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Recently, a lot of research has been conducted on diagnosing neurological

disorders, such as autism spectrum disorder (ASD). Functional magnetic

resonance imaging (fMRI) is the commonly used technique to assist in the

diagnosis of ASD. In the past years, some conventional methods have been

proposed to extract the low-order functional connectivity network features

for ASD diagnosis, which ignore the complexity and global features of the

brain network. Most deep learning-based methods generally have a large

number of parameters that need to be adjusted during the learning process. To

overcome the limitations mentioned above, we propose a novel deep-broad

learning method for learning the higher-order brain functional connectivity

network features to assist in ASD diagnosis. Specifically, we first construct the

high-order functional connectivity network that describes global correlations

of the brain regions based on hypergraph, and then we use the deep-broad

learning method to extract the high-dimensional feature representations

for brain networks sequentially. The evaluation of the proposed method is

conducted on Autism Brain Imaging Data Exchange (ABIDE) dataset. The

results show that our proposed method can achieve 71.8% accuracy on

the multi-center dataset and 70.6% average accuracy on 17 single-center

datasets, which are the best results compared with the state-of-the-art

methods. Experimental results demonstrate that our method can describe the

global features of the brain regions and get rich discriminative information for

the classification task.

KEYWORDS

autism spectrum disorder, high-order functional brain network, broad learning
system, classification, feature selection
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Introduction

Autism spectrum disorder (ASD) is a neurologically
heterogeneous disorder that is difficult to diagnose. The main
characteristics of ASD patients are social interaction disorders
and neurodevelopmental disorders of stereotyped behavior.
The life expectancy of ASD patients is much lower than
that of normal controls (NC) (Perkins and Berkman, 2012).
The current psychiatric diagnosis for ASD refers only to
symptomatic behavioral observations (DSM-5/ICD-10), which
may be misdiagnosed (Nickel and Huang-Storms, 2017).
However, the cause and pathogenesis of ASD are unclear. There
is an urgent need to identify biomarkers associated with brain
imaging data to assist medical diagnosis.

Recently, various non-invasive brain imaging techniques
such as magnetic resonance imaging (MRI), positron emission
tomography (PET), and functional magnetic resonance imaging
(fMRI) are widely used in the study of neurodegenerative
diseases such as ASD. In particular, several studies in recent
years have shown that using the blood oxygen level-dependent
(BOLD) signal as a neurophysiological indicator can effectively
identify potential biomarkers in ASD patients (Dekhil et al.,
2018). Many studies have been conducted based on low-
order brain functional connectivity obtained from fMRI, which
reflects the correlation relationship between signals from
paired brain regions (Liang et al., 2012; Li et al., 2014). Due
to the spontaneous aberrations generated in the functional
connectivity status of brain disease patients (Hahamy et al.,
2015), there is a significant variability compared to NC.

Many studies explore the low-order brain functional
connectivity to diagnose ASD. Stacked multiple sparse
autoencoders (SSAE) is applied to learn the discriminative
feature representation of low-order brain functional
connectivity and subsequently diagnose ASD (Kong et al.,
2019). Dekhil et al. (2018) construct an ASD diagnostic system
consisting of sparse autoencoders and spatially activated
regions, which similarly learn low-order brain functional
connectivity features. Wang et al. (2020) propose a multi-
site domain adaptation method based on low-order brain
network for ASD diagnosis. Wang et al. (2022) propose a
multi-site clustering and nested feature extraction method
for fMRI-based ASD detection. However, current methods
only reflect correlations between pairs of brain regions. The
connections between brain regions are complex, and studies
that only reflect pairwise relationships between brain regions
are still limited. In contrast to the traditional approaches to
characterize lower-order brain functional connectivity (Yu
et al., 2017; Li et al., 2019), high-order feature representation
of brain connectivity can characterize complex patterns of
interactions between multiple brain regions and correlations
across brain regions. Feng et al. (2020) regard the second-
order functional connectivity network as a higher-order brain
network, in which brain connectivity patterns are only obtained

by repeatedly computing first-order correlations between pairs
of brain regions, and some features may be lost in the process
of repeated computing. Gao et al. (2020) exploit clustering
of functional connectivity time series to reveal high-order
relationships among multiple regions of interest (ROIs), but
global brain functional connectivity features have not been
considered.

To overcome the above-mentioned drawbacks and to form
high-order feature information that can characterize the global
structure of the brain, we introduce the hypergraph structure
to inscribe the high-order brain functional connectivity.
Hypergraph (Ktena et al., 2018) is a novel tool for inscribing
high-order structures, and the features of the hypergraph
structure are distinguished from the traditional graph structure
features. Unlike normal graphs, hypergraphs are composed of
nodes and hyperedges. One hyperedge can connect two or
more nodes. Hypergraph learning is flexible and powerful in
modeling complex data dependencies such as brain networks. It
has received more attention that using hypergraph to describe
the brain connection pattern can more accurately describe
the complex high-order connection relationship of the brain
network.

Due to the complex features of brain networks, several
recent studies use deep learning-based approaches to diagnose
patients with autism spectrum disorders (Ktena et al., 2018; Gao
et al., 2020; Yao et al., 2021). For example, Eslami et al. (2019)
propose a self-encoder-based model for ASD classification.
Heinsfeld et al. (2017) use two stacked denoising autoencoders
to identify ASD patients from fMRI data. Xing et al. (2019)
propose a novel convolutional neural network with elemental
filters for the diagnosis of ASD. Huang et al. (2021) use Long
Short-Term Memory Networks (LSTM) for the classification
of ASD patients. Guo et al. (2017) and Khodatars et al.
(2021) propose a deep neural network model for the study
and diagnosis of ASD patients. Zhang et al. (2022) propose a
feature selection method based on variational autoencoder pre-
training using a multilayer perceptron for ASD classification.
Jiang et al. (2020) propose a hierarchical GCN framework
to learn brain network graph feature embeddings while
considering both network topology information and subject
associations. However, all these deep learning-based methods
and graph neural network-based methods are based on low-
order brain functional connectivity networks for subsequent
feature extraction and classification, which have non-negligible
drawbacks. Firstly, there are limitations in using low-order
brain network features to represent brain connectivity patterns.
Secondly, the models based on deep learning will become more
complex as the number of model layers increases, the training
process is time-consuming and the deep network features are
not scalable. The number of parameters to be learned is huge,
and it often faces the problem of insufficient single-center
data, resulting in overfitting. It is not until the emergence of
the Broad Learning System (BLS) (Chen and Liu, 2018) that
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traditional artificial intelligence methods are revolutionized.
It represents a step towards building more effective machine
learning methods that can further extend models based on deep
learning methods and improve the learning efficiency of the
models (Chen and Liu, 2018; Gong et al., 2022). Recently, some
studies have introduced BLS and its variant algorithms into
medical image analysis (Han et al., 2020), providing an effective
tool for diagnosing AD in MRI images. However, there are no
studies based on BLS to diagnose ASD in fMRI. Benefiting from
the superiority of BLS, we use it for further feature selection and
classification.

Compared with traditional deep learning-based diagnostic
models, our proposed deep-broad learning method can learn
complex and high-dimensional brain connectivity network
features more accurately. We use the functional connectivity
and hypergraph structure of fMRI to characterize the high-order
connectivity characteristics of the brain. The feature learning
process is further extended by using the structure fused by the
autoencoder and the BLS, and an efficient and accurate brain
network learning structure is obtained. The main contributions
of this paper are summarized as follows:

Firstly, we construct a high-order brain functional
connectivity network of the functional connectivity structure
of fMRI based on hypergraph structure, which improves the
ability of traditional brain functional connectivity networks to
express brain structure.

Secondly, we propose a novel combinatorial deep-broad
learning method to extract high-dimensional discriminative
features of high-order brain functional connectivity networks.

Compared with other ASD classification models, our model
not only takes into account the global functional connectivity
features of the brain but also provides a feature-learning
classification module with fewer parameters using BLS.

The purpose of this paper is to propose an effective model
for portraying the global functional connectivity structure of the
brain. The BLS further enhances the feature learning capability
and computational speed of deep learning models for ASD
diagnosis. The rest of the paper is structured as follows. In
section 3, we introduce the dataset materials and the details of
our proposed method. In section 4, we perform an experimental
evaluation and experimental analysis of the proposed method.
In section 5, we summarize the work presented in this paper.

Materials

In this study, we use 505 patients with ASD and 530
healthy controls from 17 sites in the ABIDE- I [ABIDE
(http://fcon_1000.projects.nitrc.org/indi/abide/)] dataset for
our experiments. Our study uses data pre-processed by the
C-PAC pipeline (Agastinose Ronicko et al., 2020) with the
following pre-processing processes: motion correction, slice
timing correction, removal of interfering signals, low-frequency

drift and voxel intensity normalization. ABIDE provides a
variety of ROI segmentation options. In this study, we use 200
uniform ROIs generated by the spatially constrained spectral
clustering algorithm (Craddock et al., 2012).

Method

We propose a deep-broad learning method to explore high-
order brain functional connectivity network features for ASD
classification. The specific structure of the model is shown in
Figure 1. The model consists of four parts. (1) Firstly, the low-
order brain functional connectivity network is constructed by
calculating the time-series Pearson correlation matrix of the
fMRI data. It is used to portray the low-order local features of
the brain shown in Figure 1 as Lo-FCN. (2) We introduce the
hypergraph structure to construct high-order brain functional
connectivity network to inscribe the global features of the brain
shown in Figure 1 as Ho-FCN. (3) Initial feature learning
of high-dimensional high-order brain functional connectivity
network is performed using an autoencoder. (4) Finally, the
initial features learned by autoencoder are fed into the BLS for
further learning and classification. The details of each step will
be given in the following sections.

Construction of high-order brain
functional connectivity network

We obtain the high-order brain functional connectivity
network based on time series of fMRI and coactivation level
signals based on hypergraph to effectively characterize the
global brain connectivity pattern. Specifically, we first calculate
the correlations between pairs of brain regions using Pearson
correlation coefficients, which are widely used to calculate the
functional connectivity of fMRI (Liang et al., 2012; Baggio et al.,
2014; Zhang et al., 2017), as shown in Equation (1). u and
v represent the time series of two ROIs, the length of each
series is T, u and v represent the average values of the time
series u and v, respectively. Calculating the pairwise correlation
of all time series will get the paired brain regions correlation
matrix CorrM × M , where M is the number of ROIs, so as to
obtain the low-order brain functional connectivity network.

ρuv =

∑T
t = 1 (ut−u) (vt−v)√∑T

t = 1 (ut−u)2
√∑T

t = 1 (vt−v)2
(1)

Each element in the low-order brain functional connectivity
matrix depicts the correlation between local pairwise ROIs.
When the paired ROIs are highly correlated, the element
value approaches 1, and when the paired brain interval is
inversely correlated, the element value is close to -1. Since
pairwise relationships between brain regions only characterize
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FIGURE 1

The illustration of our proposed method.

local features of the brain, we use the hypergraph to represent
correlations in the interaction of multiple brain regions rather
than pairwise correlations, resulting in a hypergraph-based
high-order brain network. Specifically, we first recall the basics
of hypergraph (Schölkopf et al., 2007), where we denote
a hypergraph as G = {V,E,W}, the set of hypergraph
vertex of the hypergraph V =

{
v1,v2, ..., vn

}
represents the

n brain regions, hyperedge E =
{
e1,e2, ..., em

}
represents

the correlation between brain regions, each hyperedge is
assigned a weight w (ei) , 1 ≤ i ≤ M. The weight vector
of a hyperedge is expressed as W =

{
we1 ,we1 , ...,wem

}
.

The hypergraph structure can be represented simply as
an association matrix H ∈ {0, 1}|V| × |E|, each element in H
indicates whether the vertex v is in the hyperedge e,denoted

as H (v, e) =

{
1 if v ∈ e
0 if v /∈ e

. The elements in the association

matrix represent the probability value of the importance of the
node to the hyperedge. Based on the constructed association
matrix, the degree of the hypergraph node and the degree
of the hyperedge can be obtained, which are expressed as:
d (vi) =

∑
ej∈ε wejHij for 1 ≤ i ≤ N, δ

(
ej
)
=

∑
vi∈v Hij for

1 ≤ j ≤ M. The degree matrix of the hypergraph vertex and
the hyperedge are described as Degreee ∈ R|E|×|E| and Degreev ∈
R|V|×|V|. De ∈ R|E|×|E|and Dv ∈ R|V| × |V| are the diagonal
matrices containing the hypergraph vertex and the hyperedge.
In graph theory, the graph Laplacian matrix plays an important
role in graph learning. Based on the graph Laplacian matrix,
by calculating its eigenvalues and eigenvectors, According
to previous research (Schölkopf et al., 2007), we can perform
a spectral analysis of the graph. For simple graphs, the
graph Laplacian is defined as 4 = D− A, D is the diagonal
matrix of vertex degrees, and A is the adjacency matrix,
while for hypergraphs, the graph Laplacian is defined as

4 = Dv −HWDe
−1HT . The normalized Laplace matrix is

4 = I − D
−

1
2

v HWDe
−1HTD

−
1
2

v . We summarize the symbols
and definitions in Table 1.

In order to obtain a hypergraph-based high-order brain
functional connectivity network, we construct the hypergraph
using the method proposed by the previous work (Schölkopf
et al., 2007). We treat each hypergraph node as a brain region
and use each brain region as a central region to calculate the
Euclidean distance between the selected central region and other
brain regions. Specifically, we first take each vertex (ROI) as
a center node and calculate the Euclidean distance between
the center and other vertices. Then we construct a hypergraph
by connecting the center and its K nearest vertex. We regard
the k brain regions closest to the central node Euclidean space
dij =

∣∣vi−vj∣∣22 as the nearest neighbors of central brain region.
We refer to correlations between nodes as a hyperedge, dij
represents the Euclidean distance between brain region vi and

TABLE 1 Symbols and definitions of hypergraph.

Notation Definition

G = {V,E,W} G represents the hypergraph, V,E,W represent the set
of vertices, the set of hyperedges, and diagonal matrix
of hyperedge weights. respectively.

d (vi) The degree of vertex vi .

w (ei) The weight of hyperedge ei .

δ
(
ej
)

The degree of hyperedge ej .

H The |V| × |E| incidence matrix of hypergraph
structure. H (v, e) indicate the connection strength
between the vertex v and the hyperedge e.

Dv The diagonal matrix of vertex degrees.

De The diagonal matrix of hyperedge degrees.

4 The Laplacian matrix of hypergraph.
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vj. Based on the above mentioned process, we construct the
hypergraph based high-order brain connectivity network to
represent the global features of brain.

The novel feature extraction and
classification method based on
deep-broad learning

Due to the high dimensionality of the constructed high-
order brain functional connectivity network features, we utilize
a non-linear dimensionality reduction approach to reduce
the feature dimension. Specifically, we use an autoencoder
to reconstruct the features of the constructed hypergraph-
based high-order brain feature representation. We obtain low-
dimensional discriminative features of the high-order brain
network by minimizing the reconstruction error between the
input network features and the output features through self-
supervised learning. The autoencoder consists of an encoder and
a decoder.

enc = ∅enc (x) = τ
(
Wencx+ benc

)
(2)

We use the original high-order brain feature representation
x as input to the autoencoder to obtain discriminative lower-
dimensional feature henc via the encoder, denoted as Equation
(2) where τ is the hyperbolic tangent activation function
(tanh), and Wenc and benc represent the weight matrix and
bias of encoder. Once we have obtained the low-dimensional
feature representation henc of the high-order brain function
connectivity network, we use the decoder to reconstruct the
original input data x, expressed as Equation (3). The low-
dimensional feature representation henc is input into the
decoder, where Wdec and bdec represent the weight matrix
and bias of the decoder, respectively. We use Mean Squared
Error (MSE) as the reconstruction loss, which represents
the discrepancy between the reconstructed brain function
connectivity network features x′ and the original features x.
After completing the training of the autoencoder, we obtain the
low-dimensional feature representation of the new high-order
brain functional connectivity network as the effective feature.
And we use it as the valid discriminative high-order brain
function connectivity feature input broad learning system for
further learning.

x′ = ∅dec
(
henc

)
= Wdechenc + bdec (3)

Analyzing higher-order brain functional connectivity
using existing machine learning methods is challenging
due to the high-dimensional, large-scale, and complex
interdependencies between brain regions. Moreover, a
large number of iterative processes during traditional
model training requires huge amounts of time and
computational resources. The Broad Learning System (BLS)

(Chen and Liu, 2017, 2018; Chen et al., 2019) has recently
become one of the most popular networks due to its excellent
performance in machine learning tasks (Gong et al., 2022).
BLS can map samples to a more suitable space to handle the
large volume of high order brain functional network features
and is suitable for processing time-varying data. BLS first map
the inputs to construct a set of mapped features. A group of
mapping nodes defined in our work is a mapped feature in
original BLS. Given that the feature extraction at this step uses
randomly generated weights, calculating multiple mapping
features can enhance the stability of the extracted feature
information and simplify the operations. Figure 2 illustrates
the basic structure of the BLS, which consists of a three-layer
network defined as the feature mapping layer, the enhancement
layer and the output layer, where X ∈ RN × m denotes the
discriminative high-order brain function connectivity matrix
learned by autoencoder, which is taken as the input to the BLS.
N is the number of samples, and m is the feature dimension
of each sample, Y ∈ RN × c (c < m) is the output layer of
BLS, c is the feature dimension after the feature extraction
by BLS of each sample, and WBLS is the weight of the feature
mapping layer and the enhancement layer to the output
layer. Specifically, we first input the high-order brain function
connectivity matrix X to the feature mapping layer to generate
the i-th group of mapping nodes Zi, denoted as Equation
(4):

Zi = ∅ (XWei + βei), i = 1, ..., n (4)

Wei and βei are the weight and bias from X to the feature
mapping layer. Similarly, the m-th group of enhancement layer
nodes Hm is generated by taking the mapping node as the input
of the enhancement layer, which is expressed as Equation (5):

Hmδ ≡
(
ZnWhm + βhm

)
(5)

Whm and βhm are the weights and biases from the feature
mapping layer to the enhancement layer. It should be noted
that ∅ and δ are nonlinear functions, such as tanh and tansig,

FIGURE 2

The structure of the broad learning system.
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TABLE 2 Classification performance of different methods on multi-centers dataset.

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Running time(s)

SVM 60.3± 3.6 35.3± 8.2 84.4± 6.6 64.3± 5.9 186

Random forest 63.7± 7.2 54.9± 3.9 71.3± 9.2 68.9± 3.8 67

DNN 60.7± 5.4 56.4± 7.3 64.8± 3.8 70.1± 5.6 108030

Autoencoder 65.4± 6.6 69.3± 4.2 61.9± 5.2 60.8± 3.7 21600

Ours 71.8± 4.2 70.8± 3.8 65.9± 4.2 65.9± 4.8 1200

we compose all mapping nodes as Z = [Z1,Z2, ...,Zn], and
enhance the nodes as H = [H1,H2, ...,Hm].

The BLS model can be expressed as Equation (6):

Y =
[
Z1,Z2, ...,Zn|δ

(
ZnWh1 + βh1

)
, ..., δ

(
ZnWhm + βhm

)]
WBLS = [Z1,Z2, ...,Zn|H1,H2, ...,Hm]WBLS

= [Z|H]WBLS (6)

To summarize, we further learn the features extracted by
autoencoder via BLS and finally get the ASD classification result.

Experiments

In this section, we conduct two-stage experiments of our
proposed method. In the first stage, we conduct experiments
on 1,035 samples from 17 multi-centers and each single-center
to demonstrate the effectiveness of our proposed method. In
the second stage, we compare with the state-of-the-art methods

TABLE 3 Classification performance of our proposed method on
single-center dataset.

Sites Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

NYU 71.4± 5.7 75.0± 1.5 68.4± 9.4 66.7± 9.8

OHSU 80.8± 3.8 76.9± 7.7 84.6± 7.7 83.3± 8.3

KKI 62.5± 8.3 63.6± 9.1 61.5± 7.7 58.3± 8.4

YALE 71.4± 3.6 74.0± 2.9 68.9± 4.4 68.9± 2.5

USM 81.6± 2.9 84.8± 4.1 76.0± 0.9 86.6± 0.3

Olin 76.4± 3.0 75.0± 3.9 78.6± 1.4 83.3± 0.0

Pitt 73.2± 1.8 75.0± 2.6 71.4± 6.4 72.4± 5.4

Leuven 74.6± 3.2 68.8± 5.4 80.6± 0.7 78.6± 0.7

UCLA 79.5± 3.1 77.8± 3.7 75.0± 2.3 79.2± 2.3

Caltech 67.6± 2.7 71.4± 0.0 62.5± 6.3 71.4± 3.6

CMU 66.7± 3.6 64.3± 7.1 69.2± 0.0 69.2± 2.2

MaxMun 65.4± 3.8 69.2± 0.3 61.5± 6.7 64.3± 4.9

SBL 66.7± 3.4 71.4± 1.2 62.7± 6.2 62.5± 4.9

SDSU 61.6± 2.7 60.1± 5.7 67.9± 3.8 65.6± 3.2

Stanford 67.7± 4.2 51.6± 5.7 76.9± 5.3 64.2± 3.7

UM 63.8± 5.6 70.5± 4.3 53.2± 5.7 75.6± 4.9

Trinity 68.8± 5.5 72.9± 4.6 60.5± 5.7 73.3± 3.7

AVERAGEE 70.6± 4.0 71.7± 4.1 69.4± 4.8 71.7± 4.0

using another atlas that divides the brain into 264 ROIs. The
robustness and scalability of our proposed method are further
verified by experiments on multi-atlas data.

In our experiments, we use 10-fold cross-validation to
evaluate the classification accuracy of the prediction model. This
means that we first randomly divide the dataset into 10 disjoint
subsets of data, and then select a single subset as the test set, with
the remaining 9 subsets used as the training set. In particular, for
multi-center experiments, we mixed all samples from 17 centers,
and then divided the dataset into 10 disjoint subsets. We selected
1 of the Ke parts as the test set and the remaining Ke-1 parts as
the training set, finally took the average of the Ke verification
results as the verification error of this model. The process is
repeated 10 times to reduce the effect of sampling bias on
the experimental results. The classification performance of the
model is evaluated by comparing the accuracy (ACC), sensitivity
(SEN), and specificity (SPE), and the mean of the experimental
results for the single-center data is also calculated. Accuracy
measures the proportion of subjects correctly classified (i.e.,
actual ASD is classified as ASD and actual healthy is classified
as healthy). Sensitivity represents the proportion of actual ASD
subjects correctly classified as ASD, and specificity measures the
proportion of actual healthy subjects classified as healthy. The
running time means the training time and the inference time.

Experiments settings
The classification accuracy of our proposed model may be

affected by a variety of parameters, including: (1) the choice
of hypergraph parameters when constructing high-order brain
functional connectivity networks, (2) the number of layers of
autoencoders in the initial feature selection process, (3) the
number of BLS nodes and the window size of each layer.
The hypergraph parameters of the model include the nearest
neighbor size K obtained based on the hypergraph similarity
matrix. The number of autoencoder layers L, the number of
nodes in the enhancement layer E, the mapping layer M and the
window size W of the BLS are adjusted during the experiment.
In our experiments, we adjust all free parameters by 10-fold
cross-validation on the training set. Taking into account the
effect of the hypergraph construction parameters, we optimize
K in the range {4, 5, ..., 12}. Since there is difference in the
high-order brain features that can be learned by different layers
of the autoencoder, we test the effect of different layers of
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TABLE 4 Classification performance of ASD identification achieved by six different methods on four datasets (i.e., OHSU, NYU, USM and UCLA)
with rs-fMRI data.

Site Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

OHSU SVM 53.8± 5.2 55.1± 6.1 48.9± 7.2 52.6± 6.7

SVM-ATM 70.9± 3.7 69.9± 5.6 66.8± 4.1 70.1± 5.5

MLP 64.0± 4.5 56.5± 3.9 61.6± 4.2 60.3± 4.7

Autoencoder 74.0± 3.5 66.6± 2.9 75.5± 4.7 71.5± 4.1

BLS 75.5± 5.1 66.3± 3.8 72.6± 4.9 75.3± 3.9

Ours 80.8± 3.8 76.9± 7.7 84.6± 7.7 83.3± 8.3

NYU SVM 57.1± 2.5 50.3± 3.5 62.2± 2.7 57.8± 3.9

SVM-ATM 71.2± 5.1 53.3± 4.2 81.0± 1.2 69.1± 6.5

MLP 64.3± 4.2 68.4± 3.7 60.6± 3.9 57.1± 4.3

Autoencoder 65.7± 3.2 68.8± 2.6 63.2± 2.7 61.1± 4.8

BLS 69.7± 3.5 67.4± 6.3 71.1± 1.1 70.8± 1.4

Ours 71.4± 5.7 75.0± 1.5 68.4± 9.4 66.7± 9.8

USM SVM 64.7± 5.1 60.6± 1.9 66.9± 5.1 60.7± 3.9

SVM-ATM 69.6± 4.6 44.3± 3.8 68.2± 6.3 61.8± 4.3

MLP 64.1± 4.1 61.2± 3.8 65.4± 4.2 62.9± 3.8

Autoencoder 62.5± 2.8 60.0± 3.2 66.3± 4.5 62.5± 4.1

BLS 76.9± 3.1 78.5± 2.9 79.8± 3.9 82.2± 3.9

Ours 81.6± 2.9 84.8± 4.1 76.0± 0.9 86.6± 0.3

UCLA SVM 65.1± 5.7 68.3± 3.5 60.8± 4.7 65.2± 3.3

SVM-ATM 72.2± 3.1 73.8± 4.1 68.9± 3.8 69.2± 2.8

MLP 71.9± 3.5 72.7± 2.4 64.8± 3.1 66.1± 3.2

Autoencoder 57.7± 4.6 68.2± 4.1 47.4± 4.8 58.5± 3.9

BLS 73.2± 2.8 76.4± 4.5 65.8± 4.9 71.6± 3.1

Ours 79.5± 3.1 77.8± 3.7 75.0± 2.3 79.2± 2.3

the autoencoder on the experimental results for single-center
and multi-center data, respectively. We adjust the number of
layers of the autoencoder in the range {1, 2, ..., 6}. In addition,
the number of nodes in the mapping layer and enhancement
layer of the BLS and the size of the window also have a
significant impact on the classification results, so we test the
classification performance under different node settings. We
finally find that the hypergraph-based network of high-order
brain function connections are constructed with K set to
be 5. The number of layers of the autoencoder L is set to
be 3. For the multi-center data, we set the parameters as
M = 20, E = 10, W = 100. For the single-center data, we
set the parameters as M = 200, E = 50. Depending on the
optimal parameters chosen, we can obtain the best experimental
results.

Classification performance
We compare our proposed method with: (1) support vector

machine (SVM) with RBF kernel, (2) random forests, (3) deep
neural network (DNN), (4) Autoencoder, four state-of-the-art
methods shown in Table 2.

In the first part of the experiment, the results of the
multi-center data are shown in Table 2. Experimental
results demonstrate that our proposed method considers

the efficiency of the model while maintaining accuracy.
Moreover, the time required for ten-fold cross-validation
was significantly reduced. Based on the experimental results,
it is demonstrated that the high-order brain functional
connectivity network constructed based on hypergraphs
can capture more correlations between brain regions than
the traditional lower-order brain functional connectivity
network, and thus obtain more discriminative features. We
confirm that BLS further learns the features extracted by
autoencoder and greatly reduces the training time. Our method
achieves 71.8% accuracy on multi-center data. Experiments
show that our proposed method outperforms other state-
of-the-art algorithms in terms of accuracy and training
time.

At the same time, in order to verify the effectiveness
of the proposed method on independent single-center data,
we further conduct experiments on 17 single-center datasets.
Table 3 shows the results of our experiments, which demonstrate
that our method achieves better classification results on small
sample datasets compared to the existing state-of-the-art
methods. In particular, for the USM dataset, the accuracy is
as high as 81.6%. The experiments demonstrate the significant
superiority of our proposed method on small sample data as
well.
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FIGURE 3

The classification accuracy on different mapping features settings.

Discussion

Analysis of the hypergraph learning

To evaluate that BLS plays an important role in our
proposed method, we use BLS alone for the final classification
task on four representative single-center data. Meanwhile, to
demonstrate the improved classification accuracy of high-order
brain functional connectivity networks based on hypergraph
and BLS, we use BLS to classify the features obtained based
on the hypergraph. In particular, we select four representative
single-center datasets for comparison based on previous work
(Eslami and Saeed, 2019). Our approach is compared with the
following methods, as shown in Table 4.

(1) We first compare with the SVM method as well as
the MLP method. We also compare with SVM methods that
incorporated parameter tuning (i.e., SVM as a classifier using
the hyperparameter tuning method Auto Tune Models (ATM))
(Eslami and Saeed, 2019).

(2) We then compare with the ASD classification method
based on autoencoder and multilayer perceptron proposed by
Heinsfeld et al. (2017).

To demonstrate separately that hypergraphs and BLS play an
important role in our proposed method, we first used BLS alone
to learn the low-order brain functional connectivity network for
ASD classification, followed by the construction of a high-order

brain functional connectivity network based on hypergraphs,
which is then learned and classified by autoencoder and
BLS. Table 4 shows the experimental results of each method,
and the results show that our proposed method using only
BLS to learn the lower-order brain functional connectivity
network significantly outperforms traditional machine learning
methods as well as recent deep learning-based methods such as
autoencoder-based methods.

The model performance is further improved when the high-
order brain functional connectivity network is represented using
hypergraphs. Therefore, our proposed method demonstrates
significant superiority over other methods.

Analysis of the broad learning system

In order to verify the effectiveness of BLS in further
extracting discriminative features of high-order brain
functional connectivity networks and optimize the specific
structure of BLS, we test the classification results of different
mapping features of multi-center data. We empirically set
the initial number of enhancement nodes to 1,000, 5,000,
10,000, 15,000, 20,000, 25,000, respectively, and then gradually
increase the number of mapping nodes in steps of 500.
Figure 3 shows the variation in model performance at
some typical nodes settings during optimization. BLS has
obtained classification results with high accuracy under the
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FIGURE 4

The selected high-order brain functional connections.

TABLE 5 Comparison with the state-of-the-art methods using other brain atlas.

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

ASD-DiagNet (Eslami et al., 2019) 68.4± 1.2 70.9± 0.5 65.7± 2.6 65.2± 3.5

CNN + Element-wise Filters (Xing et al., 2019) 65.7± 3.8 70.8± 0.1 61.3± 7.0 61.3± 7.4

Auto-AsD-Network (Eslami and Saeed, 2019) 70.1± 1.7 71.7± 0.3 68.5± 2.8 70.5± 5.3

Autoencoder + DNN (Mostafa et al., 2020) 79.1± 1.8 77.5± 5.8 80.7± 12.5 80.0± 10.5

Riemannian Regression (Wong et al., 2018) 71.1± 1.5 72.7± 0.8 69.4± 2.9 71.1± 4.8

Ours 83.1± 3.9 82.2± 5.1 80.7± 4.2 86.0± 6.3

settings of different mapping nodes. In most cases, when the
number of enhancement nodes is fixed, model performance
becomes better and worse when the number of mapping
nodes continuously increases. Therefore, the optimal node

setting can be found in this process. When the number of
mapping nodes and the number of enhancement nodes reaches
5,000 and 10,000, respectively, the best result, 76.2%, can be
obtained.
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Analysis of high-order brain
connectivity network

In order to explore the high-order connections
associated with ASD in the brain functional connectivity
network, we analyze the high-order brain functional
connections that are selected most frequently. As shown
in Figure 4. These ROIs are colored according to the static
network to which they belong. We find the selected brain
connections and regional distribution of brain regions
scatter across the two hemispheres and different lobes,
showing a pattern of functional abnormalities throughout
the brain of ASD patients. Specifically, the top brain
FCs are visualized in Figure 4. The connections in Red
represent the edges of brain ROIs and the ROIs with
same color belong to the same brain modules. The brain
regions shown in Figure 4 are highly associated with ASD
(Wang et al., 2014). The selected connectivities include
the salience network and cerebellum region, and these
regions are also shown to be closely related to ASD.
These results verify the reliability of our proposed method
in detecting informative functional connectivity for ASD
identification.

Experiments on other brain atlas

To verify the robustness and scalability of our method
on another atlas, we further select the ABIDE dataset for
our experiments, using the preprocessing method and brain
region segmentation method used by Mostafa et al. (2020)
and Yin et al. (2022). In contrast to the aforementioned
segmentation of brain regions into 200 ROIs based on the
cc200 atlas, we segment the brain into 264 ROIs and then
obtain another brain feature representation by calculating
the high-order brain functional connectivity network among
the 264 ROIs, i.e., we obtain 69,432 pairwise correlation
features. We use 871 samples from the ABIDE dataset as in
Mostafa et al. (2020); Yin et al. (2022) for our experiments.
We compare our proposed method with the latest methods,
namely (1) the autoencoder based method for ASD diagnosis
proposed by Eslami and Saeed (2019); Eslami et al. (2019),
(2) a novel convolutional neural network method proposed
by Xing et al. (2019), (3) an autoencoder and DNN classifier
based method for ASD diagnosis proposed by Mostafa et al.
(2020), and a method based on logarithmic Euclidean and
affine invariant Riemann metric connectivity matrices proposed
by Wong et al. (2018). Table 5 shows the algorithm we
compared with and the experimental results. Experiments
confirm that our proposed method is significantly superior
to other methods in characterizing functional connectivity

relationships in the brain. Compared to the autoencoder-
based methods proposed by Mostafa et al. (2020) and
the Euclidean and affine-invariant Riemannian metric-based
connectivity matrix-based methods proposed by Wong et al.
(2018), our method performs well on another brain atlas. We
experimentally demonstrate the robustness and scalability of our
method.

Conclusion

We propose a deep-broad learning-based method to
explore the high-order brain functional connectivity for
ASD diagnosis. Our hypergraph-based higher-order brain
functional connectivity network helps to characterize the
global features of the brain. The use of autoencoder and
BLS to sequentially learn high-order features makes the
ASD detection model more efficient and effective. Our
experiments are conducted on single-center and multi-
center data of the ABIDE dataset. To verify the robustness
and scalability of the method, we perform additional
experiments on another brain atlas that divide brain regions
into 264 ROIs. Experimental results demonstrate that our
profiled high-order brain functional connectivity network
can represent more discriminative global brain features.
The combination of BLS and autoencoder further quickly
learns the features, and the diagnostic model can achieve
higher accuracy.
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Brain tumor segmentation remains a challenge inmedical image segmentation

tasks. With the application of transformer in various computer vision tasks,

transformer blocks show the capability of learning long-distance dependency

in global space, which is complementary to CNNs. In this paper, we proposed

a novel transformer-based generative adversarial network to automatically

segment brain tumors with multi-modalities MRI. Our architecture consists

of a generator and a discriminator, which is trained in min–max game

progress. The generator is based on a typical “U-shaped” encoder–decoder

architecture, whose bottom layer is composed of transformer blocks with

Resnet. Besides, the generator is trained with deep supervision technology.

The discriminator we designed is a CNN-based network with multi-scale

L1 loss, which is proved to be e�ective for medical semantic image

segmentation. To validate the e�ectiveness of our method, we conducted

exclusive experiments on BRATS2015 dataset, achieving comparable or better

performance than previous state-of-the-art methods. On additional datasets,

including BRATS2018 and BRATS2020, experimental results prove that our

technique is capable of generalizing successfully.

KEYWORDS

generative adversarial network, transformer, deep learning, automatic segmentation,

brain tumor

1. Introduction

Semantic medical image segmentation is an indispensable step in computer-aided

diagnosis (Stoitsis et al., 2006; Le, 2017; Razmjooy et al., 2020; Khan et al., 2021). In

clinical practice, tumor delineation is usually performed manually or semi-manually,

which is time-consuming and labor-intensive. As a result, it is of vital importance

to explore automatic volumetric segmentation methods with the help of medical

images to accelerate the computer-aided diagnosis. In this paper, we focus on the

segmentation of brain tumors with the help of magnetic resonance imaging (MRI)

consisting of multi-modality scans. The automatic segmentation of gliomas remains one

of the most challenging medical segmentation problems stemming from some aspects,

such as arbitrary shape and location, poorly contrasted, and blurred boundary with

surrounding issues.
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Since the advent of deep learning, Convolutional Neural

Networks (CNN) have achieved great success in various

computer vision tasks, ranging from classification (LeCun et al.,

1998; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;

Szegedy et al., 2015; Huang et al., 2017), object detection

(Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Liu

et al., 2016; Redmon et al., 2016; He et al., 2017; Redmon and

Farhadi, 2017, 2018; Bochkovskiy et al., 2020) to segmentation

(Chen et al., 2014, 2017; Long et al., 2015; Ronneberger et al.,

2015; Lin et al., 2017). Fully Convolution Networks (FCN Long

et al., 2015) and in particular “U-shaped” encoder–decoder

architectures have realized state-of-the-art results in medical

semantic segmentation tasks. U-Net (Ronneberger et al., 2015),

which consists of symmetric encoder and decoder, uses the

skip connections to merge the extracted features from encoder

with those from decoder at different resolutions, aiming at

recovering the lost details during downsampling. Owing to

the impressive results in plenty of medical applications, U-Net

and its variants have become the mainstream architectures in

medical semantic segmentation.

In spite of their prevalence, FCN-based approaches are

incapable of modeling long-range dependency because of its

intrinsic limited receptive field and the locality of convolution

operations. Inspired by the great success of transformer-based

models in Natural Language Processing (NLP) (Devlin et al.,

2018; Radford et al., 2018; Liu et al., 2019; Yang et al.,

2019; Clark et al., 2020), a growing number of researchers

propose to apply the self-attention mechanism to medical image

segmentation, attempting to overcome the limitations brought

by the inductive bias of convolution, so as to extract the long-

range dependency and context–dependent features. Especially,

unlike prior convolution operations, transformers encode a

sequence of patches and leverage the power of self-attention

modules to pre-train on a large-scale dataset for downstream

tasks, like Vision Transformer (ViT) (Dosovitskiy et al., 2020)

and its variants.

Simultaneously, for the Transformers applied in medical

image segmentation, Generative Adversarial Networks (GAN)

has revealed great performance in semantic segmentation.

In a typical GAN architecture used for segmentation, GAN

consists of two competing networks, a discriminator and a

generator. The generator learns the capability of contexture

representations, minimizing the distance between prediction

and masks, while the discriminator on the contrary maximizes

the distance to distinguish the difference between them. The

two networks are trained in an alternating fashion to improve

the performance of the other. Furthermore, some GAN-based

methods like SegAN (Xue et al., 2018) achieve more effective

segmentation performance than FCN-based approaches.

In this paper, we explore the integrated performance of

transformer and generative adversarial network in segmentation

tasks and propose a novel transformer-based generative

adversarial network for brain tumor segmentation. Owing to

the attention mechanism, transformer has a global receptive

field from the very first layer to the last layer, instead of

focusing solely on the local information from convolution

kernel in each layer, thus contributing to the pixel-level

classification and being more suitable for medical segmentation

tasks. Besides, CNN learns representative features at different

resolutions through cascading relationships, while the attention

mechanism pays more attention to the relationship between

features, thus transformer-based methods are easily-generalized

and not completely dependent on the data itself, such as

experiments with incomplete images input in Naseer et al.

(2021). Inspired by some attempts (Wang W. et al., 2021;

Hatamizadeh et al., 2022) of fusing transformer with 3D CNNs,

we design an encoder–decoder generator with deep supervision,

where both encoder and decoder are 3D CNNs but the bridge

of them is composed of transformer blocks with Resnet. In

the contrast of typical “U-shaped” decoder–encoder network,

our transformer block is designed to replace the traditional

convolution-based bottleneck, for the reason that the self-

attention mechanism inside transformer can learn long-range

contextual representations while the finite kernel size limits

the CNN’s capability of learning global information. For pixel-

wise brain tumor segmentation task, replacing CNN with

transformer blocks on the bottleneck contributes to capturing

more features from encoder. Inspired by SegAN (Xue et al.,

2018), we adopt the multi-scale L1 loss to our method with only

one generator and one discriminator, measuring the distance of

the hierarchical features between generated segmentation and

ground truth. Experimental results on BRATS2015 dataset show

that our method achieves comparable or better performance

than some previous state-of-the-art methods. Compared to

existing methods, the main contributions of our approach are

listed as follows:

• A novel transformer-based generative adversarial network

is proposed to address the brain tumor segmentation task

with multi-modalities MRI. To enhance the efficiency of

brain tumor segmentation, our method incorporates the

concepts of “Transformer” and “Generative adversarial”.

The generator makes use of the transformer blocks

to facilitate the process of learning global contextual

representations. As far as we are aware, our work is

among the very first ones to explore the combination

of transformer and generative adversarial networks

and achieve excellent performance in the brain tumor

segmentation task.

• Our generator exploits transformer with Resnet module

in 3D CNN for segmenting multi-modalities MRI brain

tumors. Building upon the encoder–decoder structure,

both encoder and decoder in our proposed generator are

mainly composed of traditional 3D convolution layers,

while the bottom layer of the “U-shaped” structure is

a transformer with Resnet module. With Resnet, the
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transformer block captures both global and local spatial

dependencies effectively, thus preparing embedded features

for progressive upsampling to full resolution predicted

maps.

• Our loss functions are suitable and effectively applied in

generator and discriminator. Adopting the idea of deep

supervision (Zhu Q. et al., 2017), we take the output of the

last three decoder layers of generator to calculate weighted

loss for better gradient propagation. Besides, we leverage a

CNN-based discriminator to compute multi-scale L1 norm

distance of hierarchical features extracted from ground

truth and segmentation maps, respectively.

• The exclusive experimental results evaluated on

BRATS2015 dataset show the effectiveness of each

part of our proposed methods, including transformer with

Resnet module and loss functions. Comparing to existing

methods, the proposed method can obtain significant

improvements in brain tumor segmentation. Moreover,

our method successfully generalizes in other brain tumor

segmentation datasets: BRATS2018 and BRATS2020.

The following outlines the structure of this paper: Section

2 reviews the related work. Section 3 presents the detail of

our proposed architecture. Section 4 describes the experimental

setup and evaluates the performance of our method. Section 5

summarizes this work.

2. Related works

2.1. Vision transformer

The Transformers were first proposed by Vaswani et al.

(2017) on machine translation tasks and achieved a quantity

of state-of-the-art results in NLP tasks (Devlin et al., 2018;

Radford et al., 2018). Dosovitskiy et al. (2020) then applied

Transformers to image classification tasks by directly training

a pure Transformer on sequences of image patches as words

in NLP, and achieved state-of-the-art benchmarks on the

ImageNet dataset. In object detection, Carion et al. (2020)

proposed transformer-based DETR, a transformer encoder–

decoder architecture, which demonstrated accuracy and run-

time performance on par with the highly optimized Faster

R-CNN (Ren et al., 2015) on COCO dataset.

Recently, various approaches were proposed to explore

the applications of the transformer-based model for semantic

segmentation tasks. Chen et al. (2021) proposed TransUNet,

which added transformer layers to the encoder to achieve

competitive performance for 2D multi-organ medical image

segmentation. As for 3Dmedical image segmentation, WangW.

et al. (2021) exploited Transformer in 3D CNN for segmenting

MRI brain tumors and proposed to use a transformer in

the bottleneck of “U-shaped” network on BRATS2019 and

BRATS2020 datasets. Similarly, Hatamizadeh et al. (2022)

proposed an encoder–decoder network named UNETR, which

employed transformer modules as the encoder and CNN

modules as the decoder, for the brain tumor and spleen

volumetric medical image segmentation.

Compared to these approaches above, our method is

tailored for 3D segmentation and is based on generative

adversarial network. Our generator produces sequences fed into

transformer by utilizing a backbone encoder–decoder CNN,

where the transformer with Resnet module is placed in the

bottleneck. With Resnet, the encoder captures features not only

from CNN-based encoder but also from transformer blocks.

Moreover, the last three output layers of the encoder are

considered to calculate the loss function for better performance.

Networks like UNETR employ transformer layers as encoder

in low-dimension semantic level, and taking this network as

backbone in our method without pre-training easily leads to

model collapse during the adversarial training phase. Therefore,

we do not choose these networks as our backbone. We find that

taking transformer as encoder in low-dimension semantic level

needs quantities of pre-training tasks on other datasets to get

good results, like TransUNet and UNETR above. As shown in

our experiments Section 4.6, transformer-based encoder in low-

dimension semantic level performances inferior to CNN-based

one when training from scratch. Therefore, we choose to apply

transformer only in bottleneck, and remain the low-dimension

encode layers as convolutional layers. In this way, we can train

from scratch, meanwhile achieving good performance.

2.2. Generative adversarial networks

The GAN (Goodfellow et al., 2014) is originally introduced

for image generation (Mirza and Osindero, 2014; Chen et al.,

2016; Odena et al., 2017; Zhu J.-Y. et al., 2017), making the core

idea of competing training with a generator and a discriminator,

respectively, known outside of fixed circle. However, there exists

a problem that it is troublesome for the original GAN to remain

in a stable state, hencemaking us cautious to balance the training

level of the generator and the discriminator in practice. Arjovsky

et al. proposed Wasserstein GAN (WGAN) as a thorough

solution to the instability by replacing the Kullback-Leibler (KL)

divergence with the Earth Mover (EM) distance.

Various methods (Isola et al., 2017; Han et al., 2018; Xue

et al., 2018; Choi et al., 2019; Dong et al., 2019; Oh et al., 2020;

Ding et al., 2021; He et al., 2021; Nishio et al., 2021; Wang

T. et al., 2021; Zhan et al., 2021; Asis-Cruz et al., 2022) were

proposed to explore the possibility of GAN in medical image

segmentation. Xue et al. (2018) used U-Net as the generator

and proposed a multi-scale L1 loss to minimize the distance

of the feature maps of predictions and masks for the medical

image segmentation of brain tumors. Oh et al. (2020) took

residual blocks into account under the framework of pix2pix
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(Isola et al., 2017) and segmented the white matter in FDG-PET

images. Ding et al. (2021) took an encoder–decoder network as

the generator and designed a discriminator based on Condition

GAN (CGAN) on BRATS2015 dataset, adopting the image labels

as the extra input.

Unlike these approaches, our method incorporates the

concepts of “Transformer” and “GAN.” Our discriminator is

based on CNN instead of transformer. In our opinion, owing to

the attention mechanism inside transformer, transformer has a

more global receptive field than CNN with limited kernel size,

thus contributing to pixel-level classification and being more

suitable for medical segmentation tasks. However, for image-

level medical classification, transformer-based discriminator

seems to be less appropriate for its weakness of requiring

huge datasets to support pre-training, while CNN is strong

enough for classification tasks without pre-training. Motivated

by viewpoints above, in our method, the transformer-based

generator and CNN-based discriminator are combined to

facilitate the progress of segmentation under the supervision of

a multi-scale L1 loss.

3. Materials and methods

3.1. Overall architecture

The overview of our proposed model is presented

in Figure 1. Our framework consists of a generator and

discriminator for competing training. The generator G is

a transformer-based encoder–decoder architecture. Given

a multi modalities (T1, T1c, T2, and FLAIR) MRI scan

X ∈ RC×H×W×D with 3D resolution (H, W, D) and C

channels, we utilize 3D CNN-based down-sampling encoder

to produce high dimension semantic feature maps, and then

these semantic information flow to 3D CNN-based up-sampling

decoder through the intermediate Transformer block with

Resnet (He et al., 2016). With skip connection, the long-range

and short-range spatial relations extracted by encoder from

each stage flow to the decoder. For deep supervision (Zhu Q.

et al., 2017), the output of decoder consists of three parts: the

output of last three convolution layers after sigmoid. Inspired

by Xue et al. (2018), the discriminator D we used has the similar

structure as encoder in G, extracting hierarchical feature maps

from ground truth (GT) and prediction separately to compute

multi-scale L1 loss.

3.2. Generator

Encoder is the contracting path which has seven spatial

levels. Patches of size 160 × 192 × 160 with four channels are

randomly cropped from brain tumor images as input, followed

by six down-sampling layers with 3D 3×3×3 convolution (stride

= 2). Each convolution operation is followed by an Instance

Normalization (IN) layer and a LeakyReLU activation layer.

At the bottom of the encoder, we leverage the transformer

with Resnet module to model the long-distance dependency

in a global space. The feature maps produced by the encoder

is sequenced first and then create the feature embeddings by

simply fusing the learnable position embeddings with sequenced

feature map by element-wise addition. After the position

embeddings, we introduce L transformer layers to extract the

long-range dependency and context dependent features. Each

transformer layer consists of a Multi-Head Attention (MHA)

block after layer normalization (LN) and a feed forward network

(FFN) after layer normalization. In attention block, the input

sequence is fed into three convolution layers to produce three

metrics: queries Q, keys K and values V. To combine the

advantages of both CNN and Transformer, we simply short cut

the input and output of Transformer block. Thus, as in Vaswani

et al. (2017) and Wang W. et al. (2021), given the input X,

the output of the transformer with Resnet module Y can be

calculated by:

Y = x+ yL (1)

yi = FFN
(

LN
(

y
′
i

))

+ y
′
i (2)

y
′
i = MHA

(

LN
(

yi−1
))

+ yi−1 (3)

MHA (Q,K,V) = Concat
(

head1, ..., headh
)

WO (4)

headi = Attention (Q,K,V) = softmax
(

QKT/
√
dk

)

V (5)

where yi denotes the output of ith (i ∈ [1, 2, ..., L]) Transformer

layer, y0 denotes X, WO are projection metrics, dk denotes the

dimension of K.

Unlike the encoder, the decoder uses 3D 2× 2× 2 transpose

convolution for up-sampling, followed by skip connection and

two 3D 3 × 3 × 3 convolution layers. For a better gradient flow

and a better supervision performance, a technology called deep

supervision is introduced to utilize the last three decoder levels

to calculate loss function. Concretely, we downsampled the GT

to the same resolution with these outputs, thus making weighted

sum of loss functions in different levels.

The detailed structure of our transformer-based generator

is presented in Table 1. In the encoder part, patches of size

160 × 192 × 160 voxels with four channels are randomly

cropped from the original brain tumor images as input. At each

level, there are two successive 3 × 3 × 3 unbiased convolution

layers followed by normalization, activation layers and dropout

layers. Beginning from the second level, the resolution of the

feature maps is reduced by a factor of 2. These features, e.g.,

areas of white matter, edges of brain, dots and lines, etc., are

extracted by sufficient convolution kernels for next blocks. The
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FIGURE 1

Overall architecture of our proposed method. In this figure, “Conv1” represents convolutional layer with kernel 1× 1× 1, “Conv3” with kernel

3× 3× 3, “IN” represents InstanceNorm layer, “LeReLU” means LeakyReLU activation layer.

transformer block enriches the global contextual representation

based on the attention mechanism, forcing features located in

the desired regions unchanged while suppressing those in other

regions. The shortcut branch crossing the transformer block

fusing the features from both encoder part and transformer

block by element-wise addition, indicating that our generator is

capable of learning short-range and long-range spatial relations

with neither extra parameter nor computation complexity.

According to the attributes of Resnet (He et al., 2016), y =
f (x) + x, where f (x) in our method represents transformer

blocks, x is the output of CNN-based encoder, whose contexture

representations in feature maps are relatively short-range

than transformer’s. With Resnet, the element-wise addition of

f (x) and x can directly fuse the short-range spatial relations

from CNN-based encoder and long-range spatial relations

from transformer-based bottleneck. Additionally, unlike neural

network layers, element-wise addition is a math operation with

no more memory cost and negligible computation time cost.

The decoder part contains amounts of upsampling layers and

skip connection to progressively recover semantic information

as well as resolution. The first upsampling layer is implemented

by interpolation while the other upsampling layers adapt the

form of deconvolution with stride set to 2. At level i ∈ [1, 5],

the encoder block Di doubles the spatial resolution, followed by

skip connection to fuse high-level (fromDi) and low-level (from

encoder block Ei) contextual representation so as to segment the

desired tumor regions. For a better supervision performance,

the outputs of Di where i ∈ [1, 3] are fed into 1 × 1 × 1

convolution layer and sigmoid layer to predict segmentation

maps with different resolution. Accordingly, the ground truth

is downsampled to different shapes such that they match the

shapes of those segmentation maps.

Our generator’s vital part is the transformer with Resnet

module. As shown in Table 1, our transformer with Resnet

module consists of transformer block and Resnet, while

transformer block is composed of position encodings module,

several transformer layers depicted in Figure 2 and features

projection module. To make use of the order of the input

sequence reshaped from bottom layer feature maps, we

introduce a learnable positional encoding vector to represent

some information about position of tokens in the sequence,

instead of sine and cosine functions. After position encoding

and normalization, the input sequence is fed into three different

linear layers to create queries, keys, and values. Then, we

compute the dot products of keys with queries. To avoid

extremely small gradients after softmax function, we scale the

dot-products by a factor related to dimensions of queries,

as shown in Equation 5. Multiplying scaled weights with
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TABLE 1 The detailed structure of proposed generator.

Stage Name Details Output size

Encoder E1 [Conv3, IN, LeReLU, Dropout] 64*160*192*160

[Conv3, IN, LeReLU, Dropout]

E2 [Conv3(stride2), IN, LeReLU, Dropout] 96*80*96*80

[Conv3, IN, LeReLU, Dropout]

E3 [Conv3(stride2), IN, LeReLU, Dropout] 128*40*48*40

[Conv3, IN, LeReLU, Dropout]

E4 [Conv3(stride2), IN, LeReLU, Dropout] 192*20*24*20

[Conv3, IN, LeReLU, Dropout]

E5 [Conv3(stride2), IN, LeReLU, Dropout] 256*10*12*10

[Conv3, IN, LeReLU, Dropout]

E6 [Conv3(stride2), IN, LeReLU, Dropout] 384*5*6*5

[Conv3, IN, LeReLU, Dropout]

E7 [Conv3(stride2), IN, LeReLU, Dropout] 512*3*3*3

[Conv3, IN, LeReLU, Dropout]

Transformer ResTransBlock Reshape 512*3*3*3

PE

Transformer Layer*4

Reshape

Resnet

Decoder D6 Upsample 384*5*6*5

[Conv3, IN, LeReLU, Dropout] x 2

D5 Deconv 256*10*12*10

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

D4 Deconv 192*20*24*20

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

D3

Deconv 128*40*48*40

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

Output3 Conv1 + Sigmoid 4*40*48*40

D2

Deconv 96*80*96*80

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

Output2 Conv1 + Sigmoid 4*80*96*80

D1

Deconv 64*160*192*160

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

Output1 Conv1 + Sigmoid 3*160*192*160

values, we obtain a single attention output, which is then

concatenated with other heads’ outputs to produce the multi-

head attention outputs. Subsequently, normalization, dropout,

and multi-layer perception (MLP) layers are utilized to produce

the transformer layer’s ultimate output. While convolution

layers have local connections, shared weights, and translation

equivariance, attention layers are global. We take advantage of

both by residual connection to learn both short-range and long-

range spatial relations with no more memory cost and negligible

computational time cost.
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FIGURE 2

The structure of transformer layer.

3.3. Discriminator and loss function

To distinguish the difference between the prediction and GT,

the discriminator D extracts features of GT and prediction to

calculate L1 norm distance between them. The discriminator is

composed of six similar blocks. Each of these blocks consists

of a 3 × 3 × 3 convolution layer with a stride of 2, a batch

normalization layer and a LeakyReLU activation layer. Instead

of only using the final output of D, we leverage the jth output

feature f ij (x) extracted by ith (i ∈ [1, 2, . . ., L]) layers from image

x to calculate multi-scale L1 loss ℓD as follows:

ℓD

(

x, x
′)

=
1

L ∗M

L
∑

i=1

M
∑

j=1

∥

∥

∥
f ij (x)− f ij

(

x
′)∥

∥

∥

1
(6)

where M denotes the number of extracted features of a layer in

D.

Referring to the loss function of GAN (Goodfellow et al.,

2014), our loss function of the whole adversarial process is

described as follows:

min
θG

max
θD

L (θG, θD) = Ex∼Pdata

(

ℓD
(

G(x), y
))

+Ex∼Pdata

(

ℓdeep_bce_dice
(

G(x), y
)

)
(7)

where x, y denote the input image and ground truth,

respectively, ℓdeep_bce_dice denotes that the segmentation maps

of generator are used to calculate the BCE loss together with the

Dice loss under deep supervision. Concretely, ℓdeep_bce_dice is a

weighted sum of ℓdeep_bce_dice (pi, yi),i ∈ [1, 2, 3] for prediction

pi and mask yi where i denotes the ith level of decoder (Di).

The detailed training process is presented in Algorithm 1,

which interprets the procedure of sampling data and following

updating discriminator and generator with corresponding loss

function respectively.

1: for number of training epoches do

2: for steps of training discriminator do

3: Get n input images from pdata
{

x1, ..., xn
}

and

corresponding labels
{

y1, ..., yn
}

.
4: Update discriminator by maximizing the loss

below:

1

n

n
∑

i=1

[

ℓD
(

G
(

xi
)

, yi
)]

5: Clip the weights of discriminator.

6: end for

7: Get n input images from pdata
{

x1, ..., xn
}

and

corresponding labels
{

y1, ..., yn
}

.
8: Update generator by minimizing the loss

below:

1

n

n
∑

i=1

[

ℓdeep_bce_dice
(

G
(

xi
)

, yi
)

+ ℓD
(

G
(

xi
)

, yi
)]

9: end for

Algorithm 1. The detailed training process. ℓdeep_bce_dice represents

BCE Dice loss with deep supervision, ℓD represents multi-scale L1 loss.

4. Experimental results

4.1. Dataset

In the experiments, we evaluated our method using the

Brain Tumor Image Segmentation Challenge 2015 (BRATS2015)

dataset. In BRATS2015, the training dataset contains manual

annotation by clinical experts for 220 patient cases with high-

grade glioma (HGG) and 55 patient cases with low-grade glioma

(LGG), whereas 110 patient cases are supplied in the online

testing dataset without annotation. Four 3D MRI modalities—

T1, T1c, T2, and FLAIR—are used for all patient cases, as

depicted in Figure 3. Each modality has the origin size 240 ×
240×155 with the same voxel spacing. The ground truth has five

classes: background (label 0), necrosis (label 1), edema (label 2),

non-enhancing tumor (label 3), and enhancing tumor (label 4).
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FIGURE 3

HGG and LGG cases with four modalities: T1, T1c, T2, FLAIR on BRATS2015 dataset.

We divided the 275 training cases into a training set and a

validation set with the ratio 9:1 both in HGG and LGG. During

training and validation, we padded the origin size 240×240×155

to size 240 × 240 × 160 with zeros and then randomly cropped

into size 160×192×160, which makes sure that the most image

content is included.

4.2. Evaluation metric

To evaluate the effectiveness of a segmentation method, the

most basic thing is to compare it with the ground truth. In

the task of brain tumor segmentation, there are three main

evaluation metrics compared with the ground truth: Dice,

Positive predictive Value (PPV), and Sensitivity, defined as

follows:

Dice (P, T) =
1

2
×

∣

∣P1
⋂

T1
∣

∣

(|P1| + |T1|)
(8)

PPV (P,T) =
∣

∣P1
⋂

T1
∣

∣

|P1|
(9)

Sensitivity (P,T) =
∣

∣P0
⋂

T0
∣

∣

|T0|
(10)

where P represents the prediction segmented by our proposed

methods, T represents the corresponding ground truth. P1

and T1 denote the brain tumor region in P and T, P0 and

T0 denote the other region except brain tumor in P and T,

respectively, |·| calculates the number of voxels inside region, ∩
calculates the intersection of two regions. When Dice is larger,

PPV and Sensitivity are larger at the same time, the predicted

segmentation is considered to be more similar to ground truth,

proving that the segmentation method is more effective.

4.3. Implementation details

Experiments were run on NVIDIA A100-PCIE (4 × 40GB)

system for 1,000 epochs (about 3 days) using the Adam

optimizer (Kingma and Ba, 2014). The target segmentation

maps are reorganized into three tumor subregions: whole tumor

(WT), tumor core (TC), and enhancing tumor (ET). The initial

learning rate is 0.0001 and batch size is 4. The data augmentation

consists of three parts: (1) padding the data from 240×240×155

to 240×240×160with zeros; (2) randomizing the data’s cropping

from 240×240×160 to 160×192×160; (3) random flipping the

data across three axes by a probability with 0.5. Impacted by the

volumetric input size, the number of parameters of our network

is larger than common 2D networks, generator: 58.0127M,

transformer blocks inside generator: 11.3977M, discriminator:

75.4524M. Both the Dice loss in deep supervision and multi-

scale L1 loss are employed to train the network in competing

progress. In inference, we converted the transformed three

subregions (WT, TC, ET) back to the original labels. Specially, we

replace the enhancing tumor with necrosis when the possibility
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of enhancing tumor in segmentation map is less than the

threshold, which is chosen according to the online testing scores.

4.4. Impact of the number of generators
and discriminators

As the BRATS2015 is a multi-label segmentation task,

our architecture can be implemented with schemes where the

number of generators and discriminators are different. Each

implementation scheme in Table 2 is specifically described as

follows:

• 1G-1D. The network is composed of one generator and

one discriminator. The generator outputs three-channel

segmentation maps corresponding to three brain tumor

subregions, while the discriminator is fed with three-class

masked images concatenated in channel dimension.

• 1G-3D. The network is composed of one generator and

three discriminators. The generator outputs three-channel

segmentation maps while the discriminators output three

one-channel maps, each for one class.

• 3G-3D. The network is composed of three generators and

three discriminators. Each generator or discriminator is

built for one class. There are three pairs of generators

and discriminators, indicating that each pair is trained

independently for one class.

4.5. Evaluating the transformer with
Resnet module

To evaluate the effectiveness of the transformer with Resnet

module, we conduct some ablation experiments. We design the

bottom layer of our proposed generator with different schemes

as follows:

• Transformer with Resnet. The bottom layer is composed of

Transformer with Resnet we proposed.

• Transformer w/o Resnet. The bottom layer is composed

of Transformer block, ranging from projection, position

embedding to transformer layers, without shortcut crossing

them.

• CNN with Resnet. The bottom layer is composed of

convolutional layers together with a shortcut crossing

them.

• Shortcut. The bottom layer is simply a shortcut connection

from the encoder part to the decoder part.

TABLE 2 Results of di�erent number of generators and discriminators.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

1G-3D 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

1G-1D 0.84 0.72 0.62 0.82 0.78 0.58 0.89 0.72 0.71

3G-3D 0.81 0.68 0.60 0.83 0.74 0.62 0.84 0.70 0.63

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

TABLE 3 Results of di�erent bottom layer in generator.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

Transformer with Resnet 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

Transformer w/o Resnet 0.85 0.71 0.61 0.83 0.79 0.60 0.90 0.69 0.68

CNN with Resnet 0.83 0.68 0.58 0.80 0.78 0.58 0.91 0.66 0.62

Shortcut 0.82 0.67 0.60 0.82 0.77 0.63 0.87 0.67 0.63

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

TABLE 4 Results of di�erent discriminators training from scratch.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

CNN-based 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

Transformer-based 0.79 0.66 0.58 0.79 0.77 0.55 0.86 0.64 0.66

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.
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TABLE 5 Results of di�erent loss function.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

Our method 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

w/o deep supervision 0.85 0.72 0.61 0.83 0.78 0.57 0.90 0.73 0.71

Single-scale L1 loss 0.84 0.72 0.61 0.82 0.78 0.58 0.89 0.72 0.71

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

FIGURE 4

Detailed evaluation curves of di�erent loss function.

TABLE 6 Performance of some methods on BRATS2015 testing dataset.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

UNET (Ronneberger et al., 2015) 0.80 0.63 0.64 0.83 0.81 0.78 0.80 0.58 0.60

ToStaGAN (Ding et al., 2021) 0.85 0.71 0.62 0.87 0.86 0.63 0.87 0.68 0.69

3D Fusing (Zhao et al., 2018) 0.84 0.73 0.62 0.89 0.76 0.63 0.82 0.76 0.67

FSENet (Chen et al., 2018) 0.85 0.72 0.61 0.86 0.83 0.66 0.85 0.68 0.63

SegAN (Xue et al., 2018) 0.85 0.70 0.66 0.92 0.80 0.69 0.80 0.65 0.62

Our method 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

The comparation results are shown in Table 3. From

the results, we demonstrate the transformer’s superiority and

irreplaceability, and we can conclude that transformer with

Resnet module make the best of features from transformer

block and convolutional encoder to improve the segmentation

performance.

4.6. Evaluating the CNN-based
discriminator

We select the CNN-based discriminator instead of

the transformer-based one as our final discriminator in

our architecture, due to our opinion that transformer-

based multi-layers discriminator requires huge datasets to

support pre-training. To prove that, we conduct ablation

experiments to compare their performance by training from

scratch. The transformer-based discriminator is implemented

using the inspiration of Jiang et al. (2021). Table 4 shows

the results on BRATS2015 testing dataset using different

discriminators, from which our CNN-based discriminator

shows its superior capability of classifying the ground truth

and segmentation outputs from scratch. Without pre-training,

the CNN-based discriminator appears to be better than the

transformer-based one.

4.7. Evaluating the loss function

In this section, we evaluate the effectiveness of the loss

function in our proposed methods. As shown in Equation 7,

our loss function is divided into two parts: the deep supervision
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FIGURE 5

Experimental results with corresponding slices on BRATS2015 validation set. The red arrows locate the mainly di�erent regions between GT and

segmentation results.

loss and multi-scale L1 loss. We conduct two ablation

experiments: one model with single-scale L1 loss, the other

model without deep supervision loss. It is worth noting that

the implementation of these models is the same as 1G-

3D where the network consists of one generator and three

discriminators and employs the transformer with Resnetmodule

in the bottom layer. From Table 5, we find that our loss

function achieves better performance under the same other

experimental environment.

The detailed segmentation evaluation scores curves with

different loss function are depicted in Figure 4. It is clear that the

segmentation performance of all approaches steadily increases
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FIGURE 6

From left to right is the visualization results of an original image in FLAIR modality, ground truth, model in our method, model in the form of

UNET + GAN, model UNET. From up to down in each column is three segmentation maps predicted with the same method. The blue boxes

outline the di�erence between results from di�erent methods.

as the number of epochs increases until it reaches a steady state.

Ranging from WT, TC to ET, our method shows an increasing

performance boost over other methods. As a consequence, our

method yields the best results in all evaluation metrics listed in

Table 5.

4.8. Comparison with other methods

To obtain a more robust prediction, we ensemble 10

models trained with the whole training dataset to average the

segmentation probability maps. We upload the results of our

methods on the BRATS2015 dataset and get the testing scores

computed via the online evaluation platform, as listed in Table 6.

Figure 5 shows our qualitative segmentation output

on BRATS2015 validation set. This figure illustrates

different slices of different patient cases in ground truth

and predictions separately.

4.9. Qualitative analysis

To demonstrate the performance of our proposed method,

we randomly choose a slice of one patient on BRATS2015

validation set to visualize and compare the result in Figure 6.

In Figure 6, images in the same column are produced from the

same method, and images in the same row are belonging to

the same segmentation label. Concretely, the column FLAIR

represents the original image with modality of FLAIR, while

other columns are segmentation maps with corresponding

categories and colors: WT is yellow, TC is green, and ET

is red. The column UNET represents that the corresponding

three segmentation maps are inferenced with model UNET.

The model of the column UNET plus GAN is built based

on UNET, with an addition of GAN, where the generator is

UNET with deep supervision and discriminator is a CNN-based

network with multi-scale L1 loss. A deep insight of Figure 6

reveals that with the help of deep supervision and multi-scale

L1 loss, the UNET+GAN method segments fuller edges and

richer details than UNET method. When the transformer block

is applied, our method produces more smooth borders on the

tumor core regions, and more complete contours on enhancing

tumor regions. The reason for this improvement seems to

be that the transformer with Resnet module can effectively

model the short-range and long-range dependency, and collect

both local and global contexture representation information.

Owing to more complete features, our method achieves the

better performance.
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TABLE 7 Comparison to other methods on BRATS2018 validation

dataset.

Method Dice(mean) Hausdorff(mm)

Enha. Whole Core Enha. Whole Core

Myronenko (2018) 0.7664 0.8836 0.8154 3.7731 5.9044 4.8091

Hu et al. (2019) 0.7178 0.8824 0.7481 2.8000 4.4800 7.0700

Chandra et al. (2018) 0.7406 0.8719 0.7990 5.5757 5.0379 9.5884

Liu (2018) 0.7639 0.8958 0.7905 4.0714 4.4924 8.1971

Our method 0.7686 0.9021 0.8089 5.7116 5.4183 9.4049

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

TABLE 8 Comparison to other methods on BRATS2020 validation

dataset.

Method Dice(mean) Hausdorff(mm)

Enha. Whole Core Enha. Whole Core

Tang et al. (2020) 0.703 0.893 0.790 34.306 4.629 10.071

Zhou et al. (2022) 0.647 0.818 0.759 44.400 10.000 14.600

Anand et al. (2020) 0.710 0.880 0.740 38.310 6.880 32.000

Zhang et al. (2021) 0.700 0.880 0.740 38.600 7.000 30.200

Our method 0.708 0.903 0.815 37.579 4.909 7.494

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

4.10. Generalization on other datasets

To evaluate generalization of our proposed method, we

conduct additional experiments on other datasets relative to

brain tumor segmentation, BRATS2018 and BRATS2020, which

are composed of more practical patient cases. These datasets

differ from BRATS2015 dataset in labels, number of cases

and difficulty. The detailed inference performance are listed in

Tables 7, 8. On BRATS2018 validation dataset, our proposed

method achieves Dice score of 0.7686, 0.9021, and 0.8089,

and Hausdorff (HD) of 5.7116, 5.4183, and 9.4049 mm on

ET, WT, and TC, respectively. On BRATS2020 validation

dataset, our method also realizes Dice score of 0.708, 0.903,

and 0.815 and HD of 37.579, 4.909, and 7.494 mm on

ET, WT, and TC, respectively. These excellent scores reveal

the great generalization of our transformer-based generative

adversarial network.

5. Discussion and conclusion

In this paper, we explored the application of a transformer-

based generative adversarial network for segmenting 3D

MRI brain tumors. Unlike many other encoder–decoder

architectures, our generator employs a transformer with Resnet

module to effectively model the long-distance dependency in a

global space, simultaneously inheriting the advantage of CNNs

for learning the capability of local contexture representations.

Moreover, the application of deep supervision improves the

flowability of gradient to some extent. Our discriminator is

applied to measure the norm distance of hierarchical features

from predictions and masks. Particularly, we calculate multi-

scale L1 loss between the generator segmentation maps and

ground truth. Experimental results on BRATS2015, BRATS2018,

and BRATS2020 datasets show a better performance of our

proposed method in comparison of other state-of-the-art

methods, which proves the superior generalization of our

method in brain tumor segmentation.
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Applying an attention-based
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Although theoretical studies have suggested that working-memory capacity

is crucial for academic achievement, few empirical studies have directly

investigated the relationship between working-memory capacity and

programming ability, and no direct neural evidence has been reported to

support this relationship. The present study aimed to fill this gap in the

literature. Using a between-subject design, 17 programming novices and

18 advanced students performed an n-back working-memory task. During

the experiment, their prefrontal hemodynamic responses were measured

using a 48-channel functional near-infrared spectroscopy (fNIRS) device.

The results indicated that the advanced students had a higher working-

memory capacity than the novice students, validating the relationship

between programming ability and working memory. The analysis results also

showed that the hemodynamic responses in the prefrontal cortex can be

used to discriminate between novices and advanced students. Additionally,

we utilized an attention-based convolutional neural network to analyze the

spatial domains of the fNIRS signals and demonstrated that the left prefrontal

cortex was more important than other brain regions for programming ability

prediction. This result was consistent with the results of statistical analysis,

which in turn improved the interpretability of neural networks.
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Introduction

In the past decade, computer science and programming
have been applied in many fields, such as engineering, social
sciences music, art, and biology (Buitrago Flórez et al., 2017).
Consequently, programming ability has become a basic skill that
students may need to master. Several studies have suggested that
students with better programming ability have better problem-
solving skills and logical reasoning ability (Tu and Johnson,
1990; Shute, 1995; Wing, 2008; Werner et al., 2012; Ivanova et al.,
2020; Relkin et al., 2021).

Programming requires memorization of a wide range of
information and the ability to manipulate the information at
the same time. Students process and hold this information
in their working memory, the mode of information storage
in the human brain as proposed by cognitive psychology
(Baddeley and Hitch, 1974). Working memory is used to
store task-relevant information for further application in the
process of performing cognitive tasks. It is a memory system
with limited capacity for temporary processing and storage
of information that supports human thought processes by
providing an interface for perception, long-term memory, and
action (Baddeley, 2003). Working memory is not only the
core of human cognition but also an important component of
learning, reasoning, problem-solving, and intellectual activity
(Barrouillet and Lépine, 2005; Baddeley, 2010). Working
memory plays a critical role in learning. Extensive research
has demonstrated a significant relationship between working-
memory capacity and academic achievement (Swanson and
Alloway, 2012; Anmarkrud et al., 2019). Studies have shown
that high performance in math and readings are linked to
high working-memory performance (Purpura and Ganley, 2014;
Cantin et al., 2016). However, to the best of our knowledge, none
of the prior studies showed that programming ability was related
to working memory. Nevertheless, since code comprehension
involves diverse cognitive domains, including math, logic, and
language (Ivanova et al., 2020), programming ability may also
be assumed to be related to students’ working memory.

The n-back task is one of the most popular experimental
paradigms for measuring working memory. The n-back
paradigm is a continuous task paradigm (Cohen et al., 1997).
In the n-back experiment, participants are asked to monitor
a series of verbal/non-verbal stimuli and indicate whether the
stimuli currently presented are the same as those that appeared
in n trials previously (Braver et al., 1997). The traditional n-back
experimental measurements include evaluation of accuracy and
reaction time.

In recent years, many researchers have combined functional
magnetic resonance imaging (fMRI), electroencephalography
(EEG), and functional near-infrared spectroscopy (fNIRS) to
measure physiological signals in task-evoked experimental
processes to obtain the underlying neuroscientific mechanism

of working memory (Ragland et al., 2002; Herff et al., 2013; Lv
et al., 2014, 2015; Yeung et al., 2021).

In comparison with fMRI, fNIRS requires a small volume
and is lightweight and portable while yielding images with a
higher temporal resolution. fNIRS also shows a faster spatial
response speed than EEG (Ferrari and Quaresima, 2012; Hong
and Yaqub, 2019; Quaresima and Ferrari, 2019; Yang et al.,
2019).

Functional near-infrared spectroscopy is a neuroimaging
technique for measurement of hemodynamic processes in
the brain. In this technique, the absorption of infrared light
with a wavelength of 650–950 nm passing through the brain
tissue is evaluated to monitor the changes in blood oxygen
concentration in different brain tissue regions (Pinti et al.,
2020) and obtain insights into the same activation patterns
as fMRI. Matthes and Gross (1938) first demonstrated the
spectroscopic determination of oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) in human tissue in the
red and near-infrared regions. In 1993, some research groups
proved that fNIRS could be used to investigate brain activity
non-invasively (Chance et al., 1993; Hoshi and Tamura, 1993;
Villringer et al., 1993). Wolf et al. (2002) first used near-
infrared spectroscopy and detected significant changes in the
local concentrations of HbO and HbR during brain activity.
When the brain executes a task, the increased metabolic
demands for oxygen and glucose result in an oversupply of local
cerebral blood flow (CBF) to satisfy the increased metabolic
demand. CBF is regulated by several neurovascular coupling
mechanisms. Therefore, the excessive supply of local CBF leads
to an increase in HbO concentration and a decrease in HbR
concentration (Pinti et al., 2020). Some previous studies have
shown that fNIRS is sensitive to load-dependent working-
memory changes in activation (Herff et al., 2013; Meidenbauer
et al., 2021) and have demonstrated linear increments in HbO
concentrations in frontal activation based on n-back levels
(Ayaz et al., 2012; Yeung et al., 2021). The results of a meta-
analysis of brain imaging data acquired during the n-back task
showed that the participants’ prefrontal cortex was activated
consistently (Nystrom et al., 2000; Owen et al., 2005). Therefore,
in this study, we mainly focused on the concentration changes
in HbO and HbR in the prefrontal cortex.

Functional near-infrared spectroscopy is also an effective
approach to explore the temporal and spatial states of the
human brain (Maki et al., 1995). It provides a balance between
temporal and spatial resolution in comparison with other
neurophysiological modalities, making it a viable option for
mental workload estimation (Isbilir et al., 2019). In the present
study, we focused on investigating the channel-wise analysis
of fNIRS spatial features to explore the most important brain
regions for predicting programming ability.

A recurrent neural network (RNN) is usually considered
the best neural network structure for time series prediction,
but recent studies have shown that a convolutional neural
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network (CNN) can perform these predictions comparably
not only with greater accuracy but also more easily and
clearly (Bai et al., 2018), particularly when there are many
similar time series to learn from Chen et al. (2019). Dilated
convolutions can make one-dimensional CNNs effectively learn
time series dependencies (Yu and Koltun, 2016; Borovykh et al.,
2018). In RNNs, the prediction of subsequent time steps must
occur after the previous time step has been completed. In
contrast, convolutions can be performed in parallel because
the filters used in each layer are the same. Therefore, in
training and evaluation, CNNs can process long input sequences
simultaneously rather than sequentially as with RNNs (Bai et al.,
2018). Since fNIRS signals in the n-back task show multiple
similar time series, and we aimed to capture features over
the global theoretical receptive fields, a CNN was the best
choice for the backbone network in the present study. CNNs
have been widely used for automatic fNIRS signal analysis
(Trakoolwilaiwan et al., 2017; Janani et al., 2020) and have been
used to investigate mental workload levels using multichannel
fNIRS signals (Ho et al., 2019; Saadati et al., 2020). One
previous study employed a CNN to analyze fNIRS features
during an n-back task and proved that CNNs can learn features
automatically and obtain accurate results (Yang et al., 2020).

False discovery rate (FDR) measurements (Singh and Dan,
2006) and statistical parametric mapping (SPM) (Koh et al.,
2007) have been applied for channel-wise analysis for fNIRS
signals. However, these statistical analysis methods corrupt the
temporal domain information in fNIRS signals. Among deep
neural networks, squeeze-and excitation network (SENet).

SENet, NIRSIT, PET. represents the pioneering concept of
channel attention (Guo et al., 2022). The traditional pooling
layer reduces the feature map, resulting in damage to channel
important information. In contrast, a squeeze-and-excitation
(SE) block is a type of attention layer that can collect
channel important weight in train processing. The SE block
can be used to collect global information, capture channel-
wise relationships, and incorporate spatial attention into the
structure of the CNN (Hu et al., 2020), thereby improving the
interpretability of neural networks. Moreover, in comparison
with the application of convolution in feature mapping, the
computational cost of SE and weighted summation is very low
(Guo et al., 2022). However, SENet, which is an advanced, novel
channel-attention network, has not been reported for use in
fNIRS signal analysis.

To the best of our knowledge, no previous study has directly
explored the brain mechanisms underlying the relationship
between working memory and programming ability by using
fNIRS data. Thus, the first aim of the current study was to
validate the relationship between programming ability and
working memory by using an n-back task. The second aim
was to investigate whether the fNIRS signals detected during
the performance of n-back tasks can predict the participant’s
programming ability. The third aim was to explore the capability

of the attention-based CNN method to analyze the spatial
information of the fNIRS signals to identify the optimal brain
regions to predict programming ability. Thus, we aimed to
explore whether general psychological experiments could be
used to predict learners’ programming ability, and to provide
neuroscience evidence for the findings.

