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Editorial on the Research Topic
Advances in noise reduction and feature extraction of acoustic signal

It is our pleasure to introduce the Research Topic on advances in noise reduction and
feature extraction of acoustic signals in Frontiers in physics. Acoustic signal processing and
its analysis is one of the hot topics of research in physics and has been studied by many
engineers and scientists in various real-world fields, including underwater acoustics,
architectural acoustics, engineering acoustics, physical acoustics, environmental acoustics,
psychological acoustics, and so on. Noise reduction is the foundation of acoustic signal pre-
processing in order to extract useful features from the acoustic signal, which is the linchpin
for pattern recognition, target detection, tracking, and localization.

The real-world acoustic signals are usually non-linear and accompanied by intense
background noise, and features extracted directly from these signals generally contain a large
volume of useless as well as noisy information leading to ambiguous results. Therefore, the
study of noise reduction methods of acoustic signals is the first step to effectively utilize this
signal, including but not restricted to wavelet analysis, integrated empirical mode
decomposition, variational mode decomposition, and consequential improvements. In
addition, whether the extracted features contain sufficient useable information also
determines the performance of the results of acoustic signal research. For weak signals
present in many application areas, it is extremely difficult to precisely describe certain
physical meanings of the signal utilizing specified features. In recent years, some researchers
have used entropy to characterize the dynamics of the signal, but there are also issues such as
missing scale and distance information as well as fractional order differential information. In
a word, it is urgent to put forward more advanced features to solve the problem of missing
information.

This Research Topic welcomed the research and review articles on advanced acoustic
signal noise reduction and feature extraction in various fields. This Research Topic brought
together a Research Topic of articles that addresses these challenges and/or showcase the
latest real-world applications and enabling algorithmic advances in intelligent control and
optimisation, as they pertain to system identification, intelligent control, and optimisation of
dynamical systems.

The call for papers was launched in September 2022 and closed in April 2023. In total,
12 papers were finally selected for inclusion in the Research Topic.
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Yi and Tian have utilised the butterfly optimization algorithm
(BOA) to optimize the parameters of the variational mode
decomposition. The proposed method BOA-VMD has also been
incorporated with novel slope entropy for extracting the features
from ship-radiated noise (SNR).

Zhufeng et al. presented advances in the mechanism of
underwater target radiation noise generation and analyzed the
research progress. Further, they applied machine learning in
underwater target radiation applications from three perspectives:
signal acquisition, feature extraction, and signal recognition. The
authors elaborated the challenges of underwater target-radiated
noise recognition technology against the backdrop of rapid
computing science development.

Huang and Liu proposed a new conjugate gradient method for
noise reduction in signal processing and image restoration. The
superiority of this method lies in its employment of the ideas of
accelerated conjugate gradient methods in conjunction with a new
adaptive method for choosing the step size. The authors have
demonstrated the effectiveness and superiority of the proposed
method through numerical simulation.

Zhao et al. have used four types of multi-scale entropies,
including multi-scale sample entropy (MSE), multi-scale fuzzy
entropy (MFE), multi-scale permutation entropy (MPE), and
multi-scale dispersion entropy (MDE) to extract more effective
information from underwater acoustic signals.

Liang et al. introduced enhanced cross-spectrum processing to
improve the computational efficiency of time-frequency analysis
(TFA) for passive source localization and train-bearing fault
diagnosis. Through results, it has been shown that an
improvement up to 85% can be achieved without a noticeable
impact on the accuracy of parameter estimates.

Qu et al. have shown the effect of parameter mismatch on source
localization in cases involving environments and seabed
uncertainties. To address these issues, the authors have developed
the simplified seabed model for focalization using two geoacoustic
parameters viz., the amplitude F and phase of reflection CF.

Li et al. proposed a method based on a single hydrophone that
can jointly identify the mode order and estimate the propagation
range in an unknown marine environment. The method uses
Bayesian theory as the main methodology and applied to
broadband pulse sound sources in shallow seas with long-range
propagation. The dispersion curves extracted from the data and
those calculated by the dispersion formula are the input signal and
the replica of the methods, respectively. Accurate identification of
the normal mode order and estimation of the propagation range can
be achieved by establishing the joint cost function.

Zhang et al. proposed the robust underwater multi-target
direction-of-arrival (DOA) tracking method to address the issues
of typical multi-target problems under unknown underwater
environments with missing detection, false alarms, and uncertain
measurement noise.

Ji presented an exhaustive review of the research progress of
dispersion entropy (DE) in the feature extraction of ship radiated
noise (SRN). He first described the DE and its improved algorithms.
Then the traditional and DE-based SRN feature extraction methods
are summarized, and the application of DE in SRN feature extraction
methods is concluded from two aspects: methods that apply DE

algorithms only and methods that combine DE with mode
decomposition algorithms.

Jiang et al. suggested that most researchers have ignored the
relationship between one entropy with another. Inspired by this
point, they proposed the synergistic relationship between bubble
entropy (BE) and permutation entropy (PE). Through
experimentation, it has been demonstrated that the synergistic
complementarity between BE and PE increases the recognition
rate of sea state signals by 10.5% and the recognition rate of
bearing signals reaches 99.5%.

Zhou and Wang proposed the triple feature extraction and
classification method based on multi-scale dispersion entropy
(MDE) and multi-scale permutation entropy (MPE) to extract
the features from the rolling bearing and used them in K nearest
neighbour classification algorithm to determine whether there is a
fault in the bearing and the type of the fault.

Yu et al. proposed an ambient-noise-assisted multivariate
empirical mode decomposition (ANA- MEMD) method for
adaptively suppressing noise in low signal-to-noise (S/N)
microseismic data encountered during data processing.
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Feature extraction method of
ship radiated noise based on
BOA-VMD and slope entropy

Yingmin Yi1,2 and Ge Tian1*
1School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, China,
2Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an
University of Technology, Xi’an, China

Although the technical requirements for the feature extraction of ship radiated

noise (SRN) in the fields of national defense and economy increase with each

passing day, the complexity of the marine environment makes the feature

extraction of SRN difficult. The traditional feature extraction method based on

variational mode decomposition (VMD) is widely used in the feature extraction

of SRN. Nevertheless, the use of VMD is greatly affected by parameters. In this

paper, the butterfly optimization algorithm (BOA) is introduced to optimize

VMD, which is called BOA-VMD algorithm, and realizes the optimal selection of

VMD parameters K and α. To further improve the efficiency of feature extraction

method, combined with slope entropy (SE), a feature extraction method of SRN

based on BOA-VMD and SE is proposed. The experimental results of the

simulated signal show that the BOA-VMD algorithm has a smaller envelope

entropy value and better decomposition effect than the genetic algorithm (GA)

and particle swarm optimization (PSO). The experimental results of feature

extraction of SRN show that the highest recognition rate of the four entropy

values improve with the increase of the number of extracted features,

compared with the three entropy values of dispersion entropy (DE),

fluctuation dispersion entropy (FDE) and permutation entropy (PE), the SRN

feature extraction method based on BOA-VMD and SE has the highest

recognition rate under different quantity features, and the recognition rate

has reached 100% under three features.

KEYWORDS

ship radiated noise, slope entropy, feature extraction, variational mode
decomposition, butterfly optimization algorithm

1 Introduction

Due to the complexity of the generation principle of underwater acoustic signals and

the diversity of components, it is difficult to identify ship radiated noise (SRN) [1, 2]. The

key to the recognition of SRN lies in the feature extraction method [3]. Traditional feature

extraction methods usually use DEMON spectral analysis, wavelet transform, Fourier

transform, empirical mode decomposition (EMD) and other signal processing algorithms,

which are based on feature differences to classify and identify SRN. However, wavelet

transform cannot guarantee time accuracy and frequency accuracy at the same time.
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Fourier transform has trouble in dealing with non-stationary

signals, and EMD has modal aliasing in the processing of SRN

signals.

To overcome the above shortcomings, Konstantin

Dragomiretskiy et al. proposed the variational mode

decomposition (VMD) in 2014 [4], which adaptively

decomposes the complex signal into several intrinsic mode

functions (IMF), thereby overcoming the mode mixing [5, 6].

VMD is suitable for processing complex hydroacoustic signal,

such as feature extraction of SRN [7]. However, its

decomposition effect is greatly affected by the number of

decompositions K and the penalty factor α. In order to solve

the parameter selection problem of VMD, many scholars have

combined intelligent optimization algorithms [8] with VMD

[9–13], and proposed some modified algorithms for VMD,

such as using genetic algorithm (GA) to optimize VMD in the

field of SRN and using particle swarm optimization algorithm

(PSO) to optimize VMD in the field of fault detection [14, 15].

These methods have proved to be able to solve the problem of

parameter selection of VMD and improve the decomposition

effect of VMD. In 2019, the butterfly optimization algorithm

(BOA) [16] was proposed, which is a butterfly-based foraging

strategy that uses its sense of smell to locate food. Compared with

GA and PSO, BOA has higher convergence accuracy and faster

convergence speed. However, it has not yet been applied to

optimize the parameter selection of VMD.

In the field of underwater acoustic signal processing, entropy

is used to describe the complexity of the time series and is often

used as eigenvalues for feature extraction [17–20], among which

permutation entropy (PE) [21], dispersion entropy (DE) [22],

fluctuation dispersion entropy (FDE) [23] and others have been

widely used in this field. Moreover, a large number of

experimental studies have also proved that the entropy-based

feature extraction method [24] is more effective than traditional

methods [25–27]. Slope entropy (SE) [28], as a new type of

entropy estimator, was proposed by David Cuesta-Frau in 2019.

It assigns symbols based on the slope between two continuous

data samples, and has good time series classification performance

[29]. In 2022, SE was applied for the first time, and combined

with PE to achieve double feature extraction of SRN [30], which

verifies the effectiveness of SE. However, the feature extraction

methods still are based on the original signal, and the features of

each mode of the signal are not deeply excavated. To solve this

problem, a method combining VMD and SE is proposed to

extract the features of SRN [31], which is more effective than the

method based on SE of the original signal. However, intelligent

optimization algorithm has not been introduced to improve the

decomposition efficiency of VMD.

In order to solve the parameters selection problem of VMD

and further improve the feature extraction efficiency of SRN,

BOA is introduced to optimize the parameters of VMD, called

BOA-VMD, in addition, combined with SE, a feature extraction

method of SRN based on BOA-VMD and SE is proposed. The

structure of this paper is as follows. Section 2 expounds the

principle and step of various algorithms used in this paper.

Section 3 exhibits the steps of the feature extraction method

proposed in this paper. In Section 4, the simulation signal

decomposition experiment and result analysis are introduced.

Section 5 demonstrates the experiment and result analysis of

single feature, dual feature and three feature extraction of SRN.

Finally, the last Section draws the conclusion of this paper.

2 Algorithm

2.1 Butterfly optimization algorithm-
variational mode decomposition
algorithm

Since the parameters K and α of VMD directly affect the

result of signal decomposition, we add BOA to optimize the

parameters selection of VMD, called the BOA-VMD. The fitness

function of the BOA-VMD is the average envelope entropy value

of all IMF components after decomposition. The smaller the

envelope entropy value, the better the decomposition effect. On

the contrary, the larger the envelope entropy value, the worse the

decomposition effect. The expression for the average envelope

entropy is as follows:

Yi � 1
K

∑K

j�1 Hen(j) (1)

where, K represents the number of IMF components after

decomposition, Hen(j) is the envelope entropy value of the

jth IMF component.

The expression for the envelope entropy value Hen(j) of the
signal pj is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Hen(j) � −∑N
j�1
pjlgpj

pj � a(j)/∑N
j�1
a(j)

(2)

where, N represents the sampling point, a(j)is the envelope

signal obtained by Hilbert modulation of the signal IMF(j), and
pjdenotes the normalized sequence of a(j).

The algorithm steps of BOA-VMD are as follows:

(1) Set the range of parameters in VMD, with the parameter [K,

α] as the position of the butterfly.

(2) Initialize the parameters in BOA, including population size

G, number of iterations N, sensory modality C, stimulus

intensity I, etc.

(3) Initialize the population, and use the average envelope

entropy value of all IMF components as the fitness

function for optimization.
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(4) Calculate the fitness value of each butterfly under VMD

decomposition, compare the size of the fitness value, and

update the range of parameters [K, α] and the position and

fragrance of the butterfly.

(5) Repeat step (4) until the number of iterations reaches the set

maximum value, and output the optimal parameter

combination [K, α] of VMD.

2.2 Slope entropy

SE, as a new type of entropy estimator, was proposed by

David Cuesta-Frau in 2019. Its purpose is to solve the problem

that the time series amplitude information is ignored in the

calculation of permutation entropy. SE uses a new encoding

method that is based on the slope of two consecutive data

samples and maintains the symbolic representation of

subsequences. The SE contains five symbols, namely (± 2),
(± 1), and 0. The configuration rule of symbols stipulates that

the horizontal increment between consecutive samples is 1, and

the vertical increment, that is, the difference, is represented by the

parameter γ threshold. In this paper, γ is taken as 1 (45°). It is
represented by the parameter δ threshold near 0, and the value of

δ in this paper is 1 × 10−3.
For two continuous values xi, xi−1 in a continuous time

series, if xi − xi > + γ, the sign is +2; if +δ < xi − xi−1 ≤ + γ, the

sign is +1; if |xi − xi−1|≤ δ, the sign is 0; if −γ≤xi − xi−1 ≤ − δ,

FIGURE 1
Symbol allocation diagram.

FIGURE 2
The flow chart of the feature extraction method of SRN based on BOA-VMD and SE.
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the sign is −1; if xi − xi−1 < − γ, the sign is −2. The symbol

allocation diagram is shown in Figure 1.

The symbols cover the range of slopes of line segments for

two consecutive input data samples, and the relative frequency of

each pattern found is then mapped to a true value using the

method of Shannon entropy. The calculation steps are as follows.

(1) Input a time series of length N: X � {x1, x2, x3 . . . xN}, set the
embedding dimension tom, so that K subsequences of lengthm

can be extracted:X1 � {x1, x2 . . . xm}, X2 � {x2, x3 . . .xm+1}
. . . Xk � {xk,xk+1 . . . xN},where k � N −m + 1

(2) Calculate xi − xi−1, and then compare the calculated results

with γ and δ by the principle of symbol assignment to obtain

the k new sequences. The new sequence is:S1 � {s1, s2 . . .
sm−1}, S2 � {s2, s3 . . . sm} . . . Sk � {sk, sk+1 . . . sN−1}.Where

k � N −m + 1, sk � xk+1 − xk. The new sequence contains

n � 5m−1 of different types, and the number of occurrences of

each type is k1, k2 . . . kn.

FIGURE 3
The waveform of the simulated signal: (A) The sinusoidal component of the original signal; (B)Original signal; (C) The signal after adding noise.
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(3) Calculate the probability of each type,

P1 � k1
k , p2 � k2

k . . . Pn � kn
k . On the basis of Shannon

entropy, the definition formula of SE is as follows.

Hs(m) � −∑n

j�1Pj ln Pj (3)

3 Feature extraction method

In this section, the BOA-VMD is proposed to select the best

parameter combination of VMD, and combined with SE, we

propose a feature extractionmethod based on BOA-VMD and SE

to extract single, dual and three features of SRN.

The flow chart of the feature extraction method of SRN based

on BOA-VMD and SE is shown in Figure 2. The specific

implementation steps of the proposed feature extraction

method for SRN are as follows:

(1) Different types of SRN signals are input and normalized.

(2) The SRN is decomposed by the BOA-VMD algorithm, andK

IMF components are obtained.

(3) The SE of each decomposed IMF component is calculated.

(4) SE is taken as the feature value, the feature extraction

experiments of single feature, dual feature and three

feature are carried out respectively.

(5) The KNN classifier is introduced for classification of feature

values.

(6) The recognition rate is obtained.

4 Simulation

Two parameters of VMD, namely the number of

decompositions K and the penalty factor α, will affect its

decomposition effect. In this section, a set of simulation

signals are set up to optimize VMD parameters by BOA, GA

and PSO, and the optimization results of the three optimization

algorithms are compared and analyzed.

4.1 Simulation signal

To verify the optimization effect of the three optimization

algorithms on VMD parameters, a set of simulation signals are

set up for analysis, and the specific expressions are as follows:

X � x1 + x2 + x3 (4)
⎧⎪⎨⎪⎩

x1 � 0.7 sin(2πf 1t)
x2 � 0.5 sin(2πf 2t)
x3 � 0.3 sin(2πf 3t)

(5)

Y � X + f (6)
here, X is the original signal, which consists of three sinusoidal

components with different amplitudes and center frequencies,

x1, x2 and x3. f1, f2, f3 are the center frequencies of each

sinusoidal component, f1 = 10 Hz, f2 = 50 Hz, f3 = 80 Hz. f is

Gaussian white noise, and Y is the noise-added signal with a

signal-to-noise ratio of 6 dB after adding noise.

Figure 3 shows the waveform of the simulated signal. It can

be seen from the figure that the time-domain waveform of the

noise-added signal is complex, so signal decomposition is

required.

4.2 Parameter optimization variational
mode decomposition

In this section, BOA-VMD is used to optimize the modal

component Kand the penalty factor α. To verify the effect of the

BOA-VMD algorithm, the optimization experiments of GA and

PSO on VMD parameter selection are designed, so as to carry out

comparison and analysis. For the convenience of comparison, the

FIGURE 4
The iteration results of the three types of optimization
algorithms.

TABLE 1 Optimization results of three types of optimization
algorithms.

Optimal results Optimization

GA PSO BOA

Iteration time 404.14s 324.98s 399.35s

Min envelope entropy 0.9842 0.9848 0.9832

[K, α] [8,1393] [8,919] [6,1541]
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initial population of the three optimization algorithms is 10, and

the number of iterations is 50.

After several optimizations for the three types of algorithms,

the average value of the iteration time and the minimum

envelope entropy value are obtained. The iteration results of

the three types of optimization algorithms are shown in Figure 4.

From Figure 4, it can be concluded that GA and BOA begin

to converge after about the 35th iteration, and PSO begins to

converge after about the 6th iteration. The convergence speed of

PSO is much faster than that of BOA and GA. BOA has the

smallest fitness value, which is about 0.9820, while the minimum

fitness value of PSO and GA is approximately 0.9850 and 0.9830,

which are larger than BOA.

By calculating the iteration time and minimum envelope

entropy of the three types of optimization algorithms for

comparison, the optimization results of the three types of

optimization algorithms are shown in Table 1.

As shown in Table 1, PSO has the least iteration time and GA

has the most iteration time, that is, PAO has the fastest optimization

speed. But in terms of optimization results, BOA has the smallest

envelope entropy value, which is 0.9832. The minimum envelope

entropy values of GA and PSO are bigger than BOA. The

experimental results show that BOA’s optimization speed is

second only to that of PSO, and has the smallest envelope

entropy value. Considering comprehensively, the parameter

combination obtained by BOA search is the most reliable.

FIGURE 5
The normalized four types of SRN: (A) SRN-Ⅰ; (B) SRN-Ⅱ; (C) SRN-Ⅲ; (D) SRN-Ⅳ.
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5 Experiment on feature extraction of
ship radiated noise

This section uses four types of SRN from the United States

Park Service, which are ferries, freighters, cruise ships, and

engine-driven ships [32]. The four types of SRN are coded as

SRN-I, SRN-II, SRN-III, and SRN-IV. The data lengths of the

four types of SRN are 1379568, 1641072, 5314800, and 446448,

respectively. Each SRN sampling segment is [3001, 403000],

containing 400,000 data points, and the sampling frequency is

44100Hz. The normalized four types of SRN are shown in

Figure 5.

According to the BOA-VMD algorithm proposed in Section

3, the VMD decomposition results of four types of SRN are

optimized. The optimal number of IMF Kis 9, and the penalty

factors α are 6165, 1000, 5746 and 4374, respectively.

5.1 Single feature extraction and
classification

5.1.1 Single feature extraction
In this single feature extraction experiment, 400 samples are

selected for each type of SRN with 3001 as the starting point, and

each sample contains 1000 data points. In order to compare with

SE, FDE, DE and PE of each IMF are calculated at the same time.

All entropies have two parameters in common, the embedding

dimensionm is set to 4 and delay time τ is set to 1. There are two

common parameters of DE and FDE, which are the number of

categories c is set to 3, and the mapping method uses NCDF. SE

has two thresholds that need to be set, where γ is set to 0.1666 and

δis set to 0.0222. Figure 6 shows the single feature distribution of

the IMF corresponding to the highest classification accuracy of

the four types of SRN.

FIGURE 6
Single feature distribution of the IMF corresponding to the highest classification accuracy of the four types of SRN. (A) DE (B) FDE (C) PE (D) SE.
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It can be gained from Figure 6 that the single feature

distributions of the four types of SRN all fluctuate within a

certain range, and the DE mixing of SRN-II and SRN-IV is the

most serious; DE, FDE and PE of SRN-I and SRN-III have

different degrees of aliasing, and only a few samples of their

SE are aliased; the FDE of SRN-Ⅰ and SRN-Ⅳ is the most aliased,

and their SE has only very little eigenvalue mixing. Experiments

show that SE is the best for feature extraction of the four types

of SRN.

5.1.2 Single feature classification
A KNN classifier is added to perform single-feature

classification of four types of SRN [33, 34]. For the four types

of SRN, 400 samples are selected, the first 200 samples are taken

as training samples, and the remaining 200 samples are used as

test samples for classification. Figure 7 shows the single feature

classification results of four types of entropy for four types

of SRN.

As shown in Figure 7, DE, FDE, PE and SE have different

degrees of error in the classification of the four types of SRN

samples; DE, FDE and PE have more classification errors for

SRN-Ⅰ, SRN-Ⅱ and SRN-Ⅳ samples, but less for SRN-Ⅲ samples;

this indicates that DE, FED and PE have a stronger ability to

identify SRN-Ⅲ samples than the other three samples; compared

with these three types of features, the SE has only four wrong

classifications for SRN-Ⅰ, and all the classifications for SRN-III are
correct; this suggests that SE has the strongest recognition ability

for SRN-Ⅲ samples, but poor recognition ability for SRN-Ⅱ and

SRN-Ⅳ, which is stronger than the other three features.

Experiments show that SE is better than DE, FDE and PE for

FIGURE 7
Single feature classification results of four types of entropy for four types of SRN. (A) DE (B) FDE (C) PE (D) SE.
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the classification of the four types of SRN. The highest average

recognition rate of the four types of entropy under single-feature

is shown in Table 2.

According to Table 2 can be obtained that the highest

recognition rate of SE is 90.38%. Among DE, FDE and PE,

the highest recognition rate did not exceed 80%. The highest

recognition rates corresponding to DE, FDE and PE are 13.5%,

13.63%, and 14% lower than the highest recognition rates for SE,

respectively. The experimental results show that under single

feature extraction, the average recognition rate of SE is the

highest compared with the other three entropies.

However, under single feature extraction, there are still many

samples of four types of entropy that are not correctly identified

and classified, and only the highest recognition rates of SE reach

more than 90%. To further improve the recognition rates, we

adopt dual feature extraction, that is, identifying two IMF

components at the same time.

TABLE 2 The highest average recognition rate of four kinds of entropy
under single-feature.

Entropy Average
recognition rate (%)

DE 76.88

FDE 76.75

PE 76.38

SE 90.38

FIGURE 8
Dual feature distribution of the IMF combination corresponding to the highest recognition accuracy of the four types of SRN. (A)DE (B) FDE (C)
PE (D) SE.
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5.2 Dual feature extraction and
classification

5.2.1 Dual feature extraction
In the dual feature extraction experiment, all parameters used

in the experiment are the same as the data listed in Section 5.1.

According to the principle of permutation and combination, the

IMF components are combined in pairs, and a group of IMF

components with the highest recognition rate is selected for

feature extraction. Figure 8 shows the dual feature distribution of

the IMF combination corresponding to the highest recognition

accuracy of the four types of SRN, where the abscissa and

ordinate are the corresponding IMF components.

From Figure 8 we can obtain that, the mixing phenomenon of

entropy value of the four types of SRN is significantly reduced under

dual feature extraction; compared with the entropy values of the

other three types of samples, the SRN-Ⅲ samples have obvious

differences; in DE, FDE and PE, the SRN-Ⅰ sample is close to the

other three types of samples in terms of partial entropy, which may

lead to errors in sample identification; the entropy values of the four

types of samples in SE are significantly different, which is easier to

distinguish in sample identification. Experiments show that,

compared with the other three types of features, the SE has

better separability for the four types of SRN samples.

5.2.2 Dual feature classification
In order to prove that the identification effect of simultaneously

identifying the SE of two IMF components is better under dual

feature extraction, KNN classifier is also adopted to perform dual

feature extraction classification of four types of SRN. The selection of

training samples and test samples is the same as in Section 5.1. The

dual feature classification results of the four types of entropy for four

types of SRN are shown in Figure 9.

It can be seen from Figure 9 that under the dual feature

extraction, the four types of entropy have improved the

classification accuracy for the four types of SRN samples, and

FIGURE 9
Dual feature classification results of four types of entropy for four types of SRN. (A) DE (B) FDE (C) PE (D) SE.
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the SE samples have the highest classification accuracy; the

classification of SRN-Ⅱ samples in DE, FDE and PE is

completely correct, but some errors are found in SRN-Ⅰ, SRN-
Ⅲ and SRN-Ⅳ samples; in SE, only three samples of SRN-Ⅲ are

classified incorrectly, and the other three SRN samples are

classified correctly. Through program operation, the highest

average recognition rates of the four entropies under dual

features are shown in Table 3, where (2, 3) in the table

represents the selected modal components are IMF2 and

IMF3, and so on.

As can be seen from the data in Table 3, the recognition rates

of the four types of entropy for SRN all reach more than 90%. The

SE has the highest recognition rate for the four types of SRN, up

to 99.63%, which is 2.13%, 4.63%, and 6% higher than the

recognition rates of DE, FDE and PE, respectively. This shows

that the recognition effect of SE is the most significant.

TABLE 3 The highest average recognition rates of the four entropies under dual features.

DE FDE PE SE

Selected IMF component (2,3) (2,3) (2,5) (3,4)

Average recognition rate (%) 97.50 95 93.63 99.63

FIGURE 10
Three-feature distribution of the IMF combination corresponding to the highest recognition accuracy of the four types of SRN. (A) DE (B) FDE
(C) PE (D) SE.
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To sumup, under dual feature extraction, although there are still

some sample errors in the classification for the four types of SRN

samples by the four types of entropy, the average recognition rate is

greatly improved compared with the single feature extraction. The

highest average recognition rate under dual feature extraction is still

SE, which is 9.25% higher than the average recognition rate of

90.38% under single feature extraction.

5.3 Three feature extraction and
classification

5.3.1 Three feature extraction
In view of the fact that the recognition rate of four kinds of

entropy in dual feature extraction is greatly improved compared

with single feature extraction, SE still has the highest recognition

rate. Therefore, in order to further improve the recognition rate,

this section classifies the four types of SRN by identifying the

three IMF components. All parameters used in the experiment

are the same as the data listed in Section 5.1. In the three-feature

extraction experiment, according to the principle of permutation

and combination, three IMF components are selected for

combination, and a group of IMF components with the

highest recognition rate is selected for feature extraction.

Figure 10 shows the three-feature distribution of the IMF

combination corresponding to the highest recognition

accuracy of the four types of SRN, where the x, y, and z

coordinates are the corresponding IMF components.

As shown in from Figure 10, under the three-features extraction,

the SRN-I, SRN-II and SRN-IV samples in theDE and the FDEhave

FIGURE 11
Three-feature classification results of the four types of entropy for the four types of SRN. (A) DE (B) FDE (C) PE (D) SE.
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partial entropy distributions overlapping, the SRN-III sample has a

small amount of entropy mixed with SRN- I distribution; the four

types of SRN in the PE have partial entropy aliasing; in the SE, only a

few samples of SRN-II and SRN-IV have close entropy values.

Experiments show that under the three-feature extraction, for the

four types of SRN samples, the difference in the entropy value of the

SE is themost obvious, so it has better distinguishing ability than the

other three types of features.

5.3.2 Three feature classification
In order to prove that the identification effect of SE is better

under three-feature extraction, KNN classifier is also introduced

to perform three-feature classification of four types of SRN. The

selection of training samples and test samples is the same as that

in Section 5.1. The three-feature classification results of the four

types of entropy for the four types of SRN are shown in Figure 11.

It can be seen from Figure 11 that under the three-feature

extraction, the classification and recognition ability of the four types

of entropy is greatly improved; the DE classification of SRN-Ⅱ and

SRN-Ⅲ samples is completely correct, and only a few samples have

errors in the DE classification of SRN-Ⅰ and SRN-Ⅳ; the FDE and

PE are completely correct for the classification of SRN-Ⅱ samples,

but some samples are wrong for SRN-Ⅰ, SRN-Ⅲ and SRN-Ⅳ; the

classification of the four types of SRN samples by the SE is all

correct. Experiments show that, compared with DE, FDE and PE,

SE has a better ability to distinguish four types of SRN.

Through program operation, the highest average recognition

rates of the four types of entropy under three-feature are shown

in Table 4, where (1, 2, 7) in the table represents the selected IMF

components are IMF1, IMF2 and IMF7, and so on.

From the data in Table 4, we can get that under the three-feature

extraction, the four types of entropy have more than 95% recognition

rates for SRN samples. Among them, the SE has the highest

recognition rate of 100%, which is much higher than the SE under

the single feature, and is also higher than the SE under the dual feature.

To sum up, under three feature extraction, the four types of

entropy can greatly improve the recognition rate for the four

types of SRN samples, and the classification performance of the

SE is better than other entropies.

6 Conclusion

In this paper, BOA algorithm is introduced to realize the

optimization of VMDparameters selection, and then BOA-VMD

algorithm is proposed. Combined with the SE, a feature

extraction method of SRN based on BOA-VMD and SE is

proposed. The feasibility of the method is verified by

simulation experiments and features extraction experiments of

four SRNs. The main conclusions reached are as follows:

(1) In order to achieve the optimal selection of VMD parameters,

the BOA algorithm is adhibited to optimize the VMD, called

BOA-VMD. Compared with GA and PSO, the algorithm is

more accurate and reliable, and can realize adaptive

decomposition of signals in simulation experiments.

(2) In order to improve the effect of feature extraction and

classification of SRN, this paper proposes a feature extraction

method based on BOA-VMD and SE. Under single feature,

the method achieves a remarkable effect on feature

extraction, and the average recognition rate of SE is

90.38%, which is much higher than DE, FDE and PE.

(3) Compared with single feature, dual features and three

features further improve the recognition rate of SRN.

Compared with the other three entropies, the feature

extraction method based on BOA-VMD and SE can

obtain the highest recognition rate under the same

number of features, furthermore, the three-feature

recognition rate has reached 100%.
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Future naval warfare has placed high demands on underwater targets’ target

detection, target recognition, and opposition resistance, among other things.

However, the ocean’s complex underwater acoustic environment and the

evolving “stealth” technology of underwater targets pose significant

challenges to target detection systems, which has become a hot topic in the

field of underwater acoustic signal processing in various countries. This study

introduced the mechanism of underwater target radiation noise generation,

analyzed the research progress and development of underwater target

radiation noise recognition by applying machine learning from three

perspectives: signal acquisition, feature extraction, and signal recognition at

home and abroad, and elaborated on the challenges of underwater target-

radiated noise recognition technology against the backdrop of rapid computing

science development, and finally, an integrated signal processingmethod based

on the fusion of traditional feature extraction methods and deep learning is

proposed for underwater target radiation noise recognition, which improves

the low recognition rate of traditional methods and also circumvents the

problem of deep learning requiring high computational cost, and is an

important direction for future hydroacoustic signal processing.

KEYWORDS

underwater acoustic target, radiated noise recognition, feature extraction, feature
selection, machine learning

1 Introduction

The ocean will be the primary battlefield of future high-tech warfare, and future naval

weaponry will inevitably include information and intelligence. With the advancement of

equipment countermeasure and counter-countermeasure technology, the complete

application of underwater acoustic countermeasure and counter-countermeasure

technology in recent battles has demonstrated its value in naval combat. Target

detection and target recognition refer to the use of signal processing technology for

underwater acoustic signal processing in order to complete target detection, parameter

estimation, and target recognition, as well as other military tasks, in the complex marine

battlefield environment of underwater acoustic countermeasure and counter-

countermeasure. Target recognition is also the foundation of underwater acoustic
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countermeasure and counter-countermeasure, and many

subsequent tasks can only be completed by precisely

recognizing hostile targets.

The future of naval warfare places great demands on

underwater targets’ target detection, target recognition, and anti-

resistance capabilities, among other things. However, the ocean’s

complex underwater acoustic environment and evolving “stealth”

technology of underwater targets pose significant challenges to target

detection systems, particularly for counter-countermeasure

equipment, under strong noise and small aperture conditions, to

detect different types of underwater target radiation noise and

accurate positioning from the complex navigation noise and

ocean environment noise, which has been a difficult problem of

underwater target detection [1]. The reverberant background in the

underwater acoustic complex environment increases the complexity

of underwater acoustic active target detection, and remote detection

is difficult to achieve, especially with the constant advancement of

underwater acoustic countermeasure technology. At the same time,

due to the complexity of the underwater target radiation noise

creation and radiation mechanism, its composition is different, as is

the water acoustic channel [2]. The detection system’s original good

performance will not be satisfactory, and detection performance will

be severely deteriorated.

This study analyzes themechanismof underwater target radiation

noise generation, then reviews the progress and challenges in

underwater target radiation noise feature extraction and feature

recognition, introduces the shortcomings of traditional underwater

target radiation noise signal processing methods, and proposes a

method combining traditional underwater target radiation noise

feature extraction and deep learning, which not only improves the

recognition rate but also circumvents the high computational cost.

The rest of this article is organized as follows: the mechanism

of underwater target radiation noise generation is introduced in

Section 2. The development trend of underwater target radiation

noise recognition is introduced in Section 3. Future research

directions and future prospects are introduced in Section 4.

Section 5 concludes this article.

2 The mechanism of underwater
target radiation noise generation

In navigation and operation, propellers and other machinery

produce vibration through the shell to the water radiation

acoustic waves, resulting in radiation noise. Underwater

targets have a variety of distinct characteristics, and radiation

noise sources are classified into three types: mechanical noise,

propeller noise, and hydrodynamic noise. There are two types of

radiation noise spectrum: continuous spectrum and line

spectrum. Mechanical noise should be regarded as a

superposition of a strong line spectrum and weak continuous

spectrum, which is the main component of radiation noise in the

low-frequency band. Propeller noise is made up of two

components: propeller cavitation noise and propeller rotation

noise. Cavitation noise is a continuous spectrum component,

while propeller rotation noise is primarily expressed as a line

spectrum superimposed on the continuous spectrum, and it is the

main component of noise in the low-frequency band. In terms of

intensity, hydrodynamic noise is frequently masked by

mechanical noise and propeller noise. However, in some cases,

hydrodynamic noise may become the primary noise source in the

range in which the line spectrum appears. Due to high

mechanical speed, the line spectrum shifts to high frequencies,

and with these radiation noise differential features, underwater

targets provide a theoretical basis for target recognition and

estimation [3, 4].

The electric power system was once the main source of power

for underwater targets in order to improve the quietness and

delay the target warning time, and its main shortcoming was its

range. The Swedish TP2000, the United States MK50, and the

British “sailfish” have all adopted quiet thermodynamic systems

that are 80 percent quieter than electric systems at the same

speed, thanks to the development of closed cycle thermodynamic

systems.

Underwater target radiation noise is typically generated using

an excitation or vibration source, transmitted through the

underwater target shell, and radiated outward through the

water medium, as illustrated in Figure 1, for two types of

underwater target radiation noise generation models.

The thermodynamic underwater target excitation source

consists of a high-speed rotating body, a reciprocating motion

body, a high-speed gear reducer, a high-speed pump, and other

motion mechanisms, but its radiation noise is dependent on the

vibration of the shell; as long as the thermodynamic underwater

target vibration isolation method is appropriate, its radiation

noise is less than that of an electric power underwater target; thus,

the detection of underwater target radiation noise discrepancy is

possible.

3 Development trend of underwater
target radiation noise recognition

Underwater target detection and recognition technology

evolves in tandem with military requirements, economic

development, and the advancement of other disciplines. It is

to use underwater target radiation noise as the research object

and advanced signal processing technology to extract multi-

directional and multi-level high-quality target difference

features and then build an artificial intelligence target

recognition model based on the features to achieve accurate

underwater target recognition. It primarily consists of the links

depicted in Figure 2.

1) Underwater target radiation noise information analysis and

preferential difference feature extraction: using underwater
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acoustic signal processing methods, eliminate noise

interference, retain information reflecting the target’s

features, and then obtain the underwater target’s key

information using feature extraction and preferential

selection.

2) Accurate recognition of underwater target radiation noise:

establish an underwater target detection and recognition

method, based on an artificial intelligence model, and then

determine the type of underwater targets and motion

parameter information to evaluate the advantages and

disadvantages of the different feature extraction methods.

3.1 Development trend of underwater
target radiation noise feature extraction

Underwater target radiation noise feature extraction is an

important way to realize underwater target radiation noise

FIGURE 1
Two types of underwater target radiation noise generation models.

FIGURE 2
Flow chart of underwater target radiation noise recognition [4, 5].
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information representation, which lays an important foundation

to realize effective underwater target radiation noise recognition,

and good “extractable” features are both good separability and

can maintain good similarity between the same kind, so feature

extraction is important for underwater target radiation noise

recognition.

3.1.1 Underwater target radiation noise statistical
feature extraction

In 1996, A. Passamante proposed time series characterization

using the repeatability of similar sequences [6], and Chen

Xiangdong et al. [7] applied the repeatability of similar

sequences to underwater acoustic signal processing and then

realized the feature extraction of ship-radiated noise. Meng et al.

[8, 9] constructed a nine-dimensional feature vector of ship-

radiated noise using statistical features, including over-zero

wavelength, tachistoscopic amplitude, over-zero wavelength

difference, wave train region, and wave column region. Tian

et al. [10] used underwater acoustic target-radiated noise signal

waveforms as features to achieve effective recognition of

underwater acoustic targets. Wang et al. [11] proposed a new

statistical complexity measure to achieve underwater target

radiation noise recognition.

3.1.2 Underwater target radiation noise
frequency domain feature extraction

Xu Yuanchao et al. [12] rearranged the logarithmic spectrum

frequency points and proposed a double logarithmic spectrum

feature for ship radiation noise classification. Nan Lin et al. [13]

analyzed the cepstrum features of the periodic impulse signal and

ship-radiated noise and improved the non-cooperative detection

performance of ship-radiated noise using a cepstrum-wavelet.

Bing-Yang Wang [14] proposed a control algorithm to simulate

the spectrum of ship radiation noise based on the study of the

ship radiation noise characteristics, combined with the power

spectrum feature. Bo-Bin Rao [15] used the Detection of

Envelope Modulation on Noise (DEMON) method to obtain

broadband modulation features of ship radiation noise. Shen

et al. [16] used the poles of the ARmodel to extract the short-time

frequency peak of the signal and proposed a new multiple

frequency shift keying (MFSK) signal modulation recognition

method using clustering features.

3.1.3 Underwater target radiation noise
time–frequency feature extraction

Chen et al. [17] implemented the signal detection of ship

noise using the wavelet packet transform method. Wu Chengxi

et al. [18] extracted multiple features of ship-radiated noise in

frequency bands using the wavelet packet decomposition

technique and improved the ship recognition accuracy. Li

et al. [19] and Hong et al. [20] achieved effective recognition

of underwater target-radiated noise using complete ensemble

empirical mode decomposition with adaptive noise

(CEEMDAN). Fang et al. [21] proposed a selective noise-

assisted empirical mode decomposition method for the

classification and recognition of underwater targets. Xie et al.

[22] proposed a new feature extraction method in which the

hybrid features of underwater target-radiated noise are extracted

based on an improved variational mode decomposition method

for underwater target-radiated noise recognition.

