
Coordinated by

Manmohan Dobriyal

Edited by

Pavan Kumar, Manoj Kumar, Ram Kumar Singh, 

Meenu Rani and Yonghao Xu

Published in

Frontiers in Environmental Science 

Frontiers in Remote Sensing 

Frontiers in Ecology and Evolution 

Frontiers in Earth Science

Remote sensing for 
ecosystem studies

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/research-topics/47246/remote-sensing-for-ecosystem-studies#overview
https://www.frontiersin.org/research-topics/47246/remote-sensing-for-ecosystem-studies#overview
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/earth-science


December 2023

Frontiers in Environmental Science 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-4027-5 
DOI 10.3389/978-2-8325-4027-5

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


December 2023

Frontiers in Environmental Science 2 frontiersin.org

Remote sensing for ecosystem 
studies

Topic editors

Pavan Kumar — Rani Lakshmi Bai Central Agricultural University, India

Manoj Kumar — Forest Research Institute (FRI), India

Ram Kumar Singh — TERI School of Advanced Studies (TERI SAS), India

Meenu Rani — Kumaun University, India

Yonghao Xu — Linköping University, Sweden

Topic Coordinator

Manmohan Dobriyal — Rani Lakshmi Bai Central Agricultural University, India

Citation

Kumar, P., Kumar, M., Singh, R. K., Rani, M., Xu, Y., Dobriyal, M., eds. (2023). 

Remote sensing for ecosystem studies. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-4027-5

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-4027-5


December 2023

Frontiers in Environmental Science 3 frontiersin.org

05	 Eco-environmental quality assessment of the artificial oasis 
of Ningxia section of the Yellow River with the MRSEI 
approach
Chunyuan Dong, Rongrong Qiao, Zhicheng Yang, Lihui Luo and 
Xueli Chang

18	 Ecological vulnerability assessment based on remote sensing 
ecological index (RSEI): A case of Zhongxian County, 
Chongqing
Xiaolan Jiang, Xianhua Guo, Yan Wu, Denghui Xu, Yixuan Liu, 
Yuzheng Yang and Guoxin Lan

32	 Modeling carbon uptake by vegetation of grassland 
ecosystems and its associated factors in China based on 
remote sensing
Xuejie Li, Ruren Li and Zongyao Sha

45	 Quantifying the contributions of climate factors and human 
activities to variations of net primary productivity in China 
from 2000 to 2020
Zijian Li, Jiangping Chen, Zhanpeng Chen, Zongyao Sha, Jianhua Yin 
and Zhaotong Chen

63	 Characterizing spatial burn severity patterns of 2016 
Chimney Tops 2 fire using multi-temporal Landsat and NEON 
LiDAR data
Taejin Park and Sunhui Sim

75	 BVLOS UAV missions for vegetation mapping in maritime 
Antarctic
Anna Zmarz, Stein Rune Karlsen, Marlena Kycko, 
Małgorzata Korczak-Abshire, Izabela Gołębiowska, Izabela Karsznia 
and Katarzyna Chwedorzewska

86	 An artificial intelligence-based assessment of soil erosion 
probability indices and contributing factors in the 
Abha-Khamis watershed, Saudi Arabia
Saeed Alqadhi, Javed Mallick, Swapan Talukdar and Meshel Alkahtani

100	 Spatial-temporal evolution and motivation of ecological 
vulnerability based on RSEI and GEE in the Jianghan Plain 
from 2000 to 2020
Siqi Yi, Yong Zhou, Junda Zhang, Qing Li, Yingying Liu, Yuting Guo 
and Yaqi Chen

118	 Exploring the seasonal relationship between spatial and 
temporal features of land surface temperature and its 
potential drivers: the case of Chengdu metropolitan area, 
China
Chunguang Hu, Gaoliu Huang and Zhiyong Wang

137	 The quantitative effects of climate change and human 
activity on the vegetation growth in the Yangtze River Basin
Renjie Guo, Anning Cai and Xin Chen

Table of
contents

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/


December 2023

Frontiers in Environmental Science 4 frontiersin.org

149	 Habitat quality assessment and multi-scenario prediction of 
the Gansu-Qinghai section of the Yellow River Basin based 
on the FLUS-InVEST model
Jie Yang, Baopeng Xie, Degang Zhang, Erastus Mak-Mensah and 
Tingting Pei

166	 The biophysical effects of potential changes in irrigated crops 
on diurnal land surface temperature in Northeast China
Xintao Li, Quansheng Hai, Ke Xia, Battsengel Vandansambuu and 
Yuhai Bao

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/


Eco-environmental quality
assessment of the artificial oasis
of Ningxia section of the Yellow
River with the MRSEI approach

ChunyuanDong1, RongrongQiao2, Zhicheng Yang1,3, Lihui Luo3

and Xueli Chang1*
1School of Resources and Environmental Engineering, Ludong University, Yantai, China, 2School of Life
Sciences, Nanjing University, Nanjing, China, 3Northwest Institute of Eco-Environment and Resources,
Chinese Academy of Sciences, Lanzhou, China

Remote sensing ecological index (RSEI) has the advantages of rapid, repeatable and

relatively accurate in regional eco-environment quality assessment. Due to the lack

of consideration of the interaction of adjacent analysis units in RSEI calculation, there

is a fewuncertainties in the assessment results. BasedonRSEI, the landscapediversity

index (LDI) was introduced, which considered the heterogeneity caused by the

difference between the assessment unit and the adjacent one, and rebuilt modified

remote sensing ecological index (MRSEI) to evaluate the eco-environment quality in

the artificial oasis of Ningxia section of Yellow River. The results showed that the area

of Fair and Poor grades in the low MRSEI year (2000) was greater than that of other

grades, and the area of Moderate and Fair grades was greater than that of other

grades in the high MRSEI year (2020). The conversion characteristics of different

grades were Poor and Fair grades to adjacent high grades. During the study period,

the eco-environment quality of the study area was improved, and the composition

and pattern of land use types had a significant impact onMRSEI. Introduction of LDI-

improvedMRSEI can not only include theheterogeneous effect between the analysis

unit and the adjacent one, but also consider the spatial scale effect of LDI tomake the

evaluation results more credible. However, some evaluation factors of RSEI and

MRSEI (e.g., LDI, NDVI, andNDBSI) represent the accumulation of surface status over

long-time scales, while others (e.g., Wet and LST) reflects only short-time scale

features of the land surface. Therefore, how to eliminate the uncertainty caused by

temporal scale mismatch is a challenge for RSEI and MRSEI applications.

KEYWORDS

eco-environmental quality, oasis, land use/cover, Yellow River, MRSEI

1 Introduction

Regional eco-environmental quality is directly affected by local natural resources and

human exploitation system, and the amplification effect of human activity intensity on

eco-environmental quality is very significant. Especially in developing countries with the

largest land area in the world and rapid industrialization and urbanization, the rate of
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change of land use/cover has greatly influenced regional or global

climate and environmental change (Yang et al., 2020; Mukesh

et al., 2021). In recent decades, using satellite remote sensing data

and geographic information systems to extract and analyze land

surface information is a very common and effective method to

rapidly assess regional eco-environmental quality (Ellis, et al.,

2006; Willis, 2015). Thus, these data are used to identify basic

ecosystem properties and to judge their different components,

such as leaf area index, aboveground biomass, and land cover

type (Reza and Abdullah, 2011; de Araujo Barbosa et al., 2015),

and these techniques have also been widely used in ecological and

environmental surveys in China and other parts of the world (Tilt

et al., 2007; Chen, et al., 2014; Kennedy et al., 2014; Willis, 2015;

White et al., 2016). Various remote sensing ecological indicators

play an important role in quantifying and mapping the

characteristics and functions of ecosystems. In these findings,

methodologies typically focus on only one aspect of the eco-

environment and then produce a single ecological factor for

evaluation (Nichol, 2009). For example, normalized differential

vegetation index (NDVI), leaf area index (LAI), normalized

differential water index (NDWI), and light index (LI) have

been used to describe spatiotemporal changes in vegetation,

biodiversity, water bodies, bare land, and cities (Choudhary

et al., 2019; Kappas and Propastin 2012; Fu et al., 2013).

Especially in the pattern analysis of land surface temperature

(LST), it was found that the heat island effect in Leipzig

(Germany), was more reliable in densely urbanized areas than

in areas with low population density (Schwarz et al., 2012). The

sandy vegetation pattern in Horqin (China) was negatively

correlated with land surface temperature, and the more complex

the vegetation structure, the closer the correlation (Qiao et al.,

2021). These studies are of great significance for carrying out more

targeted ecological restoration work, and are also the current

hotspots for quantitatively describing and estimating the spatio-

temporal dynamics of eco-environmental quality and promoting

sustainable development in different regions.

After the improvement of a single remote sensing index

for the evaluation of a certain land surface attribute state,

combined with pressure-state-response (PSR) model and

analytic hierarchy process (AHP), a method of

comprehensively using multiple remote sensing indicators

to determine regional eco-environmental quality has been

formed (Fulton Elizabeth, 2010; Yu and Hong, 2022; Tom´

as et al., 2004; Patrício et al., 2016). In this method, structure

construction and factor weight distribution are the key.

Because the factor weight system must contain subjective

weight, and expert knowledge and experience such as AHP

must be integrated into the analysis process (Zhao et al.,

2016), which is not conducive to the rapid evaluation of

the eco-environmental quality of a certain region. The

multi-dimensional and multi-feature technology developed

in the past decade has shown great advantages in regional eco-

environmental quality assessment (Boori et al., 2018; Xu et al.,

2018; Wu et al., 2020). In particular, Xu (2013) proposed the

Remote Sensing Ecological Index (RSEI), which integrates

four calculated indicators based on remote sensing bands to

represent four major ecological elements (NDVI; Wet;

NDBSI; LST), and principal component analysis (PCA)

based on covariance was used to determine the

comprehensive contribution of the four factors to eco-

environmental quality. The effectiveness of the proposed

method was evaluated in different landscape types, such as

urban landscape, alpine grassland landscape, Loess Plateau

landscape and agricultural and forestry mixed with water

landscape. (Hu and Xu, 2018; Liu et al., 2019; Sun et al.,

2020; Yuan, et al., 2021). However, two problems in RSEI have

attracted the attention of researchers (Yuan, et al., 2021). One

is that RSEI calculated based on grid data cannot express the

differences caused by homogeneity (or heterogeneity) of

adjacent grids. Secondly, the evaluation factors used by

RSEI usually have a high correlation with each other, and

NDVI has the highest eigenvalue on PC1, which leads to some

contradictions in comparing RSEI results in ecological

interpretation of different multi-ecosystems landscapes.

That is, the area with the dominant agricultural land

ecosystem may obtain a higher RSEI value. So how do you

avoid these problems in your RSEI evaluation? The

introduction of landscape diversity index (LDI) may be an

appropriate method to correct the above deficiency, because

the calculation of LDI takes into account the differences of

basic unit attributes within a certain scale. At the same time,

there are a large number of shared and paid resources to

choose from land cover interpretation products based on

Landsat data, and there are also some landscape analysis

software to calculate LDI, such as PCA.

If LDI is added to modify RSEI (MRSEI), the first problem to

be solved is to determine the appropriate scale, that is, to obtain

the scale-dependent characteristics of LDI (Li et al., 2018; Liang

and Li, 2018; Yang, et al., 2021). Previous studies have shown that

there are differences in scale dependence between similar or

different landscape areas. Therefore, identifying the scale

dependence of LDI in the study area is the basis of landscape

analysis.

In terms of the practical significance of eco-environmental

quality assessment, there is no doubt that AHP, RSEI or MRSEI,

are not only meaningful in theory for judging the status and

change trend of eco-environmental quality in the study area, but

also an important means for regional sustainable development

planning, management and evaluation in practice. For example,

the RSEI study for different geographical units and types such as

watersheds (Gao and Zhang, 2021; Luo et al., 2022) and National

Nature Reserve (Liu et al., 2019) show great practical significance.

The Yellow River Oasis Area in Ningxia Hui Autonomous

Region is densely covered with lakes and wetlands, and is the

core area of the National Yellow River Economic Zone, as well as

the key area of ecological function zoning. How the regional
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environment changes have attracted much attention from the

state and local governments, and how to implement the rapid and

effective environmental quality assessment of artificial oasis is a

challenge for the academic community.

Here, we used MRSEI method to evaluate the changes of the

oasis of Ningxia section of the Yellow River in recent decades by

increasing the LDI factor, to identify the main driving factors,

and to evaluate the value of MRSEI in the analysis of eco-

environmental quality.

2 Materials and methods

2.1 Study area

The oasis in Ningxia section of the Yellow River is located in

the northern part of Ningxia Hui Autonomous Region, which

ranges from 37°20′ ~ 39°20′ N, 105°0′ ~ 107°0′E, and an area of

about 10,831.3 km2. The core area of Ningxia section of the

Yellow River is an artificial oasis composed of the Weining and

the Yinchuan irrigation district connected by the Yellow River,

with oases areas accounting for more than 60% (Figure 1).

Farmland, lakes and wetlands are densely distributed in the

study area. The main irrigation channels are longitudinally

distributed east trunk Canal, west trunk canal, Han Yan

Canal, Tang Lai Canal and so on. The soil is mainly alluvial

soil and meadow soil. The natural vegetation is mainly date forest

scattered shrub woddland, composed of Elaeagnus angustifolia,

Lycium chinense, Tamarix chinensis and Phragmites communis

and so on. This area is the core area of the national Yellow

Economic Zone, and also the key area of China’s national

ecological function zoning.

2.2 Satellite data and pre-processing

Conventional Landsat imagery has been widely used for

large-scale and periodic ecological monitoring (e.g., NDVI and

LU). Using a shared dataset supported by the U.S. Geological

Survey (USGS), including the Landsat data Collection, 2 Tier

1 and Top of atmospheric (TOA) Reflectance (https://

earthengine.google.com/), the spatial resolution of the data of

30 m. Data were preprocessed with atmospheric and geometric

corrections. To ensure the similarity of vegetation growth

conditions and the comparability of ecological results, the data

were collected from July 5 to 22 August 2000 and August 19 to

28 August 2020, respectively. Since the study area involved three

images (129,033, 129,034 and 130,034), the data of Landsat 5 TM

and Landsat 8 OLI were selected to be concatenated into one

image, respectively.

Land use (LU) data were obtained from the Data Center for

Resources and Environmental Sciences, Chinese Academy of

Sciences (Chen, et al., 2014; Zhang. 2020). The study area

involved eight types of land surfaces, including cultivated

land, woodland, shrub, grassland, wetland, water body, urban

and built-up areas, and wasteland, with the overall interpretation

FIGURE 1
Location of the study area.
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accuracy (Kappa coefficient) ranging from .78 to .82 (https://

www.resdc.cn/).

2.3 Identification of LDI threshold

LDI is an indicator to measure the number of landscape

composition types and the proportion of its area information in

landscape ecology research, and is also the main level of biodiversity

research. A higher LDImeans a higher diversity of ecosystem types in

the study area. Therefore, LDI is credible as an assessment factor for

eco-environmental quality. Here, the LDI is represented by Shannon-

Weiner index and calculated in the neighborhood analysismethod of

ArcGIS. It can be computed using the following equation:

LDI � −∑m
i�1
Pi × LnPi (1)

where Pi is the proportion of a certain land use type to the area of the

analysis unit. A quadrat gradient as 90 m × 90m, 300 m × 300 m,

600 m × 600 m, 900 m × 900 m, 1200 m × 1200 m, 1500 m ×

1500 m, 3000 m× 3,000 m, 4500 m × 4500 m and 6000 m× 6000 m

was used to calculate the scale-dependent characteristics and

thresholds of LDI in 2000 and 2020, respectively.

2.4 Assessment factor normalization and
MRSEI calculations

The calculation methods of NDVI, WET, NDBSI, and LST in

this study are consistent with the literature (Yuan et al., 2021). Since

the MRSEI assessment takes grid as the basic unit, it does not

consider the influence of the diversity of adjacent units, and ignores

the girds are not only affected by the influence factor of the same

spatial domain, but also have a significant effect between adjacent

units, that is, the edge effects phenomenon in ecology. To

compensate for this shortcoming in MRSEI, we added the LDI

factor to RSEI and renamed it as MRSEI. Due to the differences in

unit and quantity sizes of the input factors, normalization is required

to unify the index values between 0 and 1. In this paper, the forward

normalization (Eq. 2) method is used for standardization.

Fi � Xi − Ximin( )/ Ximax − Ximin( ) (2)

In Eq. 2, F represents the input factor, and i represents LDI,

NDVI, WET, NDBSI, and LST, respectively; X represents the

input factor cell value. After the evaluative factors were

normalized, MRSEI was calculated using Eq. 3:

MRSEI � ∑n
i

PCn ESV ,NDVI,WET,NDBSI, LST( )
× EVi × ETi (3)

whereMRSEI is a modified remote sensing ecological index, and the

larger the MRSEI value, the better the eco-environment; Vice versa.

N represents the number of components whose principal

component eigenvalues accumulate to more than 90%. In MRSEI

analysis, the input factor is 5, therefore, 1 ≤ i ≤ 5 (i is an integer). EVi

and ETi are ith eigenvalues and accumulative eigenvalues of

eigenvectors, respectively. In order to make the MRSEI values of

different years comparable, the calculated MESEI was normalized

again with a positive difference of the range to unify them between

0 and 1. The spatial heterogeneity analysis of MRSEI was based on

the classification and treated by the equivalent interval method,

which was defined as: poor (0–.2), fair (.2–.4), moderate (.4–.6),

good (.6–.8), and excellent (.8–1.0).

The entire MRSEI of study area can be calculated by Eq. 4:

MRSEITotal � ∑n
i

Mi × PAi (4)

where Mi is the average MRSEITotal of Class i grades in the

assessment area, and PAi is the relative area of MRSEITotal Class i

grades in the assessment area. Statistical analysis was done with

SPSS and Excel. The correlation coefficients of different

evaluation factors were examined for R significance. The

thresholds were R4, .05 = .811 and R4, .01 = .917, respectively.

2.5 Relationship between MRSEI and land
use type

The MRSEI was obtained by calculating landscape diversity

index (LDI), greenness (NDVI), humidity (WET), dryness (NDBSI)

and heat (LST). The impact of these five factors on MRSEI was

direct. In regional MRSEI determination, land use type will

indirectly affect all factors involved in MRSEI, especially in

MRSEI analysis on time series. Therefore, unary multiple linear

regression was used to calculate the impact of LU on MRSEI after

completing MRSEI analysis. The regression analysis took MRSEI as

the dependent variable, and the area of the eight land use types

mentioned above as the dependent variable. Stepwise linear

regression was used for optimization selection, and the model

with the highest significance was selected. Due to the large area

of various land use types, range normalization was carried out before

modeling so that all dependent variables fell into (0–1).

In order to test the accuracy of the regression model

constructed by LU, standard error (SE) and mean error

coefficient (MEC) were selected to test the model. A total of

10 test samples were distributed in parallel throughout the study

area (Figure 1).

The calculation formula is as follows:

SE �

����������
∑n
i�1

y − y′( )2
n − 1

√√
(5)

MEC � ∑n
i�1 y − y′( )/y∣∣∣∣ ∣∣∣∣

n − 1
(6)
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where y is the MRSEI calculated value based on the PCAmethod,

y’ is estimated using the obtained optimized regression model

and LU data, and n is the number of validated samples.

3 Results

3.1 The scale dependent threshold for
the LDI

The LU in the two periods were analyzed, and the average value

of LDI was calculated to determine the scale dependence. It was

found that there was a significant trend described by quadratic

equation (p < .001 R > .990). The inflection point of LDI change

could be captured within the range of 6,000 m (at 3,000 m, in the

ellipse in Figure 2). When the analytical scale was smaller than the

inflection point scale, the LDI showed a steep increase trend. When

the analysis scale was larger than the inflection point scale, LDI

showed a gentle increasing trend. Therefore, the basic unit of

3,000 m × 3,000 m was used to calculate the LDI in this paper.

After the calculation, the LDI was resampled to 30 m × 30 m in

order to be consistent with the other three indexes in resolution.

3.2 Relationship between evaluation
factors for PCA

After the introduction of LDI, the original relationship and

degree of association of MRSEI evaluation factors did not change

(Table 1), and NDVI andWET were also kept in the same group,

and the load vector in PC1 component was positive, which was

the driving factor for the improvement of eco-environmental

quality (Table 2). NDBSI and LST belong to the same group, and

the load vector was negative in PC1 component, which was the

driving factor of eco-environmental quality deterioration. The

between-group positive association and between-group negative

association were also unchanged. Except for the correlation

between NDVI and LST in 2000, all the other combinations

had high significance. It should be emphasized that the

correlation between LDI and other factors was low, and the

maximum correlation coefficient (absolute value) of the 2 years

did not exceed .298. LDI increased the dimensions of eco-

environmental quality assessment and made the results more

inclusive.

The PCA results in 2000 and 2020 showed (Table 2) that the

cumulative contribution rate of PC1 and PC2 exceeded 90% after

dimensionality reduction analysis of the five evaluation factors.

FIGURE 2
Scale dependent characteristics of LDI.

TABLE 1 Pearson correlation semi-matrix of evaluative indicators in
2000 and 2020 (* and **: Two tails check is significant at the level of .05 and
.01 levels respectively).

Year Indicators LDI NDVI WET NDBSI LST

2000 LDI 1.000

NDVI -.165 1.000

WET -.164 .778 1.000

NDBSI .158 -.831* -.958** 1.000

LST .163 -.761 -.842* .845* 1.000

2020 LDI 1.000

NDVI -.298 1.000

WET -.270 .867* 1.000

NDBSI .269 -.869* -.979** 1.000

LST .254 -.684 -.824* .838* 1.000

TABLE 2 The results of principal component analysis of five evaluation
factors in 2000 and 2020.

Indicators 2000 2020

PC1 PC2 PC1 PC2

LDI .251 .968 -.377 .926

NDVI -.654 .171 .786 .320

WET -.363 .092 .172 .074

NDBSI .397 -.108 -.178 -.077

LST .469 -.117 -.422 -.168

Eigenvalues .026 .013 .031 .013

Percent of eigenvalues 61.2 29.9 64.7 26.7

Accumulative of eigenvalues 61.2 91.0 64.7 91.4

MRSEI .435 .448
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Among them, the maximum load vectors of PC2 axis were LDI,

which were .968 and .926 respectively, far exceeding other

evaluation factors, indicating that LDI maintains multi-

dimensional representation.

From the relationship between MRSEI and PC1 and PC2

(Figure 3), when the cumulative contribution rate exceeded 90%

and the number of components was 2, the change ofMRSEI showed

complexity. At the overall level, the NDVI of MRSEI in

PC1 component was .285 (±.216), and the LDI of MRSEI in

PC2 component was .386 (±.141). The lowest region of MRSEI

changes formed by the two components appeared in the high value

region of PC1 component and the low-quality region of

PC2 component (lower right corner of Figure 3), while the high

value region appeared in the low value region of PC1 component

and the high-quality region of PC2 component (upper left corner of

Figure 3). In 2020, the dominant NDVI in PC1 component was .451

(±.281), and the dominant LDI in PC2 component was .468 (±.181).

The lowest MRSEI change region formed by the two components

appeared in the low-quality region of PC1 and PC2 components

(lower left corner of Figure 3). However, the high value area

appeared in the intersection area of high value of PC1 and

PC2 components (upper right corner of Figure 3). The obvious

trend was that when the MRSEI changed from the low MRSEI in

2000 to the highMRSEI in 2020 (Figure 4),MRSEI showed a change

trend of rotation to the right with its value center as the axis. The

ecological interpretation was as follows: the resultant force of

evaluation factor in the state of regional average had a relatively

stable median MRSEI value; When the regional eco-environment

changed for the better (from 2000 to 2020), the distribution of the

low value of MRSEI was restricted by the high value of the

component controlled by NDVI and the low value of the

component controlled by LDI, and transformed to the low value

of the component controlled by them. On the contrary, the MRSEI

high value distribution was restricted by the low value of the

component controlled by NDVI and the high value of the

component controlled by LDI, and converted to the high value

of the component controlled by them.

According to above mention, it could be inferred that in the

process of improving eco-environmental quality in the multi-

ecosystems region, under the certain condition of PC2

(dominated by LDI), the effect of PC1 (dominated by NDVI) on

MRSEI changed from a decreasing to an increasing trend with the

increase of PC1. The distribution range of MRSEI high value

changed from .4–.6 of PC1 in 2000 to .6–.8 in 2020. However,

the effect of PC2 on MRSEI was obviously different, and its effect

was increasing during this period. The high value region of MRSEI

FIGURE 3
A 3D-scatter plot showing the relationship among MRSEI, PC1 and PC2 (red balls, 2000; blue balls, 2020).
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was consistent with that of PC2. This is very obvious during the

improvement of MRSEI in the study area, the influence of NDVI on

MRSEI varied greatly, while the influence of LDI on MRSEI was

relatively stable.

3.3 Ecological quality status and
hierarchical pattern

According to the spatial distribution analysis of MRSEI

classification pattern, in the 2 years of the study, the areas

with high eco-environmental quality were mainly distributed

near the boundary of the study area and the two banks of the

Yellow River (Figures 4A,B), indicating that the artificial oasis

area in the semi-arid region had obvious boundary effect on a

large scale. In time (Table 3), in 2000, the Fair and Poor areas

with low eco-environmental quality were relatively large, which

were 3,911.1 km2 and 3,138.3 km2, accounting for 65.1% of the

total area. On the contrary, the areas of Good and Excellent

grades with high eco-environmental quality were relatively small,

which were 1,109.4 km2 and 132.2 km2 respectively, accounting

for only 11.5% of the total area. In 2020, the area of Fair level

increased to 4,233.1 km2, but the area of Poor level decreased

greatly, only 631.9 km2 remained, and the area of low-level

FIGURE 4
Spatial distribution of different MRSEI grades along the Yellow River Oasis in Ningxia [(A), MRSEI of 2000; (B), MRSEI of 2020; (C), change from
2000 to 2020].

TABLE 3 The status of different MRSEI grades in 2000 and 2020.

Year Type Area (km2) Ratio (%) Patch number Mean area (km2)

2000 Poor 3,138.3 29.2 2,556 1.22

Fair 3,911.1 36.4 4,292 .91

Moderate 2,539.7 23.6 2,549 .99

Good 1,109.4 10.3 989 1.11

Excellent 132.2 1.2 145 .91

2020 Poor 631.9 5.8 10,943 .06

Fair 4,233.1 39.1 17,137 .25

Moderate 4,236.4 39.1 21,145 .2

Good 1,544.2 14.3 12,463 .12

Excellent 185.1 1.7 3,578 .05
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ecological quality accounted for 44.9% of the total area. On the

contrary, the areas of Good and Excellent, which had high eco-

environmental quality, increased to 1,544.2 km2 and 185.1 km2,

respectively, accounting for 16.0% of the total area. TheModerate

level increased by 15.7 percent from 2,539.7 km2 in 2000 to

4,236.4 km2 in 202.

From 2000 to 2020, the number and average patch area of

different grades showed an obvious increasing trend. Factor

analysis in the above section showed that the overall levels of

NDVI and LDI in 2000 were lower than those in 2020, indicating

that the classification pattern of MRSEI tended to be fragmented

during the study period (Table 3). For details of the excellent

level, its area was distributed over a total area of 132.2 km2 in

2000 to 185.1 km2 in 2020, but the average patch area decreased

from .91 km2 to .05. km2. This phenomenon indicates that the

excellent area in the study area had changed from concentrated

continuous distribution to scattered distribution, which can be

seen from Figures 4A, B, and most of the intact excellent areas

(grids) in 2000 are fragmented in 2020.

From 2000 to 2020, the eco-environmental quality changed

towards good. The improved type was the main body in the

middle and upper part of the study area, and the impervious type

was the main body in the lower part of the study area (Figure 4C).

The improved and impervious area were 5,423.5 km2 and

4,357.7 km2 respectively, accounting for 9.3% of the total area,

while the area of the degraded area was only 1,049.6 km2,

accounting for less than 10% (Table 4). For the details of the

changes (Figure 5), the Poor grade was mainly characterized by

the transformation to Fair and Moderate grades, which were

2034.0 km2 and 576.6 km2, respectively. The general grade was

characterized by transformation to Moderate grade and good

grade, which were 1779.3 km2 and 201.6 km2, respectively. The

moderate grade was mainly transformed to moderate grade and

good grade, which were 391.6 km2 and 617.0 km2, respectively.

The good grade was mainly transformed to moderate grade,

which were 377.5 km2. The excellent grade increased from

129.9 km2 in 2000 to 185.0 km2 in 2020, mainly from the

“moderate” and “good” grades. The quality of eco-

environment has been improved not only at the whole area

scale, but also at the patch scale.

From the perspective of driving forces of the transformation

mechanism during 2000–2020, LU change under the guidance of

policies such as urbanization process, eco-environmental

protection measures and adjustment of agricultural planting

structure pattern is the main driving force of MRSEI

transformation.

3.4 Effect of LU composition on MRSEI

The composition and pattern of LU types are affected by

evaluation factors such as NDVI and LDI, which in turn affect

MRSEI. Therefore, LU types affect MRSEI. Forward stepwise

linear regression analysis showed that the relationship

between oasis MRSEI and LU types in the oasis of Ningxia

section of the Yellow River was different in different years

(Table 5). In the year with low MRSEI levels (2000), there was

a significant multivariate linear relationship between MRSEI

and the variables (LU type) such as grassland, shrubland,

artificial surface and barren land area. The regression equation

was MRSEI 2000 = .348–.245 grassland +2.943 shrubs

+.678 urban land and built-up land +2.368 wasteland (R2 =

.925, F = 7.460, p = .025), among which wasteland and

artificial surface area were more important. Accounted for

.491 and .401, respectively. In the year with high MRSEI

(2020), there was also a significant multivariate linear

relationship between MRSEI and shrub, wetland, water and

artificial surface area. The regression equation was MRSEI2020 =

TABLE 4 Change results of different MRSEI grades from 2000 to 2020.

Changed status Total area (km2) Ratio (%) Patch number Mean area (km2)

Degraded 1,049.6 9.7 9,752 .108

Impervious 4,357.7 4.2 29,836 .146

Ameliorative 5,423.5 5.1 19,802 .274

FIGURE 5
The details of transferred area of different MRSEI grades
during 2000–2020 in the oasis of Ningxia section of the Yellow
River.
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.455–7.733 shrubs +17.525 wetland -1.571 Water +.248 urban and

built-up land (R2 = .914, F = 13.330, p = .007), and the wetland area

was the most important (.759).

The accuracy test of the above regression model showed that

SE andMECwere 2.41% and 4.87% in 2000 and 1.68% and 3.75%

in 2020, respectively. This indicates that the higher the overall

level of MRSEI, the higher the accuracy of the corresponding

model (the lower the error rate), and the relationship between

MRSEI and its predicted value varies with year (p < .001)

(Figure 6).

In terms of the statistical analysis of the prediction results

(Table 6), theMRSEI predicted mean was .002more than the true

value and the standard deviation and coefficient of variation were

almost identical in 2000. In 2020, the MRSEI predicted mean was

.002 less than the true value, and the standard deviation and

coefficient of variation of the true value were .004 and .008 more

than the predicted value, respectively. It is explained that the

multiple regression model constructed based on LU type and

forward stepwise linear regression method would basically

express (predict) the influence mechanism of LU on MRSEI

changes.

4 Discussion

This study shows that the introduction of LDI can modify the

regional eco-environment assessment method based on MRSEI

model, which not only considers the element composition

around the MRSEI analysis unit, but also considers the spatial

scale effect of LDI, which can make the assessment results more

credible.

The LDI spatial threshold of different landscape types was

different, but it did not change much in specific regions (Li, et al.,

2018; Liang and li, 2018; Yang et al., 2021). Our study shows that

the LDI spatial threshold of the oasis of the Ningxia section of the

Yellow River is 3,000 m (Figure 2 ellipse).

After the introduction of LDI, the relationship between the

existing factors was not affected by LDI, as the maximum

TABLE 5 Results of forward stepwise linear regression of the eco-environmental quality (MRSEI value, predictive variable) and the land use/cover type areas
(explanatory variables) in the Oasis of Ningxia section of the Yellow River.

Predictive variable Constant Explanatory variables Coefficient Importance P

2000 MRSEI .348 grassland -.245 .075 .166

shrubbery 2.943 .034 .325

urban and built lands .678 .401 .013

barren 2.368 .491 .009

2020 MRSEI .445 shrubbery -7.733 .359 .006

wetland 17.525 .759 .001

Water body -1.571 .192 .020

urban and built lands .248 .482 .003

FIGURE 6
Relationship between truth values and predictive values of MRSEI [(A), 2000; (B), 2020].
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correlation coefficient did not exceed .3 within 2 years (Table 1),

which verified that MRSEI was complementary to RSEI. At the

same time, PCA results after the introduction of LDI significantly

reduced the phenomenon that more than 75% of the eigenvalues

were concentrated on PC1 (Xu et al., 2019; Yuan et al., 2021). The

improvement of the method makes up for the lack of attention to

heterogeneity in the evaluation of regional environmental

quality. By introducing LDI, MRSEI reduces the

dimensionality of multiple factors and disperses them into

multiple dimensions (the cumulative eigenvalue is greater

than 90%), which highlights the complexity and multiplicity

of MRSEI. Determining the scale dependence of LDI

(Figure 2) can not only ensure the expression of heterogeneity

between adjacent elements, but also avoid the uncertainty of

MRSEI results caused by the scale effect of LDI (O’neill et al.,

1996; Gallé, et al., 2020). The method of this study improves the

deficiency that RSEI does not express the eco-environmental

quality of water body in regional eco-environment assessment.

To recognize whether the MRSEI results have organized for

the oasis, the multiple regression approach with MRSEI, PC1 and

PC2 are subsequently applied to the Ningxia section of Yellow

River. The regression could be expresses as MRSEI = .041E-

5+.156PC1+.768PC2 (R = .999, F = 1.246E9, p < .001) when the

overall level of MRSEI is lower (2000). And it also could be

expressed as MRSEI = .012–.034PC1+.796PC2 (R = .999, F =

1.094E9, p < .001) when the overall level of MRSEI was higher

(2020). Compared the MRSEI findings with the RSEI in different

regions, MRSEI values (.43) in Ningxia section of the Yellow

River was more than RSEI value (.24) in the desert area (Jiang

et al., 2019; Li et al., 2019), less than RSEI value (.63) in forested/

vegetation-dense areas (Wang et al., 2016), and close to RSEI

value (.43–.54) in tableland of loess plateau region (Sun et al.,

2020). This indicated that the LDI introduction does not conflict

with the original RSEI assessment results from the overall

characteristics, and the change is only the spatial pattern of

the eco-environment quality. Simultaneously, it was evident from

Figure 4A and Figure 4B where MRSEI calculations do not

require water body exclusion and form distinct MRSEI high-

value zones in the land-water body transition zone (along the

Yellow River) and the oasis edge zone. In terms of the MRSEI

change characteristics from lower level (2000) to higher level

(2020), the MRSEI degraded area was almost distributed in the

edge area of the oasis and the water body or land transition zone

along the Yellow River besides of the less scattered distribution in

the urban areas such as Yinchuan in the middle of the study area

(Figure 4C), and this phenomenon once again confirmed the

occurrence of edge effects and vulnerability among different

ecosystems from a dynamic perspective (Hofmeister et al.,

2013; Estoque et al., 2017; Mansoury et al., 2021). Due to the

grade level change details (Figure 5), transferred areas occurred

mostly in adjacent levels and less cross-level. Among of them,

Poor and Fair had the largest upward conversion, with

2034.0 km2 and 1779.3 km2, respectively. The overall

conversion characteristics were mainly Poor class area

decreased significantly and Moderate class area increased

significantly, increasing by −3,019.0 km2 and 1,61.6 km2,

respectively. The phenomena indicated that the improvement

of the eco-environment in the semi-arid artificial oasis area

generally occurred below Moderate level, and the change

scope above good level was not large.

LU type is the basis for calculating LDI in the assessment

of the eco-environment quality, its composition and pattern

not only directly affect LDI, but also have an indirect effect on

RSEI or MRSEI through influencing the distribution of all

evaluative factors (Liu et al., 2007; Xu et al., 2018; Yuan et al.,

2021). Based on the spatial sampling (Figure 1) and the LU

classification, multiple stepwise regression analysis that

selected MRSEI as predictive variable and LU types as

explanatory variables showed that had inconsistent

explanatory variable combinations in different yearly

MRSEI levels. In the low MRSEI levels (2000), grasslands,

shrublands, urban and built-up lands and barren land lands

areas had a good predictive result on MRSEI, with an accuracy

of more than 95%. In the higher MRSEI levels (2020),

shrubland, wetland, water body and urban and built-up

lands had a good predictive result on MRSEI, the accuracy

also reached more than 95%. Importance values indicated that

urban and built-up lands and barren land area with low

ecological quality in 2000 shown to have a greater impact

on MRSEI, while water body and wetland with higher

ecological quality in 2020 had a greater impact on MRSEI,

this result is basically consistent with that of RSEI change

research in Dongting Lake and can be mutually verified (Yuan

et al., 2021).

TABLE 6 Statistical analysis comparison of MRSEI prediction value and truth value.

2000 2020

Truth value Predictive value Truth value Predictive value

Mean .426 .428 .432 .430

Standard deviation .043 .044 .062 .058

Coefficient variable .102 .102 .143 .135
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However, a common defect of RSEI and MRSEI is that the

participating evaluation factors LDI, NDVI, and NDBSI reflect

the long-term accumulated surface reflection characteristics,

while Wet and LST only reflect the short-term surface

reflection characteristics (Bindlish and Barros, 2001; Sobrino

et al., 2008; Qiao et al., 2021). The removal of this uncertainty

due to time scale mismatch is a challenge for RSEI and MRSEI

applications. In addition, from the application prospect of

MRSEI, as long as the study area is a multi-ecosystem, LDI

introduction has both theoretical basis and practical significance,

because LDI can express the complexity of evaluation units and

adjacent units.

5 Conclusion

In regional eco-environment assessment, MRSEI can make

up for the defects that RSEI cannot evaluate water areas. The

introduction of LDI with defined threshold values fully expresses

the heterogeneity (diversity) of adjacent units of analysis.

From 2000 to 2020, the MRSEITotal in the study area changed

from .435 to .448, both of which were at a moderate grade, but the

area of good and excellent increased, and the transformation

from poor and moderate level to adjacent high level was the main

direction.