Materials and methods

Participants

Thirty-five participants (17 novices and 18 advanced
students) were recruited from the School of Information and
Electronic Engineering, Zhejiang University of Science and
Technology in China. The novice group included 13 male and
four female participants, while the advanced group included
14 male and four female participants. All participants were
over 18 years of age [mean ± standard deviation (SD),
20.61± 1.23 years].

The novices were freshmen from C++ courses who had not
undergone programming-intensive training previously. On the
other hand, the advanced students were from the programming
competition team who had at least 2 years of programming-
intensive training and had at least received an award in the
international collegiate programming contest (We did not
investigate the effect of programming training on working
memory in the present study, and merely used this approach to
select participants). Before the experiment, the participants were
asked to complete a programming level test, which consisted of
ten items with ten points for each completely correct answer and
deductions for incomplete results. The maximum total score in
the programming level test was 100. The advanced students had
higher scores on the programming level test than the novices
(mean ± SD, 83.9 ± 5.96 vs. 50.0 ± 7.71). An independent-
sample t-test revealed that the scores on the programming level
test were significantly different between the two groups [F (1,
34) = 214.07, p < 0.001,η2

p = 0.87].
All participants signed the informed consent form before the

experiment and received a small gift at the end of the study to
thank them for their time and effort.

Experimental setup and tasks

The participants were assigned to two groups: novice
and advanced students. The experimental procedures were
conducted through computer programs based on E-prime, a
general psychological experiment software. Each participant
was individually tested in a laboratory environment for
approximately 30 min. Before completing the task, participants
learned about the experimental procedure. The participants
were asked to relax and do nothing as the baseline task, and
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measurements obtained during this baseline task were used as
the baseline for comparison of fNIRS signals.

The present study employed an n-back task to investigate
the participants’ working memory. The participants monitored
a series of character stimuli and responded whenever a stimulus
presented was the same as the one presented n trials previously
(Owen et al., 2005). The main n-back task involved 30 blocks,
with 10 blocks of each n-back level presented pseudorandomly
(Braver et al., 1997). Figure 1 shows the trial schematic of the
n-back task conditions in the present study. For example, in the
2-back task, the third C did not match the first A. However,
the fourth B matched the second B, so the participants were
required respond positively whenever the character they saw was
the same as the one they viewed two characters earlier. fNIRS
data were recorded continuously during the entire session.

Functional near-infrared spectroscopy
data acquisition

In the present study, we focused on the HbO and
HbR concentration changes in the prefrontal cortex. The
hemodynamic responses measured in the prefrontal cortex
were consistent enough to distinguish three levels of n-back
workloads (Owen et al., 2005; Herff et al., 2013).

Functional near-infrared spectroscopy (fNIRS) data were
recorded at a sampling rate of 8.13 Hz using a wearable NIRS

device, the NIRSIT model from OBELAB (Korea). The NIRIST
device has a comprehensive 48-channel system and can capture
depth-dependent hemodynamic changes in the prefrontal
cortex. This system utilizes 24 laser sources (780/850 nm;
maximum power under 1 mw) and 32 photodetectors (Choi
et al., 2016). The grouping of NIRSIT channels is shown in
Figure 2 and includes the right (#1–16), center (#17–32), and
the left (#33–48) regions.

Functional near-infrared spectroscopy
data pre-processing

Figure 3 presents the flow diagram for fNIRS data pre-
processing. We first loaded fNIRS data into the NIRSIT Analysis
Tool for visual inspection, segmentation of the main n-back
trials from practice trials, and division of the prefrontal cortex
into three regions—right, center, and left—as shown in Figure 2.
We then performed visual inspection at the participant level to
examine overall data quality and to evaluate the quality of the
data obtained from both sides of the prefrontal cortex, which
showed a much lower signal-to-noise ratio (SNR) than the data
from the center of the prefrontal cortex.

Since each participant had a different completion time,
we tailored the data with the shortest completion time. Thus,
the three n-back tasks had different data lengths. However, in

FIGURE 1

Trial schematic of the n-back task conditions.
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FIGURE 2

Channel configuration in our experiment.

FIGURE 3

Flow diagram of functional near-infrared spectroscopy (fNIRS) data pre-processing for the study.

the subsequent data processing, we focused on the slope and
statistical features that are less affected by data length.

Visual inspection was performed by examining the
spectrogram of every channel to identify the presence of cardiac
oscillations, which are typically approximately 1 Hz (Tong et al.,
2011). The presence of this cardiac signal is a good indicator
that the optical density signals are successfully coupled with a
physiological hemodynamic response (Hocke et al., 2018). This
method was employed for preliminary selection of participants.
In this visual inspection, one participant with unusable data,
which was defined by the presence of more than seven unclean
channels in one area, was identified and excluded from further
analyses. Thus, the novice and advanced student groups
included data from 17 participants each.

Then, we used the NIRSIT Analysis Tool to convert the
raw light intensity data into HbO and HbR concentrations
by means of the modified Beer–Lambert law (Sassaroli and
Fantini, 2004). However, the signals still contained biological

and technical artifacts. Several cardiovascular phenomena, such
as heart beats, respiration, and blood pressure (Mayer waves),
influenced the recorded data. Movement artifacts such as
high-frequency spikes, shifts from baseline intensity, and low-
frequency variations, which are present in most fNIRS datasets,
can severely affect the quality of recorded data (Franceschini
et al., 2006; Huppert et al., 2009).

Therefore, we conducted further data processing in Python-
SciPy. To attenuate heartbeat and other biological signals,
we used an elliptical Infinite Impulse Response (IIR) low-
pass filter with a cutoff frequency of 0.5 Hz and a filter
order of 6, which robustly removed biological artifacts in the
data (Herff et al., 2013). Then, we tried to use the wavelet
artifact removal method to reduce the effect of movement
artifacts. Since the signals showed channel- and participant-
wise variations and the wavelet basis function had limited
adaptability, we found it difficult to identify a suitable wavelet
basis function to remove the movement artifacts effectively.
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Therefore, we used the empirical mode decomposition (EMD)
method, which can decompose signals without any additional
parameters and therefore robustly reduced the influence of
movement artifacts and Mayer wave-like effects in the data.
Some of the spontaneous physiological information, such as
breathing rate (∼0.3 Hz) and very low-frequency oscillations
(<0.01 Hz), were still reflected in the data obtained for post-
processing analysis. Therefore, we used the EMD method to
deal with this noise after applying a low-pass filter, since direct
application of a high-pass filter would have destroyed other
useful signal components. Furthermore, due to various factors,
the amplitude and intensities of the acquired hemodynamic
signals differed significantly among participants. To attenuate
the influence of a single participant’s data on the grand average
of acquired hemodynamic signals, we subtracted the first value
of that channel from the signal of all channels and rejected
channels that may have significantly influenced the grand
average. After these treatments, we obtained information on
trends in HbO and HbR concentrations.

The slope of the trend data (Herff et al., 2013) is often used
as a simple but effective feature. To obtain this slope, we fitted
a straight line to the data using linear regression with a least-
squares approach.

Attention-based convolutional neural
network for functional near-infrared
spectroscopy spatial feature analysis

The structure of the attention-based CNN that we
introduced to analyze the fNIRS signals is depicted in
Figure 4, with the channel-attention blocks showing the spatial
importance of fNIRS channels. After data pre-processing as
described in Section “Functional near-infrared spectroscopy
data pre-processing,” each channel of data was resampled and
rescaled to a uniform length L = 256. Then, we stacked all
channels to build a 48 × 256 feature matrix and used direct
resampling and rescaling. The fNIRS signals did not contain
periodic frequency information, which may have been corrupted
by those processes.

In our training procedure, the mean-squared-error (MSE)
method was chosen for the loss function.

MSE =
1
n

n∑
i = 1

(yi − yi)
2

Here, we choose Adam as our optimizer and set the initial
learning rate to 0.01.

Three SE blocks were inserted into three normal
convolution layers. After the global average pooling operator,
each channel data point was consolidated into one data point.
In the first SE block, the fully connected layer transforms
the 1 × 48 vector to 1 × 24; this process is also called the
“squeeze.” The squeezing function also serves to embed the

global distribution of feature responses over all channels. This
operator is followed by an excitation operator, which consists of
a fully connected layer and a sigmoid activation layer. Excitation
is a self-gating mechanism (Hu et al., 2020) that produces a
mask representing the per-channel modulation weights. These
weights are then applied to the original feature map to generate
the new output. This series operation is also known as the
self-attention operation (Vaswani et al., 2017). The feature
vector needs to be squeezed small and then return to the origin
scale via excitation because we aimed to improve the training
pressure and to prevent overfitting. The reduction factor needs
to be carefully adjusted within the training process. A special
classified task was chosen. After proper training, we opened the
SE block to observe the channel-wise weights mask.

The backbone network of the attention-based CNN we
used (as shown in Figure 4) had a traditional CNN structure.
Here, FC refers to the fully connected layer; BN refers to the
batch-normalization layer; and the two round circles indicate
the dot-product operator. However, to prevent mixing of the
channel information, a generic convolution (GC) layer cannot
be used at the beginning of the network. As illustrated in
Figure 4, the key point is to replace the first GC layer with
a depth-wise convolution (DC) layer before the self-attention
mechanism finds the important channels. Nevertheless, the
other convolution layers are still GC layers. The DC layer
ignores the interchannel information, which must be remedied
with a point-wise convolution (PC) layer. This will complicate
the overall structure of our neural network.

Due to the limited amount of training data in this study,
the neural network was easily overfitted. However, in our
training procedure, we were not overtly concerned with the
generalization properties of the neural network. Instead, we
aimed to reveal the importance of channels. The main purpose
of this model is to train the channel-attention block, and
some degree of overfitting can help make important channels
more obvious (Hu et al., 2020). Thus, model overfitting can be
acceptable for general inference.

Results

The criterion for statistical significance was set at p < 0.05.
The Greenhouse–Geisser correction was used to compensate
for sphericity violations. Effect sizes were measured by η2

p, with
η2
p = 0.01, 0.06, and 0.14 indicating small, medium, and large

effects, respectively (Fritz et al., 2012).

n-back performance

The descriptive statistics for accuracy and reaction time in
each group are presented in Table 1. Accuracy was calculated
by determining the average percentage of correct trials under
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FIGURE 4

The structure of the attention-based convolutional neural network.

each back condition, while reaction time was computed by
determining the mean across correct trials for each back
condition. As shown in Table 1, novices performed the trials
with lower accuracy and slower reaction times than advanced
students over each back level.

Paired t-tests indicated that the accuracies for the 1-back and
2-back conditions were near the ceiling levels and did not differ
in both advanced students and novices. Accuracy for the 3-back
condition was marginally significantly lower than those for the
1-back [t (16) = 1.984, p = 0.073] and the 2-back [t (16) = 2.072,
p = 0.063] conditions among the advanced students. However,
accuracy for the 3-back condition was significantly lower than
those for the 1-back [t (16) = 4.690, p = 0.001] and the 2-back [t
(16) = 3.801, p = 0.003] conditions among the novices.

Paired t-tests indicated that the 1-back task was performed
faster than the 2-back [t (16) = −4.641, p = 0.001; t
(16) = −4.935, p < 0.001] and 3-back [t (16) = −8.567,
p < 0.001; t (16) = −11.950, p < 0.001] tasks by the advanced
students and the novices, respectively, while the 2-back task was
performed faster than the 3-back [t (16) = −7.637, p < 0.001;
t (16) = −8.368, p < 0.001] task by both advanced students
and the novices.

To examine group differences, we conducted one-way
repeated-measures analysis of variance (ANOVA) with
programming ability (novices vs. advanced students) as the
between-subjects factor and n-back levels (1-back, 2-back, and
3-back) as the within-subject factor.

One-way repeated-measures ANOVA revealed a marginally
significant main effect of programming ability on accuracy [F
(1, 32) = 3.867, p = 0.075, η2

p = 0.260]. The interaction between

programming ability and the n-back task was not significant [F
(2, 64) = 1.692, p = 0.207, η2

p = 0.133].
One-way repeated-measures ANOVA with Greenhouse–

Geisser correction revealed a main effect of programming ability
on reaction time [F (1, 32) = 5.650, p = 0.029, η2

p = 0.239]. The
interaction between programming ability and the n-back task
was also not significant [F (2, 64) = 1.177, p = 0.304, η2

p = 0.061].
Figure 5 illustrated that the correlations between reaction

time and programming score were negative for 1-, 2-, and 3-
back levels (r = −0.75, r = −0.71, and r = −0.81), i.e., the
reaction time was faster for a higher programming score.

Functional near-infrared spectroscopy
hemodynamic responses

To determine the differences in hemodynamic responses
between novices and advanced students under the three
n-back conditions, we first analyzed the grand averages of
all participants.

Figure 6 exhibited the grand averages of all participants for
the three n-back levels. The blue lines showed the grand averages
for novices, while the magenta line showed the overall mean for
advanced students. For HbO, a clear increase was observed at
the 1-, 2-, and 3-back levels, and the slope was positive for all
three n-back conditions in the left, center, and right prefrontal
cortices. The grand average increase was steeper in the 2-back
task than in the 1-back task and was the steepest in the 3-back
task.

For HbR, a slight decrease in concentration changes can be
seen for all three n-back conditions, and the slope was negative
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TABLE 1 Means and standard deviations of accuracy and reaction time during the n-back task.

Dependent variable Accuracy Reaction time (ms)

Novices Advanced students Novices Advanced students

M SD M SD M SD M SD

1-back 0.986 0.023 0.992 0.019 550 113 474 53.2

2-back 0.983 0.033 0.986 0.032 751 152 654 75.5

3-back 0.845 0.080 0.931 0.065 1276 222 1087 196

FIGURE 5

Correlations between reaction time and programming score for the three n-back levels.

for the three n-back levels; conversely, there was no obvious
difference between the 1- and 2-back grand averages and the
3-back grand average.

One-way repeated-measures ANOVA revealed a main effect
of programming ability on HbO [F (1, 32) = 8.838, p = 0.007,
η2
p = 0.287; F (1, 32) = 12.713, p = 0.002, η2

p = 0.366; F (1,
32) = 25.805, p < 0.001, η2

p = 0.540] in the right, center, and
left prefrontal cortices. The interaction between programming
ability and the n-back task was not significant.

Figure 7 illustrated that the correlations between HbO and
programming score were negative for the three n-back levels in
the left (r = −0.50, −0.51, −0.54), center (r = −0.36, −0.17,
−0.38), and right (r = −0.09, r = −0.23, r = −0.38) prefrontal
cortices, i.e., HbO is lower for higher programming scores.

One-way repeated-measures ANOVA revealed that the
main effect of programming ability on HbR [F (1, 32) = 0.001,
p = 0.980, η2

p < 0.001; F (1, 32) = 2.716, p = 0.114, η2
p = 0.110;

F (1, 32) = 0.104, p = 0.750, η2
p = 0.005] was not significant in

the right, center, or left prefrontal cortices, and there was no
interaction between programming ability and the n-back task.

The results indicated that HbO can indicate working-
memory load and show significant associations between brain
activity and programming ability, but HbR cannot.

Functional near-infrared spectroscopy
feature analysis using attention-based
convolutional neural network

To obtain the most important channels in the fNIRS signals,
we constructed a virtual classification task, and tried letting the
neural network model illustrate the importance of the fNIRS
channels through the virtual training task. Under this virtual
task, we directly combined all subject data into a signal batch
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FIGURE 6

Grand averages of all participants in the three n-back levels. (A)
Left prefrontal cortex. (B) Center prefrontal cortex. (C) Right
prefrontal cortex.

and used MSEloss to train the network. After approximately
50 epochs, the loss stopped falling, and we obtained almost
100% accuracy. Because the amount of data was not very large,
the generalization ability of the network was weak. However,
we were not going to use this trained network for general
classification in a new set of data. We only needed to observe
the network’s understanding of channel importance under this
task. In the present study, we used the mean value of 10 training
sessions for subsequent analysis.

The left panels in Figure 8 showed the channel weights
fitting with the training process. The left panel showed that the
accuracy (red curve) was close to 100% with the loss (blue curve)
down to zero. Furthermore, we distinguished those weights into

three brain regions (see Figure 2), as shown in the right panels.
After fitting, the left prefrontal cortex showed an obviously high
weight in the three n-back levels. These findings were consistent
with the results of one-way repeated-measures ANOVA, in
which the left prefrontal cortex had a larger effect size than the
right and center prefrontal cortices.

Discussion

The main purpose of the present study was to investigate the
brain mechanisms underlying the relationship between working
memory and programming ability by using fNIRS signals.

The analysis of participants’ n-back performance showed
differences in the accuracy and reaction time depending on the
n-back level between novices and advanced students. Advanced
students performed better than novices in terms of both
accuracy and reaction time. Since the n-back task is recognized
as an effective method to measure working memory, a better
n-back performance indicated higher working-memory capacity
(Kirchner, 1958). The study results validated the relationship
between programming ability and working memory, and
students with higher working-memory capacity showed better
programming ability. The results also provided evidence that
limited working-memory capacity has negative effects on
learning (Alloway, 2009).

Since the n-back task may be easier for advanced students,
the advanced participants were expected to show less prefrontal
cortex activation during each n-back experiment (Asgher et al.,
2019; Khoe et al., 2020). Figures 6, 7 illustrated the neural
evidence of this finding. The hemodynamic responses of HbO
associated with n-back stimulus presentation increased more in
novices than in advanced students. The results of the statistical
analyses revealed that HbO in the prefrontal cortex showed
significant differences between novices and advanced students
during the n-back task. Thus, HbO signals measured during the
n-back test can be used to robustly predict the programming
ability of students. The changes in cerebral blood oxygen
signals represent the changes in local oxygen consumption
caused by local brain activity and reflect the activity state of
the human brain (Strangman et al., 2002). According to the
neural efficiency hypothesis (Haier et al., 1988), the higher
the performance in related fields (the higher the cognitive
ability), the lower the activation degree of the cerebral cortex,
showing a negative correlation. Thus, in comparison with a
lower cognitive ability group, a higher cognitive ability group
shows lower activation of brain regions when performing
tasks with the same difficulty (Dunst et al., 2014; Genc et al.,
2018). A higher working-memory load tends to produce greater
prefrontal cortex activation (Herff et al., 2013). The novices
exhibited significantly higher HbO concentration increments
than their advanced counterparts during the n-back tests.
Thus, the working-memory load in novices was higher and
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FIGURE 7

Correlations between hemoglobin (HbO) and programming score for the three n-back levels in the left, center, and right prefrontal cortices. (A)
Left prefrontal cortex. (B) Center prefrontal cortex. (C) Right prefrontal cortex.

consumed more mental resources. In comparison with the
novices, the advanced students illustrated lower prefrontal
cortex activation for the n-back task, which was considered to
place less of a demand on working-memory load and was easier
to complete for the advanced students. This is the underlying
basis for the measurement of prefrontal cortex activation of
fNIRS signals during n-back tasks to predict an individual’s
programming ability.

The results also indicated the possibility of predicting
students’ programming potential through general psychological
experiments such as n-back test (as shown in Figure 5). This
method may be especially useful for evaluating individuals with
no programming foundation.

Additionally, HbR activation reduced slightly during the
n-back task, as illustrated in Figure 6, and programming ability
showed no main effect on HbR. This may be because relative
to HbO, the HbR concentration is weak and difficult to detect
in real time (Abibullaev and An, 2012), making it harder to
detect significant effects on HbR activation in task-based fNIRS
(Huppert et al., 2006).

Although the main effects of programming ability on
HbO were significantly different in the left, middle, and right
prefrontal cortices, by applying the deep learning method of
attention-based CNN to the fNIRS signals, we found that the
channels that can better distinguish programming ability were
in the left region of the prefrontal cortex (see Figure 8). CNNs
can extract microfeatures from temporal domain signals that
may be corrupted by statistical analysis. CNNs can also be
used to discover and extract the appropriate internal structure
through convolution and pooling operations and automatically
generate the deep features of the raw data. Moreover, the
deep features are robust against translation and scaling (Zhao
et al., 2017); they work well in discarding noisy series and can
extract meaningful patterns while ignoring patterns without
value (Aussem and Murtagh, 1997). By introducing attention
modules (i.e., the SE block), we can open the black box to
see which feature the CNN network relies on to identify
those signals. As the CNN network is gradually fitted, the
attention modules indicate the important channels, as shown in

Figure 8. These high-weight channels are those that the neural
network uses to understand and classify. In other words, these
channels and their corresponding brain regions have higher
resolution in this task. The SE block can also improve the
representational power of the regular CNN by offering it a
kind of dynamic channel-wise fixing feature (Hu et al., 2020).
Furthermore, the feature importance values produced by the
self-attention operation can be used for model pruning, which
can lead to the construction of more efficient physiological
signal analysis networks.

The results of the current study also provided further
evidence to support the lateralization of brain functions. The
left prefrontal cortex was more important in programming
ability prediction, as demonstrated in Figures 7, 8. Many studies
have reported functional hemispheric asymmetry in cognitive
processes (Gazzaniga, 1989, 1995; Goel, 2019). Smith et al.
(1996) and Smith and Jonides (1997) used PET technology to
study the neural basis of working memory with the n-back
paradigm. Their results showed that the activation areas in
the verbal and spatial n-back tasks are different: the former
activates the left hemisphere, and the latter activates the
right hemisphere. Baddeley and Logie (1999) also reviewed
the evidence showing that the left hemisphere is associated
with verbal working-memory tasks. As shown in Figure 6,
our results also demonstrated that left prefrontal cortex
regional activation was more dynamic during the verbal
n-back test.

This study had some limitations that should be addressed in
future studies. First, we did not consider the mediating factors
between working memory and programming ability. Previous
studies have shown that the relationship between working
memory and academic performance is mediated by visuospatial
abilities (Logie et al., 2000) and the ability to control attention
(Kane and Engle, 2003). Future studies should aim to control
these mediating factors to acquire more rigorous results. Second,
the number of participants who met the criteria for advanced
students was relatively small. Further studies with additional
data are required to improve the generalizability of the findings.
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FIGURE 8

The channel weights fitting with the training process of the attention-based convolutional neural network (CNN). The left panel shows all
channel weights sorted in the order of the final training results. All channels are sorted by the last loss value. The right panel presents a
top-down view of the left panel. However, the channels are re-ranked into the left, center, and right regions. We list the three groups in
Supplementary Table 1. The right panel has two axes: re-ranked channels and epochs. The normalized channel weight is represented by color
bars. (A) 1-back, (B) 2-back, (C) 3-back.

Conclusion

To the best of our knowledge, few empirical studies
have directly examined the relationship between working-
memory capacity and programming ability, and no studies have
provided direct neural evidence to support this relationship. The
present study attempts to fill this gap and demonstrates that
students’ programming ability can be predicted by evaluation

of their working-memory capacity while providing direct
neural evidence supporting this relationship. The results of
our analyses indicate that fNIRS detected functional neural
changes associated with the workload in the prefrontal cortex,
demonstrating that the hemodynamic responses measured in
the prefrontal cortex can be used to discriminate between
novices and advanced students. Additionally, we utilized an
attention-based CNN to analyze the spatial domains of the
fNIRS signals and demonstrated that the left prefrontal cortex
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was more important than other brain regions for programming
ability prediction.
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Introduction: In the context of functional magnetic resonance imaging (fMRI), carbon

dioxide (CO2) is a well-known vasodilator that has been widely used to monitor

and interrogate vascular physiology. Moreover, spontaneous fluctuations in end-tidal

carbon dioxide (PETCO2) reflects changes in arterial CO2 and has been demonstrated

as the largest physiological noise source for denoising the low-frequency range of the

resting-state fMRI (rs-fMRI) signal. However, the majority of rs-fMRI studies do not

involve CO2 recordings, and most often only heart rate and respiration are recorded.

While the intrinsic link between these lattermetrics and CO2 led to suggested possible

analytical models, they have not been widely applied.

Methods: In this proof-of-concept study, we propose a deep-learning (DL) approach

to reconstruct CO2 and PETCO2 data from respiration waveforms in the resting state.

Results: We demonstrate that the one-to-one mapping between respiration and

CO2 recordings can be well predicted using fully convolutional networks (FCNs),

achieving a Pearson correlation coe�cient (r) of 0.946 ± 0.056 with the ground truth

CO2. Moreover, dynamic PETCO2 can be successfully derived from the predicted

CO2, achieving r of 0.512 ± 0.269 with the ground truth. Importantly, the FCN-based

methods outperform previously proposed analytical methods. In addition, we provide

guidelines for quality assurance of respiration recordings for the purposes of CO2

prediction.

Discussion: Our results demonstrate that dynamic CO2 can be obtained from

respiration-volume using neural networks, complementing the still few reports in DL

of physiological fMRI signals, and paving the way for further research in DL based

bio-signal processing.

KEYWORDS

deep learning, fully convoluted neural network, carbon dioxide, respiratory variability,

functional MRI, physiological signal analysis, cerebrovascular reactivity (CVR)

1. Introduction

Carbon dioxide (CO2) is a potent vasodilator used that has been shown to rely mainly on the

nitric oxide pathway to increase arterial diameter (Pelligrino et al., 1999; Najarian et al., 2000;

Peebles et al., 2008; Iadecola, 2017). Blood-vessel diameter is highly sensitive to the surrounding

CO2 concentration, with increasing CO2 partial pressures leading to linear increases in both

vessel diameter and flow (Hülsmann and Dubelaar, 1988; Komori et al., 2007). In Komori et al.

for example, this increase was shown to be 21.6% for arteriolar diameter and 34.5% flow velocity

for a 50% change in CO2 partial pressure in rabbit arterioles (Komori et al., 2007). The partial

pressure of carbon dioxide (PCO2) is themeasure of CO2 within arterial or venous blood. It often
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serves as a marker of sufficient alveolar ventilation within the lungs.

Under normal physiologic conditions, the value of PCO2 ranges

between 35 and 45mmHg, or 4.7–6.0 kPa. Typically themeasurement

of PCO2 is performed via arterial blood gas, but the end-tidal pressure

of CO2 (PETCO2) is related to intravascular PCO2 through a linear

relationship under steady-state conditions (Peebles et al., 2007, 2008),

allowing arterial PCO2 to be estimated from PETCO2.

Dynamic CO2 recordings havemultiple utilities and implications.

In the past decades, the CO2-driven functional magnetic resonance

imaging (fMRI) response has been the preeminent method for

mapping cerebrovascular reactivity (Blockley et al., 2017; Chen,

2018; Chen and Gauthier, 2021). Wise et al. first reported the

contribution of spontaneous fluctuations in arterial PCO2 to the

resting-state fMRI (Wise et al., 2004). Chang et al. followed up this

work by demonstrating the potential relationship between PETCO2

and respiratory-volume variability (RVT) (Chang and Glover, 2009).

Using recordings of spontaneous PETCO2 variations, Golestani

et al. determined the fMRI response function that links PETCO2

to the resting-state blood-oxygenation level dependent (BOLD)

signal (Golestani et al., 2015), and also demonstrated PETCO2 as

the primary source of physiological noise in resting-state BOLD.

It has even been used to demonstrate the possible existence of

neuronally-motivated vascular networks in the brain (Bright et al.,

2020). Furthermore, Chan et al. (2021) found that PCO2 (not

PETCO2) fluctuations also contribute significantly to resting-state

BOLD signal variability (Chan et al., 2020). While the mid-breath

PCO2 does not reflect intravascular PCO2, PETCO2 does provide a

quantitative estimate of arterial PCO2, and is more widely used in

fMRI experiments for the purposes of denoising (Murphy et al., 2013)

and CVR mapping (Pinto et al., 2020). The substantial influence of

dynamic PETCO2 fluctuations on resting-state (Golestani and Chen,

2020) and dynamic functional connectivity has been demonstrated

recently (Nikolaou et al., 2016). Dynamic CO2 can also allow vascular

lag structures to be estimated, providing an important metric for

assessing vascular health (Champagne et al., 2019). Given the unique

variance explained by PCO2 and PETCO2, it is safe to say that

dynamic CO2 is a useful thus desirable metric for those working with

resting-state fMRI data.

Despite the increasing realization of the value of CO2 recordings,

it is often impossible to obtain recordings of CO2 during an fMRI

session. Most study sites are not equipped with an MRI-compatible

capnometer that also facilitates continuous recording of PCO2.

Moreover, the many thousands of legacy fMRI data sets (e.g., Human

Connectome Project, UK Biobank) certainly do not include CO2

recordings. On the other hand, respiratory volume variations, which

had previously been related to PETCO2 variations, are more readily

available thanks to the incorporation of respiratory-volume belts in

modern MRI systems. RVT was first introduced by Birn et al. as a

noise source in fMRI that introduces unique signal variability (Birn

et al., 2006). Today, while RVT measurements during fMRI sessions

are increasingly common, they are still unavailable in large-scale

studies and legacy data sets. As a possible solution, recent work by

Salas et al. (2020) demonstrated that the RVT time series can in

principle be reconstructed from fMRI data using a convolutional

neural network (CNN).

Chang et al. previously showed that PETCO2 can be related to

RVT through a respiratory-response function (Birn et al., 2008).

However, this relationship has been difficult to reproduce in

resting-state conditions, as we will show with our data. In the resting

state, not only is it impossible to derive quantitative CO2 values

from respiratory volume, it is also difficult to obtain a deterministic

relationship between dynamic patterns of respiratory volume and

CO2 variation. Thus, in this study, we also use the principle of DL,

but our focus is to bridge the gap between respiratory and CO2

recordings. Our aim is to demonstrate the feasibility of using DL to

produce dynamic CO2 waveforms from the respiratory time series.

1.1. Background on neural networks

In the majority of DL methods for neuroimaging, 2D inputs

are used to produce 2D outputs (Zhu et al., 2019). Image-to-

image translation is used for cross-modality conversion, denoising,

super-resolution and reconstruction (Kaji and Kida, 2019). Our

problem entails the estimation of a 1D signal from another 1D

signal, and within this context, past research has used convolutional

neural networks (CNNs) and recurrent neural networks (RNNs).

Traditional CNNs consist of convolutional layers followed by fully

connected layers (dense layers) terminating the network (Rawat and

Wang, 2017). As CNNs are the most successful type of DL model for

2D image analysis, and physiological signals are 1D time-series data,

some have converted 1D signals to 2D data to be fed into a CNN,

and have obtained good results (Shah et al., 2022). The advantage of

using 1D CNNs over 2D CNNs and RNNs is the significant reduction

in the number of training parameters, which is helpful when the

training data is limited (as the application at hand). Applications

of 1D CNNs include ECG classification and anomaly detection in

biomedical signals (Kiranyaz et al., 2021). Salas et al. pioneered the

use of 1D CNN for estimating physiological fluctuations in fMRI,

an application closely related to ours. They segmented the BOLD

fMRI signals into fixed time-windows and fed them into a CNN,

where the dense layer predicted a single point of the respiration

waveform at the center of the window. To predict the entire time

series, all the time-windows have to be separately propagated through

the network, entailing high complexity and computational cost.

Moreover, commonly found respiration-belt recordings have variable

lengths, which are incompatible with the use of dense layers.

In this work, we implemented a type of CNN known as fully

convolutional networks (FCNs) (Long et al., 2015). A FCN is

simply a traditional CNN without any fully connected layers. Fully

convolutional layers in FCN permit the use of variable-length input

and also minimizes the computational cost. Previously, a 1D U-net

(a type of FCN that includes skip connections) was implemented for

reconstructing low-frequency respiratory-volume signals from fMRI

time-series data (Bayrak et al., 2020). Here, we demonstrate the use

of simple FCNs (without skip connections) for predicting 1D data

wherein the encoder-decoder architecture exploits the latent space to

streamline the prediction of CO2 traces from respiration-belt signal,

in the presence of limited training data.

2. Methods

2.1. Data acquisition

We recorded percent-CO2 (%CO2) fluctuations and respiratory

bellows simultaneously in a group of 18 healthy adults (age 20–38

years) using the Biopac System (Biopac Inc., Goleta, CA, USA). The

Biopac respiration belt was positioned below the ribcage, and detects
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respiratory depth by sensing abdominal circumference changes.

%CO2 data were acquired through gas lines attached to masks affixed

to subjects’ faces. The Biopac %CO2 module (CO2100C) is calibrated

to measure %CO2 concentration in the range of 0 to 10%. In total,

the available data set consisted of 136 resting-state recordings from

different subjects, which were 10.8min long on average (min =
7.2min, max = 16.1min). The procedure was approved by the

Research Ethics Board of Baycrest (REB# 11–47, approvedDec. 2011–

19). To the best of our knowledge, this is the largest data set of its kind

in existence.

2.2. Data preprocessing

The preprocessing steps consist of (1) low-pass filtering both

respiration and CO2 waveforms (f < 1Hz) and (2) correcting the

delay between %CO2 and respiration signal by cross-correlation.

The low pass filter’s cutoff frequency was determined based on the

respiratory rate of an individual (0.2–0.4Hz). The delay between

%CO2 and respiration waveforms were corrected by shifting the

%CO2 time course by the time lag yielding the maximum negative

cross-correlations between it and the respiration waveform. We

found that across all cases, to achieve this, the %CO2 time course had

to be shifted to the left (backwards in time) by an average of 8.5 s (with

a standard deviation of 1.5 s).

After the delay correction process, we rejected data that yielded

absolute Pearson correlations of <0.4. Recordings were also rejected

if their length was <3min, too short to allow adequate training.

More details on the correlation and data-length threshold are given

in the quality assurance section. The respiration belt data was in

arbitrary units; hence it was normalized by subtracting the temporal

mean and dividing the result by standard deviation. The same

procedure was applied to the %CO2 waveforms. Further details about

the normalization are provided in the next subsection. Both the

waveformswere then resampled to 10Hz and exported in CSV format

to be later imported during the training phase of the neural network.

To obtain PETCO2 from the normalized %CO2 recordings, the

peak-detection step [available through SciPy: (Virtanen et al., 2020)]

ensures the minimum distance between the two peaks is twice the

sampling interval. In other words, we assumed the time between

two exhales is at least 2 s, which is consistent with our recorded

respiratory intervals (3–5 s per breath). Moreover, the lower limit of

the amplitude of the peak was set to be 0.3, and negative peaks are

also rejected.

2.2.1. Data normalization
As previously mentioned, both %CO2 and respiration-belt data

were demeaned and normalized to unit standard deviation (such that

SD = 1). The respiration data is fluctuations in voltage transduced

from expansions and contractions of the belt. As such, it varies

with slight variations in belt tightness and positioning, and needs to

be normalized across subjects to achieve inter-subject consistency.

In part due to the need of using normalized respiration as the

independent variable, this latter would encode no quantitative %CO2

information. That is, there could be a many-to-one relationship

between normalized respiration and unnormalized CO2. To mitigate

this issue, we demeaned and normalized the %CO2 time series in the

same manner. In this manuscript, all the further mentions of CO2

denote normalized %CO2, unless stated otherwise.

2.2.2. Quality assurance
A critical part of successful application of machine learning is

quality assurance (QA) of the training and testing data. It is more

probable to find noise in respiration data, wherein artifacts such as

subject movement and talking can easily confound respiration-belt

recordings. Moreover, if the participant does not consistently breathe

from the abdomen, the respiration belt data may not correspond

well with the CO2 data. During the data-collection phase, useful

precautions include ensuring that the respiration belt and CO2 gas

lines are properly connected. Such precautions not only reduce the

unwanted waveforms but also increase the feasibility of machine-

learning approaches. To discard the undesirable recordings, we have

evaluated our data based on the criteria below. Nonetheless, it is

informative to use data containing some level of noise and artifact

for the purposes of representativeness. Therefore, the threshold used

in the rejection process is generously selected.

2.2.2.1. Length of the recording

In general, for our approach, longer data sets are more desirable.

It was observed that all the recordings were either <3min or

more than 6min in length, drawing a clear distinction between test

recordings and usable recordings. Thus, the lower limit for the time

length was set to 3min. Figure 1 shows the histogram plot of all the

recordings after the time-length thresholding.

2.2.2.2. Pearson correlation coe�cient

As previously mentioned, Pearson’s correlation (r) between the

respiration belt and CO2 time courses is used for initial QA purposes.

The threshold for the absolute value of correlation between CO2 and

respiration is−0.4, as respiratory volume and CO2 are expected to be

negatively associated. This limit was empirically determined through

manual review of the recordings. Figure 2 shows that even though

the threshold was −0.4, there were no recordings with r between

−0.4 and −0.5, only one recording with r = −0.5 and most of the

recordings had an r value of <-0.6.

2.2.2.3. Low-frequency noise in the waveforms

Within the 0.1–0.5Hz frequency band, noise in the respiratory

and CO2 waveforms can impair our ability to relate the two

waveforms, even if the recording-duration and correlation-coefficient

thresholds are met. Such noise most likely originates from faulty

attachment of the respiration belt and from drifts in the recording

modules. As it could potentially overlap with breathing frequency,

it cannot be separated from the signal by using filters. However,

this type of noise can be identified through a mismatch in the

low-frequency portion (<0. 2Hz) of the power spectra of CO2 and

respiration, as shown in Supplementary Figure 1. This type of noise

is also reflected in the signal time series as periodic decreases or

increases in the amplitude of signal. Conversely, an exemplary data

set is shown in Supplementary Figure 2.

2.2.3. Neural network
Obtaining the CO2 concentration from the respiration waveform

is a 1D-to-1D (time series to time series) translation problem,

which is modeled using a 1D fully convolutional encoder-decoder
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FIGURE 1

Quality assurance metrics: Histogram plot of the time length of recordings after time length thresholding. Di�erent colors are used to separate the

subjects.

FIGURE 2

Quality assurance metrics: Box plots of the correlation coe�cient between CO2 and respiration waveforms from each individual subject and the total

data after preprocessing. The number of recordings available for each subject is also given below the box plot. The divisions created by the dashed line

show the groups made during the k-fold split of the dataset. The group number is the same as the test split number, and the total number of recordings

in the group is also provided in the plot. The color-coding is the same as Figure 1.

architecture. This modeling is analogous to prevalent image-to-

image translation or semantic segmentation using 2D FCNs (Long

et al., 2015; Alotaibi, 2020). However, most recent works in

image-to-image translation problems involve adversarial training

(Pang et al., 2022), which is notoriously hard especially with

limited data. Thus, adversarial training is excluded in this paper.
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Constructing a deep neural network often involves trial and error

for tuning hidden layers. To find an optimum number of hidden

layers in the network, several FCNs architectures are investigated,

until overfitting was observed (test phase error increases with

increasing network complexity). All codes are written in Python

and use the PyTorch library, and would be publicly available

on GitHub.

2.2.3.1. FCN architecture

Input to the network was an array of size C x L, where the number

of input channels, C = 1 and L is the length of recording. Although

the respiration recordings were normalized using standard deviation,

the resultant data range still varied between data sets. To bound the

respiration amplitude within a fixed range, the respiration array was

further normalized using the tanh operator before being passed on to

the fully convolutional layers. We implemented four different FCN

architectures, each having one (FCN-1L), two (FCN-2L), four (FCN-

4L) and six (FCN-6L) convolution layers, respectively, between the

input and output layers.

FCN-1L consists of a single convolution operation with a kernel

of length 7 and replicate padding of 3 on both sides (head and tail) of

the input waveform. The kernel length is chosen to balance model

complexity with prediction accuracy. FCN-2L encodes the tanh-

normalized respiration waveform by convolving it with a 4× 7 kernel

(4 kernels of length 7) with a stride of 2, which means the input is

downsampled by a factor of 2. This is followed by ReLU nonlinearity

(activation function) and finally a transposed convolution to decode

the hidden layer into CO2. Both the convolution and transposed

convolution are performed with a stride of 2, which replaces the

need for a pooling layer to downsample the output of convolutional

layers and an unpooling layer to upsample the output of transposed

convolutional layers. Similarly, FCN-4L consists of 2 convolution

and 2 transposed convolutional layers, and FCN-6L architecture adds

another 1 layer to both encoder and decoder sections. The network

architecture of FCN-4L is shown in Figure 3.

2.2.3.2. Loss function

We also experimented with two different loss functions. The first

loss function is the mean squared error (MSE) computed between

the measured and predicted CO2 waveforms, which is widely used

in regression problems (Equation 1). However, as the regression

was performed between the waveforms of pseudo-periodic nature,

it was observed that the network learned to predict zero-crossings

extremely well, but the extremities were left underfitted, lowering the

scores of PETCO2 predictions. To rectify this problem, a second loss

function, the weighted MSE (MSEWgt), was introduced Equation 2),

with the weights set to the normalized amplitudes of the ground truth

CO2 waveform for each timepoint. The weighting provides higher

preference to the peaks, and hence we hypothesized that it would

provide better results for PETCO2.

MSE =
1

L

∑L

i=1
(yi − ŷi)

2 (1)

MSEWgt =
1

L

∑L

i=1
[(yi − ŷi)/|yi|]2 (2)

where, yi and yi are the predicted and ground truth CO2

respectively for the ith time point, and L is the length of the recording.

Networks trained with the weighted cost function are denoted by the

postfix “-Wgt.”

2.2.4. Training
The 18 subjects were split into 5 subsets (splits), and the training

was executed using the k-fold cross-validation strategy. It is typical to

use either 10-fold or 5-fold cross-validation as it generally results in

a model with low bias, modest variance and low-computational cost

compared to leave-one-out cross-validation strategy (Rodriguez et al.,

2010). In our dataset, as the number of subjects is relatively limited,

we opted for k = 5, and each time one subset was left out from the

training phase to be used in testing the accuracy of the network. Each

subject can have multiple recordings, and the data was divided based

on the subjects (and not recordings) to ensure that the training and

testing data has no scans sharing a common subject. The divisions

created by dotted lines in Figure 2 correspond to the different splits.

As visible in the figure, the splits contain data from 2, 5, 4, 4, and 3

subjects, yielding total numbers of 30, 34, 27, 23, and 22 recordings,

respectively. Each split has a different number of total recordings,

which enhances the generalizability of the results. We implemented

two training strategies.

2.2.4.1. Method 1. Equal-length data segments

In this method, we formatted the training data as an array

of equal-sized data segments obtained by segmenting the input

recordings. As the training was performed on a GPU, the

computation parallelized in the tensor with multiple batches,

reducing the training time. We used the chunk size of 90 s and a

batch size of 256. The drawback of this method is the unavoidable

error introduced due to edge effects during convolution, which is

proportional to the number of chunks.

2.2.4.2. Method 2. Variable-length data segments

In this method the input array length could be of variable sizes.

The drawback of using variable-length input is that it prevents

us from grouping the data in batches for parallel processing in

the GPU. On the positive note, unlike in Method 1, Method 2

precludes the segmenting-induced edge effects. We implemented

both methods. The training time was <20 s irrespective of the

network type or trainingmethod. All the networks were trained using

Adam optimizer for 15 epochs. Hyperparameters corresponding to

the optimizer like learning rate and decay rate were fine-tuned

manually for each network. In total, we trained four FCNs, each

using two loss functions, on the 5-fold split data. The training was

performed on a 12GB GeForce GTX TITAN X GPU. All networks

used <500MB GPU memory during the training phase.

2.2.4.3. Reference methods

To the best of our knowledge, there have been no previous

attempts to derive the CO2 waveform from respiratory traces using

machine learning. To establish the performance of our approach

against a possible alternative, we employed two reference methods.

First, based on previous work by Chang and Glover (2009), defining a

PETCO2 as the convolution of RVT with RRF (and then normalized,

negated and shifted temporally for maximum cross-correlation). This

is referred to as the RVTRRF method, described by Equation 3. RVT

was estimated from respiration waveform as detailed in Birn et al.

(2008).

PETCO2
′(t) = RVTRRF (t) = RVT(t)∗RRT(t) (3)
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FIGURE 3

Neural-network architecture: 4-Layer Fully Convolutional Network. The architecture shown here is a type of encoder-decoder neural network consisting

of fully convolutional layers, followed by instance normalization and ReLu non-linearity. The last layer does not contain normalization and activation

function as it is a regression problem. Moreover, the input is first normalized using tanh activation function to constrain the input data between −1 and 1.

The numbers 1, 4 and 8 indicate the number of filters per layer.

where PETCO2
′(t) is the estimated PETCO2. RRF is the

respiratory response function, and ∗ denotes convolution. Similar

to what was done previously (Chang and Glover, 2009), at the

testing stage, we corrected the lag between RVTRRF [PETCO
′
2(t)]

and PETCO2 using the maximum cross-correlation between the two

signals, where the time shift was allowed to vary between −120 and

120 s. Moreover, to maintain the scaling of PETCO2 as obtained from

neural networks, we normalized and demeaned RVTRRF with the

standard deviation and mean of PETCO2.

Second, defining a linear-regression (LR) model relating CO2 to

respiratory volume (Equation 4), and PETCO2’(t) is extracted from

the CO2 time courses (measured using the Biopac system in this case).

CO2
′ (t) = β · Resp (t) + ε (4)

where CO2’ is the estimated CO2, Resp(t) is the respiratory-belt

signal, ε is the intercept, and β is the linear weighting factor derived

from the “training data,” and the LR model could be understood as

a single convolutional operation with a unit kernel size, making it

similar to a machine learning linear regression problem. The training

and testing partitioning are as described for the FCNs. MSE loss

function was backpropagated similar to the FCNs.

2.2.4.4. Evaluation criteria

For the evaluation, the Pearson correlation coefficient (r), mean

squared error (MSE), mean absolute error (MAE) (Equation 5) and

mean absolute percent error (MAPE) (Equation 6) were calculated

between (1) predicted CO2 and ground-truth CO2, (2) predicted

PETCO2 and ground-truth PETCO2. As the MAPE is sensitive to

zero crossings, it was only calculated between the predicted PETCO2

and ground-truth PETCO2.

MAE =
1

L

∑L

i=1

(∣

∣yi − ŷi
∣

∣

)

(5)

MAPE =
1

L

∑L

i=1

(∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

)

(6)

We also performed statistical comparisons amongst correlation

coefficients and MSE values obtained using all FCN and

reference methods using the Kruskal-Wallis test, corrected for

false-discovery rate.

The final validation is inspired by a practical application of CO2

recordings, namely examining the relationship between PETCO2 and

resting-state fMRI time series. For this we include 3 cases acquired

from each of the 2 healthy young subjects (male, age = 25 and 33

years). All data were acquired using a Siemens TIM Trio 3 T system

and a 32-channel head coil. CO2 was acquired during these scans as

described earlier. That is, each dataset contains the following:

• Case 1: spin-echo EPI, TR = 323ms, TE = 45ms, flip angle

= 90◦, 2,082 frames, voxel size = X: 3.48mm, Y: 3.48mm,

Z: 6.25mm;

• Case 2: gradient-echo EPI, TR = 323ms, TE = 30ms, 2,230

frames, voxel size= X: 3.48mm, Y: 3.48mm, Z: 6.25mm;

• Case 3: simultaneous multi-slice gradient-echo EPI, TR =
323ms, TE = 30ms, flip angle = 40◦, 2,230 frames, voxel size

= X: 3.48mm, Y: 3.48mm, Z: 6mm;

Preprocessing steps include: (1) filtering to 0.01–0.1Hz band

with AFNI (Cox, 1996); (2) spatial smoothing with a 5mm kernel

(Jenkinson et al., 2012) (3) Discard the first 5 volumes in each scan

to allow the brain to reach a steady state. All recorded and FCN-

generated CO2 and PETCO2 time courses were low-pass filtered
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to 0.01–0.1Hz to match the temporal resolution of the respective

fMRI data.

3. Results

Results for two representative data sets are shown in Figure 4.

Method 1 (equal data length) adds no extra benefit to the training

process and results in poor performance due to possible truncation

effects in training data. Thus, all the results provided here correspond

to Method 2. The results are shown in Figure 4 and summarized in

Table 1. The best method, as determined by the lowest error terms

(MSE, MAE, MAPE) and highest Pearson correlation (r) is indicated

in bold. The predicted and ground-truth PETCO2 show excellent

visual agreement for FCN-4L-Wgt (Figure 4B). From Table 1, we can

see that the CO2 estimation error obtained from FCN-4L and FCN-

4L-Wgt architecture are identical, with the errors corresponding to

PETCO2 being slightly lower in the latter case. Since r is unaffected

by scaling and translation, and since the LR model involves only

scaling and translation, the modeling step would not improve r.

Strangely, the RVTRRFmodel performsworse than the LRmodel (for

PETCO2), suggesting that estimating PETCO2 from the peaks of the

CO2 (and hence respiration) waveform may be more robust.

Figure 5 shows the r distribution across the entire test dataset

for one of the five splits. The LR method is outperformed by

all FCN methods (and significantly so by FCN-4L-Wgt) for CO2

prediction. The difference between FCN-4L and FCN-4L-Wgt is

not noticeable in the case of CO2 prediction, but overall, FCN-

4L-Wgt achieved the highest r values, while FCN-6L achieved the

lowest r variability. However, for PETCO2, FCN-4L-Wgt reached

higher r values than did FCN-4L, demonstrating the superiority of

a weighted loss function. FCN-6L performs worse than all the other

FCN networks for PETCO2 prediction. However, these differences

are not statistically significant, as can also be seen in Table 2, in which

every approach is compared to the apparent leader (FCN-4L-Wgt).

Note that the RVTRRF method only reached a maximum r score of

just below 0.5, substantially lower compared to all FCN networks.

As previously mentioned, the r scores for RVTRRF correspond to

maximum cross correlation with PETCO2, thus the scores are always

positive. There is no such limitation for the FCNs, resulting in some

network correlation coefficients in the distribution.

Figure 6 compares the correlation scores between training and

testing phase for all the networks. From these plots, it can be inferred

that FCN-6L likely overfits the training data, as reflected by a worse

performance than that of the other networks (as reflected by a lower

r). Since FCN-4L performs better than FCL-2L and doesn’t show

huge differences between training and testing results, we can say four

convolutional blocks are the optimum number for our given training

data. Moreover, in our best model, MAPE score for PETCO2 is 0.142

(< 0.2), reflective of good prediction performance.

Figure 7 compares the correlation coefficients across the five

splits for all the networks. The r-score ranking in the case of CO2

prediction does not match with that of PETCO2 prediction. In the

case of CO2, the r for FCN-4L-Wgt closely resemble those of FCN-

4L, but the former performed better for PETCO2 (in all but one

split). Though the best model varied depending on the split number

and varies between CO2 and PETCO2 prediction, FCN-4L-Wgt

consistently outperformed other models, exemplified in part by the

highest correlation coefficients. The inter-split variability in r is the

lowest for the reference methods (RVTRRF and LR) and highest for

FCN methods, the various FCN methods themselves do not appear

to exhibit different degrees of inter-split performance variability.

Moreover, the performance rankings of the various methods are

consistent across the splits and in line with the trends observed in

Figure 5. Combining the results of Figure 7 with the information in

Figure 2, it can be seen that the poor CO2-prediction performance

for all methods across the second split is due to one subject (subject

6). CO2 prediction in Split 3 was best overall. Yet, the LR model

performs worst in predicting PETCO2 in the 3rd split, reflecting that

higher correlation between CO2 and respiration does not necessarily

translate into higher correlation between PETCO2 and respiration.

This point is further demonstrated by contrasting r scores of PETCO2

and CO2 for the LR approach in the remaining splits.

Figure 8 demonstrates the application of the FCN-4L-predicted

dynamic PETCO2, which have established correlation with the

resting-state fMRI signal. We show that the PETCO2-fMRI

correlation maps for the ground-truth and predicted PETCO2 are

highly similar in all scan sessions (Cases 1, 2 and 3) and subjects

(Datasets 1 and 2). This preliminary demonstration suggests promise

in using the model-predicted PETCO2 for fMRI applications.

4. Discussion

As a proof-of-concept study, we demonstrated that it is feasible

to use an FCN to predict dynamic CO2 from respiration variations.

Furthermore, the performance of the FCN surpasses that of

regression and convolution-based methods. Note that the results

only pertain to dynamic patterns in CO2, not to absolute CO2,

which cannot be predicted from non-quantitative respiration traces

alone. Nonetheless, possible applications range from improving the

feasibility of breath-holding based fMRI studies (Murphy et al., 2013)

that lack CO2 recordings, to the use of the CO2-O2 exchange ratio for

vascular reactivity mapping (Chan et al., 2020). These applications do

not require quantitative values of CO2 and PETCO2.

4.1. Machine learning in physiological signal
processing

The use of machine learning and DL models is prevalent

in physiological signal data such as electromyogram (EMG),

electroencephalogram (EEG), electrocardiogram (ECG), and

electrooculogram (EOG) (Rim et al., 2020). It has been continuously

observed that DL models perform better than other, classical

machine learning models. Rim et al. conducted a review of 147

studies using DL in EMG, ECG, EEG, EOG and their combinations

(Rim et al., 2020), and concluded that most were in the domain

of classification, feature-extraction and data compression, wherein

CNN, RNN, CNN+RNN models were most commonly used. The

studies were divided into 3 categories. The first category exploits

machine-learning models to extract features followed by DNN

as a classifier to boost the accuracy of classification by obtaining

useful features from raw data. The second involves DL as a feature

extractor and traditional machine learning as a classifier to reduce

hand-crafted labeling of the dataset. The third strategy uses an

end-to-end DL pipeline to train raw data and receive the final output

to build a robust model for the above-mentioned tasks. Due to
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FIGURE 4

Qualitative comparison of resultant outputs. Two di�erent sample predictions are shown from the test dataset, and for each of the example, comparisons

are made between (A, D) the CO2 prediction and ground truth (GT), (B, E) the PETCO2 prediction from the reference linear regression model (LR),

FCN-4L-Wgt model and the GT, and (C, F) PETCO2 estimated from RVTRRF and the PETCO2 GT.
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TABLE 1 Quantitative assessment of various approaches and network structures.

Average across all 5 splits RVTRRF LR FCN-1L FCN-2L FCN-4L FCN-6L FCN-4L-Wgt

r CO2 - 0.901± 0.061 0.931± 0.055 0.922± 0.06 0.946± 0.054 0.944± 0.055 0.946± 0.056

r PETCO2 0.256± 0.132 0.311± 0.239 0.443± 0.261 0.45± 0.262 0.5± 0.266 0.461± 0.235 0.512± 0.269

MSE CO2 - 0.19± 0.103 0.138± 0.094 0.151± 0.101 0.108± 0.097 0.11± 0.097 0.106± 0.101

MSE PETCO2 0.032± 0.028 0.026± 0.021 0.02± 0.018 0.019± 0.017 0.018± 0.017 0.02± 0.018 0.017± 0.017

MAE CO2 - 0.337± 0.079 0.269± 0.077 0.276± 0.08 0.223± 0.076 0.227± 0.081 0.213± 0.08

MAE PETCO2 0.121± 0.055 0.112± 0.045 0.094± 0.04 0.093± 0.039 0.081± 0.035 0.085± 0.038 0.08± 0.036

MAPE PETCO2 0.125± 0.109 0.112± 0.084 0.094± 0.077 0.095± 0.078 0.085± 0.073 0.089± 0.074 0.084± 0.077

RVTRRF, RVT convolved with RRF; LR, linear regression; FCN-XL, “X” layered FCN used; -Wgt, with weighted MSE cost function. The parameters used in the assessment include: the correlation

coefficient (r), the mean-squared error (MSE), the mean absolute error (MAE) and the mean-absolute percent error (MAPE). Each metric was calculated for every recording in the test set across all

five splits. The mean and standard deviation (mean± std) were calculated for all the metrics in each test split. Likewise, the average of (mean ± std) was taken across all the 5 splits and displayed in

this table.

FIGURE 5

Performance of di�erent methods: Distribution of correlation coe�cients (r) on test dataset, where r is computed between (A) ground-truth and predicted

CO2, and (B) the ground-truth and predicted PETCO2 obtained on the test dataset (for one of the five splits) is compared for di�erent models used in the

study and shown in the form of a bean plot. The median r for each method is shown as a white dot at the centers of the distributions. The horizontal lines

indicate statistically significant di�erences between the two approaches at the ends of the lines. The FCN-4L-Wgt approach is significantly superior than

the RVTRRF and LRF approaches for predicting CO2, and better than FCN-6L additionally in predicting PETCO2 , shown by the significantly higher r values.

the absence of a comparative study involving all 3 methods (Rim

et al., 2020), we could not assess the best strategy. Our pipeline is

positioned between the second and third categories, as we used an

end-to-end DNN to estimate CO2 as an intermediate step, followed

by a post-processing step to obtain the final PETCO2 waveform.

4.2. Utility and current status of using RVT
for generating PETCO2

As RVTRRF is correlated with PETCO2, there is a potential

of training a convolutional neural network between RVT and
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TABLE 2 Statistical comparison of various approaches and network structures with FCN-4L-Wgt.

Metric RVTRRF LR FCN-1L FCN-2L FCN-4L FCN-6L

r CO2 0.0001 0.0287 0.0895 −0.9146 0.2189 0.0001

r PETCO2 <0.0001 0.0001 0.1646 0.3593 0.8941 0.0071

MSE CO2 <0.0001 0.0001 0.1646 0.3593 0.8941 0.0071

MSE PETCO2 0.6048 <0.0001 0.0001 0.0005 0.1833 0.001

Listed at the p values indicate the significance of differences. All tests for PETCO2 prediction were performed with 209 degrees of freedom (DOF), and with a DOF of 179 for CO2 prediction. All

p-values were corrected for multiple comparisons. Entries meeting statistical significance are indicated in bold face.

FIGURE 6

Comparison of model performance on train vs. test datasets. The average Pearson correlation coe�cient obtained across one of the splits for (A) CO2

and (B) PETCO2 between test and train dataset is shown in the top row. The error bars indicate the standard deviation.

PETCO2, which might perform better than a single convolution

operation using RRF. This approach aims to find a neural

network architecture which could replace the need of RRF. We

experimented with different types of neural networks trained

to predict PETCO2 from RVT, but none performed adequately.

Therefore, we concluded that it is more feasible to design a

neural network to associate respiration and CO2, and predict

PETCO2 from CO2. This may be due to the fact that the latter

exploits the evident breathing pattern between respiration patterns

and CO2 and performs well even with limited recording lengths.

Conversely, in the former approach, the temporal resolution of RVT

is fundamentally constrained to the observed breath durations, and

the peak detection algorithm can often miss deep breaths (Power

et al., 2020).
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FIGURE 7

Model performance across the five splits. The correlation coe�cients (r) obtained across the five splits and their average for all the models, for (A) CO2

and (B) PETCO2 prediction. The split number is the same as the splits shown in Figure 2.

As a potential alternative metric of respiratory variability, the

windowed respiratory variance (RV), computed as the standard

deviation of the respiratory signal over sliding windows of 6 s (Chang

et al., 2009), is more robust against noise than RVT as it excludes the

influence of breath-cycle duration term. This may however render

RV less physiologically related to CO2. Moreover, the RRF for RV has

not been determined (Birn et al., 2008), leading us to exclude the use

of RV in this proof-of-principle study. Another potential influence

on CO2 prediction may be the presence of hardware/software filters

on the raw recordings. The Biopac system provided software filters

to exclude MRI noise (periodicity < 100ms) while preserving higher

physiological frequencies, and it is conceivable that in cases where

such frequencies are inadvertently removed from the raw respiratory

traces, the ability to predict CO2 fluctuations may be disadvantaged.

4.3. Other DL architectures

As mentioned previously, a 1D U-net with skip connections

had previously been used for translating fMRI data to respiratory-

volume data [30]. Skip connections as used in the U-net could be

implemented in this study, but as the study is more focused on

establishing proof of concept, such complications were avoided in our

implementation of FCNs.

There are recently developed alternative network architectures

that may also suit our problem. For instance, unpaired and paired

image-to-image translation has been accomplished by generative

adversarial networks (GANs) such as Pix2Pix (Isola et al., 2017) and

CycleGAN (Zhu et al., 2017). The translation task is analogous to the

task of transforming the respiration-belt data to the CO2 waveform is

analogous. A simple GAN consists of two sub-models, a generator to

obtain synthetic samples, and a discriminator to predict the value of

the provided sample. The discriminator network in GANs is similar

to the explicit loss function used in traditional DL models. In our

case, adversarial training would mean that instead of using MSE or

weighted MSE loss functions to determine the best CO2 prediction,

another network would distinguish between them. Given that our

use case is much simpler, this approach might not add value while

incurring higher computational costs and overfitting.

Another alternative are RNNs, such as the long-short term

memory (LSTM) (Greff et al., 2017) and gated recurrent unit (GRU)

(Zhao et al., 2016) networks, which are widely used in signal

processing. At first glance, RNNs seemed a natural choice, but

unfortunately, performance was poor (data not shown) for the LSTM.

In our implementation, the initial 5-s respiration-signal segment was

fed into the LSTM block which would predict the corresponding

segment of CO2 and the hidden state. These outputs along with the

next 5-s segment of respiration data were used as the inputs for

the next iteration, with the intention that irregularities in breathing

would be stored in the network’s memory and would help in

prediction. Moreover, the 5-s length was comparable to the duration

of one breath. Unfortunately, due to the short input-lengths coupled
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FIGURE 8

Comparison of ground-truth and predicted PETCO2 correlations. Data from 2 di�erent subjects, imaged over multiple sessions [(A–C), respectively] are

shown. In each case, the peak cross-correlation maps generated using the ground-truth and predicted PETCO2 time courses are shown in upper and

lower rows, with the corresponding correlation-coe�cient histograms showing the comparability of the maps. The slice positions are shown by the

yellow lines on the sagittal image in the upper-left corner.
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with the limited durations of respiration recordings, the concatenated

output lacked the smooth transitions between consecutive chunks

(i.e. edge effects were apparent in each 5-s block, similar to observed

in training method 1), which are required for accurately predicting

a slow-varying signal like PETCO2. Thus, we concluded that time-

series to time-series translation using RNNs was not feasible unless

much longer respiratory and CO2 recordings were available.

4.4. Limitations

Data quality can be a chief limitation in our approach, and

we recommend careful quality assurance as indicated in this work.

Another potential limitation is the way in which the test and training

data are determined by splitting the full data set; the use of k-fold

cross-validation reduces such bias. Peak detection accuracy, which

determine the quality of the source PETCO2 data, also needs careful

quality assurance. Finally, our method does not attach quantitative

values to the estimated PCO2 or PETCO2 (e.g., in units of mmHg).

This is because the quantitative value of PETCO2 depends not only

on respiratory patterns, but also on minute ventilation, tidal volume,

fitness level, baseline CO2 storage, and so on (Rawat et al., 2021).

Nonetheless, our breath-by-breath CO2 time series reflects patterns

of change are sufficient for fMRI applications.

5. Conclusions

This study demonstrates the feasibility of predicting dynamic

PETCO2 from respiration-belt recordings, thus, enabling broader

incorporation of PETCO2 in rs-fMRI analysis. Following the

successful application of 2D FCNs to image-to-image translation, we

introduced 1D FCNs for 1D signal-to-signal translation. The FCN

outperformed the analytic regression and convolution models. The

study also evaluates the effect of FCN depth as well as the choice

of loss function. A 4-layer FCN with weighted MSE performed best

across all splits. The results across different deep neural network

architectures serve as a literature for further research in signal

processing and for the DL community.
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The Cortical 3-Hinges Folding Pattern (i.e., 3-Hinges) is one of the brain’s

hallmarks, and it is of great reference for predicting human intelligence, diagnosing

eurological diseases and understanding the brain functional structure di�erences

among gender. Given the significant morphological variability among individuals,

it is challenging to identify 3-Hinges, but current 3-Hinges researches are mainly

based on the computationally expensive Gyral-net method. To address this

challenge, this paper aims to develop a deep network model to realize the fast

identification of 3-Hinges based on cortical morphological and structural features.

The main work includes: (1) The morphological and structural features of the

cerebral cortex are extracted to relieve the imbalance between the number of

3-Hinges and each brain image’s voxels; (2) The feature vector is constructed

with the K nearest neighbor algorithm from the extracted scattered features

of the morphological and structural features to alleviate over-fitting in training;

(3) The squeeze excitation module combined with the deep U-shaped network

structure is used to learn the correlation of the channels among the feature

vectors; (4) The functional structure roles that 3-Hinges plays between adolescent

males and females are discussed in this work. The experimental results on both

adolescent and adult MRI datasets show that the proposed model achieves better

performance in terms of time consumption. Moreover, this paper reveals that

cortical sulcus information plays a critical role in the procedure of identification,

and the cortical thickness, cortical surface area, and volume characteristics can

supplement valuable information for 3-Hinges identification to some extent.

Furthermore, there are significant structural di�erences on 3-Hinges among

adolescent gender.

KEYWORDS

cortical 3-Hinges folding pattern, cortical morphology and structure, gender di�erences,

deep learning, SE-Unet

1. Introduction

Cortical folding patterns quantify the human cerebral cortex, which is highly curled and

folded into convex gyri and concave sulci during brain development. From these patterns,

we can infer critical clues about cytoarchitecture (Van Essen, 1997; Fischl et al., 2008),

neurodevelopment (Dubois et al., 2008), brain function and cognition (Thompson et al.,

2004; Jiang et al., 2021). However, because the shapes of the gyri and the sulci are complex
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and variable across subjects, it is challenging to quantitatively

analyze the cortical folding patterns, estimate precise cross-subject

correspondences for them, and establish a mapping from them to

brain function and cognition (Fischl et al., 2008). In particular,

the location identification of the cortical folding has important

clinical reference value for the prediction of human intelligence, the

understanding of the brain functional structure (Jiang et al., 2018;

Zhang et al., 2018a), and the diagnosis of neurological diseases

(Huang et al., 2019).

Despite such difficulty, promising results have been achieved

in solving these challenging problems. For example, learning from

geological rock folding patterns analysis methods (Lisle, 1997; Li

et al., 2010) defined the conjunction region of three gyral crests as

a gyral hinge (denoted as 3-Hinges). Troubled by the formation

mechanisms of 3-Hinges, Razavi et al. (2021) constructed a

computational model of a growing brain and speculated that

axonal wiring may be one of the most important contributors

to 3-Hinges formation. The number, location, and shape of gyral

hinges were used to quantitatively analyze the folding patterns of

cerebral cortex (Nie et al., 2012; Ge et al., 2019; Huang et al., 2019).

Gyral hinges receive an increasing attention not only because of

their morphology, but also due to their importance in anatomy,

axonal wiring diagram and brain functions: (1) they have thicker

cortices (Li et al., 2010) and stronger axonal fiber connections

(Ge et al., 2018); (2) they serve as the hubs of the cortico-

cortical axonal fiber connective network (Zhang et al., 2020); and

(3) they are more involved in global functional networks than

other gyri (Zhang et al., 2020). According to recent studies, gyral

hinges were suggested to serve as the anatomical landmarks, since

corresponding gyral hinges across subjects were demonstrated to

have unique and consistent structural connection patterns and

brain function patterns (Zhang et al., 2020, 2022). In addition,

some studies found that cortical folding pattern has significant

differences among gender (Awate et al., 2010; Li et al., 2014). And

these differences from the morphological structure of the cerebral

cortex, especially the gyrus, may lead males and females to respond

differently to the same cognitive activity (Charest et al., 2013; Hirjak

et al., 2017).

Given the importance of gyral hinges, a more precise

identification method is needed. In previous research, Yu et al.

(2013) identified the gyral hinges by manual label. Chen et al.

(2014) proposed a method based on energy minimization to

identify the centroids of the gyral hinges with diffusion tensor

imaging (DTI) derived fiber connectivity. Li et al. (2017) proposed

an effective method for predicting the centroids of 3-Hinges

based on DTI data using structural connection patterns and

spatial distribution patterns. These methods significantly advanced

the identification of 3-Hinges. However, they could not be

easily generalized to the identification of 3-Hinges on large-

scale cortical folding data since intensive manual intervention

was involved. Subsequently, Chen et al. (2017) proposed a new

representation of the cortical gyri pattern, named Gyral-net, which

was automatically constructed as a gyral network. On this network,

the nodes were automatically identified as gyral hinges, which

are connected by gyral crests as edges (Chen et al., 2017; Zhang

et al., 2018b). Despite the success of this automatic method, it

takes a long time to only process the left or right brain of a

single target at a time as the watershed algorithm and the tree

marching algorithm are used such that it is hard to complete the

identification task of gyral hinges on the dataset with a large amount

of data.

Inspired by deep learning methods in many applications, Ge

et al. (2019) applied convolutional neural network (CNN) to

the cortical folding pattern recognition from functional magnetic

resonance images (fMRI) to distinguish gyral hinges from other

folding patterns. Although deep learning technique is promising

in gyral hinge identification task due to its strength in latent

feature exploration and utilization, the method in Ge et al.

(2019) needs a precise cross-modality mapping to transfer the

volumetric space of the fMRI data to the vertices on the

cortical surface in T1-weighted MRI space, so did the method

reported in Liu et al. (2022). Benefiting from the rich information

of fMRI data, their work was influential on recognition of

cortical folding pattern. However, instead of using the entire

cortical fMRI data, they manually removed some data, according

to cortical structure features. Furthermore, due to the huge

variability of fMRI signals between individuals, both carried out

their work at the individual level. In other words, a single

model was trained for each subject, which consumed a lot of

computing resources.

Therefore, this paper aims at developing a framework based

on deep network models to realize the fast identification

of cortical 3-Hinges simply from anatomic T1-weighted MRI

and exploring whether there are structural differences on 3-

Hinges among gender. The framework includes three major

steps: Firstly, the morphological and structural features of the

cerebral cortex are extracted from the reconstructed surface

of the cerebral cortex. These features are then clustered into

one feature vector per vertex using the K nearest neighbor

algorithm. Secondly, based on this feature vector, cortical 3-

Hinges folding regions are identified using a U-shaped neural

network. Thirdly, the mean shift clustering algorithm is used to

find the centroids of identified cortical 3-Hinges folding regions.

Then, structural gender differences on 3-Hinges are discussed.

The experimental results show that the proposed method can

precisely recognize the locations of 3-Hinges and reveal the most

contributive features to 3-Hinges identification, and there are

significant differences in 3-Hinges morphological structure among

adolescent gender.

2. Materials and methods

2.1. Overview

We propose a 3-Hinges locations identification algorithm

based on a deep network trained on the morphological and

structural features of the cerebral cortex. As shown in Figure 1,

the algorithm framework includes three main steps: data

preprocessing, identification of 3-Hinges regions (n is the

number of vertices, k is the result of the K nearest neighbor

algorithm, and m is the number of fusion data) and identification

of 3-Hinges centroids. These steps will be detailed in the

following subsections.

Frontiers inNeuroscience 02 frontiersin.org61

https://doi.org/10.3389/fnins.2023.1125666
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cao et al. 10.3389/fnins.2023.1125666

FIGURE 1

Overview of 3-Hinges locations identification framework. (A) Data preprocessing. (B) Identification of 3-Hinges regions. (C) Identification of 3-Hinges

centroids.

FIGURE 2

The illustration of feature preprocessing. (A) Cerebral cortex surface. (B) Zoom in view. (C) The feature vector [a,b1,b2,...,b15] of the vertex a is

aggregated by the K nearest neighbor algorithm.

2.2. Data preprocessing

2.2.1. Feature extraction and preprocessing
Considering the high ratio between the number of 3-Hinges

centroids and the rest, we first use FreeSurfer (Fischl, 2012) for

extracting features from the MRI reconstructed cortex to reduce

the quantity ratio of non-3-Hinges to 3-Hinges. In this paper, we

extract the morphological and structural features such as cortical

thickness (thick), cortical surface area (area), cortical volume (vol),

average curvature (curv) and sulcus (sulc) value to avoid using

all the voxels in one brain as the input of the network model. In

addition, because there are correlations among adjacent vertices

on the cortex surface, we establish the spatial relationship between

the scattered features with the K nearest neighbor algorithm

(Cover and Hart, 1967; Pedregosa et al., 2011), and aggregate

the morphological and structural features into a feature vector.

For example, as shown in Figure 2, in our experiments, to each

vertex a on the cortex surface, 15 vertices (b1,b2,...,b15) in the
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FIGURE 3

Labeling 3-Hinges regions. (A) Extracting 2-Hinges and 3-Hinges vertices by Gyral-net algorithm. (B) Zoom in 3-Hinges. (C) Expanding 2-Hinges and

3-Hinges regions.

neighborhood of the vertex a are selected as the single input feature

experimentally.

2.2.2. 3-Hinges regions label
In order to further alleviate over-fitting in the training because

of the imbalance between the number of 3-Hinges centroids and

all the vertices of the cerebral cortex, three steps are involved in

labeling 3-Hinges vertices.

(a) Extracting 2-Hinges and 3-Hinges vertices by the Gyral-net

algorithm (the blue and the pink vertices are 2-Hinges and

3-Hinges vertices, respectively, as shown in Figure 3A. The

readers can refer to Li et al. (2017) and Chen et al. (2017) about

the detailed algorithm.

(b) Expanding 2-Hinges and 3-Hinges vertices into 3-Hinges

region. As shown in Figure 3, we expand the vertices around

the vertices generated by step (a). More specifically, two

kinds of vertices are included in 3-Hinges region as shown

in Figure 3C: i) cortex surface vertices in the spherical

neighborhood within radius R1 (empirically set to 6 mm) of

3-Hinges vertices; ii) the cortex surface vertices in the spherical

neighborhood within radius R2 (empirically set to 2 mm) of

2-Hinges vertices.

(c) Labeling 3-Hinges regions. We define the expanded

region as 3-Hinges region shown as the blue region in

Figure 3C. Each blue vertex is labeled as 1, and the rest is

labeled as 0.

2.3. 3-Hinges regional identification

2.3.1. Single feature SE-Unet network framework
In this paper, we combine the U-shaped network structure

(Ronneberger et al., 2015) and SE (Squeeze and Excitation) module

(Hu et al., 2020) to design a SE-Unet network framework for the

morphological and structural features, which are used to identify 3-

Hinges regions automatically. As shown in Figure 4, the network

framework is a symmetrical U-shaped network with two paths,

encoding (left side) and decoding (right side), and a total of 5

layers. The encoding paths consists of the repeated application

of two 3 × 3 convolutions (purple block), a SE module (yellow

block, the architecture is shown in Figure 5), and a 2 × 2 max

pooling operation with stride 2 for down sampling (green down-

arrow). At each down sampling step, we double the number of

feature channels. The decoding paths consists of an up sampling

of the feature map followed by a 2 × 2 convolution that halves

the number of feature channels (green up-arrow), skip connections

(gray right-arrow) concatenation with the corresponding feature

map from the encoding path, two 3 × 3 convolutions and a SE

module. Specifically, each convolution is followed by a layer of

batch normalization (BN) and a layer of ReLu activation function.

Meanwhile, a dropout layer is put between the convolutional layers

to alleviate over-fitting. The input data is converted to the range of

[0, 1] by maximum and minimum normalization before fed into

the first module composed of two layers of convolutional blocks

and the SE module. In addition, the softmax function is applied

before the output of the SE-Unet network. In order to facilitate

network training, the dimension of the network input is designed to

be 64× 64× 16 in our experiments. Besides, to reduce the number

of learning-parameters and time consumption, the 2D convolution

is utilized in the proposed network.

2.3.2. Multiple features fusion SE-Unet framework
For the extracted multiple feature vectors of the surface

morphology and structure of the cerebral cortex, we design a multi-

feature pre-fusion SE-Unet network framework to automatically

extract 3-Hinges regions, as shown in Figure 6. The difference

between this network structure and the single-feature SE-Unet

network framework is that each feature in the input part of the

network is first scaled by a convolutional block (including a 3 ×
3 convolution layer, a layer of batch normalization (BN) and a

layer of ReLu activation function), and then the scaled features are

concatenated before being fed into the SE-Unet network.
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FIGURE 4

The illustration of single feature SE-Unet architecture.

FIGURE 5

The architecture of the SE module.

2.4. 3-Hinges centroids identification

In order to identify the exact locations of 3-Hinges more

precisely, we utilize the mean shift algorithm (Fukunaga and

Hostetler, 1975; Comaniciu and Meer, 2002; Collins, 2003) to

cluster the centroids of 3-Hinges regions. Considering that the

algorithm does not need to pre-define the number of cluster centers

and that the number of 3-Hinges centroids is also unknown in

advance, the algorithm can directly determine the cluster centroids

based on the calculated offset mean vector.

Assuming that a certain 3-Hinges region X in the left/right

brain hemisphere is composed of the 3-dimensional coordinate

vector Xi(i = 1, 2, ..., n), i.e., X ∈ Rn×3, the mean shift vector

of Xi(i ∈ {1, 2, ..., n}) in the original mean shift vector can be

calculated by the formula (1):

Mh(Xm) =
1

K

∑

Xi∈Sh

(Xi − Xm), (1)

Where Sh is defined as the expression (Equation 2), h is the radius

of 3-Hinges spherical region, and K is the number of coordinate

vertices in 3-Hinges spherical region X.

Sh(Xm) = {y :(y− Xm)
T(y− Xm) ≤ h}. (2)

However, the original mean shift algorithm assigns the same

weight to each vertex in the region and regards them as the same

importance. In fact, the closer the vertex is to the cluster center, the

greater importance the vertex is to the cluster center. Therefore, the

kernel function G(·) and weighted coefficients w(·) are introduced
into the mean shift algorithm, and the formula (1) is modified as:

Mh(Xm) =
∑n

i=1 GH(Xi − Xm)w(Xi)(Xi − Xm)
∑n

i=1 GH(Xi − Xm)w(Xi)
, (3)

Where w(Xi) ≥ 0 is the weight corresponding to the coordinate

vertexXi according to the distance betweenXi andXm.GH(Xi−Xm)
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FIGURE 6

The illustration of the multiple features SE-Unet architecture.

is obtained by the expression:

GH(Xi − Xm) = |H|
1
2GH(|H|

1
2 (Xi − Xm)),

with GH(x) = −(
1

√
2πs

e
− x2

2s2 )′, s ∈ constant,
(4)

andH is a d×d bandwidthmatrix, which can be the diagonalmatrix

H = diag[h21, ..., h
2
d
] or the proportional unit matrix H = h2I.

Considering that the later one only has one hyper-parameter h,

we choose H = h2I in the mean shift algorithm to facilitate the

identification of 3-Hinges. After simplification, our final mean shift

vector can be expressed as Equation (5):

Mh(Xm) =

∑n
i=1 GH(

Xi − Xm

h
)w(Xi)(Xi − Xm)

∑n
i=1 GH(

Xi−Xm
h

)w(Xi)
, (5)

then, the 3-Hinges centroid is updated as Xm = Xm +Mh(Xm).

3. Experimental results

In this section, we will introduce the data set, evaluation

metrics, and network parameters. At the same time, we analyze the

single feature andmultiple combined features that are most relative

to 3-Hinges. We also verify the generalization of the method on

the adult data set. The code is available at https://github.com/

GuardianTree/code.

3.1. Training

We evaluated our method on T1-weighted MR images from

adolescent and adult data sets.

3.1.1. Data sets
The Adolescent MRI Data: In this study, the MRI from

the Adolescent Brain Cognitive Development (ABCD) NIMH

Data Archive (NDA) Study is used where all the subjects are

between 9 and 10. Compared with infant brains, the brain at this

age is considered to be relatively, with discriminative cortical

folding patterns. The ABCD data set has been processed in

accordance with the MRI preprocessing procedure mentioned

by Jenkinson et al. (2002), Pfefferbaum et al. (2018), and

Hagler et al. (2019). Limited by computational resources,

we randomly select 1,000 brain MRI data from ABCD NDA

Release 1.1. It is noted that the proposed method can be

applied to many datasets including the above-mentioned

datasets.

