart failure 1.87% higher than that of the general population (7), and it was not associated with cardiovascular risk factors (8). The incidence of sudden cardiac death of RA patients is twice that of normal controls, and it is secondary to non-ischemic heart disease, ischemic heart disease and arrhythmia (9). Meanwhile, it is shown that the prevalence of non-ischemic heart disease (heart failure) in RA patients is significantly higher than that of ischemic heart disease (10). N-Terminal Pro-Brain Natriuretic Peptide (NT-proBNP) is now established for the diagnosis of heart failure, but new evidence also points to the role of NT-proBNP in diagnosing myocardial ischemia in asymptomatic patients for primary prevention. NT-proBNP has been shown to be elevated in RA, and this elevation is not significantly related to cardiac function (11). Whether RA can directly affect the change of NT-proBNP, the causal relationship remains unknown. It is noteworthy that these observational studies have different sample size and the results are indeed dependent on confounding factors, and the specific mechanism has yet to be clarified.

Confirmation of causality is challenging due to complex confounders of RA and HF risk. The causal relationship of exposure and outcomes without bias was assessed, and the instrumental variables (IVs) were genetic variation in MR analysis (12). In virtue of the unique advantages of IVs, MR analysis is independent from conventional confounding factors, allowing causal inference (13, 14). Genome-wide association studies (GWAS) provide reliable IVs. In this study, MR analysis was performed on two samples to clarify the potential causality of HF risk and genetic susceptibility to RA and AD without interference from side effects of drug or common risk factors, which is critical for prevention and treatment of RA and even AD.





Methods




Study design and data sources

A two-sample MR approach and classical MR analysis were involved in this study. The data related to RA were acquired from a meta-analysis of GWAS, which included 14,361 cases and 42,923 controls. GWAS data for AD (42,202 cases and 17,6590 controls) were acquired online (https://www.finngen.fi/en). For the outcome dataset, single nucleotide polymorphisms (SNPs) for HF were acquired from a meta-analysis of GWAS (47,309 cases and 930,014 controls). The data for NT-proBNP were acquired from GWAS (21,758 samples). Table 1 summarizes demographic profiles involved. The details of the GWAS are provided in Supplementary Table 1.


Table 1 | Instrumental variable assessment and data source.



We performed a two-sample MR study to assess the causality of CVD risk and genetic susceptibility to RA. Herein, SNPs served as IVs (15). An overview of the research design is presented in Figure 1. The entire process satisfied the three main hypotheses of classical MR analysis: 1. exposure is directly affected IVs; 2. IVs had no correlation with confounders; 3. IVs directly impact outcome risk via exposure, instead of other pathways. Additionally, ethical approval was available for all original studies, along with informed consent. Herein, we followed the latest (STROBE-MR) guidelines (16).




Figure 1 | Study design flowchart of the Mendelian randomization study. The Mendelian randomization method is based on three hypotheses: 1. the instrumental variables is closely related to exposure; 2. instrumental variables is independent of any confounding factor; 3. instrumental variables affects the results only through exposure but not through other ways.







Ethical approval

A MR study by using GWAS summary statistics was employed in this study, and ethical approval had been obtained for each GWAS. The summary statistics were obtained online (https://www.ebi.ac.uk). All data are accessible and no restriction was set.





Selection of IVs

Genetic variants that are closely related to RA (P < 5 ×10−8) were regarded as instrumental variables. We made sure to include only SNPs that were independent (r2<0.001 in 10.000kb) performing LD-clumping with a European reference panel from 1000G (17). Meanwhile, secondary phenotypes were searched for each SNP in order to exclude potential pleiotropic effects. We did not find SNPs associated with confounders (hypertension, diabetes, obesity, and smoking) in PhenoScanner V2. Specifically, SNPs corresponding to the outcome-related phenotypes (P < 5 ×10−8) were excluded, while other SNPs were kept. After that, variance (R2) and F-statistics were employed to evaluate the strength of instrumental variables so that weak-tool bias can be avoided (18). Herein, the formula is as follows: F=R2(NK-1)/[K(1-R2)], where N denotes the sample number of the chosen GWAS, K denotes the number of SNPs involved, and R2 denotes the explained variance (cumulative) of the chosen SNPs during exposure. F>10 indicates a strong correlation of exposure and instrumental variables, and the MR analysis results are independent on weak-tool bias.





MR-analysis

All statistical analyses were conducted using R software (version 4.2.0, R Foundation for Statistical Computing), the MR analysis was performed using the “TwoSampleMR” package (version 0.5.6). For each set of IVs, we harmonized exposure and outcome data to ensure the effect sizes for each GWAS were aligned to the same alleles. Similarly, different exposures (e.g., AD) and outcomes (NT-proBNP) were adjusted in a similar way. The inverse variance weighting (IVW) method was dominant in the MR analysis (15). Meanwhile, MR-PRESSO, MR-RAPS, maximum-likelihood, MR-Egger, and median weighting were employed to clarify the causality (18). Different hypotheses about the effectiveness of IVs were made by using each method. Estimation of median weighting is executed if half of IVs are invalid. MR-Egger was used because it corrects for horizontal pleiotropy, despite lower statistical capability. Specifically, the MR-RAPS was responsible for horizontal multiplicity correction by contour scores adjusted, resulting in reduced deviation due to horizontal multiplicity. And the MR-PRESO method could automatically identify and remove outliers (IVW linear regression) to correct the MR estimation (19). The directionality that exposure causes outcome was verified using the MR Steiger test, P < 0.05 was regarded as statistically significant. These methods were used to comprehensively investigate causality.





Multivariable Mendelian randomization analysis

Multivariable MR (MVMR) analysis was implemented for significant exposure-outcome pairs identified by univariate MR analysis. Specifically, four confounders, Diabetes (IEU GWAS ID: “ukb-b-10753”), Obesity (IEU GWAS ID: “finn-b-E4_OBESITY”), Hypertension (IEU GWAS ID: “finn-b-I9_HYPTENS”) and Smoking (IEU GWAS ID: “ieu-b-142”), were included for MVMR analysis. After combining the GWAS summary level datasets of exposure and the four confounders, it should be ensured that each IV is strongly correlated (P < 5e−8) with at least one or more of the exposure or the three confounders. Then, the SNPs within a window size of 10,000 kb were pruned under the threshold of r2 < 0.001 to mitigate LD. Finally, after excluding palindromic SNPs, outcome-related SNPs (P<0.05), and SNPs not present in outcome GWAS summary data, we used the IVW method to assess causal effects after adjusting for confounders.





Pleiotropy and heterogeneity analyses

As primary analysis we applied the Causal Analysis Using Summary Effect Estimates (CAUSE) approach, which has been demonstrated to outperform other established methods to detect causal relationships in the presence of pleiotropy, CAUSE avoids more false positives induced by correlated horizontal pleiotropy than other methods (20). In this case, CAUSE analysis was conducted to determine whether the relationship between RA and HF was causal (causal model) or induced by correlated horizontal pleiotropy (shared model). When P<0.05 it means that the causal model is preferred over the shared one, indicated that the causal relationship between RA and HF is real and not a false positive due to the correlated horizontal pleiotropy. A series of methods were used for sensitivity analysis in this study. First, the heterogeneity of different SNP estimates was evaluated by the Cochran’s Q test. If P > 0.05, no heterogeneity was indicated. Although the random-effects model could be used, the fixed-effect IVW method was dominant. Second, the horizontal pleiotropy of IVs was investigated by using the MR-Egger intercept method (21). Average of the horizontal pleiotropic effect was estimated based on the intercept across SNPs in the MR-Egger test, and the IVW estimate might be biased if P < 0.05. Third, a single SNP could generate the results was verified by using the leave-one-out sensitivity test. Leave-one-out method shown how the IVW causal effect when remove each variant from the analysis. This allows to detect heterogeneity since if the IVW changes drastically, that means that a variant is contributing way more than the others. Importantly, this is not always a sign of pleiotropy, but always a sign of heterogeneity in the data being analyzed. Fourth, the presence of pleiotropy was directly detected by generating funnel and forest plots. “Two-Sample MR”, “MR-PRESSO”, “CAUSE” and “mr.raps” packages in R software were used for statistical analysis.






Results




Causality of genetic susceptibility to RA and AD on the risk for HF

As shown in Table 2, results obtained by the IVW method indicated that RA was related to increased risk of HF. As observed, the prevalence of HF in RA cases was 1.014-fold that of the control group (95% CI [1.0009-1.0281], OR=1.014, P=0.036) (Supplementary Figure 1), and increase of the OR of AD by one unit leads to increased HF risk (95% CI [1.010-1.081], OR=1.045, P=0.011) (Supplementary Figure 3). MR analysis of RA and HF indicated that the results of the Weighted median analyses were highly consistent with those obtained by the IVW method. In the strict CAUSE, the causal model was shown to be a better fit than the sharing model (95% CI [2.461-2.823], OR=2.642, p = 1.8e-30), indicating a causal association between RA and HF. More supporting statistics were listed in Supplementary Table 2. MR analysis of AD and HF showed that the results of the MR Egger analyses were highly consistent with those obtained by the IVW method. The causal assumption of RA or AD and HF was verified via the MR Steiger test, and the result showed RA or AD influence on HF was the correct causal direction (P = 0.000). The details of the MR Steiger test are provided in Supplementary Table 3.


Table 2 | MR estimates of RA and AD on the risk for HF.







Causality of the risk for NT-proBNP and genetic susceptibility to RA and AD

As shown in Table 3, the prevalence of NT-proBNP (β=-0.0114, SE =0.0150, P=0.4467) in the RA group was not significantly different from that of the control group (Supplementary Figure 2). The results listed were consistent with those obtained by the IVW method. Meanwhile, no significant association was observed between AD and NT-proBNP risk (β=0.0722, SE =0.0265, P=0.7851) (Supplementary Figure 4). It was also confirmed by analyses listed in the table.


Table 3 | MR estimates of RA and AD on the risk for NT-proBNP.







Results of multivariable Mendelian randomization analysis

As shown in Table 4, We performed an MVMR analysis to assess the causal effect of RA on HF after adjusting for four confounding factors (diabetes, obesity, hypertension and smoking). MVMR analysis identified that all of these four confounders were taken into account, the causal relationship between RA and HF was not obvious (OR = 1.022968, 95% CI [0.9994881-1.047000], P = 0.055266). indicating that no significant direct causal effect was detected for RA on HF risk, while jointly modeling diabetes, obesity, hypertension and smoking.


Table 4 | MVMR analysis for assessing the causal effect of RA on HF.







Analysis of horizontal pleiotropy and heterogeneity

As shown in Table 5, a series of methods were employed for MR analysis regarding the correlation of RA, AD and HF to determine the presence of significant horizontal pleiotropy and heterogeneity in the present study. First, the P-value was > 0.05 in the heterogeneity test, demonstrating that SNPs had negligible heterogeneity (Table 5). The fixed-effect IVW method was dominant in this MR analysis. The “leave-one-out” sensitivity analysis demonstrated that IVs involved in the present study had negligible impact on such results (Supplementary Figures 5-8), and the funnel plot illustrates an asymmetric distribution of single IVs (Supplementary Figure 9), suggesting that the causality was not likely to be affected by potential bias. The MR Steiger test indicated that there was no reverse causality (Supplementary Table 3).


Table 5 | Heterogeneity and pleiotropy test of RA and AD from HF and NT-proBNP GWAS.








Discussion

In the present study, MR analysis was first performed to investigate the potential causal relationship of HF risk and the susceptibility to RA. RA is the most common autoimmune disease. The causal relationship of HF risk and AD was thus evaluated by MR analysis. The results showed that the genetic susceptibility to RA and AD was correlated with an increase in HF risk. The MR Steiger test further showed that there was no evidence of reverse causality in our study. The limited evidence from MR analysis supported the potential causal relationship between RA and AD and HF risk.

HF is a cardiovascular syndrome associated with RA and also contributes to the incidence and death of RA (22). In the population-based RA cohort, the incidence of HF was about twice the incidence in the general population (22, 23). As a complex clinical syndrome, HF involves a variety of potential risk factors and causes, among which hypertension and ischemic heart disease are most common (24). Clinically, HF is classified based on the left ventricular ejection fraction (LVEF): 1. Reduced LVEF is defined as ≤40%, i.e. those with a significant reduction in LV systolic function. This is designated as HFrEF. 2. Patients with a LVEF between 41% and 49% have mildly reduced LV systolic function, i.e. HFmrEF. 3. Those with symptoms and signs of HF, with evidence of structural and/or functional cardiac abnormalities and/or raised natriuretic peptides (NPs), and with an LVEF ≥50%, have HFpEF (25). Along with aggravated population aging, the prevalence of HFpEF has been rising in recent years. A recent retrospective study found that 64% of the RA patients are combined with HFpEF (26). HFpEF is more common among RA patients compared to the general HF population without RA (27). A follow-up survey using cardiac ultrasonography showed that the development of subclinical changes in the diastolic function among RA patients was more rapid within 5 years compared to the general population (28). Mantel et al. compared the incidence of 10,000 Swedish patients with ischemic and non-ischemic heart failure. They reported a rapid increase in the HF risk following the onset of FA and a close connection with high disease activity (10). RA patients were related to a higher incidence of HF and IHD throughout the course of observation, and RA was more significantly correlated with the high HF risk (29). Recent advances in the treatment of RA have decreased the incidence of cardiovascular diseases in RA patients, but these patients are still at a higher risk for IHD. Besides, the HF risk increases as the duration and severity of RA increase (10, 30). Nicola et al. proved that compared to the non-RA population, the risk of congestive heart failure was significantly increased in the RA population, with an odds ratio of 1.87 during the 30-year follow-up (22). Similarly, according to Wolfe and Michaud, HF was common among RA patients (22). Michael J Ahlers et al. performed a retrospective case-control study of 9,889 RA patients and 9,889 controls without autoimmune diseases, who were matched for age, gender, and race. It was found that the HF risk was increased by 21% in RA patients and such an increase was irrelevant to the conventional cardiovascular risk factors (26). This estimate agrees with the increased HF risk associated with RA at the Swedish and Danish National Patient Registry (10, 29). Nevertheless, the above reported increase in the HF risk was smaller than that reported by Nicola in the presence of RA, which was 87% (22). Recently, some scholars reported that among RA patients diagnosed in Denmark from 1978 to 2008, RA was associated with an increase in HF-related admissions (31). The above evidence has indicated that RA does increase the risk of HF. Four main factors have been identified as contributors of a higher HF risk in RA patients (32): 1. Conventional cardiovascular risk factors, including smoking, dyslipidemia, hypertension, obesity and diabetes, which usually exist concurrently with the risk factors for RA; 2. The use of glucocorticoids and non-steroidal anti-inflammatory drugs will increase the HF risk; 3. The presence of anti-citrulline peptide antibodies and rheumatoid factors in RA patients was an independent risk factor for HF; 4. An increase in the RA disease activity alongside a continuous cardiovascular impact of systemic inflammation is another primary risk factor for HF.

However, the increased prevalence of hypertension and IHD in RA patients may not fully explain the higher HF risk in RA patients (24). A previous study showed that a significant increase in the mortality of HF among RA patients might be related to coronary artery disease (CAD) (22). Other research showed that RA is a typical chronic inflammatory disease and related to an increase in the HF risk. The latter, however, is uncorrelated with the conventional cardiovascular risk factors (including CAD) (10, 29, 33). The HF phenotype in RA patients is different from that in non-RA patients. The former usually presents with diastolic dysfunction, hypotension and high ejection fraction. Thus, RA and non-RA patients may vary in the mechanism of myocardial injury (27, 34). The newly diagnosed RA patients were associated with a significant increase in the incidence of HF events five years before the diagnosis, although few of them presented with typical features of cardiovascular risks, including hypertension and hypercholesterolemia. These facts suggest that CVD is not only a late complication of RA (35). RA-related inflammation may be a critical factor for the progression to HF. The HF risk may be even increased in an absence of IHD risk if the patients have RA-related inflammation. It has been reported that the risk of non-ischemic heart failure is increased at an early stage and closely connected with the severity of RA (10). In another study, the SLE/RA inpatients were analyzed, and the prevalence of HF in the population was 16.4%. Besides, the likelihood of HF in RA patients was significantly lower than that in SLE (36). The above results proved from another perspective that RA-related HF is not caused by shared risk factors alone, since SLE and HF also share some common risk factors. PARK E et al. found that an increase in HF risk in RA patients might not be explained by IHD alone. Non-ischemic HF is related to the severity of RA, implying that RA-related factors and autoimmune process are related to the risk of the HF phenotype above (37).

In the present study, the causal relationship between RA and NT-proBNP was analyzed, but the result was negative. Recently, Baniaamam et al. conducted a prospective study of 51 RA patients, where echocardiography and baseline tests were performed on those with moderate to high disease activity, along with an assessment after six months of treatment with anti-tumor necrosis factor. Although the NT-proBNP level was decreased by 23% after six months of treatment, no adverse effect on the cardiac function was observed (38). The above results suggest that the RA-related impact on cardiac function is not manifested as changes in NT-proBNP. However, controversy continues over the predictive performance of HF-related biomarkers, such as B-type natriuretic peptide (BNP) or NT-proBNP, for cardiac injury. Some authors believe that these factors are sensitive, non-invasive predictors for subclinical CVD and are all-cause mortality predictors independent of conventional risk factors for CV (39). Evidence has shown that an increased NT-proBNP level in RA patients is related to inflammatory markers (40). However, some researchers did not prove the relationship between the NTproBNP level and left ventricular function in RA patients (41, 42), which also agreed with ours findings.

The relationship between RA and NT-proBNP is complex. In this study, there was no causal relationship between RA and serum NT-proBNP level. In the study of Armstrong et al. although researchers observed an increase in the median NT-proBNP level in the RA group, the increase in NT-proBNP level was significantly correlated with DAS28 and age, and had no direct correlation with RA itself (43). In addition, NT-proBNP may play an indispensable role in regulating the immune system and endocrine system (44–46), including the aging process of individuals, etc (47). These findings all reveal that NT-proBNP levels increase with age, so we speculate that the increased NT-proBNP levels in RA patients may be related to accelerated aging, rather than causally related to the disease itself. However, studies have shown that accelerated aging only explains 16% of the increase in BNP in RA patients (48). Therefore, the increase of BNP in RA patients is largely due to other unknown causes.

DMARDs and TNF-α inhibitors are usually prescribed as standard treatments for RA (42). TNF-α inhibitors are effective for controlling the activity and progression of RA. However, their risks in increasing incidence and deaths of cardiovascular diseases remain disputable, particularly RA patients already with a higher risk for cardiovascular complications (49). One study indicated that a higher dose of TNF-α inhibitors may cause HF deterioration and shortened life span (50). According to a randomized placebo-controlled clinical trial, TNF-α inhibitors did not have a considerable efficacy when used to treat symptomatic HF patients (51). Danish scholars performed a follow-up of RA patients that lasted for over 20 years, and it was found that the biological treatments for RA did not change the risks of IHD and HF (29). According to another study, the dose of glucocorticoids and TNF inhibitors was adjusted in the multivariate regression analysis, and it was found that the increased risk of HF in RA patients was independent of these drugs (31).

Inflammation is considered as a critical mechanism for the development of HF, especially HFpEF (52). Both ESR and CRP were correlated with increased risk of HF in RA patients (10). Evidence from the Mayo Clinic suggests that a higher level of inflammatory markers is related to a higher risk of HF (53). It has been found that an increase in the inflammatory activity related to the pathogenesis of RA may have myocardial effects, leading to HF shortly after RA diagnosis. In sepsis, TNF-α and other cytokines were related to the reduction in myocardial contractility after in vitro exposure for ≥10 min (54). Cardiomyocytes may also respond to inflammatory stimuli and express chemokines, cytokines, and cell adhesion molecules, leading to leukocyte recruitment and reduced cardiomyocyte contractility (55). Inflammation can also induce endothelial dysfunction, myocardial hypertrophy and fibrosis, which further results in HF (56). The incidence of HFpEF is also higher in other diseases related to chronic inflammation, such as obesity, diabetes and chronic kidney disease. It is implied that an increase in circulating proinflammatory cytokines in RA patients may be a critical factor in the pathogenesis of HF (57). Interestingly, those with the highest level of C-reactive protein (CRP) are also faced with the highest risk for HF, which highlights the role of inflammation in the pathogenesis. After stratified based on HF subtypes, the CRP level was higher in HFpEF than in HFrEF, indicating that inflammation might be a more important risk factor for HFpEF in RA (26).

RA is a chronic autoimmune inflammatory disease. Our study proved that RA was related to a higher risk for HF. To verify the results, MR analysis was performed, and a potential causal relationship of HF risk and the genetic susceptibility to AD was indicated. This finding coincided with our expectations. Another recent study showed that as an autoimmune disease, SLE was related to a higher risk of venous thromboembolism, ischemic cerebral infarction, and HF (58). Some researchers also performed MR analysis for this purpose, and it was found that RA was correlated with a higher risk of angina, hypertension, arrhythmia, and coronary heart disease (59). Others reported a correlation between MS and the risk of CAD, myocardial infarction, HF, and cerebral stroke (60). All the results above are consistent with our findings.

The clinical diagnosis and treatment of AD and HF should be carefully evaluated, considering the causal relationship of HF risk and the genetic susceptibility for RA and AD. In fact, rheumatologists have become increasingly aware of the relationship between CVD and RA. In the European Society of Cardiology guideline, RA is considered as an independent cardiovascular risk factor (61). The European League Against Rheumatism (EULAR) has published official advice for monitoring CV risk in RA patients (62). It is suggested that the CVD risk score should be multiplied by 1.5 in RA patients. Such a correction may improve the estimate of the cardiac risk in these patients. Therefore, earlier preventive tests and medication treatment are recommended if necessary.




Advantages and limitation

A recent report involved MR analysis of the genetic susceptibility for cardiovascular risks. So far, the causal relationship between CVD risk and SLE and other autoimmune diseases has been analyzed, but few studies have been devoted to the potential relationship of HF risk and RA through MR analysis. We first performed MR analysis on RA and even AD and HF risk to identify any causal relationship. Secondly, large-scale GWAS was employed to collect more comprehensive genetic data in RA and HF, thereby avoiding the influence of conventional confounding factors and eliminating the potential of reverse causality. Lastly, consistent results were obtained through several repeat analyses, and an absence of biases was verified by the heterogeneity and pleiotropy analyses.

However, our study had some limitations. Firstly, pleiotropy was analyzed using multiple methods, but potential multiplicity might still exist. Secondly, we reported a lower OR value, compared with other studies, and more studies are needed to further document the clinical significance of this OR value. Thirdly, the F- statistics of obesity in MVMR analysis is lower than 10, which may cause a certain bias in the statistical results of MVMR, and the interpretation of the results should be very cautious.






Summary

In conclusion, our study found the first evidence supporting the potential causal relationship of HF risk and RA and AD, which facilitates further investigation into the pathogenesis of RA and AD and comprehensive assessment of the RA-related HF and the associated treatments. Further studies are required to reduce the incidence and mortality of RA-related HF.
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Supplementary Figure 1 | Mendelian randomization analysis of RA and the risk of HF.

Supplementary Figure 2 | Mendelian randomization analysis of RA and the risk of NT-proBNP.

Supplementary Figure 3 | Mendelian randomization analysis of AD and the risk of HF.

Supplementary Figure 4 | Mendelian randomization analysis of AD and the risk of NT-proBNP.

Supplementary Figure 5 | The MR “leave-one-out” sensitivity analysis of RA on HF.

Supplementary Figure 6 | The MR “leave-one-out” sensitivity analysis of RA on NT-proBNP.

Supplementary Figure 7 | The MR “leave-one-out” sensitivity analysis of AD on HF.

Supplementary Figure 8 | The MR “leave-one-out” sensitivity analysis of AD on NT-proBNP.

Supplementary Figure 9 | Funnel plots of RA/AD with HF/BNP. The X-axis represents odds ratio (OR), and the Y-axis represents standard error (SE). (A)RA to HF. (B) AD to HF. (C) RA to NT-proBNP. (D)AD to NT-proBNP.

Supplementary Table 1 | SNPs used to analyze the causal relationship between RA and HF, RA and NT-proBNP, AD and HF, AD and NT-proBNP.
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Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to half of the individuals with diabetes. Elevated blood glucose levels are a key underlying cause of DKD, but DKD is a complex multifactorial disease, which takes years to develop. Family studies have shown that inherited factors also contribute to the risk of the disease. During the last decade, genome-wide association studies (GWASs) have emerged as a powerful tool to identify genetic risk factors for DKD. In recent years, the GWASs have acquired larger number of participants, leading to increased statistical power to detect more genetic risk factors. In addition, whole-exome and whole-genome sequencing studies are emerging, aiming to identify rare genetic risk factors for DKD, as well as epigenome-wide association studies, investigating DNA methylation in relation to DKD. This article aims to review the identified genetic and epigenetic risk factors for DKD.
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1 Introduction

A total of 537 million people worldwide have diabetes (1), characterized by elevated blood glucose. Despite treatment, which aims to normalize the blood glucose concentrations, diabetes can lead to micro- and macrovascular organ damage through various molecular pathways, including increased reactive oxygen species, which further affect the downstream pathways such as the polyol pathway flux, advanced glycation end-product formation and activation, protein kinase C activation, and the hexosamine pathway flux (2). These microvascular complications include diabetic kidney disease (DKD), sight-threatening proliferative diabetic retinopathy, and diabetic neuropathy. The complications reduce the quality of life, increase mortality, and account for the majority of the health care costs for diabetes (3, 4). Together, 30%–50% of individuals with diabetes develop DKD (5–7). Individuals with type 1 diabetes (T1D) develop diabetes early in life and, thus, have a particularly high lifetime risk of developing complications. In up to 20% of individuals with T1D, DKD leads to kidney failure requiring dialysis or kidney transplantation (8). Because of the improvements in the management and treatment of both diabetes and its complications (9), the 25-year cumulative incidence of DKD has halved in those diagnosed in the 1980s compared to those diagnosed in the 1970s. However, there was no further improvement in the later cohorts, and 36% of individuals with severe DKD still progressed to kidney failure within 15 years (6). DKD also substantially increases the risk of CVD, and as many as 40% of individuals with T1D and DKD develop CVD by the age of 40 (10).

DKD is characterized by urinary albumin excretion and gradually decreasing renal function, measured or estimated as glomerular filtration rate (eGFR). Urinary albumin excretion can be classified as normal or mildly increased, moderately, or severely increased albuminuria; the two latter ones are also called micro- and macroalbuminuria. The classical view has been that albuminuria represents an earlier sign of DKD, followed by reduced eGFR and eventually kidney failure, but a substantial proportion of individuals with DKD may present with reduced kidney function even without albuminuria (11). On the tissue level, DKD is characterized by glomerular and tubular basement membrane thickening, mesangial expansion, glomerulosclerosis, podocyte effacement, and, ultimately, nephron loss (12). It is of note, however, that kidney biopsies are rarely taken for diagnostic purposes. Therefore, any chronic kidney disease (CKD) in an individual with diabetes is a priori considered as DKD, irrespective of the underlying pathophysiology (11). Lack of a biopsy proof is less of a problem in T1D because most of the individuals with T1D and DKD have histologically true diabetic nephropathy.

DKD is a complex multifactorial disease in which both genetic and environmental risk factors contribute to the development and progression of the disease. However, the exact molecular mechanisms leading to DKD remain poorly understood. Apart from albuminuria and eGFR, no other biomarkers are yet in clinical use for monitoring disease progression or identification of individuals at risk, and only a few treatment options exist for the prevention of DKD, especially in individuals with T1D. To address these issues, genetic studies aim to identify the underlying molecular mechanisms leading to DKD. Here, we review the genetic factors that have been identified for DKD, mainly based on genome-wide association studies (GWASs) performed within the latest decade and summarize the main findings from epigenetic studies—being the potential dynamic link between genes and the environment—investigating the DNA methylation changes associated with DKD.




2 Heritability of DKD

Three decades ago, family studies reported clustering of DKD in siblings with T1D, suggesting an inherited component of the disease (13–17). More recently, a genome-wide estimation of the narrow-sense DKD heritability—the proportion of phenotypic variance explained by additive genetic factors—based on unrelated individuals with T1D reported 24%–42% heritability of DKD, depending on the phenotype definition. The heritability estimates were as high as 59% when adjusted for sex, diabetes duration and age at diabetes diagnosis, and with a tendency to higher heritability estimates for the more severe definitions (18). Similar analyses in individuals with T2D suggested only 8%–25% heritability for DKD, potentially reflecting more heterogeneous mechanisms leading to DKD in T2D in addition to a more important contribution of environmental factors (19, 20). Indeed, a sub-analysis of individuals with T2D from the Action to Control Cardiovascular Risk in Diabetes trial suggested that the gene–treatment interaction explains a large part of the phenotypic variance in microalbuminuria. Nevertheless, the heritability estimates for albuminuria and eGFR both in T1D and T2D range between 7% and 75% (19, 21–25).




3 Common genetic variants associated with DKD



3.1 Early genetic studies for DKD

The early genetic studies on DKD utilized various microsatellite markers and single-nucleotide polymorphisms (SNPs) for family-based linkage studies to identify chromosomal regions co-segregating with DKD. One of the strongest linkage peaks with a logarithm of odds (LOD) score of 3.1 was obtained in a candidate gene study of the AGTR1 on chromosome 3q (26), and many genome-wide linkage scans reported a suggestive linkage peak on the extended 3q21-q29 region (27–31). Subsequent fine-mapping efforts of candidate genes on the 3q region, comparing the allele frequencies of tens or hundreds of SNPs in unrelated DKD cases and controls, suggested, e.g., ADIPOQ (32) and NCK1 (33) to be involved in DKD. A linkage analysis in Turkish families with T2D and DKD identified a strong linkage peak on chr18q22.3–23 (LOD score = 6.1) (34), subsequently fine-mapped to a polymorphism in the CNDP1 gene associated with both DKD and serum carnosinase concentrations (35).

In addition to the positional candidates, biological candidate gene studies were performed on the basis of information and hypotheses of the underlying biology. However, the results were mostly inconclusive, with limited statistical evidence due to the small sample number, lenient statistical threshold, and lack of external replication (36). The findings with the strongest statistical evidence include variants on the promoter region of the EPO gene encoding for erythropoietin [rs1617640, p-value = 2.7 × 10−11 (37)], as well as in the SLC19A3 gene encoding for a high-affinity thiamine (vitamin B) transporter [rs12694743, p = 2.30 × 10−8 (38)], both associated with a combined phenotype of kidney failure and diabetic retinopathy.




3.2 Genome-wide association studies on DKD

To overcome the limitations of the candidate gene studies, the first GWASs covering hundreds of thousands of SNPs were pursued nearly two decades ago, identifying genetic risk factors for both T2D (39–41) and T1D (42). The GWASs have since identified thousands of genetic loci affecting common complex diseases, supporting the multifactorial genetic background and the common disease/common variant (CDCV) hypothesis that suggests that common genetic factors significantly contribute to the risk of common diseases and traits (43). Because of the burden of multiple testing of hundreds of thousands, or even millions of genetic variants, only associations reaching the stringent threshold of a p-value < 5 × 10−8 are considered genome-wide significant. The GWASs on DKD have to date identified 41 loci genome-wide significantly associated with various case-control definitions of DKD, as detailed in Table 1.


Table 1 | Variants genome-wide significantly (p-value < 5 × 10−8) associated with DKD.





3.2.1 Genome-wide association studies on DKD in type 1 diabetes

One of the first GWASs on DKD included 1,705 individuals with T1D from the Genetics of Kidneys in Diabetes (GoKinD) collection and suggested multiple putative susceptibility loci, including a variant in the FRMD3 gene suggestively associated with DKD (p-value = 5.0 × 10−7) (54) and replicated by some of the subsequent studies (54, 55). Re-analysis of the data, including imputed variants, suggested additional loci, including SORBS1 (56); variants in the same gene were also supported by a later GWAS including 1,462 additional individuals with T1D, but the association was attenuated in the replication (57).

The first GWAS meta-analysis on DKD combining data across multiple studies was undertaken by the Genetics of Nephropathy, an International Effort consortium. The GWAS meta-analysis discovery stage included 6,691 participants of European ancestry and with T1D from the GoKinD US, the Finnish Diabetic Nephropathy (FinnDiane) Study, and from the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK and Republic of Ireland (UK-ROI) Collection. The combined meta-analysis with 11,847 participants with T1D resulted in two loci, an intronic variant rs7583877 in AFF3, and an intergenic rs12437854 between in the RGMA and MCTP2 genes associated with kidney failure in T1D with a p-value < 5 × 10−8. Furthermore, the authors reported a suggestive association for rs7588550 in the ERBB4 gene associated with DKD (p-value = 2.1 × 10−7). In vitro analyses on a renal epithelial cell line suggested that AFF3 influences the transforming growth factor–β1 (TGF-β1)–induced fibrotic responses (44).

Of note, nearly 90% of the GWAS findings are located on non-coding regions and are enriched for gene regulatory regions, rather than changing the protein amino acid sequence and structure (58, 59). The associated genetic variant does not necessarily affect the gene expression of the underlying or the closest gene, and, thus, a common challenge in GWAS is to identify the target gene of the non-coding regulatory variants. With large expression quantitative trait locus (eQTL) databases that are now available, one can link the genotypes to gene expression levels. On the basis of eQTL data from whole blood in the eQTLGen.org database, the rs7583877 variant in the AFF3 gene is indeed associated with AFF3 gene expression (p-value = 2.9 × 10−19) (60).

In the same consortium, an analysis stratified by gender identified a variant between the SP3 and CDCA7 genes associated with kidney failure in women (rs4972593, p-value = 3.9 × 10−8) (45). Multiple estrogen-responsive elements were predicted near rs4972593, and the SP3 gene showed higher expression in kidney glomeruli in women (45). Furthermore, the Sp3 transcription factor directly interacts with the estrogen receptor-α (61) and regulates kidney-related genes such as TGFBI, CD2AP, and VEGFA, supporting its role in kidney failure in women with T1D.

The largest GWAS on DKD in T1D to date was performed by the Diabetic Nephropathy Collaborative Research Initiative (DNCRI) consortium, including up to 19,406 individuals with T1D and of European ancestry from 17 cohorts. The analysis comprised 10 different case-control definitions for DKD, based on either albuminuria, eGFR, or both. Altogether, 16 loci reached a p-value < 5 × 10−8, with the strongest association for a common missense mutation rs55703767 (Asp326Tyr) in the collagen type IV alpha 3 chain (COL4A3) gene, associated with a 21% lower risk of DKD (p-value = 5.3 × 10−12) (49). The gene encodes a major structural component of the glomerular basement membrane (GBM). In kidney biopsies of the Renin Angiotensin System Study (RASS) study participants with T1D and normal AER, the carriers of the protective variant had thinner GBM (49). The variant effect was dependent on glycemia, as the association at rs55703767 was observed only among individuals with HbA1c ≥ 7.5% in the HbA1c-stratified sub-analysis of 4,321 FinnDiane participants with longitudinal HbA1c measurements. Similarly, in the Diabetes Control and Complications Trial (DCCT), followed by the Epidemiology of Diabetes Interventions and Complications (DCCT-EDIC) study, the rs55703767 effect on DKD was stronger among those recruited in the secondary cohort and randomized to conventional treatment and therefore had higher HbA1c. Thus, the COL4A3 rs55703767 association with DKD seems specific to diabetes and amplified by poor glucose control (49). The lead loci in the DNCRI meta-analysis also included other collagen-related findings: association with microalbuminuria for the rs116772905 variant in the DDR1 gene encoding the epithelial discoidin domain-containing receptor 1, which binds collagens including type IV collagen; and gene aggregate analysis found variants in the COL20A1 gene associated with severe CKD.




3.2.2 Genome-wide association studies on DKD in type 2 diabetes

One of the first GWASs on DKD among individuals with T2D and the first transethnic meta-analysis of DKD included 4,909 individuals with T2D from the Family Investigation of Nephropathy and Diabetes (FIND) consortium in the discovery cohort and, altogether, 13,736 individuals in the final meta-analysis (including 6,229 non-diabetic controls). The analysis identified rs12523822 near the SCAF8 and CNKSR3 genes associated with a 43% lower risk of DKD in American Indians (p-value = 5.7 × 10−9) and with directionally consistent results across the ethnic groups (46). CNKSR3 is a direct mineralocorticoid receptor target gene highly expressed in the renal cortical collecting ducts. The gene is involved in the transepithelial sodium transport and is upregulated in response to physiologic aldosterone concentrations (62). Clinically, renin-angiotensin-aldosterone system blockade is the main therapy for individuals with DKD and many other kidney diseases (63, 64). It is of note that the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease (FIDELIO-DKD) trial with the non-steroidal mineralocorticoid-receptor-antagonist finerenone on top of standard of care showed cardio- and renoprotection in albuminuric individuals with T2D (65).

As end-stage kidney disease (ESKD) is disproportionately affecting African Americans (AAs), a subsequent FIND study GWAS focused on AAs and was extended to 3,432 T2D-ESKD cases and 6,977 non-diabetic non-nephropathy controls (N = 10,409), followed by a discrimination analysis in 2,756 T2D non-nephropathy controls to exclude T2D-associated variants. Six independent variants located in or near RND3/RBM43, SLITRK3, ENPP7, GNG7, EFNB2, and APOL1 were associated with T2D-ESKD (p-value < 5 × 10−8), whereby variants in EFNB2, GNG7, and APOL1 were also associated with all-cause ESKD (48). EFNB2 encodes Ephrin-B2 and is expressed in the developing nephron and contributes to the glomerular microvascular assembly (66). The APOL1 missense mutations rs73885319 (Ser342Gly), rs60910145 (Ile384Met), and rs71785313 (Asn388 and Tyr389 deletion), also known as the APOL1 G1 and G2 haplotypes, are only found in individuals with African ancestry and are a major contributor to non-diabetic ESKD in AAs (48, 67, 68). To enrich for T2D-associated ESKD, an analysis excluding the APOL1 ESKD-risk allele carriers identified additional variants in the GRAMD3 (rs75029938, p-value = 2.0 × 10–9) and MGAT4C (rs17577888, p-value = 3.9 × 10−8) genes (48).