LU types have indirect effects on MRSEI through the

composition and pattern of impact assessment factors. When

the MRSEI level was high, shrub, wetland, water and urban built-

up area were the main influencing factors. When theMRSEI level

is low, grassland, shrub, urban built-up area and barren area are

the main influencing factors.
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Ecological vulnerability assessment
based on remote sensing
ecological index (RSEI): A case of
Zhongxian County, Chongqing
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University, Chongqing, China

The ecological vulnerability evaluation index was established through Normalized
Difference Vegetation Index (NDVI), Wetness (WET), Normalized Difference Build-up
and Soil Index (NDBSI) and Land Surface Temperature (LST) indicators,
comprehensively evaluate the ecological vulnerability of Zhongxian County of
Chongqing in 2002, 2009, and 2016 by Principal Components Analysis (PCA), and
analyze its spatio-temporal evolution. The vulnerability areas of five levels were
calculated respectively, and the overall index of ecological vulnerability was also
calculated. The index of remote sensing ecological index (RSEI) and Normalized
Difference Vegetation Index decreased first and then increased; the Wetness index
showed an upward trend; the Normalized Difference Build-up and Soil Index index
increased first and then decreased; and the Land Surface Temperature index
decreased. The ecological vulnerability body index (EVBI) shows a downward
trend, and the incremental changes are mainly concentrated in the negligible
vulnerability areas and light vulnerability area, while the medium vulnerability,
strong vulnerability and extreme vulnerability area generally show a downward
trend. Furthermore, the new increment of ecological vulnerability grade area
concentrates on negligible vulnerability area and light vulnerability area from
2002 to 2016. In general, the ecological vulnerability gradually shifts to low
vulnerability, and the ecological environment tends to develop healthily.

KEYWORDS

ecological vulnerability, RSEI, PCA, spatiotemporal evolution, ecological environment

1 Introduction

The social economy is developing rapidly, with intensifying contradiction between human
and ecological environment. The irrational utilization of resources leads to the destruction of
the surrounding ecological balance to a certain extent (Yan and Zhao, 2009), and affects the
sustainable development of the ecosystem. The ecological fragility problem is more serious,
which is the focus of sustainable development research and has attracted the attention of many
scholars worldwide (Jackson et al., 2004; Ma et al., 2015; Gao and Zhang, 2018; Tian et al., 2021;
Wang et al., 2021). The deepening scientific research diversifies ecological vulnerability
assessment methods. For example, Zhang et al. (2021a) used fuzzy comprehensive method
and analytic hierarchy process to study the ecological fragility of Yongding River. Teng et al.
(2022) constructed an exposure-sensitivity-adaptive vulnerability assessment framework,
established an ecological and social index system, determined the index weight by entropy
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weight method, and evaluated the change rules of ecological
vulnerability (EV) and social vulnerability (SV). Zhang et al.
(2021b) calculated the vulnerability of landscape types to determine
the ecological vulnerability of coastal zone. Based on remote sensing
(RS) and geographic information system (ArcGIS) technology, Wang
and Su (2018) constructed the “Pressure-State-Response” framework
and used PCA to evaluate the ecological vulnerability. Besides, Liu
et al. (2020) built an ecological sensitivity-ecological resilience-
ecological pressure model to calculate the weight using the
PCA method, and systematically evaluate the ecological
vulnerability. The ecological vulnerability assessment helps us
to understand the current the status quo of regional ecological
vulnerability, which has a positive effect on the implementation of
ecological environment governance plan. The data sources of
evaluation indicators mainly include remote sensing,
meteorological and other data. In addition, some studies
combine RS and ArcGIS technology for ecological vulnerability
evaluation. However, there are few studies that make full use of
remote sensing indicators and remote sensing models for in-
depth analysis of ecological vulnerability evaluation. Wu (2005)
constructed the ecological environment vulnerability equation
and evaluation system based on RS technology, and used ASTER
and TM data fusion technology to conduct quantitative remote
sensing research on ecological environment vulnerability
vegetation; Bai et al. (2009) extracted eight ecological factors
including vegetation index, soil brightness and soil moisture
index, elevation and slope, temperature and precipitation, and
land use through RS and ArcGIS technology as evaluation
indicators, and used the analytical hierarchy process (AHP) to
evaluate the vulnerability of ecological environment; Zhu (2020)
created 10 small indicators and 4 large indicators through the
analysis of long time series multi-source remote sensing data
(NDVI data, reflectance data, land use data, DEM data, lighting
data, soil moisture data, precipitation data) and non-remote
sensing data (protected areas), forming a set of assessment
system to analyze the ecological vulnerability of the study area.
Since the index system is subject to subjective influence, all the
selected indicators are included in the evaluation model and the
independence of the indicators is ignored, resulting in increased
calculation and inaccurate results (Yao et al., 2016). Based on
previous research results, multi index comprehensive evaluation
model built by the evaluation method of the combination of
ArcGIS and RS technology can effectively solve the problem of
large-scale ecological vulnerability evaluation. It can not only
reflect the current situation and distribution characteristics of
ecological vulnerability, but also have objectivity and high
reliability.

Zhongxian County is in the middle of Chongqing and in the
hinterland of the sensitive and vulnerable area of ecological
environment-the Three Gorges Reservoir area. Ecological
vulnerability assessment is of great significance to master its
ecological vulnerability characteristics and identify ecological and
environmental problems (Wang et al., 2010). Therefore, this study
employed remote sensing and geographic information system
technology, and established an index system with NDVI, WET,
NDBSI and LST based on RSEI (Xu, 2013) to comprehensively
evaluate the ecological vulnerability of Zhongxian County from
2002 to 2016 using PCA, and reveal the spatio-temporal evolution
of ecological vulnerability. This study aims to provide theoretical

support and scientific basis for government decision-making for
the ecological vulnerability protection of Zhongxian County.

2 Materials and methods

2.1 Study area

Zhongxian County (107° 3′E-108° 14′E, 30° 03′N-30° 35′N) is
adjacent to Wanzhou District in the northeast, Dianjiang County in
the west, Shizhu Tujia Autonomous County in the southeast, Fengdu
County in the southwest and Liangping District in the north, with an
area of about 2,178 km2 (Figure 1). The territory of Zhongxian County
is characterized by rolling hills, crisscross streams and rivers, and
mainly hilly landform. It has the subtropical southeast monsoon
mountain climate with the characteristics of warm and cold,
sufficient sunshine and so on, which is significantly affected by the
hilly terrain. Zhongxian County is a subtropical evergreen broad-
leaved forest belt with various vegetation types, which is suitable for
the growth of many plants.

2.2 Data source and processing

Zhongxian County of Chongqing was chosen as the research area,
and the remote sensing data set is provided by Geospatial Data Cloud
site, Computer Network Information Center, Chinese Academy of
Sciences (http://www.gscloud.cn) Landsat 5 TM image in 2002 and
2009, and Landsat 8 OLI image in 2016. Landsat 5 TM is a thematic
mapper improved on the basis of MSS. It consists of seven bands, with
a spatial resolution of 30 m for bands 1–5 and 7, and 120 m for band 6
(thermal infrared band). Landsat 8 carries an OLI land imager and a
TIRS thermal infrared sensor. The OLI land imager consists of 9 bands
with a spatial resolution of 30 m, including a 15 m panchromatic band.
The TIRS thermal infrared sensor consists of 2 separate thermal
infrared bands with a resolution of 100 m.The remote sensing
images in 2002, 2009, and 2016 were radiometric calibrated by the
environment for visualizing images (ENVI5.3) software, and the pixel
value of the original image was converted into the reflectivity of the
sensor. FLAASH (Fast line-of-sight atmospheric analysis of spectral
hypercubes) absolute atmospheric correction images were adopted to
reduce the differences in atmosphere and terrain of remote sensing
images in different periods, and the impact on RSEI comparison
between different images. The images of the study area were cropped,
and the images of different phases were registered according to the
quadratic polynomial and the nearest pixel method. The root mean
square error of registration is less than .5 pixels. The data must be
preprocessed, which is especially important for RSEI comparison
between different categories and different temporal phases (Landsat
5 TM and Landsat 8 OLI_TIRS). When calculating the humidity index
of the tasseled cap transformation, the correct formula should be
selected, and the humidity of OLI cannot be calculated by the formula
of TM, and the data based on reflectance cannot be calculated by the
formula based on DN value. The DEM image of Zhongxian County is
derived from the SRTMDEM 90M resolution raw elevation data
provided by Geospatial Data Cloud site, Computer Network
Information Center, Chinese Academy of Sciences (http://www.
gscloud.cn). The world map is derived from the Natural Earth
website (http://naturalearthdata.com), the administrative division
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map of China is derived from the website (https://github.com/
GaryBikini/ChinaAdminDivisonSHP), and the administrative
division map of Chongqing City and Zhongxian County is derived
from 91 Weitu Assistant.

2.3 Research methods

2.3.1 Construction of evaluation index
Normalized Difference Vegetation Index (NDVI). Normalized

Difference Vegetation Index (NDVI) is closely related to plant
biomass, leaf area index and vegetation coverage (Goward et al.,
2002), which was chosen in this paper to replace the greenness
index, and the formula is as follows:

NDVI � pNIR − pR( )/ pNIR + pR( ) (1)
where pNIR and pR is the reflectance of near infrared band and red
band of Landsat 5 TM and Landsat 8 OLI_TIRS, respectively.

Wetness (WET): The brightness, greenness and humidity
components of tassel hat transformation are related to surface
physical parameters (Huang et al., 2002; Wang and Dong, 2013).
Here, the Wetness index (WET) is expressed by humidity
component. The expressions of reflectance image data of
Landsat 5 TM and Landsat 8 OLI_TIRS are as follows (Crist,
1985; Baig et al., 2014):

WetTM � 0.0315pB + 0.2021pG + 0.3102pR + 0.1594pNIR − 0.6806pSWIR1 − 0.6109pSWIR2

(2)
WetOLI � 0.1511pB + 0.1972pG + 0.3283pR + 0.3407pNIR − 0.7117pSWIR1 − 0.4559pSWIR2

(3)

where pB, pG, pR, pNIR, pSWIR1, and pSWIR2 represent the reflectance of the
blue, green, red, near infrared, shortwave infrared 1 and shortwave
infrared 2 bands of Landsat 5 TM and Landsat 8 OLI_TIRS, respectively.

Normalized Difference Build-up and Soil Index (NDBSI). Urban
land leads to the “drying” of the surface. In this paper, index-based
built-up index (IBI) is used to replace the building index in the NDBSI.
At the same time, the exposed land on the surface will also cause
surface drying. NDBSI (Xu, 2013) can be calculated by the
combination of index-based built-up index (IBI) and soil index (SI)
(NASA, 2012):

NDBSI � IBI + SI( )/2 (4)
among,

IBI � 2pSWIR1/ pSWIR1 + pNIR( ) − pNIR/ pNIR + pR( ) + pG/ pG + pSWIR1( )[ ]{ }
2pSWIR1/ pSWIR1 + pNIR( )+{ pNIR/ pNIR + pR( ) + pG/ pG + pSWIR1( )[ ]}

(5)
SI � pSWIR1 + pR( ) − pB + pNIR( )/ pSWIR1 + pR( ) + pB + pNIR( )[ ] (6)

where pG, pB, pR, pNIR, and pSWIR1 are the reflectance of green, blue,
red, near infrared and short wave infrared 1 bands of Landsat 5 TM
and Landsat 8 OLI_TIRS remote sensing images, respectively.

FIGURE 1
Location of Zhongxian County, China.
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Land Surface Temperature (LST): The LST index is represented by
land surface temperature (Xu, 2013), and the temperature value T at
the sensor was calculated by using the model (NASA, 2018) in Landsat
user manual. The real land surface temperature can be obtained only
through specific emissivity correction:

L � gain × DN + bias (7)
T � K2/ln K1/L + 1( ) (8)

LST � T/ 1 + λT/p( ) ln ε[ ] (9)
where L is the radiance value of Landsat 5 TM thermal infrared 6 band
and Landsat 8 OLI_TIRS thermal infrared 10 band, and DN is the
pixel value of the band. Gain and bias are the gain value and offset
value of thermal infrared band respectively. T is the temperature value
at the sensor, and K1 and K2 is the calibration parameter. Landsat
5 TM image, K1 = 607.76 W/(m2·sr·μm), K2 = 1,260.56 K, in Landsat
8 OLI_TIRS image K1 = 774.89 W/(m2·sr·μm), K2 = 1,321.08 K, λ is
the wavelength of thermal infrared band, p = 1.438 × 10−2 m K, and ε is
the surface specific emissivity.

2.3.2 Index standardization
Different dimensions will cause the weight of each indicator to be

unbalanced. Therefore, it is necessary to standardize the indicators and
unify their dimensions between [0, 1] before PCA calculation (Xu,
2013). The normalization formula of each indicator is as follows:

SIn � In − I min

I max − I min
(10)

where SIn is the standardized value of the nth index, and its value is
between [0, 1]. In, I max and I min represent the value, maximum value
and minimum values of the nth index in pixel n, respectively.

2.3.3 Evaluation method
The ecological vulnerability index (EVI) can be calculated to

understand the status and characteristics of ecological

vulnerability. The construction of the eco-index should
accommodate both the appearance of a single indicator and the
combination of information from the above four indicators.
Therefore, how to represent multiple variables above with a
single variable, that is key to this study. A frequently used
method is to simply add up the individual indicators (Kearney
et al., 1995), or to group the indicators to find the mean value and
then add them up (Wang et al., 2007), or to multiply them by their
respective weights and then add them up (Williams et al., 2009).
However, both the correlation between indicators and the artificial
determination of weights and other relevant factors can affect the
results. Multidimensional statistical method of principal
component analysis is a multidimensional data compression
technique that selects a few important variables by linear
transformation of multiple variables, and it takes the method of
sequentially rotating the coordinate axes vertically to concentrate
the multidimensional information into a few characteristic
components, which often represent certain characteristic
information (Xu, 2013). Therefore, this study was conducted by
using the principal component transformation to construct the
remote sensing ecological index, and the main information was
concentrated on the first 1–2 principal components by removing
the correlation among the indicators through the rotation of the
spatial axes of the feature spectra. One of the other advantages of
using principal component analysis is that the weights of each
indicator are not artificially determined, but are determined
automatically and objectively based on the contribution of each
indicator to each principal component quantity. What this leads to
is that bias in the results caused by weight settings that vary from
individual to individual and from method to method can be
avoided in the calculation. However, there is correlation among
the evaluation indicators, and the information of each indicator
will overlap during calculation, so the principal component
analysis method is used. Principal component analysis can
transform multiple indicators into a few uncorrelated

TABLE 1 Principal component analysis of each index.

Principal component coefficient

Principal
component

NDVI WET NDBSI LST characteristic
value(λ)

Contribution
rate (%)

Cumulative contribution
rate (%)

2002 PC1 .30823 .69286 -.53954 -.36582 .01602 58.1833 58.1833

PC2 .86611 -.46149 -.16475 .09870 .00878 31.8663 90.0496

PC3 .02784 .32123 -.19904 .92543 .00247 8.9739 99.0235

PC4 .39252 .45142 .80133 .00385 .00027 .9765 100.0000

2009 PC1 .37592 .57527 -.59417 -.41799 .01602 69.1266 69.1266

PC2 .83399 -.35970 -.10546 .40492 .00878 16.2134 85.3400

PC3 -.22024 .47777 -.24884 .81321 .00247 13.5068 98.8468

PC4 .33859 .55805 .75757 -.00434 .00027 1.1532 100.0000

2016 PC1 .53986 .39012 -.67250 -.32265 .01894 77.3425 77.3425

PC2 .39995 -.07374 -.15377 .90053 .00346 14.1453 91.4878

PC3 .65342 -.63227 .29747 -.29118 .00193 7.8938 99.3816

PC4 .34875 .66529 .66001 .01228 .00015 .6184 100.0000
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comprehensive indicators, and reflect the information expressed by
more variables using fewer comprehensive indicators. Based on
GIS 10.7 system calculation, this paper made principal component
analysis on standardized indexes of NDVI, WET, NDBSI and LST.
When the cumulative contribution rate of principal component
reaches more than 85%, it can represent the information reflected
by most variables (Table 1), and further calculate EVI (Yao et al.,
2016; Wang and Su, 2018):

EVI � r1γ1 + r2γ2 +/ + rnγn (11)
where EVI is the ecological vulnerability index. rn and γn represent the
contribution rate of the nth principal component and the nth principal
component respectively.

Table 1 shows that the cumulative contribution rates of the PC1,
PC2 and PC3 among the four indicators in Zhongxian County in
2002, 2009, and 2016 were 99.0235%, 98.8468%, and 99.3816%
respectively, all greater than 85%, suggesting that they have
concentrated the main information of the four indicators. In
PC1, both NDVI and WET are positive, suggesting that both
are good for the environment development, and both NDBSI and
LST are negative.

Based on the PCA, the inversion model of ecological vulnerability
assessment was calculated through Eq. 11 and Table 1 as follows:

EVI2002 � 0.5818 × PC1 + 0.3187 × PC2 + 0.0897 × PC3 (12)
EVI2009 � 0.6913 × PC1 + 0.1621 × PC2 + 0.1351 × PC3 (13)
EVI2016 � 0.7734 × PC1 + 0.1415 × PC2 + 0.0789 × PC3 (14)

where EVI2002, EVI2009, and EVI2016 represent the ecological
vulnerability index in 2002, 2009 and 2016 respectively, and PC1-
PC3 is the first three principal component factors of principal
component analysis. Their cumulative contribution rate in the
3 years reached 99%, but most of the information of the PC4 is
noise. So, the PC4 is ignored.

2.3.4 Classification of ecological vulnerability and
overall index of ecological vulnerability

In order to better measure the ecological vulnerability,
vulnerability index need to be standardized, and the formula is as
follows:

SIEVI � EVIn − EVI min

EVI max − EVI min
× 10 (15)

TABLE 2 Classification standard of ecological vulnerability in Zhongxian County, Chongqing (Fan et al., 2009; Ifeanyi et al., 2010; Ma et al., 2015; He et al., 2018).

Vulnerability Grade Standardized value of ecological
vulnerability index

Ecological characteristics

Negligible
vulnerability

I <2.0 The structure and functions of the ecosystem are reasonably improved, and the
ecosystem is stable with low pressure, strong ability to resist external disturbance and
self-recovery, no ecological abnormality and low ecological vulnerability

Light vulnerability II 2.0–4.0 The structure and function of the ecosystem are relatively complete, and the ecosystem
bears less pressure. The ecosystem is relatively stable, and has strong ability to resist
external disturbance and self-recovery. There are potential ecological anomalies and low
ecological vulnerability

Medium vulnerability Ⅲ 4.0–6.0 The structure and function of the ecosystem can still be maintained, and the pressure is
large. The system is relatively unstable, and the external interference is more sensitive, the
self-recovery ability is weak, and there is a small number of ecological abnormalities, and
the ecological fragility is higher

Strong vulnerability IV 6.0–8.0 Defects in the ecosystem structure and function, high pressure, unstable ecosystem,
strong sensitivity to external interference, great difficulty in recovery after damage, many
ecological abnormalities and high ecological vulnerability

Extreme vulnerability V ≥8.0 The structure and function of the ecosystem are severely degraded and under great
pressure. The ecosystem is extremely unstable and sensitive to external disturbance. It is
extremely difficult or even irreversible to recover after damage, even irreversible,
ecological abnormalities appear in a large area, and the ecological vulnerability is very
high

TABLE 3 Four indicators and RSEI statistics in 2002 and 2016.

2002 2009 2016

Index Mean value Standard deviation Mean value Standard deviation Mean value Standard deviation

NDVI .6716 .1233 .3834 .3741 .4931 .3817

WET .6675 .1983 .7232 .1948 .7644 .0686

NDBSI .6248 .2549 .7572 .2446 .5668 .2656

LST .5721 .1042 .2234 .2310 .2731 .2635

RSEI .5405 .0720 .5122 .0967 .7098 .0755
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where SIEVI represents the standardized value, and it is between 0 and 10.
EVIn, EVI min, and EVI max represent the actual value, minimum value
and maximum value of ecological vulnerability index, respectively. The
standardized EVI was divided into five vulnerability levels (Fan et al.,
2009; Ifeanyi et al., 2010; Ma et al., 2015; He et al., 2018) according to the

relevant ecological vulnerability classification standards (Table 2), which
are negligible vulnerability, light vulnerability, medium vulnerability,
strong vulnerability and extreme vulnerability.

The ecological vulnerability body index (EVBI) calculated by
multiplier model can analyze the overall difference of ecological

FIGURE 2
2002 (A), 2009 (B) and 2016 (C) RSEI of Zhongxian County (water body mask treatment, the picture at the lower left corner shows the location of
Zhongxian County administrative center).
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vulnerability in Zhongxian County, and the algorithm is as follows
(Yao et al., 2016):

EVBI � ∑n
i�1
Pi × Ai/S (16)

where EVBI indicates the overall index of ecological vulnerability. Pi

Indicates the class i vulnerability level value. Ai indicates the area of
class i vulnerability. S represents the total area of the area. n Indicates
the total number of vulnerability levels.

2.3.5 Extracting the spatio-temporal evolution
pattern of ecological fragility

Based on ArcGIS 10.7 system, this paper spatially superimposed
the ecological vulnerability level map in 2002–2009, 2009–2016 and
2002–2016 to extract the dynamic map of ecological vulnerability
change. The algorithm is as follows (Deng et al., 2016; Guo et al., 2019):

CodeClassif ication2002 2009 � 10 × CodeClassif ication 2002
+ CodeClassif ication 2009

(17)
CodeClassif ication2009 2016 � 10 × CodeClassif ication 2009

+ CodeClassif ication 2016

(18)
CodeClassif ication2002 2016 � 100 × CodeClassif ication 2002

+ 10 × CodeClassif ication 2009
+ CodeClassif ication 2016

(19)

where CodeClassif ication 2002
, CodeClassif ication 2009

and CodeClassif ication 2016

represent five vulnerability level type codes, respectively. I-V represent
negligible, light, medium, strong and extreme vulnerability respectively.
CodeClassif ication2002 2009 is the change type code of ecological vulnerability
level, which represents the transformation from ecological vulnerability
level type in 2002 to ecological vulnerability level type in 2009. For
example, I-V indicates the transformation from negligible vulnerability in
2002 to extreme vulnerability in 2009.

3 Results

3.1 Change characteristics of ecological
vulnerability index

Table 3 demonstrates the statistical values of four indicators and
the RSEI in 2002, 2009, and 2016. Due to the great diurnal
temperature variation, the Land surface temperature index (LST)
can only be compared through normalization (Carlson and Arthur,

2000; Xu et al., 2009). Therefore, the four indexes were normalized
and the null value was removed to obtain the statistical values of each
index. Table 3 shows the analysis results, the mean value of NDVI
index beneficial to the ecological environment decreased from
.6716 in 2002 to .3834 in 2009, with a decreased of 42.91%, and
then increased to .4931 in 2016, indicating that the decrease of
vegetation coverage in Zhongxian County gradually increased after a
significant decline. In the other hand, the mean value of WET index
increased from .6675 in 2002 to .7644 in 2016, an increase of 14.52%,
suggesting that the water conservation capacity of Zhongxian
County has improved. The mean values of NDBSI and LST
indicators that having adverse effects on the ecological
environment have decreased. The mean values of NDBSI
increased from .6248 in 2002 to .7572 in 2009, and decreased to
.5668 in 2016, and LST decreased significantly from .5721 in 2002 to
.2234 in 2009 and increased to .2731 in 2016, indicating that the
surface exposure of Zhongxian County has been reduced, the
difference between hydrothermal balance has been reduced, and
the adverse impact on the future ecological environment has been
weakened. Based on the changes of the above four indicators, it
roughly shows that the ecological environment of Zhongxian County
is on the rise as a whole, and the environmental change is gradually
developing in a good direction. The mean value of the RSEI
decreased from .5405 in 2002 to .5122 in 2009 and increased to
.7098 in 2016, indicating that the ecological environment quality in
the study area fluctuated from 2002 to 2016, but the overall
development trend showed a benign development trend, which
was basically consistent with the comprehensive results of the
indicators. The RSEI of Zhongxian County in 2002, 2009, and
2016 were shown in Figure 2. In order to further highlight the
representativeness of the RSEI, the ecological index was divided into
five grades, representing five grades including poor (I: .0–.2), poor
(II: .2–.4), medium (III: .4–.6), good (IV: .6–.8) and excellent (V:
.8–1.0). In 2002, the RSEI was dominated by medium (III) grade,
accounting for 69.83%, and the percentages of good (IV) and
excellent (V) grades were 22.47% and 1.39%, respectively, which
were mainly distributed in areas with high terrain and little impact of
human activities, while poor (I) and poor (II) areas accounted for
.09% and 6.22%, which were mainly distributed in areas with
frequent human activities. In 2009, the RSEI was dominated by
medium (III) grade, accounting for 59.11%, poor (I) and poor (II)
grades accounted for 1.06% and 17.17% respectively, and good (IV)
and excellent (V) grades accounted for 19.94% and 2.72%

TABLE 4 Area and EVBI distribution of ecological vulnerability in different years in Zhongxian County, Chongqing.

2002 2009 2016

Grade Area (km2) EVBI Area (km2) EVBI Area (km2) EVBI

Ⅰ 27.0414 .012365 64.7010 .030532 653.9742 .299028

Ⅱ 348.4044 .318614 556.4673 .525184 1,254.4140 1.14755

Ⅲ 1,360.5140 1.866274 1,324.6460 1.875266 181.7620 .249331

Ⅳ 390.5784 .714364 169.4421 .319833 30.5271 .055834

Ⅴ 7.4772 .017095 3.8763 .009146 2.3895 .005463

Total 2,134.0152 2.928711 2,119.1328 2.759961 2,123.0667 1.75681
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respectively. In 2016, the RSEI was dominated by good (IV) grade,
accounting for 72.17%, and medium (III) and excellent (V) grades
accounted for 11.21% and 14.89% respectively and the area of poor
(I) and poor (II) areas was the least, accounting for .12% and 1.62%.

Among them, the areas with poor ecological environment quality
were mainly concentrated in urban areas. On the whole, the quality
of the ecological environment of Zhongxian County from 2002 to
2016 has improved.

FIGURE 3
Spatial distribution of ecological vulnerability level in Zhongxian County in 2002 (A), 2009 (B) and 2016 (C) (water bodymask treatment, the picture at the
lower left corner shows the location of Zhongxian administrative center).
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FIGURE 4
2002–2009 (A), 2009–2016 (B) temporal and spatial evolution pattern of ecological vulnerability in Zhongxian County (water mask treatment, the
picture at the lower left corner shows the location of Zhongxian County administrative center).

TABLE 5 Area transfer matrix of different ecological vulnerability levels in Zhongxian County from 2002 to 2009 (km2).

Vulnerability level 2009 Total of
2000

Reduction of
2000

Negligible
vulnerability

Light
vulnerability

Medium
vulnerability

Strong
vulnerability

Extreme
vulnerability

2000 Negligible
vulnerability

18.8271 5.3928 .9135 .1035 .0054 25.2423 6.4152

Light
vulnerability

44.2962 211.7187 79.0515 8.8353 .2988 344.2005 132.4818

Medium
vulnerability

1.3545 326.7990 927.8190 93.8583 2.1222 1,351.9530 424.1340

Strong
vulnerability

.1602 11.6982 313.0740 62.7012 1.2276 388.8612 326.1600

Extreme
vulnerability

.0000 .0486 3.3075 3.8475 .2196 7.4232 7.2036

Total of 2009 64.6380 555.6573 1,324.1655 169.3458 3.8736 2,117.6802 —

Increment of
2009

45.8109 343.9386 396.3465 106.6446 3.6540 — 896.3946
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TABLE 6 Area transfer matrix of different ecological vulnerability levels in Zhongxian County from 2009 to 2016 (km2).

Vulnerability level 2016 Total of
2009

Reduction of
2009

Negligible
vulnerability

Light
vulnerability

Medium
vulnerability

Strong
vulnerability

Extreme
vulnerability

2009 Negligible
vulnerability

55.7811 7.4718 .8676 .3627 .0918 64.5750 8.7939

Light
vulnerability

274.3758 263.1519 15.4710 2.1735 .1647 555.3369 292.1850

Medium
vulnerability

288.3375 885.0816 132.8013 16.7679 .9918 1,323.9801 1,191.1788

Strong
vulnerability

34.2963 97.3287 27.9585 8.8038 .9036 169.2909 160.4871

Extreme
vulnerability

1.1709 1.0755 .5949 .7884 .2340 3.8637 3.6297

Total of 2016 653.9616 1,254.1095 177.6933 28.8963 2.3859 2,117.0466 —

Increment of
2016

598.1805 990.9576 44.8920 20.0925 2.1519 — 1,656.2745

FIGURE 5
Temporal and spatial evolution pattern of ecological vulnerability in Zhongxian County from 2002 to 2016 (water mask treatment, the picture at the
lower left corner shows the location of Zhongxian administrative center).
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3.2 Overall characteristics of ecological
vulnerability

By calculating the ecological vulnerability body index (EVBI) of
the four indicators, the ecological vulnerability grade area and EVBI
distribution in 2002, 2009, and 2016 were inversed (Table 4), and the
overall distribution pattern of ecological vulnerability in Zhongxian
County was analyzed. The total ecological vulnerability area of the five
grades of Zhongxian County decreased from 2,134.0152/km2 in
2002–2,119.1328/km2 in 2009, and increased to 2,123.0626/km2 in
2016. The total value of ecological vulnerability body index (EVBI)
decreased from 2.9986 in 2002 to 2.759961 in 2009, and fell to
1.75681 in 2016, with a large decline. According to the
classification standard of ecological fragility in Zhongxian County,
the ecological vulnerability was mainly medium vulnerability and
strong vulnerability in 2002, the medium vulnerability grade
accounted for 62.21% of the total area, while the strong
vulnerability grade was 17.86%. In 2009, it was mainly medium
vulnerability and light vulnerability, accounting for 62.51% and
26.26% of the total area respectively. In 2016, it was mainly light
vulnerability and negligible vulnerability, accounting for 57.36% and
29.90% of the total area respectively. The areas of medium
vulnerability, strong vulnerability and extreme vulnerability areas in
2009 decreased by 35.8680/km2, 221.1363/km2 and 3.6009/km2

respectively compared with 2002, and the areas of strong
vulnerability areas decreased significantly. In 2016, the area of
medium vulnerability, strong vulnerability and extreme
vulnerability areas decreased by 1,142.8840/km2, 138.915/km2 and
1.4868/km2 respectively compared with 2009, and the area of medium
vulnerability areas decreased significantly. From 2002 to 2016, the area
of negligible vulnerability and light vulnerability areas continued to
grow, with an increase of 626.9328/km2 and 906.0096/km2

respectively, indicating significant changes in vulnerability.
As shown in Figure 3, the ecological vulnerability grade of Zhongxian

County was dominated by medium vulnerability and strong vulnerability
in 2002, which were distributed in bands and flakes, and the negligible,
light and extreme vulnerability areas were roughly distributed in dots and
blocks. Among them, the spatial distribution of medium vulnerability and
strong vulnerability areas in the southwest was dense, which was mainly
due to the densely populated distribution and the great impact of human
activities. In 2009, Zhongxian County was mainly distributed in light and
medium vulnerability areas, and negligible vulnerability areas, strong
vulnerability areas and extreme vulnerability areas were generally
distributed in bands and dots. The areas with high vulnerability were
significantly affected by human activities, while areas with low
vulnerability were mainly affected by terrain, with less human
activities, less pressure, and strong ability to resist external

interference and self-recovery. In 2016, Zhongxian County was
mainly distributed in negligible vulnerability areas and light
vulnerability areas, and the medium vulnerability, strong
vulnerability and extreme vulnerability areas were roughly
scattered in dots. The areas with high vulnerability were mostly
areas with high economic level, large urbanization construction land,
small green space and frequent human economic activities. The areas
with low vulnerability were mainly limited by their geographical
conditions, small population density and low impact of human
economic activities. The good surface vegetation coverage can
promote the reduction of its ecological vulnerability. Through the
analysis of the overall situation of ecological vulnerability, the overall
ecological vulnerability of Zhongxian County in Chongqing was
found to be mainly increased to the negligible vulnerability and
light vulnerability area from 2002 to 2016, and the medium
vulnerability, strong vulnerability and extreme vulnerability
areas showed a downward trend. The overall index of
ecological vulnerability decreased. The ecological vulnerability
weakened with the implementation of ecological restoration and
protection measures, and the ecosystem was restored and
improved.

3.3 Spatio-temporal evolution characteristics
of ecological vulnerability

The spatial variation of ecological vulnerability level in Zhongxian
County during the past 15 years was further analyzed, the study was
divided into two periods (2002–2009 and 2009–2016) for longitudinal
comparative analysis. The spatial-temporal evolution characteristics of
ecological vulnerability was calculated by Eqs 17, 18 (Figure 4), and the
area transfer matrix of different levels of ecological vulnerability was
calculated during 2002–2009 and 2009–2016 (Tables 5, 6). From 2002 to
2009, the area transfers of various ecological vulnerability levels totaled
896.3946/km2 (Table 5). From 2002 to 2009, the level of ecological
vulnerability mainly transferred from medium vulnerability and strong
vulnerability to light vulnerability and medium vulnerability. In 2002, the
transfer amount of medium vulnerability and strong vulnerability was
424.1340/km2 and 326.1600/km2 respectively, accounting for 47.31% and
36.39% of the total amount of ecological vulnerability; the transfer amount
of negligible, light and extreme vulnerability was 6.4152/km2, 132.4818/
km2 and 7.2036/km2, respectively, accounting for .72%, 14.78% and .80%
of the total transfer volume. In 2009, the new increment of light
vulnerability and medium vulnerability was 343.9386/km2 and
396.3465/km2 respectively, accounting for 38.37% and 44.22% of the
total new increment; the new increment of negligible vulnerability, strong
vulnerability and extreme vulnerability was 45.8109/km2, 106.6446/km2

TABLE 7 Dynamic change of area of different ecological vulnerability levels from 2002 to 2016 (km2).

Vulnerability Vulnerability level Unchanged area Reduction area Increment area

Negligible vulnerability I 16.2585 8.3835 637.6878

Light vulnerability II 85.8339 258.2001 1,168.0578

Medium vulnerability III 80.9667 1,270.6686 96.4980

Strong vulnerability IV 3.5865 385.2261 25.2738

Extreme vulnerability V .0207 7.4025 2.3634
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and 3.6540/km2, accounting for 5.11%, 11.90% and .41% of the total
increment. From 2009 to 2016, the area transfers of various ecological
vulnerability levels totaled 1,656.2745/km2 (Table 6). From 2002 to 2009,
the level of ecological vulnerability mainly transferred from light
vulnerability and medium vulnerability to negligible vulnerability and
light vulnerability. In 2009, the transfer amount of light vulnerability and
medium vulnerability was 292.1850/km2 and 1,191.1788/km2 respectively,
accounting for 17.64% and 71.92% of the total amount of ecological
vulnerability; the transfer volume of negligible, strong and extreme
vulnerability was 8.7939/km2, 160.4871/km2, and 3.6297/km2,
accounting for .53%, 9.69% and .22% of the total transfer volume. In
2016, the new increment of negligible vulnerability and light vulnerability
was 598.1805/km2 and 990.9576/km2 respectively, accounting for 36.12%
and 59.83% of the total new increment; the new increment of medium
vulnerability, strong vulnerability and extreme vulnerability was 44.892/
km2, 20.0925/km2, and 2.1519/km2 respectively, accounting for 2.71%,
1.21%, and .13% of the total increment.

With the support of ArcGIS 10.7 software, the spatial variation of
ecological vulnerability levels during 2002–2016 was calculated by Eq. 19
(Figure 5), and the area dynamic change of different ecological
vulnerability levels in Zhongxian County during 2002–2016 was
obtained (Table 7). Overall, the new increase in the area of ecological
vulnerability level from 2002 to 2016 is mainly in the area of negligible
vulnerability areas, light vulnerability areas and medium vulnerability
areas, while the transfer amount is mainly light vulnerability areas,
medium vulnerability areas and strong vulnerability areas. Affected by
natural and geographical conditions, areas with large topographic
fluctuations and less human activities have low ecological vulnerability,
flat terrain and areas along the river basin have high ecological vulnerability
(Figure 5). On thewhole, the distribution pattern of ecological vulnerability
is higher in the eastern and southwestern regions, and lower in the central
and southeastern regions. With the promulgation of national policies and
the implementation of ecological and environmental protection measures,
ecological vulnerability has been gradually shifted to low vulnerability.
Although the accelerated urbanization process has led to the growth of
strong vulnerability areas and extreme vulnerability areas, the growth rate
is still small, and shows a downward trend. Generally speaking, the
ecological environment of Zhongxian County is gradually developing in
a good direction.

4 Discussion

The purpose of this study is to make a comprehensive quantitative
assessment of ecological vulnerability in Zhongxian County, and to
analyze the spatio-temporal evolution characteristics of ecological
vulnerability. In order to evaluate the ecological vulnerability in
more detail, the RSEI in 2002, 2009 and 2016 was calculated, and
the ecological vulnerability assessment index system was constructed
by using the indicators of NDVI, WET, NDBSI, and LST, and the
ecological vulnerability of Zhongxian County was analyzed by the
principal component analysis method. From 2002 to 2016, the RSEI
showed a trend of first decreasing and then increasing, in which the
WET index showed an increasing trend, the LST index showed a
decreasing trend, the NDVI index showed a decreasing trend and then
increasing trend, and the NDBSI index showed a rising trend and then
decreasing trend. In general, the ecological environment quality was
developing towards a good trend. The degree of ecological
vulnerability is related to vegetation index, wetness, bare land

surface, urban land and land surface temperature, which is
consistent with the results of other studies (Tang et al., 2022;
Zhang et al., 2022). In addition to investigating the change
characteristics of ecological vulnerability indicators, another
aspect of this study is to analyze the spatial and temporal
evolution pattern of ecological vulnerability. From 2002 to
2016, the overall index of ecological vulnerability showed a
downward trend. By 2016, the level of ecological vulnerability
was mainly negligible vulnerability and light vulnerability, and
most areas shifted to negligible vulnerability and light
vulnerability, and the ecological vulnerability gradually
changed to low vulnerability. In terms of spatial distribution,
the distribution of ecological vulnerability from high to low
basically showed a trend of gradual transition from plain to
mountainous region, which was consistent with other reports
(Li, 2010; Jin and Xu, 2022; Singh et al., 2022).