3.1.4 Other feature extraction methods of
underwater target radiation noise

Guo Zheng et al, [23] proposed a generalized multiscale

pattern erosion spectrum entropy (GMPESE) nonlinear

underwater target-radiated noise feature extraction method

based on the mathematical morphology method. Gaunaurd

et al. [24] discussed a method for time–frequency image

detection of underwater radar and sonar target echoes. Hui

Junying et al. [25] combined pressure and particle velocity to

propose an acoustic composite sensor for low-intensity radar

noise measurement. Li et al. [26–28] carried out research on

complexity analysis of time series signals, discrimination of

bearing fault diagnosis, and identification of hydroacoustic

target radiation noise using dispersion entropy, fractional

slope entropy, and VMD, respectively, with good results,

demonstrating the feasibility of entropy in the field of signal

identification.

In summary, scholars have conducted a lot of research on

underwater target radiation noise feature extraction and achieved

gratifying results, which provide a basis for underwater target

radiation noise recognition under strong background

environmental noise interference and weak information

extraction conditions. However, the existing feature extraction

methods are closely associated with recognition methods which

restricts their engineering progress, and few feature extraction

methods that can be applied to actual underwater target radiation

noise recognition have been reported.

3.2 Underwater target radiation noise
recognition

Using artificial intelligence methods to input the extracted

underwater target radiation noise features to achieve underwater

target classification recognition is the goal of conducting

underwater target radiation noise classification. A good

classification model is one that does not depend on a certain

feature and is applicable to many types of underwater targets,

that is, robustness and generalization.

3.2.1 Underwater target radiation noise
recognition based on traditional machine
learning

Meng et al. [29], Li et al. [30], and Ke et al. [31] achieved the

recognition of underwater targets using a support vector machine

Frontiers in Physics frontiersin.org04

Zhufeng et al. 10.3389/fphy.2022.1044890

24

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1044890


model with kernel functions as radial basis functions as

classifiers. Hui Jiang [32] used the Gaussian mixture model

(GMM) for ship and island bird acoustic signal recognition.

Wang et al. [33] used a decision tree to achieve the recognition of

underwater target-radiated noise. Yang et al. [34] used an

underwater acoustic signal processing model based on the

gray wolf optimized kernel extreme learning machine model

to achieve classification recognition of underwater target-

radiated noise. Li et al. [35] calculated the recognition rate of

ship-radiated noise using the K-nearest neighbor algorithm and

validated the ship-radiated noise feature extraction method.

Zhou et al. [36] proposed a wavelet domain-hidden Markov

tree model to achieve underwater target radiation noise

classification.

3.2.2 Underwater target radiation noise
recognition based on deep learning

Luo et al. [37–39] used the normalized spectrum of the signal

as input and completed the space–frequency joint detection of

the line spectrum of underwater acoustic signals using a

restricted Boltzmann machine. Yang et al. [40] proposed a

new cooperative deep learning method for underwater

acoustic target recognition by combining deep long- and

short-term memory networks and deep self-coding neural

networks. Satheesh et al. [41] constructed a data-efficient

underwater target classifier using the generative modeling

capability of an auxiliary classifier generative adversarial

network to achieve underwater target radiation noise

classification. Cao et al. [42] used sparse self-encoders to learn

invariant features from underwater target spectra, combined with

stacked autoencoders and softmax to achieve underwater target

classification. Cai et al. [43–46] introduced multi-perspective

light field reconstruction into the field of underwater target

recognition and implemented multi-target recognition based

on a generative adversarial network. Feng et al. [47] proposed

a fusion feature and 18-layer residual network method to achieve

the classification of underwater targets. Liu et al. [48] used a 1D-

CNNmodel to identify the envelope-modulated line spectrum on

the DEMON spectrum of underwater target radiation noise with

good generalization capability. Yang et al. [49] proposed a deep

neural network classification system, which can automatically

learn more discriminative advanced features in the wavelet

packet component energy and then realized the classification

and recognition of underwater targets. Wu et al. [50] addressed

the problem of small samples in underwater target recognition, a

matching model with multiple target feature extraction methods,

and a deep neural network model is constructed to achieve

automatic, efficient, and accurate underwater target recognition.

In conclusion, researchers both at home and abroad have

conducted useful investigations and achieved significant results

in underwater target radiation noise recognition using artificial

intelligence models. Traditional machine learning methods rely

more on the signal acquisition and signal feature extraction,

whereas deep learning methods have greater robustness and

generalization ability, but the problems of poor physical

interpretation and higher computational cost remain.

4 Future research directions and
future prospects

At the moment, China is aggressively implementing marine

strategy, underwater target recognition technology in both

military and civilian domains will be a big show, and a large

number of demands will undoubtedly give rise to a large number

of scientific and technological achievements output. The

traditional method of underwater target radiation noise

feature extraction recognition can no longer meet China’s

economic and social development. Artificial intelligence has

emerged as one of the strategic technologies driving China’s

future scientific and technological development. Combining

artificial intelligence and underwater target radiation noise

recognition to provide a reliable foundation and means for

underwater target radiation noise recognition will be a

significant future development direction.

1) Develop more efficient deep learning models

The introduction of deep learning methods into the field of

underwater acoustic signal processing has greatly improved

underwater target radiation noise recognition methods. In the

short term, deep learning does not appear to require the use of

features such as line spectra and frequency spectra that are used

in traditional underwater target radiation noise processing,

because deep learning methods are a completely data-based

processing method, but the characterization of its features is a

serious problem; however, the excessive computational cost and

poor physical interpretability severely limit the engineering

applications of deep learning methods, thus, the development

of deep learning frameworks with more concise computational

frameworks and lower computational costs and the improvement

of their physical interpretability is the next work to focus on.

2) Combining traditional machine learning methods and deep

learning methods

Deep learning methods rely on a large amount of raw data,

but due to the confidentiality policy, it is difficult or even

impossible to obtain a large amount of underwater target

radiation noise, and the data collected from semi-physical

simulation tests cannot truly restore the underwater target

radiation noise, although some deep learning methods can

generate some feature information, but the authenticity of

these feature information cannot be verified; therefore,

combining traditional machine learning methods and deep

learning methods, integrating and extracting a large amount
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of feature information under small sample conditions, and then

using deep learning to improve the recognition rate of

underwater target radiation noise will be an important

direction for future research. The process of combining deep

learning methods and traditional machine learning methods for

underwater target radiation noise recognition is shown in

Figure 3.

5 Conclusion

With the continuous development of the national economy,

the recognition of underwater target radiation noise has become

one of the hot topics that scholars are currently concerned about

the recognition of underwater target radiation noise. This study

first introduced the mechanism of underwater target radiation

noise generation, then analyzed the necessity of underwater

target radiation noise recognition, then composed the

underwater target radiation noise feature extraction methods

and underwater target radiation noise recognition methods

commonly used at present, and clarified the main problems

and challenges of existing methods by reviewing the research

progress at home and abroad, and finally, the future development

direction in the field of underwater target radiation noise

recognition was also analyzed to meet the demand for

underwater target radiation noise recognition in the rapid

development of the national economy.
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The combination of underwater acoustic processing and the Global Navigation

Satellite System (GNSS) has achieved remarkable economic benefits in offshore

operations. As the key technology of GNNS positioning, feature extraction of

underwater acoustic signals is affected by the complex marine environment. To

extract more effective information from underwater acoustic signals, we use

four types of multi-scale entropies, includingmulti-scale sample entropy (MSE),

multi-scale fuzzy entropy (MFE), multi-scale permutation entropy (MPE), and

multi-scale dispersion entropy (MDE), to analyze and distinguish underwater

acoustic signals. In this study, two groups of real-word underwater acoustic

signal experiments were performed for feature extraction of ship-radiated

noises (SRNs) and ambient noises (ANs). The results indicated that the

performance of the MFE-based feature extraction method is superior to that

of feature extraction methods based on the other three entropies under the

same number of features, and the highest average recognition rate (ARR) of the

MFE-based feature extraction method for SRNs reaches 100% when the

number of features is 3.

KEYWORDS

multi-scale fuzzy entropy, multi-scale dispersion entropy, multi-scale permutation
entropy, multi-scale sample entropy, marine ambient noise, ship-radiated noise,
feature extraction

1 Introduction

The Global Navigation Satellite System (GNSS) plays an indispensable role in offshore

operations and coastal defense; the positioning of marine targets depends heavily on

accurate feature extraction. However, the extremely complex marine environment may

seriously interfere with receiving underwater acoustic signals [1–4]. Therefore, it poses

challenges to feature extraction of underwater acoustic signals and GNSS

positioning [5, 6].
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Traditional feature extraction methods include time domain,

frequency domain, and time–frequency domain methods, which

are not suitable for processing nonlinear and non-stationary

signals [7–9]. With the continuous development of entropy

theory, entropy-based feature extraction methods are used to

analyze underwater acoustic signals [10–13], which is also

effective in the analysis of nonlinear and non-stationary

signals. The common entropies include sample entropy (SE),

fuzzy entropy (FE), permutation entropy (PE), and dispersion

entropy (DE).

SE and FE are acclaimed tools for quantifying the regularity

and unpredictability of time series [14–16]. Richman and

Moorman first proposed the concept of SE, which overcomes

the defect that approximate entropy is restricted by the data

record length [17]. As an improved algorithm of SE, the FE was

put forward by Chen et al. which not only has the advantages of

SE that is effective on short time series but also gives the

definition of entropy in the case of small parameters by

introducing the concept of fuzzy sets [18].

Both PE and DE are complexity metrics based on Shannon

entropy, which can represent the complexity of the signal

[19–21]. A new PE is proposed by Bandt and Pompe [22],

which measures the chaos degree of the time series through

employing the permutation pattern and has stronger anti-noise

ability. However, PE considers only the order of the time series,

and hence, some information of amplitudes may be not regarded.

To deal with the problem, DE is introduced in [23] as a new

complexity index, which considers the magnitude relationship of

amplitude, and it is superior to PE in calculation speed as well as

the ability to describe the valuable information of a signal.

Since these entropies mentioned above cannot reflect the

useful information of the signal from the multi-scale, many

scholars at home and abroad introduced the coarse-grained

operation to generate multi-scale improved algorithm based

on entropy [24], including multi-scale sample entropy (MSE),

multi-scale fuzzy entropy (MFE), multi-scale permutation

entropy (MPE), and multi-scale dispersion entropy (MDE).

Among them, MSE successfully tracked the change of drug

concentration during sevoflurane anesthesia [25]; MFE and

MDE can accurately diagnose the fault types and fault

severities [26, 27]; MPE was applied to feature extraction of

ship-radiated noise and showed excellent performance [28].

In order to illustrate the feasibility of multi-scale entropy

in feature extraction of underwater acoustic signals, we

performed two comparative experiments for ambient noises

(Ans) and ship-radiated noises (SRNs) by using feature

extraction methods based on MSE, MFE, MPE, and MDE,

respectively. The general structure of this paper is as follows:

Section 2 introduces the basic theories of MSE, MFE, MPE,

and MDE; Section 3 and Section 4 carry out the experiments

of feature extraction and classification for six Ans and six

SRNs separately; finally, and Section 5 is the conclusion of this

article.

2 Theory

2.1 Sample entropy and fuzzy entropy

Fuzzy entropy is an improved algorithm of sample entropy; SE

and FE can be used to characterize the complexity of time series.

Figure 1 shows the flow chart of SE and FE. In the flow of SE, the

phase space of time series is reconstructed, next the maximum

distance between two vectors is calculated to obtain the similarity

degree and average value of similarity degree, and then, the

embedding dimension is added to 1. By repeating the

abovementioned steps, the value of SE can be calculated as follows:

En � lnφm − lnφm+1, (1)
where m is the embedding dimension, φm is the average value of

the similarity degree under the embedding dimension m, and

φm+1 is the average value of the similarity degree under the

embedding dimension m + 1.

Compared with SE, in the flow of FE, after phase space

reconstruction of time series, all elements of each vector are

subtracted from the mean value of the corresponding vector, the

maximum distance between two vectors is calculated, and the

membership function is introduced to calculate the similarity; in

FIGURE 1
Flow chart of SE and FE.
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addition, other steps are the same as in SE, and the value

calculation formula is shown as Eqn. 1. The work in [14, 15]

shows the specific steps of SE and DE, respectively.

2.2 Permutation entropy and dispersion
entropy

PE and DE are algorithms based on the Shannon entropy

theorem. Figure 2 depicts the flow chart of PE and DE, and their

differences are shown in the dotted box. For DE, the time series is

mapped to a new series by the normal cumulative distribution

function (NCDF) and rounding function, and then we

reconstruct the phase space of this new time series to obtain a

dispersion pattern series, then we calculate pattern probability,

and the value of entropy is defined as follows:

HEn � −∑n

i�1p(i) · ln(p(i)), (2)

where n is the number of pattern series and p(i) is the probability
of a corresponding pattern series.

For PE, the phase space of the time series is reconstructed

directly, and then, we rearrange the reconstructed vectors to

obtain a new array pattern sequence; then, we calculate pattern

probability, and the value of PE is calculated by using Eqn. 2. The

specific steps of PE and DE are shown in [22, 23], respectively.

2.3 Multi-scale method

The four types of entropy mentioned above can only measure

the time series on a single scale, which often leads to a lack of

series information. In order to solve this problem, the multi-scale

method is adopted, the specific steps are as follows:

The coarse graining operation is introduced to a time series

X � {x(i), i � 1, 2, . . . , N}, the total length of the series is N, and

the results of coarse graining can be defined as

yj(g) � 1
g
∑jg

i�(j−1)g+1 x(i), j � 1, 2,/,[N
g
], (3)

where g represents the scale factor, g � 1 . . . ..., and [N/g] is the
integer part of N/g, indicating the length of the coarse graining

series. When g is 1, the coarse-grained series is the same as the

original series. Next, the entropy of the time series at each scale is

calculated to obtain multi-scale entropy.

3 Feature extraction of ANs

3.1 Ambient noise

Six distinct types of ANs are selected for complexity, feature

extraction and recognition, which came from the National Park

Service [29]. These ANs are labeled HRS, LRS, LWS, MWS, SS,

and WSS, respectively. 400,000 sampling points are taken for

each AN, and Figure 3 shows the time domain waveform of

six ANs.

3.2 Single feature extraction and
classification

In order to compare the feature extraction effects of four

kinds of entropy for each AN. For each group of feature

extraction experiments, we take 100 samples for each AN

without repeating sampling points, and each sample is

composed of 4000 sampling points. The MSE, MPE, MDE,

and MFE of the six ANs are extracted from SF1 (SF1 means

the scale factor 1, SF2 means the scale factor 2, and so on) to

SF10. For comparison and analysis, Table 1 shows the parameter

settings of four kinds of entropy.

It can be seen from Figure 4 that the MSE of HRS, LWS,

SS, and WSS are mixed together; compared with MPE and

MDE, MSE and MFE are better at distinguishing MWB; the

discrimination effect of MPE on HRS and SS is better than the

other three entropies; and each entropy of ANs has a large

amount of aliasing. It concluded that the discrimination

effect of four kinds of entropy four marine environmental

noise is poor.

In order to compare the recognition effects of each entropy

for six ANs more conveniently, we calculated the highest ARR of

each AN under four kinds of entropy by the K-nearest neighbor

(KNN) algorithm [30]. Table 2 shows the highest ARR of a single

feature for six ANs.

FIGURE 2
Flow chart of PE and DE.
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It can be observed from Table 2 that the ARR of the four

feature extraction methods for the six ANs is lower than 77.0%

the recognition rate of the four feature extraction methods for

HRS is higher than 60%; the recognition rates of the MSE-based

feature extraction method for LRS andMWS is 100%; the ARR of

the MSE-based feature extraction method for six ANs is the

lowest, the ARR of the MFE-based feature extraction method for

six ANs is the highest; it can be concluded that it is difficult to

accurately distinguish six ANs by the single-feature extraction

method.

3.3 Multi-feature extraction and
classification

In order to further improve the recognition rate of the six

ANs, the multi-feature extraction method based on four kinds of

entropy is used to extract and classify the six ANs. Figure 5

indicates that the multi-feature distribution results correspond to

the highest ARR for six ANs.

From the Figure 5, we can find that compared with the single-

feature extraction method, the multi-feature extraction method

has a better discrimination effect on six ANs; multi-feature

extraction methods based on MSE and MFE have a better

ability to distinguish MWS than MPE and MDE; compared

with the other three feature extraction methods, the multi-

feature extraction method based on MSE has the worst effect

on SS; multi-feature extraction methods based on MFE are better

at distinguishing WSS. Results show that compared with the

other three feature extraction methods, the multi-feature

extraction method based on MFE can better distinguish six ANs.

We calculate the highest average recognition rates of multi-

features for six ANs by the KNN algorithm, in which (1, 3)

represents double features of complexity parameter under SF1,

and SF3 (1, 3, 5) represents triple features of complexity

parameter under SF1, SF3, and SF5, and so on. Table 3 shows

the highest ARR of four types of entropies for six ANs under

different numbers of features. Figure 6 shows the highest ARR of

four types of entropies for six ANs.

It can be seen from Table 3 and Figure 6 that with the

increase of the number of features, the recognition of feature

extraction methods based on the four entropy increases first

rapidly and then decreases slowly; under the same number of

features, the multi-feature extraction method based on MSE has

the lowest recognition rate; the recognition rate of the multi-

feature extraction method based on MFE is the highest, and

reaches 98.7% when the number of extracted features is 3, which

is at least 2.6% higher than the other three multi-feature

FIGURE 3
Time domain waveform of six ANs.

TABLE 1 Parameter settings of four kinds of entropy.

Entropy Embedding dimension Time delay Category number Threshold Fuzzy power

MSE 5 1 - 0.15 -

MPE 5 1 - - -

MDE 5 1 5 - -

MFE 5 1 - 0.15 2

As can be seen from Table 1, the embedding dimension and time delay of the four entropies are set to 5 and 1, respectively; the category number of MDE is 5; for MDE, the threshold c of

both MSE and MFE is 0.15; the fuzzy power of MFE is 2. Figure 4 shows the single-feature distributions corresponding to the highest ARRs for six ANs.
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extraction methods. The results show that the multi-feature

extraction method can better identify six ANs, compared with

the other three multi-feature extraction methods, MFE can better

distinguish six ANs.

4 Feature extraction of SRNs

4.1 Ship-radiated noise signals

Six different types of SRNs are chosen for feature extraction

and classification, which are called ship1, ship2, ship3, ship4,

ship5 and ship6 respectively. The six types of SRNs are all from

the National Park Service [29]. The number of sampling points of

each type of SRN is 4 × 105 and the sampling frequency is

44.1 kHz. Figure 7 indicates the time domain waveform of

six SRNs.

4.2 Single-feature extraction and
classification

100 samples are selected for each type of S-Ss, and the

sampling points of each sample is 4000. MSE, MPE, MDE, and

FIGURE 4
Single-feature distribution correspond to the highest ARR for six ANs. (A) is MSE, (B) is MPE, (C) is MDE, (D) is MFE.

TABLE 2 The highest ARR of a single feature for six ANs.

Entropy SF Recognition rate ARR (%)

HRS (%) LRS (%) LWS (%) MWS (%) SS (%) WSS (%)

MSE 1 62.0 100.0 6.0 100.0 16.0 70.0 59.0

MPE 1 94.0 46.0 64.0 34.0 100.0 30.0 61.3

MDE 1 94.0 6.0 72.0 90.0 56.0 86.0 67.3

MFE 3 74.0 50.0 98.0 100.0 68.0 68.0 76.3
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MFE of the six SRNs are extracted from SF1 to SF10. The

parameters of the four kinds of entropy are consistent with

those mentioned in Section 2; Figure 9 demonstrates the

single-feature distributions corresponding to the highest

ARR for six SRNs.

Figure 8 shows that for the four kinds of entropies, the feature

distributions of six SRNs all have aliasing in general, especially

ship3 and ship5; for MSE, the scattered points representing

FIGURE 5
Multi-feature distribution results correspond to the highest ARR for six ANs. (A) is MSE, (B) is MPE, (C) is MDE, (D) is MFE.

TABLE 3 Highest ARR of four types of entropies for six ANs under
different number of features.

Entropy Parameters Number of extracted features

2 3 4

MPE ARR 80.0% 82.0% 82.7%

SF combination (1, 3) (1, 3, 5) (1, 3, 5, 7)

MDE ARR 90.3% 92.3% 92.7%

SF combination (1,7) (1, 3, 7) (1, 3, 7, 9)

MFE ARR 97.3% 98.7% 98.3%

SF combination (2, 10) (1, 2, 10) (1, 2, 3, 10)

MSE ARR 66.3% 67.3% 68.0%

SF combination (1, 3) (1, 3, 6) (1, 2, 3, 6)

FIGURE 6
Highest ARR of four types of entropies for six ANs.
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ship3 to ship6 are distributed almost in the same straight line;

compared with MSE and MFE, the feature distributions of

MPE and MDE have fewer overlapping areas; for MFE, the

feature distributions of ship2 fluctuate in a larger area

compared with that of other SRNs. In summary, only the

single feature is adopted, which makes it difficult to

distinguish the six S-Ss, and the MSE has the worst

separability for six SRNs.

FIGURE 7
Time domain waveform of six SRNs.

FIGURE 8
Single-feature distributions correspond to the highest ARR for six SRNs. (A) is MSE, (B) is MPE, (C) is MDE, (D) is MFE.
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In order to more obviously compare the average recognition

rates of six SRNs, the KNN classifier was introduced to classify six

different SRNs. 100 samples of each SRN are selected, of which

50 samples are used as training samples and the other 50 samples

are test samples. Table 4 shows the highest ARR of a single

feature.

From Table4, it can be concluded that, for the MSE-based

feature extraction method, the ARR is the lowest, the recognition

rates of ship4 and ship5 are 0%, and the recognition rate of

ship6 only reaches 4%; compared with the feature extraction

methods based on MSE, MPE, and MDE, the MFE-based feature

extraction method has the highest ARR; for the feature extraction

methods based on these four entropies, the highest ARRs are

lower than 75%. It can be concluded that it is difficult to

accurately distinguish six SRNs by the single-feature

extraction method.

FIGURE 9
Multi-feature distributions correspond to the highest ARR for six SRNs. (A) is MSE, (B) is MPE, (C) is MDE, (D) is MFE.

TABLE 4 Highest ARR of a single feature.

Entropy SF Recognition rate ARR (%)

Ship1 (%) Ship2 (%) Ship3 (%) Ship4 (%) Ship5 (%) Ship6 (%)

MSE 1 86.0 86.0 78.0 0.0 0.0 4.0 42.3

MPE 1 86.0 96.0 90.0 26.0 26.0 92.0 69.3

MDE 1 96.0 98.0 44.0 98.0 12.0 60.0 68.0

MFE 1 86.0 98.0 54.0 40.0 100 52.0 71.7

Frontiers in Physics frontiersin.org08

Zhao et al. 10.3389/fphy.2022.1058474

35

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1058474


4.3 Multi-feature extraction and
classification

Tomore clearly compare the feature extraction effects of four

kinds of entropies on six SRNs, we adopted the multi-feature

extraction methods based on MSE, MPE, MDE, and MFE

separately. Figure 9 shows the multi-feature distributions

corresponding to the highest ARR for six SRNs.

It can be observed from Figure 9 that the aliasing of multi-

feature distribution of MSE for six SRNs is the most serious, and

the multi-feature distribution of MFE has the least overlapping

part; for the four multi-feature extraction methods based on

MSE, MPE, MDE, and MFE, respectively, they can accurately

distinguish ship1 and ship2; compared with the other three

multi-feature extraction methods, the MFE-based multi-

feature extraction method has excellent performance in the

recognition of ship5. In summary, the MFE-based multi-

feature extraction method has the best separability for six

kinds of ships.

In order to further compare the discrimination abilities of the

four entropies for six SRNs, we calculated the highest average

recognition rates of multi-features for six SRNs. Figure 10 is the

highest ARR of four types of entropies for six SRNs, Table 5

shows the highest ARR of four types of entropies for six SRNs

under different numbers of features.

As can be indicted from Figure 10 and Table 5, for the feature

extraction methods based on the four types of entropy, the

recognition rate for six SRNs increased with the increase of

the number of features; under the same number of features, the

highest ARR of the MSE-based feature extraction method is the

lowest; the highest ARR of the MFE-based feature extraction

method is higher than these of which based on the other types of

entropy; the highest ARR of the MFE-based feature extraction

method reaches 100% when the number of features is 3. In

conclusion, compared with the extraction methods based on

MSE, MPE, and MDE, the MFE-based feature extraction method

has the highest recognition rate.

5 Conclusion

To effectively extract the features of the underwater acoustic

signal, two comparative experiments were performed for the real-

world underwater acoustic signal by using feature extraction

methods on MSE, MPE, MDE, and MFE. The following

conclusions are obtained:

1) Through the feature extraction and classification recognition of

ANs, it is concluded that with the increase of the number of

features, the recognition of the feature extractionmethod based

on four entropies first increases rapidly and then decreases

slowly. The multi-feature extractionmethod based onMFE has

the best feature extraction effect and the highest ARR for six

ANs with the same number of features.

2) In the feature extraction of SRNs, compared with feature

extraction methods based on the other types of entropies, the

highest ARR of MFE-based feature extraction method are the

highest under the same number of features; the average

recognition rate of MFE-based feature extraction method

reaches 100% when the number of features is 3; the

application of MFE in feature extraction can effectively

FIGURE 10
Highest ARR of four types of entropies for six SRNs.

TABLE 5 Highest ARR of four types of entropies for six SRNs under
different number of features.

Entropy Parameters Number of features

2 3 4

MSE ARR 49.3% 50.0% 50.3%

SF combination (1, 3) (1, 2, 3) (1, 2, 3, 4)

MPE ARR 88.0% 90.3% 90.3%

SF combination (1, 5) (1, 5, 10) (1, 5, 7, 9)

MDE ARR 83.7% 83.7% 83.7%

SF combination (1, 4) (1, 2, 4) (1, 2, 3, 5)

MFE ARR 99.0% 100.0% 100.0%

SF combination (1, 9) (1, 6, 8) (1, 6, 7, 8)
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improve the performance of GNNS in positioning for marine

target.
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motion parameter estimation for
harmonic sources
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Single-receiver motion parameter estimation is an effective and economical

technology for passive source localization and train-bearing fault diagnosis, in

which time-consuming time-frequency analysis (TFA) methods are widely used

to suppress noise when extracting the continuous Doppler shift of the overhead

pass. Cross-spectrum processing is a potential way to improve the

computational efficiency of TFA methods, but its application is

overshadowed by the phenomena of unknown Doppler shift offset and

power spectrum estimation error. In this paper, conventional cross-

spectrum processing is proven to be an approximation trick for power

spectrum estimation in a small frequency interval, and the two phenomena

are fully explained by the frequency aliasing of bandpass sampling and the

approximation error. On this basis, an revised framework for applying the cross-

spectrum processing is provided. Processing results of the SWellEx-96

experiment data demonstrate that the computational efficiencies of

spectrogram and a parameterized TFA method could be improved up to

85% and 88.2%, respectively, without a noticeable impact on the accuracy of

parameter estimates.

KEYWORDS

Doppler shift, motion parameter estimation, time-frequency analysis, single receiver,
cross-spectrum processing, computational efficiency

1 Introduction

Received single-frequency noise, which frequency changes with time dramatically

during the overhead pass, contains lots of information about the moving target. By fitting

the observed time-varying instantaneous frequency (IF) curve of these tones with the

model of Doppler shift under the nonlinear least squares criterion, the Doppler-related

parameters, e.g., the radiated frequency, the moving speed, and the shortest distance

between the receiver and the target, can be estimated easily and economically with only a

single receiver. The conventional application of this single-receiver parameter estimation

method are source recognition, classification and localization [1]. In addition, this method

is also able to be jointed with the bearing fault identification methods [2, 3] and serves for
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train-bearing fault diagnosis [4, 5] through an non-contact way

in wayside during the running of a train.

Many studies have addressed the estimation of Doppler-

related parameters from the line spectrum with a single

receiver, where the key point of these studies is how to

extract the IF curve from the received tones. The earliest

approach may be the phase interpolation method, Ferguson

[6] used it to observe and compare the variation with time of the

aircraft’s blade rate from the received tones of a microphone on

land and a hydrophone beneath the sea. Then Ferguson and

Quinn [1] introduced time-frequency analysis (TFA) methods

to obtain an more accurate estimation for the aircraft’s blade

rate. Because the parameter estimation precision is primarily

determined by the accuracy of the extracted IF curve, many of

the advanced TFA methods [7–11] have been investigated to

suppress noise and concentrate energies for IF contents.

Nevertheless, against the classical short-time Fourier

transform (STFT, also called a spectrogram), these more

effective TFA methods are highly inefficient in computation

[10, 11].

Cross-spectrum processing is a potential way to improve

the computational efficiency of TFA methods. Rakotonarivo

and Kuperman [12] have shown that the radial velocity feature

between a moving tone source and a fixed receiver can be

quickly ascertained from the cross-spectrum of sound

pressures. Yang et al. [13] derived the same results in a

different way. Build on this knowledge cross-spectrum

processing has been extended to scenarios of a single vector

hydrophone [14] and a multi-tone source [15]. However, this

method requires precise knowledge regarding the frequency of

radiated tones to determine the time interval of the cross-

spectrum processing, which should be strictly an integer

multiple of the period of the tone signal. If a time interval of

a non-integral multiple of the period of the tone signal is

utilized, an unknown offset, which has been confirmed by

Wang et al. [16], will be brought into the estimates of the

radial velocity and will prevent the motion parameter

estimation. In addition, it is found that false IF curves of

Doppler shift exist occasionally and can not be predicted by

the cross-spectrum theory. Apparently these two phenomena

leads to the inability of this cross-spectrum method to general

applications.

This paper analyzes reasons behind the two unwelcome

phenomena and tries to perfect the way of applying cross-

spectrum processing in parameter estimations. The main

content is organized as follows. Section 2 discusses reasons

behind the two unwelcome phenomena. Section 3 outlines the

revised framework of applying the cross-spectrum processing for

the fast parameter estimation and explains its details for

implementation. Section 4 verifies the computational efficiency

of the revised framework with the received tones in the event

S5 of the SWellEx-96 experiment. Finally, Section 5 draws some

conclusion.

2 A deep understanding about the
cross-spectrum method

2.1 Conventional cross-spectrum method

Conventional cross-spectrummethod [12] is proposed in the

community of underwater acoustics. According to the normal

mode theory [17], the expression of sound pressures in ocean

waveguide under general conditions is:

p r, z( ) � ∑M
m�1

Am exp jkrmr( ), (1)

where

Am � Q
ψm 0, zs( )ψm r, z( )����

krmr
√ , (2)

Q is a constant, r is the horizontal distance between the

receiver and the point source, z is the receiver depth, zs is the

source depth, M is the number of propagating modes, and ψm
and krm are the modal depth function and the horizontal

wavenumber of the mth mode, respectively.

Assume that r is the distance between a moving source and a

receiver at time t, and the corresponding radial velocity is vr,

which satisfies Δr = vrΔt in a small time interval. Then, sound

pressures at t + Δt
2 and t − Δt

2 can be expressed as:

p t + Δt
2

( ) � p r + Δr
2

( ) � ∑
m

Am exp jkrm r + Δr
2

( )( )
p t − Δt

2
( ) � p r − Δr

2
( ) � ∑

m

Am exp jkrm r − Δr
2

( )( ) . (3)

The cross spectrum of these two sound pressures p(t + Δt
2 )

and p(t − Δt
2 ) is [12]:

Ic t, f0,Δt( ) � p t − Δt
2

( )p* t + Δt
2

( )
≈ exp −j�krΔr( )∑

m,n

AmAn* exp jΔkmnr( ) , (4)

where �kr � 2πf0/cp at frequency f0, cp is the average modal phase

speed and can be approximated by the (average) sound speed of

water cp ≈ c in practical applications, and Δkmn = krm − krn is the

difference between the horizontal wavenumber of the nth mode

and that of the mth mode.

Because the oscillations of exp(−jΔkmnr) exhibit a much

longer period than those of exp(−j�krΔr), Ic(t, f0,Δt) should be

dominated by the latter term, i.e.,

Ic t, f0,Δt( )∝ exp −j�krΔr( ) � exp −j2π f0vr
c

Δt( ). (5)

In cross-spectrum method, the sound pressures of a given

frequency f0 at different times are extracted from the spectrogram

of the received time series. Then, oscillation frequency f0vr
c at time

t can be determined simply by the Fourier spectrum of cross-

spectrum series Ic(t, f, nΔ), where n is the positive integer and Δ
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is the time difference between two adjacent segments in the

spectrogram. Since f0 and c are known, one gets the value of radial

velocity vr at time t. Finally, Doppler-related parameters can be

obtained by fitting the observed time-varying vr curve with its

mathematical model under the nonlinear least squares criterion.

2.2 Phenomenon of Doppler shift offset
and its interpretation

A problem in applications of the conventional cross-

spectrum method is that the method requires precise

knowledge regarding the frequency of the tone signal, i.e., f0,

to determine the time difference Δ between two adjacent

segments in the spectrogram, where Δ should be a strict

integer multiple of the period of f0. However, in general

applications, f0 is often not accurately known and the

sampling frequency fs may be a non-integral multiple of f0. As

a result, an appropriate Δ is hard to be determined and f0 will not

appear in the frequency axis of the spectrogram, one can only

extract sound pressures from the closest frequency point to f0. In

such a case, as shown in Figure 1, slight changes of Δ produce an

remarkable offset to the oscillation frequency f0vr
c . Because the

quantity of offset cannot be predicted by the theory of cross-

spectrum processing, further processing for parameter

estimation is prevented.

Loosely, the procedure of extracting sound pressures from

the spectrogram can be regarded as a procedure of resampling to

the received time series with sampling rate fs = 1/Δ. Bandpass
sampling theorem [18] shows that, if a tone is sampled at a

frequency that less than the Nyquist sampling rate, its real

frequency f0 will be misrepresented by an aliased frequency f′ �
f0 − round(f0/fs) × fs that do lie within the range [ − fs/2, fs/2)

because

exp j2πf0t( ) � exp j2π f′ + round f0/fs( ) × fs( )t( )
� exp j2πf′t + 2πround f0/fs( ) × fst( )
� exp j2πf′t( )

(6)

at any sampling time t = nΔ, where n is the positive integer and

the function round(x) rounds x to its nearest integer. Therefore,
for the received IF curve of Doppler shift f � f0(1 − vr/c)
(i.e., Eq. A7 in Appendix), if the time difference Δ between

two adjacent segments in the spectrogram is a strict integer

multiple of the period of f0, i.e., f0/fs � round(f0/fs), we have
the aliased frequency f′ � f0vr

c . On the other hand, if Δ is not an

FIGURE 1
The SWellEx-96 signal used in Section 4 is employed to illustrate the phenomenon of Doppler shift offset. The sampling rate of the signal is fs =
1,500 Hz. (A–C) illustrate, respectively, the TFDs produced by the conventional cross-spectrum method (i.e., the step R2.3 of F-STFT without
compensation) with different lengths of the spectral window Nw1 = [1,500, 1,510, 1,515] in sound pressures extraction. Black curves represent the IF
curves of each TFD predicted by the bandpass sampling theorem. Frequency axes of these TFDs represent oscillation frequency f0vr

c . For a
comparison, (D) shows the TFD produced by STFT and the theoretical IF curve given by Eq. A7. It can be seen that a slight increase of Nw1 brings a
significant offset for the aliased IF trajectories.
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integer multiple of the period of f0, i.e., f0/fs ≠ round(f0/fs),
we have the aliased frequency f′ � f0vr

c + foffset, where foffset �
f0 − round(f0/fs) × fs denotes the quantity of offset.

The black curves in the Figures 1A–C represent the aliased IF

trajectories predicted by the bandpass sampling theorem. One

can see that these curves are consistent well with the IF

trajectories of each TFD.

2.3 Phenomenon of power spectrum error
and its interpretation

As shown in Figures 2A,D, the TFD of the cross-spectrum

method and that of the spectrogram may be different sometimes.

Although bandpass sampling theory provides a well

interpretation for the offset phenomenon, the theory can not

interpret such a difference because power spectrum of the real

frequency and the aliased frequency should be equal according to

Eq. 6. Therefore, technically the procedure of extracting sound

pressures from the spectrogram is not a procedure of bandpass

sampling.

In the cross-spectrum method, the radial velocity is

estimated from the cross-spectrum of pressures (i.e., p(t +

Δ)p*(t), p(t + 2Δ)p*(t), / ). According to the linearity

property of Fourier transform, the Fourier spectrum of

p(t + Δ)p*(t), p(t + 2Δ)p*(t), / equals the weighted (by

p*(t)) Fourier spectrum of p(t + Δ), p(t + 2Δ), / . Because

multiplying a constant p*(t) does not induce useful

information of radial velocity, the information of radial

velocity should be included in the Fourier spectrum of

p(t + Δ), p(t + 2Δ), / . Therefore, the cross-spectrum

processing (i.e., multiplying the p*(t)) is unnecessary and

can be omitted to simplify processing steps. In addition,

note that the pressures p(t + Δ), p(t + 2Δ), / are extracted

from the spectrogram of the received time series in practice

but are not directly time-sampled from the received signals as

a conventional manner of sampling does, these two sampling

manners are not of equivalence as analyzed below.

Suppose that x(q) is a discrete signal and q = 0, 1, . . ., NM −

1, where N and M are two positive integers. Its discrete Fourier

transform (DFT) at frequency k
NM is given as:

Y k( ) � ∑NM−1

q�0
x q( )e−j2π k

NMq, (7)

where k = 0, 1, . . ., NM − 1.

FIGURE 2
The SWellEx-96 signal used in Section 4 is employed to illustrate the phenomenon of power spectrum error. (A–C) illustrate, respectively, the
TFDs produced by Eq. 9 (i.e., the step R2.4 of F-STFT) with different compensations, where the length of the spectral windowNw1 = 500. The aliased
IF trajectories has been mapped into the real frequency band by a contrary procedure of aliasing. (D) Shows the TFD produced by STFT. The green
rectangles show the changes of an aliased IF trajectory with the increase of compensation points, and the red rectangles show the changes of
the target IF trajectory with the increase of compensation points. It can be seen that a few compensation points are able to give a good
approximation for the spectrogram if the phenomenon of power spectrum error occurs.
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Defining X(n,m) � x(n +Nm), i.e., we reshape the discrete
signal x(q) to anN ×Mmatrix. Then, the DFT of columnm of X

at frequency k1
N is given as:

Y1 k1, m( ) � ∑N−1

n�0
X n,m( )e−j2πk1N n, (8)

where k1 = 0, 1, . . ., N − 1. If f0 ≈ k1
N, then the row k1 of Y1

represents the pressures p(t + Δ), p(t + 2Δ), / according to the

cross-spectrum processing.

Further, the DFT of row k1 of Y1 at frequency
k2
M is given as:

Y2 k2( ) � ∑M−1

m�0
Y1 k1, m( )e−j2πk2Mm

� ∑M−1

m�0
∑N−1

n�0
X n,m( )e−j2πk1N ne−j2π

k2
Mm

� ∑M−1

m�0
∑N−1

n�0
X n,m( )e−j2π n+Nm( ) Mk1+k2( )

NM ej2π
nk2
NMej2πmk1

� ∑M−1

m�0
∑N−1

n�0
X n,m( )e−j2π n+Nm( ) Mk1+k2( )

NM ej2π
nk2
NM

� ∑M−1

m�0
∑N−1

n�0
x n +Nm( )e−j2π n+Nm( ) Mk1+k2( )

NM ej2π
nk2
NM

� ∑NM−1

q�0
x q( )ej2π k2

NM mod q,N( )[ ]e−j2π Mk1+k2( )
NM q,

(9)

where the function mod (q,N) denotes the remainder after the

division of q by N. Due to the presence of the term

ej2π
k2
NM mod (q,N), Y2(k2) equals to Y(Mk1 + k2) only when k2 =

0. However, ej2π
k2
NM mod (q,N) ≈ 1 when k2 approaches 0,

considering the periodicity of the term we have

Y2 k2( )≈ Y Mk1 +k2( ), 0≤k2< M−1( )/2
Y Mk1 +k2 −M( ), M−1( )/2≤k2≤M−1{ . (10)

Eq. 10 shows that the Fourier spectrum of pressures p(t +

Δ), p(t + 2Δ), / can be regarded as only an approximation

for that of the received time series in a narrow frequency

band, where the frequency band corresponds with that

indicated by the bandpass sampling theory (i.e., Eq. 6).