For the ABCD data set, there are approximately 330,000

vertices on the surface of the cerebral cortex of each sample. In

order to facilitate the use of deep learning method, we will unify

the features extracted from each sample to 331,776 (=64*64*81),

that is, we add the morphological and structural features of the

vertices that do not meet the requirements to 331,776 with a value

of 0. After sampling and shape transformation, the features of each

subject are divided into 81 blocks of size (64, 64, 16). Therefore,
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there are 72,900 blocks in the training set and 8,100 blocks in the

test set.

The Adult MRI data: In this experiment, the adult data set is the

1,200 data set released by the Human Connectome Project (HCP).

The HCP data set contains images of a total of 1,200 normal young

people aged 22–35. The detailed process of HCP data set parameters

can be found in the processing of Van Essen et al. (2013). In order to

verify the generalization of the adult data, 110 adults were selected

from the HCP data set (http://www.humanconnectomeproject.org/

data/).

For the HCP data set, there are approximately 360,000 vertices

on the surface of the cerebral cortex of each subject. After the same

processing as the ABCD data set, the extracted features are divided

into 90 blocks, and the final HCP data set has 9,900 blocks with the

size of (64, 64, 16).

3.2. Evaluation metrics

In this paper, three metrics are used to evaluate 3-

Hinges regions identification performance in the experiment,

i.e., Precision, Recall, and F1. In addition, in the process of

identifying the locations of 3-Hinges centroids, the prediction error

(PreE) calculated by the Euclidean distance between the predicted

centroids and the labels is used as the evaluation metric. Lh-

PreE, rh-PreE and mean-PreE represent the average values of the

prediction error of 3-Hinges centroids on the left, right, and whole

brain, respectively. The smaller the value of the PreE is, the closer

the predicted 3-Hinges centroids locations are to the true 3-Hinges

centroids locations.

3.3. Network parameters

In this experiment, we implement the SE Unet Network

with the Keras framework, where the RMSprop optimizer Wilson

et al. (2017) and Hinton et al. (2012) is used for optimization

training. The initial learning rate is set as 0.05, which is decayed

exponentially after each epoch. The batch size is set as 40, the epoch

is set as 150, the convolution kernel size is set as 3×3, and the

momentum parameter in the batch normalization layer is set as 0.6.

The activation function layer is the ReLu function, the drop layer

parameter is set as 0.2, the parameters in down-sampling and up-

sampling are both set as 2× 2. In order to obtain the true objective

maximization of 3-Hinges regions, the Dice loss is selected as the

training loss function.

3.4. 3-Hinges identification

3.4.1. Single feature result analysis
In the experiment, we first give the results of identifying 3-

Hinges regions using the baseline U-net, and list the results using

the proposed SE-Unet under different dimensionality reduction

coefficients (r), which is a hyper-parameter in the SE module.

Then, based on the recognition of 3-Hinges regions, the mean

shift clustering algorithm is used to identify the centroids of 3-

Hinges regions. As shown in Table 1, when the hyper-parameter

r is set to 24, the F1 score reaches 60.78, and the mean-pre

of the predicted 3-Hinges centroids on the entire brain of all

test set individuals is 5.56. Meanwhile, in the same experimental

environment, the time consumption of our algorithm is about 4

min, which is far less than the Gyral-net method, indicating that

our algorithm can identify the locations of 3-Hinges centroidsmore

quickly.

Besides, we report the precision, recall and F1 under the other

morphological and structural features of the cerebral cortex, such

as cortical thickness, surface area, volume, average curvature and

sulcus value, as shown in Table 2. We can see that under the

same conditions, the sulc recognition results outperform those of

other features. In addition, in the same experimental environment,

compared with the Gyral-net method, the time required for our

method is about 4min, which are far less thanGyral-netmethod. As

shown in Figure 7, we can observe that 3-Hinges regions identified

by the sulcus value feature contains more 3-Hinges vertices which

are close to the real 3-Hinges centroids. In some subjects, our

predicted results are even more accurate than the labels annotated

by Gyral-net such as those in (d-1) and (d-4) of Figure 7B.

3.4.2. Multiple features result analysis
Based on the experiment results of the single feature above, we

try to improve 3-Hinges locations identification by fusing different

features. In this section, we choose to use feature fusion in the early

stage to explore the impact of fusion features on 3-Hinges locations

identification, as shown in Table 3.

The result under the fusion of sulc+thick in 3-Hinges regions

reaches 62.54, and the mean-PreE is only 5.23 mm.With sulc+curv

the results are worse than that of a single sulc feature, which shows

that the curv feature inhibits the sulc feature from identifying

3-Hinges locations. Similar conclusions are obtained from other

feature combinations. We also get the optimal results with 3–5

features where it can be seen that more features do not improve

the recognition results significantly, although the combination

of sulc+thick+vol+area achieves better results at the cost of

more time consumption. Some visualized results predicted by

fusion of sulc feature and other structural features are shown in

Supplementary Figures S1–S4. In general, our proposed method

can predict some 3-Hinges points that are not labeled, such as a

larger version of the left brain of individual a and d, and the right

brain of individual b. Moreover, there are less 3-Hinges points,

which are more likely to be representative in the same 3-Hinges

region by using mean shift.

3.4.3. Correlation analysis with gender
We performed a correlation analysis between 3-Hinges cortical

structural features classification accuracy and the subjects’ gender,

as shown in Table 4. In 100 test subjects, there are 51 females and

49 males. In single cortical structural feature tasks, there is not a

significant correlation between 3-Hinges classification accuracy of

one cortical structural feature and gender. But compared with the

others, the result of cortical structural feature of the sulc have a
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TABLE 1 The identification results of di�erent methods.

Data Methods
3-Hinges regions (%) 3-Hinges centroids (mm) Time

(min)
Precision Recall F1

lh-

PreE

rh-

PreE

mean-

PreE

MRI Gyral-net - - - - - - 82.30

sulc
Unet+

mean shift

56.23 65.71 60.56 5.58 5.63 5.60 4.06

sulc SE_Unet+

mean shift

r = 8 55.32 67.28 60.67 5.55 5.63 5.59 4.05

r = 16 55.47 67.12 60.70 5.56 5.61 5.58 4.07

r = 24 55.74 66.93 60.78 5.52 5.60 5.56 4.06

r = 32 56.49 64.35 60.12 5.54 5.59 5.56 4.05

TABLE 2 The identification results on di�erent single features.

Data Methods
3-Hinges regions (%) 3-Hinges centroids (mm) Time

(min)
Precision Recall F1

lh-

PreE

rh-

PreE

mean-

PreE

MRI Gyral-net - - - - - - 82.30

sulc SE-Unet+

mean shift

55.74 66.93 60.78 5.52 5.60 5.56 4.06

curv 46.36 55.38 50.42 7.68 7.65 7.66 4.06

vol 47.84 55.21 51.23 6.92 6.86 6.89 4.09

area 44.60 43.49 44.01 8.46 8.46 8.45 4.07

thick 46.72 54.98 50.48 7.40 7.48 7.44 4.01

FIGURE 7

3-Hinges regions (A)/centroids (B) visualized results using di�erent features. Letters (a–d) represent di�erent individuals. Numbers (1–6) indicate

label, area, curv, sulc, thickness, and volume, respectively.
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TABLE 3 The identification results of multi-features fusion.

Data Methods
3-Hinges regions (%) 3-Hinges centroids (mm) Time

(min)
Precision Recall F1

lh-

PreE

rh-

PreE

mean-

PreE

MRI Gyral-net - - - - - - 82.30

sulc+vol SE-Unet

+mean

shift

55.91 70.33 62.21 5.26 5.25 5.25 4.08

sulc+thick 56.43 70.29 62.54 5.22 5.24 5.23 4.09

sulc+curv 50.25 74.87 59.84 5.94 5.93 5.94 4.07

sulc+area 56.13 69.30 61.91 5.52 5.51 5.51 4.09

vol+thick 49.21 56.80 52.68 6.82 6.84 6.83 4.11

vol+curv 43.97 42.70 41.80 7.37 7.33 7.35 4.15

vol+area 47.10 61.65 53.29 6.89 6.90 6.90 4.08

thick+curv 39.38 54.72 44.48 8.13 8.10 8.11 4.10

thick+area 47.71 55.78 51.30 7.49 7.47 7.48 4.13

curv+area 15.94 49.25 24.00 9.25 9.25 9.25 4.11

sulc+thick+vol 56.91 69.72 62.58 5.16 5.20 5.18 4.12

sulc+thick+area 56.59 69.23 62.15 5.21 5.22 5.21 4.11

sulc+vol+area 56.45 69.72 62.29 5.16 5.21 5.18 4.13

sulc+thick+vol+area 57.02 69.53 62.54 5.15 5.16 5.15 4.17

sulc+thick+vol+area+curv 51.70 74.02 60.35 5.55 5.65 5.60 4.32

TABLE 4 The correlation analysis between 3-Hinges regions identification accuracy and the gender in adolescents.

Data r p-value Data r p-value

sulc 0.18 0.07 sulc+curv+vol 0.20 0.05*

curv 0.10 0.33 sulc+vol+area 0.24 0.02*

vol 0.11 0.27 sulc+thick+area 0.21 0.03*

area 0.16 0.10 sulc+thick+curv 0.21 0.04*

thick 0.15 0.14 sulc+thick+vol 0.19 0.06

sulc+area 0.19 0.06 sulc+vol+area+curv 0.21 0.04*

sulc+curv 0.21 0.03* sulc+thick+area+curv 0.22 0.03*

sulc+vol 0.22 0.03* sulc+thick+vol+area 0.18 0.08

sulc+thick 0.22 0.03* sulc+thick+vol+curv 0.21 0.03*

sulc+area+curv 0.22 0.03* sulc+thick+vol+area+curv 0.25 0.01**

The females and the males are labeled as 0 and 1, respectively. ∗represents p-value < 0.05, which means general significant correlation; ∗∗represents p-value < 0.01, which means extremely

significant correlation.

closer association with gender (r = 0.18, p = 0.07). In two cortical

structural features tasks, there is a significant correlation between

3-Hinges classification accuracy and gender (r = 0.21, p= 0.03 and

r= 0.22, p= 0.03 for curv_sulc and sulc_thickness, respectively). In

both three and four cortical structural features tasks, there are also

significant correlations between 3-Hinges classification accuracies

and gender (r = 0.24, p = 0.02 and r = 0.22, p = 0.03 for

area_sulc_volume and area_curv_sulc_thickness, respectively). It

is worth noting that in five cortical structural features tasks, there

is the most significant correlation between 3-Hinges classification

accuracy and gender (r = 0.25, p = 0.01). With the increasement

of multiple cortical structural features, the correlation between 3-

Hinges classification accuracy and gender becomes more and more

significant, either the Pearson correlation coefficient or the p-value.

Furthermore, all of the correlations are positive. It indicates that 3-

Hinges structure of adolescentmales is significantly different to that

of females. Compared with other cortical folding regions, 3-Hinges

regions are more prominent in males. This reslut is consistent with

the previous study on gender differences in cerebral cortical folding

patterns, in which the fraction of the cortical surface that was
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TABLE 5 The identification results of HCP data set.

Data Methods
3-Hinges regions (%) 3-Hinges centroids (mm) Time

(min)
Precision Recall F1

lh-

PreE

rh-

PreE

mean-

PreE

MRI Gyral-net - - - - - - 82.30

sulc SE-Unet

+mean

shift

50.98 56.94 53.67 6.54 6.50 6.52 4.14

curv 46.16 59.01 51.65 8.13 8.25 8.19 4.18

vol 41.19 54.63 46.91 7.86 7.77 7.81 4.17

area 42.02 45.82 43.79 9.17 9.19 9.18 4.16

thick 42.16 49.50 45.48 8.09 8.22 8.16 4.13

sulc+thick 50.23 46.90 48.26 6.19 6.18 6.18 4.18

sulc+thick+vol 51.19 45.02 47.55 6.09 6.11 6.10 4.24

sulc+thick+vol+area 52.49 40.26 45.14 6.05 6.06 6.05 4.27

sulc+thick+vol+area+curv 47.76 56.18 50.73 6.52 6.47 6.49 4.32

FIGURE 8

3-Hinges regions (A)/centroids (B) visualized results using di�erent features on HCP. Letters (a–d) represent di�erent individuals. Numbers (1–6)

indicate label, area, curv, sulc, thickness, and volume, respectively.

convex (predominantly gyri including 3-Hinges) was significantly

higher in males (Awate et al., 2009). In other words, structural roles

that 3-Hinges within adolescent males and females plays do change

remarkably.

3.5. Generalization

In this section, we test the adult data directly using the model

trained on the ABCD data set. The results are shown in Table 5.

It shows that we can get the consistent conclusions as the ABCD

data set, although the accuracy is less than that of the ABCD data

set. By analyzing and comparing the identified 3-Hinges regions

and centroids, we find that on one hand, the adult brain is more

mature than the adolescent brain, and its cerebral cortex folding

is more complicated, which increases the difficulty of 3-Hinges’

identification. On the other hand, the number of the vertices

contained in the identified 3-Hinges regions is reduced, which

results in less 3-Hinges centroids. However, as shown in Figure 8,

the proposed method can still identify 3-Hinges points in some

cases that are not correctly labeled by Gyral-net.

4. Discussion and conclusion

In this article, we propose a SE-Unet algorithm to identify

3-Hinges regions based on the extracted brain morphological
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features. The algorithm first extracts the morphological and

structural features of the brain, then utilizes the K nearest neighbor

algorithm to establish the spatial index relationship between the

scattered features and aggregates the extracted neighborhood

features into a feature vector to improve the performance of

the algorithm. At the same time, the deep U-shaped network

structure and the squeeze excitation module are merged to learn

the correlation of the channels in the feature vector, resulting in

the automatic weight assignment of useful cortical structure feature

channels. The cortical 3-Hinges regions can therefore be quickly

identified. In addition, The mean shift algorithm is used to identify

the centroids of the cortical 3-Hinges, considering that the cortical

3-Hinges is similar or identical in shape, which results in the

inaccurate reflection of the cortical folding patterns. Through the

comparative analysis of the experimental results of using a single

feature and multiple features, we can conclude that the single sulc

feature is sufficient to identify 3-Hinges. Meanwhile, the fusion

of sulc, thickness, volume and area features can well identify 3-

Hinges at the price of more time consumption. In consideration

of the performance difference of identifying 3-Hinges between

adolescent males and females, it is obvious that there are significant

structural differences between males and females. In addition, we

also carried out generalization verification on the adult dataset.

Although our method improves the current Gyral-net to some

extent, there are still room for improvement. We will aim for high

accuracy prediction of the cortical 3-Hinges from both structural

MRI and functional MRI.
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Real-time changes in brain activity 
during tibial nerve stimulation for 
overactive bladder: Evidence from 
functional near-infrared 
spectroscopy hype scanning
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1 Department of Urology, China Rehabilitation Research Center, School of Rehabilitation, Capital 
Medical University, Beijing, China, 2 University of Health and Rehabilitation Sciences, Qingdao, China, 
3 Department of Occupational Therapy, China Rehabilitation Research Center, Beijing, China, 4 China 
Rehabilitation Science Institute, Beijing, China

Purpose: To use functional near-infrared spectroscopy (fNIRS) to identify changes 
in brain activity during tibial nerve stimulation (TNS) in patients with overactive 
bladder (OAB) responsive to therapy.

Methods: Eighteen patients with refractory idiopathic OAB patients were recruited 
consecutively for this pilot study. At baseline, all patients completed 3 days voiding 
diary, Quality-of-Life score, Perception-of-Bladder-Condition, and Overactive-
Bladder-Symptom score. Then 4 region-of-interest (ROI) fNIRS scans with 3 
blocks were conducted for each patient. The block design was used: 60 s each 
for the task and rest periods and 3 to 5 repetitions of each period. A total of 360 s 
of data were collected. During the task period, patients used transcutaneous tibial 
nerve stimulation (TTNS) of 20-Hz frequency and a 0.2-millisecond pulse width 
and 30-milliamp stimulatory current to complete the experiment. The initial scan 
was obtained with a sham stimulation with an empty bladder, and a second was 
obtained with a verum stimulation with an empty bladder. Patients were given 
water till strong desire to void, and the third fNIRS scan with a verum stimulation 
was performed. The patients then needed to urinate since they could not tolerate 
the SDV condition for a long time. After a period of rest, the patients then were 
given water until they exhibited SDV state. The fourth scan with sham fNIRS scan 
in the SDV state was performed. NIRS_KIT software was used to analyze prefrontal 
activity, corrected by false discovery rate (FDR, p < 0.05). Statistical analyses were 
performed using GraphPad Prism software; p < 0.05 was considered significant.

Results: TTNS treatment was successful in 16 OAB patients and unsuccessful 
in 2. The 3 days voiding diary, Quality-of-Life score, Perception-of-Bladder-
Condition, and Overactive-Bladder-Symptom score were significantly improved 
after TNS in the successfully treated group but not in the unsuccessfully treated 
group. The dorsolateral prefrontal cortex (DLPFC) (BA 9, Chapters 25 and 26) 
and the frontopolar area (FA) (BA 10, Chapters 35, 45, and 46) were significantly 
activated during TNS treatment with an empty bladder rather than with an SDV. 
Compared with the successfully treated group, the unsuccessfully treated group 
did not achieve statistical significance with an empty bladder and an SDV state.

Conclusion: fNIRS confirms that TNS influences brain activity in patients with OAB 
who respond to therapy. That may be the central mechanism of action of TNS.
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Introduction

Overactive bladder (OAB) is characterized by urinary urgency, 
frequency, nocturia, and urgent incontinence in the absence of an 
infection or other evident disease by the International Continence 
Society (ICS) (Haylen et al., 2010). It affects numerous people, causing 
significant economic and quality of life problems (Stewart et al., 2003; 
Coyne et  al., 2011; Reynolds et  al., 2016). Treatment of OAB can 
be challenging, as many patients have persistent symptoms in spite of 
behavioral and oral pharmacologic therapies (Chancellor et al., 2014). 
Tibial nerve stimulation (TNS) is an alternative for those with OAB, 
and it comes in three forms: percutaneous (PTNS), implanted (ITNS), 
and transcutaneous (TTNS) (Schneider et al., 2015; Te Dorsthorst 
et al., 2020). Nonetheless, the precise mechanism of action in OAB 
therapy has yet to be determined.

Functional neuroimaging is useful in studying the brain 
micturition pathway (Fowler and Griffiths, 2010). According to 
functional neuroimaging studies, females with OAB had elevated 
afferent signaling to the cingulate, insular, and frontal cortices 
(Griffiths et al., 2005; Komesu et al., 2011). Several regions of the 
brain are essential for regular urination, and bladder filling also 
activates different brain regions (de Groat, 1998; Nardos et al., 2014; 
Griffiths, 2015). Studies using functional magnetic resonance imaging 
(fMRI) revealed higher activity in areas related with urine symptoms 
and urgency (Griffiths et al., 2007; Tadic et al., 2012). Functional 
near-infrared spectroscopy (fNIRS) has the benefits of noninvasive, 
portable, optic-based, and places little physical mobility limits to 
investigate the central micturition circuit (Duan et al., 2012; Geng 
et al., 2017). Furthermore, fNIRS has greater temporal resolution, can 
generate stable signals quicker, and can directly identify changes in 
oxyhemoglobin (HbO) signals in addition to deoxyhemoglobin 
(HbR) signals, making it superior to fMRI (Geng et  al., 2017). 
Numerous fNIRS and fMRI studies have shown the accuracy and 
reproducibility of fNIRS signals, offering an evidential support for 
their use (Cui et al., 2011; Duan et al., 2012; Geng et al., 2017). In this 
study, we used fNIRS to study real-time brain activity during TNS 
treatment among OAB patients and explain the central 
mechanism of TNS.

Materials and methods

Patients

With Institutional Review Board approval (IRB:2021 N012), 
we  recruited 18 women (mean age, 42.39 ± 19.72 years) with 
refractory idiopathic OAB who chose TTNS. The inclusion criteria 
were as follows: age 18 to 75 years, 72 h of recording urination with at 
least 8 voids every day and 7 days of abstaining from anticholinergic 
and β3 adrenergic receptor agonist prior to TTNS. Drug usage was 
unchanged throughout therapy. Patients with untreated symptoms of 
urinary tract infection, bladder tumor, or urinary stones were 
ineligible, as were those who were pregnant, had a pacemaker or 
implanted defibrillator, had combined renal insufficiency, Parkinson’s 
disease, complete spinal cord injury, mental illness that prevented 
them from cooperating with doctors, skin lesions at the treatment 
place, and had participated in other drug or device clinical trials 
within 1 month prior to enrollment.

Stimulation procedures

Evaluations were not carried out when the subjects were having 
their periods. At the beginning of the study, every patient recorded 
their voiding diary for 72 h, received a score on their Quality of Life 
(QoL), assessed their Perception of Bladder Condition (PPBC), and 
completed an Overactive Bladder Symptom score (OABSS). If 
patients met the inclusion exclusion criteria, we then conducted the 
fNIRS trial on them. Patients were instructed on how to use the 
stimulator after the experiment, and they then went home to 
stimulate themselves. The stimulate parameters was as follows: 20-Hz 
frequency and a 0.2-millisecond pulse width and 30-milliamp 
stimulatory current. Patients performed TNS 1 h per day for 30 days 
and then returned to our facility to follow up and complete a 72-h 
voiding diary prior to the follow-up day as well as a Qol score, PPBC 
score, and OABSS. Clinical treatment success was characterized as 
either a decrease of daily frequency voids of at least 30% or a 
reduction of urgency voids of at least 50% (Cava and Orlin, 2022). 
Region-of-interest (ROI) fNIRS scans were showed in Table 1.

The fNIRS experiment flow was as follows: upon accessing the 
research facility, subjects were informed a description of the 
experiment, given a permission form, and instructed to take a seat. 
In a line with the tibial nerve, the 2 mucilaginous electrodes of the 
stimulator were inserted roughly three fingers above the medial 
malleolus. Patients had fNIRS electrodes placed on their foreheads 
and then they closed their eyes in a darkened environment. A total 
of 4 fNIRS scans containing 3 blocks each were completed for each 
patient. The block design was used: 60 s each for the task and rest 
periods, and 3 to 5 repetitions of each period. Fifteen seconds of 
baseline resting data were added before the block to ensure the 
steady state of the fNIRS signal, and a total of 360 s of data 
were collected.

During the task period, patients used TTNS (General Stim, Inc., 
Hangzhou, Zhejiang, China) on the right lower limb with parameters 
of 20 Hz frequency, a 0.2-millsecond pulse width, and a 30-milliamp 
(mA) stimulatory current. The initial scan was obtained with sham 
stimulation (using the same TTNS device and parameters but the 
power of the device was off which inducing no stimulation effects) 
with an empty bladder and a second time with verum stimulation 
with an empty bladder. The third fNIRS scan was conducted on the 
subjects after they were given water until they exhibited a strong 
desire to void (SDV) without being concerned about leaking. Because 
OAB patients cannot maintain urine storage for a long period with 
SDV, patients needed to void after the third fNIRS scan. After a 
period of rest, the patients then were given water until they exhibited 
SDV state. The fourth scan with sham fNIRS scan in the SDV state 
was performed (Figure  1). The block design provides many 
advantages, including the reduction of the need for human 
involvement and the suppression of oscillations in data that are not 
relevant (Sato et al., 2007).

fNIRS equipment

To monitor the variations in HbO and HbR in the venous blood 
of the cortex cortical areas, a two-channel fNIRS topography apparatus 
(Shimadzu Co.) was utilized. Light-NIRS is capable of capturing 
hemodynamic responses by concurrently irradiating near-infrared 
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TABLE 1 Channel locations for the fNIRS cap.

Ch MNI coordinates (x y z) BA Brain area Probability

1 34.84 −9.26 69.78 6 Pre-motor and supplementary motor cortex 0.9

2 −42.88 −10.92 63.07 3 Somatosensory cortex 1

3 47.77 −13.74 61.09 3 Somatosensory cortex 1

4 38.29 15.42 58.52 6 Pre-motor and supplementary motor cortex 0.9

5 −43.63 13.35 53.61 6 Pre-motor and supplementary motor cortex 0.9

6 −53.42 −16.59 56.15 2 Somatosensory cortex 1

7 56.89 −23.36 52.98 40 Supramarginal gyrus 0.71

8 50.52 5.28 50.87 6 pre-motor and supplementary motor cortex 0.9

9 37.51 29.64 49.48 8 Includes frontal eye field 0.61

10 −42.72 27.26 44.72 8 Includes frontal eye field 0.61

11 −55.13 2.24 44.44 6 Pre-motor and supplementary motor cortex 0.9

12 −61.04 −26.06 46.01 40 Supramarginal gyrus 0.71

13 64.65 −25.85 41.39 40 Supramarginal gyrus 0.71

14 57.96 4.06 40.64 6 Pre-motor and supplementary motor cortex 0.9

15 46.1 30.82 39.25 8 Includes frontal eye field 0.61

16 28.13 50.72 36.07 8 Includes frontal eye field 0.61

17 −36.8 46.73 31.46 9 Dorsolateral prefrontal cortex 0.79

18 −51.78 24.48 33.06 9 Dorsolateral prefrontal cortex 0.79

19 −61.63 −2.81 34.68 6 Pre-motor and supplementary motor cortex 0.9

20 −65.04 −29.62 38.38 40 Supramarginal gyrus 0.71

21 63.37 −1.67 30.79 6 Pre-motor and supplementary motor cortex 0.9

22 53.06 28.62 29.94 9 Dorsolateral prefrontal cortex 0.79

23 40.07 49.89 25.65 9 Dorsolateral prefrontal cortex 0.79

24 20.2 63.73 23.77 9 Dorsolateral prefrontal cortex 0.79

25 −7.92 66.05 23.29 9 Dorsolateral prefrontal cortex 0.79

26 −26.4 60.8 21.4 9 Dorsolateral prefrontal cortex 0.79

27 −44.66 45.28 21.7 46 Dorsolateral prefrontal cortex 0.61

28 −55.98 21.56 24.68 9 Dorsolateral prefrontal cortex 0.79

29 −65.22 −7.35 27.28 4 Primary motor cortex 0.98

30 67.04 −9.3 17.27 3 somatosensory cortex 1

31 59.3 19.86 19.5 9 Dorsolateral prefrontal cortex 0.79

32 48.7 46.53 12.36 46 Dorsolateral prefrontal cortex 0.61

33 29.74 63.63 13.27 10 Frontopolar area 0.92

34 9.37 70.37 12.07 10 Frontopolar area 0.92

35 −16.19 68.4 13.62 10 Frontopolar area 0.92

36 −38.43 58.91 9.29 10 Frontopolar area 0.92

37 −52.28 39.05 9.49 46 Dorsolateral prefrontal cortex 0.61

38 −60.88 11.92 14.38 44 Pars opercularis Broca’s area 0.73

39 −66.83 −14.27 15.45 43 Subcentral area 0.68

40 62.97 7.33 8.98 6 Pre-motor and supplementary motor cortex 0.9

41 53.89 39.99 4.04 46 Dorsolateral prefrontal cortex 0.61

42 40.63 60.05 0.58 10 Frontopolar area 0.92

43 19.42 70.09 2.84 10 Frontopolar area 0.92

44 −8.28 70.72 0.82 10 Frontopolar area 0.92

(Continued)
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light in three wavelengths (780, 805, and 830 nanometers) using 
optical cables. The probe system, consisting of a skull cap with 16 
near-infrared light emitters, 16 detectors, and 48 channels, was placed 
on the frontal lobe, with the lowest probes located along the Fp1-Fp2 
line (Okada and Delpy, 2003)(Figure  2). A 3D digitizer (Patriot; 
Polhemus) was used to generate the position information of total 
circuits and evaluated utilizing NIRS_SPM to get the Montreal 
Neurological Institute (MNI) coordinates and the possibility of 
connected brain areas in the Brodmann area (BA) atlas (Jiang et al., 
2020; Xu et al., 2020). Channel location details are shown in Table 1.

fNIRS data analysis

A MATLAB toolbox (Hou et al., 2021) was used to perform data 
preprocessing and visualize the results. To guarantee a steady signal, 
the fNIRS data were trimmed by the initial and final 15 s. We used a 
first-order detrend to get rid of the sluggish time-based fluctuations 
(Racz et  al., 2018). The temporal derivative distribution repair 
method was used for motion correction (Fishburn et al., 2019). In 

addition, artifacts were removed by band pass filter limiting the data 
between 0.008 and 0.08 Hz (Bulgarelli et  al., 2020). In this 
investigation, we focused only on variations in HbO since that signal 
has been shown to be  more sensitive than HbR in detecting 
differences in regional cerebral blood circulation (Fu et al., 2014). 
After fNIRS data preprocessing, the individual-level analysis may 
be performed using the mass univariate statistical approach based on 
GLMs. For the statistical analysis, the steps listed below were used. 
To begin, creating a GLM that models the observed hemodynamic 
signal as a linear mixture of target regressors, unwanted variables, 
and an error term. Constructing the reference time series 
representation from task variables using the canonical hemodynamic 
response function defined in SPM is required for GLM definition. 
Then, the estimation of GLM parameters on a channel-by-channel 
basis, which fined the activation beta value for each experimental 
condition. In the end, utilizing contrast vectors from the pre- and 
post-stimulus as the input for subsequent group-level inference, the 
condition-wise effects were calculated. Paired t-test was used for the 
group-level analyses, corrected by false discovery rate (FDR, p < 0.05) 
(Hou et al., 2021).

FIGURE 1

Block diagram of the fNIRS experimental design.

TABLE 1 (Continued)

Ch MNI coordinates (x y z) BA Brain area Probability

45 −28.68 64.9 0.19 10 Frontopolar area 0.92

46 −44.19 54.77 −2.08 10 Frontopolar area 0.92

47 −54.88 34.76 0.43 45 Pars triangularis 0.7

48 −63.53 −1.4 −2.08 22 Superior temporal gyrus 0.46
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Statistical analyses

We used GraphPad Prism software to conduct statistical analyses. 
Descriptive data were descripted as mean ± SD or median (25th to 
75th percentile) in accordance with the assumption of the normality 
of the data. Student’s t-test or Wilcoxon test was done on paired 
continuous variables according to the kind of distribution. p < 0.05 
was regarded statistically significant.

Results

Eighteen right-handed women with OAB who elected TTNS 
treatment were included in our research. Prior to the experiment, 
none of the patients received TTNS. Sixteen patients were treated 
successfully, while two were unsuccessfully treated. Table 2 shows 
baseline statistics of successfully treated patients. Among the patients, 
4 had OAB-wet and 11 had nocturia.

Comparison of voiding data before and 
after TTNS treatment

The clinical parameters showed varying degrees of substantial 
improvement relative to pretreatment levels (Table 3). The average 
daily number of micturition, incontinence episodes, and urgency 
score were decreased from 13.40 ± 2.23 to 7.79 ± 1.22, 6.50 (0.75 to 
13.75) to 4.17 (0.00 to 8.59), and 3.62 (0.90 to 3.92) to 2.00 (0.00 to 
2.70), respectively. The mean voiding volume was increased from 
125.80 ± 33.42 mL to 149.00 ± 36.74 mL. The OABSS, QoL, and PPBC 
were reduced from 6.06 ± 2.52 to 3.94 ± 2.86, 4.63 ± 0.96 to 2.56 ± 1.79, 
and 4.50 ± 1.10 to 2.88 ± 1.54, respectively.

Comparison of fNIRS data between sham 
stimulation and verum stimulation in 
empty bladder and SDV in successfully 
treated group

During the sham stimulation condition, patients with an 
empty bladder showed no significant changes in any brain regions 
between the stimulation and rest states. The T-values between the 
two states are shown Figure 3A. However, in the verum stimulation 
state, there was significant activation in some brain areas between 
the stimulation and rest states, such as dorsolateral prefrontal 
cortex (DLPFC) (BA 9, Chapters 25 and 26), and the frontopolar 
area (FA) (BA 10, Chapters 35, 45 and 46). The T-values between 
the two states are shown in Figure 3B. In the SDV state, there were 
no significant changes in any brain areas both in verum 
stimulation (Figure  3C) and sham stimulation conditions 
(Figure 3D).

A

C

B

E

FIGURE 2

(A) Transcranial mapping navigation to locate areas of interest, (B) the sensor array, and (C) the 48 channels’ 3D MNI coordinates.

TABLE 2 Baseline demographic and clinical characteristics of successfully 
treated patients.

OAB (n = 16)

Age, years 36.25 ± 16.04

BMI, kg/m2 22.34 ± 3.02

OAB Type

OAB-Dry 12 (75%)

OAB-Wet 4 (25%)

Duration of OAB symptoms, years 3.97 ± 2.18

Handedness Right-handed
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A

B

C

D

FIGURE 3

Activation changes of ROI fNIRS data in the empty-bladder and SDV states in successfully treated group. (A) Activation of sham stimulation state with 
empty bladder. (B) Activation of verum stimulation with empty bladder. (C) Activation of verum stimulation in SDV state. (D) Activation of sham 
stimulation in SDV state. The channels are denoted by the dots. Significance in activation variations is shown by red loops in front of channels (p < 0.05, 
FDR corrected). The colored bar reflects group-level T-values. T The cool hue represents deactivation, whereas the bright color represents activation.

Comparison of fNIRS data between sham 
stimulation and verum stimulation in 
empty-bladder and SDV states in the 
unsuccessfully treated group

The unsuccessfully treated patients with both an empty bladder 
and SDV state achieve no significant changes in any ROIs both in the 
sham stimulation state and the verum stimulation state. The sample 
size of the unsuccessfully treated group was only two, and a larger 
sample is needed to verify the results.

Discussion

This is the very first prospective research to evaluate the central 
TNS mechanism in OAB patients utilizing fNIRS. We found regional 
brain activation with an empty bladder after successful TTNS in 
women with OAB. Areas activated included the DLPFC, and FA 
during TTNS. Furthermore, patterns of brain activity differed between 
women who responded to TTNS and those who were unsuccessfully 
treated. Different functional neuroimaging devices have been used to 
explore brain function during urination for some time. As early as 

TABLE 3 Clinical parameters before and at completion of TNS treatment.

Parameters Pre-treatment Post-treatment p-value

Micturition frequency daily 13.40 ± 2.23 7.79 ± 1.22 <0.05

Mean voiding volume (mL) 125.80 ± 33.42 149.00 ± 36.74 <0.05

Number of incontinence episodes per day 6.50 (0.75–13.75) 4.17 (0.00–8.59) <0.05

Number of Nocturia 1.85 ± 0.85 1.09 ± 0.54 <0.05

Urgency Score 3.62 (0.90–3.92) 2.00 (0.00–2.70) <0.05

OABSS 6.06 ± 2.52 3.94 ± 2.86 <0.05

QoL 4.63 ± 0.96 2.56 ± 1.79 <0.05

PPBC 4.50 ± 1.10 2.88 ± 1.54 <0.05

PVR <10 mL <10 mL
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1996, a study based on CT and MRI found that subjects with frontal-
lobe lesions showed detrusor hyperreflexia and unrestrained sphincter 
slackness, resulting in lower urinary tract symptoms (Sakakibara et al., 
1996). SPECT and PET technologies have been steadily utilized to 
neuroimaging during the last several decades due to the fast growth 
of functional brain imaging technologies (Fukuyama et al., 1996; Blok 
et al., 1997, 1998; Nour et al., 2000). After that, fMRI and fNIRS were 
used to investigate the centralized bladder control mechanism that 
had been predicted. fMRI measures HbR paramagnetism and has 
exceptional temporal and spatial resolution (Kitta et  al., 2015), 
whereas fNIRS is based on HbO and HbR absorption of near-infrared 
light and has the benefits of mobility, outstanding temporal resolution, 
and convenient for clinical use (Jobsis, 1977).

The mechanism of brain function in urination is not still 
completely understood. Previous studies suggested a functional 
paradigm for bladder control, including the brain areas such as 
thalamus, insula, prefrontal cortex (PFC), and periaqueductal gray 
(PAG) (Griffiths et al., 2005; de Groat et al., 2015). The DLPFC is 
primarily responsible for executive functions, including the 
consolidation of information from multiple senses, preservation of 
focus, and management of goal-directed activity. According to a 
fNIRS research, the bilateral DLPFC was highly active in the SDV 
condition, and the greater the urge to urinate, the greater the bilateral 
DLPFC activation (Matsumoto et  al., 2011). Our earlier work 
demonstrated aberrant DLPFC deactivation in OAB patients, which 
may relieve DLPFC inhibition on the voiding reflex (Pang et al., 2022).

TNS is a crucial component in the treatment of OAB since it is 
both effective and less invasive. Previous investigations have offered 
clues on the potential mechanisms include inhibition of threshold 
afferent nerve activity (Choudhary et al., 2016), increasing endogenous 
opioid peptide levels in the central nervous system (Matsuta et al., 
2013), and inducing bladder inhibition through cerebral cortex 
network reconstruction (Finazzi-Agro et al., 2009). During TTNS, 
brain areas such as the DLPFC (BA 9, Chapters 25 and 26) and the FA 
(BA 10, Chapters 35, 45 and 46) were activated in the current study. It 
seems that TTNS could help relieve OAB symptoms by activating 
brain areas crucial to the voiding reflex. Griffiths et al. (2005) found 
that OAB patients showed significantly weaker responses to infusion 
than healthy patients especially in the anterior insula. When the 
bladder was completely filled, the infusion elicited heightened 
reactions throughout most of the brain. Still, the reaction in the 
orbitofrontal cortex was much weaker than it was in individuals with 
strong control. In this study, OAB patients with an empty bladder 
achieved significant activation in the BA 9 to 10 areas, compared with 
the stimulation and rest states. However, they did not achieve 
activation when patients’ bladders were full. This may be because these 
brain areas are more activated with a full than an empty bladder, and 
the difference between activation generated by stimulation and that 
produced by bladder filling is reduced. Our findings suggest that 
TNS’s potential primary mechanism for OAB is the normalization of 
the voiding reflex and the restoration of DLPFC, and FA activation.

This study has limitations. Due to the insufficient size of the 
patient sample, the findings were not adjusted for the full complement 
of channels. Furthermore, fNIRS could not monitor the activation 
alteration of the whole brain cortex and deep brain structures due to 
the limitations of the detection range imposed by the number and 
penetration depth of probes. Improved fNIRS technology and 
analytical techniques may eventually solve this problem.

Conclusion

TNS has an effect on the brain function of OAB patients who 
show a clinical response to the treatment. To some extent, it may 
be how TNS works to alleviate OAB. In subsequent research, fMRI 
may be  used to analyze changes in brain activity associated with 
clinical responses to medication.
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The investigation of functional brain networks (FBNs) using task-based functional

magnetic resonance imaging (tfMRI) has gained significant attention in the field

of neuroimaging. Despite the availability of several methods for constructing

FBNs, including traditional methods like GLM and deep learning methods

such as spatiotemporal self-attention mechanism (STAAE), these methods have

design and training limitations. Specifically, they do not consider the intrinsic

characteristics of fMRI data, such as the possibility that the same signal value

at different time points could represent different brain states and meanings.

Furthermore, they overlook prior knowledge, such as task designs, during training.

This study aims to overcome these limitations and develop a more efficient model

by drawing inspiration from techniques in the field of natural language processing

(NLP). The proposed model, called the Multi-head Attention-based Masked

Sequence Model (MAMSM), uses a multi-headed attention mechanism and mask

training approach to learn different states corresponding to the same voxel values.

Additionally, it combines cosine similarity and task design curves to construct a

novel loss function. The MAMSM was applied to seven task state datasets from the

Human Connectome Project (HCP) tfMRI dataset. Experimental results showed

that the features acquired by the MAMSM model exhibit a Pearson correlation

coefficient with the task design curves above 0.95 on average. Moreover, the

model can extract more meaningful networks beyond the known task-related

brain networks. The experimental results demonstrated that MAMSM has great

potential in advancing the understanding of functional brain networks.

KEYWORDS

masked sequence modeling, multi-head attention, functional brain networks, feature
selection, task fMRI

1. Introduction

Research into the function of the human brain has garnered significant attention and
has been a popular field of study for several decades. One pivotal research direction in this
field is the mapping of functional brain networks (FBNs), which has become a useful way to
study the working mechanisms of the brain. By providing insight into the underlying neural
mechanisms of such networks, FBNs hold the potential to unravel the working of the brain
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(Power et al., 2010; Park and Friston, 2013; Sporns and Betzel, 2016;
Jiang et al., 2021), as well as the pathogenesis of several diseases
(Canario et al., 2021). Therefore, exploring FBNs is crucial for
comprehending the complex dynamics of the brain and can offer an
avenue for further understanding the neural processes underlying
different functions.

In traditional methods, generalized linear models (GLM)
(Beckmann et al., 2003; Barch et al., 2013), independent component
analysis (ICA) (McKeown, 2000; Beckmann et al., 2005; Calhoun
and Adali, 2012), and sparse dictionary learning (SDL) (Lv et al.,
2014; Ge et al., 2016; Lee et al., 2016; Zhang et al., 2016; Shen et al.,
2017; Zhang et al., 2018) have been utilized to construct functional
brain networks. Moreover, other machine learning techniques have
been effectively applied to fMRI data analysis, such as support
vector machines (SVM) (LaConte et al., 2005; Mourao-Miranda
et al., 2006) for fMRI analysis and classification, and principal
component analysis (PCA) (Thirion and Faugeras, 2003; Smith
et al., 2014) for fMRI data dimensionality reduction. With the
advancement of deep learning technology, numerous deep learning
models have been applied to fMRI data analysis and functional
brain network construction. For instance, Huang et al. (2017)
proposed a deep convolutional autoencoder (DCAE) to extract
hierarchical features from fMRI data; Zhao et al. (2018) proposed
a spatiotemporal convolutional neural network (ST-CNN) to learn
temporal and spatial information from fMRI data simultaneously;
Qiang et al. (2020) proposed a spatiotemporal self-attention
mechanism (STAAE) (Dong et al., 2020b) for brain functional
network modeling and ADHD disease classification. Additionally,
Qiang et al. (2020) proposed a residual autoencoder (RESAE)
(Dong et al., 2020a) for constructing task related functional brain
networks. Jiang et al. (2023) introduce a Spatio-Temporal Attention
4D Convolutional Neural Network (STA-4DCNN) model to
characterize individualized spatio-temporal patterns of FBNs. Yan
et al. (2022) proposed a Multi-Head Guided Attention Graph
Neural Network (Multi-Head GAGNN) to simultaneously model
both spatial and temporal patterns of holistic functional brain
networks. Experimental results have indicated that deep learning
methods are effective in fMRI data modeling and brain network
construction tasks, which demonstrate the significant advantages
of deep learning models.

Although the methods mentioned above have shown promising
results, there are still certain limitations that need to be addressed.
Firstly, the current design and parameterization of models do not
fully account for the characteristics of fMRI data. For instance,
the same signal value at different time points may have different
meanings depending on the task or state, and thus, it is crucial
to exploit this information for improving model performance.
Secondly, the model training process disregards some prior
knowledge, such as task design curves, which could potentially
enhance the efficacy and efficiency of the model. These limitations
underscore the need for more advanced techniques that can
tackle these challenges and improve the accuracy and applicability
of fMRI analysis.

Recent research has revealed the exceptional capabilities
of Transformer models (Vaswani et al., 2017) in tasks such
as text analysis and prediction. One of key mechanisms of
transformer is to use multi-head attention to do the processing
of sequence data. By leveraging multi-head attention mechanisms,
the distinctive semantics of a single word in different language

contexts can be analyzed. For instance, the term “apple” could
signify either a fruit or a mobile phone brand in various language
contexts. Given the similarity between fMRI time series and text
sequences, multi-head attention mechanisms can be employed
to extract features from fMRI data. Furthermore, the growing
popularity of the masked language modeling (MLM) training
method in the Bert model (Devlin et al., 2018) suggests that
masking-based training techniques are remarkably effective at
capturing contextual information. Since there are similarities
between fMRI time series and sentences, the multi-head attention
mechanism and mask training method can be extended to fMRI
feature extraction.

So, this manuscript proposed a novel model called the Multi-
head Attention-based Masked Sequence Model (MAMSM) which
utilizes a multi-head attention mechanism to scrutinize different
states of voxel signals at various locations while also implementing
the Masked Sequence Model (MSM) method to analyze and
process the fMRI time series. Furthermore, MAMSM employs both
randomly discrete and continuous masks in the masking operation
to enhance the model’s learning capacity and training effectiveness.
In addition to that, this study leverages prior knowledge of the task
design curves and cosine similarity to construct a new loss function,
resulting in improved outcomes in model training.

In order to demonstrate the effectiveness of our proposed
model, we utilized data from the Human Connectome Project
(HCP) (Van Essen et al., 2013) and analyzed the seven task-
state datasets of 10 individuals using both individual and group
average approaches. To evaluate the performance of our model, we
compared it with the SDL and STAAE methods. The experimental
results indicate that the FBNs extracted by our proposed model
outperformed those extracted by the other methods across various
task datasets. Notably, our model also detected several brain
networks that were distinct from the task-state-corresponding
FBNs, and we subsequently identified some networks as similar
to the known resting-state brain networks. Specifically, our
experimental results demonstrate that our model is highly effective
in extracting features from a small amount of data, which is
particularly important in the context of brain imaging research
where data acquisition is often difficult, costly, and resource-
intensive. A brief version of the study has been published as a
conference paper in the MICCAI 2022 (He M. et al., 2022).

2. Materials and methods

2.1. Overview

As shown in Figure 1, the proposed method consists of three
main steps: (1) four-dimensional fMRI data is pre-processed and
mapped to two-dimensional space; (2) the pre-processed two-
dimensional fMRI time series is input into the MAMSM, composed
of multiple headed attention mechanisms, and trained with a mask-
based approach; (3) all the latent features extracted from the pre-
training are input into the feature selection layer, which are trained
with a loss function by leveraging the prior task designs. Finally,
the features output by the encoder of the feature selection layer
are regressed by lasso and mapped back to the original brain space,
resulting in the visualization of FBNs.
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FIGURE 1

The framework of MAMSM (A) preprocessing, which involves mapping all subjects’ tfMRI data to 2D space; (B) masking and embedding operations
of time-series data; (C) pre-training of the model, consisting of three layers of transformer encoders; (D) further training is performed using the
feature selection layer, and the obtained features are used to map FBNs.

TABLE 1 Summary of used datasets.

H W D Time points Voxels Training subjects

Motor 46 55 46 284 28,546 10

Emotion 46 55 46 176 28,546 10

Gambling 46 55 46 253 28,546 10

Language 46 55 46 316 28,546 10

Relational 46 55 46 232 28,546 10

Social 46 55 46 274 28,546 10

WM 46 55 46 405 28,546 10

2.2. Materials and pre-processing

The dataset from the Human Connectome Project Q3 was
used in this work, which is publicly available on the website.1

We selected randomly the 10 subjects from HCP dataset. To
evaluate the temporal features and spatial features obtained by
the MAMSM, we chose 24 task designs from seven tasks. The
corresponding hemodynamic response function (HRF) responses,
which are the convolution of the task paradigm and HRF function,
are utilized as temporal templates and the group-wise functional
brain networks (FBNs) derived from the GLM are utilized as
spatial templates (Güçlü and Van Gerven, 2017). For the sake of
description, 24 distinct symbols were used to represent each of
the selected task designs. For emotion task, E1 is for emotional
faces, and E2 is for simple shapes. For gambling task, G1 is for
punishment over baseline, and G2 is for reward over baseline. For
language task, L1 is for math over story, and L2 is for story over
math. For social task, S1 is for social over baseline, and S2 is for

1 https://db.humanconnectome.org

random over baseline. For relational task, R1 is for match over
baseline, and R2 is for relational over baseline. For motor task,
M1-M6 are for cue, left foot movement, left hand movement, right
foot movement, right hand movement, and tongue movement,
respectively. For working memory task, W1-W8 are for the 2-
back and 0-back task events of body parts, places, faces, and
tools, respectively.

The parameters of data collection used in this text is as
follows: a 90 × 104 matrix, 220 mm FOV, 72 slices, TR = 0.72 s,
TE = 33.1 ms, Flip angle = 52◦, BW = 2,290 Hz/Px, in-
plane FOV = 208 mm × 180 mm. For the tfMRI data,
the pre-processing operations included skull stripping, motion
correction, slice timing correction, spatial smoothing, global drift
removal (high pass filtering) and registration to MNI space.
Table 1 provides an overview of the pre-processed task functional
magnetic resonance imaging (tfMRI) datasets used in this study.
After pre-processing of the tfMRI data, the four-dimensional
tfMRI data was transformed into a two-dimensional matrix
by using Nilearn tools (available at https://nilearn.github.io/)
and the MNI-152 mask. Data for each time point comprised
28,546 voxels.
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TABLE 2 The results of training with different mask operations.

Mask strategies Training loss Predict loss

Discrete 0.043 4.73

Continuous 0.047 4.739

Discrete and continuous 0.04 4.719

2.3. MAMSM

2.3.1. MSM
In recent years, Masked Language Modeling (MLM) and

Masked Image Modeling (MIM) approaches have been widely
employed in Natural Language Processing (NLP) (Devlin et al.,
2018; Chung et al., 2021; Sinha et al., 2021) and Computer Vision
(CV) (Zhou et al., 2021; He K. et al., 2022; Tong et al., 2022;
Xie et al., 2022) due to their demonstrated efficacy in extracting
contextual information through mask training. This work utilized
Masked Sequence Modeling (MSM) to process fMRI sequence data.
MSM is a self-supervised training method in which a portion of
the tokens in the sequence are replaced with [mask] symbols and
the remaining tokens and location information are used to predict
the tokens replaced with [mask]. This training method allows the
model to learn more about the relationships between contexts.

In the BERT model proposed by Devlin et al. (2018), the [CLS]
(Classification Token) serves to create a compact representation of
the entire input sequence. This condensed representation can be
used for tasks such as text classification and similarity computation.
Specifically, for each input fMRI time series, the proposed model
is designed to generate a vector representation for each input. By
adding the special [CLS] tag at the beginning of the sequence, this
vector representation of the tag serves as a summary of the entire
sequence, compressing and integrating the information from the
entire input. As a result, the [CLS] tag provides a comprehensive
representation for subsequent feature extraction and similarity
calculation processes.

Before the mask processing process, the fMRI data was
normalized to a range of (0, 1). After normalization, we retained
three decimal places for the values, resulting in a maximum of
1,001 distinct values (from 0, 0.001, 0.002, . . . to 1) for the whole-
brain signals. In the subsequent model training process, we treat

these 1,001 different values as 1,001 classes, simplifying the model
training process into a multi-classification problem. That is, if we
want to predict the value of fMRI signals at a certain time point,
we converted it into categories with a total of 1,001 values for
classification. The prediction range of the model is also within these
1,001 classes of values. When predicting the value of a masked
position, the model only needs to determine the class to which
it belongs. To facilitate the prediction of token values, a multi-
classification task was employed, where in a cross-entropy loss
function was utilized to compute the error between the model’s
predicted value and the actual value. As shown below, where yi
is the true probability distribution, ŷi is the predicted probability
distribution, and n is the number of categories:

CE
(
yi, ŷi

)
= −

n∑
i = 1

yilog (̂yi)

In the mask processing process, for each fMRI sequence input,
a certain proportion of positions on the fMRI time series will
be randomly covered, with the original signal values replaced by
[mask]. Here, taking the tfMRI sequence of Motor task as an
example, we selected roughly 10% time points as mask locations
for each input with the length of 284 time steps, as illustrated
in Figure 1B. After the Mask operation was performed, the pre-
training stage in the proposed model employed an unsupervised
training process to predict the token values of the masked locations,
as shown in Figure 1C.

In order to enhance the learning capability of the model
and achieve optimal training outcomes, this study employs a
combination of continuous and discrete masking techniques.
When using only discrete masking, the model may be able to
predict the values of the masked regions through simple methods
such as averaging the values of its previous and subsequent time
steps. This may lead to the model failing to learn deeper features.
To avoid this issue, we designed more sophisticated methods of
masking, such as continuous mask, etc., Table 2 presents the
outcomes of the training with different masking modes, where 90%
of the voxels in the same subject are allocated for the training set,
10% for the test set, and the same training parameters are utilized.
We adopt a uniform sampling strategy for voxel selection, wherein
every ten voxels, the first nine are assigned to the training set, and
the last one is designated for the testing set. By comparing the

FIGURE 2

(A) The frame of self-attention. (B) The frame of multi-head attention. (C) The frame of feature selection layer.
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FIGURE 3

The training errors by using three different loss functions. (A) Error variation by using Losscos. (B) Error variation by using Lossmse. (C) Error variation by
using Losstask .

minimum loss on the training set and the test set, it can be seen
that the combination of the two mask operations can achieve better
results.

2.3.2. Multi transformer encoder layers
The Transformer model is a sophisticated deep neural network

that is based on an attention mechanism, originally introduced
by Vaswani et al. (2017) for machine translation. The model
is structured according to the seq2seq paradigm and comprises
two primary components: an encoder that encodes the input
sequence and a decoder that generates the output sequence. Unlike
traditional Recurrent Neural Network (RNN) models (Hochreiter
and Schmidhuber, 1997; Schuster and Paliwal, 1997; Graves et al.,
2005; Cho et al., 2014), the transformer model utilizes multi-
head attention mechanism for computation. This mechanism can
represent information from multiple semantic spaces, capturing
different meanings of the same words in different contexts, similar
to the same signal values in fMRI data may represent different states
and meanings.

Therefore, in this manuscript, each fMRI sequence is embedded
and masked as the input of the transformer encoder, and then the
input is linearly transformed to obtain three matrices, namely Q
(Query), K (Key) and V (Value). Subsequently, Q and K are dot-
multiplied and then normalized by dividing by

√
dk to stabilize the

gradient. Subsequently, a softmax operation was used to obtain the
attention score, which represents the importance of each position
of the fMRI sequence, and then multiplied by V to obtain the
output of self-attention, as shown in Figure 2A. Eventually, the
output of multiple self-attentions is superimposed as the output of
multi-headed attention, as shown in Figure 2B. The formulae of
self-attention and multi-head attention can be expressed as follows,
where headi denotes the i-th self-attention mechanism.

MultiHead (Q,K,V) = Concat
(
head1, , headn

)
WO

headi = Attention(Q,K,V)

Attention (Q,K,V) = softmax(
QKT
√
dk

)V

Upon completion of the pre-training of the model, the attention
score was extracted as a feature matrix, which represents the
weights at various time points within an fMRI time series. After

the model pre-training was completed, the attention scores were
extracted as the features representing the weights of each time
point in the fMRI time series. We use the sliding average operation
to smooth the attention scores, and then use the average results
as latent features of the pre-trained model. We set the size
of the sliding average window to 10 and the step size of the
sliding window is 1.

2.3.3. Feature selection layer
Here we propose a novel loss function, Losstask, for the training

of a feature selection layer in autoencoders, as illustrated in
Figure 2C. By combining mean squared loss function (Lossmse)
and cosine similarity loss function (Losscos), this loss function is
more conducive to the task of tfMRI data compared to the other
methods (Dong et al., 2020b; Qiang et al., 2020), which often focus
solely on reconstruction error such as MSE, disregarding the latent
feature distribution and the relationship with the task curves, both
of which are indispensable to characterize fMRI time series. The
latent feature matrix obtained from pre-training serves as the input
for the encoder, which, after training, produces the final feature
matrix as its output. Through this process, the feature selection
layer also facilitates the reduction of dimensionality of the latent
feature matrix, thus contributing to more efficient and effective
features. The Losstask function is formulated as the combination of
Losscos and Lossmse and we experimentally chose the value of k to 1
in this work, as follows:

Lossmse = MSE =
1
n

m∑
i = 1

wi(yi−̂yi)2

Losscos = li = 1−cos
(
xi, yi

)
Losstask = loss (mse)+k ∗ loss(cos)

The actual value yi and the predicted value ŷi are compared
by calculating the cosine similarity between the n sequences of the

TABLE 3 The final training errors of three different loss functions.

Losscos Lossmse Losstask

Cos-error 0.0074 1.0632 0.0067

Mse-error 0.2955 0.0022 0.0022

The bold values represent the minimum values of each row.
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FIGURE 4

Comparison of features and task designs. The blue curves represent
the task designs, the red curves depict the features.

featurexi and the n task design curves yi, and the cosine similarity
calculation formula is:

cos
(
xi, yi

)
=

∑n
i = 1 (xi × yi)√∑n

i = 1 (xi)2 ×
√∑n

i = 1 (yi)2

Mse-error is the MSE reconstruction error of the decoder
output and the original data; Cos-error is the cosine similarity error
between the n sequences of the encoder output feature and n task
design curves. To demonstrate the effectiveness of the proposed
new loss function, an ablation experiment was conducted using the
same data and parameters. The model was trained using Losscos,
Losstask, and Lossmse, respectively. As illustrated in Figure 3, when
Losstask was used, the convergence rate was faster and more stable
than when only Losscos or Lossmse was used. Quantitatively, Table 3
shows that when Losstask was employed, the final Cos-error and
Mse-error were lower.

2.3.4. Mapping FBNs
To obtain the spatial distribution of the functional network,

lasso regression is applied to the feature matrix and the original
two-dimensional input data to get the sparse coefficient matrix,
which represents the spatial distribution of the functional network
The calculation formula of LASSO regression (Pedregosa et al.,
2011) is as follows:

min
w

1
2T
‖ Z−XW ‖22+λ‖W ‖1

Z is the original 2D input data, T represents the total number
of time points, X is the feature matrix, and W is the regressed
sparse coefficient matrix. The coefficient matrix W, which captures
the spatial distribution information of the underlying functional
network, was then mapped back to the original 3D brain image
space, the result was finally visualized as FBNs.

3. Results

The work reports its findings in terms of two primary
dimensions: temporal and spatial features. To evaluate temporal
features, the final feature matrix was utilized to obtain partial task-
related features, which were subsequently evaluated for similarity
with the task design curves. Spatial features were assessed by
computing the similarity between the derived FBNs and the
templates derived from the GLM. Besides task-related FBNs, we
also identified additional FBNs, including those resting-state FBNs.

TABLE 4 Pearson correlation coefficient between the features and the task designs.

E1 E2 G1 G2 W1 W2 W3 W4 W5 W6 W7 W8 /

Attention-score 0.331 0.343 0.321 0.333 0.287 0.268 0.270 0.267 0.276 0.262 0.275 0.276 /

Average-result 0.851 0.894 0.792 0.792 0.813 0.799 0.870 0.804 0.845 0.845 0.789 0.856 /

Final-result 0.999 0.998 0.998 0.998 0.999 0.999 0.999 0.994 0.999 0.999 0.998 0.999 /

L1 L2 S1 S2 R1 R2 M1 M2 M3 M4 M5 M6 Ave

Attention-score 0.262 0.250 0.319 0.583 0.419 0.337 0.336 0.423 0.430 0.408 0.427 0.567 0.345

Average-result 0.737 0.785 0.796 0.916 0.880 0.889 0.451 0.903 0.913 0.880 0.873 0.961 0.831

Final-result 0.727 0.737 0.998 0.997 0.999 0.999 0.973 0.997 0.998 0.997 0.997 0.997 0.975
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FIGURE 5

Individual and group averaged FBNs.

3.1. Temporal features

The proposed model generated three different temporal
feature matrices, namely the intermediate “attention-score” feature,
which is obtained immediately after model pre-training; the

“average-result” feature, calculated by computing a sliding
average of the attention-score feature; and the “Final-result”
feature, obtained after training the feature selection layer. The
dimension of attention-score, average-result, and final-result
are [6∗28,546,t], [6∗28,546,t], and [256,t]. In this work, “t”
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FIGURE 6

(A) Some resting-state FBNs. (B) Other FBNs.

represents the length of the fMRI sequence’s time dimension
corresponding to different tasks, while “6” denotes the number
of attention heads we have set for the multi-head attention
mechanism. To evaluate the significance of the three kinds
of features selected in this study, a comparative analysis is
conducted between these features and the task design curves.
As illustrated in Figure 4, a graphical representation of the
three kinds of features and the correspondingly relevant task
design curves are presented. The blue curves represent the task
design curves and serve as the baseline, the red curves depict
the features.

Based on the results of the comparison, it is evident that the
attention-score and task curves display an obvious fitting trend,
with their highest peak approximately coinciding with the peak of
the task design curves. Furthermore, the application of a sliding
average filter results in an even higher similarity between the
average-result and task design curves. These outcomes provide
evidence that the latent features derived from the pre-training
module are both meaningful and interpretable.

In order to quantitatively compare the similarity between the
feature matrices and the task design curves, the Pearson correlation
coefficient was calculated in this work, the formula for the Pearson
correlation coefficient is presented below:

ρ (X,Y) =

∑n
i = 1 (Xi−µX)(Yi−µY)√∑n

i = 1 (Xi−µX)2
√∑n

i = 1 (Yi−µY)2

where X,Y are the features and task design curves, µX, µY are the
mean of the them andXi, Yi are the samples of them.

The Pearson correlation coefficient values serve as an indicator
of the strength of the correlation, with higher values indicating
stronger correlations. As shown in Table 4, all Pearson’s correlation
coefficients achieved statistical significance at the level of P < 0.05.
These results demonstrate that the features extracted by the
proposed pre-training model were significantly correlated with the
design curves. Specifically, the initially extracted attention-score
feature exhibited a certain degree of similarity with the task design
curves. With the application of the sliding average technique, the
Average-result feature approached the task design curves more.
Finally, the incorporation of a feature selection layer and a new loss
function as a guide led to the generation of the Final-result feature.
The Pearson correlation coefficient for the task design curves
was significantly improved from 0.831 to 0.975 as a result. These
findings underscore the importance of the pre-training model and
feature selection layer, and provide further support for the efficacy
and interpretability of the proposed model in this study.

3.2. Spatial features

3.2.1. Task FBNs
Following the feature selection process, the feature matrix was

remapped to the original 3D brain space for the visualization
of FBNs using lasso regression, as shown in Figure 5. This
figure displays a randomly selected individual FBN for 24 tasks
and group-averaged FBNs from 10 subjects. As demonstrated in
Figure 5, each task-related FBN can be accurately identified, and
the FBNs becomes even more pronounced after group averaging.

3.2.2. Other FBNs
Multi-head Attention-based Masked Sequence Model can not

only acquire the known activated networks, but also enable the
identification of other brain networks with specific patterns. In
this work, we also selected and displayed a part of them. After
comparison and analysis, we found some resting-state networks,
which were compared and displayed with the corresponding
resting-state brain network templates obtained by the ICA method,
as shown in Figure 6A. In addition, this manuscript also displays
other brain networks with certain patterns, as shown in Figure 6B.

3.3. Comparative experiments

To further evaluate the effectiveness of the proposed MAMSM,
it is compared with SDL (Lv et al., 2015)and STAAE (Dong et al.,
2020b). SDL is the traditional way to build FBNs. STAAE has been
proposed as a deep learning method recently. All three methods
are applied to the same dataset and their temporal and spatial
characteristics are compared in this section.

3.3.1. Comparison of temporal features
In this study, three different methods were employed for

comparison purposes. In order to ensure fairness in our
comparison analysis, we adopted the “average-result” features
instead of the “final result” features for comparison with the
features obtained from SDL and STAAE, as our proposed model
leveraged prior knowledge (task designs) to train the model in the
feature selection layer. Figure 7 displays the task design curves,
with the blue curves representing specific task design curves used
as comparison benchmarks and the red curves representing the
task-related features. Our qualitative and quantitative comparison
analysis aimed to assess the degree of correlation between these
two curves. For quantitative comparison, the Pearson correlation
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FIGURE 7

Comparison of features and task designs obtained by different
methods. The blue curves represent the task designs, the red curves
depict the features.

coefficient was employed to assess the similarity between the
extracted features and the task curves, as presented in Table 5. It
should be noted that Figure 7 shows the results of an individual.
Table 5 is the average result of ten individuals.

As shown in Figure 7, the correlation between the features
generated by MAMSM and the task design curves was found
to be significantly higher compared to that between the
features generated by SDL/STAAE and the task design curves.
Quantitatively, the results presented in Table 5 demonstrate
that the proposed MAMSM achieved a higher averaged Pearson
correlation coefficient (0.824) compared to that from SDL
(0.527) or STAAE (0.306). Overall, the results of our experiment
demonstrate the effectiveness of MAMSM for constructing FBNs
based on tfMRI.

In terms of individual-level performance, our results indicate
that the deep learning method STAAE performed slightly worse
than SDL and MAMSM. It is worth noting that according to the
description of the STAAE (Dong et al., 2020b), the method can
achieve better results when applied to larger datasets. However, the
inherent requirement of deep learning methods for large volumes
of data may limit their advantage over traditional methods in cases
where data availability is limited. Our proposed method, on the
other hand, demonstrates good performance on individual data,
suggesting that it can effectively learn temporal features from small
datasets.

3.3.2. Comparison of spatial features
In order to qualitatively compare the spatial features from the

three methods, this work applies SDL, STAAE, and MAMSM to the
same dataset and obtains the group averaged results, as shown in
Figure 8. The GLM templates were derived by summarizing a large
amount of individual data and were subsequently employed for the
purpose of comparing the performance of FBNs generated through
various methods. Our results demonstrate that the activation maps
obtained through MAMSM exhibit greater resemblance to the
GLM templates.

Quantitatively, we also used the spatial overlap rate as an
indicator to compare the FBNs from the three methods and the
GLM template. The spatial overlap rate can be used to compare
the similarity between two different networks, which is defined as
follows:

OR(N1,N2) =

∑n
i = 1 |Ni

1
∩ Ni

2
|∑n

i = 1 |Ni
1 ∪ Ni

2|

N1, N2 are the two brain networks to be compared, n is the
number of voxel points of the brain network. The spatial overlap

TABLE 5 Pearson correlation coefficient obtained by SDL, STAAE, and MAMSM.

E1 E2 G1 G2 W1 W2 W3 W4 W5 W6 W7 W8

SDL 0.631 0.624 0.483 0.515 0.390 0.356 0.395 0.443 0.419 0.369 0.453 0.379 /

STAAE 0.322 0.246 0.351 0.385 0.195 0.128 0.259 0.272 0.088 0.069 0.197 0.155 /

MAMSM 0.830 0.867 0.848 0.821 0.864 0.870 0.869 0.803 0.849 0.819 0.799 0.869 /

L1 L2 S1 S2 R1 R2 M1 M2 M3 M4 M5 M6 Ave

SDL 0.603 0.622 0.523 0.673 0.514 0.564 0.658 0.603 0.586 0.493 0.603 0.738 0.527

STAAE 0.606 0.619 0.302 0.651 0.440 0.422 0.429 0.218 0.203 0.189 0.226 0.383 0.306

MAMSM 0.760 0.777 0.812 0.835 0.863 0.868 0.500 0.836 0.862 0.838 0.850 0.875 0.824
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TABLE 6 The spatial overlap rate obtained by SDL, STAAE, and MAMSM.

E1 E2 G1 G2 W1 W2 W3 W4 W5 W6 W7 W8

SDL 0.150 0.102 0.231 0.200 0.231 0.236 0.266 0.236 0.203 0.225 0.226 0.262 /

STAAE 0.188 0.234 0.265 0.210 0.186 0.247 0.209 0.172 0.200 0.263 0.241 0.200 /

MAMSM 0.221 0.171 0.321 0.320 0.274 0.262 0.302 0.288 0.213 0.307 0.256 0.293 /

L1 L2 S1 S2 R1 R2 M1 M2 M3 M4 M5 M6 Ave

SDL 0.209 0.177 0.272 0.273 0.244 0.201 0.133 0.146 0.122 0.143 0.146 0.206 0.202

STAAE 0.210 0.265 0.161 0.199 0.205 0.206 0.302 0.293 0.257 0.272 0.273 0.293 0.231

MAMSM 0.305 0.272 0.352 0.374 0.374 0.258 0.343 0.345 0.299 0.297 0.314 0.322 0.295

The bold values represent the maximum values of each column.

FIGURE 8

Comparison of FBNs obtained from SDL, STAAE, and MAMSM.
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rate of the FBNs obtained from each method and GLM templates
are shown in Table 6. We can see that the average OR value (0.295)
of the brain network obtained by MAMSM is larger than that of
STAAE (0.231) and SDL (0.202), which proves that the MAMSM
proposed in this manuscript is superior to STAAE and SDL.

4. Discussion and conclusion

In this study, the multi-head attention mechanism and mask
training method were applied to the analysis of tfMRI data, and
a new loss function was constructed by task design curves for the
mapping of functional brain networks. The multi-head attention
mechanism helps the model better understand the situation where
the same signal value in tfMRI signals may represent different
states. Meanwhile, a mask training method was adopted to learn
the relationship between the contexts of input sequences, and
by combining a continuous mask and a discrete mask, deeper-
level features were learned. The experimental results demonstrated
that these techniques can improve the model’s performance. By
analyzing the comparison results of the intermediate features
(attention-score, average-result) outputted from the model and
the task design curves, it can be seen that the proposed model
can better understand the tfMRI signals and the derived features
are interpretable. The attention-score extracted after the model
was trained represented the weight scores of different locations
in each tfMRI sequence. The region with the highest score in the
attention-score bears close resemblance to the area with the most
significant alteration in the task design curves. The average-result
obtained by simply sliding the attention-score achieved higher
similarity with the task design curves than the results obtained
by other methods.

We also leveraged prior knowledge (Task designs) to guide
the model to learn the more efficient features, the task designs
were introduced to build a new loss function which optimizes
the model by cosine similarity error and MSE error. By analyzing
the results, we found that this new loss function can improve the
performance of the model. Other methods usually ignored the
prior knowledge in their model, and experimental results show that
MAMSM achieves better results than other methods when using
the new loss function.

The experimental results show that the proposed method can
achieve better generalization performance on smaller sample size,
compared to other deep learning methods which require large
amounts of data to achieve better results, such as STAAE (Dong
et al., 2020b), ResAE (Dong et al., 2020a), Dvae (Qiang et al., 2020)
and so on. Due to the characteristics of medical image data, such
as high confidentiality and small sample size, the method proposed
in this manuscript can have better development prospects in the
future.

It is important to note that this study has certain limitations.
Firstly, the relatively small size of the dataset employed may
introduce noise when aggregating across groups, potentially
impacting the outcomes of the brain network analyses.
Furthermore, the present methodology places greater emphasis
on temporal features of tfMRI data, and future investigations may
benefit from incorporating a combination of convolutional neural
network (CNN) models (Ronneberger et al., 2015; Liu et al., 2022)

and visual transformer (VIT) models (Dosovitskiy et al., 2020; Liu
et al., 2021) to extract spatial features, which may achieve better
results. Additionally, the precise functional significance of some
brain networks identified in the results is not fully understood at
present, and hence, further research is warranted to explore the
functional areas and meanings attributed to these networks.
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Visual expertise reflects accumulated experience in reviewing domain-specific

images and has been shown tomodulate brain function in task-specific functional

magnetic resonance imaging studies. However, little is known about how visual

experience modulates resting-state brain network dynamics. To explore this, we

recruited 22 radiology interns and 22 matched healthy controls and used resting-

state functional magnetic resonance imaging (rs-fMRI) and the degree centrality

(DC) method to investigate changes in brain network dynamics. Our results

revealed significant di�erences in DC between the RI and control group in brain

regions associated with visual processing, decision making, memory, attention

control, and working memory. Using a recursive feature elimination-support

vector machine algorithm, we achieved a classification accuracy of 88.64%. Our

findings suggest that visual experience modulates resting-state brain network

dynamics in radiologists and provide new insights into the neural mechanisms of

visual expertise.

KEYWORDS

degree centrality, visual expertise, object recognition, support vectormachine, radiologist

Introduction

Visual expertise is a cognitive process that involves visual object recognition ability in a

specific domain, resulting in superior visual object recognition performance (Harel, 2016;

Wang et al., 2021). The development of visual expertise is thought to involve reciprocal

interactions between the visual system and multiple high-level areas across the brain (Harel,

2016). In particular, visual expertise is essential for the development of radiological expertise,

which enables radiologists to rapidly and accurately recognize abnormalities in medical

images (Haller and Radue, 2005; Harley et al., 2009; Hendee, 2010; Melo et al., 2011).

However, the neural mechanisms underlying visual expertise in radiology remain poorly

understood, particularly with regard to resting-state brain network dynamics. Resting-state

functional magnetic resonance imaging (rs-fMRI) can be used to investigate the intrinsic

activity of multiple neural networks simultaneously and may help uncover the neural basis

of visual expertise in radiology. In this study, we used rs-fMRI to investigate how visual

expertise induced by experience modulates the dynamics of brain networks in radiologists.
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Previous neuroimaging studies have investigated the neural

mechanisms underlying visual expertise using different expertise

models. Martens et al. (2018) found that bird expertise-related

neural changes involved both low-level and high-level visual

regions as well as frontal lobe areas, suggesting that expertise can

modulate neural correlates that are specific to the domain as well

as those that are more general. Similarly, research on London taxi

drivers by Spiers and Maguire (2006) revealed widespread patterns

of activation along visual pathways and other brain regions such

as the parahippocampal cortex, retrosplenial cortex, and prefrontal

structures, indicating their association with scene processing,

navigation, and spatial processing when participants inspected

landmark objects in city scenes. In the context of radiological

expertise, previous studies have reported selective activations in the

brain regions of radiologists such as the bilateral middle frontal

gyrus (MFG) and left superior frontal gyrus (SFG), which are

linked to visual attention and memory retrieval, when comparing

brain responses to radiological images between radiologists and

laypersons (Haller and Radue, 2005). Furthermore, it was found

that the fusiform face area (FFA) was more active when radiologists

viewed domain-related images and contributed to the recognition

of normal anatomical features based on subjective similarity rather

than physical similarity (Harley et al., 2009). This finding was

supported by Bilalic et al. (2016) who showed that FFA could help

radiologists discriminate X-ray stimuli from other stimuli and then

contribute to the evaluation of radiographic images. Lastly, Wang

et al. (2021) proposed that visual experience could modulate the

functional adaptation of the visual cortex and other cognitive areas

that are responsible for decision making, semantic knowledge, and

attention, as evidenced by widely altered functional connectivity

in the entire cortex including the SFG, MFG, orbitofrontal cortex

(OFC), and fusiform gyrus (FuG). Collectively, these studies

suggest that the activation of these circuits or brain areas constitutes

a cortical organizing principle of visual expertise in the brain,

such as visual processing, attention control, decision making, and

semantic memory.

Radiology is a particularly suitable domain for investigating

the impact of visual experience on expertise because it allows for

a comparison between experienced radiologists or medical interns

and lay persons who lack experience, enabling the identification

of distinguishing traits (Bilalic et al., 2016). Functional magnetic

resonance imaging (fMRI) is a promising method to uncover

functional adaptations in the entire brain cortex associated with

visual expertise. Resting-state brain activity refers to the intrinsic

response of the brain in the absence of thinking activity (Smitha

et al., 2017; Canario et al., 2021) and the observed brain activity is

regarded as being responsible for coding prior experience (Albert

et al., 2009; Dong et al., 2014). However, few studies have utilized

resting-state fMRI (rs-fMRI) to investigate the neural mechanisms

of visual expertise in radiologists. Degree centrality (DC) is a

graph-based measurement that can reveal the network dynamics

modified by prior experience and node centrality for visual

expertise (Reynolds et al., 2018; Liu and Lai, 2022). A support vector

machine (SVM) is a machine learning-based pattern classification

approach that has unique advantages in understanding small

sample learning problems and has been widely applied in biological

data processing (Cherkassky, 1997; Li et al., 2014; Liu et al., 2014).

Themost discriminatory parts of the brain based on SVM represent

the most striking feature between the two groups and reveal

underlying expertise-related neurobiology (Ding et al., 2015; Gao

et al., 2022). By utilizing rs-fMRI, DC, and SVM, we aim to gain a

deeper understanding of the neural mechanisms of visual expertise

in radiologists.

The main goal of this study was to explore how visual

experience modulates DC in resting-state activity and to

understand the neural correlates of visual expertise using a model

of radiologists (n = 22) and rs-fMRI. The DC method combined

with a novel but sensitive machine learning method, i.e., a recursive

feature elimination-support vector machine (RFE-SVM) (Ding

et al., 2015), was employed to look for the highest discriminative

power between the radiology intern (RI) group and the normal

control (NC) group. We expect that visual experience modulates

the expertise-related brain areas beyond the visual cortex and even

other cognitive areas, thus supporting working memory (WM),

memory, attention control, and decision making (Harel et al., 2013;

Harel, 2016; Wang et al., 2021).

Materials and methods

All study procedures were approved by the Subcommittee on

Human Studies of the First Affiliated Hospital ofMedical College in

Xi’an Jiaotong University and were conducted in accordance with

the Declaration of Helsinki.

Participants

Twenty-two radiology interns and 22 matched subjects were

recruited in our study. All of the subjects in the RI group were

undergraduates majoring in radiology who interned at the First

Affiliated Hospital of Xi’an Jiaotong University. Before rotation,

all of the participants received basic medical education at their

college. The RI group had X-ray department rotation experience,

mainly in interpreting X-ray images for 4 weeks, during which

time they practiced 6 days per week and read 25–35 cases per

day. The total length of training was 26 ± 2.4 (mean ± standard

deviation, SD) days. Scrutinizing the images displayed on the screen

and completing the X-ray reports were the main tasks of every

intern’s training. Each of the interns had a senior tutor providing

basic clinical support. After 4 weeks of rotation, at least 600

reports written by each RI were recorded in the Picture Archiving

and Communication System (PACS), which were modified by the

instructor to meet the “degree of agreement” requirements. The

subjects in the NC group were from other majors and had never

participated in any form of medical imaging training nor received

any related education. The average ages of the RI group and

NC group were 23 ± 0.7 years and 23 ± 0.5 years, respectively.

The sex distribution in the two groups was the same (11 males;

11 females). The recruitment criteria of all subjects included the

following: (1) the participants were physically healthy and right-

handed; (2) the subjects and their immediate family members had

no past or present neurological, psychiatric, or neuropsychological

disorders and had no history of head trauma or brain tumor by
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medical history, physical, and neurological examinations; and (3)

participants took no relevant drugs before or during the internship.

Written consent forms were obtained from all the participants.

Behavioral measurement

Both the RI group and NC group completed the same

behavioral tasks. We conducted the prescreening tasks using a

face-to-face questionnaire to exclude confounding factors, such as

visual expertise from other domains (e.g., cars, chess, birds, and

mushrooms). The subjects’ behavioral test of the visual expertise

level was restricted to X-ray films because of the high specialty for

required perceptual expertise (Nakashima et al., 2015). Participants

in the RI group were required to pass a practical examination about

radiological anatomy and interpretation of X-ray films to verify

that they had reached a required level of expertise. The Cambridge

Face Memory Test (CFMT) and Radiological Expertise Task (RET)

were employed to measure face expertise and radiological expertise

in our study. The RET consists of 100 standard X-ray images

of adults including 65 positive images and 35 negative images,

from the PACS of the X-ray image bank under the guidance of

three senior independent expert radiologists with more than 10

years of radiological experience and who were proficient in reading

X-ray images. The three senior experts not only scrutinized the

pathological appearance of the selected films and confirmed the

approval of the reports but also evaluated the level of difficulty

of the reports on a scale of 1–3. Sixty-five positive X-ray images

contained one nodule without any other conclusions in the

corresponding reports and 35 negative images were normal X-rays

without any lesions. The level of difficulty for grades 1–3 in all 100

images used in the RET accounted for 55%, 30%, and 15% of the

images, respectively. The detailed procedures of CFMT and RET

were introduced in our previous research (Zhang et al., 2022).