Due to the characteristics of multi-band and strong correlation of
multispectral images, the internal information of multispectral images
is highly redundant (Sun et al., 2016). The index calculated based on
remote sensing image may have information redundancy. In order to
avoid the influence of human factors and subjective conditions when
constructing the ecological vulnerability assessment index system, the
index system of RSEI was selected (Xu, 2013). There was no obvious
correlation between the index systems. In addition, it can reflect the
vegetation cover, soil moisture, surface exposure and land surface
temperature (Wang et al., 2016), while the spatial principal
component analysis can remove certain correlations among
indicators and reduce data redundancy (Xu, 2013; Pan and Xiao,
2015). To sum up, this paper selects the indicators of NDVI, WET,
NDBSI, and LST to construct an ecological vulnerability assessment
index system, and principal component analysis is a desirable
evaluation method. In this study, the ecological vulnerability of
Zhongxian County was objectively evaluated through remote
sensing and evaluation model to reveal the evolution drivers of its
ecological vulnerability. In view of the obvious spatial differentiation
characteristics of each index impact factor in different geographical
units, the local government should coordinate the effective balance
between economic development and ecological vulnerability
management. Appropriate measures should be taken to prevent
ecological fragility from becoming more fragile.

5 Results

Combined with remote sensing and ArcGIS technology, this paper
calculates the RSEI through remote sensing model and constructs the
ecological vulnerability evaluation index system, comprehensively and
quantitatively evaluates the ecological vulnerability of Zhongxian
County in 2002, 2009, and 2016 by PCA method, and analyzes the
spatio-temporal evolution characteristics of ecological vulnerability.
The key points of my conclusion are as follows.

(1) Based on the distribution characteristics, the RSEI showed a trend of
first decreasing and then increasing, from .5405 in 2002 to .5122 in
2009, and then rising to .7098 in 2016. Among them, the average
value of NDVI that are conducive to the ecological environment
quality has a trend of first decreasing and then increasing, the WET
has an upward trend, while the average value of NDBSI that are not
conducive to the ecological environment quality has a trend of first
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increasing and then decreasing, and the LST has a downward trend,
indicating that the vegetation coverage in Zhongxian County has
decreased and then increased, the degree of surface exposure has
decreased, and the difference between water and heat balance has
decreased. On the whole, the impact on future ecological vulnerability
is weakened.

(2) The EVBI of Zhongxian County shows a downward trend. From
2002 to 2016, the EVBI changed from medium vulnerability and
strong vulnerability to negligible vulnerability and light vulnerability,
and the medium vulnerability, strong vulnerability and extreme
vulnerability showed a general downward trend. The ecological
vulnerability gradually weakens with the implementation of
ecological restoration and protection measures, that is, the
improvement of ecological environment is gradual.

(3) The increment of ecological vulnerability level in 2002–2009 is
mainly the increase in the area of light and medium vulnerability
area, while the transfer amount is mainly the transfer of medium
vulnerability and strong vulnerability. The increment of ecological
vulnerability level in 2009–2016 is mainly the increase in the area
of negligible vulnerability and light vulnerability area, while the
transfer amount is mainly the transfer of light vulnerability and
medium vulnerability. In general, the ecological vulnerability
gradually changes to low vulnerability, and the ecological
environment of Zhongxian County tends to benign development.
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Modeling carbon uptake by
vegetation of grassland
ecosystems and its associated
factors in China based on remote
sensing

Xuejie Li1†, Ruren Li1† and Zongyao Sha2*
1School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang, China,
2School of Remote Sensing Engineering, Wuhan University, Wuhan, China

In order to reveal the spatial variation characteristics and influencing factors of

grassland net primary productivity (NPP) in China, this paper uses remote

sensing data, land use data and meteorological data to simulate and

estimate China’s grassland net primary productivity from 2001 to 2019 using

the Carnegie-Ames-Stanford Approach (CASA). The trend analysis and complex

correlation analysis were used to analyze the relationship with the temporal and

spatial changes of grassland NPP from the perspectives of climate factors,

topography, longitude and latitude. The results show that: 1) In the past 19 years,

the China’s grassland NPP has generally shown a fluctuating upward trend, the

spatial distribution of NPP variation shows a characteristic of low in the west and

high in the east, with the increased area accounting for 70.39% of the total

grassland area, and the low NPP values are mainly distributed in the

northwestern part of Tibet and Qinghai and the central part of Inner

Mongolia, the average annual NPP is 257.13 g C·m−2·a−1. 2) The change of

mean NPP value of grassland in China is more dependent on precipitation

(p) than air temperature (T). 3) Grassland NPP showed a decreasing trend with

the increase of altitude, and the NPP on the gradient with DEM between 200m

and 500m was the highest (483.86 g·C·m−2·a−1); The maximum annual mean

value (448.42 g C·m−2·a−1) is fallen over the sharp slope of 35°–45°; the NPP of

grassland increases with the slope (from shade to sunny), and the NPP of

grassland on the semi-sunny slope increases. The annual average NPP is the

highest (270.87 g C·m−2·a−1). 4) The mean value of grassland NPP was negatively

correlated with the change of latitude, and showed a “wave-like” downward

trend from south to north; the mean value of grassland NPP was positively

related to the change of longitude. The correlation relationship shows a

“stepped” upward trend from west to east.

KEYWORDS

carnegie-ames-stanford approach, remote sensing, grassland ecosystem, carbon
sequestration, China
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1 Introduction

In the context of global climate change, studying the carbon

sequestration potential of terrestrial ecosystems is not only an

important indicator for estimating the Earth’s supporting

capacity, but also helps to understand the global carbon

balance and evaluate the sustainable development of terrestrial

ecosystems (Christopher et al., 1998; Carraro and Massetti, 2011;

Shen et al., 2016; Chen et al., 2017; Li et al., 2020).Grassland

ecosystem is one of the most important and widely distributed

ecosystem types in terrestrial ecosystems, and it is also one of the

most important carbon stocks and carbon sources/sinks on land.

China’s grasslands cover almost 41.17% of national territorial

area, it accounts for 6%–8% of the total grassland area in the

world, and plays a pivotal role in the global carbon cycle and

climate regulation, and plays an important role in developing

animal husbandry, maintaining biodiversity, conserving soil and

water, and maintaining ecosystem balance (Xie et al., 2001; Yang

et al., 2012; Li et al., 2014; Tang et al., 2014; Xu et al., 2020).

Therefore, estimating the carbon sequestration potential of the

net primary productivity of grassland ecosystems correctly in

China is of great significance for studying the carbon cycle of

terrestrial ecosystems and regulating global climate change (Piao

et al., 2004). However, current research on carbon storage and

sequestration in grassland ecosystems is relatively one-sided in

terms of its influencing factors, while studies on topography,

latitude and longitude are still relatively weak. Therefore, it is

quite essential to carry out in-depth research on the carbon

sequestration potential of grassland ecosystems, so as to enhance

the scientific understanding of the carbon sequestration potential

of grasslands in global climate change and ecosystem

management.

NPP is the amount of organic matter accumulated by green

plants in unit area and unit time through photosynthesis (Fang

et al., 2001; Xu et al., 2020), That is, the NPP of grassland is the

most direct indicator to reflect the growth characteristics and

health status of grassland ecosystems, and it is also an important

ecological indicator for the sustainable development of

ecosystems (Zhao et al., 2014; Du et al., 2021). Accurate

estimation of NPP and analysis of its spatial distribution and

influencing factors are helpful to understand the response state of

ecosystems in the context of global climate change (Chen et al.,

2022), It is of great significance to further clarify the carbon

sequestration potential of grassland ecosystems in China, and

also to provide a scientific reference for the carbon cycle

characteristics of terrestrial ecosystems in the context of global

climate change. Mastering the interannual variation rule of

grassland NPP, analyzing and researching the relationship

between index NPP, water and heat factors, and geographical

elements has important theoretical and practical value for

evaluating the environmental quality of terrestrial ecosystems,

regulating ecological processes, and estimating terrestrial carbon

sinks (Niu, 2000; Hou et al., 2007; Wang et al., 2016; Liu et al.,

2019).

This paper depends on the grassland distribution data in

China, combined with the remote sensing data and

meteorological data of the same period, and calculates various

grassland NPPs based on the CASA model, and uses trend

analysis, correlation analysis and other methods to explore the

change trend of grassland NPP in China from 2001 to 2019. Its

spatial distribution characteristics and influencing factors aim to

provide a scientific reference for the research on dynamic

changes of grassland ecosystem functions, ecological

environmental protection, soil and water conservation, and

climate regulation in China.

2 Materials and methods

2.1 Study area

The study area covers only 22 provinces, 5 autonomous

regions and four municipalities directly under the Central

Government in China. Which are: Beijing (BJ), tianjin (TJ),

hebei (HB) , shanxi (SX), Inner Mongolia (IML), liaoning

(LN), jilin (JL), heilongjiang (HLJ), Shanghai (SH), jiangsu

(JS), zhejiang (ZJ), anhui (AH), fujian (FJ), jiangxi (JX),

shandong (SD), henan (HN), hubei (HB), hunan (HN),

guangdong (GD), guangxi (GX), hainan (HN), sichuan (SC),

guizhou (GZ), yunnan (YN), chongqing (CQ) , Tibet (TB),

shaanxi (SAX), gansu (GS), qinghai (QH), ningxia (NX),

xinjiang (XJ) (Figure 1A). China is located in the east of Asia

and on the west coast of the Pacific Ocean (Wang et al., 2022)

Most parts temperate, a few tropical, no cold zone. The terrain of

China is high in the west and low in the east, with a stepped

distribution. The terrain is diverse, mainly dominated by plateaus

and mountains, crisscrossed by mountains.There are the

Qinghai-Tibet Plateau with an average altitude of more than

4 km, basins and plateau regions with an average altitude of 1-

2 km, and hills with an altitude of less than 500 m. Due to China’s

vast territory, wide latitude, quite different distance from the sea,

various terrain types and mountain trends, the combination of

temperature and precipitation is diverse, forming a complex and

diverse climate. There are all kinds of monsoon climate,

temperate continental climate, alpine climate. Winter is cold

and dry, summer is warm and rainy. Grassland resources in

China are of large area, wide distribution, various types and

miscellaneous, and of low quality. Grassland resources are

distributed in all provinces, regions and cities, and the

concentrated contiguous grassland is mainly distributed in the

Qinghai-Tibet Plateau, the arid and semi-arid areas in the north

and the grassy hills and slopes in the south. It is precisely under

such complex and changeable natural resource conditions that

China’s vegetation is rich in species, its distribution is intricate,
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and the stability of the ecological environment is affected by

many factors.

2.2 Data source

The remote sensing data comes from the MODIS data of the

National Aeronautics and Space Administration (NASA) (Li et al.,

2021). The time series is from 2001 to 2019, and the remote sensing

data used include MOD13A2 data (NDVI), MOD17A3HFG data

(NPP), and elevation data (DEM) from the Geospatial Data Cloud

(Table 1). The meteorological data (contains latitude and longitude)

of total solar radiation, monthly average temperature, and monthly

precipitation are derived from the monthly data set of China’s

surface climate data provided by the China Meteorological Science

Data Sharing Service Network (http://cdc.cma.gov.cn). The

vegetation type data comes from the 1:1,000,000 Chinese

Vegetation Type Atlas by the Data Center of Resource and

Environmental Sciences (https://www.resdc.cn/), Chinese

Academy of Sciences. The vegetation classification atlas contains

11 vegetation type groups, the distribution status of 796 vegetation

units in 54 vegetation types, and the horizontal regional and vertical

regional distribution rules. According to this vegetation atlas,

grassland includes three vegetation types: meadow, tussock and

grassland (Figure 1B). These three vegetation types account for 30.

82% of the vegetation area in China.

The 2001–2012 the field measurement data of a small part of

grassland were obtained from A Global Database of Soil

Respiration Data, Version 5.0 (https://daac.ornl.gov/cgi-bin/

dsviewer.pl?ds_id=1827). These data will be uniformly

processed into raster data with a resolution of 1,000 m

through ArcGIS 10.2.

2.3 NPP simulation and results validation

In this study, the improved CASA model of Zhu Wenquan

et al. was used to simulate the grassland NPP in China (Zhu et al.,

2007). The NPP in this model is mainly determined by the

photosynthetically active radiation (APAR) absorbed by the

vegetation and the actual light energy utilization rate (ε). The
specific calculation formula is as follows:

NPP x, t( ) � APAR x, t( ) × ε x, t( ) (1)

where NPP(x, t) is the net primary productivity of pixel x in

month t; APAR(x, t) is the photosynthetically active radiation

absorbed by pixel x in month t; ε(x, t) is pixel x Actual light

energy utilization in month t (Xu et al., 2020; Li et al., 2021).

APAR x, t( ) � SOL x, t( ) × FPAR x, t( ) × 0.5 (2)

Where: SOL (x, t) is the total solar radiation of pixel x in month t

(MJ·m−2); 0.5 is the proportion of solar effective radiation that

FIGURE 1
(A) Elevation chart of China (excluding Hong Kong, Macao and Taiwan). (B) Spatial distribution characteristics of grassland types in China.

TABLE 1 Data source statistical table.

Name NDVI(MOD13A2) NPP(MOD17A3HFG) DEM

Source http://edcimswww.cr.usgs.gov/pub/imswelcome/ http://edcimswww.cr.usgs.gov/pub/imswelcome/ http://www.gscloud.cn/

Resolution The spatial resolution is 1,000 m The spatial resolution is 500 m The spatial resolution is 30 m
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can be used by vegetation to the total solar radiation; FPAR(x, t)

represents the absorption ratio of the incident photosynthetically

active radiation (PAR) by the vegetation layer.

Light utilization efficiency (ε) refers to the efficiency with

which vegetation converts its absorbed photosynthetically active

radiation (PAR) into organic carbon, which is mainly affected by

temperature and moisture, and is calculated as follows:

ε x, t( ) � T1 x, t( ) × T2 x, t( ) × W x, t( ) × ε max (3)

Where: T1 (x, t) and T2 (x, t) represent the effect of temperature on

the utilization of light energy. For the detail calculation method, see

the literature (Zhu et al., 2005;Wang et al., 2022);W (x, t) represents

the effect of moisture on the utilization of light energy. εmax

represents the maximum light energy utilization rate of

vegetation under ideal conditions, and its value is different due

to different vegetation types. In this study, 0.542 g C·MJ−1 was used

to keep consistent with previous studies (Zhou et al., 2017).

Since the actual measurement of NPP is difficult to achieve, this

paper uses the MOD17A3HFG data (NPP) and field measured data

obtained by other research scholars to compare and verify the NPP

estimation results. The statistical results are as follows: MODIS-

Measured has a strong correlation with an adjusted R2 of 0.638

(Figure 2A); CASA-Measured has a strong correlation with an

adjusted R2 of 0.812 (Figure 2B). The above verification results

show that the CASA model is suitable for the estimation and

simulation of grassland NPP in China.

2.4 Trend analysis of NPP

In this paper, the univariate linear regression method is used

to analyze the trend changes of the annual average NPP, annual

precipitation and annual average temperature of each pixel of

grassland in China from 2001 to 2019. The calculation principles

are as follows (Li et al., 2011; Jin et al., 2020):

θslope � n∑n
i�1 i × NPPi( ) − ∑n

i�1i∑n
i�1NPPi

n∑n
i�1i

2 − ∑n
i i( )2 (4)

Where θslope is the inter-annual rate of NPP change; n is 19 for

years from 2001 to 2019; and NPP i is the value of annual NPP at

year i. If θslope >0, it means that NPP shows an increasing trend,

otherwise, it is a decreasing trend. F test was used to test its

significance, and the calculation formula was:

F � U ×
n − 2
Q

(5)

Where U � ∑n

i�1(ŷi − �y)2 is the sum of regression squares, Q �∑n

i�1(yi − ŷi)2 is the sum of residual squares, yi is the value of NPP

in year i, ŷi is the regression value ofNPP in year i, and �y is the average

value of 19a NPP. According to the test results, it can be divided into

the following grades: very significantly reduced (θslope < 0, P< 0.01),

significantly reduced (θslope < 0, 0.01<P< 0.05), no significant

reduced (θslope < 0, P> 0.05); very significantly increase

(θslope > 0,P< 0.01), significantly increase (θslope > 0, 0.01<
P< 0.05), no significantly increase (θslope > 0,P> 0.05).

2.5 Correlation analysis

Correlation analysis is used to reflect the direction and degree

of correlation between elements. In this paper, the Pearson

correlation coefficient, partial correlation coefficient, and

complex correlation coefficient method are used to analyze

the correlation and significance level of annual vegetation

FIGURE 2
Simulation verification results of MODIS-Measured (A), CASA-Measured (B).
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NPP with temperature and precipitation. The calculation

principles are as follows (Murakami et al., 2004; Dowding and

Haufe, 2018; Li et al., 2019; Xie et al., 2020):

Rxy � ∑n
i�1 Xi − �X( ) Yi − �Y( )[ ]																						∑n

i�1 Xi − �X( )2∑n
i�1 Yi − �Y( )2√ (6)

where: Rxy is the relationship between variables x and y; n is the

number of years; Xi is the vegetation NPP in the i year; Yi is the

annual average meteorological factor (temperature and

precipitation) in the i year; X and �Y are respectively n-year

mean of variables x and y.

Partial correlation coefficient calculation formula:

Rxy.z � Rxy − RyzRxz																	
1 − Ryz

2( ) 1 − Rxz
2( )√ (7)

Where Rxy.z is the partial correlation coefficient between the

dependent variable z (representing air temperature in this study)

and the independent variable y after fixing the independent

variable x (representing precipitation in this study). The

significance test is generally performed using the t test:

t � Rxy.z								
1 − Rxy.z

2
√ 								

n −m − 1
√

(8)

where Rxy.z is the Partial correlation coefficient, m is the number

of independent variables.

The formula for calculating the complex correlation

coefficient:

Ry.xz �
																					
1 − 1 − Rxy

2( ) 1 − Ryz.x
2( )√

(9)

where Ry.xz is the complex correlation coefficient between the

dependent variable y and the independent variables x, z. Its

significance test uses the F test:

F � Ry.xz
2

1 − Ry.xz
2

n − k − 1
k

(10)

2.6 Quantitative evaluation of the
contribution of precipitation and
temperature to NPP

Traditionally, an increase in NPP has been used as an

indicator of vegetation restoration, whereas a decrease in NPP

represents vegetation degradation (Yan et al., 2019). Based on Eq.

4, a positive θslope in NPP represents grassland restoration,

whereas a negative S denotes grassland degradation. If

precipitation and temperature are determined to cause NPP

changes, the relative role of climate change and human

activities in NPP changes can be quantitatively evaluated.

With reference to Yan Yuchao et al. scenario setting scheme

on NPP changes, the influence of climate change and human

activities on NPP in the Shule River Basin is measured, as shown

in Table 2.

In this study, when the contribution proportion of PC to

grassland restoration or degradation was larger than that of TC, it

was defined as “climate-dominated restoration or degradation”.

Similarly, when the contribution proportion of TC to grassland

restoration or degradation was greater than that of PC, it was

defined as “human-dominated restoration or degradation”.

3 Results and analysis

3.1 Spatial and temporal distribution
characteristics of grassland NPP in China

3.1.1 Time-varying characteristics
The average NPP value of grassland in China from 2001 to

2019 was 257.13 g·C·m−2·a−1. Based on the literature, the results

of this study are similar to those obtained by many scholars, but

there are also some differences, which may be caused by different

grassland classification standards, data sources and research

periods. Overall, the interannual change of grassland NPP

showed a fluctuating upward trend, and the linear growth

trend reached a significant level (p < 0.01), with an average

change rate of 2.69. g·C·m−2·a−1 (Figure 3).

Statistics on the NPP values of grassland types (meadow,

tussock and grassland) in China (excluding Hong Kong, Macao

and Taiwan regions) in the past 20 years show that the results

(Figure 4) show that the interannual variation trends of average

NPP of different grassland types are also quite different: In the

19 years , the NPP values of grassland and tussock all showed an

increasing trend, and the change rates were 2.32 and

10.35 g·C·m−2·a−1 respectively , accounting for 52.45% and

10.89% of the total grassland area respectively. THowever, the

overall increase trend of meadow from 2001 to 2019 was not

obvious, with a change rate of 0.999 g·C·m−2·a−1, accounting for

36.66% of the total grassland area. The causes of this

phenomenon may be closely related to overgrazing,

precipitation, total solar radiation, temperature and human

activities.

3.1.2 Spatial distribution characteristics
From 2001 to 2019, the distribution of grassland NPP in

China had obvious spatial heterogeneity, and the overall trend

showed a downward trend from the southeast to the northwest

(Figure 5). Among them, the areas with NPP greater than

600 g·C·m−2·a−1 are concentrated in the border areas of QH

and SC as well as YN and GX. The grassland types of the

region are mainly tussock and meadow, accounting for 11% of

the total grassland area. The areas with NPP concentrations of

400–600 g·C·m−2·a−1 are mainly distributed in the east of QH

Province, the northeastern of IML and HLJ and southern region.

In some areas, meadows are widely distributed, accounting for
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18.51% of the total grassland area, and the average NPP value is

relatively high. The areas with NPP concentrations of

400–600 g·C·m−2·a−1 are mainly distributed in the IML, NX,

QH and the southeastern of Tibet, and a small part is also

distributed in the northern part of SAX and SX accounts for

19.05% of the total grassland area. The grassland NPP values

below 100 g·C·m−2·a−1 are mainly concentrated in the northern

part of Tibet, the northwestern GS Province, central IML. In the

region, the grassland vegetation type is mainly grassland,

accounting for 36.23% of the total grassland area, and the

vegetation NPP value is relatively low. The NPP values of

other grasslands were mainly distributed in

100–200 g·C·m−2·a−1, the distribution is scattered and mainly

distributed in the northwest of China , accounting for 15.21%

of the total grassland area. All in all, the average NPP values of

tussock and meadow were higher, up to 636.02 and

322.3 g·C·m−2·a−1 respectively, and the area proportions were

TABLE 2 Six scenarios for quantifying the contribution proportions of p and T to grassland restoration and degradation.

Scenario P-con T-con Contribution proportion of PC(%) Contribution proportion of TC (%)

θslope > 0 1 >0 >0 100 × |P con |
|P con |+|T con |

100 × |T con |
|P con |+|T con |

2 >0 <0 100 0

3 <0 >0 0 100

θslope < 0 1 <0 <0 100 × |P con |
|P con |+|T con |

100 × |T con |
|P con |+|T con |

2 <0 >0 100 0

3 >0 <0 0 100

P-con and T-con represent the contributions of precipitation and temperature to the inter-annual NPP, changes, respectively; PC and TC, represent the change of precipitation and

temperature, respectively.

FIGURE 3
Interannual variation of grassland NPP in China (excluding
Hong Kong, Macao and Taiwan) from 2001 to 2019.

FIGURE 4
Interannual variation trend of NPP of different grassland types
from 2001 to 2019.

FIGURE 5
Spatial distribution characteristics of mean NPP of grassland
in China (excluding Hong Kong, Macao and Taiwan) from 2001 to
2019.
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10.89% and 36.66% respectively. The lowest average NPP value of

grassland was only 134.83 g·C·m−2·a−1, accounting for 52.45% of

the area.

In order to study the variation trend of grassland NPP in

China quantitatively, the spatial variation of grassland NPP from

2001 to 2019 was divided into six levels (Figure 6). On the whole,

the spatial variation characteristics show a low west-east

distribution, with the increased area accounting for 70.39% of

the total grassland area, the grassland NPP in most areas is

increasing, and the change value of the increase area is about

0~50 g·C·m−2·a−1, and the change value of the decrease area is

0~49 g·C·m−2·a−1 or so. It can be seen from statistical calculations

that the areas with extremely significant increase and significant

increase account for 27.85% and 9.64% of the total grassland area

respectively, and they are mainly distributed in Inner Mongolia,

Ningxia, Gansu, Shaanxi, Shanxi, northern Hebei and central

Qinghai in China. The significantly reduced and non-

significantly reduced areas accounted for 7.14% and 22.47% of

the total grassland area, mainly in Tibet, Qinghai, Sichuan and

Xinjiang.

3.2 The relationship between the
spatiotemporal distribution of NPP and
climate parameters

On the whole, the precipitation and air temperature in the

grassland area in China from 2001 to 2019 showed an increasing

trend, and the trend change rates were 2.7 and 0.02 g·C·m−2·a−1
respectively (Figure 7). According to the relationship between the

annual average temperature and annual precipitation and NPP in

the corresponding period of statistics, the inter-annual

fluctuation of grassland NPP in China from 2001 to 2019 was

mainly affected by precipitation, and the change of NPP was

roughly consistent with the trend of precipitation. It is

5,694.74 mm, and the corresponding NPP value is reaching

275.677 g·C·m−2, which is related to the extremely abnormal

precipitation in 2016, compared with other in 2016 and 2014,

the precipitation was significantly higher, and the increase in

precipitation accumulation led to an increase in NPP, on a

relative basis, the NPP was high, second only to 2019, which

made the NPP value in 2016 and 2014 increase compared with

other years. The variation trend of NPP is opposite to that of

temperature, but the influence of temperature on NPP is smaller

than that of annual precipitation, and the regularity of the

relationship between temperature and NPP is obviously

weaker than that of precipitation and NPP.

It can be seen from Figures 8A–D that the correlation coefficient

between NPP and the average annual precipitation is

between −0.891 and 0.964, and the average correlation coefficient

is 0.073. Among them, the negatively correlated areas accounted for

18.04% of the total grassland area, mainly distributed in southern

QH Province, northwestern SC Province and YN. The reason may

be that the area belongs to the cold and wet environment, which

inhibits the growth of vegetation. The positively correlated areas

weremainly distributed in the northern part of Northeast China, the

southern part of Qinghai-Tibet region and the northern part of

Xinjiang, and the positively correlated areas accounted for 81.96% of

the total grassland area. Overall, grassland NPP was positively

correlated with annual precipitation, that is, precipitation would

promote the increase of grasslandNPP to a certain extent. There was

a positive correlation betweenNPP and annualmean temperature as

a whole. The correlation coefficient was between −0.864 and 0.894,

and the average correlation coefficient was 0.03. The areas with no

significant correlation between the two accounted for 32.13% of the

total grassland area. The 0.83% of the regional NPPwas significantly

positively correlated with temperature, the distribution is wide, not

concentrated, and the spatial heterogeneity is obvious.

It can be seen from Figures 8E–H that the mean partial

correlation coefficients between NPP and precipitation and

temperature are 0.086 and 0.008 respectively, and the positive

correlation areas passing the significance test are 35.78% and

8.83% respectively. It shows that when only considering the

influence of temperature on NPP, compared with the

correlation between temperature and NPP under the influence

of precipitation, the change of NPP has a weaker correlation with

temperature. There is still a strong correlation between NPP and

precipitation. The main reason is that the increase in

precipitation improves soil water supply conditions, enhances

the photosynthetic rate, and thus improves productivity. At the

same time, the lower temperature in the plateau and

mountainous areas can reduce evapotranspiration, thereby

reducing the possibility of evapotranspiration.

The use of water loss is conducive to vegetation growth. It can

be seen from Figures 8I,J that the composite correlation

coefficient between grassland NPP and temperature-

FIGURE 6
Variation trend and significance test of grassland NPP in
China.
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precipitation in China is between 0.001 and 0.972, showing a

spatial pattern of higher in the north and lower in the middle.

The areas with multiple correlation coefficients higher than

0.5 are distributed mainly in the northeastern and central

northern Inner Mongolia, central and northern Ningxia, and

northwestern Tibet in China. The regional distribution of the

multiple correlation coefficients between 0.45 and 0.5 is mainly in

the northeastern Inner Mongolia, the northwestern and central

Qinghai-Tibet regions, and the northwestern Xinjiang. The

multiple correlation coefficients of the remaining areas are

relatively small, probably because these areas have lower

relative altitudes, more abundant water content, and higher

temperatures, so they are less affected by the comprehensive

regulation of temperature and precipitation.The partial

correlation coefficient can describe the degree of correlation

between grassland NPP and climatic factors, whereas the

contributions of climatic factors to grassland NPP changes

cannot be quantified. Therefore, to quantitatively evaluate the

contributions of climatic factors to NPP changes, the results of

Tem_con, Pre_con, and Rad_con are shown in Figures 8K,L. It is

clear from the contribution distribution map that precipitation

has a greater impact than temperature, so it can be concluded

that precipitation has a more obvious interaction on grassland

productivity. This paper only considers precipitation and

temperature, and there are many other factors that need to be

explored more comprehensively.

3.3 The relationship between the
spatiotemporal distribution of NPP and
terrain

According to statistics, the annual average NPP value of

grassland in China from 2001 to 2019 showed different

characteristics with the increase of altitude (Figure 9A): the

overall trend showed a downward trend, and the grassland was

mainly distributed in the plateau area. Among them, the

maximum annual mean value of grassland NPP

(483.86 g·C·m−2·a−1) was concentrated in the hilly area with

an altitude of 200–500 m, accounting for 5.12% of the total

grassland area. With the increase of altitude, the average NPP

value of grassland is in a trend of first increasing and then

decreasing. In the plain area below 200 m, the annual average

NPP value of grassland has a gentle downward trend, and its

value is 464 g·C·m−2· a−1, when the altitude is in the range of

500–2000 m, the annual mean value of grassland NPP

(316.49 g·C·m−2·a−1) has an obvious downward trend. When

the altitude downward again to the plateau area above 2000 m,

the change is that the average annual NPP value of grassland

was 204.29 g·C·m−2·a−1. The hills and plains with an altitude of

less than 500 m accounted for the least proportion of grassland,

but with the increase of altitude, the proportion to the total

grassland increased gradually. Therefore, it can be concluded

that different levels of elevation also have a certain impact on

the carbon sequestration potential of grassland in China. The

annual average NPP value of grassland in China shows the

characteristics with different slope aspects (Figure 9B): from

shady to sunny, the overall trend is increasing, and the annual

average value of grassland NPP on the semi-sunny slope is the

highest at 270.87 g·C·m−2·a−1, followed by semi-shady slopes

(265.68 g·C·m−2·a−1), sunny slopes (245.36 g·C·m−2·a−1), shady
slopes (244.63 g·C·m−2·a−1), the lowest is the flat area with no

slope aspect (223.38 g·C·m−2·a−1), while the semi-shady slope

covers the largest area, accounting for 38.09% of the total

grassland area, and The region of flat area without slope

aspect has the smallest proportion (0.44%). Shady slopes

have a larger proportion than sunny slopes, but the NPP

values are opposite, indicating that grasslands prefer to grow

on the sunny side. Therefore, different slope aspects also have

an impact on the carbon sequestration potential of grassland.

The research conclusion shows that the NPP of the grassland on

the flat areas is the last but one, its area is the largest, accounting

FIGURE 7
The relationship between NPP and annual precipitation (A), annual mean temperature (B) of grassland in China from 2001 to 2019.
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for 75.6868% of the total area of grassland, tens of thousands of

times of the area of steep slope, but the NPP value is only about

half of the steep slope, its carbon sequestration effect is not good

enough, there is still a lot of room for improvement, need to

strengthen the protection.The annual mean NPP value of

grassland in China shows the characteristics with the

increase of slope (Figure 9C): the overall trend is decreasing,

mainly distributed in flat and gentle slopes, and a small part in

slopes, steep slopes, sharp slopes and dangerous slopes. Among

them, the maximum value of grassland NPP

(448.42 g·C·m−2·a−1) is in the sharp slope of 35°–45°, the

second is the steep slope (417.33 g·C·m-2·A-1). From the flat

to the slope, the NPP value is in a state of continuous increase,

with good carbon sequestration effect, but there is a lot of room

for improvement, and the minimum value (87.65 g·C·m−2·a−1) is
greater than 45° on the dangerous slope. With the increase of

the slope, the change of NPP is in the trend of increase first and

then decrease, and the slope below 45° has been in the trend of

gradual increase, and then with the increase of the slope, the

NPP begins to decrease obviously. These changes are due to

different soil and water conservation at different slopes,

resulting in different soil fertility and drainage performance,

so there are certain differences in the carbon sequestration

capacity of grasslands at different slopes.

3.4 The relationship between NPP
spatiotemporal distribution in latitude and
longitude

From the perspective of zonal variation (Figure 10A), the

average NPP value of grassland in China from 2001 to 2019 was

374.58 g·C·m−2·a−1. In general, the average NPP value of

grassland in China within 19 years was negatively correlated

with the latitude change. The distribution of the average NPP

value in China showed obvious latitude zonality, and it showed a

“wave-like” downward trend from south to north, and the change

rate was 11.14 g·C/(m2·a·10°), and through the p >
0.05 significance level test, the downward trend is obvious.

Among them, the maximum average NPP value is

1,057.79 g·C·m−2·a−1, which is distributed in the southern

region with a latitude of 16° or so, which may be due to the

abundant precipitation, suitable climate, and relatively good soil

water and soil conservation in this region, which is more

conducive to the growth of vegetation, thereby enhancing the

carbon sequestration capacity of grassland. The lowest NPP is

5.69 g·C·m−2·a−1, which is distributed in the central area between

31–32° latitude. The NPP value in this area is generally low,

which may be due to the relatively aridity in this area, which

affects vegetation growth, further leading to grassland carbon

sequestration potential.

FIGURE 8
Spatial changes of annual temperature (A), average annual
precipitation (C), partial annual temperature (E), partial annual
precipitation (G), and multiple correlation (I) and Spatial variation
trends in annual temperature (B), annual mean precipitation
(D), partial annual temperature (F), partial annual precipitation (H),
multiple correlation (J) of grasslands in China during 2001–2019.
Spatial distributions of the contributions of (K) temperature (T_
con) and (L) precipitation (P_con) to grassland NPP changes.
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From the perspective of the meridional variation rule

(Figure 10B), the average NPP value of grassland in China

from 2001 to 2019 was 296.56 g·C·m−2·a−1. In 2019, the mean

NPP value of grassland in China was positively correlated with

the change of longitude. The distribution of mean NPP value

showed obvious longitude zonality, rising in a “stepped”

manner from west to east, and the change rate was

8.22 g·C/(m2·a·10°), and through the p < 0.01 significance

level test, the upward trend is obvious. Among them, the

maximum average NPP value is 588.09 g·C·m−2·a−1, which is

mainly distributed in the central region with longitude of

101–102°. It may be due to the abundant precipitation and

suitable climate in this region, which is more conducive to the

growth of vegetation, thus enhancing the carbon sequestration

capacity of grassland. The lowest NPP is 17.02 g·C·m−2·a−1,
which is distributed in the western desert area with a longitude

of about 74°. The NPP value in this area is generally low, which

may be due to the relatively low precipitation and high

temperature in this area. It is difficult for vegetation to

grow in arid and high temperature areas, which reduces the

carbon sequestration potential of grassland. These changes are

caused by the differences in the geographical environment and

soil and water conservation at different latitudes and

longitudes. Different environments will cause different

growth conditions of vegetation, and different soil and

water conservation will lead to different soil fertility and

drainage performance. Therefore, there are also certain

differences in the carbon sequestration capacity of

grassland with different latitudes and longitudes.

4 Discussion

In this study, the NPP of grassland in China was simulated

and estimated based on the CASA model, and the spatial and

temporal distribution characteristics and influencing factors of

grassland NPP in China were comprehensively analyzed using

trend analysis and complex correlation analysis, and the impact

of climate change and influencing factors on vegetation NPP was

discussed. The results show that from 2001 to 2019, China’s

grassland NPP showed a decreasing trend from southeast to

northwest. The vegetation coverage is also different, and the

ecological structure stability of each region is also different. The

results in this paper are similar to those obtained by Shen et al.

(2016) based on the literature data that the NPP of natural

grassland in China is 89–320 g·C·m−2·a−1. Zhou Wei et al., Zhu

FIGURE 9
Relationship between topographic factors and grassland NPP. (A)Changes in the relationship between annual NPP and DEM. (B)Changes in the
relationship between annual NPP and Aspect. (C) Changes in the relationship between annual NPP and Slope.

FIGURE 10
(A) Changes in the relationship between annual NPP and lattitude. (B) Changes in the relationship between annual NPP and longtitude.
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Wenquan, Gao et al. (2012) used the CASAmodel to estimate the

annual average of grassland NPP per unit area in China to be

282.0, 231, and 217.90 g·C·m−2·a−1 respectively. The estimated

results are similar, indicating that the results of this study have

reference value.

From the impact of climate change on grassland NPP, this

study shows that precipitation and temperature in the past

19 years have played an important role in promoting

grassland NPP, but there are certain differences in the

dominant factors in different sub-regions. Among them,

grassland NPP is more dependent on precipitation than air

temperature. This study reveals that precipitation plays an

important role in promoting vegetation growth, which is

consistent with the findings of most researchers (Liu et al.,

2019). In addition, while precipitation and air temperature

promote vegetation growth, they also increase the dark

respiration rate of vegetation, resulting in a decrease in

NPP. Therefore, precipitation and air temperature can

promote grassland NPP at a certain threshold, but may

have opposite effects when exceeding a certain limit (He,

2008).

From the impact of terrain factors on grassland NPP,

altitude, slope and slope aspect have obvious differentiation

effects on temperature and precipitation, which will lead to

large differences in regional illumination, soil moisture and

nutrients, thus affecting regional vegetation spatial pattern. In

addition, the flow and conversion of surface materials and energy

at different altitude gradients, slopes and slopes are also the main

influencing factors that limit the spatial distribution of vegetation

(Pan et al., 2009; You et al., 2011). This study found that

grassland NPP generally decreased with the increase of

altitude, and there were great differences in the fluctuation

trend of grassland NPP in each altitude gradient. In terms of

slope, the NPP of the grass on the steep slope is the highest, while

that on the dangerous slope is the lowest. The reason for the

analysis is that the steep slope has better soil and water

conservation, resulting in fertile soil and good drainage, which

are beneficial to the growth of plants; on the contrary, the steep

slope is opposite and the vegetation coverage is low, resulting in a

low carbon sequestration potential. In terms of slope aspect, there

is no obvious regularity in the response characteristics of

grassland NPP changes to temperature and precipitation on

different slope aspect gradients. The solar radiation received

by the surface and the potential evapotranspiration are

different (Soltani et al., 2016). The sunny slope is full of

sunlight, but the high temperature will lead to accelerated soil

water evapotranspiration, which will inhibit the growth of

vegetation; the shady slope is full of moisture, but the

temperature and light are relatively weak, which will also

inhibit the photosynthesis of vegetation, so the growth of

vegetation on different slopes tends to be different from that

of vegetation. The biological uniqueness of each vegetation type

has a great relationship (Wang et al., 2016).