Therefore, one can safely map the aliased IF trajectories

into the real frequency band by a contrary procedure of

aliasing. Obviously, this approximation allows for the

improvement of the computational efficiency by using

shorter N-point DFT and M-point DFT to substitute a

longer NM-point DFT.

As is shown in Figure 3A, because Y2 = Y holds true only

when k2 = 0 and the effect of the term ej2π
k2
NM mod (q,N)

increases with the growth of values of k2, directly applying

Eq. 9 gives good approximations around zero-frequency, and

relatively bad approximations far from zero-frequency. To

FIGURE 3
Power spectrum of an random sequence given by Eq. 7 (green curves) and Eq. 9 (black curves) with N = 64, M = 128. (A) No compensation,
default k2 = 0. (B) Four-point compensation, k2 = −48, −16, 15, 47. Note that the horizontal axis, i.e., k2, is limited to [−M/2,M/2 − 1] rather than
[0,M − 1] to shift zero-frequency component to the center of spectrum with the purpose of fitting the axis of green curves.
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improve the degree of accuracy, one can multiply x(q) by the
complex conjugation of the term ej2π

k2
NM mod (q,N) in advance to

compensate its effect. When each of the points of k2 are well-

compensated, the results of Y2 (Eq. 9) will be exactly equal to

the results of Y (Eq. 7). However, because the spectrum of the

adjacent points in a small interval of k2 can be well-

approximated by the spectrum of the centre point,

compensating for all of the points of k2 is not very

necessary. As shown in Figure 3B, compensating a few

points of k2 is sufficient to approximate the real spectrum.

In practice, sharing the same compensation in adjacent

points is a useful trick for maintaining high computational

efficiency. One can balance the demand for computational

efficiency and the demand for the degree of accuracy by

simply adjusting the number of compensation points from

1 to M.

Figures 2B,C depict the TFDs computed by Eq. 9 with 2-

point compensation and 4-point compensation, respectively. As

the green rectangles and the red rectangles show, a few

compensation points are able to significantly reduce the TFD

difference between the approximate method and the

spectrogram.

FIGURE 4
Flowcharts to illustrate the conventional framework (the left flowchart) and the suggested framework for fast parameter estimations (the right
flowchart). The tags R1-R5 and L1-L5 indicate each step of the two flowcharts.
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3 An revised parameter estimation
framework of applying cross-
spectrum processing

The processing framework for fast parameter estimations

based on Eq. 9, together with the conventional framework of

motion parameter estimations, are shown in Figure 4, where

STFT and Doppler chirplet transform (DopplerCT) [10] are

employed as the representatives of the conventional and the

advanced TFA methods, respectively. For ease of description,

these two TFAmethods implemented based on Eq. 9 are denoted

below as F-STFT and F-DopplerCT. Note that the first iteration

of parameterized TFA methods (DopplerCT and F-DopplerCT)

needs some configuration parameters, these parameters are

initialized by the estimates of the conventional non-

parameterized methods (STFT and F-STFT) in Figure 4.

Therefore, STFT can be regarded as the 0th iteration of

DopplerCT, and consequently, the processing with STFT is

always faster than the processing with DopplerCT. Same goes

for the relationship of F-STFT and F-DopplerCT.

FIGURE 5
TFDs of the 112Hz tone that given by different methods : (A) STFT, (B) F-STFT, (C) DopplerCT, (D) F-DopplerCT. It is clearly shown that the two
fast methods is able to generate almost the same TFDs as STFT and DopplerCT.

FIGURE 6
Comparison of the source range given by GPS records and
that estimated from the IF curves depicted in Figure 5.
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Figure 4 shows clearly that the main difference of the

proposed framework to the conventional framework is the

way of computing the TFD, where only the spectrum on a

narrow band around f0 is computed (in an approximate

manner) through the steps R2 and R4, instead of computing

the Fourier spectrum in the whole frequency band of Nyquist

(±fs/2) through the steps L2 and L4. The main parameters

involved in the two frameworks are the length of the spectral

window, the number of overlapped samples, and the number of

DFT points to compute the TFD, they are denoted as {Nw, No,

NF}, {Nw1, No1, NF1}, and {Nw2, No2, NF2} in different steps.

Without a loss of generality, the number NF is assumed that can

be resolved (strictly or just approximately) into two factors NF1

andNF2, i.e., NF =NF1NF2, so that the conventional and proposed

frameworks perform with the same time-frequency resolution

and are comparable. NF1 determines the bandwidth of a TFD

(e.g., the bandwidth in Figure 5 is fs/NF1 = 1 Hz). To hold true for

Eq. 9, Nw1 should be equal to NF1 and No1 to 0, i.e., no zero

padding and overlapping in step R2.1. NF2 determines the

frequency resolution of a TFD, which are fs

NF1NF2
. Zero

padding and overlapping are allowed for the steps R2.3 and

R4.1, where NF2 ≥ Nw2 > No2 ≥ 0.

4 Experimental example

The SWellEx-96 experiment [19] was conducted in 1996 in

the littoral waters outside the port of San Diego. The

FIGURE 7
Changes of the NCC coefficient (A,B), the mean deviation between source range estimates and GPS records (C,D), and the runtime of
computing a TFD (E,F) with the increase of the number of compensation points. Results of F-STFT are shown in the left three panels (A,C,E), while
that of F-DopplerCT are shown in the right three panels (B,D,F). Dash lines in (C–F) represents the corresponding results of STFT and DopplerCT.
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experimental data of event S5 are used to validate the

effectiveness of the proposed framework. In S5, a source was

towed at a constant speed of five knots (2.5 m/s) along a linear

track. It transmitted numerous tonals of various source levels

between 49 Hz and 400 Hz. The first five tones of the “High

Tonal Set” (49 Hz, 64 Hz, 79 Hz, 94 Hz, and 112 Hz), which were

projected at maximum level of approximately 158 dB and

received by the shallowest element (at a depth of 94.125 m) of

a vertical line array, are analyzed below. The sampling rate of the

signal is fs = 1,500 Hz.

Figure 5 illustrates, respectively, the TFDs of the 112 Hz tone

produced by STFT, F-STFT, DopplerCT, and F-DopplerCT. The

parameters used for computing these TFDs areNw1 =NF1 = 1,500,

No1 = 0,Nw2 = NF2 = 200,No2 = 180,Nw = NF = Nw1Nw2, and No =

Nw1No2. Note that only one iteration is performed to render a high

energy concentration by DopplerCT and F-DopplerCT because in

this example the signal-to-noise rate is very high. It is obvious that

F-STFT and F-DopplerCT generate TFDs that are almost the same

as STFT and DopplerCT. Following the frameworks shown in

Figure 4, the source ranges estimated from the IF trajectories

depicted in Figure 5, together with the GPS records, are shown in

Figure 6. It can be seen that these estimated source ranges are in

good agreement with the GPS records.

Figure 7 depicts the processing results for all five tones. In

Figures 7A,B, normalized cross correlation (NCC) is used to

quantify the similarity between two TFDs,

NCC �
1

MN∑M
m�1∑N

n�1 S1 m, n( ) − �S1( ) S2 m, n( ) − �S2( )������������������������
1

MN∑M
m�1∑N

n�1 S1 m, n( ) − �S1( )2√ ������������������������
1

MN∑M
m�1∑N

n�1 S2 m, n( ) − �S2( )2√ ,

(11)

where �S represents the mean value of a TFD S. Figure 7A

shows that, with the increase of the number of compensation

points, the NCC coefficient between the TFDs of F-STFT and

STFT quickly approaches 1, i.e., the TFD of STFT can be well

approximated by the TFD of F-STFT. Same goes for the

circumstance of F-DopplerCT and DopplerCT as Figure 7B

shown, where, affected by the complexity of computing the

advanced TFA method, the NCC coefficient finally

approaches a number very close to 1 but not exactly 1. In

Figures 7C,D, mean deviation is used to quantify the

difference between the estimated source range and the

GPS recording. F-DopplerCT has less deviation than

F-STFT in the mass. In addition, the mean deviation of

F-STFT and F-DopplerCT is very close to that of STFT

and DopplerCT (dash lines), indicating that power

spectrum approximation hardly affects the accuracy of

estimates in practice. Figures 7E,F show the run time of

computing the TFD. It can be seen that the run time of

F-STFT and F-DopplerCT increases linearly with the

number of compensation points. When the number is

small enough, power spectrum approximation significantly

improves the computational efficiency of TFD. The average

run time of computing TFDs of the five tones are tabulated in

Table 1. Obviously, the average run time of DopplerCT is

longer than that of STFT due to the complicated

computation of the advanced TFA method. But the

average run time of F-DopplerCT (one iteration) is only

slightly longer than that of F-STFT. Comparing with the two

conventional methods STFT and DopplerCT, the run time

can be saved up to 85% and 88.2% by the approximation

processing, respectively. The high performance of

computational efficiency of the suggested framework is

confirmed in this example.

5 Conclusion

This paper perfects the application of cross-spectrum

processing in accelerating Doppler-related parameter

TABLE 1 Average run time of computing TFDs of the five tones. The percentage of run time of F-STFT and F-DopplerCT are computed referring to the
average run time of conventional methods STFT and DopplerCT. As the two bold numbers indicate, the average run time of conventional
methods STFT and DopplerCT is able to be dropped to 15% and 11.8% by applying the framework shown in Figure 4, respectively.

Run time STFT F-STFT with n-point compensation

1 2 3 4 5 6 8 10 15 20 30

Average (s) 2.68 0.40 0.79 1.10 1.56 1.96 2.37 3.16 3.95 5.86 7.90 11.86

Percentage (%) 100 15.0 29.5 40.8 58.2 73.1 88.4 117.9 147.0 218.2 294.4 441.9

Run time STFT F-DopplerCT with n-point compensation

1 2 3 4 5 6 8 10 15 20 30

Average (s) 3.33 0.40 0.79 1.11 1.58 1.99 2.43 3.19 4.01 5.93 7.97 11.94

Percentage (%) 100 11.8 23.8 33.4 47.5 59.8 72.8 95.8 120.3 178.0 239.2 358.7
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estimation for a tone source that travels past a single receiver in

a straight line at constant speed, where time-consuming

advanced TFA methods are widely used to suppress noise

when extracting the continuous Doppler shift of a overhead

pass. The conventional way of applying cross-spectrum

processing is overshadowed by the phenomena of unknown

Doppler shift offset and power spectrum estimation error. In

this paper, the conventional cross-spectrum processing is

proven to be an approximated estimation of the power

spectrum in a small frequency interval, instead of exactly

computing power spectrum over the total Nyquist frequency

interval. This fact not only interprets why the method is highly

computational efficiency but also reveals that reasons behind

the two phenomena are the frequency aliasing and the

approximation error, respectively. Based on these

understandings, an revised framework of applying the cross-

spectrum processing to accelerate the computation of TFDs is

provided especially for TFDs of advanced TFA methods.

Processing to the SWellEx-96 experiment data supports the

above explanations for the two phenomena and demonstrates

that the computational efficiencies of STFT and DopplerCT

could be improved up to 85% and 88.2%, respectively, without a

noticeable impact on the accuracy of parameter estimates. The

feature of this proposed framework is apparent: a similar

function of bandpass filtering is achieved with only FFT

operations. This framework can be applied to accelerate the

computations of most TFA methods. In addition, due to the

feasibility of parallel computing in precision compensation, this

framework is very meaningful in practical applications where

the execution time is an important performance index. For

future work, as this study focuses on only the narrowband case

of applying cross-spectrum technique [12], relationships and

applicability of the proposed framework to the broadband case

is worth examining.
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6 Appendix Doppler frequency shift

Consider an ideal case where a pure-tone source travels along

a straight line at a constant speed v and passes by a fixed receiver,

as shown in Figure A1. The sound speed is given by a constant c

(the average sound speed of a propagation medium in practice).

The time when the source passes through CPA is denoted by τc,

and at the very moment, the distance between the source and the

receiver is represented by dc.

Due to the propagation delay, the acoustic signal emitted by

the source at time τ (source time) arrives at the receiver node at a

later time t (receiver time), given by:

t � τ + R τ( )/c, (A1)

where R(τ) represents the slant range between the source and the
receiver at time τ. According to the geometry relationship shown

in Figure A1, R(τ) can be derived as:

R τ( ) �
�������������
v2 τ − τc( )2 + d2

c

√
. (A2)

Combining Eqs A1, A2, we obtain:

τ � c2t − v2τc −
���������������������
v2c2 t − τc( )2 + d2

c c2 − v2( )
√

c2 − v2
. (A3)

Especially, when τ = τc, we have:

tc � τc + R τc( )/c
� τc + dc/c , (A4)

where tc denotes the moment that sounds emitted at τc have

propagated to the receiver.

Suppose that the phase of a tone signal with a frequency f0
emitted at time τ is:

ϕ τ( ) � 2πf0τ + ϕ0, (A5)

where ϕ0 denotes a constant initial phase. Then, after the

propagation over the slant range R(τ), ϕ(τ) will be sampled

by the receiver at time t. Combining Eq. A3, the phase of the

received signal at time t can be expressed as

ψ t( ) � ϕ τ( ) � 2πf0τ + ϕ0

� 2πf0

c2t −
���������������������
v2c2 t − τc( )2 + d2

c c2 − v2( )
√

c2 − v2
+ ψ0

, (A6)

where ψ0 � −2πf0
v2τc
c2−v2 + ϕ0 is a constant.

Further, the IF of this tone signal received at time t is given

by [20]:

f t( ) � 1
2π

zψ t( )
zt

� f0
zτ t( )
zt

� f0
c2

c2 − v2
1 − v2 t − τc( )���������������������

v2c2 t − τc( )2 + d2
c c2 − v2( )√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦. (A7)

Eq. A7 represents the regular of the Doppler frequency

shift. By fitting the extracted IF curve of the received tone

signal with Eq. A7, one can thus obtain the estimates of the

Doppler-related parameters, i.e., f0, v, c, τc and dc. Note that if

we denote the radial velocity of the source that is observed at

the receiver as

vr t( ) � zR t( )
zt

� zR τ( )
zτ

zτ t( )
zt

� − v2c

c2 − v2
1 − c2 t − τc( )����������������������

v2c2 t − τc( )2 + dc
2 c2 − v2( )√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦, (A8)

then Eq. A7 can be reformulated as:

f t( ) � f0 1 − vr/c( ), (A9)

where the term of the Doppler frequency shift f0vr/c appears

with an expression that is the same as the expression of the

oscillation frequency in the cross-spectrum

processing (Eq. 5).

FIGURE A1
The trajectory of a tone source as it travels past the receiver
node in a straight line at constant velocity v. R gives the slant range
between the receiver and the source. The distance from the
receiver to the CPA is denoted by dc.
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Noise-reductionmethods are an area of intensive research in signal processing.

In this article, a new conjugate gradient method is proposed for noise reduction

in signal processing and image restoration. The superiority of this method lies in

its employment of the ideas of accelerated conjugate gradient methods in

conjunction with a new adaptive method for choosing the step size. In this

work, using some assumptions, the weak convergence of the designedmethod

was established. As example applications, we implemented ourmethod to solve

signal-processing and image-restoration problems. The results of our

numerical simulations demonstrate the effectiveness and superiority of the

new approach.

KEYWORDS

signal processing, image restoration, weak convergence, noise reduction, conjugate
gradient method

1 Introduction

Noise reduction is an important step in signal pre-processing; it is widely applied in

many fields, including underwater acoustic imaging [1, 2], pattern recognition [3], and

target detection and feature extraction [4], among others [5]. In this article, a new

approach based on a conjugate gradient method is derived from mathematical principles.

We consider the degradation model of signal or image such as:

y � Aω + ε, (1)

where ω ∈ RN is an original signal or image,A is the degradation operator, ε is the noise,

y ∈ RM is the observed data. The essence of noise reduction is solving Eq. 1 to obtain ω.

The solving of Eq. 1 can be considered as the following problem [6]:

min
ω∈RN

1
2
‖y −Aω‖2 s.t. ‖ω‖1 ≤ r, (2)

where r > 0 and ‖ · ‖1 is the ℓ1 norm. Let C � {ω ∈ RN: ‖ω‖1 ≤ r} and Q = {y}, then Eq. 2

can be seen as a split feasibility problem (SFP) [7–10]. Thus, we translate the problem of

noise reduction to SFP, which can be described as:
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find ω ∈ C such that Aω ∈ Q, (3)

where H1 and H2 are real Hilbert spaces, A: H1 → H2 is a

bounded linear operator, the closed and convex set C ⊂ H1

(C ≠ ∅), and Q ⊂ H2 (Q ≠ ∅). In order to solve the SFP, Byrne

[11, 12] presented the CQ algorithm, which creates a

sequence {ωi}:

ωi+1 � PC ωi − τ iA* I − PQ( )Aωi( ), (4)

where PC is the projection to C, PQ is the projection to Q,

τi ∈ (0, 2
‖A‖2), and A* is the adjoint operator of A. For convex

functions c and q, the definitions of C and Q are

C � ω ∈ H1: c ω( )≤ 0{ } and Q � u ∈ H2: q u( )≤ 0{ }.
There have been some research works devoted to solving Eq.

3. In 2004, Yang [13] presented a relaxed CQ algorithm using PCi

and PQi to replace PC and PQ. Here, we define two sets at point

ωi by

Ci � ω ∈ H1: c ωi( )≤ 〈ζ i,ωi − ω〉{ }, (5)
where ζi ∈ zc(ωi), and

Qi � u ∈ H2: q Aωi( )≤ 〈ϑi,Aωi − u〉{ }, (6)

where ϑi ∈ zq(Aωi). For all i > 1, clearly, C ⊆ Ci and Q ⊆ Qi. In

addition, Ci and Qi are half-spaces. Furthermore, referring to

[14], we define

fi ω( ) � 1
2
‖ I − PCi( )ω‖2 + 1

2
‖ I − PQi( )Aω‖2, (7)

where Ci andQi are given as in Eqs. 5, 6. In this specific case, their

gradient is

∇fi ω( ) � I − PCi( )ω +A* I − PQi( )Aω. (8)

Yang [13] presented a relaxed CQ algorithm in a finite-

dimensional Hilbert space:

ωi+1 � PC ωi − τ i∇fi ωi( )( ), (9)

where τi ∈ (0, 2
‖A‖2). Notice that calculating ‖A‖ is complex and

costly whenA is a high-dimensional dense matrix. In 2005, Yang

[15] presented a new adaptive step size τi, which is defined as:

τi � ρi
‖∇fi x( )‖, (10)

where

∑∞
i�1

ρi � ∞, ∑∞
i�1

ρ2i < +∞ .

However, Yang’s step size (Eq. 10) requires that Qi is bounded

and the matrix A is full rank. Recently, Wang [16] absolutely

eliminated these problems. Considering the CQ algorithm, López

[17] introduced a novel step size to overcome these problems;

this is defined as:

τ i � ρifi xi( )
‖∇fi xi( )‖2, (11)

where ρi ∈ (0, 4). With Lopez’s step size (Eq. 11), it was proved

that {ωi} in Eq. 9 weakly converges to the solution of the SFP.

In 2005, Qu and Xiu [18] introduced a relaxed CQ algorithm

that is improved by using an Armijo line search in Euclidian

space. In 2017, on the basis of the above application, Gibali [19]

extended this to Hilbert spaces, which proved that {ωi} weakly

converges to a solution of the SFP as follows:

FIGURE 1
From top to bottom: original signal, observed signal, and signals recovered by López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s
algorithm, and Algorithm 1.
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yi � PCi ωi − τ i∇fi ωi( )( ),
ωi+1 � PCi ωi − τ i∇fi yi( )( ), (12)

where τi � γℓli , γ > 0, ℓ ∈ (0, 1), li is the smallest nonnegative

integer, and ] ∈ (0, 1) satisfies:

τ i‖∇fi ωi( ) − ∇fi yi( )‖≤ ]‖ωi − yi‖.

In 2020, Kesornprom et al. [20] introduced a gradient-CQ

algorithm that derived a weak-convergence theorem for

solving the SFP in the framework of Hilbert spaces. This is

described as:

yi � ωi − τ i∇fi ωi( ),
ωi+1 � PCi yi − φi∇fi yi( )( ),

where Ci, fi, and ∇fi are given in Eqs 5, 7, 8, respectively, and

τ i � ρifi ωi( )
‖∇fi ωi( )‖2 + θi

, and

φi �
ρifi yi( )

‖∇fi yi( )‖2 + θi
, 0< ρi < 4, 0< θi < 1.

The conjugate gradient method [21] is a commonly used

acceleration scheme in the steepest descent method. The

conjugate gradient direction of f at ωi is

di+1 � −∇fi ωi( ) + βidi,

where d0 = −∇f(ω0) and βi ∈ (0, ∞). In this article, motivated by

previous works [22–24], a new viscosity approximation method

based on the conjugate gradientmethod is introduced. Many other

iterative methods of solving the SFP have been proposed [25–29].

Herein, combining the relaxed CQ algorithm with a new step

size and the conjugate gradient method, we find the solution of

noise reduction problem in Eq. 1 by solving the SFP in Hilbert

spaces with a novel approach. Section 2 gives some basic

definitions and lemmas. In Section 3, the theorem for proving

the weak convergence of our method is presented. In Section 4, we

present experimental results and compare them with the relaxed

CQ algorithms of López [17], Yang [15], and Sakurai and Iiduka

[20]. Finally, conclusions are given in Section 5.

2 Preliminaries

Throughout this article, to obtain our results, some technical

lemmas are used.

Lemma 2.1 [30]. Suppose the nonempty set C ⊂ H1 is closed and

convex. Thus, for all h1, h2 ∈ H1 and c ∈ C,

FIGURE 2
Comparison of recovered color images of Lena, peppers, house, panda using different algorithms with 1,000 iterations. From left to right:
original image, noised image, López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s algorithm, and Algorithm 1.
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(i) 〈h1 − PCh1, c − PCh1〉 ≤ 0;

(ii) ‖PCh1 − PCh2‖2 ≤ 〈PCh1 − PCh2, h1 − h2〉;
(iii) ‖PCh1 − c‖2 ≤ ‖h1 − c‖2 − ‖PCh1 − h1‖2.

From Lemma 2.1(ii), let I express the identity operator; then,

I − PC is a firmly nonexpansive operator, i.e.,

‖ I − PC( )h1 − I − PC( )h2‖2 ≤ 〈 I − PC( )h1 − I − PC( )h2, h1
− h2〉, ∀h1, h2 ∈ H1.

Definition 1. Suppose R is a set of real numbers, G: H → R is

convex; the definition of its subdifferential at w is then

zG w( ) � ζ ∈ H|G z( )≥G w( ) + 〈ζ , z − w〉, ∀ z ∈ H{ }.

To obtain our results, we prove the following lemma.

Lemma 2.2. Let fi(ω) be defined in Eq. 7; then ∇fi is Lipschitz

continuous with Lipschitz constant 1 + ‖A‖2
Proof. For any p, q ∈ H,

‖∇fi p( ) − ∇fi q( )‖ � ‖ I − PCi( )p − I − PCi( )q +A* I − PQi( )Ap −A* I − PQi( )Aq‖
≤ ‖p − PCip + PCiq − q‖ + ‖A* I − PQi( )Ap −A* I − PQi( )Aq)‖
≤ ‖p − q‖ + ‖A‖‖ I − PQi( )Ap − I − PQi( )Aq)‖
≤ ‖p − q‖ + ‖A‖‖Ap −Aq‖
≤ ‖p − q‖ + ‖A‖2‖p − q‖
� 1 + ‖A‖2( )‖p − q‖.

So, ∇fi is 1 + ‖A‖2-Lipschitz continuous.

3 Algorithm and convergence

A novel gradient-CQ algorithm is established in this section.

Furthermore, we prove that the sequence created by our

approach is convergent.

Algorithm 1. Let α1, α2, βi, β̂i ∈ (0, 1), and the sequences {di},

{ωi}, {yi}, {d̂i}, and {zi} be denoted as:

di+1 � −τ i∇fi ωi( ) + α1βidi,
yi � ωi + di+1,

d̂i+1 � −φi∇fi yi( ) + α2β̂id̂i,

zi � yi + d̂i+1,
ωi+1 � PCi zi( ),

where τi � ρifi(ωi)
‖∇fi(ωi)‖2+θi, φi � ρifi(yi)

‖∇fi(yi)‖2+θi, and 0 < ρi < 4, 0 < θi < 1.

We next state our weak-convergence theorem.

Theorem 3.1. The following assumptions hold:

(C1) inf
i
ρi(4 − ρi)> 0;

(C2) lim
i→∞ θi � 0;

(C3) lim
i→∞ βi � 0, lim

i→∞ β̂i � 0

(C4) {(I − PCi)ωi} and {(I − PQi)Aωi} are bounded.
So, {ωi} inAlgorithm 1 converges weakly toω* ∈Ω, which is the

nonempty solution set of the SFP.

FIGURE 3
Comparison of SNR (left) and PSNR (right) values resulting from image recovery using the four algorithms with 1,000 iterations.

FIGURE 4
Comparison of CT images of a knee joint recovered using different algorithms with 500 iterations. From left to right: original image, noised
image, López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s algorithm, and Algorithm 1.
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Proof. First, by using mathematical induction, we show

that {di} and {d̂i} are bounded. Assume that ‖di‖ ≤M holds, for

some i ≥ i0. Assumption C3 implies that there exists i0 ∈ N

such that βi ≤
1
2, ∀ i ≥ i0. Let M � max{‖di0‖, 2 sup

i≥1
‖τi[(I − PCi)

ωi +A*(I − PQi)Aωi]‖}<∞. From Algorithm 1, the triangle

inequality guarantees that

‖di+1‖ � ‖ − τ i I − PCi( )ωi +A* I − PQi( )Aωi[ ] + α1βidi‖
≤ ‖τ i I − PCi( )ωi +A* I − PQi( )Aωi[ ]‖ + α1βi‖di‖
≤M,

which means that ‖di‖ ≤ M for all i ≥ i0, so {di} is bounded.

Assume that ‖d̂i‖≤ M̂ is true for some i ≥ i0 and let M̂

� max{‖d̂i0‖, 2supi≥1‖φi[(I − PCi)xi +A*(I − PQi)Axi]‖}<∞.

As with the proof that ‖di‖ is bounded, we deduce

‖d̂i+1‖ � ‖ − φi I − PCi( )yi +A* I − PQi( )Ayi[ ] + α2β̂id̂i‖
≤ ‖φi I − PCi( )yi +A* I − PQi( )Ayi[ ]‖ + α2β̂id̂i‖
≤ M̂.

Let z ∈ Ω. Since Q ⊆ Qi and C ⊆ Ci, we obtain Az �
PQi(Az) � PQ(Az) and z � PCi(z) � PC(z). We have ∇fi(z) =

0. From Lemma 2.1(iii),

‖ωi+1 − z‖2 � ‖PCi zi( ) − z‖2
≤ ‖zi − z‖2 − ‖PCi zi( ) − zi‖2
� ‖zi − z‖2 − ‖ωi+1 − zi‖2.

(13)

Combining Lemma 2.1(ii), Eq. 7, and Eq. 8, we obtain

〈∇fi yi( ), yi − z〉 � 〈 I − PCi( )yi, yi − z〉 + 〈A* I − PQi( )Ayi, yi − z〉
� 〈 I − PCi( )yi, yi − z〉 + 〈 I − PQi( )Ayi,Ayi −Az〉
≥ ‖ I − PCi( )yi‖2 + ‖ I − PQi( )Ayi‖2
� 2fi yi( ).

(14)

as with Eq. 14, it follows that

〈∇fi ωi( ),ωi − z〉≥ 2fi ωi( ).
notice that

‖yi − z − φi∇fi yi( )‖2 � ‖yi − z‖2 + φ2
i ‖∇fi yi( )‖2 − 2φi〈∇fi yi( ), yi − z〉

≤ ‖yi − z‖2 + φ2
i ‖∇fi yi( )‖2 − 4φif yi( )

� ‖yi − z‖2 + ρ2i
f2
i yi( )

‖∇fi yi( )‖2 + θi( )2‖∇fi yi( )‖2

−4ρi
f2
i yi( )

‖∇fi yi( )‖2 + θi

≤ ‖yi − z‖2 + ρ2i
f2
i yi( )

‖∇fi yi( )‖2 + θi( )2 ‖∇fi yi( )‖2 + θi( )
−4ρi

f2
i yi( )

‖∇fi yi( )‖2 + θi

� ‖yi − z‖2 − ρi 4 − ρi( ) f2
i yi( )

‖∇fi yi( )‖2 + θi
.

(15)

similar to Eq. 15, we deduce

‖ωi − z − τ i∇fi ωi( )‖2 � ‖ωi − z‖2 + τ2i ‖∇fi ωi( )‖2 − 2τi〈∇fi ωi( ),ωi − z〉
≤ ‖ωi − z‖2 + τ2i ‖∇fi ωi( )‖2 − 4τifi ωi( )
� ‖ωi − z‖2 + ρ2i

f2
i ωi( )

‖∇fi ωi( )‖2 + θi( )2‖∇fi ωi( )‖2

−4ρi
f2

i ωi( )
‖∇fi ωi( )‖2 + θi

≤ ‖ωi − z‖2 + ρ2i
f2

i ωi( )
‖∇fi ωi( )‖2 + θi( )2 ‖∇fi ωi( )‖2 + θi( )

−4ρi
f2

i ωi( )
‖∇fi ωi( )‖2 + θi

� ‖ωi − z‖2 − ρi 4 − ρi( ) f2
i ωi( )

‖∇fi ωi( )‖2 + θi
.

(16)

Furthermore, combining Algorithm 1, and Eq. 15, we have

‖zi − z‖2� ‖yi − z − φi∇fi yi( ) + α2β̂id̂i‖2
� ‖yi − z − φi∇fi yi( )‖2 + ‖α2β̂id̂i‖2
+ 2〈yi − z − φi∇fi yi( ), α2β̂id̂i〉
≤ ‖yi − z − φi∇fi yi( )‖2
+ 2〈yi − z − φi∇fi yi( ) + α2β̂id̂i, α2β̂id̂i〉
≤ ‖yi − z − φi∇fi yi( )‖2 + 2α2β̂i〈zi − z, d̂i〉

≤ ‖yi − z‖2 − ρi 4 − ρi( ) f2
i yi( )

‖∇fi yi( )‖2 + θi
+ β̂iM̂,

(17)

where M̂ � sup
i∈N

2α2〈zi − z, d̂i〉. As with Eq. 17, we deduce

FIGURE 5
Comparison of CT images of a head recovered using different algorithms with 500 iterations. From left to right: original image, noised image,
López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s algorithm, and Algorithm 1.
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‖yi − z‖2 � ‖ωi − z − τ i∇fi ωi( ) + α1βidi‖2
≤ ‖ωi − z − τ i∇fi ωi( )‖2 + 2α1βi〈yi − z, di〉

≤ ‖ωi − z‖2 − ρi 4 − ρi( ) f2
i ωi( )

‖∇fi ωi( )‖2 + θi
+ βiM,

(18)

where M � sup
i∈N

2α1〈yi − z, di〉. Thus, from Eqs 13, 17, 18, it

holds that

‖ωi+1 − z‖2 ≤ ‖yi − z‖2 − ρi 4 − ρi( ) f2
i yi( )

‖∇fi yi( )‖2 + θi
+ β̂iM̂

−‖ωi+1 − yi + φi∇fi yi( ) − α2β̂i d̂i‖2

≤ ‖ωi − z‖2 − ρi 4 − ρi( ) f2
i ωi( )

‖∇fi ωi( )‖2 + θi
+ f2

i yi( )
‖∇fi yi( )‖2 + θi

( )
+ βiM + β̂iM̂( ) − ‖ωi+1 − yi + φi∇fi yi( ) − α2 β̂i d̂i‖2.

(19)

from Theorem 3.1(C3) and 0 < ρi < 4, we deduce

‖ωi+1 − z‖≤ ‖ωi − z‖.
Therefore, lim

n→∞‖ωi − z‖ exists; hence {ωi} is bounded.

Consequently, {yi} and {zi} are bounded. Back to the previous

step (Eq. 19), we obtain

lim inf
i→∞

ρi 4 − ρi( ) f2
i ωi( )

‖∇fi ωi( )‖2 + θi
+ f2

i yi( )
‖∇fi yi( )‖2 + θi

( ) � 0,

which implies by (C2) and (C3) of Theorem 3.1 that

lim
i→∞

f2
i ωi( )

‖∇fi ωi( )‖2 � lim
i→∞

f2
i yi( )

‖∇fi yi( )‖2 � 0. (20)

furthermore, it yields

‖∇fi ωi( )‖ � ‖∇fi ωi( ) − ∇fi z( )‖≤L‖ωi − z‖,
‖∇fi yi( )‖ � ‖∇fi yi( ) − ∇fi z( )‖≤ L‖yi − z‖, (21)

where L � 1 + ‖A‖2. This implies that ‖∇fi(ωi)‖ and ‖∇fi(yi)‖ are
bounded. From Eqs 20, 21, we have

lim
i→∞

fi ωi( ) � lim
i→∞

fi yi( ) � 0,

which implies

lim
i→∞

‖ I − PCi( )ωi‖ + ‖ I − PQi( )Aωi‖( )
� lim

i→∞
‖ I − PCi( )yi‖ + ‖ I − PQi( )Ayi‖( ) � 0.

Moreover, from Eq. 19, we have

lim
i→∞

‖ωi+1 − yi + φi∇fi yi( ) − α2β̂id̂i‖ � 0. (22)
We notice that

lim
i→∞

φi‖∇fi yi( )‖ � lim
i→∞

ρifi yi( )
‖∇fi yi( )‖2 + θi

‖∇fi yi( )‖( ) � 0. (23)

Therefore, combining Eqs. 22, 23 and lim
i→∞ β̂i � 0, we have

lim
i→∞

‖ωi+1 − yi‖ � 0.

In addition, from Algorithm 1 and Theorem 3.1(C3), we obtain

lim
i→∞

‖yi − ωi‖ � lim
i→∞

τi‖∇fi ωi( )‖( ) � 0.

Then, we deduce

FIGURE 6
Comparison of SNR values of the knee joint (left) and head (right) images resulting from image recovery using the four algorithms with
500 iterations.

FIGURE 7
Original image.
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lim
i→∞

‖ωi+1 − ωi‖ � 0,

considering {ωi} is bounded. Consequently, we can find a

subsequence {ωik} → ω* and ω* ∈ H1. Subsequently, we prove

ω* ∈ Ω. Using Eq. 5, and the fact that ωk+1 ∈ Cik, we have

c ωik( )≤ 〈ζ ik,ωik − ωik+1〉,

where ζ ik ∈ zc(ωik). Applying the boundedness of zc, it follows

that

c ωik( )≤ ‖ζ ik‖‖ωik − ωik+1‖→ 0, k → ∞ . (24)

From ωik.ω* and Eq. 24, we deduce

c ω*( )≤ lim inf
k→∞

c ωik( )≤ 0.

FIGURE 8
Versions of the image in Figure 7 with sampling rates of 30%, 40%, 50%, and 60% from left to right.

FIGURE 9
Comparison of images recovered using the four algorithms. From top to bottom: López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s
algorithm, and Algorithm 1; from left to right: sampling rates of 30%, 40%, 50%, and 60%.
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Hence, ω* ∈ C. Then, we show that Ax* ∈ Q. The fact that

PQik
(Aωik) ∈ Qik implies

q Aωik( )≤ 〈ϑik,Aωik − PQik
Aωik( )〉, (25)

where ϑik ∈ zq(Aωik). Then, we get
q Aωik( )≤ ‖ωik‖‖Aωik − PQik

Aωik( )‖→ 0, k → ∞ .

Moreover, according to Eq. 25, we deduce

q Aω*( )≤ lim inf
k→∞

q Aωik( )≤ 0.
Therefore, Aω* ∈ Q. We can thus draw the conclusion that the

sequence {ωi} → Ω.

4 Experimental results

In this section, we describe numerical simulations to

demonstrate the applications of Yang’s algorithm [15], López’s

algorithm [17], Sakurai and Iiduka’s algorithm [20], and the

proposed algorithm (Algorithm 1) in signal processing and

image recovery. The results of our simulations show that the

proposed method has higher efficiency than the well-known

methods in the literature. The experiments were carried out in

the environment of Matlab2016 and the CPU is Intel(R)

Core(TM) i5-8265U with @1.60GHz 1.80 GHz.

4.1 Signal processing

In the test, let original signal has m nonzero components, we

chooseN = 4,096,M = 2048, andm = 128 according to Eq. 1 . The

mean value and variance of Gaussian noise are 0 and 10–4,

respectively. The initial point ω1 = (1,1,. . .,1)T, ω0 =

(0,0,. . .,0)T, α1 = 0.8, α2 = 0.9, ρi = 1.1, θi � 1
i3 and r = m. The

mean squared error (MSE) can be chosen as the evaluation

criterion, which is defined as:

MSE � 1
N
‖ω* − ω‖2,

where ω is the original signal, ω* is the recovered signal. We set

the stopping criteria MSE ≤10–5. Figure 1 shows the results of this
experiment. These indicate that the number of iterations and

CPU time required by our approach are the best of the four

methods.

4.2 Image recovery

The value of each pixel in a grayscale image is in the range

[0.255]. The image restoration can be described as the minimizer:

min
�s∈C

‖A�s − y‖2,

where ‖·‖2 is the standard Euclidean norm, y is the observed

image, �s is the approximation of the original image, and A is a

blurring operator. When a color image is processed, we divide it

into three channels: red, green, and blue. Supposing the size of

the image in each channel is M × N, we have the formula for

the MSE:

MSE � 1
MN

∑M−1

i�0
∑N−1

j�0
‖�s i, j( ) − s i, j( )‖2,

where �s and s are the restored and original images, respectively.

FIGURE 10
Comparison of the SNR values of the images in Figure 9.
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Seeking to illustrate the effects of image recovery, we use the

signal-to-noise ratio (SNR) and peak SNR (PSNR), which are

defined:

SNR ≔ 20 log10
‖�s‖2

‖s − �s‖2, PSNR ≔ 20 log10
255




MSE

√ .

In short, larger SNR and PSNR values indicate better restoration

of the image. Figure 2 show the results of different color images

recovery. Figure 3 shows a comparison of the SNR and PSNR

values for images recovered using the four algorithms. The

experimental results show that the proposed algorithm always

has the largest SNR and PSNR values for different images, which

clearly indicates that the proposed algorithm is more effective in

recovery than other algorithms.We next applied our method to

medical images. Figures 4, 5 show computed tomography (CT)

images of a knee joint and a head, and Figure 6 shows a

comparison of the SNR values resulting from recovery using

each algorithm for these images. From Figure 6, it can be seen

clearly that the SNR of our method(the red line) is significantly

higher than other methods.

Figure 7 shows an original grayscale image. In Figure 8, we

investigate the use of our method on this image with different

sampling rates. In Figure 9, we show the image recovered by the

four algorithms with different sampling rates. Figure 10 shows a

comparison of the SNR values of these images. It can clearly be

seen that the performance of our method is the best.Finally, it can

clearly be seen that our method provides higher SNR and PSNR

values than López’s algorithm, Yang’s algorithm, or Sakurai and

Iiduka’s algorithm.

5 Conclusion

In this article, we propose a new conjugate gradient method

for signal recovery. The superiority of our method lies in its

employment of the ideas of accelerated conjugate gradient

methods with a new adaptive way of choosing the step size.

Under some assumptions, the weak convergence of the designed

method was established. As application demonstrations, we

implemented our method to solve signal-processing and

image-restoration problems. The results of our numerical

simulations verify the effectiveness and superiority of the new

approach. However, in the numerical experiments in this paper,

we always assume that the noise is known. In the future work, we

will devote to signal and image recovery research without prior

knowledge of noise by optimization method.
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A simplified model for acoustic
focalization in environments with
seabed uncertainties
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Institute of Precision Mechanics, Xi’an, China

Introduction: Parameter mismatch poses a challenge to source localization in cases
involving environments with seabed uncertainties. By including environmental
parameters in the search space, focalization can be used to estimate the location
of the source using environmental information that is limited a priori. Methods: To
reduce the number of parameters, a simplified seabed model is proposed here for
such focalization. Only two geoacoustic parameters—the amplitude F and phase cF
of reflection—are used to describe the seabed. Focalization is generally tested using
genetic algorithms for the colored noise case (COLNOISE) benchmark problem.
Results: The proposed simplified model can obtain the location of the source more
easily than a layeredmodel. Due to its advantage in terms of parameter sensitivity and
inter-coupling, the simplified model can ensure the robustness of the results of
inversion. The proposed method was tested on a broadband signal in the Asian Seas
International Acoustics Experiment (ASIAEX2001), where both the location and the
geoacoustic parameters were easily inverted. Discussion: The simplified model
provides a sufficiently high acoustic resolution for focalization, and its reduction
of the geoacoustic parameters helpes solve the problem of inversion.