A GWAS in 7,614 Japanese individuals with T2D found the rs56094641 in the FTO gene to be associated with DKD (p-value = 7.6 × 10−10) (47). FTO is one of the strongest genetic loci for obesity and adiposity (69), and rs56094641 is in linkage disequilibrium (LD) with the obesity signal such that the DKD risk-associated allele is also associated with obesity. Indeed, other Mendelian randomization studies utilizing genetic information suggest that obesity is a causal risk factor for DKD (52, 70). However, the association between rs56094641 and DKD was not affected by adjustment for body mass index (BMI), suggesting that the locus affects DKD through another mechanism than an increase in BMI (47). Indeed, the FTO locus has been highlighted as a pleiotropic one, associated with multiple biomarkers and traits such as sweet vs. salty taste preference through modifying the regulatory properties of enhancers targeting the IRX3 and IRX5 gene expression in various tissues (71, 72).

The SUrrogate markers for Micro- and Macrovascular hard endpoints for Innovative diabetes Tools (SUMMIT) Consortium GWAS meta-analysis of DKD in T2D included 5,717 individuals of European ancestry and with T2D at the discovery stage. After joint analysis with additional European individuals, rs9942471 upstream GABRR1, encoding the rho1 subunit of the GABA type a receptor, was associated with microalbuminuria (p-value = 4.5 × 10−8), although the association did not replicate in Asian individuals or in individuals with T1D (19). The variant is in LD with the lead eQTL association signal for GABRR1 expression in multiple tissues (19). Extended to individuals with T1D and other ethnicities, the joint meta-analysis involved up to 40,340 subjects with diabetes. However, meta-analysis with individuals with T1D (18) revealed no loci for dichotomous DKD phenotypes. Nevertheless, variants in the UMOD and PRKAG2 loci, previously associated with eGFR and CKD in the general population (73, 74), were associated with eGFR also in individuals with diabetes (Table 2) (19).


Table 2 | Variants associated with eGFR in diabetes.






3.2.3 Genome-wide association studies on DKD in combined diabetes populations

Meta-analysis of the DNCRI [T1D (49)] and SUMMIT consortia [both T1D (18) and T2D (19)], excluding the overlap between the consortia, and harmonized for the 10 phenotype definitions of DKD for available cohorts, included nearly 27,000 individuals with diabetes (52). The meta-analysis identified a novel intronic variant, rs72831309 in the TENM2 gene, to be associated with a lower risk of the combined CKD-DKD phenotype (p-value = 9.8 × 10−9). TENM2 gene expression in kidney tubules correlated positively with eGFR (p-value = 1.6 × 10−8) and negatively with tubulointerstitial fibrosis (p-value = 2.0 × 10−9). In addition, the gene-level analysis identified 10 genes significantly associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN–RESP18, GPR158, INIP–SNX30, LSM14A, and MFF; p-value <2.7 × 10−6). Transcriptome-wide association study integrating GWAS with human glomerular and tubular gene expression data demonstrated a higher tubular AKIRIN2 gene expression associated with DKD (p-value = 1.1 × 10−6). Expression of multiple lead genes correlated with renal phenotypes, e.g., tubular DCLK1 expression correlated with fibrosis (p-value = 7.4 × 10−16) and SNX30 expression with eGFR (p-value = 5.8 × 10−14), and negatively with fibrosis (p-value < 2.0 × 10−16) (52).

In addition to the disease-specific cohorts, large population-based biobanks allow analyses of an increasing number of samples and phenotypes. A GWAS on DKD in the UK Biobank included 13,123 unrelated individuals with diabetes and of European origin. Of note, the heritability estimate for DKD, defined based on ICD-10 codes (E11.2, T2D with kidney complications, or any CKD code assigned after diabetes) or a measurement of albuminuria or eGFR, was only 0.027 with a standard deviation (SD) of 0.03; heritability estimate for eGFR in T2D was higher, 0.1 with an SD of 0.01. GWAS on DKD and eGFR identified variants in the UMOD and PRKAG2 loci (50). Meta-analysis with the SUMMIT T2D study further identified a novel variant, rs72763500, associated with the combined DKD definition. The variant is associated with alternative gene splicing of the NID1 gene (50), encoding for nidogen-1, a sulfated glycoprotein involved in the development of GBM, where it binds to laminin and type IV collagen (79). Another study in the UK Biobank, although focused on heritability estimates for diabetic micro- and macrovascular complications, additionally found a variant rs73038008 near PLD1 associated with DKD (self-reported or medical records); as well as variants in WSCD2 and SETDB2 associated with ESKD and in LOC105372639 associated with microalbuminuria (20).




3.2.4 Genome-wide association studies on albuminuria and eGFR in diabetes

In addition to the dichotomous case-control definitions of DKD, GWASs have also explored albuminuria and eGFR as continuous traits in individuals with diabetes (Figure 1). Only few studies have identified variants with genome-wide significance for albuminuria (Table 3) or eGFR (Table 2), and most of these loci were identified in diabetes-specific sub-analyses of larger general population studies.




Figure 1 | GWAS on DKD, albuminuria, and eGFR in diabetes. Point size indicates the number of samples. Studies with individuals with T1D are colored red, T2D with blue, and combined T1D + T2D, any type of diabetes or unspecified type of diabetes with gray. Gene names indicate loci reaching genome-wide significance (p-value < 5 × 10−8).




Table 3 | Variants associated with albuminuria in diabetes.



A GWAS including 1,925 Finnish individuals with T1D identified rs10011025 in the GLRA3 associated with albuminuria (p-value = 1.5 × 10−9) (25). The association did not replicate in 3,771 other European individuals with T1D (p-value = 0.04, opposite direction) (25); however, the association was subsequently replicated in 1,259 additional Finnish individuals with T1D (81). The association was pronounced in individuals with HbA1c > 7%. The GLRA3 gene encodes the α3 subunit of glycine receptors. In pancreatic α-cells, glycine receptors stimulate glucagon release in response to glycine, thus counterbalancing the effects of insulin (83). Interestingly, the association with albuminuria was only evident among individuals with a 24-h urine collection. Because exercise can acutely increase albuminuria due to excess hemodynamic pressure (84), the authors hypothesized that the variant might affect renal sensitivity to hemodynamic pressure (81). Of note, in the eQTLGen database, the rs10011025 variant is associated with the expression of the HPGD gene, encoding for the 15-hydroxyprostaglandin dehydrogenase that catalyzes the prostaglandin catabolic pathway; prostaglandins are locally acting vasodilators and regulate renal hemodynamics in the kidneys (85).

Another GWAS on albuminuria included 54,450 individuals from the general population, confirming the previously identified CUBN locus (86) for albuminuria. In the sub-analysis of 5,825 individuals with diabetes, variants in the HS6ST1 (rs13427836, p-value = 6.3 × 10−7) and RAB38/CTSC loci (rs649529, p-value = 5.8 × 10−7) were suggestively associated with albuminuria in subjects with, but not without diabetes (87). RAB38 expression was found higher in the tubules of individuals with DKD compared to healthy controls, and Rab38 knockout resulted in higher urinary albumin concentrations in diabetic rat models (87). A larger study including 564,257 individuals, of which 51,541 individuals with diabetes, identified eight loci associated with albuminuria in diabetes; all had larger effect among individuals with diabetes, and four (KAZN, MIR4432HG-BCL11A, FOXP2, and CDH2) were only found in the secondary analysis limited to diabetes (82).

Finally, a GWAS including 178,691 individuals with diabetes from the CKD Genetics (CKDGen) consortium and large biobank studies identified 29 genome-wide significant loci for eGFR, including 27 novel loci for eGFR in diabetes; among these, variants near SH3BP4 and LOXL4 were not associated with eGFR in the 1,296,113 individuals without diabetes (76).





3.3 Overlap between genetic factors for DKD and general population kidney traits

In the general population, nearly 900 genetic loci have been identified for eGFR in meta-analyses, including over 1.5 million individuals (88). Diabetes is one of the key risk factors for CKD, and 31% of the CKD-associated disability-adjusted life years can be attributed to diabetes (89). Other main risk factors for CKD include hypertension, obesity, and high age, all commonly seen among individuals with T2D in particular. In individuals with T1D, the majority of DKD is due to diabetic nephropathy. On the contrary, the renal lesions in kidney biopsies of DKD in T2D are heterogeneous, and a substantial proportion of the biopsies do not show the typical characteristics of diabetic nephropathy (90). However, kidney biopsies are rarely taken, and DKD is defined as any CKD in an individual with diabetes (91). Therefore, the question arises, how much of the genetic background of DKD is shared with the CKD and eGFR in the general population?

The DKD loci identified in individuals with T1D in the DNCRI consortium did not replicate in the general population GWAS for eGFR (49); conversely, the loci associated with eGFR in the general population (92) were not associated with DKD in T1D apart from the UMOD locus (49). On the contrary, some of the first findings for DKD in T2D included the UMOD and PRKAG2 loci known from the general population (19), as well as the APOL1 variant responsible for the majority of kidney failures in AAs (48). The CKDGen GWAS on eGFR including 133,413 individuals, of which 16,477 with diabetes, found that the effect size of the eGFR loci identified in the full population were highly correlated between individuals with and without diabetes (correlation coefficient of 0.80) (75). A more recent study on eGFR from the CKDGen consortium, including nearly 1.5 million participants of which 178,691 with T2D, systematically sought for differences in effect size between individuals with and without diabetes. They identified seven eGFR loci with significant difference in individuals with and without diabetes, as well as four loci with suggestive difference; in all but one, the effect was more pronounced or exclusively seen among individuals with diabetes (76). Similarly, in a GWAS for eGFR decline studied as a longitudinal trait in the general population, the effect sizes of the nine identified variants were on average two-fold higher in individuals with diabetes (93). Finally, the effect of the rs10795433 variant in the CUBN locus—the major locus for albuminuria—was larger among individuals with diabetes compared to those without diabetes (87). In addition, a rare CUBN variant rs141640975 had three times stronger effect in individuals with T2D compared with those without (94). Furthermore, rs141640975 was associated with higher eGFR but only in the non-diabetes population, suggesting pleiotropic effects on both kidney function measures (95).

In the DNCRI-SUMMIT GWAS meta-analysis for DKD, the similarity of DKD with kidney traits in the general population (of note, including individuals with diabetes) was assessed on a genome-wide scale instead of single-variant level, using the LD score regression approach. The albuminuria-based DKD definition, including microalbuminuria, was genetically correlated with microalbuminuria in the general population, both in the pooled analysis, and separately for individuals with T1D or T2D; of note, the correlation was over two-fold stronger in individuals with T2D. In addition, the eGFR-based CKD definition was also correlated with eGFR and CKD in individuals with T2D, but not in T1D despite more than three times more individuals with T1D (52). The analysis suggests that DKD in T2D has a larger proportion of shared genetic background with the general population, e.g., due to other co-existing risk factors such as aging, overweight, hypertension, and other glomerular diseases, while less overlap is observed between the general population kidney traits and DKD in T1D representing a purer form of diabetic nephropathy. The LD score regression with cardiometabolic and other traits further suggested that a proportion of the genetic background of DKD is shared with genetic risk factors, e.g., for aging (mother’s age at death), obesity, and smoking (52). However, the confidence intervals remain large, and further studies are needed to estimate the proportion of risk attributable to each risk factor.

Some interesting discrepancies also exist between DKD and the general population: For example, the missense variant rs55703767 in COL4A3 is one of the strongest findings for DKD in T1D, but the effect is modified by glycemia, and the variant does not seem to affect kidney traits in the general population. On the contrary, variants in the flanking COL4A4 (collagen type IV alpha 4 chain) gene were associated with albuminuria in the general population (rs57858280, p-value = 9 × 10−11) (82); according to the GTEx portal, the variant may affect the COL4A4 splicing (https://gtexportal.org/ ). Rare mutations in both COL4A3 and COL4A4 cause Alport syndrome, a monogenic disease of basement membranes that frequently leads to ESKD, as well as thin basement membrane nephropathy and focal segmental glomerulosclerosis (96).




3.4 Overlap between genetic factors for DKD and diabetes

Some studies have suggested a correlation between the genetic risk factors predisposing to insulin resistance or T2D and DKD (18, 19, 52). Of note, these studies found no correlation between genetic risk factors predisposing to T1D and DKD. T2D was modestly causally associated with DKD in a Mendelian randomization study of individuals with either T1D or T2D (p-value = 0.02), but only obesity related traits remained significantly associated with DKD when using methods accounting for pleiotropic effects (52). However, among the lead variants for DKD, albuminuria, or eGFR in diabetes, only the albuminuria-associated FTO locus [rs56094641 (47)] has been associated with T2D. In addition, the albuminuria-associated rs780093 (82) in the highly polygenic GCKR locus, as well as the eGFR-associated rs4665972 (in SNX17, but in LD with variants mapped to GCKR), rs11864909 (UMOD), rs10206899 (ALMS1P), rs10899482 (GAB2), and rs9607518 (MAFF), are in LD with variants associated with T2D (https://ldlink.nci.nih.gov/?tab=ldtrait ; search for any “diabetes” in GWAS Catalog for variants in LD (R2 ≥ 0.8 in European population), 21 March 2023), providing some evidence of genetic overlap between T2D and eGFR in diabetes.





4 From common to rare genetic variants for DKD

While common variants have a large effect on complex traits at the population level (43), the low frequency and rare variants can have a high impact on the individual level (97). In particular, protein-altering variants (PAVs), i.e., exon variants that change the protein amino acid sequence, can directly impact protein function. For example, 71% of severe LDLR mutation carriers had hypercholesterolemia in the UK Biobank WES data (98). To identify chromosomal regions harboring rare variants for DKD, a linkage study based on GWAS data of 6,019 FinnDiane study participants included 177 small pedigrees such as sib-ships, parent-offspring pairs, and more distant relations, with, altogether, 452 individuals, all with T1D. Eight chromosomal regions reached a significant LOD score > 3.3 (51). Many of these regions harbor genes in which mutations cause rare syndromes with kidney complications, such as ARHGAP24 associated with focal segmental glomerulosclerosis (99) and FRAS1 associated with the familial Fraser syndrome (100). Overlap with loci causing rare kidney syndromes supports the role of rare variants in the development of DKD. Interestingly, one suggestive linkage peak was observed in the NID1 locus, recently associated with DKD in T2D (50). While a rare rs538044833 variant in the CCSER1 locus was externally replicated (p-value = 2.8 × 10−8), the resolution remains low even in the GWAS-based linkage studies, hindering further fine-mapping and interpretation of the results.

In addition, on the basis of GWAS data, enriched for rare PAVs with the ExomeChip array, a gene aggregate meta-analysis including 4,196 individuals with T1D found PAVs in the hydroxysteroid 17-β dehydrogenase 14 (HSD17B14) gene exome-wide significantly (p-value < 5 × 10−7) associated with the disease progression from DKD to kidney failure. The gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models (101).

The GWAS genotyping chips cover only a portion of the PAVs, and genotype imputation quality largely depends on the variant minor allele count in the reference sample and can be limited for rare variants (102, 103). A whole-exome sequencing (WES) on DKD, including 997 individuals with T1D, did not find any variants or genes reaching robust exome-wide significance (18) but found suggestive evidence of association, e.g., for PAVs in the THADA gene, previously associated with T2D (104). A WES of 593 DKD cases and 2,066 healthy controls of European and African ancestry, with subsequent discriminatory analyses and replication in up to 11,487 multi-ancestry participants from the Trans-Omics for Precision Medicine study, identified an in-frame insertion rs141560952 in the DIS3L2 gene (p-value = 3.6 × 10−9), and a KRT6B splice-site variant rs425827 associated with DKD (p-value = 2.7 × 10−9). Both variants were associated with DKD also when compared with diabetes controls without DKD, but with lower statistical significance (p-value = 1.4 × 10−4 and 2.8 × 10−4). Furthermore, gene aggregate analyses identified ERAP2 (p-value = 4.03 × 10−8) and NPEPPS (p-value = 1.51 × 10−7); both are expressed in the kidney and implicated in the renin-angiotensin-aldosterone system–modulated immune response (53). However, the discriminatory analyses suggest that the ERAP2 and NPEPPS may be primarily associated with diabetes per se, subsequently leading to DKD (53).

While WES mainly covers the protein-coding sequence, a whole-genome sequencing (WGS) study of 76 Finnish sibling pairs with T1D but discordant for DKD found significant enrichment of variants in DKD in gene promoter and enhancer regions, as well as for specific transcription factor binding sites (105), but larger studies are required to pinpoint the most relevant regulatory regions. Gene aggregate analysis of PAVs suggested protein kinase C isoforms (PRKCE and PRKCI) and protein tyrosine kinase 2 (PTK2) involved in DKD (105); of note, a recent GWAS on albuminuria in the general population highlighted variants in the PRKCI and demonstrated that a podocyte-specific deletion of aPKClambda/iota in mice results in severe proteinuria (82). A recent multi-ethnic WGS in 23,732 individuals identified three novel rare intronic variants for eGFR in the general population (106), and larger WGS for DKD are needed to identify the rare variants contributing to DKD.




5 Epigenetic factors for DKD

Studies focusing on epigenetic modifications have emerged in an increasing number during the last years. Epigenetic modifications can be described as chemical modifications of the DNA (or RNA) that can induce changes in gene expression without changing the underlying sequence. In contrast to an individual’s genetic variation, which is constant across tissues and throughout lifetime, epigenetic modifications are dynamic and modifiable. Thus, epigenetic changes may vary between tissues, cell types, and developmental stages and can even be affected by environmental factors. Furthermore, in disease states, the methylation patterns can change either as a cause or a consequence of the disease (107). In this way, epigenetic factors provide a link between the genome and the environment and can potentially reflect an individual’s risk of developing a disease more accurately at a given time. Although epigenetic changes are dynamic, there is evidence that epigenetic modifications, such as DNA methylation, persist in blood years after acute illness or metabolic changes in the body (108, 109). Consequently, epigenetic factors have been suggested as an underlying mechanism for metabolic memory (110, 111). Metabolic memory in diabetes refers to the sustained harmful effect of hyperglycaemia on diabetic complications, initially observed in the DCCT-EDIC study, even after improved glycaemic control (112, 113). In line with this observation, subsequent work in DCCT-EDIC has identified several epigenetic changes associated with metabolic memory (110, 111). A combination of DNA methylation levels at several HbA1c-associated sites explained as much as 71 to 97% of the association between HbA1c and diabetic complications in the DCCT (114), further reinforcing the connection between epigenetic changes and metabolic memory.

DNA methylation is the most frequently studied epigenetic modification and occurs at cytosine bases of cytosine–phosphate–guanine dinucleotide sites (CpGs) in the DNA sequence. In addition to DNA methylation, additional epigenetic modifications exist, such as histone modifications (acetylation and methylation), and their role in DKD has also been explored. For example, dysregulation of histone H3 lysine 27 trimethylation (H3K27me3) in TGF-β1–induced gene expression has been associated with DKD (115). Histone modifications associated with DKD are reviewed, e.g., in (116), and are out of the scope of this review, where we focus on DNA methylation changes.



5.1 Various study settings for DNA methylation

Although whole-genome bisulfite sequencing for the analysis of the methylome has been done for DKD, sample sizes have been small (117). Studies assessing DNA methylation patterns across the genome, known as epigenome-wide association studies (EWASs) or methylome-wide association studies (MWASs), have primarily relied on Illumina’s BeadChip platforms, which have evolved from the Illumina 27K array with only ~27,000 sites to the Illumina 450K with ~450,000 and the EPIC array containing methylation levels at ~850,000 sites. However, this number of CpGs only accounts for a small amount of all the CpGs in the genome, totalling up to ~30 million (118). The EWASs have applied various significance thresholds, but a p-value below 9 × 10−8 has been suggested as a threshold for robust significance, adequately controlling for the false positive rate for the EPIC array (94). The genome-wide significance threshold recommended for Illumina’s 450K BeadChip is p-value < 2.4 × 10−7 or p-value < 3.6 × 10−8 (119), although the false discovery rate (FDR) has been widely used (Table 4). Contrary to the GWAS, which initially yielded few significant loci with increasing number of findings with larger studies, in EWAS, the use of varying thresholds, combined with unaddressed inflated test statistics especially in the early EWAS (131), has led to a quite varying number of identified methylation loci in the studies performed so far.


Table 4 | EWASs on kidney disease and related traits in individuals with diabetes.



Most EWASs performed on DKD have examined DNA methylation in blood. Still, other tissues have been used, such as kidney samples micro-dissected into kidney tubules (125) and even saliva (121). The epigenetic changes observed in the kidney tissue likely reflect the local changes more accurately. Indeed, EWAS on fibrosis in kidney tissue samples identified 65 differentially methylated CpGs that were enriched on kidney regulatory regions (125). Another promising target tissue for studying kidney disease would be the urine, which can be collected non-invasively and easily from larger datasets. Urine, however, contains few nucleated cells and extracting a sufficient amount of DNA from urine has turned out to be a challenge (132).




5.2 Over 150 CpGs associated with DKD and related traits

To date, methylation levels at over 150 CpG sites across the genome have been associated with DKD, eGFR, or albuminuria (p-value < 9 × 10−8), in studies including both T1D and T2D (Figure 2; Table 4; Supplementary Table 1), with the majority assessing DNA methylation in blood. The first DKD-EWAS identified DNA methylation levels at 19 CpGs associated with DKD in T1D (FDR < 0.05) using Illumina’s 27K array (120), highlighting one CpG located upstream of the UNC13B gene. An intronic SNP (rs2281999) in the same UNC13B gene was identified for DKD in T1D in a prior genetic association study including genetic variants in 127 candidate genes (133). More recent methylation arrays, with higher coverage have enabled identification of additional CpGs. Using the 450K array, Smyth et al. identified 53 CpGs within 23 genes with differential methylation in participants with CKD, of which approximately half had T1D. Of the 23 genes, six were in genes that are biological candidates for kidney disease: CUX1, ELMO1, FKBP5, INHBA-AS1, PTPRN2, and PRKAG2 (122). Of these, genetic variants within the PRKAG2, encoding a protein kinase involved in cellular energy metabolism, have also been associated with eGFR in GWAS on kidney disease, both in individuals with and without diabetes (19, 73, 74). Following this study, several EWAS have been performed (Table 4), focusing mainly on DKD (77, 123, 127) and ESKD (129) in T1D but also on DKD in T2D (128) or eGFR in individuals with diabetes of unspecified/mixed type (124, 126, 130), yielding a plethora of sites that are differentially methylated, shown in Figure 2 (CpGs with p-value < 9 × 10−8). The most recent and largest study, including 1,304 individuals with T1D, identified 32 sites with altered methylation in DKD (77), of which 23 were specific to the EPIC array. Methylation levels at seven CpGs were epigenome-wide significantly and differentially methylated after accounting for differences in multiple clinical risk factors (HbA1c, HDL cholesterol, triglycerides, BMI, smoking, and duration of diabetes), in addition to age, sex, and six cell-type proportions. These seven included two intergenic CpGs on chromosome 19 and four CpGs located within genes PTBP3, NME7, SLC1A5, and SLC27A3 and one CpG within a long non-coding RNA (LINC01800).




Figure 2 | Chromosomal ideogram including CpGs methylation associated with kidney disease (DKD and ESKD), fibrosis, eGFR, or albuminuria in diabetes. For intergenic CpGs (*), the nearest gene is given. Hypermethylated CpGs (in kidney disease vs. controls) are denoted by a dark blue colour and hypomethylated by a light blue colour. CpGs appearing among top loci in multiple studies on kidney disease in diabetes denoted by a red color.



Methylation levels at only a few CpGs have been associated with DKD in multiple studies (Figure 2). This can partly be explained by the higher coverage of Illumina’s EPIC array, with many CpGs on that array not present on previous arrays and, therefore, not testable. Consequently, one-third of the differentially methylated CpGs identified for DKD or eGFR in studies using the EPIC array (77, 126, 129) were novel and not available on previous arrays (Supplementary Table 1). However, methylation loci that have been repeatedly associated with DKD, include CpG within genes C5orf66, FKBP5 (77, 122), and PIP5K1C (77, 129). In addition, higher methylation at the intergenic CpG cg17944885, located on chromosome 19 within a zinc finger gene cluster, has been repeatedly associated not only with DKD and eGFR in diabetes (77, 126, 130) but also with CKD and eGFR in the general population (78, 134, 135), as well as eGFR in other more specific cohorts, such as men with human immunodeficiency virus (HIV) (136). Moreover, CpGs within the IRF2 (cg05165263) and SLC27A3 (cg21961721) gene, both with higher methylation levels in DKD in T1D (77), have also been associated with eGFR (p-value = 5 × 10−5 and 8 × 10−5) in the general population (135), although not among the reported top loci.

Although most of the DNA methylation association studies performed on DKD have covered the whole genome, targeted approaches have been undertaken as well. Swan et al. evaluated DNA methylation levels associated with DKD for CpGs located within genes influencing mitochondrial function in 442 individuals with long term T1D (123). Although methylation levels at several CpG sites reached the threshold for epigenome-wide significance (p-value < 9 × 10−8), none of the differentially methylated CpG sites has emerged in subsequent EWASs.

A few CpGs identified as differentially methylated in DKD to date (Figure 2) also appear in EWAS on traits that are considered risk factors for DKD. Lower methylation of cg19693031 located in the 3′-untranslated region of the TXNIP gene has been recurrently observed in the context of diabetes and glycemia, such as persistently higher HbA1c both in T2D and T1D (109, 126, 137). TXNIP encodes for the thioredoxin-interacting protein, which by binding to thioredoxin induces oxidative stress and apoptosis. Although it is mainly considered a glycemia-related methylation locus, it not only shows repeated associations with albuminuria and DKD (77, 109), explaining alone up to 45% of the HbA1c association with DKD (114), but also associates with DKD and triglycerides independently of HbA1c (109). Intriguingly, methylation levels at cg19693031 are also under genetic influence by SNPs located within the SLC2A1 gene encoding for the glucose transporter 1 (GLUT1) (109). A recent EWAS on DKD performed a systematic trait enrichment analysis and found significant overlap with EWAS findings for traits and diseases such as aging, smoking, systolic and diastolic blood pressure, eGFR, and HbA1c (77). Our lookup of the significant CpGs identified for DKD, eGFR, fibrosis, and albuminuria to date (Figure 2; 160 CpGs as listed in Supplementary Table 1) in the EWAS catalogue (associations with p-value < 9 × 10−8; http://www.ewascatalog.org , accessed 31 January, 2023) found an overlap with DKD risk factors including dyslipidemia (CpGs within SLC1A5, TXNIP, and CPT1A), HbA1c (TXNIP), blood pressure (CpGs within SLC1A5, TXNIP, CPT1A, and PTBP3) and obesity (CpGs within SLC1A5, TXNIP, CPT1A, and FKBP5; Supplementary Table 2). For example, in the CPT1A gene, methylation at cg17058475 was associated with DKD in T1D (77) and has been robustly associated with the triglycerides (118) in the general population. CPT1A encodes a key enzyme in the fatty acid metabolism, namely, the hepatic isoform of carnitine palmitoyl transferase 1 (138), controlling the fatty acid flux in the liver. In addition, the genetic variants in the gene were also associated with triglycerides and HDL cholesterol in a recent GWAS (139).




5.3 DNA methylation for prediction of DKD

Several studies have provided evidence suggesting that changes in DNA methylation patterns could be used to predict DKD or its progression. Using 91 kidney tissue samples, Gluck et al. found that information from 471 differentially methylated CpGs in the kidneys helped them to predict kidney disease progression (125). However, the utility of kidney tissue–specific DNA methylation patterns as potential biomarkers remain limited, as individuals with DKD do not routinely undergo kidney biopsy. As an alternative, a study with methylation data from 831 individuals constructed methylation risk scores for 607 phenotypes based on electronic health records and suggested that blood methylation was particularly good in identifying individuals with pre-existing kidney failure and related traits (140). An EWAS in 181 American Indians with diabetes identified methylation levels at 77 CpG sites associated with eGFR decline over a 6-year period (124). Methylation at two CpGs (cg25799291 and cg22253401 in FSTL5) improved prediction of eGFR decline even when baseline eGFR and Albumin-to-creatinine ratio (ACR) were included in the model (124). In addition, in T1D, methylation levels at baseline can be used to predict progression of DKD. In total, 20 of the 32 differentially methylated CpGs in DKD in T1D predicted future progression to kidney failure in 397 individuals with DKD, 13 even after accounting for eight clinical risk factors (77). Furthermore, methylation at the two intergenic CpGs located within the zinc finger gene cluster on chromosome 19 predicted kidney failure, independent of baseline eGFR.




5.4 Epigenetic changes—the cause or the consequence?

Because of the dynamic nature of epigenetic changes, the methylation changes observed at CpGs in DKD can be either a cause or a consequence of the disease. To separate the causal methylation changes from the consequential, EWASs have also attempted Mendelian randomization, which uses genetic information to infer causality (77, 126, 128). Although these analyses have been partly hampered by the lack of genetic variants influencing CpG methylation, some causal associations have been observed. For example, Mendelian randomization suggested that higher methylation levels at cg23527387 located within the REV1 gene reduces the risk of DKD in T1D (77). On the other hand, no evidence for causality was found for cg19693031 (TXNIP) or cg17944885 (between ZNF788P and ZNF625-ZNF20), suggesting that methylation changes observed at these sites are consequential to kidney disease or its other manifestations, e.g., hyperglycemia. Kim et al. used Mendelian randomization in the opposite direction, i.e., to assess the causal effect of metabolic phenotypes on CpG methylation changes identified in their EWAS on T2D (n = 8) and DKD (n = 3). These analyses revealed that fasting glucose resulted in 2% hypomethylation of cg00574958 located in the CPT1A gene, whereas HbA1c or BMI did not causally affect the cg00574958 methylation. Genetically determined eGFR, however, was associated with 7% hypomethylation of cg19693031 within TXNIP (p-value = 0.045), as well as hypomethylation of all the CpGs identified for DKD in T2D, including three CpGs within genes: COMMD1, TMOD1, and FHOD1.





6 Discussion

During the last 5 years, both GWAS and EWAS have identified an expanding number of genetic loci for DKD. Nearly 80 genetic loci have reached genome-wide statistical significance for DKD, albuminuria, or eGFR in diabetes to date. Much of this increase is not only due to larger meta-analyses of existing diabetes cohorts but also due to CKD studies in the general population including a substantial number of individuals with diabetes, as well as general population biobank studies. Even larger meta-analyses combining multiple biobank studies are likely to result in more genetic loci contributing to DKD. One of the major challenges of such studies will be how to best ascertain cases with DKD, either based on ICD codes that do not capture DKD well, self-reported DKD, or single measurements of albuminuria or eGFR, both of which vary over time. General population biobanks may also be affected by selection bias including healthier than average individuals (141), leading to a limited number of individuals with severe DKD or ESKD or with long-lasting diabetes: As DKD takes decades to develop (6), ideal study controls would only include individuals with diabetes without DKD despite a long diabetes duration.

The number of identified genetic loci now also allows comparison of the findings and the genetic overlap between general population CKD and DKD in T1D and T2D. The general population loci for eGFR seem to affect eGFR also in individuals with diabetes, especially those with T2D (76). For some variants, the effect size is markedly higher in the individuals with diabetes than in those without (e.g., UMOD, rs77924615, betaDM = −0.019, betanoDM = −0.011, Pdiff = 1.3 × 10−27; TPPP, rs4663171, betaDM = −0.011, betanoDM = −0.004; Pdiff = 2.5 × 10−9), potentially reflecting the elevated risk and accumulated risk factors for kidney complications among individuals with diabetes. On the other hand, genetic risk factors for DKD in T1D seem to differ from the general population (52). These support the notions from the clinical and epidemiological studies suggesting that individuals with T2D can have either DKD, non-DKD, or both, whereby individuals with T1D mainly develop diabetic nephropathy with a different pathophysiology from the general CKD (11, 90). Therefore, future genetic studies on DKD will need to balance between maximizing the number of samples (any diabetes, or even the general population with focus on diabetes) but with a more heterogeneous phenotype, and a cleaner DKD phenotype in T1D with diabetic nephropathy as a more likely underlying cause, but with a more limited number of samples.

GWASs on DKD have been performed in various populations beyond the European ancestry (46–48), and some of the identified variants are population-specific, e.g., the APOL1 variants associated with all-cause and diabetic ESKD in AAs (48, 67, 68). For many complex diseases, such as T2D, extension to further populations, as well as larger multi-ancestry GWAS meta-analyses have yielded novel genetic susceptibility loci by increasing the total sample size and capturing additional variants with ancestry-correlated heterogeneity in the allelic effect sizes (104, 142). Multi-ancestry GWASs also provide improved fine-mapping resolution of the detected association signals, i.e., can provide a smaller number of variants in the credible set including the underlying causal variant among the many associated ones (142). Therefore, such multi-ancestry studies are likely to reveal novel loci with improved fine-mapping for DKD as well. On the contrary, homogenous study populations may be particularly important in sequencing studies aiming to identify rare genetic risk factors for DKD.

Although there are known differences in the methylation pattern of a number of CpGs between different ethnicities (143), there is a lack of ethnic diversity in EWAS, which are based mainly on individuals of European ancestry (144, 145). A recent multi-ancestry EWAS on kidney function (135) revealed several population-specific methylation patterns for eGFR in the general population with little overlap between African and European populations. These discrepancies, however, could be due to both genetic and environmental differences between the different ethnic groups. The expansion of EWAS datasets in DKD to include multi-ancestry populations is still lacking.

The GWASs have also enabled creation of polygenic risk scores (PRSs) that may be used for risk stratification and identification of affected traits and phenotypes. In general population, PRS on eGFR was associated with incident CKD and kidney failure in the Atherosclerosis Risk in Communities study with 8.6% of the individuals having diabetes (146). In diabetes, smaller studies have shown that genetic risk scores for DKD improved the prediction of DKD in Han Chinese with T2D (147). In the ADjuVANt Chemotherapy in the Elderly (ADVANCE) trial with individuals with T2D, a multi-phenotype PRS, based on variants from the general population GWAS, predicted micro- and macrovascular complications and suggested that the PRS can identify high-risk individuals, who would benefit from intensified diabetes treatment (148); similarly, a general population PRS for coronary artery disease (CAD) was associated with CAD also among individuals with T1D (149). However, no large-scale PRS for DKD have yet been published, and larger GWASs on DKD are needed to create diabetes-specific PRS for DKD and to assess their utility compared to general population PRS.

To date, several CpG sites with altered methylation levels in DKD have been identified across the genome. Understanding the underlying mechanism behind these changes would be critical, i.e., are the observed changes driven by kidney disease or some other manifestation that emerges as the disease progress, and whether the changes are causal for the development or progression of DKD. In addition, methylation levels are also influenced by the genetics. Insights to the complex network behind the findings might therefore require integrating DNA methylation results with results from multiple other sources such as GWAS as well as transcriptomic and proteomic data. Some efforts in that direction have already been made. Indeed, a recent study demonstrated that DNA methylation explains a larger fraction of kidney disease heritability than gene expression by integrating GWAS data with methylomic and transcriptomic data obtained from 446 kidney tissue samples (88).

DNA methylation markers have proven useful for the prediction of DKD progression. Current studies, however, have focused on the later stages of kidney disease, when AER is severely increased or when kidney failure has occurred. EWASs at earlier stages of DKD, when AER is only moderately increased, could potentially identify additional CpGs and perhaps even more importantly, enable the prediction of early changes using DNA methylation. Although DNA methylation scores have not yet been as extensively implemented in risk prediction as the PRSs, methylation scores show a great promise as they incorporate information from both the genes and the environment. In a recent study, methylation scores improved the prediction of a range of clinical diagnoses and traits, including kidney disease, outperforming the predictive ability of polygenetic risk scores (140). However, the dynamic nature of methylation as well as its tissue-specificity introduces limitations regarding causality, time span of effect, and target tissue. By incorporating genetic information, causality can be addressed, and future studies may also be facilitated by emerging single-cell sequencing technologies that enable more targeted analyses, such as exploring the causal effects of DNA methylation at the single-cell level in the kidneys.
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Background

The solute carrier family 30 A8 zinc transporter (SLC30A8) plays a crucial role in insulin secretion. This study aimed to investigate the impact of SLC30A8 gene polymorphisms on gestational diabetes mellitus (GDM).





Methods

The research objective was to select 500 patients with GDM and 502 control subjects. Rs13266634 and rs2466293 were genotyped using the SNPscan™ genotyping assay. Statistical tests, such as the chi-square test, t-test, logistic regression, ANOVA, and meta-analysis, were conducted to determine the differences in genotypes, alleles, and their associations with GDM risk.





Results

Statistically significant differences were observed in age, pregestational BMI, SBP, DBP, and parity between individuals with GDM and healthy subjects (P < 0.05). After adjusting for these factors, rs2466293 remained significantly associated with an increased risk of GDM in overall subjects (GG+AG vs. AA: OR = 1.310; 95% CI: 1.005-1.707; P = 0.046, GG vs. AA: OR = 1.523; 95% CI: 1.010-2.298; P = 0.045 and G vs. A: OR = 1.249; 95% CI: 1.029-1.516; P = 0.024). Rs13266634 was still found to be significantly associated with a decreased risk of GDM in individuals aged ≥ 30 years (TT vs. CT+CC: OR = 0.615; 95% CI: 0.392-0.966; P = 0.035, TT vs. CC: OR = 0.503; 95% CI: 0.294-0.861; P = 0.012 and T vs. C: OR =0.723; 95% CI: 0.557-0.937; P = 0.014). Additionally, the haplotype CG was found to be associated with a higher risk of GDM (P < 0.05). Furthermore, pregnant women with the CC or CT genotype of rs13266634 exhibited significantly higher mean blood glucose levels than those with the TT genotype (P < 0.05). Our findings were further validated by the results of a meta-analysis.