From the perspective of the influence of latitude and

longitude on grassland NPP, latitude/longitude not only

reflects water/heat differentiation across the globe but also

indicates lots of other influential factors. It argues that many

other factors, including Sun shine hours, atmospheric

circulation, soil nutrition are closely related to latitude/

longitude belts. Although this study cannot cover all the

influnce factors but analyzed the changes of NPP along

latitude/longitude belts. And the changes in different latitude

and longitude will also lead to the changes in environmental

temperature, humidity, topography, soil and many other

environmental factors, which will affect the growth of

vegetation, and then affect the carbon sequestration potential

of vegetation. This study found that, in terms of latitude,

grassland NPP showed a “wave-like” decline trend from south

to north. The grassland NPP is higher in the southern regions of

low latitudes. It is due to sufficient precipitation, suitable climate,

relatively good soil water and soil conservation, which is more

conducive to the growth of vegetation, thus enhancing the carbon

sequestration capacity of grassland. In terms of longitude,

grassland NPP showed a “step-like” upward trend from west

to east (Wang et al., 2022). Grasslands in the central region have

higher NPP. The reason analysis shows that the area has excellent

water and heat conditions, flat terrain, sufficient sunlight, high

vegetation coverage, good soil and water conservation, which

promotes vegetation growth and enhances the ability of

vegetation to sequester carbon.

China’s grassland covers nearly 40% of its total area, which is

larger than the forest area, but its productivity is lower than the

global average. Research on temporal and spatial changes and

influencing factors can better understand the occurrence and

development trend of vegetation productivity, which is helpful

for the assessment of future climate change and national two-

carbon strategy. In terms of grasslandmanagement, it can be seen

from the conclusions of this paper that grassland productivity

increases or decreases rapidly in some areas. Therefore, it can be

started from this perspective to protect the basic area of grassland

industry and improve the grassland quality and growth

environment. In areas where there has been a decrease or no

significant increase, it is important to strengthen conservation

efforts and promote a grassland culture to further contribute to

grassland carbon sequestration potential. By studying the

influence of potential factors, it is possible, on the one hand,

to gain a more comprehensive understanding of the measures

that are conducive to adjusting the growth and development of

vegetation and enhancing its carbon sequestration capacity. On

the other hand, it can also help to improve the intensity of

overgrazing and the implementation of policies such as the

return of cropland to grass, adding to the improvement of

urban sprawl and the enhancement of carbon sequestration

potential. In addition, it is an important guide for the

development of policies and management of grassland

resources by grassland management departments.
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Although this study provided a comprehensive analysis of NPP

changes and climate effects in grasslands of China, there may still be

some limitations. First, owing to the uncertainty of satellite remote

sensing data, NPP data could contain some inaccuracies which may

affect the results of this study. Second, the interpolation method of

meteorological data in this study may lead to some inaccuracy in

meteorological results, which could have an impact on the analysis of

the results of this study. In addition, many factors influence vegetation

growth in China’s grassland.This study only considered three

influence factors, geographic location, terrain and climate, and the

relationships of grassland NPP with other environmental factors need

to be further explored. Finally, changes inNPP are affected bymultiple

factors, such as terrain, climate change and human activities.

Although this study extracted unchanged grassland, the

influences of human activities on grassland vegetation could

not be completely excluded. In addition, the results of this

study are not verified by field measured data (Ma et al., 2022).

In terms of grassland management, corresponding suggestions

can be put forward according to the rate of increase or decrease

of grassland productivity in some areas. For example, in areas

with rapid increase of NPP, the management and protection

efforts should be improved. In areas with low slope or no

significant increase of NPP, the protection efforts should be

strengthened to improve grassland quality and growth

environment, protect the basic area of grassland industry

and promote grassland culture. This further contributes to

grassland carbon sequestration potential. Therefore, in future

studies, the effects of human activities on grasslands and the

inaccuracies caused by the measurement of satellite remote

sensing data should be further studied.

5 Conclusion

In the past 19 years, China’s grasslandNPPhas generally shown a

fluctuating upward trend, and its spatial distribution has gradually

decreased from southeast to northwest. The relationship between the

spatiotemporal distribution of grassland NPP and climate change in

China from 2001 to 2019: The spatial distribution of the first-order

partial correlation and general correlation between grasslandNPP and

precipitation and temperature are: the area ratio of partial correlation

with precipitation is greater than the area proportion with partial

correlation with temperature. The relationship between temporal and

spatial distribution of grassland NPP and terrain in China from

2001 to 2019: With the increase of altitude, there is a general

downward trend, and grassland is distributed mainly in the

plateau area. The variation of NPP at different altitudes (DEM)

presents: hill>plain>mountain>basin>plateau. The variation of

NPP with different slope aspects is as follows: semi-sunny

slope>semi-shady slope>sunny slope>shady slope>no slope aspect.

With the increase of the slope, the overall trend is decreasing, the

variation of NPP with different slopes showed: sharp slope>steep
slope>slope> gentle slope>flat>dangerous slope. The relationship

between temporal and spatial distribution of grassland NPP in

China from 2001 to 2019 and latitude and longitude: From the

perspective of zonal variation, the mean value of NPP showed a

“wave-like” downward trend from south to north. From the

perspective of the meridional variation rule, the mean NPP shows

a “step-like” rising trend from west to east.
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Net primary productivity (NPP) plays a vital role in the globe carbon cycle.
Quantitative assessment of the effects of climate changes and human activities
on net primary productivity dynamics is vital for understanding the driving
mechanisms of vegetation change and sustainable development of
ecosystems. This study investigates the contributions of climatic factors and
human activities to vegetation productivity changes in China from 2000 to
2020 based on the residual trend analysis (RESTREND) method. The results
showed that the annual average net primary productivity in China was 325.11 g
C/m2/year from 2000 to 2020 and net primary productivity showed a significantly
increasing trend (p<0.05) at a rate of 2.32 g C/m2/year. Net primary productivity
increased significantly (p<0.05) across 40.90% of China over the study period,
while only 1.79% showed a significantly declining trend (p<0.05). The contributions
of climatic factors and human activities to net primary productivity increase were
1.169 g C/m2/year and 1.142 g C/m2/year, respectively. Climate factors
contributed positively mainly in Sichuan Basin, the Loess Plateau, the
Mongolian Plateau, and Northeast China Plain. Positive contributions of human
activities to net primary productivity mainly occurred in the Loess Plateau, Central
China, and the Greater Khingan Mountains. The effects of climatic factors and
human activities on net primary productivity changes varied among sub-regions.
In Tropical Monsoon Climate Region and Subtropical Monsoon Climate Region,
human activities had greater impacts on net primary productivity increase than
climate factors, while climate factors were the dominant factor for net primary
productivity recovery in other sub-regions. In addition, during 2000–2020, net
primary productivity was dominated by both climate factors and human activities
in 49.84% of China, while areas dominated solely by climate factors and human
activities accounted for 13.67% and 10.92%, respectively. Compared to changed
land cover types, the total net primary productivity as well as the increase of total
net primary productivity in China was mostly contributed by unchanged land
cover types, which contributed more than 90%.
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1 Introduction

Net primary productivity (NPP) is the remainder of the total
amount of organic matter produced by green plants per unit area per
unit time, excluding that consumed by their own respiration
(Roxburgh et al., 2005). NPP is an important indicator of
regional ecosystem function, ecosystem stability and self-healing
capacity (Melillo et al., 1993; Running et al., 2004). It is not only an
important component of the global carbon cycle (Cramer et al.,
1999; Crabtree et al., 2009), but also reflects the combined effects of
climate changes and human activities on terrestrial vegetation
(Gower et al., 1999; Nemani et al., 2003). Therefore, the analysis
of the spatiotemporal evolution patterns and driving factors of
vegetation NPP can provide a scientific basis for evaluating the
quality of regional terrestrial ecosystems, effective management of
natural resources, and sustainable socioeconomic development in
the context of global climate change (Qi et al., 2019).

The driving factors of NPP changes can be divided into climate
changes and human activities (Chen et al., 2014; Sun et al., 2015). It
is believed that increased CO2 fertilization effects in climate enhance
vegetation NPP (Piao et al., 2011; Wang et al., 2020), which
contributes a negative feedback effect on global warming.
Regional temperature, precipitation and solar radiation are the
most important climate factors driving NPP changes (Churkina
and Running, 1998; Nemani et al., 2003; Running et al., 2004).
Temperature, in high latitudes and altitudes, e.g., northeastern
China (Li H. et al., 2021) and the Qinghai-Tibet Plateau (Xu
et al., 2016; Wang S. et al., 2017), exerts the key climatic driver
for NPP increases. The increase in temperature at cold regions can
enhance activities of photosynthetic enzymes, reduce speed of
chlorophyll degradation, and prolong the vegetation growth
season, thus promote vegetation productivity (Liu et al., 2016;
Dusenge et al., 2019). In arid and semi-arid areas, precipitation
plays a decisive role in the NPP dynamics among the climatic
factors, and the increase of precipitation enhances vegetation
photosynthesis by affecting soil water content (Wang et al., 2001;
Jiang Y. et al., 2020; Li C. et al., 2021). Solar radiation can influence
soil temperature, and its increase reduces soil moisture and hinders
root growth, thus decreasing productivity especially in low-land
grassland ecosystems (Zhou et al., 2012; Wu G. et al., 2021).
However, previous studies have also found that excessive solar
radiation exerted a negative effect on vegetation productivity in
the Qinghai-Tibet Plateau (Luo et al., 2018; Yan et al., 2019).

In addition, anthropogenic factors are also important drivers of
vegetation dynamic. In order to improve the environment, the
Chinese government has launched a variety of initiatives,
including Three-North Shelter Forest Program, Grain to Green
Program (GTGP), and Grazing Withdrawal Program (GWP)
(Wang B. et al., 2017; Li et al., 2021a). The Loess Plateau, one of
the world’s most eroded regions, is a prioritized pilot region of the
ongoing GTGP program and has shifted from a net carbon source to
a net carbon sink by converting cultivated land on steep slopes to
perennial vegetation (Feng et al., 2013; Gang et al., 2018). Decreased
grazing pressure and conversion from grazing lands to grasslands

resulting from these programs have made a significant contribution
to vegetation restoration, and have greatly improved the carbon
storage in the Qinghai-Tibet Plateau, and Inner Mongolia Grassland
(Chi et al., 2018; Li et al., 2021b). In order to prevent and control
rocky desertification issues in southwestern China, a series of key
national ecological restoration projects such as the Natural Forest
Protection Project and the Karst Rocky Desertification
Comprehensive Control and Restoration Project have been
launched and the world’s leading level of vegetation productivity
restoration have been achieved (Gang et al., 2019; Tang et al., 2022).
China’s climate is complex and diverse with an abundant number of
ecosystems, spanning from south to north across tropical zone to
cold temperate zone, and from the humid zone in the southeast to
the arid zone in the northwest (Yang et al., 2017; Lai et al., 2018).
However, effects of climate factors and human activities vary across
climate zones and ecosystem types due to the interaction of complex
geographic topography and climate change (Zhao et al., 2018; Chen
Y. et al., 2019). Relatively few studies have been concerned with such
differences due to climatic zones. Therefore, it is necessary to assess
the relative roles of climate changes and human activities in
vegetation dynamics quantitatively under different climatic zones,
for an in-depth understanding of the mechanisms driving vegetation
change.

Recently, several methods have been adopted to determine the
interaction of climate factors and human activities on vegetation
dynamics, such as the regression model method, redundancy
analysis, and the Miami memorial model (Li D. et al., 2018; Wu
N. et al., 2021; Xiong et al., 2021). The regression model method is
the simplest, but it is hard to describe the complex interactions
between vegetation and climatic factors, between that and human
activities (Turner and Carpenter, 2017; Liu et al., 2020), and
independent variable factors are difficult to quantify spatially,
lead to uncertainties in the results (Wu N. et al., 2021). The
biophysical model-based method can separate the relative
contributions of climate change and human activities on
vegetation dynamics by simulating potential NPP (PNPP) and
actual NPP (ANPP) (Li et al., 2016; Li C. et al., 2021), but it
needs lots of physiological and ecological parameters, which may
cause the uncertainties of the model (Zhou et al., 2015). The residual
trend analysis method (RESTREND) (Evans and Geerken, 2004) is a
simple calculation that can separate spatially the impact of human
activities on vegetation from the impact of climate changes using the
residue of multiple regression between climate factors and
vegetation indicators to quantify the extent of human activities
(Wu et al., 2022; Yin et al., 2022). The disadvantage of method is
that model calibration in the year assuming without human
interference would introduce errors into the model itself (Jiang
H. et al., 2020). Understanding the influence mechanisms of NPP is
essential to providing targeted guidance for constructing ecological
restoration programs.

Previous studies focus on a specific or local region, and there are
fewer studies on the entire China, as a decisive region in the global
carbon cycle. Accordingly, the objectives of this study were to 1)
analyze the spatial distribution and temporal dynamic
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characteristics of NPP in China from 2000 to 2020; 2) quantify the
contributions of climate factors and human activities to NPP
dynamics in China; 3) explore the major driving factors of NPP
changes under different climate types; 4) analyze the NPP dynamics
for different land cover types.

2 Materials and methods

2.1 Study area and data

China, the third largest country in the world, was chosen as the
study region, which had a complex topography, diverse climate, and
rich variety of vegetation with an intricate distribution. China spanned a
wide range of latitudes, with large differences in distance from the sea, as
well as different terrain, resulting in diverse combinations of
temperature and precipitation, forming a wide variety of climates.
The local vegetation growth was significantly impacted by various
climate types, thus we divided China into five regions (Figure 1)
based on climate type for a more specific analysis (Song et al.,
2011): 1) Tropical Monsoon Climate Region (TMCR); 2)
Subtropical Monsoon Climate Region (SMCR); 3) Monsoon Climate
Region of Medium Latitudes (MCMLR); 4) Temperate Continental
Climate Region (TCCR); 5) Alpine Climate Region (ACR). During the
growing season (from April to October), the average temperature
differences across the country were not significant (except for ACR)
with 24.4, 21.2, 16.2, 17.3, and 4.3°C. The cumulative precipitation rose
from the northwest (170 mm) to the southeast (1,465 mm). On the
contrary, the cumulative solar radiation increased from the southeast
(3,702MJ/m2) to the northwest (5,161MJ/m2).

NPP data were derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Net Primary Production Gap-Filled
Yearly L4 Global 500 m SIN Grid (MOD17A3HGF v006) from the
National Aeronautics and Space Administration (NASA) (https://
lpdaac.usgs.gov/) with a temporal resolution of 1 year and a spatial
resolution of 500 m. The data were calculated by using an NPP
estimation model established based on the Biome Biogeochemical
model and the light use efficiency model. The downloaded NPP data
from 2000 to 2020 were mosaiced, uniformly projected in WGS_
1984_UTM_Zone_48N, converted to real values, and resampled to
1,000 m.

Monthly meteorological data of the growing season (from April
to October) from 2000 to 2020 consisted of temperature,
precipitation, and solar radiation. Temperature and precipitation
data were obtained from the National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/zh-hans/) with a spatial resolution of
1,000 m, which were generated by using Delta downscaling
method based on the global climate dataset published by CRU
and WorldClim. Solar radiation data were obtained from the
National Centers for Environmental Prediction (NCEP) Climate
Forecast System (CFS) (https://cfs.ncep.noaa.gov/) with a spatial
resolution of 0.2°, and NCEP upgraded CFS to version 2 (CFSv2) on
30 March 2011. Data were resampled to 1,000 m. In this study, we
defined the growing season as from April to October in order to be
consistent across the whole country (Piao et al., 2010; Peng et al.,
2011). The average temperature, the cumulative precipitation, and
the cumulative solar radiation during the growing season from
2000 to 2020 were calculated.

Land cover data were downloaded from MODIS Land Cover
Type Yearly L3 Global 500 m SIN Grid (MCD12Q1 v006) (https://

FIGURE 1
(A) The spatial pattern of elevation, the location of five sub-regions, and the distribution of (B) unchanged and (C) changed land cover types from
2001 to 2020. The legend of (B)means that the land cover type in 2020 was the same as that in 2001. The legend of (C)means the land cover type after
conversion.
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lpdaac.usgs.gov/) for the uniformity of data sources, and were
resampled to 1,000 m. MODIS land cover types have been
provided since 2001, thus data for 2001 and 2020 were used.
Annual Plant Functional Types classification of MCD12Q1 was
used for this study. In this study, we first analyzed NPP variations of
the entire China and then areas of unchanged land cover types, as
the area of changed land cover types accounted for only 7.29% of
China, and the distribution was scattered (Figure 1).

Socio-economic data including gross domestic product (GDP)
and population were obtained from the China Statistical Yearbooks
(various issues) of the National Bureau of Statistics of China (http://
www.stats.gov.cn/). Climate type distribution data were obtained
from the Resources and Environment Science and Data Center,
Chinese Academy of Sciences (http://www.resdc.cn/).

2.2 Methods

2.2.1 Trend analysis
The Theil-Sen trend analysis method was used to estimate the

NPP change trend (Xu et al., 2020). The formula is as follows:

SNPP � median
NPPj −NPPi

j − i
[ ],∀i< j (1)

Where SNPP is the Theil-Sen trend of NPP andNPPi andNPPj are
the values of NPP in year i and j, respectively. SNPP > 0 indicates an
increasing trend, and the converse denotes a decreasing trend.

The Mann-Kendall (MK) test was used to indicate the
significance of the NPP trend (Dameneh et al., 2021). The
formula is as follows:

S � ∑n−1
i�1

∑n
j�i+1

sgn NPPj −NPPi( ) (2)

sgn NPPj −NPPi( ) � +1, NPPj −NPPi > 0
0, NPPj −NPPi � 0
−1, NPPj −NPPi < 0

⎧⎪⎨⎪⎩ (3)

Z �

S − 1������
Var S( )√ , S> 0

0, S � 0

S + 1������
Var S( )√ , S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

Var S( ) � n n − 1( ) 2n + 5( )
18

(5)

Where n is the duration, in years, of the study period (n =21). When
|Z|>Z1−α/2, the NPP trend is considered statistically significant. The
5% significant level which refers toZ1−α/2 =1.96 was used for the MK
test in this study.

2.2.2 Contributions of climate factors and human
activities to NPP

The main drivers of NPP changes are climate changes and
human activities. The residual trend analysis (RESTREND) was
used to calculate the contributions of climate factors (temperature,
precipitation, and solar radiation) and human activities to NPP
(Evans and Geerken, 2004). The formula is as follows:

SNPP � C C( ) + UF � C T( ) + C P( ) + C R( ) + UF

≈
zNPP

zT
( ) ×

zT

zn
( ) + zNPP

zP
( ) ×

zP

zn
( ) + zNPP

zR
( ) ×

zR

zn
( ) + C H( )

(7)

Where SNPP is the Theil-Sen trend of NPP. C(C),C(T),C(P),C(R)
are the contributions of climate, temperature, precipitation, and
solar radiation to NPP, respectively. C(C) is the sum of C(T), C(P),
and C(R). n is the number of study years. C(T) is the product of
zNPP/zT (the slope of the linear regression line between NPP and
temperature) and zT/zn (the slope of the linear regression line
between temperature; n). C(P) and C(R) are calculated similarly. In
this study, the average temperature, the cumulative precipitation,
and the cumulative solar radiation during the growing season (from
April to October) were calculated. UF is residual value between
SNPP; C(C). In this study;UF is interpreted as the change rate of the
contribution of human activities to NPP, namely; C(H) (Chen et al.,
2021a; Ge et al., 2021).

2.2.3 Scenario design and quantitative evaluation
methods

By combining the NPP trend with the contributions of the
driving factors, six scenarios were produced according to the
different permutations of value ranges of SNPP, C(C), and C(H)
(Table 1). Increased NPP is considered as an indicator of
vegetation recovery, whereas a negative SNPP stands for
vegetation degradation (Zhou et al., 2015; Chen et al., 2021b).
Positive C(C) and C(H) represent that climate factors and
human activities facilitated an increase in NPP, whereas the
negative C(C) and C(H) represent that climate factors and
human activities caused a decline in NPP.

3 Results

3.1 Spatial and temporal variation of NPP

Figure 2A shows the spatial distribution of NPP from 2000 to
2020. In China, the annual average NPP ranged from 0 g C/m2/
year to 1943.59 g C/m2/year and the average NPP in the region
was 325.11 g C/m2/year. The distribution pattern of NPP in
China was higher in southeast and lower in northwest. TMCR
had the highest NPP among the five sub-regions, with the average
NPP of 1,110.11 g C/m2/year. The average NPP in SMCR,
MCMLR, and TCCR were 700.64 g C/m2/year, 385.21 g C/m2/
year, and 105.41 g C/m2/year, respectively. ACR had the lowest
average NPP of 102.88 g C/m2/year. As shown in Figure 2B, NPP
increased in most of China in 2020 compared to 2000. NPP
increased most significantly in the northeastern mountainous
areas, the southern Loess Plateau, and Sichuan basin, with an
increase of NPP of more than 200 g C/m2/year. It can be seen that
the NPP values in the southern Qinghai-Tibetan Plateau, the
southern Yunnan-Kweichow Plateau, and the northern Greater
Khingan Mountains were obviously reduced, with a decrease of
NPP of more than 100 g C/m2/year.

The annual NPP variations from 2000 to 2020 in China and five
sub-regions were shown in Figure 2C. The annual average NPP in
China showed a significantly increasing trend (p<0.05) at a rate of
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2.32 g C/m2/year. In TMCR, NPP declined insignificantly (p>0.05)
at a rate of −0.61 g C/m2/year. However, NPP in the other four sub-
regions showed a significant increasing trend (p<0.05). The
increasing rate in MCMLR was highest, which was 4.44 g C/m2/
year, while NPP in ACR showed the lowest increasing rate of 0.62 g
C/m2/year. The increasing rate of SMCR and TCCR was 2.92 g C/
m2/year and 2.11 g C/m2/year, respectively.

The spatial variations of NPP were observed, as shown in
Figure 3. The classification in the legend of Figure 3A was
determined by the distribution of NPP trend values, which
between −5 and 10 accounted for 95% of the pixels. The NPP
change trend in China ranged from −81.71 g C/m2/year to 81.71 g
C/m2/year. NPP increased in 64.54% of China and 40.90% of the
area increased significantly (p<0.05). The areas with rapid NPP
increase were mainly distributed in Sichuan Basin, the Loess
Plateau, and the Greater Khingan Mountains. In contrast, the
decreasing trend of NPP accounted for 9.90% and 1.79% of the
area declined significantly. The areas with NPP decrease mainly
appeared in the southern Qinghai-Tibetan Plateau, the southern
Yunnan-Kweichow Plateau, and southeastern China. Figure 3C
shows the percentage changes of NPP for different regions. Areas
of significant increases of NPP in TMCR, SMCR, MCMLR,
TCCR, and ACR accounted for 23.55%, 43.77%, 67.20%,
37.17%, and 24.20%, respectively. NPP showed a significant
decreasing trend across 19.33% of TMCR, 4.96% of SMCR,
0.61% of MCMLR, 0.15% of TCCR, and 0.45% of ACR,
respectively.

3.2 Contributions of climate factors and
human activities to NPP

The contributions of climate factors and human activities to
NPP changes were calculated based on RESTREND (Figure 4). In
China, the average contributions due to temperature, precipitation,
and solar radiation to NPP were 0.205 g C/m2/year, 0.467 g C/m2/
year, and 0.496 g C/m2/year, respectively (Figure 4F). Besides, the
contributions of climate and human activities were 1.169 g C/m2/
year and 1.142 g C/m2/year. C(C) of TMCR, SMCR, MCMLR,
TCCR, and ACR were 0.482 g C/m2/year, 1.225 g C/m2/year,
2.312 g C/m2/year, 1.066 g C/m2/year, and 0.452 g C/m2/year,
respectively. However, human activities negatively contributed to
NPP changes in TMCR, with the contribution of −0.924 g C/m2/
year. In contrast, C(H) of SMCR, MCMLR, TCCR, and ACR were
1.778 g C/m2/year, 1.982 g C/m2/year, 1.033 g C/m2/year, and
0.173 g C/m2/year, respectively, having positive contributions to
increases of NPP. Specific to each region, human activities played
a primary role in NPP dynamics in TMCR and SMCR, whereas
climate change was the dominant factor in the remaining regions,
namely, MCMLR, TCCR, and ACR.

As shown in Figure 4A, temperature contributed positively in
46.27% of the area of China mainly including the Qinghai-Tibetan
Plateau, the Loess Plateau, the Yunnan-Kweichow Plateau, and
northeastern China, while temperature contributed negatively in
28.21% of China mainly including the Mongolian Plateau, eastern
and southern China. Areas with positive contributions of

TABLE 1 Six scenarios of NPP changes influenced by climate factors and human activities.

SNPP C(C) C(H) Contribution Scenario

Climate (%) Human (%)

>0 >0 >0 |C(C)|
|C(C)|+|C(H)| × 100 |C(H)|

|C(C)|+|C(H)| × 100 Recovery for both factors

>0 <0 100 0 Recovery for climate factors

<0 >0 0 100 Recovery for human activities

<0 <0 <0 |C(C)|
|C(C)|+|C(H)| × 100 |C(H)|

|C(C)|+|C(H)| × 100 Degradation for both factors

<0 >0 100 0 Degradation for climate factors

>0 <0 0 100 Degradation for human activities

TABLE 2 The contribution ratios of climate factors and human activities to NPP trend across China and five sub-regions.

Contribution ratio (%) NPP variation NPP recovery NPP degradation

Climate Human Climate Human Climate Human

China 50.58 49.42 50.25 49.75 47.58 52.42

TMCR 34.30 65.70 73.29 26.71 45.29 54.71

SMCR 40.79 59.21 42.58 57.42 48.85 51.15

MCMLR 53.84 46.16 53.31 46.69 24.70 75.30

TCCR 50.80 49.20 50.80 49.20 50.48 49.52

ACR 72.28 27.72 71.11 28.89 57.17 42.83

Frontiers in Earth Science frontiersin.org05

Li et al. 10.3389/feart.2023.1084399

49

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1084399


precipitation accounted for 54.06% of China (Figure 4B), mainly
including Sichuan Basin, the Loess Plateau, and the Mongolian
Plateau, whereas areas with negative contributions of precipitation
accounted for 20.41% and were mainly distributed in the Qinghai-
Tibetan Plateau, central and southeastern China. Solar radiation
made positive contributions in 53.25% of China and negative
contributions in 21.24% of China (Figure 4C). Moreover, areas of
contributions of solar radiation were similar to that of precipitation.
Additionally, positive contributions of human activities were
scattered in most areas of China (55.67%) (Figure 4E). However,
negative contributions of human activities were mainly distributed
in the Qinghai-Tibetan Plateau, the southern Yunnan-Kweichow
Plateau, and southeastern China.

3.3 The relative impacts of climate factors
and human activities on NPP

Figure 5 shows the spatial distribution of the contribution ratio
of climate factors and human activities to NPP change trend from
2000 to 2020. Excluding stable area which accounted for 25.56% of
China, areas with the contribution ratio of climate factors greater
than 70% were mainly scattered in the Qinghai-Tibetan Plateau,
Sichuan Basin, northwestern, and northeastern China, accounted for

24.86% of China (Figure 5A). The area percentage of the
contribution ratio of climate factors from 30% to 70% was
21.41%. And the area percentage where the contribution ratio of
climate factors less than 30% was 28.17%. Moreover, in 27.57% of
China, mainly including central and southeastern China, the
contribution ratio of human activities exceeded 70% (Figure 5B).
The contribution ratio of human activities of 21.55% of China
ranged from 30% to 70%, and 25.32% of China had a
contribution ratio less than 30% of human activities.

As shown in Table 2, the contribution ratio of climate factors
and human activities to NPP trend was discussed outside of stable
area, which was calculated from the average contributions of climate
factors and human activities in each sub-region. Overall, climate
factors contributed 50.58% to NPP changes. Human activities were
the main drivers of NPP changes in TMCR (65.70%) and SMCR
(59.21%), while climate factors were the key factors in MCMLR
(53.84%), TCCR (50.80%), and ACR (72.28%). In areas with NPP
recovery, climate factors dominated in all sub-regions except for
SMCR. In areas with NPP degradation, climate factors played a
major role in TCCR and ACR, while the contribution ratios of
human activities were higher in TMCR, SMCR and MCMLR.

Figure 6 shows the area affected by both climate factors and
human activities accounted for 49.84% of China. NPP changes were
dominated by climate factors in 13.67% of China, while NPP

FIGURE 2
Spatial distribution of (A) annual average NPP, (B) NPP variations, and (C) NPP inter-annual variations in China and five sub-regions from 2000 to
2020.
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changes in 10.92% of China were human-dominated. Driving
factors of NPP recovery and degradation showed spatial
differences in China. On the spatial distribution (Figure 6A), the
RC was mainly scattered in the eastern Qinghai-Tibetan Plateau,
Sichuan basin, the Mongolian Plateau, and northeastern China. The
RH was mainly distributed in central China. And the RB occurred in
most areas of China. In contrast, the DC was mainly distributed in
the southern flank of the East Himalayas and Taiwan Island. The
DH mainly appeared in the southern Yunnan-Kweichow Plateau
and southeastern China. And the DB mainly occurred in the
southern Qinghai-Tibetan Plateau, the southern Yunnan-
Kweichow Plateau, and southeastern China.

Figure 6B shows the area percentage of NPP changes caused
by climate factors and human activities. Areas of increases of
NPP in which the driving factors were both factors accounted for
45.23%, while areas in which increases of NPP were caused by
climate factors and human activities accounted for 11.29% and
8.02%, respectively. However, both factors caused decreases of
NPP in 4.61% of China, whereas areas affected by climate factors
and human activities in 2.39% and 2.90% of China with such
decreases. Both climate factors and human activities were the
most important factors for increases of NPP in five sub-regions.
The second most important factors for increases of NPP in
TMCR, MCMLR, TCCR, and ACR were climate factors, and
in SMCR were human activities. In addition, the major driving
factors of NPP decreases in TMCR, SMCR, MCMLR, and TCCR
were both climate factors and human activities, and in ACR were
human activities. The secondary driving factors of NPP decreases

in TMCR, SMCR, MCMLR, and TCCR were human activities,
and in ACR were both factors.

3.4 Variations of NPP under different types
of land cover

We first divided land cover types in China into unchanged and
changed land cover types from 2001 to 2020. As shown in Table 3, from
2001 to 2020, the area percentage of unchanged and changed land cover
types in China were 92.71% and 7.29%, respectively. The mean NPP of
unchanged land cover types increased by 16.48%, while themeanNPP of
changed land cover types increased by 24.46%. The statistic total NPP
showed that the total NPP percentage of unchanged land cover types in
both years was approximately 93% of the overall. In terms of change, the
total NPP for the entire China rose by 495.70 TgC/year, with the increase
of total NPP of unchanged land cover types accounting for 90.04% of the
overall increase. Therefore, we focused on the analysis of unchanged land
cover types due to their contribution to NPP and its growth.

As shown in Figure 7A, forestland (28.08%) and grassland
(27.41%) were the most extensive land cover types. Most
forestland was located in the southern and northeastern regions
of China, and grassland was mainly distributed in the northern and
northwestern regions. Farmland was concentrated on the central
and northeastern China. Unused land was mainly located in
northwestern China. Among the unchanged land cover types, the
highest mean NPP was found in forestland, followed by farmland
and grassland, and the lowest in water (Figure 7B). The mean NPP

FIGURE 3
(A) Annual change trend of NPP and (B) the corresponding significance. (C) Statistical results of the percentage changes of NPP for different regions.
The legend of (C) is the same as that of (B), and stable area means that trend of NPP is 0 or no vegetation.
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for each of the six land cover types increased from 2001 to 2020. The
highest increase in mean NPP was observed in farmland with
110.34 g C/m2/year, and mean NPP of forestland and grassland
increased by 63.46 g C/m2/year and 55.77 g C/m2/year, respectively.
The total NPP showed a similar trend as the mean NPP. Forestland
had the highest total NPP increase with 174.12 Tg C/year, while
grassland and farmland were followed with 149.36 Tg C/year and
120.69 Tg C/year of total NPP increase, respectively.

4 Discussion

4.1 Evaluation of the NPP results

In previous studies, Ji et al. (2008) estimated the averaged total
NPP of China over 1981-2000 with 2.94 Pg C. During the same
period, Peng et al. (2021) determined the NPP by CABLE2.1 and
TRENDY ensemble in China varied between 2.7 and 4.0 Pg C.Wang

FIGURE 4
The contributions of climate factors [(A) temperature, (B) precipitation, (C) solar radiation, (D) climate] and (E) human activities to NPP trend from
2000 to 2020. (F) The average contributions of climate factors and human activities in China and five sub-regions.
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J. et al. (2017) calculated the average total NPP from 37 existing NPP
data sets in China from 2000 to 2012 with 2.92 ± 0.12 Pg C. Liu et al.
(2022) estimated the annual total NPP of vegetation in China’s

terrestrial ecosystems varied between 2.72 and 3.29 Pg C from
2000 to 2019, with a multiyear average of 3.09 Pg C. In this
study, the total NPP from 2000 to 2020 in China estimated

FIGURE 5
Spatial distribution of the contribution ratio of (A) climate factors and (B) human activities.

FIGURE 6
(A) Spatial distribution of driving factors to NPP. (B) Area percentage of NPP dynamics affected by climate factors and human activities for China and
five sub-regions. RC, Recovery for climate factors; RH, Recovery for human activities; RB, Recovery for both factors; DC: Degradation for climate factors;
DH, Degradation for human activities; DB, Degradation for both factors. The legend of (B) is the same as that of (A).

TABLE 3 Mean and total NPP changes of land cover types from 2001 to 2020.

Land cover type Area (km2) Mean NPP (g C/m2/year) Total NPP (Tg C/year)

2001 2020 Difference 2001 2020 Difference

Unchanged types 9057669 298.91 348.19 +49.27 2707.45 3153.76 +446.31

Changed types 712195 283.56 352.90 +69.35 201.95 251.34 +49.39

Total area 9769864 297.79 348.53 +50.74 2909.40 3405.10 +495.70
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ranged from 2.81 to 3.41 Pg C, with results consistent with these
values. Overall, the trend of total NPP was 0.023 Pg C/year, similar
to previous findings (Lai et al., 2018; Liu et al., 2022), who found
rates of 0.025 and 0.022 Pg C/year, respectively. For the spatial
dimension, pixels with a positive trend in NPP accounted for most of
the total pixels, consistent with previous studies (Yang et al., 2017;
Ge et al., 2021). The significant decline of NPP mainly occurred in
the southern Qinghai-Tibetan Plateau and the southern Yunnan-
Kweichow Plateau, which was also found by Luo et al. (2018) and
Wang J. et al. (2017), with NPP also showing a decreasing trend in
southeastern China (Wen et al., 2019).

4.2 Impacts of climate factors on NPP
changes

Climate change was identified as the main drivers affecting NPP
distribution and dynamics (Song and Ma, 2011; Liu et al., 2015).
Changes in temperature, precipitation and solar radiation affected
NPP by altering soil moisture and soil microorganisms, affecting
vegetation respiration and photosynthesis (Horion et al., 2013; He
et al., 2015). Overall, climate factors contributed positively in 59.45%
of China and negatively in 15.05%, which had spatial heterogeneities
in the impact of NPP (Figures 4, 8).

For most of the forestland in southern China, due to sufficient
precipitation and high temperature in the growing season,
vegetation cover represented by NDVI increased, and there was a
correlation between NPP and NDVI (Sun et al., 2002), which led to
the increase in NPP. Adequate precipitation also enhanced the
carbon sequestration capacity of forestland in the Sichuan Basin
to increase NPP (Chen et al., 2021a; Wang et al., 2021a). The NPP of
forestland in the Greater Khingan Mountains and the Changbai
Mountains in northeastern China was positively correlated with
temperature and solar radiation, with temperature being the main
limiting factor for vegetation growth in the cold temperate region,
while increased solar radiation would also enhance vegetation
photosynthetic capacity (Yan et al., 2021). The southern Qinghai-
Tibetan Plateau showed a decreasing trend of NPP, mainly

distributed in subtropical broad-leaved forest with good water
and heat conditions. Therefore, the effects of temperature and
precipitation on the growth of vegetation in the region was
considered to have reached equilibrium or saturation. In the
event of significant climate change, the growth of vegetation will
be inhibited (Deng et al., 2022). In the southern Yunnan-Kweichow
Plateau, precipitation was the most important factor of NPP
dynamics in the region’s tropical seasonal rainforests (Linger
et al., 2020), and there was a warm-dry trend in climate here
that enhanced the effect of drought on NPP decline (Zhou et al.,
2022). The increase in vapor pressure deficit and temperature greatly
increased the demand for atmospheric evaporation, further causing
vegetation stomata to close, resulting in lower leaf intercellular CO2

concentrations and limiting photosynthesis (Li et al., 2010).
Temperature and solar radiation were the dominant climatic

factors affecting grassland growth in the Qinghai-Tibetan Plateau
(Xu et al., 2016). In the central and eastern Qinghai-Tibetan Plateau,
warmer temperature contributed positively to the increase of NPP of
alpine grassland because of a lengthened growing season and a more
rapid rate of photosynthesis (Gu et al., 2017), and there was also a
significant positive correlation between solar radiation and NPP of
grassland, where plant chlorophyll content was increased and
photosynthesis was enhanced (Meng et al., 2020). Conversely,
temperature and solar radiation were negatively correlated with
NPP at higher elevations in the western Qinghai-Tibetan Plateau,
possibly because increases in temperature led to melting of snow and
permafrost, which disrupted the structure of vegetative root systems
and hindered grassland growth (Xiong et al., 2016). In addition,
excessive solar radiation increased evaporation of surface soil and
limited water availability, which may prevent the growth of
herbaceous plants with shallow root systems (Yang et al., 2017).
Precipitation had a suppressive effect on grassland growth in
southeastern plateau (Gao et al., 2013; Xiong et al., 2021), and its
increase may reduce solar radiation, which inhibits photosynthesis
(Yang et al., 2015). Alternatively, precipitation could contribute to
soil erosion, which decreased soil organic matter content, and
reduced alpine grassland NPP (Xu et al., 2016). In arid and semi-
arid areas, e.g., the Mongolian Plateau and the Loess Plateau,

FIGURE 7
(A) Spatial distribution and (B) statistics of mean and total NPP variations of the unchanged land cover types from 2001 to 2020.
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precipitation was an important controlling driver of grassland
growth which was confirmed in the previous studies (Zhao et al.,
2019; Jiang H. et al., 2020; Wu N. et al., 2021). NPP was negatively
correlated with temperature in the arid land of the Mongolian
Plateau, mainly due to the fact that warming exacerbated the
negative effects of drought on grassland growth (Zeng and Yang,
2008).