MRI data acquisition

fMRI data were collected from 8:30 a.m. to 12:30 a.m. to

eliminate the time-of-day effect (Hasler et al., 2014). Brain imaging

scans were performed on a 3T GE scanner (EXCITE; General

Electric; Milwaukee; Wisc.) at the imaging center of Xi’an Jiaotong

University First Affiliated Hospital. A standard birdcage head coil

and restraining foam pads were used to minimize head motion and

protect participants’ hearing. Resting-state functional images were

acquired by an echo-planar-imaging sequence, and the specific

parameters included 32 contiguous slices with a slice thickness =
4mm, layer interval = 0, TR = 2,000ms, TE = 30ms, FA = 90◦,

FOV = 240mm × 240mm, data matrix = 64 × 64, voxel size =
3.75mm × 3.75mm × 4mm, total volumes = 190, and scanning

time = 380s. During the entire resting process, the subjects had

to keep their eyes closed, stay awake, and try to keep their minds

blank without having any particular thoughts. Additionally, an

MPRAGE T1-magnetization high resolution anatomical image (1

× 1 × 1mm) was acquired for each participant with the following

parameters: TE = 2.26ms, TR = 1,900ms, flip angle = 9◦, FOV

= 256mm, slice thickness = 1mm, and matrix = 256 × 256. A

total of 176 slices in the sagittal orientation were acquired. Potential

clinical abnormalities of each participant were assessed by two

expert radiologists based on the structural images. No participants

were excluded at this level.

Resting-state fMRI preprocessing

Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.

ac.uk/spm) and the Data Processing Assistant for Resting-State

fMRI (DPARSF 4.5, http://rfmri.org/DPARSF) were used for MRI

data preprocessing. The preprocessing steps were as follows: (1)

DICOM data were converted to NIFTI format; (2) the first 10 time

points were removed for stability of the magnetic field and to allow

the subjects to adapt to the experimental environment; (3) slice

time correction was conducted for the remaining time points; (4)

motion correction was carried out using rigid body transformation

to fix the brain at the same target position; (5) the functional

images were coregistered to the subject’s anatomical images, and

all the processed data were divided into gray matter, white matter,

and cerebrospinal fluid by the exponentiated lie algebra (DARTEL)

tool (Ashburner, 2007); (6) a higher-level Friston-24 model was

employed to regress out head motion; (7) the nuisances such

as global signal, white matter signal, and cerebrospinal fluid

signal were regressed; (8) all the resting functional images were

normalized to MNI space using the deformation field maps

obtained from structural image segmentation; (9) the normalized

fMRI data were resampled to 3mm isotropic voxels; (10) the

images were then spatially smoothed with a 6mm full width

at half maximum (FWHM) Gaussian kernel; and (11) linear

trend removal and temporal bandpass filtering (0.01–0.08Hz) were

performed to reduce the effect of low-frequency drifts and high-

frequency noise.

Feature extraction

Generation of voxel wise and region wise DC
maps

The DC index has unique superiority (i.e., high sensitivity,

specificity, and reliability) in reflecting the dynamics of brain

networks (Zuo and Xing, 2014). In current study, the DC method

was employed to look for the neuroimaging features between

groups. The specific steps were as follows: first, the BOLD time

course of each voxel was extracted and its Pearson’s correlation

with all other voxels in the whole brain was analyzed. Every voxel

with positive correlation coefficients >0.2 was selected, which can

eliminate the weak correlation due to signal noise to ensure that

voxels have higher regional functional connectivity strength values.

Fisher’s r-to-z transformation was conducted to derive the Z score

matrix and improve normality for the resulting voxel for each

participant. Then, the DC value of each subject was divided by

the mean of the whole brain to achieve standardization, which

can eliminate individual differences. The DC map of the whole

brain based on the voxel-level data was obtained. After that, the

voxel wise DC map was averaged into a region wise DC map. The

Brainnetome atlas was employed to divide the DC map into 246

regions of interest (ROIs) (Fan et al., 2016). The DC values of all the

ROIs were averaged to obtain the average DC value of each region.
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FIGURE 1

The pipeline of the rs-MRI data analysis. (A–C) The resting-state MRI data were collected and preprocessed following procedures described in the

Methods. Then, the DC for each voxel was calculated and used for future feature selection. (D–F) Feature selection. Two-step feature selection was

performed and the first level used a two-sample approach to perform the regional average feature. Then, RFE-SVM modeling with LOOCV was

employed to search for the most remarkable features between groups. (G, H) SVM modeling. Reliable SVM classification results and the brain areas

with robust di�erences in DC values between groups were obtained to reflect the alteration of dynamics in the whole-brain network. rs-MRI,

resting-state MRI; fMRI, functional magnetic resonance imaging; DC, degree centrality; RFE-SVM, recursive feature elimination-support vector

machine; SVM, support vector machine; LOOCV, leave-one-out cross-validation.

Finally, the mean DC values from the 246 ROIs then served as the

input vector for the classification procedure.

Feature selection

Feature selection is a hotspot in bioinformatics and is critical in

medical studies. Its process is to extract informative features from

complex high-dimensional data (Du et al., 2017). We performed a

two-stage feature selection procedure in our study. Firstly, we used

a two-sample t test to identify the differences in the region wise DC

maps between the two groups in a leave-one-out fashion, with a

threshold of p < 0.05 considered significant. The resulting region

wise features were then used in the second-level elimination. In our

study, the recursive feature elimination-support vector machine

(RFE-SVM) Guyon et al. (2002) is employed for the purpose of

feature selection that combines recursive feature elimination with

SVM modeling. Basically, we used the RFE-SVM approach in a

leave-one-out cross-validation (LOOCV) framework to recursively

eliminate the least useful features until further elimination resulted

in reduced accuracy. The basic idea behind RFE-SVM is introduced

as follows: in each iteration, the contribution to classification

accuracy is determined by eliminating one feature at a time

using SVM-LOOCV. Then, the features with zero contribution

to classification accuracy is taken away from feature set which is

to be used as input for next round of iteration. These steps are

repeated until the number of features reaches zero. The feature set

with highest classification accuracy is used as the outcome of RFE-

SVM and sent to SVM for modeling. For this step, we used several

performance indicators, including accuracy, sensitivity, specificity,

receiver operating characteristic (ROC) curve, and area under the

ROC curve (AUC), to evaluate the efficiency of the RFE-SVM

classifier. LOOCV was also used to validate the model. Note that

a linear SVM classifier model with a soft interval separation and

hinge loss function, as it is commonly used in neuroimaging data

and produces interpretable results (Rasmussen et al., 2011). The

pipeline of rs-MRI data and feature selection processing in this

study is illustrated in Figure 1.

Correlation analysis

To evaluate the relationship between behavioral measurements

and the dynamics of the resting brain network in the two groups,
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voxel wise Pearson’s correlation analysis was conducted between

the averaged DC values and outcome of behavioral tasks (i.e., RET

scores and response times). The significance level was set at p< 0.05

after multiple comparison correction (false discovery rate, FDR).

Results

There were no significant differences in age or sex between the

groups (p > 0.05). The mean practice level duration and cases in

the total RI group are shown in Table 1.

Results of behavioral tests

The behavioral performance of the RI and NC groups is

summarized in Figure 2 and Table 1. Compared with the NC group,

TABLE 1 Demographic data of the radiological intern group and normal

control group.

Labels Radiologists
(n = 22)

Mean ± SD

Controls
(n = 22)

Mean ± SD

p-values

Length of training 26± 2.4 N/A –

Cases in total 767.4± 82.6 N/A –

RET∗∧ 0.80± 0.04 0.53± 0.04 <0.001

Response time of

RET (s)∗
2.6± 0.4 3.7± 0.7 s <0.001

Face expertise 56.95± 5.23 58.68± 5.31 0.28

∗Denotes significant difference between groups (p < 0.001).
∧Denotes that the Mann–Whitney test was used.

SD, standard deviation; s, seconds; RET, radiological expertise task; CFMT, Cambridge face

memory test.

the RI group had significantly higher RET scores, indicating that

the visual experience enabled the RI group to have better nodule

recognition ability than the NC group (p < 0.001, Mann–Whitney

U-test). The response time of RET in the RI group was much

shorter than that in the NC group, suggesting that the RI group

can recognize nodules much faster than the NC group (p < 0.001,

Mann–Whitney U-test). There was no significant difference in

CMFT scores between the two groups, which demonstrated that

the two groups had similar face recognition abilities (p > 0.05,

Mann–Whitney U-Test).

SVM classification results

The iteration procedure of feature selection based on RFE-

SVM is presented in Figure 3A. The highest classification accuracy

was observed in the seventh subset. The brain regions with

discriminative power included the bilateral SFG, left MFG, right

orbital gyrus (OrG), left FuG, and bilateral parahippocampal gyrus

(PhG). The details of the brain regions are shown in Table 2 and

Figure 4. The SVM classification accuracy was 88.64%, sensitivity

was 81.82%, specificity was 95.45%, and AUC was 0.9008. The

ROC curve of classification accuracy for RFE-SVM is presented in

Figure 3B.

Results of correlation analysis

A significant positive correlation between the average voxel

wise DC of the left FuG and the level of radiological expertise (i.e.,

RET scores) was found in the RI group after multiple comparisons

(r = 0.51, p < 0.05, Figure 5). No significant correlations were

found between other indicators of the behavioral tests and DC in

the RI or the NC groups.

FIGURE 2

The performance of the behavioral test in the RI group and NC group. (A) The scores of lung nodule identification for the two groups. (B) The

di�erent values in the CFMT for each group. (C) The response time of recognizing the lung nodule for each group. RET, radiological expertise task;

CFMT, Cambridge face memory test; RT, response time; RI, radiology intern; NC, normal control. *Indicates significant group di�erences (p<0.05).
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FIGURE 3

The performance of the RFE-SVM classifier. (A) The iteration procedure of feature selection based on RFE-SVM. (B) The receiver operating

characteristic curve of the RFE-SVM classifier. ROC, receiver operator characteristic; DC, degree centrality; AUC, area under the curve; RFE-SVM,

recursive feature elimination support vector machine.

TABLE 2 The di�erence in DC values between the RI and NC groups.

Cognitive component Brain region Subregions Brodmann’s areas Side Weight

Attention control MFG MFG_L_7_7 BA10 (lateral) L −0.59

Decision making OrG OrG_R_6_4 BA11(medial) R −0.60

Visual processing FuG FuG_L_3_3 BA37 (ventral and lateral) L 0.56

Memory PhG PhG_L_6_1 BA35/36 L −0.63

PhG_R_6_4 A28/34 R −0.99

Working memory SFG SFG_R_7_6 BA9 (medial) R −0.66

SFG_L_7_7 BA10 (medial) L 0.64

BA, brodmann area; FuG, fusiform gyrus; MFG, middle frontal gyrus; OrG, orbital gyrus; PhG, parahippocampal gyrus; SFG, superior frontal gyrus; L, left; R, right.

Discussion

Visual expertise is a complex skill that requires learning from

a vast amount of domain-specific visual information (Dong et al.,

2022). Several studies have examined the neural mechanisms

underlying radiologists’ expertise, identifying high-order cognitive

and low-order visual factors such as visual processing, WM,

attention control, and decision making as crucial components

(Donovan and Litchfield, 2013; Harel, 2016; Annis and Palmeri,

2019). However, the extent to which visual experience modulates

resting-state brain activity in radiologists remains unclear. This

study aimed to address this gap by investigating how real-

world visual experience affects the DC values of resting-state

brain activity in radiologists. Our behavioral results showed

that the RI group performed better after training than the NC

group (Figure 2), and the imaging data analysis demonstrated

that seven brain subregions in the visual cortex, prefrontal

lobe, and limbic system had the highest discriminative power

in between-group comparisons (Figure 4 and Table 2). These

results were obtained using RFE-SVM, which demonstrated

excellent classification efficiency with high accuracy, sensitivity,

and specificity (Figures 3A, B). Additionally, we found a significant

positive correlation between RET scores and the DC values of the

left FuG, indicating that the functional connectivity of this region

is related to visual expertise (Figure 5). To our knowledge, this

study is the first to investigate DC level changes in radiologists’

resting brains in response to real-world visual experience. The

results provide new insights into the neural mechanisms underlying

visual expertise, and the findingsmay have practical applications for

radiologist training. Overall, our study highlights the importance of

considering resting-state brain activity in understanding how visual

expertise develops andmay help inform future research in this area.

The increased DC level of the left FuG in
radiologists

Compared with the NC group, the RI group had increased

DC values in the left FuG which controls visual processing

(Figure 4 and Table 2). Additionally, we found a significant positive

correlation between the DC value of the left FuG and RET scores in

the RI group (Figure 5). The acquisition of visual experience may

be accompanied by functional enhancement of visual processing

supporting radiologists’ superior performance (Haller and Radue,

2005; Wang et al., 2021). The FuG, located in the human ventral

temporal cortex (VTC), is a pivotal functional brain module
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FIGURE 4

Brain areas with the most discriminative ability between groups. The constitutional diagram is categorized by visual and cognitive components. The

color bar shows the size of the weight. Note that the positive direction represents the increased DC values and vice versa. MFG, middle frontal gyrus;

OrG, orbital gyrus; FuG, fusiform gyrus; PhG, parahippocampal gyrus; SFG, superior frontal gyrus; DC, degree centrality.

FIGURE 5

Correlation analysis between RET scores and DC values of the left

FuG. Pearson correlation was used to assess significance (p < 0.05,

multiple comparison corrected). RET, radiological expertise task;

FuG, fusiform gyrus; DC, degree centrality.

within the high-level visual cortex (Weiner and Zilles, 2016)

which is a key-structure in high-level visual processing for object

recognition (Grill-Spector et al., 2001). The FuG contains several

category-selective regions for the recognition of different visual

stimuli, including the FFA (Kanwisher et al., 1997), fusiform body

area (Peelen and Downing, 2005), and visual word-form area

(Cohen et al., 2000). Several neuroimaging studies using visual

expertise models, such as cars (McGugin et al., 2015), chess (Bilalić,

2016), faces (Goold and Meng, 2017), and radiology (Haller and

Radue, 2005) reported activation of the FuG in task fMRI studies.

Specifically, the right FuG was engaged in the processing of non-

face expertise visual stimuli (Xu, 2005; Harley et al., 2009; Engel

et al., 2009) and mediated the formation of category-specific

representations (van der Linden et al., 2008). Moreover, the right

FFA plays an important role in visual discrimination that can be

fine-tuned by experience with other domain categories (Engel et al.,

2009). Furthermore, previous studies have consistently reported

that the left FuG plays a more prominent role than the right FuG

in processing non-face related information (Devlin et al., 2006;

Bi et al., 2014; Bilalic et al., 2016). In details, the left FuG was

engaged in visual word recognition as a connector between the

abstract visual information and higher order properties of the

stimulus (Devlin et al., 2006) and not only participated in visual

categorization learning but also its activity could be modulated

by visual learning (Goold and Meng, 2017). In radiological

expertise, left FuG activation made the radiologists more sensitive

to radiological images and reliably distinguished between upright
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and inverted X-rays (Bilalic et al., 2016). Additionally, a prior study

found that the activity of the left FuG was positively correlated with

participants’ perceptual performance (Bi et al., 2014) supporting the

pivotal role of the FuG in supporting recognition efficiency (Zhang

et al., 2022).

In the current study, we speculated that the left FuG plays a vital

role in recognizing the stimuli of radiological images, Furthermore,

the short-term extraordinarily high load and repetitive usage of the

visual system by the RI group can modify the visual processing of

radiological stimuli. The fine-tuned behavioral performance and

functional adaptationmanifest in the superior ability of recognizing

the nodule stimulus and stronger neural reflections in the resting

state to make the brain much more efficient in detecting nodule-

specific features.

The decreased DC level of the right OrG in
radiologists

Decreased DC values of the right OrG were found in the

RI group compared with those of the NC group (Figure 4 and

Table 2). The OrG, as an OFC subregion (Rudebeck and Rich,

2018), is responsible for decision-making by primarily adjusting

the utilities associated with different sensory stimuli (Lee et al.,

2007) and plays a critical role in flexible, outcome-guided behavior

(Liu et al., 2020). Decision-making is the process of choosing a

particular response and further flexibly modifying cognitive and

sensorimotor operations based on an evaluation of potential costs

(Lee et al., 2007), which is necessary for expert visual processing.

Decision making is part of the object recognition process during

image interpretation (Wang et al., 2021). Of note, decision-

making ability changes dynamically and continually as experience

increases (Lee et al., 2007). Hence, the OFC was activated when

the participants faced low-cost situations, such as either passively

viewing information or selecting among options (Volz et al., 2006).

A previous study on baseball batter expertise also verified that the

OFC was responsible for expertise-driven rapid visual decisions

(Muraskin et al., 2015). In Kirk’s study on aesthetic expertise, the

recruitment of the OFC between experts and non-experts suggested

that this region was involved in expertise-related reward processing

(Kirk et al., 2009). A study based on a chess model reported that

the OFC appeared to be activated in this comparison between

experts and novices (Krawczyk et al., 2011). In the current study,

we propose that visual experience modulates radiologists’ decision-

making processes. Specifically, when radiologists face domain-

specific options, they need to make decisions by employing many

brain resources to recognize radiological stimuli.

The changed DC level of bilateral SFG in
radiologists

Compared with those of the NC group, changed DC values

of the bilateral SFG were found in the RI group (Figure 4 and

Table 2). Multiple previous studies have shown that the SFG

plays important roles in WM (Klingberg et al., 1997; Su et al.,

2022). WM is a central mental capacity; it provides the platform

for holding and manipulating thoughts and for organizing goal-

directed behavior (Miller et al., 2018). WM capacity, which refers

to the ability to retain the maximum amount of information, is a

vital factor for problem solving and reasoning ability (Westerberg

and Klingberg, 2007). The acquisition of visual expertise might

improve WM performance (Moore et al., 2006). The neuroimaging

study of Haller and Radue (2005) found that the enhanced neuronal

activations of the SFG manifested in better WM capability in

the process of radiological expertise. Kesler et al. (2011) found

significantly increased activation of the SFG in visual tasks, which

participated in online monitoring and manipulation of task-related

information. Ouellette et al found lower activation of the lateral

SFG in trained radiologists while they viewed medical images,

suggesting that WM is a crucial component of radiology expertise

and more efficient in radiologists (Ouellette et al., 2020). In our

current study, different trends in the bilateral SFG showed that

the increased DC values in the left SFG and decreased DC values

in the right SFG were closely associated with WM when utilizing

radiological expertise. Taking the weight of the brain area into

consideration, the overall trend of DC values tended to be negative

in the right SFG. Therefore, the decreased DC values of the right

SFG may demonstrate increased neural efficiency of the WM

process, thus enabling the RI group to spend less energy making

a judgment and obtaining a good result compared with that of

the NC group. Furthermore, we propose that the altered dynamics

of the brain network when acquiring radiological expertise might

support remodeling of the WM process reflecting more automated

encoding and maintenance WM capacity, indicating a more

efficient mechanism subserving visual expertise.

The decreased DC level of left MFG in
radiologists

Decreased DC values of the left MFG in the RI group were

found compared with values of the NC group in our study (Figure 4

and Table 2). A previous neuroimaging study found that the MFG

participated in visual attention based on the model of radiologists

(Haller and Radue, 2005). Selective attention can optimize the

processing of information, make radiologists rapidly search for a

particular “target” in radiographic images and adjust their response

to information collected and compared to previously learned

reference images (Haller and Radue, 2005; Harley et al., 2009).

Attention has an important impact on visual expertise, even in

the earliest step of visual processing (Harel, 2016). The left MFG

has a crucial role in the dorsal attention network (DAN) and

ventral attention network (VAN) to facilitate interactions between

the two networks during attentional processing (Briggs et al.,

2021). It has been found that the MFG is an important center

facilitating attentional processes (Japee et al., 2015). Haller and

Radue (2005) found enhanced neuronal activation of the MFG

in radiologists compared with that in non-radiologists, suggesting

that the MFG participated in the process of radiological expertise

and played an important role in attention control. In contrast, the

study of Melo et al. (2011) reported lower activation of the MFG

in radiologists than non-radiologists when they were observing

medical images. The evidence summarized above suggested that
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short-term experience could adjust the process of attention control

to make it more efficient and enable trainees to have more

flexibility in manipulating limited attentional resources so that

residual resources could be allocated validly to other brain regions

supporting more demanding tasks.

The decreased DC level of bilateral PhG in
radiologists

The comparison between groups revealed decreased DC values

of the bilateral PhG in the RI group compared with those of

the NC group (Figure 4 and Table 2). The PhG is an important

center for memory processing (Lin et al., 2021). The acquisition

of visual expertise might be accompanied by the alteration of

memory representations (Annis and Palmeri, 2019). Existing

neuroimaging studies have reported that chess experts and expert

archers recruited more activation of the PhG when responding to

domain-specific stimuli (Bilalić et al., 2010; Kim et al., 2011). In our

study, the deceased DC values of the bilateral PhG may reflect the

highly efficient process of memory encoding and extraction. Short-

term experience may contribute to radiology interns spending

less energy on employing memory resources when radiologists

interpret the radiological images.

Limitation

It is important to note the limitations of our study.

Firstly, the sample size was relatively small, which could limit

the generalizability of the results. Future studies with larger

sample sizes are needed to confirm the current findings.

Secondly, the training duration for radiology interns was

relatively short. Although the number of training cases for

each participant was sufficient to acquire expertise, a longer

training duration could potentially lead to different results.

Therefore, future studies should consider longer training periods.

Finally, a cross-sectional design was used in this study, which

may limit the interpretation of the findings. Longitudinal

studies are needed to better understand how visual experience

affects brain dynamics in radiologists. Additionally, confounding

factors such as long-term experience or congenital factors could

have influenced the results. Therefore, future studies should

consider controlling for these factors or using a longitudinal

design to better understand the effects of visual experience on

brain dynamics.

Conclusions

In conclusion, our findings suggest that visual experience

can modulate the dynamics of the resting-state brain network,

as reflected in multidimensional neurobehavioral components

based on the expertise model of radiologists. These components

are strongly interlinked with high-order cognitive and low-order

visual factors, including attention control, memory, WM, decision

making, and visual processing. These results provide a novel insight

into the neural mechanism underlying visual expertise. Despite the

limitations of our study, we believe that our findings contribute

to the current understanding of how real-world visual experience

affects brain activity and may have implications for radiologist

training and clinical practice. Further research is needed to confirm

and extend our findings.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and

approved by First Affiliated Hospital of Medical College in

Xi’an Jiaotong University Subcommittee on Human Studies. The

patients/participants provided their written informed consent to

participate in this study. Written informed consent was obtained

from the individual(s) for the publication of any potentially

identifiable images or data included in this article.

Author contributions

Study design and interpretation of results: CJ and MD. Data

collection or acquisition: HW, CJ, and MD. Statistical analysis: MD

and XZ. Drafting themanuscript work: HW and RY. Essay revision:

JW, CC, CJ, and MD. All authors read and approved the final

version of the manuscript and agreed to publish.

Funding

This paper was supported by National Key R&D Program of

China (Grant No. 2022YFF1202400), the National Natural Science

Foundation of China (U19B2030), the Science and Technology

Projects of Xi’an, China (No. 201809170CX11JC12), and the

Fundamental Research Funds for the Central Universities (No.

20101236055).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeuroscience 09 frontiersin.org

101

https://doi.org/10.3389/fnins.2023.1152619
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1152619

References

Albert, N. B., Robertson, E. M., and Miall, R. C. (2009). The resting human brain
and motor learning. Curr. Biol. 19, 1023–1027. doi: 10.1016/j.cub.2009.04.028

Annis, J., and Palmeri, T. J. (2019). Modeling memory dynamics in visual expertise.
J. Exp. Psychol. Learn. Mem. Cogn. 45, 1599–1618. doi: 10.1037/xlm0000664

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.
Neuroimage 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Bi, T., Chen, J., Zhou, T., He, Y., and Fang, F. (2014). Function and structure of
human left fusiform cortex are closely associated with perceptual learning of faces.
Curr. Biol. 24, 222–227. doi: 10.1016/j.cub.2013.12.028
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An integrated convolutional 
neural network for classifying 
small pulmonary solid nodules
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1 School of Computer Science, Hubei University of Technology, Wuhan, China, 2 Department of 
Radiology, Renmin Hospital of Wuhan University, Wuhan, China

Achieving accurate classification of benign and malignant pulmonary nodules 
is essential for treating some diseases. However, traditional typing methods have 
difficulty obtaining satisfactory results on small pulmonary solid nodules, mainly 
caused by two aspects: (1) noise interference from other tissue information; 
(2) missing features of small nodules caused by downsampling in traditional 
convolutional neural networks. To solve these problems, this paper proposes a 
new typing method to improve the diagnosis rate of small pulmonary solid nodules 
in CT images. Specifically, first, we  introduce the Otsu thresholding algorithm to 
preprocess the data and filter the interference information. Then, to acquire more 
small nodule features, we  add parallel radiomics to the 3D convolutional neural 
network. Radiomics can extract a large number of quantitative features from medical 
images. Finally, the classifier generated more accurate results by the visual and 
radiomic features. In the experiments, we tested the proposed method on multiple 
data sets, and the proposed method outperformed other methods in the small 
pulmonary solid nodule classification task. In addition, various groups of ablation 
experiments demonstrated that the Otsu thresholding algorithm and radiomics are 
helpful for the judgment of small nodules and proved that the Otsu thresholding 
algorithm is more flexible than the manual thresholding algorithm.

KEYWORDS

medical image analysis, neural networks, classification, pulmonary solid nodules, 
feature extraction

1. Introduction

Pulmonary nodule classification is an important task that judges the benignity and 
malignancy of pulmonary nodules by computer techniques. Deep learning methods based 
on convolutional neural networks are the most common methods for pulmonary nodule 
classification, which can be divided into 2D CNN based methods (Setio et al., 2016; Sori 
et al., 2019) and 3D CNN based methods (Shi et al., 2021; Tsai and Peng, 2022). In general, 
the 2D CNN based methods for pulmonary nodule classification have three steps: first, 
the 3D CT images are sliced; then, the features are extracted by 2D CNN; finally, the 
extracted features are input to the classifier to obtain the results. Shen et  al. (2017) 
constructed an end-to-end architecture, which used neural networks for feature extraction 
instead of complex nodule segmentation and manual fabrication, and achieved better 
classification accuracy.

The pulmonary nodule images are three-dimensional, and extracting two-dimensional 
slices with only one view of the image could easily cause information deficiency. Therefore, 
some studies have proposed multi-view slicing methods. Xie et al. (2018) proposed to learn 
the features of 3D pulmonary nodules by 9 fixed views, different views are learned using 
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different sub-models. Al-Shabi et al. (2019) proposed a local-global 
neural network, which uses the residual module with the 
convolution kernel size of 3 × 3 to extract local features, and global 
features are extracted by self-attention layers, the combination of 
both features achieves better classification results. Considering the 
three-dimensional characteristics of 3D CT images, many works 
based on 3D CNNs have appeared in recent years. Kang et  al. 
(2017) proposed a 3D multi-view convolutional neural network to 
better utilize 3D contextual information and extracted more 
discriminative features. Liu et al. (2021) proposed a contextual 
attention network (CA-Met), CA-Met extracts the nodules and 
surrounding tissues features by contextual attention and then fuses 
the two features into the classifier for prediction. Zhang et  al. 
(2018) introduced 3D dilated convolution into the base model, 
which helps the model retain more image information and acquire 
multi-scale features, leading to more accurate nodule classification 
results. Huang et al. (2022) proposed a novel neural network based 
on self-supervised learning. This network learns labeled and 
unlabeled data to overcome the problem of insufficient labeled 
samples and eliminates noisy information interference by data 
preprocessing. Although 3D CNN achieves great classification 
results, it faces the problems of large computation and complex 

network structure. Therefore, the pulmonary nodule classification 
still needs further research to play a greater role in the 
medical career.

2. A 3D residual convolutional neural 
network

Providing accurate classification of small pulmonary solid 
nodules in CT images is significant. For this reason, this paper 
proposes a classification method for small pulmonary solid nodules. 
Specifically, we use the Otsu thresholding algorithm to reduce the 
noise interference from pulmonary tissues around the nodules. The 
proposed method extracts two modal features through a 3D residual 
convolutional neural network and radiomics. Then we fuse the visual 
and radiomic features into the classifier, which helps the model better 
predict benign and malignant nodules. As shown in Figure 1, the 
complete framework of the classification method consists of three 
parts: (1) data preprocessing based on the Otsu thresholding 
algorithm; (2) the interactive learning based on two modal features 
of three-dimensional residual convolutional neural network and 
radiomics; (3) small solid nodules classification.

FIGURE 1

Flowchart of the proposed algorithm.
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2.1. Data preprocessing

This paper uses the Otsu threshold algorithm for multi-threshold 
segmentation preprocessing of medical CT images. This algorithm 
divides the images into three classes, C1, C2, and C3, by two 
thresholds, K1 and K2, and then obtains the optimal threshold by the 
maximum inter-class variance. The inter-class variance is formulated 
as follows:

 
σ 2

1

3
2= −( )

=
∑ P m mk
k

k G
 (1)

where k is the corresponding class. Pk denotes the probability of 
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The mean gray value of three classes can be formulated as:

 
m

P
ip m

P
ip m

P
ipi

i

K

i
i K

K

i
i K

1
1 0

2
2 1

3
3 1

255
1 1 1

1

1

2

2

= = =
= = + = +
∑ ∑ ∑, ,

 
(5)

The mean gray value of the entire image is calculated as:
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Finally, two optimal thresholds K1
∗  and K2

*  are obtained by 
maximizing σ 2

1 2K K,( ) , the formula is as follows:
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If the maximum value of inter-class variance is not unique, the 
corresponding optimal thresholds K1

∗  and K2
*  are averaged to 

obtain the final threshold. The Otsu algorithm is described 
as follows:

The bounding boxes of nodular lesions are mainly labeled 
according to the nodule location information provided by professional 
radiologists, and the examples are shown in Figure 2. The labeled 
information is a rectangle composed of six-coordinate points in three-
dimensional space, and the six-coordinate points are denoted as 
x x y y z zmax? min? max? min? max? min. Due to the input requirement of the 
convolutional neural network is a cube, and the resampling will 
change the nodule shape, this paper selects the maximum value 
of H, W, and D as the side length of the cube and uses the padding 
operation to ensure the integrity of the nodule information, the 
pairs in three-dimensional space are shown in Figure  3. In 
addition, considering the interference factors such as blood 
vessels, air bubbles, and lung lobes, this paper extracts the nodule 
proper and its edge within a smaller error range by the Otsu 
thresholding algorithm. Specifically, a three-band thresholding 
classification method is used in this section, and the last two 
bands are selected as the retained information. As shown in 
Figure 4, the black areas indicate the parts that will be ignored, 
and the gray and white areas are the information that will 
be retained.

In common medical image processing, three-dimensional 
data are treated as N two-dimensional slices, computed by 
two-dimensional convolution kernels to obtain feature maps. 
These methods suffer from the problem of missing correlations 
between different slices, leading to inconsistency in the 
conclusions. In the small solid pulmonary nodule classification 
task, the shape of the same small pulmonary solid nodule varies 

Algorithm: Otsu algorithm

Input: grayscale images generated from medical CT images

Output: optimal thresholds K1∗  and K2∗

calculate the normalized histogram and the probability pi that the gray level is i 

(i = 0, 1, …, 255) from the input image;

calculate the mean gray value m ipG
i

i= ∑
=

255

0

 of the entire image;

For K1 = 1:253

 For K2 = K1 + 1:254

  calculate the probability of three classes P p P p P p
K

i
i

K

i K
i

i K
i1

0
2

1
3

255

1

1 2

1 2

= ∑ = ∑ = ∑
= = + = +

, , ;

  calculate the mean gray value 
m

P
ip m

P
ip m

P
ip

K

i
i

K

i K
i

i K
i1 2 3

1 1 1

1 0 2 1 3

255

1

1 2

1 2

= ∑ = ∑ = ∑

= = + = +
, ,

;

  calculate the inter-class variance σ 2
1 2

3

1

2K K P m m
k

k k G,( ) = ∑ −( )
=

;

 End

End

obtain two optimal thresholds K1∗  and K2
*  by (7);

If size K1 1 1
∗( ) >,

 
K mean K1 1∗ ∗= ( ) ;

End

If size K2 1 1
∗( ) >,

 
K mean K2 2
∗ ∗= ( ) ;

End
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greatly between different slices, so it is not easy to achieve the 
expected results by training with the traditional scheme. 
Therefore, this paper utilizes the cube containing the whole 
nodule information for training. The examples of 
two-dimensional slice information are shown in Figure 5.

This paper uses an algorithm based on PyRadiomics (a 
radiomic features extraction package developed by the Harvard 
Medical School team) to extract radiomic features of nodules. 
The various features extracted include the following classes: First 
Order Statistics has 19 features, which mainly include the 
magnitude of voxel values in the cube, the maximum, minimum 
and the range of the grayscale value of the lesion area; 

Shaped-Based (3D), which includes 16 features, such as the voxel 
volume, surface area, sphericity and surface area to volume ratio; 
Shaped-Based (2D) have 10 features, mainly including mesh 
surface, pixel surface, and perimeter to surface ratio; Gray Level 
Co-occurence Matrix have 24 features, mainly including 
autocorrelation, joint average, and cluster shade; gray level run 
length matrix have 16 features, mainly including short and long 
run emphasis, gray level non-uniformity and run length 
non-uniformity; gray level size zone matrix have 16 features, 
especially including small and large area emphasis; Neighbouring 
Gray Tone Difference Matrix have 16 features, including 
coarseness, contrast, busyness, complexity and strength; Gray 

FIGURE 2

The figure displays the bounding boxes of nodular lesions.

FIGURE 3

The example of the pulmonary nodules in three dimensions, (A) rectangular, (B) cubic.
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Level Dependence Matrix have 14 features, mainly including 
small and large dependence emphasis, gray level variance, 
dependence entropy. In addition, this paper uses the results from 
the Otsu algorithm as the input mask to ensure that the 
information obtained from radiomics is accurate, and the 
extraction process is shown in Figure 6.

Few images and unbalanced class distribution are common 
problems in medical image processing. This paper uses a data 
enhancement algorithm based on MONAI to alleviate these 

problems, which can strengthen the neural network’s generalization. 
The data enhancement approaches used for the nodular cube 
include random 3D image rotation, random 3D image flip, and 
random affine transformation; those approaches will not act on the 
radiomic features. Considering the non-uniform classification of 
benign and malignant nodules in the training dataset, the lesser 
class (benign) will get more enhancement. The nodules will 
randomly flip along an axis with the probability of 70% benign and 
40% malignant. Then, they will be  affine transformed with the 

FIGURE 4

The results of the Otsu thresholding algorithm on CT data.

FIGURE 5

The 3D information of small pulmonary nodules and their corresponding 2D slices.
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probability of 70% benign and 40% malignant. Finally, they are 
randomly rotated with the same probability (the maximum rotation 
angle for benign is 35° and for malignant is 30°).

2.2. Fusion learning of 3D residual 
convolutional neural networks and 
radiomics

To better utilize the information of small pulmonary solid nodules 
in three-dimensional space, this paper combines 3D residual 
convolutional neural networks and radiomics to achieve nodule 
classification using complementary information between different 
modalities. As shown in Figure 7, the 3D visual and radiomic features 
information of small pulmonary solid nodules are input to 3D residual 

convolutional neural networks and multilayer perceptron, respectively. 
The two features are fused, and the results are output through the 
prediction layer.

In the training process, the backpropagation of gradients is 
usually affected by the depth of the network, and more layers 
easily cause poor training results. He  et al. introduced skip 
connections on convolutional neural networks to alleviate the 
gradient disappearance due to the over-deepening of the network. 
Inspired by this structure, this paper adds a skip connection 
structure to the 3D convolutional module, and the 3D skip 
connection module is shown in Figure 8. The equation of this 
module can be defined as:

 
R x W f W xl l( ) = ( )( )( )−1  (8)

FIGURE 6

The extraction process of radiomics.

FIGURE 7

The architecture of the proposed model.
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 U x R x M x( ) = ( ) + ( ) (9)

where x is the input to the skip connection module, M(x) is the 
skip connection, U(x) is the original function, and R(x) is the 
residual function.

In the 3D convolution operation, the input is convolved by 
the 3D convolution kernel, and bias is added. The 3D feature map 
is output using the normalization layer and the nonlinear 
activation unit. The formula for 3D convolution operation is 
as follows:

 
out , bias weight input ,out out out

in

N C C C k N ki
k

C

ij j j
( ) ( )= + ∑ ∗

=

−

0

1

, (( )









 
(10)

where N, C, D, H, and W represent the batch size, number of 
channels, number of slices, length of slices, and width of slices, 
respectively. The operators ? are 3D interpolation operations. 
Meanwhile, Rectified Linear Unit (ReLU) and 3D BatchNorm are used 
in the model.

The residual convolutional neural network is designed based on 
the traditional convolutional neural network, which uses multiply 
subsampled to expand the local receptive field. However, the multiple 
subsampled operations will lead to a severe loss of small nodule 
features in the small solid pulmonary nodule classification task. This 
paper uses radiomics to solve the problem of information loss caused 
by subsampled. Radiomic features have correlation and 
complementarity with visual features. Specifically, the fusion of 
radiomic and visual features can complement the lost information 
from the statistical dimension of shape representation, making the 
network more robust. In addition, this paper uses dimensionality 
reduction to keep the visual features and radiomic features in the same 
dimension, and the two features are fused and input to the classifier 
to generate predictions. The detailed structure of the proposed 
network model is shown in Table 1.

2.3. Training and prediction

The training of the model can be divided into three steps. First, 
we  follow the steps in the previous section to extract the cube 
containing the nodule area and obtain the mask of the nodule 
tissue by the Otsu thresholding algorithm. The mask can filter out 
the useless regions in the cube and also serve as the annotation for 
the radiomics extraction; Second, we resample the processed cube 

and expand the training data by the data enhancement methods, 
such as random flip and random radiation; Third, the enhanced 
cubes and the corresponding radiomics are input into the network 
for training.

After training, the data in the test set can perform nodule 
classification with the saved weights. We  first extract the cube 
containing the nodules and obtain the optimal threshold by the Otsu 
thresholding algorithm. Then the extracted nodules are processed as 
in the training stage to obtain the radiomic features and the filtered 
nodule cube. Finally, the two groups of features are input to the trained 
network model to get the results.

3. Experimental results and analysis

The Adam optimizer trains the model with momentum set to 
beta beta1 20 9 0 999= =. , . . We train 100 iterations, with the initial 
learning rate set to 0.001 and the learning rate dropping by 10% 
every ten iterations. In addition, dropout is set to 0.5, the batch 
size is set to 16, and the loss function is binary cross-entropy.

The datasets in the experiments came from the cooperative 
hospitals, which are non-public datasets, and the training set 
and the validation set have 1,429 samples in total. These samples 
are randomly divided into five subsets, represented as 
subset subset subset subset subset0 1 2 3 4, , , , . One of them is taken as 
the validation set for each experiment, while the other subsets are 

FIGURE 8

Diagram of skip connection module.

TABLE 1 The overall structure of the proposed model.

Layer 
name

Output 
size

3D-ResNET50 Radiomics

Conv_1 128 × 128 × 128 7 × 7, 64, stride 2 /

3 × 3 max pool, stride 2 /

Layer_1 56 × 56 × 56 1 1 1 64

3 3 3 64

1 1 1 256

3

x x
x x
x x

x
,

,

,

















/

Layer_2 28 × 28 × 28 1 1 1 128

3 3 3 128

1 1 1 512

4

x x
x x
x x

x
,

,

,

















/

Layer_3 14 × 14 × 14 1 1 1 256

3 3 3 256

1 1 1 1024

6

x x
x x
x x

x
,

,

,

















Layer_4 7 × 7 × 7 1 1 1 512

3 3 3 512

1 1 1 2048

3

x x
x x
x x

x
,

,

,

















1 × 1 × 1 Average pool 107-d

Layer_Linear Linear(256-d)

Layer_MLP MLP (256-d)

Layer_concat 512-d
Concat (Layer_Linear, 

Layer_MLP)
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used as the training set. In addition, 200 additional samples were 
collected as the test set to verify the robustness of the model and 
to ensure its effectiveness in practice, and these data were 
collected from different hospitals in independent time and 
independent devices.

The experiments mainly use classification accuracy, receiver 
operating characteristic (ROC) curve, and area under curve (AUC) 
values to analyze and evaluate the results. The accuracy is an indicator 
that can directly judge the inference ability of the model and can 
be defined as follows:

 
Accuracy

TP TN

TP TN FP FN
=

+
+ + +

where TP, TN, FN, and FP are the numbers of true positive, 
true negative, false negative, and false positive pixels, respectively. 
Considering the influence of the optimal threshold in the task of 
small pulmonary solid nodules, we  introduced ROC into the 
evaluation index and plotted ROC curves based on the false 
positive rate (FPR) and true positive rate (TPR) of the 
predicted results.

 
TPR

TP

TP FN
TPR=

+
≤ ≤( ), .0 1

 
FPR

FP

FP TN
FPR=

+
≤ ≤( ), .0 1

AUC is the area covered by the ROC curve, and the value can 
visually reflect the good or bad performance of the classifier under 
different thresholds, which range from 0 to 1. The higher the ACU 
value, the better the classifier performance.

For the convenience of expressing the model, we will use 3D 
ResNet to denote the three-dimensional residual convolutional 

neural network, 3D VGG to denote the three-dimensional VGG 
model, and 3D ResNext to represent the three-dimensional 
ResNeXt model in the following. The accuracy and loss of the 
3D ResNet + Radiomics network in training and validation are 
presented in Figure 9, and these values can be used as a basis for 
model convergence when they tend to be stable.

The same model may find different local optimal solutions during 
two training processes, which causes differences in model 
performance. This paper selects the model weights that perform best 
on the validation set for testing. As shown in Figure 10, the same 
model under different training achieves different results on the 
validation set, and it can be observed that the model performance of 
result 2 is better than result 1.

Ablation experiments of radiomics

To verify the effectiveness of radiomics for the classification 
task, we compared five different models, including 3D ResNet, 3D 
ResNeXt, 3D VGG, 3D DenseNet, and the proposed 3D 
ResNet + Radiomics model, and these experiments used the same 
preprocessing. Figure 11 reports the AUC/ROC of different models 
on the same test set, and the proposed model obtained better 
results. Radiomics alleviate the effect of information loss caused by 
downsampling in the convolutional neural network, which enables 
the model to learn more features and show more robustness on the 
test set.

Comparison experiments between the 
Otsu thresholding algorithm and manual 
thresholding algorithm

To verify the superiority of the Otsu thresholding algorithm 
for preprocessing, we  compared the Otsu thresholding 
algorithm and the manual thresholding algorithm. Figure 12 

FIGURE 9

The accuracy and loss of 3D ResNet + Radiomics network in training and validation. (A) Loss. (B) Accuracy.
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shows the visualization results of both algorithms on the same 
pulmonary nodules. The manual thresholding algorithm sets 
the range of HU values of CT images from 0 to 300, which is 
referenced to the common range of human tissues and 
experimental results and is more sensitive to solid tissues and 
lung cavities.

The experimental results of the two algorithms are shown in 
Figure  13. The Otsu thresholding algorithm filters the tissue 
information around the small solid pulmonary nodules and 
achieves better results. On the one hand, the Otsu thresholding 
algorithm can provide flexible threshold adjustment to prevent 
filtering out the valuable information of nodules. On the other 

FIGURE 10

Results of the proposed model in two training. (A) Result 1. (B) Result 2.

TABLE 2 Comparison between different methods with and without our refinement.

Method M O R Micro-Average AUC Macro-Average AUC

3D Resnet50 × √ × 85% 67%

3D ResNext × √ × 76% 68%

3D DenseNet × √ × 72% 74%

3D VGG11 × √ × 61% 68%

3D Resne50 + Radiomics √ × √ 83% 64%

3D Resne50 + Radiomics (ours) × √ √ 84% 71%
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hand, the manually delineated thresholds lack the necessary 
flexibility in practical application and perform unstably on CT 
data facing different devices and batches, making the process of 
filtering information risky and unsuitable for application 
in practice.

Table 2 reports the results of multiple algorithms under different 
conditions, and the proposed algorithm achieves the best results. 
Compared with 3D ResNet50, 3D ResNet50 + Radiomics has a more 

significant improvement in Macro-Average AUC while keeping 
Micro-Average AUC unchanged.

4. Conclusion

In this work, we propose a typing method based on the Otsu 
thresholding algorithm for small pulmonary solid nodules. The Otsu 

FIGURE 11

AUC/ROC of the models on the test set. (A) 3D ResNet50. (B) 3D ResNext. (C) 3D VGG. (D) 3D DenseNet. (E) 3D ResNet50+Radiomics.
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thresholding algorithm filters the tissue information around the small 
pulmonary solid nodules and reduces the interference of useless 
information. In addition, 3D visual and radiomic features are 
integrated to prevent missing features, and extensive experiments 
demonstrate the feasibility and interoperability of the two methods.
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FIGURE 12

The segmentation results of two threshold algorithms.

FIGURE 13

The results of 3D Resne50 + Radiomics with different threshold algorithms. (A) Manual thresholding algorithms. (B) Otsu thresholding 
algorithms.
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Introduction: Alzheimer’s disease (AD) is a chronic neurodegenerative disease

of the brain that has attracted wide attention in the world. The diagnosis of

Alzheimer’s disease is facedwith the di�culties of insu�cientmanpower and great

di�culty. With the intervention of artificial intelligence, deep learning methods

are widely used to assist clinicians in the early recognition of Alzheimer’s disease.

And a series of methods based on data input with di�erent dimensions have been

proposed. However, traditional deep learning models rely on expensive hardware

resources and consume a lot of training time, and may fall into the dilemma of

local optima.

Methods: In recent years, broad learning system (BLS) has provided researchers

with new research ideas. Based on the three-dimensional residual convolution

module and BLS, a novel broad-deep ensemble model based on BLS is

proposed for the early detection of Alzheimer’s disease. The Alzheimer’s Disease

Neuroimaging Initiative (ADNI) MRI image dataset is used to train the model and

then we compare the performance of proposed model with previous work and

clinicians’ diagnosis.

Results: The result of experiments demonstrate that the broad-deep ensemble

model is superior to previously proposed related works, including 3D-ResNet and

VoxCNN, in accuracy, sensitivity, specificity and F1.

Discussion: The proposed broad-deep ensemble model is e�ective for early

detection of Alzheimer’s disease. In addition, the proposed model does not need

the pre-training process of its depth module, which greatly reduces the training

time and hardware dependence.

KEYWORDS

deep-broad ensemble model, Alzheimer’s disease, early detection, MRI, validation,

e�ciency

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease of the brain that

develops insidiously. People diagnosed with Alzheimer’s will suffer from the disease for

remaining lifespan (Todd et al., 2013; Weiner et al., 2013; Fink et al., 2020). The main

symptoms of AD includes memory impairment, executive dysfunction, aphasia, impairment

of visuospatial skills and so on, and the etiology remains unknown (Mayeux and Sano, 1999;

Mimura and Yano, 2006). Thus, Millions of people around the world suffer fromAlzheimer’s
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disease. The long-term treatment of these patients consumes

huge medical resources and costs (Cummings and Cole, 2002;

Scheltens et al., 2016). The diagnosis of AD can be divided into

three main types: AD (Alzheimer’s disease), MCI (Mild Cognitive

Impairment), NC (Normal Control).

Radiographic images are important in medical diagnosis of

Alzheimer’s disease. These include positron emission tomography

(PET), magnetic resonance imaging (MRI), computed tomography

(CT) and so on (Prince and Links, 2006; Doi, 2007; Johnson et al.,

2012). Due to low cost and high efficiency, MRI imaging play

an important role in diagnosing AD related pathological brain

changes and researching (Jack et al., 1999). The understanding

of the pathological information provided by these radiographic

images depends on the knowledge and experience of the front-

line clinicians. As the number of professional medical staff is far

less than the actual patient treatment needs, they can not timely

diagnose some early hidden symptoms of Alzheimer’s disease. At

the same time, the imbalance of medical resources also leads to the

inability of patients in rural areas to obtain effective early diagnosis

locally for follow-up treatment.

Currently, with the proposal of VGG (Simonyan and

Zisserman, 2014), ResNet (He et al., 2016), ResNest (Zhang et al.,

2022), ResNext (Xie et al., 2017) and a series of deep neural

networks, many medical and artificial intelligence researchers used

these model to conduct corresponding training on radiographic

images. The popularity of high-performance hardware maked it

possible to deploy these frameworks in some large hospitals and

enable medical departments to actually use these methods to assist

physicians in clinical diagnosis and reduce patient care costs. Due

to the complex 3-Dimensional (3D) spatial feature of radiographic

images, which is extremely different from the traditional 2-

Dimensional (2D) images, a variety of model were proposed

based on different inputs. Compared to 2D-input models, 3D-

input models get more structure information from data obtained

by continuous scanning, thus they can extract more complex

three-dimensional spital feature. Consequently, inmost application

scenarios, 3D-input models performs better than the former in

recognition tasks. These methods can be divided into 2D deep

learning method and 3D deep learning method. The 2D method

mainly divides the original medical image into multiple slices on a

specific axis and then inputs them into the classical convolutional

neural network for training.However, the 2D method cannot

learn the correlation feature between these slices, so the model

performance is limited. The 3D method directly input the original

image into the 3D improved convolutional neural network for

training, in order to learn more comprehensive feature information

and make up for the above defects.

However, deep models contained a large number of

hyperparameters, which required huge hardware resources.

The gradient descent method is also prone to fall into the optimal

solution, leading to the failure of weight. Researchers need to

find a quick and effective way to solve this problem. In recent

years, on the basis of Random Vector Functional-Link Neural

Network (RVFLNN) (Pao et al., 1994) and Single-layer Linear

Feedforward Network (SLFN) (Sanger, 1989), Chen et al. proposed

the Broad Learning System (BLS) (Chen and Liu, 2017a,b) and

proved its approximation. BLS showed good accuracy and excellent

calculation speed in various classification tasks.

Therefore, on the basis of BLS, we try to combine it with

deep learning to establish a depth-broad ensemble model. The

3D deep convolution module will enable the model to have

the capacity to initially extract features of 3D inputs, while the

broad learning module, as a key part of feature fitting, greatly

reduces the resource consumption of the model and can maintain

a good performance. While Alzheimer’s image recognition is a

emblematic 3D image processing task, it has had a profound

influence on medicine and computer science. There have been

a lot of research on the application of depth model in this

aspect. Applying our proposed depth-broad ensemble model to the

early detetion of Alzheimer’s disease will help drive technological

innovation, reduce the cost of future applications, and better

facilitate the adoption of machine learning technologies in this

field.

In this study, we proposed an improved deep-broad ensemble

model for the detection of AD. This model combined the 3D

extraction capability with the fast operation speed and low

dependence on hardware. It firstly extracted spatial features of

different levels of images, and then fused multi-level features

based on a novel BLS to get better classification results. We

applied this model to the task of MRI image recognition

in Alzheimer’s disease and compared it with some previous

work and the work of radiology readers. Experimental results

demonstrate that the proposed model has excellent accuracy and

computational efficiency.

The main contributions of our study for the early detection of

AD can be reported as follows:

1. We constructed a novel deep-broad ensemble model based

on 3D residual convolution module and Broad Learning

System.

2. The proposed model outperforms previous single deep

models, and has higher training efficiency, less dependence

in hardwares.

3. There is no need to pre-train the deep modules of the

proposed, which greatly reduces the training time.

2. Related works

Early detection of Alzheimer’s disease is a chronic and

significant research topic in computer science area. At present,

a large number of computer-aided early detection methods

for Alzheimer’s disease have been developed. According to the

dimension division of input data, related works can be divided

into two-dimensional input-based research methods and three-

dimensional input-based research methods. Two-dimensional

input methods consist of traditional machine learning model and

two-dimensional deep learning models. The three-dimensional

input method basically takes the three-dimensional deep learning

model as the main backbone. Due to the abundant spatial

pathological information in medical examination images, three-

dimensional methods generally have more advantages in the

detection effect. In addition, some researchers have studied the

characteristics of small sample size of medical test images, or

introduced different types of data to establish a multi-modal

fusion algorithm.
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Rieke et al. trained on a 3D CNN model and applied four

gradient-based and occlusion-based approaches to visualization,

promoting clinical impact and trust in computer-based decision

support systems (Rieke et al., 2018). But 3DCNN contains the

risk of network degradation and gradient disappearance/gradient

explosion after increasing the number of middle layers. Rieke

et al. trained on a 3D CNN model and applied four gradient-

based and occlusion-based approaches to visualization, promoting

clinical impact and trust in computer-based decision support

systems. But 3DCNN contains the risk of network degradation

and gradient disappearance/gradient explosion after increasing the

number of middle layers. Based on convolutional autoencoder

(CAE), Kanghan et al. proposed supervised and unsupervised

classification methods for the diagnosis of Alzheimer’s disease. The

combination of convolutional layer and pooling layer of CAE is

relatively fixed, which limits to construct more complex network

structure. Guan et al. constructed a preliminary standardizedmodel

framework based on ResNet, VGG, DenseNet and other networks,

and comprehensively tested and compared these models using

standard MRI image data sets of Alzheimer’s disease. They found

that these simple architectures performed similarly on the task,

and the pre-training process of these methods has less impact on

accuracy. Korolev et al. proposed VoxCNN based on ResNet to

classify MRI images. This model can achieve better performance

using a small training dataset, and be applied to 3D MRI images

without the need of intermediate handcrafted feature extraction.

However, VoxCNN includes themodule of 3D-Resnet, which needs

to consume more training time and more computing resources

in training.

In the above reports, these methods have achieved excellent

performance in their selected datasets. However, these studies

lacked comparability and robustness among themselves. Most

studies needs lots of GPU resources to train themodel, whichmakes

it difficult to apply the research results widely.

3. Methods

3.1. Approvement statement of institutional
review board

This study is approved by institutional board with written

informed consent waived. All experiments including any

relevant details are approved by institutional and/or licensing

committee. All experiments on humans and/or the use of human

tissue samples were performed in accordance with relevant

guidelines and regulations. All experimental protocols were

approved by the Steering Committee of Alzheimer’s Disease

Neuroimaging Initiative and Academic Committee of Jinan

University. Informed consent was obtained from all subjects

and/or their legal guardian(s).

3.2. Data acquisition

All MRI image data used in this study were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(http://adni.loni.usc.edu/) (Petersen et al., 2010). Founded in

2003, ADNI is a public-private partnership led by Principal

Investigator Michael W.Weiner, MD. The primary goal of ADNI

is to test whether serial magnetic resonance imaging (MRI),

positron emission tomography (PET), other biomarkers, and

clinical and neuropsychological assessments can be combined to

measure the progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD). The latest information about the

ANDI database can be found at (http://adni.loni.usc.edu/). The

ADNI database consists of four sub-databases, including ADNI-1,

ADNI-Go, ADNI-2, and ADNI-3, which are interdependent. The

diagnostic labels of these medical image data are given by doctors

after a series of tests.

ADNI provides several standardized datasets for researchers

to study. In our research, ADNI1 Complete 2Yr 3T standardized

dataset is chosen to train our model, including scans of patients

taken at 6, 12, 18, and 24 months after diagnosis. The dataset

contains 434 subjects, including 77 of AD, 206 of MCI, and 151

of NC. The demographic information of the dataset is shown in

Table 1. We searched the ADNI1 Complete 2Yr 3T standardized

dataset in the ADNI database, packaged it and downloaded. All

image data in this study were stored inNifTI format. Figure 1 shows

the slides samples of this dataset.

3.3. Data preprocessing

Since the data came from many different patient samples, the

size of different data and the location of key parts in the image

may vary to some extent, while the neural network model required

that the size of each input be consistent. At the same time, due to

its intensity and other attributes, MRI image is not suitable to be

directly used as the input image of the model, so it needs to be

transformed to some extent. In conclusion, we have to take a series

of pre-processing measures for the data, so that it can be converted

into appropriate input data, and is conducive to improving the

performance of the model.

In this research, The primitive image size of our ADNI dataset

was 256×256×160. Firstly, Since the pixel size of different medical

scanned images is not the same, all pixels need to be resampled

at a fixed homogeneous resolution. We resampled all MRI images

to 1.5-mm isotropic voxels. Then, we scaled the intensity of the

images to the range (0, 1). Since the region of interest (ROI),

namely the patient’s brain, was basically concentrated in the

center of the image, we cropped the image based on the central

region and removed some peripheral background areas. The final

output after processing were 224×224×128-pixel grid resulting

in 336×336×192-mm2 volume. The above data preprocessing

operations were based on Python 3.8 environment, using package

Monai (https://monai.io/) and package Numpy (https://numpy.

org/) for processing.

3.4. Model details and training

3.4.1. Broad learning system
Although traditional deep neural networks show good accuracy

in traditional recognition and classification tasks, they also expose

problems such as large number of hyperparameters and long

time consuming. At the same time, with the publication of

more types of datasets, researchers need to seek a new method
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TABLE 1 The structure of residual Conv module used in feature mapping layer and enhancement layer.

Layer name Number of Bottle Neck block Number of kernel Kernel size Input Size Output size

3D Conv Layer 0 64 7×7×7 224×224×128 224×112×64

3D AvgPool Layer 0 64 3×3×3 224×112×64 112×56×32

3D Residual Module 1 3 256

1×1×1

112×56×32 112×56×323×3×3

1×1×1

Global AvgPool 0 256 0 112×56×32 256

3D Residual Module 2 4 512

1×1×1

112×56×32 56×28×163×3×3

1×1×1

Global AvgPool 0 512 0 56×28×16 512

FIGURE 1

Partial slice samples of some ADNI datasets: (A–F) AD, (G–L) NC.

with simple structure and fast operation to deal with different

requirements and tasks. In studies over the past few years, classical

single-layer network structures such as Extreme Learning Machine

(ELM) (Huang et al., 2006) and Random Vector Functional

Link Neural Network (RVFLNN) (Pao et al., 1994) have been

proposed successively.

On the basis of RVFLNN (Pao et al., 1994), Chen et al. proposed

Broad Learning System (BLS) (Chen and Liu, 2017a,b). In the

structure of BLS, the basic linear feature of the input was extracted

by the feature mapping layer. The further feature of the former

layer was extracted by the enhancement layer which contained

a non-linear function. Then, the output of these layers were

concat together and transferred to the output layer for classifying.

Since there is only two layers of structure, BLS does not need

to calculate a large number of weight parameters for multiple

middle layers, which saving a lot of calculation resources and

reducing the training time of the model. Previous experimental

results demonstrate that BLS can still achieve excellent performance

in the basic test of image recognition, which proves that BLS has

good potential in the field of computer vision (Chen and Liu,

2017a,b).

For a given input sample X ∈ Rn×m, where n represents the

number of samples, m represents the feature dimension of the

sample. The feature mapping layer is composed of the combination

of feature nodes. The feature nodes and feature mapping layer of

broad learning system can be expressed as following:

di = ϕi(XWen + βen ) (1)

Dn = [d1, d2, ......dn] (2)

where ϕi is the selectable linear or non-linear activation

function, Wen is the random weight, and βen is the random

bias. Wen and βen are usually optimized by sparse auto-coding

algorithm. The enhancement node and enhancement layer of BLS

can be denoted as:

ej = δj(D
nWhm + βhm ) (3)

Em = [E1,E2, ......Em] (4)
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FIGURE 2

Structure of proposed deep-broad ensemble model.

TABLE 2 Demographics of ADNI dataset.

Diagnosis Number of patients Number of images Gender Male/Female Average age All [Male/Female]

AD 18 77 32/45 75.32 [75.71/75.04]

NC 33 151 58/93 76.62 [77.46/76.08]

MCI 35 206 132/74 74.62 [77.45/69.56]

Total 86 434 222/212 75.44 [77.20/73.58]

where δj is the non-linear activation function, Whm is the

random weight, and βhm is the random bias. Then, the feature

mapping layer and the enhancement layer are concated and

transferred to the output layer. Since Wen , βen , Whm , and βhm

remain unchanged in the training process, the objective function

of BLS is:

W(||(Y − Y
′

)||22 +
λ

2
||W||22) (5)

where W is the weight of the output layer of the BLS, Y is the

label of X, ||(Y − Y
′

)||22 is used to control the minimization of

training error, λ

2
||W||22 is used to prevent model overfitting, and

λ is the regularization coefficient. Then, W can be obtained by

seeking the pseudo-inverse of ridge regression:

W = G+Y (6)

G+ = lim
λ−→0

(λI + GTG)−1GT (7)

where I is the identity matrix. Through the above steps, we

constructed a complete Broad Learning System.

3.4.2. Deep-broad ensemble model
Three-dimension radiographic images contain complex

pathological spatial information. However, the original broad

learning system can only receive two-dimensional features as

input, and the ability to extract complex image features is weak.

Integrating the deep convolution module can effectively improve

the feature extraction ability of the broad learning system, which

can better the performance for its classification and recognition

(Chen et al., 2018).

In this paper, we proposed a deep-broad ensemble model

for early recognition of Alzheimer’s disease based on the above

ideas, which aims to maintain a considerable performance of

classification, reduce the dependence of hardware and improve the

efficiency of the model.

As shown in Figure 2, we used a convolution-pooling layer to

initially extract the features of the original input. The size of the

convolution kernel used was 7×7×7, and the size of the pooling

module was 3×3×3.The backbone of the model is composed of a

3D residual convolution—feature mapping layer and a 3D residual

convolution—enhancement layer. The 3D residual convolution—

feature mapping layer can be divided into residual convolution

module and feature mapping module. The former is composed of

several 3D bottleneck convolution modules (He et al., 2016), which

are used to extract shallow features of the input, and transform

these features into feature vectors with a size of 256 through the

global pooling, and then input into the feature mapping module for

further processing; The 3D residual convolution enhancement layer

also includes several 3D bottleneck convolution modules as the
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former to extract deeper features. The feature vectors are then input

to the enhancement module through the global pooling, which is

different from the input of the enhancement layer in the original

FIGURE 3

Receiver operating characteristic (ROC) curve of the proposed

deep-broad ensemble model trained on 70% of 3YR 2T ADNI

dataset and tested on the remaining 30% of ADNI dataset and

independent test set. ROC curve labeled Alzheimer Disease (AD)

represents the essential performance for distinguishing AD vs. all

other cases. ROC curves for Mild Cognitive Impairment (MCI) and

Normal Control (NC) are also reported for technical completeness.

BLS. Detailed parameters of the deep module used in the whole

backbone model are shown in Table 1. Finally, feature mapping

module and enhancement module are mapped to the output layer

to produce classification results.

For a Given the original MRI image input X, the output feature

vector after the first convolution-pooling layer is:

Xbase = λconv−pool(X) (8)

The feature vector of the output after the residual convolution

module of the 3D residual convolution-feature mapping layer and

the 3D residual convolution-enhancement layer can be denoted as:

Xd = λd(Xbase) (9)

Xe = λe(λd(Xbase)) (10)

where λd() indicates the residual convolution module of 3D

residual convolution-feature mapping layer, and λe() indicates

the residual convolution module of 3D residual convolution-

enhancement layer. According to formula (1)–(4), feature nodes,

feature mapping modules, enhancement nodes, and enhancement

mapping modules of Broad learning can be denoted as:

di = [ϕi(XdWen + βen )] (11)

Dn = [d1, d2, ......dn] (12)

ej = [δj(XeWhm + βhm )] (13)

Em = [E1,E2, ......Em] (14)

According to formula (6)–(7), the final classification output Y

can be obtained. Thus, we constructed a 3D Convolution Broad

Learning System based on 3D medical image input.

FIGURE 4

The accuracy of the model under di�erent hyperparameters (A) Feature nodes, (B) Enhancement nodes, (C) Sparsity coe�cient.

Frontiers inNeuroscience 06 frontiersin.org121

https://doi.org/10.3389/fnins.2023.1137557
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ma et al. 10.3389/fnins.2023.1137557

3.4.3. Model training
After data preprocessing, the original image was converted into

a 224×224×128 matrix as the input of the model. The server we

used for model training had a AMD EPYC 7543 32-core Processor,

90 GB of RAM, Nvidia GeForce RTX 3090 GPU with CUDA 11.1.

We set up two groups of experiments whose convolution

module was non-pre-trained and pre-trained respectively for

comparison. The dataset used for pre-training was ADNI training

dataset (347 images). In the pre-training experiment, we set cross

entropy as the loss function, with the learning rate of 0.0001, the

optimizer of momentum-SGD, and the batch size of 4.

For the broad module in the model, the range of feature nodes

was [500–4,000], the range of enhancement nodes is [100–1,000],

and the range of sparsity coefficient is [0.4–0.7]. We used Pytorch

1.8 and Numpy to construct the program of the model presented

in this article, and all programs and experiments were run in

Python 3.8.

TABLE 3 Comparison of the proposed model and radiology readers.

Method Accuracy
(%)

Sensitivity
(%)

Precision
(%)

AD vs. NC

Deep-broad ensemble

model (Pre-trained)

90.57 91 91

Deep-broad ensemble

model (Not Pre-trained)

92.65 91 91

AD vs. MCI

Deep-broad ensemble

model (Pre-trained)

93.58 92 91

Deep-broad ensemble

model (Not Pre-trained)

91.57 92 92

MCI vs. NC

Deep-broad ensemble

model (Pre-trained)

76.44 74 75

Deep-broad ensemble

model (Not Pre-trained)

84.68 85 84

The data are presented as Maximum.

3.5. Model testing and analysis

For the three groups of models after training, we used the ADNI

test dataset for testing. The model finally outputs the probability

that an image belongs to one of these categories. The category

with the highest probability was selected as the classification result.

We calculated the final classification accuracy, Precision and Recall

based on this result. In addition, We studied the stability of the

model by modifying the hyperparameters.

3.6. Clinical interpretation of MRI

To compare the performance of our proposed model with that

of an actual radiology reader, a board-certified nuclear medicine

physician with several years of experience (HuanHua Wu, nuclear

medicine) was invited to perform a discriminative analysis of 87

MRI images from the ADNI test dataset. In order to prevent

data leakage, the reader can only obtain MRI image data and the

number of the subject, and analyze them based on their professional

experience.Wewill calculate the corresponding indicators based on

this result.

4. Results

4.1. Demographics

As shown in Table 2, The dataset used in this study contained

434 MRI images from 86 patients, which contained three types

of Alzheimer’s symptoms: AD, patients with Alzheimer’s disease;

MCI, mild cognitive impairment; NC, normal person. Seventy-

seven images were obtained from AD, 151 from NC, and 206 from

MCI. Partial slice images of AD and NC cases in the dataset are

shown in Figure 4. The average age of all patients was 75.44 years

old (range from 55 to 90 years), including 73.58 years old for female

(range from 55 to 90 years) and 77.20 for male (range from 57 to 89

years). The average age of AD groups was 75.32 years (range from

57 to 90 years), with the average age of 75.04 years for female (range

from 64 to 90 years) and 75.71 years for male (range from 57 to

87 years). The average age of MCI groups was 74.62 years (range

from 55 to 89 years), with the average age of 69.56 years for female

FIGURE 5

The visualization of training set after dimension reduction with t-distributed stochastic neighbor embedding (t-SNE). Each point represents the final

features of the proposed deep-broad ensemble model. (A) t-SNE for the AD/CN, (B) t-SNE for the AD/MCI, (C) t-SNE for the NC/MCI.
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TABLE 4 Comparison of the proposed model and previous related work.

Method Accuracy (%) Sensitivity (%) F1-score(%) Time(s)

AD vs. NC

Deep-broad ensemble model 90.97± 1.02 91 91 1.3731

ResNet-18 (He et al., 2016) 73.53± 0.97 74 67 †1920

DenseNet-121 (Huang et al., 2017) 69.12± 2.93 69 69 †2480

VCNet (Rieke et al., 2018) 70.56± 2.91 71 58 †1440

CAE (Oh et al., 2019) 85.24± 3.97 88 nan nan

ICAE (Oh et al., 2019) 86.60± 3.66 88 nan nan

Guan’s work (Guan et al., 2019) 69.12± 0.57 69 64 †2120

VoxCNN (Korolev et al., 2017) 72.06± 1.43 72 64 †2800

AD vs. MCI

Deep-broad ensemble model 91.16± 3.86 94 94 1.4745

ResNet-18 (He et al., 2016) 77.11± 1.20 77 68 †1920

DenseNet-121 (Huang et al., 2017) 70.59± 1.47 71 58 †2480

VCNet (Rieke et al., 2018) 74.69± 1.24 75 65 †1440

CAE (Oh et al., 2019) 74.68± 6.04 75 nan nan

ICAE (Oh et al., 2019) 75.06± 3.86 77 nan nan

Guan’s work (Guan et al., 2019) 71.08± 2.41 71 67 †2120

VoxCNN (Korolev et al., 2017) 75.90± 0.10 76 66 †2800

MCI vs. NC

deep-broad ensemble model 83.39± 1.31 85 84 1.6825

ResNet-18 (He et al., 2016) 57.65± 0.90 58 55 †1920

DenseNet-121 (Huang et al., 2017) 55.86± 2.81 56 45 †2480

VCNet (Rieke et al., 2018) 58.56± 0.91 59 53 †1440

CAE (Oh et al., 2019) 62.83± 5.17 66 nan nan

ICAE (Oh et al., 2019) 63.34± 4.16 69 nan nan

Guan’s work (Guan et al., 2019) 56.76± 3.72 58 57 †2120

VoxCNN (Korolev et al., 2017) 59.46± 0.90 59 49 †2800

Unless otherwise stated, the data are presented as Mean± Std.

†The data here is represented as the average of the three tasks.

(range from 55 to 82 years) and 77.45 years for male (range from 63

to 89 years). The average age of NC groups was 76.62 years (range

from 70 to 88 years), with the average age of 76.08 years for female

(range from 71 to 82 years) and 77.46 years for male (range from 70

to 88 years).

4.2. Result of training

The preprocessed dataset was divided into training set and test

set in a ratio of 0.7:0.3. We trained models for AD/CN, AD/MCI,

andMCI/NC tasks respectively. Accuracy (ACC), sensitivity (SEN),

and F1-score were used to evaluate the performance of them, and

the training time of each model was recorded.

As shown in Table 4, in the tests of AD/CN, AD/MCI, and

MCI/NC, the average of accuracy for prediction were 90.97, 91.16,

and 83.39%. SEN is 91, 94, 85%. F1-score is 91, 94, 84%. The above

results indicated that the proposed model has good discrimination

ability in AD/NC and AD/MCI tasks, but weak discrimination

ability in MCI/NC tasks. The ROC curves of the proposed deep-

broad ensemble model method trained on 70% of ADNI dataset

were shown in Figure 3.

Because the broad module of the model required different

hyperparameters, We also verified the stability of the model

based on different hyperparameters. Due to the huge range

of hyperparameters (range of feature mapping nodes: 500–

4,000, range of enhancement node: 100–1,000, range of

sparsity coefficient: 0.4–0.7), we took several hyperparameters

values as representative. As shown in Figures 4A–C, when

the number of feature mapping nodes and the sparse

coefficient increased, the model maintained good stability.

When the number of enhancement nodes increases, the

stability of the model is generally acceptable, excluding some

unstable intervals.
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TABLE 5 Comparison of the proposed model and radiology readers.

Method Accuracy (%) Sensitivity (%) Specificity F1-score(%)

AD vs. NC

Deep-broad ensemble model 92.65 91 89 91

Radiology readers 68.57 38 22 35

AD vs. MCI

deep-broad ensemble model 93.58 94 92 94

Radiology readers 75.00 43 21 29

MCI vs. NC

deep-broad ensemble model 84.68 85 81 84

Radiology readers 61.76 66 45 68

The data are presented as Maximum.

In addition, We explored the influence of the pre-training for

the deep module on the final classification performance of the

model. As shown in Table 3, the non-pre-trained model performed

better than the pre-trained model on the AD/NC and NC/MCI

tasks (maximum accuracy of 92.65/90.57 and 84.68/76.44), while

the two performed similarly on the AD/MCI tasks (maximum

accuracy of 92.76/91.57).

Since the BLS itself had considerable ability of feature fitting,

the deep module of the proposed model was mainly used to further

extract complex space features of medical image, enhancing the

feature extraction ability of BLS. Therefore, the pre-training of deep

module was not decisive. The broadmodule is decisive in the fitting

of image features. If the cost of pre-training process was removed,

the training time of the model proposed can be further reduced,

lowing the dependency of hardwares and improving the efficiency

of the model.

4.3. Model interpretation: t-SNE plot

As shown in the Figure 5, We clustered the final features of

the models in the three experiments respectively after dimension

reduction by t-SNE. In AD/NC and AD/MCI classification

experiments, the corresponding categories were almost pure, with

only a small amount of mixing. In the NC/MCI experiment, the

mixture of the two categories was more common. Therefore, we

concluded that the proposed model is highly sensitive to AD

categories, because most of the sample points were in the clustering

of AD; we achieved high accuracy in both experiments.

4.4. Comparison to previous works

We compared the proposed model with some previous works,

which had developed several deep models in this task. Due to the

lack of relevant hyperparameter reference, we set the number of

training epochs to 40 for each work. As shown in Table 4, in the

three tasks of AD/CN, AD/MCI and MCI/NC, the accuracy of the

proposed model outperformed these works. The training time of

the proposed model was much shorter than that of these deep

models, because there was no need to update the weight parameters

of the deep module of the proposed model. Therefore, compared

with the previous works, the proposed model had a considerable

optimization effect, less dependence on computer hardware, and

was easier to deploy in the actual diagnosis process.

4.5. Comparison to clinical Interpretations

As shown in Table 5, in the above tasks, the accuracy of

radiology readers were 68.57, 75.00, 61.76%. Sensitivity were 38, 43,

66%. F1-score were 35, 29, 68%. Compared to radiology reader’s

work, the proposed model had better performance in the detection

of ADNI datasets, which has statistical significance.

5. Discussion

The diagnosis and treatment of Alzheimer’s disease is becoming

an important medical issue for decades to come. Millions of

Patients with Although Alzheimer’s disease provides a rich data

base for the improvement of diagnostic theories, it brings great

work pressure and challenges to front-line doctors.

At present, computer science researchers had developed many

detection models for radiographic images of the Alzheimer’s

disease. However, these current models almost consisted of single

deep networks. This would lead to the problem that the models

were highly dependent on hardwares, which was difficult to be

popularized in non-urban areas where relevant hardware was

lacking. To solve the above problems, we constructed a deep-

broad ensemble model for radiographic images based on the novel

BLS which has higher efficiency. Then, we trained and tested

the model using the MRI dataset obtained from ADNI database,

and calculated the corresponding accuracy, sensitivity and F1-

score according to the results. We also compared the model with

some previous work and results from radiology reader. The results

demonstrates that compared with the previous work and the

reader, the proposed model has better performance and greatly

reduces the training time. Meanwhile, we studied the effect of

the deep convolution module and the improved BLS module on

the model. The results demonstrates that BLS was still the core
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of the model. The function of the deep module was to enhance

the feature extraction capability of the BLS module, thus requiring

no pre-training, which would greatly improve the performance of

the model proposed in this paper. Our experiment had certain

limitations. Firstly, the amount of data used in this study is still

relatively small (434 images) due to the limited number of public

medical image datasets for Alzheimer’s disease currently available

for research. Therefore, the robustness of the proposed model has

not been verified on larger and more general data, which limits the

application of our proposed model in real scenarios.

Second, BLS is a non-deep learning framework. Although

its interpretability of it has been proven (Chen et al., 2018),

BLS is not as widely used as deep neural network. Broad

Learning System itself also has the limitation of relatively low

accuracy, and its application in medical imaging and other

fields lacks of universal reference. The hyperparameter setting of

the proposed model relies on the previous research experience

of machine learning researchers and lacks a better adjustment

method (Gong et al., 2021).

In general, our experiment and research results demonstrate

that our proposed deep-broad ensemble model method

significantly reduces the training time while maintaining

good detection performance. This makes our model play

a referential role in practical medical image diagnosis and

reduces the dependence on external hardware. With the

opening of more medical image data, the model proposed in

this paper can be better applied to first-line clinical diagnosis

and provide reliable reference for doctors and medical

image readers.
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Introduction: Brain Network Models (BNMs) are mathematical models that 
simulate the activity of the entire brain. These models use neural mass models to 
represent local activity in different brain regions that interact with each other via a 
global structural network. Researchers have been interested in using these models 
to explain measured brain activity, particularly resting state functional magnetic 
resonance imaging (rs-fMRI). BNMs have shown to produce similar properties 
as measured data computed over longer periods of time such as average 
functional connectivity (FC), but it is unclear how well simulated trajectories 
compare to empirical trajectories on a timepoint-by-timepoint basis. During task 
fMRI, the relevant processes pertaining to task occur over the time frame of the 
hemodynamic response function, and thus it is important to understand how 
BNMs capture these dynamics over these short periods.

Methods: To test the nature of BNMs’ short-term trajectories, we used a deep 
learning technique called Neural ODE to simulate short trajectories from 
estimated initial conditions based on observed fMRI measurements. To compare 
to previous methods, we solved for the parameterization of a specific BNM, the 
Firing Rate Model, using these short-term trajectories as a metric.

Results: Our results show an agreement between parameterization of using 
previous long-term metrics with the novel short term metrics exists if also 
considering other factors such as the sensitivity in accuracy with relative to 
changes in structural connectivity, and the presence of noise.

Discussion: Therefore, we conclude that there is evidence that by using Neural 
ODE, BNMs can be  simulated in a meaningful way when comparing against 
measured data trajectories, although future studies are necessary to establish 
how BNM activity relate to behavioral variables or to faster neural processes 
during this time period.

KEYWORDS

Brain Network Model, fMRI, deep learning, Neural ODEs, initial condition

1. Introduction

Brain Network Models (BNMs) represent whole brain activity as the coordination of many 
distinct neural populations that are connected via a structural network consisting of long-
distance white matter tracts (Sanz-Leon et al., 2015; Breakspear, 2017). Simulations of these 
network models are being compared to experimental measurements such as functional magnetic 
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resonance imaging (fMRI). At this spatiotemporal scale in fMRI, the 
measured activity is thought to be an averaged property of the neural 
populations and occurs relatively slowly (<1 Hz) compared to the 
faster neural information processes and the measured fMRI signal is 
thought to represent the coordination between brain regions over the 
structural network (Deco et  al., 2009). BNMs have been able to 
reproduce properties observed in fMRI, especially during rest where 
the brain is not exposed to a structured experimental task or stimulus 
and the whole brain activity is thought to mostly arise from intrinsic 
network loops between cortical regions (Honey et al., 2007; Cabral 
et al., 2011; Sanz-Leon et al., 2015). Thus, BNMs have been used as a 
generative framework in order to analyze how local neural activity 
could translate to global coordination and how changes due to neural 
pathologies translate to observed aberrant dynamics (Ritter et al., 
2013; Sanz-Leon et al., 2015; Saenger et al., 2017; Schirner et al., 2018).