Conclusion

The SLC30A8 rs2466293 polymorphism was found to be associated with an increased risk of GDM, while rs13266634 was associated with a decreased risk of GDM in individuals aged ≥ 30 years. These findings provide a theoretical basis for GDM testing.





Keywords: gestational diabetes mellitus, solute carrier family 30 A8 zinc transporter, SNP, rs13266634, rs2466293, case-control study




1 Introduction

Gestational diabetes mellitus (GDM) is a global concern, and its incidence has increased by over 30% in numerous countries during the past few years (1, 2). GDM is characterized by β-cell dysfunction, insulin resistance, and abnormal glucose utilization (3, 4), but its pathogenesis is not yet clear. Increasing evidence indicates that environmental and genetic factors are implicated in the development of GDM. Single nucleotide polymorphisms (SNPs) are a common type of genetic variation, and polymorphisms in different genes may be associated with GDM (5).

The solute carrier family 30 A8 zinc transporter (SLC30A8) gene encodes ZnT8, which is primarily expressed in pancreatic β-cells and is in charge of delivering zinc from the cytoplasm into insulin vesicles (6). SLC30A8 is involved in the secretion of insulin (7). The zinc stabilizes the insulin hexamer in secretory insulin vesicles, making it resistant to degradation (8). Insulin packaged into secretory vesicles can be released immediately upon glucose stimulation (7). The rs13266634 polymorphism is a missense C to T variant in exon 9 of the SLC30A8 gene, and the amino acid changes from arginine (R) to tryptophan (W) at position 325 (8). Thus, rs13266634 has been thought to be related to diabetes risk, as it affects the expression of SLC30A8, and negative regulation of ZnT8 is considered to disrupt the stability of insulin molecules (9). The polymorphism rs2466293 is in the 3′-UTR of the SLC30A8 gene, and rs2466293 may impact SLC30A8 post-transcriptional regulation by binding to miRNA (10). MiRNAs are closely related to gene level regulation; hence, rs2466293 in the seed sites of miRNA targets can create or disrupt miRNA-binding sites that further influence disease susceptibility (11). In this context, this study researched the influence of rs13266634 and rs2466293 polymorphisms on GDM risk.




2 Materials and methods



2.1 Study subjects

From 1 August 1 2021 to 31 January 31 2022, a total of 1,002 unrelated Chinese Han pregnant women (500 GDM cases and 502 controls) were recruited for our study at the obstetric clinic of Shunde Maternal and Child Health Hospital, Guangdong Medical University. All individuals underwent a routine 75-gram oral glucose tolerance test (OGTT) during 24-28 weeks of gestation. A control group consisting of pregnant women at 24 to 28 weeks of gestation was selected over the same period. The inclusion criteria were as follows: voluntarily provided written informed consent, not previously diagnosed with diabetes, Han nationality, aged ≥ 18 years, no pregnancy complications, and not taking hypoglycemic medicines. Participants who did not meet the above criteria were excluded.




2.2 Data collection

Information including age, height, pregestational weight, parity (primipara or multipara), blood pressure, race, pregnancy condition, and other clinical information were obtained at 24-28 gestational weeks. Pregestational body mass index (pre-BMI, Kg/m2) was calculated as pregestational weight (Kg) divided by height squared (m2). The Chinese standards for obesity were as follows: underweight (< 18.5 Kg/m2), normal (18.5-24 Kg/m2), overweight (24-28 Kg/m2), and obese (≥ 28 kg/m2).




2.3 SNP genotyping

A total of 2 mL of EDTA-treated blood was immediately stored in the freezer. Genomic DNA was extracted and purified from blood cells by a QIAamp DNA Blood Kit (Qiagen, Germany). Genotypes of candidate SNPs were determined using the SNPscan™ genotyping assay (Genesky Technologies Inc., Shanghai, China). Pre-experiments were conducted before formal experiments. In order to check the genotyping data accuracy, 6% of the samples were randomly selected for duplicate analysis using Sanger sequencing.




2.4 Statistical analyses

Continuous variables following normal distribution were reported as means ± SD, and the independent sample t-test was used to determine the differences between the relevant parameters of the two groups. In cases where the assumption of normality was violated, non-parametric tests were employed. Qualitative data were analyzed using the chi-square (χ2) test. The Hardy-Weinberg equilibrium (HWE) test, assessed through the goodness-of-fit χ2, was used to ensure that the control group was representative of the population. The risk of GDM was evaluated using six genetic models, namely, codominant homozygous, codominant heterozygous, dominant, recessive, overdominant, and allele models, through the χ2 test and logistic regression analysis. Crude and adjusted odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were presented, with adjustments made for covariates such as age, pre-BMI, etc. Stratified analysis was performed to further examine the potential influence of age and pre-BMI on the results. The frequency distribution of haplotypes was calculated using Haploview 4.2 software. The association between SNPs and blood glucose levels was investigated using one-way ANOVA. For multiple comparisons, the least significant difference (LSD) method was used. Statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, IL, USA), and a P-value < 0.05 was considered statistically significant.





3 Results



3.1 General clinical characteristics of the subjects

The study included 500 GDM cases and 502 non-diabetic controls for the evaluation of the SLC30A8 genotype. Table 1 presents the clinical baseline information and stratified features. The mean age, pre-BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), 1 h-PG, and 2 h-PG were significantly higher in the GDM group than in the control group (P < 0.05). Furthermore, there was a significant difference in parity between the GDM and control groups (P < 0.05).


Table 1 | Basic and stratified characteristic of participants of the study.






3.2 The association between polymorphisms and GDM risk



3.2.1 Overall analysis results

Table 2 presents the minor allele frequency (MAF) and the results of the HWE analysis for two SNPs in the control group. The results were in conformity with HWE (P > 0.05). Table 3 shows the ORs with corresponding 95% CIs and associated P values estimated for the relationship between genotypes and GDM in the six models (codominant homozygous, codominant heterozygous, dominant, recessive, overdominant, and allele models) for each polymorphism. SLC30A8 rs2466293 was found to be significantly associated with an increased risk of GDM in the dominant model (GG+AG vs. AA: OR = 1.288; 95% CI: 1.003-1.655; P = 0.047), codominant homozygous model (GG vs. AA: OR = 1.499; 95% CI: 1.014-2.217; P = 0.043), and allele model (G vs. A: OR = 1.237; 95% CI: 1.029-1.487; P = 0.023). Further evaluation was performed using a logistic regression method to adjust for age, pre-BMI, SBP, DBP, and parity. The results indicated a strong association between SLC30A8 rs2466293 and an increased risk of GDM in the dominant model (GG+AG vs. AA: OR = 1.310; 95% CI: 1.005-1.707; P = 0.046), codominant homozygous model (GG vs. AA: OR = 1.523; 95% CI: 1.010-2.298; P = 0.045), and allele model (G vs. A: OR = 1.249; 95% CI: 1.029-1.516; P = 0.024). However, no significant association was found in rs13266634.


Table 2 | SNPs information and HWE test in the controls.




Table 3 | The associations between SNPs in SLA30C8 gene and GDM risk in overall subjects.






3.2.2 Stratified analysis results

Subsequently, the associations between two SNPs and susceptibility to GDM in six models were tested using stratified analysis for age or pre-BMI. Notably, protective roles were detected in subjects aged ≥ 30 years for rs13266634 under the dominant model (TT+CT vs. CC: OR = 0.648; 95% CI: 0.431-0.975; P = 0.037), codominant homozygous (TT vs. CC: OR = 0.517; 95% CI: 0.307-0.872; P = 0.013) and allele model (T vs. C: OR = 0.728; 95% CI: 0.565-0.938; P = 0.014). After adjustments, rs13266634 was significantly associated with lower GDM risk under the recessive model (TT vs. CT+CC: OR = 0.615; 95% CI: 0.392-0.966; P = 0.035), codominant homozygous model (TT vs. CC: OR = 0.503; 95% CI: 0.294-0.861; P = 0.012) and allele model (T vs. C: OR =0.723; 95% CI: 0.557-0.937; P = 0.014) (Table 4). Moreover, these associations were more evident in subjects aged ≥ 30 years for rs2466293 under the dominant model (GG+AG vs. AA: OR = 1.445; 95% CI: 1.007-2.073; P = 0.045) and allele model (G vs. A: OR = 1.337; 95% CI: 1.024-1.747; P = 0.033). After these abovementioned factors were adjusted, rs2466293 was significantly related to higher GDM odds under the dominant model (GG+AG vs. AA: OR = 1.579; 95% CI: 1.086-2.295; P = 0.017), codominant heterozygous (AG vs. AA: OR = 1.519; 95% CI: 1.020-2.263; P = 0.040), and allele model (G vs. A: OR = 1.399; 95% CI: 1.064-1.839; P = 0.016) (Table 4). However, no significant associations were found in subjects aged < 30 years (Supplementary Table 1). Nevertheless, the results indicated no significant relationship between rs13266634 or rs2466293 and GDM susceptibility in subjects in the pre-BMI stratified analysis.


Table 4 | The associations between SNPs in SLA30C8 gene and GDM risk in subjects aged ≥ 30 years.







3.3 Haplotype and linkage disequilibrium analyses

The study found that two SNPs, rs13266634 and rs2466293, were in strong linkage disequilibrium (D′ > 0.99) with each other (Figure 1). The CG haplotype consisting of these SNPs was significantly associated with higher GDM risk (OR = 1.231; 95% CI: 1.024-1.48; P = 0.026). In addition, the age-stratified analysis revealed that haplotype CG was associated with higher GDM risk in subjects aged ≥ 30 years (OR = 1.328; 95% CI: 1.016-1.734; P = 0.037), while haplotype TA was associated with lower GDM risk in subjects aged ≥ 30 years (OR = 0.722; 95% CI: 0.560-0.931; P = 0.011). However, no significant associations were found with age < 30 years (Table 5).




Figure 1 | Linkage disequilibrium (LD) between multiple loci of the SLC30A8 gene (rs13266634 C/T and rs2466293 A/G).




Table 5 | Haplotype analysis of the rs132666342 and rs2466293 SNPs of the SLA30C8 gene for the GDM and controls.






3.4 The association between polymorphism genotype and blood glucose levels

The fasting glucose and 1-h PG levels of pregnant women with different genotypes were analyzed by age stratification (Table 6). The results showed that the glucose indexes of the rs13266634 CC genotype were higher than those of the TT genotype in subjects aged ≥ 30 years (all P < 0.05), and the 1-h PG level of the CC genotype was significantly higher than the CT genotype.


Table 6 | Association between SNPs polymorphisms genotype and blood glucose levels.






3.5 Meta−analysis results

Relevant references were searched for based on the PubMed and Google Scholar databases to evaluate the relationship between SLC30A8 rs13266634 or rs2466293 and GDM. Eight eligible studies were included in the rs13266634 and GDM analysis, and two studies were related to SLC30A8 rs2466293 and GDM. In total, the fixed-effects model was used for analysis. Rs13266634 was shown to be significantly associated with a decreased risk of GDM in the following models: dominant model (TT+CT vs. CC: OR = 0.751; 95% CI: 0.674-0.838; P < 0.001), recessive model (TT vs. CT+CC: OR = 0.736; 95% CI: 0.629-0.861; P < 0.001), overdominant model (CT vs. TT+CC: OR = 0.878; 95% CI: 0.789-0.977; P < 0.001), codominant homozygous model (TT vs. CC: OR = 0.643; 95% CI: 0.542-0.763; P < 0.001), codominant heterozygous model (CT vs. CC: OR = 0.789; 95% CI: 0.703-0.885; P < 0.001), and allele model (T vs. C: OR = 0.795; 95% CI: 0.734-0.860; P < 0.001) (Figure 2). In addition, SLC30A8 rs2466293 was associated with increased GDM risk in the dominant model (GG+AG vs. AA: OR = 1.184; 95% CI: 1.013-1.383; P = 0.034), recessive model (GG vs. AG + AA : OR = 1.408; 95% CI: 1.135-1.747; P = 0.002), codominant homozygous model (GG vs. AA : OR = 1.474; 95% CI: 1.167-1.861; P = 0.001), and allele model (G vs. A: OR = 1.195; 95% CI: 1.069-1.336; P = 0.002), and no significant association was found in other genetic models (Figure 3). There was no obvious evidence of publication bias in the genetic models, and these results are consistent with Egger’s tests (all P > 0.05).




Figure 2 | Meta-analysis with a fixed effects model for the association between SLC30A8 rs13266634 and GDM susceptibility. (A) dominant model, TT+CT vs. CC (B) recessive model, TT vs. CT+CC (C) overdominant model, CT vs. TT +CC (D) codominant homozygous model,TT vs.CC (E) codominant heterozygous model, CT vs.CC (F) allele model, T vs. (C) OR: odds ratio, CI: confidence interval, I-squared: measure to quantify the degree of heterogeneity in meta-analyses.






Figure 3 | Meta-analysis with a fixed effects model for the association between SLC30A8 rs2466293 and GDM susceptibility. (A) dominant model,GG+AG vs. AA (B) recessive model,GG vs. AG + AA (C) overdominant model, AG vs. GG +AA (D) codominant homozygous model, GG vs. AA (E) codominant heterozygous model, AG vs.AA (F) allele model, G vs. (A) OR: odds ratio, CI: confidence interval, I-squared: measure to quantify the degree of heterogeneity in meta-analyses.







4 Discussion

The role of genetic factors in the GDM process has been verified by previous findings (12). Rs13266634 is a non-synonymous SNP in SLC30A8, and a protective role for the rs13266634 T allele, which reduces GDM risk, has been proposed in a Swedish population (8). In contrast, six studies from Brazil, the United States, Denmark, the Republic of Korea, and China failed to replicate the results (13–18). Therefore, further verification is necessary. Moreover, rs2466293 is a polymorphism in miRNA-binding sites (miR-binding SNP). Recent findings indicated that rs2466293 impacted the development of GDM (19), but more extensive research is needed for verification. This research paper conducted a case-control study to estimate the association of SLC30A8 rs13266634 or rs2466293 with GDM among six different genetic models in a Chinese population.

In the research process, we explored the relationship between SLC30A8 gene multiformity and GDM risk. In the overall analysis, the findings indicated that SLC30A8 rs13266634 showed no association with GDM risk, but SLC30A8 rs2466293 was shown to be significantly related to increased GDM risk under the dominant (GG+AG), codominant homozygous (GG), and allele(G) genetic models that were unadjusted and adjusted for age, pre-BMI, SBP, DBP, and parity. In this study, women with GDM were older than healthy controls. It has been pointed out that the prevalence of GDM increases with age, and the incidence is higher among women over 30 years of age (20). Therefore, further studies used a cutoff point of 30 years of age and analyzed the association between polymorphic variants and GDM after stratification by age. Interestingly, after adjusting for age, pre-pregnancy BMI, and SBP, our findings indicated that the SNP rs13266634 in SLC30A8 was found to have a protective effect against GDM risk in subjects aged ≥30 years under the recessive and homozygous dominant genetic models, while SLC30A8 rs2466293 was significantly associated with increased GDM risk in patients aged ≥30 years under the dominant and heterozygous dominant genetic models. These results are in accordance with some scholarly studies (8, 13, 19). Furthermore, the CG haplotype, comprised of SNPs rs13266634 and rs2466293, was significantly associated with an increased risk of GDM in the overall analysis. In a further analysis stratified by age, the CG haplotype was also associated with an increased risk of GDM in individuals aged ≥ 30 years, while the TA haplotype was associated with a reduced risk of GDM in the same age group. These results suggest that the T allele of rs13266634 in SLC30A8 can be considered a protective factor for GDM, while the G allele of rs2466293 may be a risk factor for GDM.

Wang et al. found that the C allele of rs2466293 increased susceptibility to GDM in the Chinese population (19), which was consistent with our research findings. In addition, our study found that the TT homozygous genotype of rs13266634 and the T allele decreased the risk of developing GDM in subjects aged ≥ 30 years. Similarly, previous research has demonstrated that the T allele of rs13266634 protects against the risk of GDM in the Swedish population (8), which was consistent with our findings. Moreover, in populations of Filipinos, Swedes, Koreans, and Chinese individuals, there was evidence of an association between the C allele of SLC30A8 rs13266634 and a higher risk of GDM (8, 13, 14, 18). However, other studies have not found any association between rs13266634 and the risk of GDM in populations of Danes and Europeans (15–17). Inconsistencies in these results may be related to differences in ethnicity, environment, or limited study sample sizes. Therefore, a comprehensive meta-analysis was carried out with a larger number of different populations (ethnicities) to identify the relationship of SLC30A8 SNPs with GDM risk. Rs13266634 was demonstrated to have a protective effect in every genetic model (P < 0.05) in eight eligible studies (including our study), and significant findings of rs13266634 could also be observed in both the Caucasian and Asian subgroups. SLC30A8 rs2466293 was found to be significantly related to higher GDM risk in the relevant models (codominant homozygous and allele models) (P < 0.05) based on two Chinese population studies.

GDM and T2DM are considered to have similar pathogenesis. In a study of diabetic mice, SLC30A8 gene expression levels were inhibited in the pancreas of animals with this pathology, indicating that it is related to diabetes (9). Studies have shown that the SLC30A8 rs13266634 C allele is associated with glucose regulation in GWASs (21, 22). In addition, studies based on fluorescence and radiation have proposed a hypothesis that the rs13266664-T allele reduces SLC30A8 activity, which changes insulin synthesis and reduces GDM susceptibility based on this mechanism (23–25). In addition, genetic variation in the 3’UTR, a miRNA target gene, can affect the interaction between miRNA and target mRNA. We queried the rs2466293 polymorphism located using the “MirSNP” database (http://bioinfo.life.hust.edu.cn/miRNASNP/). According to the results, it can be inferred that rs2466293 creates eight and destroys three putative miRNA target sites, which may impact the expression of SLC30A8 and lead to a higher risk of GDM. However, functional research is necessary to further confirm its mechanism.

According to the abovementioned research, this study obtained a conclusion that the age and pre-BMI of the GDM group were significantly higher than those of the control group, and logistic regression analysis indicated that the increase in age and pre-BMI were important risk factors for GDM. SBP, DBP, and parity in the GDM group were significantly higher than those in the other group. It can be inferred that patients with GDM were prone to pregnancy-induced hypertension syndrome. Moreover, a previous study found that the SLC30A8 rs13266634 C allele was correlated with higher fasting glucose levels among women with gestational high BMI (26). Our study also showed that the SLC30A8 rs13266634 C allele had an influence on higher fasting glucose, 1-h, and 2-h glucose levels among pregnant women over the age of 30 years, which was similar to the results of previous studies. The SLC30A8 rs13266634 C allele may affect the normal secretion of insulin. Wang et al. found a significant relationship between the C allele of rs2466293 with higher plasma glucose (19), but no differences were found in our study. Therefore, further relevant research is necessary.

There are still several limitations in this study. First, due to the modest sample size of the GDM and control groups, future studies need to validate our observations in a larger cohort. Second, the data used in this study were insufficient, such as the lack of fasting insulin data, to accurately measure and evaluate pancreatic islet β-cell function. Finally, the study subjects were limited to Chinese individuals, and additional research is necessary to confirm our findings in diverse populations.




5 Conclusions

In conclusion, in subjects aged ≥ 30 years, SLC30A8 rs13266634 exhibited a protective relationship against GDM susceptibility, while the results indicated associations of rs2466293 with the risk of GDM. The haplotype CG was also associated with a higher risk of GDM, and the haplotype TA was associated with a lower risk of GDM in subjects aged ≥ 30 years. In general, our findings provide more clues for studying the precise mechanism of the development of GDM.
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Associations between lower birth weight and higher polycystic ovary syndrome (PCOS) risk have been reported in previous observational studies, however, the causal relationship is still unknown. Based on decomposed fetal and maternal genetic effects on birth weight (n  =  406,063), we conducted a two-sample Mendelian randomization (MR) analysis to assess potential causal relationships between fetal genome predicted birth weight and PCOS risk using a large-scale genome-wide association study (GWAS) including 4,138 PCOS cases and 20,129 controls. To further eliminate the maternally transmitted or non-transmitted effects on fetal growth, we performed a secondary MR analysis by utilizing genetic instruments after excluding maternally transmitted or non-transmitted variants, which were identified in another birth weight GWAS (n = 63,365 parent-offspring trios from Icelandic birth register). Linkage disequilibrium score regression (LDSR) analysis was conducted to estimate the genetic correlation. We found little evidence to support a causal effect of fetal genome determined birth weight on the risk of developing PCOS (primary MR analysis, OR: 0.86, 95% CI: 0.52 to 1.43; secondary MR analysis, OR: 0.86, 95% CI: 0.54 to 1.39). In addition, a marginally significant genetic correlation (rg = -0.14, se = 0.07) between birth weight and PCOS was revealed via LDSR analysis. Our findings indicated that observed associations between birth weight and future PCOS risk are more likely to be attributable to genetic pleiotropy driven by the fetal genome rather than a causal mechanism.
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Introduction

Polycystic ovary syndrome (PCOS), affecting 6% – 9% of women of reproductive age, is the most common endocrine condition (1). Based on previous studies, insulin resistance, obesity, and androgen excess may contribute together and play crucial roles in PCOS development (2, 3). In addition, an increasing body of evidence suggests a strong genetic component in its aetiology (4, 5). However, the aetiology of PCOS remains largely unknown, and no efficient therapeutic treatments or prevention measures for PCOS are available. According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, early life abnormal growth and development were associated with the risk of developing various chronic diseases in later life (6, 7). Birth weight, a common indicator reflecting intrauterine fetal growth, has been widely studied on its long-term impact on adulthood health outcomes (8–11). Interestingly, observational associations between birth weight and PCOS risk in later life have been reported in a recent meta-analysis and multiple cohort studies (12–17). However, these associations were not well replicated in other independent large-scale cohort studies (18–20). Given that observational studies are commonly prone to residual confounding or reverse causation (21), the causal relationship between birth weight and the risk of developing PCOS remains unknown.

Mendelian randomization (MR), which is a causal inference technique using genetic variants randomly allocated during conception as instrumental variables, is less prone to residual confounding or reverse causation bias (22). In a previous study, little evidence was found to support a causal effect of birth weight on PCOS risk by using MR (P = 0.22) (23). However, this study used offspring genetic variants associated with birth weight as instrumental variables without adjusting for maternal genotypes, which were correlated with fetal genotypes (r ≈ 0.5) (24, 25) (Supplemental Figure 1). Thus, their effect estimates of birth weight on PCOS risk might be biased by the maternal genetic effects. In addition, recent studies suggested that composite or complex traits can be explained by multiple components or distinct biological pathways (26–28). Like other complex traits, variation in birth weight can also be explained by different components, such as fetal genetically regulated components and maternal adverse intrauterine environment components (29–31). Dissecting these components of birth weight is essential to understand the underlying biological mechanism. Recently, several studies investigated possible mechanisms between birth weight and cardiometabolic risk by using different components of birth weight. Based on structural equation model (SEM) and weighted linear model (WLM) methods, Warrington et al. and Moen et al. recently separated genetic effects on birth weight into maternal and fetal components to investigate the causal mechanisms between birth weight and future cardiometabolic risk (29, 32). Their findings suggested that associations between birth weight and adulthood cardiometabolic outcomes were attributable to fetal genetic effects rather than intrauterine programming (29, 32). Moreover, from a genomic perspective, Juliusdottir et al. discriminated the effects of transmitted and non-transmitted alleles on birth weight by using a long-range phasing (LRP) method based on the Icelandic fetal growth samples to investigate inheritance patterns affecting birth weight (30). This study indicated that associations between birth weight and most cardiometabolic risk factors were driven by the fetal genome (30), whereas it is still unclear whether birth weight affects PCOS in the same manner.

Recently, two large-scale genome-wide association study (GWAS) meta-analyses on PCOS released their summary statistics (4, 33), which provided opportunities for assessing potential causal relationships between birth weight and PCOS risk. Thus, in this study, we aimed to investigate whether there is a causal effect of fetal genome determined birth weight on PCOS risk using two-sample MR analysis. Considering other potential mechanisms that might underpin the association between birth weight and PCOS, such as genetic pleiotropy, we also assessed the genetic correlation between birth weight and PCOS risk by conducting linkage disequilibrium score regression (LDSR) analysis which is mainly used to identify shared genetic variation between two traits across the whole genome (34, 35).





Materials and methods




Data sources and study populations

A schematic overview of the study design is presented in Figure 1 and detailed data sources information can be found in Supplemental Table 1. We used two sets of birth weight summary statistics obtained from GWASs conducted by the Early Growth Genetics (EGG) consortium (http://egg-consortium.org) and the Icelandic birth register to construct two sets of instrumental variables (IVs) for the primary and secondary MR analysis, respectively. GWAS of birth weight conducted by the EGG Consortium included 406,063 individuals of European ancestry (29), where maternal and fetal genetic effects on birth weight were separated by using SEM. In the primary MR analysis, we used the summary statistics of fetal genetic effects on the offspring’s birth weight after adjusting for correlated maternal genotypes. Of note, the original birth weight GWAS categorized 305 genome-wide significant (P < 5×10-8) single nucleotide polymorphisms (SNPs) identified into 5 groups based on the effects of maternal and/or fetal genotypes on offspring birth weight: 1) fetal effect only, 2) maternal effect only, 3) fetal and maternal effects with the same direction, 4) fetal and maternal effects with the opposite directions, and 5) unclassified (29). Among these variants, 28 SNPs were identified as having fetal genetic effects on birth weight (SEM classification: “fetal only” or “fetal and maternal”).




Figure 1 | Study design of MR analyses. (A) rs560887 and rs10872678 were identified as maternally transmitted and non-transmitted alleles respectively in the birth weight GWAS by Juliusdottir et al. (30). (B) SNPs were genome-wide significantly associated with potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose metabolism, and lipid metabolism. BMI, body mass index; BW, birth weight; EstBB, Estonian Biobank; GWAS, genome-wide association study; PCOS, polycystic ovary syndrome; SNP, single nucleotide polymorphism; WHR, waist-to-hip ratio.



The outcome data were obtained from a large-scale GWAS meta-analysis of PCOS, including 4,138 cases and 20,129 controls of European ancestry from six cohorts (Rotterdam, Oxford, EGCUT, deCODE, Chicago, and Boston) (4). To further validate the results of the MR analysis, we used summary statistics of PCOS GWAS meta-analysis in the FinnGen and Estonian Biobank (EstBB) as replication data, which included 3,609 cases and 229,788 controls (33).





Genetic instruments selection

The genetic instruments selection procedure was conducted in the following steps. First, in the primary MR analysis, statistically significant (P < 5×10-8) genetic variants were selected from summary statistics of birth weight GWAS conducted by the EGG Consortium (29). To ensure that genetic variants are independent, a stringent linkage disequilibrium (LD) threshold (r2 < 0.001 and window size = 10,000 kb) was used for LD clumping, with the European subsample of 1,000 Genome Project data as reference panel (36). Moreover, we excluded genetic instruments located in the range of imprinted genes to minimize the heterogeneous effect of variants on phenotypes in the population. Considering potential violations of the MR core assumptions, that is, maternal genetic effects confounded fetal genetic variants which were used as IVs and the outcome (i.e., PCOS), we identified and excluded SNPs that exerted maternal genetic effects on birth weight from the set of IVs. To further eliminate maternal genetic effects on birth weight from IVs used in the primary analysis, we identified and excluded maternally transmitted and non-transmitted alleles based on a GWAS meta-analysis on birth weight by Juliusdottir et al. from 63,365 parent-offspring trios (30), to construct IVs for the secondary MR analysis. The allele-specific effects of maternally transmitted or non-transmitted on birth weight were used to represent the maternal and fetal genetic effects, respectively (37). Finally, five maternally transmitted and three maternally non-transmitted SNPs that reached a genome-wide significant level on birth weight were identified from the GWAS by Juliusdottir et al. (30)

Furthermore, we extracted SNP-POCS associations for each genetic instrument from two independent PCOS GWASs conducted by Day et al. and Tyrmi et al., respectively (4, 33). If a certain instrument was not available in the summary data, a proxy SNP in high LD in the European population was identified using LDlink (https://ldlink.nci.nih.gov/?tab=ldproxy). After that, data harmonization was performed to combine SNP-birth weight and SNP-PCOS associations using the “harmonise_data” function in the TwoSample MR package (36), in which ambiguous or palindromic SNPs were excluded.

As a result, we retained a total of 22 SNPs as genetic instruments in the primary MR analysis from birth weight GWAS conducted by Warrington et al. (29) and 20 SNPs after excluding two maternally transmitted or non-transmitted SNPs (i.e., rs560887 and rs10872678 which were identified in the GWAS by Juliusdottir et al. (30)) in the secondary MR analysis (Table 1). To minimize the risk of violating the IV assumptions, we identified SNPs associated with risk factors for PCOS, including body mass index (BMI), type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose metabolism, and lipid metabolism, by searching the GWAS Catalog database (https://www.ebi.ac.uk/gwas/) and the PhenoScanner database (version 2; http://phenoscanner.medschl.cam.ac.uk/). After excluding associated SNPs, 12 and 11 SNPs were retained as genetic instruments in each set of IVs, respectively (Figure 1, Supplemental Tables 2, 3).


Table 1 | Characteristics of instrumental variables for birth weight used in the primary MR analysis.







Primary MR analysis




Main analysis

The multiplicative random-effects inverse-variance weighted (IVW) method was used as the main analysis (38, 39). Wald ratio estimate for each SNP was calculated by dividing the per allele effect on PCOS by the per allele change in the standard deviation (SD) of birth weight, followed by meta-analyzing the estimates via the multiplicative random-effects IVW method, which eventually yielded the IVW estimates. The IVW estimates can be interpreted as the odds ratio (OR) of PCOS risk for one SD change in birth weight.






Sensitivity analyses




Assessment of the IV assumptions

To test the MR relevance assumption (i.e., whether the selected IVs have strong associations with birth weight), the F statistic was calculated for each genetic instrument in our study (40). Furthermore, to ensure that the exclusion restriction assumption holds, Cochran’s Q statistic in the IVW analysis (38, 39) was used to assess the heterogeneity of the causal estimates between genetic variants (41). The intercept term of MR-Egger regression was used to test for directional pleiotropy. In addition, we conducted the leave-one-out (LOO) (42) and the Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) (43) analyses to detect strong influential SNPs or outliers.






Robust MR methods

Given that the IVW method provides a biased estimate in the presence of unbalanced horizontal pleiotropy (i.e., directional pleiotropy), we carried out sensitivity analyses by using several pleiotropic-robust methods, including MR-Egger (44), weighted median (45), weighted mode (46), and MR-PRESSO (43) methods, to enhance the robustness of causal inference. When the assumption of the Instrument Strength Independent on Direct Effect (InSIDE) holds, the MR-Egger regression will generate consistent estimates even in the presence of directional pleiotropy (47). The assumption of InSIDE allows for the pleiotropy effects of IVs but requires that the SNP-exposure effects are independent of the pleiotropic effects of SNPs on the outcome, which is a weaker assumption than the IVW assumption. However, the MR-Egger estimate is less precise than the IVW estimate, particularly when the SNP-exposure effect estimates of each genetic variant are relatively homogeneous. Furthermore, we conducted the weighted median analysis which provides reliable estimates when up to 50% of the weight comes from valid IVs. We also carried out the weighted mode analysis which assumes that the most common effect estimate is a consistent estimate of the true effect and allows the majority of variants to be invalid (46). Finally, MR-PRESSO analysis was conducted to estimate the causal effect after correcting for horizontal pleiotropy by removing outliers (43).





Secondary and replication MR analysis

A secondary MR analysis was conducted using the fetal genetic associations extracted from the birth weight GWAS by Warrington et al. (29), after excluding maternally transmitted or non-transmitted alleles that were identified in the GWAS by Juliusdottir et al. (30) In addition, to validate the causal estimates in the primary MR analysis, a replication MR analysis was performed using data from an independent PCOS GWAS meta-analysis in the FinnGen and EstBB (33). To increase the statistical power and precision of causal estimates, a fixed-effect meta-analysis was conducted to pool the IVW estimates from the primary/secondary and replication analyses.





LDSR analysis

LDSR analysis was conducted to assess the genetic correlation between offspring birth weight and PCOS risk by using the fetal genetic associations with birth weight after adjusting for maternal genotypes. First, we conducted LDSR analysis based on summary statistics from birth weight GWAS conducted by Warrington et al. (29) and PCOS GWAS conducted by Day et al. (4) For replication, LDSR analysis was performed based on the summary statistic from another independent PCOS GWAS conducted by Tyrmi et al. (33) The heritability of a single trait or the genetic correlation between two traits can be estimated using LDSR analysis based on the LD structure of a reference panel. Unlike MR, LDSR analysis assesses the genetic correlation between two traits by using genetic variants from the whole genome rather than the causal effect between two traits.

All statistical analyses were conducted using the R packages “TwoSampleMR”, “MRPRESSO” and “meta” in R software, version 4.0.0 (R Foundation for Statistical Computing, Vienna, Austria). LDSR analysis was performed using the LDSC software, version 4.0.0 (https://github.com/bulik/ldsc) (34, 35).






Results




Main analysis

The main analysis by IVW suggested little evidence to support a causal relationship between fetal genome determined birth weight and PCOS risk. Causal effect estimates of fetal genome determined birth weight on PCOS risk in the primary MR analysis equated to an OR of PCOS of 0.86 (95% CI: 0.52 to 1.43) for one SD increase in birth weight (Figure 2). Replication analysis using another independent data source from PCOS GWAS meta-analysis generated a consistent causal association of fetal genome determined birth weight with offspring PCOS risk (OR: 0.87, 95% CI: 0.60 to 1.24). Further, consistent estimates (regarding both effect directions and magnitudes) were obtained after meta-analyzing the IVW estimates (OR: 0.87, 95% CI: 0.65 to 1.16) in the primary and replication analyses (Figure 2). After excluding the maternally transmitted and non-transmitted effects, the MR analysis results suggested a null causal effect of fetal genetically predicted birth weight on PCOS risk in both secondary and replication MR analyses (secondary IVW OR: 0.86, 95% CI: 0.54 to 1.39; replication IVW OR: 0.86, 95% CI: 0.58 to 1.26) (Figure 3). A similar pooled IVW estimate was observed (OR: 0.86, 95% CI: 0.64 to 1.16).




Figure 2 | Causal effects of fetal genome determined birth weight on future PCOS risk estimated in the primary MR analysis. Squares represent ORs of PCOS per SD increase in birth weight. Error bars represent 95% confidence intervals. A. 10 SNPs that were genome-wide significantly associated with potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose metabolism, and lipid metabolism, were excluded from the MR analysis. BMI, body mass index; CI, confidence interval; IVs, instrumental variables; IVW, inverse variance weighted; MR, Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; OR, odds ratio; P, p-value; PCOS, polycystic ovary syndrome; SD, standard deviation; SNP, single nucleotide polymorphism.






Figure 3 | Causal effects of fetal genome determined birth weight on future PCOS risk estimated in the secondary MR analysis. Squares represent ORs of PCOS per SD increase in birth weight. Error bars represent 95% confidence intervals. (A) rs560887 and rs10872678were identified as maternally transmitted and non-transmitted alleles respectively in the birth weight GWAS by Juliusdottir et al. (30). (B) 9 SNPs that were genome-wide significantly associated with potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose metabolism, and lipid metabolism, were excluded from the MR analysis. BMI, body mass index; CI, confidence interval; IVs, instrumental variables; IVW, inverse variance weighted; MR, Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; OR, odds ratio; P, p-value; PCOS, polycystic ovary syndrome; SD, standard deviation; SNP, single nucleotide polymorphism.







Sensitivity analyses




Assessment of the IV assumptions

Genetic instruments for fetal genome determined birth weight, including 22 SNPs, ranged from 30.1 to 170.0 with an average F statistic of 58.2, indicating the absence of weak instruments (Table 1). No evidence for heterogeneity between SNP specific causal effect estimates was found for the primary IVs set (P for Cochran Q heterogeneity test = 0.10, replication: P = 0.21) and the secondary IVs set (P = 0.26, replication: P = 0.15), respectively. The proximity of the intercept to the origin in the scatter plot (Supplemental Figure 2) and no significant difference of the intercept from zero in MR-Egger regression suggested little evidence for directional pleiotropy (primary IVs set: P = 0.85, replication: P = 0.08; secondary IVs set: P = 0.70, replication: P = 0.07) (Supplemental Table 4). Meanwhile, the LOO analysis did not detect influential genetic instruments for birth weight in the MR analysis (Supplemental Figure 3). The MR-PRESSO global test did not detect any outliers (primary IVs set: P = 0.13, replication: P = 0.23; secondary IVs set: P = 0.30, replication: P = 0.15) (Supplemental Table 5). For sensitivity analyses by using IVs after excluding potential confounder-related SNPs, we found little evidence for heterogeneity between the causal effect estimates for each SNP, directional pleiotropy, and any outliers.






Results from robust MR methods

The results from robust MR methods are presented in Figures 2 and 3 which were broadly consistent with the IVW analysis results. For the primary IVs set consisting of 22 SNPs, non-significant causal effects of fetal genome determined birth weight on PCOS risk were observed by using MR-PRESSO, weighted median, weighted mode, and MR-Egger methods, respectively (Figure 2). Consistent causal effect estimates derived from robust MR analysis were revealed for the secondary IVs set consisting of 20 SNPs (Figure 3). The results of sensitivity analysis after excluding potential risk factor related SNPs were consistent with the results of the primary and secondary analyses (Figures 2, 3).





LDSR analyses

There was a marginally significant genetic correlation (rg = -0.14, se = 0.07, P = 0.05) between birth weight and PCOS on a genome-wide scale. Although the result of replication LDSR analysis showed a non-significant genetic correlation between birth weight and PCOS (rg = -0.16, se = 0.12, P = 0.18), the effect directions and magnitudes were consistent with one another.