In the northeast agricultural region of China, the average
temperature of growing season met the requirements of the first
few stages of crop growth, but at maturity, it exceeded the optimum
temperature for crop growth, while the average precipitation of
growing season did not exceed the optimum humidity (Piao et al.,
2010). Therefore, NPP showed a positive correlation with
precipitation and a negative correlation with temperature. In

FIGURE 8
Spatial distribution of the correlation coefficients between NPP and (A) temperature, (C) precipitation, (E) solar radiation and (B,D,F) their
corresponding significance.
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addition, in central China, due to excessive warmth and decrease in
precipitation, the photosynthesis of plants was weakened, resulting
in a negative contribution to farmland NPP (Chen et al., 2021b).

In addition, droughts are a comprehensive and frequently
occurred natural disaster affected by multiple climate factors, and
will greatly influence vegetation growth and reduce the net primary
production (Zhao and Running, 2010; van der Molen et al., 2011).
During drought, soil water content decreased and vegetation
stomata closed, thus limiting plant growth (van der Molen et al.,
2011; Chen et al., 2013; Su et al., 2018). Drought also indirectly
affected ecosystem productivity by increasing pest and disease
infestation and causing forest fires (Xiao and Zhuang, 2007;
Anderegg et al., 2013). Previous studies have shown that five
typical drought events occurred in China from 1982 to 2015,
resulting in a decline in NPP in more than 23% of the area (Lai
et al., 2018), and the effects of drought on NPP were mainly located
in farming-pastoral ecotones of arid and semi-arid ecosystems (Li
et al., 2020). Although with strong carbon sequestration capacity,
vegetation growth in southwestern China was highly vulnerable to
drought suppression, and the effects of drought on ecosystem water-
use efficiency were seasonal, which affected ecosystem productivity
(Wang et al., 2021b). In this area, in a region with complicated and
fragmentized topography, drought may not evidently decrease the
NPP, but may enormously impact NPP in a region with overall flat
topography (Guan et al., 2018).

For some regional studies in neighboring China, in the Western
Himalaya, the land cover type in India was mainly forestland, while
in China it was dominated by unused land and grassland. Due to the
difference in vegetation types as well as hydrothermal conditions
between the two regions, NPP variation in the Indian Western
Himalayan region was negatively correlated with temperature
(Kumar et al., 2019), while it was positively in the Chinese
Western Himalayan region (Figure 8). However, precipitation
and solar radiation exhibited a consistent trend with NPP change
in both regions (Sharma et al., 2022). Central Asia and northwest
China were both arid and semi-arid zones with temperate
continental climate, and precipitation was the main climatic
driver controlling the NPP variations in most areas of both
regions (Jiang et al., 2017; Chen T. et al., 2019). The Lancang-
Mekong River was known as the Lancang River in China and the
Mekong River in Southeast Asia. In the Lancang River basin, where
hydrothermal conditions were poor, the correlation between NPP
and temperature was positive. In contrast, NPP was negatively
correlated with temperature in the Mekong River Basin where
good hydrothermal conditions existed, and the correlation
between NPP and precipitation in space was not obvious (Li W.
et al., 2018).

4.3 Impacts of human activities on NPP
changes

Human activities were also significant factors affecting the
recovery or degradation of vegetation (Cai et al., 2015; Naeem
et al., 2020). In arid and semi-arid regions of northwestern
China, human activities were the dominant driving factors in
desertification development (Zhang et al., 2011; Zhou et al.,
2015). Human activities including overgrazing, overuse of water

resources and deforestation have caused damage to natural
vegetation, leading to desertification expansion (Li et al., 2016; Li
C. et al., 2021). Grazing affected biomass through feeding, affected
the physical structure of the soil through trampling, making bare
topsoil vulnerable to erosion by strong wind (Jiang H. et al., 2020). In
recent decades, with the implementation of a series of ecological
restoration projects like the Grain to Green Program (GTGP) and
Grazing Withdrawal Program (GWP), the vegetation in the
northwestern China has been well protected and restored (Liu
et al., 2019a). The GTGP was launched in 1999 to replace
cropland and grazing land with grassland and woodland in
fragile regions (Mu et al., 2013) and the GWP was initiated in
2003 to reduce the grazing pressure on natural grassland by
forbidding grazing and employing cultivated pastures (Xu et al.,
2016), which contributed positively to the Qinghai-Tibet Plateau,
the Loess Plateau, the Mongolian Plateau, and Xinjiang Uygur
Autonomous Region on vegetation restoration (Yang et al., 2014;
Cai et al., 2015; Gang et al., 2018; Shi et al., 2022).

In the North China Plain and the Middle and Lower Yangtze
River Plain, human cultivation activities contributed to NPP
increases (Ge et al., 2021), and were mainly manifested in the
improvement of agricultural machinery level, technology and
investment, which improved the efficiency and mechanization of
farm irrigation and promoted the development of cultivated land
quality. The Natural Forest Protection Program aimed to prohibit
logging in the southwest China and significantly reduce
deforestation in the northeast China and other natural forest
areas (Xu et al., 2006), which has reduced soil erosion and
improved vegetation conditions in the Hengduan Mountain and
the Greater Khingan Mountains (Yin et al., 2020).

With socio-economic development, land cover and use have
changed dramatically at the same time, which will affect the
ecological environment (Yang et al., 2021). We selected four
typical regions with high negative contribution of human

FIGURE 9
The contribution map of human activities to NPP trend from
2000 to 2020 and four typical regions with high negative
contributions in Sichuan Basin, the southern Yunnan-Kweichow
Plateau, southeastern China, and the Northeast China Plain.
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TABLE 4 Land cover changes in four typical regions from 2001 to 2020 (unit: km2).

Area Land cover Translates to

Forestland Grassland Farmland Urban area Unused land Water Total

Sichuan Basin Forestland 20276 1,230 21 11 0 0 21538

Grassland 8852 58650 19592 782 16 284 88176

Farmland 15 8373 47275 1,590 1 2 57256

Urban area 0 0 0 2869 0 0 2869

Unused land 0 49 0 8 74 17 148

Water 5 169 18 19 4 177 392

Total 29148 68471 66906 5279 95 480 170379

Southern Yunnan-Kweichow Plateau Forestland 60337 169 195 7 1 3 60712

Grassland 420 62 53 0 0 9 544

Farmland 578 58 703 1 0 6 1,346

Urban area 0 0 0 140 0 0 140

Unused land 0 0 0 0 0 0 0

Water 0 0 0 0 0 0 0

Total 61335 289 951 148 1 18 62742

South-eastern China Forestland 76294 619 115 503 0 4 77535

Grassland 333 381 13 48 9 0 784

Farmland 321 89 555 208 0 0 1,173

Urban area 0 0 0 3307 0 0 3307

Unused land 0 3 0 2 17 0 22

Water 0 1 0 0 0 276 277

Total 76948 1,093 683 4068 26 280 83098

Northeast China Plain Forestland 31077 369 475 2 0 2 31925

Grassland 532 39179 19427 79 168 377 59762

Farmland 1856 2736 130690 409 10 236 135937
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activities for analysis, including Sichuan Basin, the southern
Yunnan-Kweichow Plateau, southeastern China, and the
Northeast China Plain (Figure 9). During the study period, land
cover changed significantly in these regions (Table 4). In Sichuan
Basin, 22.22% of grassland and 5.71% of forestland translated to
farmland, and urban area increased by 84.00%. Similarly, urban area
in the Northeast China Plain increased by 15.43%, and 32.51% of
grassland translated to farmland, which meant human agricultural
activities with the conversion of large amounts of grassland to
farmland may lead to a decrease in NPP (Tian et al., 2020; Li H.
et al., 2021). In southeastern China, which was one of the more
economically developed regions in China, urban area increased by
23.01%, and 17.73% of farmland translated to urban area. Several
studies have shown that the process of urbanization has caused a
certain degree of damage to the ecological environment (Wu et al.,
2014; Liu X. et al., 2019).

Moreover, continuous urban expansion, rapid economic
development, and sustained population growth were also
considered to be factors affecting NPP (Ma et al., 2012; Li et al.,
2022). Generally, these four typical regions experienced rapid
economic development from 2000 to 2020, and the average
annual rates of GDP growth in Sichuan Basin, the southern
Yunnan-Kweichow Plateau, southeastern China, and the
Northeast China Plain were 13.95%, 14.81%, 13.12%, and 8.67%,
respectively. Regional population size was often cited as the main
reason for the decline in ecosystem services, and GDP density
growth inevitably limits NPP increase (Cincotta et al., 2000; Qiu
et al., 2018). In addition, ecological damage in the southern Yunnan-
Kweichow Plateau was mainly caused by high-intensity
development activities such as tourism (Tang et al., 2015).

4.4 Limitations of this study

It should be noted that some uncertainties existed in this study.
First, MODIS NPP data may contain some uncertainties owing to
the lack of site-level measured data, which had some impacts on the
results of study. Nevertheless, the dataset has been proven to be
reliable in previous studies (Peng et al., 2016; Liu et al., 2019b), and
has been widely used in research on global and regional NPP (Zhao
et al., 2005; Zhang et al., 2014; Sha et al., 2020). Second, MODIS NPP
data and land cover data were both resampled to 1,000 m, which
sacrifices accuracy to some extent, resulting in each pixel potentially
not reflecting the actual land cover types (Shen et al., 2020; Shen
et al., 2022). Third, in MODIS NPP data, the NPP value of water,
barren land, urban/built-up was 0. However, the classification of the
land cover data used in this study may not correspond exactly to the
classification used in the MODIS NPP data, resulting in non-zero
values of mean NPP for water, unused land, and urban area counted
in this study. Fourth, in this study, only three climate factors,
temperature, precipitation, and solar radiation, were considered,
while other factors such as CO2 concentration, Nitrogen deposition,
and soil moisture were ignored, which also affected vegetation NPP
dynamics (Mu et al., 2008; Du et al., 2014; He et al., 2017). Finally,
the method (RESTREND) used in this study ignores the complex
interactions between climate change and human activities, and only
considers the linear relationship between NPP and impact factors.
Although the method has some shortcomings, its ability to quantifyTA
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the relative contributions of vegetation dynamics drivers is
significant for understanding the driving mechanisms.

5 Conclusion

In this study, we investigated spatiotemporal characteristics of
NPP in China from 2000 to 2020. The influences of climate factors
and human activities on NPP were also analyzed quantitatively. The
main conclusions are summarized as follows:

(1) The annual average NPP of the entire China increased from
2000 (286.31 g C/m2/year) to 2020 (348.53 g C/m2/year) at a rate
of 2.32 g C/m2/year, and a total NPP increase of 596.73 Tg C/
year was found. Areas of significant increase in NPP accounted
for 40.90% of China, with only 1.79% showing a significant
declining trend.

(2) Climate factors contributed more to NPP variations in China
from 2000 to 2020 than human activities, and the
contributions of climate factors and human activities were
1.169 g C/m2/year and 1.142 g C/m2/year. In terms of NPP
recovery, NPP was dominated by both climate factors and
human activities in 45.23% of China. Regarding NPP
degradation, areas dominated by both factors, climate
factors, and human activities accounted for 4.61%, 2.39%,
and 2.90%, respectively.

(3) The proportion of area with unchanged land cover types was
92.71% of the entire China. The total NPP increase of
unchanged land cover types accounted for 90.04% of the
total increase, and was mainly contributed by forestland,
grassland and farmland.

Overall, both climate factors and human activities have
contributed to NPP variation in China. The results improve the
understanding of how ecosystems in China have been affected by
climate factors and human activities in the last two decades, and also
provide guidance for formulating ecosystem management and
governance strategies to protect the environment and achieve
sustainable development.
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Characterizing spatial burn
severity patterns of 2016 Chimney
Tops 2 fire using multi-temporal
Landsat and NEON LiDAR data

Taejin Park1,2* and Sunhui Sim3*
1Bay Area Environmental Research Institute, Moffett Field, CA, United States, 2NASA Ames Research
Center, Moffett Field, CA, United States, 3Geoscience Department, University of North Alabama, Florence,
AL, United States

The Chimney Tops 2 wildfire (CT2) in 2016 at Great Smoky Mountains National
Park (GSMNP) was recorded as the largest fire in GSMNP history. Understanding
spatial patterns of burn severity and its underlying controlling factors is essential
for managing the forests affected and reducing future fire risks; however, this has
not been well understood. Here, we formulated two research questions: 1) What
were themost important factors characterizing the patterns of burn severity in the
CT2 fire? 2) Were burn severity measures from passive and active optical remote
sensing sensors providing consistent views of fire damage? To address these
questions, we used multitemporal Landsat- and lidar-based burn severity
measures, i.e., relativized differenced Normalized Burn Ratio (RdNBR) and
relativized differenced Mean Tree Height (RdMTH). A random forest approach
was used to identify key drivers in characterizing spatial variability of burn severity,
and the partial dependence of each explanatory variable was further evaluated.We
found that pre-fire vegetation structure and topography both play significant roles
in characterizing heterogeneous mixed burn severity patterns in the CT2 fire.
Mean tree height, elevation, and topographic position emerged as key factors in
explaining burn severity variation. We observed generally consistent spatial
patterns from Landsat- and lidar-based burn severity measures. However,
vegetation type and structure-dependent relations between RdNBR and
RdMTH caused locally inconsistent burn severity patterns, particularly in high
RdNBR regions. Our study highlights the important roles of pre-fire vegetation
structure and topography in understanding burn severity patterns and urges to
integrate both spectral and structural changes to fully map and understand fire
impacts on forest ecosystems.

KEYWORDS

fire, burn severity, Landsat, NEON lidar, remote sensing, vegetation structure,
topography, great smoky mountains national park

1 Introduction

The Great Smoky Mountains National Park (GSMNP) is situated over the Southern
Appalachians between Tennessee and North Carolina. This national park is one of the
world’s most ecologically rich, diverse, and important protected areas (National Park Service,
2017). Mountainous terrain, complex topography, and rainy temperate climate create
unique habitats for diverse flora and fauna (Whittaker, 1956; Jenkins, 2007). Fire in the
mountains has been a dynamic and natural process that influences ecosystem function and
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the structural and compositional heterogeneity of the forests (Kelly
et al., 2020). Yet, since the early 1900 s, fire suppression/prevention
and changing climate have significantly increased the fire
susceptibility of the forests (Cohen et al., 2007). During the last
week of November 2016, a fire began on the Chimney Tops within
the GSMNP (National Park Service, 2017). Due to accompanying
drought and strong winds, the Chimney Tops 2 wildfire (hereafter,
CT2) was recorded as the largest fire in the GSMNP history and
caused significant environmental, social, and economic damage
(Guthrie et al., 2017; National Park Service, 2017).

In addition to restoring the damaged GSMNP forests,
understanding how fire modifies these forests is essential for
managing the forests affected (e.g., devising restoration plans)
and reducing future fire risks (e.g., prescribed burn) (Harris and
Taylor, 2015; Schwartz et al., 2016). Recent advancements of
remote sensing and its easier access have promoted various
applications for fire monitoring and burn severity mapping
(Szpakowski and Jensen, 2019). Temporarily frequent land
surface observations from the earth-observing satellites (e.g.,
Landsat, Sentinel 2a, MODIS, VIIRS, etc.) can timely capture
pre- and post-fire conditions and assess fire severity. For
instance, Guindon et al. (2021) used historical Landsat data to
quantify decades of burn severity over the entire country of
Canada; Alonso-Gonzalez and Fernandez-Garcia (2021)
quantified burn severity globally using both Aqua and Terra
MODIS surface reflectance datasets. In addition to the passive
optical sensors, light detection and ranging (lidar) onboard
airborne or space-borne platforms can assess vertical forest
structure and its change over large areas by providing high-
resolution and consistent 3-dimensional measurements of
ground and vegetation canopy (Kampe et al., 2010; Jung et al.,
2011; Atkins et al., 2020; Park, 2020). For instance, Kane et al.
(2015) used bi-temporal lidar observations to characterize mixed
fire severity within the 2013 Rim fire, and Alonzo et al. (2017)
quantified canopy and surface layer consumption in boreal
forests using repeated lidar observations. These demonstrate
that both passive and active remote sensing data together can
provide unique and complementary information on fire severity
as well as pre- and post-fire vegetation conditions.

Fires interact with the existing vegetation (i.e., fuels),
topography, and weather conditions (Alexander et al., 2006;
Birch et al., 2015; Harris and Taylor, 2015). Such interactions
characterize fire behavior, burn severity patterns, and ultimately
post-fire regeneration. For instance, depending on the level of burn
severity, fires could maintain a vegetation type or mediate forest
change (Pyne, 1996), or continuously reshape forest stands by
restructuring individual trees and tree patches (Turner and
Romme, 1994). Pre-fire forest structure, such as the size and
arrangement of individual trees, is also a particularly important
factor leading to patterns of fire spread and damage (Perry et al.,
2011). Over many mixed forests like the GSMNP, fire severity
exhibits a considerable spatial variation within a single fire event.
However, the degree to which such mixed-severity fires are a result
of existing vegetation (fuels), topography, and weather remains
poorly understood. Particularly, quantifying the roles of the pre-
fire vegetation conditions has been recognized as a research priority
because fuel condition is one of factors that can be addressed by land
management.

In this study, we aim to understand spatial variation of remotely
sensed burn severity measures across gradients of environmental
conditions including pre-fire vegetation type and structure, and
topography in the GSMNP. First objective of this study is to identify
which biophysical factors are important in determining the patterns
of burn severity in the 2016 Chimney Tops 2 wildfire. Second
objective is to evaluate consistency and inconsistency of burn
severity measures from multitemporal Landsat and National
Ecological Observatory Network (NEON) lidar data. Section 2
presents the data and methodology. The results of this study are
presented in Section 3, and discussions and concluding remarks are
presented in Section 4 and Section 5, respectively.

2 Materials and methods

2.1 Study area

Our study region is defined based on the fire perimeter from the
Monitoring Trends in Burn Severity (MTBS) database shown in
Figure 1A (Eidenshink et al., 2007). The study region covers the area
burned by the CT2 fire in 2016 (Figure 1B), and its extent is about
3,994 ha. The selected area’s elevation ranges from 405 m to 1,638 m
(Figure 1E). Along the elevation gradient, annual precipitation
amounts range from 127 to 203 cm, and they increase with
elevation (Shanks, 1954). The mean annual temperature is 13°C
varying up to 6.7°C. The GSMNP is ecologically rich and diverse.
This park consists of more than 1,600 species of flowering plants,
including about 100 native shrub and tree species (Jenkins, 2007). It
is one of the largest deciduous, temperate, and old-growth forests
that still exist in North America. The distribution of vegetation in
the park is strongly influenced by topography, moisture, and other
environmental gradients (Whittaker, 1956) (Figure 1C). Before the
fire event, most of our study region was densely tree covered (~98 ±
6%), and the mean forest height was 21.6 ± 7.4 m (Figure 1D, see
Section 2.4).

2.2 Vegetation type map

The National Park Service developed a seamless and complete
GIS vegetation database of GSMNP. Photo interpretation of color
infrared aerial photographs (1997–1998), GPS-assisted field
observations, and the hierarchical GSM Vegetation Classification
System containing over 150 overstory and understory classes were
used to create the vegetation database. The vegetation type map is
available from https://www.sciencebase.gov/catalog/item/
542ecdb6e4b092f17df5ac4a. The overall attribute accuracy of the
vegetation type map is 80.4% (Kappa Index = 80.0). The map
provides 150 over- and understory forest types, but we only
focused on the forest types whose occurrence is more than 5% of
the total vegetated area within our study region (Figure 1C). Over
the defined study region, Successional Hardwood Forest (SHF),
Chestnut Oak Forest (COF), Yellow Pine Forest (YPF), Oak-
hickory forest (OHF), Northern hardwood/acid hardwood forest
(NHF/AHF), and others occupy 6.4%, 27.8%, 12.8%, 14.9%, 13.9%
and 24.2% of the total vegetated regions. We use these six forest
types for the following analyses.
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2.3 Landsat based burn severity and
vegetation indices

To quantify the burn severity of the CT2 fire, we first checked the
differenced Normalized Burn Ratio (dNBR) and the burn severity
classification from the publicly available MTBS database. In general,
Normalized Burn Ratio (NBR, Eq.1) is sensitive to the amount of
leaves, moisture, and char or ash in the soil, thus the difference
between pre- and post-fire NBR has been often used as a proxy of fire
damage. Our initial assessment of MTBS dNBR product showed
unexpected biases because of a seasonal mismatch in pre- and post-
fire NBR (Eq.2). Also dNBR has been generally considered to have
biases due to pre-fire vegetation conditions (Wulder et al., 2009).
Thus, in this study, we decided to use the Relativized dNBR,
i.e., RdNBR (Eq.3) (Miller and Thode, 2007), and directly
compute RdNBR from two cloud-free Landsat 8 OLI L2 surface
reflectances collected in 2015 (DOY 257) and 2017 (DOY 246). Note
that we alternatively took 2015 as a pre-fire state due to the absence
of cloud-free images in 2016. All Landsat data was obtained from
Harmonized Landsat and Sentinel (HLS) data archive at https://hls.
gsfc.nasa.gov/. The Landsat surface reflectances from HLS are
normalized for per-pixel view and per-granule illumination
angles (Claverie et al., 2017). View angle is set to nadir and solar
zenith is set to a temporally constant value at each tile’s center and
varies with latitude. Higher values of the satellite-derived burn
severity index (e.g., dNBR and RdNBR) indicate a decrease in

photosynthetic and surface materials holding water and an
increase in ash, carbon, and soil cover (Miller and Thode, 2007).

NBR � ρnir − ρswir7
ρnir + ρswir7

(1)

dNBR � NBRpre −NBRpost( ) × 1000 (2)

RdNBR � dNBR

sqrt abs NBRpre( )( ) (3)

where ρnir and ρswir are surface reflectances at near-infrared (NIR,
Band 5) and shortwave infrared (SWIR, Band 7) wavelengths.
NBRpre and NBRpost stand for pre- and post-fire NBR values.

Additionally, we also calculated the Normalized Difference
Vegetation Index (NDVI), Normalized Difference Moisture Index
(NDMI), and Land Surface Temperature (LST) from the pre- and
post-fire Landsat images. NDVI quantifies the amount of living
green plant material and is linearly related to absorbed
photosynthetically active radiation (e.g., Sellers, 1985). It is
calculated from contrasting reflectances at near-infrared (ρnir)
and red (ρred) bands (Rouse et al., 1974) (Eq.4):

NDVI � ρnir − ρred
ρnir + ρred

(4)

The NDMI uses NIR and SWIR bands to create a difference ratio
that is sensitive to the moisture levels in vegetation (Eq.5) (Wilson
and Sader, 2002). It has been widely used to monitor droughts and

FIGURE 1
Geographical location of 2016 Chimney Tops 2wildfire in Great SmokyMountains National Park (A) and a view of burnt forest captured during 2018s
field trip (B). Spatial distribution of vegetation type (C), mean forest height (D), and digital elevation (E) over the study region. A fire marker in panel (D)
indicates the location of the first fire ignition of the CT2 fire. In panel (C), HF, COF, YPF, OHF, and NHF/AHF stand for successional hardwood forest,
chestnut oak forest, yellow pine forest, oak-hickory forest, and northern hardwood/acid hardwood forest, respectively.
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fuel levels in fire-prone areas. Note that SWIR bands for NBR and
NDMI are different: Band 7 (2.11–2.29 μm) and 6 (1.57–1.65 μm)
were used for NBR and NDMI, respectively.

NDMI � ρnir − ρswir6
ρnir + ρswir6

(5)

To retrieve Landsat-based LST, we followed the approach
proposed by Avdan and Jovanovska (2016). Since temperature is
the main controller of fuel moisture content that is associated with
fire ignition, spread, and other fire behavior, LST is expected to have
some degree of relation with burn severity. We first computed Pv
from NDVI, which is a measure of vegetation proportion in each
pixel (Eq. 6). Based on the computed Pv, land surface emissivity (Eq.
7) and LST are sequentially calculated (Eq. 8). Note that the top-of-
atmosphere brightness temperature (BT) required in Eq. 8 was
directly obtained from the Landsat L2 product.

Pv � NDVI −NDVI min

NDVI max −NDVI min( )2 (6)
ε � 0.004 × Pv + 0.986 (7)

where 0.004 and 0.986 correspond to the average emissivity of bare
soil and vegetated areas, respectively (Sobrino and Raissouni, 2000).

LST � BT/ 1 + λ ×
BT

ϱ × 1n ε( )( )[ ] (8)

where, BT = brightness temperature; λ = wavelength; ϱ = constant of
Boltzmann; and ε = surface emissivity.

2.4 NEON lidar data and vegetation
structural variables

NEON Airborne Observation Platform (AOP) has collected lidar
data over the GSMNP regions on an annual basis using the Optech
ALTMGemini (Vaughan, ON, Canada) (Kampe et al., 2010; Kane et al.,
2014). The AOP has collected full-waveform lidar data over the GSMNP
regions since 2016. The lidar produced about 4 laser points per square
meter, with amaximum of 5 returns per point. In this study, we used the
lidar data collected in June 2016 and June 2018 to investigate changes in
pre- and post-fire GSMSP forest structure. Note that we chose 2018 data
as a post-fire lidar collection rather than 2017 (October) to avoid a
seasonal mismatch between pre- and post-fire lidar data (Calders et al.,
2015). The digital terrain model (DTM) and canopy height model
(CHM) were generated at 1 m spatial resolution following standard
NEON-generated processing algorithms (Kampe et al., 2010). To
facilitate analyses of spectral and structural changes derived from
Landsat and lidar, we resampled 1 m lidar data into 30m spatial
resolution, which is comparable to Landsat spatial resolution. All
lidar-derived structural variables are geometrically co-registered to
ensure the same location is assessed by Landat-based land surface
variables. Mean tree height (MTH) was used to summarize forest
canopy structure in this study, calculated as the average of 1 m
canopy heights within 30 m grid cells. We also introduced fractional
tree cover (TC) calculated as the percent of 1 m pixels >2m in height
within a 30 m grid cell. Pre- and post-fire MTH were used to quantify
forest structural changes induced by the CT2 fire, i.e., RdMTH. The
RdMTH is a relativized form by normalizing differences with pre-fire
conditions, as below.

RdMTH � MTHpost −MTHpre

MTHpre
× 100 (9)

2.5 Analytical approach for modeling burn
severity

Our primary objective is to identify key controlling factors in
characterizing burn severity patterns of the CT2 fire. Topographical
features and pre-fire vegetation conditions were the main explanatory
variables. We used elevation, slope, aspect, and topographic position
index (TPI) (Jenness, 2006) as topographical features. TPI is an index
showing the morphological characteristics of landscapes. It shows the
difference in elevation between a focal cell and all cells in the
neighborhood (Jenness, 2006). In the case of plan curvature, negative
curvatures illustrate concave, zero curvature represents flat, whereas
positive curvatures are known as convex. This index not only can
provide important morphological characteristics but also hydrological
(e.g., soil wetness, snow accumulation, etc.) variations of the study region
(e.g., Choubin et al., 2019).

A random forest regressionmodel was used in this study to quantify
the factors explaining the spatial patterns of satellite and lidar observed
fire damage over the GSMNP. Random forest regression is a non-
parametric statistical method, and it does not require distributional
assumptions on covariates in relation to the response variable (Breiman,
2001). In this study, we set 100 binary decision trees in the model, and
each node is split using the best break among all variables. Note that we
identify the optimal number of decision trees through experimental
model runs (not shown here). The explanatory covariates used can be
categorized into two groups: topographical features, i.e., Elevation,
Aspect, Slope, TPI, and pre-fire vegetation composition and structure,
i.e., vegetation type, NDVIpre, NDMIpre, LSTpre, MTHpre, and TCpre. We
also computed variable importance from the random forest regression
model. The variable importance is a measure based on how much the
error increases when the variable is excluded. A larger error before and
after permutationmeans greater importance of the variable in themodel
and contributes more to predictive accuracy than other variables
(Breiman, 2001). The relationship between explanatory variables and
target fire severity indices (here, RdNBR and dMTH) was also evaluated
using partial dependence plots, which display the marginal effect of an
individual predictor on the response variable (Liaw and Wiener, 2002).
Additionally, to understand compounding interactions between pre-fire
vegetation conditions and topography, we also investigated how
topographical features characterize spatial distribution of vegetation
type and structure, i.e., MTHpre. All random forest analyses were
carried out with the “treebagger” package in Matlab (R2021a).

3 Results

3.1 Burn severity patterns of 2016 Chimney
Tops 2 wildfire

Fire severity across our study region was highly variable
(Figure 2). Our Landsat- (RdNBR) and lidar- (RdMTH) based
analyses show a similar spatial pattern of fire damage during the
CT2 fire (Figures 2A,C). In particular, we observed widespread,
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severe, and patchy damaged forests over the central and
northeastern parts of the study region. According to the fire
severity classification based on RdNBR thresholds defined by
Miller and Thode (Miller and Thode, 2007) (Figures 2E,F), the
CT2 fire burned approximately 2,608 ha (RdNBR>=69), whereas the
rest of the region (1,386 ha) was not likely damaged by the fire.
About half (1,333 ha) of the burned regions are damaged with a low
degree (69<=RdNBR<=315) of fire severity and the other two one-
fourths of the regions are categorized as moderate (566 ha, 22%)
(316<=RdNBR<=640) and high (708 ha, 27%) (641<=RdNBR)
severity class.

Burn severity varies significantly by forest type. The resulting
patterns from both RdNBR and RdMTH indicate that Yellow Pine
Forest covered regions were most severely damaged by the CT2 fire
and followed by Chestnut Oak Forest (Figures 2B,D). More than
70% and 30% of the Yellow Pine Forest and Chestnut Oak Forest
were impacted by high burn severity (based on RdNBR), and it links
to about 24% and 15% of MTH reduction respectively. In contrast,
most Successional Hardwood Forest and Northern hardwood/acid
hardwood forest -covered regions were undamaged or lightly
damaged (only −3.9 and −8.7% of RdMTH, respectively).
Though both severity measures display a predominant spatial

FIGURE 2
Spatial pattern of the relativized differenced Normalized Burn Ratio (RdNBR) (A), relativized mean tree height (C), and burn severity classification
based on the RdNBR thresholds defined byMiller and Thode (Miller and Thode, 2007) (E). Probability density function (pdf) of RdNBR (B) and RdMTH (D) by
vegetation type classes. (F) Vegetation type specific distribution of burn severity classes. Green, yellow, orange, and red stand for undamaged, low,
moderate, and high severity class. HF, COF, YPF, OHF, and NHF/AHF stand for successional hardwood forest, chestnut oak forest, yellow pine forest,
oak-hickory forest, and northern hardwood/acid hardwood forest, respectively.
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agreement, we found that there is a discernible discrepancy over the
central region near the Bull Head peak where relatively shorter
Yellow Pine Forest canopies dominated. This discrepancy will be
further reported and discussed in the following section (Section 3.3).

3.2 Importance of pre-fire vegetation
structure and topography

To identify explanatory variables playing key roles in
characterizing spatial patterns of burn severity, we developed RF-
models for RdNBR and RdMTH, and quantified the importance of
the variables (Figure 3). The RF-based models for both RdNBR and
RdMTH reasonably well capture the spatial variation of the CT2 fire
induced burn severity. The developed model for RdNBR (N = 6,768)
can explain 94% of variation. MTHpre, elevation, TPI, vegetation
type, and slope are the five most important variables identified in
this model. Interestingly, we also find MTHpre, TPI, slope, and
elevation are key variables in explaining forest structural changes,
i.e., RdMTH. Our analysis shows that the RF-model for MTHpre

(N = 6,768) can capture 80% of variation in the tree height changes
in the CT2 fire. In addition, our analysis identifies the pre-fire
canopy moisture level (NDMIPre) and land surface temperature
(LSTPre) important in the burn severity characterization. However,
the RF-model for the RdMTH tends to overestimate severely
damaged forests that experienced greater than 40% of MTH
reduction. We initially anticipated that vegetation type plays an

important role in characterizing burn severity patterns due to
species-specific fire flammability and resistance (Popović et al.,
2021). However, our results suggest that vegetation type is less
important in the CT2 fire likely due to confounding interaction with
other variables (e.g., elevation, MTHpre, etc.). We further discuss its
importance and relation with other variables in the latter part of this
section.

Figure 4 and Figure 5 demonstrate the partial dependence of
each explanatory variable on regulating the RdNBR and RdMTH,
respectively. First, both partial dependence plots for the RdNBR and
RdMTH reveal that fire damage increases with higher elevation and
decreases with lower elevation. Despite general agreement in the
tendency of partial dependence, we noticed that RdNBR based
severity rapidly increases from low to medium elevation whereas
RdMTH-based severity increases from medium to high elevation
range. Shorter pre-fire canopy heights tend to be more damaged
whereas taller trees tend to be less damaged. Higher land surface
temperature likely increases the degree of burn severity for both
Landsat- and lidar-based burn severity metrics. Other important
topographical features identified are slope and TPI. These two
features together suggest that burn severity is generally higher in
upper and steep hills whereas the bottom of the valley with flat
conditions is likely less damaged. In the case of RdNBR, we find an
obvious pattern showing that south-facing forest stands experience
higher damage while north-facing stands tend to be less damaged.
This aspect-dependent relation is also evident in the RdMTH but the
severity peaks at south and south-east facing forests. Our partial

FIGURE 3
Variable importance quantified from the random forest model for the RdNBR (A) and RdMTH (B). The performance of the models for the RdNBR (C)
and RdMTH (D) evaluated with independent testing data.
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FIGURE 4
Partial dependence plots of explanatory variables (n = 10) on regulating RdNBR of the CT2 fire in Great Smoky Mountains National Park: (A)
Vegetation type, (B)NDVIpre, (C)NDMIpre, (D) Elevation, (E) Slope, (F) Aspect, (G) TPI, (H) LSTpre, (I)MTHpre, and (J) TCpre. In panel (A), numbers stand for six
vegetation type classes, i.e., HF, COF, YPF, OHF, NHF/AHF, and others, respectively.

FIGURE 5
Partial dependence plots of explanatory variables (n = 10) on regulating RdMTH of the CT2 fire in Great Smoky Mountains National Park: (A)
Vegetation type, (B)NDVIpre, (C)NDMIpre, (D) Elevation, (E) Slope, (F) Aspect, (G) TPI, (H) LSTpre, (I)MTHpre, and (J) TCpre. In panel (A), numbers stand for six
vegetation type classes, i.e., HF, COF, YPF, OHF, NHF/AHF, and others, respectively.
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dependence analysis from both Landsat RdNBR and lidar RdMTH
data shows vegetation type dependent burn severity patterns
confirming two most severely damaged forests (Yellow Pine
Forest and Chestnut Oak Forest) and two least damaged
forests (Successional Hardwood Forest and other forest class).
For the case of TC, we find opposite patterns in RdNBR and
RdMTH indicating an increase of RdNBR and a decrease of
RdMTH over higher tree covered regions. In the RF model for
RdMTH, lower pre-fire NDMI which is a proxy of vegetation
moisture content burned more severely than those with higher
NDMIpre but this pattern is not consistent in the RdNBR though
it is a less important variable.

The pre-fire vegetation structure and topographical features
derived from the NEON AOP lidar data over the GSMNP were
identified as key explanatory variables in explaining spatial burn
severity patterns measured from both multitemporal Landsat
and lidar data (Figure 3). We initially anticipated that vegetation
type can be a key variable as species-dependent fire resistance
may play a critical role in determining fuel characteristics and
severity patterns (Hengst and Dawson, 1994; Fernández-
Guisuraga et al., 2021). In contrast, our results suggest that
vegetation type is relatively less important in the CT2 fire. We
then hypothesized that topographical features govern forest type
occurrence and structure, thus these variables are standing out
from our analyses. To test this hypothesis, we further
investigated how topography alone can explain forest type
occurrence and structure. The results shown in Supplementary
Figures S1, S2 supported our hypothesis. Particularly, elevation
and aspect could reasonably predict spatial distribution of
MTHpre. Aspect and TPI were identified as important features
of forest type distribution. Supplementary Figure S3 shows
distribution of species with respect to environmental
conditions. In general, north- and northeast-facing slopes at
higher elevation are most likely to have Northern hardwood/
acid hardwood forest, and other forest types, whereas we found
more Chestnut Oak Forest and Yellow Pine Forest over lower
elevation with south- and southwest-facing slopes. Partial
dependence of TPI implies that the upper hill is the most
favorable location for Chestnut Oak Forest and Yellow Pine
Forest and the bottom of the valley is much favorable for the
other forest class. These topographical controls on forest type
distribution also strongly limit tree growth, i.e., taller trees in
north facing, shorter trees in south facing. For instance, trees in
the Yellow Pine Forest, that face north and are located at the
bottom of the valley, reach ~25 m, but trees facing south are only
10 m tall at the top of the ridge. Topographic associations
between valley bottoms and vegetation growth, i.e., MTHpre,
likely reflect more favorable edaphic conditions along the
channel banks, as well as more sheltered microclimates and
available water (Moeslund et al., 2013a; Moeslund et al.,
2013b). As a whole, the observed spatial pattern of forest type
distribution and their height growth suggest a closely linked
biogeographical niche governed by topography-mediated
microclimate and forest structure (Moeslund et al., 2013a;
Moeslund et al., 2013b). This close association between pre-
fire vegetation composition/structure and local topography
indicates there are discernible compounding interactions
between these factors on burn severity patterns.

3.3 Comparison between Landsat- and lidar-
based burn severity measures

Our analyses reveal how two different burn severity measures
from Landsat and lidar perform in the CT2 fire case (Figure 6).
Complementary analysis reveals that spectral burn severity indices
from Landsat including dNDVI (= NDVIpre-NDVIpost), dNBR, and
RdNBR tightly share their variations (Supplementary Figure S4). It
indicates that they could capture fire-induced damage in a similar
manner. Yet, relations between spectral indices and lidar structural
variables tend to be linear at low and moderate burn severity levels
(based on RdNBR) but their linearity turns to non-linear at higher
damage class (>800 RdNBR) (Figure 6). This non-linear relation is
even inverted when RdNBR is greater than ~950. This inverted
relation explains why RdNBR and RdMTH display inconsistent
burn severity patterns in the central part (near the Bull Head peak)
of our study region (Figures 2A,C). Interestingly, these relations
between RdNBR and RdMTH are invariant across vegetation classes
except Northern hardwood/acid hardwood forest stands. We find
that about two times less RdNBR changes in Northern hardwood/
acid hardwood forest than in the other five classes with respect to the
change in MTH. For instance, 20% of MTH reduction in Northern
hardwood/acid hardwood forest and other five forest classes mean
~400 and ~800 of RdNBR, respectively. This implies a varying
sensitivity of RdNBR to structural changes in different forest types.