KEYWORDS

focalization, matched field processing, geoacoustic parameter, genetic algorithm,
geoacoustic model

1 Introduction

Matched field processing (MFP) is a well-known technology for solving inversion problems
by comparing acoustic data with solutions to wave equations [1]. Depending on the unknown
quantity, MFP can be divided into source localization [2], tomography [3], and geoacoustic
inversion [4, 5]. Owing to the temporal and spatial variations in environmental parameters in
the ocean and difficulties of marinemeasurement, there is a mismatch between the ocean and its
environmental model, which is a challenge for MFP. To overcome the mismatch and accurately
estimate the location of the source with limited a priori environmental information, focalization
has generally been used [6]. By including the environment in the parameter search space,
focalization circumvents stringent requirements pertaining to accurate knowledge of the
environment.

Because focalization involves more unknown parameters than traditional localization, it
leads to a more complex optimization problem. In practical application, it becomes necessary to
use a dimension reduction algorithm to parameterize the environment. The dimension
reduction problem was solved by means of feature extraction [7–9]. A typical example is
the empirical orthogonal function (EOF) [10, 11]. Using principal component extraction, the
sound speed profile can be described by three to five parameters. However, environmental
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parameterization is often more complicated in case of the seabed. As
the direct measurement of the bottom is difficult and expensive, it is
more challenging to obtain parameters of the seabed than the sound
speed profile. Actual structure of the bottom of the sea is generally too
complex to mathematically represent. Therefore, it is usually described
by an effect-equivalent description. The most common method in this
vein involves describing a certain number of bottom layers using the
sound speed, density, and attenuation. When the half-space model is
used, the seabed is represented by three parameters. The number of
geoacoustic parameters increases rapidly with the number of layers in
the seabed, where this complicates focalization owing to sensitivity-
and coupling-related problems. Qu and Hu proposed a single-
parameter seabed model and designed a relevant method of
geoacoustic inversion [12, 13]. As this single-parameter seabed
model can calculate only an incoherent sound field, it is
inapplicable to MFP. Shang developed a method called the rapid
bottom characteristic using two parameters, P and Q, to analyze
acoustic problems in shallow water [14, 15]. They were able to
describe different types of regions of propagation, Green’s function,
and the waveguide invariant [16–18]. Similarly, reflection loss was
introduced by Harrison to explain reverberation [19]. The simplified
seabed model with one or two parameters has been applied to
geoacoustic inversion in several previous studies, but whether it
can be used as an effective acoustic lens for source focalization
remains to be studied.

This paper proposes a simplified seabed model with two
parameters for the reflection of sound from the bottom, and
examines focalization by using a small number of geoacoustic
parameters. Section 2 discusses general aspects of the simplified
geoacoustic model. In Section 3, focalization based on the
simplified model is tested on the colored noise case (COLNOISE)
benchmark problem. Compared with the layered model, some
characteristics of the simplified model are discussed by using the
objective function and marginal probability density. The linear
relation between a new geoacoustic parameter and acoustic
quantities is presented to help solve the inversion problem. In
Section 4, the broadband focalization of data from the Asian Seas
International Acoustics Experiment (ASISEX) in the East China Sea is
analyzed, and the result shows that the search for the focalization
parameter converges to the correct location of the source and the
geoacoustic parameters. The conclusions and directions for future
work are summarized in Section 5.

2 Simplified geoacoustic model for
focalization

When sound interacts with the seabed, the result of acoustic
reflection can be summarized in terms of amplitude and phase
change. To simplify the geoacoustic model, the natural choice is to
describe the seabed based on the amplitude and phase parameters of
reflection. Past studies in the area have used parameters that are
similar in physical significance, where some of them can be converted
into one another under certain conditions. For compatibility with past
work, this paper uses Jones’s mathematical expression F for the
amplitude of reflection. The bottom loss BL can be expressed as [20]

BL � F · φ. (1)

Based on a large amount of historical data and theoretical
derivation, it is well known that BL for a high-speed seabed whose
sound speed is higher than the sound speed of sea water is always
proportional to the grazing angle φ for a small value of the latter.
Considering long-distance propagation, a large grazing angle
yields is a large value of BL and a large number of reflections from
the seabed. The resulting acoustic energy is almost completely
consumed by reflection from the seabed. On the contrary, the
value of BL for a small grazing angle is smaller, and there are
fewer reflections off the seabed. The acoustic energy for a small
grazing angle is still effective at long distances and becomes the
dominant component in the far field. Therefore, the slope of the
bottom loss F (dB/rad) can be used to describe the change in amplitude
in the far field.

For representative phase calculations, which are necessary for
MFP, the phase parameter must be given at the same time as the
amplitude parameter. Based on the half-space model, the phase change
θ can be calculated as

θ � −2 tan−1 cos 2 φ − n2( )1/2
m sinφ

, (2)

where n is the ratio of the sound speed in water to that on the seabed,
and m is the ratio of the density of the seabed to that of water. For a
small grazing angle,

lim
φ ����→ 0

cos 2 φ − n2( )1/2
m sinφ

� +∞ . (3)

Let Y � (cos 2 φ−n2)1/2
m sin φ , then

tan−1 Y φ( ) � π

2
− 1
Y
/

−1( )n+1
2n + 1

Y−2n−1 ≈
π

2
− 1
Y
. (4)

By substituting (4) into (2), the expression for the phase change θ
in the limit of a small grazing angle is

θ ≈ − π + 2m�������
1 − n2( )√ φ ≈ − π + π

φc

φ. (5)

Hence, the phase change increases approximately linearly with the
grazing angle. The reflection phase varies from -π to 0 while the
grazing angle increases from zero to the critical angle φc. We define a
parameter of the reflection phase cF. The phase change is then given by

θ � −π + π

cos−1 cw/cF( )φ. (6)

where the critical angle of total reflection, φc � cos−1(cw/cF), cw is the
sound speed of sea water near the bottom, and cF is the equivalent
speed on the seabed. Compared with the layered model, cF is not the
sound speed at a specific depth. cF is an effect-equivalent description
of sound speed in reflection phase change. Based on Eq. 1–6, the
amplitude parameter F and phase parameter cF can be used to describe
the acoustic properties of the seabed. The coherent sound field for
MFP and other applications can then be calculated. This simplified
model, which can calculate the coherent sound field using few
parameters, is applicable to the sound field beyond the short range
where acoustic energy is dominated by interactions with the seabed at
a small grazing angle. To verify the validity of the approximation in the
simplified model, a section test has been carried out on a multi-layer
seabed.
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3 Testing on benchmark problem of
matched field processing

3.1 COLNOISE benchmark problem

To get a sense of the relative merits of different schemes, the
Naval Research Laboratory has provided a set of simulated data
for MFP testing called the benchmark problem [21, 22].
According to the research objectives of this paper, the
COLNOISE case was selected for a focalization test. The test
environment is shown in Figure 1. The COLNOISE case is a
range-independent waveguide with a depth of 100 m. The 250 Hz
source depth sd is 66 m at a range r = 9.1 km. A vertical line array
(VLA) of 20 hydrophones spanning the water column receives the
signal, which is affected by color noise with a signal-to-noise ratio
(SNR) of 40 dB. The color noise is design to describe the
construction of a cross spectral density for noise due to
breaking waves. The sound speed on the surface of the ocean is
cw(0) � 1500 m/s and that at the bottom is cw(200) � 1750 m/s,
the density of the seabed is ρ � 1.8 g/cm3, and the attenuation
coefficient is α � 0.2 dB/λ. To study the performance of the
simplified model in terms of focalization, the geoacoustic and
localization parameters were inverted, and the sound speed
profile in seawater was set to a known value.

3.2 Focalization based on genetic algorithms

A classic method of inversion based on the genetic algorithm has
been used to test the geoacoustic model, as shown in Figure 2. The
initial population was randomly generated according to the search
space, and the copy field was calculated by the normal mode program
KRAKENC (https://oalib-acoustics.org) to match with signals of the
vertical array. An objective function was used to determine an
individual’s fitness, and offspring replaced part of the population
to approach the fittest population. Following this, a posteriori
probability estimation was carried out on samples of the
optimization process to obtain the complete results. The process
is as shown below.

The first step of focalization is environmental parameterization,
which helps set the search space for the geoacoustic and location-
related parameters. In focalization according to the simplified model,
four parameters were used: the source depth sd, range r, amplitude F,
and phase cF. In focalization using the layered model, seven
parameters were used: the source depth sd, range r, sound speed
on the surface of the seabed cb(0), base speed of sound cb(d), depth of
the sediment layer d, density of the seabed ρ, and attenuation
coefficient α. Bounds of the parameters for these two environments
are given in Table. 1. To investigate whether the geoacoustic model can
guarantee accurate results of location without prior information, the
parameters of the two environments were set with a wide search
interval that could cover different types of seabeds.

The genetic algorithm, which is based on an analogy with
biological evolution, was used to find the global optimum without
performing an exhaustive search [23]. According the results of
environmental parameterization, an initial population was
randomly generated. Then, based on the individual’s fitness of
matching, the population moved to the fittest model vector
through evolutionary steps consisting of selection, crossover, and
mutation. Parameters of the optimization were set as follows: the
population size was 100, reproduction rate was 0.5, crossover rate was
0.8 and mutation rate was 0.08. To collect samples to estimate the a
posteriori probability distributions, 20 independent runs were
executed in parallel.

To suppress ambiguous solutions, a high-resolution objective
function is necessary for focalization. The Bartlett processor was
used to match the “measured” sound field and the copy field. The
objective function ψ(m) is

FIGURE 1
Schematic of environment for the COLNOISE case.

FIGURE 2
Flowchart of focalization.
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ψ m( ) � 1 −
∑N
i�1
QiPi m( )*

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑N
i�1

Qi| |2[ ] ∑N
i�1

pi m( )∣∣∣∣ ∣∣∣∣2[ ]
2, (7)

where Q is the “measured” pressure, P is the replica pressure, m is
the vector in the search space, i is the number of hydrophones, and
N is the total number of hydrophones. The fitness of each
individual is evaluated by the objective function and the final
result of the evolution approaches the optimum value of zero
for a perfect match.

The complete solution to the focalization problem should involve
a measure of uncertainty for the model parameters. The obtained
samples of the search space can be used to estimate the a posteriori
probabilities. Gerstoft offered a semi-empirical method based on the
sampling procedure of the genetic algorithm. The probability σ of the
k-th vector mk is given by [24].

σ mk( ) � exp −ψ mk( )/T[ ]
∑Nobs

j�1
exp −ψ mj( )/T[ ]

, (8)

where Nobs is the number of observed model vectors, and T is
temperature, which is equal to the average value of objective
function of the 50 best samples. The marginal probability
distribution of the l-th parameter obtaining a particular value κ can
be calculated by:

σ ml � κ( ) �
∑Nobs

j�1
exp −ψ mj( )/T[ ]δ mj

l � κ( )
∑Nobs

j�1
exp −ψ mj( )/T[ ]

, (9)

where δ is the Dirac function. Based on the marginal probability
distribution of σ(ml), the robustness of the results can be analyzed.
As theoretical solutions in the normal mode are efficient and
appropriate for inversion problems, forward solutions of the
acoustic equation were calculated by the normal mode model
KRAKENC. By describing reflection off the seabed, parameters of
the simplified model can also be entered into the KRAKENC
programs to calculate the sound field.

3.3 Analysis of results

In the benchmark problem test, all parallel runs converged to the
same optimal vector. The depth of the source sd was 66 m, range r was
9.1 km, amplitude F was 1.9 dB/rad, and phase parameter cF was
1628 m/s. The results of the location parameter show that the
simplified model performs focalization as a layered model if a large
number of configurations of the receive array were used.

The most appealing characteristics of the simplified model when
applied to focalization are intuitively illustrated in Figure 3. The
process of evolution of the first 200 generations for the two
environments is shown in the figure, and values of the objective
function for all parameters of the randomly selected runs of
focalization are given. Even though the evolution in different runs
has random characteristics, a sense of how well each parameter has
been estimated can be obtained from the scatter plot of the objective
function for the two environments. The optimal value of the layered
model (0.003) is significantly lower than that of the simplified model
(0.963). This shows that more parameters can better describe the
details of the seabed. However, the simplified model provides a
sufficiently high acoustic resolution for focalization. In the parallel
runs, almost all the inversion based on the simplified model converged
to the global optimum earlier than that based on the layered model. At
the same time, the optimal value of the geoacoustic parameters was
obtained in the first 200 generations, whereas the geoacoustic
parameters of the layered model could not be determined in the
first few hundred generations. Because the two environments have the
same conditions except for the geoacoustic model, it can be inferred
that the simplified model can reduce the complexity of the inversion
optimization.

The scatter plots that appear as an arch (e.g., c(0), F; cF, and
location-related parameters) that indicate that the parameters had
been well estimated. Plots that appear nearly flat at the base (e.g., d,
cb(d) and α) had been estimated less well. Parameter sensitivity is an
important factor. Some geoacoustic parameters of the layered
model—for example, density ρ—could not significantly affect the
sound field. In the optimization, the insensitive parameters will
make focalization over parameterize with meaningless values of
some vector m. Another important factor is the correlation
between the geoacoustic parameters. The limitation of the layered
model in terms of correlation and sensitivity has been exhaustively
studied [25]. A well-know example is the correlation between d and
cb(d) that is related through the reflection properties. For the layered
model assumption, the combinations of d and cb(d) with different
values can provide almost the same bottom reflection effect. These
combinations will obtain similar values of the objective function and
appear as local optimums in the focalization. The uncertainty in these
correlated parameters generates errors in the estimation of all other
parameters. The advantages of the simplified model have been
analyzed through the ambiguous surface, as shown in Figure 4.
There are clear changes in the objective function in the search
space, which means that the two parameters of the simplified
model are relatively sensitive and contained useful information on
the sound field. No local optimum occurs on the ambiguous surface,
the influence of F and cF on the sound field is independent, and the
correlation between the parameters of the simplified model was weak.
In the ambiguous surface of the two geoacoustic parameters of the
simplified model, as shown in Figure 4, the geoacoustic parameters are
well estimated without any local optimum. The values of the cost

TABLE 1 Environmental parameters for two types of environments considered.

Parameters Bounds Grid

Environment 1 Environment 2

sd (m) [1 100] ─ 1

r (m) [5000 10,000] ─ 100

F (dB/rad) [0.50 3.50] ─ 0.01

ce (m/s) [1550 1800] ─ 1

cb(0) (m/s) ─ [1550 1800] 1

d (m) ─ [100,300] 1

cb(d) (m/s) ─ [1550 1800] 1

ρ (g/cm3) ─ [1.00 2.00] 0.01

α (db/λ) ─ [0.01 1] 0.01
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function of the simplified model are shown in Figure 5. When another
parameter in the simplified is the optimal value, the objective function
increases monotonically with distance from the optimal value. By
virtue of this monotonic characteristic, the optimization of the
focalization is more efficient in the simplified model than the
layered model.

I � λI0
H2r

∑
l
exp −2βlr( ), (10)

where I0 is the intensity at the source, H is the depth of water, λ is
wavelength, and βl is the attenuation of the l-th normal mode, and can
be expressed as

βl � −ln V| |
Sl

, (11)

where V is the reflection coefficient and Sl the span of the l-th normal
mode. The grazing angle of the l-th normal mode is

φl �
lλ

2H
, (12)

The span of the l-th normal mode is

FIGURE 3
Values of the cost function obtained using optimization inversion. The dash lines represent the optimal values. Red represents the layered model. Blue
represents the simplified model.

FIGURE 4
Ambiguous surface for geoacoustic parameters of the simplified
model. The pentagram represents the optimal value.
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Sl � 4H2

lλ
, (13)

It is easy to find the relation between parameters of the amplitude
V and F as

Fφ � 20 log10 V. (14)
Combining the equations above, the intensity I over a range r can

be rewritten as a function of F:

I � λI0
H2r

∑N
l�1
exp − l2λ2rF

80H3 log10 e
( ). (15)

In application, the part in the parentheses is significantly smaller than
one. Replacing the summation with the quadrature, the intensity is
given by

I � ∫
N

0

λI0
H2r

exp( − l2λ2rF

80H3 log10 e
)dl. (16)

The number of effective modes is N = 2H/λ. By including the
Gaussian error function erf(x) � (2/ ��

π
√ )∫x

0
e−η2dη, intensity can be

expressed as

I �
���������
20π log10 e

FHr3

√
I0erf

����������
Fr

20H log10 e

√
⎛⎝ ⎞⎠ (17)

For the far field, assuming Fr≫ 20Hlog 10 e, the simple linear relation
between F and I can be expressed as

I �
���������������
20π log10 e/FHr3

√
I0. (18)

In addition to the intensity of sound, there is a linear relationship
for the time domain quantity. The number of interactions of sound
with the seabed in the l-th normal mode can be calculated by

n � rφl

2H
. (19)

The loss in intensity is

E � I

I0
� 10 exp − Fr

20H
φ2
l( ). (20)

Based on the geometry of the reflection off the seabed, the time
delay τ after direct arrival can be calculated by

τ � r secφl − r

cw
≈
rφ2

l

2cw
, (21)

where cw is the mean sound speed in seawater. The loss in intensity can
then be rewritten as

Edτ � 10

���
cw
2rτ

√
exp −Fcwτ

10H
( )dτ, (22)

Based on 18 and 22, F can be directly calculated from two acoustic
measurement. The computationally fast linear relation ensures a
change in the arch of the objective function that helps avoid the
local optimum, which in turn helps reduce the complexity of
numerical optimization [12, 13].

The complete solution of the inversion problem involves
providing the estimated probability for a measure of the
uncertainty of the result of inversion. The marginal probability
density of the simplified model environment is shown in Figure 6.
All parameters peak within the given bound, indicating that they are
sensitive and well estimated. As all parameters converge to the global
optimal value with the highest probability, the results of focalization
are highly reliable.

The results of tests on the benchmark problem show that the
simplified model is feasible and effective for focalization. As an
environmental lens, it has sufficiently high acoustic resolution to
focus on the correct positional parameters. With a decrease in the
number of parameters to be solved, the amount of calculation
needed for optimization is reduced. This also reduces the number
of known conditions required, which simplifies marine
measurement in applications. The relatively sensitive
parameters and the lack of coupling between them are
conducive to inversion.

4 Broadband focalization based on
experimental data

The Asia Sea International Acoustic Experiment 2001
(ASIAEX2001) was conducted in the East China Sea. Owing to
the good quality of data and thorough investigation of the
environment, these data have been widely used to test various
inversion problems. They were used to test the simplified model
proposed here.

Two ships were used in the propagation experiment. The
receiving ship anchored and hung a 32-elements vertical array
for receiving signals, where the upper 16 elements were 2 m apart
and the lower 16 were 4 m apart, and they covered a range of depth
from 4.6 to 90.5 m. The launching ship moved away from the
receiving ship in a straight line, throwing 38 g TNT wideband
sources (WBS) at a fixed depth of 50 m. The depth of water can be
roughly considered range independent at a depth of 105 m.
Figure 7 shows the sound speed profile measured by the CTD

FIGURE 5
Values of the cost function for the geoacoustic parameter of the
simplified model. The vertical lines represent the optimal value. Note
also that the linear property of F is also an advantage for inversion. The
change in F is linearly related to changes in the other quantities,
which are derived from the measured pressure. Based on normal mode
theory, the intensity I is given by.
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in the experiment. In the MFP, the sound speed profile was used as
known condition.

Focalization has been carried out using the same method as in
the previous section, by using 35 frequency points in the
99–201 Hz frequency band. Two WBS at 10.2 km were selected
for testing, and the results are shown in Table 2. The focalization
of two sources yielded reliable location-related parameters, which
verified the feasibility of the simplified model for broadband

focalization. In the linear geoacoustic inversion [12], F is the
single parameter to model the seabed. Due to reducing the
number of parameters to one, F can be obtained using a least-
squares fitting to transmission loss of different ranges. The critical
angle is deduced from the variation of transmission loss, and then
the equivalent speed cF can be calculated. In different inversion
schemes, the inversion results of geoacoustic parameters of the
simplified model are similar.

Note that the hierarchy of the parameters is the foundation of
focalization. Because the sound field tended to be more sensitive
to variation in the location-related parameters. In the benchmark
problem, even if the layered model did not yield the correct value,
the inversion still yielded the correct location-related parameters.
However, the localization of the source is still influenced by the
geoacoustic parameters. As shown in the focalization of the
layered environment, the uncertainty in the geoacoustic
parameters has a negative impact on the efficiency and
accuracy of localization. Although obtaining the geoacoustic
parameters is not the primary goal of focalization, it is
important for it. Correct geoacoustic inversion not only
improves our understanding of the ocean waveguide, but also
helps obtain the location-related parameters more efficiently and
accurately. A comparison between the measured transmission
loss (TL) and the predicted TL based on the inverted geoacoustic
parameters is shown in Figure 8. Even if errors have originated

FIGURE 6
Normalized marginal probability density for the simplified model environment. The vertical lines represent the optimal values.

FIGURE 7
Sound speed profile.

TABLE 2 Inversion result.

Source Results

Focalization using the first WBS sd � 48m r � 10.2km F � 2.91dB
rad cF � 1616m/s

Focalization using the second WBS sd � 49m r � 10.2km F � 2.89dB
rad cF � 1628m/s

Linear geoacoustic inversion [12] F � 3.01dB
rad cF � 1618m/s

Geoacoustic inversion by MFP [26] cF � 1610 ± 12m/s

FIGURE 8
The predicted and the measured TL. The source depth is 50 m and
the receiver depth is 60.5 m.
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from the source depth, the TLs are in good agreement with each
other. In the focalization, the simplified model also obtains
accurate acoustic characteristics of the seabed while the
complexity of inversion is reduced by reducing the number of
parameters.

5 Conclusion

In this paper, a simplified model of the seabed that uses only
two parameters has been applied for focalization. As the complexity
of inversion increases with the number of parameters, it is valuable
to reduce the dimensionality of the inversion problem.

Based on the genetic algorithm, focalization was tested on a
benchmark problem using the simplified model and a layered
model. In the COLNOISE case, the simplified model with only two
parameters satisfied the requirements of MFP and obtained
accurate results in terms of location. An analysis of the
objective function led the amplitude F and phase cF to be more
sensitive than some parameters of the layered model, and no clear
coupling was noted between the parameters. This accelerated the
convergence to the optimal solution and ensured the robustness
of the results. In addition, some characteristic quantities of the
sound field that can be used for matching in MFP are related
linearly to F. These linear relations, manifests as an arched curve
for changes to the objective function, render the optimization
simple and reliable. When used on experimental data from
ASIAEX on the East China Sea, the simplified model was
found to be suitable for broadband focalization, and both the
location-related and the geoacoustic parameters were obtained
quickly and accurately.

In order to provide constraints to the dimensionality of
inversion problem, the simplified model presents a very
compact expression of the acoustic properties of seabed. It can
accelerate the convergence to the optimal solution and ensure the
robustness of the results. However, it also has limitations. For
example, it can be used only in the far field. As the reduction in the
number of parameters reduces the acoustic resolution,
applications of the proposed model to low-SNR environments

or single-hydrophone inversion need to be explored in future
research.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the authors, without undue reservation.

Author contributions

ZO completed the literature research, analysis, and manuscript
writing. KQ completed the Conceptualization, methodology and
funding acquisition. LL completed the validation, visualization and
project administration.

Funding

This research was funded by the Natural Science Foundation of
Guangdong Province grant number [2022A1515011519].

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Baggeroer AB, KupermanWA,Mikhalevsky PN. An overview of matched field methods
in ocean acoustics. IEEE J.Ocean.Eng. (1993) 18(4):401–24. doi:10.1109/48.262292

2. Zhang B, Hou X, Yang Y. Robust underwater direction-of-arrival tracking with
uncertain environmental disturbances using a uniform circular hydrophone array.
J.Acoust.Soc.Am. (2022) 151(6):4101–13. doi:10.1121/10.0011730

3. Zhao X, Wang D. Ocean acoustic tomography from different receiver geometries
using the adjoint method. J.Acoust.Soc.Am. (2015) 138(6):3733–41. doi:10.1121/1.
4938232

4. Zheng Z, Yang TC, Pan X. Geoacoustic inversion using an autonomous underwater
vehicle in conjunction with distributed sensors. IEEE J.Ocean.Eng. (2020) 45(1):319–41.
doi:10.1109/joe.2018.2869481

5. Chapman NR, Shang E. Review of geoacoustic inversion in underwater acoustics.
J.Theor.Comput.Acous. (2021) 29(3):2021. doi:10.1142/s259172852130004x

6. Collins MD, Kuperman WA. Focalization: Environmental focusing and source
localization. J.Acoust.Soc.Am. (1991) 98(3):1410–22. doi:10.1121/1.401933

7. Li Y, Geng B, Jiao S. Dispersion entropy-based lempel-ziv complexity: A new metric for
signal analysis. Chaos.soliton.fract. (2022) 161:112400. doi:10.1016/j.chaos.2022.112400

8. Li Y, Gao P, Tang B, Yi Y, Zhang J. Double feature extraction method of ship-radiated
noise signal based on slope entropy and permutation entropy. Entropy (2021) 24(1):22.
doi:10.3390/e24010022

9. Li Y, Tang B, Yi Y. A novel complexity-based mode feature representation for feature
extraction of ship-radiated noise using VMD and slope entropy. Appl.Acoust. (2022) 196:
1088992022. doi:10.1016/j.apacoust.2022.108899

10. Bianco MJ, Gerstoft P. Dictionary learning of sound speed profiles. J.Acoust.Soc.Am.
(2017) 141(3):1749–58. doi:10.1121/1.4977926

11. Cheng L, Zhao H, Li J, Xu W. Tensor-based basis function learning for three-
dimensional sound speed fields. J.Acoust.Soc.Am. (2022) 151(1):269–85. doi:10.1121/10.
0009280

12. Qu K, Zhao M, Hu C. Single parameter inversion using transmission loss in shallow
water. Acta Acoust (2013) 38(4):472. doi:10.15949/j.cnki.0371-0025.2013.04.017

13. Qu K, Hu C, Zhao MChina Shanghai Acoustic Laboratory, Institute of Acoustics,
Chinese Academy of Sciences, Shanghai 200032, China;; University of Chinese Academy
of Sciences, Beijing 100190, China. A rapid inversion scheme for seabed single parameter
using time-domain impulse response. Acta Phys.Sin. (2013) 62(22):224303. doi:10.7498/
aps.62.224303

14. Ge H, Zhao H, Gong X, Shang E. Bottom-reflection phase-shift estimation
from ASIAEX data. IEEE J.Ocean.Eng. (2004) 29(4):1045–9. doi:10.1109/joe.2004.
834180

15. Shang E, Gao T, Wu J. A shallow-water reverberation model based on perturbation
theory. IEEE J.Ocean.Eng. (2008) 33(4):451–61. doi:10.1109/joe.2008.2001686

Frontiers in Physics frontiersin.org08

Qu et al. 10.3389/fphy.2022.1113330

67

https://doi.org/10.1109/48.262292
https://doi.org/10.1121/10.0011730
https://doi.org/10.1121/1.4938232
https://doi.org/10.1121/1.4938232
https://doi.org/10.1109/joe.2018.2869481
https://doi.org/10.1142/s259172852130004x
https://doi.org/10.1121/1.401933
https://doi.org/10.1016/j.chaos.2022.112400
https://doi.org/10.3390/e24010022
https://doi.org/10.1016/j.apacoust.2022.108899
https://doi.org/10.1121/1.4977926
https://doi.org/10.1121/10.0009280
https://doi.org/10.1121/10.0009280
https://doi.org/10.15949/j.cnki.0371-0025.2013.04.017
https://doi.org/10.7498/aps.62.224303
https://doi.org/10.7498/aps.62.224303
https://doi.org/10.1109/joe.2004.834180
https://doi.org/10.1109/joe.2004.834180
https://doi.org/10.1109/joe.2008.2001686
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1113330


16. Shang E, Wu J, Zhao Z. Relating waveguide invariant and bottom reflection phase-
shift parameter P in a Pekeris waveguide. J.Acoust.Soc.Am. (34512012) 131(4):3691–7.
doi:10.1121/1.3699242

17. Zhao Z, Shang E, Rouseff D. The comparison of bottom parameter inversion in
geoacoustic space and in (P, Q) space. J.Comput.Acoust. (2017) 25(2):1750011–23, Apr.
doi:10.1142/s0218396x17500114

18. Zhang C, Wu J, Mo Y, Sun B, Ma L. The same reflective characteristics for
different effective geoacoustic parameters in different models. IEEE J.Ocean.Eng.
(2020) 1. doi:10.1109/JOE.2020.2984295

19. Harrison CH, Simons DG. Geoacoustic inversion of ambient noise: A simple
method. J.Acoust.Soc.Am. (2002) 112(4):1377–89. doi:10.1121/1.1506365

20. Jones AD, Graham JD, Clarke PA. Single parameter description of seafloors for
shallow oceans. J.Acoust.Soc.Am. (2008) 123(5):3214. doi:10.1121/1.2933399

21. Porter MB, Tolstoy A. The matched field processing benchmark problems.
J.Comput.Acoust. (1994) 2(3):161–85. doi:10.1142/s0218396x94000129

22. Bonnel J, Pecknold SP, Hines PC, Chapman NR. An experimental benchmark for
geoacoustic inversion methods. IEEE J.Ocean.Eng. (2020) 1558. doi:10.1109/JOE.2019.
2960879

23. Gerstoft P, Rogers LT, Krolik JL, Hodgkiss WS. Inversion for refractivity parameters
from radar sea clutter. Radio.sci. (80532003) 38(3). doi:10.1029/2002rs002640

24. Gerstoft P. Inversion of seismoacoustic data using genetic algorithms and a
posteriori probability distributions. J.Acoust.Soc.Am. (1994) 95(2):770–82. doi:10.1121/
1.408387

25. Chapman NR. A critical review of geoacoustic inversion: What does it really tell us
about the ocean bottom. J.Acoust.Soc.Am. (30232016) 140(4):3023. doi:10.1121/1.
4969376

26. li Z, Zhang R, Yan J, Li F, Liu J. Geoacoustic inversion by matchedfield processing
combined with vertical reflection coefficients and vertical correlation. IEEE J.Ocean.Eng.
(2004) 29(4):973–9. doi:10.1109/joe.2004.834172

Frontiers in Physics frontiersin.org09

Qu et al. 10.3389/fphy.2022.1113330

68

https://doi.org/10.1121/1.3699242
https://doi.org/10.1142/s0218396x17500114
https://doi.org/10.1109/JOE.2020.2984295
https://doi.org/10.1121/1.1506365
https://doi.org/10.1121/1.2933399
https://doi.org/10.1142/s0218396x94000129
https://doi.org/10.1109/JOE.2019.2960879
https://doi.org/10.1109/JOE.2019.2960879
https://doi.org/10.1029/2002rs002640
https://doi.org/10.1121/1.408387
https://doi.org/10.1121/1.408387
https://doi.org/10.1121/1.4969376
https://doi.org/10.1121/1.4969376
https://doi.org/10.1109/joe.2004.834172
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1113330


Feature extraction method of
ship-radiated noise based on
dispersion entropy: A review

Guanni Ji*

Xi’an Traffic Engineering Institute, Xi’an, China

There is abundant ship information in ship-radiated noise, which is helpful for ship
target recognition, classification and tracking. However, owing to the increasing
complexity of the marine environment, it makes difficult to extract S-RN features.
Dispersion entropy has been proven to be an excellent method to extract the
features of S-RN by analyzing the complexity of S-RN, and has beenwidely used in
feature extraction of S-RN. This paper summarizes the research progress of DE in
the feature extraction of S-RN in recent years, and provides a comprehensive
reference for researchers related to this topic. First, DE and its improved algorithm
are described. Then the traditional and DE-based S-RN feature extraction
methods are summarized, and the application of DE in S-RN feature extraction
methods is concluded from two aspects: methods that apply DE algorithms only
and methods that combine DE with mode decomposition algorithms. Finally, the
research prospects of DE and the summary of this paper are given.

KEYWORDS

ship-radiated noise, feature extraction, dispersion entropy, mode decomposition,
entropy

1 Introduction

In the ocean, sound waves are an effective way to transmit information over long
distances. Ship-radiated noise (S-RN) is a good marine sound source, which is of great
significance to ship navigation safety and marine exploration [1, 2]. However, the ocean is
always accompanied by a large amount of environmental noise, which is a huge interference
to the reception and recognition of S-RN. How to effectively extract the features of S-RN has
become a hot issue [3, 4].

The traditional feature extraction method for S-RN mainly has two types: 1) feature
extraction method based on spectrum analysis. The S-RN is analyzed by the spectrum, and
the line spectrum feature and shape feature of power spectrum in S-RN are extracted [5]. 2)
Feature extraction method based on time-frequency domain analysis. The features of the
S-RN are extracted by Fourier transform [6], wavelet transform [7] and Hilbert-Huang
transform [8], and so on. Although these methods achieved some results, the identification of
S-RN in practical applications still cannot meet the expected requirements.

Recently, some nonlinear dynamical methods have achieved better results in feature
extraction, such as Lempel-Ziv complexity (LZC) [9], fractal dimension [10], entropy [11].
LZC has been successfully applied to feature extraction of S-RN, such as permutation LZC
(PLZC) [12], dispersion LZC (DLZC) [13, 14] and DE-based LZC (DELZC) [15], but it has
high requirements for the length of time series, and its over-dependence on pattern
conversion also limits the ability of LZC to characterize signals. Compared with LZC,
the fractal dimension is suitable for processing various types of nonlinear and nonstationary
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signals like S-RN [16], but this excellent effect costs a lot of time; in
addition, there are only a few types of fractal dimensions, such as box
dimension [9, 17], so the application of fractal method to extract
discriminant features has not been thoroughly studied. Last but not
least, for entropy, the development in feature extraction of S-RN is
more comprehensive and faster than LZC and fractal dimension,
and recently proposed entropy in common use are PE [18–20], DE
[21–23] and slope entropy [24–26]. However, the PE cannot reflect
the amplitude change information of S-RN, and slope entropy is
seriously affected by threshold setting, and the characteristic value is
sufficiently enough. DE is the most widely used in S-RN feature
extraction because of the absence of these defects. In general,
compared with other entropies, LZC and fractal dimension, DE
has higher computational efficiency and deeper stability, and there
are richer research results of DE in feature extraction of S-RN.

The DE-based method has been widely used in feature
extraction of S-RN and has shown superior performance. In this
paper, we will give a comprehensive review of the DE-basedmethods
and divide them into two types: methods that apply DE algorithms
only [27, 28] and methods that combine DE with mode
decomposition algorithms [23, 29]; then we introduce two
aspects of DE in and its application for S-RN. The rest of this
review is structured as follows. Section 2 introduces the DE and its
improved algorithm. Section 3 describes the traditional S-RN feature
extraction methods and the S-RN feature extraction method based
on DE, and summarizes the relevant applications. The prospects of
DE in the feature extraction method for S-RN are presented in
Section 4. Section 5 gives the conclusion of this review.

2 Theory of dispersion entropy

2.1 DE algorithm

DE [30] is one of the important indexes to evaluate the
complexity of time series, which considers the relationship
between amplitudes, and has strong robustness and fast
operability. The specific calculation steps are as follows:

Step 1: For a given time series X � x(j), j � 1, 2, ..., N{ }, it is
mapped to series Y � y(j), j � 1, 2, ..., N{ } by the normal
cumulative distribution function (NCDF), and the element y(j)
is obtained as follows:

y j( ) � 1
σ

��
2π

√ ∫ x j( )
−∞

e
− t−μ( )2

2σ2 dt, j � 1, 2,/, N (1)

where μ and σ represent the mean and standard deviation of
sequence X respectively, and each element y(j) ϵ (0, 1).

Step 2: The series Y is converted to a new series
Zc � zcj, j � 1, 2, ..., N{ }, and the conversion formula is as follows:

zcj � R c · y j( ) + 0.5( ) (2)

where zcj is an integer within [1, 2, ..., c],R a is rounding function and
c indicates the category.
Step 3: The sequence Zc is transformed into l � N − (m − 1)d
components zm,c

i , each component is defined as:

zm,c
i � zci , z

c
i+d, ..., z

c
i+ m−1( )d{ }, i � 1, 2, ..., N − m − 1( )d (3)

wherem is the embedding dimension, and d represents a time delay.
Step 4: Each component is labeled as a dispersion pattern πv0v1vm−1
with zci � v0, zci+d � v1,/, zci+(m−1)d � vm−1. According to step 2,
each element in the component has c values, therefore, there are
cm dispersion patterns corresponding to zm,c

i in total. The
probability of each dispersion pattern can be expressed as:

p πv0v1vm−1( ) � Num πv0v1vm−1( )
N − m − 1( )d (4)

where Num(πv0v1vm−1) indicates the number of dispersion patterns
πv0v1vm−1 of series X.

Step 6: The value of DE can be calculated according to the
formula of Shannon entropy:

DE X,m, c, d( ) � −∑c
m

π�1
p πv0v1vm−1( ) · ln p πv0v1vm−1( )( ) (5)

and the normalized DE (NDE) can be defined as:

NDE X,m, c, d( ) � DE X,m, c, d( )
ln cm

(6)

2.2 Improved DE algorithm

Since DE has excellent ability to represent signal complexity,
many scholars have improved DE to improve the performance of
DE, such as reverse DE (RDE), multiscale DE (MDE), and so on.
According to the different ways of DE improvement, the improved
dispersion entropy is mainly divided into two categories: 1) the
improvement of DE steps; and 2) the preprocessing of DE.

To enhance the capacity of DE to characterize the complexity of
signals, some scholars are committed to optimizing the calculation steps
of DE, and various upgraded versions of DE have been advanced.
Azami et al. [31] developed the fluctuation-based DE (FDE) by
considering the fluctuation of signals, which provides a powerful
tool for analyzing fluctuating signals. Li et al. [21] introduced
distance information to DE, the reverse DE (RDE) is raised and
demonstrates high stability when analyzing various sensor signals.
To address the problem that DE is insensitive to information
perception between adjacent elements of time series [32], proposed
the fine-sortedDE (FSDE) by adding an additional factor to fine sort the
normalized elements. Inspired by FDE and RDE, Jiao et al. [22]
combined the advantages of FDE and RDE to propose fluctuation-
based reverse DE (FRDE), and this operation further improved the
stability and separability of DE. In 2021, the weighted multivariate DE
(WMDE) was proposed [33] by integrating multivariate analysis and
weighted calculation, which is more sensitive to signal changes and
stable. In view of the problem of DE instability due to amplitude
variation, Rostagh et al. [34] introduced a fuzzy membership function
into DE and developed fuzzy DE (FuzzDE), which improves the
performance of DE in detecting frequency changes and periodic
changes. Influenced by fractional order calculation [35,36] proposed
fractional extended DE (FrEDE) and fractional order fuzzy DE
(FuzzDEα) respectively. In addition, Wang et al. [11] advanced a
normalized cumulative residual function (NCRF) to magnify the
difference between dispersion patterns, and give the give the
definition of cumulative residual symbolic DE (CRSDE), which
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realizes the representation of more effective pattern information. In
summary, these improved algorithms can represent more abundant
feature information and have higher anti-noise ability. The overview of
improved DE algorithms based on DE steps are shown in Table 1.