Current research does not utilize a single type of population 
model to construct BNMs. Instead, depending on the application and 
the underlying assumptions, different neural mass models are selected 
to represent whole brain activity (Sanz-Leon et  al., 2015). For 
replicating rs-fMRI, several models have been shown to reproduce 
time-averaged properties such as functional connectivity (FC), 
computed via cross correlation of long time-courses of pairs of brain 
regions (Cabral et al., 2017). Due to the lack of a stimulus onset used 
as a reference in rs-fMRI, comparisons between simulations and 
measured data are made over a long time window and use time 
averaged metrics rather than direct comparisons of the predicted 
trajectories with the measured timeseires (Cabral et al., 2011, 2017; 
Kashyap and Keilholz, 2019). Researchers are interested in BNM 
predictions on a time-point basis because many neural processes 
observed in fMRI occur over these timescales, such as responses to 
task stimuli or aberrant responses due to neural pathologies. While 
previous studies have examined faster processes in BNM’s, such as 
comparing them with multimodal recordings such as EEG data 
(Schirner et al., 2018), no prior investigations have examined how well 
short-term trajectories, defined by a series of consecutive fMRI 
measurements, are being reproduced by current BNMs. To address 
this gap, we  solve for initial conditions relative to an observed 
trajectory for a given BNM and then compare the synchronized 
predictions of the simulation with the observed timeseries.

We hypothesize that the BNMs that are better approximation of 
the underlying dynamical system in whole brain dynamics determined 
using traditional long-term measures, will evolve more closely to the 
measured rs-fMRI trajectories. An agreement of parameterization 
between the long-term metric and the investigated short term metrics 
would support the evidence that BNM’s are simulating meaningful 
trajectories. Moreover with these initial conditions, BNMs can be later 
used to simulate and investigate neural processes during these short 
timeframes such as relation to task fMRI behavioral variables.

The initial conditions are estimated, by utilizing a novel method 
developed in the Machine Learning community that utilizes a 
sequence of observations and a given dynamical system to output the 
initial conditions of the dynamical system that would be the closest fit 
to the current observed data trajectory. The technique, known as 
Neural Ordinary Differential Equations (ODE), uses a recurrent 
neural network (RNN) that keeps track of information from previous 
timepoints, in order to predict the initial conditions of a given 
dynamical system based on previous observations (Chen et al., 2019). 
The neural network model is trained via one step prediction, namely 

from the estimated initial conditions we  integrate the known 
dynamical system to predict the next timestep and compare it with the 
true next step. The algorithm, therefore, regardless of the dynamical 
system, gives similar predictions over the first-time interval but the 
trajectories diverge over longer periods of integration due to 
differences in the dynamical system and become less dependent on 
initial RNN predictions.

A potential issue to this approach is that both the signal simulated 
as well as the measured rs-fMRI signal are thought to be produced by 
stochastic processes. For simulations this is achieved by adding noise 
to the models differential equations. This noise might affect the 
approaches’ ability to discriminate correctly between different BNMs 
on their ability to simulate rs-fMRI, as it adds variance to the data. 
However, previous studies have shown that despite their variability 
dynamic metrics are better than metrics computed over a long period 
of time to parameterize BNM, thus suggesting that even in shorter 
windows allows for discrimination between models (Kashyap and 
Keilholz, 2019).

To test whether this approach can correctly identify components 
of a known BNM, we used the Firing Rate Model (FRM) from Cabral 
et al. (2012), as a candidate dynamical system to fit to the rs-fMRI 
data. The FRM is a linear model that defines the change in dynamics 
in a single neural population as a weighted sum of its network 
neighbors and applies an exponential decay term to prevent runaway 
excitation (Cabral et al., 2012). The model contains three components 
(global coupling, noise amplitude, structural matrix), which are varied 
independently, and a specific Neural ODE is trained for each variation 
to solve for the initial conditions. The results show that without noise, 
maximizing accuracy over the short time window yields trivial BNMs 
that do not depend on the structural connectivity. However, in the 
presence of noise the trend reverses and models with strong structural 
connectivity perform better than the models with weak or no network 
influence. Since the value of noise is unknown, an additional 
parameter, namely the structural connectivity was varied by slowly 
adding noise to the original connectivity, and the sensitivity due to this 
change in network was measured. The FRM that exhibited the greatest 
changes in accuracy due to perturbations of the structural connectivity 
had a parameterization that was in agreement to the one established 
using long term metrics.

In short, the manuscript demonstrates that Neural ODE approach 
can simulate FRM trajectories that can be meaningfully compared 
with measured rs-fMRI data. The differences in parameterizations of 
the model with respect to rs-fMRI data observed during this 
timeframe are similar to those observed over longer simulations. 
Therefore, this tool can be used in the future to analyze BNM on 
shorter timescales with respect to measured data such as for task 
fMRI. Furthermore, it can serve as an unbiased metric to directly 
compare the signal with the models and aid in the development of 
discovering more powerful models that recapitulate whole 
brain activity.

2. Methods

2.1. Overview

This section is organized by first describing functions that are used 
to fit to the rs-fMRI data, mainly BNMs but also certain null models 
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that are used for comparison. The subsequent sections then describe 
how the Neural ODE algorithm is used to infer the initial conditions 
of a given dynamical system based on previous measurements. 
We describe our own implementation of the Neural ODE algorithm 
that was specifically designed to train on large amounts of imaging 
data (Chen et al., 2019). The algorithm was validated using synthetic 
data from a simple spiral dynamical system described in detail in the 
Supplementary sections. The subsequent sections after describing the 
algorithm, deal with the processing of experimental fMRI and DTI 
data used to construct the models. The final section outlines how the 
simulated trajectories are compared with empirical trajectories.

2.2. Brain Network Models

Brain Network Models are used as models for whole brain 
network activity. BNMs combine a mathematical description of the 
intrinsic activity of a neural population with the global brain structure 
that coordinates the activity between populations. To construct a 
BNM, researchers first define a structural network, based on a 
parcellation scheme that outlines which cortical areas work cohesively 
as a neural population. In this manuscript, the Desikan Killiany atlas 
is used as a parcellation scheme as it has been used successfully before 
for whole brain simulations (Cabral et  al., 2011, 2012). Only the 
cortical areas without the insula are represented in the model 
constituting a total of 33 regions for each hemisphere for a total of 66 
brain regions. These regions serve as the nodes in the network model, 
while network neighbors are defined using tractography to map out 
fibers that connect two regions of interest. The change of the activity 
in the ith brain region is defined as follows:
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The first term represents the network component which is 
described by a function F that depends on its own activity xi, activity 
in its neighbor xj, and the physical properties of the fiber represented 
by the vector ρ (i.e., the number of fibers between regions, the delay 
in propagation). The second term consists of a function G that 
represents external input, whose activity is represented by a 
k-dimensional vector u representing all sub-cortical and sensory 
inputs, and the vector π representing again the physical properties that 
project these inputs into the cortical model (i.e., thalamic tracts into 
cortex). The last term represents a zero-mean Gaussian noise from the 
neuronal populations or from omitted higher order terms from the 
network equations. For resting state activity, the assumption is that uk 
(t) = 0 ∀ t and the first term dominates the change in activity. This still 
leaves a large family of functions that are used to approximate F, with 
many parameters that can widely change the dynamics of the system. 
In theory, all of these functions can be used to fit the fMRI data with 
the Neural ODE algorithm, and for each of them initial conditions can 
be estimated from empirical data. In this manuscript, we focus on the 
Firing Rate Model, the simplest model that can recapitulate whole 
brain activity, and use it to solve for initial conditions in the 
Neural ODE.

2.2.1. Firing Rate Model
The FRM represents the activity of a brain region as the mean 

firing rate. The change in firing rate of a region depends on a weighted 
sum of all its neighbors’ activity (Eq. 1). The FRM has two parameters: 
the global coupling parameter k, which controls the strength of 
network input, and the level of noise amplitude σ, which simulates 
random activations of brain regions due to unknown neuronal activity 
(Cabral et al., 2012). At values of k < 1/(max eigenvalue of W), the 
system is stable and the system decays to the origin without extraneous 
noise input. Typical values are k = 0.9/(max eigenvalue of W) and 
σ = 0.3 (based on the Desikan Killiany atlas) where there is a trade-off 
injecting noise in order to perturb the dynamics and the relative 
strength of the network to keep the neural areas functionally linked 
over time (Cabral et al., 2012).
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2.2.2. Parameter and structural perturbations
Each of the components of the FRM are varied. These components 

include the global coupling parameter k, the amplitude of the noise 
level σ, and the structural weight matrix W. The global coupling 
parameters and the structural matrix are fixed before using the Neural 
ODE algorithm, such that for each specific set of values for k and W a 
separate LSTM network is trained to generate initial conditions. To 
vary the global coupling parameter, the parameter k in Eq.  1, is 
adjusted from 0.9 to 0  in 0.15 intervals. To generate structural 
perturbations, a random percentage of the original edges are swapped 
to connect two different nodes while keeping the graph symmetric. 
This creates random perturbations from the original structural matrix 
while maintaining the number of edges. Each of these graphs would 
result in different dynamics, but the trajectories from the model 
containing the original structural connectivity should be the closest 
to the measured rs-fMRI data. The noise parameter is not used in 
training the LSTM Neural ODE model. However, during testing after 
the initial conditions are estimated the noise is introduced by testing 
σ using values [0.0001, 0.15, 0.3, 0.45].

2.2.3. Null models
To compare the effects of fitting to the Neural ODE with other 

functions, the rs-fMRI data is fitted with null models that do not 
simulating network activity. The simplest of these models sets the 
Neural ODE equations to 0, such that the prediction of the LSTM is 
the output of the model. This quantifies how well the LSTM network’s 
initial condition prediction matches the next predicted output without 
any of the BNM functions. For future timesteps, it acts as a simplified 
autoregressive model by holding the current input as the output, i.e., 
x(n + 1) = x(n). This is implemented by setting the connectivity matrix 
in Eq. 2 to an identity matrix which cancels out with the first term and 
sets the equation to 0, and is referend to as the Autoregressive (AR) 
model. The second null model is obtained by setting the global 
coupling parameter to zero in the FRM and the differential equations 
reduce to an exponential decay. This model should perform worse 
than the BNM equations but test the limits of the global coupling 
values. Finally, we compare it to a pure Machine Learning Inference 
model as published in Kashyap and Keilholz (2020), where at each 
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timestep, the output of the LSTM is fed in as the next input. This 
model is non-deterministic as the output of the LSTM is sampled from 
a distribution. The function implemented by the LSTM in this case is 
completely unknown, as even the noise level changes as a function of 
the input. This model, however, gives a good estimate of an upper-
bound on predictability on a short time window and does better than 
using traditional BNMs and can replicate complex resting state 
processes as Quasi Periodic Patterns and dynamic functional 
connectivity analysis performed using K-means (Kashyap and 
Keilholz, 2020).

2.3. Neural ordinary differential equations

The Neural ODE algorithm is designed to estimate the initial 
conditions of a given dynamical system based on past observations. 
Figure 1 provides an overview of the algorithm, which involves fitting 
to a spiral dynamical system based on noisy observations using Neural 
ODE. The task of the recurrent neural network is to predict the true 
initial conditions of the spiral dataset (shown as blue underlying 
trajectory in Figure  1) based on the sequence of observed 

measurements shown in green. A RNN implementation known as 
Long Short Term Memory (LSTM) was used to perform this task, as it 
keeps the information of past data observations [x0 to xt-1] in its hidden 
state pt-1 (Graves and Schmidhuber, 2008). Thus, when the timeseries 
is fed into the RNN one timepoint at a time, the current information is 
incorporated into the hidden state and is passed forward as shown in 
the LSTM unrolled version, in order to aid in the prediction of future 
observations. The LSTM’s predictions become more accurate as it 
observes more data, up to a certain limit beyond which newer data 
does not add any new information to the hidden state (Graves and 
Schmidhuber, 2008). For this particular task, the LSTM’s output is 
defined as the initial conditions of a given dynamical system. Since the 
initial conditions are not known and thus an effective gradient cannot 
be computed based on initial conditions alone. Therefore, the algorithm 
assumes that the next observation is the integral of the predicted initial 
conditions and the given dynamical system with some noise added to 
it (Chen et al., 2019). The loss function is calculated based on the 
measurement at the next timestep in ensure the output of the LSTM to 
converges to the correct initial conditions for the given timepoint. A 
schematic of the algorithm as well as the Tensorflow implementation 
are shown in Supplementary sections 7.1, 7.2.

FIGURE 1

Schematic of the neural ODE algorithm. Schematic of the neural ODE algorithm. An example spiral trajectory is shown in panel B with green points 
representing the data sequences. The RNN takes in one data point at a time and updates its hidden state as well as outputs its prediction for the initial 
condition. The hidden state keeps track of information from previous observations and is carried forward to future time steps, as illustrated in the RNN 
unrolled diagram. The output of the RNN represents the initial condition of the dynamical system at that timestep. For the spiral dataset, the true 
ground truth initial condition xt∗ is known and is illustrated in bottom right. The ground truth distance is used to evaluate the trained RNN network’s 
ability to predict the initial conditions in the constructed dataset. The next timepoint is predicted by integrating the ODE system based on the given 
dynamical system. The loss function is defined as the difference between the next predicted timepoint and the next observed time point, xt+1. 
Minimizing the loss function distance minimizes the distance to the ground truth initial conditions. (Mars, 2020).
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2.4. Experimental data

2.4.1. Structural network for Brain Network Model
To estimate the structural network, tractography was run on 5 

HCP Diffusion Weighted Images using the freely available software 
Mrtrix (Van Essen et al., 2013; Kashyap and Keilholz, 2019). The fiber 
orientations in the DWI images were first estimated using constrained 
spherical deconvolution. Next, using a probabilistic streamline 
algorithm, 100 million fibers set at a maximum length of 250 mm were 
computed for each individual and then filtered to 10 million fibers. To 
construct the structural network, we determined the number of fibers 
that intersected two ROIs in the Desikan-Killiany atlas and normalized 
the power by dividing by the surface area of the receiving region 
(Desikan et  al., 2006; Hagmann et  al., 2008; Cabral et  al., 2011). 
Finally, the matrix is normalized by dividing by the largest eigenvalue 
such that the graph Laplacian (k*SN-I) has only negative eigenvalues 
(Cabral et al., 2012). This normalization ensures that the feedback 
decays and prevents an exponential increase in the signal over time.

2.4.2. fMRI data
The fMRI data used to test and train the models were obtained 

from the Human Connectome Project 447 Young Adult subjects 
release. The scans were pre-registered to Montreal Neurological 
Institute (MNI) space in surface format (MSMAII) and denoised 
using 300 Independent Component Analysis, following the 
recommended steps by Salimi-Khorshidi et al. (2014). The surface-
vertex or grayordinates time series were transformed to the ROI time 
series by averaging all vertices based on the Desikan-Killiany atlas 
parcellation. This was done on an individual level since the surface 
parcellations are provided to by HCP and Freesurfer for each 
individual subject (aparc and aprac2009 files). The signal was then 
bandpass filtered from 0.0008 to 0.125 Hz and then the global signal 
was regressed using a general linear model using the mean timeseries 
of all cortical parcels as the global signal. Finally, the signal is 
subsequently z-scored as described in Kashyap and Keilholz (2019). 
For the task data, each dataset (language, working memory, motor, 
social, emotional, gambling, relational) was processed separately and 
then concatenated together. Each task dataset was truncated to the 
closest multiple of 50 timepoints and the autoencoder was fed 
alternating segments of task and the rest data for training. The 
algorithm was trained using both task data as well as rest data, because 
the algorithm performed better on most metrics with more varied 
data. Furthermore, it is believed that during task activity, resting state 
networks dominate most of the cortical activity and task networks 
often look indistinguishable from rs-fMRI networks (Smith et al., 
2009). However, during evaluation, only the results on predicting 
future rs-fMRI were presented, while task will be  addressed in 
future work.

2.5. Metrics and evaluation between 
simulated and empirical trajectories

The dynamical models are evaluated on how well they fit with the 
empirical observations from the estimated initial conditions. For the 
spiral dataset, the true initial conditions were known, allowing for 
direct calculation of results using a Euclidean distance between the 
estimated and true initial conditions. For the fMRI data, the r-squared 

and the mean squared error at each timepoint between the predicted 
and observed data vectors representing the activity of 66 brain regions 
were calculated. Since the loss function of the Neural ODE algorithm, 
converges to zero during training across most models, this metric 
tends to be  most similar when comparing across models (see 
Supplementary section 7.7). Therefore, in order to differentiate 
between the models, the error was calculated for subsequent 
timepoints to gauge how well the trajectory follows the timeseries over 
a longer period of time. The results were calculated across a set aside 
test dataset using a batch of subjects (N = 80). The Supplementary 
section 7.5 discusses the differences in variances between group and 
individual models, and the effect of testing at every timepoint versus 
a few timepoints. While there is no pronounced difference in testing 
a few timepoints and evaluating the system at every timepoint, there 
is a large difference in variance between the averaging the error out in 
a batch of subjects (N = 80) vs. in the individual models. The group 
metric was selected for its smaller variance and greater robustness, 
given the purpose was fit a group model rather than an individual 
model for the HCP resting state dataset using the Neural 
ODE algorithm.

3. Results

The objective of this study was to assess the feasibility of using 
Neural ODEs to solve for the initial conditions of BNMs, and 
subsequently differentiate between different models based on how well 
they follow the resulting rs-fMRI measurements. To validate this 
approach, the methodology was applied on a constructed spiral 
dataset where the true underlying dynamical system was known and 
the correct coefficients are shown to be  determined using this 
approach. Subsequently, the technique is applied to fit with the 
rs-fMRI dataset using a FRM, and the model parameters and 
coefficients are estimated and shown to be similar to previous literature.

3.1. Differentiating between dynamical 
systems on spiral data

The process of generating the spiral dataset was explained in detail 
in Supplementary sections 7.3–7.7, but, in essence, it involved a two 
variable linear dynamical system and that was often used as an 
example in machine learning literature to show the feasibility of 
solving for initial conditions. The Supplementary sections began by 
showcasing the results from the previous paper Chen et al. (2019), 
where the Neural ODE algorithm’s predictions converged to the right 
initial conditions after observing a sufficient number of previous 
timesteps to allow the LSTM to make valid predictions. The 
subsequent sections detailed the methodology used to determine the 
network hyperparameters such as the hidden size and number of 
layers. Larger networks were found to be more sample-efficient as they 
could predict the initial conditions based on fewer timepoints. At a 
certain size, the accuracy did not improve much with alterations to the 
network and was used as the model to perform the following 
experiment on system identification.

The spiral data was generated using a known system of differential 
equations as presented in Figure 2 (top right). The objective of the 
Neural ODE algorithm was to solve for the initial conditions for each 
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of the candidate dynamical systems with respect to the observed data. 
Each of the systems contained distinct coefficients in their respective 
weight matrices, where W1 represented the original dynamical system 
and W2, and W3 contained the original structural matrix perturbed 
with increasing noise. The findings illustrated in Figure 2 depicted 
three instances of fitting these spirals to generated spiral data for 
different weight matrices. The results demonstrated that, in short time 
periods after the initial conditions, the other candidate systems fit the 
data as well as the original system for the first few points after the 
initial conditions. Nonetheless, in the long run, the spiral matrix W1 
was found to be the closest to the data in Euclidean distance, as shown 
in Figure 2 (bottom right). Therefore, since the Neural ODE fits any 
dynamical system tangentially in time, it is important to observe 
dynamics sufficiently long enough to differentiate between the models. 
At very long intervals, the distance starts to decrease as all trajectories 
converge to an attractor based at the origin, which is special for the 
spiral dynamical system and not present in the neural data. In 
summary, the results on the synthetic spiral data show that it is 

possible to use this method as a system identification, but the systems 
need to be simulated for a long enough time interval for the differences 
to manifest, as the distances close to the initial condition are harder to 
tell apart, since the output of the LSTM minimizes the prediction error 
at the first timestep.

3.2. Fitting differently parameterized firing 
rate models to resting state fMRI data

The dynamics of BNMs were influenced by many parameters and 
were tuned to fit fMRI data. Therefore, it was essential to test whether 
this method allowed us to parameterize different BNMs. The FRM was 
chosen as it has been well studied in the past, and the Neural ODE can 
be validated by reproducing previous estimates (Cabral et al., 2012).

Figure 3 compares various differently parameterized FRM models 
and three Machine Learning Null models in terms of their ability to 
reproduce the future trajectory. After estimating the initial conditions, 

FIGURE 2

Differentiating between dynamical systems on spiral data. The study utilized a number of candidate spirals, which were a perturbed version of the 
ground truth spiral, to fit using the neural ODE algorithm to the spiral data. The top left shows a spiral that was well aligned with the data, as it was used 
to generate the data. The top right and bottom left figures showed spirals that were increasingly further away from the ground truth. The neural ODE 
algorithm was able to fit any of the spirals to the data for a given set of observations, but over time, the candidate spirals that were further away from 
the ground truth diverged much faster from the future data points. This divergence was quantified by the plot on the bottom right, where the 
distribution of the distance between the three different spirals and the observed data points was plotted from the predicted initial conditions. Initially, 
the distance between the spirals of different weights and the observed data points was close, but it diverged further away when compared to future 
timepoints. It is noteworthy that due to all trajectories going toward the origin, the distance at very large timescales converged to zero, but this is not 
expected in the brain data, where the signal does not approach a single attractor. (Mars, 2020).
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the distribution of distances between the predicted and the actual 
trajectory was plotted over time. At the first timestep (Figure 3, top 
left), all the models perform relatively similarly as a direct result of 
minimizing the loss function using an LSTM. Similar to the spiral 
example, the models diverge in performance when moving forward in 
time. Surprisingly, at the fourth timestep (Figure 3 top right), the 
exponentially decaying null models with a zero global coupling, and 
the autoregressive null model without a BNM (labeled as AR) perform 
better than models that contain the brain structure. This suggests that 
introducing any BNM, decreases the accuracy of the model, and the 
model performs best using just the LSTM predictions. The null model 
utilizing LSTM inference (Kashyap and Keilholz, 2020) performs the 
best and represents an estimate of an upper bound in predictability of 
the rs-fMRI signal.

However, interestingly this trend completely reversed in the 
presence of noise. In Figure 4, both the standard deviation of the 
noise as well as the global coupling parameter have been varied. 
The models with low global coupling perform better at low noise 

levels, but as the noise level increases, the BNMs with stronger 
network effects outperform those with low levels of global 
coupling. This suggests that noise plays a critical role in 
establishing the parameters of the FRM, and the properties of the 
structural network become more significant when the system has 
high noise. The overall r-squared of the models decreases with the 
introduction of noise, but the rate at which they diverge from the 
measured trajectories appears to depend on the global coupling 
parameters. Previous FRMs that used the same brain parcellation, 
were simulated with k = 0.9 and σ = 0.3, and noise was seen as 
essential in simulating the BNMs (Cabral et al., 2012). However, 
since both parameters are unknown and the overall r-squared 
decreases with the introduction of noise, just based on varying 
these two parameters it is difficult to conclude which 
parameterization yields the best result using this approach. 
Moreover, the AR null model still performs better than the 
introduction of a BNM, but the difference is much smaller than 
before. The inference model is not included in the noise 

FIGURE 3

Effects of global coupling in the noiseless firing rate model. Evaluating the FRM (Eq. 1) with different global coupling parameters. The performance was 
quantified by the r-squared value between the simulation and the model. Top Left: Error per timestep from the estimated initial conditions for various 
different parameters compared. Examples of the model timeseries vs. the resting state timeseries are given on the bottom at two different 
parameterizations but the distribution shown in the top panels quantify their performance across 2500 trials across unseen test data. Top Right: At the 
fourth timestep, the distribution of the r-squared across all the models is plotted. For the FRMs, the accuracy decreases with the increase of global 
coupling, and the model with zero global coupling performs the best. The Autoregressive (AR) model utilizes the LSTM for the first timestep prediction 
and then outputs the next prediction as the previous timestep and does as well as the FRMs with zero global coupling. The inference model using 
LSTM at every timestep as implemented in Kashyap and Keilholz (2020) performs the best in terms of accuracy, but the model dynamics are unknown 
as they are implemented using deep learning. (Mars, 2020).
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estimations, as the dynamical system is represented as a RNN and 
cannot be manipulated in a controlled manner as the other models.

The introduction of noise changes the resulting dynamics, which 
is apparent from the time traces. Illustrated in bottom of Figure 4, the 
trajectories without noise decay to zero, in line with well-known 
analytical solutions to the consensus equation, where the values of a 
connected network with eigenvalues less than 1 converge to the 
origin (Mesbahi and Egerstedt, 2010). However, the introduction of 
noise results in more complex trajectories as depicted in Figure 5 
bottom, where the values do not decay to zero, but rather randomly 
oscillate around the origin which serves as an attractor in the system 
(Cabral et al., 2011). The role of the structural network, in this case 

becomes more important as it integrates the noise inputs through the 
network, and results in trajectories more similar to the measured 
rs-fMRI signal.

3.3. Differentiating between BNM due to 
differences in structural connectivity

In the previous section, only the parameters of the FRM, the 
global coupling strength as well as the magnitude of the noise were 
changed. However, in this section, the effects of simulating six 
different SC matrices at high and low different global coupling 

FIGURE 4

Effect of varying global coupling and noise on the 4th timestep accuracy of the firing rate model. The effect of varying the two parameters in the FRM, 
the global coupling K and the standard deviation of the noise σ. The introduction of noise lowers the accuracy of all models but does so in an uneven 
fashion. At low levels of noise, the exponential only model (k = 0) outperforms the BNMs with structural connectivity matrices. However, with increasing 
noise power, the BNM with stronger global connectivity matrices appears to outperform the naïve exponential models. The autoregressive model’s 
performance also worsens with increasing noise levels, although it still outperforms the FRMs regardless of the coupling strength, the gap between 
them is reduced. (Mars, 2020).
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(k = 0.1, 0.9), are quantified while varying the high and low noise levels 
(σ = 0.001, σ = 0.3). The SC matrices are varied from the measured SC 
by flipping edges and results in SC seen in Figure 5 bottom row. The 
r-squared value at the fourth timestep, between the different models 
is plotted in Figure 5 top two rows. Unlike the previous sections where 
the correct parameter values were unknown, in this experiment, the 
original SC is expected to outperform the models with altered 
SC configurations.

At low noise levels (σ = 0.001), there was no significant relationship 
between altering the structural connectivity and either of the coupling 
strengths. However, at the high noise levels (σ = 0.3), although the 
model has a lower r-squared than at the low noise levels, the effects of 
the network are evident, with the original SC configuration 
outperforming the corrupted SC configurations for both low and high 

coupling strengths. The trend was once again more prominent for the 
high global coupling (k = 0.9) than the low global coupling (k = 0.1).

3.4. Estimating the parameterization and 
noise level of the firing rate model

In the previous sections, the effects of varying the global coupling 
and noise levels on the accuracy of the simulated system were 
explored, but the relationship between the system and the underlying 
structural connectivity remained unclear. To investigate this, the 
system was simulated with different SC matrices while varying the 
noise levels and global coupling values. The slope was calculated at 
different time steps to find where the system was most sensitive to the 

FIGURE 5

Effects of global coupling, noise, and structural connectivity on the 4th timestep accuracy of the firing rate model. Examining the effects of 
parameterization and estimating the correct SC. At top left, we show the results of changing the structural connectivity for a low global coupling 
model and low noise levels. It does not vary as a function of the structure and performs relatively similarly to the LSTM only null model. At high global 
coupling and high noise levels, the models show that they are more of a function of the correct structural network (bottom right). The slope across the 
performance of different structural connectivity (bottom right of Figure 5) is used as a metric in the next section to solve for global coupling and noise 
levels. (Mars, 2020).
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underlying structural connectivity to find the correct parameterization 
of the models. The slope is plotted from timesteps 2 to 5, across 
different global coupling values and noise steps in Figure  6. At 
timesteps close to the initial condition, higher levels of noise are 
needed to differentiate the systems sensitivity to the structural matrix. 
However, at later timesteps, the opposite is true where higher noise 
levels perturbs the system too much and the overall r-squared drops 
so low that the models become indistinguishable to each other. 
Therefore, the fourth timestep is used where the max differentiation 
between models occurs regardless of the coupling values, where the 
trajectory is far enough from the effects of the LSTM fitting and close 
enough in time to test the predictability of the models. At this 
timestep, the maximum occurs at the values (k = 0.925, σ = 0.35). This 
value is very close to what has been used to be simulate FRMs (k = 0.9, 
σ = 0.3) from previous publications (Cabral et  al., 2012). Their 
approach of parameterization here has been reproduced in Figure 6 
(right most panel), which calculates the FC of a 20 min simulation and 
correlates the FC with the FC of the empirical data. The maximum at 
[0.875, 0.3] is in good agreement with the short-term measures and 
the previous estimates.

3.5. Evaluating the initial conditions of the 
NODE model

In the previous sections, the application of NODE algorithm to 
correctly bias the BNM models and recover coefficients by using short 
term metrics that match those of previous literature were highlighted. 
In the following section the NODE (k = 0.925, σ = 0.35) is utlized to 
evaluate the initial conditions of the algorithm vs. null initial 
conditions. The null initial conditions were generated by taking the 
previous timestep, and integrating the BNM from that timestep. For 
long term simulations shown in  Figure 7A, the functional connectivity 
is characterized in  Figure 7B  with a correlation of 0.45 with the 
empirical measured signal. While the initial conditions did not change 
the functional connectivity of a long term simulation, Figure  7C 
illustrated that the trajectories from NODE initial conditions followed 

the signal more closely than the null initial conditions. Moreover, this 
difference is also present when comparing rest vs. task as shown in  
Figure 7D , indicating that the algorithm is producing non-trivial 
results for its initial condition prediction.

4. Discussion

4.1. Overall discussion and significance

The study proposed the use of the Neural ODE technique for 
estimate initial conditions in different candidate BNMs and 
subsequently evaluating the predicted trajectories compared to the 
real data. To test this methodology, the technique was first applied to 
a well-studied spiral dataset, which demonstrated its ability to 
correctly identify parameters in a constructed example of system 
identification where the ground truth was known. The method was 
then applied to fit different Firing Rate BNMs to neural fMRI data by 
varying their parameterizations, noise level, and by changing the 
structural connectivity. By using all three, the system was correctly 
able to identify the parameters of the FRM, which were close to 
previous estimations of the model’s parameterization using the same 
whole brain parcellation (Cabral et al., 2012). Moreover, these initial 
conditions were shown to be non-trivial as they perform better than 
just using the previous timepoint as initial conditions.

Therefore, pertinent information to parameterize BNMs is present 
in short term trajectories analysis. Unlike older metrics, this technique 
allows for direct timeseries comparisons between the theoretical 
models with measured experimental data, and circumvents the 
reliance on a certain metric/interpretation of rs-fMRI. Therefore, this 
technique provides a unbiased metric that can be extended to compare 
and parameterize more complex BNMs. Moreover, it allows pathway 
forward in studying whole brain dynamics on a faster timescale, and 
illuminate what our current theoretical models can and cannot explain 
in terms of transient dynamics.

The interpretation of the initial condition is difficult in rs-fMRI, 
as rest is not labeled with respect to stimulus, but they can provide 

FIGURE 6

Parametrization of FRM using short term measures vs. parameterization using long term measures. Examining the effects of changing the structural 
connectivity matrices vs. accuracy (slope in Figure 6) under different parameterization/noise levels of the Firing Rate Model. The sensitivity of the 
system to changes in the SC matrix is the only metric where the expected outcome is observed, where the original structural matrix outperforms a 
random one. The change in r-squared value is represented using a color bar and is plotted for different timesteps. At the fourth timestep (t = 2.88) the 
maximum differences occurs on all the models regardless of the parameters, since at that time step the system has diverged enough from the initial 
conditions and while not far enough in time to cause the overall r-squared to drop too low and make the models indistinguishable. At this timestep, a 
maximum slope occurs at (k = 0.925, σ = 0.35). Comparison to the traditional parameterization is shown on the right. Here the differently parameterized 
FRM models were simulated for 20 min and then the FC matrices of the resulting simulation were compared against the empirical FC. The traditional 
approach has a maximum at [0.875, 0.3], and previous reproductions of this experiment found a maximum at [0.9, 0.3] (Cabral et al., 2012), showing 
good agreement on which BNM recapitulates rs-fMRI in both short and long term measures. (Mars, 2020).
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information of the phase of cyclical brain processes such as quasi 
periodic patterns (QPPs) that have been identified in the literature to 
exist in both rest and task data (Thompson et al., 2014). The phase is 
thought to be important improving the correlates to response time in 
task fMRI, and thus estimating these conditions might prove relevant 
in understand the current state of these cyclical brain processes 
(Abbas et al., 2020).

4.2. Parameterization and noise levels of 
the firing rate model

The study focused on the Firing Rate Model (FRM), which is the 
simplest of the BNM used to simulate rs-fMRI. The model has two 
variable parameters - the magnitude of global coupling and the level 
of noise (Eq. 1). Previous literature has suggested the global coupling 
value of a traditional FRM is set slightly less than 1, around 0.9, which 
is just before the system becomes unstable. The noise is usually set 
around 0.3 and global coupling to 0.9 for this parcellation scheme 
(Cabral et al., 2012; Kashyap and Keilholz, 2019), where closer toward 
zero it simplifies to the well-known consensus problem where the 
timeseries converge to the attractor at the origin (Mesbahi and 
Egerstedt, 2010), and at higher degrees of noise the system becomes 

completely chaotic and non-deterministic. Searching for the correct 
parameterization of the FRM between the global coupling and the 
magnitude of the noise is therefore an important to simulate the 
model in the correct regime.

In practice, this relationship was not so easily ascertained by 
analyzing the short-term trajectories as it was confounded by the 
presence/absence of noise. The simulated trajectories that were the 
closest to the empirical trajectories were models that contained no 
noise resulting in a parameterization of a trivial exponential decay null 
models (Figure  3). However, in the presence of noise, the role of 
network structure became important, as at higher global coupling 
values the signal would deviate less from the empirical trajectories. 
The role of the structural connectivity here can be  thought to 
averaging out the noise, and the trajectory became more robust to 
local deviation due to noise introduced at each ROI. Supporting this 
argument, Figure 5 demonstrated that in the presence of noise, the 
models also exhibited a dependence to changes in the structural 
connectivity, where the true structural connectivity resulted in 
dynamics closer to the empirical signal than noisy perturbations of the 
original structural connectivity. Although the exact value of noise 
cannot be solved by maximizing the r-squared accuracy while varying 
the noise amplitude as it results in favoring noiseless models; at the 
right noise/ global coupling parameterization, the accuracy of the 

FIGURE 7

(A) Comparison of BNM simulation with measured brain activity derived from rsfMRI. Simulation of 66 regions for 10 min is first synchronized using the 
NODE algorithm such that the initial conditions are set for the BNM. (B) Functional connectivity of the simulated model and the empirical signal (cross-
correlation ~0.45). (C) For the first few timepoints, the simulated signal follows trajectory more closely using the solved for initial conditions than using 
the measurement at that timepoint as initial conditions (null initial conditions). The signals diverge due to the noise added at the simulation as well as 
the drift that occurs in rsfMRI. We define the Region of Predictability (RP) based on the first 3.6 s and compute the across all timepoints in that interval, 
at which the NODE initial conditions perform significantly better than the null model. (D) The RP is plotted from every timepoint during a working 
memory task, where the cue is presented at 0. All models lose predictability during the task onset and predictability stays lower during the task interval 
compared to the average rest average. The predictability during the task onset is closer to the predictability during the rsfMRI scans than during the 
resting state portion of the task scans. (Mars, 2020).
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FRM should be  maximally dependent on the correct structural 
connectivity. This hypothesis was tested in Figure 6, where the change 
in accuracy of due to the changes in the structural connectivity was 
plotted. Using this metric, the FRM with (k = 0.925, σ = 0.35) is the 
most dependent to changes in the structural connectivity and is very 
close to previously known values that was being used for the FRM 
(k = 0.9, σ = 0.3) as well as our computed maximum using long term 
FC estimates (k = 0.875, σ = 0.3) (Cabral et al., 2012). The previous 
process used long term FC as a metric to maximize to parameterize 
the models, rather than using the short trajectories as in this 
manuscript, but here they show they give similar estimates on which 
FRM is closest to measured rs-fMRI dynamics. The evidence that 
these two values are close, suggests that our approximation of the true 
underlying dynamical system is at least scale free across the observed 
timeframes and models that have been used to simulate long periods 
of time, can capture meaningful dynamics in the shorter timeframe.

4.3. Comparison to other neural ODE 
architectures

The original Neural ODE implementation uses a backward time 
architecture, where the timeseries is inverted and fed into the RNN 
network, such that the first timepoint is fed into the RNN last and the 
final prediction is used to infer the initial condition of the whole 
timeseries and then integrated forward in order to compute the loss 
function (Chen et al., 2019). They do not evaluate the RNN prediction 
at every timepoint like in our implementation, but explicitly state that 
such an architecture would speed the training process. The Tensorflow 
RNN implementation page also recommended a parallel use of the 
RNN in order to speed up the training process.1 The innovative 
backwards time architectural method gets rid of the initialization 
problem of the RNN that exists in our forward time implementation but 
runs into a causality problem where future inputs influence the 
predictions of previous initial condition. Because BNMs are defined as 
a function of previous network activity, and because our intended use 
of the trained model is a continuous correction of the accompanying 
BNM model, the time forward architecture is used in order to solve for 
the initial conditions. The other significant difference is that our 
implementation of the Neural ODE also uses a LSTM after the ODE 
integration (Chen et  al., 2019). This methodology is extensively 
evaluated in Kashyap and Keilholz (2020) but confounds our goal of 
comparing the fit of different dynamic systems, so it is simply presented 
as a null model labeled as inference in this paper. This model 
outperforms all other models in terms of short term prediction, but 
cannot be manipulated as in terms of the noise level, coupling strength 
or other meaningful biological variables. Rather it represents an estimate 
of an upper bound in terms of predictability seen in the rs-fMRI dataset.

4.4. Comparison to other techniques in 
literature

The Neural ODE algorithm presented here is a relatively new 
technique first presented in 2019. To our knowledge this exact 

1 tensorflow.org/guide/keras/rnn

technique has not been applied in the context of fitting whole brain 
models with empirical rs-fMRI data. However, our methodology is 
quite similar to our own previously published work (Kashyap and 
Keilholz, 2020), but differs in the important following manners. In the 
previous paper, the system was trained in a very similar manner, but 
in the generation of new data from the initial conditions the older 
methods utilized the entire Machine Learning architecture, LSTM and 
the Brain Network Model to synthesize new data, whereas in this 
paper, the future timeseries is generated from initial conditions by 
integrating the Brain Network Model. The older method allowed to 
generate more realistic brain data and replicate brain dynamics better 
than traditional BNM as it utilized the LSTM in every timestep. 
However, this brought into unknowns into the dynamics and it was 
not possible to evaluate the BNM on their own. Therefore, in order to 
isolate the performance of BNM for the purposes of system 
identification, the LSTM was excluded from the inference process and 
was only used to generate initial conditions. A recent preprint (Wun, 
2020) also utilizes the Neural ODE approach to fit to rs-fMRI data. 
However, in that methodology it does not use the Neural ODE tool to 
fit trajectories from the BNM rather analyzes latent variables of a 
model to predict task states. Many other approaches have started using 
different techniques for uncovering principles of dynamical systems 
in order to represent rs-fMRI (Zalesky et al., 2014; Hjelm et al., 2018; 
Vidaurre et al., 2018; Nozari et al., 2020; Singh et al., 2021). Nozari 
et al. (2020) uses a similar r-squared metric to quantify the difference 
at the first time point prediction but does not extend this by predicting 
further out in time. In this paper, to our knowledge is the first to use 
these tools for comparing short term trajectories of given BNMs to 
measured rs-fMRI data.

4.5. Assumptions and limitations

The error from the model’s prediction comes from multiple 
different sources such as (1) the mismatch between the differential 
equations and the actual dynamics, (2) from the error in predicting 
the initial conditions, and (3) inadequate descriptions of structural 
connectivity and/or the lack of including subcortical areas in 
the simulations.

 1. A major limitation of this approach is to have an estimation of 
the underlying dynamical system that represents the data. This 
requires vast knowledge of what model including the specific 
parameterization might fit the dataset. However, the Neural 
ODE system is able to tangentially fit any dynamical system 
even trivial ones such as the exponential decay. Therefore, it is 
not really necessary to have a really good estimation of the 
underlying system and can be  tested how well they predict 
subsequent timesteps.

 2. We assume that for any assumed dynamical system the error 
from the RNN is uniform no matter what the function is, and 
the subsequent error calculated from the trajectories is due to 
the mismatch between the data and the dynamical system. 
However, this might not be true, and more complex models 
might have a larger errors in estimating initial conditions and 
therefore is a potential confounder in our analysis.

 3. The inadequate description of the brain network is also a 
limitation and can be  improved with higher resolution 
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parcellations and subcortical areas. Another major drawback 
is the network is quite ill-defined because there is no consensus 
what constitutes a ‘cohesive’ neural population. However, 
different atlas and network definitions seem to give similar 
results suggesting that the principles of BNM are at least 
consistent across many parcellation schemes that are used 
today. However, results from previous literature, show that a 
more detailed description of the network only improves the 
models performance and its ability to recapitulate rs-fMRI and 
that coarser models are good enough for a proof of 
concept application.

Moreover, another major assumption and limitation of the 
approach is our choice of metric, r-squared used to compare the 
distance between two high dimensional vectors. It assumes that better 
models have a higher r-squared value, although they might 
be explaining trivial components of the signal. Other metrics such as 
derivative, or the relative phase between different regions of interest 
might prove as a much more useful metric to compare the predictions 
against the empirical signal. The method also introduces another 
variable on when to evaluate the differences of the model. Close to the 
initial conditions the trajectories are too close to differentiate, and as 
seen from the null models where the output of the LSTM already 
captures a large amount of the variance in the signal. Too far from the 
initial conditions yields trajectories that are too far away from 
empirical measurements and all models become completely 
indistinguishable. For our results, the fourth timestep (2.88 s) was the 
most useful in differentiating between models, but this could vary 
from implementation and careful consideration needs to be used in 
interpreting the results and is a limitation in the approach.

4.6. Future applications

The Neural ODE techniques has a lot of potential as an additional 
tool in conjunction with BNM. It can be  used to evaluate any 
differential for brain data in real time by solving for the initial 
conditions. Moreover, it can be used to compare across increasingly 
disparate brain models that are being constructed for specific 
applications. For individual data, it seems especially promising, since 
the trained network can make predictions on an individual fMRI data 
and thus parameters of the BNM as well as the structural connectivity 
can be adjusted on the individual level. Furthermore, it allows for 
modeling BNM trajectories during task fMRI, where the component 
of the signal due to network activity can be estimated, and enhance 
the response due to stimulus. Our results in Figure 7, indicate that the 
initial conditions of the Neural ODE outperform the null estimation 
of using the measurement as initial condition, and therefore results in 
trajectories that better recapitulate the short term trajectories. 
Therefore in the future, this algorithm can aid in separating network 
and task dependent activity intrinsic to fMRI.

For future approaches on more complex BNMs, it might be easier 
to assume the noise level and then the parameters can be solved in a 
more straightforward manner. The noise level seems to be endemic in 
the system, and rather than a parameter of the model. Since our 
mean surface area parcel is 858 mm2 according to our atlas, 
we  estimate the cortical noise per area to 
be N Surface Area mmµ σ= = ∗( )0 0 35 858

2
,  . /  and not to be  a 

function of BNM. Once the noise level has been established, the 
structural perturbations are not necessary and the coefficients of the 
BNM can be determined directly by comparing the r-squared of the 
models with the empirical signal. In this manner many more complex 
BNMs can be compared against each other.

5. Conclusion

This manuscript investigated whether by solving for the initial 
conditions of a Brain Network Model for a given observation of 
rs-fMRI data using Neural ODE, the estimated BNM trajectories 
based on these initial conditions would serve as a metric to 
differentiate between BNMs and the measured rs-fMRI timeseries. 
The approach used several different FRM to fit to the rs-fMRI data by 
varying the global coupling, noise, and structural connectivity. The 
results show that the parameterization of global coupling and noise 
that maximizes the model’s sensitivity to the structural connectivity, 
yields a model comparable to earlier parameterizations of the 
FRM. Therefore, the Neural ODE tool has the potential to differentiate 
and develop more complex BNMs to fit rs-fMRI data and a path to 
train the parameters on individual fMRI data.
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The cerebral cortex varies over the course of a person’s life span: at birth, the

surface is smooth, before becoming more bumpy (deeper sulci and thicker gyri)

in middle age, and thinner in senior years. In this work, a similar phenomenon

was observed on the hippocampus. It was previously believed the fine-scale

morphology of the hippocampus could only be extracted only with high field

scanners (7T, 9.4T); however, recent studies show that regular 3T MR scanners

can be su�cient for this purpose. This finding opens the door for the study of

fine hippocampal morphometry for a large amount of clinical data. In particular, a

characteristic bumpy and subtle feature on the inferior aspect of the hippocampus,

which we refer to as hippocampal dentation, presents a dramatic degree of

variability between individuals from very smooth to highly dentated. In this

report, we propose a combined method joining deep learning and sub-pixel level

set evolution to e�ciently obtain fine-scale hippocampal segmentation on 552

healthy subjects. Through non-linear dentation extraction and fitting, we reveal

that the bumpiness of the inferior surface of the human hippocampus has a clear

temporal trend. It is bumpiest between 40 and 50 years old. This observation

should be aligned with neurodevelopmental and aging stages.

KEYWORDS

hippocampus, fine-scale segmentation, shape analysis, deep learning, MRI

1. Introduction

Numerous radiological studies of sub-cortical morphology have shown many brain

disorders to be correlated with hippocampal shape (Styner et al., 2004; Thompson et al.,

2004; Apostolova et al., 2006; Wang et al., 2006; Scher et al., 2007; Colliot et al., 2008;

Nestor et al., 2013; Gao et al., 2014; Gao and Bouix, 2016), volume (Fleisher et al., 2008),

or metabolic properties (Kraguljac et al., 2013). The hippocampus also exhibits important

related variations in healthy individuals. For example, spatial memory declines with age

and this is consistent with a decreasing trend in hippocampal volume (Bohbot et al., 2004;

Konishi et al., 2017). Moreover, the hippocampal structure also correlates with the function

of establishing semantic associations in memory (Henke et al., 1999). As people age, the
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rate of hippocampal atrophy increases, with the greatest increase

after middle age (Fraser et al., 2015). These comparable global

features of non-clinical and clinical conditions (Convit et al., 1997;

Schuff et al., 2009) provide an important measurement for the

evaluation of hippocampal abnormalities and functions.

Morphological and functional assessment of fine-scale

structures are still considered challenging tasks. The hippocampus

is known to be among the few structures where neurogenesis

continues to take place after birth. Similar to the formation of

any other cortical gyrus/sulcus, the proliferation and stacking

of cells in hippocampal neuronal layers requires space-efficient

outward folding of the hippocampal surface. Furthermore, it is

worth noting that hippocampus neurogenesis-associated features

exhibit both qualitative and quantitative age-related alterations

(Knoth et al., 2010). This work aims to investigate the macroscopic

morphological appearance and its age-dependent variability across

the life span of the hippocampus.

The structure of hippocampal dentation is of particular interest

due to its apparent rugged ridges, which are in the CA1/subiculum

on the inferior aspect of the hippocampal body and extend through

the inferior medial aspect of the tail (Duvernoy, 2013). Consulting

neuroanatomy textbook (Duvernoy et al., 2005; Arslan, 2014;

Ribas, 2018; ten Donkelaar et al., 2018), the dentated appearance

is obvious and exhibits great variability of shape as shown in

Figure 1. Unfortunately, this variability has been largely overlooked

in previous image based studies.

Such morphological variation mostly involves the CA1 regions.

CA1 neurons are known to be involved in episodic memory

(Bartsch et al., 2011) and a positive correlation between cortical

gyrification and cognitive functioning was found (Luders et al.,

2008). Further quantitative studies related to episodic memory

(Beattie et al., 2017) have used ultra-high resolution MRI data to

explore the highly variable long axis of hippocampal dentation and

its functional role in episodic memory.

Quantitative feature generation would be a valuable tool

for the intuitive, concise, and personalized characterization of

hippocampal dentation. Moreover, hippocampal dentation varies

across individuals, over time and along the inferior surface. This

variation makes it significant for quantifying the relationship

between hippocampal dentation and other factors, such as

age, clinical, or non-clinical conditions. More importantly, the

quantitative analysis of fine-scale structures allows us to leverage

advanced machine learning methods and enables us to explore data

sets more extensively.

There are two main reasons why current research is insufficient

to quantify hippocampal dentation changes. First, quantitative

research methods usually require a large data size, but the limited

acquisition of high resolution image data with hippocampal fine-

scale structure leads to difficulties in large-scale research. The main

reason for this is because clinical 3T scanners find it difficult to

acquire sufficient resolution and the currently finite availability

of ultra-high field scanners (7T or greater) (Wisse et al., 2012;

Kim et al., 2013; Derix et al., 2014) or post-mortem specimens

(Yushkevich et al., 2009). Second, compared to global structure,

fine-scale structure is difficult to characterize by most handcrafted

feature representation in feature engineering (Bengio et al., 2013) or

automatic extraction of features through deep learning networks.

This may be due to the small, hard-to-measure structural geometry

and the challenge of properly delineating regional boundaries.

Additional challenges stem from dentate variability along the

different sagittal slices of hippocampal dentation.

The above aspects have made it difficult to conduct a

quantitative analysis of the dentated shape of the hippocampus. The

most closely related work by Kilpattu Ramaniharan et al. (2022)

visualized dentation after using the up-samplingmethod and ASHS

software. They counted dentation and explored its association with

memory dysfunction in patients with temporal lobe epilepsy that

have hippocampal sclerosis. Beattie et al. (2017) visualized the

dentation using ultra-high resolution structural MRI and using a

visual rating scale, accessed by human observers, which showed that

the extent of dentation varied considerably across individuals and

was positively correlated with memory recall and visual memory

recognition. The raters in that study needed to examine all sagittal

slices to observe dentation visible through the entire width of

the hippocampus. This work is labor-intensive, highly subjective,

and can suffer from high intra- and inter- reader variability.

Therefore, this rating scheme cannot be generalized reliably to a

large number of subjects across multiple institutions. A computed

aided quantification and analysis framework for evaluating the

hippocampal dentation is therefore needed to provide objective

fine-scale morphometry.

This analysis framework consists of two components. First,

an effective and efficient segmentation algorithm is needed

that is capable of capturing fine-scale dentations. It has been

shown previously that such local and subtle features under the

hippocampus can be reconstructed from clinical 3T MRI by a

multi-atlas based technique (Chang et al., 2018). However, the

multi-atlas warping technique (Nestor et al., 2013) could not fulfill

the further need for a large population study due to it being

extremely time-consuming. More recently, the use of a 3D deep

convolutional neural network for hippocampus segmentation has

achieved high precision, measured by a global metric such as the

Dice coefficient (Thyreau et al., 2018). Part of its training labels was

from the FreeSurfer algorithm (Fischl, 2012). Using the synthetic

data and augmentation algorithm, the Dice average coefficients

are above 90%. Later, in a hippocampal segmentation study of a

stroke population, Zavaliangos-Petropulu et al. (2022) used deep

learning based Hippodeep method (Thyreau et al., 2018) and make

a comparison with FreeSurfer. Rather than achieving annotation

with the help of Freesurfer, Goubran et al. (2020) trained the CNN

using 259 bilateral manually delineated segmentations to achieve

better performance. Guo et al. (2020) proposed a longitudinal

classification-regression model for segmenting the hippocampus

in infant brain MRIs. Work by Liu et al. (2020) proposed a

joint automatic hippocampal segmentation and AD classification

method. For refined segmentation by exploiting space information,

Pang et al. (2019) proposed a method based on iterative local

linear mapping (ILLM) with representative and local structure-

preserved feature embedding. To improve segmentation quality,

Van Opbroek et al. (2018) and Ataloglou et al. (2019) explored

different transfer learning techniques.

Even though current CNN based hippocampus segmentation

methods have achieved global accuracy measures, they still lack

the ability of the 3T images to capture fine-scale dentations.
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FIGURE 1

Inferior view of four hippocampus. (A, B): bumpy group; (C, D): smooth group. The arrowheads indicate the prominent dentations and their

approximate orientations.

Moreover, to conduct large scale statistical morphological studies,

the generalization capability of the CNN needs to be strengthened

to handle the image intensity fluctuations among different scans,

machine-dependent noise, and bias field in-homogeneity, etc. To

address such issues, Memmel utilized the data from different

domains with the GAN framework to disregard domain-specific

information (Memmel et al., 2021). For hippocampus segmentation

across different datasets, few studies have considered how to

solve this with the help of domain adaptation in an end-to-

end framework directly. In response, our proposed framework

can be adopted in these similar studies. To further improve the

framework, some research by Strudel et al. (2021) and Valanarasu

et al. (2021) initially used the transformer block to extract features

and process the long range relationship of these features. To utilize

these techniques we need to improve the feature extraction ability

of the design framework before subsequent discriminator and

segmentation steps, noting that based segmentation operation is the

foundation to help for the subsequent fine-scale segmentation and

accurate shape analysis.

Once the hippocampus is successfully segmented and its

fine-scale morphology features are extracted, we need to design

a technique that specifically compares the dentated structures

underneath the CA1 region. Previously, the analysis of shapes is

usually conducted between two groups of shapes, trying to identify

the region where the two groups of shapes differ significantly (Gerig

et al., 2001; Shen and Makedon, 2006; Styner et al., 2006; Cates

et al., 2008; Shen et al., 2009; Shen, 2010; Riklin Raviv et al., 2014;

Hong et al., 2015; Gao and Bouix, 2016). However, the scenario is

different in this work as we have already identified certain regions

on the shape, as well as the possible pattern of variation. We are

more explicitly interested in the magnitude of the dentated pattern

between the two groups. To this end, we have to design a suitable

approach to handle the problem at hand.

As an exploratory proposition, we hypothesize that the level

of dentations may be involved in neurogenesis with age, reflected

by variation of dentated structure along its long axis. This work

presents a novel domain adaption segmentation and regression

model of quantitative features on a relatively large dataset of 552

subjects (1,104 hippocampi) (IXI dataset, 2018). As a key step

in the successful application of machine learning for quantitative

estimation (Bengio et al., 2013), to handle the great variability of

hippocampal dentation, we combined the advantages of domain

adaption segmentation in the field of deep learning and propose

a new feature representation method for dentation analysis.

Using deep learning methods, we have designed a transformer

based approach to segment and extract the hippocampus. This

approach is then combined with the learned grayscale information

of the hippocampus, and multi-scale segmentation is performed

to obtain fine-scale segmentation. Once the dentated structures

are extracted, we then measure the magnitude of the dentation

structure by first identifying the long axis of the hippocampus. This

is done under a point cloud representation of the shape. Then,

specifically engineered for the dentation under the CA1 region,

a non-linear fitting of the sinusoidal function is performed; the

observation that the dentation presents an arciform or sinusoidal

appearance allows us to quantify the convolution bymagnitude and

frequency of the sinusoidal function. Moreover, using simulated

annealing, we can find the most optimal model parameters.

Our work contributes to the field in three ways: (1) A deep-

learning based robust segmentation algorithm is used to extract the

fine-scale hippocampal morphological feature at the sub-pixel level

on a large dataset. (2) This study demonstrates that certain fine-

scale hippocampal morphological features vary with aging. (3) To

our knowledge, even though rich hippocampal shape studies have

been conducted previously, this is the first fine-scale quantitative

analysis on hippocampal dentation based on a clinically available

dataset. Our method aims to study the differences in hippocampal

shape of a healthy population over an age range from people

aged in their mid-20s to 80 years old. The construction of an

analytical baseline and the development of a technique for robust

and quantitative image analysis will open possibilities for future

comparisons between non-clinical and clinical groups.

2. Materials and methods

To use the hippocampus segmentation algorithm, 41 3T MR

images with the hippocampus manually traced out were used

to train the segmentation model. These 41 cases are from the

EADC-ADNI Harmonized Protocol project (Apostolova et al.,

2015; Boccardi et al., 2015; Frisoni et al., 2015). We also performed

segmentation validation with real 7T MR images based on samples

from Alkemade et al. (2020). For aging hippocampus morphology

research, the hippocampi of 552 healthy subjects (age range: 20–

79, mean age = 48.2 ± 16.0 years) from the IXI dataset were

analyzed (IXI dataset, 2018). The age distribution of the subjects is

summarized in Table 1. The 1,104 3T T1 weighted MP-RAGE MR

images of 552 subjects were used. Before data analysis, all the scans
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were resampled to isotropic 1 mm resolution, and we named that

native resolution.

As shown in the flowchart in Figure 2, the main pipeline

consists of three parts. First, an automatic and robust segmentation

algorithm was proposed to capture the fine-scale morphology

of the hippocampus based on common 3T MR images. Then,

the characteristic fine-scale dentation is extracted from the

segmentation through a non-linear regressor. After that, the level

of the dentations is quantitatively analyzed against age to identify

temporal changes. In what follows, we detail all three major

algorithm components.

2.1. Fine-scale semantic segmentation

The multi-atlas-based methods used in Chang et al. (2018)

have the disadvantage of involving a large computation time when

applied to a large-scale dataset for study. Therefore, we propose a

new deep-learning-based fine-scale segmentation method to obtain

fine-scale dentation of the hippocampus from 3TMR scans relating

to 552 subjects. However, there are some serious issues to solve

TABLE 1 The amount of MRI acquisition subjects in each age range from

the IXI dataset.

Age range (years) Num. subjects

20–29 100

30–39 99

40–49 89

50–59 98

60–69 117

70–79 49

Total 552

before such fine-morphological analysis can be efficiently applied

to such a large cohort.

The first issue is that the large amount of image data used

to segment the multi-atlas-based approach used in previous

approaches, such as Chang et al. (2018), is too time-consuming to

be practically useful. Toward this goal, the recent development of

deep learning methods provides a promising alternative to multi-

atlas approaches.

Second, the large IXI cohort analyzed does not have anymanual

annotation. We, therefore, need to utilize carefully validated

annotation from the EADC-ADNI dataset (Apostolova et al., 2015;

Boccardi et al., 2015; Frisoni et al., 2015) for training, and apply the

trained model to the IXI dataset. This inevitably introduces a cross-

dataset discrepancy between the training and testing images, and

adequate domain adaptation is necessary.

Third, and most importantly, even the expert-curated

hippocampus annotation in Apostolova et al. (2015), Boccardi et al.

(2015), and Frisoni et al. (2015) does not capture the fine-scale

hippocampus dentations and a deep learning model trained on

such annotation is not capable. To perform the sub-pixel fine-scale

morphometry, we have to depart from the constraint of the

learned space and extend the segmentation to a much higher

resolution level.

To address the above issues, in this sub-section, we propose

the hippocampal domain adaption fine-scale segmentation method

to capture the fine-scale hippocampus dentation structure from

the clinically available 3T MR images. The algorithm pipeline is

illustrated in Figure 3.

2.1.1. Semantic segmentation
The deep-learning-based semantic segmentation method

formulates the dentation annotation task as a pixel-classification

problem. The core encoder-decoder framework consists of a stack

of sequentially connected convolutional layers and long-range

skip connections. The locations of the feature information in a

FIGURE 2

The overall flowchart of the proposed fine-scale segmentation and morphometry. (A) Hippocampus are segmented from the 3T MR images and the

dentation and obtained from fine-scale segmentation. (B) After that, geometry features are extracted and age-based associations are explored.

Dotted boxes of the same color indicate that they belong to the same content in the pipeline. Note that this only represents the overall flow of the

manuscript. The detailed and high resolution figures for each portion here will be shown in the subsequent part.
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FIGURE 3

Overview of the fine-scale segmentation framework. The 3D MR images in the source and target domain pass through procedures (A, B),

respectively. In procedure (A), CE and Dice Loss are computed based on source annotation to optimize the semantic segmentation framework. The

multi-feature from di�erent level layers also passes through the MSA layers and outputs the convergence feature. Next, images from the target

domain were fed into procedure (B). Before obtaining a fine-scale segmentation map, we adopt a module to constrain the extracted feature map

between two di�erent domains. The domain adaptation operation is illustrated in the block with a green edge. Finally, the possibility map from the

target domain is forwarded through fine-scale segmentation (the blue block) to output the final annotation.

higher layer are computed based on the locations of tensors of the

next lower layers as they are connected through a layer-by-layer

up-sampling operation. However, due to the locality nature of the

convolution operation, the receptive field is limited along with the

depth of layers and the size of the convolutional kernel. As a result,

only higher layers with big receptive fields can model long-range

dependencies in the vanilla encoder-decoder architecture. More

recently, the multi-head self-attention mechanism (MSA) of the

vision transformer shows a more effective strategy for learning

long-range contextual information. As a result, we utilize a

transformer-based MSA framework to overcome this limitation,

which is motivated by Xie et al. (2021).

As shown in Figure 3, we bridge the transformer layer to

the design of encoder architecture and aim to help engage lower

and higher contextual features directly and capture the long-

range dependency of pixels effectively. With such an encoder

partition, the multi-scale features extracted from convolution are

concatenated before being forwarded through MSA. However,

Xie et al. (2021) sets the hidden size in residual blocks of the

hierarchical encoder to 384 to keep the same hidden size in the

feed forward network of MSA. At the same time, the small kernel

size 3 used shows a lower capture ability, while the larger kernel

size can capture dependencies between information units further

away in the earlier layers. It only accepts inputs of the same size

(48×192×192), which is not conducive to the segmentation of

small organs, such as the hippocampus. In contrast to Xie et al.

(2021), we squeeze the channels of the residual blocks to 192 as

half of the original 384 channels and further adopt several groups

of larger kernel-sized convolutions to expand the dependencies

capture ability of inner-place units. Moreover, we engage the last

three layers of contextual feature output from the encoder together

to get finer-scale spatial information. In short, we improve by

replacing the channel complexity with spatial complexity. We also

modified the size limit of the input to be able to take a smaller

size of 643 than 48×192×192 in dimensions 2 and 3 as input and

focus more on the target hippocampal region. In the next step,

these extracted features are passed to the MSA layers to aggregate

hierarchical long-range dependency.

It should bementioned that there is a mismatch between the 3D

image tensor and the 1D sequence when bridging the transformer

layer. As linear projection processes the information in a sequence-

to-sequence manner, the feature maps produced by the encoder

from every stage must be flattened into a 1D sequence before

feeding into transformer layers. Also, it has to face the problem
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of losing spatial information when it is being flattened. So we

add the 3D positional encoding sequence to supplement position

information to solve this problem. Furthermore, to improve

the computational efficiency, we utilize the set of key sampling

locations (denoted as rp) in the image around the reference

location. As a result, the MSA layers can be formulated as:

MSA
(

{

fl
}L

l=1
, zq, rp

)

= 9
(

Concat
(

h1, h2, . . . , hN
))

(1)

where N is the number of the heads (denoted as hi and set as 6),

and flattened feature maps
{

fl
}L

l=1
are extracted from the L stages of

the left encoder. zq is the feature representation of query q, which

is gotten from
{

fl
}L

l=1
and position embedding feature, 9(·) is the

Linear projection operation to weight and aggregate the features.

In the Decoder part, the output sequences of transformer

layers are separated and reshaped according to the size of feature

maps from the encoder at each stage. The processed features from

each stage are then concatenated with processed features from the

deconvolutional layers of the preceding stage. Finally, they are fed

into a residual block followed by a 1 × 1 × 1 convolutional layer

with a proper activation function (softmax) for computing the

segmentation probabilities of the hippocampus.

To efficiently illustrate the workflow, we denoted the semantic

segmentation framework as S. It takes the cropped sub-volumes of

image volumes from Source Domain (denoted as Is :�3 ⊂ R
3)

as input, and generates an output of the same shape (denoted as

PS :�3 ⊂ R
3). Plus, all these volumes were resampled to isotropic

of 1 mm3 before segmentation. The corresponding annotation of Isi
are also denoted as Ls :�3 ⊂ R

3,�3 → 0, 1, 2. In order to optimize

S and get better parameterWS, we utilize the segmentation loss Ls,

which is defined as:

Ls = λ1 ∗
1

N

N
∑

i=1

−yij log
(

pij
)

︸ ︷︷ ︸

Lce

+
1

N

N
∑

c=1

−
2
∑

i pijyij
∑

i pij +
∑

i yij
︸ ︷︷ ︸

Ldice

(2)

where pij and yij refer to the segmentation predicted probability and

corresponding category segmentation for voxel i, j. N means the

voxel number. The segmentation loss function can be minimized

end-to-end by getting optimized WS. Finally, the output channel

of the network is set as 3, for the left, the right hippocampus,

and the background. This semantic segmentation framework

is intended for images from the ADNI dataset with observed

distribution, and the next step is to address the problem of

obtaining hippocampal annotation for images from the IXI dataset

with unobserved distribution.

2.1.2. Image normalization through domain
adaption

The MR images of the large IXI cohort to be analyzed are

acquired from different machines and are of different protocols

from the training MRI cohort where the hippocampus is labeled.

Since MR images across machines do not share reference voxel

values, the training images may have different intensity values

and/or texture patterns from the testing ones.

As a result, we have to normalize the distribution of the images

from the IXI dataset (the target domain) with those in the training

and validation ADNI datasets (the source domain). To that end,

we train our segmentation model with a discriminator network to

make the adaption between the two sets.

Denote the two sets of images from the source and target

domains as Is and It , respectively. We forwarded the source image

Is to the semantic segmentation network S and calculate the

difference between output and annotations for an optimal S. Then,

we predicted the segmentation output Pt for the target image It .

Since our goal is to make segmentation predictions Ps of source

and Pt of target images close to each other, we used these two

predictions from the segmentation framework as the input to the

discriminatorD to distinguish whether the input is from the source

or target domain.

Optimizing the adversarial loss on the target prediction, the

network propagates loss gradients from D to S, which encourages S

to generate similar segmentation distributions in the target domain

to the source prediction. With the proposed method, we formulate

the adaptation task containing discriminator loss functions:

Ltotal = Lseg + λadvLadv (3)

where Lseg is the semantic segmentation loss using ground truth

annotations in the source domain, and Ladv is the adversarial

loss that adapts predicted segmentations of target images to the

distribution of source predictions. The λadv is the weight used to

balance the two losses.

For the discriminator, we use an architecture similar to Tsai

et al. (2018) but utilize the extracted feature from transformer

layers and the final softmax segmentation possibilitymap to explore

more spatial information. Furthermore, only one discriminator is

utilized in our framework. The discriminator network consists of

convolution layers followed by an adaptive average pooling unit

and a full connection layer for the binary classification as illustrated

in Figure 3 (green block). The discrimination cross-entropy loss

can be written as:

Ladv (E) = −
∑

(

(1− z) log (D (E)) + z log (D (E))
)

(4)

For discrimination, z is set to 0 if the sample is gotten from

the source domain and z is set to 1 if the sample is from the

target domain.

2.1.3. Fine-scale segmentation
Although a rich amount of deep-learning based hippocampus

segmentation schemes exist, one of their shortcomings is that at

the native image resolution the fine dentation morphology is not

captured in the manual annotation. Moreover, as the deep-learning

based methods depend more on the training annotation, it is

apparent that if certain shape features do not exist in the training

set, it is unlikely they will be captured accurately in the external

testing images.

On the other hand, the probability map of the hippocampus

obtained above contains valuable information about the

approximate morphology. Since we aim to extract the fine

morphology, it is valuable to escape the realm learned by the
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deep learning framework and explore the fine-scale morphology

features unseen in the training images. This is detailed below.

To refine the surface of the hippocampus, we employ the fine-

scale method (denoted as SR(·)) to fine-tune the probability map

MT
:�s → [0, 1] from S at the native resolution. However, when

such a data-driven method is carried out in a high-resolution space,

it will consume more than 100 times in computer memory and

complexity compared to native resolution. To reduce such a burden

and make the computation practical, we only handle the region of

interest focal to the hippocampus according to the possibility map

MT of target domain image IT to get RT . This step of cropping is

performed automatically by the program. By doing this, we can

perform segmentation on a sub-millimeter level morphological

feature contained in the grayscale information and get the final

result Ssr . The operation can be denoted as:

Ssr = SR
(

Crop
(

MT
))

(5)

More explicitly, we get the sampled observation in isotropic

0.2 mm/voxel resolution by the factor H being set as 5 and

up-sampled the images through convex 3D interpolation while

balancing the consumption and efficiency in the morphology study.

To construct the hippocampus in high resolution space with

fine location, first, we define the high confidence region as C:=
{

x ∈ �s/H
:MT(x) > η

}

, where higher η ∈ [0, 1] values indicates

the voxel belonging to hippocampus with higher confidence and

�s/H is the new images after H times cubic spline up-sampling.

However, such a strongly constrained C does not make full use of

the hippocampal surface context information of images in the high

image space, which might even crudely omit some dentations.

To address this issue, we used the following variational

approaches to refine the hippocampal surfaces. We denote the

family of evolving surface as ζ ⊂ R
3, ζ = ∂C, and for surface

optimization, we define an energy functional as:

E(ζ ) := −
∫

x in ζ

αMT(x)dx+ β

∫

ζ

dA (6)

where the x traverses the space inside the closed surface ζ , and the

joined
∫

ζ
dA is the total surface area. The α and β are the positive

weight. Calculating regional statistic force and edge-based force, the

flow of the surface is controlled by the partial differential equation

below:

∂ζ (p, t)

∂t
= [L((p, t))− αMT(ζ (p, t))+ βν(p, t)]V(p, t) (7)

where V is defined as the inward unit normal vector field on ζ ,

p is the spatial parameterization of surface and ν is the mean

curvature of the surface. In Equation (7), Laplacian of Gaussian

function (LoG) is defined as L((p, t)) for edge based force. To

balance the force of edge evolution, the joined term on the right of

LoG is the regional statistic force. The surface optimizing Equation

(7) does not necessarily reside in the learned space of the neural

network. This means it escapes from the learned space, which

does not have the fine morphology, and the surface evolves and

converges to the locations that process strong edge appearance and

close to the probability map MT with high confidence (control by

setting η value).

Both the deep-learning and fine-tuning processes above are

fully automated. As a result, the final surface will not only

achieve high local similarity measures such as the Dice coefficient

but will also successfully capture the fine-scale hippocampal

dentations, which is the critical shape feature for subsequent

morphology studies.

2.2. Dentation feature extraction and
analysis

The goal of dentation analysis is to quantitatively explore the

denotational shape variation between different groups. To this end,

we first extract the dentation region by projecting the shape to a

proper plane. Then, the dentation could be modeled as sinusoidal

curves, whose parameters are obtained by non-linear fitting. Once

the parameters of the curves have been found, the dentations across

different groups are compared.

As can be seen from Figure 4, the dentations reside on the

inferior surface of the CA1 section and are one or more relatively

parallel ridges. Based on such observation, if one could project

the 3D dentation structure along its ridge, the resulting 2D

silhouette should have a sinusoidal appearance. It is workable

to only capture the magnitude and frequency of such sinusoidal

waves to characterize the dentations. Following the ideas above, the

proposed method contains the following steps.

2.2.1. Point cloud representation
The fine-scale segmentation method provides a very detailed

extraction of the hippocampal structure and allows a detailed

analysis of the dentation structure. Following the ideas above, we

first project the 3D shape to a plane that optimally reveals the

dentation in the 2D plane. To aid the projection step, we represent

the extracted hippocampus using a point cloud. Following Gao

and Tannenbaum (2010), the point cloud is a collection of

data points defined by a given coordinate system, which carries

the morphological information of hippocampal structure. The

segmented hippocampus region can be denoted as a binary image

J :R3 → 0, 1. J can therefore be considered as a probability density

function (pdf) of a random variable which uniformly distributed in

the hippocampus region. Next, we extract samples from such a pdf.

Due to the irregular shape of J’s support, we employ the rejection

sampling for the sample extraction. As a result, each hippocampus

is represented as a cloud of points X = xi ∈ R
3 that are further

processed in the subsequent sections.

2.2.2. Medial axis representation
Looking laterally, the dentation features (or lack thereof) are

evident underneath the gyrus region. One needs to project the 3D

shape to the correct 2D view, identify the inferior boundary, and

then quantitatively represent the dentation feature for comparison

across ages. In this context, principal component analysis (PCA)

is a suitable and effective linear dimension reduction technique to

serve the purpose of extracting the AP axis and the inferior surface

of the hippocampus.
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FIGURE 4

Examples of variation in degree of dentation. (A) Depicts a high degree of dentation with many prominent, or arciform dentations. (B) Depicts a few

arciform dentations. (C) Shows few, less prominent sinusoidal dentation. (D) Shows a hippocampus with no apparent dentation. Arrowheads indicate

individual dentation. Dashed red lines illustrate the contour of arciform (A) and sinusoidal (C) dentation.

In practice, PCA projects the data points to the subspace, which

maximizes the variance to keep the structure of interest in the

volume as much as possible. The first few eigenvectors that yield

the largest eigenvalues often explain most of the variance in the

data. The shape of the hippocampus has the longest axis in the AP

direction. After that, the lateral width of the hippocampus is about

3 cm whereas the thickness in the superior-inferior direction is the

smallest, which is less than 1 cm. As a result, when performing

the PCA on the points in the hippocampus, the eigenvector

corresponding to the largest eigenvalue is expected to be roughly

the AP direction but slightly tilted up. Following that, the second

mode should be in the left-right direction and the third eigenvector

should be perpendicular to the “sheet” of the hippocampus.

As a result, if we project all the 3D points in the hippocampus

along the second direction onto the plane spanned by the first and

third eigenvectors, we could observe the dentations clearly in the

2D view. This is shown in Figure 5.

2.2.3. Sinusoidal dentation modeling and fitting
As shown in Figure 5, hippocampus dentation on its inferior

surface is observed to have many arciform or sinusoidal

prominence in the dotted red circle. A similar variation pattern

in 3D is reflected in the 2D geometry after the projection. This

variation of appearance can be approximated by a sinusoidal fitting

model, which allows for a quantitative description by measuring

dentation with two parameters of magnitude and frequency. The

core of the quantitative analysis is to find model parameters that

can reflect the prominence of dentation in the hippocampal sub-

region, which has inter-subject variation. In this work, a non-linear

fittingmodel was established to explore and characterize this simple

dentation variation. We compute the model parameters that lead to

an optimal adaptation of the variation to the set of observations.

Specifically, we fit a sinusoidal function to the silhouette of the

inferior surface of the hippocampus and measure the parameters

of the sinusoidal function. Mathematically, we build a two-

dimensional Cartesian coordinate for each hippocampus. This

coordinate has its origin at the center of mass of the hippocampus.

Next, two axes are pointing to the eigenvectors with the largest and

smallest eigenvalues from the PCA method, respectively. Visually,

this forms a plane cutting through the hippocampus vertically along

its major axis. All points in the hippocampus are projected onto this

plane, forming a 2D region as shown in row 3 of Figure 5.

The silhouette of the inferior hippocampal surface is therefore

denoted as a function in this coordinate system. The sinusoidal

fitting is cast as an optimization problem:

J (A,w,φ, b) :=
∫

x

(

y (x) − [A sin (wx+ φ) + b]2
)

dx (8)

In Equation (8), there are four fitting parameters: amplitude

(A), frequency (f = w/2π), phase (φ), and bias (b). Among them,

amplitude and frequency are the two key parameters that describe

the height and the density of dentations.

For ease of understanding, we will obtain the height and width

of the hippocampal dentation and display it graphically. As shown

in Figure 5E, the height H is twice the amplitude A, so H = 2A,

and the hippocampal bump width can be expressed as L = 1/f .

Therefore, the goal is to find parameters to minimize J to obtain

the optimal parameter magnitude and frequency and this is a

non-linear optimization problem.

In order to address this non-linear optimization problem,

simulated annealing (SA) (Khachaturyan et al., 1981) was employed

to find the optimal parameters A, w, φ, b. SA is a probabilistic

approach for getting the proximate global optimum of a given non-

linear function. Compared with the general greedy algorithm, the

SA introduces random factors, which may accept a solution worse

than the current solution with a certain probability. Thismeans that

SA is able to jump out of the local optimal solution and approximate

the global optimal solution.

The following annealing criteria are used to allow for accepting

a “worse” solution:

e−1D/T > R (0, 1) (9)

where 1D is the difference of cost implied by the balance, the

temperature is initialized high and gradually “cool” to simulate the

heating process, and R (0, 1) is randomly distributed on [0,1].
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FIGURE 5

Hippocampal 3D point cloud representation, with the resulting plane of interest. Rows (A, B) show the hippocampal results from fine-scale

segmentation. Row (C) shows the corresponding point cloud representation of hippocampus. The red arrows showed the second major sight of

view in 3D space. The red bounding boxes are axis-aligned bounding boxes of point cloud and the green bounding boxes are oriented bounding

boxes based on the PCA of their convex hull. Row (D) are results after dimension reduction processing and dentation can be seen in it. Row (E)

shows measurements of the height and width of hippocampal dentition after PCA. H represents the peak and trough distance of the curve, and L

represents the length of one bump of the curve.

2.3. Experiments and evaluations

2.3.1. Experimental setup
For this study, obtaining accurate fine-scale segmentation

results is the prerequisite for accurate longitudinal analysis. It is

therefore critical to evaluate the fine segmentation performance of

the proposed framework. To that end, the proposed framework

was compared against the following state-of-the-art (SOTA)

techniques: Hippodeep (Thyreau et al., 2018) proposed a CNN

trained on hippocampal segmentation from multiple cohorts

including 2,500 T1 MR scan images. HippMapp3r (Goubran et al.,

2020) proposed and trained a 3D CNN using 259 bilateral manually

delineated segmentation acquired at multiple sites on different

scanners. In addition, to acquire better performance of encoder and

decoder, we utilized the based segmentation framework proposed

in Xie et al. (2021). Therefore, it is also included in comparison

experiments.

We performed our experiments on the two datasets. The

EADC-ADNI dataset (Apostolova et al., 2015; Boccardi et al., 2015;

Frisoni et al., 2015) containing 41 manually labeled subjects was

randomly divided into a training group (N = 30) a validation

group (N = 11). IXI dataset (2018) contains 552 subjects and all

of them were utilized as test groups. The proposed frameworks

were trained on the training group, the validation group, and

the test group for evaluation. To evaluate the performance of

hippocampal segmentation on the IXI dataset, we randomly

selected 150 subjects from the IXI dataset for testing. To

obtain the corresponding manual annotation and to reduce the

workload, we first obtained the annotation with the FSL-FIRST

(Patenaude et al., 2011) as the initial segmentation and then

manually corrected the segmentation results to serve as the correct

manual annotation.

2.3.2. Evaluation metrics
To evaluate the hippocampal segmentation results against

expert manual annotation, quantitative measurements of Dice

similarity coefficient (DSC), Jaccard, Precision, Recall (shown in

Equation 10), Hausdorff distance, and 95th percentile of the

distance (95% HD; shown in Equations 11, 12) were used: all of
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which are standard metrics and are defined as:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
,

DSC =
2TP

2TP + FP + FN
, Jaccard =

TP

TP + FP + FN
(10)

h95 (X,Y) = K95
x∈X min

y∈Y
|x− y|,

HD95 (X,Y) = max
(

h95 (X,Y) , h95 (Y ,X)
)

(11)

HD (X,Y) = max(max
x∈X

min
y∈Y

|x− y|, max
y∈Y

min
x∈X

|y− x|) (12)

In it, TP denotes the true positive, which means the predicted

voxel coincides with the ground-truth; FP denotes the false positive,

which means the predicted voxel falls outsides the annotation

region of ground-truth; FN denotes the false negatives, which

means the predicted background voxel is inside the ground-truth.

h95 (X,Y) is the 95th ranked minimum Euclidean distance between

boundary points in X and Y . While DSC captures a volumetric-

overlapping between the segmentations and the reference standard,

the HD and 95thHDmeasure the point-wise distance.