Discussion

In this study, we used MR to test the potential causal relationship between fetal genome predicted birth weight and PCOS risk. From a genomic perspective, it is important to discriminate between the maternally transmitted alleles or intrauterine environment effects and the fetal own genetic effects on birth weight. To confirm our results, we further tested whether there was a causal effect of the fetal genome predicted birth weight on offspring PCOS risk, after excluding maternal transmitted and non-transmitted (i.e., maternal intrauterine environment effects) alleles. Our findings provided little evidence for a causal effect of the fetal genome-determined birth weight on offspring developing PCOS in later life. These findings were consistent with previous observational studies that there was no difference in birth weight between women with PCOS and controls (18–20, 23, 48).

Notably, controversial findings were observed in other studies (12, 49), and the LDSR analysis results of the present study suggested a marginally significant genetic correlation between the two traits. Meanwhile, the potential pleiotropic effects underpinning the link between birth weight and PCOS were reported. A recent study found that two genetic variants (i.e., rs2910164 C > G and rs182052 G > A) in genes MIR146A and ADIPOQ, both of which were related to PCOS, were associated with birth weight (50). Although a causal effect of birth weight on PCOS risk was not observed in the present MR analysis, genetically pleiotropic effects of variants that contribute to the associations between birth weight and PCOS cannot be ruled out. Our study suggested that the association between birth weight and PCOS is likely to be driven by genetic pleiotropy of variants on the fetal genome.

It is noteworthy that observational studies and animal experiments demonstrated that prenatal exposure to androgens possibly in combination with a genetic predisposition may affect birth weight and subsequent PCOS (51–55). In the present study, the potential confounding of maternal genetic effects was minimized by using fetal genetic variants associated with birth weight as IVs and further excluding maternal transmitted or non-transmitted genetic variants.




Strengths and limitations

There are several strengths in our study. We benefited from large sample sizes and study design yielding more reliable results. First, to our best knowledge, we used the summary statistics from the largest published birth weight GWAS with adjusting for maternal genetic effects (n = 406,063 European ancestral individuals) to select genetic variants as IVs, and the outcome data were also extracted from the latest or largest GWAS meta-analyses on PCOS (4, 29). Second, as mentioned above, Warrington et al. separated maternal and fetal genetic effects on birth weight by using SEM. We used the fetal genetic effects on their own birth weight as the IV-exposure associations, after adjusting for maternal genetic effects, which could provide insights into the underlying biological or pathogenic mechanisms between fetal growth and PCOS development in later life. Third, we also constructed IVs for birth weight by filtering out maternal transmitted and non-transmitted variants using summary statistics from a study in which the study design is different from the study conducted by Warrington et al. to minimize the confounding bias due to maternal genetic effects. Fourth, we performed a series of sensitivity analyses with multiple sets of IVs and robust MR methods to strengthen the robustness of causal inference. The sensitivity analysis results were consistent with the results of the main analysis.

Several limitations deserve discussion. First, similar to Chen et al. in their description of the methodology, the allele-specific effects on offspring birth weight/fetal growth by maternally non-transmitted, paternally transmitted, and maternally transmitted alleles were used to represent maternal genetic effect, fetal genetic effect, and combination of both, respectively (37). As suggested in the study conducted by Chen et al. (37), we filtered out maternal non-transmitted and transmitted alleles that indicated maternal genetic effects. However, the allele-specific effects on offspring birth weight/fetal growth by maternally transmitted alleles were composed of maternal and fetal effects. In the original study, genetic dissection of maternal and fetal genetic effects was not performed by modeling maternal and fetal effects using linear combinations of these three haplotype effects, that is maternal genetic effect, fetal genetic effect, and a combination of both. Therefore, more large-scale studies are needed to dissect maternal and fetal genetic effects on birth weight using linear combinations of these three haplotype effects in the future. Second, in our study, there exited moderate sample overlap between data on birth weight (in GWAS by EGG Consortium (29)) and PCOS (in GWAS conducted by Day et al. (4)) Up to 2,867 women in the 1958 British Birth Cohort (56) and the Rotterdam Study (57) in the Netherlands National Trial Register (www.trialregister.nl) were included in both GWASs (4, 29). Sample overlap in two-sample MR analysis would bias causal effects estimation (i.e., inflate the false positive rate) (58), whereas in our study null causal effects of birth weight on PCOS risk were revealed in both primary and replication analyses, thus the potential bias due to sample overlap would not alter the conclusion of our findings. Third, PCOS, as a common and complex genetic disease with multiple etiologies, is caused by genes and environmental factors. In the current study, we focus on explaining the genetic correlation between birth weight and PCOS risk. Postnatal environmental effects need to be further tested for with genotypes of father-offspring pairs in the future since paternal genotypes might be associated with offspring PCOS risk after adjusting for offspring genotypes in the presence of postnatal environmental effects. Fourth, previous studies suggested that low birth weight was associated with PCOS development (12), however, other findings supported that women born with extra high birth weight increased the risk of PCOS (15). These inconsistent findings might suggest a non-linear causal effect of birth weight on PCOS risk. The present study was limited by its two-sample MR design and GWAS summary statistics used to assess the potential non-linear effect. It is warranted to be investigated through one-sample MR analysis when individual-level data are available. In addition, for the replication analysis of LDSR, a genetic correlation between birth weight with PCOS did not reach statistical significance. Considering that populations, in which the original GWAS meta-analysis for the replication analysis was conducted, were mainly from the FinnGen and Estonian Biobank (33) that were not fully consistent with populations where the birth weight GWAS was conducted, population stratification might arise. Finally, LD scores estimated from European samples of 1000 Genomes reference data may not represent LD scores well for heterogeneous meta-analyses of GWAS, these may lead to the reduced accuracy of results from LDSR analysis (59). However, both results of genetic correlation based on two different data sets showed an inverse genetic correlation. Therefore, we believe that an inverse genetic correlation between birth weight and PCOS is plausible. To avoid a chance finding, genomic restricted maximum likelihood analysis with individual-level genotype data is needed to further validate our results in the future.






Conclusions

In conclusion, our findings provided little evidence for a causal effect of fetal genome predicted birth weight on developing PCOS in later life. However, we found evidence for genetic pleiotropy between birth weight and the future PCOS risk, which has the potential to explain the relationship observed in previous observational studies. In this study, although birth weight within the normal range (i.e., 2,500 to 4,000 grams) may not be causally associated with the risk of PCOS in later life, the potential non-linear causal associations between low/high birth weight and PCOS development need to be further investigated. Further, strong evidence for the genetic pleiotropy between fetal-genome predicted birthweight and later life PCOS risk not only suggests a shared genetic basis but provides novel insight into the common intervention and treatment targets for these two phenotypes.
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Background

HNF1A is an essential component of the transcription factor network that controls pancreatic β-cell differentiation, maintenance, and glucose stimulated insulin secretion (GSIS). A continuum of protein malfunction is caused by variations in the HNF1A gene, from severe loss-of-function (LOF) variants that cause the highly penetrant Maturity Onset Diabetes of the Young (MODY) to milder LOF variants that are far less penetrant but impart a population-wide risk of type 2 diabetes that is up to five times higher. Before classifying and reporting the discovered variations as relevant in clinical diagnosis, a critical review is required. Functional investigations offer substantial support for classifying a variant as pathogenic, or otherwise as advised by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) ACMG/AMP criteria for variant interpretation.





Objective

To determine the molecular basis for the variations in the HNF1A gene found in patients with monogenic diabetes in India.





Methods

We performed functional protein analyses such as transactivation, protein expression, DNA binding, nuclear localization, and glucose stimulated insulin secretion (GSIS) assay, along with structural prediction analysis for 14 HNF1A variants found in 20 patients with monogenic diabetes.





Results

Of the 14 variants, 4 (28.6%) were interpreted as pathogenic, 6 (42.8%) as likely pathogenic, 3 (21.4%) as variants of uncertain significance, and 1 (7.14%) as benign. Patients harboring the pathogenic/likely pathogenic variants were able to successfully switch from insulin to sulfonylureas (SU) making these variants clinically actionable.





Conclusion

Our findings are the first to show the need of using additive scores during molecular characterization for accurate pathogenicity evaluations of HNF1A variants in precision medicine.





Keywords: Maturity Onset Diabetes of Young (MODY) subtype-3, acmg-amp guidelines, re-interpretation, pathogenic variants, functional characterization, structural analysis, ACMG-AMP guidelines




1 Introduction

The hepatocyte nuclear factor 1A (HNF1A)gene (MIM # 142410) encodes a crucial member of an auto-regulatory transcription circuit in mature and developing pancreas. Heterozygous mutations in HNF1A result in the most common form of MODY namely subtype HNF1A-MODY. Autosomal dominant inheritance, early onset, and progressive β-cell deterioration resulting in severe hyperglycemia define this type of monogenic diabetes (1–3). This kind of MODY has the highest prevalence and is more common than other subtypes, and it is more common in Europe, North America, and Asia (4–7).

Individuals with HNF1A MODY are likely to develop extra pancreatic symptoms such as glycosuria which will appear even before the onset of diabetes due to a low renal glucose threshold (8). This is mainly because HNF1A is expressed in tissues such as the kidney, liver, and small intestine, in addition to β-cells. The risk of micro- and macro-vascular problems in HNF1A-MODY is comparable to that of T1D and T2DM (9) and hence strict glucose management is required for these individuals. Patients harboring pathogenic variants in HNF1A gene are sensitive to low doses of sulfonylureas (10).

The HNF1A protein consists of three functional domains namely a dimerization domain (1 – 33 aa), a bipartite DNA-binding domain (homeo domain 100 –184 aa; POU domain 198 –281 aa), and a transactivation domain (282 –631 aa) (11, 12). It binds to DNA as a homodimer or with the structurally related transcription factor HNF1B as heterodimers (13, 14). To date, about 564 MODY-causing variants have been identified in the HNF1A gene (15, 16). These variations include missense, nonsense, frameshift, in-frame deletions/insertions/duplications, splice site, promoter region, and whole/partial gene deletions. Analyses of these variants have demonstrated that some of them render the protein unstable and poorly expressed (17, 18). Some of the variants affect either the DNA binding or transactivation ability of HNF1A. However, patients with the latter type of variants do not exhibit more severe phenotypes (19–21). Finally, a subgroup of variants exert a dominant-negative effect over the normal protein.

It is important that these candidate variants are subjected to rigorous evaluation of pathogenicity to avoid false annotation of causality, which would be an impediment to the translation of genomic research findings to clinical practice and precision medicine. False assignment of pathogenicity can also have severe consequences for patients, resulting in incorrect prognostic and therapeutic advice. Therefore, a comprehensive map is needed, linking mutation status, effect on protein function, and clinical effect that is genotype-function-phenotype. The recent American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) (ACMG-AMP) guidelines classification is based on five tier score system namely pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), likely benign (LB) and benign (B) (22). Our previous studies have shown that HNF1A -MODY is the most prevalent subtype in India (3) and we identified several variants which were of uncertain significance, Assessing the pathogenicity of these rare protein-coding genetic variants in HNF1A is very important in our patient cohort before assigning causality to these variants, as this may lead to change of treatment.

Functional investigation constitutes one of the strongest pieces of evidence for classifying a variant as pathogenic or benign (23). Each variant needs to be assessed by genomic, bioinformatic, structural, and functional lines of evidence for classifying them as pathogenic or benign. Hence, we hypothesized that functional evaluation would enhance the interpretation of the pathogenicity of HNF1A variants identified in individuals from families of Indian MODY subjects.




2 Materials and methods



2.1 Subjects

We investigated 14 HNF1A variants found in 20 unrelated individuals (11 females and 9 males) from 20 non-consanguineous Indian families. Patients were selected for MODY genetic screening based on the following criteria: a family history of diabetes in multiple generations; an early age at onset of diabetes (< 35 years); lack of obesity, ketosis, and beta cell autoimmunity with detectable endogenous insulin reserve as measured by C peptide which is one of the best biomarkers; and diabetes controllable without insulin for at least 2 years. The study was carried out in compliance with the Helsinki Declaration (2000); all study participants (or their guardians) provided written, informed consent, and the study was approved by the Madras Diabetes Research Foundation’s local institutional ethics committee.




2.2 Genomic analyses

Genomic DNA was isolated from whole blood using the standard protocol. Direct sequencing was carried out on an ABI 3500 Genetic Analyzer (Applied Biosystems, Foster City, CA) using the Big Dye terminator V3.1 chemistry, and the sequences were compared with the public databases. Published primer sequences were used to amplify the DNA for HNF1A gene. In addition to the sequencing of patients, we also sequenced 100 normal glucose-tolerant subjects (fasting value <100 mg/dL and 2 hours value <140 mg/dL) to check for the presence or absence of variants in them.




2.3 ACMG classification

All HNF1A variations were assessed using the ACMG guidelines, which classify variants as pathogenic (class 5), likely pathogenic (class 4), uncertain significance (class 3), likely benign (class 2), or benign (class 1). Criteria used for the classification of variants are listed in Supplementary Table 1. Public databases such as PubMed, the Human Gene Mutation Database, ClinVar, and LOVD were used and the genome aggregation database (GnomAD) was referred to for population frequency. Bioinformatic prediction tools such as SIFT, PolyPhen2, Mutation Taster, PROVEAN, CADD Score, i mutant 2.0, and Grantham scores were used to assess the pathogenicity (Supplementary Table 2).




2.4 Functional analysis

Human HNF1A cDNA (NCBI Entrez Gene BC104910.1) (NM_000545.5) in pcDNA 3.1 His/C vector (Invitrogen Inc, Carlsbad, CA, USA), was used as a template for constructing individual HNF1A variants using the QuikChange Lightning Site-directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA), and all constructs were verified by Sanger sequencing. Transiently transfected HeLa and INS1 cells with WT, empty vector (pcDNA3.1), or variant HNF1A cDNA were used in functional studies, investigating HNF1A (i) transcriptional activity using a rat albumin (in HeLa cells) and HNF4A P2 (in INS1 cells) promoter-linked luciferase reporter assay system; (ii) DNA binding ability was analyzed using Episeeker DNA-protein binding assay kit (Abcam, ab117139) and a biotinylated oligonucleotide (Sigma Aldrich, St. Luis, MO, US) containing the HNF1A binding site in the rat albumin promoter; (iii) protein expression in whole cell lysates by immunoblotting;(iv) nuclear localization by indirect immunocytochemistry; and (v) the glucose-stimulated insulin secretion (GSIS) capacity of the variant HNF1A in INS1 β-cells were measured using insulin ELISA kit (Mercodia, Sweden). A detailed methodology is described in the Supplementary Material.




2.5 Structural analysis

The human HNF1A protein sequence (P20823) was downloaded from the UniProt database. The Consurf server was used to obtain amino acid conservation scores within the orthologous protein family by comparing 150 homologous sequences. For the structure-based stability prediction, the available crystal structure of HNF1A in complex with DNA, PDB ID-1IC8 was remodeled with missing residues and was refined using Modeller10v. The refined Wild type (WT) HNF1A was considered for stability analysis of HNF1A and also the impact of mutants in the HNF1A-DNA complex. The structure of mutants was modeled with a WT-HNF1A template using Modeller10v, and the refined WT and MT HNF1A were subjected to molecular dynamics simulation studies using Gromacs2020 (10.1080/07391102.2021.1965030). Subsequently, PCA and FEL analyses were carried out to determine the near-native conformation, wherein the HNF1A-DNA interactions were analyzed using DNAproDB. A detailed methodology is given in the Supplementary Material.




2.6 Statistical analysis

The results of functional analyses of individual variants are presented as mean (in %) ± standard deviation (SD) and normalized to WT HNF1A activity (set as 100%), unless otherwise specified. Experiments were carried out on at least 3 independent occasions unless otherwise specified in the figure legends. Statistical differences between individual variants and WT function were analyzed using GraphPad Prism software (version 8.1.1, GraphPad Software, Inc. San Diego, CA, USA) and raw data (i.e., firefly/renilla ratios) and an unpaired 2-tailed t-test based on n=3. A p-value < 0.05 was considered statistically significant.





3 Results



3.1 Clinical and biochemical characteristics of the subjects with HNF1A variants

A total of 14 missense HNF1A variants identified in 20 clinical MODY patients were included in this study. All the patients were heterozygous for the variants. In three families, we were able to observe the segregation of variants in affected family members, but for other patients, family samples were not available. Pedigrees of the available families are shown in Supplementary Figure 1. All were negative for β-cell autoantibodies such as GAD and ZnT8 antibodies. The mean ± SD of biochemical parameters were as follows: age at onset of diabetes, 21 ± 6.5 years; Body Mass Index (BMI) - 23 ± 4 kg/m2; duration of diabetes, 9.9 ± 6.7 years; Fasting plasma glucose - 181 ± 64 mg/dL; post prandial plasma glucose - 277 ± 97 mg/dL; glycated hemoglobin (HbA1C)- 9.2 ± 2.4%; fasting C-peptide was 0.9 ± 0.4 pmol/L; stimulated C- peptide was 1.5 ± 0.6 pmol/L; total cholesterol - 169 ± 41 mg/dL; triglycerides - 137 ± 82 mg/dL; High Density Lipoprotein (HDL)- cholesterol - 39 ± 8.5 mg/dL and Low Density Lipoprotein (LDL)- cholesterol - 94 ± 36 mg/dL. Prior to functional genetic investigations, 11 patients were on insulin treatment; one patient was on insulin + metformin; four patients were on insulin + SU; one patient was on metformin alone and three patients were on SU treatment alone before the genetic investigation. Clinical and biochemical parameters are summarized in Table 1.


Table 1 | Clinical and biochemical workup of subjects with HNF1A gene variants.



Among the 14 variants, four variants (p.Lys120Asn,p.Gln125His,p.Ala367Val,p.Asp602Asn) were novel and not reported in the literature, three variants were previously reported by us (3, 24), and the remaining seven variants were reported in other studies (20, 25–29). Of the 14 variants included in this study, six variants reside in DNA binding domain (91-281 a.a), specifically four variants were mapped to POUS domain (91-181 a.a), one variant was mapped to POUH domain (203-279 a.a) and one variant reside in the interface between the POUs and POUH domains of HNF1A protein. The other, eight variants were mapped to the transactivation domain (282- 631 a.a) of HNF1A protein (Supplementary Figure 2).




3.2 Functional evaluation



3.2.1 Altered transcriptional activity of HNF1A variants

In HeLa cells compared to the WT HNF1A activity (set as 100%), the measured levels of transcriptional activity (TA) for five (p.Asn127*,p.Val134Ile,p.Arg200Trp and p.Gly292Fs*25)of the 14 variants were significantly lower (<40%) (Figure 1A, Table 2). Three variants (p.Lys120Asn,p.Pro379Ser, and p.Leu611Pro) had TA activity <50%, while two variants (p.Gln125His and p.Thr354Met) had TA activity of 53 and 62% respectively and reduction observed in all these variants were significant. Two variants p.Ala367Val (61%) and p.Asp602Asn (51%) showed a mildly reduced TA. Two other variants (p.Ala301Thr and p.Glu619Lys) demonstrated TA levels comparable to WT HNF1A levels (Figure 1A, Table 2). TA was consistently higher for all these variants when using HNF4A-P2 promoter in INS-1 cells (activity range 32%–137%) (Figure 1B, Table 2) versus rat albumin promoter in HeLa cells. This is most likely due to interference of endogenous HNF1A in INS-1 cells (2- to 4-fold higher basal promoter activity).




Figure 1 | Summary of the data obtained from functional studies. (A) Transcriptional activity of the HNF1A protein variants in HeLa cells; (B) Transcriptional activity of the HNF1A protein variants in Ins1 cells using HNF4A P2 promoter; (C) Assessment of the DNA binding ability of the HNF1A protein variants; (D) Protein expression levels of the HNF1A protein variants in HeLa cells; (E) Nuclear localization of the HNF1A protein variants in HeLa cells; (F) Variant effect on Glucose Stimulated Insulin Secretion. Red bar indicates MODY 3 control variant; Grey bar indicates type 2 diabetes risk variant; Yellow bar indicates variant with poor nuclear translocation effect in HNF1A gene. Each bar represents the mean of three independent experiments (n=3) ± SD. P-values were obtained by un-paired student t-test. *** indicates p value <0.001; ** indicates p value <0.01; * indicates p value <0.05.




Table 2 | Summary of the functional studies of the HNF1A variants identified in Indian MODY subjects.






3.2.2 Effect of variants on DNA- binding activity of HNF1A to target DNA sequence

Three variants (p.Asn127*, p.Arg200Trp and p.Arg272His) localized in the DBD and one variant (p.Gly292Fs*25) in TAD demonstrated severely reduced (<40%) activity. All other variants showed normal binding activity comparable to WT (Figure 1C, Table 2).




3.2.3 Effect of variants on HNF1A protein expression

Two variants (p.Gly292Fs*25 and p.Ala301Thr) showed significantly reduced protein expression level (<60%); while four variants (p.Gln125His,p.Asn127*,p.Arg200Trp and p.Asp602Asn), demonstrated reduced expression level (61-75%) and were also significant (Figure 1D, Table 2).




3.2.3 Effect of variants on nuclear localization of HNF1A protein

All the 14 HNF1A variants were assessed for their ability to translocate to the nucleus of the cell in order to regulate their target gene expression. Only four variants showed reduced (~57-67%) nuclear translocation as assessed by indirect immunocytochemistry (Figure 1E, Table 2). Other variants showed normal nuclear translocation.




3.2.4 Effect of variants on insulin secretion

All 14 variants were also assessed for insulin secretion using GSIS. Under basal conditions (2.8mM glucose), these variants produced insulin in the range of 3-15µg/L of insulin and under stimulated conditions using 16.7mM glucose they produced 1-45µg/L of insulin. When they were treated with 100µM glibenclamide (GBC), the stimulated insulin secretion was enhanced ranging from 8-48µg/L in all the 14 variants tested (Figure 1F, Table 2).





3.3 Structural evaluation

Structural analysis was performed for variants found in DNA binding domain. These variants were mapped onto the crystal structure of HNF1A protein (PDB ID: 1IC8). Thereby, all the missense variants, namely p.Lys120Asn, p.Gln125His, p.Val134Ile, p.Arg200Trp, and p.Arg272His, were subjected to the following predictions such as sequence and structural-based stability prediction followed by molecular dynamics (MD).

Sequence-based stability study revealed that the HNF1A structure is destabilized by the variants p.Lys120Asn, p.Gln125His, p.Arg200Trp, and p.Arg272His, but not by the variant p.Val134Ile. The crystal structure of HNF1A in association with DNA (PDB ID-1IC8), was further modified with missing residues and refined using Modeller10v for the structure-based stability prediction (Figure 2A). According to structure-based prediction, the HNF1A variants p.Lys120Asn, p.Arg200Trp, and p.Arg272His were shown to have a larger destabilizing impact and more molecular flexibility than the other variants. Among these variants, the p.Arg200Trp variant has a higher destabilizing impact. Variants p.Gln125His and p.Val134Ile had the least destabilizing impact (Figures 2B–K). Since the three variants p.Lys120Asn, p.Arg200Trp and p.Arg272His, showed higher destabilizing effects they were chosen for the MD study.




Figure 2 | In Sillico structural prediction of wild type and variant HNF1A protein. (A) Remodelled and Refined Wild-type (WT) HNF1A-DNA complex; B-K)Prediction of Interatomic Interactions of the Wild and mutant forms of HNF1A variants, where the Wild-type and mutant residues are coloured in light-green and are also represented as sticks alongside the surrounding residues which are involved in any type of interactions; (L-O) Molecular dynamics simulation analysis of the wild and MT forms of HNF1A complexes (L) RMSD plot (M) RMSF plot (N) Solvent accessible surface area plot; (O) Number of inter hydrogen bonds maintained throughout the MD production run within HNF1A and DNA.





3.3.1 Molecular dynamics stability analysis of the wild and mutant complexes

The WT-HNF1A template was used to simulate the structures of the mutants p.Lys120Asn, p.Arg200Trp, and p.Arg272His. The revised WT and MT HNF1A were then submitted to MD simulation investigations using Gromacs2020. When the complexes’ MD trajectories were compared to the WT, the variant p.Arg272His showed higher divergence than the variants p.Lys120Asn and p.Arg200Trp in the initial period of simulation. However, variant p.Lys120Asn showed more deviations than p.Arg272His during the last 20 ns of the root mean square deviation (RMSD) plot, a numerical measurement representing the difference between WT and variant protein structures (Figure 2L). The root mean square fluctuation (RMSF) plot, is a calculation of individual residue flexibility, or how much a particular residue moves (fluctuates) during a simulation (Figure 2M), and this showed that residues that interact with DNA were found to have larger deviations in all of the complexes; in particular, residues 179 and 180 of the p.Arg272His variant showed higher deviations of 0.9 nm and 192-193 of the p.Arg272His variant showed higher fluctuations of about 1 nm among the complexes. When compared to WT, the variants p.Lys120Asn and p.Arg272His lost their contact with DNA at the residue level, and their total interactions with DNA also decreased (Figures 2N, O). However, the variant p.Arg200Trp had an increased frequency of interactions with DNA and a greater accessible surface area of all buried solvents (Figures 2N, O). Particularly, the variant residue Trp200 interacts with the minor groove of DNA. From these results, it was revealed that variants p.Lys120Asn and p.Arg272His had lost their interaction with DNA resulting in structural defects.





3.4 Reinterpretation of HNF1A variants based on molecular characterization

Pathogenic HNF1A variants causing HNF1A-MODY are often characterized by significantly decreased TA, poor DNA binding, impaired nuclear targeting, and/or lower protein expression levels in the range of ~20-35% when compared to WT (100%) (19, 21, 30–33). In this study, the cut-off considerations were set at a slightly different level compared to the previous study by Althari et al. (31). Being a more distilled cohort of clinically proven MODY patients, the cut-off of TA<40% was used for pathogenic variants, and TA activity between 40-60% was used for likely pathogenic variants. In addition to this, DNA binding activity, GSIS, and clinical course were considered for ascribing pathogenic and likely pathogenic variants. Therefore, over and above the ACMG/AMP guidelines, the functional and clinical work such as the response to SU have been considered together to re-interpret the variants.

Variants p.Gly292Fs*25 and p.Asn127* were interpreted as pathogenic variants since they have low TA activity along with the reduced DNA binding activity and defect in insulin secretion.p.Arg272His was reinterpreted as a pathogenic variant from their initial interpretation. Seven variants (p.Lys120Asn, p.Gln125His, p.Val134Ile, p.Arg200Trp, p.Thr354Met, p.Pro379Ser, and p.Leu611Pro) were reclassified as likely pathogenic variants from VUS. Three variants (p.Ala367Val, p.Asp602Asn, and p.Glu619Lys) remained VUS after reinterpretation whereas variant p.Ala301Thr was reinterpreted as benign from VUS (Figure 3, Table 3).




Figure 3 | Reinterpretation of HNF1A variants using molecular characterization.




Table 3 | Summary of re-interpretation of HNF1A gene variants and their clinical actionability, identified in Indian MODY patients based on molecular characterization.






3.5 Clinical follow-up of the patients with HNF1A variants

Variants designated as pathogenic/likely pathogenic based on functional assessment were investigated for clinical actionability by collecting the follow-up details of the patients over a period of time. The patient (M-026) with variant p.Lys120Asn has been switched from insulin to two doses of SU (glimepiride) along with metformin per day. The patient M-027 with the mutation p.Gln125His (likely pathogenic variant) developed diabetes at the age of 25.7 years and had diabetes for 7 years. Before genetic testing, the patient was treated with insulin and oral hypoglycemic agents (OHA). As a result of genetic studies, the patient was transferred from insulin to two doses of gliclazide per day. His HbA1C levels dropped from 9.6% to 6.4% after his therapy was changed.

Patient M-028, who carries the pathogenic variant p.Asn127*, is diagnosed with diabetes at the age of 14.9 years, with a duration of 15.6 years (Figure 4). The patient was on OHA for around two years before being started on insulin. She is currently on insulin and SU therapy since her β cell reserve was low (CPF-0.6 and CPS-0.9) and she started to develop microvascular and macrovascular complications. Patient M-124 harboring the variant p.Val134Ile (Likely pathogenic variant) was diagnosed with diabetes at the age of 26.7 years with diabetes duration of 4 years. Based on functional evidence, patient M-124 with variant p.Val134Ile was transitioned from insulin to a single dose of glipizide per day.




Figure 4 | HbA1C Trajectories of few HNF1A MODY patients after change in treatment based on re-interpretation of the variants. Dotted lines indicate change of treatment.



Patient M-126 with the pathogenic variant p.Arg200Trp was switched from insulin to SU. It was advised to continue with SU for patient M-125 who had the same variant. Statins were given for patient M-125 in order to maintain a normal lipid profile. Previous studies have shown two other amino acid changes at the same codon such as p.Arg200Gly and p.Arg200Gln in multiple SU-sensitive HNF1A-MODY families (34, 35). The functional effects of these two variants, p.Arg200Gly and p.Arg200Gln, were however not mentioned. All of the patients, including the one from this study, who have the variation in this codon respond to SU. This suggests that the variation is pathogenic and clinically actionable. Patients with pathogenic variant (p.Arg200Trp, p.Arg272His and p.Gly292Fs*25) and likely pathogenic variant (p.Thr354Met and p.Leu611Pro) were also shifted from insulin to SU therapy.





4 Discussion

The comprehension of disease mechanisms is improved by well-established functional investigations on variants, which also offer proof for the pathogenicity of the variants. Studies have demonstrated that functional studies help to clarify the interpretation of HNF1A-MODY variants, particularly in the absence of familial segregation or phenotypic data (32).

In this study, we have performed molecular characterization of 14 HNF1A variants identified in 20 unrelated individuals from 20 non-consanguineous families among Indian MODY subjects, where the majority of variants have not been reported. Normal transactivation activity of HNF1A protein, which depends on the capacity to bind target promoters (DNA) and on an adequate quantity of cellular (nuclear) protein, is necessary for normal HNF1A transcription factor function.

Because not all functional tests represent the underlying process and not all variants have the same effects on function (36), we aimed at improving the understanding and interpretation of these findings. Therefore, multiple assays were employed to fully examine the effects of a variant in order to come to a conclusion. These variants were examined utilizing in vitro functional pipelines, such as luciferase assays for transactivation, which measure the transcriptional activity of HNF1A variants, as well as assays of DNA binding activity, protein expression, and subcellular localization to determine the impact of the variants on the protein function. Additionally, a GSIS assay to examine the impact of these variants on insulin secretion was performed. A distinctive feature of this work is the in silico structural analyses to determine if it might identify the variants with functional defects. Since the crystal structure of HNF1A is available only for the DNA binding domain, structural investigations were carried out for the missense variants identified only in that region.

A multi-pronged approach using the ACMG guidelines, the functional and structural analyses have been considered together to re-classify these variants. In this work, we focused on the scoring systems and the criteria for re-interpreting the variants. PS3 was assigned when data from well-established in vitro functional studies supported a detrimental effect on the gene or gene product; PP3 was assigned when multiple lines of computational evidence and structural prediction supported a detrimental effect on the gene or gene product (conservation, evolutionary, etc.); and BS3 was assigned when well-established in vitro functional studies showed no detrimental effect on protein function. In addition, multiple levels of strength, such as strong, moderate, and supporting levels based on functional and structural data were applied to the scoring approaches employed in this study. Of the 14 variants considered in this study, 1 variant p.Arg272His was interpreted as likely pathogenic, and 11 variants were interpreted as VUS initially based on the ACMG/AMP guidelines. (Figure 3, Table 3).

According to previous studies on the effects of pathogenic HNF1A-MODY variants, pathogenic and MODY causal variants impair HNF1A activity, DNA binding, and localization (40% compared to WT HNF1A) (21, 32), whereas type 2 diabetes risk variants have an impact on HNF1A function ranging from 40% -60% compared to WT (30, 31, 33).

Based on the aforementioned cut-offs, many degrees of strength were assigned to each scoring criterion. PS3_Strong scoring criteria were assigned to variants that showed <40% activity than WT activity in at least two functional assays; PS3_Moderate was assigned to variants that showed activity between 40 and 60%; and PS3_Supporting was assigned to variants that showed activity less than 65%. PP3_Strong criterion was assigned when the variant showed defects in all the in silico structural prediction analysis. The variant meeting the BS3_Strong criterion had no negative effect on protein function in any of the functional experiments.

The p.Arg272His previously interpreted as likely pathogenic was re-interpreted as pathogenic based on the evidence PS3_Strong, PM1, PM2, PP5, and PP3_Strong. One variant p.Arg200Trp interpreted as VUS was re-interpreted as pathogenic based on the evidence PS3_Strong, PM1, PM2, PP3_Supporting, and PP5. Variant p.Gly292Fs*25 was interpreted as pathogenic based on the evidence PVS1 and PS3_Strong and variant p.Asn127* was interpreted as likely pathogenic based on the evidence PS3_Strong, PM1. Variants p.Lys120Asn and p.Gln125His interpreted as VUS was re-interpreted into likely pathogenic based on the evidence PS3_Moderate, PM2, PP3_Strong, and PS3_Moderate, PM2, PP3_Supporting, PP6 respectively. Variant p.Val134Ile was re-interpreted into likely pathogenic based on evidence PS3_Strong and PM2. Variant p.Thr354Met was re-interpreted as likely pathogenic based on PS3_Supporting, PM1, PM2, and PP3. Variant p.Pro379Ser was re-interpreted as likely pathogenic based on the evidence PS3_Moderate, PM1, PM2, and PP3. Variant p.Leu611Pro was re-interpreted as likely pathogenic based on the evidence PS3_Moderate, PM2, PP3, and PP6_Supporting. Variant p.Ala367Val remains VUS based on the evidence PM1, PM2, PP3, and BS3_Strong. Variants p.Asp602Asn and p.Glu619Lys remain VUS based on the evidence PM2, BS3_Strong and PM2, PP3, and BS3_Strong respectively. Variant p.Ala301Thr was re-interpreted as benign based on the evidence PM1, PM2, BS3_Strong, and BP4_Strong (Table 3). It is crucial to remember that functional evidence does not always associate a variant to disease outcome; in order to determine clinical actionability, the functional data must be assessed in combination with clinical data (30). It is important to be aware of the fact that both functional and longitudinal clinical follow up are important to establish the clinical actionability of the variants.

Clinical actionability is generally defined as clinically prescribed interventions that are effective for preventing or delaying clinical disease, lowering clinical burden, or improving clinical outcomes in an adult who has not previously received a diagnosis and are specific to the genetic disorder under consideration (37). Based on our results, 4 out of 14 (28.6%) variants were interpreted as pathogenic, 6 variants (42.8%) as likely pathogenic, 3 variants (21.4%) as variants of uncertain significance, and 1 variant (7.14%) as a benign variant. Patients with the ten P/LP variants were able to successfully switch from insulin to SU and sustain good glycemic control, thus making these variants clinically actionable (Table 3).

We performed 3D structural analysis to check whether in-silico analysis corroborated with functional investigations in identifying the pathogenic variants and also to have a structural understanding of the variant HNF1A proteins. Our in-silico analysis showed that variants p.Gln125His, p.Val134Ile have lesser structural defects while variants p.Lys120Asn and p.Arg272His have severe structural defects, and the variant p.Arg200Trp has moderate structural defects. In the case of the p.Val134Ile variant, we found differences between the functional and structural data. Although in-silico structural analysis showed that it has a lesser destabilizing effect despite being predicted to be a highly conserved structural residue, our functional data showed that variant p.Val134Ile has a defect in DNA binding thus down-regulating the target genes resulting in reduced insulin secretion (Table 2). Moreover, the patient follow-up also showed that the patient (M-124) responded well to treatment change to SU, making this variant a clinically actionable one (Figure 4).

Our study has a few limitations. Since we could not obtain family samples for many patients, we were unable to conduct family co-segregation studies. In some patients, we did not have adequate clinical data.

In summary, this paper exemplifies the importance of performing molecular characterization after genetic testing, since the understanding of the functional basis of genotypes helps in understanding the phenotype which could lead to changes in clinical treatment for monogenic disorders like MODY. Our findings are the first to show the need of using additive scores during molecular characterization for accurate pathogenicity evaluations of HNF1A variants in precision medicine. Furthermore, it is also one of the first to introduce structural understanding to functional implications. The study has led to the delineation of the VUS into pathogenic and disease-causing MODY variants, from non-pathogenic variants. Patients with most pathogenic HNF1A variants benefit from OHA treatment; hence, this would assist clinicians in determining the best course of action for patients. While the combination of functional and structural-based approaches may lead to increased certainty in variant–phenotype correlation in a research setting, a functional understanding of the variants helps in precision diagnosis and treatment in a monogenic disorder such as MODY.
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Background and objective

Uterine leiomyoma is the most common benign tumor in females of reproductive age. However, its causes have never been fully understood. The objective of our study was to analyze the causal association between various factors and uterine leiomyoma using Mendelian randomization (MR).





Methods

Genetic variables associated with risk factors were obtained from genome-wide association studies. Summary-level statistical data for uterine leiomyoma were obtained from FinnGen and the UK Biobank (UKB) consortium. We used inverse variance weighted, MR-Egger, and weighted median methods in univariate analysis. Multivariable MR analysis was used to identify independent risk factors. A fixed-effect model meta-analysis was used to combine the results of the FinnGen and UKB data.





Results

In the FinnGen data, higher genetically predicted age at natural menopause, systolic blood pressure (SBP), diastolic blood pressure (DBP), and fasting insulin were associated with an increased risk of uterine leiomyoma, while higher age at menarche was associated with a reduced risk of uterine leiomyoma. Multivariable MR analysis of SBP and DBP showed that higher DBP might be an independent risk factor of uterine leiomyoma. In the UKB data, the results for age at natural menopause, SBP, DBP, and age at menarche were replicated. The result of the meta-analysis suggested that uterine leiomyoma could also be affected by polycystic ovary syndrome (PCOS), endometriosis, and 2-hour glucose level.