In addition to vegetation type dependent varying sensitivity of
RdNBR to RdMTH, we also find a varying sensitivity of RdNBR to
RdMTH over different pre-fire forest structures (Figure 7). To the
increase of RdNBR, taller and old growth forests tend to have less
dynamic RdMTH change than shorter and younger forest stands.
This structure dependent response likely causes the observed non-
linear and inverse relation between RdMTH and RdNBR at high-
severity burn (Figure 6).

4 Discussion

The topographical features derived from the NEON AOP
lidar data over the GSMNP were identified as key explanatory
variables in explaining spatial burn severity patterns. Generally,
topography including elevation, topographic position, aspect,
and slope plays an important role in determining local patterns
of potential incident solar radiation. Topography-induced
variation in solar energy can influence local vegetation
patterns and flammability through multiple mechanisms: soil
moisture, temperature, and light availability (Lydersen and
North, 2012; Moeslund et al., 2013a). For instance, southern
aspects generally receive more sunlight leading to more xeric and
warmer conditions (Stage, 1976) (Supplementary Figures S3A, D)
and thus resulting in drier fuels and smaller trees
(Supplementary Figure S3G), which may burn with greater
severity. Furthermore, topography is also a determinant of fire
spread behavior. Fire spreads more readily upslope than
downslope, and daytime upslope winds that develop from
differential heating in mountainous terrain can drive upslope
fire spread (Weng et al., 2004; Werth et al., 2011). Middle and
upper slope positions often experience higher fire line intensities
because of higher effective wind speeds, lower canopy cover, and
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preheating of fuels as fires move upslope (Figure 4G; Figure 5G)
(Rothermel, 1983).

The association we observed between pre-fire structure
(i.e., MTHpre) and fire severity may be linked to several
mechanisms. Because taller trees usually have bigger stems
and thicker bark, it has been linked to the reduced fire-
induced mortality (Hély et al., 2003). Alternatively, fuel
characteristics over large tree dominated areas may have
been burned less intensely (Figure 4I; Figure 5I). Thus, the
patterns we observed may have been created by variation in fire
intensity, spreading pattern, variation in the susceptibility of
trees to damage and mortality, or a combination of these factors.
Another potential confounding issue is that there is a historical
disturbance gradient within the fire footprint where higher
elevations were minimally disturbed and lower elevations
were progressively more disturbed in the early part of the
20th century. This disturbance has likely had a range of
effects on vegetation structure and composition, either

directly or through changes to soils (Tucker, 1979; Tuttle and
White, 2016).

In this study, we did not include weather variables (e.g.,
temperature, humidity, wind, etc.) in characterizing spatial
patterns of burn severity since spatially explicit weather data
was not available at a fine scale. According to the regional
weather data (Supplementary Figure S5), November of
2016 when the CT2 fire happened was a very dry month (and
year) with unprecedented wind gusts (National Park Service,
2017). Under extreme fire conditions, we expect that local
weather conditions may play a significant role in determining
fire spread and severity patterns (Viedma et al., 2020). Without
accounting for fire weather, however, our RF-based analyses
could explain a significant portion of the spatial variation of
burn severity (R2 of RdNBR = 0.94, R2 of RdMTH = 0.8). This is
likely because our analysis indirectly accounted for weather-
induced burn severity patterns by introducing proxies such as
topography, canopy moisture level, and land surface
temperature which govern fire spread and microclimate
conditions. Our RF-based analysis revealed that LST is an
important variable for both RdNBR and RdMTH modeling.
Hotter land surfaces in the study region tend to be severely
damaged whereas cooler surfaces are less damaged. Further,
interactions between topography (and/or pre-fire vegetation)
and weather conditions (e.g., wind direction) might reflect fire-
weather interaction into the developed RF-models.

In this study, by comparing burn severity measures from
Landsat and lidar observations, we confirmed that there is a
generally good agreement between spectral (RdNBR) and
structural (RdMTH) measures (Wulder et al., 2009; McCarley
et al., 2017). However, vegetation type and pre-fire structure
dependent RdNBR sensitivities were noticed (Figure 6; Figure 7).
We observed unexpected non-linear and inverse relations
between RdMTH and RdNBR at highly damaged forests
(Figure 6). Possible explanations for the observed pattern are
twofold: First, residual structures such as dead standing trees
were still measurable from the post-fire lidar observation but its
spectral responsiveness is low to the RdNBR (see Figure 1B;
Figure 8) (Bolton et al., 2015). Second, understory, subcanopy,

FIGURE 6
Comparison between burn severity measures (RdNBR and dMTH) from passive and active remote sensing sensors. Relations from all vegetation
types and each type shown in (A) and (B) respectively. In panel (A), the red circle and blue triangle represent median andmean values, and error bars stand
for the 25th and 75th percentile. In panel (B), the colored circles represent median values of each vegetation type.

FIGURE 7
Relations between MTHpre, RdMTH, and RdNBR in yellow pine
forests (YPF).
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and/or soil burning may increase RdNBR significantly but not
RdMTH because RdMTH represents more upper canopy status
than lower canopy and/or soil. Spectral burn severity indices
from Landsat NIR and SWIR bands generally provide how much
photosynthetically active vegetation is damaged by fire events.
Surface reflectances at different wavelengths are a result of
photon interaction with vegetation media and soil, however,
the lidar based matrix we used represents mostly changes in
upper canopy status rather than lower canopy and near-surface
vegetation. This difference may result in the observed
discrepancy in burn severity measures.

Over the GSMNP regions, NEON AOP collected lidar data on
an annual basis since 2016. The collected multi-temporal lidar
observations are fortunate and grant a unique opportunity to
understand how the CT2 fire event modified the GSMNP forests
and what environmental factors primarily characterize spatial
variability of burn severity over the highly mixed severity fire.
Furthermore, future repeat lidar data acquisition over the
GSMNP can offer insight into processes of forest regeneration
after fire events across varying degrees of burn severity,
topography, and pre-fire vegetation structure and composition.
A growing number of repeat lidar data acquisition allows us to
investigate forest structural changes after disturbance by
providing multidimensional information. In addition to the
GSMNP, the repeating lidar collections over a range of
ecosystems and disturbance histories are already available
within the NEON sites (Atkins et al., 2020) and other long-
term research sites (e.g., G-LiHT, LVIS, etc.) (Leitold et al., 2021).
Repetitive spaceborne lidar measurements from NASA Global
Ecosystem Dynamics Investigation (GEDI) and ICESat-1and2
also expand our capability to sample multi-temporal forest
structure characteristics and its changes (Neuenschwander and
Pitts, 2019; Dubayah et al., 2020). Synergistic uses of such high
spatial resolution multi-temporal 3-D data with optical passive
sensors (e.g., Landsat, Sentinel-2, etc.) and other supporting
measurements (e.g., field measurements) will greatly improve
our understanding of carbon turnover, the timing and duration
of subsequent changes in forest structure, and the associated
impacts on productivity, demography, runoff, and nutrient
cycling across ecosystems.

5 Concluding remarks

We used multitemporal Landsat and lidar observations to
quantify fire severity at the GSMNP. Our analysis revealed that
the CT2 fire was a mixed-severity fire, and about 22% and 27% of the
burned area was damaged moderately and severely. We found that
topography and pre-fire vegetation structure played significant roles
in characterizing heterogeneous mixed burn severity patterns.
Elevation, mean tree height, and topographic position emerged as
key controlling factors. We generally observed consistent spatial
patterns from Landsat and lidar-based severity measures. However,
vegetation type and pre-fire structure-dependent relations between
RdNBR and RdMTH caused locally inconsistent severity,
particularly in high RdNBR regions. Our study highlights the
critical roles of topography and pre-fire vegetation structure in
understanding burn severity patterns and urges to integrate both
spectral and structural changes to fully map fire impacts on forests.
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Sciences-SGGW, Warsaw, Poland

Polar areas are among the regions where climate change occurs faster than onmost
of the other areas on Earth. To study the effects of climate change on vegetation,
there is a need for knowledge on its current status and properties. Both classic field
observation methods and remote sensing methods based on manned aircraft or
satellite image analysis have limitations. These include high logistic operation costs,
limited research areas, high safety risks, direct human impact, and insufficient
resolution of satellite images. Fixed-wing unmanned aerial vehicle beyond the
visual line of sight (UAV BVLOS) missions can bridge the scale gap between field-
based observations and full-scale airborne or satellite surveys. In this study the two
operations of the UAV BVLOS, at an altitude of 350m ASL, have been successfully
performed in Antarctic conditions. Maps of the vegetation of the western shore of
Admiralty Bay (King George Island, South Shetlands, Western Antarctic) that included
the Antarctic Specially Protected Area No. 128 (ASPA 128) were designed. The
vegetation in the 7.5 km2 area was mapped in ultra-high resolution (<5 cm and
DEM of 0.25m GSD), and from the Normalized Difference Vegetation Index
(NDVI), four broad vegetation units were extracted: “dense moss carpets”
(covering 0.14 km2, 0.8% of ASPA 128), “Sanionia uncinata moss bed” (0.31 km2,
1.7% of ASPA 128), “Deschampsia antarctica grass meadow” (0.24 km2, 1.3% of
ASPA 128), and “Deschampsia antarctica–Usnea antarctica heath” (1.66 km2, 9.4%
of ASPA 128). Our results demonstrate that the presented UAV BVLOS–based surveys
are time-effective (single flight lasting 2.5 h on a distance of 300 km) and cost-
effective when compared to classical field-based observations and are less invasive
for the ecosystem. Moreover, unmanned airborne vehicles significantly improve
security, which is of particular interest in polar region research. Therefore, their
development is highly recommended for monitoring areas in remote and fragile
environments.
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1 Introduction

Maritime Antarctic is a region where recent dynamic climate
changes are taking place (Siegert et al., 2019), and projections
forecast a strong impact of future climate change on Antarctic
biodiversity (Koerich et al., 2022). The development of vegetation
in maritime Antarctica is limited to scatter ice-free areas located
mainly in the coastal zone, which account for only a few percent
(2%–5%) of the total area. The productivity and growth of the
terrestrial tundra communities in the harsh Antarctic
environment are controlled by a set of extreme environmental
factors, like sub-zero temperatures, limited liquid water
availability, a specific light regime, elevated ultraviolet-B
radiation levels, desiccating and destructively strong winds,
poorly developed soils with low organic matter and nutrient
content, irregular nutrient distribution (from nutrient-deficient
habitats to the ones extremely enriched in nutrients by, e.g.,
breeding colonies of seabirds), high salinity in many locations,
and cryogenic processes (e.g., Convey, 1996; Znój et al., 2017;
Łachacz et al., 2018). The presence of so many stress factors
makes the Antarctic terrestrial ecosystems a mosaic of
microhabitats colonized by highly heterogeneous and
discontinuous communities (Smith, 1984; Block et al., 2009),
currently threatened by biological invasions of alien species
(Galera et al., 2018). Although so urgent, the detection and
mapping of vegetation remain limited in the Antarctic
environment. The mapping of the tundra communities in
Antarctica has a short history, and usually small vegetation
areas around research stations have been investigated (e.g.,
Lindsay, 1971; Smith, 1972). The classical field observation
methods are laborious, generate a high cost of expeditions,
high levels of human impact on the environment, and require
specialized botanical knowledge. Also, vegetation mapping by
image classification using remote sensing techniques remains
limited in the Antarctic environment (Casanovas et al., 2015).
Mainly due to the patchiness of terrestrial communities, its
surface coverage can be sparse, with isolated individuals
interspersed with bare ground and rocks, in small
communities forming biocrusts on soil or rocks, or sometimes
communities forming more extensive dense patches (Sotille et al.,
2020). Obtaining satellite imagery material at the appropriate
time of a vegetation stage and in sufficient qualities is still
problematic, especially in the Antarctic Peninsula region, due
to frequent occurrences of dense cloud cover and mist (Mustafa
et al., 2012). Therefore, cost-effective and reliable wide-scale
survey methods are required to accelerate assessments of
Antarctic biodiversity (Wall et al., 2011; Casanovas et al., 2015).

A high spatial resolution is required to map most of the plant
communities, and spectral bands in the short-wave infrared parts
are crucial when distinguishing between bryophyte communities.
This limits the use of the available satellite-based sensors. For
example, Casanovas et al. (2015) used the Normalized Difference
Vegetation Index (NDVI) and the matched filtering (MF)
approach from Landsat data to study the vegetation
distribution, however, they were unable to identify a pattern
between the NDVI values and vegetation types. The NDVI is a
standard tool in remote sensing monitoring of green biomass
(Pettorelli et al., 2005). It takes values ranging from −1 to 1. The

higher the value of this indicator, the higher the biomass content
and better the condition of the vegetation (Rouse et al., 1974).
The NDVI has gained popularity due to its ease of calculation
based on two spectral ranges—a standardized range and high
correlation with plant properties. The NDVI has found
widespread use for assessing chlorophyll content, assessing
plant stress, or identifying vegetation types (Geerken et al.,
2005; Ozyavuz et al., 2015), and classifying land cover (Defries
and Townshend, 1994) and detecting change for vegetation cover
(Gandhi et al., 2015; Ju and Bohrer, 2022). It can be also used to
estimate the density of green on an area of land (Weier and
Herring, 2000).

Fretwell et al. (2011) used data covering Graham Land in the
northern part of the Antarctic Peninsula and ground truthing in a
test that found that 0.086% of the study area (74,468 km2) showed
a probability of vegetation presence of over 50%. In this study, the
authors could not determine whether low NDVI values referred
to partial coverage of mosses or a continuous coverage of lichens
or algae, or if the pixel contained a significant area of vegetation-
free soil. They found out that olivine-rich sub-aerial palagonite
tuffs (Middle to Upper Miocene, James Ross Island Volcanic
Group) return NDVI ratios that are within the range of values
given by sparse vegetation. Detailed information from these
studies is not available due to the images’ limited spatial and
spectral resolution and ground-truthing efforts. In such an
environment, where terrestrial communities are dominated by
species of low biomass and are characterized by irregular
distribution, mid- or low-resolution images have limited use
in the analysis of vegetation spatial coverage. Better results
were obtained by Murray et al. (2010) and Andrade et al.
(2018) who used, respectively, high-resolution IKONOS and
QuickBird (four bands) imagery to map Antarctic vegetation,
but they could not discriminate between lichens and bare ground
and rocks. Whereas, Shin et al. (2014) successfully used linear
unmixing of three endmember spectra (snow, rock/soil, and
vegetation) extracted from QuickBird and KOMPSAT-2
imagery to map vegetation in Barton Peninsula. Furthermore,
multispectral WorldView-2 satellite data having eight bands
could capture most of the spectral characteristics of the
cryptogam-dominating vegetation. These data have been
applied by Power et al. (2020) to estimate microbial mat
biomass based on the NDVI in Dry Valleys, Eastern Antarctic,
and by Jawak et al. (2019) to map the vegetation of the Larsemann
Hills and Schirmacher Oasis, by ensemble merging of the five
top-performing methods (mixture-tuned matched filtering,
matched filtering, matched filtering/Spectral Angle Mapper
ratio, NDVI-2, and NDVI-4).

Sun et al. (2021) usingWorldView-2 images and seven SMAmodels
(FCLS, NM, FM, GBM, and threeMNM-AVs) extracted vegetation data
in the Fildes Peninsula, a part of the Nelson Peninsula (the King George
Island) and Ardley Island. The newly proposed models achieved the best
performance in abundance estimation of both mosses and lichens when
compare to the previous study.

But, all space-borne methodological approaches share a
common feature: the classifiers of vegetation communities
perform well only when the spectral mixing in each image pixel
is low (Calviño-Cancela and Martín-Herrero, 2016; Miranda et al.,
2020). Therefore, these techniques do not work well with plant
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communities in polar regions where tundra patches are scattered
and discontinuous and may provide imagery with undesired degrees
of spectral mixing with other classes.

More reliable specific vegetation maps may be provided through
the incorporation of the classification procedure of intermediate
scales of observation between ground and satellite levels. Obtaining
data by the traditional aerial surveys with airplanes or helicopters
(Furmańczyk and Ochyra, 1982) and currently unmanned aerial
vehicles (UAVs) (e.g., Lucieer et al., 2014; Miranda et al., 2020; Váczi
et al., 2020) is the solution. Although, UAV data can cover a much
smaller area than do satellite images, their high resolution permits
distinguishing many details related to the vegetation that are not
evident in satellite images. Moreover, using the far-range UAVs and
beyond the visual line of sight method allows exploring sites located
away from the operation center. Therefore, the use of small UAVs in
the terrestrial regions of Antarctica is increasing steadily. The
successful application of the UAV methodology was already
implemented in a multitude of objectives (Zmarz et al., 2018),
like wildlife inventorying and monitoring (e.g.,: Goebel et al.,
2015; Mustafa et al., 2018; Korczak-Abshire et al., 2019),
periglacial landform mapping (Dąbski et al., 2017; Pina et al.,
2019), glacier forelands (Dąbski et al., 2020; Kreczmer et al.,
2021), and monitoring sea ice surface features (Li et al., 2019),
among others (Pina and Vieira, 2022). The UAVs based vegetation
studies in Antarctica are extremely helpful in providing additional
details for mapping procedures (Turner et al., 2014), obtaining the
micro-topography of moss beds (Lucieer et al., 2014), assessing the
stress (Malenovský et al., 2017) and health status (Turner et al.,
2019) of plants, or monitoring the changes taking place in vegetation
over time (Jawak et al., 2019; Bollard et al., 2022).

The entire of Antarctica is governed internationally by the
decisions of the Antarctic Treaty countries and has the status of
a natural reserve (www.ats.aq/e/ep.htm). To protect this unique
ecosystem, the Antarctic Specially Protected Area system was
established (http://www.ats.aq/documents/recatt/Att004_e.pdf).
Unfortunately, there has been no proper long-term monitoring
system for these areas (Convey and Peck, 2019). Any
conservation actions in Antarctica would depend on robust and
reliable baseline information, which is still sparse for most regions.
Therefore, the development of an effective and efficient vegetation
monitoring system is currently a challenge.

The main aim of this study is to develop a UAV BVLOS–based
NDVI map of the Antarctic Specially Protected Area No. 128,
located on the west coast of Admiralty Bay on King George
Island. A second aim is to relate the NDVI values to broad
vegetation units. These maps will become important baseline
maps for future studies on changes in vegetation cover.

2 Materials and methods

2.1 Study area

The study area is located on King George Island (62°10′S,
58°28′W), the largest volcanic island in the South Shetlands
archipelago, with a surface area of around 1,310 km2, of which
more than 92% is covered by glaciers (Lim et al., 2014). The area
covering the west coast of Admiralty Bay: the main body of Point

Thomas Oasis with Henryk Arctowski Polish Antarctic Station
(Arctowski) and the Antarctic Specially Protected Area No. 128
(ASPA 128) (Figure 1). The Point Thomas Oasis is one of the largest
seasonally ice-free areas (approx. 25 km2) in the maritime Antarctic
region with relatively high temperatures during the austral summer
(Kejna et al., 2013; Galera et al., 2015) and a constant flow of
freshwater (Nędzarek et al., 2014) throughout most of the summer
season (Kejna et al., 2013; Sancho et al., 2017). The area is supplied
with nutrients by large animal colonies, especially penguins and
pinnipeds (Sierakowski et al., 2017), and is under the constant
influence of sea aerosols (Łachacz et al., 2018). Apart from
temperature (mean annual air temperature is −1.8°C with a
minimum of −32.3°C and a maximum of 16.7°C; Kejna, 1999;
Kejna et al., 2013) and humidity (average relative humidity is
86.2%, with a monthly average precipitation of 33.0 mm; Kejna,
1999), the driving force that shapes tundra communities is the
constantly blowing strong wind (average annual wind speed equals
6.6°ms−1; Marsz and Styszyńska, 2000, with a maximum exceeding
65.0°ms−1; Zwoliński, 2007). Winds cause desiccation stress and act
as an abrasion factor. All these conditions favor the development of
one of the most diverse tundra communities in maritime Antarctic
(Furmańczyk and Ochyra, 1982; Ferrari et al., 2021). The tundra in
this region is mainly made up of cryptogams: lichens—ca.
380 species (Øvstedal and Smith, 2001; Olech, 2004), fungi—over
100 species (Malosso et al., 2006), bryophytes—ca. 140 species
(Ochyra et al., 2008), and 22 species of liverworts (Bednarek-
Ochyra et al., 2000) and algae (Broady, 1996). These terrestrial
ecosystems are extremely deficient in Magnoliophyta, of which only
two native flowering plant species are found, and these are limited to
the coastal parts of the west Antarctic Peninsula and its associating
islands and archipelagoes: the Antarctic hairgrass Deschampsia
antarctica Desv. (Poaceae) and pearlwort Colobanthus quitensis
(Kunth) Bartl. (Caryophyllaceae) (Chwedorzewska et al., 2004;
Androsiuk et al., 2015; Koc et al., 2018). In the study area, some
of the plant communities had been described by Zarzycki (1993),
Victoria et al. (2006, 2009), and Pereira et al. (2010), showing the
spatial distribution of selected vegetation communities at Demay
Point, in the southern parts of ASPA 128.

2.2 Data acquisition

BVLOS flights at an altitude of 350 m ASL were implemented by
the PW-ZOOM fixed-wing UAV (Goetzendorf-Grabowski and
Rodzewicz, 2016; Rodzewicz et al., 2017; Zmarz et al., 2018),
which was equipped with an MP autopilot: MicroPilot (Stony
Mountain, Canada). The operation was performed by a three-
member team: remote control operator (RC), ground control
station operator (GCS), and maintenance operator (all had
BVLOS licenses issued by national authorities). Two separate
flights were implemented to obtain the data that were required to
calculate the NDVI: one with the R-G-B camera (Canon EOS 700D
+ 35 mm lens) and another with the B-G-NIR camera (blue channel,
visible blue light—green channel, visible green light—NIR from
680 nm to 800 nm; Canon EOS REBEL T5i + 35 mm lens). The
B-G-NIR camera uses blue as the absorption channel and NIR as the
reflection channel. The two flights were undertaken on
10–11 November 2016 at an altitude of 350 m ASL and obtained
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data at a spatial resolution of <5 cm GSD and DEM of 0.25 m. The
area for which the data was obtained amounted to 7.5 km2

(Figure 1). The time that each flight took was 2 h and 2.5 h,
respectively. All images that were obtained had georeferences (X,
Y, and Z) registered by the autopilot logger that was mounted on the
UAV. The GPS Receiver GP-E2 was used for the geolocation of
images allowing for horizontal accuracy of measurement <5 m. The
data in the form of single images were processed into an orthophoto
map in the Universal Transverse Mercator system, zone 21 S (EPSG:
32721). The two sensors were matched into a single four-bands file
(R-G-B-NIR) using the layer stacking method in the ENVI software.
Then, the normalized difference vegetation index (NDVI), which
reflects the vegetation coverage and biomass, was calculated.

2.3 Dividing NDVI values to vegetation units

After processing the NDVI map, we aimed to divide the NDVI
values into broad vegetation units. The vegetation was studied in
January and February 2016, the austral summer before the
acquisition of the NDVI image. The percent cover of each
species and for impediment was estimated in altogether 99 1 ×
1 m2 phytosociological relevés. The relevés were placed
systematically every 10 m in the north–south direction along
three transects (Figure 4). Then, to reveal the main vegetation
units in the area, the relevés were clustered by Euclidean

distances based on the species cover of each relevé and a
dendrogram was produced (Figure 2). For the groups separated
by the clustering, the number of relevés (n) was taken, and the
percentage cover (c) and frequency (f) of the main species were
described for each group. We also calculated the mean NDVI value
for each relevé and thereby found the NDVI range for each
group. This range was used in the main division of the NDVI
values into vegetation units.

However, the transects with relevés did not cover a penguin
colony and protected wetland, these areas have some differences in
vegetation composition when compared with the areas that the
transects cover, and validation data for these areas were obtained
separately.

In the Point Thomas penguin colony area, east of the Arctowski
Station (Rakusa Point), the cliffs and rocks close to the sea are
enriched by guano and are dominated by epilithic lichen with orange
thallus (mainly, Caloplaca regalis, C. sublobulata, and Xanthoria
elegans). A total of 50 polygons of these lichens were identified on
the RGB image and the NDVI values were calculated. In this
penguin colony, the green algae Prasiola crispa locally dominates
the ground. Also for these algae, 50 polygons were identified on the
RGB image and the NDVI values were calculated.

Furthermore, just east of the Arctowski Station, there is a small
(<0.08 km2) very vulnerable protected wetland (Jasnorzewski
Gardens), with a dense vegetation cover in mainly standing
waters (Figure 4). To avoid walking in this area, we instead

FIGURE 1
The study area located on King George Island, South Shetlands Archipelago, the Western Antarctic; UAV flights area (7.5 km2) marked in the hatch;
and Antarctic Specially Protected Area No. 128 marked in purple [The coastline of the island on the basis of the SCAR King George Island geographic
information system project (http://www.kgis.scar.org/)].

Frontiers in Environmental Science frontiersin.org04

Zmarz et al. 10.3389/fenvs.2023.1154115

78

http://www.kgis.scar.org/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1154115


georeferenced a previous vegetation map interpreted from an
ordinary paper of a photo captured from a helicopter back in
1979 (Furmańczyk and Ochyra, 1982). Then, the NDVI values
from our flight were extracted for the vegetation types and
species composition of the communities in the old map.

3 Results

3.1 NDVI map

Altogether ASPA 128 covers 17.5 km2, and 9.2 km2 (53%) is
covered by glaciers (Pudełko et al., 2018). The ice-free area of ASPA
128 is 8.2 km2 (47%) and most of this was mapped with the NDVI
(Figure 3). Altogether 7.5 km2 was mapped with 4 × 4 cm2 pixel
resolution that covered the entire coastline and most of the ice-free
areas of the ASPA 128. The map shows that 2.35 km2 have NDVI
values above 0.12, which we use as a threshold for vegetation cover
(for details, please refer Section 3.2). Continuous areas with NDVI
above 0.12 were mainly found in the southern parts at Demay Point
and northern parts closer to the Arctowski.

3.2 Vegetation units

The clustering of the 99 relevés separated three main groups on
Euclidian distance of 100 (Figure 4). In the left group (Deschampsia
antarctica—Usnea antarctica heath) 48 of the 51 relevés had NDVI
values in the range of 0.05–0.154. The remaining three relevés had
NDVI values of 0.030, 0.234, and 0.286. However, relevés with <5%
vegetation cover mainly had NDVI values below 0.120. For the
‘Sanionia uncinatamoss bed’ group, the 18 relevés had NDVI values

in the range of 0.235–0.384, but 14 of these were in the NDVI range
of 0.252–0.370. For the ‘Deschampsia antarctica grass meadow’
group, 26 of the 30 relevés had NDVI values in the range of
0.163–0.298. The relevés did not cover the penguin colony. A
total of 50 polygons from RGB images of the epilithic lichen with
orange thallus show NDVI values mainly in the range of 0.25–0.30.
In addition, 50 polygons of the green algae (Prasiola crispa) had
NDVI values in the range of 0.17–0.30.

We also analyzed the NDVI values of the plant communities
described in the old vegetation map of the protected wetland
(Furmańczyk and Ochyra, 1982), and most of these dense moss
carpets that were found had high NDVI values of mainly
above 0.37.

Based on the data set mentioned above, we divided the NDVI
map into four broad vegetation units, where the exact threshold in
NDVI values between the units was subjectively chosen due to some
overlaps in relevés NDVI values. The ‘dense moss carpet’ unit had
NDVI values >0.37. However, the NDVI threshold of 0.37 was
subjectively chosen, and the group had some overlap with the related
unit below. The ‘Sanionia uncinata moss bed’ unit occurs in the
NDVI range of 0.27–0.37. This unit also has a gradual transition in
NDVI values to the group below. The ‘Deschampsia antarctica grass
meadow’ has NDVI values in the range of 0.22–0.26. The
‘Deschampsia antarctica–Usnea antarctica heath’ has NDVI
values in the range of 0.12–0.22. The lower values were classified
as those without vegetation.

3.2.1 Dense moss carpets
This unit displays different bryophyte plant communities, which

make thick, dense moss carpets in moist to wet areas, partly
protected from the wind. In more permanently wet (standing
water) parts, hydrophilous bryophytes such as Warnstorfia

FIGURE 2
Dendrogram. Euclidean distance of 99 relevés.
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sarmentosa and W. fontinaliopsis locally dominate. Bryum
pseudotriquetrum is widespread in the study area, particularly
along creeks and in concave parts. Some of the thickest carpets

of Sanionia uncinate are also included in this class. This unit covered
0.14 km2 (0.8 % ASPA 128) and is mainly found at lower altitudes
(<30 m. ASL), and 89% of the unit occurs in flat areas.

FIGURE 3
NDVI map (left) of the western shore of Admiralty Bay, King George Island, South Shetlands Archipelago, and ultra-high resolution vegetation map
(right) covering an area of 7.5 km2 (Source data: DEM and orthophoto based on the original UAV-derived data).
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3.2.2 Sanionia uncinata moss bed
This unit is dominated by the widespread bryophyte Sanionia

uncinata. From the Euclidean clustering, 18 relevés (n = 18) show
that Sanionia uncinata occurs in every relevé (frequency, f = 100)
used to describe this unit and has an average percentage cover (c) of
64%. This bryophyte often forms dense homogeneous carpets, but
with a gradual transition to dominants of Deschampsia antarctica
(f = 80, c = 7%). Also frequently found are the bryophytes
Polytrichastrum alpinum (f = 50) and Polytrichum juniperinum
(f = 28), but these cover less than 2% each. The relevés show
that some of the moss were classified as dead (c = 14%). The
unit is widespread in ASPA 128 and covers 0.31 km2 (1.7% of
ASPA 128, and is often dominated in less wind-exposed areas.

3.2.3 Deschampsia antarctica grass meadow
Together with S. uncinata, D. antarctica is the most widespread

species in the study area, and these are often associated with each
other. The 30 relevés (n = 30) show a mean cover (c) of 30% of D.
antarctica in this unit, in addition to dead moss and grass cover
altogether covering 15%. The unit is rather homogeneous, but some
other species are also found, such as the lichens Ochrolechia frigida
(f = 63, c = 6%) and Usnea antarctica (f = 43, c = 6%), Antarctic
pearlwort (Colobanthus quitensis) (f = 37, c = 2%), Sanionia
uncinata (f = 47, c = 6%), the brownish bryophytes
Polytrichastrum alpinum (f = 20), Polytrichum juniperinum (f =
23), and P. piliferum (f = 23), but the latter three cover less than 2%
each. The unit dominates often in slightly convex, north-facing

FIGURE 4
Jasnorzewski Gardens and Point Thomas penguin colony vegetation map based on UAV-derived images. The map also shows the location of the
99 relevés (white dots) which were placed systematically every 10 m along three transects.
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slopes. In addition, since D. antarctica tolerates high salinity, the
unit occurs in the littoral zone, that is, areas directly influenced by
marine aerosols and/or over-manured by birds’ feces. In the penguin
colony area, some of the algae Prasiola crispa and epilithic lichen
with orange thallus are also included in this unit. The unit covers
0.24 km2 (1.3% of ASPA 128).

3.2.4 Deschampsia antarctica–Usnea antarctica
heath

This unit is characterized by high species diversity, sparse
vegetation cover, and the visually dominated lichen Usnea
antarctica. The unit has a discontinued vegetation cover, and
gravel and open soil cover altogether of 85%. The unit has a high
species diversity of lichens, but only U. antarctica (f = 35, c = 5%)
and Ochrolechia frigida (f = 20, c = 1%) occur frequently. D.
antarctica is the most frequent species (f = 58, c = 1%), but it
covers far less than U. antarctica does. C. quitensis occurs frequently
(f = 24) but has an insignificant cover (c = 0.2%). The unit also has a
high diversity of bryophytes, which occurs in all of the 51 (n = 51)
relevés, and as in the previous units, the Sanionia uncinata,
Polytrichastrum alpinum, P. juniperinum, and P. piliferum are
among the most frequent bryophytes. This unit is widespread at
altitudes above the previously described units (mean height 58 m H
ellipse), and mainly occurs in areas characterized by less snow cover
which is often slightly convex, dry, and exposed. These areas are
rarely influenced by pinnipeds and penguin disturbances. In
addition, the unit includes a variety of plant communities at
lower altitudes, all with only scattered vegetation cover, and some
of the epilithic lichens with orange thallus in the penguin colony.
This is the most commonly mapped unit and covers 1.66 km2 (9.4%
of ASPA 128).

4 Discussion

In our work, we laid the foundations for BVLOS UAV–based
monitoring vegetation on the western shore of Admiralty Bay of King
George Island (South Shetlands). The vegetation in the 7.5 km2 area
was mapped with ultra-high resolution and is to our knowledge
among the largest UAV-based vegetationmaps inmaritime Antarctic.

The 99 relevés used in this study were originally meant for
accuracy assessment for a vegetation map based on a UAV-
mounted multispectral camera. However, during the 1 month from
23 January to 24 February 2016, not a single day had usable flight
conditions (too strong wind), or there was toomuch fresh snow on the
ground. This illustrates the challenges in vegetation mapping in
maritime Antarctic. Instead, the relevés were used to interpret the
later obtained NDVImap to identify some broad vegetation units, but
then without the possibilities for accuracy assessment. However, three
of the four mapped units were based on the clustering of relevés, and
with the separation of the units at an Euclidean distance of 100, some
very distinct units appear. Based on this division, the cover and
frequency of the species in these three units were taken. Hence, it is
reasonable to believe that in most cases, the four mapped units
described in this study are reasonably accurate. However, with
some exceptions, within the penguin colony, rocks are covered
with ornithocoprophilous, epilithic lichen with orange thallus, and
on the ground, the green algae Prasiola crispa often dominates. These

unusual cases mainly occur within the mapped units ‘Deschampsia
antarctica grass meadow’ and ‘Deschampsia antarctica–Usnea
antarctica heath,’ respectively. This is due to the spectral
similarities between P. crispa and D. antarctica in both the red and
NIR bands (Calviño-Cancela and Martín-Herrero, 2016) and thereby
similarities in the NDVI values, and the relatively high reflectance in
the red band to the epilithic lichen with orange thallus Caloplaca
sp. and Xanthoria sp. (Calviño-Cancela and Martín-Herrero, 2016).
Furthermore, scattered occurrences of the lichen Usnea antarctica
have been noted at higher altitudes that did not give any significant
signal in the NDVI value and were not mapped, as the NDVI values
were below 0.12. This suggests that the NDVI is not useful inmapping
spots of brightly colored lichens likeUsnea antarctica, probably due to
the high reflectance in both the visible and NIR bands of such lichens
(Calviño-Cancela and Martín-Herrero, 2016; da Rosa et al., 2022).

Moreover, since we used an ordinary GPS for determining the
location of the relevés, there is an accuracy issue, and by adding the
accuracy error in the NDVI map, the NDVI values extracted from the
1 × 1 m2 relevés would not fit perfectly with the NDVI map. However,
due to the gradual changes in vegetation/NDVI in the rather flat
landscape, this inaccuracy does not influence the main results when
dividing the NDVI values into vegetation units. The extracted NDVI
values from the 6 × 6 m2 plots correlate significantly with the NDVI
values from the 1 × 1 m2 relevés (r2 = 0.95, n = 99, and p = 5.34–65),
indicating that the inaccuracy in location/NDVI map does not
influence the results. Since no other maps of the vegetation in
ASPA 128 exist, except for the very small and old vegetation map
of the protectedwetland (Furmańczyk andOchyra, 1982) and a coarse
vegetation map of Demay Point (Pereira et al., 2010), this is a huge
step forward. The presented NDVImap and vegetationmap show the
current status of the vegetation andwill be highly useful in the study of
the ongoing environmental change, particularly the changes in
vegetation cover, and for the conservation of the ASPA 128. The
presented map could also be used as validation, giving a potential
baseline for satellite-based vegetation mapping (Miranda et al., 2020),
monitoring, and assessment of even larger areas. Future UAV-based
vegetation mapping of the area has to use cameras with more spectral
bands in order to better separate plant communities at a more detailed
level when compared with this level of mapping. Alternatively, a
recent geographic object-based image analysis of UAV data in a
comparable area in maritime Antarctic has shown promising results
(Sotille et al., 2022), although they have not separated the different
bryophyte species, which dominate in our study area.

Under the strongest forcing scenario, projections predict not only a
tripling (300% increase) of ice-free areas over parts of the Antarctic
Peninsula as a result of more than 50 additional-degree days above
freezing by the end of the 21st century (Lee et al., 2017) but also the
increases in precipitation (Turner et al., 2019), permafrost warming, and
active layer thickening (Guglielmin et al., 2014; Hrbăcek et al., 2021).
This means that groundwater will remain available in the upper parts of
the soil throughout the season. In maritime Antarctic, the development
of terrestrial communities is controlled by extreme environmental
conditions, with the crucial role of liquid water availability, rather
than biotic interactions (Convey & Peck, 2019). Such communities are
expected to be very sensitive to changes in climate and consequential
processes (Bargagli, 2005; Frenot et al., 2005). Since more cumulative
energy is available to terrestrial biota (both in terms of the absolute
positive temperature achieved and cumulative degree days) the
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consequences are thought to include increased diversity (also by
migrating some species from temperate zones to maritime
Antarctic), biomass, trophic complexity, and rapid colonization of
newly deglaciated terrains, all of which enable the development of a
more complex ecosystem (Siegert et al., 2019; Weisleitner et al., 2020).
Thus, most likely, further complications will arise from the complexity
of those species interactions (Molina-Montenegro et al., 2019). While
the contemporary Antarctic biota shows the ability to survive abiotic
environmental extremes, its competitive abilities are very poorly
developed, and even whole communities are vulnerable to increased
competition from opportunistic invaders (Galera et al., 2019; Colesie
et al., 2022). These observed changes are an area of concern for the
Antarctic Treaty System, whose decisions to protect the Antarctic
ecosystem are based on the best available reliable scientific data. As
described here, the UAVBVLOS operations proved to be very robust in
gathering valuable qualitative and quantitative data that are necessary
for monitoring distant and isolated polar environments. It is important
to notice the differences between the multi-rotor and fixed-wing
platforms, and between the visual line of sight and beyond visual
line of sight operations. Multi-rotor and fixed-wing platforms are
completely different solutions with extremely different performances,
but also with different functional and operational requirements. That is
why, it is so important to precisely define tasks in order to choose the
optimal system. The factors which significantly affect the efficiency of
UAV operations are flight time, flight speed, type of drive (combustion
or electric engine), possible distance to be covered by one flight,
telemetric range, and payload. Unmanned multi-rotor platforms are
mainly used for small, even very small areas located close to the take-off/
landing point and in favorable calm weather conditions. For tasks
requiring longer flight time and range, fixed-wing platforms turn out to
be much more effective especially in the BVLOS operation, as was
proved here, as in previous studies (see Zmarz et al., 2018; Korczak-
Abshire et al., 2019; Dąbski et al., 2020). Data described here can be
applied in the conservation of the protected areas and further studies of
environmental changes.