2.3.3. Network training
All experiments were implemented in Python3.7 Pytorch

backend (version 1.9) and trained on an NVIDIA RTX A6000

graphics card with 48GB of memory. In the training phase, all the

network architecture was trained on the EADC-ADNI dataset with

hippocampal annotation for 2,000 epochs with a batch size of 8.

In the discriminator network, the convolutional kernel size is set

as 4 and the stride is set as 2. To balance the training loss λce

and λdice, the parameter λ1 is set as 0.1. And following (Tsai et al.,

2018), λadv is set as 0.001. For optimization, the Adam optimizer

was adopted with a learning rate of 10−4 for gradient update. As

the hippocampus occupied only a small region in the brain scan

images, to focus on the local feature around the hippocampus, each

labeled MRI volume was randomly cropped to 64×64×64 voxels

for model input as mentioned in Tian et al. (2021).

The sampled subjects from these two datasets are acquired from

the different MR scanners at different study sites. This results in

different voxel spacings, directions, and intensity ranges. Hence,

before training, all the images were resampled to an isotropic

voxel spacing of 1 mm/pixel according to the subjects from the

EADC-ADNI dataset using the SimpleITK toolkit.

2.3.4. Examining group di�erences across age
groups

To quantitatively measure the dentation within difference

groups, we investigated the above two measurements (frequency

and amplitude) in each age group and made comparisons across

the groups. Finally, for quantitative analysis, we tested for

statistically significant differences among age groups by performing

student t-tests.

3. Results

In this section, we present and compare the hippocampal

segmentation results of various methods on two datasets.

Furthermore, to verify the robustness of the method, we also apply

the framework to 7T MR scans to obtain fine segmentation results.

After that, based on the proposed fine-scale segmentation method,

we performed the fine-scale hippocampal morphometry study on a

group of 552 healthy subjects.

Section 3.1 shows the training and validation results of different

segmentation methods on the EADC-ADNI dataset. The results of

the proposed fine-scale segmentation algorithm are presented in

Section 3.2. Section 3.3 shows the obtained segmentation results

based on the proposed framework and manual annotation in 7T

scans. Finally, we used the fine-scale hippocampal segmentation

from Section 3.2 to perform morphological analysis of the

hippocampus of healthy subjects across different age groups, in

Section 3.4.

3.1. Segmentation evaluation of
EADC-ADNI dataset

3.1.1. Segmentation results at native resolution
In this section, we demonstrate the comparison between the

proposed method and some of the SOTA segmentation algorithms

on the EADC-ADNI dataset at the native image resolution. The

results of ablation experiments of the proposed framework are

also presented.

Figure 6 is a visualization of the algorithm results and manual

annotations. It shows that the HippoDeep algorithm is missing

some parts of the hippocampal head. This may be caused by the

fact that the amygdala is sharing a very similar appearance with

the hippocampus. As a result, a conservative algorithm would try

to avoid leaking into the amygdala region, resulting in slight under

segmentation of the hippocampal head. Along a similar vein, the

HippMapp3r algorithm is missing some parts of the subiculum.

The other algorithms are giving relatively satisfying results, except

that the CoTr is missing bits of the CA3.

Table 2 shows the quantitative analysis results of the

hippocampal predictions of various methods compared with

the original labels of the EADC-ADNI dataset.

First, comparing the comparison of the segmentation

results obtained from different segmentation algorithms, the

proposed framework has a maximum improvement of 6.8%

in DSC metrics (left hippocampus, compared to HippMapp3r)

and a minimum improvement of 6.3% (left hippocampus,

compared to HippMapp3r). HippMapp3r has the highest

average precision. But this may be because it is more likely

to under-segment the hippocampus, which is consistent with

the visual appearance in the bottom panel in Figure 6. It is

noticed that the HD95 and HD of the CoTr framework are

better than those of the proposed method. However, CoTr

sometimes suffers under-segmentation in the hippocampus

region with lower DSC performance than that of ours in

the experiment.
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FIGURE 6

Visual contour and comparison of di�erent segmentation methods on two examples subjects. The first and second rows are from the first subject,

and the third and fourth rows are from the second subject. The first and third rows display the coronal slices of the left and right hippocampus, while

the second and fourth rows display segmentation in sagittal slices. Manually traced ground truth is displayed in the penultimate column on the right.

Annotation getting from FSL and manual correction results are shown in the right most column. The reason for including this “FSL+manually”

column is to enable the consistent comparison of the dataset without too many manual annotations: see text in Section 3.1.2 for details. The red

arrows indicate the over- or under-segmentation error.

TABLE 2 Performance comparison of segmentation results of EADC-ADNI dataset in native resolution using di�erent methods.

Framework Left_Right DSC↑ Jaccard↑ Recall↑ Precision↑ HD95 (mm)↓ HD (mm)↓
Hippodeep (Thyreau et al., 2018) Right 0.827± 0.027 0.706± 0.038 0.792± 0.052 0.868± 0.016 1.63± 0.49 4.23± 1.08

Left 0.831± 0.024 0.712± 0.034 0.799± 0.052 0.87± 0.026 1.70± 0.45 4.08± 1.15

HippMapp3r (Goubran et al., 2020) Right 0.808± 0.012 0.678± 0.017 0.702± 0.02 0.953 ± 0.012 1.89± 0.26 4.34± 0.88

Left 0.812± 0.018 0.684± 0.026 0.71± 0.029 0.949 ± 0.012 1.63± 0.27 3.59± 0.61

CoTr (Xie et al., 2021) Right 0.862± 0.012 0.757± 0.018 0.878± 0.027 0.847± 0.017 1.47± 0.17 3.36± 0.51

Left 0.862± 0.01 0.758± 0.015 0.892± 0.028 0.835± 0.024 1.44± 0.09 3.42± 0.39

Proposed (w/o Disc) Right 0.873± 0.008 0.774± 0.013 0.893± 0.015 0.854± 0.019 1.41± 0.01 3.32 ± 0.59

Left 0.873± 0.011 0.774± 0.017 0.907± 0.02 0.842± 0.022 1.41± 0.16 3.09 ± 0.44

Proposed (w Disc) Right 0.876 ± 0.008 0.779 ± 0.012 0.906 ± 0.018 0.848± 0.018 1.41 ± 0.01 3.38± 0.63

Left 0.875 ± 0.012 0.778 ± 0.019 0.910 ± 0.024 0.844± 0.027 1.37 ± 0.20 3.35± 0.69

The upward arrow indicates that higher values are better and the downward arrow indicates that lower is better. The best results are marked in bold.

Second, to verify the effectiveness of each component of the

proposed framework, two ablation experiments are conducted and

the results are shown in Table 2. (1) The proposed framework

without the discriminator is improved based on CoTr. Compared

to CoTr, our proposed framework without the discriminator

part achieved a higher overlap evaluation score and lower

segmentation error around the edge of the hippocampus (increased

by 0.3 mm in HD metric on the left). (2) Comparison of

the models with and without the discriminator: we found that

the former achieves the best performance in most evaluation

metrics. In summary, these two ablation experiments demonstrate

the effectiveness of our proposed framework for improving

the segmentation performance of the hippocampus at the

native resolution.

3.1.2. Constructing consistent hippocampus
annotations between two datasets

Although the EADC-ADNI dataset contains the 3D manual

annotation, the IXI dataset, unfortunately, does not. Therefore,

to conduct a consistent comparison between the two datasets,

we have to create a consistent reference for both. Since directly

labeling the hippocampus would be time-consuming, following

(Liu et al., 2020), we used the results from FSL-FIRST (Patenaude

et al., 2011) as the initial segmentation and make manual

corrections afterward. This created consistent 3D reference

annotations for the two datasets. Next, they are collectively named

FSL+manually labeled.

Table 3 presents the quantitative analysis results of the

hippocampal segmentation of various methods compared with the
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FSL+manually label of the EADC-ADNI dataset. As can be seen,

the proposedmethod can obtain the highest DSCmetric.Moreover,

the highest segmentation accuracy was obtained for both sides’

hippocampi measured by the Jaccard, Recall, and HD95 metrics,

similar to the case in Table 2. Although the DSC of our proposed

method in Table 3 are approximately 3% lower than those in

Table 2, this reduction is also observed in the other segmentation

models. The performance of these segmentation models on the

other metrics also shows a consistent change from Table 2 to

Table 3, with Recall decreasing and Precision increasing. Moreover,

the evaluation results in Table 2 are higher than those in Table 3

because in Table 2 those annotations for validation and training

are drawn manually from the same group of annotation experts.

Therefore, a reduction in the evaluation metrics is caused by the

variability of the two different manual annotations.

It is noteworthy that all the above segmentation results were

obtained at the native image resolution. Although they all achieve

quite high evaluation metrics, as can be seen in Figure 7C, at the

sub-pixel level, the bumpy structure can be clearly seen. However,

on the reconstructed surface, the staircase appearance does not

indicate the correct local morphology. This is because all the

methods above are based on training annotations. However, under

the native resolution, even manual annotation can not correctly

characterize the bumps. Because the function space limited by the

native resolution determines the morphological characterization

capability. Such a surface space limitation should be addressed, for

the segmentation to correctly characterize the bumps/dentations.

To solve this problem, we need the help of fine-scale segmentation

to get the fine-scale annotations.

3.1.3. Fine-scale segmentation for EADC-ADNI
dataset

The fine-scale segmentation results for the EADC-ADNI

dataset are shown in Figure 7E. It can be seen that the smooth

curves accurately delineate the bumpy hippocampal structure. The

last row in Table 3 shows the quantitative analysis results of the

fine-scale segmentation results compared with the FSL+manually

label of the EADC-ADNI dataset. As seen in that row, the value

of the DSC metric increased by about 2% and the precision

value also increased compared to Table 3. This may be due to

the curvature regularization at a much higher resolution. While

it successfully regulates the surface evolution from generating

singularities, inevitably, it will shrink the total volume slightly and

result in a more conservative segmentation.

It can also be seen from the quantitative results in the last row of

Table 3, the fine-scale segmentation results have improvements in

the DSC and Jaccard similarity coefficients compared to the native-

resolution-based results. This is consistent with the visualization

results shown in Figure 7, since these two metrics are volume-

based evaluation metrics. Nevertheless, it still cannot reflect the

changes in dentation segmentation significantly. Because fine-

scale segmentation is reflected more on improving the accuracy

on the boundary, rather than on the volumetric measurement.

Therefore, surface-distance-based metrics, such as HD, can better

demonstrate improvements in fine-scale segmentation. However,

a full 3D delineation across the thousands of slices at a much T
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FIGURE 7

Visualization comparison of hippocampal segmentation results obtained at native image resolution and fine scale in EADC-ADNI dataset. (A) Shows

the MR image of hippocampus at native resolution; (B) shows the segmentation results of hippocampus at native resolution in green contour line; (C)

shows the MR image after interpolation at fine scale; (D) shows the native resolution hippocampus segmentation overlaid on the fine-scale MR

image after interpolation; (E) shows the fine-scale hippocampus segmentation overlaid on the fine-scale MR image.

FIGURE 8

Visual contour and comparison of di�erent segmentation methods on two example subjects from the IXI dataset. The first and second rows are from

the first subject, and the third and fourth rows are from the second subject. Yellow and green outlines indicate left and right hippocampus

segmentation. Manually traced results are displayed in the last column on the right. The red arrows indicate the over- or under-segmentation error.

higher resolution in a consistent manner is extremely tedious, if

not impossible. To solve that dilemma, we use two-dimensional

Hausdorff distance (2D HD) at certain characteristic slices for

quantitative evaluation.

The characteristic sagittal slice that best reflects the bumpy

features on the surface of the hippocampus is selected at

fine-scale resolution. Then, the boundaries of hippocampal

dentation are outlined manually. After that, for comparison,

the fine-scale hippocampal annotation on the same slice was

extracted. The Hausdorff distance between its boundary and

the manually drawn contour was calculated. The results are

shown in Table 3 (the “2D HD” column). As can be seen,

the segmentation of dentation at fine scale is significantly

improved reflected by this evaluation metric. This indicates

that the fine morphology is better captured at such a fine-

scale resolution than that at the native image resolution.

It is also consistent with the visualization results shown

in Figure 7, with more accurate dentation annotation at the

fine scale.

3.2. Segmentation evaluation of IXI dataset

The ultimate goal of performing fine-scale segmentation is

to extract the detailed hippocampal morphology, which can be

used for cross-sectional and/or longitudinal comparisons among

different groups of subjects. With such a goal in mind, while the

EADC-ADNI dataset has manual annotation at the native image

resolution, we have to deploy the algorithm to a much larger set

for the morphometry. Unfortunately, such a dataset of 552 healthy

subjects does not have a complete reference annotation.

In this section, the fine-scale segmentation is carried out and

evaluated on such a much larger dataset.

3.2.1. Segmentation comparison at native
resolution

As mentioned above, since the IXI dataset does not provide

annotations of the hippocampus, following (Liu et al., 2020),
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we obtained the hippocampus segmentation with the help

of FSL software and manual correction as the reference

ground truth in IXI dataset. Then, it is used to evaluate

the segmentation performance of the proposed framework

and other SOTA algorithms on the IXI dataset. The

experiments described next are based on the randomly

selected 150 sample subjects from the IXI dataset as the

research objects.

Figure 8 shows the visual comparison of the segmentation

results given by different segmentation models at the native image

resolution. It shows that Hippodeep fails to capture the head

of the hippocampus. Likewise, HippMapp3r does not perform

well in the same example subject. The output of CoTr is

incomplete but unlike the previous examples, it omits the caudal

part of the hippocampus. Improved from CoTr, our proposed

basic segmentation framework (without discriminator) is not

constrained by the input size and can output more complete

segmentation results.

The reason for the under-segmentation of the IXI

dataset by these above methods may be that they were

not directly trained by the annotations of the IXI dataset,

and the distribution of hippocampal samples on the IXI

dataset has not been seen before. In contrast, the proposed

framework with discriminator can utilize the new images

to adaptively improve the generalization ability of the

model. Therefore, the proposed framework performs well

in these samples, and its output is visually closer to the

ground-truth annotations.

Table 4 shows the quantitative results using different methods

on the 150 sample objects of IXI dataset. Combining the

visualization results in Figure 8 and the quantitative analysis results

in Table 4, we have the following findings.

First, the Dice score of Hippodeep is higher than that of

HippMapp3r. However, Hippodeep has certain unsatisfactory

segmentation as shown in Figure 8, resulting in a larger standard

deviation. Additionally, the precision of the segmentation of

HippMapp3r is the highest among all methods. As can be

seen in Figure 8, the output of HippMapp3r was more likely

to be located within the hippocampal region. Therefore, the

segmentation results of HippMapp3r have lower false positives

and thus the highest precision. As for the evaluation results

based on HD and 2D HD distance metrics, the proposed model

achieves the best results on the left hippocampus than that

on the right. Furthermore, compared with other frameworks,

our proposed segmentation model achieves the best results on

the other evaluation metrics. In particular, it is approximately

5% higher than the evaluation metric of HippMapp3r on

DSC. To sum up, according to the quantitative and qualitative

comparison results, the proposed framework’s output is more

satisfactory than hippocampal segmentation results on the

IXI dataset.

Moreover, another advantage over state-of-the-

art methods (Hippodeep and HippMapp3) is that

only 30 subjects from another dataset (EADC-ADNI

dataset) are used for training, while the testing set in

this study involves a different cohort with 150 sample

subjects. This shows the generalization capability of the

proposed method.
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FIGURE 9

Visualization comparison of hippocampal segmentations at native image resolution vs. fine scale in IXI dataset. (A) The MR image of the

hippocampus at native resolution. (B) The segmentation of hippocampus at native resolution; (C) shows the MR images after interpolation; (D) shows

the native resolution hippocampus segmentation overlaid on the fine-scale MR image after interpolation; (E) shows the fine-scale hippocampus

segmentation overlaid on the fine-scale MR image.

3.2.2. Evaluation of fine-scale segmentation
The above results are based on the native image resolution.

To accurately analyze the change of dentation, we applied the

fine-scale segmentation method to obtain the segmentation and

compare them with manual annotation at native resolution and

fine-scale, visually shown in Figure 9. Similar to Figures 7B, D, it

can be seen from Figures 9B, D that the segmentation model can

only output rough stepped edges at the native image resolution, but

fails to capture the edges of the hippocampal dentation. Further,

compared with the segmentation results in Figures 9B, D, the

Figure 9E shows that the proposed method can better capture

the dentation structure of the hippocampus, resulting in finer

segmentation results.

The last row of Table 4 shows the quantitative analysis of the

fine-scale segmentation results. Compared to the performance at

native resolution, overlap-based metrics (i.e., DSC, Jaccrd, Recall,

and Precision) did not show significant changes. But the distance-

based metrics (i.e., HD95, and HD) decrease significantly. Among

them, the HD metric can be lowered by up to 0.8 mm (about

20% for the right hippocampus). To measure the improvement

of boundary fineness by fine-scale segmentation methods, we also

focused on the results for 2D HD. There is also a 0.5 mm (about

28%) drop for the right hippocampus in the 2D HD metric

for dentation.

Combining the overlap-based and distance-based metrics

shows that the fine-scale segmentation algorithm does not have a

great impact on the segmentation accuracy of the overlapped region

of the hippocampus. Instead, the algorithm can change the edges

of the segmented objects, thereby improving the accuracy of the

dentate segmentation.

Finally, we applied the proposed method and obtained fine

segmentation results for all 552 case samples based on the

IXI dataset. Some of the visual results are shown in Figure 10.

The bumps on the inferior side of the hippocampus can be

captured in the presented samples and they look different among

different age groups. However, the “bumpiness” across different

age groups can not be easily assessed by eye, and we need to use

quantitative metrics to do so. This is subject to the topic of the

next section.

Since the most important bumpy dentation information can be

observed in the 2D slices, we segmented the volumetric data and

validated the accuracy in 2D.

3.3. Validation with 7T MR images

To validate our segmentation accuracy on 1 mm/pixel MR

scans against high-resolution 7T MR scans, we mimic lower

resolution images using 7T MR scans, applied the proposed

method, and validated the result against the manual contour

of the inferior surface slices which shows the most prominent

bumps at high resolution. For analysis, we selected three samples

from the dataset provided by Alkemade et al. (2020) for testing.

Since the most important bumpy dentation information can be

observed in the 2D slices, we segmented the volumetric data

and validated the accuracy in 2D. First, we down-sampled the

7T MR images with a resolution of 0.641 to 1 mm. We then

applied the proposed segmentation framework to obtain fine-

scale segmentations. The segmentation results were presented in

Figure 11. Observing Figures 11B, C, it can be seen that the native

segmentation results at 1 mm resolution in Figure 11B cannot

accurately capture the boundaries of hippocampus dentation well,

though it can be observed in Figure 11C, the original high-

resolution slices. Conversely, the fine-scale segmentation results

shown in Figure 11E, obtained with the proposed framework,

exhibited a high degree of consistency with the manual annotation

in Figure 11D. Quantitatively, the DSC obtained on the three slices

were 0.892, 0.897, and 0.861, respectively, while the 95th percentile

of the Hausdorff distance measured 0.641, 0.640, and 0.906

mm. These results demonstrate that our fine-scale segmentation

approach yields accurate outcomes, which closely align with

the true 7T segmentation results obtained from high resolution

MR scans.
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FIGURE 10

Fine-scale segmentation by the proposed method in di�erent age groups from the IXI dataset (2018). Black triangles indicate hippocampal dentation.

3.4. Shape analysis of the hippocampal
dentation in fine scale

Sections 3.2 and 3.1 above validated the segmentation accuracy

of the proposed framework. The ultimate goal of the present

work is to quantitatively analyze the fine-scale dentation feature

underneath the hippocampus using the methods in Section

2.2. First, we quantitatively validated the hippocampal dentation

analysis method in Section 2.2 on some simulated shapes

in Section 3.4.1. We then applied the validated methods on

the real fine-scale segmentation results in Section 3.4.2 and

identified the trends of hippocampal dentation through different

age groups.

3.4.1. Quantitative validation of hippocampal
dentation analysis on simulated shapes

In this section, we quantitatively evaluate the hippocampal

dentation analysis method used in Section 2.2 and show its accuracy

in capturing the magnitude and frequency of dentation patterns.

Since there is no established ground truth for themeasurements

of the dentation patterns, it would be difficult to evaluate

the accuracy if we directly apply the methods to the real

anatomical structures. As a result, following the ideas in Gao

et al. (2014), we generated a series of simulated shapes,

with known varying dentation patterns in their magnitudes

and frequencies. Such shapes are then used to evaluate the

analysis method.
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FIGURE 11

Visualization comparison of hippocampal segmentations in 7T MR scans. (A) The MR image of the hippocampus at resampled 1 mm resolution. (B)

The obtained segmentation of the hippocampus at 1 mm resolution overlaid on (A); (C) shows the MR images at native 0.641 mm resolution from 7T

scans; (D) shows the manual annotation overlaid on the 7T MR images; (E) shows the fine-scale hippocampus segmentation with resolution 0.2 mm

overlaid on the native 7T MR image with resolution of 0.641 mm.

FIGURE 12

Simulated 3D hippocampal dentation. There are 16 combinations of dentation simulations with di�erent amplitudes (A, ranging from 0.1 to 0.4 mm)

and frequencies (F, ranging from 0.1 to 0.25 bump/mm).

To proceed, we simulated the dentations with dentation

amplitudes and frequency ranges concerning (ten Hove and

Poppenk, 2020) on a cuboid, as shown in Figure 12. Then, following

the proposed shape analysis method, we extracted both the

amplitudes and the frequencies. Corresponding to the simulation

example in Figure 12, the visual examples of the results obtained

from dimensionality reduction and curve fitting are shown in

Figure 13. Based on the fitted curve, we computed the dentation

frequencies and amplitude. Finally, the computed amplitudes and

frequencies are compared with their ground truth. The evaluation

results are shown in Table 5.

As can be seen from Table 5, the fitting error of the frequencies

is below 1%. This is partially because the shapes are quite ideal.

However, the error of the amplitude detection is larger, with a

maximum error of about 0.019 mm. It can also be observed

from Table 5 that the amplitudes are often time underestimated.

However, when the amplitude is larger than 0.2 mm, the statistical

error in Table 5 is greatly reduced to around 4.5%. As the amplitude

increases to 0.4 mm, the fitting error is lower than 1%. Consistent

with this, it can also be seen from Figure 13 that the fitted curve is

almost the same as the actual curve.

The above quantitative analysis of errors shows that, based on

dimensionality reduction and curve fitting, the proposed shape

analysis method has relatively larger errors when the bumps are

shallow. With the gradual increase of the bump amplitude, the

error decreases to about 1%. After this validation of the simulated

data was completed, we then applied the method to the real

segmentation results.
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FIGURE 13

Visual examples of dimensionality reduction and curve fitting. Blue points represent the result of the 3D simulation model after dimensionality

reduction. The red wavy curve represents the fitted curve.

3.4.2. Quantitative analysis of hippocampal
dentation —The hippocampus is the bumpiest in
people in their 40s

Utilizing the proposed segmentation method, we captured

the fine-scale dentations on the IXI dataset. Shape analysis was

subsequently performed on the annotated data from the IXI

dataset, consisting of 552 healthy subjects, using the method

described in Section 2.2. Figure 14 shows the variation in

hippocampal dentation amplitude and frequency sub-stratified

by age. The higher the amplitude, the higher the hippocampus

dentation. Higher frequencies indicate narrower dentation in

the hippocampus.

As depicted in Figure 14, the dentations under the

hippocampus are most pronounced in the age group of people

between 40 and 50 years old. First, there were more variations of

amplitude in the 40 to 50 age group, which ranged approximately

from 0.09 to 0.2 on both sides in Figures 14A, C. On the other

hand, the change in frequency trended in the opposite direction to

the change in amplitude but still reached its lowest point at the age

of 40 to 50, and ranged from 0.11 to 0.16.

Figure 14 shows inter-group statistical analysis and the

differences by two sample independent t-tests. The temporally

aligned blocks for six groups reveal distinct (P < 0.05) patterns

in hippocampus dentation. The most notable differences between

groups were the amplitude of left hippocampus dentation (group

40–50/others).

4. Discussion and conclusion

This work has presented a complete pipeline of fine-

scale hippocampus segmentation and dentation analysis. Results

indicated that this is an efficient method for accurate sub-

millimeter hippocampus segmentation and dentation shape

variation analysis in 3T MR images in different age groups.

The proposed method addressed the two main difficulties of

obtaining fine-scale annotation of the hippocampus efficiently from

clinically available image data instead of ultra-high field MR scans

and exploring the relationship between hippocampal longitudinal

dentation and age in normal and healthy groups.

For hippocampus segmentation, the proposed algorithm

based on 3D deep neural networks improved the segmentation

performance and efficiency, which fulfilled the need to obtain

annotation of the hippocampus of a large cohort with 552 sample

subjects. Only a small sample size of 30 volumes was used for

model training and hippocampus segmentation tasks. To solve

the problem of the difference in the distribution of training and

testing samples, we improved from the CoTr model and utilized

the domain adaptation method to improve the performance

of validation and testing on the second dataset. For example,

the segmentation performance of the tail in the hippocampus

was improved. This deep learning based semantic segmentation

method provided accurate initial segmentation for the subsequent

fine-scale segmentation. Furthermore, to compare the change of

hippocampal segmentation results at the native resolution and

the fine scale, we applied distance-based evaluation metrics. The

reduction ofHD and 2DHD showed that, with the help of fine-scale

segmentation algorithms for morphological analysis, segmentation

results could better capture the outline of the whole hippocampus

and its dentation.

To the best of our knowledge, this is the first quantitative

investigation of fine-scale hippocampus morphometry across a

wide range of age groups. This initial study reveals noticeable

patterns of shape changes. Dentation of the hippocampus is

present during the initial stages of life and continues to change

as the individual grows. These changes are commensurate in

relative extent with the temporal structural evolvement of the

hippocampus within the first few decades up to the age of 50. By

contrast, the dentational region undergoes a lower rate of change,

leading to a relative degree of loss in the inferior regions of the

hippocampus. Although the total change rate of dentational regions

presents concavity or convexity for the corresponding quantitative

parameters, the reverse is not true for people in older age groups:

in these individuals, with severe tissue loss, dentation has a more

irregular outline.

These findings are consistent with continuous variability across

the full spectrum of neurogenesis, as is increasingly being verified

from the molecular structure level (Alvarez-Buylla and Lim, 2004;

Lim and Alvarez-Buylla, 2016). Another study, in Wu et al. (2013),

has demonstrated that the structural brain network also peaks

between 40 and 50 years of age.
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TABLE 5 Quantitative error analysis results between the fitting and the actual setting frequency (F) and amplitude (A).

Actual F (bump/mm)

Actual A (mm) 0.1 0.2 0.3 0.4 MAE (F)

0.1 0.082 (0.101) 0.193 (0.099) 0.297 (0.1) 0.401 (0.1) 0.001

0.125 0.082 (0.124) 0.19 (0.124) 0.299 (0.124) 0.398 (0.125) 0.001

0.2 0.082 (0.2) 0.191 (0.199) 0.295 (0.2) 0.394 (0.2) 0

0.25 0.08 (0.251) 0.189 (0.249) 0.294 (0.25) 0.396 (0.25) 0.001

MAE (A) 0.019 0.009 0.004 0.003 \

In parentheses are the fitted frequencies.

FIGURE 14

Cross-age group assessments. (A, C) Box-plots of left hippocampal dentation amplitudes and frequency variation with age; (B, D) Box-plots of right

hippocampal dentation amplitudes and frequency variation with age. The bridges of di�erent colors span between the two groups, indicating that

their di�erence is statistically significant. *P < 0.05 (indicated in red); **P < 0.005 (indicated in green); ***P < 0.001 (indicated in blue).

Our findings support the idea that the temporal profiles

of dentation in healthy subjects may be the consequence of

neurogenesis at the specific site of brain regions. It has also

been demonstrated that adults preserve neural stem cells, which

produce new neurons within some restrained areas. These

cell populations could be viewed as displaced and modified

neuroepithelium, pockets of cells, and local signals that retain

enough embryonic nature to maintain neurogenesis for life. These

findings suggest a selective cortical variation that is consistent with

the extent and dynamics of neurogenesis, with the most active

growth happening during embryonic development, followed by

continuous generation, decreasing slowly with age (Knoth et al.,

2010; Sanai et al., 2011; Göritz and Frisén, 2012). However, regions

of neurogenesis exhibit pathological distinctions between healthy

subjects and some neurodegenerative disease patients, and these

distinctions are evident throughout the course of a disease. For
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example, in Huntington’s disease, it has been found that postnatally

generated neurons are absent in the advanced stages of disease

(Zuccato et al., 2010; Walker et al., 2011). Accordingly, serious

consideration should be given to which factors might result in

distinctions of neurogenesis activity, and whether there is any

associated phenotype, just as Huntington’s disease subjects seemed

to reveal a more pronounced rate of atrophy within specific

regions of interest. Similarly, longitudinal model-based estimation

of variations and distinct phenotypic variability of dentation

compared to healthy subjects could not be neglected during some

neurodegenerative conditions.

A key advantage of this work is that it develops methods for

quantifying the continuous phenotypic variability of dentation,

which ranges from completely absent to pronounced among

healthy adults. The proposed method extracts prominent

change patterns from 3D volume data, which are critical for

subsequent evaluation and to provide an effective feature

expression. Compared to previous cross-sectional studies (Beattie

et al., 2017), our work dispenses with a burdensome and

subjective visual rating process. The non-linear fitting model

provides two parameters—amplitude and frequency—to permit

quantitative analysis of variation. However, the framework can

only integrate dentation contour to a sinusoidal locus where the

modeled average rate of change of mass data can support the

model-based estimation.

The amplitudes and frequencies we measured are smaller

than those found in ten Hove and Poppenk (2020). There may

be several reasons for this: first, the IXI dataset we used are

vanilla T1-MPRAGE sequence, which are not designed to highlight

the hippocampal dentations. Second, in Section 2.2, we used

a linear projection to map the 3D shape to 2D curves, which

were later fitted with a sinusoidal function. In this process,

the direction of projection may not be perfectly aligned with

the ridge of the dentation due to its non-planner/non-linear

nature. Furthermore, the inferior surface of the hippocampus

is not a flat plane. The combination of these factors could

decrease the amplitude of dentation in the 2D view and

subsequent sinusoidal fitting. Further research investigating better

bump extraction and parameterization approaches, such as the

principal curve analysis and/ormachine learning based approaches,

is ongoing.

As the first systematic temporal study of hippocampal fine-

scale dentation that includes analyses of 3T clinical data and

comprehensive neuroanatomical measures, a few limitations to

the present work have to be noted. Even though we validated

that the dentations found in the proposed method are not

interpolation artifacts, as seen in Chang et al. (2018), it is

preferable to obtain paired 3T and 7T datasets for further

validation of the dentation delineation. Moreover, the imaging

data in this study were acquired from public databases. To

enhance the robustness and generalization of the estimation

model, promoting more studies spanning different databases from

different sites and large-scale analysis to integrate these data is

required. For instance, after the axis extraction, the non-linear

fitting is susceptible to the local minimum. Even though the

simulated annealing can ameliorate this situation to some extent,

further improvements in dentation feature extraction need to be

undertaken in future research.

In addition to the healthy subjects studied here, future

directions of this research should also explore the potential

diagnostic and prognostic utility of patterns of dentation in disease

states, as well as serving as an outcome measure for interventions,

such as epilepsy, Alzheimer’s disease, and schizophrenia.
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Local domain generalization with 
low-rank constraint for 
EEG-based emotion recognition
Jianwen Tao 1†, Yufang Dan 1† and Di Zhou 2*
1 Institute of Artificial Intelligence Application, Ningbo Polytechnic, Zhejiang, China, 2 Industrial 
Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou, 
China

As an important branch in the field of affective computing, emotion recognition 
based on electroencephalography (EEG) faces a long-standing challenge 
due to individual diversities. To conquer this challenge, domain adaptation 
(DA) or domain generalization (i.e., DA without target domain in the training 
stage) techniques have been introduced into EEG-based emotion recognition 
to eliminate the distribution discrepancy between different subjects. The 
preceding DA or domain generalization (DG) methods mainly focus on 
aligning the global distribution shift between source and target domains, 
yet without considering the correlations between the subdomains within 
the source domain and the target domain of interest. Since the ignorance of 
the fine-grained distribution information in the source may still bind the DG 
expectation on EEG datasets with multimodal structures, multiple patches 
(or subdomains) should be reconstructed from the source domain, on which 
multi-classifiers could be learned collaboratively. It is expected that accurately 
aligning relevant subdomains by excavating multiple distribution patterns 
within the source domain could further boost the learning performance of 
DG/DA. Therefore, we  propose in this work a novel DG method for EEG-
based emotion recognition, i.e., Local Domain Generalization with low-rank 
constraint (LDG). Specifically, the source domain is firstly partitioned into 
multiple local domains, each of which contains only one positive sample 
and its positive neighbors and k2 negative neighbors. Multiple subject-
invariant classifiers on different subdomains are then co-learned in a unified 
framework by minimizing local regression loss with low-rank regularization 
for considering the shared knowledge among local domains. In the inference 
stage, the learned local classifiers are discriminatively selected according 
to their importance of adaptation. Extensive experiments are conducted 
on two benchmark databases (DEAP and SEED) under two cross-validation 
evaluation protocols, i.e., cross-subject within-dataset and cross-dataset 
within-session. The experimental results under the 5-fold cross-validation 
demonstrate the superiority of the proposed method compared with several 
state-of-the-art methods.
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domain adaptation, subdomain generalization, emotion recognition, 
electroencephalogram, local learning
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Introduction

In the field of affective computing research (Mühl et al., 2014), 
automatic emotion recognition (AER; Dolan, 2002) has received 
considerable attention from computer vision communities (Kim et al., 
2013). Many EEG-based emotion recognition methods have been 
proposed so far (Musha et al., 1997; Jenke et al., 2014; Zheng, 2017; 
Niu et al., 2018; Pandey and Seeja, 2019; Chang et al., 2021, 2023; 
Zhou et  al., 2022). From the viewpoint of machine learning, 
EEG-based AER can be  modeled as a classification or regression 
problem (Kim et al., 2013; Zhang et al., 2017), in which state-of-the-
arts for AER usually tailor their classifiers trained on multiple subjects 
and apply them to individual subjects. From both qualitative and 
empirical observations, the generalizability of AER could be attenuated 
partly due to the individual differences among subjects (Jayaram et al., 
2016; Zheng and Lu, 2016; Lan et  al., 2018). That is, the subject-
independent classifier usually achieves an inferior generalization 
performance since emotion patterns may significantly vary from one 
subject to another (Pandey and Seeja, 2019). As a possible solution, 
subject-specific classifiers are usually impractical due to insufficient 
training data (Li X. et al., 2018; Zhou et al., 2022). While conspicuous 
progress has been made to conquer this issue by improving feature 
representations and learning models (Zheng and Lu, 2015; Song et al., 
2018; Li et al., 2018a,b; Li Y. et al., 2019; Du et al., 2020; Zhong P. et al., 
2020; Zhou et al., 2022), there still exists a long-standing challenge 
incurred by individual diversities in EEG-based AER. This challenge 
is primarily attributed to the fact that the learned classifiers should 
be generalized into previously unseen subjects that may obviously 
differ from those on which the classifiers are trained (Ghifary et al., 
2017). To this end, numerous domain adaptation (DA) learning 
algorithms for AER have emerged by exploiting EEG features (Zheng 
et al., 2015; Chai et al., 2017; Li J. et al., 2019; Pandey and Seeja, 2019; 
Zhang et al., 2019b; Li et al., 2020; Chen et al., 2021; Dan et al., 2021; 
Tao et al., 2022). For instance, Pandey and Seeja (2019)) and Li X. et al. 
(2018) successively proposed two subject invariant models for 
EEG-based emotion recognition; following the deep network 
architecture, in the researchers (Chai et al., 2016; Li H. et al., 2018; Luo 
et al., 2018; Li et al., 2018c, 2021; Wang et al., 2022; Zhou et al., 2022) 
designed several deep learning models for EEG-based 
emotion recognition.

Unfortunately, in some practical AER applications, the whole 
target data of interest may be unavailable in the stage of training a 
subject-specific classifier (Wang et al., 2022). In this case, domain 
generalization (DG; Muandet et al., 2013), an effective variant of DA 
(Bruzzone and Marconcini, 2010), is proved to be a feasible solution 
for DA emotion recognition (Tao et al., 2022). With no need to focus 
on the generalization of some specific target domain, DG methodology 
could better acquire out-of-the-distribution effects on test samples 
from other previously unseen target domains (Wang et al., 2022). 
While DA and DG are closely related in learning scenarios, DA 
algorithms generally cannot be directly applicable to DG since they 
rely on the availability of the target domain in the stage of training. In 
this sense, DG is more challenging than DA as no target data can 
be used for fine-tuning in the training stage (Ghifary et al., 2017).

In DA/DG, one major problem is how to reduce or eliminate the 
distribution discrepancy between different domains (Patel et al., 2015; 
Wang et  al., 2022). First of all, one needs to design a robust and 
effective criterion that can measure the domain discrepancy. Due to 

its simplicity, effectiveness, and intuition, Maximum Mean 
Discrepancy (MMD; Gretton et al., 2009) is a commonly adopted 
distribution distance measure criterion. Preceding MMD-based DA 
methods (Pan et al., 2011; Duan et al., 2012; Tao et al., 2012, 2017, 
2019; Chen et al., 2013; Long et al., 2014a; Ding et al., 2018a,b,c), 
however, generally focused on the global statistical distribution shift 
between/among different domains without considering the 
complementarities and diversities between two subdomains 
constructed with local structures within the same/different domains 
(Gao et al., 2015; Zhu et al., 2020). This could result in attenuated 
adaptation performance to some extent, since not only could all the 
samples from both source and target domains be confused together, 
but also the local discriminative structures could be trimmed without 
capturing the fine-grained local structures (Zhu et al., 2020). That is, 
while the global distribution alignment may lead to approximate zero 
distribution distance between different domains, a common challenge 
that exists in preceding global methods is that the samples from 
different domains are pulled too close to be accurately classified. An 
intuitive example is shown in Figure 1, where the source domain 
presents a certain multimodal structure (as shown in Figure 1A). After 
global domain adaptation, as shown in Figure 1B, the distributions of 
the two domains are approximately the same, but the data in different 
semantic structures are too close to be classified accurately. This is a 
common problem in previous global DA methods. Hence, matching 
the global source and target domains may not work well in 
this scenario.

Concerning the challenge of global domain shift, several works 
pay attention to semantic alignment or matching conditional 
distribution (Long et al., 2014a, 2017). There are other works proposed 
to discover multiple latent domains by decomposing the source 
domain (Judy et al., 2012; Gao et al., 2015). While they have presented 
the effectiveness of DA by exploring multiple subdomains potentially 
existing in the source domain, discovering multiple representative 
latent domains is still a non-trivial task by explicitly dividing the 
source samples into multiple blobs (Zhu et  al., 2020). Further, to 
overcome the shortages that exist in the global distribution measure, 
numerous deep subdomain adaptation methods have focused on 
accurately aligning the distributions between different subdomains 
(Gao et al., 2015; Zhu et al., 2020). For instance, the recent work in 
Zhu et al. (2020) focuses on aligning the distribution of the relevant 
subdomains within the same category in the source and target 
domains. These deep learning methods, however, usually contain 
several updatable loss functions and converge slowly. Moreover, it is 
still an unexplained open problem whether the success of deep DA 
methods really benefits from the feature representations, fine-tuned 
classifiers, or effects of the adaptation regularizers (Tao et al., 2022).

Motivated by the idea of subdomain adaptation, we propose in 
this work a Local Domain Generalization (LDG) scheme to implicitly 
align the relevant local domain distributions from a single source with 
that of the target domain. A key improvement of LDG over previous 
DG/DA methods is the capability of the fine-grained alignment of a 
domain shift by capturing the local discriminative structures in the 
source domain by excavating multiple subdomains as per each positive 
sample with its two k-NN subsets (as shown in Figure 1C). In these 
local domains, multiple classifiers can be jointly trained in a unified 
framework by aligning them with a referenced model. Under this 
framework, the model discrepancies between the relevant subdomains 
from the source and the target domain could be  measured by 
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considering the weights as per different distribution distances. After 
local domain adaptation, as shown in Figure 1D, each local domain 
distribution from the source domain is approximately the same as that 
of the target domain. Therefore, multiple local classifiers jointly 
learned with these local domain adaptations could be integrated and 
generalized into the target domain.

Specifically, we present an LDG framework for AER with EEG 
features with low-rank constraints. Under this framework, the source 
domain is firstly divided into multiple local domains, each containing 
only one positive sample (or exemplar; Zhang et al., 2016) and its 
positive and k2 negative neighbors. Intuitively, the distribution 
structures of these local domains for those exemplars are expected to 
be relatively closer and simpler than that of the global one. In LDG, 
multiple subject-invariant classifiers on different local domains are 
co-learned in a joint framework by minimizing local regression loss. 
Instead of evaluating the importance of each classifier individually, 
LDG selects models in a collaborated mode by considering the shared 
knowledge among local domains by additionally imposing a nuclear-
norm-based regularizer on the objective function. The learned local 
classifiers are discriminatively selected according to their weights in 
the inference stage. While the DG performance of LDG also can 
be boosted with most feedforward network models by exploiting the 
deep feature representations, it does not need iterative deep training 
and converges fast, thus being very efficient and effective.

Different from the existing DG methods that only focus on 
global distribution alignment in the source domain(s), we consider 
the local distribution structures of the source domain and their 

relevance with the target domain to further enhance the 
effectiveness and generalizability of the learned adaptation model. 
Our algorithm can adapt as much knowledge as possible from a 
certain source domain, even if the EEG features between domains 
are partially distinct but overlapping. To the best of our knowledge, 
there is no prior work imposing DG with multiple local domains 
on solving AER problems. The main contributions of this paper are 
summarized as follows.

 1. We propose a local domain generalization framework (LDG) 
for EEG-based emotion recognition by leveraging multiple 
structure-similar local domains from the source domain with 
multi-model distribution patterns. Using this framework, the 
capacity of MMD-based DA methods can be  extended by 
excavating the local discriminative structures for each domain 
by aligning KNN-based local domain distributions.

 2. We present a subdomain division strategy, i.e., splitting the 
source domain into multiple local domains, each of which is 
composed of each positive (exemplar) sample (Zhang et al., 
2016; Li W. et al., 2018; Niu et al., 2018) and its k1 positive and 
k2 negative neighbors. Multiple local classifiers can be, 
respectively, trained on each local domain. We then formulate 
a new objective function by imposing a nuclear-norm-based 
regularizer on the model matrix in the objective function to 
further enhance the discriminative capability of the learned 
local classifiers by exploiting the intrinsic discriminative 
structure in the source domain.

Source Domain

Target Domain

Class 1
Class 2

f(x):Target classifier
Class 1
Class 2

Before g lobal domain adaptation. After global domain adaptation.

S1S11

S2

S3

Source Domain

Target Domain

Local subdomain

Local subdomain

Local subdomain
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Class 2

f1(x)

f2(x)

f3(x)
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Local classifiersfi(x) (i=1,2,3):
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FIGURE 1

Global domain adaptation might lose some fine-grained information (A,B). Local domain adaptation can exploit the local discriminative structures to 
capture the fine-grained information for each category (C,D).
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 3. An iterative optimization algorithm is presented for solving the 
objective of LDG that can be  applied to EEG-based AER 
problems. The convergence of the optimization procedure can 
be  guaranteed in terms of the proof of the proposed 
convergence theorem.

 4. Extensive experiments are conducted on two benchmark 
databases (DEAP and SEED) under two cross-validation 
evaluation protocols (cross-subject within-dataset and cross-
dataset within-session). The remarkable experimental results 
show that our method outperforms other state-of-the-art 
methods on emotion recognition tasks.

The rest of the paper is organized as follows. Section 2 reviews 
several related works in emotion recognition, DG, and subdomain 
adaptation. Section 3 introduces our LDG framework including the 
overall objective function, and then the optimization algorithm and 
its convergence analysis are successively provided in Section 4. Section 
5 provides a series of experiments to evaluate the effectiveness of LDG 
for AER. Finally, we summarize the entire paper in Section 6.

Related work

In recent decades, increasing attention has been given to 
emotion recognition with brain-computer interfaces (BCI; Dolan, 
2002; Kim et  al., 2013; Mühl et  al., 2014) in the affective 
computing community. A vanilla aBCI system using spontaneous 
EEG signals firstly extracts sufficient discriminative features 
from the EEG data by a certain feature extractor and then trains 
an optimal classifier using these features and the corresponding 
emotion states for AER. Therefore, a proper design of EEG-based 
emotion recognition models helps facilitate the data processing, 
benefits from discriminant feature characterization, and lightens 
the model performance. The latest works about affective BCI 
(aBCI) usually adopt machine learning algorithms on automatic 
emotion recognition (AER) using extracted discriminative 
features (Musha et al., 1997; Jenke et al., 2014; Chang et al., 2023). 
However, the traditional machine learning method has a major 
disadvantage in that the feature extraction process is usually 
cumbersome, and relies heavily on human experts. Then, 
end-to-end deep learning methods emerged as an effective way 
to address this disadvantage with the help of raw EEG signals and 
time-frequency spectrums (Han et al., 2022). More details can 
be  found in Zhang et  al. (2020c), which investigated the 
application of several deep learning models to the research field 
of EEG-based emotion recognition, including deep neural 
networks (DNN) (Chang et  al., 2021), convolutional neural 
networks (CNN), long short-term memory (LSTM), and a hybrid 
model of CNN and LSTM (CNN-LSTM; Zhong Q. et al., 2020; 
Mughal et al., 2022; Xu et al., 2022).

While preceding methods have obtained remarkable achievements 
on EEG-based AER (Zheng, 2017; Li et al., 2018a,b; Li Y. et al., 2019; 
Pandey and Seeja, 2019), the performance expectation for cross-
subject/dataset recognition could be lowered due to the diversities of 
emotional states among subjects/datasets (Jayaram et al., 2016; Zheng 
and Lu, 2016; Li X. et al., 2018). While subject-specific classifiers may 
be a possible solution for these cases, they are usually infeasible in real 
tasks due to insufficient training data. Moreover, even if they are 

feasible in some specific scenarios, it is also an indispensable task to 
fine-tune the classifier to maintain a sound recognition capacity partly 
because the EEG signals of the same subject sometimes change (Zhou 
et al., 2022). Fortunately, the recently proposed domain adaptation 
(DA) technique (Patel et al., 2015) can be leveraged to surmount these 
challenges for EEG-based emotion recognition. As a well-focused 
research direction, the unsupervised domain adaptation (UDA) 
methodology has promoted a large amount of research effort devoted 
to generalizing the knowledge learned from one/multiple labeled 
source domain(s) into a different but related unlabeled target domain 
(Wang and Mahadevan, 2011; Gong et al., 2012; Long et al., 2014b, 
2015, 2016; Ganin and Lempitsky, 2015; Ganin et al., 2016; Judy et al., 
2017; Tzeng et al., 2017; Ding et al., 2018a,b,c). Over the past decade, 
DA-based emotion recognition methods have been a hot topic (Lan 
et al., 2018), almost fully covered in the literature of aBCI (Zheng 
et al., 2015; Chai et al., 2016, 2017; Jayaram et al., 2016; Zheng and Lu, 
2016; Li H. et al., 2018; Li X. et al., 2018; Luo et al., 2018; Li et al., 
2018c, 2020, 2021; Li J. et al., 2019; Chen et al., 2021; Dan et al., 2021; 
Tao et al., 2022; Zhou et al., 2022). Existing methods explore tackling 
different challenges in AER with EEG datasets by excavating a certain 
latent subspace shared by different domains for filling the domain 
distance among subjects or sessions.

In some real DA-based AER applications, the whole target data of 
interest may be unavailable in the stage of training (Ghifary et al., 
2017). In this scenario, domain generalization (DG; Muandet et al., 
2013), an effective variant of DA, has been proven to be a feasible 
solution for DA emotion recognition since it need not focus on the 
generalization of a certain specific target domain. While DA and DG 
are closely related in learning scenarios, DA algorithms generally are 
not directly applicable to DG since they rely on the availability of the 
target domain in the stage of training. In this sense, DG is more 
challenging than DA as no target data can be used for fine-tuning in 
the training stage. The extant works about DG can be divided into two 
research lines in terms of different strategies, i.e., feature-centric DG 
(Judy et al., 2012; Muandet et al., 2013; Ghifary et al., 2017; Motiian 
et al., 2017) and classifier-centric DG (Xu et al., 2014; Ghifary et al., 
2015; Niu et al., 2015, 2018; Gan et al., 2016; Li W. et al., 2018). The 
former aims to mine domain-invariant features, while the latter uses 
multi-classifiers adaptation by regulating their weights. More research 
progress on DG can be found in the recent survey on DG (Wang 
et al., 2022).

As is known, a major task in vanilla UDA/DG methodology is to 
mitigate the domain discrepancy either by aligning the statistical 
moments (Pan et al., 2011; Duan et al., 2012; Tao et al., 2012; Chen 
et al., 2013; Long et al., 2014a,b; Xiao and Guo, 2015; Ding et al., 
2018a,b,c) or by using domain adversarial learning (Ganin and 
Lempitsky, 2015; Ganin et al., 2016; Tzeng et al., 2017; Long et al., 
2018; Pei et  al., 2018) benefited from the powerful deep neural 
networks. Traditional DA/DG methods usually assume a global 
distribution shift between different domains and expect 
approximately the same global distribution of two domains after 
adaptation (Mansour et al., 2009). However, most of the preceding 
DA/DG methods face a common problem in that they only pay 
attention to matching the global statistical distribution between 
domains without considering the complementarities and diversities 
among subdomains constructed using several local structures within 
the same/different domains (Zhu et al., 2020). This could result in 
attenuated adaptation performance in part because the samples from 
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different domains are pulled too close to be accurately classified in 
those global methods. As a result, not only will all the data from the 
source and target domains be confused, but also the discriminative 
structures can be  mixed up. Subdomain adaptation can to some 
extent conquer the shortcomings in aligning global domain 
discrepancy. For instance, several related works have been proposed 
to excavate multiple latent domains from the source domain (Judy 
et  al., 2012). To discover multiple representative latent domains, 
however, is a non-trivial task done by explicitly dividing the source 
samples into multiple blobs. Aiming at the disadvantages of global 
domain adaptation, considerable works (Gao et al., 2015; Zhu et al., 
2020) have explored subdomain adaptation, which focuses on 
aligning the local domain discrepancies. Most deep DA/DG methods 
belong to the deep adversarial learning methodology and converge 
slowly due to several loss functions. To this end, Zhu et al. (2020) 
recently presented a deep subdomain adaptation network (DSAN) 
based on the proposed local maximum mean discrepancy (LMMD), 
which learns a DA network by aligning the related distributions of 
subdomains across different domains.

It is worth noting that the discriminative structures could still 
be  mixed up in extant subdomain adaptation schemes when the 
source (or target) domain presents a multimodal distribution structure 
(as shown in Figure 1). Different from these works on aligning global/
sub-domain(s) shift(s), we propose a novel fine-grained DG method 
for EEG-based emotion recognition, in which multiple patches (local 
domains) are firstly reconstructed from the source dataset and 
multiple local classifiers are then learned collaboratively for effective 
generalization into the target domain even with multiple kinds of 
distribution pattern (Gao et al., 2015). Our method does not need 
deep training and converges fast, while its adaptation expectation can 
be  easily boosted with deep feature representations from most 
feedforward network models.

Proposed framework

Preliminary notations

In the context of this paper, we, respectively, denote by small and 
capital letters the column vectors and matrices. The frequently used 
notations are summarized in Table 1. The concatenation operations of 
matrices along the row (horizontally) are denoted as A A Ak1 2, , ,  �� � ,  
and their concatenation along the column (vertically) are 
denoted as A A Ak1 2, , ,  �� � .

Definition 1 (Local domain): For a certain domain X xi i
m� � � �1 

with some probability distribution P, a local domain for one 
positive example x Xv ∈  is composed of its k1 positive nearest 
neighbor set N x x xk v v vk

1
1 1

� � � � �� �, ,  and k2 negative neighbor set 
N x x xk v v vk k k2 1 1 1 2

� � � � �� �� �
, ,  , i.e., X x N x N xv v k v k v� � � � �� �� �

, ,
1

2
.

According to Definition 1, for any source domain X xs
i
s
i

ns
� � �

�1
 

with p positive samples xvs d
v

p
�� �

�


1
 and ns – p negative samples, one 

can reconstruct p local domains X x N x N xv
s

v
s

k v
s

k v
s� � � � �� �� �

, ,
1

2
, 

1≤ ≤v p , by finding the positive nearest neighbor set 

N x x xk v
s

v
s

v
s
k1 1 1

� � � � �� �, ,
 and k2 negative neighbor set for each positive 

sample xvs (1≤ ≤v p).

Definition 2 (Local domain adaptation, LDA): Let 
� � �� �X Xs

m
s

1
, ,  be a set of m local domains and X t ��  be a 

target domain. The task of LDA is to learn an ensemble function 
fX t : ��  by co-learning multiple classifiers f Xv v

s� � 
(1≤ ≤v m) given Δ and Xt as the training examples by alleviating 
the distribution difference between source and target domains.

Definition 3 (Local domain generalization, LDG): In this 
scenario, the target domain is inaccessible in the training stage. 
Given m local domains � � �� �X Xs

m
s

1
, , , and denoted by 

X x ya
s

i
a

i
a
i

na
� � �

�
,

1

 
the samples drawn from the a-th subdomain, 

the task of LDG is to co-learn multiple adaptive functions 
fXa

s : ��  only given X a ma
s
, , ,� � �1  as the training 

examples, which could be well-generalized to a certain unseen 
target domain.

Motivation

As is known, a major task in vanilla UDA/DG methodology is to 
diminish the domain discrepancy either by aligning the statistical 
moments (Koelstra et al., 2012; Gao et al., 2015; Li et al., 2018a, 2020) 
or by domain adversarial learning (Gong et al., 2012; Lan et al., 2018; 
Li X. et al., 2018; Ding et al., 2018a) benefited from the powerful deep 
neural networks (Zhu et al., 2020; Zhou et al., 2022). While extensive 
exploration of cross-subject/session has been conducted effectively in 

TABLE 1 Notations and descriptions.

Notations Descriptions

n Data size.

d Feature dimensionality of data.

χ Data space.

Γ Label space.

a a a ad
T d� �� � �1 2, , ,  

Feature vector.

A n d� � Data matrix.

Ai,j The (i, j) entry of A.

Ai and Aj The i-th row and j-th column of A.

AT and aT The transpose of matrix A and vector a.

tr(A) The trace of a matrix A.

A A tr A AT1 2 1 2, � � � The inner product of two matrices A1 and 

A2.

a ap i
p

i
d p

� �
�
�

�
�
��� 1

1/ The p-norm of a vector a.

A AF i jj
d

i
n� �� �� ,

2
11

The Frobenius norm of A.

Ir Identity matrix of size r × r.

1d d-dimensional vector of ones.

0d d-dimensional vector of zeroes.
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the prior works by leveraging various domain adaptation tricks, one 
obvious shortage in these works is they usually assume a global 
distribution shift between different subjects and expect an 
approximately similar global distribution of two subjects after 
adaptation. In other words, these DA-based AER methods only focus 
on matching the global statistical distribution between subjects 
without considering the complementarities and diversities among 
local domains constructed using some intrinsic structures within the 
same/different subjects. This leads to attenuated adaptation 
performance since the real-world EEG data is usually quite diverse 
and the distribution of emotion data is complex. It is challenging to 
reduce the global distribution discrepancy between different domains.

As far as we know, limited effort, however, has been witnessed in 
improving DA/DG performance by leveraging local knowledge 
among multiple subdomains from a single source. The ignorance of 
the fine-grained local discriminative structures may result in 
unsatisfying generalization capacity in DA/DG. Exploiting the 
relationships among multiple local domains to match their 
distribution divergences could not only align the global statistical 
distributions but also the local discriminative patterns. In many real 
applications, the local structure is more important than the global 
structure (Ding et al., 2018a), and the local learning algorithms often 
outperform global learning algorithms (Ding et al., 2018b). Because 
of this, LDA/LDG is able to compensate for the limitation of global 
DA since the diversities of domain distributions intrinsically exist in 
real applications.

Motivated by this idea, we propose in this paper a novel domain 
generalization framework for EEG-based emotion recognition, i.e., 
Local Domain Generalization (LDG) with low-rank constraints. 
Under this framework, LDA is a relaxed extension of LDG, where the 
target domain of interest is provided during the training process. 
Specifically, the source domain of the auxiliary is firstly partitioned 
into multiple local domains, each of which contains only one positive 
sample (or called exemplar sample) and its k1 positive neighbors and 
k2 negative neighbors. Each local domain is expected to be relatively 
more similar and possess a simpler distribution structure. Then 
multiple subject-invariant local classifiers are co-learned on these local 
domains by minimizing a unified local regression loss. Instead of 
evaluating the importance of each classification model individually, 
LDG selects models in a collaborated mode for considering the shared 
knowledge among local domains by additionally introducing a 
nuclear-norm-based regularizer into the objective function. In the 
inference stage, the learned local classifiers are discriminatively 
selected and reweighted according to the distribution distance 
between each local domain and the target domain of interest.

In the following sections, we will present the objective formulation 
of our framework followed by its effective optimization algorithm.

General formulation

In LDA/LDG learning, however, there still exists two challenges 
worthy to be effectively addressed: (1) how to divide one source into 
multiple local domains and (2) how to compute the weight of each 
sample in its local domain. Until now, little research has been reported 
to address these challenges for EEG-based emotion recognition 
through local regression learning by decomposing the source domain 
into multiple local domains. To address these challenges, in this 

section, we  propose the general formulation of our framework 
underpinned by the robust local regression principle and the 
regularization theory. Concretely, our proposed method will possess 
several complementary characters, which can be combined into one 
unified optimization formulation so that a more effective target 
learning model and distribution alignment between local domains 
and the target domain can be jointly achieved.

For LDA of m local domains Xvs
v

m� �
�1

 from the source domain 
Xs, we  define the v-th (1≤ ≤v m) local classifier as f w Xv v v

s,� �  
corresponding to the v-th local domain, where wv d∈  is the v-th 
local classifier model. If we consider kernel learning and assume that 
there is a feature map � �v vH: � 1 that projects the training data from 
the original feature space into a certain reproducing kernel Hilbert 
space (RKHS; Gretton et al., 2009) Hv, then the predictor model wv can 
be kernelized. We denote the kernel matrix as K x xv i j i

v
j
v� � � � � � �,

,� � ,  
where x x Xi

v
j
v

v
s, ∈ . We  introduce the empirical kernel map as 

discussed in Pan et al. (2011):

 

� �v
d

v
v
x x

for linear nel mapping

x K x
v v

: ,

,
, , ,

�

� �� �
�

    

     

ker

1 2 xx
v

v v
v n

v v

ns
v s

K x x K x x

for nonlinear ne

� � � �� �1
, , , ( , ) ,  

      ker ll mapping 

We therefore have kernelized data matrices K Xv
s

v v
s� � ��  for 

nonlinear projection. For simplicity of expression, we  uniformly 
express the data in linear and nonlinear space as follows:

 
X

X linear
K x nel

v
s v

s

v
s�
�� �

�
�
�

��

,

, ,  ker

In the sequence, we  also refer to it as Xvs (linear) and Kvs  
(nonlinear) if without special denotation. We  further denote by 
W w wm� �� �1;; ;;  the concatenated local model matrix. We  then 
endeavor to find m local adaptation models parameterized by jointly 
exploiting correlation information among local domains.

We first formulate our method with classical regularized empirical 
error (Zhang et al., 2019c), which leads to a classifier fv based on a set 
of training data Xv:

 
min , ,

v

m
v v v v vloss f w X y f

�
� � �� � � � �

1

 �
 

(1)

where � fv� �  is a regularization term that guarantees good 
generalization performance and loss � �� �,  is a regression loss function. 
Although other complex nonlinear models can be used, the linear 
model has the following characteristics: (1) It is fast and more suitable 
for practical applications and (2) The local structure of the manifold 
is approximately linear (Feiping Nie et  al., 2010). So, we  use the 
following linear transformation:

1 It is worthy to note that the feature mapping function øv (1≤ v ≤ m) with 

respect to each local domain can be completely different from each other.
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 f w X X w bv v v v
T
v v,  � � � �  (2)

where, bv ∈ is the bias term. The model vectors for all local 
domains should be highly correlated. So, we further get the following 
objective function.

 

min

.

, ,�
� � �

v v vw b v

m
v
r

v
T
v v k k v vX w b y w W

s

�
� � �� � � ��

�
�

�
�
�
�

1

1 2

2

2

2
1

1 2

tt
v

m
v v. , ,

�
� � �� �

1

1 0 1� �
 

(3)

where α, β is the regularization parameters and the coefficient θv 
is the contribution of each local model. The third term in Eq. (3) is the 
trace norm of W d m� � , which is the convex hull of the rank of W, 
thus enhancing the correlation between different local weight vectors 
(Yang et al., 2013).

Essentially, it is expected that a bridge needs to be established 
between different local model vectors. Therefore, we can add a global 
model vector w

Ü
 and require each local model vector to be aligned with 

it (Zhang et al., 2019a). Furthermore, to avoid some noise information, 
we replace the real label vector yv in Eq. (3) with the pseudo label 
vector fv k∈ . This pseudo-label vector can be  obtained by the 
subsequent optimization. Therefore, the objective function can 
be represented in the following formulation:

 

min
, , ,
,
�

� �
v v vw b
b w v

n
v
r

v
T

v v k v v
v

X w b f w
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. . �� �v v� �
 �1 0 1, ,
 

(4)

where η is another regularization parameter. The reason for 
adding the fifth term is that the predicted results should be consistent 
with the actual label (Zhang et al., 2020a). We also expect that the local 
prediction label should be globally consistent, which is obtained by 
the global weight vector w  on each local domain. In other words, the 
label information should be consistent with the nearby samples.

Given our objectives mentioned above, we propose the following 
general formulation of LDG:
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(5)

where λv is the contribution of different subdomains. In the above 
equation, the maximum entropy regularization λ λv vlog  is added to 

avoid a trivial solution. L E E S Ev v v v v� � � �� �� �� �1 2 1 2/ /  is a 
normalized Laplacian matrix corresponding to the v-th local domain 
(Yan et al., 2006), and Ev is a diagonal matrix with a diagonal element 

of E Sv i i
j

k
v i j� � � � ��, , . The graph weight matrix Sv of Xv is defined 

as follows:

 

S
x x

x x x x
v i j

i
v

j
v

v i
v

k j
v

j
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k i
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,

exp ,

,

2

0

�
 or
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�

�
��

�
�
�

,

where k x� � denotes the k-NN of x.

Remark
In our objective formulation, one could adapt the knowledge 

obtained from multiple local domains to facilitate the target task 
of interest, which has been empirically demonstrated to be better 
than learning each local domain task independently in emotion 
recognition. In other words, it is expected to be  beneficial to 
leverage the common knowledge shared by multiple local domain 
tasks for AER. However, most of the existing state-of-the-art 
algorithms uncover some optimal classifier models for the source 
and/or target domain independently. Moreover, in these state-of-
the-art methods, joint multiple local adaptation learning has 
been largely unaddressed, and little or limited efforts have yet 
been devoted to the utilization of the correlation information 
among multiple local domains.

Optimization

Our objective function is non-smooth, so we  propose an 
alternative algorithm to solve it.

Optimize b w f f bv v v, , , ,  and w  by fixing � �v v, .
By setting the bv derivative to 0, we have:

 

w X kb f

b
k
f w X

k
f X w

v
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v k v v
T
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v v
T
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v k
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1 1

1 1
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(6)

By setting the b derivative to 0, we have:
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(7)

Substituting Eq. (6) and Eq. (7) into Eq. (5), then setting its 
derivative on wv to 0, we get the following formula:

 
w Q X H f X X wv v v

r
v k v v v

T� �� ��1 � 

 
(8)
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where H I
kk k k k

T� �
1 1 1 , Q X H X X X V Iv v

r
v k v

T
v v
T

d� � � �� � � ,  

and V W W T� � �� ��1 2/

. By setting the derivative on w  to 0, we get:
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By setting its derivative for f to 0, we get:
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(11)

Optimize θvr by fixing b w f f bv v v v, , , , ,λ  and w .
After fixing b w f f bv v v v, , , , ,λ  and w , the objective function in eq. 

(5) can be reformulated as
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(12)

By using the Lagrange multiplier δ, we convert the above problem 
into a Lagrange function as follows:
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By setting its derivative for θi to 0, we get:
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Since 
v

m
v

�
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1
1� , we obtain:
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Optimize λv by fixing b w f f bv v v v, , , , ,θ  and w .

When fixing b w f f bv v v v, , , , ,θ  and w , the objective function in 
Eq. (5) is equivalent to:
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By using the Lagrange multiplier φ, we convert the above problem 
into a Lagrange function as follows:
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By setting its derivative for λv to 0, we have:

 
tr X L Xw wT

v v v
T

v � � � � � �� � � �log 0

We thus obtain:

  

�
�

�

� �
v

v

v

m
v

T
v v v

T

v

M
T

v

tr X L X

tr X L

w w

w
� �

� � � �� �� �
�

� �
� �

1 1

exp /

exp

 

 vv v
TX w� � �� �� �� �/

 

(18)

Overall algorithm and convergence 
analysis

According to the above objective function optimization process, 
we summarize the following algorithm for LDG.

Below, we  will demonstrate that the alternating optimization 
procedure converges to the optimal solution of wv v

m� � �1 corresponding 
to the optimization problem (5) according to Lemma 1.

Lemma 1. For any invertible matrices M and V , the following 
inequality holds (Nie et al., 2010):
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(19)

Next, we  verify that the proposed iterative approach in 
Algorithm 1 can converge to the optimal solutions by the 
following theorem:

Theorem 1. Algorithm 1 will monotonically decrease the objective 
of the problem in Eq. (5) in each iteration and will converge to the 
optimum of the problem.
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Proof. For ease of representation, we  denote the updated 
b w fv v v v v, , , ,� � , b, and w  in each iteration as 
b w f f bv
l

v
l

v
l
v
l
v
l l l, , , , , ,� �  and wl , respectively. The inner loop to 

update in Step 2 of Algorithm 1 corresponds to the optimization 
of the following problem.
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According to the definitions of the matrix V, we obtain:
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Eq. (21) is equivalent to the following form:

Algorithm 1: Local domain generalization and adaptation

Input: Domain training dataset X y v mv v, , , ,� � � �� �1 ; the number of nearest neighbors k1, k2, and parameters α, β, and μ.

Initialization: Set t = 0, and initialize wv0, fv0 , bv0, w0
, θv0, λv0, b0, f 0  randomly, and set Vv0 as identity matrix.

1: Construct the k-nearest neighbor graph and calculate Lv v
M� � �1;

2:Compute Hk according to H I
kk k k k

T� �
1 1 1 ;

3:Compute Hn according to H I
nn n n nT� �
1 1 1 ;

4: For each v in 1, ,�� �m

 {

  4.1: Let t = 0;

  4.2: repeat

  {

   4.2.1:Compute λvt  according to Eq. (18);

   4.2.2:Obtain θvt  by Eq. (15);

   4.2.3: Compute Qvt  as Q X H X X X V Ivt vt
r
v k vT v vT t d� � � � � �� � � ;

   4.2.4: Update Avt  as A XH X X X A X X X X I X L Xvt n T v vT vt v vT v vT d vt v v vT� � � � � � �
�1

� � ;

   4.2.5: Update Bvt  as 
B H H X Q X X A X X Q Xvt vt

r
k vt

r
k vT vt v vT vt v vT vt v� � � � � � � � � � � �� � �

� �
2 1 1 1

HH

H X Q X H

k

vt
r
k vT vt v k�� � � ���

2 1
;

   4.2.6: Compute f 0  according to Eq. (11);

   4.2.7: Compute fvt according to Eq. (10);

   4.2.8: Update w
tÜ
 as w A XH f X X Q X H f

t
v n t vt

r
v vT vt v k vt

Ü
� � � � � ��

�
��
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1
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   4.2.9: Update wvt  as w Q X H f X X wvt vt vt
r
v k vt v vT

t
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�

�

�
�
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�
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�1
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Ü
;

   4.2.10: Update bvt  as b
k

f X wvt k
T vt vT vT vt� �� �1 1 1 ;

   4.2.11: Update bvt  as b
n

f X wt nT t nT T
t

� �
�

�

�
�
�

�

�

�
�
�

1 1 1
Ü

;

   4.2.12: Update Vvt ;

   4.2.13: Set t t� �1;

   } until max min / max© © ©t t t� � �
10

4 ;

  4.3 Next v;

 }

Output: Converged λv, θv , wv , bv, bv, w
Ü

, f , fv .
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2  and according to Lemma 1, 
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Subtracting (23) from (22), we have:
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The above formula is equivalent to:
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Therefore, we have proved the theorem. Because of the updating 
rule in Algorithm 1, the objective function shown in (5) monotonically 
decreases, and it is easy to see that the algorithm converges.

Target inference

After training the LDG, we get m local classifiers. In the following 
sections, we  will separately propose ways to effectively use these 
learned classifiers in two cases.

 1. LDG: The first is a domain generalization scenario where the 
target domain samples are not available during training. The 
other is the domain adaptation scenario with a specific target 
domain in which we  have unlabeled data in it during the 
training process. In the domain generalization scenario, under 
the premise that we have no prior information about the target 
domain, we can only fuse the m local classifiers to achieve the 
prediction of the test sample by assigning different weights. 
Given a target sample x, the predictive label y can be obtained 
by the following formula.
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(26)

 2. LDA: When there is unlabeled data in the target domain, 
we  can assign different weights to each local classifier by 
measuring the similarity between the target domain and each 
locality in the source domain to achieve a better prediction 
effect. In other words, when a certain local domain is closer to 
the target domain, we should assign a higher weight to the 
classifier trained on this subdomain, and vice versa.

Given a set of target domain samples X x x xK� �� �1 2, , , , where K 
is the number of samples in the target domain. By measuring the 
distance between the training sample and the target domain by the 
Maximum Mean Discrepancy (MMD), we get the following formula:
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where Xv, X are the v-th local source domain and target domain 
datasets respectively, and Dist X Xv ,� �  represents the distribution 
distance of Xv and X, and HK denotes a regenerative kernel Hilbert 
space. ( )·φ  is a Gaussian kernel nonlinear feature mapping function. 
Using MMD we can get the weight of each local classifier by:
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Then we can predict the test sample xj by the following formula:
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Experimental results

In this section, we will conduct comprehensive experiments to 
validate the effectiveness of our method compared with several state-
of-the-art ones.

Benchmark datasets

Two widely used benchmark databases, i.e., SEED (Zheng and Lu, 
2015) and DEAP (Koelstra et al., 2012), are adopted for systematic 
experiments of EEG-based emotion recognition (Dan et al., 2021; Tao 
et al., 2022). More detailed descriptions of these two benchmarks can 
be  found in Lan et  al. (2018). As reported by references (Zhong 
P. et al., 2020; Zhong Q. et al., 2020) and (Lan et al., 2018), some 
obvious differences between these two benchmarks are that they may 
be sampled from multiple different sources such as different sessions, 
subjects, experimental schemes, EEG devices, and emotional stimuli, 
etc. Following the same practice in literature (Shi et al., 2013; Zheng 
et al., 2015; Chai et al., 2016, 2017; Zheng and Lu, 2016; Lan et al., 
2018; Zhong P. et al., 2020; Zhong Q. et al., 2020; Tao and Dan, 2021; 
Tao et  al., 2022) for domain adaptation emotion recognition, 
differential entropy (DE; Lan et al., 2018; Zhong P. et al., 2020; Zhong 
Q. et  al., 2020) is adopted as the data feature in our 
experimental settings.

Baselines and protocol

Baselines
As a DG method, we  compare our method with several 

representative domain generalization/adaptation methods, which can 
be summarized into the following two groups (here we only report the 
better models):

 1. Shallow learning methods: Undo-Bias (Khosla et al., 2012), 
UML (Fang et  al., 2013), DICA (Muandet et  al., 2013), 
LRE-SVM (Xu et al., 2014), and SCA (Ghifary et al., 2017);

 2. Deep learning methods: Deep subdomain adaptation network 
(DSAN; Zhu et al., 2020), Deep domain generalization with 

structured low-rank constraint (DDG) (Ding et al., 2018a,b,c), 
deep domain confusion (DDC) (Tzeng et al., 2014), domain 
adversarial neural networks (DANNs) (Ganin et  al., 2016), 
contrastive adaptation network (CAN) (Kang et al., 2022), and 
deep CORAL (Sun and Saenko, 2016).

Training protocol
For all datasets, we only exploit the source samples for training. 

We use support vector machine (SVM) as the base classifier for DICA 
and SCA. The tunable hyper-parameters are selected according to 
labels from the source domain. We adopt the Gaussian kernel with a 
kernel bandwidth σ computed by the median heuristic as the kernel 
function for the kernel-based methods. For a fair comparison, all deep 
learning baselines use the same architecture (ResNet101; He et al., 
2016). That is, for deep domain generalization on the EEG dataset, 
we  employed the Resnet101 architecture to extract the training 
features. We  fine-tune all convolutional and pooling layers from 
pre-trained models and train the classifier layer via back-propagation. 
For multi-class classification of emotion recognition, we employ the 
“One vs. Rest” strategy to train our method (Zhang et al., 2020b).

Parameter setting
There are several vital parameters such as μ, α, and β that need to 

be determined beforehand in our objective (5) since they are employed 
to balance the importance of structure characterization and 
regularizers. Considering that parameter determination is a yet 
unaddressed open issue in the field of machine learning, we determine 
them by grid search in a heuristic way (Nie et al., 2010; Long et al., 
2014b; Tao et al., 2022). Concretely, these regularization parameters 
are tuned from 10 10 10 10

4 3 3 4� � �� �, , , , . Since no target labels are 
available for DG, it is impossible to conduct a standard cross-
validation. Hence, we perform p-fold cross-validation on the labeled 
source subdomains, namely, calculating the averaged accuracy on 
each subdomain fold while exploiting the other p − 1 subdomain folds 
for training. Moreover, for constructing the nearest neighbor graph in 
LDG, we search the optimal neighbor number k (including k1 and k1) 
in the grid 3 5 7 9 11 13, , , , ,� � , and then report the top-one recognition 
accuracy from the best parameter configuration. For the kernel 
learning scenarios, the Gaussian kernel, i.e., K x xi j i j, exp� � �� �� 2 ,  
is used as the default kernel function, where σ is set to 1/d (d is the 
feature dimension).

Inter-subject domain generalization

Note that different subjects even from the same dataset still have 
different EEG feature distributions due to their characteristics. 
We therefore conduct the so-called leave-one-out cross-validation 
strategy conducted also in Lan et al. (2018) and Tao et al. (2022) to 
evaluate the emotion recognition performance. That is, one subject 
remains to be  the target domain, and others from the dataset are 
constructed as the source domain. In this scenario, we follow the same 
setting as (Lan et al., 2018; Tao and Dan, 2021; Tao et al., 2022) to 
evaluate our method compared with other state-of-the-art methods 
on SEED and DEAP, respectively.

Each subject from DEAP includes 180 samples belonging to three 
categories, i.e., 60 samples per class. Each subject from SEED 

173

https://doi.org/10.3389/fnins.2023.1213099
https://www.frontiersin.org/journals/neuroscience


Tao et al. 10.3389/fnins.2023.1213099

Frontiers in Neuroscience 12 frontiersin.org

contributes 2,775 samples, i.e., 925 samples per class and per session. 
Following the same strategy adopted by Chai et al. (2016), Zheng and 
Lu (2016), and Chai et al. (2017), we randomly sampled 1/10 of the 
training data (3,885 samples contributed by 14 subjects) from SEED 
in each experiment due to the large number of training samples. To 
cover the whole training dataset, we randomly extracted 10 training 
sets from SEED and thus conducted each experimental procedure 10 
times. The final result was averaged over these 10 runs. We compared 
the performance of our LDG with several state-of-the-art DG 
approaches. The mean recognition accuracies of LDG compared with 
the baselines on two benchmark datasets are recorded in Table 2.

As is known, when the size of training data increases to infinity, 
the theoretical performance (about 33.33%) of the random prediction 
can be approximately approached by the real chance level (Lan et al., 
2018). When there are finite samples, we obtain the empirical chance 
level by repeating the trials with the samples in question equipped 
with randomized class labels (Lan et  al., 2018). For comparison, 
we also provided the upper bound of chance levels (UBCL) with a 95% 
confidence interval in this table.

Comparison with shallow methods

As observed from Table 2, the mean performance of all methods 
on two datasets has significantly exceeded UBCL at a 5% significance 
level. This indicates the imperative importance of inter-subject domain 
generalization due to the intrinsic existence of distribution divergence 
among different subjects. Compared with other shallow learning 
methods, our method LDG undoubtedly obtains the best mean 
performance (75.06% ± 4.97) in all cases, which is followed by 
LRE-SVM (73.32% ± 3.85). This may be attributed to the subdomain 
learning technologies in LDG and LRE-SVM. Our method LDG 
unsurprisingly achieved more performance gains than LRE-SVM on 

both DEAP and SEED. The multi-source generalization method SCA 
and DICA are found to be  more effective than Undo-bias and 
UML. The experimental results in Table 2 show that while the relative 
improvement over vanilla DA/DG methods is significant (t-test, value 
of p > 0.05), the absolute accuracy is still rather low, which suggests 
that there still exists adverse impact incurred by substantial 
distribution discrepancies between different subjects.

An interesting result that can be observed from Table 2 is that all 
methods demonstrate better performance on SEED than on 
DEAP. The same observation has also been reported in Lan et al. 
(2018) and Tao and Dan (2021). A possible explanation for this result 
might be that there exist large discrepancies among different subjects, 
and the samples are distributed more “orderly” in their original feature 
space on SEED than that on DEAP (Mansour et  al., 2009), thus 
leading to better alignment on SEED in some kernel space. That is, 
larger discrepancies among different subjects from DEAP could 
degrade the recognition accuracy to some extent (Mansour et al., 
2009; Lan et al., 2018).

Comparison with deep methods

Following the same settings in Donahue et al. (2014) and Zhou 
et al. (2022), our method LDG also can be easily trained with the 
deeply extracted features via the classical deep models such as VGG 
(Simonyan and Zisserman, 2014) and ResNet (He et  al., 2016). 
Specifically, one can fine-tune some pre-trained deep models (e.g., 
Resnet101; He et  al., 2016) through the source domain, and then 
extract the deep features from EEG signals. Finally, the recognition 
model can be learned using these deep representations.

In this part, we will particularly evaluate our method LDG with 
deeply extracted features by comparing it with several recently 
proposed deep adaptation models. We  additionally denote our 

TABLE 2 Inter-subject recognition accuracy (mean % and STD %).