Conclusion

Our MR study confirmed that earlier menstrual age, hypertension, obesity, and elevated 2-hour glucose post-challenge were risk factors for uterine leiomyoma, and the causal relationship between smoking and uterine leiomyoma was ruled out. In addition, later age of menopause and endometriosis were found to increase the risk of uterine leiomyoma, while PCOS was found to decrease the risk.
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1 Introduction

Uterine leiomyomas (fibroids) are the most common benign tumor in females of reproductive age. Due to differences in race, diagnostic criteria, and study designs, epidemiological reports of uterine leiomyoma incidence vary widely, ranging from 4.5 to 68.6% (1). Since many uterine leiomyomas are asymptomatic and the histological incidence is more than twice as high as the clinical incidence, its true incidence may be underestimated in most studies (2). Johnson et al. (3) reported that the incidence of uterine leiomyoma increased with age, with a cumulative incidence of over 70% by menopause. In the United States, uterine leiomyoma accounts for 29% of gynecological hospitalizations among women aged 15-54 and 40-60% of all hysterectomies (4, 5).

Uterine leiomyoma has been shown to seriously impair woman’s quality of life and may lead to endometrial cancer (6). It can cause extensive or prolonged menstrual bleeding (leading to anemia, fatigue, and dysmenorrhea), abdominal swelling, painful intercourse, bladder or bowel dysfunction (leading to urinary incontinence or retention, pain, or constipation), and reproductive problems (such as impaired fertility, pregnancy complications, and miscarriage) (7, 8). If left untreated, it can even lead to death (9).

At present, the main treatment of uterine leiomyoma is hysterectomy, which is expensive and affects fertility. Nearly a quarter of women who have tried non-surgical treatment for fibroids choose to have surgery within a year (10). Many women opt for minimally invasive treatments to preserve their uterus, such as myomectomy, uterine artery embolization, and endometrial ablation. However, relapse is common after treatment (10). Therefore, it is necessary to clarify the risk factors of uterine leiomyoma for early prevention.

Several risk factors such as early age at menarche, early age at first birth, obesity, and hypertension have been established as increasing the risk of uterine leiomyoma (5, 11). However, due to the large number of undetected patients and the large bias of epidemiological data and risk factor evidence, its etiology is still far from being fully understood. In addition, some conflicting conclusions make it difficult to discover the true cause of uterine leiomyoma. For example, earlier studies have shown that smoking has a protective effect on fibroids (12, 13), while subsequent studies have shown that smoking increases the risk of uterine leiomyoma (14). One study showed that, among black women, those who self-reported PCOS had a 65% increased risk of fibroids compared with those who did not self-report PCOS (15). However, another study has shown that patients with PCOS had a lower risk of fibroids than women with normal ovaries (16). Additionally, some studies have found an inverse correlation between diabetes and uterine leiomyoma (13, 15, 17), and other researchers hypothesize that insulin stimulates fibroid growth (18, 19).

Therefore, whether there is a causal relationship between uterine leiomyoma and these factors still needs further analysis. Mendelian randomization (MR) is an emerging method of epidemiological causal inference, which uses genetic variation to determine the causal relationships between risk factors and outcomes. It relies on the natural random assortment of genetic variation during meiosis to distribute genetic variation randomly in a population, reducing bias caused by confounding or reverse causation (20). In our study, MR was used to explore the causal relationship between 20 risk factors and uterine leiomyomas. To our knowledge, this is the first MR study to examine the risk factors for uterine leiomyoma.




2 Methods



2.1 Summary statistics for risk factors

The summary statistics of anthropometric traits were from the GIANT (Genetic Investigation of Anthropometric Traits) consortium. For body mass index (BMI), the genome-wide association study (GWAS) included 234,069 Europeans and used sex, age, age squared, and principal components as covariates (21). For waist circumference, hip circumference, and waist-to-hip ratio, the GWAS included 210,088 Europeans and adjusted for age, age square, and study-specific covariates if necessary (22).

The summary statistics of DBP and SBP were obtained from the International Consortium for Blood Pressure, with 757,601 participants of European ancestry, and sex, age, and age squared were adjusted (23).

The summary statistics of serum 25-hydroxyvitamin D concentrations were from the SUNLIGHT consortium with 79,366 participants of European ancestry (24). The lead genetic variants of plasma vitamin C were derived from a GWAS meta-analysis of 52,018 Europeans from the Fenland study, the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study, the EPIC-Norfolk study, and the EPIC-CVD study (25).

In terms of smoking and drinking, the GWAS was conducted by the Sequencing Consortium of Alcohol and Nicotine use, which included 249,752 European participants for smoking and 335,394 European participants for drinking (26). Smoking was defined as the average number of cigarettes smoked per day, while drinking was the average number of alcoholic drinks consumed per week (including all types of alcohol). Age, sex, age-by-sex interaction, and the top 10 genetic principal components were used as covariates.

Three reproductive traits were involved in our study. The summary statistics of age at menarche (AAM) were from the largest meta-analysis of the ReproGen consortium, 23andMe, and the UK Biobank cumulatively including 329,345 women of European ancestry (27). The summary statistics of age at natural menopause (ANM) were from the ReproGen consortium with 69,360 European women (28). The summary statistics of age at first birth (AFB) were from a GWAS with 69,360 European individuals (29).

The summary statistics of PCOS were from a large-scale genome-wide meta-analysis with 10,074 PCOS cases and 103,164 controls of European ancestry (30). Cases were diagnosed with PCOS based on National Institutes of Health (NIH) or Rotterdam Criteria or by self-report, and age and BMI were used as covariables. The summary data for endometriosis included 17,045 endometriosis cases and 191,858 controls, 93% of whom were European (31).

The summary-level genetic data of T2D (Type 2 diabetes) were from the Diabetes Genetics Replication and Meta analysis consortium (32). A total of 74,124 T2D cases and 824,006 controls of European ancestry from 32 GWAS (with and without adjustment for BMI) were included.

The GWAS summary statistics of glycemic traits, including fasting glucose, fasting insulin, glycated hemoglobin (HbA1c), and 2-hour glucose post-challenge in an oral glucose tolerance test, were obtained from MAGIC (Meta-Analyses of Glucose and Insulin-related traits Consortium) (33). The GWAS included 281,416 participants, 70% of whom were of European ancestry. Our study used only European summary statistics and adjusted for covariates specific to the study.




2.2 GWAS summary statistics of uterine leiomyoma from the FinnGen and UKB consortia data sets

The GWAS summary statistics of uterine leiomyoma were obtained from FinnGen (https://r4.finngen.fi/) and the UKB. In the FinnGen data, the GWAS included 18,060 cases and 105,519 controls of European ancestry. The GWAS from the UKB included 4,351 cases and 332,848 controls and was conducted by the Neale Lab (http://www.nealelab.is/uk-biobank). Uterine leiomyoma is defined as ICD (International Classification of Diseases) 10: D25. When assessing causality, the FinnGen GWAS was used as the discovery set and the UKB GWAS as the validation set, considering that the FinnGen data had a higher proportion of cases. The main design of this study is shown in Supplementary Figure 1.




2.3 Ethics and consent statement

Specific ethical and consent statements for each GWAS in this study can be found in the original GWAS publications. The FinnGen Biobank GWAS was approved by the FinnGen Steering Committee. The Neale Lab received approval to conduct the GWAS from the Ethics Advisory Committee of the UKB. All of these data are de-identified, freely downloadable, and can be used without restriction.




2.4 Statistical analysis

We used a two-sample Mendelian randomization analysis to explore the potential causal relationship between 20 risk factors and uterine leiomyoma. Single nucleotide polymorphism (SNPs) with genome-wide significance (P < 5 × 10-8) and minor allele frequency >0.01 were included. Then, these SNPs were clumped based on the linkage disequilibrium r2< 0.01. The power of each SNP was assessed using F statistics (34) (F = beta2/se2), and the general F statistics of each exposure were also calculated. SNPs with weak statistical power were deleted (F statistics< 10).

We used inverse variance weighted (IVW) analysis as the primary statistical method. Although this method assumes that there is no heterogeneity between genetic variants (potentially due to pleiotropy), it has the strongest power to detect associations (35). In addition, we used two sensitivity analyses methods, including the MR-Egger (36) and weighted median (37) methods, as supplements to IVW. MR-Egger intercept and MR-PRESSO (38) methods were used to detect horizontal pleiotropy, and Cochran’s Q statistic was used to assess the heterogeneity. When there were outliers, the MR-PRESSO-corrected results would be reported in the main results. If heterogeneity still exists, the median based estimation was used as primary analysis. A false discovery rate (FDR) was used to adjust for multiple testing. In multivariable MR (MVMR) analysis, the IVW model was also the main method and the MR-Egger method was the complementary method.

A fixed-effects model meta-analysis was used to combine the results of the training set and verification set. All statistical analyses were performed using R software 4.1.2 (https://www.r-project.org/). The IVW, MR-Egger and weighted median methods were performed using the R packages “Two Sample MR” and “Mendelian Randomization”. The MVMR was performed using the R packages “Mendelian Randomization” and “MVMR”. P<0.05 was used as significance threshold. The mRnd was used to calculate the statistical power (39) for MR (https://cnsgenomics.shinyapps.io/mRnd/).





3 Results



3.1 Summary characteristics of risk factors

The number of SNPs ranged from 6 to 821, explaining 0.15% to 7.01% of the variance. The F statistics of each SNP and exposure were greater than 10, indicating that all instrumental variables had sufficient validity (Table 1).


Table 1 | Summary characteristics of risk factors.






3.2 Discovery results of uterine leiomyoma in the FinnGen consortium data set

In the FinnGen data set, a higher genetically predicted age at natural menopause (OR=1.0864 per standard deviation of age at natural menopause increase, 95%CI=1.0429-1.1317,P=6.97×10-5), SBP (OR=1.0073 per standard deviation of SBP increase, 95%CI=1.0026-1.0120,P=2.30×10-3), DBP (OR=1.0118 per standard deviation of DBP increase, 95%CI=1.0040-1.0197,P=3.09×10-3), and fasting insulin (OR=1.7342 per standard deviation of fasting insulin increase, 95%CI=1.1455-2.6253, P=9.25×10-3) were associated with an increased risk of uterine leiomyoma, while a genetically predicted higher age at menarche (OR=0.8435 per standard deviation of age of menarche increase, 95%CI=0.7999-0.8894, P=3.27×10-10) was associated with a reduced risk of uterine leiomyoma (FDR<0.05). T2D, endometriosis, and BMI showed a positive association with uterine leiomyoma risk (FDR> 0.05 and IVW P< 0.05). Both SBP and DBP are indicators of blood pressure, and some SNPs may be associated with both SBP and DBP. Therefore, we used multivariable MR to adjust the results of SBP and DBP. Multivariable MR analysis of SBP and DBP showed that a higher DBP might be an independent risk factor of uterine leiomyoma (adjusted OR=1.0309, 95%CI=1.0091-1.0533, P=5.34×10-3), while SBP was not significant (adjusted OR=0.9913, 95%CI=0.9787-1.0041, P=0.184).

The results of heterogeneity, pleiotropy, weighted median, and MR-Egger are shown in Table 2. There was heterogeneity in age at natural menopause, SBP, DBP, fasting insulin, age of menarche, T2D, and endometriosis, and they all showed MR-PRESSO-corrected results if outliers were detected. No horizontal pleiotropy was found. For some robust MR estimators, such as endometriosis, age at menarche, age at natural menopause, fasting insulin, T2D, and SBP, their IVW results were supported by MR-Egger or weighted median. However, the IVW results of waist-to-hip ratio and DBP were not supported by MR-Egger or weighted median, which may be related to the presence of horizontal pleiotropy and the detected outliers. The statistical power for the FinnGen outcome ranged from 96% to 100%.


Table 2 | Two-sample Mendelian randomization estimates of MR-Egger and weighted median methods.






3.3 Validation results of uterine leiomyoma in the UKB consortium data set

In the validation set, the MR results of SBP, DBP, age at menarche, and age at natural menopause were consistent with the training set. A higher age at natural menopause, SBP, and DBP were associated with an increased risk of uterine leiomyoma, while a higher age of menarche was associated with a reduced risk of uterine leiomyoma (Figure 1). No horizontal pleiotropy was found for these risk factors. After removing outliers, the odds of uterine leiomyoma increased per 1-SD increase in SBP (OR=1.0002, 95%CI=1.0001-1.0003, P=1.01×10-4), age at natural menopause (OR=1.0013, 95%CI=1.0006-1.0020, P=2.08×10-4), and DBP (OR=1.0002, 95%CI=1.0001-1.0004, P=8.95×10-3). Moreover, 1-SD increase in age at menarche (OR=0.9980, 95%CI=0.9969-0.9990, P=1.73×10-4) was associated with a reduced risk of uterine leiomyoma.




Figure 1 | Forest plot of Mendelian randomization results. (A) Mendelian randomization results in the FinnGen data set. (B) Mendelian randomization results in the UKB data set (95%LCI, lower limit of 95% CI; 95%UCI, upper limit of 95% CI; BMI, body mass index; PCOS, polycystic ovary syndrome; 2h glucose, 2-hour glucose after oral glucose tolerance test; HbA1c, glycated hemoglobin; T2D, Type 2 diabetes; SBP, systolic blood pressure; DBP, diastolic blood pressure; NSNP, number of single nucleotide polymorphisms).



In addition, the results of the validation set showed that genetic liability to PCOS (OR=0.9974, 95%CI=0.9954-0.9994, P=1.09×10-2), 2-hour glucose level (OR=1.0032, 95%CI=1.0001-1.0064, P=4.57×10-2), and endometriosis (OR=1.0038, 95%CI=1.0001-1.0075, P=4.34×10-2) were also influential factors for uterine fibroids.

It is worth noting that the statistical power of the UKB results was not sufficient (<50%). The reason may be that UKB data set has fewer cases than the FinnGen data set, resulting in lower statistical power.




3.4 Combined result of uterine leiomyoma from meta-analysis

The results of the meta-analysis further confirmed the previous findings that a higher age at natural menopause (OR=1.0013, 95%CI=1.0006-1.0020, P=2.94×10-4), SBP (OR=1.0002, 95%CI=1.0001-1.0003, P=1.01×10-4), and DBP (OR=1.0002, 95%CI=1.0001-1.0003,P=8.95×10-3) are risk factors for uterine fibroids, and a higher age at menarche (OR=0.9979, 95%CI=0.9969-0.9990, P=1.02×10-4) is a protective factor for uterine leiomyoma (Figure 2).




Figure 2 | Forest plot of the results from meta-analysis.



In addition, the results of meta-analysis suggested that uterine leiomyoma may also be affected by PCOS (OR=0.9974, 95%CI=0.9954-0.9994, P=1.09×10-2), endometriosis (OR=1.0038, 95%CI=1.0002-1.0076, P=4.33×10-2), and 2-hour glucose levels (OR=1.0032, 95%CI=1.0001-1.0064, P=4.57×10-2). In fact, PCOS and endometriosis were also significant in the FinnGen results, although they failed to pass FDR correction. Therefore, the results of analysis of the FinnGen and UKB data sets and the meta-analysis of PCOS and endometriosis were consistent. The difference between the results of the FinnGen and UKB data sets for 2-hour glucose level may be related to the different number of SNPs in the instrumental variables.





4 Discussion

Our MR study found that a genetically predicted higher age at natural menopause, SBP, DBP, endometriosis, and elevated 2-hour glucose level were risk factors for uterine leiomyoma, and a higher age at menarche and PCOS were protective factors for uterine leiomyoma.

An earlier age at menarche is thought to be associated with an increased risk of uterine leiomyoma (40, 41), and this finding is further supported by our study. Women with an earlier age at menarche had higher levels of estradiol and estrone and lower levels of sex hormone-binding globulin in their hormonal milieu than women with a later age at menarche (42, 43). Fibroids were found to have more estrogen receptors, lower estradiol metabolism, and a stronger transcriptional response to estrogen than myometrium (44). Therefore, higher estrogen and progesterone levels may increase the risk of fibroids. Animal models have also confirmed that hormonal stimulation can increase tumor proliferation and decrease apoptosis (45). There are few studies on the effect of menopausal age on uterine leiomyoma risk. Our results suggest that a later age at menopause is associated with an increased risk of uterine leiomyoma. A prospective study of female teachers also found a reduced risk of fibroids in postmenopausal women compared to premenopausal women (13). The National Institute of Environmental Health Sciences (NIEHS) Fibroid Growth Study found that the growth rate of uterine leiomyoma in white women was related to age (46). Rapid growth of uterine leiomyoma after the age of 30, especially in premenopause, is consistent with age-related changes in estrogen and progesterone (47). Therefore, the effect of menopausal age on fibroids may also be related to hormone levels. In addition, mitotic activity in the myometrium is greatest during the luteal phase of the menstrual cycle, and prolonged exposure to the menstrual cycle may increase the risk of uterine leiomyoma (48). This also suggests that earlier menstruation age and later menopause age can increase the risk of uterine leiomyoma.

Several studies have found a significant positive association between hypertension and uterine leiomyoma, but most of these studies are retrospective studies, cross-sectional studies, or prospective studies with small sample sizes and have not successfully established a causal association (49–51). Our results suggest that higher SBP and DBP are causally associated with an increased risk of uterine leiomyoma. During the onset of hypertension, angiotensin is hydrolyzed to angiotensin I, which is then converted to angiotensin II by the angiotensin converting enzyme (ACE) (52). Angiotensin II has been reported to significantly increase the number of uterine leiomyoma cells in a dose-dependent manner (53). Hsieh et al. found that mutations in angiotensin-converting enzyme activation genes were significantly associated with leiomyoma susceptibility (54). A recent study reported a 31.8% reduction in clinically diagnosed uterine leiomyoma in hypertensive adult women who had previously used angiotensin-converting enzyme inhibitors (ACEis) compared with those who had not used ACEis (55). Therefore, hypertension may cause uterine leiomyoma through production of angiotensin II. In addition, hypertension can induce fibroid proliferation and fibrogenesis by inducing smooth muscle cell injury through mechanical shear stress, which may also lead to uterine leiomyoma (56).

The relationship between diabetes mellitus and uterine leiomyoma has been controversial for many years. On the one hand, some observational studies have found a lower incidence of fibroids in diabetic patients and hypothesized that diabetes may inhibit tumor development by causing vascular dysfunction (57). On the other hand, diabetes is often accompanied by obesity and hypertension, which may increase the risk of uterine leiomyoma. Since it is not possible to assess the relationship between diabetes and fibroids in untreated diabetic populations, observational estimates may capture both the effect of disease and treatment effects on fibroids. A study that indirectly examined the relationship between diabetes and treatment found that the protective effects of diabetes was only present in diabetic patients receiving the drug (15). Elevated 2-hour glucose post-challenge, an indicator of diabetes, was found in our study to be associated with an increased risk of uterine leiomyoma. However, fasting glucose, another indicator of diabetes, was not causally associated with uterine leiomyoma in either the FinnGen or the UKB data sets. In addition, elevated fasting insulin levels and type 2 diabetes were found to be associated with an increased risk of uterine leiomyoma in the FinnGen data, but this association was not found in the UKB data. Due to the low power of the UKB results, we were unable to determine the relationship between diabetes and uterine leiomyoma. To be sure, the risk of uterine leiomyoma should be considered when 2-hour glucose post-challenge is elevated.

Endometriosis polycystic ovary syndrome (PCOS) and uterine leiomyoma are common non-cancerous gynecological diseases in women. Our study found that endometriosis was associated with an increased risk of uterine leiomyoma, while PCOS was associated with a reduced risk of uterine leiomyoma. Although there is no direct evidence that endometriosis is a influence factor of uterine leiomyomas, Uimari et al. found that 20% of patients with symptomatic fibroids had endometriosis, and 26% of patients with symptomatic endometriosis had fibroids (58). Hemmings et al. (59) also reported that patients with endometriosis were more likely to develop uterine leiomyoma than patients without endometriosis. Physiologically, endometriosis tissues have been shown to express aromatase and produce estrogen independently of the ovary (60), which is a major cause of uterine leiomyoma. Therefore, aromatase inhibitors for endometriosis may reduce the risk of uterine leiomyoma. There are few studies on the relationship between PCOS and uterine leiomyoma, and existing studies are controversial (15, 16). Our study found that PCOS was associated with a reduced risk of uterine leiomyoma. Our results are consistent with a large later study using data from PPCOS I (National Institute of Child Health and Human Development Cooperative Reproductive Medicine Network Pregnancy in Polycystic Ovary Syndrome I), PPCOS II (Pregnancy in Polycystic Ovary Syndrome II), and AMIGOS (Assessing Multiple Intrauterine Gestations from Ovarian Stimulation) and found PCOS patients had a reduced risk of uterine leiomyoma compared to unexplained infertility patients (61). The results of this large study using ultrasound diagnosis were more reliable than those of a small sample using self-reported data. PCOS patients are anovulatory and have limited exposure of myometrium to progesterone, which has been shown to stimulate leiomyoma growth through a group of key genes that regulate apoptosis and proliferation, and may be the cause of this association (62–64).

Obesity has been consistently recognized as a risk factor for uterine leiomyoma. Given the insufficient power of the UKB database and the fact that a recent Mendelian randomization study (65) using different instrumental variables found that a higher BMI slightly increased the risk of uterine fibroids in the UKB data set, we concluded that obesity is unquestionably a risk factor for uterine leiomyomas.

Several studies have reported a negative association between age at first birth and uterine leiomyoma risk (40, 41, 66), while our study found no such association. Pregnancy may lead to decreased estrogen receptor levels in myometrium (67). Postpartum reduction of collagen content and smooth muscle cytoplasm can eliminate or shrink uterine leiomyoma (68). In addition, the vascular distribution of uterine leiomyoma is different from that of the myometrium, and delivery ischemia and uterine remodeling can give priority to the elimination of uterine leiomyoma (69, 70). But the relationship between age at first birth and uterine leiomyoma may be non-linear. Donnaet al. (71) reported that the effect of age at first birth on uterine leiomyoma was not linear, and mid-reproductive (25-29 years) delivery appeared to be most protective against fibroids development. Larger fibroids are more common in women over the age of 40. If women give birth at a young age, the disease may not develop. But there may be no benefit if the first pregnancy is too late, as some tumors may have grown too large. Our study was unable to determine whether there is a non-linear relationship between age and uterine leiomyoma risk, so more research is needed.

There are some advantages to our study: (1) This was a Mendelian randomized study that could find causal associations. (2) Our study found that some previously unknown factors, such as uterine leiomyoma and menopausal age, were associated with uterine leiomyoma. In addition, the influence of previously controversial factors such as PCOS, smoking, and diabetes on uterine leiomyoma were identified. And (3), participants in all GWAS studies were of predominantly European ancestry, with less racial bias. Discovery data sets, validation sets, and meta-analysis were used to increase the reliability of the results. Our research also has some shortcomings: (1) The influence of pleiotropy in the MR design, including horizontal pleiotropic and vertical pleiotropic; we used two sensitivity analysis methods to detect pluripotency, including MR-Egger intercept and MR-PRESSO, in the hope of minimizing bias. (2) The power of the results verified in the UKB data set was lower, resulting in several factors that were found to be significant in the FinnGen data set but not in the UKB. (3) The fact that the GWAS studies were mainly Europeans may have influenced the extrapolation of the results. In addition, the non-linear relationships could not be detected in this study. And (4), the genetic instruments were variants identified through GWAS analyses with p-values < 5x10-8. As a result, the estimates of these genetic effects tend to be upwardly biased due to a phenomenon known as the “winner’s curse”.

In conclusion, our MR study confirmed that earlier menstrual age, hypertension, obesity, and elevated 2-hour glucose post-challenge were risk factors for uterine leiomyoma, and ruled out the causal relationship between smoking and uterine leiomyoma. In addition, a later age of menopause and endometriosis were found to increase the risk of uterine leiomyoma, while PCOS was found to decrease the risk.
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Aims

The effect of excess glucocorticoid receptor (GR) stimulation through glucocorticoid medication or cortisol on glucose metabolism is well established. There are genetic GR variants that result in increased or decreased GR stimulation. We aimed to determine the prevalence of genetic GR variants in different ethnic groups in a cohort of patients with type 2 diabetes, and we aimed to determine their association with age of diabetes onset and metabolic and inflammation parameters.





Methods

A cross-sectional analysis was performed in a multiethnic cohort (n = 602) of patients with established type 2 diabetes. Polymorphisms in the GR gene that have previously been associated with altered glucocorticoid sensitivity (TthIIII, ER22/23EK N363S, BclI and 9β) were determined and combined into 6 haplotypes. Associations with age of diabetes onset, HbA1c, hs-CRP and lipid values were evaluated in multivariate regression models.





Results

The prevalence of the SNPs of N363S and BclI was higher in Dutch than in non-Dutch patients. We observed a lower prevalence of the SNP 9β in Dutch, South(East) Asian and Black African patients versus Turkish and Moroccan patients. We did not detect an association between SNPs and diabetes age of onset or metabolic parameters. We only found a trend for lower age of onset and higher HbA1c in patients with 1 or 2 copies of haplotype 3 (TthIIII + 9β).





Conclusions

The prevalence of genetic GR variants differs between patients of different ethnic origins. We did not find a clear association between genetic GR variants and age of diabetes onset or metabolic and inflammation parameters. This indicates that the clinical relevance of GR variants in patients with established type 2 diabetes is limited.





Keywords: glucocorticoid receptor, diabetes, glucocorticoid medication, cortisol, glucose metabolism, ethnicity, inflammation (markers)





Introduction

The onset and course of type 2 diabetes mellitus is determined by a combination of environmental and genetic risk factors. The effect of excess glucocorticoid receptor (GR) stimulation through glucocorticoid medication or cortisol on the incidence of type 2 diabetes is well established (1, 2). It is unknown whether genetic GR variants that are associated with increased GR stimulation also contribute to a diabetogenic phenotype. Ethnic origin is one of the factors associated with the incidence and course of type 2 diabetes and metabolic syndrome (3). Ethnicity as a determinant for disease consists of shared origin and genetics but also shared social and environmental background (4). If the prevalence of genetic GR variants differs in populations from different ethnicities and geographical regions, differences in functioning of this receptor could partly explain differences in onset and outcome of type 2 diabetes among ethnic groups.

The GR is expressed in almost every cell in the body (5). Binding of the GR by cortisol or glucocorticoid medication results in transrepression and transactivation of certain genes. Transrepression contributes to suppression of inflammation, and transactivation contributes to regulation of energy metabolism. Excess transactivation has effects that are comparable to metabolic derangements in type 2 diabetes (6). In clinical practice, we frequently encounter the effects of excess transactivation due to supraphysiological GR stimulation. Examples are acute disturbance of glucose metabolism due to high-dose glucocorticoid therapy and increased incidence of type 2 diabetes in Cushing syndrome (1, 2). Glucocorticoid signalling can also affect lipid metabolism, resulting in higher levels of triglycerides and total cholesterol (7).

The gene that encodes the glucocorticoid receptor (NR3C1) consists of 157,582 base pairs and is located on chromosome 5 (8). Single nucleotide polymorphisms (SNPs) can induce changes in the configuration and sensitivity of the GR, which may impact the binding and regulation of gene expression with glucocorticoids, and may subsequently affect inflammatory suppression and glucose metabolism (9). There are functional GR variants (SNPs) that can potentially change the transactivation and/or transrepression capacity of the GR gene. A schematic overview of the GR gene including the locations of these SNPs within the gene has been published before (10, 11).

GR variants BclI (rs41423247) and N363S (rs6195) are associated with increased transactivation (sensitivity to glucocorticoids), whereas an SNP at ER22/23EK (rs6189) is associated with diminished transactivation. On the other hand, the GR variant 9β (rs6198) is associated with lower transrepression (10, 12). A fifth SNP, TthIIII (rs10052957) does not affect glucocorticoid sensitivity on itself but can result in glucocorticoid resistance in the presence of ER22/23EK (10). Form a clinical perspective, it has been observed that both BclI and N363S variations are linked to abdominal obesity, although there have been conflicting findings regarding N363S. Furthermore, N363S has been associated with higher levels of LDL-cholesterol and an increased risk of cardiovascular disease, while the ER22/23EK polymorphism has been associated with a reduced risk of dementia but an increased risk of major depression. Additionally, the 9β variant has been linked to increased inflammatory markers, rheumatoid arthritis, post-traumatic stress disorder, and cardiovascular disease (10, 13).The prevalence of the SNPs varies in previous studies, with a minor allele frequency (MAF) of 1.9-3% for ER22/23EK and 29.6-38.6% for BclI (11, 14–17).

In this study, we aim to determine the association between genetic GR variants and the incidence and course of type 2 diabetes and metabolic syndrome in patients with established type 2 diabetes from different ethnic groups. We hypothesize that GR SNPs resulting in increased transactivation are associated with a lower age of diabetes onset and impaired glycemic control, and SNPs resulting in diminished transrepression are associated with a higher level of inflammation in patients with established type 2 diabetes. The second aim is to evaluate whether the prevalence of genetic GR variants differs between ethnic groups.





Methods

We performed a cross-sectional analysis in a multi-ethnic cohort of patients with type 2 diabetes who were treated in secondary care (18). The participants consisted of consecutive individuals who visited the outpatient clinic of MC Slotervaart in Amsterdam for their annual comprehensive diabetes assessment between May 2009 and December 2010. Only those who provided written informed consent, and for whom DNA material was available for analysis were included in this study. For all participants, data on ethnic origin, diabetes onset, glucose- and lipid-lowering treatment, established complications, vital, anthropometric and laboratory parameters were registered. The study protocol was approved by the institutional review board.

The diagnosis of type 2 diabetes was based on the general practitioner (GP) referral letter in combination with clinical and biochemical characteristics determined at our clinic. GAD antibodies and C-peptide were determined in case of doubt regarding the type of diabetes. Age of diabetes onset was retrieved from the GP referral letter and checked with the patient. In case of discrepancy between referral letter and patient history, the age of onset as told by the patient was considered true. Ethnicity was determined according to the country of birth of either the patient or his or her parent and by last name analysis (4). The following ethnic groups were considered: native Dutch, Turkish, Moroccan, Southeast Asians (comprising 57% Hindustani and 25% Indonesians), and Black Africans (with 78% being Surinamese Creoles). Additional information can be found in the caption of Table S1.




Laboratory assays

Blood samples were obtained by standard phlebotomy after a 10-hour overnight fast.

Depending on the patients’ informed consent form, an additional 10 ml EDTA-anticoagulated whole blood sample was collected. Following immediate centrifugation (15 minutes, 3000rpm, 1860g at 15°C), the isolated “buffy-coat” was carefully separated using a Pasteur pipette tube and stored in 0.5 ml vials at -70°C until assayed.

Total genomic DNA was isolated from the frozen ‘buffy-coat’, using the total nucleic acid (TNA) protocol on the MagNAPure LC (Roche Diagnostics). PCR primers (forwards and reverse) as well as MGB probes were designed using Primer Express Software v3.0.1 of Life Technologies. Five NR3C1 SNPs were determined by real-time polymerase chain reaction (RT-PCR): TthIIII (rs10052957: guanine > adenine), ER22/23EK (rs6189: guanine > adenine and rs6190: guanine > adenine), N363S (rs6195: adenine > guanine), BclI (rs41423247: cytosine > guanine) and 9β (rs6198: adenine > guanine) followed by the allelic discrimination protocol on an ABI 7500 real-time PCR thermocycler (Thermo Fisher) as described previously (19). These SNPs combine into 6 haplotypes, as previously shown (11). For each haplotype, 3 genotype combinations were distinguished as carrying 0, 1, or 2 copies of the haplotype allele. To show that the designed assays were able to detect the indicated SNPs, all assays were validated before using well-characterized DNA kindly provided by P. Noordijk (Leiden University Medical Centre) from each individual SNP.

The routine analysis of these samples for HbA1c was performed using a Menarini (Adams™ HA-8160, Arkray Inc, Kyoto, Japan) automated HPLC analyser. Serum total- and HDL-cholesterol and triglycerides were determined using standard laboratory procedures within 4 hours after sampling with an automated analyser (Synchron® LX20, Beckman Coulter Inc, Fullerton CA, USA). LDL-cholesterol was calculated using the Friedewald formula (20). High-sensitivity C-reactive protein (hs-CRP) was determined with a near infrared particle immunoassay rate methodology (Beckman Brea, CA).





Statistical analysis

We estimated beta-coefficients for the change in age of diabetes onset, glycemic control, inflammation and lipid parameters for each SNP in linear regression models. Age, sex, diabetes duration, BMI, glucose and lipid-lowering medication and ethnicity were assessed as confounders if applicable. Potential confounders were selected if we presumed a theoretical relationship with SNP status and outcome, in combination with a statistical association (21). Outcome variables that had a non-normal distribution were transformed to approximate normality. To ease interpretation, we presented back-transformed values of those variables in the outcome tables.

We performed an a priori power estimation on the difference in age of diabetes onset in the absence or presence of different polymorphisms. The power generally increases as a SNP is more prevalent (and as the effect on glucocorticoid sensitivity is stronger) (22). For the least prevalent SNP - ER22/23EK (94% wild type) - univariate regression analysis with a 5% significance level will have 85% power to detect the difference of 4 years (standard deviation ± 9) in age of onset between patients with a glucocorticoid-resistant genotype and patients with a glucocorticoid-sensitive genotype when the total sample size is 624 patients.






Results




Patients and genotyping

From a total of 983 patients with type 2 diabetes, 602 patients had available DNA samples and were included. There were no significant differences in demographics, clinical variables, and complications between patients with and patients without available DNA data (Table S1). Overall, patients had a reasonably well-regulated diabetes with an average HbA1c level of 7.3% (54 mmol/mol) and the average diabetes duration was 11.9 ± 8.5 years. Fourty-four percent of the participants were of non-native Dutch origin, comprising individuals from Turkish (n = 45), Moroccan (n = 101), Southeast Asian (n = 79), and black African (n = 40) backgrounds. Non-Dutch patients were as compared with Dutch patients, less frequently males (46 versus 59%, p < 0.001), were younger (mean 57.4 versus 65.8 years), their average age of diabetes onset was 8.9 years earlier, and they had a poorer level of glycemic control (mean 7.6 versus 7.0% [60 vs. 53 mmol/mol]. The characteristics of the study population are shown in Table S1.





SNPs of the glucocorticoid receptor gene

In 557 patients (93%), at least 1 SNP could be determined. As shown in Table 1, the minor allele frequency varied from 1.6% (ER22/23EK) to 31.6% (BclI). The prevalence of SNPs was not associated with sex or age. We found a higher prevalence of the N363S SNP and a lower prevalence of the BclI CC genotype in Dutch than in non-Dutch patients (p < 0.01). Additionally, we observed a difference in the prevalence of 9β in Dutch, Southeast Asian and Black African patients versus Turkish and Moroccan patients, but this difference was not significant (p = 0.094).


Table 1 | Prevalence of SNPs of the glucocorticoid receptor gene by ethnic origin.







Association SNPs of the GR gene with age of diabetes onset and parameters of metabolic syndrome

In the overall study population, diabetes was diagnosed at the age of 50.4 years. We could not detect a clear influence of the SNPs of the GR gene and age of onset, except for patients who were heterozygous for the 9β SNP (50.9 versus 49.2, p adj 0.02). Patients with the 9β SNP showed a trend toward higher HbA1c and CRP (Table 2). Patients with at least 1 copy of the N363S polymorphism had a lower LDL cholesterol. We did not observe any effect of the TthIIII, ER22/23EK and BclI polymorphisms on glycemic control, inflammation or lipid parameters.


Table 2 | Association of SNPs of the glucocorticoid receptor gene with clinical characteristics.







Association of haplotypes of the GR gene with age of diabetes onset and parameters of metabolic syndrome

Haplotype 1 (which does not contain any SNP, wild type) had a minor allele frequency of 47.9%. The minor allele frequency of other haplotypes varied from 1.6% (haplotype 6) to 20.1% (haplotype 2). Patients who had 1 or 2 copies of haplotype 3 showed a trend toward a lower age of diabetes onset and a higher HbA1c, which is in accordance with the results of the individual haplotypes (Table 3). Patients who had at least 1 copy of haplotype 5 showed a trend toward lower LDL cholesterol. No associations were found for the other haplotypes.


Table 3 | Association of haplotypes of the GR receptor gene with clinical characteristics.








Discussion

We studied the association between genetic variants of the GR and metabolic and inflammation parameters in a multiethnic cohort of patients with established type 2 diabetes in secondary care. We observed a different prevalence of genetic variants between patients of different ethnic origins. We did not find a clear association between genetic variants and age of diabetes onset, glycemic control, lipid parameters or inflammation, and we found only a trend for lower age of onset for patients with haplotype 3. This suggests that the clinical relevance of these genetic variants for the onset of diabetes and the course of established diabetes seems to be minor.

The development of type 2 diabetes is a combination of genetic and environmental risk factors. Whereas mutations underlying monogenic diabetes have direct clinical consequences, genetic variants in multifactorial forms of diabetes have a much weaker association (23). In patients with established diabetes, such as in our study population, HbA1c and lipid parameters are affected by medication and BMI. Despite adjusting for these confounding factors, we did not find an association. Additionally, for the time of diabetes onset – a parameter that is unbiased by glucose-lowering treatment - we did not find an association with genetic variants of the glucocorticoid receptor.

The SNPs N363S and ER22/23EK, which were previously associated with increased and decreased transactivation, respectively, did not affect the age of diabetes onset. Interestingly, the N363S SNP, which we hypothesized to result in diabetes onset at a younger age, showed a trend towards later diabetes onset. Despite the increased prevalence of N363S in Dutch patients compared to patients of Turkish and Moroccan origin, Dutch patients were diagnosed with diabetes at a later age. In patients with at least one copy of SNP 9β, we observed a trend for a higher level of hs-CRP, which is in line with our hypothesis.

Although specific effects on transrepression and transactivation have been established in vitro for all analysed SNPs, clinical studies have shown contradictory results. For example, the ER22/23EK SNP reduced GC-induced transactivation in vitro, and supportive evidence was found by increased insulin sensitivity and lower fasting insulin concentration in a Dutch cohort (24). However, ER22/23EK was associated with higher HbA1c levels in a cohort of patients older than 85 years old (17). Minor allele frequency was not different between these cohorts, arguing against an age difference as an explanation for the contradictory findings. Glucose metabolism is a highly regulated process in which multiple genetic and environmental factors are intertwined with an eventual effect of glucocorticoid sensitivity (25). The absence of an association in our study suggests that there is no clinically relevant effect of GR variants on glucose metabolism and that the previous contradictory findings may have arisen by chance.