Several improved DE algorithms have been proposed by
preprocessing the signals to enhance the performance of DE.
Zhang et al. [37] proposed MDE by introducing coarse-graining
on the basis of DE to retain information on the potential
characteristics of faults at different scales. Azami et al. [38] and Li
et al. [27] also introduced coarse graining to RDE and FDE, and
proposed multiscale FDE (MRDE) and multiscale FDE (MFDE),
respectively, which describe the complexity of signals from
different scales. In addition [39,40] introduced hierarchical
information and proposed hierarchical DE (HDE) and hierarchical
FDE (HFDE) respectively to characterize the complexity of all band
signals. Xing et al. [41] combined the concepts of hierarchy and
multiscale to propose the hierarchical multiscale RDE (HMRDE),
which reflects the effective information of the bearing signal from both
hierarchical and scaling perspectives. To represent the comprehensive
information on signals, Azami et al. [42] proposed refined composite
MDE (RCMDE), which is a refined composite multiscale processing
based on DE. The proposed RCMDE not only solves the single-scale
problem of DE, but also improves the stability of traditional coarse
graining. Inspired by RCMDE, some scholars immediately proposed
refined composite MFDE (RCMFDE) [43], refined composite RDE
(RCMRDE) [44], and refined composite multiscale FRDE
(RCMFRDE) [28], respectively. Referring to the experience that
fine composite processing can effectively represent signal
complexity, some scholars introduced multivariate theory based on
refined composite multiscale processing, and proposed refined
composite multiscale multivariate MDE (RCMMDE) [45] and
refined composite multiscale multivariate FDE (RCMMFDE) [46],
which have low sensitivity to signal length and high noise resistance.
As the advantages of fine composite multiscale processing and
hierarchical analysis have been recognized, refined composite
HFDE (RCHFDE) [47] and hierarchical refined composite MFDE
(HRCMFDE) [48] have been proposed respectively, which solve the
problem of high frequency signal loss in coarse-graining process. Last
but not least, some scholars have also proposed some other improved
algorithms, such as time-shift multiscale cumulative residual symbolic

(DE) TCRSDE [49], refined time-shift multiscale normalised DE
(RTSMNDE) [11], time-shift MDE (TSMDE) [50], and generalized
RCMFDE (GRCMFDE) [51], which all further improve the
performance of dispersion entropy. The overview of improved DE
algorithms based on preprocessing is listed in Table 2.

Whether the improvement of the DE step or the preprocessing
of the DE further improves the performance of the scattering
entropy and effectively represents the complexity of the signal. In
order to show the development of DE more intuitively, we employ
the Figure 1 to show all the improved DE algorithms.

3 Feature extraction methods for S-RN

The feature extraction of S-RN has been a difficult problem in the
field of underwater acoustic signal processing due to the complexity of
marine environmental noise. To solve this challenge, some S-RN
feature extraction methods have been developed, mainly including
two types: 1) traditional methods, such as those based on spectrum
analysis, or time-frequency domain analysis; and 2) nonlinear
dynamic methods, such as those based on fractal, Lempel-Ziv
complexity (LZC), or entropy. The overall framework of feature
extraction method for S-RN is displayed in Figure 2.

Traditional feature extraction methods have certain limitations
when analyzing non-stationary S-RN, and the feature extraction
results cannot well reflect the true characteristics of the target
signal. While Entropy, LZC and fractal dimension are the
mainstream nonlinear dynamic indexes applied to feature
extraction of S-RN. However, LZC is limited by the length of time
series and binary conversion, and it often needs to be combined with
entropy theory to meet the demand of feature extraction, current
research includes PLZC, DLZC, and DELZC, which have shown
excellent performance in feature extraction. Although the fractal
dimension can effectively analyze nonlinear signals such as S-RN,
it will consume consumes considerable time, and the feature based on
fractal dimension are not sufficiently stable. With the development of
entropy theory, the ability of entropy to represent signals has also been
improved, which can show more feature information of S-RN. From
recent research, it can be seen that PE, DE, and slope entropy are the
three main entropies used in feature extraction of S-RN, these

TABLE 1 The overview of improved DE algorithms based on DE steps.

References Improved DE Improvement Main advantages

[30] FDE Fluctuation information Broadly used for the characterization of real signals

[20] RDE Distance information High distinguishing ability for sensor signals

[31] FSDE Fine-sorted dispersion pattern Provide a powerful aid to feature extraction for fault diagnosis

[21] FRDE Distance information and fluctuation information Facilitates the distinction of ship signals and gear fault signals

[32] WMDE Weight information Reveal the ordinal structure of stock market indices

[33] FuzzDE Fuzzy membership functions Better performance in distinguishing various signlas

[34] FrEDE Fractional calculus Accurately distinguish different faulty states

[35] FuzzDEα Fractional order calculation Detect dynamics changes of signals sensitively

[49] CRSDE Normalized cumulative residual function Excellent performance in detecting dynamics of sleep stages
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TABLE 2 The overview of improved DE algorithms based on preprocessing.

References Improved DE Improvement Main advantages

[36] MDE Coarse-graining Retain information on the potential characteristics of faults at different scales

[37] MFDE Coarse-graining Further understand the dynamics of neurological disease records

[25] MRDE Coarse-graining Describe the complexity of ship signals from different scales

[38] HDE Hierarchical information Characterize the complexity of all band fault signals

[39] HFDE Hierarchical information Compensate for the shortcomings of MFDE in ignoring high frequency component
information

[40] HMRDE Hierarchical coarse-graining Effectively reflect the difference characteristics in different frequency domains

[41] RCMDE Refined composite coarse-graining Fully min the information of biomedical signals

[42] RCMRDE Refined composite coarse-graining Min the comprehensive information on rolling bearing failures

[43] RCMFDE Refined composite coarse-graining Further enhance the stability of MFDE

[26] RCMFRDE Refined composite coarse-graining Reduce damage caused by misidentification of ships

[44] RCMMDE Refined composite multivariate coarse-
graining

Has certain advantages in robustness compare to MDE

[45] RCMMFDE Refined composite multivariate coarse-
graining

Low sensitivity to signal length and high noise resistance

[46] RCHFDE Refined composite hierarchical Has the better stability and robustness than HFDE

[47] HRCMFDE Hierarchical Refined composite coarse-
graining

Solve the problem of high frequency signal loss in coarse grain process

[48] TCRSDE Time-shift coarse-graining Obtain comprehensive Neurodynamics characteristics

[49] RTSMNDE Refined time-shif coarse-graining
normalised

Diagnose the locations and degrees of rolling bearing failures effectively

[50] TSMDE Time-shift coarse-graining Achieve outstanding diagnosis performance for rolling bearing

[51] GRCMFDE Generalized refined composite coarse-
graining

Provide a highly separable feature for diagnosing the fault of rolling bearings

FIGURE 1
Improved DE algorithms.
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entropies get rid of over-dependence on time series length and are
more computationally efficient. Among them, DE is particularly
convenient and effective, because it overcomes the defect that PE
ignores amplitude information and is not limited by threshold
parameters like slope entropy. Therefore, we review and
summarize the DE-based feature extraction methods in this section.

In this section, the references on feature extraction of S-RN based
on DE are listed and summarized as the following two subsections:
methods that apply DE algorithms only, and methods that combine
DEwithmode decomposition algorithms, including empirical wavelet
transform (EWT), intrinsic time-scale decomposition (ITD), and
variational mode decomposition (VMD). Table 1 provides a brief
summary of research articles on applications of DE combined mode
decomposition in feature extraction of S-RN, which were published
after 2015 to cover the latest contributions since the existing review.

3.1 Feature extraction using only DE
algorithm

Due to the high computational efficiency, strong robustness and
separability of DE, it has been introduced into the field of feature
extraction of S-RN. The main steps of feature extraction for S-RN
using only DE are illustrated in Figure 3.

Due to the high computational efficiency, strong robustness and
separability of DE, it has been introduced into the field of feature
extraction of S-RN in recent years. Li et al. [21] first defined the
concept of RDE and take it as a new feature of S-RN, the utilization of
RDE realized the accurate classification of three ship signals. In 2020,
Li et al. [27] successively proposed MRDE-based feature extraction
method and feature extraction method based on MRDE combined
with the gray correlation degree (GRD) [52], the studies indicated that
MRDE performs better thanMDE,MPE and other entropy indexes in
characterizing ship feature. In addition, RCMDE-KNN-based
classification method of S-RN was raised [53], this method
enhances the stability and anti-noise ability of the extracted ship
features, and the recognition rate for four types of ships reaches 100%.
Jiao et al. [22] presented FRDE and applied it to feature extraction of
S-RN, the experimental results show that FRDE feature extraction is
more prominent than PE and DE. Based on FRDE and RCMDE [28],
proposed a novel feature extraction method of S-RN based on
RCMFRDE, the experiments show that the excellent performance
for feature extraction and classification of S-RN. Xiao [54] introduced
hierarchical DE (HDE) into the underwater acoustic field for the first
time, whichmines the information hidden in the high frequency band
of ship radiated noise. Table 3 reveals the applications of DE in feature
extraction of S-RN, in which Rr means recognition rate, MRDE +
GRD means MRDE and GRD.

FIGURE 2
Overall framework of feature extraction method for S-RN.

FIGURE 3
The main steps of feature extraction for S-RN using only DE.
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3.2 Feature extraction combining DE with
mode decomposition algorithms

The feature extraction methods based on mode decomposition
and DE have been widely used in the underwater acoustic field and
show excellent performance. Figure 4 displays the main steps of
S-RN feature method using DE and mode decomposition.

In recent years, some scholars have proposedmany S-RN feature
extraction methods based on DE and mode decomposition and
achieve better results. Li et al. [29] combined ITD with FDE, and
proposed a new S-RN feature extraction method, which achieves
more than 95% classification accuracy for ten types of S-RN,
realizing effective recognition of S-RN [55]. Improved the ITD
and proposed a S-RN feature extraction method combining

improved ITD (IITD) with MDE, which further enhanced the
effect of feature extraction. Yang et al. [23] presented a novel a
S-RN feature extraction technology using VMD and FDE, and the
results presented that the presented technique has better separation
effect and higher discrimination. Li et al [56]. Applied extreme-point
symmetric mode decomposition (ESMD) to decompose the S-RN,
extracted the DE of intrinsic mode functions (IMFs), and effectively
distinguished different types of S-RN. [57] developed a S-RN feature
extraction method based on EWT and RDE, and the results reveled
that EWT not only has better decomposition performance than
empirical mode decomposition (EMD), ensemble empirical mode
decomposition (EEMD), and VMD, but also RDE has better
separability than PE, RPE and DE; in addition, the recognition
rate of the proposed method is higher than 95% for four kinds of

TABLE 3 Applications of DE in feature extraction of S-RN.

References Method Database Metric Main conclusion

[20] RDE Unkonwn 99% Rr Provide an effective complexity metric to analyze S-RN

[25] MRDE National Park Service 100% Rr Accurate recognition of four types of S-RN is realized from different scales

[52] MRDE + GRD National Park Service 97.75% Rr Effectiveness and practicability for feature extraction of S-RN

[53] RCMDE National Park Service 100% Rr More suitable and stable for feature extraction of S-RN

[21] FRDE National Park Service 99.11% Rr The most outstanding recognition effect in four S-RN

[26] RCMFRDE Unkonwn 100% Rt Improve the feature extraction and classification performance of S-RN

[54] HDE Unkonwn 100% Rr Show the different frequency bands feature of signals S-RN

FIGURE 4
The main steps of ship-radiation noise method using DE and mode decomposition.
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S-RN. Yang et al. [58] put forward a S-RN feature method based on
complete ensemble empirical mode decomposition with adaptive
selective noise (CEEMDANSN) and RCMFDE, which effectively
solves the problem of information loss in feature extraction of ship
signals. Li et al. [59] and Liu et al [60] used VMD to decompose the
S-RN, and extracted the MDE and WFDE of IMFs respectively,
which effectively extract the features of S-RN, and the recognition
rate is higher than 90%. Table 4 exhibits the applications of DE
combined mode decomposition in feature extraction of S-RN, in
which Rr means recognition rate, ITD + FDE means ITD and FDE,
VMD + FDE means VMD and FDE.

4 Prospects of DE in feature extraction
method for S-RN

Based on the above research, we can find that traditional feature
extraction methods for S-RN have great limitations, and cannot
effectively reflect the real characteristics of S-RN; moreover,
compared with other nonlinear dynamic indexes such as LZC and
fractal dimension, DE can better represent the complexity of the
signal, and effectively distinguish different types of S-RN. However,
the feature extraction of S-RN has always been the focus of the
research on the development of marine economy and coastal defense,
and the huge development needs promote the output of more relevant
research results. At present, it is hard to meet the growing demand by
relying solely on DE-based indexes. So combining with multiple
features and further upgrade DE with multiple improvement
methods is an important development direction in the future.

(1) Combined with other categories of feature indicators.

Different types of features have their own advantages and
disadvantages, they are applicable to different ship signals.
Combining DE with other types of features for feature extraction,
such as entropy index and LZC-based index, can make full use of the
complementarity between different features. Therefore, DE
combined with other class features is suitable for more complex
environments and unknown ship signals, which can further improve
the feature extraction performance and recognition effect of S-RN.

(2) Upgrade DE with multiple improvement methods.

Different improvements measures of DE have solved different
problems encountered in signal analysis. For the complex and
changeable S-RN, the improvement for a specific problem has
difficulty reflecting the comprehensive characteristic information.
For this reason, integration of multiple improvement methods,
including different computational steps and ship signal
preprocessing, will be one of the future focuses on upgrading the
feature extraction method based on DE.

5 Conclusion

This paper is intended to review the application of DE in feature
extraction of ship-radiated noise, and divides it into two categories:
Only DE theory and the combination of DE andmode decomposition
algorithm. The main conclusions of the review are as follows

(1) Both DE and its improved version improve the feature
extraction effect of S-RN from different aspects, and previous
studies also show that the feature extraction method based on
DE is superior to other entropy measures.

(2) The mode decomposition algorithm is used in feature extraction
to reduce the aliasing effect between feature information,
combined with DE theory, the anti-noise and stability of the
extracted S-RN features are further improved.

(3) Through the review and analysis of the previous DE in the
feature extraction of S-RN, the shortcomings and improvements
of the current method are illuminated, and the future prospects
and work directions are summarized.
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TABLE 4 Applications of DE combined mode decomposition in feature extraction of S-RN.

References Method Database Metric Main conclusion

[27] ITD + FDE Unkonwn 95.8% Rr Effectively achieve the classification of S-RN

[55] Improved ITD + MDE Unkonwn 86% Rr Provide a new scheme for accurate identification of different types of ship signals

[28] VMD + FDE Unkonwn 97.5% Rr More precise for S-RN feature extraction

[56] ESMD + DE Unkonwn 99.5% Rr Assist the feature extraction and classification recognition for S-RN

[57] EWT + RDE National Park Service 99.5% Rr Improve the S-RN separability and stability

[58] CEEMDASN + RCMFDE National Park Service 98.5%Rr Effectively solves the problem of information loss in feature extraction of ship signals

[59] VMD + MDE Unkonwn 100% Rr Extract the line spectrum frequency feature of S-RN

[60] VMD + WFDE National Park Service >90% Rr Accurately and efficiently extract the features of ship signals
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The direction-of-arrival (DOA) tracking of underwater targets is an important
research topic in sonar signal processing. Considering that the underwater DOA
tracking is a typical multi-target problem under unknown underwater
environment with missing detection, false alarm, and uncertain measurement
noise, a robust underwater multi-target DOA tracking method for uncertain
measurement noise is proposed. First, a kinematic model of the multiple
underwater targets and bearing angle measurement model with missing
detection and false alarms are established. Then, the multi-target DOA tracking
algorithm is derived by using the cardinalized probability hypothesis density
(CPHD) filter, the performance of which largely depends on the accuracy of
the parameter ofmeasurement noise variance. In addition, the variational Bayesian
approach is used to adaptively estimate the uncertain measurement of noise
variance for each measurement of target in the real time of tracking. Thus, the
robust underwater multi-target DOA tracking is carried out. Finally,
comprehensive experimental validations and discussions are made to prove
that the proposed algorithm can provide robust DOA tracking in the multi-
target tracking scenario with uncertain measurement noise.

KEYWORDS

underwater multi-target direction-of-arrival tracking, cardinalized probability
hypothesis density filter, uncertain measurement noise, variational Bayesian approach,
adaptive tracking

1 Introduction

The direction-of-arrival (DOA) estimation and tracking is an important research topic
in sonar signal processing [1–5]. For the scenario of moving targets, the traditional DOA
estimation methods cut the measurement of the output of sonar array signal into small
periods in time to process, which ignores the kinematic characteristics of the targets [6–8].
The DOA tracking methods not only use the measurement information but also rely on the
kinematic characteristics of the underwater targets [9–18]. Therefore, by not only depending
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on the current measurements but also utilizing the prior kinematic
information of an unknown underwater target, the DOA tracking
methods can provide more robust and accurate results than the
traditional DOA estimation methods.

In view of the advantages of theDOA trackingmethods, researchers
have carried out a lot of work aroundDOA tracking. TheDOA tracking
methods first take the outputs of the sonar array signals or results of the
traditional DOA estimation methods as the measurements. Then,
considering the typical kinematics of the underwater targets, the
kinematic model by the bearing angle is established. Then, based on
the framework of the Bayesian filter theory [19], the bearing angle of the
target can be recursively estimated from the current measurements.
Depending on the bearing angle measurements obtained by the
traditional DOA estimation methods, the Kalman filter (KF) is
always utilized as the DOA tracking algorithm [9, 10] for the linear
relationship between the measurement and bearing angle of the target.
Besides utilizing the bearing angle measurements, some research take
the outputs of sonar array signals as measurements. However, under
such a circumstance, themathematical relationship between the bearing
angle of the target and the measurement is non-linear. For such non-
linear problems, many tracking algorithms based on the non-linear
Bayesian filter have proposed the extended Kalman filter (EKF) [11,
12].The first-order Taylor series expansion of the measurement model
was used to approximate the non-linear model to a linear model. The
unscented Kalman filter (UKF) [20, 21] uses a group of determined
sigma points to linearize the non-linear model. The particle filter (PF)
[22] generates and transforms a large number of arbitrary particles to
represent the distribution of the target state. Thus, the PF can
theoretically achieve accurate tracking in any non-linear tracking
system with any distribution of the uncertainties, while the
computational complexity of the PF stays significant.

Although the tracking techniques are widely utilized in the scenario
of underwater target tracking, most of them are only applicable to the
single-target tracking scenario [9–12, 20–22]. However, the underwater
DOA tracking issue is a typical multi-target tracking scenario where the
multi-target tracking techniques should be considered and proposed.
The methods for multi-target tracking problem can be divided into two
categories: the traditional data associationmethods and randomfinite set
(RFS)–based multi-target tracking methods. The data association
methods establish the association between measurements and targets,
so as to transform the multi-target tracking problem into a single-target
tracking problem to use the abovementioned single-target tracking
methods. However, these data association techniques have to match
every measurement with its target which can make computation highly
complexwith large number of targets or false alarms caused by uncertain
measurement noise [23, 24]. From the beginning of this century, the
RFS-based multi-target tracking methods have developed rapidly to
overcome the drawbacks caused by the data association techniques. The
RFS can be defined by a set with elements along with the number of the
elements which are subjected to random distributions. The RFS-based
multi-target tracking methods define the states and measurements of
targets as RFSs such that the data association procedure can be avoided.
As a result, by utilizing the RFS technique, the computational complexity
of multi-target tracking can be hugely reduced, especially when the
number of targets and false alarms is large. For the RFS-based multi-
target tracking, Mahler first proposed the concept of “first-order
moment filter,” also known as probability hypothesis density (PHD)
filter [25]. Since, the PHD filter has no closed-form solution in general,

Vo et al. [26] proposed sequential Monte Carlo solution for the PHD
filter (SMC-PHD), and Clark et al. [27] proposed the Gaussian mixture
model implementation of the PHD filter (GM-PHD), which push the
PHD filter from theory to application. The GM-PHD filter requires both
the kinematic model of targets and the measurement model to be linear.
The SMC-HD filter represents the distribution of the states of the targets
by generating and transferringmany of the particles, which is suitable for
non-linearmodels. However, the calculation of the particles leads to high
computation overload. Subsequently, Mahler [28, 29] introduced the
cardinality distribution to describe the number of targets on the basis of
the PHD filter to make a more accurate estimation of the number of
targets and proposed the CPHD filter. Similar to the PHD filter, the
CPHD filter also has no closed-form solution in general and has to be
implemented on the basis of the SMC or GM model [30]. Considering
that the computational complexity of the RFS-based method is lower
than that of the data association method, researchers have proposed
many multi-target DOA tracking methods based on the PHD and
CPHD filters [13–16]. These methods use the output of the array signal
as measurements with the non-linear measurement model, thus
implementing them based on SMC.

Due to high-dimension array signal–based measurements and the
large number of particles for the SMC method, the existing RFS-based
multi-target DOA tracking methods get a large computation overload.
Moreover, in the real scenario of underwater tracking, the unknown
ocean environment always results in uncertain measurement noise.
Thus, besides considering the computational complexity,
accomplishing robust and accurate tracking when the measurements
are in a low SNR scenario is also important, especially in the underwater
target tracking case. However, most of the existing DOA tracking
methods assume the measurement noise to be a certain stochastic
process which leads to the degradation of the tracking performance
in the real scenario of uncertain measurement noise. To deal with the
uncertain measurement noise, Zhang et al. [12] derived a robust single-
target DOA tracking method based on the EKF by estimating the
measurement noise covariance matrix (MNCM) by using the improved
Sage-Husa algorithm. By estimating the MNCM in a maximum-
likelihood (ML) framework, the expectation-maximum adaptive
Kalman filter (EM-AKF) was proposed [31, 32]. Sarkka and
Hartikainen [33, 34] assumed the MNCM to be subject to an inverse
Wishart distribution and iteratively estimated the MNCM by using
variational Bayesian approach, namely, the variational Bayesian adaptive
Kalman filter (VB-AKF). Huang et al. [37] assumed the mean square
error matrix (MSEM) to also be subjected to an inverse Wishart
distribution and jointly estimated it along with the MNCM to
improve the performance of VB-AKF. In the existing works, the
superior accuracy and stability of the VB-AKF has been
demonstrated [33–37]. However, the MNCM estimation method has
not been applied to robust multi-target DOA tracking yet. Thus,
considering the uncertain underwater environment and its influences
on the underwater target tracking missions, adopting variational
Bayesian online estimation technique into the multitarget tracking
scenario is inspiring and necessary.

In this article, the bearing angle estimates obtained by using the
traditional DOA estimation method are regarded as the measurements,
and the multi-target DOA tracking algorithm is derived by using the
GM-CPHD filter. Different from most of the existing tracking
algorithms, we considered the uncertain measurement noise caused
by the unknown underwater environment, which always makes a
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certain tracking algorithm diverge. Thus, the variational Bayesian
approach is utilized to estimate the covariance matrix of the
measurement noise along with the states of targets in the framework
of the GM-CPHD filter. In this way, the variational Bayesian GM-
CPHD filter (VB-GMCPHD) for robust underwater multi-target DOA
tracking is proposed for the scenario of robust tracking under uncertain
measurement noise. Finally, the results of the experiment show the
robustness and accuracy of the proposed method in real underwater
multi-target DOA tracking scenario. The contributions of this article are
summarized as follows:

First, the multi-target DOA tracking algorithm is derived by
using the GM-CPHD filter for the real underwater tracking scenario
with missing detection and false alarm.

Second, the issue of uncertain measurement noise is addressed
by using the variational Bayesian approach to estimate the
measurement noise variance. Thus, the VB-GMCPHD for robust
underwater multi-target DOA tracking is proposed.

Finally, the real experimental data is utilized to verify the
superior accuracy and robustness of the proposed method in real
underwater DOA tracking scenario.

The rest of this article is organized as follows: in Section 2, the
problem of underwater multi-target DOA tracking with missing
detection and false alarm is formulated. In Section 3, the GM-CPHD
filter for DOA tracking is described. In Section 4, based on the
variational Bayesian approach, an innovative multi-target DOA
tracking method for uncertain measurement noise scenario,
namely the VB-GMCPHD, is proposed. In Section 5,
experimental validations are made and the results are proved,
demonstrating the superior performance of the proposed VB-
GMCPHD. Finally, the conclusions are drawn in Section 6.

2 Multi-target tracking models

The sets of the states of the targets and the measurements are
assumed to be RFSs. Assuming that nk targets exist within the
detection range of the sonar at time step k and the state of the in-th
target is xink , the set of the states of targets at time step k is expressed
as Xk � x1k, x

2
k, ..., x

nk
k{ }. Let θk denote the bearing angle of the in-th

target (θink is the angle between the target and positive x-axis with
respect to the positive counterclockwise.) and _θ

in
k denote the change

rate of θink , then the state of the in-th target is expressed as
xink � (θink , _θ

in
k )T, where (·)T denotes the matrix transposition.

Since the underwater targets are usually not maneuvering to save
energy and keep concealed, the bearing angles of the targets are
assumed to be subject to the constant velocity (CV) model. The CV
model of the state of the in-th target is expressed as

xink � Fk|k−1x
in
k−1 + Gkwk

Fk|k−1 � 1 T
0 1

[ ],Gk � T2/2
T

[ ]
⎧⎪⎪⎨⎪⎪⎩ , (1)

where Fk|k−1 and Gk are the state transition matrix and the noise
driving matrix, wk denotes the zero-mean Gaussian process noise
with the covariance matrix Qk caused by the unknown
underwater environment, and T is the interval between the
adjacent time steps.

The estimates of the bearing angles of the targets with error
obtained by the traditional DOA estimation methods are taken as

measurements. Considering the probability of missing detection and
false alarm, the number of measurements and the states of the
targets are always different in a multi-target tracking problem. It is
assumed that md

k targets are detected and mf
k false alarms exist,

i.e., mk � md
k +mf

k measurements are obtained at time step k. The
set of measurements at time step k are expressed as
Zk � z1k, z

2
k, ..., z

mk
k{ }. Then the measurement of the idm-th detected

target z i
d
m
k at time step k can be expressed as

z i
d
m
k � Hkx

idm
k + vk, (2)

where Hk denotes the measurement matrix and Hk � [1, 0], vk is
the error of the bearing angle estimate obtained by using
traditional DOA estimation, which is subject to Gaussian
distribution with zero mean and variance of σ2r,k. The false
alarms z1k, z

2
k, ..., z

mf
k

k are assumed to be subject to Poisson
distribution with intensity of κk.

3 GM-CPHD filter for multi-target DOA
tracking

The CPHD filter performs multi-target tracking by
recursively calculating the PHD and the cardinality
distribution to represent the distribution of the states and the
number of the targets, respectively. The closed-form solution of
the CPHD filter is given in the assumption of the linear Gaussian
mixture (GM) model, which is called the GM-CPHD filter. Each
component of the Gaussian mixture model represents the
respective states of the targets [30].

The cardinality distribution pk−1(n) and the PHD vk−1(x) are
assumed to be known, and vk−1(x) is subject to the Gaussianmixture
model as

vk−1 x( ) � ∑Jk−1
i�1
w i( )

k−1N xk;m
i( )

k−1,P
i( )

k−1( ), (3)

where w(i)
k−1 denotes the weight, N(·;m,P) denotes the Gaussian

distribution with the mean of m and covariance matrix of P, and m(i)
k−1

andP(i)
k−1 denote the estimate of the state of the target and themean square

error matrix (MSEM), respectively. Then, the process of the GM-CPHD
filter at time step k is divided into prediction and update as follows:

(1) Prediction

Once the cardinality distribution pk−1(n) at time step k − 1 is
given, the predicted cardinality distribution is expressed as

pk|k−1 n( ) � ∑n
j�0
pΓ,k n − j( )∑∞

l�j
Cj

l pk−1 l( )pj
s,k 1 − ps,k( )l−j, (4)

where Cj
l � l!/(j!(l − j)!), pΓ,k(·) is the cardinality distribution of

birth targets, and ps,k is the probability of targets surviving.
Once the PHD vk−1(x) at time step k − 1 is given, the predicted

PHD is expressed as

vk|k−1 x( ) � vs,k|k−1 x( ) + γk x( ), (5)
where vs,k|k−1(x) and γk(x) denote the PHD of surviving targets and
birth targets, respectively. vs,k|k−1(x) is expressed as
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vs,k|k−1 x( ) � ps,k∑
Jk−1

j�1
w

j( )
k−1N x;m

j( )
s,k|k−1,P

j( )
s,k|k−1( ), (6)

where the predicted statem(j)
s,k|k−1 and predictedMSEM P(j)

s,k|k−1 of the
j-th surviving target is given as follows:

m
j( )

s,k|k−1 � Fk−1m
j( )

k−1 , (7)
P

j( )
s,k|k−1 � Gkσ

2
qG

T
k + Fk−1P

j( )
k−1 F

T
k−1. (8)

The PHD of birth targets γk(x) is also subject to the Gaussian
mixture model as follows:

γk x( ) � ∑
Jγ,k

i�1
w i( )

γ,kN x;m i( )
γ,k,P

i( )
γ,k( ). (9)

where Jγ,k denotes the number of components of the Gaussian
mixture model for γk(x), and w(i)

γ,k,m
(i)
γ,k, and P

(i)
γ,k denote the weight,

state, and MSEM of the i-th birth target, respectively.
According to Equations 5, 6, and 9, the predicted PHD can be

expressed as follows:

vk|k−1 x( ) � ∑
Jk|k−1

i�1
w i( )

k|k−1N x;m i( )
k|k−1,P

i( )
k|k−1( ), (10)

where w(i)
k|k−1, m

(i)
k|k−1, and P(i)

k|k−1 denote the weight, predicted estimate
of the state, and predicted MSEM of the i-th target, respectively.

(2) Update

The cardinality distribution pk(n) and PHD vk(x) at time step k
are obtained by using the measurement set Zk to update pk|k−1(n)
and vk|k−1(x) as follows:

pk n( ) � Ψ0
k wk|k−1,Zk[ ] n( )pk|k−1 n( )
〈Ψ0

k wk|k−1,Zk[ ], pk|k−1〉
, (11)

vk x( ) � 〈Ψ1
k wk|k−1,Zk[ ], pk|k−1〉

〈Ψ0
k wk|k−1,Zk[ ], pk|k−1〉 1 − pD,k( )vk|k−1 x( )

+ ∑
z∈Zk

∑
Jk|k−1

j�1
w

j( )
k z( )N x;m

j( )
k ,P

j( )
k( ), (12)

where 〈α, β〉 denotes the inner product of α and β,
i.e., 〈α, β〉 � ∑L

l�1αlβl (α � [α1, α2, ..., αL], β � [β1, β2, ..., βL]), and
pD,k denotes the detection probability, and

Ψu
k w,Z[ ] n( ) � ∑min Z| |,n( )

j�0
Z| | − j( )pK,k Z| | − j( )

Aj+u
n

1 − pD,k( )n− j+u( )
〈1,w〉j+u

ej Λk w,Z( )( ), (13)

Λk,z x( ) � 〈1, κk〉
κk z( ) pD,kw

Tqk z( ): z ∈ Z{ }, (14)

wk|k−1 � w 1( )
k|k−1, . . . , w

Jk|k−1( )
k|k−1[ ]T, (15)

qk z( ) � q 1( )
k z( ), . . . , q Jk|k−1( )

k z( )[ ]T, (16)

q
j( )

k z( ) � N z; η
j( )

k|k−1, S
j( )

k|k−1( ), (17)

η
j( )

k|k−1 � Hkm
j( )

k|k−1, (18)
S

j( )
k|k−1 � HkP

j( )
k|k−1H

T
k + σ2r,k, (19)

w
j( )

k z( ) � pD,kw
j( )

k|k−1q
j( )

k z( ) 〈Ψ
1
k wk|k−1,Zk\ z{ }[ ], pk|k−1〉
〈Ψ0

k wk|k−1,Zk[ ], pk|k−1〉
〈1, κk〉
κk z( ) ,

(20)
m

j( )
k z( ) � m

j( )
k|k−1 + K

j( )
k z − η

j( )
k|k−1( ), (21)

P
j( )

k � I − K
j( )

k Hk[ ]P j( )
k|k−1, (22)

K
j( )

k � P
j( )

k|k−1H
T
k S

j( )
k|k−1[ ]−1, (23)

where |Z| denotes the number of the elements of the set Z, pK,k

denotes the cardinality distribution of false alarm at time step k, ej(·)
denotes elementary symmetric function of order j, and
ej(Z) � ∑

S⊆Z,|S|�j
(∏
ζ∈S

ζ), e0(Z) � 1, Aj
l � l!/(l − j)!, and Zk\ z{ }

denotes the set Zk without element z.
At last, the components with tiny weight are pruned away, the

components with uniform distribution are combined, and the
maximum number of components is limited [27]. Then, the
updated PHD at time step k is expressed in the Gaussian mixture
model as follows:

vk x( ) � ∑Jk
i�1
w i( )

k N x;m i( )
k ,P i( )

k( ), (24)

wherew(i)
k ,m(i)

k , and P(i)
k denote the weight, estimate of the state, and

MSEM of the i-th target at time step k, respectively.
The n corresponding to the maximum value of the cardinality

distribution pk(n) is the estimate of the number of targets. The m(i)
k

corresponding to the components with the N̂k largest weight in the
PHD vk(x) is the estimate of the target states. The first element of
the estimated state vector is the estimate of the bearing angle of the
target. By substituting pk(n) and vk(x) into the next time step, the
GM-CPHD filter can be used to recursively estimate the state of the
target to carry out DOA tracking.

4 VB-GMPHD filter for robust multi-
target DOA tracking with uncertain
measurement noise

The existing DOA tracking techniques usually assume that the
measurement noise is a certain stochastic process, which means the
MNCM is constant. However, in the real scenario of underwater
tracking, the unknown underwater environment always results in
uncertain measurement noise, which means the MNCM is time
varying. Thus, the assumption of the existing DOA tracking
technology on constant MNCM is inconsistent with the real
scenario, which results in the decline of tracking performance. In
order to improve the robustness of multi-target DOA tracking,
variational Bayesian approach is used to estimate the MNCM in
the real time of tracking. In this article, the measurement is a number
instead of a vector, thus the MNCM reduces to the measurement
noise variance.

4.1 Choice of prior distribution

In the multi-target DOA tracking scenario, when using the im-th
measurement to estimate the corresponding in-th target, the one-
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step predicted probability density distribution (PDF) p(xink |z im1: k−1)
and the likelihood PDF p(z imk |xink ) are assumed to be subject to
Gaussian distributions in the framework of the KF [35] as follows:

p xink
∣∣∣∣z im1:k−1,Pk|k−1( ) � N xink ; x̂

in
k|k−1,P

in
k|k−1( ), (25)

p z imk
∣∣∣∣xink , σ2

r,k( ) � N z imk ;Hkx
in
k , σ

2
r,k( ), (26)

where N(·; μ,Σ) denotes the PDF of the Gaussian distribution with
mean μ and covariance matrix Σ, Hk is the measurement matrix
given in Equation 2, and σ2r,k denotes the measurement noise
variance. x̂ink|k−1 and Pin

k|k−1 denote the predicted state and
predicted MSEM of the in-th target, respectively, which are
expressed as

x̂ink|k−1 � Fk|k−1x̂
in
k−1|k−1, (27)

Pin
k|k−1 � Fk|k−1P

in
k−1|k−1F

T
k|k−1 + Qk−1, (28)

where x̂ink−1|k−1 and Pin
k−1|k−1 are the estimates of the state and MSEM

of the in-th target at time step k-1, respectively.
In order to infer xink along with σ2r,k, a conjugate prior

distribution has to be selected for the fluctuant σ2r,k, since a
conjugate distribution can guarantee the same functional forms
of the prior distribution and posterior distribution. In the Bayesian
theory, the inverse Wishart distribution is usually used as the
conjugate prior for the covariance matrix of a Gaussian
distribution with known mean [36]. Since σ2r,k is the variance of
the Gaussian distribution, the prior distribution p(σ2r,k|z im1: k−1) is
selected as the inverse Wishart distribution, given by

p σ2r,k
∣∣∣∣z im1: k−1( ) � IW σ2

r,k; ûk|k−1, Ûk|k−1( ), (29)

where IW(·; λ,Ψ) denotes the PDF of the inverse Wishart
distribution with degree of freedom (dof) λ and inverse scale
matrix Ψ [37], ûk|k−1 and Ûk|k−1 are the dof and inverse scale
matrix of p(σ2r,k|z im1: k−1), respectively.

The posterior distribution p(σ2r,k−1|z im1: k−1) is also subject to an
inverse Wishart distribution as follows:

p σ2r,k−1
∣∣∣∣z im1: k−1( ) � IW σ2r,k−1; ûk−1|k−1, Ûk−1|k−1( ). (30)

To guarantee that p(σ2r,k−1|z im1: k−1) is the inverse Wishart
distribution given by Equation 29, the previous approximate
posterior distribution is spread through a forgetting factor
ρ ∈ (0, 1], which indicates the extent of time fluctuations of the
MNCM. Then, the prior dof ûk|k−1 and prior inverse scale matrix
Ûk|k−1 are given as follows [34]:

ûk|k−1 � ρ ûk−1|k−1 − r−1( ) + r + 1, (31)
Ûk|k−1 � ρÛk−1|k−1. (32)

where r denotes the order of the MNCM σ2r,k.

4.2 Variational approximations of posterior
PDFs

According to the variational Bayesian approximation, the joint
posterior PDF of the state of the in-th target xink and MNCM σ2r,k is
approximated to

p xink , σ
2
r,k | z im1: k( ) ≈ q xink( )q σ2

r,k( ), (33)

where q(xink ) and q(σ2r,k) are the approximate posterior PDFs of xink
and σ2r,k, respectively [38, 39]. The variational Bayesian
approximation is formed by minimizing the Kullback–Leibler
divergence (KLD) between the true joint distribution p(xink , σ2r,k |
z im1: k) and the approximate distribution q(xink )q(σ2r,k), i.e.,
q xink( ), q σ2r,k( ){ } � arg min KLD q xink( )q σ2r,k( ) ‖ p xink , σ

2
r,k | z im1: k( )( ),

(34)
where KLD(q(x) ‖ p(x)) denotes the KLD between q(x) and p(x)
[38, 39], and

KLD q x( ) ‖ p x( )( ) � ∫ q x( )log q x( )
p x( ) dx. (35)

The optimal solution of Equation 34 satisfies the following
equations [39]:

log q xink( ) � Eσ2
r,k

logp xink , σ
2
r,k, z

im
1: k( )[ ] + cx, (36)

log q σ2
r,k( ) � Exin

k
logp xink , σ

2
r,k, z

im
1: k( )[ ] + cR, (37)

where Exin
k
[·] and Eσ2

r,k
[·] denote the expectation with regard to xink

and σ2r,k, respectively, and cx and cR denote the constants with
respect to xink and σ2r,k, respectively. Since the variational parameters
of q(xink ) and q(σ2r,k) are coupled, a fixed point iteration process is
applied to solve Equations 36, 37, i.e., the approximate posterior
PDF q(xink ) is updated to q(n+1)(xink ) at the n + 1-th iteration using
the posterior PDF q(n)(σ2r,k), and q(σ2r,k) is updated to q(n+1)(σ2r,k)
using the posterior q(n)(xink ).

According to Equations 25, 26, 29, the joint PDF is
expressed as

p xink , σ
2
r,k, z

im
1: k( ) � p z imk

∣∣∣∣xink , σ2r,k( )p xink
∣∣∣∣z im1: k−1( )p σ2r,k

∣∣∣∣z im1: k−1( )p z im1: k−1( )
� N z imk ; h xink( ), σ2

r,k( )N xink ; x̂
in
k|k−1,P

in
k|k−1( )

× IW σ2r,k; ûk|k−1, Ûk|k−1( )p z im1: k−1( ) (38)

(1) Update of xink

The posterior q(n+1)(xink |z im1: k−1) is updated according to the
extended Kalman filter equations as

q n+1( ) xink
∣∣∣∣z im1: k−1( ) � N xink ; x̂

n+1( )
k|k , P̂

n+1( )
k|k( ), (39)

where the mean vector x̂(n+1)k|k and the covariance matrix P̂
(n+1)
k|k are

given as follows:

K n+1( )
k � Pin

k|k−1 Hk( )T HkP
in
k|k−1 Hk( )T + σ n( )

r,k( )2( )−1
, (40)

x̂ n+1( )
k|k � x̂ink|k−1 + K n+1( )

k z imk −Hkx̂k|k−1( ), (41)
P n+1( )
k|k � Pin

k|k−1 − K n+1( )
k H n( )

k Pin
k|k−1. (42)

(2) Update of σ2r,k

According to Equation 38, log q(n)(σ2r,k) is given by
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log q n+1( ) σ2r,k( )
� −0.5 r + ûk|k−1 + 2( )log σ2

r,k

∣∣∣∣ ∣∣∣∣ − 0.5tr Ûk|k−1 σ2r,k( )−1( )
− 0.5 z imk −Hkx

in
k( )T σ2r,k( )−1 z imk −Hkx

in
k( ) + cR

� −0.5 r + ûk|k−1 + 2( )log σ2
r,k

∣∣∣∣ ∣∣∣∣ − 0.5tr B n( )
k + Ûk|k−1( ) σ2r,k( )−1( ) + cR

(43)
where

B n( )
k � E n( ) z imk −Hkx

in
k( ) z imk −Hkx

in
k( )T[ ]

� E n( ) (z imk −Hkx̂
n( )

k|k +Hkx̂
n( )

k|k −Hkx
in
k[ ) z imk −Hkx̂

n( )
k|k +Hkx̂

n( )
k|k −Hkx

in
k( )T]

� z imk −Hkx̂
n( )

k|k( ) z imk −Hkx̂
n( )

k|k( )T +HkE
n( ) xink − x̂ n( )

k|k( ) xink − x̂ n( )
k|k( )T[ ]HT

k

� z imk −Hkx̂
n( )

k|k( ) z imk −Hkx̂
n( )

k|k( )T +HkP
n( )

k|kH
T
k .