5 Conclusion

The BVLOS operation of the fixed-wing PW-ZOOM UAV,
equipped with an R-G-B camera and a B-G-NIR camera allowed
obtaining data for the development of a vegetation map in the
Antarctic Specially Protected Area No. 128. The flights were made
for an area of 7.5 km2 in a relatively short time (one flight lasted for
2 h and the second flight for 2.5 h). Using BVLOS operations in
Antarctic conditions proved to be an effective method of obtaining
data in hard-to-reach areas. Advantages include short data
acquisition time, long range of BVLOS flights, and few crew
members involved in servicing the BVLOS flights. Furthermore,

the proposed method of acquiring high-resolution data fills the gap
between satellite data and data obtained by traditional field-based
methods.

Data availability statement

The data: reléve coordinates, NDVI reléve values, NDVI map as
pdf, supporting the conclusion of this article will be made available
by the authors, without undue reservation.

Author contributions

AZ and SK conceived the ideas and designed the
methodology; AZ, SK, MK-A, and KC collected the data; AZ,
SK, MK, MK-A, IG, IK, and KC analyzed the data; AZ, SK, MK,
MK-A, and KC led the writing of the manuscript. All authors
contributed critically to the drafts and gave final approval for
publication.

Funding

The research was conducted as part of the project “A novel
approach to monitoring the impact of climate change on Antarctic
ecosystems (MONICA)” funded by the Polish–Norwegian Research
Programme operated by the National Centre for Research and
Development under the Norwegian Financial Mechanism
2009–2014 in the frame of Project Contract No. 197810. The
data used in the study were collected at the Henryk Arctowski
Polish Antarctic Station.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, editors, and reviewers.
Any product that may be evaluated in this article, or claim that
may be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

References

Andrade, A. M. De, Michel, R. F. M., Bremer, U. F., Schaefer, C. E. G. R., and Simões,
J. C. (2018). Relationship between solar radiation and surface distribution of vegetation
in Fildes Peninsula and Ardley Island, maritime Antarctica. Int. J. Remote Sens. 39 (8),
2238–2254. doi:10.1080/01431161.2017.1420937

Androsiuk, P., Chwedorzewska, K., Szandar, K., and Giełwanowska, I. (2015). Genetic
variability of Colobanthus quitensis from King George Island (Antarctica). Pol. Polar
Res. 36 (3), 281–295. doi:10.1515/popore-2015-0017

Bargagli, R. (2005). Antarctic ecosystems, environmental contamination, climate
change, and human impact. Ecological studies, 175 M. M. Caldwell, G. Heldmaier,
R. B. Jackson, O. L. Lange, H. A. Mooney, E. D. Schulze, et al. (Heidelberg, Germany: U.,
Friedmut Kröner), 393.

Bednarek-Ochyra, H., Váňa, J., Ochyra, R., and Lewis Smith, R. I. (2000). The
liverwort flora of Antarctica. Cracow: Polish Academy of Sciences, Institute of
Botany, 236.

Frontiers in Environmental Science frontiersin.org09

Zmarz et al. 10.3389/fenvs.2023.1154115

83

https://doi.org/10.1080/01431161.2017.1420937
https://doi.org/10.1515/popore-2015-0017
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1154115


Block, W., Lewis Smith, R. I., and Kennedy, A. D. (2009). Strategies of survival and
resource exploitation in the Antarctic fellfield ecosystem. Biol. Rev. 84 (3), 449–484.
doi:10.1111/j.1469-185X.2009.00084.x

Bollard, B., Doshi, A., Gilbert, N., Poirot, C., and Gillman, L. (2022). Drone
technology for monitoring protected areas in remote and fragile environments.
Drones 6 (2), 42. doi:10.3390/drones6020042

Broady, P. A. (1996). Diversity, distribution and dispersal of Antarctic terrestrial
algae. Biodivers. Conservation 5 (11), 1307–1335. doi:10.1007/BF00051981

Calviño-Cancela, M., and Martín-Herrero, J. (2016). Spectral discrimination of
vegetation classes in ice-free areas of Antarctica. Remote Sens. 8 (10), 856–915.
doi:10.3390/rs8100856

Casanovas, P., Black, M., Fretwell, P., and Convey, P. (2015). Mapping lichen
distribution on the Antarctic Peninsula using remote sensing, lichen spectra and
photographic documentation by citizen scientists. Polar Res. 34 (1), 25633. doi:10.
3402/polar.v34.25633

Chwedorzewska, K. J., Bednarek, P. T., and Puchalski, J. (2004). Molecular variation
of antarctic grass Deschampsia Antarctica Desv. From King George Island (Antarctica).
Acta Soc. Bot. Pol. 73 (1), 23–29. doi:10.5586/asbp.2004.004

Colesie, C., Walshaw, C. V., Sancho, L. G., Davey, M. P., and Gray, A. (2022).
Antarctica’s vegetation in a changing climate. WIREs Clim. Change 14, e810. doi:10.
1002/wcc.810

Convey, P., and Peck, L. S. (2019). Antarctic environmental change and biological
responses. Sci. Adv. 5 (11), eaaz0888. doi:10.1126/sciadv.aaz0888

Convey, P. (1996). The influence of environmental characteristics on life history
attributes of Antarctic terrestrial biota. Biol. Rev. 71, 191–225. doi:10.1111/j.1469-185x.
1996.tb00747.x

da Rosa, C. N., Pereira Filho, W., Bremer, U. F., Putzke, J., de Andrade, A. M., Kramer,
G., et al. (2022). Spectral behavior of vegetation in Harmony Point, Nelson Island,
Antarctica. Biodivers. Conservation 31, 1867–1885. doi:10.1007/s10531-022-02408-7

Dąbski, M., Zmarz, A., Pabjanek, P., Korczak-Abshire, M., Karsznia, I., and
Chwedorzewska, K. J. (2017). UAV-Based detection and spatial analyses of
periglacial landforms on Demay Point (King George Island, South Shetland Islands,
Antarctica). Geomorphology 290, 29–38. doi:10.1016/j.geomorph.2017.03.033

Dąbski, M., Zmarz, A., Rodzewicz, M., Korczak-Abshire, M., Karsznia, I., Lach, K.,
et al. (2020). Mapping glacier forelands based on UAV BVLOS operation in Antarctica.
Remote Sens. 12 (4), 630. doi:10.3390/rs12040630

Defries, R. S., and Townshend, J. R. (1994). NDVI-derived land cover classifications at
a global scale. Int. J. Remote Sens. 15 (17), 3567–3586. doi:10.1080/01431169408954345

Ferrari, F. R., Schaefer, C. E. G. R., Pereira, A. B., Thomazini, A., Schmitz, D., and
Francelino, M. R. (2021). Coupled soil-vegetation changes along a topographic gradient
on King George Island, maritime Antarctica. Catena 198, 105038. doi:10.1016/j.catena.
2020.105038

Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P. M., Convey, P., Skotnicki, M., et al.
(2005). Biological invasions in the Antarctic: Extent, impacts and implications. Biol. Rev.
80, 45–72. doi:10.1017/s1464793104006542

Fretwell, P. T., Convey, P., Fleming, A. H., Peat, H. J., and Hughes, K. A. (2011).
Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote
sensing data. Polar Biol. 34 (2), 273–281. doi:10.1007/s00300-010-0880-2

Furmańczyk, K., and Ochyra, R. (1982). Plant communities of the Admiralty Bay
region (King George Island, South Shetland Islands, Antarctic) I. Jasnorzewski Gardens.
Pol. Polar Res. 3 (1–2), 25–39.

Galera, H., Chwedorzewska, K. J., Korczak-Abshire, M., and Wódkiewicz, M. (2018).
What affects the probability of biological invasions in Antarctica? Using an expanded
conceptual framework to anticipate the risk of alien species expansion. Biodivers.
Conservation 27, 1789–1809. doi:10.1007/s10531-018-1547-5

Galera, H., Chwedorzewska, K. J., and Wódkiewicz, M. (2015). Response of Poa
annua to extreme conditions: Comparison of morphological traits between populations
from cold and temperate climate conditions. Polar Biol. 38 (10), 1657–1666. doi:10.
1007/s00300-015-1731-y

Galera, H., Rudak, A., Czyż, E. A., Chwedorzewska, K. J., Znój, A., and Wódkiewicz,
M. (2019). The role of the soil seed store in the survival of an invasive population of Poa
annua at Point Thomas Oasis, King George Island, maritime Antarctica. Glob. Ecol.
Conservation 19, e00679. doi:10.1016/j.gecco.2019.e00679

Gandhi, G. M., Parthiban, S., Thummalu, N., and Christy, A. (2015). NDVI:
Vegetation change detection using remote sensing and GIS — a case study of
vellore district. Procedia Comput. Sci. 57, 1199–1210. doi:10.1016/j.procs.2015.07.415

Geerken, R., Zaitchik, B., and Evans, J. P. (2005). Classifying rangeland vegetation
type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. Int.
J. Remote Sens. 26 (24), 5535–5554. doi:10.1080/01431160500300297

Goebel, M. E., Perryman, W. L., Hinke, J. T., Krause, D. J., Hann, N. A., Gardner, S.,
et al. (2015). A small unmanned aerial system for estimating abundance and size of
Antarctic predators. Polar Biol. 38 (5), 619–630. doi:10.1007/s00300-014-1625-4

Goetzendorf-Grabowski, T., and Rodzewicz, M. (2016). Design of UAV for
photogrammetric mission in Antarctic area. Proc. Institution Mech. Eng. Part G
J. Aerosp. Eng. 231 (9), 1660–1675. doi:10.1177/0954410016656881

Guglielmin, M., Dalle Fratte, M., and Cannone, N. (2014). Permafrost warming and
vegetation changes in continental Antarctica. Environ. Res. Lett. 9 (4), 045001. doi:10.
1088/1748-9326/9/4/045001

Hrbăcek, F., Vieira, G., Oliva, M., Balks, M., Guglielmin,M., Pablo, M. A., et al. (2021).
Active layer monitoring in Antarctica: An overview of results from 2006 to 2015. Polar
Geogr. 44 (3), 217–231. doi:10.1080/1088937X.2017.1420105

Jawak, S. D., Luis, A. J., Fretwell, P. T., Convey, P., and Durairajan, U. A. (2019).
Semiautomated detection and mapping of vegetation distribution in the Antarctic
environment using spatial-spectral characteristics of WorldView-2 imagery. Remote
Sens. 11 (16), 1909. doi:10.3390/rs11161909

Ju, Y., and Bohrer, G. (2022). Classification of wetland vegetation based on NDVI
time series from the HLS dataset. Remote Sens. 14 (9), 2107. doi:10.3390/rs14092107

Kejna, M. (1999). Air temperature on King George Island, South Shetland Islands,
Antarctica. Pol. Polar Res. 20 (3), 183–201.

Kejna, M., Araźny, A., and Sobota, I. (2013). Climatic change on King George Island
in the years 1948 – 2011. Pol. Polar Res. 34 (2), 213–235. doi:10.2478/popore-2013-0004

Koc, J., Androsiuk, P., Chwedorzewska, K. J., Cuba-Díaz, M., Górecki, R., and
Giełwanowska, I. (2018). Range-wide pattern of genetic variation in Colobanthus
quitensis. Polar Biol. 41 (12), 2467–2479. doi:10.1007/s00300-018-2383-5

Koerich, G., Fraser, C. I., Lee, C. K., Morgan, F. J., and Tonkin, J. D. (2022).
Forecasting the future of life in Antarctica. Trends Ecol. Evol. 38, 24–34. doi:10.
1016/j.tree.2022.07.009

Korczak-Abshire, M., Zmarz, A., Rodzewicz, M., Kycko, M., Karsznia, I., and
Chwedorzewska, K. J. (2019). Study of fauna population changes on Penguin Island
and Turret Point Oasis (King George Island, Antarctica) using an unmanned aerial
vehicle. Polar Biol. 42 (1), 217–224. doi:10.1007/s00300-018-2379-1

Kreczmer, K., Dąbski, M., and Zmarz, A. (2021). Terrestrial signature of a recently-
tidewater glacier and adjacent periglaciation, Windy Glacier (South Shetland Islands,
Antarctic). Front. Earth Sci. 9, 671985. doi:10.3389/feart.2021.671985

Łachacz, A., Kalisz, B., Giełwanowska, I., Olech, M., Chwedorzewska, K. J., and
Kellmann-Sopyła, W. (2018). Nutrient abundance and variability from soils in the coast
of King George Island. J. Soil Sci. Plant Nutr. 18 (2), 294–311. doi:10.4067/S0718-
95162018005001101

Lee, J. R., Raymond, B., Bracegirdle, T. J., Chades, I., Fuller, R. A., Shaw, J. D., et al.
(2017). Climate change drives expansion of Antarctic ice-free habitat. Nature 547
(7661), 49–54. doi:10.1038/nature22996

Li, T., Zhang, B., Cheng, X., Westoby, M. J., Li, Z., Ma, C., et al. (2019). Resolving fine-
scale surface features on polar sea ice: A first assessment of uas photogrammetry without
ground control. Remote Sens. 11 (7), 784. doi:10.3390/rs11070784

Lim, H. S., Park, Y., Lee, J. Y., and Yoon, H. Il. (2014). Geochemical characteristics of
meltwater and pondwater on Barton and Weaver Peninsulas of King George Island,
west Antarctica. Geochem. J. 48 (4), 409–422. doi:10.2343/geochemj.2.0316

Lindsay, D. C. (1971). Vegetation of the South Shetland Islands. Br. Antarct. Surv.
Bull. 25, 59–83.

Lucieer, A., Turner, D., King, D. H., and Robinson, S. A. (2014). Using an unmanned
aerial vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl.
Earth Observation Geoinformation 27, 53–62. doi:10.1016/j.jag.2013.05.011

Malenovský, Z., Robinson, S. A., Lucieer, A., King, D. H., Turnbull, J. D., and
Robinson, S. A. (2017). Unmanned aircraft system advances health mapping of fragile
polar vegetation. Methods Ecol. Evol. 8, 1842–1857. doi:10.1111/2041-210X.12833

Malosso, E., Waite, I. S., English, L., Hopkins, D. W., and O’Donnell, A. G. (2006).
Fungal diversity in maritime Antarctic soils determined using a combination of culture
isolation, molecular fingerprinting and cloning techniques. Polar Biol. 29 (7), 552–561.
doi:10.1007/s00300-005-0088-z

Marsz, A. A., and Styszyńska, A. (2000). Główne cechy klimatu rejonu Polskiej Stacji
Antarktycznej im. H. Arctowskiego (Antarktyka Zachodnia, Szetlandy Południowe,
Wyspa Króla Jerzego. [Main climate characteristics of the region of the Polish
Antarctic Station H. Arctowski (West Antarctica, South Shetland Islands, King
George Island) - in Polish], WSM, Gdynia, pp. 264.

Miranda, V., Pina, P., Heleno, S., Vieira, G., Mora, C., and Schaefer, E. G. R. C. (2020).
Monitoring recent changes of vegetation in Fildes Peninsula (King George Island,
Antarctica) through satellite imagery guided by UAV surveys. Sci. Total Environ. 704,
135295. doi:10.1016/j.scitotenv.2019.135295

Molina-Montenegro, M. A., Bergstrom, D. M., Chwedorzewska, K. J., Convey, P., and
Chown, S. L. (2019). Increasing impacts by Antarctica’s most widespread invasive plant
species as result of direct competition with native vascular plants. Neobiota 51, 19–40.
doi:10.3897/neobiota.51.37250

Murray, H., Lucieer, A., and Williams, R. (2010). Texture-based classification of sub-
Antarctic vegetation communities on Heard Island. Int. J. Appl. Earth Observation
Geoinformation 12 (3), 138–149. doi:10.1016/j.jag.2010.01.006

Mustafa, O., Barbosa, A., Krause, D. J., Peter, H. U., Vieira, G., and Rümmler, M. C.
(2018). State of knowledge: Antarctic wildlife response to unmanned aerial systems.
Polar Biol. 41 (11), 2387–2398. doi:10.1007/s00300-018-2363-9

Mustafa, O., Pfeifer, C., Peter, H.-U., Kopp, M., and Metzig, R. (2012). Pilot study on
monitoring climate-induced changes in penguin colonies in the Antarctic using satellite

Frontiers in Environmental Science frontiersin.org10

Zmarz et al. 10.3389/fenvs.2023.1154115

84

https://doi.org/10.1111/j.1469-185X.2009.00084.x
https://doi.org/10.3390/drones6020042
https://doi.org/10.1007/BF00051981
https://doi.org/10.3390/rs8100856
https://doi.org/10.3402/polar.v34.25633
https://doi.org/10.3402/polar.v34.25633
https://doi.org/10.5586/asbp.2004.004
https://doi.org/10.1002/wcc.810
https://doi.org/10.1002/wcc.810
https://doi.org/10.1126/sciadv.aaz0888
https://doi.org/10.1111/j.1469-185x.1996.tb00747.x
https://doi.org/10.1111/j.1469-185x.1996.tb00747.x
https://doi.org/10.1007/s10531-022-02408-7
https://doi.org/10.1016/j.geomorph.2017.03.033
https://doi.org/10.3390/rs12040630
https://doi.org/10.1080/01431169408954345
https://doi.org/10.1016/j.catena.2020.105038
https://doi.org/10.1016/j.catena.2020.105038
https://doi.org/10.1017/s1464793104006542
https://doi.org/10.1007/s00300-010-0880-2
https://doi.org/10.1007/s10531-018-1547-5
https://doi.org/10.1007/s00300-015-1731-y
https://doi.org/10.1007/s00300-015-1731-y
https://doi.org/10.1016/j.gecco.2019.e00679
https://doi.org/10.1016/j.procs.2015.07.415
https://doi.org/10.1080/01431160500300297
https://doi.org/10.1007/s00300-014-1625-4
https://doi.org/10.1177/0954410016656881
https://doi.org/10.1088/1748-9326/9/4/045001
https://doi.org/10.1088/1748-9326/9/4/045001
https://doi.org/10.1080/1088937X.2017.1420105
https://doi.org/10.3390/rs11161909
https://doi.org/10.3390/rs14092107
https://doi.org/10.2478/popore-2013-0004
https://doi.org/10.1007/s00300-018-2383-5
https://doi.org/10.1016/j.tree.2022.07.009
https://doi.org/10.1016/j.tree.2022.07.009
https://doi.org/10.1007/s00300-018-2379-1
https://doi.org/10.3389/feart.2021.671985
https://doi.org/10.4067/S0718-95162018005001101
https://doi.org/10.4067/S0718-95162018005001101
https://doi.org/10.1038/nature22996
https://doi.org/10.3390/rs11070784
https://doi.org/10.2343/geochemj.2.0316
https://doi.org/10.1016/j.jag.2013.05.011
https://doi.org/10.1111/2041-210X.12833
https://doi.org/10.1007/s00300-005-0088-z
https://doi.org/10.1016/j.scitotenv.2019.135295
https://doi.org/10.3897/neobiota.51.37250
https://doi.org/10.1016/j.jag.2010.01.006
https://doi.org/10.1007/s00300-018-2363-9
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1154115


images. On behalf of the German Environment Agency. Texte 19/2012. Dessau-Roßlau.
Available at: http://www.umweltbundesamt.de/publikationen/pilot-study-on-
monitoring-climate-induced

Nędzarek, A., Tórz, A., and Drost, A. (2014). Selected elements in surface waters of
Antarctica and their relations with the natural environment. Polar Res. 33, 21417.
doi:10.3402/polar.v33.21417

Ochyra, R., Lewis Smith, R. I., and Bednarek-Ochyra, H. (2008). The illustrated moss
flora of Antarctica. Cambridge: Cambridge University Press, 704. doi:10.1093/aob/
mcp111

Olech, M. (2004). Lichens of King George Island, Antarctica. Kraków: Institute of
Botany of The Jagiellonian University, 391.

Øvstedal, D. O., and Lewis Smith, R. I. (2001). Lichens of Antarctica and South
Georgia. A guide to their identification and ecology. Cambridge: Cambridge University
Press, 424. doi:10.1177/1748895811401979

Ozyavuz, M., Bilgili, B. C., and Salici, A. (2015). Determination of vegetation changes
with NDVI method. J. Environ. Prot. Ecol. 16 (1), 264–273.

Pereira, A. B., Francelino, M. R., Stefenon, V. M., Schünemann, A. L., and Roesch, L.
F. W. (2010). Plant communities from ice-free areas of Demay Point, King George
Island, Antarctica. INCT-APA Annu. Act. Rep. 2, 58–62. doi:10.4322/apa.2014.024

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., and Stenseth, N. Chr.
(2005). Using the satellite-derived NDVI to assess ecological responses to environmental
change. Trends Ecol. Evol. 20 (9), 503–510. doi:10.1016/j.tree.2005.05.011

Pina, P., Pereira, F., Marques, J. S., and Heleno, S. (2019). “Detection of stone circles in
periglacial regions of Antarctica in UAV datasets,” in Pattern recognition and image
analysis, lecture notes in computer science A. Morales, J. Fierrez, J. S. Sánchez, and
B. Ribeiro (Germany: Springer Nature Switzerland AG), 279–288. doi:10.1016/0165-
1684(94)90196-1

Pina, P., and Vieira, G. (2022). UAVs for science in Antarctica. Remote Sens. 14 (7),
1610–1639. doi:10.3390/rs14071610

Power, S. N., Salvatore, M. R., Sokol, E. R., Stanish, L. F., and Barrett, J. E. (2020).
Estimating microbial mat biomass in the McMurdo Dry Valleys, Antarctica using
satellite imagery and ground surveys. Polar Biol. 43 (11), 1753–1767. doi:10.1007/
s00300-020-02742-y

Pudełko, R., Angiel, P. J., Potocki, M., Jędrejek, A., and Kozak, M. (2018). Fluctuation
of glacial retreat rates in the eastern part of Warszawa Icefield, King George Island,
Antarctica, 1979-2018. Remote Sens. 10, 892. doi:10.3390/rs10060892

Rodzewicz, M., Głowacki, D., and Hajduk, J. (2017). Some dynamic aspects of
photogrammetry missions performed by “PW-ZOOM”-the UAV of Warsaw University
of Technology. Archive Mech. Eng. 64 (1), 37–55. doi:10.1515/meceng-2017-0003

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). “Monitoring
vegetation systems in the great plains with ERTS,” in Third earth resources technology
satellite–1 syposium. Volume I: Technical presentations, NASA SP-351 S. C. Freden,
E. P. Mercanti, and M. Becker (Washington, D.C.: NASA), 309–317.

Sancho, L. G., Pintado, A., Navarro, F., Ramos, M., De Pablo, M. A., Blanquer, J. M.,
et al. (2017). Recent warming and cooling in the Antarctic Peninsula region has rapid
and large effects on lichen vegetation. Sci. Rep. 7, 5689. doi:10.1038/s41598-017-05989-4

Shin, J. Il, Kim, H. C., Kim, S. Il, and Hong, S. G. (2014). Vegetation abundance on the
Barton Peninsula, Antarctica: Estimation from high-resolution satellite images. Polar
Biol. 37 (11), 1579–1588. doi:10.1007/s00300-014-1543-5

Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B., et al.
(2019). The Antarctic Peninsula under a 1.5C global warming scenario. Front. Environ.
Sci. 1 (102), 1–7. doi:10.3389/fenvs.2019.00102

Sierakowski, K., Korczak-Abshire, M., and Jadwiszczak, P. (2017). Changes in bird
communities of Admiralty Bay, King George Island (West Antarctic): Insights from
monitoring data (1977-1996). Pol. Polar Res. 38 (2), 231–262. doi:10.1515/popore-2017-
0010

Smith, R. I. L. (1984). “Terrestrial biology of the Antarctic and sub-Antarctic,” in
Antarctic ecology R. M. Laws (London: Academic Press), 61–162.

Smith, R. I. L. (1972). Vegetation of the South Orkney Islands with particular reference
to Signy Island Scientific Report of the British Antarctic Survey, 68. London: British
Antarctic Survey Scientific Reports.

Sotille, M. E., Bremer, U. F., Vieira, G., Velho, L. F., Petsch, C., Auger, J. D., et al.
(2022). UAV-based classification of maritime Antarctic vegetation types using GEOBIA
and random forest. Ecol. Inf. 71, 101768. doi:10.1016/j.ecoinf.2022.101768

Sotille, M. E., Bremer, U. F., Vieira, G., Velho, L. F., Petsch, C., and Simões, J. C.
(2020). Evaluation of UAV and satellite-derived NDVI to map maritime Antarctic
vegetation. Appl. Geogr. 125, 102322. doi:10.1016/j.apgeog.2020.102322

Sun, X., Wu, W., Li, X., Xu, X., and Li, J. (2021). Vegetation abundance and health
mapping over southwestern Antarctica based on WorldView-2 data and a Modified
Spectral Mixture Analysis. Remote Sens. 13 (2), 166. doi:10.3390/rs13020166

Turner, D. J., Malenovsky, Z., Lucieer, A., Turnbull, J. D., and Robinson, S. A. (2019).
Optimizing spectral and spatial resolutions of Unmanned Aerial System imaging
sensors for monitoring Antarctic vegetation. IEEE J. Sel. Top. Appl. Earth
Observations Remote Sens. 12 (10), 3813–3825. doi:10.1109/JSTARS.2019.2938544

Turner, D., Lucieer, A., Malenovský, Z., King, D. H., and Robinson, S. A. (2014).
Spatial co-registration of ultra-high resolution visible, multispectral and thermal images
acquired with a micro-UAV over Antarctic moss beds. Remote Sens. 6 (5), 4003–4024.
doi:10.3390/rs6054003

Váczi, P., Barták, M., Bednaříková, M., Hrbáček, F., and Hájek, J. (2020). Spectral
properties of Antarctic and Alpine vegetation monitored by multispectral camera: Case
studies from James Ross Island and Jeseníky Mts. Czech Polar Rep. 10 (2), 297–312.
doi:10.5817/CPR2020-2-22

Victoria, F. C., Albuquerque, M. P., and Pereira, A. B. (2006). Lichen-moss
associations in plant communities of the southwest Admiralty Bay, King George
Island, Antarctica. Neotropical Biol. Conservation 1 (2), 84–89.

Victoria, F. C., Pereira, A. B., and Pinheiro-da-Costa, D. (2009). Composition and
distribution of moss formations in the ice-free areas adjoining the Arctowski region,
Admiralty Bay, King George Island, Antarctica. Iheringia, Série Botânica 64 (1), 81–91.

Wall, D. H., Lyons, B. W., Chown, S. L., Convey, P., Howard-Williams, C., Quesada,
A., et al. (2011). Long-term ecosystem networks to record change: An international
imperative. Antarct. Sci. 23 (3), 209. doi:10.1017/S0954102011000319

Weier, J., and Herring, D. (2000).Measuring vegetation (NDVI and EVI). Washington
DC: NASA Earth Observatory.

Weisleitner, K., Perras, A. K., Unterberger, S. H., Moissl-Eichinger, C., Andersen, D.
T., and Sattler, B. (2020). Cryoconite hole location in East Antarctic Untersee oasis
shapes physical and biological diversity. Front. Microbiol. 11, 1165. doi:10.3389/fmicb.
2020.01165

Zarzycki, K. (1993). “Vascular plants and terrestrial biotopes,” in The maritime
antarctic coastal ecosystem of Admiralty Bay S. Rakusa-Suszczewski (Warsaw:
Department of Antarctic Biology, Polish Academy of Sciences), 181–187.

Zmarz, A., Rodzewicz, M., Dąbski, M., Karsznia, I., Korczak-Abshire, M., and
Chwedorzewska, K. J. (2018). Application of UAV BVLOS remote sensing data for
multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 217, 375–388.
doi:10.1016/j.rse.2018.08.031

Znój, A., Chwedorzewska, K. J., Androsiuk, P., Cuba-Diaz, M., Giełwanowska, I., Koc,
J., et al. (2017). Rapid environmental changes in theWestern Antarctic Peninsula region
due to climate change and human activity. Appl. Ecol. Environ. Res. 15 (4), 525–539.
doi:10.15666/aeer/1504_525539

Zwoliński, Z. (2007). “Mobilność materii mineralnej na obszarach paraglacjalnych,
Wyspa Króla Jerzego, Antarktyka Zachodnia [the mobility of mineral matter in
paraglacial area, King George Island, western Antarctica - in polish,” in Seria
geograficzna 74 (Poznań: Adam Mickiewicz University Press), 266.

Frontiers in Environmental Science frontiersin.org11

Zmarz et al. 10.3389/fenvs.2023.1154115

85

http://www.umweltbundesamt.de/publikationen/pilot-study-on-monitoring-climate-induced
http://www.umweltbundesamt.de/publikationen/pilot-study-on-monitoring-climate-induced
https://doi.org/10.3402/polar.v33.21417
https://doi.org/10.1093/aob/mcp111
https://doi.org/10.1093/aob/mcp111
https://doi.org/10.1177/1748895811401979
https://doi.org/10.4322/apa.2014.024
https://doi.org/10.1016/j.tree.2005.05.011
https://doi.org/10.1016/0165-1684(94)90196-1
https://doi.org/10.1016/0165-1684(94)90196-1
https://doi.org/10.3390/rs14071610
https://doi.org/10.1007/s00300-020-02742-y
https://doi.org/10.1007/s00300-020-02742-y
https://doi.org/10.3390/rs10060892
https://doi.org/10.1515/meceng-2017-0003
https://doi.org/10.1038/s41598-017-05989-4
https://doi.org/10.1007/s00300-014-1543-5
https://doi.org/10.3389/fenvs.2019.00102
https://doi.org/10.1515/popore-2017-0010
https://doi.org/10.1515/popore-2017-0010
https://doi.org/10.1016/j.ecoinf.2022.101768
https://doi.org/10.1016/j.apgeog.2020.102322
https://doi.org/10.3390/rs13020166
https://doi.org/10.1109/JSTARS.2019.2938544
https://doi.org/10.3390/rs6054003
https://doi.org/10.5817/CPR2020-2-22
https://doi.org/10.1017/S0954102011000319
https://doi.org/10.3389/fmicb.2020.01165
https://doi.org/10.3389/fmicb.2020.01165
https://doi.org/10.1016/j.rse.2018.08.031
https://doi.org/10.15666/aeer/1504_525539
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1154115


Frontiers in Ecology and Evolution 01 frontiersin.org

An artificial intelligence-based 
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Soil erosion is a major problem in arid regions, including the Abha-Khamis watershed 
in Saudi Arabia. This research aimed to identify the soil erosional probability using 
various soil erodibility indices, including clay ratio (CR), modified clay ratio (MCR), 
Critical Level of Soil Organic Matter (CLOM), and principle component analysis 
based soil erodibility index (SEI). To achieve these objectives, the study used t-tests 
and an artificial neural network (ANN) model to identify the best SEI model for soil 
erosion management. The performance of the models were then evaluated using 
R2, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute 
Error (MAE), with CLOM identified as the best model for predicting soil erodibility. 
Additionally, the study used Shapley additive explanations (SHAP) values to identify 
influential parameters for soil erosion, including sand, clay, silt, soil organic carbon 
(SOC), moisture, and void ratio. This information can help to develop management 
strategies oriented to these parameters, which will help prevent soil erosion. The 
research showed notable distinctions between CR and CLOM, where the 25–27% 
contribution explained over 89% of the overall diversity. The MCR indicated that 
70% of the study area had low erodibility, while 20% had moderate and 10% had 
high erodibility. CLOM showed a range from low to high erodibility, with 40% of soil 
showing low CLOM, 40% moderate, and 20% high. Based on the T-test results, CR 
is significantly different from CLOM, MCR, and principal component analysis (PCA), 
while CLOM is significantly different from MCR and PCA, and MCR is significantly 
different from PCA. The ANN implementation demonstrated that the CLOM model 
had the highest accuracy (R2 of 0.95 for training and 0.92 for testing) for predicting 
soil erodibility, with SOC, sand, moisture, and void ratio being the most important 
variables. The SHAP analysis confirmed the importance of these variables for 
each of the four ANN models. This research provides valuable information for soil 
erosion management in arid regions. The identification of soil erosional probability 
and influential parameters will help to develop effective management strategies 
to prevent soil erosion and promote agricultural production. This research can 
be used by policymakers and stakeholders to make informed decisions to manage 
and prevent soil erosion.

KEYWORDS

soil erodibility index (SEI), soil erosion, principle component analysis (PCA), artificial 
neural network, SHAP
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1. Introduction

Soil erosion is aggravated by abrupt climate variability, exploitation 
of natural resources, land degradation, etc. As a result, soil erosion and 
its environmental consequences are growing concerns worldwide 
(Gilani et al., 2022; Tsesmelis et al., 2022). Over the last few decades, it 
has become increasingly clear that soil erosion poses a significant risk 
to long-term soil sustainability, leading to soil management scenarios 
and practical conservation practices to preserve soil against erosive 
forces (Telak et al., 2021; Tesfahunegn et al., 2021; Khalil and Aslam, 
2022). As a deterministic factor in soil erosion, vegetation cover can 
protect soil from erosive agents. The presence of vegetation in an area 
contributes significantly to the management of soil and water resources 
through interception of rainfall and regulation of surface run-off 
(Zhang et al., 2014). The leaves, stems, and root systems of plants 
collectively act as a control mechanism for surface water, effectively 
reducing erosion and conserving soil and water resources (Stagnari 
et al., 2010; Jiang et al., 2017).

However, in recent decades soils have become increasingly 
susceptible to water because of the rapid changes in the land use 
pattern and land composition, mainly due to intense agricultural 
practices and deforestation. Furthermore, human activities such as 
urbanization and characteristics such as population growth have 
accelerated vegetation eradication from the surface and the 
acceleration of soil displacement (Esa et al., 2018; Gong et al., 2022). 
Therefore, long-term strategic plans and efficient management are the 
only ways to protect the environment from rapid decline and keep the 
soil productive indefinitely. In addition, land degradation directly 
affects sediment formation and leads to accelerated sedimentation in 
watersheds. Globally, about 1964.4 million hectares (Mha) of soil were 
degraded due to anthropogenic activities, with 1903 M ha enhanced 
by water erosion (Pal, 2016). India is classified as humid subtropical, 
and one of the most significant threats to the country’s fertile topsoil 
is soil erosion. According to the National Bureau of Soil Survey and 
Land Use Planning (NBSS&LUP), nearly 146.8 million ha (45%) of 
land in the country is at risk of soil erosion, most of which is due to 
surface run-off (Bhattacharyya et al., 2015; Pal et al., 2022; Saha et al., 
2022). As a result, appropriate soil management practices must 
be  implemented to prevent accelerated soil erosion through a 
comprehensive study of area-specific original data sets.

Several empirical and physical models for predicting soil erosion, 
soil loss, and sediment yield have been used by various researchers, 
such as the Morgan and Finney (MMF) model (Kumar and Pani, 
2022), the European Soil Erosion Model (EUROSEM; Bora et al., 
2022), Griffith University Erosion System Template (GUEST; Raza 
et al., 2021), the Water Erosion Prediction Project (WEPP; Meinen 
and Robinson, 2021; Mirzaee and Ghorbani-Dashtaki, 2021), 
Chemicals, Run-off, and Erosion from Agricultural Management 
System (CREAMS; Shi et  al., 2022), Kinematic Runoff and Soil 
Erosion Model (KINEROS; Duarte et  al., 2022), Soil & Water 
Assessment Tool (SWAT; Naseri et al., 2021), Agricultural Non-Point 
Source Pollution (AGNPS; Shrestha et al., 2021), Areal Nonpoint 
Source Watershed Environment Response Simulation (ANSWERS; 
Pandey et al., 2021), and others. However, insufficient spatial data 
makes these models ill-suited for fitting with small- to medium-sized 
watersheds, particularly in developing nations such as India. Hence, a 
model such as USLE (Universal Soil Loss Equation) was developed to 
forecast soil losses on agricultural land by Wischmeier and Smith in 

1978. Later Revised Universal Soil Loss Equation (RUSLE) model was 
developed by Renard in 1997. It employs a framework similar to USLE 
but is more streamlined to best use the available data sources. Since 
1990, it has been extensively employed in predicting soil water erosion 
(Millward and Mersey, 1999; Toy et al., 1999; Nyakatawa et al., 2001; 
Dissanayake et al., 2019; Kebede et al., 2021). RUSLE employs the 
same empirical principles as USLE but with more accurate factor 
calculation (McCool et al., 1987; Nearing et al., 2005; Das et al., 2020).

However, the mentioned methods are mostly qualitative methods 
based on remote sensing databases, which lack the ground validation 
and measurement. In the present study, we have planned to use an 
empirical model. The empirical models consider several elements such 
as the primary particles, the concentration of organic matter, the 
permeability, and the structure of the soil. The slope’s steepness and 
concavity or convexity, the amount of pore space filled by air, the 
residual effects of sod crops, the aggregation, the parent material, and 
the many interactions between these factors all have a role (Olaniya 
et al., 2020). There are a number of different indicators of soil erodibility, 
some of which include the aggregation of soil and the proportion of 
water stable aggregates (Zuo et  al., 2020; Rieke et  al., 2022). Soil 
erodibility is reportedly affected by soil aggregation, which in turn is 
affected by land use system (Wassie, 2020). Researchers employ a 
variety of indicators, including quantitative indices for soil erodibility, 
to better comprehend the susceptibility of soil to erosion. Three of these 
are particularly popular: the Clay Ratio (CR), the Modified Clay Ratio 
(MCR), and the Critical Level of Soil Organic Matter (CLOM; Olaniya 
et al., 2020; Babur et al., 2021; Senanayake and Pradhan, 2022). Soil 
conservation priorities can be set with the help of indices like the clay 
ratio, the modified clay ratio, and the CLOM (Vitali et al., 2019; Olaniya 
et al., 2020; de Almeida Valente et al., 2023).

Despite the availability of various methods for assessing and 
quantifying soil erosion, some approaches have been limited to 
incorporating only two or three parameters, while others have 
included multiple parameters. But no study has been conducted to 
incorporate both equation-based soil erosion and weighting-based 
soil erosion models together. In the present study, we used several 
equation-based indices for quantifying the probability of soil erosion 
like clay ratio (CR), modified soil erosion (MCR), and CLOM, as well 
as weighting-based SEI to measure soil erosion probability. However, 
in the present study, we attempted to merge all the available erodibility 
indices and provide one erodibility indices with high accuracy.