Our study has both strengths and weaknesses. A strength of our study is the extensive data with both detailed information on treatment as well as laboratory parameters and therefore the ability to correct for possible confounders. By including all consecutive patients in our clinic, we established a cohort that is representative for the secondary care diabetes population in an urban area. However, the heterogeneity of our study population regarding age, diabetes duration and origin might also have blunted the effect of genetic variants on metabolic parameters. A weakness of our study arises from the cross-sectional nature of the cohort. The age of diabetes onset is determined retrospectively, and we cannot exclude the possibility of recall or information bias on this outcome parameter. Although a diagnostic delay in type 2 diabetes is frequently observed, in previous studies, the duration of delay was not affected by ethnicity of the patient (26, 27). Furthermore, we do not have data on the socioeconomic position of patients, which could be an uncontrolled confounder between ethnicity and diabetes outcome parameters.

In conclusion, we observed that the prevalence of SNPs of the glucocorticoid receptor was different between ethnic groups. We found a modest association between the 9β SNP of the GR and the level of systemic inflammation in patients with established and well-regulated type 2 diabetes. However, genetic variants of the GR did not explain the variation in age of diabetes onset and level of glycemic control; therefore, its clinical relevance for patients with established type 2 diabetes is limited.
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Genome-wide association meta-analysis (GWAMA) by the Cortisol Network (CORNET) consortium identified genetic variants spanning the SERPINA6/SERPINA1 locus on chromosome 14 associated with morning plasma cortisol, cardiovascular disease (CVD), and SERPINA6 mRNA expression encoding corticosteroid-binding globulin (CBG) in the liver. These and other findings indicate that higher plasma cortisol levels are causally associated with CVD; however, the mechanisms by which variations in CBG lead to CVD are undetermined. Using genomic and transcriptomic data from The Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) study, we identified plasma cortisol-linked single-nucleotide polymorphisms (SNPs) that are trans-associated with genes from seven different vascular and metabolic tissues, finding the highest representation of trans-genes in the liver, subcutaneous fat, and visceral abdominal fat, [false discovery rate (FDR) = 15%]. We identified a subset of cortisol-associated trans-genes that are putatively regulated by the glucocorticoid receptor (GR), the primary transcription factor activated by cortisol. Using causal inference, we identified GR-regulated trans-genes that are responsible for the regulation of tissue-specific gene networks. Cis-expression Quantitative Trait Loci (eQTLs) were used as genetic instruments for identification of pairwise causal relationships from which gene networks could be reconstructed. Gene networks were identified in the liver, subcutaneous fat, and visceral abdominal fat, including a high confidence gene network specific to subcutaneous adipose (FDR = 10%) under the regulation of the interferon regulatory transcription factor, IRF2. These data identify a plausible pathway through which variation in the liver CBG production perturbs cortisol-regulated gene networks in peripheral tissues and thereby promote CVD.
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1 Introduction

The steroid cortisol is the major glucocorticoid hormone involved in mediating the human stress response, with effects on metabolism, cardiovascular homeostasis, and inflammation (1). Excessive cortisol production occurs in Cushing’s syndrome either in response to chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis by increased adrenocorticotropic hormone (ACTH) secretion or through autonomous production of cortisol in an adrenocortical tumor (2). The incidence of Cushing’s syndrome is low, with the number of cases estimated to be between 0.7 and 2.4 cases per million (3). It results in insulin resistance, obesity and hypertension with increased risk of cardiovascular disease (CVD). Similarly, higher plasma cortisol within the population, in the absence of overt Cushing’s syndrome, is associated with risk factors for CVD such as hypertension (4) and type II diabetes (1, 5).

Interindividual variation in plasma cortisol levels has a genetic basis with heritability estimated between 30% and 60% (6). The Cortisol Network (CORNET) consortium conducted a genome-wide association meta-analysis (GWAMA) with the intention of uncovering genetic influences on the HPA axis function (7). This was followed in 2021 with an updated GWAMA of 25,314 individuals across 17 population-based cohorts of European ancestries (8), expanded from 12,597 individuals in the original GWAMA. In an additive genetic model, the new CORNET GWAMA identified 73 genome-wide significant single-nucleotide polymorphisms (SNPs) associated with variation for plasma cortisol at a single locus on chromosome 14. These SNPs were used in a two-sample Mendelian randomization analysis showing that higher cortisol is causative for CVD (8).

The locus on chromosome 14 spans the genes SERPINA6 and SERPINA1 that both play roles in the regulation of corticosteroid-binding globulin (CBG), a plasma protein produced in the liver that is responsible for binding 80%–90% of cortisol in the blood (9, 10). SERPINA6 encodes CBG (11), and SERPINA1 encodes α1-antitrypsin, an inhibitor of neutrophil elastase, a serine protease that can cleave the reactive center loop of CBG resulting in a 9–10-fold reduction in binding affinity to cortisol (12, 13).

The CORNET GWAMA showed that 21 cortisol-associated SNPs were also cis-expression Quantitative Trait Loci (eQTLs) for SERPINA6 in the liver and demonstrated that the genetic variation associated with plasma cortisol is driven by SERPINA6 rather than SERPINA1 (8). However, although variation in CBG production could explain changes in total plasma cortisol, it is the free fraction of cortisol that is considered to equilibrate with target tissue concentrations and signal through intracellular glucocorticoid receptors (GR) (14, 15). While CBG deficiency may be associated with symptoms (16–18), variations in CBG have not been shown conclusively to influence the tissue response to cortisol in humans.

To test the hypothesis that cortisol-associated genetic variants in the SERPINA6/SERPINA1 locus influence cortisol delivery to, and hence action in, extrahepatic tissues, we investigated transcriptome-wide associations between cortisol-associated SNPs and gene transcripts across seven different vascular and metabolic tissues from the Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) study (19). As well as conducting a multi-tissue eQTL analysis using STARNET transcriptomics and plasma cortisol-associated SNPs, we identified tissue-specific trans-eQTL-associated genes under the regulation of GR. Moreover, we used a causal inference framework, with cis-eQTLs as genetic instruments, for the reconstruction of causal gene networks within STARNET tissues.

These results provide evidence that genetic variations in CBG production in liver influence extra-hepatic cortisol signaling and provide plausible pathways leading to CVD.




2 Materials and methods



2.1 Data

STARNET is a cohort-based study of 600 individuals undergoing coronary artery bypass grafting (CABG) for coronary artery disease (CAD) and was used as the primary discovery cohort in this study. These individuals underwent blood genotyping preoperatively for 951,117 genomic markers, and during surgery, seven different tissue samples were obtained and underwent RNA-sequencing (RNA-seq): liver, skeletal muscle, atherosclerotic aortic root, internal mammary artery, visceral abdominal fat, subcutaneous fat, and whole blood. STARNET data are available through a database of Genotypes and Phenotypes (dbGaP) application (accession no. phs001203.v2.p1). A detailed description of data processing can be found in the Supplemental Material of this article (section S1.1).

The Stockholm Atherosclerosis Gene Expression (STAGE) study (n = 114) (20) and the Metabolic Syndrome in Man (METSIM) study (n = 982) (21) were used in the replication of causal gene networks identified using STARNET. Gene expression data for the METSIM and STAGE studies are available publicly at Gene expression omnibus (GEO) (accession no. GSE70353 and GSE40231, respectively). Microarray data for the liver, subcutaneous fat, and visceral abdominal fat were used from the STAGE study, and gene expression data from subcutaneous fat were measured in the METSIM study using RNA-seq.




2.2 Multi-tissue trans-eQTL discovery

A list of SNPs associated with plasma cortisol was obtained from the summary statistics of the 2021 GWAMA conducted by the CORNET consortium (available at https://datashare.ed.ac.uk/handle/10283/3836) (8). We filtered this list to obtain SNPs that were found to be associated with plasma cortisol at a level of genome-wide significance (p< 5 × 10-8) that were taken forward 68 and tested against all genes across STARNET tissues.

The secondary linkage test (P2) is a likelihood ratio test in the Findr package (22) (version 1.0.8) that was used to identify associations between a given SNP (E) and a gene (B) using categorical regression. P2 proposes a null hypothesis where E and B are independent and alternative hypotheses where E is causal for B (E →B). Maximum likelihood estimators are then used to obtain a log likelihood ratio (LLR) between the alternative and null hypotheses. The LLR is then converted to the posterior probability of the alternative hypothesis   being true with empirical estimation of the local false discovery rate (FDR) as a value from 0 to 1 (Equation 1).

 




2.3 Identification of glucocorticoid-regulated trans-genes

Multiple datasets were used to identify genes that had prior evidence of putative regulation by GR (23–27). These datasets have been filtered to include targets for NR3C1, the gene that encodes GR.

Trans-genes were categorized according to evidence of GR regulation from datasets shown in Supplementary Table S1. Genes were scored against these criteria: 1) appearing in a transcription factor database (ENCODE, TRANSFAC, CHEA); 2) identified as a GR target from chromatin immunoprecipitation sequencing (ChIP-seq) experiment in adipocytes from Yu et al. (23); 3) differentially expressed in response to dexamethasone treatment in adipocytes from Yu et al. (23); and 4) murine homolog of human gene differentially expressed in response to dexamethasone treatment using adrenalectomized mice (FC >1; p-value<0.05) (24). Genes were then ranked according to how well they met the criteria for GR regulation (+1 for each item matched from criteria 1–4).




2.4 Causal gene network reconstruction

Pairwise causal inference was used for the reconstruction of cortisol-responsive transcriptional networks across STARNET tissues using cis-eQTL genotypes as genetic instruments with gene expression data from STARNET, as implemented by the Findr software (22). A detailed description of these methods can be found in the Supplementary Material of this article (Section S1.2).




2.5 Transcription factor target enrichment

Lists of known transcription factor targets for both NR3C1 and IRF2 were obtained from ENCODE and TRANSFAC datasets, respectively. These datasets were used to test for an enrichment of known transcription factor targets within novel gene sets derived from gene network targets. This was performed using Fisher’s exact test from the Python module Scipy Stats (28) and involved the creation of a 2 × 2 contingency table based on a tissue-specific background consisting of all genes available in the corresponding tissue.




2.6 Gene network replication

Correlations between gene network targets were calculated using gene expression data from STARNET, STAGE, and METSIM. Gene expression matrices were filtered to only include the target genes under investigation. Correlation matrices of corresponding Pearson correlation coefficients as absolute values were constructed in Python.

A background gene set was constructed from the overlapping genes between the STARNET gene expression set that was used for network discovery and the corresponding gene expression set that was being used for replication. The previously described correlation analysis was then repeated using a random set of genes (the same size as the target set) selected from the background gene set. The Kruskal–Wallis test was implemented in Python using Scipy Stats (28) to test if the targeted and randomly sampled correlations follow the same distribution. Both the targeted and random correlations were then plotted as a boxplot using the Python plotting package Seaborn (29).




2.7 Gene expression clustering

Hierarchical clustering was performed on correlation values between network targets using the discovery (STARNET) gene expression data and hierarchical clustering from Scipy Stats (28) in Python. The leaves list that resulted from the clustering of the discovery dataset was then extracted and applied to the correlations between target genes from the corresponding replication dataset. Both sets of clustered correlation values were then plotted as opposing correlation heatmaps with Seaborn (29).





3 Results



3.1 Cortisol-associated trans-genes

SNPs associated with plasma cortisol at the SERPINA6/SERPINA1 locus have previously been linked as expression single-nucleotide polymorphisms (eSNPs) for SERPINA6 in the liver (8). Using genotype and tissue-specific RNA-seq data from the STARNET cohort, we explored the hepatic and extrahepatic consequences of genetic variation for plasma cortisol using 73 cortisol-associated SNPs at genome-wide significance (p< 5 × 10-8) identified from the CORNET GWAMA (8). We identified 704 eQTL associations in cis and trans between plasma cortisol-associated SNPs and genes measured across all STARNET tissues, composed of 262 unique genes and 72 SNPs at a 15% FDR threshold (Supplementary Tables S2, S3).

The tissues with the greatest number of trans-genes were the liver, subcutaneous fat, and visceral abdominal fat, with a combined total of 157 trans-genes and 422 total SNP–gene associations (FDR = 15%) (Figure 1A). The vast majority of trans-eQTL associations were specific to a single tissue. A single trans-gene, the glycosyltransferase-encoding gene OGT, was identified in both the liver and visceral abdominal fat. However, as this was the only cross-tissue trans-gene identified, suggesting that the transcriptional impact of genetic variation at the SERPINA6/SERPINA1 locus is highly tissue-specific. The CORNET GWAMA describes four blocks of SNPs in linkage disequilibrium (LD), which represent the cortisol-associated variation at the SERPINA6/SERPINA1 locus (8). We observed that LD blocks 2 and 4 represent the majority of the variation across all tissues in the trans-gene sets (Figures 1B, C).




Figure 1 | Identification of cortisol-associated trans-genes across STARNET tissues (FDR = 15%). (A) Upset plot showing the distribution of trans-genes across STARNET tissues, including genes shared by multiple tissues. Tissues include the atherosclerotic aortic root (AOR), skeletal muscle (SKLM), internal mammary artery (MAM), blood (Blood), liver (LIV), subcutaneous fat (SF), and visceral abdominal fat (VAF). (B) Distribution of trans-eQTLs across tissues and colored by genomic locus (LD block) of associated SNP. (C) LocusZoom plot (30) showing the location of cortisol-associated SNPs within defined LD blocks. (D) Venn diagrams where groupings represent different sources used to identify GR-linked trans-genes in the liver, (E) visceral abdominal fat, and (F) subcutaneous fat. These sources include transcription factor databases (db), ChIP-seq from perturbation-based experiments (23), and differential expression of dexamethasone-treated mice (24).






3.2 GR-regulated trans-genes associated with plasma cortisol

As the GR is the primary mechanism by which cortisol influences transcription, we sought to identify a subset of cortisol-associated trans-genes that were also regulated by the GR. The cortisol-associated trans-genes identified in this study were compared to sets of known GR targets identified from different sources as described in Supplementary Table S1. This included large projects such as ENCODE, TRANSFAC, and CHEA that predict transcription factor-binding targets from high-throughput transcription factor-binding assays. We also included predicted GR targets from perturbation-based experiments in specific tissues. ChIP-seq and microarray analysis has been used to identify 274 glucocorticoid-regulated genes in 3TS-L1 adipocytes, a murine-derived cell line (23). In addition, RNA-seq data in subcutaneous fat from adrenalectomized mice treated with dexamethasone, a GR agonist, have been used to identify genes that are differentially expressed (24).

The greatest number of unique cortisol-associated trans-genes was identified in the liver (n = 43), subcutaneous fat (n = 54), and visceral abdominal fat (n = 59) at a 15% FDR threshold. The involvement of these tissues in glucocorticoid signaling and physiological effects has been well documented in the literature (31–34); therefore, the identification of GR-regulated trans-genes was restricted to these tissues. Comparisons of genes identified as glucocorticoid-regulated in 3T3-L1 adipocytes were only made with subcutaneous and visceral adipose trans-genes. Likewise, as the murine RNA-seq experiments were restricted to subcutaneous adipose, only subcutaneous adipose trans-genes were compared to these differentially expressed genes.

In the liver trans-gene set, 19/43 genes were identified that were present in either the ENCODE, TRANSFAC, or CHEA datasets (FDR = 15%) (Figure 1D; Supplementary Table S4). This includes SERPINA6 that is cis-associated with genetic variation for plasma cortisol, as described previously (8). One gene, CPEB2, was identified in more than one dataset and was present in both ENCODE and CHEA. CPEB2 (posterior probability = 0.89) is a regulator of translation, splice variants of which have been linked to cancer metastasis (35).

Visceral adipose tissue had the largest number of cortisol-associated trans-genes. Here, 21/59 of these genes had some evidence of being targets of GR (Figure 1E; Supplementary Table S5). There were five genes that had been identified as GR targets from both high-throughput transcription factor-binding assays and adipose-specific experiments. These include CD163 and LUC7L3. CD163 is a hemoglobin scavenger protein that is expressed in macrophages and involved in the clearance of hemoglobin/haptoglobin complexes that may play a role in the protection from oxidative damage. It also plays a role in activating macrophages as part of the inflammatory response (36). LUC7L3, also known as CROP, encodes a protein that is involved in alternative splicing and is associated with human heart failure (37). It has also been shown to play a role in the inhibition of hepatitis B replication (38).

Of the cortisol-associated trans-genes identified in subcutaneous adipose (FDR = 15%), 28/54 genes were either present in a transcription factor dataset or identified from the adipose-specific perturbation datasets (Figure 1F; Supplementary Table S6). There were 13 genes that had been identified as GR targets from both high-throughput transcription factor-binding assays and adipose-specific experiments. These include RNF13 that encodes IRE1α-interacting protein that plays an important role in the endoplasmic reticulum (ER) stress response through regulation of IRE1α, a critical sensor of unfolded proteins (39). Also IRF2, encoding the transcription factor Interferon Regulatory Factor 2 that plays an important role as a repressor of IRF1 that in turn is involved in the interferon-mediated immune response (40). Furthermore, IRF1 has previously been identified as a marker for glucocorticoid sensitivity in peripheral blood (41).




3.3 Reconstruction of cortisol-associated gene networks

Having identified cortisol-associated trans-genes that are regulated by GR, causal estimates were obtained for pairwise relationships between GR-regulated trans-genes and all other genes within the given tissue. This was carried out for all GR-regulated trans-genes in the liver, subcutaneous fat, and visceral abdominal fat with a valid cis-eQTL instrument (12, 19, and 7 genes, respectively) (Supplementary Table S7). A 10% global FDR threshold was then imposed for each gene set (Table 1). Primary networks were obtained by filtering to include only GR trans-genes with a minimum of four target genes at the global FDR threshold.


Table 1 | Number of network targets following FDR filtering.



In the liver, we identified a single gene network driven by CPEB2, which was found to be trans-associated with the cortisol-associated SNP rs4905194 (Figure 2A). This network contained 48 causal interactions driven by CPEB2 at a 10% FDR threshold (Figure 2D; Supplementary Table S9). It is notable that CPEB2 appears as the only network regulator in the liver considering it was also the cortisol-associated trans-gene with the strongest links to GR regulation from the liver trans-gene set. A detailed description of the CPEB2 network and all other networks identified can be found in the Supplementary Information (Section S2.1).




Figure 2 | The 10% FDR gene networks in STARNET across different tissues. (A) Gene expression boxplot in the liver showing trans-association with cortisol-linked SNP rs4905194 and CPEB2, (B) in subcutaneous fat between rs11622665 and RNF13 and (C) rs8022616 and IRF2 (p-value obtained from Kruskal–Wallis test statistic). Box shows quarterlies of the dataset, with whiskers indicating the upper and lower variability of the distribution. (D) Causal gene network reconstructed from pairwise interactions from GR-regulated trans-genes against all other genes in the corresponding tissue for CPEB2, (E) RNF13, and (F) IRF2. Edges represent Bayesian posterior probabilities of pairwise interaction between genes (nodes) exceeding 10% global FDR. Arrow indicates direction of regulation, and interactions were only retained where parent node had at least four targets.



In subcutaneous fat, two major subnetworks were identified under the regulation of the genes RNF13 and IRF2. This includes a total of 343 causal relationships across both subnetworks, including two genes shared by both subnetworks. RNF13 was found to be trans-associated with the cortisol-associated SNP rs11622665 (Figure 2B) and represents the largest subcutaneous fat subnetwork with 215 gene targets at a 10% FDR threshold (Figure 2E; Supplementary Table S10).

The transcription factor IRF2, which was associated with the cortisol-linked SNP rs8022616 (Figure 2C), was found to putatively regulate a network of 128 genes (FDR = 10%) (Figure 2F). Some notable targets of IRF2 include LDB2 (posterior probability = 0.94) and LIPA (posterior probability = 0.91). GWAS suggests functions for LIPA related to CAD and ischemic cardiomyopathy (42), while LDB2 has been demonstrated to be involved in the development of atherosclerosis (43). Additionally, cortisol has been shown to induce a 5-fold reduction in LDB2 expression in adipocytes (44).

Predicted IRF2 transcription factor targets have been previously described as part of the TRANSFAC dataset. We examined the overlap between predicted IRF2 targets in TRANSFAC, and gene targets within the IRF2 causal networks were identified in subcutaneous fat. A true network of IRF2 targets would be expected to show an enrichment of predicted IRF2. Using Fisher’s exact test on data from subcutaneous fat, at a 10% FDR threshold, the IRF2 network had 128 target genes, 35 of which were also predicted IRF2 targets (p = 0.08); at a 15% FDR threshold, 104/247 causal targets were also predicted targets of IRF2 in TRANSFAC (p = 0.005). Decreasing the global FDR beyond this threshold increased the number of TRANSFAC targets within the pool of causal targets, however at a lower enrichment (p = 0.046) (Supplementary Table S12).

In addition to examining the prevalence of IRF2 targets within the IRF2 causal network, we investigated the overlap between network genes that are also regulated by GR. We observed an enrichment of ENCODE GR targets at 15% and 20% FDR thresholds (p< 0.05) including 68 and 138 GR targets, respectively. No GR enrichment was observed in either CHEA or TRANSFAC datasets for IRF2 networks.




3.4 Co-expression of cortisol network targets in independent datasets

Causal gene networks represent coordinated changes in gene expression in response to changes in the expression of network regulators. Therefore, it is possible to examine if these changes in gene expression are present in independent datasets using gene expression data alone. We used RNA-seq and microarray data from the METSIM and STAGE datasets, respectively, to compare patterns in gene expression within causal networks predicted from STARNET. As METSIM only contains gene expression data for subcutaneous fat, analysis was restricted to the causal networks identified in STARNET subcutaneous fat.

Absolute correlation coefficients between the targets of the previously described network regulators were calculated, and their distributions were compared to distributions of random sets of genes selected from the replication gene expression data, the same size as the corresponding target gene set. The difference between targeted and random distributions was formalized using the Kruskal–Wallis test for each subnetwork (Table 2).


Table 2 | Correlations between network targets within replication datasets.



In the liver, correlations between network targets of the single subnetwork under the regulation of CPEB2 were observed in STARNET and STAGE. Hierarchical clustering within the STARNET liver also revealed clustering of correlated genes that were retained when the clustered gene order was then applied to the STAGE liver (Figure 3A). Correlations between the 44 CPEB2 target genes in the STAGE liver were stronger than their random counterparts (p = 8.2 × 10-32), with this shift also being observed in the STARNET liver (p = 2.32 × 10-197) (Figure 3D).




Figure 3 | Replication of cortisol-associated gene networks in independent datasets. (A) Correlation heatmap showing pairwise Pearson correlations between CPEB2, (B) IRF2, and (C) RNF13 network targets. Hierarchical clustering of genes in STARNET (discovery) was applied to the same genes within replication datasets. (D) Correlations between network targets in discovery vs. replication datasets for CPEB2, (E) IRF2, and (F) RNF13 networks. The Kruskal–Wallis test calculated for the distribution of correlations between network targets compared to correlations within random gene sets of the same size.



In subcutaneous fat, correlations were observed between the network targets of RNF13 and IRF2, and hierarchical clustering patterns from STARNET were applied to the replication datasets of STAGE and METSIM (Figures 3B, C). For RNF13, similar patterns of co-expression were observed in the STAGE subcutaneous fat following clustering; however, this was not the case in the METSIM dataset (Figure 3B). Despite this, RNF13 targets appeared more highly correlated than their randomly selected counterparts in STARNET (p< 1.0 × 10-300), STAGE (p< 1.0 × 10-300) and to a lesser extent in METSIM (p = 2.3 × 10-7) (Figure 3E).

In subcutaneous fat, patterns of co-expression between IRF2 targets were conserved most prominently in METSIM; however, co-expression was less strongly correlated compared with RNF13 targets (Figure 3C). IRF2 subcutaneous fat subnetwork targets were more strongly correlated than their random counterparts in STARNET (p< 1.0 × 10-300), STAGE (p = 8.35 × 10-86), and METSIM (p< 1.0 × 10-300) (Figure 3F).





4 Discussion

In this study, we have characterized the impact that genetic variation for plasma cortisol has upon tissue-specific gene expression. We showed that cortisol-linked genetic variants at the SERPINA6/SERPINA1 locus mediate changes in gene expression in trans across multiple tissues, in addition to the cis-associations in the liver that have been described previously (8). We have scrutinized these trans-associations to identify a subset of genes that are regulated by glucocorticoids and in turn regulate downstream transcriptional networks, thus providing a deeper understanding of the transcriptional landscape driven by cortisol-linked genetic variation that may underpin the progression to CVD.

CBG, as encoded by SERPINA6, is responsible for binding cortisol in the blood. It has remained uncertain whether variation in CBG impacts the availability of cortisol within tissues, since any resulting change in free cortisol concentrations would be expected to be adjusted by negative feedback of the HPA axis (45). However, deleterious mutations in CBG are associated with dysfunction in animals and humans, suggesting an impact of CBG on cortisol signaling (45). Our major finding that downstream transcriptomic changes in extrahepatic tissues are associated with genetic variation at the SERPINA6 locus lends strong support to the hypothesis that CBG influences tissue delivery of cortisol and modulates glucocorticoid-induced changes in gene expression.

For the STARNET study, whole-blood samples were taken preoperatively and all other tissues including the liver were taken during the CABG surgery. In addition to any rise in cortisol due to anxiety and disturbed sleep in anticipation of surgery, the human stress response to surgery has been well characterized and results in stimulation of the HPA axis leading to high levels of cortisol in the blood both during and post-surgery (46). Surgery is also associated with a very rapid fall in CBG production. Therefore, it is uncertain if cortisol-associated gene expression patterns observed in STARNET would also be observed in an unstressed healthy population. It may be that CBG influences the dynamic range of alterations in free plasma cortisol during stress rather than affecting the delivery of cortisol to tissues in unstressed conditions. However, considering that co-expression of the network targets was reproducible within independent samples from the METSIM study, obtained under nonsurgical conditions, this suggests that the cortisol-associated networks we inferred from STARNET do operate also in unstressed conditions.

The tissues with the greatest number of trans-genes identified were the liver and both subcutaneous and visceral abdominal fat, all tissues known to play a role in glucocorticoid biology. In the liver, glucocorticoids have extensive effects on glucose and fatty acid metabolism (31, 32), while in adipose tissue, glucocorticoids regulate lipogenesis and lipid turnover (33, 34). Skeletal muscle is also a major target of glucocorticoids, where they modulate protein and glucose metabolism (47). A lack of available data for identifying tissue-specific GR targets in other tissues means that potential GR targets may have been missed in tissues outside of the liver and adipose.

We identified a subset of GR-responsive genes in the liver, subcutaneous fat, and visceral adipose fat. However, we did not observe a statistical enrichment of GR-regulated genes in any of these trans-gene sets. This does not negate the identification of GR targets that are associated with plasma cortisol, but it may imply that there are some effects of cortisol-linked genetic variation that are mediated by mechanisms other than directly by GR either through secondary regulation by GR-regulated genes or through the alternative mineralocorticoid receptor. Indeed, some of the genes with higher levels of evidence for GR regulation also demonstrated regulation of transcription networks, e.g., CPEB2, IRF2, and RNF13. This supports our strategy of setting a relatively lenient FDR threshold and then filtering to identify cortisol-associated trans-genes with prior evidence of GR regulation.

It should be noted that different FDR thresholds were used for the trans-gene discovery and for the network reconstruction. Initially, we selected a more lenient threshold of 15% for the identification of trans-genes, considering that trans-eQTLs tend to exhibit weaker associations compared to their cis counterparts (47). We then decided to restrict our list of trans-associations by implementing a biological rather than a statistical threshold, limiting the number of trans-genes to those with evidence of GR regulation. However, given that there was no biological threshold implemented with network reconstruction, a more stringent FDR threshold was appropriate. The 10% FDR in this context implies that 1 in 10 edges of a given network is a potential false positive. However, given the strength of the replication within independent datasets, this suggests that these networks are considerably robust.

We identified causal gene networks in the liver, subcutaneous fat, and visceral abdominal fat where cortisol-associated trans-genes act as regulators of subnetworks within overarching tissue-specific networks. Pairwise causal relationships were established between network regulators and downstream targets using cis-eQTLs as genetic instruments. This approach has the benefit of generating directed relationships between a regulator and target while accounting for any unobserved confounding. However, a drawback of this approach is that we are limited by only being able to examine GR-regulated trans-genes with valid cis-eQTLs. This means that there could be valid cortisol-responsive networks regulated by GR trans-genes that we were unable to predict due to lack of a corresponding instrument.

IRF2 stands out as a network regulator of particular interest. There is strong evidence of GR regulation, where IRF2 has been identified as a GR target from published dexamethasone-treated adipocyte ChIP-seq experiments (23) and as a putative GR target within ENCODE. It is robustly associated with its corresponding cis-eQTL instrument, and there is an enrichment of IRF2 targets within our predicted IRF2-regulated causal network. Additionally, we show evidence of regulation by glucocorticoids within the targets of IRF2, potentially suggesting evidence of a feed-forward loop motif (48). Interestingly, the genotype for rs8022616, the cortisol-associated SNP linked to IRF2 expression in subcutaneous fat, is associated with a decrease in IRF2 expression. Previous evidence suggests that interferon signaling is inhibited by glucocorticoids (49, 50).

Although we have determined the direction of causality between the regulator and target genes, we do not know if the expression of the target gene is upregulated or downregulated in response to modulation of the regulator. This could be investigated through functional experiments within a relevant cell line, whereby the differential gene expression of target genes is measured in response to perturbation of the network regulator. To take this one step further, the results of a cell line experiment could be used to determine the dynamics of the putative cortisol networks using systems biology approaches for modelling gene expression (51).

In conclusion, we have linked genetic variation for plasma cortisol to changes in gene expression across the genome, beyond that which has been previously described at the SERPINA6/SERPINA1 locus (8) and extending to adipose tissue as well as the liver. Furthermore, we have shown that a subset of these trans-genes is driven by the GR and in turn drives transcriptional networks across different tissues. These networks have been found to be robust and their network targets appear co-expressed within independent gene expression datasets of the same tissue. Further study of these networks and their downstream targets could be used to enhance our mechanistic understanding of the pathways linking cortisol with complex diseases as described in observational studies.
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The Wolfram syndrome 1 gene (WFS1) is the main causative locus for Wolfram syndrome, an inherited condition characterized by childhood-onset diabetes mellitus, optic atrophy, and deafness. Global genome-wide association studies have listed at least 19 WFS1 variants that are associated with type 2 diabetes (T2D) and metabolic traits. It has been suggested that miRNA binding sites on WFS1 play a critical role in the regulation of the wolframin protein, and loss of WFS1 function may lead to the pathogenesis of diabetes. In the Hungarian population, it was observed that a 3’ UTR variant from WFS1, namely rs1046322, influenced the affinity of miR-668 to WFS1 mRNA, and showed a strong association with T2D. In this study, we genotyped a large cohort of 2067 individuals of different ethnicities residing in Kuwait for the WFS1 rs1046322 polymorphism. The cohort included 362 Southeast Asians (SEA), 1045 Arabs, and 660 South Asians (SA). Upon performing genetic association tests, we observed significant associations between the rs1046322 SNP and obesity traits in the SEA population, but not in the Arab or SA populations. The associated traits in SEA cohort were body mass index, BMI (β=1.562, P-value=0.0035, Pemp=0.0072), waist circumference, WC (β=3.163, P-value=0.0197, Pemp=0.0388) and triglyceride, TGL (β=0.224, P-value=0.0340). The association with BMI remained statistically significant even after multiple testing correction. Among the SEA individuals, carriers of the effect allele at the SNP had significantly higher BMI [mean of 27.63 (3.6) Kg/m2], WC [mean of 89.9 (8.1) cm], and TGL levels [mean of 1.672 (0.8) mmol/l] than non-carriers of the effect allele. Our findings suggest a role for WFS1 in obesity, which is a risk factor for diabetes. The study also emphasizes the significant role the ethnic background may play in determining the effect of genetic variants on susceptibility to metabolic diseases.
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1 Introduction

Obesity has now become a global epidemic with an alarmingly increasing rate of incidence (1). The World Health Organization (WHO) reports that the worldwide prevalence of obesity nearly tripled between 1975 and 2016 and is expected to double in the next 25 years (2, 3). Different ethnicities exhibit different rates of obesity. This is evident in the different rates of obesity in ethnicities such as those of Southeast Asians, Arabs, and South Asians. The Southeast Asian countries have some of the lowest rates of overweight and obesity globally ranging from 2.2 to 15.5%. A recent review of all national surveys for some of the major South Asian countries (including Afghanistan, Bangladesh, India and Sri Lanka) reported that the prevalence of being overweight or obese in adults ranged from 22.4 to 52.4% (4). As for Arabian countries, WHO reported that the prevalence of obesity has a wide range between 4 and 55% (5).

Obesity is a complex multifactorial disorder with several risk factors that contribute to its development. People with obesity not only suffer from a poor quality of life, but are also at risk of developing serious complications, such as diabetes, cardiovascular diseases, sleep disorders, or hypertension (1). Therefore, it is important to understand the underlying multifactorial causes of obesity. Although environmental factors and lifestyle practices are the main causes of obesity, genetic susceptibility also plays a very significant role. Several reports confirm the association of certain genes with obesity, fat distribution, energy expenditure, and appetite regulation. Studies have shown that 40–70% of the variation in body mass index (BMI) among individuals can be attributed to genetic factors (6, 7). Furthermore, at least 200 genetic variants have been reported to be associated with obesity in several populations; however, such studies have focused on Caucasians from Europe (8, 9). Ethnicity can play an important role in determining the genetic susceptibility of an individual to obesity (10, 11).

Wolfram syndrome 1 gene (WFS1) was identified in the year of 1998 on chromosome 4p16 as a novel gene that causes a rare autosomal recessive neurodegenerative disorder, namely Wolfram syndrome (WFS) (12) alias DIDMOAD syndrome (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is clinically characterized by the juvenile-onset of diabetes mellitus as the main symptom in the early stage of the disease, and by bilateral progressive optic atrophy in later stages (13–15). The WFS1 gene encodes wolframin, a protein present in the membrane of the endoplasmic reticulum (ER), and is mainly detected in certain brain regions as well as in pancreatic β-cells and the heart (16, 17). Several WFS1 polymorphic variants have been associated with the risk of developing diabetes mellitus (18, 19). Among these variants, two microRNA-single-nucleotide polymorphisms (miR-SNPs), rs1046322 and rs9457, were strongly associated with both type 1 and type 2 diabetes, and this association remained statistically significant after applying multiple corrections (19). Considering that obesity is a risk factor for diabetes associated with insulin resistance, we aimed to evaluate, in the present study, the association of these two WFS1 variants with obesity in individuals of different ethnicities.




2 Materials and methods



2.1 Study population

This study included a cohort of 2067 participants residing in Kuwait. Upon enrolment, we recorded the following information: age, sex, baseline characteristics (height, weight, waist circumference (WC)), and underlying diagnosed disorders (such as diabetes). The study protocol was reviewed and approved by the Ethical Review Committee of Dasman Diabetes Institute and was conducted in accordance with the guidelines of the Declaration of Helsinki and the US Federal Policy for the Protection of Human Subjects. All participants signed an informed consent form before participating in the study. The ethnicity of each subject was defined via self-reporting and was confirmed through detailed questioning on parental lineage up to three generations.




2.2 Sample processing

We collected blood samples in accordance with established institutional guidelines. After confirming that the participant was under an overnight fast, we collected blood samples in the morning, between 8 and 11 am. We performed DNA extraction using a Gentra Puregene kit (Qiagen, Valencia, CA, USA) and assessed quantification using Quant-iT PicoGreen dsDNA Assay Kits (Life Technologies, Grand Island, NY, USA) and an Epoch Microplate Spectrophotometer (BioTek Instruments). We checked absorbance values at 260–280 nm for adherence to an optical density range of 1.8–2.1.




2.3 Anthropometric measurements and blood biochemistry

The BMI of each participant was calculated as the ratio of their weight (Kg) to height (m) squared. We assessed lipid profiles, including triglyceride (TGL), low density lipoprotein (LDL), high density lipoprotein (HDL), and total cholesterol (TC) levels, using a Siemens Dimension RXL integrated chemistry analyzer (Diamond Diagnostics, Holliston, MA, USA).




2.4 Genotyping

We performed candidate SNP genotyping using the TaqMan Genotyping Assay on an ABI 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). We set the polymerase chain reaction (PCR) sample with 10 ng of DNA, 5 × FIREPol Master Mix (Solis BioDyne, Estonia), and 1 μl of 20 × TaqMan SNP Genotyping Assay. We set thermal cycling conditions at 60°C for 1 min and 95°C for 15 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. We used Sanger sequencing to validate certain selected cases of homozygous and heterozygous genotypes using a BigDye Terminator v3.1 Cycle Sequencing Kit on a 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA).




2.5 Quality assessment of the rs1046322 and rs9457 SNPs

We assessed the quality and statistical association of the rs1046322 and rs9457 SNPs using the PLINK genome association analysis toolset (version 1.9). Next, for quality assessments, we determined minor allele frequency (MAF) and consistency with the Hardy–Weinberg equilibrium for the WFS1 variants.




2.6 Statistical analysis

Data are presented as mean± standard deviation (SD). We determined statistical significance using Student’s t-test for quantitative variables and Fisher’s exact test for categorical variables, and P values ≤ 0.05 were considered significant. We assessed allele-based associations between the rs1046322 variant and the quantitative traits (BMI, TGL, and WC) using genetic models based on additive mode of inheritance (GG versus GA versus AA) adjusted for the confounders of age, sex and diabetes status. We assessed changes in the mean of phenotype measurement using regression coefficient (Beta), where a positive regression coefficient indicated that the minor allele increases the risk effect. Multiple comparisons were corrected by generating empirical P values (Pemp) using the max(T) permutation procedure available in PLINK, based on 10,000 permutations. A threshold of < 0.05 was set for both the P value and Pemp value to assess the statistical significance of the association signal. Any quantitative trait value lesser than Q1–1.5 × the interquartile range (IQR) or higher than Q3 + 1.5 × IQR was considered to be an outlier and was excluded from the statistical analyses. Statistical analyses were performed using PLINK, version 1.9, and R software, version 4.0.2.