(44)

From Equation 43, q(n+1)(σ2r,k) is updated as

q n+1( ) σ2r,k( ) � IW σ2
r,k; û

n+1( )
k , Û

n+1( )
k( ), (45)

where the dof û(n+1)k and the inverse scale matrix Û
(n+1)
k are given as

follows:

û n+1( )
k � ûk|k−1 + 1, (46)

Û
n+1( )
k � B n( )

k + Ûk|k−1. (47)
Then, according to Equation 38, log q(n)(xink ) is given by

log q n+1( ) xk( ) � −0.5 z imk −Hkx
in
k( )TE n+1( ) σ2r,k( )−1[ ] z imk −Hkx

in
k( )

−0.5 xink − x̂ink|k−1( )TP−1
k|k−1 xink − x̂ink|k−1( ) + cx

(48)

where E(n+1)[(σ2r,k)−1] is given by

E n+1( ) σ2r,k( )−1[ ] � û n+1( )
k −m − 1( ) Û

n+1( )
k( )−1

. (49)

The modified one-step predicted PDF p(n+1)(zk|xk) at the
n + 1-th iteration is defined as

p n+1( ) z imk
∣∣∣∣xink( ) � N z imk ;Hkx

in
k , σ̂ n+1( )

r,k( )2( ), (50)

where the modified MNCM (σ̂(n+1)r,k )2 is formulated as

σ̂ n+1( )
r,k( )2 � E n+1( ) σ2r,k( )−1[ ]{ }−1 � Û

n+1( )
k / û n+1( )

k −m − 1( ). (51)

Finally, after N fixed-point iterations, the variational
approximations of the posterior PDFs for the in-th target are
given as follows:

q xink( ) ≈ q N( ) xink( ) � N xink ; x̂
N( )

k|k ,P
N( )
k|k( ) � N xink ; x̂

in
k|k,P

in
k|k( ), (52)

q σ2
r,k( ) ≈ q N( ) σ2r,k( ) � IW σ2

r,k; û
N( )

k , Û
N( )

k( ) � IW σ2
r,k; ûk|k, Ûk|k( ).

(53)

4.3 Algorithm of VB-GMCPHD filter

According to the above derivation, the pseudo-code of the
variational Bayesian GM-CPHD filter (VB-GMCPHD) for DOA
tracking at one time step is given in Algorithm 1.

1. Initialize GM components w(i)
0 ,m(i)

0 ,P(i)
0{ }J0

i�1 and

cardinality distribution p0(n);
For k � 1: K

Prediction:

2. Predict the cardinality distribution pk|k−1(n) by using

Equation 4;

3. Calculate the components of survive targets:

For i � 1: Jk−1
w(i)

s,k|k−1 � ps,kw
(i)
k−1, m(i)

s,k|k−1 � Fk−1m(i)
k−1,

P(i)
s,k|k−1 � Gkσ2qG

T
k + Fk−1P(i)

k−1F
T
k−1;

û(i)k|k−1 � ρ(û(i)k−1 − r − 1) + r + 1, Û
(i)
k|k−1 � ρÛ

(i)
k−1.

End

4. Add the components of birth

targets w(i)
γ,k,m

(i)
γ,k,P

(i)
γ,k{ }i�Jk−1+Jγ,k

i�Jk−1+1
;

5. Express the predicted GM components as

w(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1{ }i�Jk|k−1

i�1 , where Jk|k−1 � Jk−1 + Jγ,k;

Update:

6. Update the cardinality distribution pk(n) by using

Equation 11;

7. Update GM components of targets:

For i � 1: Jk|k−1
w(i)

k � 〈Ψ1
k[wk|k−1,Zk], pk|k−1〉

〈Ψ0
k[wk|k−1,Zk], pk|k−1〉

(1 − pD,k)w(i)
k−1, m(i)

k � m(i)
k|k−1,

P(i)
k � P(i)

k|k−1;
End

For m � 1: mk

For i � 1: Jk|k−1
8. Estimate σ2r,k along with states of targets by using VB

iterations

Initialization: m̂(0)
k|k � m(i)

k|k−1, (σ̂(0)r,k )2 � Ûk|k−1/ûk|k−1.
For n � 0: N − 1

S(n)
k|k−1 � HkP

i
k|k−1H

T
k + (σ̂(n)r,k )2

K(n+1)
k � P(i)

k|k−1(Hk)T(S(n)
k|k−1)−1, m̂(n+1)

k|k � m̂k|k−1 + K(n+1)
k (zm − Hkm̂

(n)
k|k ),

P(n+1)
k|k � P(i)

k|k−1 − K(n+1)
k HkP

(i)
k|k−1.

B(n+1)
k � (zm − Hkm̂

(n+1)
k|k )(zm − Hkm̂

(n+1)
k|k )T + HkP

(n+1)
k|k (Hk)T,

Û
(n+1)
k|k � Ûk|k−1 + B(n+1)

k , û(n+1)k|k � ûk|k−1 + 1,

(σ̂(n+1)r,k )2 � Û
(n+1)
k|k /û(n+1)k|k .

End

Sk|k−1 � S(N)
k|k−1

m(Jk|k−1+(m−1)mk+i)
k � m̂(N)

k|k ,

P(Jk|k−1+(m−1)mk+i)
k � P(N)

k|k ;

w(Jk|k−1+(m−1)mk+i)
k � pD,kw

(i)
k|k−1q

(i)
k (zm) 〈Ψ

1
k[wk|k−1,Zk\ zm{ }], pk|k−1〉
〈Ψ0

k[wk|k−1,Zk], pk|k−1〉
〈1,κk〉
κk(zm)

End
End

9. Jk|k � Jk|k−1 + Jk|k−1mk, Prune, merge, and limit the Jk|k
components, and new Jk components are obtained;

10. Express the updated GM components as w(i)
k ,m(i)

k ,P(i)
k{ }i�Jk

i�1 ;
11. The n corresponding to the peak of pk(n) is the

estimate of the target number;

12. The m(i)
k corresponding to the N̂k components with the

largest weight is the estimate of target states.

End

Algorithm 1. VB-CPHD filter for Robust multi-target DOA tracking
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5 Results and discussion

5.1 Experimental setup

The open experimental data set SWellEx-96 [40] is used to
verify the tracking performance of the proposed VB-GMCPHD
filter for robust DOA tracking. The experiment was performed at
the United States Marine Physical Laboratory from 10 to 18 May
1996, approximately 12 km from the tip of Point Loma near San
Diego, California. The data of the north horizontal linear array of
the S59 event of the experiment is used in this section. 900 s of
experimental data is used to test the proposed method in this
section. Before the experiment, a CTD is used to obtain the sound
velocity in the experimental area. The experimental ship tows a
continuous sound source at a depth of 54 m at a speed of 5 knots
and sails north, which is named target 1 in this article. In addition,
an uncooperative ship sails from northwest to southeast with
continuous radiating noise, which is named target 2 in this article.
The radar system of an experimental ship records the distance and
bearing of the uncooperative ship and derives the latitude and
longitude of the uncooperative ship. The horizontal linear array is
placed on the seafloor at a depth of 213 m and continuously
records the received acoustic signal at a sampling frequency of
3,276.8 Hz. The horizontal array consists of 32 elements, among
which 27 elements provide effective data. The positions of the
effective elements are shown in Figure 1, where the position of the
first element is taken as the origin of coordinates. Figure 1 shows
that the elements are actually not arranged in a straight line but in
a slight curve. Therefore, the port and starboard ambiguity
problem of a linear array is avoided.

To evaluate the difference between the real set and estimated
set of the states of the targets, an evaluation has to be chosen.
Because the number of elements of the real set and estimated set of
the states of the targets is different, the root-mean-square type of
evaluation (such as the root mean square error) is not usable. In
this article, optimal sub-pattern assignment (OSPA) error is
selected to evaluate the multi-target tracking performance,
which is defined as follows [41]:

d c( )
p X,Y( ) � 1

n
min
π ∈ Π

∑m
i�1
d c( ) xi, yπ i( )( )p + cp n −m( )⎛⎝ ⎞⎠

1/p

, m≤ n

d c( )
p X,Y( ) � d c( )

p Y ,X( ), m> n

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(54)

where d(c)p (X,Y) is the OSPA error, X � x1, x2, ..., xm{ } and Y �
y1, y2, ..., yn{ } are RFSs, Π denotes the set made up with m elements
from 1, 2, ..., n{ }, and d(c)(x,y) � min d(x,y), c{ }, d(x,y) is the
Euclidean distance between x and y, while c and p denote the
truncation parameter and order, and are set to 5 and 1, respectively.
The smaller the OSPA error means the higher the precision.

5.2 Experimental results

The minimum variance distortionless response (MVDR) was used
to obtain the measurement of the bearing angles of the targets at
48 Hz–52 Hz every 10 s, and the bearing angle scans from 0 to 360°

every 1°. According to the CTD data, the sound velocity was set to
1,493 m/s. The bearing time recording (BTR) obtained by theMVDR is
given by the background 3D color diagram of Figure 2A. The true
bearing angles of the two targets are given by the black line. The bearing
angles corresponding to the peaks of the spectrum are extracted at each
moment, and the obtained measurements of bearing angles of targets
are shown by red dots in Figure 2A. Figure 2A shows trajectories of
three targets. The bearing angle of target 1 moves from 135° to 50°, the
bearing angle of target 2 moves from 285° to 275°, and the bearing angle
of an unknown uncooperative target stays near 320°, which is named
target 3 in this article. Figure 2A also shows some error, missing
detection, and false alarm in the measurements.

The proposed robust multi-target DOA tracking method is used to
process the bearing angle measurements, and the results of KF-JPDA
[42], GM-PHD filter [27], and GM-CPHD filter [30] are also given for
comparison. The process noise variance of the CV model is set to
2.5 × 10−4. The detection probability and false alarm probability are set
to 0.9 and 0.1, respectively. The measurement noise variance σ2r,k of KF-
JPDA,GM-PHD filter, andGM-CPHD filter is set to 25. The parameters
û0, Û0, and ρ of the VB- GMCPHD are set to 12, 12 σ2r,k, and 0.95,
respectively, and the number of VB iterations N is set to 5.

The tracking results of KF-JPDA, GM-PHD filter, GM-CPHD
filter, and VB-GMCPHD filter are shown in Figures 2B–E, and the
OSPA errors are shown in Figure 2F. The average OSPA errors
tracking step are shown in Table 1; Figures 2B–E show that all multi-
target DOA tracking methods carried out stable tracking of the three
targets, and the tracking trajectories are consistent with the real
trajectories. Figure 2F and Table 1 show that KF-JPDA, GM-PHD
filter, GM-CPHD filter, and the proposed VB-GMCPHD filter
significantly reduce OSPA errors on the basis of measurements,
and the OSPA errors of the VB-GMCPHD filter are slightly smaller
than those of the KF-JPDA, GM-PHD filter, and GM-CPHD filter.

Since the power of measurement noise hardly varies in the
experiment, the performance of the proposed VB-GMCPHD filter
for the robust multi-target DOA tracking improves slightly when
compared to the other methods. In order to further test the
robustness of the proposed robust underwater multi-target DOA
tracking method in the scenario of uncertain measurement noise, a
period of high-power noise was added to the experimental data from

FIGURE 1
Position of the horizontal linear array.
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500 s to 600 s. Then, the abovementioned process was repeated for the
data with added noise.

The BTR and bearing angle measurements obtained by MVDR
are shown in Figure 3A. The tracking results of KF-JPDA, GM-PHD
filter, GM-CPHD filter, and VB-GMCPHD filter are shown in

Figures 3B–E, respectively. The OSPA errors of the tracking
results are shown in Figure 3F, and the average OSPA errors per
tracking step are shown in Table 2.

Figure 3 shows that KF-JPDA, GM-PHD filter, and GM-CPHD
filter provide stable tracking of the bearing angles of the three targets

FIGURE 2
Bearing anglemeasurements, tracking results, and the OSPA errors of KF-JPDA, GM-PHD filter, GM-CPHD filter, and VB-GMCPHD filter. (A) Bearing
angle measurements. (B) Tracking result of KF-JPDA. (C) The tracking result of GM-PHD filter. (D) The tracking result of GM-CPHD filter. (E) The tracking
result of VB-GMCPHD filter. (F) OSPA errors of tracking results.
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TABLE 1 The average OSPA errors of the tracking results of KF-JPDA, GM-PHD filter, GM-CPHD filter, and VB- GMCPHD filter in one tracking step.

KF-JPDA GM-PHD GM-CPHD VB- GMCPHD

Average OSPA error (°) 3.42 2.67 2.24 1.93

FIGURE 3
Bearing angle measurements, tracking results, and OSPA errors of KF-JPDA, GM-PHD filter, GM-CPHD filter, and VB-GMCPHD filter when
processing the experimental data with added noise. (A) Bearing anglemeasurements. (B) Tracking result of KF-JPDA. (C) Tracking result of GM-PHD filter.
(D) Tracking result of GM-CPHD filter. (E) Tracking result of VB-GMCPHD filter. (F) OSPA errors of tracking results.
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when the measurement noise variance is stationary from 0 to 500 s.
However, when themeasurement noise variance increases from 500 s to
600 s, the assumption of fixed measurement noise variance of KF-
JPDA, GM-PHD filter, and GM-CPHD filter becomes inconsistent
with the real increasing measurement noise variance, which results in
inaccurate Kalman filter gain. Therefore, the KF-JPDA, GM-PHD filter,
and GM-CPHD filter carry out fluctuating tracking trajectory or even
miss tracking, which results in an increasing of the OSPA error. The
OSPA error of the proposed VB-GMCPHD filter for robust multi-
target DOA tracking is significantly less than that of the KF-JPDA, GM-
PHD filter, and GM-CPHD filter. The reason is that the VB-GMCPHD
filter estimates the measurement noise variance in the real time of
tracking so the Kalman filter gain calculated by using the estimate of
measurement noise variance is more accurate. Therefore, the increasing
measurement noise variance hardly affects the performance of the VB-
GMCPHD filter, and the robust DOA tracking with uncertain
measurement noise is carried out. Table 2 proves the superiority of
the proposed VB-GMCPHD filter in robustness again.

6 Conclusion

The robust multi-target underwater DOA tracking problem in
uncertain measurement noise scenario is studied in this article. In order
to solve the underwater multi-target DOA tracking problem, a multi-
target DOA tracking technique is derived on the basis of the GM-
CPHD filter, which is combined the kinematics of the target, the bearing
angle measurements, and the multi-target tracking scheme at the same
time. Then, considering the uncertain measurement noise results from
unknown underwater environment, the online measurement estimator
is designed on the basis of the variational Bayesian approach to estimate
themeasurement noise variance alongwith the states of the targets as an
integrated part during the multi-target DOA tracking procedure. Thus,
a robust underwater multi-target DOA tracking method with uncertain
measurement noise, namedVB-GMCPHD filter, is proposed. From the
experiment results validated by real sea trial data, the accuracy and
robustness of the proposed VB-GMCPHD is verified and
comprehensive discussions are made. From the experimental results
and discussions, the proposed VB-GMCPHD can be regarded as an
alternative method to accomplish DOA tracking missions, especially
when the underwater environment is uncertain.
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A method of underwater sound
source range estimation without
prior knowledge based on single
sensor in shallow water
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Introduction: The lack of prior knowledge of the marine environment increases the
difficulty of passive ranging of underwater sound sources by using a single
hydrophone. The dispersion curve of the normal mode contains extensive marine
environmental information, which can be extractedwithout prior knowledge, but the
characteristics of dispersion curves of different modes vary, and the mode order
cannot be determined from the received data.

Methods:Herein, amethod based on a single hydrophone that can jointly identify the
mode order and estimate the propagation range in unknown marine environment is
proposed. The method uses Bayesian theory as the main methodology and is
applicable to broadband pulse sound sources in shallow seas with long-range
propagation. The dispersion curves extracted from the data and those calculated
by the dispersion formula are the input signal and the replica of the methods,
respectively. Accurate identification of the normal mode order and estimation of
the propagation range can be achieved by establishing the joint cost function.

Results: In the case of unknown a priori knowledge of the marine environment, the
method enables rapid inversion, is tolerant to environmental parameter mismatch,
and is low cost and practical.

Discussion: The simulation and measured data analysis results demonstrate the
accuracy and validity of the method. The measured data contains linear frequency
modulation impulse source signal and explosion sound source signals, and themean
relative error of range estimation is less than 5%.

KEYWORDS

shallow water waveguide, normal mode order identification, range estimation, Bayesian
inversion theory, without prior knowledge

1 Introduction

Multipath and dispersion are important characteristics of shallow water waveguides, and
the study of dispersion characteristics is very important in the field of underwater acoustics. The
received signal is a superposition of multiple-order normal modes when a broadband pulsed
sound propagates in a shallow sea, and the amplitude and phase of the signal also change, thus
increasing the difficulty of signal processing [1].

The passive ranging of underwater sound sources is aimed at estimating the propagation
range on the basis of extracted environmental information by processing the received signal
when the location of the source is unknown. This research is of great importance in national
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defense applications and in marine biolocation. However, most
existing methods rely on sensor arrays [2, 3], which are not only
costly but also yield ranging results with high uncertainty, because the
arrays are susceptible to the influence of the water environment.
Ranging methods based on a single hydrophone have been
proposed to address the shortcomings of array-based ranging
methods [4–7]. The feature extraction of underwater acoustic
signal mostly depends on ship radiated noise [8–10]. However, the
close association of dispersion characteristics and the characteristics of
each mode with the marine environment provides possibilities for
analyzing the structure and extracting the environmental parameters
[7]. The dispersion curves are widely used in the passive ranging of
single hydrophones for broadband pulsed sources. After analyzing the
received signals, the information on the ocean environment, source
location, and Eigen functions contained in the dispersion
characteristics are effectively used to achieve the inversion of the
ocean environmental parameters in shallow waveguides [11–13]; the
estimation of the speed of sound profile (SSP) in water [14]; as well as
the passive localization of a variety of broadband impulse sources, such
as light bulb sources [15], dolphin calls [16], and explosion sources
[17, 18]. However, all of the above methods require some or all of the a
priori knowledge of the marine environment to obtain accurate
ranging results, which is very difficult for a practical application.

Combining the extracted dispersion curves and Bayesian
estimation theory to achieve sound source ranging can reduce the
reliance on a priori knowledge of the marine environment [19–21],
However, the method based on the dispersion characteristics has two
conditions for application: a priori knowledge of the marine
environment and the determined order of the normal modes. The
characteristics of dispersion curves of different modes vary. Mode
order identification is the basis for underwater engineering
applications using dispersion curves. Factors such as the SSP (the
sound speed profile) in water, the geoacoustic structure, and the
location of the source/receiver can affect the propagation of the
sound signal and consequently lead to some normal modes being
missed in the received signal. Separating the modes from measured
data can be accomplished through a warping transform [11], and
signal faults can be observed in the spectrogram results of warped
signals; however, directly identifying the mode order remains
impossible, thus it is important to find a method to effectively
identify the normal modes.

Identification of normal mode order can be achieved on the basis
of the conventional beamforming of a horizontal line array [22]. The
dispersion curves extracted by warping transform are used as the input
signal, according to Bayesian theory, while the replica is calculated
with the acoustic field model. Subsequently, the joint estimation of
mode order and environmental parameters can be performed [23].
However, the calculation of the replica requires multiple
environmental parameters regarding the water as well as the
bottom. Too many inversion parameters reduce the inversion
efficiency, and correlations between parameters increase the error.
A inversion scheme that does not require mode identification is thus
proposed.

The feature of this study is the identification of normal modes and
source ranging effectively without a priori knowledge of the marine
environment. Bayesian inversion theory has good tolerance for marine
environmental parameters, and all unknown marine environmental
parameters can be used as inversion parameters for inversion. The
input function and replica are two important components of the

Bayesian inversion methodology. This study differs from previous
inversion work because the input function is easy to obtain and the
replica is efficiently calculated. In the method described herein, the
dispersion curves of normal modes with high energy and good energy
focus are used as the input signal, and the replica is obtained from the
dispersion formula. The computational speed of the replica affects the
efficiency of the entire inversion process. For shallow environments in
which the speed of sound on the seabed is higher than that in water,
the bottom features can be approximated according to the bottom
reflection phase shift parameter P for SRBR (surface-reflected-and-
bottom- reflected) modes in the case of small angle incidence.

The dispersion formula can be obtained with four parameters.
Therefore, for SRBR normal modes, the dispersion curve of the mode
calculated by the dispersion formula is valid. Under the condition of
unknown a priori knowledge of the ocean, when the replica is obtained
with the dispersion formula, the number of inversion parameters is
reduced, the errors caused by the coupling of environmental
parameters are effectively avoided, and the inversion efficiency is
improved.

The method is applied to the data measured from the South China
Sea in October 2014 and the Yellow Sea of China in December 2018.
The method provides a reliable estimate of the propagation range of
the sound source.

2 Materials and methods

2.1 Modal propagation theory

In a shallow water waveguide, consider a broadband pulsed sound
source S(f), located at depth zs. The signal is received by a hydrophone
located at depth zr after a propagation range r. The received signal can
be can be expressed as the sum of multi-order normal modes [24]:

pref f , r( ) ≈ S f( )∑N
n�1

���
2π
ξnr

√
Un zs( )Un zr( )ej ξnr+π

4( ) (1)

where n is the normal mode order, and ξn is the horizontal
wavenumber. The traveling wave characteristic of the normal mode
in the direction of horizontal propagation range r is determined by
ej(ξnr+π

4), whereas the characteristic in the standing wave direction is
determined by the Eigen function Un(z). Different modes show
variations in the depth z direction. For the ideal shallow water
waveguide, for example, the surface is a free-release boundary, and
the seabed is a horizontal rigid boundary. The Eigen function can be
expressed as:

Zn z( ) � sin n − 1
2

( ) π
H

· z[ ] (2)

From Eq. 2, when the depth of water is H, the normalized
amplitude of the first 5-order normal modes varies with z, as
shown in Figure 1.

As shown in Figure 1, the Eigen function of the normal mode has n
points with zero energy value in the depth direction, and this point is
called a node. The energy of the mode signal of each order in the
received data varies with the source/receiver depth configuration.When
the source/reception depth is just near the node, the modal excitation is
insufficient and subsequently disappears. Marine environmental factors
affect the propagation characteristics of normal modes. Therefore, the
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mode contains a large amount of oceanographic information and is
widely applied in underwater engineering. The analysis of normal mode
characteristics is important in performing the inversion of geoacoustic
parameters and source localization. However, the mode order cannot be
determined directly from the received data, and the use of time-
frequency analysis (TFA) and warping transform provides
convenience in research.

The energy variation in normal modes can be observed through
the TFA technique. Figures 2A, B show the received signal in the time
domain and time–frequency domain after TFA for a broadband
pulsed sound source in the frequency band of 100–300 Hz
propagating for 10 km in a Pekeris waveguide. The environmental
parameters are as follows: depthH = 100 m, SSP in water c0 = 1500 m/
s, depth of the sound source zs = 28 m at the node of mode 4, seabed
speed of sound cb = 1800 m/s, and density ρb = 1.6 g/cm3.

Figure 2A shows the total propagation characteristics of multi-
order normal modes, which cannot reflect the characteristics of a
single mode. However, multiple normal modes with higher energy
can be seen in Figure 2B. Because the order of each mode cannot be
determined directly, the order is assumed to be x1, x2, x3, ..., and
xn. The energy of the normal mode is gathered in a curve
associated with time and frequency (e.g., the black dotted line
corresponding to the x3 order mode in Figure 2B), which is called
the dispersion curve. The dispersion curves not only describe the
energy variation characteristics of normal modes but also contain
information on the marine environment. The characteristics of
dispersion curves of different modes vary, and determining these
characteristics is equivalent to obtaining multiple sets of data
containing information about the environment in the case of
one receiver.

FIGURE 1
Normalized amplitude distribution of normal modes with depth.

FIGURE 2
The received signal (A) in the time domain and (B) time-frequency domain.
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2.2 Dispersion curve

Dispersion characteristics are very important aspects of shallow
water waveguides. The dispersion characteristics can be explained by
the group velocity and phase velocity, which are associated with the
order of the normal mode and vary with frequency. The group velocity
and phase velocity can be written as:

vgn �
2πzf
zξn

vpn � 2πf/ξn (3)

The different group velocity of each mode leads to different arrival
times; therefore, the dispersion curve is a function of time and
frequency. The dispersion curve of mode n can be written as:

tn f( ) � r
vng f( ) �

rzξn
z 2πf( ) (4)

The energy of the mode varies with the dispersion curve,
according to the mode order n, propagation range, and
horizontal wavenumber ξn. Therefore, using dispersion curves
is favorable for source ranging.

2.2.1 The dispersion formula
In Beam-Displacement Ray-Mode (BDRM) theory, when a sound

source with a small grazing angle propagates in a waveguide where the
speed of sound of the seabed is larger than that in water, the dispersion
curve of the SRBR normal mode can also be calculated with the
dispersion formula [25]:

f n t( ) ≈ nπc0t
2πH

����������
t2 − r/c0( )2√ − Pc0

4πH − Pr
4πHt2c0

(5)

where the P is the bottom reflection phase shift parameter, which is a
quantity associated with the seabed parameter, expressed as:

P ≈

�
2

√
ρ2/ρ1

�����������������������������������������������������������
1 − c0/cb( )2( )2 + c0/cb( )2αcb2πf

√
+ 1 − c0/cb( )2

√
�����������������������
1 − c0/cb( )2( )2 + c0/cb( )2αcb2πf

√ (6)

where ρ1, ρ2, cb, and α are the water density, seabed density, and seabed
absorption, respectively. According to Eq. 6, the P is a frequency-
dependent quantity. However, when the attenuation of the seabed is
minor, and the frequency exceeds 10 Hz, the effect of frequency on P
can be neglected, and Eq. 6 can be simplified to:

P ≈
2ρ2

ρ1
����������
1 − c0/cb( )2√ (7)

The inversion efficiency can be improved by reducing the number
of inversion parameters by describing the bottom properties with
parameter P. Moreover, the dispersion curve can be calculated more
rapidly by using the dispersion formula compared with the sound field
model (e.g., KRAKENC) [26].

According to the above, the dispersion curves of each order of
simple positive waves can be calculated with Eq.5 and 6, when the
parameters of the marine environment are known. KRAKENC is a
more mature model for acoustic field calculation; therefore, the
dispersion curves obtained by KRAKENC according to Eq. 5 are
used as the reference curves.

However, the dispersion curves obtained with the dispersion
formula Eq. 5 do not contain frequencies lower than Ariy

frequency (Ariy frequency: The frequency corresponding to the
minimum value of the group velocity of the normal mode). It is
also an important part of our future work to obtain dispersion
formulas that can calculate complete dispersion curves.

2.2.2 Extraction of dispersion curves
In practical applications, detailed environmental parameters are

difficult to obtain, and the dispersion curves can be extracted through
analysis of the received signals. The combination of time-frequency
analysis techniques, warping transform, modal filtering, and ridge
extraction techniques can achieve accurate extraction of dispersion
curves in measured data.

The warping transform can transform the time domain signal
pret(r, t) (the time domain result of pref(f, r)) by a time
transformation factor h(t) �

����������
t2 + (r/c0)2

√
, thereby transforming

the sound pressure signal into a superposition of multiple single
frequency signals to achieve effective separation of different normal
modes. The modal filtering technique can then be used to extract
normal modes.

The extracted modes are inverted with the inverse warping
operator h(t) �

����������
t2 − (r/c0)2

√
, and finally the dispersion curve of

each mode is extracted with techniques such as ridge extraction. In
the above process, two parameters are used: the propagation distance r
and the speed of sound in seawater c0. Because the warping transform
is invertible, the two parameters are process quantities, and the final
results are not dependent on the accuracy of the two parameters.
However, the arrival time of each normal mode must be accurate, and
great care must be taken in processing the received signal [27].

The above process can be described by the simulation results in the
Pekeris waveguide, with the same simulation environment as in the
previous section, taking the example of extracting the dispersion curve
of normal mode x3.

In the spectrogram of the received signal shown in Figure 3A, the
energy of mode ×3 is strong, thus facilitating its extraction. The
received signal contains at least 5th-order normal modes, but the
energy of different-order modes varies, and the energy of mode four is
weak and appears blurry in Figure 3B. Mode x3 is extracted after
modal filtering and unwarping transform, and the spectrogram and
extracted dispersion curve of modal x3 are shown in Figures 3C, D,
respectively.

The dispersion formula Eq. 5, data-extraction and theoretical
calculation based on an acoustic model are three methods for
calculating the dispersion curve. The accuracy of the calculated
results is verified by comparing with the results from KRAKEN,
used as reference value. The simulation analysis is performed in
the Pekeris waveguide and the waveguide with a thermocline,
respectively, whose simulation parameters are shown in Figure 4.
The propagation range of source is r = 5 km, and the broadband of
source is 100–200 Hz, the sampling rate is fs = 1 kHz, the spectrum of
the received signal is obtained by the short-time Fourier transform
(STFT). The spectrum information is illustrated in Figure 3, where the
information of RGB is given. The locations of the source and receiver,
and the seabed environment are the same as in the Pekeris waveguide,
but the speed of sound in water has a thermocline at 20–40 m. The
difference between the speed of sound at the surface and the seabed is
9 m/s, and the source is located in the thermocline. Figure 5A and
Figure 5B show the TFA results of the received signal in the two
waveguides and the dispersion curves calculated with the three
methods, respectively.
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Figure 5 shows that the dispersion curves obtained through the
three methods match well in the Pekeris waveguide, and are consistent
with the mode energy change trend. In a thermocline waveguide, the
dispersion curves extracted from data and calculated with Eq. 5 are
consistent, but the low order normal modes do not fully conform to
the characteristics of SRBR normal modes, and the consistency is poor.
The results of the extracted dispersion curves, particularly the high
energy modes, represent the energy variation trend of each mode and
can be used in underwater applications.

In addition, Figure 5A shows that the mode order corresponding
to the higher energy modes (modes x1, x2, and x3) in the received
signal are 2, 3, and 5. The properties of the dispersion curves
correspond to the mode order, and the accurate identification of
the extracted modes is key to the passive ranging of sources by using
the dispersion curves in the case of unknown marine environmental

parameters. However, the identification of the modes in the case of
unknown a priori knowledge presents the following difficulties.

1) Because of the weak intensity of the first-order mode, the first
mode that can be detected in the TFA results of the received signal
is not necessarily the true first-order normal mode.

2) The depth configuration of the source/receiver results in weak
energy of several modes in the signal, but the number of missing
modes cannot be determined, and thus the remaining mode orders
cannot be determined.

3) When the frequency is high, the group velocity of two modes tends
to be close to the speed of sound in water, the arrival times of the
two modes are close, and the two modes are easily mixed into the
same mode, thus making the identification of the mode order
difficult.

FIGURE 3
Structure of dispersion curve extraction: (A) spectrogram of the received signal; (B) spectrogram of the warped signal; (C) spectrogram of mode x3; (D)
dispersion curve of mode x3.

FIGURE 4
Parameters in a thermocline waveguide.
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2.3 The joint estimation algorithm

Under the condition of unknown prior knowledge, Bayesian
theory is tolerant to environmental parameter mismatch and has a
wide application in the passive location of underwater sound sources.
In Bayesian theory, the joint inversion of mode order and source
propagation range can improve the inversion efficiency. Therefore, a
joint estimation method of normal mode order and range of
underwater source is presented.

2.3.1 Bayesian inversion theory
The posterior probability density (PPD) of the parameters to be

inverted is used as the estimation result, in an important feature of
Bayesian theory. The PPD is associated with the conditional
probability density of measured data Pro(d |m) and the prior
distribution of m and d, Pro(m) and Pro(d), and the PPD can be
written as [28]:

Pro m d|( ) � Pro d m|( )Pro m( )/Pro d( ) (8)
wherem is a vector of inversion parameters with lengthM, and d is the
parameter vector of measurement data. In general, Pro(m | d) a is
positively correlated with the likelihood function L(m), so
Pro(m | d) is:

Pro m d|( )∝ L m( )Pro m( ) (9)
The likelihood function L(m) can be represented by the misfit

function E(m), as shown in the following equation:

L m( ) � Pro d m|( )∝ exp −E m( )[ ] (10)
Furthermore, where E(m) is the data matching function, a

generalized misfit combining data and prior can be defined as

φ m( ) � E m( ) − lnPro m( ) (11)
The φ(m) is also known as the cost function. According to Eq.10

and Eq.11, the Pro(m | d) can also be expressed as

Pro m d|( ) � exp −φ m( )[ ]
∫ exp −φ m′, d( )[ ]dm′

(12)

To decrease the difficulty in calculating the integral in the above
equation, the principle for parameter estimation is the maximum a
posteriori (MAP). The inversion parameter values can initially be
determined through the optimization search algorithm. The optimal
value of a set of inversion parameters is obtained when the maximum
likelihood function is maximal.

m̂ � Arg min L m( ){ } � Arg min φ m( ){ } (13)
The uncertainty of the inversion parameters is characterized by the

one-dimensional marginal probability distribution of the parameters

Pro mi d|( ) � ∫ δ m′
i −mi( )Pro m′ d|( )dm′ (14)

Where mi refers to the ith inversion parameter。

2.3.2 The joint cost function
As described above, the cost function can be derived from a

likelihood function, which is key to achieving parameter
estimation. The input function and the replica are two important
components of the likelihood function. The dispersion curve Fmn
extracted from the data is taken as the input function, and the
replica Fcn is calculated with Eq. 5. The results in Figure 5 confirm
the feasibility of calculating the replica with Eq. 5. If the data error
satisfies a Gaussian distribution, the likelihood function is:

L m, r( ) � ∏N
n�1

exp −1
2 Fm

n − Fc
nr( )TC−1

n Fm
n − Fc

nr( ){ }
2π( )Mn/2 Cn| |1/2 (15)

where∑
n�1

n � N is the number of extracted dispersion curves, does not
represent the exact order n of normal mode, and Mn is the length of
the data. Cn � υnI is the covariance matrix, and υn and I are the
unknown variance and the identity matrix, respectively. Therefore, the
likelihood function is:

L m, r( ) � ∏N
n�1

1

2πυn( )1/2 exp − 1
2υn

Fm
n − Fc

nr( )2{ } (16)

let zL
zυn

� 0, then υn is

υ̂n � Fm
n − Fc

nr

∣∣∣∣ ∣∣∣∣2/Mn (17)

FIGURE 5
Dispersion curves calculated with different methods (A) in the Pekeris waveguide and (B) a thermocline waveguide.
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the cost function is:

φ m, nr( ) � 1
2
∑N
n�1

Mn ln Fn − Fc
nr

∣∣∣∣ ∣∣∣∣2( ) (18)

In the absence of prior knowledge of the environment, the true
order of mode n must be determined simultaneously, on the basis of
the assumption that the true order is nr Therefore, each set of data also
must satisfy:

φn nr( ) � 1
2
∑Nx

nx�1
Mn ln Fm

n − Fc
nx

∣∣∣∣ ∣∣∣∣2( ) (19)

where nx ∈ [1, Nx] is the range of normal mode numbers, and Nx is
sufficiently large to exceed the maximum order of modes obtained
from the received data, thus ensuring the accuracy of the numerical
determination.

Eq. 18 and Eq. 19 affect each other, and the order determination
takes precedence over the parameter inversion in the optimization
search process. After the order of normal mode numbers of the nth
data set is determined by Eq. 19, the nth data set is then used to
perform the parameter search and inversion according to Eq. 18. The
optimal solution of the parameters is substituted into Eq. 12 to obtain
the PPD of each inversion parameter, and then the effective inversion
of the parameters is achieved. The Genetic Algorithm is used as a
method of parameter search for optimization.

According to Eq. 5, the calculation of the replica in an unknown
ocean environment requires the depth H, average speed of sound
c0, bottom reflection phase shift parameter P, and range r. Herein,
the above four parameters are estimated jointly with the mode
order.

2.3.3 Sensitivity analysis
The sensitivity of the four parameters to be inverted is analyzed in

the waveguide with a thermocline. The simulation environment is

shown in Figure 4. To fully verify the validity of the method for the
mode order identification, the depth of the receiver is at the node of
mode 5, which is also near the node of mode 2; i.e., theoretically the
received signal has low energy of modes 5 and 2.

The input function is the dispersion curves extracted from the
data, and the rest of the parameters are taken as true values when
sensitivity analysis is performed for one parameter. The analysis
results are shown in Figures 6A–E.

Figure 6 shows that the four inversion parameters are sensitive to
the cost function. Compared with other parameters, the value cost
function curve of r varies more sharply around the true value, thus
fully demonstrating the sensitivity of the range to the cost function and
the accuracy of inversion. The dispersion curve data of mode 5 from
the received signal are selected to analyze the sensitivity of the normal
mode order n. Figure 6E indicates that the cost function has the
smallest value at the true order of the mode, thus indicating the
validity of the cost function.

In addition, for a more adequate analysis of the validity of the
cost function, two-dimensional correlations of inversion
parameters are analyzed. The two parameters to be analyzed
vary within the search interval, and the remaining parameters
are taken as true values. The true values of the two parameters are
marked with a white star. Figure 7 shows that the correlation
between the range r and other parameters is low, with a nearly
straight line at r0, thus indicating that r plays a major role in the
influence of the cost function with high sensitivity. However, the
correlation between P and H is high, the correlation between c0
and H gradually decreases with depth, and the speed of sound
gradually dominates. Parameter coupling caused by correlation
between parameters affects the accuracy of the inversion results.
However, as shown in Figure 7, the parameter coupling does not
affect the sensitivity of r. Comprehensively, the four inversion
parameters and mode order have high sensitivity to the joint cost
function.

FIGURE 6
Sensitivity analysis results.
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FIGURE 7
Sensitivity analysis results of the two parameters.

TABLE 1 Inversion parameter list.

Parameter Reference value Search bound Inversion value Error/%

r (km) 10 [8,20] 9.88 −0.12

P 6.0819 [5 15] 6.38 4.96

H(m) 100 [50,180] 96.74 −3.26

c0 (m/s) 1530.7 [1600,2000] 1514.1 −1.08

Nr [3 4 6 7 8] [1,30] [3 4 6 7 8] 0

FIGURE 8
Received data: (A) spectrogram of the warped signal; (B) TFA results of the received data and the extracted dispersion curves.
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3 Results

3.1 Theoretical simulation

The simulation environment is shown in Figure 4. When r =
10 km, the sound source is set at the node of mode 5, and the search
interval of inversion parameters is shown in Table 1. The spectrogram
results of the received signal and warped signal are shown in Figure 8A
and Figure 8B. Five normal modes have higher energy in the received
signal, and their dispersion curves can be chosen as the input signals to
the inversion methods, as indicated by the black dashed line in
Figure 8B.

As shown in Figure 8A, the received data contain two missing
modes, thus preventing determination of the position of the first mode
and the number of modes at the signal fault, and hindering accurate
reversal of the parameters and determination of mode orders.