Method
DEAP

SEED

Session I Session II Session III Average

Mean STD Mean STD Mean STD Mean STD Mean STD

Shallow 

methods

Undo-Bias 60.36 3.41 69.41 5.44 65.79 2.24 72.64 5.10 69.28 4.26

UML 62.18 4.09 72.57 6.27 67.58 1.75 71.17 3.68 70.44 3.90

DICA 65.33 6.22 73.12 6.86 65.06 6.28 73.38 7.19 70.52 6.78

LRE-SVM 68.20 2.12 77.50 3.29 70.11 5.44 77.45 4.53 75.02 4.42

SCA 66.05 4.26 75.23 5.17 69.14 6.20 74.23 6.07 72.87 5.81

LDG 71.51 3.14 78.92 5.65 70.88 5.72 78.93 5.38 76.24 5.58

Deep 

methods

DDG 77.68 3.33 84.92 6.42 74.29 7.45 82.33 8.11 80.51 7.33

DDC 74.87 6.28 79.43 7.13 72.16 6.11 80.07 7.66 77.22 6.97

DANN 75.34 7.11 82.51 6.49 73.77 7.59 83.62 6.51 79.97 6.86

DSAN 78.44 4.15 84.50 6.18 74.58 6.33 84.10 6.12 81.06 6.21

CORAL 74.08 3.58 80.42 4.20 71.54 5.49 81.00 5.00 77.65 4.90

CAN 78.43 6.10 85.77 7.31 74.12 7.50 85.39 7.40 81.76 7.40

LDG + Resnet101 77.62 5.37 85.42 5.72 74.68 5.19 86.05 6.82 82.05 5.91

Upp Bnd of Chn Lvl (UBCL) 38.85 34.58 34.65 34.60 34.61

Bold denotes the best recognition rates.
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method with deep features as LDG + ResNet101. As for other deep 
benchmarks, their opened source codes are directly borrowed to fine-
tune the pre-trained models adopted in their works, respectively. 
Different from these deep adaptation models, which typically pursue 
gaining certain domain-invariant representations, our proposed 
method explores optimizing a domain-invariant recognition model 
with strong generalization ability from the single source domain to the 
unseen target. We expect our method leveraging the deeply extracted 
features can further upgrade the recognition performance with the 
proposed subdomain generalization strategy.

As shown in Table 2, all of the deep methods obviously outperform 
the shallow ones. This indicates the advantage of deep features due to 
their more discriminative representations. As expected, 
LDG + ResNet101 also obtains the best or comparable recognition 
performance compared with other deep adaptation methods, followed 
by CAN and DSAN. This may be partly attributed to the classification-
level modeling in our LDG, where most of the local discriminative 
structures have been preserved by the guidance of subdomain 
construction. In some scenarios, shown in Table 2, LDG + ResNet101 
even achieves the top-one accuracy, which verifies that the proposed 
LDG can become an effective surrogate to the deep adaptation model 
by exploiting the deeply extracted features from some pre-trained 
deep models.

Sample size impact

Figure  2 clearly reports the impact on the performance with 
different sizes of source on SEED, where the source size varies from 
100 to 3,800. We  can observe that our methods LDG and 
LDG + ResNet101 manifest the same trends of upgrade in the curves. 

As expected, larger source samples are beneficial to improve the 
recognition performance of our methods. It is worth noting that the 
performance of LDG can be smoothly and steadily improved with the 
increase of the source size, while LDG + ResNet101 can achieve 
significant performance when the source samples are relatively large, 
e.g., larger than 1,100. When the number of source samples increases 
to 3,500, LDG and LDG-ReNet101 asymptotically approach their 
equilibrium states.

Multiple kernel selection

As an open problem, how to choose an effective kernel is a 
challenge for learning a kernel machine. Fortunately, the previously 
proposed multiple kernel learning (MKL) trick can be adapted to 
overcome this confusion. In the sequence, we further evaluate the 
performance improvement in our method via introducing MKL 
(denoted by LDG-mkl for short) for each subdomain, in which a 
new feature space spanned by multiple kernel projections will be first 
constructed. Specifically, given an empirical kernel function set 
�a a� � �1

 , we, respectively, project them into  different spaces, and 
then construct an orthogonally integrated feature space by 
horizontally concatenating these spaces. In this concatenated  
space, the projected features can be  denoted by 

� ��
�� � � �x x x xi i

T
i
T

i
T T na� � � � � � � � � ��

��
�
��
�1 2, , , , where x Xi a∈ , 

and then the kernel matrix can be  easily deduced as 
K K K Knew � ��� ��

� � ��1 2; ; ; , where Ki  is the i-th kernel matrix from 
the  feature spaces. Following the same strategy in Long et al. 
(2015), besides the above-used Gaussian kernel, we  additionally 
introduce another three kernel functions including inverse  

FIGURE 2

Recognition accuracy with varying sizes of source samples on SEED.
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square distance kernel function, Laplacian kernel function, and  
inverse distance kernel function, which are, respectively,  

denoted as K x xij i j� � �� �1 1
2

/ � , K x xij i j� � �� �exp � , 

and K x xij i j� � �� �1 1/ � . The observed mean experimental 
results from Figure 3 prove that LDG-mkl can boost the performance 
of LDG with a single kernel. This also verifies that the performance 
improvement in the kernel machines can be  attributed to the 
diversities of multiple kernel functions.

Cross-dataset domain generalization

In this subsection, we further evaluate the broad and consistent 
generalization capacity of our LDG method on cross-dataset emotion 
recognition. Intuitively speaking, cross-data generalization must 
be  more challenging than cross-subject generalization due to the 
significant difference between datasets.

Following the same settings in Tao and Dan (2021) and Tao et al. 
(2022), for robust cross-dataset generalization, the 32 shared channels 
by SEED and DEAP are employed to support a common feature space 
of 160 dimensions. In this case, several cross-dataset generalization 
settings can be  made up, i.e., DEAP SI→ , DEAP SII→ , 
DEAP SIII→ , SI DEAP→ , SEED II DEAP→ , and SIII DEAP→ ,  
where “x → y” means domain generalization from the dataset x into 
the dataset y, and SI, SII, and SIII are, respectively, denoted as the 
Session I, Session II, and Session III from SEED. When DEAP is 

regarded as the source dataset, 2,520 data are sampled from DEAP and 
2,775 data taken as the target datasets are, respectively, sampled from 
three different sessions (SI, SII, and SIII) of SEED. When each session 
of SEED is taken as the source dataset, we resample 41,625 data from 
it as a training set and 180 samples from DEAP regarded as the target 
dataset. We report the mean generalization results on six cross-dataset 
in Table 3.

It can be seen from the experimental results in Table 3 that the 
average performance of each method on the cross-dataset is slightly 
worse than that in the within-dataset. This confirms that the 
distribution difference between the two datasets is greater than that 
between the two subjects. The superiority of subdomain generalization 
will be reflected in this scenario because subdomains can potentially 
alleviate the distribution diversity in cross-datasets when the target 
dataset is unavailable in the phase of training. This can also be proved 
by the observation from Table 3, where our method LDG outperforms 
other shallow methods in almost all cases. Although SCA occasionally 
achieves the best performance in one setting (SI → DEAP), our LDG 
method still achieves the top-one performance in other cases. In deep 
learning scenarios, all methods still undoubtedly outperform their 
shallow counterparts, which can be attributed to the advantage of deep 
feature representations. It is worth noting that our deep method 
LDG + Resnet101 also obtains the best or comparable recognition 
performance compared with other deep adaptation models. This once 
again proves the importance of the classification-level 
constraint in LDG.

Regarding the previously reported results in Yang et al. (2007), 
Tommasi et  al. (2014), Tao et  al. (2017, 2019, 2022), Ding et  al. 

FIGURE 3

Domain adaptation emotion recognition on within-dataset with multi-kernel learning (SI: Session I, SII: Session II, SIII: Session III).
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(2018a,b,c), and Tao and Dan (2021), multi-dataset adaptation can 
be improved by ensemble multiple auxiliary datasets. Please note that 
the scalability challenge could be  incurred in case of multi-dataset 
generalization in that multi-dataset learning could bring the so-called 
“negative transfer” problem (Rosenstein et al., 2005), an open issue that 
exists in vanilla multi-source DA (Li J. et al., 2019; Chen et al., 2021; 
Tao and Dan, 2021). Therefore, we particularly evaluate the scalability 
of the proposed method by leveraging multiple source datasets for 
cross-dataset generalization. We report the average performance in 
Table 4 on all source datasets for the single-source methods including 
our LDG as well as LRE-SVM, Undo-Bias, and UML.

As shown in Table  4, due to the significant distribution 
differences among different source datasets, it is difficult for the 
single-source methods to generalize to unseen target domains in 
multi-source datasets. Therefore, the results in Table 4 indicate 
that these methods are generally inferior to other multi-source 
fusion methods. In some scenarios, they even exhibit a 
performance degradation trend as the number of source domains 
increases, indicating the “negative transfer” phenomenon 
(Rosenstein et  al., 2005). Another interesting observation in 
Table  4 is that all multi-source methods achieve slight 
improvements by utilizing multiple sources as opposed to 
bridging only a single source (i.e., cross-dataset settings) as the 

number of source domains increases. This demonstrates the 
benefits of using multiple sources to enhance identification 
performance. In addition, SCA and DICA outperform other 
methods by conquering top-level performance as their designed 
weights are used to differentially screen the best sources. In some 
cases, our LDG method achieves more benefits than SCA. One 
possible explanation is that the discriminative information shared 
among sub-domain models in LDG is advantageous for multi-
source generalization.

Convergence

Since our LDG is an iterative algorithm, it is crucial to evaluate its 
convergence. We evaluate the convergence of the LDG algorithm by 
conducting several experiments for emotion recognition in three 
settings such as cross-subject within DEAP, DEAP→SI, and {SI, SII, 
SIII} → DEAP. We plotted the mean experimental results in Figure 4. 
The curves in this figure show that the proposed algorithm has a 
certain asymptotic convergence. The objective values of LDG usually 
converge in less than 30 iterations. We  also observed a similar 
phenomenon from other recognition tasks with different cross-
subject/cross-dataset settings.

TABLE 3 Domain adaptation emotion recognition on cross-dataset.

Methods DEAP → SI DEAP → SII DEAP → SIII SI → DEAP SII → DEAP SIII → DEAP

Shallow 

methods

Undo-Bias 44.35 49.72 43.71 42.57 41.99 42.51

UML 45.63 49.98 49.67 44.91 42.48 43.53

DICA 47.35 52.68 52.11 43.34 44.90 42.46

LRE-SVM 50.48 56.46 57.11 46.34 47.20 47.46

SCA 48.89 54.35 54.65 46.73 45.36 44.67

LDG 52.62 57.66 57.83 45.60 47.89 49.76

Deep 

methods

DDG 62.40 64.92 73.92 64.29 54.29 53.33

DDC 60.89 62.43 69.43 62.16 52.16 50.07

DANN 61.08 62.51 72.51 63.77 53.77 52.62

DSAN 63.28 64.50 74.50 64.58 55.58 54.10

CORAL 60.15 60.42 70.42 61.54 52.54 51.00

CAN 64.22 65.77 75.77 66.12 57.12 55.39

LDG+ 

Resnet101
62.62 65.81 74.42 66.86 55.68 56.18

Bold denotes the best recognition rates.

TABLE 4 Multi-dataset generalization (SI: Session I, SII: Session II, SIII: Session III).

Methods {DEAP,SII,SIII} → SI {DEAP,SI,SIII} → SII {DEAP,SI,SII} → SIII {SI,SII,SIII} → DEAP {SI,SII} → DEAP {SI,SIII} → DEAP

Undo-Bias 46.16 51.32 45.11 43.84 40.68 41.76

UML 44.06 50.10 51.21 46.01 42.90 43.85

DICA 49.28 52.94 54.06 46.62 45.39 44.63

LRE-SVM 47.17 57.30 59.30 50.77 46.50 49.06

SCA 52.33 57.66 57.29 48.68 47.72 48.93

LDG 52.76 57.66 61.43 49.34 47.03 49.48

Bold denotes the best recognition rates.
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Conclusion

To deal with cross-subject/dataset EEG-based emotion 
recognition tasks, we proposed a local domain generalization (LDG) 
framework. In multiple subdomain spaces, LDG aims at transferring 
local knowledge into target learning mainly by leveraging correlation 
knowledge among subdomain models via low-rank constraint on the 
local models, which discriminatively screens unimportant prior 
evidence in subdomains. The comprehensive experiments performed 
on two public datasets verify the effectiveness of LDG in dealing with 
cross-subject/dataset emotion recognition. In most scenarios, our 
LDG and LDG + Resnet101 obtain the best results or comparable 
performance concerning several representative baselines.

Since the implementation of the LDG algorithm needs an iterative 
optimization procedure, how to improve the efficiency of LDG and 
seek a more efficient algorithm would be an issue worthy of further 
study in our future research. The unreliable and misleading pseudo-
label strategy may be  another potential problem in our 
LDG. Consequently, our successive work would be  to explore 
seamlessly incorporating target labels into the framework of LDG.
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FIGURE 4

Convergence of LDG.
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Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou, 
China

The affective Brain-Computer Interface (aBCI) systems, which achieve predictions 
for individual subjects through training on multiple subjects, often cannot 
achieve satisfactory results due to the differences in Electroencephalogram 
(EEG) patterns between subjects. One tried to use Subject-specific classifiers, 
but there was a lack of sufficient labeled data. To solve this problem, Domain 
Adaptation (DA) has recently received widespread attention in the field of EEG-
based emotion recognition. Domain adaptation (DA) learning aims to solve the 
problem of inconsistent distributions between training and test datasets and 
has received extensive attention. Most existing methods use Maximum Mean 
Discrepancy (MMD) or its variants to minimize the problem of domain distribution 
inconsistency. However, noisy data in the domain can lead to significant drift 
in domain means, which can affect the adaptability performance of learning 
methods based on MMD and its variants to some extent. Therefore, we propose 
a robust domain adaptation learning method with possibilistic distribution 
distance measure. Firstly, the traditional MMD criterion is transformed into a 
novel possibilistic clustering model to weaken the influence of noisy data, thereby 
constructing a robust possibilistic distribution distance metric (P-DDM) criterion. 
Then the robust effectiveness of domain distribution alignment is further improved 
by a fuzzy entropy regularization term. The proposed P-DDM is in theory proved 
which be an upper bound of the traditional distribution distance measure method 
MMD criterion under certain conditions. Therefore, minimizing P-DDM can 
effectively optimize the MMD objective. Secondly, based on the P-DDM criterion, 
a robust domain adaptation classifier based on P-DDM (C-PDDM) is proposed, 
which adopts the Laplacian matrix to preserve the geometric consistency of 
instances in the source domain and target domain for improving the label 
propagation performance. At the same time, by maximizing the use of source 
domain discriminative information to minimize domain discrimination error, the 
generalization performance of the learning model is further improved. Finally, a 
large number of experiments and analyses on multiple EEG datasets (i.e., SEED and 
SEED-IV) show that the proposed method has superior or comparable robustness 
performance (i.e., has increased by around 10%) in most cases.

KEYWORDS

electroencephalogram, domain adaptation, probabilistic clustering, maximum mean 
discrepancy, fuzzy entropy
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1. Introduction

In the field of affective computing research (Mühl et al., 2014), 
automatic emotion recognition (AER) (Dolan, 2002) has received 
considerable attention from the computer vision community (Kim 
et  al., 2013; Zhang et  al., 2017). Thus far, numerous 
Electroencephalogram (EEG)-based emotion recognition methods 
have been proposed (Musha et al., 1997; Jenke et al., 2014; Zheng, 
2017; Li X. et al., 2018; Pandey and Seeja, 2019). From a machine 
learning perspective, EEG-based AER can be  modeled as a 
classification or regression problem (Kim et al., 2013; Zhang et al., 
2017), where state-of-the-art AER techniques typically train their 
classifiers on multiple subjects to achieve accurate emotion 
recognition. In this case, subject-independent classifiers usually 
have poor generalization performance, as emotion patterns may 
vary across subjects (Pandey and Seeja, 2019). Significant progress 
in emotion recognition has been made by improving feature 
representation and learning models (Zheng et al., 2015; Zheng and 
Lu, 2015; Li et al., 2018a,b, 2019; Song et al., 2018; Du et al., 2020; 
Zhong et al., 2020). Since the individual differences in EEG-based 
AER are a natural existence, we may obtain a not good result by 
qualitative and empirical observations if the learned classifier 
generalize to previously unseen subjects (Jayaram et  al., 2016; 
Zheng and Lu, 2016; Ghifary et al., 2017; Lan et al., 2019). As a 
possible solution, subject-specific classifiers are often impractical 
due to insufficient training data. Moreover, even if they are feasible 
in some specific scenarios, it is also an indispensable task to fine-
tune the classifier to maintain a sound recognition capacity partly 
because the EEG signals of the same subject are changing now and 
then (Zhou et al., 2022). To address the aforementioned challenges, 
the domain adaptation (DA) learning paradigm (Patel et al., 2015; 
Tao et al., 2017, 2021, 2022; Zhang et al., 2019b; Dan et al., 2022) 
has been proposed and has achieved widespread effective 
applications, which enhances learning performance in the target 
domain by transferring and leveraging prior knowledge from other 
related but differently distributed domains (referred to as source or 
auxiliary domains), where the target domain has few or even no 
training samples.

Reducing or eliminating distribution differences between different 
domains is a crucial challenge currently faced during DA learning. To 
this end, mainstream DA learning methods primarily eliminate 
distribution biases between different domains by exploring domain-
invariant features or samples (Pan and Yang, 2010; Patel et al., 2015). 
In order to fully exploit domain-invariant feature information, 
traditional shallow DA models have been extended to the deep DA 
paradigm. Benefiting from the advantages of deep feature 
transformation, deep DA methods have now achieved exciting 
adaptation learning performance (Long et al., 2015, 2016; Ding et al., 
2018; Chen et  al., 2019; Lee et  al., 2019; Tang and Jia, 2019). 
Unfortunately, these deep DA methods can provide more transferable 
features and domain-invariant features, they can only alleviate but not 
eliminate the domain distribution shift problem caused by domain 
distribution differences. In addition, these deep DA methods can 
demonstrate better performance advantages, which may be attributed 
to one or several factors such as deep feature representation, model 
fine-tuning, adaptive regularization layers/terms, etc. However, the 
learning results of these methods still lack theoretical or practical 
interpretability at present.

DA theoretical studies have been proposed for domain adaptation 
generalization error bound (Ben-David et  al., 2010) by the 
following inequality:
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(1)

where the expected error of the target hypothesis e h ( )  is mainly 
constrained by three aspects: (1) the expected error of the source 
domain hypothesis e h ( ); (2) the distribution difference between the 
source and target domains dH S TD D,( ) ; (3) the difference in label 
functions between the two domains [i.e., the third term from Equation 
(1)]. Therefore, we will consider the three aspects simultaneously in 
this paper to reduce the domain adaptation generalization error 
bound (Zhang et al., 2021). Most existing methods assume that once 
the domain difference is minimized, a classifier trained only on the 
source domain can also generalize to the target domain well. 
Therefore, current mainstream DA methods aim to minimize the 
statistical distribution difference between the two domains. To this 
end, reducing or eliminating the distribution difference between 
domains to achieve knowledge transfer from the source domain and 
improve learning performance in the target domain is the core goal of 
domain adaptation learning methods. However, the key to this goal is 
effectively measuring the distribution difference between domains. 
Existing criteria for measuring the distance between different domains 
mainly include Maximum Mean Discrepancy (MMD) (Gretton et al., 
2007), Bregman divergence, Jensen-Shannon divergence, etc. MMD 
is the most commonly used domain distribution difference 
measurement criterion in existing research, which can be divided into 
two categories alignment method: based on distribution alignment 
(including instance re-weighting and feature transformation) and 
classification model alignment with some representative works 
(Gretton et al., 2007; Pan et al., 2011; Tao et al., 2012, 2015, 2016, 2019; 
Baktashmotlagh et al., 2013; Chu et al., 2013; Long et al., 2013; Ganin 
et al., 2016; Liang et al., 2018; Luo et al., 2020; Kang et al., 2022).

To address the domain distribution shifting phenomenon, early 
instance re-weighting methods calculate the probability of each 
instance belonging to the source or target domain by likelihood ratio 
estimation (i.e., the membership of each instance). The domain shift 
problem can be relieved by re-weighting instances based on their 
membership. MMD (Gretton et al., 2007) is a widely adopted strategy 
for instance re-weighting, which is simple and effective. However, its 
optimization process is often carried out separately from the classifier 
training process, it’s difficult to ensure that both are optimal at the 
same time. To address this issue, Chu et al. (2013) proposed a joint 
instance re-weighting DA classifier. To overcome the conditional 
distribution consistency assumption of the instance re-weighting 
method, the feature transformation methods have received widespread 
attention and exploration (Pan et al., 2011; Baktashmotlagh et al., 
2013; Long et al., 2013; Liang et al., 2018; Luo et al., 2020; Kang et al., 
2022). Representative methods include Pan et al. (2011) proposed the 
Transfer Component Analysis (TCA) method, which learned a 
transformation matrix. It adopted MMD technology to minimize the 
distribution distance between source domains and target domain, and 
preserved data divergence information, but did not consider domain 
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semantic realignment. Then, Long et al. (2013) proposed a Joint DA 
(JDA) method, which fully considered the domain feature distribution 
alignment and class conditional distribution alignment with the target 
domain labels in the class conditional distribution initialized by 
pseudo-labels. Recently, Luo et al. (2020) proposed a Discriminative 
and Geometry Aware Unsupervised Domain Adaptation (DGA-DA) 
framework, which combined the TCA and JDA methods. It 
introduced a strategy that made different classes from cross-domains 
mutually exclusive. Most of the existing affective models were based 
on deep transfer learning methods built with domain-adversarial 
neural network (DANN) (Ganin et al., 2016) proposed in Li et al. 
(2018c,d), Du et al. (2020), Luo et al. (2018), and Sun et al. (2022). The 
main idea of DANN (Ganin et al., 2016) was to find a shared feature 
representation for the source domain and the target domain with 
indistinguishable distribution differences. It also maintained the 
predictive ability of the estimated features on the source samples for a 
specific classification task. In addition, the framework preserved the 
geometric structure information of domain data to achieve effective 
propagation of target labels. Baktashmotlagh et al. (2013) proposed a 
Domain Invariant Projection (DIP) algorithm, which investigated the 
use of polynomial kernels in MMD to construct a compact domain-
shared feature space. The series of DANN methods still has some 
challenges, PR-PL (Zhou et al., 2022) also explored the prototypical 
representations to further characterize the different emotion categories 
based on the DANN method. Finally, the study designed a clustering-
based DA concept to minimize inner-class divergence. A review of 
existing DA method research shows that MMD is the main 
distribution distance measurement technique adopted by feature 
transformation-based DA methods. Traditional MMD-based DA 
methods focused solely on minimizing cross-domain distribution 
differences while ignoring the statistical (clustering) structure of the 
target domain distribution, which to some extent affects the inference 
of target domain labels. To address this issue, Kang et  al. (2022) 
proposed a contrastive adaptation network based on unsupervised 
domain adaptation. The initialization of the labels from the target 
domain was realized by the clustering assumption. The feature 
representation is adjusted by measuring the contrastive domain 
differences (i.e., minimizing within-class domain differences and 
maximizing between-class domain differences) in multiple fully 
connected layers. During the training process, the assumptions of the 
target domain label and the feature representations are continuously 
cross-iterated and optimized to enhance the model’s generalization 
capability. Furthermore, inspired by clustering patterns, Liang et al. 
(2018) proposed an effective domain-invariant projection integration 
method that uses clustering ideas to seek the best projection for each 
class within the domain, bridging the domain-invariant semantic gap 
and enhance the inner-class compactness in the domain. However, it 
still essentially belongs to MMD-based feature transformation 
DA methods.

It is worth noting that existing MMD-based methods did not fully 
consider the impact of intra-domain noise when measuring domain 
distribution distance. In real scenarios, noise inherently exists in 
domains, and intra-domain noise can lead to mean-shift problems in 
distance measurement for traditional MMD methods and their 
variants. This phenomenon to some extent is affecting the 
generalization performance of MMD-based DA methods. As shown 
in Figures 1A1, B1 represent the noise-free source domain and target 
domain, respectively. ms* and mt* are the means of the source domain 

and target domain, respectively. Figure  1C1 shows the domain 
adaptation result based on the MMD method. When the source 
domain has noises (i.e., Figure 1A2), the mean shift occurs and it’s 
difficult to effectively measure the distribution distance by the MMD 
criterion. It matches the most of target domain samples (i.e., 
Figure 1B2) to a certain category of source domain (i.e., Figure 1C2). 
It declines the inferring performance of domain adaptation learning.

Existing research (Krishnapuram and Keller, 1993) pointed out that 
the possibilistic-based clustering model can effectively suppress noise 
interference during the clustering process. Therefore, Dan et al. (2021) 
proposed an effective classification model based on the possibilistic 
clustering assumption. Inspired by this work, we aim to jointly address 
the robustness and discriminative issues in the MMD criterion to 
enhance the adaptability of MMD-based methods and propose a robust 
Probabilistic Distribution Distance Measure (P-DDM) criterion. 
Specifically, by measuring the distance between EEG data (from either 
the source or target domain) and the overall domain mean (i.e., the 
mean of the source domain and target domain), the corresponding 
matching membership is used to judge the relevance between the EEG 
data and the mean. In other words, the smaller the distance between the 
EEG data and the mean, the larger the membership, and vice versa. In 
this way, the impact of noise in the matching process can be alleviated 
by the value of membership. The robustness and effectiveness of P-DDM 
are further enhanced by introducing a fuzzy entropy regularization term. 
Based on this, a domain adaptation Classifier model based on P-DDM 
(C-PDDM) is proposed, which introduces the graph Laplacian matrix 
to preserve the geometric structure consistency within the source 
domain and target domain. It can improve the label propagation 
performance. At the same time, a target domain classification model 
with better generalization performance is obtained by maximizing the 
use of source domain discriminative information to minimize domain 
discriminative errors. The main contributions of this paper are as follows:

 1) The traditional MMD measurement is transformed into a 
clustering optimization problem, and a robust possibilistic 
distribution distance metric criterion (P-DDM) is proposed to 
solve the domain mean-shift problem in a noisy environment;

 2) It is theoretically proven that under certain conditions, P-DDM 
is an upper bound of the traditional MMD measurement. The 
minimization of MMD in domain distribution measurement 
can be effectively achieved by optimizing the P-DDM;

 3) A DA classifier mode based on P-DDM is proposed (i.e., 
C-PDDM), its consistent convergence is proven, and the DA 
generalization error bound of the method is proposed based on 
Rademacher complexity theory;

 4) A large number of experiments are conducted on two EEG 
datasets (i.e., SEED and SEED-IV), demonstrating the robust 
effectiveness of the method and a certain degree of 
improvement in the classification accuracy of the model.

2. Proposed framework: C-PDDM

In domain adaptation learning, DS = { }
=

x yis i
s
i

n
,

1
 denotes n 

samples and its associated labels of the source domain. 

X x xs s
n
s d n= ¼é

ë
ù
ûÎ

´
1

, ,   indicates all the source samples. 
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denotes the mean value of the source domain and target domain, 
respectively. Our proposal has some assumptions:

 1) However, the distributions of source domain () and target 
domain () are different (i.e., P QX XS T( ) ¹ ( ) and X XS T= ),  
they share the same feature space with X X XS T, Î  are feature 
space of the source domain and target domain, respectively.

 2) The condition probability distributions of the source domain 
and target domain are different [i.e., P QY X Y XS S T T( ) ¹ ( ) ],  
but they share the same label space with Y Y YS T, Î  are label 
space of the source domain and target domain, respectively.

In the face of a complex and noisy DA environment, the proposed 
method will achieve the following objectives by the DA generalization 
error theory (Ben-David et al., 2010) to make the distance metric for 
domain adaptation more robust and achieve good target classification 
performance: (1) Robust distance metric: solve the problem of domain 
mean shift under the influence of noise, thereby effectively aligning 
the domain distribution differences; (2) Implement target domain 

knowledge inference: we bridge the discriminative information of the 
source domain while minimizing the domain discriminative error 
based on preserving the consistency of domain data geometry, and 
learn a target domain classification machine with high generalization 
performance. Based on the descriptions of the above objectives, the 
general form of the proposed method can be described as:

 
Q Wl li k

s tY W X X R Y W, , min , , ,( ) = ( ) + ( )
 

(2)

where W lk s tX X, ,( )  is the robust distance metric, which reduces 
the impact of noisy data on the alignment of domain distribution 
differences. R(Y, W) is the domain adaptation learning loss function 
that includes the label matrix Y (that is, the comprehensive label 
matrix of the source and target domains) and the comprehensive 
learning model W of the source domain and the target domain.

2.1. Design of possibilistic distribution 
distance metric

2.1.1. Motivation
In a certain reproducing kernel Hilbert space (RKHS) , the 

original space data representation can be transformed into a feature 
representation in the RKHS through a certain non-linear 
transformation f :d H®  (Long et al., 2016). The corresponding 
kernel function is defined as K X X X X1 2, :( ) ´ ®  , where 
K x x x x1 2 1 2 H

, ,( ) = ( ) ( )f f , x x X1 2, Î . It is also a commonly used 
kernel technique in current non-linear learning methods (Pan et al., 

FIGURE 1

The influence comes from the noises or outliers during domain matching. (A1) Source domain with noise. (B1) Target domain. (C1) Domain adaptation. 
(A2) Source domain without noise. (B2) Target domain. (C2) Domain adaptation.
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2011; Long et  al., 2015). For the problem of inconsistent 
distributions in domain adaptation, existing research has shown 
(Bruzzone and Marconcini, 2010; Gretton et al., 2010) that when 
sample data is mapped to a high-dimensional or even infinite-
dimensional space, it can capture higher-dimensional feature 
representations of the data (Carlucci et  al., 2017). That is, in a 
certain RKHS, the distance between two distributions can 
be effectively measured through the maximum mean discrepancy 
(MMD) criterion. Based on this, it is assumed that   is a collection 
of functions of a certain type f : f : ®  , The maximum mean 
discrepancy (MMD) between two domain distributions   and  
can be defined as:

 
MMD f x f x

f



P E E

P
, : sup .



[ ] = ( )éë ùû - ( )éë ùû
æ
è
ç

ö
ø
÷

Î  
(3)

MMD measure minimizes the expected difference between two 
domain distributions through the function f, making the two domain 
distributions as similar as possible. When the sample size of the 
domain is sufficiently large (or approaches infinity), the expected 
difference approximates (or equals) the empirical mean difference. 
Therefore, Equation (3) can be  written in the empirical 
form of MMD:
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To prove the universal connection between the traditional 
MMD criterion and the mean clustering model, we  give the 
following theorem: Theorem 1. The MMD measure can be loosely 
modeled as a special clustering problem with one cluster center, 
where the clustering center is m , and the instance clustering 
membership is Vk .

Proof: As defined by MMD:
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where m dm d m= + -( )s 1 t  is the cluster center with 0 1£ £d . When 
n m= , let 0.5δ = . When n m¹ , the number of samples in the source 

domain and target domain can be set the same during sampling. The 
sample membership Vk  of one cluster center is defined as:
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From Equation (5), it can be seen that the one cluster center form 
with clustering center n is an upper bound of the traditional MMD 
measure. In other words, the MMD measure can be relaxed to a special 
one cluster center objective function. By optimizing this clustering 
objective, the minimization of MMD between domains can be achieved.

As indicated in Theorem 1 and Baktashmotlagh et al. (2013), the 
domain distribution MMD criterion is essentially related to the 
clustering model, which can be  used to achieve more effective 
distribution alignment between different domains by clustering 
domain data. It is worth noting that the traditional clustering model 
has the disadvantage of being sensitive to noise (Krishnapuram and 
Keller, 1993), which makes domain adaptation (DA) methods based 
on MMD generally face the problem of domain mean shift caused by 
noisy data. To address this issue, this paper further explores more 
robust forms of clustering and proposes an effective new criterion for 
domain distribution distance measurement.

2.1.2. P-DDM
Recently proposed possibility clustering models can effectively 

overcome the impact of noise on clustering performance (Dan et al., 
2021). Therefore, this paper further generalizes the above special one 
cluster center to a possibility one cluster center form and proposes a 
robust possibility distribution distance metric criterion P-DDM. By 
introducing the possibility clustering assumption, the MMD hard 
clustering form is generalized to a soft clustering form, which controls 
the contribution of each instance according to its distance from the 
overall domain mean. The farther the distance, the smaller the 
contribution of the instance, thus weakening the influence of mean 
shift caused by noisy data in the domain and improving the robustness 
of domain adaptation learning.

To achieve robust domain distribution alignment, the distribution 
distance measurement criterion based on the possibility clustering 
assumption mainly achieves two goals: (1) Calculate the difference in 
distribution between kernel space domains based on the possibility 
clustering assumption, by measuring the distance between each 
instance in the domain and the overall domain mean; (2) Measure the 
matching contribution of each instance. Any instance in the overall 
domain has a matching contribution value lk Î , k N= ¼1 2, , , 
which is the matching contribution degree of xk to the overall domain 
mean, and the closer the distance, the larger the value of lk. Thus, the 
possibility distribution distance measure can be defined as:
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(7)

where the parameter b is the weight exponent of lk, which is used to 
adjust the uncertainty or degree of the data points belonging to 
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multiple categories. In order to circumvent the trivial solution, b is set 
to 2 in the subsequent equations of this paper. The detailed process of 
different values of b can be found in references (Krishnapuram and 
Keller, 1993). W p k s tX Xl , ,( )  is an objective function of possibility 
clustering with a cluster center of μ, and when l Vk k

2 = , 
W p k s tX Xl , ,( )  takes the form of the above-mentioned special one 
cluster center.Theorem 2.When lk r

Îé
ëê

ù
ûú

1
1, , the possibility distribution 

distance measure W p k s tX Xl , ,( )  is an upper bound of the 
traditional MMD method.

Proof: Combining Equation (5) and Equation (7), we have the 
following inference process:
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(8)

According to the value range of Vk, when lk rÎ ( )é
ë

ù
û

1 1,  and r = min 
(n, m), the second inequality in Equation (8) holds, thus proving that 
W p k s tX Xl , ,( )  is the upper bound of traditional MMD. According 
to Theorem 1 and Theorem 2, the traditional MMD metric criterion 
can be modeled as a possibilistic one cluster center objective form. 
From this perspective, it can be  considered that the possibilistic 
distribution distance metric target domain can not only achieve 
alignment of domain feature distribution, but also weaken the 
“negative transfer” effect of noisy data in the domains during training.

Equation (7) only considers the overall mean regression problem, 
which clusters each instance with the overall domain mean, while 
ignoring the semantic structural information of the instance in 
domain distribution alignment. It may lead to the destruction of the 
local class structure in the domain. Inspired by the idea of global and 
local from Tao et  al. (2016), we  further consider the semantic 
distribution structure in domain alignment and calculate the semantic 
matching contribution of each instance. Therefore, based on the 
feature distribution alignment, we propose an integrated semantic 
alignment. It can be rewritten as follows:
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where m dm d mc c t c= + -( )s, ,1 , m fs c
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, c C= ¼0 1 2, , , , , C is the number of classes. nc  

is the number of samples of the c-th class in the source domain, mc  is 

the sample number of the c-th class in the target domain, and n n
c

C
c=

=
å

0
,  

m m
c

C
c=

=
å

0
. When m m

c

C
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=
å

0
. When c = 0, ms c,  and mt c,  are the mean 

values of the source domain and the target domain, respectively. 
Equation (9) is a feature distribution alignment form. When 
c CÎ ¼[ ]1 2, , , , ms c,  and mt c,  are the associated c-th class mean values 
of the source domain and the target domain, respectively. lk c,  is the 
membership of xk  belonging to the c-th class in the overall domain 
(i.e., integrate the source domain and target domain into one domain).

To further improve the robustness and effectiveness of the 
possibilistic distribution distance metric method on noisy data, we add 
a fuzzy entropy regularization term related in Equation (9). Therefore, 
the semantic alignment P-DDM in (9) can be  further defined 
as follows:
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(10)

where b  is a tunable balancing parameter that forces the value of lk c,  
for relevant data to be as large as possible to avoid trivial solutions. 
After the above improvements, P-DDM is a monotonic decreasing 
function on lk c, . Through the fuzzy entropy term in the second part 
of Equation (10), P-DDM reduces the impact of noise data on model 
classification. The larger the fuzzy entropy, the greater the sample 
discrimination information, which helps to enhance the robustness 
and effectiveness of distribution distance measurement. Additionally, 
the possibility distribution measurement model regularized by fuzzy 
entropy can effectively suppress the contribution of noise data in 
domain distribution alignment, thereby reducing the interference of 
noise/abnormal data to domain adaptation learning. The robustness 
effect of fuzzy entropy can be further seen in the empirical analysis of 
reference (Gretton et al., 2010).

2.2. Design of domain adaptation function

The P-DDM criterion addresses the problems of domain 
distribution alignment and noise impact. Next, we will achieve the two 
goals required for the inference of target domain knowledge: (1) to 
preserve the geometric consistency in the source domain and the 
target domain, i.e., the label information between adjacent samples 
should be consistent, and (2) to minimize the structural risk loss of 
both the source and target domains. Given the description of the 
objective task, the general form of the objective risk function can 
be described as:

 R Y W Y W,( ) = +W W , (11)

where WY  is the loss of joint knowledge transfer and label 
propagation, which preserves the geometric consistency of the data 
between the source and target domains, and WW  is the structural risk 
loss term, which includes both the source domain and the target 
domain. Next, these two terms will be designed separately.
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2.2.1. Joint knowledge transfer and label 
propagation

Firstly, G X M= ,  denotes an undirected weighted graph of the 
overall domain. M N NÎ ´  is a weighted matrix with M Mij ji= ³ 0.  
Mij  is calculated by:

 

( ) ( )

2

2

otherwise
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0,

ij i j j i

i j

M x Ne x x Ne
x

x
x

σ

−  
  −= ∈ ∈   


或

 

(12)

where x Ne xk mÎ ( ) means that xk is the neighbor of xm. s  is the local 
influence range parameter that controls the Gaussian kernel function 
and is also a hyper-parameter. The larger the value of s , the larger the 
local influence range, and vice versa, the smaller the local influence 
range. When s  is fixed, the change in Mij  decreases monotonically as 
the distance between xi and x j increases.

In combination with source domain knowledge transfer and 
graph Laplacian matrix (Long et al., 2013; Wang et al., 2017), the 
objective form of label propagation modeling can be described as:

 
WY

Y
T= ( )min ,tr Y LY

 
(13)

where Y Y ;Y= [ ]Î ´
s t

N C , Yt is the target domain label matrix. The 
label value for a sample in the target domain corresponding to a 
position in Yt  is all zeros when the sample has no label. Ys is the 
source domain label matrix. L M D N N= - Î ´  is the Laplacian 
graph matrix (Long et  al., 2013) with D is a diagonal 

matrix and D Mii
j

N
ij=

=
å

1
.

2.2.2. Minimize structural risk loss
In our proposed method, the classifier of the source domain (the 

corresponding target domain classification model) is defined as 
f W X bs ss

T
s s= +  (the corresponding f W X bt tt

T
t t= + ). bs(bt) is the 

source domain bias (the target source bias). Wss(Wtt ) is the parameter 
matrix of the source domain (the parameter matrix of the target 
domain). Let  [ ],ss ss WW b= , X Xs s = [ ],1 , W W bt tt t = [ ], , X Xt t = [ ],1 , 
we can rewrite both classifiers of the source domain and the target 
domain respectively: f W Xs s

T

s
� � �=  and f W Xt t

T

t
� � �= . Let W W Ws t= éë ùû

 , , 
X X Xs t= éë ùû

 , . We rewrite the final classifier as: F W X WT( ) = .
According to the minimum square loss function, the problem of 

minimizing structural risk loss in both domains (source domain and 
target domain) can be described as:
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(14)

where the first term denotes the structure risk loss and y Yk Î  The 
second term is the constraint term of W. By using l2 1,  regularization, 
we  can achieve feature selection and it can effectively control the 
complexity of the model to prevent over-fitting of the target 
classification model to some extent.

The classification task proposed in this method is ensured by the 
dual prediction of the label matrix Y and the decision function W to 
guarantee the reliability of the prediction. The target classification 

function is combined by Equation (13) and Equation (14). It’s 
described as follows:
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(15)

2.3. Final formulation

By combining the semantic alignment P-DDM form [i.e., 
Equation (10)] and the target classification function [i.e., Equation 
(16)], the final optimization problem formulation of the proposed 
method C-PDDM can be described as follows:
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(16)

where b , a , and r  are balance parameters.
With all model parameters obtained, target domain knowledge 

inference can be achieved by maximizing the utilization of source 
domain discriminative information, linearly fusing the two classifiers 
fs  and ft , and using this linear fusion model for target domain 

knowledge inference. The fusion form can be written as follows:

 
j y f x f x

j
i
t

s i
t

t i
t

j
= = + -( )arg max ( ) ( ) ( )u u 1

where u Î[ ]0 1,  is an adjustable parameter that balances the two 
classifiers, in order to reflect the importance of source domain 
discriminative information as prior knowledge, υ is set to 0.9 based 
on empirical experience.

3. C-PDDM optimization

The optimization problem of C-PDDM is a non-convex problem 
with respect to lk c, , W, and Y. We will adopt an alternating iterative 
optimization strategy to achieve the optimization and solution of lk c, ,  
W, and Y, so that each optimization variable has a closed-form solution.

3.1. Update λk,c as given W and Y

As we fix W and Y, the objective function in Equation (16) reduces 
to solving:
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Theorem 3. The optimal solution to the primal optimization 
problem of the objective function (17) is:
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(19)

Combining and simplifying the terms in Equation (19), we get the 
solution of lk c,  is Equation (18), Theorem 3 is proved. From Theorem 3, 
the membership of any sample can be obtained by Equation (18).

3.2. Update W as given Y and λk,c

Since the first and the third terms in Equation (16) do not have W, 
the optimization formula for C-PDDM can be rewritten as:
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(20)

where l is a matrix with l Î ´N C, each element is lk c,
2 , lk c,  means 

the membership of xk  belonging to the c-th class.Theorem 4.The 
optimal solution to the primal optimization problem of the objective 
function (20) is:

 W AY= , (21)

with A UT= ( ) ( ) +( ) ( )
-

lf f r fX X X
1

.

Proof. According to Equation (19), let ¶ ¶ =P
W

2 0, we have:
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where ¶
¶

=
r W
W

UW2 1, , U  is a diagonal matrix, its diagonal 

element is U
wii
i

=
1 , wi  is the i-th vector of W . The solution 

obtained by organizing Equation (22) is Equation (21).

3.3. Update Y by fixing W and λk,c

Finally, lk c,  is fixed. W AY=  is substituted into Equation (16). 
The constraint YYT I=  can reduce the interference information in 
the label matrix Y , the objective form for optimizing the solution of 
Y is described as:
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(23)

where H B BT= +a lL , B X IT= ( ) -f A .
The optimization problem (23) is a standard singular value 

decomposition problem, where Y is the eigenvector of the matrix H . 
Y can be obtained by solving the singular value decomposition of the 
matrix H .

4. Algorithm

4.1. Algorithm description

In unsupervised domain adaptation learning scenarios (i.e., the 
target domain does not have any labeled data), in order to achieve 
semantic alignment between domains, initial labels of the target 
domain can be obtained through three strategies (Liang et al., 2018): 
(1) random initialization; (2) zero initialization; (3) use the model 
trained on the source domain data to cluster the target domain data 
to obtain initial labels. (1) and (2) belong to the cold-start method. (3) 
belongs to the hot-start method which is relatively friendly to 
subsequent learning performance. Therefore, we  adopt the third 
method to initialize the prior information of lk c, , W , and Y . The 
proposed method adopts the iterative optimization strategy commonly 
used in multi-objective optimization, and the algorithm stops iterating 
when the following conditions are satisfied: 
Q Ql l ek c

z z z
k c
z z zW Y W Y

, ,
, , ( , , , , ) ,( ) - <- - -1 1 1  where Q lk c

z z zW Y, , ,( )  
denotes the value of the objective function at the z-th iteration. e  is a 
pre-defined threshold.
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4.2 Computational complexity

This article uses Big O to analyze the computational complexity of 
Algorithm 1. The proposed method C-PDDM mainly consists of two 
joint optimization parts: P-DDM and target label propagation. Specifically, 
we first construct the k-Nearest Neighbor (i.e., k-NN) graph and compute 
the kernel matrix K  in advance requiring computational costs of O dn2( ) 
and O dN 2( ), respectively. Then, the optimization process of Algorithm 
1 requires T  iterations to complete with the P-DDM minimization 
(including possibility membership inference) process requires 
O d N d N3 2 2+ +( ). The target label matrix Ft requires O n n c3

3 2+( ) to 
complete inferring thing. The target classification model W  requires 
O nc dc2 2+( ) to finish updating, Therefore, the overall computational 
cost of Algorithm 1 is O T d N d N n n c dn dN3 2 2 3 2 2 2

3+ + + +( ) + +( ).
Before training in Algorithm 1, pre-computing the C-PDDM kernel 

matrix and Laplacian graph matrix and loading them into memory can 
further improve the computational efficiency of Algorithm 1. In short, 
the proposed algorithm is feasible and effective in practical applications.

5. Analysis and discussion of C-PDDM

5.1. Analysis of convergence

To prove the convergence of Algorithm 1, the following lemma 
is proposed.

Lemma 1 (Nie et  al., 2010). For any two non-zero vectors 
V V d

1 2, Î , the following inequality holds:
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(24)

Then, we  prove the convergence of the proposed algorithm 
through Theorem 5.Theorem 5. Algorithm 1 decreases the objective 
value of the optimization problem (17) in each iteration and 
converges to the optimal solution.

Proof. For expression simply, the updated results of 
optimization variables lk c, , W , and Y  after t -th iteration are 
denoted as ltk c, , Wt , and Yt , respectively. The internal loop 
iteration update in Step  8 of Algorithm 1 corresponds to the 
following optimization problem:
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According to the definition of matrix U , we have:
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where
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ALGORITHM 1 Domain adaptation learning based on C-PDDM.

Input: The source domain data X Ys s,{ }, the target domain data Xt , unknown labels of the target domain Yt  (the initialization can be obtained by cluster algorithm), 
model parameter values of b a r q, , ,  and the threshold of iteration stop e , and the maximal iteration number Z .
Output: The contribution matrix lk c,  matches each instance to the mean points of each class in the entire domain, the decision function W and the label matrix Y.
Procedure:
1. Initialize the label values for unlabeled data from the target domain.
2. Compute the means of different classes in the target domain and the source domain respectively, denoted as mt c,  and ms c, , c C= ¼0 1 2, , , , .
3. Then compute the mean of different class data in the overall domain (i.e., integrate the source domain and the target domain), denoted as m m mc s c t c= +( )1

2
, ,

4. Obtain the initialization lk c,
0  of lk c,  using (18);

5. Obtain the initialization W0  of W using (21);
6. Obtain the initialization Y0 of Y using (23);
7. Compute the value of the objective function ˜ ,W ,Ylk c,

0 0 0( );
8.for z = 1to Zdo:
{
8.1 Fix the current W and Y for updating lk c, to lk c

z
,  by Eq. (18)；

8.2 Fix the current lk c, and Y for updating W to Wz  by Eq. (21)；
8.3 Fix the current lk c, and W for updating Y to Yz  by Eq. (23)；
}

while ˜ ,W ,Y ˜ ,,W ,,Yl l ek c
z z z

k c
z z z

, ,
( )( ) - ³- - -1 1 1

9. return lk c, , W, and Y;
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Based on Lemma 1, we can obtain the following inequality:
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Therefore, we can derive:
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Finally, Theorem 6 is proved.
According to the update rule in Algorithm 1 and Theorem 6, it is 

known that the optimization objective (17) is a decreasing function 
concerning the objective value. Therefore, it can be  inferred that 
Algorithm 1 can effectively converge to the optimal solution.

5.2. Analysis of generalization

Rademacher complexity can effectively measure the ability of a 
function set to fit noise (Ghifary et al., 2017; Tao and Dan, 2021). 
Therefore, we  will derive the generalization error bound of the 
proposed method through Rademacher complexity. Let 
H h: { : }= ®X Y  be a set of hypothesis functions in the RKHS   

space, where   is a compact set and  is a label space. Given a loss 
function loss × ×( ) ´ ® +, :   and a. neighborhood distribution  
on  , the expected loss of two hypothesis functions h h H, Î  is 
defined as:

 
LD Dh h E loss h x h xx, ( ), ( ) ( ) = ( )é

ë
ù
û~

The domain distribution difference between the source domain 
distribution   and the target domain distribution  can 
be defined as:

 
disc h h h h

h h H
( ) sup { , , },

,

 � � �
�

�= ( ) - ( )
Î
 

 
(29)

Let f and f be  the true label functions for   and  , 
respectively, and let the corresponding optimized hypothesis 
functions be:

 

h h f

h h f
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Their corresponding expected loss is denoted as P Q Ph h* *( ), . Our 
C-PDDM method achieves the empirical loss target of P Q Ph h* *( ),  
through the objective function R Y W,( ).

The following theorem gives the generalization error bound of the 
proposed method:

Theorem 6 (Generalization Error Bound) (Nie et  al., 2010). Let 
H f f and f r: { : , }= Î ® £ £

¥
H X

H
 1   is a function set of RKHS 

. X x xs
n
s
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 = ¼( ) ~1
, ,  and X x xt

n
t
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 = ¼( ) ~1
, ,  are datasets of 

the source domain and the target domain, respectively. q-Lipschitz  
function loss is loss q× ×( ) ´ ® [ ], ,:  0 . When a b, Î ´  , 
loss a loss b q a b( ) - ( ) = - . The generalization error bound for any 
hypothesis function hÎ with a probability of at least 1-d  of having 
Rademacher complexity Â ( )X H


  on X

  is:

 

  
    

h f h f h h q H

q
N

q X

X

k s

, , ,

log

,

( ) - ( ) £ ( ) + Â ( )

+ +

* *
  2

3

2

2
8



d lW ,, ,

,

X R Y Wt( ) + ( )
 

(30)

where Â ( )X H

  is Rademacher complexity.

Theorem 6 shows that the possibilistic distribution distance measure 
W lk s tX X, ,( )  and the model alignment function R Y ,W( ) can 
simultaneously control the generalization error bound of the proposed 
method. Therefore, the proposed method can effectively improve its 
generalization performance in domain adaptation by minimizing both 
the possibilistic distribution distance between domains and model bias. 
The experimental results on real-world datasets also confirm 
this conclusion.

5.3. Discussion of kernel selection

The literature (32) theoretically analyzed and pointed out that the 
Gaussian kernel cluster provides an effective RKHS embedding space for 
the consistency estimation of domain distribution distance measure. The 
detailed derivation process can be  found in Sriperumbudur et  al. 
(2010a,b). Therefore, all the kernel functions used in this paper are 
Gaussian kernel k e x xi j

s
s= - - 2

2 2
2/ . In order to illustrate the impact of the 

Gaussian kernel bandwidth on the distribution of sample RKHS 
embedding, the following theorem is introduced:

Theorem 7 (Sriperumbudur et  al., 2010a). The function set of 
Gaussian kernel.

 

K k e x xs
x x
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For any k ks q, ÎKs  and 0 < < < ¥q s , then z zs qk s t k s tX X X X, ,( ) ³ ( ).
According to Theorem 7, the larger the kernel bandwidth, the larger 

the RKHS embedding distance of the domain distribution, which slows 
down the convergence speed of the domain distribution distance measure 
W lk s tX X, ,( )  based on the soft clustering hypothesis of the MMD 
criterion. In order to further study the performance impact of Gaussian 
kernel bandwidth, the Gaussian kernel bandwidth is parameterized, that 
is, the generalized Gaussian kernel function is defined as:

 
k , exps q s q

/
/ /x X x Xi i( ) = - - ( )( )2

2 2
2

 
(32)
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where q  is a tunable parameter, as will be  shown in the 
experimental analysis below. When q  is too large, the samples within 
the domain are highly cohesive, leading to a certain degree of mixing 
between positive and negative classes, which is not conducive to 
effective classification of the model. Conversely, when q  is too small, 
it may slow down the convergence of the distribution distance 
measurement algorithm based on the possibilistic clustering 
hypothesis to some extent. Therefore, this paper limits q qÎ[ ]1 0, , 
where q0 is a sufficiently large tunable parameter. The above analysis 
shows that the distribution distance measurement based on the 
possibilistic clustering hypothesis can not only constrain the 
divergence of the distributions between domains to be as consistent as 
possible, but also reduce the divergence of the sample distributions 
within each domain within a certain range of kernel bandwidths, 
thereby accelerating the convergence speed of the domain distribution 
divergence difference measurement and further improving the 
execution efficiency of the algorithm.

It is worth noting that kernel selection is an open problem in 
kernel learning methods. Recently, some studies have proposed the 
use of Multi-Kernel Learning (MKL) (Long et al., 2015) to overcome 
the kernel selection problem in single-kernel learning methods. 
Therefore, we can also use MKL to improve the performance of the 
proposed method. Specifically, the first step is to construct a new space 
that spans multiple kernel feature mappings, represented by fa a{ } =1

 , 
which projects X  into  different spaces. Then, an orthogonal 
integration space can be  built by connecting these  spaces, and 
� � �f f f fx x x xi i

T
i
T

i
T T N( ) = ( ) ( ) ¼ ( )é

ëê
ù
ûú

Î1 2, , ,   represents the mapping 
features in the final space, where x Xi Î . In addition, the kernel matrix 
in this final space can be written as K K K Knew =

é
ëê

ù
ûú1 2

~ ~ ~
; ;...;



, where Ki  is 
the i-th kernel matrix from  feature spaces. The kernel functions that 
can be used in practice include the Gaussian kernel function, inverse 
square distance kernel function K x xij i j= + -( )1 1

2

s , Laplacian kernel 
function K ij i jx x= - -( )exp s , and inverse distance kernel 
function K x xij i j= + -( )1 1 s , etc.

6. Experiments

6.1. Emotional databases and data 
preprocessing

In order to make a fair comparison with stat-of-the-art (SOTA) 
methods, a large number of experiments were conducted for effective 
validation on two well-known open datasets [i.e., SEED (Zheng and 
Lu, 2015) and SEED-IV (Zheng et al., 2019)]. The SEED dataset has a 
total of 15 subjects participating in the experiment to collect data, each 
subject needs to have three sessions at different times, each session 
contains 15 trials, with a total of 3 emotional stimuli (negative, neutral, 
and positive). In the SEED-IV dataset, there are also 15 subjects 
participating in the experiment to collect data, each subject needs to 
have three sessions at different times, each session contains 24 trials, 
with a total of 4 emotional stimuli (happy, sad, fearful, and peaceful).

The EEG signals of the two datasets (i.e., SEED and SEED-IV) are 
collected simultaneously from the 62-channel ESI Neuroscan system. 
In the EEG signal preprocessing, the down-sampled data sampling 
rate is reduced to 200 Hz, then the environmental noise data is 
manually removed, and the data is filtered through a 0.3 Hz–50 Hz 

band-pass filter. In each trial, the data is divided into multiple 
segments with a length of 1 s. Based on the predefined 5 frequency 
band-passes [Delta (1–3 Hz), Theta (4–7 Hz), Alpha (8–13 Hz), Beta 
(14–30 Hz), and Gamma (31–50 Hz)], the corresponding differential 
entropy (DE) is extracted to represent the logarithmic power spectrum 
in the specified frequency band-pass, and a total of 310 features (5 
frequency bands and 62 channels) are obtained in each EEG segment. 
Then, all features are smoothed by the Linear Dynamic System (LDS) 
method, which can utilize the time dependency of emotion transitions 
and filter out the noise EEG components unrelated to emotions (Shi 
and Lu, 2010).

6.1.1. Settings
The settings of the hyper-parameter for the C-PDDM method are 

also crucial before analyzing the experimental evaluation results. For 
all methods, in both the source and target domains, a Gaussian kernel 
K x x x xi i( , ) exp( )= - - 2 2

2s  is used, where s  can be  obtained by 
minimizing MMD to obtain a benchmark test. Based on experience, 
we first select s  as the square root of the average norm of the binary 
training data, and s C  (where C is the number of classes) for multi-
class classification. The underlying geometric structure depends on k 
neighbors to compute the Laplacian matrix. In the experiment of this 
paper, it can be observed that the performance slightly varies when k 
is not large. Therefore, to construct the nearest neighbor graph in 
C-PDDM, this paper conducts a grid search for the optimal number 
of nearest k neighbors in 3 5 10 15 17, , , ,{ }, and provides the best 
recognition accuracy results from the optimal parameter configuration.

Before presenting the detailed evaluation, it is necessary to explain 
how the hyper-parameters of C-PDDM are tuned. Based on 
experience, the parameter b  is used to balance the fuzzy entropy and 
domain probability distribution alignment in the objective function 
(16). Both parameters a  and r  are adjustable parameters, and they are 
used to balance the importance of structure description and feature 
selection. Therefore, these two parameters have a significant impact 
on the final performance of the method.

Considering that parameter uncertainty is still an open problem 
in the field of machine learning, we determine these parameters based 
on previous work experience. Therefore, we evaluate all methods on 
the dataset by empirically searching the parameter space to obtain the 
optimal parameter settings and give the best results for each method. 
Except for special cases, all parameters of all relevant methods are 
tuned to obtain the optimal results.

As unsupervised domain adaptation does not have target labels to 
guide standard cross-validation, we perform leave-one-subject-out on 
the two datasets: SEED and SEED-IV (the details of this protocol are 
shown in Section 6.2). We obtain the optimal parameter values on 
{10

6- , 10
5- , …, 10

5, 10
6} by obtaining the highest average accuracy on 

the two datasets using the above method. This strategy often 
constructs a good C-PDDM model for unsupervised domain 
adaptation, and a similar strategy is adopted to find the optimal 
parameter values for other domain adaptation methods. In the 
following sub-sections, a set of experiments is set up to test the 
sensitivity of the proposed method C-PDDM to parameter selection 
(i.e., Section 6.4.1), in order to verify that C-PDDM can achieve stable 
performance within a wide range of parameter values. In addition, the 
hyper-parameters of other methods are selected according to the 
original literature.
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6.2. Experiment protocols

In order to fully verify the robustness and stability of the proposed 
method, we  adopt four different validation protocols (leave-one-
subject-out) (Zhang et al., 2021) to compare the proposed method 
with the SOTA methods.

 1) Cross-subject cross-session leave-one-subject-out cross-
validation. To fully estimate the robustness of the model on 
unknown subjects and trials, this paper uses a strict leave-one-out 
method cross-subject cross-session to evaluate the model. All 
session data of one subject is used as the target domain, and all 
sessions of the remaining subjects are used as the source domain. 
We repeat the training and validation until all sessions of each 
subject have been used as the target domain once. Due to the 
differences between subjects and sessions, this evaluation 
protocol poses a significant challenge to the effectiveness of 
models in emotion recognition tasks based on EEG.

 2) Cross-subject single-session leave-one-subject-out cross-
validation. This is the most widely used validation scheme in 
emotion recognition tasks based on EEG (Luo et al., 2018; Li 
J. et al., 2020). One session data of a subject is treated as the 
target domain, while the remaining subjects are treated as the 
source domain. We repeat the training and validation process 
until each subject serves as the target once. As with other 
studies, we  only consider the first session in this type of 
cross-validation.

 3) Within-subject cross-session leave-one-session-out cross-
validation. Similar to existing methods, a time series cross-
validation method is employed here, where past data is used to 
predict current or future data. For a subject, the first two 
sessions are treated as the source domain, and the latter session 
is treated as the target domain. The average accuracy and 
standard deviation across subjects are calculated as the 
final results.

 4) Within-subject single-session cross-validation. Following the 
validation protocols proposed in existing studies (Zheng and 
Lu, 2015; Zheng et al., 2019), for each session of a subject, 
we take the first 9 (SEED) or 16 (SEED-IV) trials as the source 
domain and the remaining 6 (SEED) or 8 (SEED-IV) trials as 

the target domain. The results are reported as the average 
performance of all participants. In the performance 
comparison of the following four different validation protocols, 
we use “*” to indicate the replicated model results.

6.3. Results analysis on SEED and SEED-IV

6.3.1. Cross-subject cross-session
For verifying the efficiency and stability of the model under 

cross-subject and cross-session conditions, we used cross-subject 
cross-session leave-one-subject-out cross-validation on the SEED 
and SEED-IV databases to validate the proposed C-PDDM. As 
shown in Tables 1, 2, the results show that our proposed model 
achieved the highest accuracy of emotion recognition. The 
C-PDDM method, with or without using deep features, achieved 
emotion recognition performances of 73.82 ± 6.12 and 86.49 ± 5.20 
for the three-class classification task on SEED, and 67.83 ± 8.06 and 
72.88 ± 6.02 for the four-class classification task on 
SEED-IV. Compared with existing research, the proposed 
C-PDDM has a slightly lower accuracy on SEED-IV than PR-PL, 
but PR-PL uses adversarial learning, which has a higher 
computational cost. In addition, the proposed C-PDDM method 
has the best recognition performance in the other three cases. 
These results indicate that the proposed C-PDDM has a higher 
recognition accuracy and better generalization ability, and is more 
effective in emotion recognition.

6.3.2. Cross-subject single-session
Table 3 summarizes the model results of the recognition task under 

cross-subject single-session leave-one-subject-out and compares them 
with the performance of the latest methods in the literature. All results 
are presented in the form of mean ± standard deviation. The results 
show that our proposed model (C-PDDM) achieves the best 
performance (74.92%) with a standard deviation of 8.16 when 
compared with traditional machine learning methods. The recognition 
performance of C-PDDM is better than the DICE method, indicating 
that the C-PDDM method is superior to the DICE method in dealing 
with noisy situations. When compared with the latest deep learning 

TABLE 1 The mean accuracies (%) and standard deviations (%) of emotion recognition on the SEED database using cross-subject cross-session leave-
one-subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF (Breiman, 2001) 69.60 ± 7.64 KNN (Coomans and Massart, 1982) 60.66 ± 7.93

SVM* (Suykens and Vandewalle, 1999) 62.24 ± 5.48 Adaboost (Zhu et al., 2006) 71.87 ± 5.70

TCA* (Pan et al., 2011) 65.31 ± 6.04 CORAL (Sun et al., 2016) 69.22 ± 4.11

SA (Li Y. et al., 2020) 61.41 ± 9.75 GFK* (Gong et al., 2012) 67.36 ± 6.52

DICE* (Liang et al., 2018) 73.56 ± 4.23 C-PDDM 73.82 ± 6.12

Deep learning methods

DCORAL* (Sun et al., 2016) 80.87 ± 6.04 DAN* (Long et al., 2015) 82.51 ± 3.71

DDC (Tzeng et al., 2014) 82.17 ± 4.96 DANN* (Ganin et al., 2016) 84.79 ± 6.44

PR-PL (Zhou et al., 2022) 85.56 ± 4.78 C-PDDM+ResNet101 86.49 ± 5.20

Here, the model results reproduced by us are indicated by “*”. The bold values are the best performance in tables.
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methods, especially with deep transfer learning networks based on 
DANN (Li J. et al., 2020) [such as ATDD-DANN (Du et al., 2020), 
R2GSTNN(Li et al., 2019), BiHDM (Li Y. et al., 2020), BiDANN (Li 
et al., 2018c), WGAN-GP (Luo et al., 2018)], the proposed C-PDDM 
method effectively addresses individual differences and noisy label 
issues in aBCI applications. The recognition performance of PR-PL is 
slightly better than the C-PDDM, which may be because the PR-PL 
method uses adversarial loss for model learning, resulting in higher 
computational costs. Overall, the C-PDDM method has a competitive 
result, indicating that the C-PDDM method has better generalization 
performance in cross-subject within the same session.

6.3.3. Within-subject cross-session
By calculating the mean and standard deviation of the 

experimental results for each subject, the cross-session 

cross-validation results for each subject on the different datasets 
SEED and SEED-IV are shown in Tables 4, 5, respectively. For 
these two datasets, our proposed C-PDDM method, which 
compared with the existing traditional machine learning 
methods, has results close to or better than the DICE method 
on both SEED and SEED-IV. This may be  because each  
subject is less likely to generate noisy data in different sessions, 
which does not highlight the advantages of C-PDDM. In 
addition, for the SEED-IV dataset (four-class emotion 
recognition), regardless of traditional machine learning or the 
latest deep learning methods, the performance of the C-PDDM 
method is the best when the number of categories increases. 
This indicates that the proposed method is more accurate and 
has stronger scalability in more nuanced emotion recognition  
tasks.

TABLE 2 The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED-IV database using cross-subject cross-session leave-
one-subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF 50.98 ± 9.20 KNN 40.83 ± 7.28

SVM 51.78 ± 12.85 Adaboost 53.44 ± 9.12

TCA 56.56 ± 13.77 CORAL 49.44 ± 9.09

SA 64.44 ± 9.46 GFK 45.89 ± 8.27

KPCA (Suykens and Vandewalle, 1999) 51.76 ± 12.89 DNN (Suykens and Vandewalle, 1999) 49.35 ± 9.74

DICE 66.75 ± 7.25 C-PDDM 67.83 ± 8.06

Deep learning methods

DGCNN (Song et al., 2018) 52.82 ± 9.23 DAN 58.87 ± 8.13

RGNN (Zhong et al., 2020) 73.84 ± 8.02 BiHDM (Li Y. et al., 2020) 69.03 ± 8.66

BiDANN (Li et al., 2018c) 65.59 ± 10.39 DANN 54.63 ± 8.03

PR-PL 74.92 ± 7.92 C-PDDM+ResNet101 72.88 ± 6.02

The bold values are the best performance in tables.

TABLE 3 The mean accuracies (%) and standard deviations (%) of emotion recognition on the SEED database using cross-subject single-session leave-
one-subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

TKL (Li et al., 2018c) 63.54 ± 15.47 T-SVM* (Li et al., 2018c) 68.57 ± 9.54

TCA 63.64 ± 14.88 TPT* (Suykens and Vandewalle, 1999) 73.86 ± 11.05

KPCA 61.28 ± 14.62 GFK 71.31 ± 14.09

SA* 66.00 ± 10.89 DICA (Ma et al., 2019) 69.40 ± 07.80

DNN 61.01 ± 12.38 SVM 58.18 ± 13.85

DICE 74.22 ± 7.33 C-PDDM 74.92 ± 8.16

Deep learning methods

DGCNN 79.95 ± 9.02 DAN 83.81 ± 8.56

RGNN 85.30 ± 6.72 BiHDM 85.40 ± 7.53

WGAN-GP (Luo et al., 2018) 87.10 ± 7.10 MMD (Li J. et al., 2020) 80.88 ± 10.10

ATDD-DANN (Du et al., 2020) 90.92 ± 1.05 JDA-Net (Li J. et al., 2020) 88.28 ± 11.44

R2G-STNN (Li et al., 2019) 84.16 ± 7.63 SimNet* (Pinheiro, 2018) 81.58 ± 5.11

BiDANN 83.28 ± 9.60 DResNet (Ma et al., 2019) 85.30 ± 8.00

ADA (Li J. et al., 2020) 84.47 ± 10.65 DANN 81.65 ± 9.92

PR-PL 93.06 ± 5.12 C-PDDM+ResNet101 92.19 ± 4.70

Here, the model results reproduced by us are indicated by “*”. The bold values are the best performance in tables.
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6.3.4. Within-subject single-session
The previous evaluation strategy only considered the first two 

sessions of the SEED dataset as the source domain for the experiment. The 

evaluation results of emotion recognition for each subject within each 
session are presented in Table  6. When compared with traditional 
machine learning methods, the C-PDDM method has comparable 

TABLE 5 The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED-IV database using within-subject cross-session cross-
validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF 60.27 ± 16.36 KNN 54.18 ± 16.28

TCA* 59.49 ± 12.07 CORAL* 66.88 ± 14.67

SA* 56.94 ± 11.45 GFK* 60.66 ± 10.00

DICE 69.68 ± 12.52 C-PDDM 70.48 ± 9.08

Deep learning methods

DCORAL (Chen et al., 2021) 65.10 ± 13.20 DAN 60.20 ± 10.20

DDC (Chen et al., 2021) 68.80 ± 16.60 MEERNet (Chen et al., 2021) 72.10 ± 14.10

PR-PL 74.62 ± 14.15 C-PDDM+ResNet101 76.29 ± 11.36

The bold values are the best performance in tables.

TABLE 6 The mean accuracies (%) and standard deviations (%) of emotion recognition on the SEED database using within-subject single-session cross-
validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

SVM* 77.80 ± 12.61 GRSLR (Li et al., 2018a) 87.39 ± 8.64

RF 78.46 ± 11.77 GSCCA (Zheng, 2017) 82.96 ± 9.95

CCA 77.63 ± 13.21 DBN (Zheng et al., 2015) 86.08 ± 8.34

DICE 86.28 ± 9.22 C-PDDM 86.74 ± 7.59

Deep learning methods

DGCNN 90.40 ± 8.49 RGNN 94.24 ± 5.95

ATDD-DANN 91.08 ± 6.43 BiHDM 93.12 ± 6.06

R2G-STNN 93.38 ± 5.96 SimNet* 90.13 ± 10.84

BiDANN 92.38 ± 7.04 STRNN (Zhang et al., 2019a) 89.50 ± 7.63

GCNN (Breiman, 2001) 87.40 ± 9.20 DANN 91.36 ± 8.30

PR-PL 94.84 ± 9.16 C-PDDM+ResNet101 96.38 ± 6.88

The bold values are the best performance in tables.

TABLE 4 The mean accuracies (%) and standard deviations (%) of emotion recognition on the SEED database using within-subject cross-session cross-
validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF 76.42 ± 11.15 KNN* 72.96 ± 12.10

TCA* 77.63 ± 11.49 CORAL 84.18 ± 9.81

SA* 67.79 ± 7.43 GFK* 79.28 ± 7.44

DICE 81.58 ± 7.55 C-PDDM 81.58 ± 9.30

Deep learning methods

DAN 89.16 ± 7.90 SimNet 86.88 ± 7.83

DDC 91.14 ± 5.61 ADA 89.13 ± 7.13

DANN 89.45 ± 6.74 MMD 84.38 ± 12.05

JDA-Net 91.17 ± 8.11 DCORAL (Sun et al., 2016) 88.67 ± 6.25

PR-PL 93.18 ± 6.55 C-PDDM+ResNet101 92.56 ± 5.29

The bold values are the best performance in tables.
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performance, and it still outperforms the performance of the DICE 
method. When compared with the latest deep learning methods, the 
C-PDDM method achieves the highest recognition performance, 
reaching 96.38%, which is even higher than the PR-PL method. This 
comparison demonstrates the high efficiency and reliability of the 
proposed C-PDDM method in various emotion recognition applications.

For the SEED-IV dataset, we calculated the performance of all 
three sessions (emotional categories: happiness, sadness, fear, and 
neutral). Our proposed model outperforms the existing latest classical 
research methods and achieves the highest accuracy of 71.85 and 
83.94% in Table 7. This comparison shows that the more emotional 
categories there are, the more prominent the generalization of the 
proposed C-PDDM method in applications.

6.4. Discussion

For comprehensively study the performance of the model, 
we evaluated the effects of different settings in C-PDDM. Please note that 
all the results presented in this section are based on the SEED dataset, 
using the cross-subject single-session cross-validation evaluation protocol.

6.4.1. Ablation study
We conducted ablation studies to systematically explore the 

effectiveness of different components in the proposed C-PDDM 
model and their respective contributions to the overall performance 
of the model. As shown in Table 8, when 5 labeled samples existed at 
each category in the target domain, the recognition accuracy 
(93.83% ± 5.17) is very close to the recognition accuracy of C-PDDM 
(unsupervised learning) (92.19% ± 4.70). This decrease indicates the 
impact of individual differences on model performance and highlights 
the huge potential of transfer learning in aBCI applications. Moreover, 
the results show that simultaneously preserving the local structure of 
data in both the source and target domains helps improve model 
performance; otherwise, the recognition accuracy decreases 
significantly (90.60% ± 5.29 and 91.37% ± 5.82, respectively). When 
W 2 1,  is changed to W 2 , the model’s recognition accuracy drops to 

91.84% ± 6.33. This result reflects the sample selection and denoising 
effects achieved when using l2 1,  constraint.

For the pseudo-labeling method, when the pseudo-labeling method 
changes from fixed to linear dynamic, the corresponding accuracy 
increases from 89.95 to 92.19%. When adopting multi-kernel learning, 
the accuracy further improves to 93.68%. The results indicate that multi-
kernel learning helps rationalize the importance of each kernel in 
different scenarios and enhances the generalization of the model.

Next, we analyze the impact of different hyper-parameters on the 
overall performance of the model. According to the experimental 
results, it can be seen that the recognition accuracy with a , b , r  are 
dynamically learned better than fixed values. When ignoring the local 

TABLE 8 The ablation study of our proposed model.

Ablation study about training strategy Pacc

target prior information (5 labeled samples per category) 93.83 ± 5.17

only preserving the local structures on the source 90.60 ± 5.29

only preserving the local structures on the target 91.37 ± 5.82

imposing l2-norm on W 91.84 ± 6.33

fixed pseudo-labeling 89.95 ± 5.61

dynamic pseudo-labeling 92.19 ± 4.75

multiple kernel leaning 93.68 ± 6.04

Hyper-parameter controlling strategy

a = 0 (ignoring the local structures) 90.27 ± 5.51

fixed a =1 for local preserving regularization 91.93 ± 5.44

fixed b =100 for fuzzy entropy regularization 92.17 ± 6.30

fixed r  for W  regularization 92.16 ± 5.38

d = 0 88.47 ± 6.00

d = 0 3. 88.91 ± 3.49

d = 0 5. 92.19 ± 4.70

d = 0 85. 91.83 ± 2.80

d =1 89.85 ± 5.66

b = 0 (ignoring the fuzzy entropy regularization) 90.56 ± 6.59

The proposed model

C-PDDM+ResNet101 92.19 ± 4.70

TABLE 7 The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED-IV database using within-subject single-session cross-
validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

SVM 56.61 ± 20.05 GRSLR 69.32 ± 19.57

RF 50.97 ± 16.22 GSCCA 69.08 ± 16.66

CCA 54.47 ± 18.48 DBN 66.77 ± 07.38

DICE 71.67 ± 11.29 C-PDDM 71.85 ± 9.18

Deep learning methods

DGCNN 69.88 ± 16.29 RGNN 79.37 ± 10.54

GCNN 68.34 ± 15.42 BiHDM 74.35 ± 14.09

A-LSTM (Breiman, 2001) 69.50 ± 15.45 SimNet* 71.38 ± 13.12

BiDANN 70.29 ± 12.63 DANN 63.07 ± 12.66

PR-PL 83.33 ± 10.61 C-PDDM+ResNet101 83.94 ± 11.39

The bold values are the best performance in tables.
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structural information and fuzzy entropy information in the domain, 
the performance drops by about 2% (i.e., a = 0, a =1, b = 0 , and 
b =100). In addition, from the results, it can be  inferred that the 
performance is optimal when the value of d  is around 0.5, indicating 
that the means of different categories in the source domain and target 
domain are equally important.

6.4.2. Effect of noisy labels
In order to further verify the robustness of the model in the noisy 

label learning process, we randomly add noise to the source labels at 
different ratios and test the performance of the corresponding model on 
unknown target data. Specifically, we  replace the corresponding 
proportion of real labels in Y s with randomly generated labels to train the 
model by semi-supervised learning and then test the performance of the 
trained model in the target domain. It should be noted that only noise 
data is added in the source domain, and the target domain needs to 
be used for model evaluation. In the implementation, the noise ratios are 

adjusted to 5, 15, 25, and 30% of the sample number of the source domain, 
respectively. The results in Figure 2 show that the accuracy of the proposed 
C-PDDM decreases at the slowest rate as the number of noise increases. 
It indicates that C-PDDM is a reliable model with a high tolerance to 
noisy data. In future work, we  can combine recently proposed new 
methods, such as Xiao et al. (2020) and (Jin et al. (2021), to further 
eliminate more common noise in EEG signals and improve the stability 
of the model in cross-corpus applications.

6.4.3. Confusion matrices
In order to qualitatively study the performance of the model in each 

emotion category, we analyze the confusion matrix through visualization 
and compare the results with the latest models (i.e., BiDANN, BiHDM, 
RGNN, PR-PL, DICE ResNet101). As shown in Figure 3, all models are 
good at distinguishing positive emotions from other emotions (with 
recognition rates above 90%), but relatively not good at distinguishing 
negative emotions and neutral emotions. For example, the emotion 
recognition rate in BiDANN (Li et al., 2018c) is even lower than 80% 
(76.72%). In addition, the PR-PL method achieves the best performance, 
possibly due to its adoption of adversarial networks, but at the cost of 
increased computational expenses. Compared with other existing 
methods (Figures 3A–C,E), our proposed model can improve the model’s 
recognition ability, especially in distinguishing neutral and negative 
emotions, and its overall performance is better than the DICE method (as 
shown in Figures 3E,F).

6.4.4. Convergence
The proposed C-PDDM adopts an iterative optimization strategy 

and uses experiments to prove its convergence. The experiment is 
completed on the MATLAB platform, and the device configuration 
used is as follows: 64 GB memory, 2.5 GHz CPU, and 8-core Intel 
i7-11850H processor. Figure  4 shows the convergence process of 
C-PDDM at different iteration times. The results are shown in 
Figure 4. We can observe clearly that the proposed algorithm can 
achieve the minimum convergence at about 30 iterations. In the 
algorithm, the objective function of optimizing the sub-problem at 

FIGURE 3

Confusion matrices of different models: (A) BiDANN; (B) BiHDM; (C) RGNN; (D) PR-PL; (E) DICE+ResNet101; and (F) C-PDDM+ResNet101.

FIGURE 2

Robustness on source domain with different noise levels.
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each time is a decreasing function, which proves that the C-PDDM 
method has good convergence.

7. Conclusion

This paper proposes a novel transfer learning framework 
based on a Clustering-based Probability Distribution Distance 
Metric (C-PDDM) hypothesis, which uses a probability 
distribution distance metric criterion and fuzzy entropy 
technology for EEG data distribution alignment, and introduces 
the Laplace matrix to preserve the local structural information of 
source and target domain data. We  evaluate the proposed 
C-PDDM model on two famous emotion databases (SEED and 
SEED-IV) and compare it with existing state-of-the-art methods 
under four cross-validation protocols (cross-subject single-
session, single-subject single-session, single-subject cross-session, 
and cross-subject cross-session). Our extensive experimental 
results show that C-PDDM achieves the best results in most of the 
four cross-validation protocols, demonstrating the advantages of 

C-PDDM in dealing with individual differences and noisy label 
issues in aBCI systems.
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Chemical exchange saturation transfer (CEST)-magnetic resonance imaging (MRI) 
often takes prolonged saturation duration (Ts) and relaxation delay (Td) to reach 
the steady state, and yet the insufficiently long Ts and Td in actual experiments 
may underestimate the CEST measurement. In this study, we aimed to develop a 
deep learning-based model for quasi-steady-state (QUASS) prediction from non-
steady-state CEST acquired in experiments, therefore overcoming the limitation 
of the CEST effect which needs prolonged saturation time to reach a steady 
state. To support network training, a multi-pool Bloch-McConnell equation 
was designed to derive wide-ranging simulated Z-spectra, so as to solve the 
problem of time and labor consumption in manual annotation work. Following 
this, we  formulated a hybrid architecture of long short-term memory (LSTM)-
Attention to improve the predictive ability. The multilayer perceptron, recurrent 
neural network, LSTM, gated recurrent unit, BiLSTM, and LSTM-Attention were 
included in comparative experiments of QUASS CEST prediction, and the best 
performance was obtained by the proposed LSTM-Attention model. In terms of 
the linear regression analysis, structural similarity index (SSIM), peak signal-to-
noise ratio (PSNR), and mean-square error (MSE), the results of LSTM-Attention 
demonstrate that the coefficient of determination in the linear regression analysis 
was at least R2  =  0.9748 for six different representative frequency offsets, the mean 
values of prediction accuracies in terms of SSIM, PSNR and MSE were 0.9991, 
49.6714, and 1.68  ×  10−4 for all frequency offsets. It was concluded that the LSTM-
Attention model enabled high-quality QUASS CEST prediction.