3 Results



3.1 Characteristics of the study participants and genotyping data

The average rate of successful genotyping of the two SNPs rs1046322 and rs9457 in each of the three subpopulations, namely Arab, South Asians, and Southeast Asians was > 99%, and the SNP was within the Hardy–Weinberg equilibrium. Of the two SNPs, the rs9457 did not show significant associations with any of the examined obesity traits in any of the three ethnic cohorts, though an association is seen with HDL in the Arab cohort with a P value of 0.0334 albeit with an insignificant empirical P (Pemp) value (Supplementary Table S1; the allele and genotype frequencies for the variant are listed in the notes to the table). Thus, rs9457 was not included in further analyses.

The frequencies of the minor allele (A) at the WFS1 rs1046322 SNP in the Arab, South Asian, and Southeast Asian populations were 17.27%, 11.67%, and 6.77%, respectively. Of the 362 genotyped samples from the Southeast Asian population, 314 (86.7%) were homozygous for G, only 1 (0.3%) was homozygous for A, and 47 (13%) were heterozygous (GA). Of the 1045 genotyped samples from the Arab population, 715 (68.4%) were homozygous for G, 31 (3%) were homozygous for A, and 299 (28.6%) were heterozygous (GA). Of the 660 genotyped samples from the South Asian population, 515 (78%) were homozygous for G, 9 (1.4%) were homozygous for A, and 136 (20.6%) were heterozygous (GA).

The mean (SD) age of participants in the Southeast Asian cohort was 41.1 (9.4) years, in the Arab cohort was 47.6 (11.6) years and in the South Asian cohort was 42.9 (9.7) years. Thus, the participants in each of the three ethnic cohorts are uniformly largely middle-aged. Table 1 presents a genotype-wide distribution (GG versus (GA+AA)) at rs1046322 of the characteristics of the three ethnic cohorts. After examining the genotype-specific differences in the phenotypic traits, we observed statistically significant differences in the Southeast Asian population (Table 1). The phenotypic traits that showed statistically significant genotypic differences in the Southeast Asian population were as follows: (i) Mean (SD) of BMI was significantly higher in the participants that harbored the A allele as compared to non-carriers [27.63 (3.6) Kg/m2 vs. 26.02 (3.6) Kg/m2; P = 0.004] (Figure 1A and Table 1); (ii) WC of the SNP carriers was significantly higher than that of the non-carriers [89.9 (8.1) cm vs. 85.9 (9.6) cm; P = 0.006] (Figure 1B and Table 1); and (iii) Participants that harbored the A allele had higher TGL as compared to non-carriers [1.672 (0.8) mmol/l vs. 1.43 (0.7) mmol/l; P = 0.037] (Figure 1C and Table 1).


Table 1 | Overview of the Southeast Asian, Arab, and South Asian populations as per genotype distribution of the WFS1 rs1046322 variant.






Figure 1 | Boxplots displaying data distribution for the phenotype traits (A) Body mass index, (B) Waist circumference, (C) Triglyceride levels in Southeast Asian individuals with genotypes (GA+AA) containing the effect allele or homozygous (GG) genotypes for reference alleles of the WFS1 rs1046322 variant.






3.2 Association between WFS1 rs1046322 and obesity-related markers

The association tests for the variant and obesity markers showed that obesity traits were significantly associated with the WFS1 rs1046322 variant only in the SEA subpopulation, and not in the Arab or South Asian populations (Table 2). The traits showing statistically significant differences included BMI (β:1.562, P = 0.0035), WC (β:3.163, P = 0.0197), and TGL (β:0.224, P = 0.034). Further, the associations with BMI and WC also exhibited significant empirical Pempvalues of 0.0072 and 0.0388, respectively establishing the BMI and WC as strong contenders for association with the SNP.


Table 2 | Association tests for the WFS1 rs1046322 variant (A as the effect allele) with the phenotypic traits of BMI, WC and TGL using genetic models based on additive mode of inheritance (GG versus GA versus AA).






3.3 P value threshold after correction for multiple testing

Having found association of the SNP with triglyceride at a P value of 0.034, we investigated the associations of the SNP with the cholesterol traits of HDL, LDL and total cholesterol. We found that the associations for these cholesterol traits with the SNP were insignificant (Supplementary Table S2). As regards multiple testing for considering the cholesterol traits along with triglycerides and BMI and WC, it is to be noted that not all the cholesterol traits are independent of each other. In our earlier work (20), we queried independent variables among the four lipid traits by way of performing Pearson correlation analysis between the traits followed by matSpD analysis (21) (http://neurogenetics.qimrberghofer.edu.au/matSpD/), and found that the estimated effective number of independent traits among the lipid traits as 3. Upon including the WC and BMI as independent traits, we have a total of 5 independent traits tested for associations with the SNP. The P value threshold after multiple testing correction for significant associations turns out to be 0.01 (=0.05/5). Thus, after multiple testing correction, only the BMI association with the rs1046322 SNP (at a P value of 0.0035) remains significant.





4 Discussion

In this study, the WFS1 rs1046322 and rs9457 were assessed for association with obesity in the ethnic populations of Arabs, South Asians and Southeast Asians. The rs9457 SNP did not exhibit any significant associations with obesity traits. However, the results demonstrated that WFS1 rs1046322 is significantly associated with BMI and WC in the Southeast Asian population, but not in the Arab or South Asian populations. The SNP is also associated with TGL levels only in the Southeast Asian population, and not the other two subpopulations. Furthermore, carriers of the SNP had significantly higher BMI, WC, and TGL levels, as compared to non-carriers in the Southeast Asian subpopulation alone.

The 1000 Genome Project reported a MAF of 8% for the WFS1 rs1046322 variant. However, this SNP varies in its frequency across different populations, ranging from 7.2% in Chileans to 50% in Siberians. Although MAFs in the subpopulations of the present study fall within the lower range, we observed some differences among the three groups, with the Southeast Asian population showing the lowest MAF (6.8%), followed by the South Asian (11.7%) and Arab (17.3%) populations.

Upper body, or truncal, obesity is strongly associated with obesity-related complications, such as diabetes and cardiovascular diseases. Considering that WC is a measure of truncal obesity, it is interesting to note the effect sizes of the associations between the variant and WC and BMI (Table 2). The observed effect sizes in the SEA population indicate that the effect allele in WFS1 rs1046322 resulted in an increase by 3.163 cm in WC and by 1.562 Kg/m2 in BMI. Interestingly, a recent in vitro study by Ivask et al. (22) examined WFS1 heterozygous mouse model for response to high fat diet (HFD) in terms of body weight and metabolic characteristics. The authors found that the impaired body weight gain found in WFS1 mutant mice is prevented by HFD. They further observed that in WFS1 heterozygous mutant mice, HFD impaired the normalized insulin secretion and the expression of endoplasmic reticulum (ER) stress genes in isolated pancreatic islets. HFD increased the expression of Ire1α and Chop in pancreas and decreased the expression of Ire1α and Atf4 in liver from these mutant mice. The authors concluded that quantitative WFS1 gene deficiency predisposes carriers of single functional WFS1 copy to diabetes and metabolic syndrome and makes them susceptible to environmental factors such as HFD.

There is a lack of literature reports on associations between WFS1 and obesity. However, previous studies have linked several WFS1 SNPs with type 2 diabetes and biomarkers related to diabetes across various ethnicities, including the United Kingdom population, Swedish population and Ashkenazi population (23–26). One of the recently published large studies that confirmed the association between WFS1 and type 2 diabetes included 81,412 type 2 diabetes patients and 370,832 healthy individuals of diverse ancestries (27). Furthermore, the DESIR (Data from Epidemiological Study on the Insulin Resistance Syndrome) prospective study demonstrated in French cohorts that allelic variations at three SNPs in the WFS1 gene were associated with incident type 2 diabetes (28).

Considering the established role of wolframin as an ER stress regulator that negatively regulates ER stress signaling, discovering a link between the gene and obesity does not come as a surprise. Additional studies are required to further investigate the mechanism for this regulation. Given that wolframin plays a key role in mediating the ER export of vesicular cargo proteins, it could be speculated that it regulates the processing and release of different gut hormones or melanocortin hormones in the brain, similar to its role in regulating proinsulin cleavage and insulin secretion (29). In addition, a recent study demonstrated that WFS1 regulates anti-inflammatory responses in pancreatic β-cells. Specifically, the study reported that the pancreatic islets of WFS1 whole-body knockout mice display M1-macrophage infiltration and hypervascularization (30).

WFS1 rs1046322 is a 3’ UTR variant and is a putative miRNA (miR-668) binding site polymorphism. This variant was previously shown to influence the affinity of miR-668 to WFS1 mRNA (31). Though there exist no previous studies investigating the role of miR-668 in obesity, it has been recently shown that miR-668-3p can suppress mediators of inflammation and oxidative stress (32). Therefore, it would be interesting to examine the effect of this miRNA in obesity and its expression level in participants who suffer from obesity or metabolic syndrome.

In conclusion, the findings of the present study suggest an ethnic-specific role for WFS1 in obesity. While the current study included a large cohort with three different ethnic populations, further studies would benefit by examining the observed associations in more diverse ethnic populations. The study also highlights the importance of including ethnic groups that are under-represented in current global genetic studies of genotype–phenotype associations.
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Genotype Age DM onset  HbAlc hs-CRP Total chol = Triglyc LDL chol

(years) (%) (mmol/l) (mmol/l) (mmol/l) (mmol/l)
TTHI111I (rs10052957) cc 297 50.5 (11.4) 7.2 (1.2) 44 (6.6) 42 (1.0) 1.7 (1.0) 23 (0.8)
T vs. CC 286 280 50.3 (11.6) 7.4 (1.3) 4.6 (6.8) 43 (1.0) 1.9 (2.3) 24 (08)
adjusted Beta -0.52 (0.91) 015 (0.10)  0.08(0.55)  0.03 (0.08) 0.16 (0.15)  -0.02 (0.06)
P 0.57 012 0.88 0.68 026 075
ER22/23EK (1s6189/rs6190)  GG/GG 575 50.5 (11.5) 73 (1.3) 4.5 (6.7) 42 (1.0) 1.8 (1.8) 24 (0.8)
Avs GG/GG | 19 16 51.4 (10.7) 7.2 (0.6) 3.6 (3.2) 4.0 (0.8) 1.6 (0.9) 22(08)
adjusted Beta ) -0.12 (2.54) 0.25(027)  -0.62 (1.53) 1 022 (0.23) | 024 (041)  -021 (0.18)
P 0.96 0.36 0.69 033 057 024
N363S (rs6195) AA 553 50.3 (11.5) 73 (1.3) 4.5 (6.7) 42 (1.0) 1.7 (1.0) 24 (08)
Gvs AA 38 34 527 (11.3) 7.2 (1.0) 3.9(6.8) 42 (0.6) 1.9 (1.0) 21 (0.5)
adjusted Beta 0.29 (1.86) 20.01(020)  -0.81 (L11)  -0.11 (0.16) 017 (0.17) | -0.24 (0.13)
P 0.87 095 0.46 051 033 0.06
BCLI (rs41423247) cc 259 50.0 (11.3) 7.3 (1.2) 4.1(5.7) 42 (09) 1.7 (0.9) 24 (0.8)
Gvs. CC 305 316 50.8 (11.7) 72 (1.3) 47 (7.1) 42 (L1) 1.9 (23) 23 (0.8)
adjusted Beta -0.51 (0.94) 003 (0.10)  0.55(0.54)  -0.05 (0.08) 0.18 (0.15)  -0.09 (0.06)
P 059 0.75 031 054 023 0.18
9B (rs6198) AA 411 50.9 (11.4) 7.2 (1.2) 44 (65) 42 (10) 1.8 (2.0) 23 (0.8)
Gvs AA 169 | 146 49.2 (11.4) 7.4 (14) 49 (72) 43 (09) 1.8 (1.0) 24 (0.8)
adjusted Beta 225 (099 016 (0.11)  0.41(0.61) 001 (0.09) 0.02(0.16)  -0.03 (0.07)
P 0.02 0.14 050 090 0.90 064

Data are presented as mean (sd). Adjustments in the multivariate linear regression model: Age of onset was adjusted for sex and ethnicity; HbAlc was adjusted for sex, ethnicity, diabetes
duration, insulin use and metformin use; hsCRP was adjusted for age and sex; lipid spectrum was adjusted for sex, age, use of lipid lowering medication and metformin.
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Haplotype Age DM onset Hs-CRP Total chol. Triglycer. LDL chol.
(years) (mmol/l) (mmol/I) (mmol/l) (mmol/l)
1 0 147 49.5 (11.7) 73 (13) 47 (7.0) 42 (1.0) 1.8 (1.1) 23(0.7)
wild type 1 288 510 (11.6) 73 (1.2) 45 (6.6) 42 (1.0) 1.7 (1.0) 24 (0.8)
2 124 503 (11.2) 73 (1.2) 40 (6.0) 42(09) 1.6 (1.0) 23(0.8)
adjusted Beta 1.53 (0.68 -0.08 (0.07) -0.13 (0.40) 0.01 (0.06) -0.11 (0.06) 0.05 (0.05)
P 0.03 027 0.74 088 0.09 024
2 0 360 50.6 (11.4) 73 (1.2) 43(63) 42 (1.0) 1.7 (1.0) 23(0.8)
BCLI 1 178 50.2 (11.8) 73 (13) 47 (7.3) 42 (1.0) 1.7 (1.0) 23(0.8)
2 24 505 (11.3) 7.3 (11) 40 (3.6) 43 (1.0) 1.9 (1.1) 24(09)
adjusted Beta -0.80 (0.81) 002 (0.08) 0.14 (0.48) 0.00 (0.07) 0.04 (0.08) -0.01 (0.06)
P 032 078 0.76 0.97 0.58 0.84
3 0 431 509 (11.4) 73 (1.2) 44 (6.5) 42 (10) 1.8 (2.0) 23(0.8)
TthIIII + 9B 1 134 493 (113) 74 (14) 47(7.3) 43 (10) 1.8 (1.1) 2.4(0.8)
2 12 445 (142) 7.8 (1.4) 5.1(6.2) 38 (06) 1.7 (0.7) 2.1 (0.4)
adjusted Beta 233 (0.93) 0.14 (0.10) 0.14 (0.56) -0.01 (0.08) 0.04 (0.15) -0.03 (0.07)
P 0.01 0.14 0.80 092 0.79 0.64
4 0 442 50.1 (11.5) 73 (12) 43(63) 42 (1.0) 1.7 (1.0) 24(0.8)
TthIII + BCLT 1 120 522 (11.6) 72 (13) 5.0 (7.3) 42 (1.0) 1.8 (1.2) 23(0.7)
2 120 450 (108) 7.4 (0.9) 2.0 (1.3) 47 (08) 1.9 (1.4) 2.7(0.7)
adjusted Beta 0.45 (1.05) 0.01(0.11) 0.16 (0.61) -0.02 (0.09) 0.04 (0.10) -0.05 (0.07)
P 0.67 093 0.79 083 0.67 049
5 0 554 503 (11.5) 73 (13) 45(6.7) 42 (1.0) 1.7 (1.0) 24 (0.8)
N363S 1 38 529 (11.2) 73 (1.0) 3.8(6.9) 4.1 (06) 1.9 (1.0) 2.1(0.5)
2 38 ‘ 485 (17.7) 62(0.3) 6.7 (6.7) ‘ 48 (09) 1.6 (0.8) 2.8 (1.0)
adjusted ‘ Beta 0.00 (1.72) -0.03(0.18) -0.65 (1.03) -0.07 (0.15) 0.14 (0.16) -0.18 (0.12)
P 1.00 087 0.53 065 038 0.13
6 0 577 504 (11.5) 73 (13) 45 (6.7) 42 (1.0) 1.8 (1.8) 24 (0.8)
TthIIIl + ER22/ 23EK + 9B 1 19 514 (10.7) 72 (0.6) 3.6 (3.2) 4.0 (0.8) 1.6 (0.9) 22(0.8)
2 0 = = - - - -
adjusted Beta -0.09 (2.54) 025 (0.27) -0.62(1.53) -0.22 (0.23) -0.23 (041) -021 (0.18)
P 097 036 0.69 033 0.57 0.24

Data are presented as mean (sd). Adjustments in the multivariate linear regression model: Age of onset was adjusted for sex and ethnicity;
duration, insulin use and metformin use; hsCRP was adjusted for age and sex; lipid spectrum was adjusted for sex, age, use of lipid lowering medication and metformin.

HbAlc was adjusted for sex, ethnicity, diabetes
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Genotype Turkish Moroccan SE Asian
n (%) n (%) n (%)

TTHI111I (rs10052957) cc 162 (49.7) 24 (54.5) 41 (423) 52 (67.5) 18 (46.2)

cr 139 (42.6) 18 (40.9) 46 (47.4) 24 (31.2) 19 (48.7)

TT 25 (7.7) 2(45) 10 (10.3) 1(13) 2(5.1) 0211
ER22/23EK (rs6189/rs6190) GGIGG 319 (95.8) I 43 (95.6) 98 (100) 77 (98.7) 38 (95)

GA/GA 14 (42) 2 (44) 0(0) 1(13) 2(5) 0211
N363$ (rs6195) AA 298 (90.3) 44 (97.8) 96 (97.0) 76 (97.4) 39 (100)

AG 30 (9.1) 1(22) 330 2(26) 0(0)

GG 2(06) 0(0) 0(0) 0 (0) 0(0) <0.001
BCLI (rs41423247) (oo} 123 (38.9) 23 (57.5) 16 (48.9) 42 (54.5) 25 (67.6)

G 163 (51.6) 16 (40) 35 (37.2) 31 (40.3) 9 (24.3)

GG 30 (9.5) 1(25) 13 (138) 1(5.2) 3(8.1) 0.002
9B (rs6198) AA 232 (71.4) 25 (56.8) 56 (58.9) 64 (83.1) 34 (87.2)

AG 93 (28.6) 19 (43.2) 39 (41.1) I 13 (16.9) 5(12.8) 0094

*Statistical significance of differences between ethnic groups is tested through a chi square test for trend.
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ALB

€GFRereatinine

BE

Population Effect (Beta [SE]) ~ value
2x 107 ‘
NDM ** 106,814 0.05 (0.004) I
T2D *** 7,741 0.08 (0.02) 0.004* ‘
NDM 368,521 0.002 (0.0004) 2% 10°% ‘
2|

T2D 14,837 0.004 (0.003)

GRScupns A genetic risk score based on a combination of the four CUBN genetic variants
(minor alleles); N, sample size; Beta, Beta estimate; SE, standard error; ALB, continuous
urinary albumin (mg/L, natural log-transformed); eGFR.reqgnines estimated glomerular
filtration rate (natural log-transformed); NDM, without Diabetes Mellitus; T2D, Type 2
diabetes. *Statistically significant (P< 0.05). ** out of total 107,276 individuals with continuous
urinary albumin levels. *** out of total 7,777 individuals with continuous urinary

albumin levels.
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Population Effect (Beta [SE])

2% 107
NDM ** 99,180 0.05 (0.004) 1o
3x10™
ALB T2D *** 7,182 0.08 (0.02) *
NDM 343,988 0.002 (0.0004) ‘ 2% 107
€GFReregtinine T2D 13,828 0.005 (0.003) ‘ 0.1

GRScupx A genetic risk score based on a combination of the four CUBN genetic variants
(minor alleles); N, sample size; Beta, Beta estimate; SE, standard error; ALB, continuous
urinary albumin (mg/L, natural log-transformed); eGFR  eqinines €stimated glomerular
filtration rate (natural log-transformed); NDM, without Diabetes Mellitus; T2D, Type 2
diabetes. *Statistically significant (P< 0.05). ** out of total 107,276 individuals with continuous
urinary albumin levels. *** out of total 7,777 individuals with continuous urinary albumin
levels.
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Effect

Genetic variant (EA) Population (Beta [95% Cl])
TID 1,916 -0.12 [-0.32; 0.08] 0.26 025
T2D 15,745 0.01 [-0.02; 0.04 037 0.66
15144360241 (C) Combined DM 17,661 0.00 [-0.02; 0.03 032 0.78
TID ‘ 2,712 -0.05 [-0.16; 0.07) 025 043
T2D 15,724 0.01 [0.00; 0.03 0.03* 0.14
1545551835 (A) Combined DM 18,436 0.01 [0.00; 0.03 0.05 018
TID 1,916 0.10 [-0.17; 038 04 0.46
T2D 15,746 0.00 [-0.04; 0.05 058 0.88
15141640975 (A) Combined DM 17,662 0.01 [-0.04; 0.05 0.67 0.8
TID 2,712 0.00 [-0.04; 0.05 053 0.94
T2D 15,741 0.00 [-0.01; 0.01 0.03* 0.77
151801239 (C) Combined DM 18,453 0.00 [-0.01; 0.01 0.15 0.76

SNV, single nucleotide variant; €GFR yeqgnines log-transformed estimated glomerular filtration rate based on the CKD-EPLg, equation; EA, effect allele (i.e,, minor allele); N, sample size; Beta, Beta
coefficient; CI, confidence interval; Piser, P-value for heterogeneity across studies. Pyrec< 0.05 indicates variation; T1D: Type 1 diabetes; T2D: Type 2 diabetes; Combined DM: T1D and T2D combined.
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SNV, single-nucleotide variant; éGFR reatinine estimated glomerular filtration rate (natural log-transformed); EA, effect allele (i.e., minor allele); N, sample size; EAF, Effect allele frequency; Beta,
Beta coefficient; SE, standard error; NDM, without Diabetes Mellitus; T2D, Type 2 diabetes. *Statistically significant (P< 0.05). ** For completeness, we also show the results for T2D, which were
part of DM meta-analyses for model 1. *** out of total 370,061 individuals. **** out of total 14,892 individuals.
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eGFRcreatinine associations were significant. # Interaction term is SNV*albuminuria groups
(normo-, micro-, and macro albuminuria).
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BMI®
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(mmol/l)
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1.29 (0.3) 1.209 (0.3) 0.114 1.141 (03) 1.138 (0.312) 0.877 1082 (0242) 1062 (0.262) 0.404
(mmol/l)

“Number (%), *Mean (SD), MAF, minor allele frequency; SD, standard deviation; IQR, interquartile range; BMI, body mass index; TGL, triglyceride; TC, total cholesterol; LDL, low-density
lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol.
Statistically significant data are bolded.
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[95% CI], 95% confidence intervals; P,,,,, empirical P values; BMI, body mass index; WC, waist circumference; TGL, triglyceride.
The models were corrected for the confounders of age, sex and diabetes status.
Statistically significant data are bolded.
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Total targets include all pairwise interactions at the given threshold, and network regulators correspond to trans-genes with at least four network targets at the given FDR threshold. Inclusive of

network regulators present at both 10% and 15% thresholds.
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|
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Genetic variant Effect

(EA) Diabetes type (Beta [95% Cl])
TID 2,177 -0.14 [-0.32; 0.05 038 0.15
T2D 30,727 0.01 [-0.01; 0.04, 0.62 0.40
15144360241 (C) Combined DM l 32,904 0.01 [-0.02; 0.04 042 053
TID 3236 -0.02 [-0.13; 0.08 034 0.69
T2D ‘ 30,814 0.01 [0.00; 0.03] 0.08 0.09
1545551835 (A) Combined DM 34,050 0.01 [0.00; 0.02] 0.15 0.10
TID 2,177 0.16 [-0.11; 0.4, 075 025
T2D 30,816 0.00 [-0.03; 003 053 0.83
15141640975 (A) Combined DM 32,993 0.01 [-0.02; 0.03 0.60 073
TID ‘ 3236 -0.01 [-0.06; 0.03 0.20 057
T2D 30,834 0.00 [0.00; 0.01] 021 0.64
151801239 (C) Combined DM 34,070 0.00 [0.00; 0.01] 023 059

SNV, single nucleotide variant; € GFRreatinine 10g-transformed estimated glomerular filtration rate based on the CKD-EPl;, equation; EA, effect allele (i.e., minor allele); N, sample size; Beta, Beta
coefficient; CI, confidence interval; Pyy,,, P-value for heterogeneity across studies. Pyq< 0.05 indicates variation; T1D: Type 1 diabetes; T2D: Type 2 diabetes; Combined DM: T1D and T2D combined.
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: : - 0.86 (0.58, 1.26) 0.43
Birth weight? PCOS ’
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O 05 1 15 2 25
OR (95% CI) of PCOS per SD increase in birth weight

Method

ELLL.

VW
MR-PRESSO
Weighted median
Weighted mode
MR-Egger





OPS/images/fendo.2023.1081741/crossmark.jpg
©

2

i

|





OPS/images/fendo.2023.1140499/table1.jpg
SNP CHR Pos Gene EA OA EAF Beta SE
rs80278614 1 119412317 TBX15 A G 0.05 0.05 0.009 4.03x10® 301
152551347 2 23912401 KLHL29 T C 075 003 0.005 2.20x10°° 358
1517034876 2 46484310 EPASI T () 0.70 0.04 0.005 5.47x10"7 70.2
15560887 2 169763148 G6PC2 (¢ T 0.70 -0.02 0.004 2.78x10°* 309
1511708067 ° 3 123065778 ADCY5 G A 0.25 0.06 0.005 6.26x10 1383
151482852 3 156798294 LOC339894 A G 0.60 0.05 0.004 7.56x10™ 170.0
rs4144829 © 4 17903654 LCORL [ T 0.26 003 0.005 L12x10" 46.1
1535261542 ° 6 20675792 CDKALI e A 0.74 0.05 0.005 3.23x107° 1122
1510872678 * 6 152039964 ESRI T (v 0.72 0.03 0.005 8.23x107° 37.7
15138715366 7 44246271 YKT6/GCK C T 0.99 024 0.022 1.43x107% 109.3
15112139215 7 73034559 MLXIPL A c 0.07 0.06 0.008 1.20x10™" 46.0
rs13266210 8 41533514 ANK1 A G 0.78 003 0.005 3.05x10°° 352
1528457693 9 98217348 PTCHI G A 0.11 0.04 0.007 1.70x10® 36.3
151112718 ° 10 94479107 HHEX/IDE G A 0.41 0.04 0.004 1.51x10™"7 72.7
157076938 10 115789375 ADRBI T (o 0.73 0.03 0.005 2.91x10™° 39.7
154444073 11 10331664 ADM A C 0.51 0.02 0.004 2.20x10* 313
157968682 12 66371880 HMGA2 G T 0.49 0.04 0.004 4.87x10° 84.0
1575844534 15 38667117 SPREDI A c 0.12 0.04 0.006 1.54x10°° 320
157402983 15 99193276 IGFIR A (e 0.41 003 0.004 4.61x10° 388
15222857 17 7164563 CLDN7 T (o 0.57 003 0.004 5.77x10° 384
1511698914 20 31327144 COMMD?7 (0 G 0.23 0.03 0.005 2.75x10” 353
151012167 ° 20 39159119 MAFB (6 T 0.41 0.02 0.004 1.86x10°® 316

* The selected instruments explain 0.3% of the variation in birth weight in the primary MR analysis. The F statistic of individual SNPs ranged from 30.1 to 170.0 with an average F statistic of 58.2.
. Maternally transmitted or non-transmitted alleles were excluded from the secondary MR analysis.

©. SNPs were genome-wide significantly associated with potential confounders of PCOS, including BML, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose
metabolism, and lipid metabolism.

BMI, body mass index; CHR: chromosome; EA: effect allele; EAF: effect allele frequency; OA: other allele; P, N, and F indicate p-value, sample size, and F statistic, respectivelys SE: standard error;
SN single-nucleotide polymorphism.
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Haplotype Cases (%) Controls ( %2 P OR (95 % CI)
cA 189 (18.9) 202 (20.1) 0.474 0.49 0.925 (0.741-1.154)
TA 437 (43.7) 475 (473) 2.633 0.104 0.864 (0.724-1.03)
CG 373 (373) 327 (32.5) 4.932 0.026 1.231 (1.024-1.48)
Haplotype Cases (%) Controls (%) x2 P OR (95 % CI)
‘ Age (years) <30
cA 71 (18.4) 132 (21.7) 15 022 0.817 (0.592-1.128)
CG 139 (36.1) 202 (33.2) 0.922 0.336 1.14 (0.872-1.49)
TA 174 (45.3) 274 (45.0) 0.005 0.939 1.01 (0.781-1305)
‘ Age (years) > 30
cA 118 (19.1) 70 (17.6) 0.348 0.554 1.103 (0.795-1.53)
TA 263 (42.6) 201 (50.7) 6.311 0.011 0.722 (0.56-0.931)
CG 234 (37.9) 125 (31.5) 4342 0.037 1.328 (1.016-1.734)
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Genotype PG (mmol/

513266634

Age (years) < 30

CcC 4.66+0.614 8.49+1.923 7.30£1.925
CT 4.57+0.570 8.38+1.81 7.31£1.594
TT 4.66+1.077 8.55+2.277 7.68+1.925
F 0.903 0.28 2.123
P > 0.05 >0.05 > 0.05

Age (years) > 30

cc 4.79+0.546 9.87+1.717 8.62+1.818
CT 4.74%0.556 9.50+1.884" 8.25+1.724
TT 4.64+0.482" 9.10+£1.679* 8.12+1.733"
F 2225 5262 2.766

P <0.05 <0.05 <0.05
s2466293

Age (years) < 30

AA 4.67+0.887 8.37+2.033 7.48+1.733
AG 4.58+0.606 8.44+1.886 7.27+1.577
GG 4.61+0.493 8.78+1.921 7.49+1.443
F 0.752 1.009 0.945

P > 0.05 >0.05 >0.05

Age (years) = 30

AA 4.76+0.532 9.40+2.014 8.31+1.917
AG 4.68+0.577 9.62+1.682 8.33+1.693
GG 4.81£0.435 9.56x1.57 8.40£1.478
F 1.739 0.781 0.07
P > 0.05 >0.05 > 0.05

“LSD was used to compare the blood glucose levels of three rs13266634 genotypes: the difference of blood glucose between CC and T'T genotypes was statistically significant, all P < 0.05. LSD was
used to compare the blood glucose levels of three rs13266634 genotypes: the difference of 1-h blood glucose between CC and CT genotypes was statistically significant, P < 0.05. P < 0.05, bold
values indicate the P < 0.05.
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PCOS GWAS (primary dataset)

Felix Day et al. (2018)

GWAS meta-analysis of 7 cohorts
Rotterdam: 1,184 cases and 5,799 controls
UK (London/Oxford): 670 cases and 1,379 controls

EGCUT: 157 cases and 2,807 controls

deCODE: 658 cases and 6,774 controls

Chicago: 984 cases and 2,963 controls
Boston: 485 cases and 407 controls

Total: 4,138 cases and 20,129 controls

PCOS GWAS (replication dataset)
Jaakko S Tyrmi et al. (2021)

GWAS meta-analysis of data from FinnGen and EstBB
FinnGen: 797 cases and 140,558 controls
EstBB: 2,812 cases and 89,230 controls

Total: 4,890 cases and 20,405 controls

N
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MR-Egger Weighted median Pheterogenelty | Ppieiotropy

95% 95% 95% 95%
LCl udi Lal uci
FinnGen
!
BMI 91 1.2241 0.9059 1.6539 0.191 1.2042 1.0064 1.4409 0.049 1114 0.589
‘Waist-to-hip ratio 33 1.5922 0.6209 4.0826 0.340 1.2690 0.9468 1.7007 0.111 0.005 0.503
‘Waist circumference 45 0.9948 0.5621 1.7607 0986  1.1309 0.9001 1.4209 0.291 0.307 0.689
Hip circumference 54 1.3795 0.8947 2.1270 0.151  1.1408 0.9363 1.3900 0.191 0.076 0.210
Serum 25-hydroxyvitamin D 6 0.420 0.301
concentrations 1.6075 | 0.9683 2.6684 0.140  1.3320 09813 1.8081 0.066
Circulating vitamin C 10 1.0356 0.8117 13213 0.785  0.9769 0.8169 1.1683 0.798 0.647 0.585
concentration
Drinking 39 0.3618 0.1484 0.8818 0031  0.4423 0.2678 0.7308 0.001 0.003 0.094
Smoking 28 0.9393 0.8054 1.0956 0433 0.9348 0.8267 1.0570 0.282 0.937 0.757
PCOS 13 0.6201 0.3372 1.1406 0.153  0.8898 0.8089 0.9788 0.016 <0.001 0.261
Endometriosis 14 5.0109 0.8617 29.141 0.098 1.1982 1.0337 1.3889 0.016 <0.001 0.189
Age at menarche 303 0.8870 0.7682 1.0243 0.103  0.8584 0.7904 0.9324 <0.001 <0.001 0.461
Age at natural menopause 43 1.2002 1.0752 1.3397 0.002 1.1337 1.0906 1.1784 <0.001 <0.001 0.064
Age at first birth 10 0.7951 0.3458 1.8282 0.604 10355 09139 1.1732 0.584 0.886 0.577
2-hour glucose 13 0.6588 0.3459 1.2547 0230  0.9582 0.8047 1.1409 0.631 <0.001 0.138
Fasting glucose 65 1.1888 0.7707 1.8337 0.437 1.1895 0.9260 1.5281 0.174 <0.001 0.347
Fasting insulin 36 1.6367 0.4093 6.5449 0.491 1.7667 1.0794 2.8915 0.024 <0.001 0.932
HbAlc 74 1.2990 0.7970 2.1172 0297 1.0847 0.7648 1.5386 0.648 0.079 0.339
T2D 230 0.9826 09149 1.0553 0631 1.0539 1.0009 1.1096 0.046 <0.001 0.054
SBP 741 1.0139 1.0016 1.0263 0.027 10051 0.9989 10113 0.105 <0.001 0.255
DBP 776 1.0061 0.9866 1.0260 0.544 1.0060 0.9953 1.0167 0.275 <0.001 0.533
UKB
J
BMI 91 0.9990 0.9931 1.0049 0.736 1.0024 0.9988 1.0059 0.197 0.633 0.501
‘Waist-to-hip ratio 33 0.9964 0.9754 10178 0.741 1.0047 0.9982 1.0113 0.153 0.010 0.505
‘Waist circumference 44 1.0014 0.9896 ' 1.0133 0.817 1.0008 0.9958 1.0058 0.760 0.605 0.910
Hip circumference 54 1.0029 0.9946 10113 0498 1.0030 0.9988 1.0072 0.152 0.483 0.651
Serum 25-hydroxyvitamin D 6 0.9973 0.9875 1.0072 0.621 = 0.9972 0.9910 1.0035 0.384 0.925 0.966
concentrations
Circulating vitamin C 10 0.9975 0.9921 1.0029 0.383  0.9989 0.9953 1.0024 0.531 0.126 0.316
concentration
Smoking 28 0.9990 0.9957 1.0024 0.580  1.0000 0.9972 1.0030 0972 0.497 0.935
Drinking 38 0.9991 0.9879 1.0104 0.877 1.0010 0.9923 1.0099 0.812 0.037 0.858
PCOS 12 0.9901 0.9810 0.9995 0.066  0.9979 0.9957 1.0000 0.052 0.047 0.153
Endometriosis 14 1.0142 0.9938 1.0350 0.200  1.0041 1.0013 1.0071 0.005 <0.001 0.333
Age at menarche 306 0.9974 0.9958 0.9991 0.075  0.9983 0.9966 0.9999 0.049 0.031 0.686
Age at natural menopause 45 1.0016 1.0000 1.0033 0.058 1.0011 1.0004 1.0019 0.003 <0.001 0.677
Age at first birth 10 0.9987 0.9812 1.0166 0891  1.0023 0.9996 1.0051 0.096 0.583 0.788
2-hour glucose 14 0.9994 0.9907 1.0082 0.897  1.0014 0.9981 1.0047 0416 0.046 0.375
Fasting glucose 67 1.0011 0.9936 | 1.0086 0781 1.0029 0.9975 1.0083 0.299 0.065 0.542
Fasting insulin 35 0.9907 0.9671 1.0148 0.450 1.0002 0.9905 1.0100 0.967 0.097 0.458
HbAlc 75 1.0013 0.9923 1.0103 0.782  0.9983 0.9913 1.0054 0.645 0.136 0.830
T2D 236 1.0003 0.9990 1.0017 0.639  1.0003 0.9991 1.0015 0.665 0.005 0.937
SBP 757 1.0001 0.9999 1.0003 0330 1.0000 0.9999 1.0001 0.448 0.038 0.968

DBP 794 1.0000  0.9996 | 1.0004 0931 1.0002 1.0001 1.0004 0.045 <0.001 0279
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Exposure Data source NSNP  Unit = Sample R?
(%)

BMI GIANT consortium 92 ‘ SD 234,069 239 62.27 25673413
Serum 25-hydroxyvitamin D SUNLIGHT consortium 6 SD 79,366 0.8 106.67 = 31100827
concentrations
Drinking Sequencing Consortium of Alcohol and Nicotine use 39 SD 335,394 0.84 72.84 30643251
PCOS A large-scale genome-wide meta-analysis 14 logOR 113,238 0.50 40.64 30566500
Endometriosis GWAS 14 logOR 208,903 0.26 38.89 28537267 1
Smoking Sequencing Consortium of Alcohol and Nicotine use 28 SD 249,752 1.04 93.73 30643251
Age at menarche ReproGen consortium 321 SD 329,345 6.29 68.80 28436984
2-hour glucose MAGIC 14 SD 281,416 0.31 62.50 34059833
Fasting glucose MAGIC 69 SD 281,416 2.74 114.87 | 34059833
Fasting insulin MAGIC 36 SD 281,416 0.70 55.10 34059833
HbAlc MAGIC 78 SD 281,416 2.84 10543 | 34059833
Age at natural menopause ReproGen consortium 48 SD 69,360 437 65.99 26414677
Age at first birth GWAS 10 ‘ SD 251,151 0.15 37.73 27798627
T2D Diabetes Genetics Replication and Meta-analysis 248 ‘ logOR 898,130 1.78 65.61 30297969

consortium
SBP International Consortium for Blood Pressure 776 SD 757,601 6.49 67.69 30224653
DBP International Consortium for Blood Pressure 821 SD 757,601 7.01 69.49 30224653
Circulating vitamin C concentration A GWAS meta-analysis 10 SD 52,018 172 91.02 33203707
‘Waist-to-hip ratio GIANT consortium 34 SD 210,088 0.76 47.31 25673412
Waist circumference GIANT consortium 45 SD 210,088 1.26 59.56 25673412
Hip circumference GIANT consortium 55 210,088 142 55.01 25673412