When the dispersion curve is extracted, the normal modes with
high energy and good aggregation are the primary choice, and the
frequency band of each mode larger than the Ariy frequency is chosen
(the dispersion curve will have an inflection point at the Ariy
frequency), and the extracted dispersion curves are the input
function for parameter search. The convergence speed of all four
parameters is very fast, and the time required for a 3,000 times
optimization search is less than 3 min. Therefore, an improvement
in the efficiency of the inversion method has been achieved.

Figure 9 shows the one-dimensional marginal probability
densities (1-D MPD) of the parameters, which is calculated from
the optimal values of the parameter search Figure 9 shows no clear
side flap interference in the 1-DMPD of the four parameters, and the
optimal search results are globally optimal. The one-dimensional
MPDmaximum of the inversion parameters is taken as the inversion
result, as shown in Table 1.

FIGURE 9
The 1-D MPD of inversion parameters.

FIGURE 10
Mode determination results and dispersion curve comparison
results.

FIGURE 11
Sound speed profile of data 1.
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As shown in Table 1, the results of the mode determination are
accurate, and the numbers of extracted modes are 3, 4, 6, 7, and 8,
in agreement with the low energy of modes 2 and 5 when the
source is located at the node of mode 5 and near the node of mode
2. At this time, t, a possibility exists that mode 1 is also unexcited,

owing to the existence of a thermocline in the water of the
simulated environment. The error of r is 0.12%, thus indicating
that the estimation result is accurate and reliable. Although the
coupling between P and H causes the estimation errors for these
two parameters to be much higher than r, the errors for all
parameters are within 5%, which fully demonstrates the
feasibility of the method proposed herein.

This work mainly considers the estimation of the propagation
range, and the estimation errors of other parameters do not affect the
estimation results of the range, thus demonstrating that the method
has strong environmental adaptability.

Figure 10 provides the results of the mode order identification, and
the results of comparing the dispersion curves obtained from the
inversion parameters and Eq. 5 with the dispersion curves obtained
from data and the spectrogram of the received signal. The findings
demonstrate not only that the mode order identification results are
accurate but also that the inversed dispersion curves match the results
obtained through other methods, thus indicating the accuracy and
validity of the joint estimation.

3.2 Experimental data analysis

Two sets of experimental data are selected for analysis to fully
illustrate the validity of the method. The first set of experimental
data was gathered in the South China Sea in October 2014, and the
sound source was a broadband LFM signal; the second set of
experimental data was obtained in the Yellow Sea of China in

FIGURE 12
(A) Received data; (B) TFA of the warped signal.

TABLE 2 Inversion parameter list of measured data 1.

Parameter Reference value Search bound Inversion value Error/%

r (km) 4.96 [3,10] 5.00 0.008

P 6.33 [3,8] 5.01 −20.8

H(m) 24.5 [20,50] 26.54 2.04

c0 (m/s) 1497 [1490,1550] 1499.2 0.002

Nr — [1,30] [1,2,4,5] 0

FIGURE 13
Mode determination results and dispersion curve comparison
results of data 1.
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December 2018, and the sound source was an explosion sound
signal. The two sets of experimental data represent two cases; that
is, there is an energy fault in two modes and the modes are
missing, the first few orders of normal modes are missing, and the
first-order mode cannot be determined.

3.2.1 Measured data 1
The depth of the experimental sea H = 24.5 m, and the SSP in the

water has a thermocline, as shown in Figure 11, the average speed of
sound is c0 = 1497 m/s, the broadband source with the broadband
200–500 Hz is located at zs = 10 m, and p = 6.33. The signal is received
by a single hydrophone at zr = 9 m, and the receiving depth is near the
node of mode 3. r0 = 4.96 km, as measured by GPS. The source is a
long pulse, and the received signal is processed by pulse compression
for the next step of analysis.

The received signal is shown in Figure 12A, and the signal to
noise ratio is high. The dispersion curves are extracted after
warping transform. Figure 12B shows the time-frequency
analysis result of the received signal. The normal modes with
stronger energy are selected for dispersion curve extraction, and
the extraction results are shown in Figure 12B. The received signal
contains four orders modes with strong energy, and the position of
mode 1 is clear, but several modes are missing after mode 2, and
the number of the missing modes cannot be known, according to
the figure. The part of the dispersion curve with high energy and
strong aggregation is used as the input function. To ensure
accuracy of the inversion, the frequency range matching the
different orders of the simple positive waves is selected, and the
final dispersion curve as the input function is shown in Figure12B.
The search intervals of the parameters to be inverted and the
reference values are shown in Table 2.

Parameter inversion and modal identification are performed
according to the procedure described above, and the inversion
results are shown in Table 2. As shown in Table 2 and Figure 13,

FIGURE 14
(A) Received data; (B) Dispersion curves selected as input signal.

TABLE 3 Inversion parameter list of measured data 2.

Parameter Reference value Search bound Inversion value Error/%

r (km) 35.12 [30,40] 35.21 0.26

P 5.43 [3,8] 5.18 −4.6

H(m) 350 [300,400] 344.45 −1.58

c0 (m/s) 1460 [1450,1550] 1465.7 0.39

Nr — [1,30] [3 4 5 6] —

FIGURE 15
Mode determination results and dispersion curve comparison
results of data 2.
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the results of normal mode number determination are accurate, and
the results indicate that the missing mode is mode 3. Because of the
location of the receiver, the energy of mode 3 is low and it is
unobserved in the time-frequency domain of the received signal.

The errors of c0 and H are less than 5%, on the basis of comparison
of the inversion results with the reference values, which are 2.04% and
0.002%, respectively. Although the error of P is larger, the estimated
value of the propagation range is r = 5.00 km, which is a very accurate
value with respect to the GPS result of r0 = 4.96 km, and the error is
only 0.008%. The inversion results fully illustrate that the method has
strong stability with respect to marine environmental parameters. The
inversed dispersion curves match well with the data extraction results
and the spectrogram of the received data, thus demonstrating the
superiority of the proposed method in passive ranging and normal
mode order determination.

3.2.2 Measured data 2
The depth of the experiment sea isH = 30 m, the SSP is isovelocity

with the speed c0 = 1460 m/s, and p = 5.43. An explosion sound signal
was received by the ocean bottom seismometer located at the seabed
after propagating 35.12 km, and four channels (P, X, Y, and Z) of data
were obtained. The P-channel data were selected for inversion, and the
received signal is shown in Figure 14A, which indicated that the signal
to noise ratio of the measured data is lower than that in data 1.

Figure 14B shows the TFA result of the received signal, indicating
four normal modes with strong energy. However, the first mode in the
Figure is not the true mode 1 in the received signal; that is, the first few
orders of the normal mode in the signal are missing. We therefore
must determine the number of normal mode to achieve the inversion
of parameters. The dispersion curves in Figure 14B are the parts after
band selection and serve as the input signal. The search intervals,
reference values, and inversion results of the parameters to be inverted
are shown in Table 3.

The comparison result of dispersion curves obtained with the
different methods is shown in Figure 15, which shows that the inversed
dispersion curves are in good agreement with those from the other
methods. From Figure 15 and Table 3, the orders of normal modes
used for inversion are 3, 4, 5, and 6, and the mode identification results
are accurate. Consequently, the first two modes did not appear in the
time-frequency domain of the received signal and warped signal.

The error of the distance estimation results with respect to those
obtained by GPS is only 0.26%, thus further validating the accuracy of
the source ranging. In addition, the estimation errors of other
parameters are within 5%.

4 Conclusion

We propose a joint estimation method for the normal mode
number and propagation range of an underwater broadband
impulse source based on a single hydrophone in an unknown
marine environment. This method is based on Bayesian
estimation theory and is applicable to a shallow sea waveguide.
The characteristics of the dispersion curve of the normal mode
correspond to the mode order. The dispersion curves with high
energy and good aggregation are extracted by warping transform
and used as the input signal for Bayesian methods. In a waveguide
in which the seabed speed of sound is larger than that in water, the
bottom properties can be approximated on the basis of the bottom

reflection phase shift parameter P for SRBR modes in the case of
small angle incidence. A dispersion formula based on four
parameters is used to calculate the replica and reduce the
number of inversion parameters in the unknown ocean
environment. The inversion errors caused by the correlation of
parameters can be effectively avoided.

The normal mode order and environmental parameters are
jointly inversed as unknown parameters, and the joint cost
function ensures the consistency of the results for mode order
and inversion parameters. In this paper, the propagation ranges of
two different shallow sea waveguides in two different types of
broadband pulsed sound sources are measured. The mode
identification results are accurate when there is modal missing
in two modes, or the first few orders of normal modes are missing.
In addition, the coupling of environmental parameters does not
affect the accuracy of the results of mode order identification and
range estimation, accurate identification of the normal mode order
is achieved in different waveguides, the inversion error of
environmental parameters is within 5%, and the error of
propagation range measurement is less than 3%, thus
demonstrating the good tolerance of the method to the
environmental parameters. The simulation and experimental
processing results fully illustrate the effectiveness and feasibility
of the method.
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Analysis of the synergistic
complementarity between bubble
entropy and dispersion entropy in
the application of feature
extraction

Xinru Jiang1, Yingmin Yi1,2* and Junxian Wu1

1School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, China, 2Shaanxi
Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of
Technology, Xi’an, China

Most of the existing studies on the improvement of entropy are based on the
theory of single entropy, ignoring the relationship between one entropy and
another. Inspired by the synergistic relationship between bubble entropy (BE) and
permutation entropy (PE), which has been pointed out by previous authors, this
paper aims to explore the relationship between bubble entropy and dispersion
entropy. Since dispersion entropy outperforms permutation entropy in many
aspects, it provides better stability and enhances the computational efficiency
of permutation entropy. We also speculate that there should be potential synergy
between dispersion entropy and bubble entropy. Through experiments, we
demonstrated the synergistic complementarity between BE and DE and
proposed a double feature extraction method based on BE and DE. For the
single feature extraction experiment, dispersion entropy and bubble entropy
have better recognition performance for sea state signals and bearing signals,
respectively; in double feature extraction, the combination of bubble entropy and
dispersion entropy makes the recognition rate of sea state signals increase by
10.5% and the recognition rate of bearing signals reach 99.5%.

KEYWORDS

bubble entropy, permutation entropy, dispersion entropy, synergistic complementarity,
feature extraction, sea state signals, bearing signals

1 Introduction

In the field of non-linear dynamics, it is important to study about the feature of
complexity, which characterizes the complexity of the signal from a physical point of view [1,
2]. In fact, the existing time-domain and frequency-domain analysis techniques are
applicable to periodic stationary signals and linear signals. However, for complex non-
linear signals, the traditional methods cannot well reflect the non-linear characteristics and
implied information. For time series, entropy and Lempel–Ziv complexity and other non-
linear dynamic indexes are used as an evaluation criterion for signal complexity [3–10],
among which the development of entropy is the most mature.

The entropy theory has been developed to date with a variety of characterizations in
different forms. In 2002, Bandt et al. [11] first proposed the permutation entropy theory,
which can represent the complexity of the permutation order of a one-dimensional time
series with suitable parameters [12]. However, PE does not consider the relationship
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between individual magnitudes in a time series and thus has
limitations for the analysis of the time series [13]. Based on the
original theory of PE, many scholars have studied various
improvements, such as the proposed weighted-permutation
entropy as a complexity measure for time series incorporating
amplitude information [14], reverse permutation entropy as a
method to identify different sleep stages by using
electroencephalogram data [15], and multiscale permutation
entropy to solve the problem of PE’s inability to fully
characterize the dynamics of complex EEG sequences [16] as
well as refined composite processing based on multiscale
cases [17].

In 2016, Mostafa Rostaghi and Hamed Azami [18] proposed
dispersion entropy, an algorithm that overcomes the deficiencies of
PE and provides better stability and increased computational
efficiency. By processing the steps on the original DE algorithm
accordingly, scholars have proposed refined composite multiscale
dispersion entropy that is similar to refined composite multiscale
permutation entropy [19], fluctuation-based dispersion entropy as a
measure to deal with only the fluctuations of time series [20], reverse
dispersion entropy as a new complexity measure for sensor signals
[21], and hierarchical dispersion entropy as a new method of fault
feature extraction [22].

In 2017, George Manis et al. [23] first proposed a new time series
complexity metric, bubble entropy, which is an entropy with almost
no parameters, and the algorithm is extensive by creating a more
coarse-grained distribution through a sorting process that better
reduces the impact of parameter selection.

Research on improvement and optimization based on a single
entropy is more common, often adding weight, reverse,
multiscale, refined composite, fluctuation, and other
operations to the original entropy. Conversely, some scholars
proposed new theories based on the combination of the core of a
single primitive entropy approach; for example, permuted
distribution entropy is the combination of PE and distribution
entropy [24], fuzzy dispersion entropy is inspired by fuzzy
entropy (FE) and DE [25], fractional order fuzzy dispersion
entropy is proposed to introduce fractional order calculation
and fuzzy membership function [26].

However, few people study the relationship between one entropy
and another. David Cuesta-Frau and Borja Vargas studied the
synergistic relationship between BE and PE in 2019 [27], and if
DE is the improvement of PE, then BE and DE may also have a
synergistic and complementary relationship with each other.
Therefore, this paper proposed a double feature extraction
method based on BE and DE and applied it to the sea state
signal in the field of hydro-acoustics and the bearing signal for
fault diagnosis.

The remainder of the paper is organized as follows: Section 2
describes detailed algorithm theories of BE and DE; Section 3 indicates
the theoretical logic of BE, PE, DE, and FE and process of the proposed
feature extraction method; Section 4 conducts the single feature
extraction experiments of sea state signals and bearing signals;
Section 5 performs the double feature extraction experiments of the
same practical signals with different combinations, as well as carries out
the analysis and comparison of experimental results; and ultimately,
Section 6 elaborates the essential conclusion of this paper.

2 BE and DE

2.1 Theory of BE

As an entropy with almost no parameters, the theory of BE is
very simple, similar to PE. The algorithm makes the
distribution more coarse-grained by sorting, thus better
reducing the impact of parameter selection and expanding the
limitations of use.

Step 1: Given that the time series x � x1, x2,/, xN. According to
the given embedding dimension m, the original signal is mapped to
the m-dimensional phase space X in the way of time delay τ of 1,
where each element is represented by Xi.

X � X1, X2,/, XN−m+1, (1)
Xi � xi, xi+1,/, xi+m−1( ) i � 1, 2,/, N −m + 1. (2)

Step 2: Them elements in Xi are arranged in ascending order, and
the number of swaps ni can be obtained.
Step 3The probability pi is derived by normalizing the individual ni
to the total number N −m + 1.

pi � ni
N −m + 1

. (3)

Step 3: The entropy value Hm
swaps(X) can be calculated by

substituting the probability into the following equation:

Hm
swaps X( ) � −log ∑N−m+1

i�1
p2
i . (4)

Step 4: The value of Hm+1
swaps(X) when embedding dimension m

equals m + 1 is calculated by repeating Steps 1–4.

Step 5: The value of BE is available as follows:

bEn � Hm+1
swaps X( ) −Hm

swaps X( )( )
ln m + 1/m − 1( ) . (5)

2.2 Theory of DE

DE often appears as the optimization of PE, and its
characteristics lie in the mapping process and the selection of the
dispersion mode. Compared with PE, this theory provides good
stability and increased computational efficiency.
Step 1Given that the time series x � x1, x2,/, xN. y �
y1, y2,/, yN can be acquired by mapping x to a normal
distribution function, after which z � z1, z2,/, zN can be
obtained by mapping to a linear equation.

yi � 1
σ

���
2π

√ ∫xi

−∞
e− t−μ( )2/2σ2dt, (6)

zi � round c p yi + 0.5( ), (7)
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where μ and σ2 are set to expectation and variance of xi, respectively, c
is the number of categories, and round denotes the integer function.
Step 2 The phase space reconstruction of z based on the value of
embedding dimension m is carried out to compose the corresponding
(N −m + 1)τ dispersion patterns πv0v1/vm−1, and the probability of
occurrence of different kinds of dispersion patterns is calculated. It is
worth noting that the time delay τ in this step is 1.

p πv0v1/vm−1( ) � Num i | i≤N −m + 1, πv0v1/vm−1{ }
N −m + 1

. (8)

step 3 According to Step 1 and Step 2, each element in the
component has c values, so there are cm dispersion patterns.
Therefore, the normalized DE is defined by the following formula:

dEn � −∑c
m

π�1
p πv0v1/vm−1( ) ln p πv0v1/vm−1( )

ln c( m) . (9)

3 Algorithm analysis and method
proposal

In this paper, four entropies are introduced and applied to sea
state signals and bearing signals, each of which has a unique theory
and different focus, so the algorithms are also different. Figure 1
briefly describes the theoretical logic of BE, PE, DE, and FE.

For BE, the original time series is first reconstructed to get the
m-dimensional phase space, and then the number of swaps is
obtained by sorting each vector in ascending order, then the
corresponding probabilities are calculated, and finally the value is
attained by substituting into the BE-specific formula.

For PE, the original time series is first reconstructed to get the
m-dimensional phase space, and then the changedm-dimensional phase

space is constructed by sorting each element in each vector according to
the value size, then the corresponding probability is calculated, and
finally the value is obtained by substituting into the PE-specific formula.

For DE, the original time series is first mapped by the normal
distribution function to get the changed time series and then mapped
again by using the linear equation to change the time series again. After
this step, the m-dimensional phase space is obtained by reconstruction,
then the dispersion pattern probability is calculated, and finally the
value is obtained by substituting into the DE-specific formula.

For FE, the original time series is first reconstructed to obtain the
m-dimensional phase space, then the distance and fuzzy affiliation
are calculated, later its mean value is calculated, and finally the value
is obtained by substituting into the FE-specific formula.

By comparing the four entropies as a whole, it is obvious that:
BE, PE, and FE reconstruct the phase space first and then perform
other operations afterward, where BE and PE both get the
corresponding results by sorting, while DE is a direct processing
of the time series through two mappings before reconstructing the
phase space; both BE and FE need to calculate the difference in the
m + 1 case, and this step reduces the influence of the embedding
dimension on the results to some extent.

The aforementioned description is the theoretical part of the four
entropies, based on which we propose the feature extraction methods of
single and double features. Figure 2 provides the flow chart of the feature
extraction methods of single and double features taken in this paper.

Based on the analysis and comparison of the algorithm, we apply
it to the feature extraction experiment for verification and further
research. The feature extraction method includes four main steps:

Step 1: Diverse types of sea state signals (SSSs) and bearing signals
(BSs) are applied as the input of the feature extraction experiment,
where the length of each type of sea state or bearing signals is the
same with identical sampling points.

FIGURE 1
Theoretical logic of BE, PE, DE, and FE.
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Step 2: For four types of sea state or bearing signals, the values of
BE, PE, DE, and FE can be extracted. For double feature extraction,
one step needs to be added: the values of BE, PE, DE, and FE are
combined two by two, and thus there are six combination forms.

Step 3: The K-nearest neighbor (KNN) [28] is accepted to classify
each type of sea state or bearing signals.

Step 4: The recognition rate can be attained and employed for the
expression of recognition ability.

4 Single feature extraction

4.1 Sea state signals and bearing signals

In this study, four different types of SSS and BS from
website1 and website2 are selected for feature extraction and

classification recognition in the form of complexity. For SSSs
and BSs, the size of sample points is 1.3 × 106 and 1.2 × 105,
respectively, and the sampling frequency for both are 44.1 kHz.
Four diverse types of SSSs and BSs can be represented by sssI,
sssII, sssIII, and sssIV and bsI, bsII, bsIII, and bsIV, respectively.
Among these different types of signals, we selected 100 samples,
starting from the sample point of the same serial number,
and each sample consists of 2000 sampling points for sea
state signals and 1,000 for bearing signals. Figure 3 shows the
normalized time-domain waveforms of four diverse types of
SSSs and BSs.

4.2 Feature extraction

For the 100 samples selected, we introduce BE, PE, DE, and
FE and calculate the entropy values as the complexity feature.
Table 1 illustrates the parameter settings for each type of entropy.

As can be seen from Table 1, the time delay τ and the embedding
dimension m of all entropies are 1 and 3, respectively; only DE has
the category number c and its value is 6; the correlation coefficient r
of FE is 0.2. Figure 4 depicts the distributions of BE, PE, DE, and FE
for the selected 100 samples under specific parameter settings for
SSSs and BSs.

FIGURE 2
Flow chart of single and double feature extraction methods taken in this paper.

TABLE 1 Parameter settings for each type of entropy.

Complexity index Embedding dimension m Time delay τ Category number c Correlation coefficient r

BE 3 1 — —

PE 3 1 — —

DE 3 1 6 —

FE 3 1 - 0.2

1 [Online]. Available: https://www.nps.gov/glba/learn/nature/
soundclips.htm.

2 [Online]. Available: http://csegroups.case.edu/bearingdatacenter/pages/
download-data-file.
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According to the observation in Figure 4, the distributions of
different entropies have specificity; for SSSs, DE has better
distribution characteristics, and all kinds of signals are almost
located in the same line with a small amount of an overlapping
phenomenon, while BE and PE have obvious deficiencies in
distinguishing sssI and sssIII, as well as sssII and sssIV; for

BSs, the distribution of bsII and bsIII are too close to each
other for PE, DE, and FE, and even a large mixing occurs,
which is obviously not easy to differentiate, while BE
overcomes this problem, and there appears only a small
number of confusing sample points when differentiating bsIII
and bsIV.

FIGURE 3
Normalized time-domain waveforms of four diverse types of SSSs and BSs: (A) sssI, (B) sssII, (C) sssIII, (D) sssIV, (E) bsI, (F) bsII, (G) bsIII, (H) bsIV.
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4.3 Feature classification and recognition

To further explore the ability of BE, PE, DE, and FE to classify
and recognize the four diverse types of SSSs and BSs, KNN was

appointed to classify and recognize by taking the first 50 sample
points as a training sample set and the rest as a test sample set.
Table 2 and Table 3 summarize the feature classification and
recognition results obtained for SSSs and BSs separately.

FIGURE 4
Distributions of BE, PE, DE, and FE for the selected 100 samples under specific parameter settings: (A–D) Distribution of SSSs, (E–H) Distribution
of BSs.
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From Table 2 and Table 3, it can be seen that BE, PE, DE, and FE
have different numbers of misidentified samples for each type of sea
state and bearing signals, meaning that they have specificity in
recognizing the four diverse types of SSSs and BSs; as far as the
average recognition rate is concerned, the average recognition rate of
DE for SSSs is the highest, and that of PE, BE, and FE is in the
decreasing trend; for BSs, BE has the best recognition capability,
whose average recognition rate reaches up to 92.5%.

In the single feature extraction method, DE and BE have the best
classification recognition properties to mine the unique features of
different types of signals. Nevertheless, their average recognition
rates under single feature still have a lot of room for improvement,
especially for DE.

In order to further improve the average recognition rate, we
propose to combine BE with other entropies to make full use of their
specificity for the recognition of various types of signals, that is, the
unique advantages of each other, to form a complementary double
feature, so as to optimize the feature extraction method based on BE,
which would make the final average recognition rate and the
recognition efficiency better.

5 Double feature extraction

5.1 Double feature extraction method based
on two-by-two combination

For the sake of the full utilization of specificity, we combine all
the entropies mentioned two by two and denote the combination as
A&B, where A and B represent any two of the four entropies. For
example, BE&DE represents the combined form of BE and DE, and
their order does not matter. Therefore, for BE, PE, DE, and FE, there
exist six combination forms. Figures 5, 6 list the entropy distribution

and classification recognition results for BE&PE, BE&DE, BE&FE,
PE&DE, PE&FE, and DE&FE for SSSs and BSs separately.

Comparing the various combinations shown in Figures 5, 6, we
can see that the entropy distributions for SSSs and BSs are different
for each type of combination, and therefore have different
classification recognition results.

For SSSs, the entropy values between sssI and sssIII as well as
between sssII and sssIV are obviously mixed and consequently
difficult to distinguish, especially for sssII, which are often
misidentified as sssIV. By comparison, it is found that BE&DE
has the best recognition rate among all combinations.

For BSs, the entropy distribution of bsI is far from the other
signals and is distinguishable, while the misidentification mainly
occurs in bsII, bsIII, and bsIV, among which the combination
BE&DE has only one sample point misidentification and has an
obvious classification advantage.

5.2 Comparison and analysis of the results of
single and double feature extraction
experiments

For the sake of more intuitively comparing the difference in
the average recognition rates under single and double feature
extraction methods, Table 4 indicates the average recognition
rate of each combination of categories for SSSs and BSs under
double features.

In accordance with the information in Table 4, the average
recognition rate of the single and double features differed greatly
before and after the combination of entropies, compared with
Table 2 and Table 3; in the case of double feature extraction, the
average recognition rate achieves 94% for all combinations involving
DE for SSSs and up to 99% for all combinations involving BE for BSs,

TABLE 2 Feature classification and recognition results obtained for SSSs.

Entropy Number of misidentified samples for each type of sea state signals Average recognition rate (%)

sssI sssII sssIII sssIV

BE 23 20 14 3 60.0

PE 8 2 9 21 75.0

DE 2 14 8 8 84.0

FE 27 37 20 15 50.5

TABLE 3 Feature classification and recognition results obtained for BSs.

Entropy Number of misidentified samples for each type of bearing signals Average recognition rate (%)

bsI bsII bsIII bsIV

BE 0 1 9 5 92.5

PE 0 11 18 0 85.5

DE 0 22 22 3 76.5

FE 0 17 22 3 79.0
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FIGURE 5
Entropy distribution and classification recognition results of
BE&PE, BE&DE, BE&FE, PE&DE, PE&FE, and DE&FE of SSSs: distribution
of different entropy combinations (Left column); classification
recognition results (Right column).

FIGURE 6
Entropy distribution and classification recognition results of
BE&PE, BE&DE, BE&FE, PE&DE, PE&FE, and DE&FE of BSs: distribution
of different entropy combinations (Left column); classification
recognition results (Right column).
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which revealed that the initial capability to classify a single feature
can be effectively modified by adding BE and DE as another feature;
comparing the data in each column of the table confirms that
BE&DE has the highest average recognition rate, that is, 94.5%
for SSSs and 99.5% for BSs.

Figures 7, 8 show the average recognition rate and the difference
analysis for SSSs and BSs, respectively. In the legend, & represents
the combination, while A and B represent two of the four entropies,
as described previously.

It is obvious from the aforementioned figures that the original
recognition ability is improved by adding another feature. For SSSs,
DE has the best recognition ability when used as a single feature and
BE has a very poor recognition ability of 60%, while the combination
of both achieves the highest recognition effect of 94.5%. For BSs, the
situation is the opposite: BE is the entropy with the highest average
recognition rate in the single feature extraction, while DE just has the
lowest average recognition rate among the four entropies mentioned
in this paper, but the combination of both can even reach 99.5%.

Generally speaking, combining two entropies with the highest
average recognition rate and the second highest average recognition
rate in single feature extraction should have a stronger combination
to yield the highest final recognition rate, but for both SSSs and BSs,
BE&DE has the best recognition rate, which implies that there is
some synergy between BE and DE that can promote and improve
each other.

6 Conclusion

In this study, we proposed BE&DE as a double feature
extraction method based on the potential synergistic
complementarity between BE and DE and applied it to the sea
state signal in the field of hydro-acoustics and the bearing signal
for fault diagnosis. The main conclusions drawn from this paper
are as follows:

(1) Through the comparison and analysis of the algorithms, it
can be seen that the essential difference between DE and BE is
that DE makes use of the mapping relationship, while BE
utilizes the number of exchanges to construct the vector, so it
is speculated that there may be an assisting role between BE
and DE.

(2) For sea state signals, DE has significant superiority, and for
bearing signals, BE has better recognition performance. For
different practical signals, different methods are applied in
different suitable areas, but DE and BE are more effective
compared to PE and FE.

(3) Based on the synergistic and complementary relationship
between BE and DE, we proposed the combination form
BE&DE and experimentally verified that the method
possesses the best efficiency of signal classification and
recognition.

TABLE 4 Average recognition rate of each combination of categories for SSSs
and BSs under double features.

Combination Average recognition rate

SSSs (%) BSs (%)

BE&PE 78.5 99.0

BE&DE 94.5 99.5

BE&FE 66.5 98.5

PE&DE 94.0 86.0

PE&FE 76.5 91.5

DE&FE 93.5 86.0

FIGURE 8
Average recognition rate and difference analysis of BSs.

FIGURE 7
Average recognition rate and difference analysis of SSSs.

Frontiers in Physics frontiersin.org09

Jiang et al. 10.3389/fphy.2023.1163767

110

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1163767


Data availability statement

Publicly available datasets were analyzed in this study. These
data can be found at: Sea state signal: https://www.nps.gov/glba/
learn/nature/soundclips.htm. Bearing signal: https://engineering.
case.edu/bearingdatacenter/download-data-file.

Author contributions

YY provided experimental ideas and financial support. XJ
completed the experiment and wrote the article. JW was
responsible for the revision of the article. All authors contributed
to the article and approved the submitted version.

Funding

The research was supported by the Key Research and
Development Plan of Shaanxi Province (2020ZDLGY06-01), Key

Scientific Research Project of Education Department of Shaanxi
Province (21JY033), and Science and Technology Plan of University
Service Enterprise of Xi’an (2020KJRC0087).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Berger A, Della Pietra SA, Della Pietra VJ. Amaximum entropy approach to natural
language processing. Comput linguistics (1996) 22:39–71.

2. Thuraisingham RA. Examining nonlinearity using complexity and entropy. Chaos
(2019) 29:063109. doi:10.1063/1.5096903

3. Martyushev LM, Seleznev VD. Maximum entropy production principle in physics,
chemistry and biology. Phys Rep (2006) 426:1–45. doi:10.1016/j.physrep.2005.12.001

4. Rajaram R, Castellani B. An entropy based measure for comparing distributions of
complexity. Physica A (2016) 453:35–43. doi:10.1016/j.physa.2016.02.007

5. Li Y, Tang B, Yi Y. A novel complexity-based mode feature representation for
feature extraction of ship-radiated noise using VMD and slope entropy. Appl Acoust
(2022) 196:108899. doi:10.1016/j.apacoust.2022.108899

6. Li Y, Gao P, Tang B, Yi Y, Zhang J. Double feature extraction method of ship-
radiated noise signal based on slope entropy and permutation entropy. Entropy (2022)
24(1):22. doi:10.3390/e24010022

7. Li Y, Geng B, Jiao S. Dispersion entropy-based Lempel-Ziv complexity: A new
metric for signal analysis. Chaos, Solitons Fractals (2022) 161:112400. doi:10.1016/j.
chaos.2022.112400

8. Yi Y, Li Y, Wu J. Multi-scale permutation Lempel-Ziv complexity and its
application in feature extraction for Ship-radiated noise. Front Mar Sci (2022) 9:
1047332. doi:10.3389/fmars.2022.1047332

9. Li Y, Jiao S, Geng B. Refined composite multiscale fluctuation-based dispersion
Lempel–Ziv complexity for signal analysis. ISA Trans (2023) 133:273–84. doi:10.1016/j.
isatra.2022.06.040

10. Li Y, Geng B, Tang B. Simplified coded dispersion entropy: A nonlinear metric for
signal analysis. Nonlinear Dyn (2023). doi:10.1007/s11071-023-08339-4

11. Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time
series. Phys Rev Lett (2002) 88:174102. doi:10.1103/physrevlett.88.174102

12. Myers A, Khasawneh FA. On the automatic parameter selection for permutation
entropy. Chaos (2020) 30:033130. doi:10.1063/1.5111719

13. Chen Z, Li Y, Liang H, Yu J. Improved permutation entropy for measuring complexity of
time series under noisy condition. Complexity (2019) 2019:1–12. doi:10.1155/2019/1403829

14. Fadlallah B, Chen B, Keil A, Principe J. Weighted-permutation entropy: A
complexity measure for time series incorporating amplitude information. Phys Rev
E (2013) 87:022911. doi:10.1103/physreve.87.022911

15. Bandt C. A new kind of permutation entropy used to classify sleep stages from
invisible EEG microstructure. Entropy (2017) 19:197. doi:10.3390/e19050197

16. Li D, Li X, Liang Z, Voss LJ, Sleigh JW. Multiscale permutation entropy analysis of
EEG recordings during sevoflurane anesthesia. J Neural Eng (2010) 7:046010. doi:10.
1088/1741-2560/7/4/046010

17. Humeau-Heurtier A, Wu CW, Wu SD. Refined composite multiscale
permutation entropy to overcome multiscale permutation entropy length
dependence. IEEE Signal Processing Letters (2015) 22:2364–7. doi:10.1109/lsp.
2015.2482603

18. Rostaghi M, Azami H. Dispersion entropy: A measure for time-series analysis.
IEEE Signal Process. Lett (2016) 23:610–4. doi:10.1109/lsp.2016.2542881

19. Azami H, Rostaghi M, Abásolo D, Escudero J. Refined composite multiscale
dispersion entropy and its application to biomedical signals. IEEE Trans Biomed Eng
(2017) 64:2872–9. doi:10.1109/TBME.2017.2679136

20. Azami H, Escudero J. Amplitude-and fluctuation-based dispersion entropy.
Entropy (2018) 20:210. doi:10.3390/e20030210

21. Li Y, Gao X, Wang L. Reverse dispersion entropy: A new complexity measure for
sensor signal. Sensors (2019) 19:5203. doi:10.3390/s19235203

22. Chen P, Zhao X, Jiang HM. A new method of fault feature extraction based on
hierarchical dispersion entropy. Shock and Vibration (2021) 2021:1–11. doi:10.1155/
2021/8824901

23. Manis G, Aktaruzzaman MD, Sassi R. Bubble entropy: An entropy almost free of
parameters. IEEE Trans Biomed Eng (2017) 64:2711–8. doi:10.1109/TBME.2017.
2664105

24. Dai Y, He J, Wu Y, Chen S, Shang P. Generalized entropy plane based on
permutation entropy and distribution entropy analysis for complex time series. Physica
A (2019) 520:217–31. doi:10.1016/j.physa.2019.01.017

25. Rostaghi M, Khatibi MM, Ashory MR, Azami H. Fuzzy dispersion entropy: A
nonlinear measure for signal analysis. IEEE Trans Fuzzy Syst (2021) 30:3785–96. doi:10.
1109/tfuzz.2021.3128957

26. Li Y, Tang B, Geng B, Jiao S. Fractional order fuzzy dispersion entropy and its
application in bearing fault diagnosis. Fractal and Fractional (2022) 6(10):544. doi:10.
3390/fractalfract6100544

27. Cuesta Frau D, Vargas-Rojo B. Permutation Entropy and Bubble Entropy:
Possible interactions and synergies between order and sorting relations. Math
Biosciences Eng (2020) 17:1637–58. doi:10.3934/mbe.2020086

28. Keller JM, Gray MR, Givens JA. A fuzzy K-nearest neighbor algorithm. IEEE
Trans Syst Man Cybernetics (1985) 15(4):580–5. SMC-. doi:10.1109/tsmc.1985.
6313426

Frontiers in Physics frontiersin.org10

Jiang et al. 10.3389/fphy.2023.1163767

111

https://www.nps.gov/glba/learn/nature/soundclips.htm
https://www.nps.gov/glba/learn/nature/soundclips.htm
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://doi.org/10.1063/1.5096903
https://doi.org/10.1016/j.physrep.2005.12.001
https://doi.org/10.1016/j.physa.2016.02.007
https://doi.org/10.1016/j.apacoust.2022.108899
https://doi.org/10.3390/e24010022
https://doi.org/10.1016/j.chaos.2022.112400
https://doi.org/10.1016/j.chaos.2022.112400
https://doi.org/10.3389/fmars.2022.1047332
https://doi.org/10.1016/j.isatra.2022.06.040
https://doi.org/10.1016/j.isatra.2022.06.040
https://doi.org/10.1007/s11071-023-08339-4
https://doi.org/10.1103/physrevlett.88.174102
https://doi.org/10.1063/1.5111719
https://doi.org/10.1155/2019/1403829
https://doi.org/10.1103/physreve.87.022911
https://doi.org/10.3390/e19050197
https://doi.org/10.1088/1741-2560/7/4/046010
https://doi.org/10.1088/1741-2560/7/4/046010
https://doi.org/10.1109/lsp.2015.2482603
https://doi.org/10.1109/lsp.2015.2482603
https://doi.org/10.1109/lsp.2016.2542881
https://doi.org/10.1109/TBME.2017.2679136
https://doi.org/10.3390/e20030210
https://doi.org/10.3390/s19235203
https://doi.org/10.1155/2021/8824901
https://doi.org/10.1155/2021/8824901
https://doi.org/10.1109/TBME.2017.2664105
https://doi.org/10.1109/TBME.2017.2664105
https://doi.org/10.1016/j.physa.2019.01.017
https://doi.org/10.1109/tfuzz.2021.3128957
https://doi.org/10.1109/tfuzz.2021.3128957
https://doi.org/10.3390/fractalfract6100544
https://doi.org/10.3390/fractalfract6100544
https://doi.org/10.3934/mbe.2020086
https://doi.org/10.1109/tsmc.1985.6313426
https://doi.org/10.1109/tsmc.1985.6313426
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1163767


Triple feature extraction method
based on multi-scale dispersion
entropy and multi-scale
permutation entropy in
sound-based fault diagnosis
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2School of Physical Education, Baoji University of Arts and Sciences, Baoji, China

Fault of rolling bearing signal is a common problem encountered in the
production of life. Identifying the fault signal helps to locate the fault location
and type quickly, react to the fault in time, and reduce the losses caused by the
failure in production. In order to accurately identify the fault signal, this paper
presents a triple feature extraction and classificationmethod based onmulti-scale
dispersion entropy (MDE) andmulti-scale permutation entropy (MPE), extracts the
features of the signal of rolling bearing when it is working, and uses the
classification algorithm to determine whether there is a fault in the bearing and
the type of fault. Scale 2 of MDE is combined with scale 1 and scale 2 of MPE as the
three features required for the experiment. As a comparison of recognition results,
multi-scale entropy (MSE)is introduced. Ten scales of the three entropy are
calculated, and all combinations of three feature extraction are obtained. K
nearest neighbor algorithm is used for three feature recognition. The result
shows that the combination recognition rate proposed in this paper reaches
96.2%, which is the best among all combinations.

KEYWORDS

rolling bearing signal, triple feature extraction, multi-scale dispersion entropy, multi-
scale permutation entropy, fault diagnosis

1 Introduction

Today, mechanized equipment fault diagnosis is an unavoidable problem in all walks of
life. Rolling bearing fault accounts for a large part of mechanical equipment fault [1, 2].
Rolling bearing, as a basic part of mechanical equipment, is easily damaged under long-term
operation, resulting in many different types of faults, which affect the overall operation of
equipment. However, early fault identification of bearings has always been a difficult
problem to solve. In order to accurately identify and repair faults in time, various fault
diagnosis methods have been put forward to distinguish fault types [3–5].

Vibration signals will be generated during normal operation of rolling bearings. By
analyzing the characteristics of vibration signals, the fault categories of bearings can be
effectively diagnosed. However, due to the influence of bearing load and friction between
components, the vibration signals generated are always non-linear and non-stationary [6, 7].
For feature extraction and recognition of such signals, researchers have put forward many
time-frequency analysis methods to extract information from the signals. For example,
wavelet transform (WT), empirical mode decomposition (EMD) [8] and variational mode
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decomposition (VMD) [9], however, these methods also have their
own disadvantages, such as WT only decomposes low frequency
band of signal, mode overlap of EMD, etc. To solve these problems,
some improvedmethods have been put forward successively, such as
empirical WT (EWT) [10], complete ensemble EMD with adaptive
noise (CEEMDAN) and so on [11, 12].

In recent years, entropy, as a non-linear dynamic method, has
also been applied in the fields of fault diagnosis and underwater
acoustic signal recognition [13–15]. It is used to describe the
complexity of the signal. Sample entropy (SE) [16], approximate
entropy (AE) [17], permutation entropy (PE) [18], dispersion
entropy (DE) [19] and so on have been put into use successively,
and some achievements have been made [20]. However, single-scale
entropy cannot completely reflect the fault information, especially
the limitations of mutation information. As a result, multi-scale
signal analysis methods are gradually applied to signal recognition
[21, 22]. MSE was proposed by Costa et al. in 2002 [23], which
successfully quantifies the information of time series onmulti-scales.
Based on the proposal of multi-scale SE (MSE), in 2005, Aziz et al.
also made improvements on PE, proposed multi-scale PE (MPE)
[24], and made PE obtain higher noise resistance. The proposed
multi-scale DE (MDE) is faster to compute and better reflects the
characteristics of the real signal than MSE. Both MPE and MDE are
widely used in the field of signal recognition [25, 26].