KEYWORDS

CEST-MRI, QUASS CEST, deep learning, Bloch-McConnell equation, LSTM-Attention

1 Introduction

Chemical exchange saturation transfer (CEST)-magnetic resonance imaging (MRI) of 
dilute labile protons that undergo their chemical exchange with the bulk water protons 
enables a specific contrast and provides a promising molecular imaging tool for in vivo 
applications (Zaiss and Bachert, 2013; Xiao et al., 2015; Wu et al., 2016; Jones et al., 2018; 
Zaiss et al., 2022). However, the CEST effect is limited by experimental conditions such as 
the amplitude (Sun et al., 2007; Zhao et al., 2011) and duration of RF saturation (Randtke 
et al., 2014; Zaiss et al., 2018). For some CEST-MRI experiments, the CEST effect needs 
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prolonged saturation duration to achieve quasi-steady-state 
(QUASS). The limitation of maximum RF saturation duration 
underestimates the CEST signal (Zhang et al., 2021), which makes 
it difficult to compare the results between different platforms and 
stations (Sun, 2021; Wu et  al., 2022). So the task for a post-
processing strategy to automatically derive the QUASS CEST effect 
from experimental measurements with limited saturation duration 
needs to be solved today. Particularly, Sun conducted a QUASS 
CEST analysis that compensated the effect of finite saturation 
duration (Ts) and relaxation delay (Td) by solving both the labile 
proton fraction ratio and exchange rate from simulated CEST, 
therefore improving the accuracy of CEST-MRI quantification 
(Sun, 2021). Zhang et al. developed a postprocessing strategy to 
derive the QUASS CEST by modeling the CEST signal evolution as 
a function of Ts and Td, allowing robust CEST quantification 
(Zhang et al., 2021). Kim et al. proposed a QUASS CEST algorithm 
that can minimize dependences on Ts and Td by combining multi-
slice CEST imaging with QUASS processing (Kim et al., 2022).

The application of deep learning to the CEST-MRI has led to a 
large number of technical improvements (Glang et al., 2020; Li 
et  al., 2020; Bie et  al., 2022; Huang et  al., 2022; Perlman et  al., 
2022), including shortcut of the conventional Lorentzian fitting for 
in vivo 3 T CEST data (Glang et al., 2020), prediction of the CEST 
contrasts for Alzheimer’s disease (Huang et al., 2022), identification 
of pertinent Z-spectral features for distinguishing tumor 
aggressiveness (Bie et al., 2022), etc. Therefore, this paper aims to 
employ a deep learning technique to predict QUASS CEST (i.e., 
CEST images on prolonged saturation) by training a network on 
the prior knowledge of simulated CEST Z-spectra. With respect to 
the underlying application domain, the sequence-to-sequence 
(Seq2Seq) network is an intuitive approach, in which the LSTM 
(Yu et al., 2019) and the attention mechanism (Vaswani et al., 2017) 
are stated as excellent methods. LSTM is known to solve the 
vanishing gradient problem when a recurrent neural network 
(RNN) is used to work with the sequence input, while the 
disadvantage of LSTM in the latent decomposition training is 
significant (Shi et al., 2022). For this, some modified versions help 
improve the LSTM performance and were successfully applied to 
medical treatment behavior prediction (Cheng et  al., 2021), 
medical event prediction (Liu et al., 2022), and EEG-based emotion 
recognition (Chakravarthi et  al., 2022). Particularly, a Seq2Seq 
with a multi-head attention mechanism instead of recurrence has 
excelled at tasks of time series, obtaining effective information and 
significant spatiotemporal features from the new coding sequence. 
However, the attention mechanism loses the sequential information 
because the used attention mechanism is position-insensitive 
(Zheng et  al., 2021). The principles of the LSTM network and 
attention mechanism were briefly described in Supplementary File 1. 
Looking at the advantages and disadvantages of both algorithms, 
a hybrid model named LSTM-Attention would be  a perfectly 
natural way. In this LSTM-Attention architecture, the LSTM is 
used to obtain the hidden state of the input features, while the use 
of multi-head attention in the encoder layer is to better learn the 
temporal information (Figure 1). In Figure 1, the input embedding 
is used to capture high-dimensional spatial properties of long time 
series. Because position information is not considered in the 
attention layer, we  add “positional encoding” to the input 

embeddings. To this end, different semantic information from 
different sequence positions is incorporated into an embedding 
tensor, compensating for the lack of position information. The 
LSTM had a hidden state dimensionality of 1,024, the number of 
attention heads is 4.

Motivated by the above, this paper aims to build an LSTM-
Attention-based model for QUASS CEST prediction from non-steady-
state CEST (i.e., CEST images with shorter saturation time) acquired 
in experiments, as shown in Figure  2. Simulated Z-spectra with 
shorter and prolonged saturation time was derived from the designed 
Bloch–McConnell equations (Xiao et al., 2023), respectively. Then 
we used the trained model to predict QUASS CEST from non-steady-
state CEST acquired in experiments.

In summary, this work makes the following two key contributions. 
To tackle the problematic and time-consuming task of obtaining the 
labeled training data from experiments, we built a large-scale training 
set based on simulated Z-spectra derived from the designed Bloch-
McConnell equations. We  formulated an LSTM-Attention-based 
model which is trained on simulated CEST Z-spectra to predict 
QUASS CEST image pixel-by-pixel from non-steady-state CEST 
acquired in explements, where the attention mechanism improves the 
predictive ability of LSTM by paying attention to the input weights 
that contribute more to the output.

FIGURE 1

Structure diagram of LSTM-Attention.
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2 Materials and methods

2.1 In vivo MRI experiments

In this vivo MRI experiment, 8-week-old male SD rats (Beijing 
Vital River Laboratory Animal Technology Co., Ltd.) weighing 
250 g were used to generate a tumor-bearing model. All animal 
care and experimental procedures were performed in accordance 
with the National Research Council Guide for the Care and Use of 
Laboratory Animals. For this assessment, a 10 μL suspension of rat 
glioma C6 cells (approximately 2 × 106 cells) was implanted into 
the right basal ganglia (specific injection position: AP + 1, ML + 3, 
DV-5) of the rats using a Hamilton syringe and a 30-gauge needle. 
Two weeks after the implantation of tumor cells, the rats were 
subjected to MRI.

The CEST-MRI experiment was performed using a 7 T horizontal 
bore small animal MRI scanner (Agilent Technologies, Santa Clara, 
CA, U.S.A.) with a surface coil (Timemedical Technologies, China) for 
transmission and reception. Imaging parameters were as follows: 
repetition time (TR) = 6,000 ms, echo time (TE) = 40 ms, 
array = frequency offsets, slice thickness = 2 mm, field of view 
(FOV) = 64 × 64 mm, matrix size = 64 × 64, spatial 
resolution = 1 × 1 mm, averages = 1. To obtain CEST images, an echo 
planar imaging readout sequence was used, where continuous wave 
(CW) RF irradiation was implemented on scanners. The saturation 
times were 1.5 s and 5 s, respectively, with 101 frequency offsets evenly 
distributed from −6 to 6 ppm relative to the resonance of water.

The CEST images of saturation times 1.5 s acquired in this 
experiment were the inputs of trained networks. The CEST images 

with saturation times 5 s acquired in this experiment were the 
reference, which is used to assess the prediction 
performance by comparing the model’s estimates with the 
experimental data values.

2.2 Training dataset

The training of LSTM-Attention for predicting objects requires a 
large dataset with true pixel-level labels in terms of saturation times, 
which is extremely expensive to construct training data in 
experiments. To address this issue, we simulated CEST signals using 
a 7-pool Bloch–McConnell equation (Xiao et  al., 2023) at both 
non-steady and quasi-steady states. This 7-pool model consists of free 
water centered at 0 ppm, amide centered at 3.5 ppm, guanidyl/amine 
centered at 2.0 ppm, hydroxyl centered at 1.3 ppm, nuclear Overhauser 
enhancement (NOE) centered at-1.6 ppm, magnetization transfer 
(MT) centered at-2.4 ppm, and NOE centered at-3.5 ppm. In detail, 20 
dynamic parameters regarding all possible tissue combinations were 
considered. For each dynamic parameter, random variables from the 
uniform distribution with lower bound and upper bound were 
sampled for the training dataset, so we could generate as much data as 
needed with all possible tissue combinations. The sampled variables 
of each parameter interacting with that of each other generated 
350,000 parameter combinations, thus yielding 350,000 paired 
simulated Z-spectra (see Supplementary Figure S1). The simulated 
Z-spectra with saturation times of 1.5 s and 5 s at 101 offsets in the 
range of ±6 ppm were referred to as the training input and output, 
respectively.

FIGURE 2

Flow chart of LSTM-Attention based model for predicting QUASS CEST. The simulated Z-spectra with short saturation time was referred to the training 
input, and the simulated Z-spectra with prolonged saturation time was the training output. Input Z-spectra from experiments with shorter saturation 
times for each image pixel, we can predict QUASS CEST images by their output Z-spectra of each pixel.
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FIGURE 3

Comparisons of the predicted results with experimentally acquired CEST images at frequency offsets-3.48  ppm, −2.40  ppm, −1.56  ppm, 0.96  ppm, 
2.04  ppm, and 3.48  ppm. The column (A) shows the experimentally acquired CEST image with the saturation time of 1.5  s, the column (B) shows the 
experimentally acquired CEST image with the saturation time of 5  s (reference), the columns (C–H) denote the prediction results obtained by MLP, 
RNN, LSTM, GRU, BiLSTM and LSTM-Attention, respectively.

2.3 Evaluation metrics and workstation

Linear regression analysis (Li et al., 2020) was first applied to 
evaluate the proposed model at frequency offsets-3.48 ppm, 
−2.40 ppm, −1.56 ppm, 1.32 ppm, 2.04 ppm, and 3.48 ppm. To evaluate 
the proposed model in the prediction of CEST image at each frequency 
offset, the prediction performance was evaluated by three measures: 
the structural similarity index (SSIM), the peak signal-to-noise ratio 
(PSNR) (Hore and Ziou, 2010), and mean squared error (MSE).

The workstation used in this study is a Lenovo ST558 workstation 
with 32 G memory, a dual-core CPU10 core, and a 2.4 G main 
operating frequency. The experiments are based on PyTorch, and the 
number of epochs is 100. The number of batch size is 256. The 
optimizer is Adam, and the learning rate is 0.0001. We initialize the 
weights using samples from a uniform distribution, and use MSE-Loss 
as the loss function.

3 Results

To validate the proposed model, prediction images were compared 
with the reference from experimental measurements. We applied the 

trained neural networks to predict the CEST images with a saturation 
time of 5 s from experimentally acquired CEST images with a 
saturation time of 1.5 s. For comparison, the LSTM-Attention 
presented comparable performance to that of five popular existing 
networks: the multilayer perceptron (MLP) (Xu et al., 2018), recurrent 
neural network (RNN) (Xu et al., 2018), long short-term memory 
(LSTM) (Yu et al., 2019), gated recurrent unit (GRU) (Xu et al., 2018), 
and BiLSTM (Siami-Namini et al., 2019).

We first conducted an experiment to predict CEST images at 
frequency offsets-3.48 ppm, −2.40 ppm, −1.56 ppm, 1.32 ppm, 
2.04 ppm, and 3.48 ppm, as shown in Figure  3. The region of the 
pseudo color image overlaid on the anatomy image was the region of 
interest (ROI). The results obtained from the considered networks 
were almost equivalent to those obtained experimentally by the 
subjective vision.

Furthermore, we carried out a comparison experiment in terms 
of the absolute error modulus between reference and prediction, as 
illustrated in Figure 4. In this figure, row-plots indicated the absolute 
error modulus at frequency offsets −3.48 ppm, −2.40 ppm, −1.56 ppm, 
1.32 ppm, 2.04 ppm, and 3.48 ppm; columns (A–F) were the absolute 
error modulus from MLP, RNN, LSTM, GRU, BiLSTM and LSTM-
Attention, respectively; the plot (G) denoted the mean values of 
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absolute error modulus at frequency offsets −3.48 ppm, −2.40 ppm, 
−1.56 ppm, 1.32 ppm, 2.04 ppm and 3.48 ppm that obtained by 
considered methods. The results of Figure 4G reveal that the mean 
values of absolute error modulus obtained from the proposed LSTM-
Attention model are smaller than those of other networks at these 
frequency offsets, while there is a difference of one order of magnitude 

between the LSTM-Attention and its counterparts at frequency 
offsets-3.48 ppm, −2.40 ppm, −1.56 ppm, 2.04 ppm, and 3.48 ppm. In 
other words, the CEST image at these frequency offsets obtained by 
the trained LSTM-Attention showed a higher degree of agreement 
with those obtained by the experimental measurements as 
the standard.

FIGURE 4

The absolute error modulus between the predicted images and the experimentally acquired CEST images at frequency offsets-3.48  ppm, −2.28  ppm, 
−1.56  ppm, 1.32  ppm, 2.04  ppm, and 3.48  ppm. The columns (A–F) are the results from MLP, RNN, LSTM, GRU, BiLSTM and LSTM-Attention, 
respectively; the plot (G) denotes the mean values of absolute error modulus obtained by considered six networks.
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An example of the predicted Z-spectra by LSTM-Attention for 
white matter, gray matter, and tumor is shown in Figure 5, which 
consistently provided satisfactory results.

Figure 6 quantitatively demonstrates the considered networks for 
predicting the in vivo CEST signal by plotting the linear regression 
lines and scatter diagrams between the reference and the prediction. 
In this figure, row-plots were the results at frequency offsets 
−3.48 ppm, −2.40 ppm, −1.56 ppm, 1.32 ppm, 2.04 ppm, and 3.48 ppm; 
columns (A–F) denoted the results from MLP, RNN, LSTM, GRU, 
BiLSTM and LSTM-Attention, respectively; the plot (G) denoted the 
coefficient of determination at frequency offsets −3.48 ppm, 
−2.40 ppm, −1.56 ppm, 1.32 ppm, 2.04 ppm, and 3.48 ppm that 
obtained by considered methods. The pixel values correspond to the 
points of the ROI in Figures 3, 4. For each plot, the fitting curve was 
denoted by the blue line and the green line was the 45-degree diagonal. 
The excellent performance of our prediction was confirmed by the 
scatter and linear regression lines, resulting in a very high coefficient 
of determination (R2 ≥ 0.9748) at these frequency offsets.

To set up a comprehensive way to evaluate the performance of the 
prediction models, the SSIM and PSNR from the reference and the 
prediction at each offset (−6 ~ 6 ppm) are considered, as displayed in 
Figure  7. In terms of SSIM, the LSTM-Attention exhibits good 
accuracies at each offset (−6 ~ 6 ppm) and presents results close to 
those of LSTM at-5.04 and 0.96 ppm, while it exceeds the performance 
of other networks in the ranges (−6 ~ −5.16 ppm), (−4.92 ~ −0.72 ppm) 
and (1.08 ~ 4.68 ppm). Similar results are obtained by LSTM-Attention 
in terms of PSNR. Clearly, our model exhibits competitive results for 
these two metrics based on different criteria, providing a mean SSIM 
value of 0.9991 and a mean PSNR value of 49.6714, respectively. 
Figure 8 displays the MSE obtained by considered networks for all 

frequency offsets, and the best result of mean MSE 1.68 × 10−4 is 
obtained by the LSTM-Attention network.

4 Discussions

To some extent, we  developed a general deep learning-based 
approach to predict QUASS CEST using experimentally acquired CEST 
images with shorter saturation times, since the performances of MLP 
and five existing Seq2Seq networks are also evaluated in this study. As 
the results show, the LSTM-Attention network outperforms the MLP, 
RNN, LSTM, GRU, and BiLSTM (Figure 7). It is clear that LSTM-
Attention is able to capture the underlying context better by paying 
attention to the input weights that contribute more to the output. The 
better performance of LSTM-Attention compared to its counterparts is 
understandable for certain types of data such as specific chemical 
groups in the downfield and MT/NOE in the upfield (Figures 4, 6).

In fact, the Z-spectra of a pixel typically behaves short-and long-
range dependencies along the frequency offsets (see 
Supplementary Figure S2). The LSTM-Attention is consistently the 
best model followed by MLP, RNN, LSTM, GRU, and BiLSTM for 
capturing the short-and long-range behavior. In the simplest form, 
fully RNN is an MLP with the previous set of hidden unit activations 
feeding back into the network along with the inputs (Roy et al., 2019). 
Additionally, the LSTM, GRU, BiLSTM, and LSTM-Attention are able 
to overcome RNN’s vanishing gradient problem which happens when 
RNN learns long-range dependencies of inputs (Yang et al., 2022). 
Therefore, the ability of short-and long-range interaction in these 
considered networks performs similarly, as the results above. 
Particularly, the LSTM-Attention augments the non-linear processing 

FIGURE 5

Comparison between the predicted Z-spectra of LSTM-Attention and the experimentally acquired results at one randomly chosen pixel of (A) gray 
matter, (B) white matter and (C) tumor, respectively.
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capability in QUASS CEST prediction by taking advantage of the 
known, observed, and static covariate factors.

In practice, training a deep neural network to predict QUASS 
CEST requires massive samples with ground-truth annotations, 
which is extremely expensive to construct experimentally. To solve 
this problem, we built an automatically labeled dataset based on 
the Bloch–McConnell equations. Briefly, we  considered all the 
possible parameters of the equations when generating the trained 
samples. For each dynamic parameter, a wide range of random 
values was sampled in a uniform distribution with its lower and 
upper bounds, automatically yielding a large set of labeled 
training data.

Further studies would be beneficial for QUASS CEST applications 
at low-field MRI where short saturation time is needed. It could 
be useful to investigate other less visible CEST effects (such as guanidyl 
or amine) in clinical MRI scanners.

5 Conclusion

In summary, we addressed the QUASS CEST predicting problem 
in learning systems and proposed a data-driven predicting scheme 
that benefits from our strategy to reduce the effect of finite RF 
saturation duration on the CEST measurement. The experiment study 

FIGURE 6

Linear regression analysis of the prediction and reference at frequency offsets-3.48, −2.40, −1.56, 1.32, 2.04, 3.48 ppm. The columns (A–F) are the 
results from MLP, RNN, LSTM, GRU, BiLSTM and LSTM-Attention, respectively; the plot (G) denotes the coefficient of determination (R2) between the 
prediction and reference. For the columns (A–F) at each offset, the locations of the red markers are specified by the vectors x and y, where x is the 
pixel values of the experimentally acquired CEST image with the saturation time 5 s (reference) and y is the pixel values of predicted CEST images 
with a saturation time 5 s; the blue line is the linear regression fitting based on the red scatter points of prediction versus reference, the green line 
indicates the 45-degree diagonal.
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FIGURE 7

The SSIM and PSNR obtained from the reference and the prediction at each offset (−6  ~  6  ppm).

compared the proposed model with other approaches, and the 
effectiveness and superiority of the LSTM-Attention model were 
validated. This research can be further expanded to predict problems 
for available clinical MRI scanners.
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Conventional histology of the brain remains the gold standard in the analysis

of animal models. In most biological studies, standard protocols usually involve

producing a limited number of histological slices to be analyzed. These slices are

often selected into a specific anatomical region of interest or around a specific

pathological lesion. Due to the lack of automated solutions to analyze such single

slices, neurobiologists perform the segmentation of anatomical regions manually

most of the time. Because the task is long, tedious, and operator-dependent, we

propose an automated atlas segmentation method called giRA�, which combines

rigid and a�ne registrations and is suitable for conventional histological protocols

involving any number of single slices from a given mouse brain. In particular,

the method has been tested on several routine experimental protocols involving

di�erent anatomical regions of di�erent sizes and for several brains. For a given

set of single slices, the method can automatically identify the corresponding

slices in the mouse Allen atlas template with good accuracy and segmentations

comparable to those of an expert. This versatile and generic method allows

the segmentation of any single slice without additional anatomical context in

about 1 min. Basically, our proposed giRA� method is an easy-to-use, rapid, and

automated atlas segmentation tool compliant with a wide variety of standard

histological protocols.

KEYWORDS

atlas segmentation, image registration, histology, brain, mouse

1 Introduction

In the last few decades, conventional histology has benefited from the expansion of light

microscopy (Wilt et al., 2009; Ghaznavi et al., 2013; Milligan et al., 2019), in conjunction

with the development of a wide range of biological staining techniques (Kuan et al., 2015;

Kim et al., 2017; Erö et al., 2018; Tward et al., 2020; Wang et al., 2020). Cutting and

acquisition protocols have become more and more sophisticated over time, providing a

broad variety of procedures. This made it possible to observe the brain in an unprecedented

way (Vandenberghe et al., 2016; Erö et al., 2018; Milligan et al., 2019; Tward et al., 2020).

However, the resulting data remain massive and difficult to analyze for most of the labs. This

is the case for the mouse brain in preclinical studies (Milligan et al., 2019).

Automated tools for analyzing these tissues, allowing the detection of biological objects

and identification of the anatomical regions of interest (ROIs) to which they belong,

are essential. Object segmentation has seen a tremendous upturn with the expansion of

deep neural networks (Ronneberger et al., 2015; Falk et al., 2019). However, accurately

identifying ROIs is still challenging and usually requires a brain atlas or expert knowledge

of neuroanatomy.
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As a result, many histological protocols are focused on specific

anatomical regions, lesion areas, or pathological biomarkers, only

on several well-chosen slices of interest within the brain (Lebenberg

et al., 2010; Mesejo et al., 2012; Kim et al., 2015, 2017; Niedworok

et al., 2016; Pagani et al., 2016; Renier et al., 2016; Ye et al., 2016;

Dudeffant et al., 2017; Stolp et al., 2018; Zeng, 2018; Chen et al.,

2019; Eastwood et al., 2019; Pallast et al., 2019; Bayraktar et al., 2020;

Hérard et al., 2020; Sen et al., 2020; Song et al., 2020; Lam et al.,

2022; Yee et al., 2022). It is prone to many drawbacks: this tedious

work often yields non-reproducible operator-dependant results,

suffers from inter- and intra-individual variability, and requires

special attention in the statistical analysis design.

Digital mouse brain atlases aimed both to establish a rigorous,

precise, and common reference of delineation for anatomical

ROIs and, more importantly, to use them as a segmentation tool

(Dauguet et al., 2007; Lein et al., 2007; Lau et al., 2008; Dubois et al.,

2010; Johnson et al., 2010; Papp et al., 2014; Kuan et al., 2015; Tward

et al., 2020; Wang et al., 2020).

A digital atlas being tree-dimensional (3D), the experimental

volume needs to be reconstructed so that their respective

dimensionality matches. But it is possible to reconstruct the

organ in 3D using registration techniques when all or enough

serial slices are cut and digitized (Ourselin et al., 2001; Modat

et al., 2014; Agarwal et al., 2016; Niedworok et al., 2016; Fürth

et al., 2018; Eastwood et al., 2019). This is the main issue to

tackle, which cannot be achieved in most of the studies since

protocols are not designed to yield 3D histology. One solution

to overcome the lack of histological material is to use blockface

photography (Toga et al., 1994) as a whole-brain template to

achieve 3D reconstruction of several histological modalities of

the same sample (Dauguet et al., 2007; Dubois et al., 2010;

Vandenberghe et al., 2016). Indeed, 3D histology protocols are

time-consuming, expensive, and neurobiologists often acquire only

a limited number of slices. Therefore, the delineation of anatomical

regions is mostly performed manually on the experimental data

and/or the identification of their corresponding atlas slice is based

on prior anatomical knowledge (Lebenberg et al., 2010; Ye et al.,

2016; Iglesias et al., 2018; Pichat et al., 2018; Balakrishnan et al.,

2019; Chen et al., 2019; Chon et al., 2019; Henderson et al., 2019;

Pallast et al., 2019;Wu et al., 2019; Yates et al., 2019; Bayraktar et al.,

2020; Hérard et al., 2020; Lam et al., 2022; Rodarie et al., 2022).

Furthermore, with the expansion of artificial intelligence

techniques used to automatically segment brain slices, the need for

reliable annotated database creation has dramatically increased in

the last 5 years (de Vos et al., 2017, 2019; Krebs et al., 2017; Li

and Fan, 2017; Rohé et al., 2017; Sokooti et al., 2017; Yang et al.,

2017; Balakrishnan et al., 2018, 2019; Krepl et al., 2021; Sadeghi

et al., 2022; Carey et al., 2023). Hence, automated, rapid, and

adaptable atlas segmentation tools are still lacking but mandatory,

for instance, when dealing with the segmentation of so-called single

brain slices (devoid of 3D reference) needing to locate the 2D plane

of each slice within a 3D atlas template volume. As the mouse

brain has an elongated shape, most of the studies observe mouse

brains in the coronal incidence (Bohland et al., 2010; Berlanga

et al., 2011; Renier et al., 2016; Vandenberghe et al., 2016; Stæger

et al., 2020), and we therefore focused on this incidence. Three

parameters enable the exact location of a single slice plane within

the atlas volume: (1) the z-position of the slice along the rostro-

caudal (antero-posterior, AP) axis orthogonal to the coronal plane;

(2) the tilting angle ϕ around the dorso-ventral (infero-superior,

IS) axis; and (3) the tilting angle β around the transversal (left-

right, LR) axis (Figure 1). Some tools, such as cutting matrices, can

be used to obtain a quasi-perfect coronal cutting incidence, i.e.,

with ϕ and β tilting angles close to zero and therefore negligible,

but usually, ϕ and β tilting angles lead to discrepancies when

comparing “real life” slices and atlas ones.

Some studies focused on identifying possible tilting angles ϕ

and β to refine 2D-plan location within the 3D atlas space (Xiong

et al., 2018), while others proposed automated methods or user-

friendly softwares to handle 2D slices within a 3D space toward

z-position-oriented estimation (Puchades et al., 2019; Tappan et al.,

2019). These strategies present a more or less accurate estimation of

both tilting angles and are not fully automated since they all include

manual processing to estimate the z-position. Basically, manual

processing limits the use of such methods on a large scale for the

study of mouse cohorts, in particular. More recently, a feature-

based method called AMaSiNe was proposed to automatically

estimate z-position, ϕ, and β (Song et al., 2020). Authors evaluate

them with precision (< 100 µm), and segmentation results

have been validated on two specific small regions only (primary

visual area and dorsal lateral geniculate complex). However, the

method is non-reproducible for the analysis of a single slice. In

addition, the method is only robust from a minimum of three

slices. Finally, a completely different approach has been proposed,

using deep neural networks (Sadeghi et al., 2022; Carey et al.,

2023). These methods require a large number of slices to train

the network and rely on manual ground truth definition. Such

estimates are prone to inter- and intra-individual error; their result

is subjective and usually performed only on a relatively small

part of the dataset. Moreover, the large variety of histological

staining, along with the different imaging modalities, makes it

very difficult to build up an exhaustive database to train a fairly

generic neural network. Most of the existing methods are either

very complex and not user-friendly (codes without interface)

to be implemented by neurobiologists or require knowledge in

neuroanatomy to be used appropriately, both greatly reducing their

scope of application.

The method we propose is intended to be generic enough to

be used by anyone and benefits from a user-friendly interface.

The fully automatic mode we propose gives reliable results, and

the user can still adjust parameters. We focused on the estimation

of the z-position of single coronal slices. Our automated method

is reproducible and can align and segment any number of single

slices within a digital 3D atlas. Moreover, we developed a dedicated

multi-slices extension to meet ROI-driven histological protocols,

resulting in a set of slices from the same brain. Our method is

based on a linear registration algorithm as well as an independent

and multimodal similarity criterion. The Block Matching (BM)

algorithm (Ourselin et al., 2001) was chosen as a robust strategy

to register data from different modalities. This method was later

included in the NiftyReg library (Modat et al., 2014) and is

still well used in many applications (Niedworok et al., 2016;

Iglesias et al., 2018; Balakrishnan et al., 2019; Borovec et al., 2020;

Mancini et al., 2020). Normalized Mutual Information (NMI)
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FIGURE 1

The three parameters used to exactly evaluate the 2D location of a coronal mouse brain slice within a template from an atlas: (A) the z-position along

the AP axis, (B) the possible tilting angle ϕ around the IS axis, and (C) the possible tilting angle β around the LR axis.

(Studholme et al., 1998) was chosen as a robust similarity metric

adapted to multimodality. This metric has proven its efficiency

in many biomedical image processing applications (Jefferis et al.,

2007; Geha et al., 2008; Dorocic et al., 2014; Costa et al., 2016).

The idea of the method is to explore registrations between the

experimental single slice and the ones from the atlas template,

with increasing degrees of freedom. The NMI criterion is used to

propose a generic evaluation framework of the relative similarity

between slices after each step of registration. Basically, the method

combines similarity information coming from Rigid and Aff ine

registration, which explains the acronym we defined for this

method: giRAff. We chose to refer to the Allen mouse Brain

Atlas (ABA), a digital atlas widely used in neurobiology (Lein

et al., 2007; Lau et al., 2008; Kuan et al., 2015). Also, we

focused on histological slices covering the cortex, excluding the

main olfactory bulb and the cerebellum. Most of the biological

samples come from healthy subjects, but we also present some

preliminary results on a pathological subject (Alzheimer’s disease

mouse model).

In addition, high-performance computing strategies were

used to reach our goal of segmenting a large number of

histological slices. Indeed, as registrations have a relatively high

computational cost, calculations were distributed on hundreds of

CPU cores through the dedicated tool SomaWorkflow (Laguitton

et al., 2011). Finally, to make the method easy-to-use, it

was implemented within the user-friendly open-source software

interface BrainVISA (Cointepas et al., 2001; Lebenberg et al.,

2010).

2 Materials and methods

2.1 Materials

2.1.1 Digital mouse brain atlas
In this study, we used the template and atlas from the

Allen mouse Brain Atlas (ABA) (© 2015 Allen Institute

for Brain Science. Allen Brain Atlas API. Available from:

brain-map.org/api/index.html). It is composed of two perfectly

aligned datasets: a template that represents the average anatomy

of the mouse brain and labels that represent the theoretical

delimitation of anatomical regions delineated by an expert

on the template data. This template was built as an average

autofluorescence of 1,675 serial two-photon tomography C57Bl/6J

mouse brains, for which we considered each coronal slice Ta ǫ B

independently. B is the ensemble of slices describing the template

volume considered a succession of independent slices in a given

incidence (here coronal). The slice thickness is et = 100 µm and

the in-plane resolution is 10 × 10 µm2. In this study, we aimed to

register 2D template images onto experimental histological slices.

The purpose is to identify in the single slice of interest all the regions

defined in the ABA reference corresponding slice.

2.1.2 Histological dataset
In this study, we aim to segment single 2D mouse brain

coronal slices Ir , digitized from two different and independent

histological modalities (see Supplementary material S0 for

detailed protocols).

The first modality (so-called autofluorescence) is the

autofluorescence of six clarified half mouse brains (M1-M6)

imaged using light sheet fluorescence microscopy (Renier

et al., 2016) that are considered as a succession of 2D coronal

slices Ir devoid of cutting artifacts by nature. Those data were

initially acquired with a resolution of 4 × 4 × 3 µm3 and

resampled to 25 × 25 × 100 µm3 to generate a standard

histological dataset.

The second modality (so-called cresyl violet) is cresyl violet-

based Nissl staining of seven mouse whole brains produced

in our laboratory (Vandenberghe et al., 2016) cut in the

coronal incidence (Ir) using a microtome and digitized with

a flatbed scanner. This second dataset includes six C57Bl/6J

wild-type mouse brains (M7-M12) and one APP/PS1dE9

amyloid mouse brain (M13), a transgenic mouse model of

Alzheimer’s disease (Dudeffant et al., 2017). The slice thickness

is er = 20 µm (one every four slices) and the in-plane resolution

is 25 × 25 µm2. Regarding the cutting protocol, no specific

instructions were given to prevent tilting angles. The cresyl

violet data arose from our laboratory routine protocols in

conventional histology.
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2.2 Methods

2.2.1 Preprocessing
The template slices were first resampled in 2D to make

the pixel size identical to the experimental data. Thus, the

same number of pixels were used in the registration process

by BM.

All images were resampled at 25 × 25 µm2 for registration.

This resampling was chosen as a compromise between a pixel size

small enough to apply the registration in a reasonable time and

large enough to preserve sufficient details in the image for the

registration algorithm. In such a conventional histology study, data

are commonly resampled at an in-plane resolution of 25× 25 µm2

(Renier et al., 2016) or 50× 50 µm2 (Song et al., 2020).

The template slices were also manually centered to correspond

to the experimental images. This gave a good initialization,

minimizing the amplitude of the displacements induced by the

registration process and maximizing the tissue overlap at an

equivalent field of view.

2.2.2 The giRA� method for one single slice
The giRAff method estimates the z-position of a single mouse

brain slice within an atlas volume at a given incidence and

considers zero or negligible tilting angles. This estimated z-position

is associated with a transformation resulting from the registration

between the corresponding template slice at the z-position and

the experimental slice. The estimation of the z-position is given

by the optimum of a similarity criterion estimated between the

experimental slice considered and a set of registered slices from

the template. The final result is the atlas segmentation of the single

experimental slice considered through the registered and identified

corresponding label slice.

The method is based on the atlas from the ABA and the linear

registration method by Block Matching (BM) based on the Crossed

Correlation (CC) similarity metric with the default parameters

given by Ourselin et al. (2001), designed for such a histological

dataset. NormalizedMutual Information (NMI) is the independent

metric that quantifies the similarity between the registered

template slices and the experimental single slice considered

in pairs.

Given an incidence (here coronal), consider Ir an experimental

single slice to be segmented by atlas and Ta a slice from an

ensemble B of slices describing the template volume considered

as a succession of independent slices, such as {Ta ǫ B}. Let La
be a slice from an ensemble A of slices describing the labels

considered as a succession of independent slices, such as {La ǫ

A}, A and B being in the same geometry and perfectly aligned.

Let N be the number of considered template slices in a given

incidence (along the AP, IS, or LR axis), a ǫ N
∗, going from

1 to N, the considered template slice number. Each template

slice (from B) has its corresponding slice containing the labels

(from A). Assume z = â, the estimated position of the slice

Ir within the template, i.e., the corresponding slice containing

the labels. We chose to register template images (test) onto the

experimental data (reference) to preserve the native geometry of

the single slice (experimental) given as input by a user. Hence,

labels will be mapped in the end onto the single slice to match its

initial configuration.

The exploratory process for each image Ta ǫ B is carried out in

three steps (Figure 2), with RIG and AFF representing the rigid and

affine transformation space, respectively:

(1) Rigid registration using BM (transformation θ̂RIG) between Ir
(reference) and Ta (test) from B, followed by an NMI similarity

calculation SRIG between the registered image Ta · θ̂RIG and Ir ,

SRIG(Ir ,Ta; θ̂RIG) = NMI(Ir ,Ta ◦ θ̂RIG) (1)

with θ̂RIG = argmax
θRIG∈RIG

(

CC(Ir ,Ta ◦ θRIG)
)

(2) Affine registration using BM (transformation θ̂AFF) between Ir
(reference) and Ta · θ̂RIG (test) registered in rigid (initialization),

followed by NMI similarity calculation SAFF between the

registered image Ta · θ̂RIG · θ̂AFF and Ir ,

SAFF(Ir ,Ta; θ̂AFF) = NMI(Ir ,Ta ◦ θ̂RIG ◦ θ̂AFF) (2)

with θ̂AFF = argmax
θAFF∈AFF

(

CC(Ir ,Ta ◦ θRIG ◦ θAFF)
)

(3) Calculation of the weighted average Sw from the two similarity

values SRIG and SAFF:

Sw(Ir ,Ta, θ̂RIG, θ̂AFF) = (1− w) SRIG(Ir ,Ta; θ̂RIG)
+w SAFF (Ir ,Ta; θ̂RIG, θ̂AFF) (3)

with 0 ≤ w ≤ 1 the rigid-affine weighting.

From the weighted average Sw calculated for each slice Ta from

B, a search of the maximum of similarity is performed to determine

the slice number z from B,maximizing this similarity criterion from

the N template slices:

z(Ir ,B) = argmax
Ta∈B

(Sw(Ir ,Ta, θ̂RIG, θ̂AFF)) (4)

Thus, the result of the giRAff method can be summarized

as follows:

giRAff(Ir ,B) = (z,̂θRIG,̂θAFF) (5)

The rigid and affine transformations θ̂RIG and θ̂AFF

estimated by BM are successively applied at the slice

Lâ from the atlas at the position â = z to superimpose

the registered image containing the labels L̂â on Ir , the

experimental image.

̂Lâ(z,̂θRIG ,̂θAFF) = Lz ◦̂θRIG ◦̂θAFF (6)

The transformation matrices θ̂RIG and θ̂AFF are applied to

the slice Lâ with the nearest neighbor interpolation to preserve

the initial values of the labels. The experimental single slice

Ir is then automatically segmented by the ABA. Quantitative

region-based analysis can then be carried out on it thanks to

the method.
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FIGURE 2

Atlas segmentation process of a single brain slice Ir by the giRA� method using template slices Ta ǫ B, theoretical example of NMI curve plots with

SRIG (green), SAFF (red) and Sw (yellow), z the template slice number corresponding to a slice Ir estimated by the giRA� method, θ̂RIG the rigid

transformation, θ̂AFF the a�ne transformation, B the ensemble of template slices, and La ǫ A the ensemble of label slices matching the template ones.

2.2.3 The giRA�m extension for a multi-slices
case
2.2.3.1 Relative scaling factor between brain samples

Two mouse brains are often considered to be roughly the

same size, but this is not the case in practice. Two factors

influence the size of the organ, in particular: inter-individual

variability (natural) and the extraction, cutting, and staining

protocol to which the sample is subjected before analysis (non-

natural).

Let us consider a multi-slices case, i.e., a series of single

histological slices from the same mouse brain not enabling its

3D reconstruction. Let dr be the constant inter-slice distance

between single slices from the experimental volume. Let dt be

the inter-slice distance between slices from the template volume.

To realistically estimate the corresponding distance dr depending

on dt in the template, the differences in brain volumetrics must

be taken into account. Not taking them into account would

lead to a deviation in the estimation of successive slice positions

(Figure 3A). For this reason, a relative scaling factor γ (RSF)

was introduced, which reflects the size difference between an

experimental brain and the atlas template volume on the axis to

which the considered incidence plane is orthogonal (Figure 3B).

The affine registration automatically corrects the scaling factors

in the other two directions (α, β) relative to the plane of

incidence considered. This RSF γ is relative because no modality

accounts for an absolute reference geometry: it is relative between

two modalities.

Thus, assume:











0 < γ < 1 ⇔ shrinkage

γ = 1 ⇔ same size

1 < γ < +∞ ⇔ enlargment

The distances dr and dt are defined as a function of γ and the

two slice thicknesses er for the experimental data and et for the

template data:

dr = γ
er

et
dt (7)

Let r ǫ N∗ be the slice number from the experimental data

ranging from r = 1 to r = M, and t the slice number estimated to
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FIGURE 3

Shrinkage case of the experimental volume compared to the template volume, and its impact in a multi-slices study in the coronal incidence along

the AP axis, for slice thicknesses er and et from the experimental and template volumes, respectively, as well as an inter-slice distance d between

each considered slice from the experimental volume. (A) Study of five slices from a first T1 estimate without consideration of shrinkage between

volumes (mismatch). (B) Study of five slices from a first estimate T1 considering the shrinkage between volumes using RSF γ (correction).

be the most similar in the template by the giRAff method, ranging

from t = 1 to t = N. The equation of the affine line linking slice

numbers from the two volumes to each other can thus be deduced:

t̂(r) = γ
et

er
(r − 1) + t̂1 (8)

with t̂1 the y-intercept corresponding to the result of the giRAff

method applied to the first slice of the experimental volume studied

(r = 1).

2.2.3.2 Operating mode

For each considered experimental single slice from a multi-

slices set, similarity values with all the template slices are computed

by the giRAff method and stored in a list sw (see Equation 3,

which is applied for each slice Ta ǫ B). The multi-slices analysis

aims to bring each of these lists into a single referential to pool

their contribution.

Assume (us)sǫN∗ an arithmetic series determining the first

template slice number to be tested in the case of a multi-slices study

and (vs)sǫN∗ an arithmetic series determining the last template

slice number to be tested in the case of a multi-slices study, we

then have:

us = u1 +
dt

et
(s− 1) and vs = N −

dt

et
(n− s) (9) and (10)

with u1 = 1 corresponding to the first template slice number.

Values from the series (us)sǫN∗ and (vs)sǫN∗ are rounded

to the nearest integer so that they correspond to real

slice numbers.

The giRAff method is successively executed for each slice s,

solely on a range of template slices B[us;vs] ⊂ B defined by the two

series. This range contains the same number of slices dt/et rounded

off to the nearest unit. This amounts to determining the z-position

of the first studied slice from the mutualization of the similarity

information Sw of all the slices in the multi-slices set. Once this z-

position has been estimated in a common manner, it is propagated

to the other slices of the series to determine their respective z-

positions. The position of the other slices is deducted by adding the

distance dt in the template corresponding to the distance dr , which

separates the slices from each other in the experimental volume.

Assuming zm is the z-position estimated by combining different

similarity information in the multi-slices case, as with the classical

giRAff method, a calculation of the maximum similarity is then

performed to determine the desired position zm:

zm(E,B) = argmax
Ta∈B[us;vs]

(

1

n

n
∑

s=1

π sSw(Is,B[us;vs], θ̂RIGs, θ̂AFFs)

)

(11)

with Sw being a list containing the averaged NMI values for rigid

and affine registration (see Equation 3), E a multi-slices ensemble,

and πs the contribution rate for each slice s (πs = 1/n by default,

giving an equal contribution for each slice).

Assume giRAffm is the extension of the giRAff method to a

multi-slices study, which is defined as:

giRAffm(E,B) = (zs,̂θRIGs,̂θAFFs) (12)

For each slice Is from E, a zs position (deduced from zm) as well

as rigid and affine transformations θ̂RIGs and θ̂AFFs are determined,

which allows the identified label slice Lâ to be mapped onto the

experimental single slice Is. The contribution of each slice Is can be

adjusted toward the weight πs. For example, if a slice Is has many

artifacts that might compromise the registration with the template

slices, it is possible to manually adjust its influence by decreasing its

contribution πs or even remove it from the zm estimation (πs = 0).

The numbers zs = ts of each of the slices from the multi-slices

study from E can directly be calculated from zm:

zs = zm + s dt = ̂t1 + s
et

γ er
dr (13)
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FIGURE 4

giRA�Mapper generic pipeline performing the automated atlas segmentation of any number n of histological slices using the giRA� method as well

as its extension giRA�m. S* represents the needed and required number of slices to reconstruct a 3D brain.

with t̂s rounded to correspond to real slice numbers (integers). An

affine transformation θ̂AFFs is associated with each position zs.

2.2.4 giRA�Mapper: a generic pipeline
The generic pipeline giRAffMapper automatically performs

the atlas segmentation of any number of slices corresponding to

any histological experimental protocol. Let S∗ be the needed and

required number of slices to reconstruct a 3D brain. Whether it is

for the analysis of a single slice (n = 1), for several slices in the

analysis of a particular anatomical region (1 < n < S∗), or for a

large enough number of slices to perform a 3D reconstruction of

the brain (n≥ S∗), the giRAffMapper generic pipeline automatically

processes any histological brain slice protocols (Figure 4).

2.2.5 Validation of the method
2.2.5.1 Metrics of validation

As our aim is to achieve an atlas segmentation as accurate

as that of experts, we took the quantitative results of a

neuroanatomist’s evaluation as a reference. We asked an expert

to identify the right number (z-position) of the template slice

being the most similar to each experimental considered slice

Ir , the so-called Expert Rating for the z-position (ERz) (see

Supplementary material S1). This made it possible to define the

deviation of the z-position 1sn between ERz and the z-position

estimated by giRAff:

1sn(Ir ,B) =
∣

∣ERz(Ir ,B)− z(Ir ,B)
∣

∣ (14)

The final purpose being the segmentation of anatomical

regions, we also calculated dice scores (Dice, 1945) between

the manual segmentation from an expert on the experimental

considered slice and the one resulting from the identified

and registered template slice by the giRAff method. We then

compared these obtained dice scores to those calculated after prior

identification of the z-position by an expert.

2.2.5.2 Realistic histological protocols to perform

region-based analysis

We designed realistic region-based histological protocols

from mouse whole brain histological datasets with an expert.

Six main regions of interest were chosen from different sizes

and locations in the brain: cortex, striatum, hippocampus,

thalamus, globus pallidus, and substantia nigra. We especially

selected them because of their known involvement in

neurodegeneration, especially concerning Alzheimer’s, Parkinson’s,

or Huntington’s diseases (Dostrovsky et al., 2002; Picconi et al.,

2005; Teichmann et al., 2005). For each anatomical region,

the protocol includes the identification of the respective

slices in which this region starts and ends along the AP

axis, as well as the number of slices to be considered and

their inter-slice distance, allowing quantitative studies (see

Supplementary material S2). To assess the robustness of such an

exploratory approach, we tested all possible protocol combinations

covering each region and brain considered, given a constant

inter-slice distance.
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2.2.6 Determination of the rigid-a�ne weighting
w for a given imaging modality

To determine the optimal rigid-affine weighting to be applied

for a given imaging modality, we evaluated the average 1sn

values for each possible weighting, using steps of 0.01, for all the

slices from the brains in a given modality. From this evaluation,

we estimated an average curve of 1sn as a function of w,

which gave us an average trend displaying which rigid-affine

weighting w minimizes deviation 1sn and, therefore, maximizes

the accuracy of the method. To get a realistic idea of this trend

for conventional histological slices, it is necessary to exclude

from the overall estimate brains suffering from too many artifacts

(air bubbles, tearing, missing tissue, etc.) that could compromise

this evaluation.

2.3 Implementation details and source
code

Considering the large number of calculations, the pipeline

was run using distributed computing on multiple microprocessors

using the SomaWorkflow library of BrainVISA software (Laguitton

et al., 2011). BrainVISA is an open-source software platform for

neuroimaging research, including visualization tools and graphical

user interfaces (https://brainvisa.info). This study was conducted

on a workstation Ubuntu 16.04; LTS 64-bits; Intel R© Xeon R© CPU

E5-2620 v2 @ 2.10GHz × 24 (24 computing cores); 128 GB of

Random Access Memory (RAM), with the support of our Titan2

calculator composed of five DELL R610 bi-processor nodes on

Intel R© Xeon R© CPU X5675 @ 3.07GHz × 12 and 48 Go of

RAM, one DELL R610 bi-processor node on Intel R© Xeon R© CPU

X5667 @ 3.07GHz × 8 and 48 Go of RAM, and six DELL R630 bi-

processor nodes on Intel R© Xeon R© CPU E5-2630 v3 @ 2.40GHz ×
16 and 128 Go of RAM (representing 328 computing cores overall).

3 Results

The giRAff method has the advantage of being exhaustive in

exploring all the possible correspondences after linear registration

between a single slice under study and the slices from the

average template. This exploration is performed in a minimum

of time thanks to a distributed implementation. The choice of

the registration algorithm as well as the similarity metric was

made to suit multimodal studies, and their independence provides

robustness in the identification of the right z-position for a given

single slice.

The giRAffm extension has been specially designed for multi-

slices studies, where the RSF is taken into account for an

accurate and realistic estimation of the common z-position for a

given dataset.

All these developments are gathered in a generic pipeline

able to automatically segment any number of slices by atlas. The

method presents the advantage of being embedded in an easy-to-

use software for simple utilization (see Supplementary material S6).

We used two complementary metrics to evaluate the efficiency

of the method in its two different aims: its ability to identify the

right z-position of single histological slices, whatever their number,

and its ability to present relatively good atlas segmentation scores

after registration.

3.1 Single histological slice segmentation
by giRA�

3.1.1 Determination of the rigid-a�ne weighting
w

We first evaluated which rigid-affine weight w minimizes the

1sn criterion for each modality: the autofluorescence (Figure 5A)

and the cresyl violet (Figure 6A). For the autofluorescence, the

trend was clearly not toward a rigid-affine weighting w at extremes

(0 or 1). No particular weighting appeared to be especially

optimal between these extreme values. We therefore chose a rigid-

affine weighting w = 0.50 for this modality to ensure robustness

in the use of the two types of registration and to avoid the

extreme weightings, which can be a source of misidentification

(high 1sn). Concerning cresyl violet, it was necessary to remove

data presenting too important artifacts (M7), making them non-

representative for the evaluation of the global trend of the rigid-

affine weightingw. In contrast to autofluorescence modality, a clear

trend appeared in favor of a weighting w = 1 for the cresyl violet,

which minimized mean 1sn. This means that the NMI resulting

from affine registration prevailed for this imaging modality in

the estimation of the z-position of single slices in comparison to

an expert.

3.1.2 Precision and robustness of the method
The giRAff method was applied independently on 2,135 single

half-slices (one hemisphere) and 636 whole slices (whole brain)

from two modalities from 13 mouse brains. In routine protocols

performed in our laboratory, ϕ and β angles were estimated below

5◦ (see Supplementary material S3) and were neglected in this

study. The deviation 1sn compared to an expert was calculated

for every single slice considered from this dataset. The giRAff

method was able to identify any single mouse brain slice with an

average accuracy of 1.20 ± 1.19 and 2.05 ± 3.05 slices for the

autofluorescence and the cresyl violet, respectively (Table 1). This

represented an average precision of the z-position identification

between 120 and 164 µm, respectively.

Concerning the autofluorescence, no high1sn scores appeared,

being mainly narrow around 0 and 200 µm, the largest deviation

of 10 slices being obtained only once (M1) among the six brains

(Figure 5B). If we look qualitatively at the segmentation of the

anatomical regions of interest, we notice that their delineation is

close to that performed by an expert on the experimental slice

(Figure 5C). From the smallest of the regions studied (substantia

nigra) to the most elongated (cortex), the segmented shapes were

quite close. These results were confirmed quantitatively by the

dice scores (Figure 5D; see Supplementary material S4) evaluated

on five slices among the brainM1, which demonstrated the capacity

of the giRAffmethod to obtain fairly high scores (around 0.90) after

identification of the z-position for a given experimental slice. More

importantly, those dice scores were widely comparable to those of

an expert.
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FIGURE 5

Single slice manual segmentation of the Autofluorescence half mouse brains (M1-M6): (A) Averaged 1sn values after application of the giRA� method

for each rigid-a�ne weighting w from 0 to 1 by 1% increments, (B) 1sn values (gray) after application of the giRA� method (mean in red and standard

deviation in blue) for each single slice, (C) segmentation of six anatomical regions of interest of various sizes (cortex, striatum, hippocampus,

thalamus, globus pallidus, and substantia nigra) by an expert in five experimental single slices across the brain M1 (first row) as well as their

corresponding registered template slice identified by the giRA� method (second row), and (D) non-weighted mean dice scores (see

Supplementary material S4) evaluated on the six anatomical regions for the five slices identified and registered from (C) between the giRA� method

(yellow) and an expert (cyan).

Results for cresyl violet appeared to be somewhat less

accurate, with 1sn scores being concentrated more between

0 and 300 µm on average, with the exception of M7,

for which values were significantly higher (Figure 6B).

Misidentifications above 10 slices of deviation were also rare.

The qualitative analysis of the segmentations showed that

the anatomical regions corresponded rather well, with some

small differences, in proportion for the substantia nigra or in

shape for the striatum (Figure 6C). These small differences

had very little impact on the dice score, which remained

globally quite high (around 0.85), except for the substantia

nigra and the globus pallidus (around 0.75). Similarly and

most importantly, dice scores showed that segmentation

results using the giRAff method on these five slices were

still widely comparable to those of an expert (Figure 6D; see

Supplementary material S4).

All in all, no particular difference in the accuracy of the

giRAff method was noticed in identifying the z-position of slices

from a brain including pathological lesions (M13) compared

to other brains (M7-M12): average 1sn and standard deviation

(1.13 ± 0.91 slices) of M13 were significantly inferior to the

mean evaluation on the whole cresyl violet dataset (2.05 ±
3.05 slices).

3.2 Multi-slices histological segmentation
by giRA�m

Based on the rigid-affine weighting empirically determined

for each of the two modalities, the giRAffm extension was

applied on multi-slices datasets based on routine histological

sectioning protocols. Those protocols were designed by

experts to correspond to studies of particular anatomical

regions of different sizes in the coronal incidence: cortex,

striatum, thalamus, hippocampus, globus pallidus, and

substantia nigra (see Supplementary material S2). These

conventional protocols involved a number of slices and an

inter-slice distance, with the first slice of a given region

being shifted at each iteration so that the entirety of the
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FIGURE 6

Single slice manual segmentation of the seven cresyl violet mouse brains (M7-M13): (A) Averaged 1sn values after application of the giRA� method for

each rigid-a�ne weighting w from 0 to 1 by 1% increments, (B) 1sn values (gray) after application of the giRA� method (mean in red and standard

deviation in blue) for each single slice, (C) segmentation of six anatomical regions of interest of various sizes (cortex, striatum, hippocampus,

thalamus, globus pallidus, and substantia nigra) by an expert in five experimental single slices across the brain M10 as well as their corresponding

registered template slice identified by the giRA� method, and (D) non-weighted mean dice scores (see Supplementary material S4) evaluated on the

six anatomical regions for the five slices from (C) between the giRA� method (yellow) and an expert (cyan).

slices constituting each region were tested. The deviation

1sn was calculated for each slice included in every multi-

slices case, and the result was averaged per anatomical

region studied.

The deviation 1sn was estimated in three different contexts: (1)

using the giRAff method considering each slice as single (same case

as in Section 3.1 focused on the slices including each anatomical

region considered), (2) using the giRAffm extension considering

multi-slices protocols and an RSF γMi evaluated for each brain

thanks to the ERz , and (3) using the giRAffm extension considering

multi-slices protocols and an averaged RSF γm evaluated for a given

protocol and imaging modality (see Supplementary material S5).

Concerning the autofluorescence, first, the multi-slices

approach significantly reduced the average deviation 1sn and

its dispersion, in general: 1sn criterion underwent a reduction

between 55 and 105 µm and the standard deviation between 53

and 87% depending on the region, on average (Table 2; Figure 7A).

The case of considering the RSF γMi specific to each volume Mi (i

ranging from 1 to 6) presented smaller deviations 1sn than the case

of an average RSF γm (increase of the order of 8%). Depending

on the experimental conditions that were applied to each volume,

considering γMi specific to each of them made it possible to obtain

better accuracy in the detection of the zm position. Estimating an

accurate value of this RSF γ increased the precision of detecting

the right position zm by the giRAffm extension. On average, over

all regions, the accuracy of zm position detection in the multi-slices

case by the giRAffm extension was equal to 57 ± 49 µm with γMi

and 63± 52 µm with γm for the autofluorescence.

Regarding the cresyl violet, second, the multi-slices approach

strongly decreased the average deviation 1sn and its dispersion

in general: 1sn criterion underwent a reduction between 53

and 169 µm, and the standard deviation between 69 and 90%

depending on the region, on average (Table 2; Figure 7B). The

use of the giRAffm extension in the multi-slices case significantly

improved the overall detection accuracy of the zm position in this

modality. In contrast to what was observed for the autofluorescence

data, the γm case presented better results (1sn decreased by

4% on average over all regions) than for the consideration of

the respective γMi. Only the cortex region showed 1sn(γMi) >

1sn(γm) by 7%. For the other regions, considering γm rather

than γMi improved the detection of the correct z-position by

4% (striatum) to 27% (globus pallidus). On average, over all

regions, the accuracy of zm position detection in the multi-

slices case by the giRAffm method was 94 ± 54 µm with

γm. Whatever the case considered, the substantia nigra was

the only region with high deviations: the accuracy 1sn was
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TABLE 1 Single slices—autofluorescence and cresyl violet.

Autofluorescence M1 M2 M3 M4 M5 M6 MEAN

△sn(nb of slices and µm)

µ
1.19 1.14 0.84 1.30 0.82 1.90 1.20

119 µm 114 µm 84 µm 130 µm 82 µm 190 µm 120 µm

σ
± 1.46 ± 1.01 ± 0.91 ± 1.20 ± 0.89 ± 1.67 ± 1.19

± 146 µm ± 101 µm ± 91 µm ± 120 µm ± 89 µm ± 167 µm ± 119 µm

M (nb of slices per brain) 354 379 341 342 362 357 2,135

Cresyl violet M7 M8 M9 M10 M11 M12 M13 MEAN

△sn(nb of slices and µm)

µ
5.40 2.07 1.85 0.76 1.70 1.82 1.13 2.05

432 µm 166 µm 148 µm 61 µm 136 µm 146 µm 90 µm 164 µm

σ
± 11.84 ± 3.38 ± 1.35 ± 0.64 ± 2.54 ± 1.69 ± 0.91 ± 3.05

± 947 µm ± 270 µm ± 108 µm ± 51 µm ± 203 µm ± 135 µm ± 73 µm ± 244 µm

M (nb of slices per brain) 82 93 95 97 93 85 91 636

Average 1sn scores and standard deviation resulting from the application of the giRAff method compared to expert z-position evaluation (ERz), as well as the number of slicesM per brain on

which it has been estimated for the six autofluorescence half mouse brains (M1-M6) and the seven cresyl violet mouse brains (M7-M13). The MEAN column presents the non-weighted average

1sn values for all the considered brains.

180 ± 40 µm while it was always < 80 µm for all other

regions. Atlas segmentation of small anatomical regions was more

challenging than for large regions, both for experts and for the

proposed method.

A gain in accuracy was clearly observed when using the giRAffm
extension compared to the giRAff method for the same slices

considered independently: with a few exceptions, 1sn was brought

down between 0 and 100 µm on average, whatever the modality

and the region.

For one single slice, the giRAff method proposed an automated

atlas segmentation in about 1min using Titan2 infrastructure.

3.3 Cross-talk between giRA� and giRA�m

Several single slices from cresyl violet mouse brains (M7-M13)

suffered from histological artifacts. In most cases, the presence

of a considerable artifact prevents segmentation of the entire

histological slice. Such a slice is often discarded, or its segmentation

is carried out manually if the damaged part does not concern the

tissue of interest. Despite some considerable artifacts, the giRAffm
extension still allows for identification of the correct z-position and

segment the rest of the slice correctly. Some examples including

such artifacts (tissue folding, missing tissue, and external noise) are

presented in Figure 8.

4 Discussion

In this study, we proposed a method to automatically segment

one or a set of single slices using a 3D digital atlas. The giRAff

method, based on linear registration tools and on the NMI as a

similarity metric, showed its ability to deal with any number of

slices, adapting to very different standard histological protocols

(3D fluorescence and 2D brightfield imaging). We demonstrated

the robustness and the efficiency of the method by applying it

on two different datasets: autofluorescence data, which was not

affected by cutting artifacts, and histological slices from routine

experimental protocols. It was indeed able to identify, depending on

the protocol considered, the z-position of one or more single slice(s)

with an accuracy of the order of one slice within the atlas template.

This amounted to an identification deviation of less than about

100 µm on average, with dice scores comparable to those obtained

by an expert. The method also showed its ability to deal with slices

suffering from histological artifacts using the multi-slices approach.

The method was based on a balanced use of the similarity

information evaluated after rigid and affine registration in an

exploratory approach. In this context, the rigid-affine weighting w

was of crucial importance as it allowed to adjust the use of NMI

information to take advantage of the benefits from each type of

registration. Indeed, in the exploratory approach we proposed, the

two types of registration can be complementary. Rigid registration

is often rough and avoids the identification of a particular slice

that is the closest to the single slice considered, whereas affine

registration makes the difference in improving tissue registration

thanks to a greater number of degrees of freedom (shearing and

scaling). On the contrary, affine registration could make slices

correspond to each other with an inappropriate superposition of

tissues forced by large deformations, whereas rigid registration does

not allow such modifications, limits the deformations, and permits

the differentiation of these slices. The use of a weighted proportion

of the similarity information created a robust study framework

for their comparison in an exploratory context. This represents

a useful parameter to tune according to the amplitudes of the

deformations considered or according to the biological protocol

used. For the two modalities tested in this study, the trend was

toward either 0.5 or 1. What we would suggest for users is to

consider one or the other of the rigid-affine weighting given in the

manuscript by default for their own data according to the imaging

modality chosen. In the case of another specific imaging modality

or for any doubt on the rigid-affine weighing chosen, the operator

could easily test adjusting it from 0.5 to 1 or from 1 to 0.5. If
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TABLE 2 Multi-slices—autofluorescence and cresyl violet.

Autofluorescence 1sn
(nb of slices and µm)

Cortex Striatum Thalamus Hippocampus Globus
pallidus

Substantia
nigra

MEAN

giRAff
µ

1.59 1.28 1.14 1.16 1.11 1.33 1.27

159 µm 128 µm 114 µm 116 µm 111 µm 133 µm 127 µm

σ
± 3.68 ± 1.30 ± 1.12 ± 1.03 ± 1.15 ± 1.06 ± 1.56

± 368 µm ± 130 µm ± 112 µm ± 103 µm ± 115 µm ± 106 µm ± 156 µm

giRAffm | γMi
µ

0.54 0.63 0.52 0.57 0.53 0.63 0.57

54 µm 63 µm 52 µm 57 µm 53 µm 63 µm 57 µm

σ
± 0.49 ± 0.48 ± 0.47 ± 0.48 ± 0.52 ± 0.50 ± 0.49

± 49 µm ± 48 µm ± 47 µm ± 48 µm ± 52 µm ± 50 µm ± 49 µm

giRAffm | γm
µ

0.72 0.73 0.57 0.60 0.51 0.66 0.63

72 µm 73 µm 57 µm 60 µm 51 µm 66 µm 63 µm

σ
± 0.62 ± 0.54 ± 0.48 ± 0.48 ± 0.51 ± 0.50 ± 0.52

± 62 µm ± 54 µm ± 48 µm ± 48 µm ± 51 µm ± 50 µm ± 52 µm

Cresyl violet 1sn
(nb of slices and µm)

Cortex Striatum Thalamus Hippocampus Globus
pallidus

Substantia
nigra

MEAN

giRAff
µ

2.22 1.54 2.62 2.79 1.55 4.38 2.31

178 µm 123 µm 210 µm 223 µm 124 µm 350 µm 286 µm

σ
± 3.41 ± 1.90 ± 3.65 ± 3.84 ± 1.55 ± 4.99 ± 3.17

± 273 µm ± 152 µm ± 292 µm ± 307 µm ± 124 µm ± 399 µm ± 254 µm

giRAffm | γMi
µ

0.84 0.84 1.05 0.96 0.89 2.45 0.98

67 µm 67 µm 84 µm 77 µm 71 µm 196 µm 78 µm

σ
± 0.51 ± 0.46 ± 0.44 ± 0.50 ± 0.48 ± 0.57 ± 0.49

± 41 µm ± 37 µm ± 35 µm ± 40 µm ± 38 µm ± 46 µm ± 39 µm

giRAffm | γm
µ

0.90 0.81 0.94 0.87 0.65 2.27 0.94

72 µm 65 µm 75 µm 70 µm 52 µm 182 µm 75 µm

σ
± 0.60 ± 0.53 ± 0.51 ± 0.51 ± 0.47 ± 0.50 ± 0.54

± 48 µm ± 42 µm ± 41 µm ± 41 µm ± 38 µm ± 40 µm ± 43 µm

Non-weighted average 1sn scores (deviation in number of slices) and standard deviation calculated on six anatomical regions of interest of various sizes (cortex, striatum, hippocampus,

thalamus, globus pallidus, and substantia nigra) using realistic conventional histological protocols for the six autofluorescence brains (M1-M6) and the seven cresyl brains (M7-M13) in three

different contexts: (1) using the giRAff method considering each slice as single, (2) using the giRAffm extension considering multi-slices and RSF γMi evaluated for each brain thanks to the ERz ,

and (3) using the giRAffm extension considering multi-slices and an averaged RSF γm evaluated for a given protocol and imaging modality (autofluorescence and cresyl violet).

this improves the result in their opinion for their own dataset,

they should obviously reuse it by default for the next iterations

with other data produced in the same modality. Initialization of

the registration by centering the slices on each other was therefore

a mandatory step in this gradual pipeline. Even if this centering

process was presented as being manually performed in this study,

it would be possible to readily add a simple algorithm to perform

this task in an automated manner. Maximizing the overlap of the

binarized tissue surface could be used, for example, to improve the

method in the future.

The giRAff method was inspired by the operating mode an

expert uses when manually identifying the position of a single

slice: neuroanatomists flip atlas pages and try to match the

shapes of certain anatomical regions in an exploratory way, as

well as qualitatively estimate the similarity in a visual manner.

Our pipeline does the same using linear registration and NMI.

Although NMI has shown its robustness in various multimodal

brain applications, its efficiency remains discussed within the

scientific community (Zheng, 2006; Xiong et al., 2018; Song et al.,

2020). This similarity metric is known to have non-significative

values in absolute: comparing two objects whose nature does not

have anything in common can even result in a significantly high

NMI score (Rohlfing, 2011). The use of NMI was solely relative

in our pipeline, considering its score on any template slice in

comparison to each other. This information was never used in an

absolute manner, and the nature of the objects being compared

was the same, thus avoiding this limitation. The NMI was not

used as a similarity metric to estimate registration but only to

objectively evaluate the quality of the slice-to-slice correspondence

after registration.

In the dataset we used, we purposely selected uncut 3D coherent

histological brain volumes (autofluorescence of a cleared brain
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FIGURE 7

Multi-slices. Averaged 1sn values and standard deviation per considered anatomical region (cortex, striatum, hippocampus, thalamus, globus

pallidus, and substantia nigra) in three di�erent contexts: using the giRA� method considering each slice as single (yellow), using the giRA�m

extension considering multi-slices and RSF γMi evaluated for each brain thanks to the ERz (green), and using the giRA�m extension considering

multi-slices and an averaged RSF γm evaluated for a given protocol and imaging modality (orange) for (A) the six autofluorescence brains and (B) the

seven cresyl violet brains.

FIGURE 8

Example of histological single slices (cresyl violet) presenting histological artifacts: (A) tissue folding (M11), (B) missing tissue (M8), and (C) external

noise (M7), with the superposition of the red boundaries of the template slice, obtained using a Deriche filter (Deriche, 1990), at the z-position

identified by the giRA�m extension.

acquired with a light-sheet microscope), which was considered as

a succession of 2D virtual slices. In such a way, it was possible

to test different data processing approaches with artifact-free

tissue. This could be one of the reasons why the precision of

the z-position detection was better for the autofluorescence (lower

1sn) than for the cresyl violet. We first opted for this favorable

context to make a proof of concept, taking autofluorescence as

a kind of ideal case (Piluso et al., 2021a). Then, we confronted

with “real life” histological preclinical routine protocols (digitized

Nissl/cresyl violet-stained brain sections), based on our robust and

adjustable pipeline.

When using the giRAff method for a given individual slice,

its z-position is estimated only once. This estimate may suffer

from deviations that could be due to the presence of artifacts in

the slices, by poor quality registration, or by a relative similarity

value that is not significant enough. In the giRAffm approach, the

joint estimation of the position zm from a set of slices provided

a statistical quantity of estimates sufficient to significantly reduce

the deviation 1sn and its dispersion in general. This improvement

was based on the assumption that a large majority of the slices

had little or no artifact, and that the registration and similarity

metric were robust enough to accurately estimate the z-position

of such slices in the dataset. As a result, for one or several slice(s)

suffering from artifacts, representing a minor proportion of a given

dataset, giRAffm provided better z-position identification results

than giRAff.

On average, for a multi-slices dataset, the z-position of single

slices was detected with a precision of one slice in the atlas

(∼ 100 µm). This deviation is comparable to the one that experts

could make on such a dataset, as long as one single slice considered

does not perfectly match one given slice in the template. Indeed,

because of its slice thickness and its exact location on the AP axis,

as well as possible tilting angles, experts sometimes hesitate between

two adjacent slices from the template to identify the right z-position
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of an experimental single slice. Therefore, they are constrained to

make an arbitrary choice, assuming that the position they have

identified is only accurate within one slice (100 µm).

Some regions with little pixel support, such as substantia nigra,

presented poor dice score results compared to other bigger regions

with larger pixel supports. In the linear registration algorithm

used, few degrees of liberty were allowed to try to optimize

a global transformation at a whole-image scale. This obviously

tended to maximize the overlap between regions, including larger

pixel support at the expense of other smaller regions including

significantly fewer voxels. In such regions, a difference of one

single voxel was far more significant than in other regions.

Using non-linear registration after estimating the z-position could

significantly increase the overlap between such small regions and

then significantly increase their dice score.

Concerning the cresyl violet data, the M7 brain showed higher

1sn scores (larger deviation) than the other brains without using

the multi-slices extension giRAffm, confirmed by the presence

of artifacts due to the histological and digitization protocols

(bubbles, added tissue fragments, and external noise). This is a

typical example of artifacts that can occur during a conventional

histological protocol. Automatically segmenting histological slices

with significant artifacts has always been a challenging task for

the scientific community (Agarwal et al., 2016). Most of the time,

automatic atlas segmentation of these slices is basically impossible.

Our proposed giRAffm extension has the advantage of optimizing

z-position detection on a set E of multiple single slices, and thus

could be able to identify and segment such slices including artifacts.

Results were pooled to obtain the best zm position estimated for all

the slices. Thus, for a set of slices from the same brain, including

slices with important artifacts, it was then possible to decrease their

rate of contribution πs (until 0) in the global estimation of the

zm position, but yet achieve their automatic segmentation reliably.

Considering a majority of good quality slices selected from E and a

robust regression (significantly high coefficient of determination,

typically above 0.97), the giRAffm extension can propose an

automated atlas segmentation corresponding for any other slice

suffering from those artifacts from the same brain in a robust way,

especially without taking them into account in the global estimation

of the position zm. If the rate of contribution πs was presented

as a subjective parameter to add manually as input information

within the multi-slices pipeline, further improvements could lead

to the use of image processing algorithms able to automatically

detect artifacts within histological slices (Agarwal et al., 2016). This

would lead to an automated setup of the rate of contribution πs for

each single slice as a consequence. Moreover, using the multi-slices

giRAffm extension allowed for automated estimation of the RSF γ

between the data considered. This reinforced the fact the method

we proposed is versatile, robust, and adaptable to many types of

protocols or histological brain data.

Considering a multi-slices dataset, we focused on a constant

inter-slice distance between single slices under study in this article.

But in practice, this distance could be heterogeneous. The principle

of the multi-slices extension giRAffm for the analysis of such slices

would be exactly the same; the different inter-slice distances can be

given as input information within the giRAffm pipeline.

In conventional histological protocols, tilting angles may occur

when slicing the 3D organ. A non-zero ϕ angle around the IS

axis can generate anatomical differences between the left and right

side of the slice, which are easy for an expert to identify due to

the brain symmetry with respect to the interhemispheric plane.

However, it is more challenging to identify a non-zero β angle

around the LR axis that will generate differences between the top

and bottom of the slice. This angle is most often observed as non-

zero, and neurobiologists then have to deal with neighboring slices

to perform the segmentation manually. Thanks to a rigid 3D-

3D registration between each considered brain and the template

volume, it was possible to estimate these tilting angles around

the IS and LR axis, and they are of low amplitude (< 5◦, see

Supplementary material S3), hence our focus on the z-position

determination. Considering those realistic tilting angles of low

amplitude, the accuracy of the giRAff method nevertheless made it

possible to preserve automatic segmentations for which dice scores

are still comparable to those of an expert. Indeed, as protocols for

acquiring those brains may be representative of standard protocols

in conventional brain histology performed in the coronal incidence,

we assume that tilting angles rarely exceed an amplitude of 5◦

with modern equipment and in a similar study framework. If this

angulation generates genuine anatomical differences compared to

data without angulation, the method we proposed made it possible

to compensate for this drawback. Indeed, we chose to process

data produced in routine histological protocols in this article,

i.e., including real tilting angles caused by the cutting process.

Histological data presented in this article included their native

tilting angles. As the giRAff method detected the z-position of the

single slice with high accuracy, its anatomical environment was

well identified (basically in the thickness range of about 200 µm).

Following this location, registration ensured the best matching of

the tissue between the single slice considered and the template slice

identified, as it would have been done in the case of considering

the respective adjacent slices of its direct neighborhood. In the

coronal incidence and with a slice thickness of about a hundred

micrometers, anatomical variations are small from one slice to the

next adjacent one. The template data are smooth, and very few

discontinuities appear when examining the slices one after the other

along the AP axis. More specifically, a tilting angle would generate

small anatomical differences between the right and left of the slice

for an angle ϕ around the IS axis and between the top and bottom

of the slice for an angle β around the LR axis compared to the

template data. In practice, using linear registration would basically

correct most of those segmentation errors because the presence

and location of anatomical regions are almost the same from one

slice n to its n-1 and n+1 (or more) neighbors. Indeed, anatomical

differences generated by a tilting angle cause linear deformations

along one, two, or both axes (IS and LR in the coronal incidence),

which affine registration can compensate with shearing. This was

confirmed by dice scores calculated, which were widely comparable

to those of an expert in the end. The only necessary condition is

that the z-position of the single slice considered must be accurately

estimated, typically with a deviation less or equal to one slice in

the template, to avoid too large anatomical difference between

slices considered. It is just a matter of comparing data which are
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comparable, i.e., extracted, cut, and digitized within a rigorous,

consistent, and realistic study framework. If neurobiologists are

asked to cut coronal mouse brain slices using a microtome, it is

reasonable to believe that their skills will enable them to obtain

tilting angles below 5◦ as observed in the data presented in this

article. Visual quality control and steel matrices could also be used

for this purpose.

The method we proposed was based on linear registration in

a pipeline with an increasing number of degrees of freedom. The

use of non-linear registration could compromise the identification

of the correct z-position of a given single slice. Indeed, too

many degrees of freedom would excessively distort all template

slices to match, in an inappropriate way, the single slice under

consideration. It would then be challenging to distinguish which

was the most similar. In contrast, the use of non-linear 2D-

2D registration between the single slice and the template slice

identified at the z-position at the end of the giRAff pipeline would

certainly enable the segmentation results to be refined. This could

be useful for the analysis of small regions, for example. This

constitutes one of the further improvements the method could

benefit from. Moreover, the lack of ground truth will make the task

even harder.

A benchmark between the different methods of segmenting

single slices should be carried out to identify which could give

the best results according to the experimental data under study.

Such a benchmark should accurately compare all the methods

using a dedicated common dataset as well as an appropriate

metric to evaluate their respective performance. This comparison

is too vast to be presented exhaustively and precisely in this

paper and could be the scope of another study. Indeed, each

method has its own particular way of working, and its results

may be of a different nature, making them difficult to benchmark.

Nevertheless, we wanted to briefly test whether our method offered

competitive results compared with those provided by the most

recent state-of-the-art method. A quick comparison was led on

two independent single coronal Nissl-stained slices between the

latest fully automated method from the state-of-the-art (DeepSlice

from Carey et al., 2023) and our giRAff method. We estimated

NMI similarity metric after applying both methods in the same

conditions. Those unitary tests showed that similarity between

the resulting slices from our method outperformed DeepSlice

by about 20%, while requiring a longer processing time (< 30 s

for DeepSlice and about 1min for giRAff, estimated per slice).

Looking at the anatomy in the identified template slices, the z-

position determined for both methods was very close, if not equal.

Only some slight registration differences were observed, where

the registration algorithm used in giRAff provided the best results

according to the NMI criterion. These were very preliminary

unitary tests, hence the need for this benchmark to be fully explored

in future.

The giRAff method was developed to be fully automatic

and embedded in an easy-to-use interface with very few input

parameters so that it can be easily used by a non-expert. Optional

parameters can be adjusted if the user wants to contribute with

their own knowledge, such as the selection of the region(s) of

interest studied. This information will reduce the number of

adjacent template slices to consider in estimating the z-position

of a single slice. Only template slices including this or those

anatomical region(s) will be pre-selected, thus decreasing the

computation time.

In automatic mode, the method segments a single slice in

1min on a high-performance computing infrastructure. The result

benefits not only from the six regions we focused on but from all

the subregions defined in the ABA reference. This is comparable to

the time it may take an expert to identify the correct z-position of a

single slice within the atlas template. For the same processing time,

the giRAff method additionally provided direct atlas segmentation

of the single slice. Moreover, no knowledge of brain anatomy

or even in coding was required to use the method. Its interface

and the few input parameters required by our pipeline make it

usable by anyone with full autonomy. Even without supercomputer

infrastructure, using about 20 computing cores from a workstation,

for example, the method for one single slice worked in a reasonable

time of about 15 min.

First, preliminary results as well as complementary studies on

a brain suffering from pathological lesions showed encouraging

results for the method to be able to handle such data in the

context of dedicated protocols. This opens the door for automated

segmentation of slices from pathological mouse models, whether

neurodegenerative or other diseases, as long as data did not suffer

from too large anatomical alterations. Similarly, the use of this

pipeline can be extended to other rodents, such as rat for instance,

or even in other modalities, such as magnetic resonance imaging.

Promising results have been obtained on this modality (Piluso et al.,

2021b), and future work aims at validating the use of the method in

such cases. In addition, the use of this method will indirectly allow

better targeting of conventional histology protocols to reduce the

amount of brain data to be used in a study.

5 Conclusion

The wide variety of existing histological protocols as well as

the great numbers of anatomical structures in the mouse brain

makes the analysis of histological slices quite tedious and complex.

In conventional preclinical histology for the analysis of the mouse

brain, it is rare to have enough slices to reconstruct the brain in

3D and, sometimes, working on 3D data is not a prerequisite. It

is possible to study only one single slice within the brain, but this

is also unusual. In contrast, many protocols are based on a fairly

large number of slices to perform quantitative studies on particular

anatomical regions or around a specific pathological lesion, for

example, still precluding 3D reconstruction. Whatever the case,

the generic giRAffMapper pipeline was optimized to accommodate

most protocols involving any number of single slices. We showed

that our method was able to automatically identify the position

of single slices within a mouse brain atlas with less than one slice

deviation on average and in 1min for one slice. Atlas segmentations

were comparable to those of an expert. The giRAffmethod does not

need any 3D brain volume reconstruction; it is versatile, generic,

user-friendly, and requires few input parameters. In future, we aim

to take into account real slice angles and use non-linear registration

tools to further refine the segmentation of anatomical regions from

increasingly precise atlases. This study paves the way for automated

atlas segmentation through a simplified interface of any histological

mouse slice, half- or whole-brain slice, for pathological models,
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for different modalities and possibly for different species. This is

done in a fully automated way and does not require any particular

knowledge of the study involved, nor in neuroanatomy in general,

nor even in coding, to be able to use it. This significantly widens the

scope of use of such anatomical detailed atlases within the scientific

community for a complex task that usually had to be performed

only by experts.
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