SD
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Reported Diabetes popula- N cases vs.
gene tion Phenotype controls
157583877 AFF3 TID ESKD 1,786 vs. 8,718 12x107 [¢ T 129 | (44)
1512437854 RGMA/ TID ESKD 1,786 vs. 8,718 20x107 G T 18 (44)
MCTP2
154972593 SP3/CDCA7 Women with TID ESKD 688 vs. 2,009 39%107 A b 181 | (45)
1512523822 SCAF8/ TID+T2D* DKD 5,226 vs. 8,510 13x 107 G C 073 | (46)
CNKSR3
1556094641 FTO T2D DKD 4,022 vs. 6,980 7.7%x 1071 G A 1.23 (47)
159942471 GABRRI T2D Microalbuminuria 1,989 vs. 2,238 45x107° A [¢ 125 | (19)
1572858591 RND3/RBM43 T2D cases vs. non- ESKD 3,432 vs. 6,977 45%x107° C T 142 | (48)
diabetic controls
1558627064 SLITRK3 T2D cases vs. non- ESKD 3,432 vs. 6,977 68x107"° T G 162 | (48)
diabetic controls
rs142563193 ENPP7 T2D cases vs. non- ESKD 3,432 vs. 6,977 12x107° A G 0.74 (48)
diabetic controls
15142671759 ENPP7 T2D cases vs. non- ESKD 3,432 vs. 6977 55x%107° c  : 226 (48)
diabetic controls
1s4807299 GNG7 T2D cases vs. non- ESKD 3,432 vs. 6,977 32x107 A ¢ 167 | (48)
diabetic controls
159622363 APOL1 T2D cases vs. non- ESKD 3432 vs. 6,977 14x 107 A G 0.77 | (48)
diabetic controls
1575029938 GRAMD3 T2D excluding APOL1 ESKD 2,768 vs. 6,059 2.0x 1077 T [ 189 | (48)
carriers ®
1517577888 MGAT4C T2D excluding APOLL ESKD 2,768 vs. 6,059 3.9x 107 T G 0.67 | (48)
carriers ®
1555703767 COL4A3 TID DKD 4,948 vs. 12,076 53x107'% T G 0.79 | (49)
1512615970 COLECI1 TID CKD 4,266 vs. 14,838 9.4%107 G A 076 | (49)
15142823282 TAMM41 TID Microalbuminuria 2,477 vs. 12,113 L1x107" G A 675 | (49)
15145681168 HAND2-AS1 TID Microalbuminuria 2,477 vs. 12,113 54x107 G A 553 | (49)
rs118124843 DDRI TID Microalbuminuria 2,477 vs. 12,113 34x107 T (o 378 | (49)
1577273076 MBLACI TID Microalbuminuria 2,477 vs. 12,113 10x 107 T ¢ 9.12 | (49)
15551191707 PRNCRI TID ESKD vs. 2,187 vs. 2,725 44x107® CA ¢ 17 (49)
macroalbuminuria
15144434404 BMP7 TID Microalbuminuria 2,477 vs. 12,113 47107 T c 675 | (49)
1115061173 LINC01266 TID ESKD 2,187 vs. 12,101 41x107° A T 9.39 | (49)
15116216059 STAC TID ESKD 2,187 vs. 17,216 14x107° A [o 876 | (49)
15191449639 MuUC7 TID DKD 4,948 vs. 12,076 13x107° A T 325 | (49)
15149641852 SNCAIP TID CKD extreme 2,235 vs. 14,993 14x10°* T G 9.03 | (49)
1s183937294 PLEKHA7 TID Microalbuminuria 2477 vs. 12,113 17x107 G T 173 | (49)
1561983410 STXBP6 TID Microalbuminuria 2,477 vs. 12,113 31x10™% T e 079 | (49)
15113554206 PAPLN TID Macroalbuminuria | 2,751 vs. 12,124 85x107 A G 462 | (49)
15185299109 LINC00470/ TID CKD 4,266 vs. 14,838 13x107° T C 207 | (49)
METTL4
1572763500 NIDI T2D DKD 11,327 vs. 7,513 26x107° C T 0.79 | (50) ‘
1512917707 UMOD T2D DKD 11,327 vs. 7,513 45x107 T G 086 (20, ‘
50)
1s538044833 © CCSERI TID CKD 727 vs. 3,962 28x 10" (o i 3.0 (51)
1572831309 TENM2 TID + T2D CKD + DKD 4,122 vs. 13,972 9.8x 107 A G 208 | (52)
1$55703767 COL4A3 TID + T2D DKD 6,705 vs. 15,430 36x 107" T G 0.86 | (52)
15141560952 DIS3L2 Any diabetes vs. healthy CKD 1,194 vs. 9,568 36x107 AGGG A 1926 | (53)
controls
15425827 KRT6B Any diabetes vs. healthy CKD 1,194 vs. 9,568 27 %107 A T 531 | (53)
controls
1573038008 PLDI TID or T2D DKD ¢ 1,973 vs. 5,734 1.7 x107® C T 255 | (20)
1577924615 PDILT/UMOD T1D or T2D DKD ¢ 1,973 vs. 5,734 78x107 A G 075 | (20)
1575733846 WSCD2 T2D ESRD © 121 vs. 4,197 37x107® T c 7.16 | (20)
1559427701 SETDB2 T2D ESRD © 121 vs. 4,197 40x107 A & 1136 | (20)
1562202699 LOC105372639 2D Microalbuminuria 702 vs. 2,210 43 %107 T c 297 | (20)

SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. OR: odds ratio. Refs: If multiple references are given, then the data in other columns for the same locus are taken from the first

listed reference.

“Not all controls had diabetes.
"Controls did not have diabetes.
“Identified as underlying a linkage peak for DKD.

4CKD/DKD in self-reported, primary care, hospital, or death records.
“Dialysis or a rise of serum creatinine to 3.3 mg/dl (292 pmol/L).
UACR >34 mg/mmol.





OPS/images/fendo.2023.1163001/table2.jpg
NP Reported gene = Diabetes popula Phenotype N total P-valu: EA NEA ta Refs
1512917707 ** UMOD TID + T2D log eGFR per allele 11,522 25x107 T G 0.0266 | (19, 50, 75)
1511864909 * UMOD TID +T2D ml/min/1.73 m* 23,708 23x 107 iy [of 211 (19)
151974990 SSB TID +T2D ml/min/1.73 m* 13,158 48x10° G T 4.07 (19)
1510224002 * PRKAG2 TID +T2D ml/min/1.73 m* 22,165 27x10° A G 2.01 (19, 50)
15267738 * CERS2 Any log eGFR per allele | 176,573 27x10° T G ~0.0065 (76)
154665972 * SNX17 Any log eGFR per allele | 170,721 33x10”° T [ 0.0057 (76)
1510206899 * ALMSIP Any log eGFR per allele | 143419 1.6 x107® i C ~0.0068 (76)
151047891 * CPS1 Any log eGFR per allele 170,741 5.6 107" A € -0.007 (76)
154663171 SH3BP4 Any log eGFR per allele | 170,901 88x107 A T ~0.0072 (76)
1528817415 * SHROOM3 Any log eGFR per allele 176,910 9.9 x 1072¢ T C -0.0091 (76)
1510857147 * FGF5 Any log eGFR perallele | 170,848 ~ 24x 107 = A T -0.0061 (76)
5434215 *° TPPP Any log eGFR per allele | 119,397 35x107" A G -0.0119 (76)
153812036 * SLC34A1 Any log eGFR per allele | 170458 2.1x 107 T € ~0.0073 (76)
1534246779 * HMGN4 Any log eGFR per allele 172,626 L1x107% A G -0.0091 (76)
153101824 *° SLC2242 Any log eGFR per allele = 176569 3.6 x 107 T C -0.0143 (76)
1511761603 * UNCX Any log eGFR perallele = 168668 = 4.8x107° | T c 0.0075 (76)
156464165 * PRKAG2 Any log eGFR perallele = 136252 4.0 x 107 T [¢ 0.0107 (76)
159314272 * STCI Any log eGFR perallele | 177,021 94x 107 A G ~0.0054 (76)
157033278 * PIPSKIB © Any log eGFR per allele | 176480  1.3x107° | T [c 0.0062 (76)
1580282103 * LARP4B Any log eGFR per allele = 176591 6.8 x 107" A T 0.0109 (76)
1s55917128 LOXL4 Any log eGFR per allele 176,998 4.6 %107 T C -0.0048 (76)
15963837 *° DCDC5 Any log eGFR per allele 170,722 24x 107 T [o) -0.0108 (76)
152004649 MAP3K11 Any log eGFR per allele 176,918 6.1x 107 A G ~0.0055 (76)
1510899482 * GAB2 Any log eGFR per allele | 177,039 1.2x.10° A [of ~0.0058 (76)
152461700 GATM Any log eGFR per allele 177,144 15x 107° T [oi 0.008 (76)
1517631603 * WDR72 Any log eGFR per allele 177,042 6.6x 107" A G 0.0068 (76)
1511636251 * NRG4 Any log eGFR per allele | 171,081 1L9x 107 T c ~0.0069 (76)
1577924615 *° UMOD/PDILT Any log eGER per allele 170,741 1.9 x 107%¢ A G 0.0234 (76)
159895661 * BCAS3 Any log eGFR perallele | 176461  67x 107 T [ 0.0066 (76)
1s8096658 * NFATCI Any log eGFR per allele 167,173 16x 1072 € G 0.0067 (76)
156015028 * PCK1 Any log eGFR per allele | 176,558 14x107 A i ~0.0071 (76)
151882961 *° NRIPI Any log eGFR perallele | 176630 3.6 x 107 T é -0.0073 (76)
159607518 * MAFF Any log eGFR per allele | 170,649 22x10° T @ ~0.0049 (76)

SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. Beta: effect size beta estimate. Refs: If multiple references are given, then the data in other columns for the same locus are taken
from the first listed reference.

*Associated with eGFR also in the general population.

®Significant effect size difference between individuals with and without diabetes.

“DNA methylation of CpGs in the gene region associated with DKD (77, 78).
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Disease SNPs(i B SE P-value
VW 114 -0.011421 0.015009 0.446705

Weighted median 114 0.014745 0.026135 0.572620

RA MR Egger 114 -0.014908 0.027667 0.591073
Weighted mode 114 0009568 0.026682 0.720572

Simple mode 114 0.0176783 0.052438 0.736644

W 52 0.007217 0.026466 0.785090

Weighted median 52 0.037362 0037515 0.276857

AD MR Egger 52 0.041910 0.045491 0.361601
Weighted mode 52 0.0373620 0.036093 0305781

Simple mode 52 -0.041060 0.589407 0.589407
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Traits Data sources Sample size Ancestry R?(%) for RA/AD F for RA/AD

(cases/controls) (Total) (Total)
Exposures
RA PMID:24390342 14,361/42,923 European
AD FinnGen 42,202/17,6590 European
Outcomes
HF PMID:31919418 47,309/930,014 European 0.76/0.008 1442/44
NT-proBNP PMID:33067605 21,758 European 0.76/0.008 1453/38

F=R¥(N-K-1)/[K(1-R?)], R? = 2x(1-EAF)XEAFx(b/SD)? among which SD=SExN""2, where N refers to the sample size of GWAS, b refers to an effect estimated on adipokines, SE refers to the SD
of b, and EAF refers to an effect allele frequency.
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1.074839
1.032231
1.045157
0.982959

1037358

95%Cl

0.983752-1.028956
0.983870-1.029771
1.000941-1.028084
1.012280-1.110178
0.988696-1.031380
1.014617-1.138636
0.992336-1.07373

1.010249-1.081272
0.904143-1.068645

1.000383-1.075699

P-value
0596722
0574114
0035929
0014707
0367098
0.01899
0.114699
0010825
0689153

0.054899
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NP Min/Maj positio MAF HWE (P)
1513266634 T/C chr8:117172544 0473 0.894
152466293 G/A chr8:117173699 0.325 0.627

Min minor allele, Maj major allele, MAF frequency of minor allele, HWE Hardy-Weinberg equilibrium.
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Cases (%) Controls (%) Crude OR Adjusted OR Adjusted P

(n = 500) (n =502) (95 % Cl) (95 % Cl)

513266634

Codominant model

cC 161 (32.2) 142 (28.3) 1(ref) 1(ref)

CcT 240 (48.0) 245 (48.8) 0.864 (0.648-1.152) 0319 0.824 (0.609-1.116) 0.212
T 99 (19.8) 115 (22.9) 0.759 (0.535-1.078) 0.124 0.754 (0.520-1.092) 0.135
Aelle model

C 562 (56.2) 529 (52.7) 1(ref) 1(ref)

T 438 (43.8) 475 (473) 0.868 (0.728-1.035) 0.115 0.862 (0.716-1.037) 0.115

Dominant Model

cc 161 (32.2) 142 (28.3) 1(ref) 1(ref)

TT+CT 339 (67.8) 360 (71.7) 0.831 (0.634-1.008) 0.178 0.802 (0.604-1.006) 0.129
Recessive Model

CT+CC 401 (80.2) 387 (77.1) 1(ref) 1(ref)

T 99 (19.8) 115 (22.9) 0.831 (0.614-1.125) 023 0.848 (0.616-1.169) 0.314

Overdominant model

TT+CC 260 (52.0) 257 (51.2) 1(ref) 1(ref)
CT 240 (48.0) 245 (48.8) 0.968 (0.756-1.241) 0.799 0.926 (0.713-1.203) 0.565
s2466293

Codominant model

AA 201 (40.2) 233 (46.4) 1(ref) 1(ref)

AG 224 (44.8) 211 (42.0) 1.231 (0.943-1.606) 0.127 1.251 (0.944-1.658) 0.119
GG 75 (15.0) 58 (11.6) 1.499 (1.014-2.217) 0.043 1.523 (1.010-2.298) 0.045
Aelle model

A 626 (62.6) 677 (67.4) 1(ref) 1(ref)

G 374 (37.4) 327 (32.6) 1.237 (1.029-1.487) 0.023 1.249 (1.029-1.516) 0.024

Dominant Model

AA 201 (40.2) 233 (46.4) 1(ref) | 1(ref)

GG+AG 299 (59.8) 269 (53.6) 1.288 (1.003-1.655) 0.047 1.310 (1.005-1.707) 0.046
Recessive Model

AG+AA 425 (85.0) 444 (88.4) 1(ref) 1(ref)

GG 75 (15.0) 58 (11.6) 1.351 (0.935-1.951) 0.109 1.360 (0.925-1.999) 0.118
Overdominant model

GG+AA 276 (55.2) 291 (58.0) 1(ref) 1(ref)

AG 224 (44.8) 211 (42.0) 1.119 (0.872-1.437) 0377 1.131 (0.86-1.472) 0.36

Adjusted P value calculated by logistic regression with adjustment for age, pre-BMI, SBP, DBP and parity, bold values indicate the P < 0.05.
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Model Cases (%) Controls (%) Crude OR Crude P
(n = 308) (n = 198) (95 % Cl)

Adjusted OR

(95 % Cl)

Adjusted P

513266634

Codominant model

cC 98 (31.8) 46 (23.2) 1(ref) 1(ref)

cr 156 (50.7) 103 (52.0) 0.711 (0.463-1.093) 0.119 0.736 (0.475-1.141) 0.171
T 54 (17.5) 49 (24.8) 0.517 (0.307-0.872) 0.013 0.503 (0.294-0.861) 0.012
Aelle model

C 352 (57.1) 195 (49.2) 1(ref) 1(ref)

T 264 (42.9) 201 (50.8) 0.728 (0.565-0.938) 0.014 0.723 (0.557-0.937) 0.014
Dominant Model

cC 98 (31.8) 46 (23.2) 1(ref) 1(ref)

TT+CT 210 (68.2) 152 (76.8) 0.648 (0.431-0.975) 0.037 0.661 (0.436-1.003) 0.052
Recessive Model

CT+CC 254 (82.5) 149 (75.2) 1(ref) 1(ref)

T 54 (17.5) 49 (24.8) 0.646 (0.418-1.000) 0.05 0.615 (0.392-0.966) 0.035
Overdominant model

TT+CC 152 (49.4) 95 (48.0) 1(ref) 1(ref)

cT 156 (50.6) 103 (52.0) 0.947 (0.662-1.353) 0.736 0.988 (0.686-1.425) 0.95
152466293

Codominant model

AA 120 (39.0) 95 (48.0) 1(ref) 1(ref)

AG 141 (45.8) 81 (40.9) 1.378 (0.939-2.022) 0.101 1.519 (1.020-2.263) 0.04
GG 47 (15.2) 22 (11.1) 1.691 (0.953-3.001) 0.071 1.784 (0.994-3.203) 0.053
Aelle model

A 381 (61.9) 271 (68.4) 1(ref) 1(ref)

G 235 (38.1) 125 (31.6) 1.337 (1.024-1.747) 0.033 1.399 (1.064-1.839) 0.016
Dominant Model

AA 120 (39.0) 95 (48.0) 1(ref) 1(ref)

GG+AG 188 (61.0) 103 (52.0) 1.445 (1.007-2.073) 0.045 1.579 (1.086-2.295) 0.017
Recessive Model

AG+AA 261 (84.7) 176 (88.9) 1(ref) 1(ref)

GG 47 (15.3) 22 (11.1) 1.441 (0.839-2.475) 0.184 1.447 (0.834-2.508) 0.189
Overdominant model

GG+AA 167 (54.2) 117 (59.1) 1(ref) 1(ref)

AG 141 (45.8) 81 (40.9) 1.220 (0.850-1.750) 0.281 1.323 (0.910-1.923) 0.143

Adjusted P value calculated by logistic regression with adjustment for age, pre-BMI and SBP. bold values indicate the P < 0.05.
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Teleginski et al. (2017) ——— 078(049,122) 563 Teleginski et al. (2017) ——1 076035165 401
Dereke et al. (2016) —_— 068(053,087) 2094 Dereke et al. (2016) —_ 058(038,088) 1560
Stuebe et al. (2014) —_— 090 (052,1.55) 366 Stuebe et al. (2014) —_— 069(024,195) 264
Lauenborg et al. (2009) —_— 087(068,1.42) 17.71 Lauenborg et al. (2009) — 067(042,1.05) 1408
Subtotal (-squared = 0.0%, p = 0.508) <> 078067,081) 4735 Subtotal (-squared = 0.0%, p = 0.929) < 064(049,085) 3630
Aisan H Aisan L
Zeng et al. (Our study) (2023) —— 083(063,1.09) 1540 Zeng et al. (Our study) (2023) — 083(061.112) 2480
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Variables

Cases (%)

(n = 500)

Controls (%)

(n =502)

Age, year (mean + SD) 31+4 29+4 -8.56 < 0.001

pre-BMI, kg/m2 21.5143.10 20.53+2.58 -5.42 < 0.001

SBP, mmHg 11711 11410 -3.53 < 0.001

DBP, mmHg 70+8 687 -323 0.001

FPG, mmol/L 4.82+0.64 4.50£0.31 -9.75 < 0.001

1h-PG, mmol/L 10.17£1.60 7.66+1.27 -26.22 < 0.001

2h-PG, mmol/L 8.91+1.60 6.69+0.99 -25.85 < 0.001

Parity (n) 8.88 0.003

Primipara 210 (42) 258 (51.4)

Multipara 290 (58) 244 (48.6)

Variables Cases (%) Controls (%) x2 P
(n = 500) (n =502)

Age, year 492 < 0.001

<30 192 (38.4) 304 (60.6)

> 30 308 (61.6) 198 (39.4)

pre-BMI, kg/m® 278 < 0.001

<185 67 (13.4) 95 (18.9)

18.5 < BMI < 24 336 (67.2) 365 (72.7)

224 97 (19.4) 42 (8.3)

pre-BMI pre-gestational body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, bold values indicate the P < 0.05.
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NP Reported gene Diabetes populati Phenotype N P-value EA NEA Beta EH

1510011025 GLRA3 TID logjo AER 1,925 15% 107 G A 021 | (25,81)
1559825600 KAZN Any sd of log(UACR) 40,668 36x107° A G ~0.075 (82)
156688849 * FOXD2 Any sd of log(UACR) 51,215 41x107 A G ~0.049 (82)
s780093 GCKR Any sd of log(UACR) 51,515 15x107"% T € 0.049 (82)
156706313 'MIR4432HG-BCL11A Any sd of log(UACR) 51,162 28x107° A G —0.041 (82)
1517137004 FOXP2 Any sd of log(UACR) 51,294 27x107% A G -0.036 (82)
1s74375025 * CUBN Any sd of log(UACR) 50,641 L1 x107 A G 0.106 (82)
154258701 CDH2 Any sd of log(UACR) 51,328 L1x107® T C 0039 (82)
15149131600 * HPN Any sd of log(UACR) 46,939 35x107% T C 0.050 (82)

SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. Beta: effect size beta estimate. Refs: If multiple references are given, then the data in other columns for the same locus are taken
from the first listed reference. AER, albumin excretion rate. UACR, urinary albumin-to-creatinine ratio.
“Significant also in the general population, but with larger effect in diabetes.
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N CpGs

Ethnicity ~Tissue Phenotype Controls N significant CpGs
Y yp Total (array) 9 2
Bell, 2010 White Blood DKD 96 (T1D: 96 192 27,578 Prpr< 0.05 19 (Pepr< 0.05); none with Prpr
(120) European 100%) (T1D: (27K) <10
100%)
Sapienza, African Saliva DKD 24 (T2D: 24 48 27,578 Diffscore** > 2,870, of which 30 remained
2010 (121) American/ 87%, T1D: (T2D: (27K) 20 or < 20 significant after FDR adjustment
Hispanic 13%) 100%) (Pppp < 0.05)
Smyth, 2014 White Blood CKD/DKD 255 (T1D: 152 407 485,577 Prpr < 107 52 CpGs (Pppg < 10™%) in 23
(122) European 44%) (T1D: (450K) genes
74%)
Swan, 2015 White Blood DKD 196 (T1D: 246 442 450* Prpr< 107 54 (Pepr < 107%)
(123) European 100%) (T1D: (27k,
100%) 450K)
Qiu, 2018 American Blood | eGFR; ESKD; 80 (T2D: 101 181 397,063 Prpr < 0.05 eGFR and ESKD: none (Pppg <
(124) PIMA eGFR slope 100%) (T2D: (450K) 0.05); 77 (eGER slope, Prpg <
Indians 100%) 0.05)
Gluck, 2019 Mixed Kidney degree of 91 (22 with 0 91 321,473 Prpg < 0.05 Degree of fibrosis: 203 (Pepg <
(125) tubules Kidney DKD) (450 K) 0.05) of which 65 replicated (p <
fibrosis 0.05)
Sheng, 2020 Mixed Blood eGFR, eGFR 473 (all 0 473 866,836 ~ P<5x107° Albuminuria: 73 (P < 5 x 107°),
(126) slope, with (EPIC) (discovery), p eGFR: 99 (P <5 x 107°); 1 (6.4 x
albuminuria diabetes) <64x107 107®), eGFR slope: 111 (P < 5 x
(Bonferroni) 107%); 3 (6.4 x 107%)
Smyth, 2020 White Blood DKD 150 (T1D: 100 677 482,421 Prpr < 1075, 22
(127) European 100%) (T1D: (450K) AB>02
100%)
Kim, 2021 East Asian | Blood DKD 87 (T2D: 80 (T2D: 167 | 749315  Pppp<9.0x 3 (Pepr < 9.0 x 107%)
(128) 100%) 100%) (EPIC) 10
Smyth, 2021 White Blood ESKD (4 107 (T1D: 253 (T1D: 360 862,927 Prpr < 107, 36 (Pepg < 107%, FC % 2 across all
(129) European analysis 100%) 100%) (EPIC) FC+2 four models)
models)
Lecamwasam, Mixed Blood late CKD 38 (T1D: 83 (T1D: 119 764 333 Prpg < 0.05 1 (Pppg < 0.05)
2021 (130) (eGFR<45) vs. 8%, 20%, T2D: (EPIC)
early T2D: 87%) 80%)
(eGFR=245)
Smyth, 2022 White blood DKD (3 651 653 (TID: 1304 | 763064 | Prpr<9x 107 32 (Ppr< 9 x 107%)
(77) European analysis (T1D:100%) 100%) (EPIC)
models)

27K, Illumina Infinium HumanMethylation 27K; 450K, Illumina Infinium HumanMethylation 450K; EPIC, Illumina Infinium HumanMethylation EPIC v1.
*Only CpGs within mitochondrial genes were surveyed.
**Diffscore = 10sgn(b-valuegsgp ~ b-Valteaabetes no nephropathy) l0g10p.
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<4

wild-type

ACUUAGCCACUGUGAACACGACUUGGUGUGGACCCUGCUCACAAGCAGEY,

wild-type

GUAGUUUCAUGUUGUUGEEAUUGCAGUUUUGAACUCEECARCAAGAAAT UG

SUAGUUUCAUSUUGUUGGGAUUGAGUUUUGAACUCGECAACAAGAAACYS,

GUAGUUUCAUEUUEUUEE!

mutant

wild-type

ACUUAGCCACUGUGAACACGACUUGGUGYGGACCCUGCUCACAAGCAGSY,

ACUGUGAACTATGACUUGCEBGUGCEACTCUGCUCATAAGCAGTCY

ul 6’

AT

K UUA G CACUGUGAACACEACUUGEBGUCEACCCUGCUCACAAGCAGEY

mutant

mutant

mutant
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hsa-mir-27a-5 hsa-mir-27a-3;
A -hsa-mir-27a (Reference): 5-CUGAGGAG! IGGGUCCAC CAAGUCGU CCCCAG-3°
B -hsa-mir-27a (Mutant): 5° -CUGAGGA( IGGGUCCA CAAGUCGU CCCCCAG-3”

hsa-mir-196a2-5j hsa-mir-196a2-3
C -hsa-mir-196a2 (Reference): 5°-UGCUCGCUCAGCUGAUCUGUGGC! UUGAGUUUUGAA 'ACAUCAGUCGGUUUUCGUCGAGGGC-3"
D -hsa-mir-196a2 (Mutant):  5’-UGCUCGCUCAGCUGAUCUGUGGH UUGAGUUUUGAAC! 'ACAUCAGUCGGUUUUCGUCGAGGGC-3"
*
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NP Genotype FBG (mmol, h-PG (mmol/i G (mmol
rs11614913 TT 4650 + 0.402 8919+ 1.734 7822 1.552
TC 4661 +0.426 9.036 + 1.893 7927 £ 1.718
cc 4714 0.840 9.031 + 2.189 7.833 = 2,023

F 0912 0348 0385

P >0.05 >0.05 >0.05
15895819 T 4641 + 0.440 8.947 £ 1.890 7.764 + 1.687"
TC 4704 + 0.666 9.004 + 1998 7917 + 1.788°
cc 4690 0375 9.387 + 1.630 8483 = 1791

F 1505 1.581 531

P >0.05 >0.05 <0.05

“LSD was used to compare the blood glucose levels of three rs895819 genotypes:
PLSD was used to compare the blood glucose levels of three rs895819 genotypes:

the difference of 2-hour blood glucose between CC and TT genotypes was statistically significant, P = 0.001.
the difference of 2-hour blood glucose between CC and TC genotypes was statistically significant, P = 0.014.
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Genotype combination FBG 1 h-PG 2 h-PG

(mmol/L) (mmol/L) (mmol/L)
rs11614913 rs895819
TT T 4.632 + 0.408 8733 + 1.773% 7.583 + 1.538%¢
TG 4.678 £ 0.405 8972 = 1.654° 7.924 + 1.480°
cc 4.618 + 0.338 9.992 + 1.598 8.985 + 1.586
TC TT 4638 + 0.442° 9.092 + 1.851 7.896 + 1.715°
TC 4.687 + 0.421 8951 + 1.998" 7.928 £ 1.732°
(/o] 4.698 £ 0.335 9.046 + 1.706 8.135 £ 1.699
cc TT 4.660 = 0.482 8.871 = 2.106° 7.675 + 1.788
TC 4772 1170 9.157 £ 2.398 7.886 + 2.245°
cC 4.770 £ 0.522 9.522 + 1.249 8781 + 2.200
) F 0.697 I 1.276 2159
P >0.05 >0.05 <0.05

LSD was used to compare the blood glucose levels of nine genotype combinations: the difference of FBG between CC-TC and TC-TT genotype combination was statistically significant, P < 0.05.
® LSD was used to compare the blood glucose levels of nine genotype combinations: the difference of 1-hour blood glucose between TT-CC and other genotype combination were statistically
significant, P < 0.05.
€ LSD was used to compare the blood glucose levels of nine genotype combinations: the difference of 2-hour blood glucose between TT-CC and other genotype combination were statistically
significant, P < 0.05.
4 LSD was used to compare the blood glucose levels of nine genotype combinations: the difference of 2-hour blood glucose between CC-CC and other genotype combination were statistically
significant, P < 0.05.
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Allele distribution Genotype distribution

Cases (n) Controls (n) Cases (n) Controls (n)
rs11614913 Athor Year Ethnicity Type Cases Controls C T C T CcC CT TT CcC CT TT | HWE
(n) (n)

Zeng et al.(Our 2023 Asian GDM 500 502 462 | 538 | 463 541 | 104 254 142 109 245 148  >0.05
study)

MIR et al. 2022 T2DM 100 100 145 55 165 35 51 43 6 70 25 5 >0.05

Caucasian

Khan et al. 2021 | Caucasian = T2DM 338 236 346 330 | 333 139 | 84 178 76 | 130 73 33 | >005

Huang et al. 2021 Asian T2DM 497 782 413 | 581 | 691 873 | 81 251 165 138 415 229 | >0.05

Ibrahim et al. 2019 | Caucasian = TIDM 150 150 175 125 206 | 94 | 59 57 34 71 64 15 | >005

Buraczynska et al. 2014 | Caucasian = T2DM 920 834 1224 | 616 1001 667 | 414 = 396 110 | 292 | 417 125 >0.05

15895819 Athor Year Ethnicity Type Cases. Controls T (o] T [ TT TC cc TT TC CC | HWE

(n) (n)

Zeng et al. (Our 2023 Asian GDM 500 502 708 | 292 | 756 248 | 252 204 44 | 285 186 31 | >005
study)

Choi et al. 2022 Asian T2DM 238 247 317 159 | 277 217 | 106 105 27 | 84 109 54 | >005

Ghaedi et al. 2016 | Caucasian = T2DM 204 209 301 107 | 280 138 | 108 85 11 | 97 8 26  >005

‘Wang et al. 2015 Asian T2DM 995 967 1469 ‘ 521 1415 | 519 | 554 | 361 80 526 363 78 >0.05

Lietal 2015 Asian T2DM 738 610 1064 | 412 900 320 | 371 322 45 330 | 240 40 >0.05

Wang et al. 2014 Asian GDM 837 848 1293 | 381 | 1257 439 | 482 329 26 469 319 60 | >0.05

Ciccacci et al. 2013 | Caucasian = T2DM 148 147 247 49 | 219 75 101 45 2 83 | 53 11 | >005

n number, TIDM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus, GDM gestational diabetes mellitus, HWE Hardy-Weinberg equilibrium.
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Variables Cases (%) Controls (%)

Age, year (mean + SD) 31.01 £4.32 28.66 + 4.37 -8.56 <0.001
49.2 <0.001
<30 192 (38.4) 304 (60.6)
>30 308 (61.6) 198 (39.4)
pre-BMI, kg/m2 21.51 +£3.10 20.53 +2.58 -542 <0.001
27.8 <0.001
<185 67 (13.4) 95 (18.9)
18.5 < BMI < 24 336 (67.2) 365 (72.7)
>24 97 (19.4) 42 (8.3)
SBP, mmHg 116.69 + 10.96 114.33 + 10.18 -3.53 <0.001
DBP, mmHg 69.77 + 7.80 68.23 +7.26 -323 0.001
FBP, mmol/L 4.82 +0.64 4.50 + 0.31 -9.75 <0.001
1h-PG, mmol/L ‘ 10.17 + 1.60 7.66 + 1.27 -26.22 <0.001
2h-PG, mmol/L ‘ 891 = 1.60 6.69 + 0.99 -25.85 <0.001
Parity (n) 8.88 0.003
Primipara ‘ 210 (42) 258 (51.4)
Multipara 290 (58) 244 (48.6)

pre-BML, pre-gestational body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBP, fasting blood glucose level; 1h-PG, 1 hour blood glucose levels 2h-PG, 2 hour blood
glucose level.
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MAF HWE(P)

NP Min/Maj Chr. position
1511614913 ‘ <y chr12:53991815 0462 0411
15895819 ‘ cIT chr19:13836478 0247 0.996

HWE, Hardy-Weinberg equilibrium; Min, minor allele; Maj, major allele; MAF, frequency of minor allele.
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Genetic
Models

Cases (freq)

(n=500)

Controls (freq)

(n=502)

Crude OR
(95 % ClI)

Crude P

Adjusted OR
(95 % Cl)

Adjusted P

s895819

rs11614913

Codominant model

TT 252 (0.504) 285 (0.567) 1(ref) 1(ref)
TC 204 (0.408) 186 (0.37) 1.240 (0.955-1.611) 0.106 1.233 (0.936-1.622) 0.136
cC 44 (0.088) 31 (0.061) 1.605 (0.984-2.620) 0.058 1.576 (0.939-2.644) 0.085
Aelle model
T 708 (0.708) 756 (0.752) 1(ref) 1(ref)
C 292 (0.292) 248 (0.247) 1.257 (1.032-1.532) 0.023 1.245 (1.011-1.533) 0.039
Dominant Model
TT 252 (0.504) 285 (0.567) 1(ref) 1(ref)
CC+TC 248 (0.496) 217 (0.433) 1.293 (1.008-1.658) 0.043 1.281 (0.985-1.665) 0.064
Recessive Model
TC+TT 456 (0.912) 471 (0.939) 1(ref) 1(ref)
cc 44 (0.088) 31 (0.061) 1.466 (0.910-2.363) 0.116 1.440 (0.870-2.384) 0.156
Codominant model
TT 142 (0.284) 148 (0.294) 1(ref) 1(ref)
76 254 (0.508) 245 (0.488) 1.081 (0.809-1.443) 0.6 1.003 (0.738-1.362) 0.985
cc 104 (0.208) 109 (0.217) 0.994 (0.698-1.417) 0.975 0.930 (0.639-1.353) 0.704
Aelle model
T 538 (0.538) 541 (0.538) 1(ref) 1(ref)
C 462 (0.462) 463 (0.462) 1.003 (0.842-1.196) 0.97 0.968 (0.804-1.165) 0.728
Dominant Model
TT 142 (0.284) 148 (0.294) 1(ref) 1(ref)
CC+TC 358 (0.716) 354 (0.706) 1.054 (0.802-1.385) 0.706 0.981 (0.734-1.309) 0.894
Recessive Model
TC+TT 396 (0.792) 393 (0.783) 1(ref) 1(ref)
cc 104 (0.208) 109 (0.217) 0.947 (0.700-1.282) 0.724 0.928 (0.673-1.279) 0.648

Adjusted P value calculated by logistic regression with adjustment for age, pre-BMI, SBP,DBP and parity.
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Genotype combination Cases (freq) Controls (freq)

Crude OR(95 % Cl) Crude P Adjusted OR(95 % Cl)  Adjusted P

rs11614913  rs895819 [GEST) (n=502)
T T 65 (0.13) 85(0.169) I(ref) 1(ref)
TC 63(0.126) 58(0.116) 1.420 (0.878-2.298) 0.153 1.414 (0.852-2.347) 0.18
cc 14(0.028) 5(0.010) 3.661 (1.255-10.69) 0.018 3.989 (1.309-12.16) 0.015
TC i T 136(0.272) 139(0.277) [ 1.279 (0.857-1.909) 0.227 1.165 (0.762-1.781) 0.482
TC 97(0.194) 85(0.169) 1.492 (0.966-2.305) 0.071 1.455 (0.917-2.307) 0.111
cc 21(0.042) 21(0.041) 1.307 (0.659-2.596) 0.443 1.268 (0.613-2.622) 0.523
cc TT 51(0.102) 61(0.121) 1.093 (0.668-1.789) 0.723 1.140 (0.675-1.925) 0.625
TC 44(0.088) 43(0.085) 1.338 (0.787-2.273) 0.281 1.159 (0.663-2.029) 0.604
CcC 9(0.018) 5(0.010) 2.354 (0.753-7.359) 0.141 1.654 (0.488-5.604) 0419
Aelle combination Cases (freq) Controls (freq) Adjusted OR(95 % CI) Adjusted P
Crude OR(95 % CI) Crude P
rs11614913 15895819 (2n=1000) (2n=1004)
T m 329(0.329) 367(0.366) 1(ref) 1(ref)
C 209(0.209) 174(0.173) 1.340 (1.043-1.721) 0.022 1.376 (1.057-1.790) 0.018
C £ 379(0.379) 389(0.387) 1.087 (0.885-1.335) 0427 1.078 (0.868-1.339) 0.495
| C 83(0.083) 74(0.074) I 1.251 (0.884-1.770) I 0.205 1.116 (0.773-1.610) [ 0.559

Adjusted P value calculated by logistic regression with adjustment for age, pre-BMI, SBP, DBP and parity.
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