Considering that the DE is faster andmore stable, this paper uses
the DE to extract fault features, but the DE contains less information.
In order to obtain more information about the signal, we introduce
the concept of multi-scale and propose a triple feature extraction
method based on MDE and MPE in fault diagnosis.

The remainder of this paper is as follows: Section 2 introduces
the principle and calculation method of multi-scale and DE; Section
3 describes the specific steps of the triple feature experiments
proposed in this paper. Section 4 shows the feature distribution
and recognition results of the triple feature extraction experiments,
which proves the feasibility of the experiment. Section 5 summarizes
the entire experiment.

2 Dispersion entropy

DE is a measure of time complexity. It has a faster calculation
speed, is less affected by sudden changes in the signal and can reflect
the magnitude relationship. The calculation steps of DE are as
follows.

(1) For a given set of time series, � x1, x2, . . . , xn{ } , the normal
cumulative distribution function is used to map the original
time series between 0 and 1.

yj � 1
σ

���
2π

√ ∫
xi

−∞
e

− t−μ( )2
2σ2 dt (1)

The standard deviation σ and mean μ of the time series x are
respectively used in the formula.

(2) Use round function to convert the time series mapped in the
first step into integers between 1 and c, where c is the number of
categories.

zcj � Round c · yj + 0.5( ) (2)

(3) Construct the embedding vector based on the embedding
dimension m and the time delay constant τ as follows:

zm,c
j � zcj, z

c
j+τ ,/zcj+ m−1( )τ{ } (3)

(4) Set zcj � v0, zcj+τ � v1,/zcj+(m−1)τ � vm−1 , based on each
embedded vector, a corresponding dispersion pattern can be
obtained.

πv0v1 ...vm−1 v � 1, 2,/c( ) (4)

(5) cm dispersion patterns can be obtained in Step 4) with the
following probabilities.

p πv0v1 ...vm−1( ) � Number t t≤ m − 1( )τ, πv0v1...vm−1
∣∣∣∣{ }
N − m − 1( )τ (5)

(6) Based on the above steps, the formula for calculating DE is as
follows.

DE x, c, m, τ( ) � −∑c
m

π�1
p πv0v1...vm−1( ) ln p πv0v1 ...vm−1( )( ) (6)

3 Steps of the experiment

The method proposed in this paper is a triple feature extraction
method based on MDE and MPE, which is shown in Figure 1. The

FIGURE 1
Detailed steps of the experiment.
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method combines scale 2 of MDE with scale 1 and 2 of MPE as three
features of the signal, and combines these three features to identify the
signal using a classifier. The specific experimental steps are as follows:

(1) Select bearing signals of different fault categories and sizes and
divide the samples.

(2) Extract MDE and MPE features at ten scales from samples of
these ten types of signals.

(3) Draw the triple feature distribution of the ten types of signals
according to the selection principle of the highest
recognition rate.

(4) Triple feature recognition by using KNN (k nearest neighbor)
algorithm.

(5) Draw the recognition result and calculate the recognition rate to
verify the validity of the method.

4 Rolling bearing signals

In order to identify the fault of bearing signal, this article has
selected ten bearing signals in different states from Case
Western Reserve University [27]. The first one is normal
working signal, named N-100, the other nine are working
signals in failure state. According to their three sizes (0.007,
0.014 and 0.021 feet) and three different fault locations (ball
fault, inner race fault and outer race fault), the nine working
signals are named IR-007, B-007, OR-007, IR-014, B-014, OR-
014, IR-021, B-021, OR-021. Ten types of bearing signals are
shown in Figure 2.

5 Feature extraction experiments

In this experiment, MDE at scale 2 and MPE at scale 1 and 2 are
selected as the three features, and the entropy values at ten scales of
these ten kinds of signals are calculated. When the scale is 1, the time
series is itself. When the scale is larger than 1, the data used to
calculate the entropy value is coarsened. The parameters used to
calculate the entropy at different scales are the same. It is worth
noting that after coarsening, the mean and variance of the data
needed for calculating the normal distribution function within the
dispersed entropy are still the original data. After calculating the
entropy value features, the distribution and recognition of these
features are observed and compared, and the feature extraction
method used in this paper is verified.

5.1 Single feature extraction

Firstly, the parameters and sampling ranges are determined. The
data used are from the ten types of bearing signals selected above. From
the 1000th data point of the ten types of signals, 1,024 data points are
taken as a sample, and 100 samples are taken for each type of signal. The
parameters of these entropy are set as embedding dimension, number of
classes, time delay, feature distribution of the ten scales of the two
entropy is calculated and plotted. The ten scales of MDE are named as
DE1, DE2,.DE10, andMPE is similarly named as PE1, PE2, . PE10. The
horizontal coordinates of the graph are the number of samples. The
vertical coordinate is the entropy value, and single feature distribution of
ten scales of MDE for ten signals are shown in Figure 3.

It can be seen fromFigure 3 that at scale 1, entropy values of these ten
types of signals are arranged orderly, but there are still different degrees of

FIGURE 2
Ten types of bearing signals: (A)N-100, (B) IR-100, (C) B-100, (D)
OR-100, (E) IR-014, (F) B-014, (G) OR-014, (H) IR-021, (I) B-021, (J)
OR-021.
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confusion between two different signals with adjacent distributions.With
the increase of scale, the boundaries between various signals become
blurred gradually, the effect of feature extraction becomes worse and the
phenomenon of aliasing becomesmore serious. From the point of view of
distribution, the distribution of OR-021 is relatively scattered, while the
distribution of other signals mostly concentrates in a certain interval.
With the increase of scale, the entropy value gradually concentrates to
around 0.8. Single feature distribution of ten scales ofMPE for ten signals
are drawn in Figure 4.

It can be seen from the Figure 4 that when scale 1 is used, the
distribution of the entropy of all kinds of signals is relatively
centralized, in which N-100 and OR-014 have less overlap with
other signals. In other scales, the signal confusion is more serious.
When the scale is 2, the signal entropy concentrates at 1.72 and
1.78. When the scale is greater than 3, the distribution of the ten
types of signals is almost confounded. In order to obtain exact
results, single feature recognition was performed on these
features.

FIGURE 3
Single feature distribution of ten scales of MDE for ten signals: (A-
J) represent Scale 1 to Scale10.

FIGURE 4
Single feature distribution of ten scales of MPE for ten signals: (A-
J) represent Scale 1 to Scale10.
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5.2 Single feature recognition

After obtaining the characteristic distribution of these ten kinds
of signals, a classification algorithm is needed to distinguish them. In
this paper, KNN algorithm is selected, 50 of 100 samples are taken as
training samples to train the algorithm, and the remaining
50 samples are taken as test samples to observe the classification
effect. According to the results of single feature extraction, the single

feature recognition results for ten scales with MDE for ten types of
signals are shown in Table 1.

5.3 Triple feature extraction

To compare with the feature extraction method proposed in this
paper, MSE is introduced in this section, and three features of the ten

TABLE 1 Single feature recognition results for ten scales of MDE for ten types of signals.

Types Recognition rate (%)

DE1 DE2 DE3 DE4 DE5 DE6 DE7 DE8 DE9 DE10

N-100 80 42 74 70 72 74 50 52 54 34

IR-007 38 60 62 40 22 40 30 34 26 26

B-007 34 38 44 20 40 36 10 18 20 18

OR-007 72 74 50 46 36 32 40 38 44 34

IR-014 62 50 18 28 26 20 20 18 12 8

S-014 30 18 26 22 14 8 6 4 16 10

OR-014 90 24 26 30 38 28 24 8 18 22

IR-021 90 84 74 32 28 32 26 30 10 34

B-021 86 44 54 26 32 26 10 24 6 16

OR-021 90 60 92 82 72 58 80 78 82 68

Average 67.2 49.4 52.0 39.6 38.0 35.4 29.6 30.4 28.8 27.0

According to Table 1, the recognition rate of ten kinds of signals under ten scales of MDE is not high. Except for scale 2 and scale 6, OR-021 had the highest recognition rate. Overall, the

recognition rate shows a downward trend with the increase of the scale. When the scale increases to 6, the recognition rate for S-014 starts to be less than 10%. The recognition rate for the ten

scales of B-007 and S-014 is less than 50%. Single feature recognition results for ten scales of MPE for ten types of signals are shown in Table 2.

TABLE 2 Single feature recognition results for ten scales of MPE for ten types of signals.

Types Recognition rate (%)

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10

N-100 100 20 16 16 14 10 20 20 20 16

IR-007 24 24 24 18 10 16 6 14 8 58

B-007 38 38 18 14 16 12 18 18 2 28

OR-007 54 40 24 10 6 16 10 12 46 24

IR-014 36 44 34 26 26 12 18 16 22 8

S-014 48 18 18 26 10 14 26 6 10 8

OR-014 100 32 62 22 14 10 8 22 6 8

IR-021 68 40 10 18 8 12 10 12 10 12

B-021 20 32 22 22 16 16 6 16 16 16

OR-021 20 24 28 12 10 10 8 8 16 20

Average 50.8 31.2 25.6 18.4 13.0 12.8 13.0 14.4 15.6 19.8

As can be seen from the Table 2, the performance of these ten kinds of signals using multi-scale permutation entropy is very poor, with an average recognition rate of 50.8% at scale 1 and less

than 40% at the remaining nine scales. When the scale is larger than 3, the recognition rate is lower than 20%. When the scale is 1, the recognition effect is best. The recognition rates of N-100

and OR-014 are 100%, but the recognition rates of the remaining eight signals are not high. The recognition rate decreases significantly with the increase of scale, which is consistent with the

feature distribution. The recognition rate of B-007 at scale 9 is only 2%.

Frontiers in Physics frontiersin.org05

Zhou and Wang 10.3389/fphy.2023.1180595

116

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1180595


scales of the three entropies are combined. Sample selection and
parameter setting of the entropy still follow the rules of single
feature. Since there are 4,060 methods to select three of the
30 features, the selection of scale combination is based on the
highest recognition rate in the experimental results and only four
of the best results are obtained in this section: 1) Scale 2 of MDE and
scale 1 and 2 of MPE; 2) Scale 1 of MDE and scale 1 and 2 of MPE; 3)
Scale 1 of MDE, scale 2 of MPE and scale 10 of MSE; 4) Scale 1 of
MDE, Scale 2 of MPE and Scale 9 of MSE. The distribution of
features for the four best combinations of recognition results are
shown in Figure 5.

From Figure 5, it can be seen that the distribution of all types
of signals has been significantly different under the three
features, among which N-100, B-007, OR-007, IR-021, OR-
021 signals have little mixing with other signals. The
remaining five signals have less mixing; All four of the best
recognition results have the feature of MPE scale 2. To get a more
specific and clear signal distinction, triple feature recognition is
used for these features.

5.4 Triple feature recognition

In this section, KNN algorithm is still used to identify the three
feature of the feature extraction results. 50 training samples and
50 test samples are still selected. The parameter settings are still the
same as those of single feature recognition. Four recognition results
maps with the highest recognition rate are drawn. The result figure
and recognition rate table of triple feature recognition for ten types
of signals are shown in Figure 6 and Table 3.

From Figure 6 and Table 3, it can be seen that the four
combinations with the highest recognition rate have a
considerable improvement over the recognition rate of single
feature recognition, where the combination of scales are chosen
based on the highest recognition rate in the experimental results.
The average recognition rate of the four combinations has reached
more than 90%, and only a few of the 100 samples of each type of
signal have been misidentified. In the first combination with the
highest recognition rate, the recognition rate of six types of signals is
100%, and the unreachable signals have considerable recognition

FIGURE 5
The distribution of features for the four best combinations of recognition results: (A) DE2, PE1, PE2 ; (B) DE1, PE1, PE2; (C) DE1, PE2, SE10; (D)
DE1,PE2,SE9.

TABLE 3 Triple feature recognition rate for ten types of signals.

Combination of scales DE2, PE1, PE2 DE1, PE1, PE2 DE1, PE2, SE10 DE1, PE2, SE9

Average recognition rate (%) 96.2 95.0 94.0 93.4
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results. The combination of DE2, PE1 and PE2 presented in this
paper has the highest recognition rate.

6 Conclusion

Fault signal recognition is the classification of time series, first
extracts the features of the fault signal, and then uses the classification
algorithm to classify the signal according to the features. In this paper,
the multi-scale method is used to obtain the signal features at different
scales, where the selection of scale combination is based on the highest
recognition rate in the experimental results and only four of the best
results are obtained in this section. Combining scale 2 of MDE with
scale 1 and 2 of MPE, a triple feature extraction method is proposed to
extract and identify the signal features. To verify the superiority of this
method, ten types of rolling bearing fault signals are identified. The
following are the main research conclusions:

(1) In the field of fault diagnosis, this paper introduces a triple
feature extraction method based on scale 2 of MDE, scale 1 and
2 ofMPE, and achieves good recognition results with the highest
recognition rate of 96.2%.

(2) Combining the three types of entropy which have poor
recognition effect in single feature experiment, the
recognition ability has been improved significantly, and the
recognition rate has been improved by 29%.

(3) The triple feature extractionmethods proposed in this paper have a
recognition rate of at least 1.2% higher than the other combinations
of the three entropies, which can better diagnose the fault.
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Adaptive noise suppression for
low-S/N microseismic data based
on ambient-noise-assisted
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decomposition
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Microseismic monitoring data may be seriously contaminated by complex and
nonstationary interference noises produced by mechanical vibration, which
significantly impact the data quality and subsequent data-processing
procedure. One challenge in microseismic data processing is separating weak
seismic signals from varying noisy data. To address this issue, we proposed an
ambient-noise-assisted multivariate empirical mode decomposition (ANA-
MEMD) method for adaptively suppressing noise in low signal-to-noise (S/N)
microseismic data. In the proposed method, a new multi-channel record is
produced by combining the noisy microseismic signal with preceding ambient
noises. Themulti-channel record is then decomposed usingmultivariate empirical
mode decomposition (MEMD) into multivariate intrinsic mode functions (MIMFs).
Then, the MIMFs corresponding to the main ambient noises can be identified by
calculating and sorting energy percentage in descending order. Finally, the IMFs
associated with strong interference noise, high-frequency and low-frequency
noise are filtered out and suppressed by the energy percentage and frequency
range. We investigate the feasibility and reliability of the proposed method using
both synthetic data and field data. The results demonstrate that the proposed
method can mitigate the mode mixing problem and clarify the main noise
contributors by adding additional ambient-noise-assisted channels, hence
separating the microseismic signal and ambient noise effectively and
enhancing the S/Ns of microseismic signals.

KEYWORDS

microseismic monitoring, seismic signal, interference noise, noise suppression,
multivariate empirical mode decomposition

1 Introduction

Microseismic monitoring technology is a useful tool for characterizing the structures,
physical properties, and dynamic processes in the subsurface within a target region. This
technique has been widely used in the monitoring of hydraulic fracturing in hydro-carbon
reservoirs [1–3], coal mining [4, 5], geothermal exploration [6, 7], and CO2 capture and
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storage (CCS) [8]. Single-component (1-C) or three-component (3-
C) receivers installed at the surface and/or in the borehole are
anticipated to record not only the seismic event signals but also
high-energy interference noises and random noises generated by
motions such as mechanical vibrations [9–11]. Various excitations
and strong noises could significantly reduce the detectability of weak
but useful seismic signals in the monitoring data, thereby
compromising the reliability of data processing and
interpretation [12–14]. Therefore, it is essential to develop an
effective method to suppressing interference noise in
microseismic monitoring data.

Low signal-to-noise (S/N) microseismic recordings are usually
abandoned without applying adequate denoising methods due to the
small magnitudes of microseismic events obscured by noisy
recording environments. Frequency-domain band-pass filtering is
the most commonly used method in seismic monitoring processing
for attenuating background noises and extracting microseismic
signals, but the effect of this method may not be very satisfying
if the background noises and microseismic signals are in the same
frequency range. Researchers have made a great effort to develop
novel methods for noise suppression and microseismic signal
enhancement, such as polarization filtering [15], median filtering
[16], mathematical morphology filtering [17], the singular value
decomposition-based method [18, 19], and the time-frequency
transform-based method [20–24]. In addition to high-frequency
noise, the background interference noises are also of concern [13, 17,
21, 22]. Because the characteristics of microseismic signals in the
noisy monitoring data are usually unclear, conventional denoising
methods struggle to suppress the strong-energy, long-duration
interference noises and retain the energy of microseismic signals.
Thus, the improvement in the S/N of microseismic data is often
limited.

Mode decomposition algorithms can adaptively decompose the
nonlinear and nonstationary signals to analyze the local
characteristic time scale and have been widely applied in seismic/
microseismic signal processing, mechanical fault detection,
structural health monitoring, and biomedical signal analysis [19,

25–31]. To overcome the problems of mode mixing, end effect, and
lack of adaptability, mode-decomposition algorithms have
progressed from empirical mode decomposition (EMD) [25] to
ensemble empirical mode decomposition (EEMD) [27],
complementary ensemble empirical mode decomposition
(CEEMD) [28, 29], and variational mode decomposition (VMD)
[30, 31]. By iteratively extracting the high-frequency components
and their associated envelopes, the complex signal is decomposed
into a set of intrinsic mode functions (IMFs) in the empirical mode
decomposition based algorithms. Similarly, the VMD methods
employ an optimization framework to separate the complex
signal into multiple modes. To deal with multivariate data, the
multivariate extension of EMD (i.e., multivariate EMD, or MEMD
for short) and VMD (i.e., multivariate VMD, or MVMD for short)
are proposed for processing multivariate data to obtain the IMFs
with aligned frequency ranges [32–35]. Noise-assisted MEMD (NA-
MEMD) [33], partial noise-assisted MEMD (PNA-MEMD) [36],
and sinusoidal signal-assisted MEMD (SA-MEMD) [37] and
harmonic-assisted MEMD (HA-MEMD) [38] are subsequently
proposed to improve the performance of the MEMD method by
adding additional channels with independent white noise, high-
frequency band-limited noise, and a sinusoidal assisted signal,
respectively.

These mode-decomposition algorithms have been widely
employed in seismic/microseismic data denoising and arrival
picking [19, 39–44]. The separation or reconstruction of
signals is often accomplished in the mode decomposition
based methods and their improvement approaches by the
selection of IMF components. When reconstructing the signal,
metrics like as correlation coefficient, kurtosis, mutual
information entropy, and other parameters that characterize
the signals of each IMF are calculated to provide various
weight coefficients that emphasize the target signal. However,
the study of low signal-to-noise ratio microseismic signals are
hampered by noise because real-world signals are typically
nonlinear and accompanied by strong ambient noise, and the
features extracted directly from these signals usually contain a
large amount of useless as well as noisy information that cannot
effectively distinguish seismic signals from noise. Compared to
the interference noises with long durations and high energies, the
microseismic signals show very short duration (<1s) and
unpredictable energies in the field data. The Low-S/N
microseismic event may be identified from continuous
recordings using rigorous detection thresholds, thus, the
adaptive and effective separation of background noise and
weak microseismic signal is critical for subsequent data
processing. In this paper, we develop an adaptive noise
suppressing method for microseismic data processing based on
ambient-noise-assisted multivariate empirical mode
decomposition (ANA-MEMD). In the proposed method, a
new multichannel record that combines the noisy
microseismic recording with preceding ambient noises is
decomposed by the MEMD method into multivariate intrinsic
mode functions (MIMFs). Then, the ambient records are utilized
to assist in decomposing microseismic data and identifying main
noise contributors. In this study, we first introduce the theory of
EMD and MEMD, then elaborate on the ANA-MEMD method
for noise suppression in microseismic data. Finally, we evaluate

FIGURE 1
The flowchart of the proposed method.
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the performance of the proposed method by using synthetic and
field data.

2 Methods

2.1 Empirical mode decomposition

As a data-driven approach, empirical mode decomposition
(EMD) decomposes a signal adaptively into a finite set of
oscillatory components known as intrinsic mode functions
(IMFs) [25]. The original signal can be recovered by
reconstructing all IMFs, which represent different vibrations
whose instantaneous frequency reflects the local characteristics of
the input signal. Two conditions are essential for calculating an IMF:
1) the number of extrema and the number of zero crossings should
be different only by one; 2) the mean value of the upper and lower
envelopes should be roughly zero [25]. In the EMD method, the
decomposition is accomplished by removing the slowly oscillatory
modes and separating the rapidly oscillating modes from the data.
For a real-valued signal x(t), it can be decomposed into

x t( ) � ∑M

m�1dm t( ) + r t( ), (1)

where dm(t) represents the mth IMF and r(t) is the residual
component.

Although a complex signal can be decomposed into several IMFs
by EMD, the application of real data may be restricted by the mode-
mixing problem due to the intermittency of a signal component or
closely spaced spectral tones. To address the limitation of mode
mixings, ensemble empirical mode decomposition (EEMD) [27, 40]
and complementary ensemble empirical mode decomposition
(CEEMD) [28, 29] are proposed successively by taking the noises
into consideration. The purpose of incorporating white noise is to

perturb the signal in its true solution neighborhood and ensure the
extreme value points are distributed uniformly during the sifting
process, therefore restraining mode-mixing.

2.2 Multivariate empirical mode
decomposition

Signal acquisition using multicomponent receivers or multiple
receivers is prevalent in engineering applications. The characteristic
analysis of the system may be impacted by a scale arrangement
uncertainty problemwhen each signal is decomposed independently
using the EMD approach. Multivariate empirical mode
decomposition has been introduced to overcome this issue by
performing the same mode analysis on multivariate signals in
various frequency scales and ensuring that each signal’s IMF
number after decomposition is identical [32]. In the MEMD
approach, a uniform sampling scheme based on the Hammersley
sequence is used to calculate direction vectors. The n-dimensional
signal envelops are obtained by taking a sequence of projection
vectors along different directions in the n-dimensional space. After
interpolating their extrema, the envelopes are averaged to generate
the local mean of signals. One multivariate intrinsic mode function
(MIMF) is produced by calculating the difference of the mean of all
envelopes with respect to the original signals. This process is
repeated until a sufficient number of MIMFs has been obtained
or the stopping criterion is met. The MEMD decomposes a
multivariate signal X(t) as

X t( ) � ∑M

m�1dm t( ) + r t( ), (2)

where dm(t) represents them-thMIMF and the residual component
r(t) represents the final trend. The detail procedures of the MEMD
algorithm can be described as follows.

FIGURE 2
Single-component synthetic noisy microseismic recording.
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(1) Create a uniform sampling point set on an (n-1)-dimensional
sphere using the Hammersly sequence, and establish an
n-dimensional spatial direction vector.

(2) Obtain the project sets Pθk(t) of the input signal X(t) along all
direction vector Vθk for a set of K direction vectors.

(3) Find the time instants tiθk corresponding to the maxima of the
set of projected signals Pθk(t), and obtain multivariate envelop
curves eθk(t) using the spline interpolation function.

(4) Calculate the mean value using m(t) � ∑K

k�1e
θk(t)/K.

(5) Extract the detail d(t) by calculating d(t) � x(t) −m(t), and
check whether d(t) satisfies the stopping criterion for a
multivariate IMF. If d(t) satisfies the stopping criterion, apply
the above procedure to X(t) − d(t); otherwise, apply it to d(t).

As a multivariate extension of EMD, the MEMD is a significant
improvement in multichannel signal processing, allowing for adequate
alignment between the same index IMFs and facilitating inherent

multiscale analysis. Similar to the standard EMD method, the mode
mixing problem still exists in the MEMD method. To solve this issue,
additional channels containing auxiliary signals are used to help the
decomposition of the original multivariate signal, such as noise-assisted
MEMD (NA-MEMD) [33], partial noise-assisted multivariate EMD
(PNA-MEMD) [36], a sinusoidal signal-assisted MEMD (SA-MEMD)
[37], and high-frequency harmonic-assisted MEMD (HA-MEMD)
[38]. For the original n-dimensional multivariate signal,
l-dimensional extra channels are added and then processed using
the MEMD method as an (n + l)-dimensional signal. These
methods can be summarized as follows.

(1) Generate l-dimensional assisted channels that are of the same
length as the original multivariate signal;

(2) Combine the n-dimensional input multivariate signal with the
assisted channels created in Step 1) to construct an (n + l)-
dimensional signal;

FIGURE 3
(A) Decomposition results of noisy microseismic waveform by the EMDmethod. (B) Decomposition results of the noisy microseismic waveform by
the ANA-MEMD method. (C) The energy percentages of the IMFs in assisted channel and the peak frequencies of the IMFs in noisy microseismic record
channel. (D) Comparison of the waveforms before (grey line) and after (black line) noise suppression by the proposed method. (E) Comparison of the
waveforms before (grey line) and after (black line) noise suppression by the EMD method.
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FIGURE 4
Three-component synthetic noisy microseismic recording.

FIGURE 5
(A)Decomposition results of the 3-C noisymicroseismic waveform by the ANA-MEMDmethod. (B) The energy percentages of theMIMFs in assisted
channels and the peak frequencies of the MIMFs in noisy microseismic record channels. (C) Comparison of the waveforms before (grey lines) and after
(black lines) noise suppression by the proposed method. (D) Comparison of the three-component seismic signal before (grey lines) and after (red lines)
noise suppression by the proposed method.
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(3) Decompose the new multivariate signal using the MEMD
algorithm to extract the multivariate IMFs;

(4) Remove the l-dimensional IMFs related to the assisted signals
from the multivariate IMFs in Step 3) and retain the
n-dimensional IMFs related to the original signal.

It is worth noting that, except from differences in additional
channels, these improved methods maintain the same processing
flow as standard MEMD method.

2.3 Adaptive noise suppression based on
ambient-noise-assisted MEMD (ANA-
MEMD)

Microseismic monitoring data can be expressed as

X � AS. (3)
where S � [s1, s2, . . . , sK]T represent K source signals, X �
[x1, x2, . . . , xM]T represent M observation signals, and A is the
relation matrix between source signals and observation signals. The
source signal could be seismic signal or noise. The observation signal
can represent recordings at different locations, time windows, and
components. In continuous recordings, the duration of ambient
noise (e.g., interference noises produced by pumps or industries in
continuous operation, >>1 min) is substantially longer than that of
seismic events (<1 s). The interference noises in the ambient
recording persist throughout successive time windows.

In this study, we present ambient-noise-assisted multivariate
empirical mode decomposition (ANA-MEMD) for decomposing
noisy microseismic data and remove non-effective components for

S/N enhancement of microseismic data. The auxiliary channels
containing ambient noise are introduced in the decomposition
process, which differs from the standard MEMD technique. To
determine whether one MIMF (or IMF for single-component
microseismic data) contains ambient noise, we calculate the
energy percentage of the assisted ambient noise in each
decomposed MIMF (or IMF for single-component microseismic
data). In our method, strong interference noise is considered to
persist and constitute the predominant portion of the ambient
record. Finally, the MIMFs (or IMFs) components associated
with ambient noise and outside the desired signal band are
eliminated during the reconstruction process. Our method is
organized as follows.

(1) For a low-S/N microseismic signal recording with a time
window length of Nwin, we select ambient recordings with
the same time window length preceding the microseismic data
as additional assisted channels. In general, two window for
single-component microseismic data, and one window for 3-C
microseismic data. Strong random signals (including coherent
seismic signals) must not be present in the additional assisted
channels.

(2) After constructing a newmultivariate signal by adding the noisy
microseismic data with the above-assisted channels, we obtain
the multivariate IMFs dm(t) and cm(t) using the MEMD
algorithm. dm(t) and cm(t) are the m-th MIMFs
corresponding to noisy microseismic data and assisted
ambient noise, respectively.

(3) We calculate and sort the energy percentage of each MIMF
cm(t) in descending order, and obtain the peak frequency of
each MIMF dm(t) .

FIGURE 6
Comparisonof S/Ns (A) and the linearities (B)of the three-component seismic signals before and after noise suppression by the proposedmethod in different tests.
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(4) Pre-set the band range [fl, fh] determine high frequency and
low frequency noise, and find the dominant noise according to a
threshold value of the energy percentage. The IMFs with a large
energy percentage are potential interference noise. The
microseismic data after noise suppression can be
reconstructed by X′(t) � X(t) −∑ dM1(t), where M1 is the
index of qualified MIMFs.

The above procedure is applicable to both single-component
data and three-component microseismic data. The flowchart of the
proposed method is shown in Figure 1.

3 Numerical examples

In this section, we demonstrate the performance of the proposed
method using both single-component and three-component synthetic
microseismic data. The synthetic signal is composed of two time-
varying oscillation signals (regarded as persistent interference noises)
with dominant frequencies of 20 Hz and 60 Hz, and an attenuated sine
wave (regarded as seismic signal), which has the peak frequency of
100 Hz. Its composed components are expressed as the following
equations.

s1 � sin 2π20t + 0.5 cos 2π5t( )
s2 � sin 2π60t + 0.8 cos 2π6t( )
s3 � sin 2π100 t − t0( )( )*e−0.02 t−t0( )

⎧⎪⎨⎪⎩ (4)

Where t0 is the arrival time of seismic signal.
First, the above three source signals with the maximum

amplitude ratio of 2:1:2 and Gaussian noise with the amplitude
variance of 0.1 were applied to generate one single-component
synthetic microseismic recording. The arrival time of seismic
signal is 2.2 s and the sampling frequency is 1000 Hz. Figure 2
shows the waveforms of the synthetic microseismic data, it can be

seen that the seismic signal becomes blurred due to the strong
interference noise.

We compared the decomposition results of the synthetic
microseismic record using the EMD method and the proposed
ANA-MEMD method. Two 1-s long background noise
recordings (0~1 s and 1~2 s) before the seismic signals were
employed as extra assisted channels. Figures 3A, B illustrate
the six IMFs that decomposed by above two methods,
respectively. Channel 1, 2, and 3 in Figure 3B represent the
IMFs corresponding to two background noise recordings and
noisy microseismic signal, respectively. There is no doubt that the
phenomenon of mode mixing has been alleviated by the addition
of auxiliary noise channels. We demonstrated the viability of the
proposed method in noise suppression using the aforementioned
decomposition results. We calculated the energy percentage of
each IMF in the ambient noise assisted channels (channel 1–2 in
Figure 3B) and the peak frequency of each IMF in the noisy
microseismic signal channel (channel 3 in Figure 3B), as shown
in Figure 3C. By determining IMF related to the top two energy
percentage (IMF 4 and 5, cumulative percentage greater than
80%), the high frequency noise (IMF1, the peak
frequency >200 Hz), and the low frequency noise (IMF 6, the
peak frequency <10 Hz), the IMF that contains the ambient noise
can be identified. The denoised microseismic records by the
proposed method and EMD method can be obtained by
reconstructing the remaining IMFs, as shown in Figures 3D,
E. Compared to the result of EMD method (black line in
Figure 3E), the arrival of the seismic signal is clearly visible in
the denoised waveform (black line in Figure 3D), while
preserving as much the microseismic signal as possible.

Three-component synthetic microseismic recording was
constructed by the above three source signals and a mixing
matrix and Gaussian noise with the amplitude variance of 0.2.
The mixing matrix is given as

FIGURE 7
The waveforms of one low-S/N microseismic event. Red and blue dashed line represent the arrival times of P-wave and S-waves, respectively.
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A �
2 1 3
1.5 2 1
3 1 2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (5)

The arrival time of seismic signal is 1.2s and the sampling frequency is
1000 Hz. Figure 4 shows the waveforms of the syntheticmicroseismic data.

In the process of three-component microseismic data, one 1-s
long background noise recordings (0~1 s) before the seismic signals
(1~2 s) were employed as extra assisted channels. Figure 5A
illustrates the six MIMFs that decomposed by the ANA-MEMD
method. Channels (az, ax, and ay) and (z, x, and y) in Figure 5B
represent the MIMFs corresponding to the background noise
recordings and noisy microseismic signals, respectively. Similar to
the processing flow for the above single-component data. We
calculated the energy percentage of each MIMF in the ambient
noise assisted channels and the peak frequency of each MIMF in the
noisy microseismic signal channels, as shown in Figure 5B. By
determining MIMF related to the top two energy percentage
(MIMF 4 and 5, cumulative percentage greater than 80%), the
high frequency noise (MIMF1, the peak frequency >200 Hz), and
the low frequency noise (MIMF 6, the peak frequency <10 Hz), the
MIMFs that contains the ambient noise can be identified. The

denoised microseismic record can be obtained by reconstructing
the remaining MIMFs, as shown in Figure 5C. The arrivals of the
seismic signals are obvious in the denoised waveform (black line in
Figure 5C), and the linearity of the three-component seismic signal
is significantly enhanced (as shown in red lines in Figure 5D).

Without loss of generality, the above test is repeated 50 times
using synthetic three-component data with different S/Ns
(1.9–5.5 dB) to verify the stability of the proposed method. To
simulate varying S/Ns, we kept the amplitude of the background
noise recordings and changed the amplitudes of the noise-free
seismic signal. In addition, we also calculated the S/Ns and the
linearities of the seismic signal before and after processing to
quantitatively assess the method’s performance. The S/N is
calculated using the following equation [12]:

S/N � 20log10
Asignal

Anoise
( ) (6)

where Anoise and Asignal are the root-mean-square amplitudes of the
signals before and after seismic arrivals, respectively. The linearity L
for three component seismic data can calculated using the following
quation,

FIGURE 8
(A) Decomposition results of the recordings in Receiver No.1 by the ANA-MEMD method. (B) The energy percentages of the MIMFs in assisted
channels and the peak frequencies of the MIMFs in noisy microseismic record channels. (C). Comparison of the waveforms before (grey lines) and after
(black lines) noise suppression by the proposed method. The P-wave and S-wave arrivals are denoted by the red box and blue box, respectively. (D)
Comparison of P-wave and S-wave before and after noise suppression by the proposed method. Grey lines represent the raw waveforms. Red and
blue lines represent P-wave and S-wave after noise suppression, respectively.
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L � λ1 − λ2( )2 + λ2 − λ3( )2 + λ1 − λ3( )2
2 λ1 + λ2 + λ3( )2 . (7)

Where λ1, λ2, λ3(λ1 > λ2 > λ3) are the eigenvalues of the
convariance matrix for the three-component seismic signal. The
S/Ns and the linearities of the microseismic signals before and after
processing are shown in Figure 6. The S/Ns and the linearities of
seismic signals in all tests increase using the proposed method
demonstrate the effectiveness of this method for noise
suppression reliability.

4 Field data application

In this section, we evaluated the performance of the proposed
method using field microseismic data. The field data in this study come
from a hydraulic fracturing surveillance job in a shale play in the Fulin
gas field of China. A temporary array comprising 12 levels of triaxle
15 Hz geophones was placed in the inclined section (the inclination is

about 40°) of a horizontal well adjacent to the treatment well and used
for monitoring the stimulation. A total of 63 microseismic events were
detected during a hydraulic fracturing stage. Figure 7 shows the 3-C
waveforms of one Low-S/N microseismic event, in which the red and
blue line represent the arrival times of P- and S-waves, respectively. It is
evident that significant background noises obscure the microseismic
signal, and the arrivals of direct P- and S-waves are masked by strong
interference noise. Observed interferences are most likely due to
pumping operations or pumping-fluid-wellbore interactions.

In this field data processing, we intercepted ambient noise
recording with 1-s long time window (0~1s in Figure 7) before
the microseismic signal (1~2s in Figure 7). The recordings in the
shallowest receiver (Receiver No.1) were analyzed as an example.
The multi-channel recordings are decomposed into 14 MIMFs, and
their first ten MIMFs are shown in Figure 8A, with their frequencies
decreasing sequentially. The seismic signal is divided into multiple
MIMFs due to its wide frequency range. We calculated the energy
proportion of each MIMF in the ambient noise assisted channels and
the peak frequency of each MIMF in the noisy microseismic signal

FIGURE 9
The microseismic signals after noise suppression using different methods. (A) The proposed method. (B) Band-pass filter method. (C) MEMD
methodwith kurtosis criteria. (D)Multivariatewavelet denoising (MWD)method. The amplitude ranges of fourmicroseismicwaveforms subgraphs are the
same.
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channels, as shown in Figure 8B. The energy percentages of eachMIMF
shows that the energy of background noise accounts for about 60% of
the total energy, demonstrating the necessity of removing these strong
noises. By determining MIMF related to the top energy proportion
(MIMF 7), the high frequency noise (MIMF1 and MIMF2, the peak
frequencies >300 Hz), and the low frequency noise (MIMF 9–14, the
peak frequencies <10 Hz), the MIMFs that contains the ambient noise
can be identified. The denoised microseismic record can be obtained by
reconstructing the remaining MIMFs, as shown in Figure 8C. The
P-wave (denoted by the red box) and S-wave (denoted by the blue box)
arrivals of the seismic signals are clearly visible in the denoised
waveforms (black line in Figure 8C), and the linearities of the three-
component microseismic signal are greatly improved, particularly in
P-wave.

We have processed the microseismic recordings of all 12 receivers
in Figure 7. Band-pass filter (10,300 Hz), traditional MEMD based
method, and multivariate wavelet denoising (MWD) method were
also used to process the field data for comparison. In the traditional
MEMDmethod, we calculated the kurtosis value of each MIMFs, and
the microseismic signal is regarded as existing if the threshold of the
kurtosis value is surpassed (the threshold is set to 3). Figure 9 shows
the results using these methods. The S/Ns and the linearities of the
microseismic signals before and after processing are shown in

Figure 10. Band-pass filter only removes high-frequency and
partial low-frequency noise. There remain strong interferences in
the denoised microseismic data. Part of the arrivals of P- wave and S-
wave afterMEMDmethod with kurtosis criteria are highlighted, there
remain strong interferences in the several receiver recordings. It
demonstrates that uniform kurtosis criteria are incapable of
dealing with complicated and variable noise. The noise reduction
effect on S-wave of MWD method is not obvious, which is also
reflected in the S/Ns after denoising. Although the traditional MEMD
method and MWD method can increase the S/Ns, they decrease the
linearities of P-wave and S-wave, showing that the denoising result
cannot effectively preserve the amplitude of the seismic signals. It can
be seen that the proposed method performs better with the
consideration of increasing the S/N and maintaining the
microseismic signal adaptively.

We processed all 63 microseismic events using our method and
compared the results with above three methods. For each event, we
calculated the S/Ns and the linearities of P-wave and S-wave in
different receivers and obtained the corresponding average values.
Figure 11 displays the average values of the S/Ns and the linearities
of P wave and S wave for all detected microseismic events before and
after noise suppression by different methods. We can see that the
proposed method can generally increase the S/Ns and the linearites

FIGURE 10
Comparison of S/Ns and the linearities of microseismic signals before and after noise suppression by the different methods. (A) the S/Ns of P-wave.
(B) the S/Ns of S-wave. (C) the linearities of P-wave. (D) the linearities of S-wave.
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of the microseismic signals more robustly than the other methods,
especially for the P-wave of low S/N microseismic events. It is worth
noting that the results of the proposed method are not necessarily
better than those of the other methods. This is because the proposed
methodmay also retain part of the ambient noise while preserving as
much the microseismic signal as possible. Nevertheless, the fact that
the S/Ns of the majority of microseismic signals increase when using
the proposed method demonstrate the effectiveness of this method
for microseismic signal denoising.

5 Conclusion

In this study, we have developed an adaptive noise suppressing
method based on ambient-noise-assisted multivariate empirical
mode decomposition (ANA-MEMD) for microseismic data.
Multivariate empirical mode decomposition (MEMD) is
employed to decompose multichannel seismic recording into
multivariate intrinsic mode functions (MIMFs). To address the
problem of mode mixing, ambient noise is used as assisted
channels. Additionally, the dominant noise can be removed by
calculating energy percentage with the ambient noise in the
assisted channels. We have applied the proposed method to
synthetic data and field data. The decomposing results show that

the proposed method can successfully separate and remove the
strong background interference noises. In the comparison to the
results of conventional filtering methods, the proposed method is
demonstrated to be able to improve the S/Ns of the microseismic
signals. Thus, it is favorable for microseismic signal denoising. We
must emphasize that while this study tested the feasibility of the
proposed method using microseismic data, this method can be
applied straight forward to the active seismic data (i.e., artificial
exploration seismic data) or any other multicomponent geophysical
dataset that can be represented as time series.
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