Soil erosion is a significant environmental problem, which leads 
to soil degradation, loss of fertile land, and ecological imbalance. 
Therefore, accurate and reliable soil erodibility indices (SEIs) are 
necessary for effective soil erosion management. Various methods have 
been proposed for calculating SEIs, including CR, MCR, CLOM, and 
PCA-based models. However, identifying the best SEI model among 
them is challenging due to the complexity of the soil-landscape system 
and the involvement of numerous variables. To address this issue, 
researchers proposed using Artificial Neural Network (ANN) models 
to identify the best SEI for soil erosion prediction. The study utilized 
ANN to model nonlinear relationships and identify key variables for 
predicting soil erosion. Four SEI models were compared using ANN, 
with hyper-parameters optimized via grid search. Model performance 
was evaluated using R2, Root Mean Squared Error (RMSE), Mean 
Squared Error (MSE), and Mean Absolute Error (MAE).

Moreover, the addition of explainable artificial intelligence in the 
form of SHAP (Shapley Additive Explanations) made a significant 
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contribution to soil erosion management. After identifying the best 
SEI model, the researchers introduced explainable artificial 
intelligence (XAI) techniques to quantify the influence of individual 
parameters in the model (Arrieta et al., 2020; Vilone and Longo, 2021; 
Al-Najjar et  al., 2022). Specifically, SHAP (Shapley additive 
explanations) values were used to estimate the contribution of each 
variable in the model (García and Aznarte, 2020), which can be used 
to develop management strategies for reducing soil erosion. SHAP is 
a model-agnostic method that identifies the most influential variables 
and the magnitude of their influence on the model’s output. By 
utilizing SHAP, it is possible to identify the critical parameters that 
contribute to soil erosion and develop targeted management strategies. 
Overall, the combination of ANN and SHAP has great potential for 
identifying the best SEI model and developing effective soil erosion 
management strategies. This research has theoretical implications for 
the development of soil erosion models and practical implications for 
the implementation of soil erosion management practices.

This study aims to address the issue of identifying the best SEIs for 
effective soil erosion management. The study utilizes ANN to model 
nonlinear relationships and identify key variables for predicting soil 
erosion, with four SEI models compared using ANN. The study’s 
objective is to determine the best SEI model for soil erosion prediction, 
evaluate the performance of the models, and identify the influential 
parameters using XAI techniques. The novelty of the study lies in the 
application of ANN models and XAI techniques to identify the best 
SEI model and quantify the importance of individual parameters in 
the model. The addition of XAI in the form of SHAP made a 
significant contribution to soil erosion management by identifying the 
most influential variables and the magnitude of their influence on the 
model’s output, which can be used to develop management strategies 
for reducing soil erosion. Overall, the study’s findings have both 
theoretical implications for the development of soil erosion models 
and practical implications for the implementation of soil erosion 
management practices.

2. Materials and methodology

2.1. Study area

Abha-Khamis Watershed, located in the South-Western region 
of Saudi Arabia, has a semiarid climate and hilly topography. The 
watershed encompasses an area of 1,773 kilometers (Figure  1). 
Aseer’s terrain is rugged, with high peaks that are about 2,990 
meters above sea level. The highest peaks of the watershed are 
located in Jabal Alsouda. Some small Wadi (valley/riverbed which 
is either permanently or intermittently dry) occur in the higher 
mountains because to the great amount of precipitation received by 
the higher mountains, however none of the Wadi flow for more than 
50 kilometers before entering the Wadi plains (Vincent, 2008). The 
semi-arid South-Western Coast of Saudi Arabia is surrounded by 
mountainous terrain, where strong rainstorms occur irregularly 
throughout the year (Mallick, 2016). Wet oceanic currents cause the 
region to get rainfall from the South-Western monsoon (Vincent, 
2008). High summer temperatures over the peninsula have 
contributed to the formation of tropical continental air, which is a 
component of the monsoon with low circulation in the northwest 
of India (Vincent, 2008). From March to June, the regions receive 

the most precipitation, and flash floods are reported in the 
downstream regions (Mallick, 2016). April receives the most 
precipitation, with an annual average of 244 millimeters. In the 
Aseer region, rainfall originates from orographic convection over 
the scarp, particularly during the late summer monsoon season. 
Rainfall over 200 mm per year is restricted to a 20–30 km wide zone 
along the crest.

2.2. Sampling of soils with laboratory 
analysis

Using a Global Positioning System (GPS) model GPS 38S, soil 
samples were gathered from the study region during dry weather 
conditions using a stratified technique, i.e., an area separated into 
areas with similar topography, soil moisture, and land cover. A 
total of one hundred thirty five (135) soil samples were taken from 
each site, with two replicates separated by 2–3 meters and 0–30 
centimeters in depth. After air-drying soil samples at 102°C for 
24 h in an oven, they were carefully homogenized, sieved through 
a 2-mm mesh, and then analyzed for their qualities, including soil 
texture and organic matter content, according to Carter’s standard 
process (1993). Using a muffle furnace at 350–600°C for 2 h, the 
organic matter content was determined. The precision of the 
measurements is specified to be 1.5% of the amount observed, with 
a detection limit of 0.02% (Hill and Schütt, 2000). Using the 
hydrometer method and Stokes’ law, the soil samples were analyzed 
for texture (Sheldrick and Wang, 1993).

2.3. Method for computing soil erodibility 
indices

In the present study, we have computed three conventional SEIs 
and proposed one PCA based SEI method for investigating the 
soil erodibility.

2.3.1. Computation of clay ratio
The clay ratio is an evaluation of the quantity of the binding agent 

clay that securely binds the soil particles, making it difficult for the 
particle to be detached by the external forces in the presence of a larger 
number of clay particles (Bouyoucos, 1935). Ten percent minimum 
clay content is required for any interpretation (Bryan, 1968). Soil 
erodibility decreases as CR rises. The computation of clay ratio Eq. 1 
is mentioned below

	 CR sand silt clay= +( )% % / % 	 (1)

2.3.2. Computation of modified clay ratio
Correlation analyses between soil characteristics have shown that 

the modified clay ratio may be used as an alternative measure of soil 
erodibility, as reported by Mukhi (1988) and Tarafdar and Ray (2005). 
They found that in high-organic-content soil, MCR was a better 
explanation of erodibility than CR. It can be computed using Eq. 2:

	 MCR sand silt clay OM= +( ) +( )% % / % % 	 (2)
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2.3.3. Computation of critical level of soil organic 
matter

An indication of how susceptible soil is to erosion is referred to as 
the critical level of soil organic matter (CLOM). CLOM, according to 
Pieri (2012), has an effect on soil structure, which provides resistance to 
erosion. In their research, if CLOM is 5% or below, soil structure is lost 
and erosion susceptibility is high, 5–7% is moderate, and >9% shows 
stable soil structure, enabling better erosion resistance. The following 
Eq. 3 was used to get an estimate for the Critical Soil Organic Matter:

	
CLOM OM

Clay Silt
=

+ 	
(3)

2.3.4. Computation of PCA based soil erodibility 
index

In the present study, we proposed a PCA-based soil erodibility 
index (PSEI) method for computing robust SEI, where different 
parameters can contribute. An indexing method was used to 
determine the SEI which has been shown to work well for small-scale 
applications, including on-filed studies (Andrews et al., 2002). A SEI 
is the result of three phases: (i) determination of the minimum dataset 
(MDS) of indicators with the best representation of the soil structure 
related to erosion; (ii) standardization of MDS indicators; and (iii) 
combining the scores of the indicators.

Principal component analysis (PCA) was used to refine indicators 
suitable for the MDS. PCA reduces dimensionality and minimizes 
information loss. This is done by constructing unrelated variables 
called principal components (PCs), which are arranged so that the first 
few retain most of the volatility of the original data. The 9 previously 
standardized soil chemical and physical variables were subjected to 

PCA analysis. Standardized variables contain unit variance, so the PCA 
variance is equal to the number of observed variables. An eigenvalue is 
the numerical representation of a PC’s proportional contribution to the 
total variance. Using the eigenvalue criterion one (Kaiser, 1960) and the 
Scree test, the number of components was reduced (Cattell, 1966). Any 
component with an eigenvalue greater than 1.00 should be retained. 
Due to the fact that each of the observed standardized variables 
contributes one unit of variance, a PC with an eigenvalue less than 1.00 
can be  said to represent less variation than a single standardized 
variable. The Scree test plots the eigenvalues ​​of each PC in descending 
order, picking the PC’s up to the bend in the graph.

Component loading or variable weights under a PC have been 
used to reduce the number of variables. For each PC, we considered 
only those variables that were in the top 10% in terms of absolute 
component loading (Wander and Bollero, 1999). Correlation analysis 
was used to assess whether heavily weighted factors were redundant 
and could be reduced further. The MDS indicators were converted 
into unitless combinable values from 0 to 1 to account for their 
contribution to soil functions. Wymore (1993) provided an equation 
for constructing three scoring curves: higher is better, lower is better, 
and optimal (a bell-shaped curve). A thorough knowledge of the 
relationship between the indicator and the quality of the soil is 
necessary to determine which function accomplishes what, i.e., the 
best shape for each indication. More is better should be used when 
increasing the level of the indicator improves the quality of the soil. 
The indicators whose increment decreases the quality of the soil 
correspond to the curve less is better. The optimal curve ranks 
indicators having a positive relationship with soil quality up to an ideal 
threshold, above which the SQ decreases.

After determining the type of indicator curve, the baseline, 
thresholds, and slope of the scoring function should be defined to 

FIGURE 1

Location of the study area as Abha-Khamis watershed, Saudi Arabia.
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account for deviations in the expected ranges due to soil, climate, and 
crop. The literature review and researchers’ opinions were used to 
determine the function and critical limits of each indicator.

After obtaining the S values for all of the indicator parameters, the 
PCA statistics were used to weight each characteristic. Each PC was 
responsible for explaining a particular percentage (%) of the whole 
data set’s variance. Once S and W were determined, the PSEI for each 
location could be computed using Eq. (4). When the index score is 
higher, it indicates that the erodability of the soil is higher.

	
PSEI SE S

i

n
j= ×

=
∑

1 	
(4)

2.4. Application of statistical tests for 
finding out the differences among the soil 
erodibility indices

The pairwise t-test was used to compare the means of each SEI 
with every other index prepared in this study. A t-test is a statistical 
test that is used to determine if the means of two groups are 
significantly different from each other. The t-test calculates two 
outputs: the t-value and the value of p. The t-value measures the 
difference between the means of the two groups relative to the variance 
within the groups, while the value of p measures the probability of 
observing a t-value as extreme as the one calculated if the means of 
the two groups were actually equal. If the value of p is less than a 
pre-determined significance level (usually 0.05), it is concluded that 
there is a statistically significant difference between the two indices 
being compared. By using a pairwise t-test, we can identify which 
indices have significantly different means from each other and thus 
provide insights into the differences between the soil erodibility indices.

2.5. Application of artificial neural network 
to find out best SEI

Artificial Neural Networks (ANN) is a class of machine learning 
algorithms that are inspired by the structure and functioning of the 
human brain (Boger and Guterman, 1997). ANN models consist of 
layers of interconnected artificial neurons that process and transmit 
information. ANN has been widely used in the field of agriculture and 
soil science for various applications, including soil erosion prediction 
(Garg et al., 2022; Egbueri et al., 2023).

In this study, TensorFlow and Keras were used to implement an 
ANN regression model to predict the soil erodibility indices based on 
the given features. The four soil erodibility indices CR, MCR, CLOM, 
and PCA were considered as the target variables, and the other 
relevant soil properties were considered as features. The ANN 
regression model is trained using a large dataset of soil properties and 
particular SEI. The process is repeated for four times, because we have 
four target variables with the same model architecture. During the 
training process, the model learns to optimize the weights of its 
connections by minimizing the error between the predicted and actual 
values (Nouri et al., 2023). The model’s performance is evaluated using 
metrics such as Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), R-squared (R2), and Mean Absolute Error (MAE). The ANN 
model’s architecture consists of an input layer, two hidden layers, and 

an output layer. Each layer contains a set of neurons that perform a 
specific computation. The input layer receives the input features, and 
the output layer produces the predicted soil erodibility indices. The 
hidden layers perform intermediate computations between the input 
and output layers, and each neuron’s output is determined by an 
activation function. The activation function introduces non-linearity 
into the model and enables it to learn complex relationships between 
the input features and the target variables (Nouri et al., 2023).

The model’s performance can be  improved by tuning its 
hyperparameters such as the number of hidden layers, number of 
neurons per layer, learning rate, batch size, and number of epochs. 
These hyperparameters are optimized using techniques such as Grid 
Search, Random Search, and Bayesian optimization. Once the model 
is trained and optimized, it can be used to predict the soil erodibility 
indices for new soil samples. The model’s prediction accuracy can 
be further improved by using a larger and more diverse dataset for 
training and by including additional relevant features.

2.6. Improving the soil erosion 
management decision making using ANN 
derived SHAP model

Shapley additive explanations is a popular model-agnostic 
interpretability technique used to explain the predictions of machine 
learning models, including ANN models (Wieland et al., 2021). The 
SHAP values are calculated for each input feature and indicate the 
contribution of each feature to the model’s output (Al-Najjar et al., 2022).

In this study, the SHAP values were derived from the ANN model 
to identify which input features are responsible for soil erosion and 
their impact on the soil erodibility indices. The SHAP values can 
be used to generate a summary plot that displays the feature importance 
rankings in descending order (Tang et al., 2022). This summary plot 
can be used for soil erosion management purposes to identify the most 
important features and develop effective strategies to manage soil 
erosion (Zhang et al., 2020; Mohammadifar et al., 2021). The SHAP 
values are calculated using game theory concepts and define the 
contribution of each feature by comparing the model’s predictions with 
and without that feature. The SHAP values are additive, meaning that 
the sum of the SHAP values for all features equals the difference 
between the model’s output and the baseline prediction (Tang et al., 
2022). The summary plot generated from the SHAP values displays the 
most important features at the top of the plot, with the corresponding 
SHAP values indicating the feature’s impact on the soil erodibility 
indices. The summary plot can be used to identify the most important 
features and develop effective strategies to manage soil erosion. For 
example, if the summary plot shows that rainfall intensity is the most 
important feature contributing to soil erosion, then soil conservation 
strategies could focus on reducing runoff and increasing infiltration.

3. Results

3.1. Descriptive assessment and spatial 
mapping of soil parameters

To assess the impact of land management techniques on soil 
quality, it is essential to evaluate various physicochemical parameters 
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of the soil, including sand, silt, clay, soil density, moisture content, 
porosity, and the status of soil organic matter. The results of the SEI 
are presented in Figure  2, which confirms that SOC, soil density, 
porosity, and soil particles exhibit significant differences in soil 
quality/physicochemical properties at the 95% level of statistical 
confidence (Figure  2). Without a correlation between soil 
physicochemical properties, identification of underlying factor 
patterns would not be possible (Brejda et al., 2000). However, the 
two-tailed correlation matrix for the soil properties in the samples 
retrieved from the study area showed several correlations among the 
variables, with significant relationships (p  < 0.05) being identified 
among the maximum number of possible soil properties. This large 
amount of correlation indicates that they can be  grouped into a 
homogeneous set of variables based on their correlation patterns. 
Thus, these variables can be  used as indicators of soil quality in 
conjunction with the land use management categories identified in the 
study area. The correlation between soil properties and SEI suggests 
that soil quality increased as soil properties such as SOC, porosity, and 
moisture content increased.

Soil texture is a crucial characteristic that influences the 
infiltration rates of water from the soil surface (Figures  3A-I). 
Additionally, soil texture plays a significant role in the soil’s capacity 
to retain water and nutrients. The concentration of sand in the soil 
remained low in most of the study area, particularly in the 
northwestern site, while it increased in other areas of the study 
(Figures 3A,C). The northwestern site showed a high silt content that 
decreased in other regions of the study area. The textural classification 
of the northwestern area remained as sandy to silty loam texture. The 
distribution of clay concentration in the soil of the study area indicated 
a very low class distributed from the northeastern area to the 
southeastern area. A slightly higher level of clay content was observed 

in the northwestern part of the study area. The distribution of clay in 
soil samples suggested that the studied soils have low erodibility due 
to the cohesiveness of clay particles that form soil aggregates. This 
study revealed that clay had a negative correlation with soil erodibility 
(sand particles). The content of clay varied in the study area due to 
factors such as parent material, mineral characteristics, and 
weathering processes.

The soil density was found to be high throughout the study area, 
as shown in Figures  3D,E. The decrease in soil attributes such as 
moisture content, porosity, and SOC content, along with an increase 
in bulk density, indicates that intensive tillage practices and lower 
plant productivity negatively affected soil compaction, microbial 
attributes, and soil aggregation. Annual tillage activities can disrupt 
soil aggregates and reduce physical protection of organic matter 
content, leading to lower SOC content and labile fractions in tilled 
soils compared to no-tilled soils (Green et al., 2007). The lower SOC 
content in cultivated soils can also have a negative impact on soil 
chemical, physical, and microbial properties (Ding et al., 2013; Zandi 
et al., 2017; Nabiollahi et al., 2018). Figure 3I shows that some areas 
have increased SOC content, which may be due to higher plant litter 
inputs and no-till practices during the restoration period, resulting in 
greater carbon inputs into the soil (Guo et al., 2017).

3.2. Modeling and proposing of SEIs

3.2.1. Analysis of the conventional SEIs
In this study, we investigated the soil erodibility condition of the 

study area using three conventional SEIs, namely CR, MCR, and 
CLOM (Figure  4). The CR values in the study area ranged from 
moderate to high, with lower values observed in the Western part of 

FIGURE 2

Relationship between different soil parameters using Pearson’s correlation coefficient technique.

91

https://doi.org/10.3389/fevo.2023.1189184
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Alqadhi et al.� 10.3389/fevo.2023.1189184

Frontiers in Ecology and Evolution 07 frontiersin.org

the area. However, since CR is a ratio between erosion-susceptible 
primary particles and clay, it cannot provide conclusive information 
on erosion proneness. To draw meaningful conclusions, it is 
recommended that the clay content in the cultivated soil be more than 
10% (Bryan, 1968), which was the case for all the samples in the study 
area. However, due to the absence of any scale for erosion proneness, 
conclusive interpretation could not be drawn for the present study.

Other studies have suggested modified clay ratio (MCR) as 
another index for soil erosion due to the effects of wind, water, or 
other natural events (Mukhi, 1988; Tarafdar and Ray, 2005). In this 
study, the MCR values for the study area ranged from low to high, 
with most of the soil showing low MCR and a moderate trend of 
CR. Although the MCR values did not provide conclusive information 
on the erosion proneness of the soil according to land uses, the low 
average values indicated that the soils in the study area were not highly 
susceptible to erosion.

The results showed significant differences among CR and CLOM, 
with the contribution of 25–27% (Figure 4) accounting for >89% of 
the total variability. Moreover, significant correlations were observed 
between the CR and CLOM, with both contributing to the SEI of the 
study soils.

The CLOM values ranged from low to high, with 40% of the soil 
showing low CLOM, 40% showing moderate CLOM, and the 
remaining 20% showing high CLOM (Figure  4). These findings 
indicate that the soils in the study area had moderate to stable soil 
structure and offered resistance to erosion. Soil aggregate stability is 
related to soil organic matter, and the study area showed a range of soil 
organic carbon levels between 0.29 and 7.22% (Figure 3I). This is 
consistent with the CLOM findings, which revealed a positive 
correlation between soil stability and the amount of soil organic 
matter. However, it is important to note that these methods are entirely 
based on the developed equation.

FIGURE 3

Spatial mapping of the concentration of different physical and chemical parameters, such as (A) sand, (B) clay, (C) silt, (D) bulk density, (E) dry density, 
(F) moisture, (G) porosity, (H) void ratio, (I) SOC.
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3.2.2. Proposing PCA based SEI
In this study, instead of relying on equation-based SEIs, 

we  employed a PCA-based weighting technique to develop a new 
SEI. The PCA analysis indicated that the first three principal 
components (PCs) accounted for over 10% of the total variance 
(Figure 5) and explained more than 68.4% of the variability among the 
various soil properties studied for SEI development. Bulk density is 
widely recognized as a reliable indicator of soil compaction, and the 
distribution map revealed a strong correlation between soil density and 
sand concentration, indicating that higher sand content in soils tends 
to result in higher bulk density due to the lower total pore space in 
sandy soils compared to silt or clay soils. Conversely, soils with finer 
textures, such as silt and clay loams, that display good structure tend to 
have higher pore space and lower bulk density compared to sandy soils. 
In our study, we also developed an index based on weights using the 
first PC of PCA. The weights were computed from the field-based data 
patterns obtained from Figure 5, rather than relying solely on equations. 
By using the weights generated from field-based data, we were able to 
compute erodibility in a more accurate and reliable way. The SEI 
developed using this approach revealed that 68% of the study area was 
covered by moderately erosion-prone areas, followed by 9 and 23% of 
the area being low and high erosion-prone, respectively (Figure 4D).

3.3. Analysis of the difference among SEIs

In this study, the heatmap of correlation shows the correlations 
between the four soil erodibility indices - CR, MCR, CLOM, and 

PCA (Figure 6). The correlation coefficients show the strength and 
direction of the relationship between two variables. According to the 
heatmap, CR has a relatively strong positive correlation of 0.65 with 
PCA and an even stronger positive correlation of 0.75 with MCR. On 
the other hand, the correlation between CR and CLOM is weak with 
a coefficient of 0.036. This suggests that CR and MCR are likely to 
be highly related to each other, while CLOM may be less related to 
the other indices. CLOM has a weak negative correlation with PCA, 
with a coefficient of −0.047, indicating that these two indices are 
slightly negatively related to each other. Additionally, CLOM has a 
moderate negative correlation of −0.28 with MCR, suggesting that 
these two indices may be somewhat negatively related.

Finally, MCR has a strong positive correlation of 0.74 with PCA, 
indicating that these two indices are highly related to each other. This 
correlation is similar in strength to the correlation between CR and 
MCR, suggesting that both CR and MCR are highly related to PCA.

The results of the T-tests provide additional information on the 
differences between the four soil erodibility indices. A T-test is a 
statistical test used to determine if there is a significant difference 
between the means of two groups.

The T-test results show that there is a significant difference 
between the means of each pair of soil erodibility indices. The T-test 
for CR vs. CLOM shows a large t-value of 43.638 and a value of p of 
0.00001, indicating a very significant difference between the means of 
these two indices. Similarly, the T-test for CR vs. MCR shows a large 
t-value of 33.643 and a value of p of 0.00001, indicating a very 
significant difference between the means of CR and MCR. The T-test 
for CR vs. PCA also shows a large t-value of 48.209 and a value of p of 

FIGURE 4

Computed soil erodibility indices, such as (A) CR, (B) MCR, (C) CLOM, and (D) PCA based SEI model for the Asir.
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0.00001, indicating a very significant difference between the means of 
CR and PCA. The T-test for CLOM vs. MCR shows a negative t-value 
of −11.072 and a value of p of 0.00001, indicating a significant 
difference between the means of these two indices, with CLOM having 
a lower mean than MCR. The T-test for CLOM vs. PCA shows a 
positive t-value of 14.615 and a value of p of 0.00001, indicating a 
significant difference between the means of these two indices, with 
PCA having a higher mean than CLOM. Finally, the T-test for MCR 
vs. PCA shows a positive t-value of 18.327 and a value of p of 0.00001, 
indicating a significant difference between the means of MCR and 
PCA, with PCA having a higher mean than MCR.

Based on the T-test results, CR is significantly different from 
CLOM, MCR, and PCA, while CLOM is significantly different from 
MCR and PCA, and MCR is significantly different from PCA.

3.4. Best SEI selection using ANN

We optimized the ANN model using grid search to find the best 
hyper-parameters. The best hyper-parameters are alpha = 0.17060, 
beta_1 = 0.0001, beta_2 = 0.0289, hidden_layer_sizes = 2, learning_
rate_init = 0.0030, max_iter = 971, random_state = 42. These hyper-
parameters are fixed for four models means CR with all parameters, 
MCR with all parameters, CLOM with all parameters, PCA with 
all parameters.

Figure 7 was used to illustrate the relationship between actual and 
predicted SEI values for the training and testing datasets for each of 
the four models. The R2values for CR were 0.93 and 0.82 for the 
training and testing datasets, respectively (Figures  7A,B). The R2 
values for MCR were 0.78 and 0.70 for the training and testing 
datasets, respectively (Figures 7C,D). The R2 values for CLOM were 
0.98 and 0.95 for the training and testing datasets, respectively 
(Figures 7E,F). The R2 values for PCA were 0.73 and 0.60 for the 
training and testing datasets, respectively (Figures 7G,H).

The results of the ANN implementation show that CLOM is the 
best model for finding out soil erodibility based on the performance 
indices. This conclusion is based on the evaluation of the four models 
using R2, RMSE, MSE, and MAE. The training and testing RMSE, 
MSE, and MAE values for CLOM were significantly lower than the 
values for the other models, indicating that the predictions made by 
the CLOM model are more accurate than those made by the 
other models.

The CLOM model had lower RMSE values than the other models, 
with values of 0.4781 for training and 0.5377 for testing. The superior 
performance of the CLOM model was further confirmed by the MSE 
and MAE values. Specifically, the MSE values for the CLOM model 
were 0.2286 for training and 0.2891 for testing, which were 
significantly lower than the values for the other models. Furthermore, 
the MAE values for the CLOM model were 0.2998 for training and 
0.3489 for testing, which were again significantly lower than the values 
for the other models.

Therefore, it can be concluded that the CLOM model is the best 
model for finding out soil erodibility, and this information can be used 
for soil erosion management practices. The significantly lower values 
of performance indices indicate that the predictions made by the 
CLOM model are more accurate, which can help in developing more 
effective soil erosion management practices.

3.5. Improving decision making using SHAP

In this study, we used Artificial Neural Network (ANN) models 
to predict the SEI and calculated the SHAP values to identify the most 
influential variables for each of the four models, namely CR, MCR, 
CLOM, and PCA (Figure 8). The results showed that sand and silt 
were the most important variables for CR model, while clay, sand, silt, 
SOC, and moisture were highly influential for the MCR model. For 
the CLOM model, SOC, sand, moisture, and void ratio were found to 
be responsible for soil erosion, while silt and clay played a negative 
role. These findings have important implications for decision-making 
in soil erosion management. For example, the study suggests that sand 
and silt content are crucial factors that need to be monitored and 
managed to prevent soil erosion. This can be achieved through various 
management strategies, such as planting vegetation or using 

FIGURE 6

Correlation coefficient analysis among four SEIs for understanding 
the difference among them.

FIGURE 5

Application of PCA for feature selection.
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FIGURE 8

SHAP computation for (A) CR, (B) MCR, (C) CLOM, and (D) PCA based model.

FIGURE 7

Selection of best SEI using optimized ANN model, for (A) training of CR, (B) testing of CR, (C) training of MCR, (D) testing of MCR, (E) training of CLOM, 
(F) testing of CLOM, (G) training of PCA, and (H) testing of PCA.
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conservation tillage techniques. Additionally, the study highlights the 
importance of monitoring the anthropogenic activities that affect the 
soil properties, such as land use changes or tillage practices, which can 
have a significant impact on soil erosion.

4. Discussion

The study focused on the use of SEIs to effectively manage soil 
erosion, which is a significant environmental problem leading to soil 
degradation, loss of fertile land, and ecological imbalance. Several SEI 
models were compared using ANN model, and the best model was 
identified. To further improve soil erosion management, explainable 
artificial intelligence in the form of SHAP was introduced to quantify 
the influence of individual parameters in the model.

This study has provided insights into the effects of land use 
changes on soil recovery in native upland rangeland ecosystems. 
While soil quality index has been previously used to evaluate soil 
degradation and the effects of land conversion on soil quality (Li et al., 
2013; Raiesi, 2017; Nabiollahi et al., 2018), this approach (use of AI for 
SEI assessment) has not been used to study the effects of cropland 
abandonment on soil recovery. The current study has used SEIs to 
determine soil physicochemical properties after a sequence of land use 
changes in native rangelands. The results indicated that the long-term 
activities for crop production on soil had a stronger influence on the 
quality of these soils, with lower values of SEI, moisture content, void 
ratio, and SOC observed in the study soils.

Different land use activities can negatively affect the soils, leading 
to decreases in SOM, soil moisture content, and soil structural 
stability, which can increase soil erodibility (Harris, 2010; Li et al., 
2013; Raiesi and Riahi, 2014). The low values of SEI in soils suggest 
that the current cropland soils are in a degradation process, primarily 
due to the loss of soil structure, SOM, soil moisture content, and other 
physicochemical properties of soil (Raiesi and Salek-Gilani, 2020).

The observed deterioration of soil properties and function is likely 
due to low SOC input, soil moisture, and soil disturbance by human 
activities. Consistent with our observations, previous studies have 
reported soil quality degradation in cropland soils due to frequent 
tillage practices and little accumulation of plant residues in the surface 
soils (Raiesi, 2017; Zhang et al., 2019).

Our results showed that SEI values in the North-Western area were 
higher than those in other areas, which is likely due to the low SOC 
content at these sites (Figure 3I). In other areas of the study sites, SEI 
values were slightly higher, suggesting that soil quality can be restored 
when other physicochemical properties of soils are improved (Raiesi 
and Salek-Gilani, 2020). Therefore, the addition of SOC through 
improved cropping systems and the establishment and development of 
natural vegetation on eroded cropland soils in the study area can switch 
soil degradation to soil quality, except in the North-Western area.

The study findings indicate that ANN models can be  highly 
accurate in predicting SEI, and the selection of the best model for 
predicting soil erodibility can be achieved by utilizing four indices, 
including CR, MCR, CLOM, and PCA. The results of the study 
showed that CLOM was the best model among the four indices, and 
the significant factors in predicting soil erodibility included SOC, silt, 
clay, sand, moisture, and void ratio.

The results of this study suggest that SOC and moisture content 
are critical variables for the CLOM model, indicating that management 

practices such as conservation tillage or adding organic matter to the 
soil can help to increase SOC content and improve soil moisture, 
thereby reducing soil erosion (Rojas et al., 2016; de Moraes Sa et al., 
2018; Yang et al., 2019). Monitoring the void ratio can also help to 
prevent soil compaction and promote better soil structure. These 
findings have significant implications for soil erosion management, as 
soil erosion can lead to severe consequences such as soil degradation, 
loss of biodiversity, and reduced agricultural productivity.

To address this problem, management strategies should 
be proposed based on the significant factors identified in this study. 
Efforts can be made to increase the amount of clay and moisture in the 
soil, while reducing the amount of sand and silt, to reduce soil erosion. 
Additionally, anthropogenic activities should be  monitored to 
determine their impact on soil erosion. Overall, the study 
demonstrates that the use of ANN models and SHAP values can 
provide valuable insights into the factors that contribute to soil 
erosion, and the findings can help policymakers and soil management 
practitioners in developing more effective management strategies to 
prevent soil erosion and preserve soil health.

This study also highlights the need for further research to assess 
the applicability of these findings across different soil types and 
geographic locations. It is important to note that while the study was 
conducted in a specific area, the results can be used as a foundation 
for future research in other locations.

The study may also provide valuable insights into the factors that 
influence soil erodibility, which can be used to develop effective soil 
erosion management strategies. By implementing these strategies, it is 
possible to minimize the adverse impact of soil erosion on the 
environment, agriculture, and society. Therefore, it is crucial for 
researchers to conduct further studies to validate and expand upon 
these findings, ultimately leading to better soil erosion management 
practices globally.

In inference, the study demonstrates the potential of using ANN 
models and SHAP values to predict soil erodibility with high accuracy. 
These findings provide significant implications for soil erosion 
management and suggest that promoting conservation practices and 
monitoring anthropogenic activities can help prevent soil erosion and 
preserve soil health. With further research, the findings can be applied 
globally, leading to more effective soil erosion management practices 
and a healthier environment.

5. Conclusion

This study provides a comprehensive assessment of different 
conventional SEI and proposed PCA based SEI with ANN model. 
Also, the most influencing parameters for SEI have been identified 
using XAI in the form of SHAP for explaining the interconnection 
between management practices, soil quality, and crop yields. 
Significant differences were observed among CR and CLOM with 
the contribution of 25–27% accounted for >89% of the total 
variability. The MCR for the 70% of the study area was observed 
as low, 20% moderate and 10% as high. CLOM for the study area 
ranged from low to high; where 40% of soil showed low CLOM, 
40% of soil showed moderate and remaining 20% of soil fall under 
high CLOM. Based on the T-test results, CR is significantly 
different from CLOM, MCR, and PCA, while CLOM is 
significantly different from MCR and PCA, and MCR is 
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significantly different from PCA. The ANN implementation 
demonstrated that the CLOM model had the highest accuracy for 
predicting soil erodibility, with SOC, sand, moisture, and void 
ratio being the most important variables. The SHAP analysis 
confirmed the importance of these variables for each of the four 
ANN models. These results highlight the importance of 
implementing effective soil erosion management strategies, 
especially in urban areas where erosion rates are highest. The 
results also suggest that monitoring and controlling anthropogenic 
activities that affect these variables, such as land use changes, 
construction, and irrigation practices, can help reduce soil erosion 
rates. Overall, these findings can inform policymakers and land 
managers on effective soil erosion management practices that can 
help protect soil health and ensure sustainable land use for 
future generations.

Despite the comprehensive approach used in this study to develop 
a standard SEI, there are limitations that should be considered. First, 
the study was conducted in a specific region, and the results may not 
be  applicable to other regions with different soil types and 
environmental conditions. Second, the study only considered a limited 
number of soil attributes and did not incorporate biological indicators 
of soil quality, which are essential for the long-term sustainability of 
soil health. Finally, while the ANN models showed high accuracy in 
predicting soil erodibility, further research is needed to validate the 
results and assess their applicability to other regions.

Future research can build on the findings of this study to improve 
the accuracy and applicability of SEI models for different regions and 
soil types. Incorporating biological indicators of soil quality, such as 
microbial activity and biodiversity, can provide a more comprehensive 
understanding of soil health and sustainability. Additionally, the use 
of remote sensing techniques can help in the rapid assessment of soil 
erosion rates and inform soil erosion management strategies in 
real-time.
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Recent urbanization and growing food consumption have had a severely
detrimental effect on the ecological environment of the Jianghan Plain. The
ecological fragility of the Jianghan Plain must be continually monitored for
environmental conservation and sustainable development. This study utilized
principal component analysis (PCA) to quantitatively assess the ecological
vulnerability of the Jianghan Plain based on the remote sensing ecological
index (RSEI) and analyzed the space-time changes and drivers in the Jianghan
Plain from 2000 to 2020 using the Google Earth Engine Platform (GEE). The
findings of this research indicated that the ecological vulnerability of the Jianghan
Plain from 2000 to 2020was predominantly Moderate or Strong level. But still, the
EVI displayed a changing decreasing trend, revealing a small development towards
a healthier ecological environment. The most significant ecological vulnerability
deterioration occurred between 2005 and 2010, accounting for roughly
44.90 percent, whereas the highest improvement occurred between 2000 and
2005, occupying approximately 37.52% of the area. Moran’s I of EVI was greater
than 0 in Jianghan Plain and displayed a growing and subsequently a falling trend,
representing that the spatial distribution of regional ecological vulnerability was
strongly correlated and aggregated and that the degree of aggregation has
declined. The effects of heat, greenness, wetness, and dryness on the
ecological vulnerability of Jianghan Plain were all significant, with greenness
and wetness being the primary determinants of the change in Jianghan Plain’s
ecological vulnerability. The results of this study can offer a theoretical and
scientific foundation for ecological protection and restoration in the Jianghan
Plain. Meanwhile, this study also provides a practical and rapid method for
monitoring regional ecological vulnerability using RSEI, GEE, and PCA, which
can be applied elsewhere for ecological vulnerability evaluation.

KEYWORDS

ecological vulnerability, remote sensing ecological index, principal component analysis,
Google Earth engine, Geodetector
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1 Introduction

With the continuous population growth and rapid economic
development, the regional natural environment’s carrying capacity
and buffer capacity are facing a serve test due to unreasonable
resource utilization (Wei and Ye, 2014; Zhang et al., 2022). The
contradiction between humans and the environment has become
increasingly prominent (Zheng et al., 2021). Ecological degradation
has occurred in many regions of the world, and ecological fragility
problems are becoming increasingly severe, for example,
biodiversity reduction, land desertification, and soil pollution.
Therefore, when researching global environmental change and
sustainable development, ecological vulnerability has garnered
much attention from academics and has emerged as one of the
most critical topics to consider (Nguyen et al., 2016; Xu et al., 2018).
Conducting ecological vulnerability research is vital for
environmental protection and has crucial guiding significance for
the efficient management of land resources and long-term growth.
(He et al., 2018; Thiault et al., 2018).

With the strengthening of investigations into the consequences
of global environmental change, especially for the in-depth
exploration of the human-nature relationship, the study of
ecological vulnerability has yielded fruitful results in terms of
theory and empirical evidence (Beroya-Eitner, 2016; Weißhuhn
et al., 2018; Chen et al., 2022). Numerous scholars have used a
variety of assessment approaches to perform numerous
investigations into various regions. For instance, Cao et al. (2022)
constructed the ecological vulnerability index of Shenlongjia
thoroughly and quantitatively using the vulnerability scoring
diagram (VSD) model during a 22-year period. Hou et al. (2020)
combined GIS data with a fuzzy analytic hierarchy method to study
hierarchical variations of regional ecological vulnerability. And
Boori et al. (2022) proposed a driver-pressure-state-impact-
response (DPSIR) framework based on 3S technology and
analytical hierarchy process (AHP) to compute the ecological
vulnerability index (EVI). However, most assessment systems in
previous research are influenced by subjective factors and weighting
decisions. The assessment model incorporates all chosen
indicators, disregarding the indicators’ independence (Zhang
et al., 2017; Guo et al., 2019). It increases calculations or
inaccurate results (Cai et al., 2021). In recent years, some
researchers have increasingly used remote sensing data to
construct ecological vulnerability indicators due to their
accessibility, objectivity, and accuracy (Liou et al., 2017; Xu
et al., 2017). Bai and Ma (2010) established an assessment
method of ecological vulnerability using eight indicators
extracted from remote sensing data in Qinghai Lake. And
Chen et al. (2019) examined ecological vulnerability and
discussed its change pattern from 1990 to 2015 in the Amu
Darya river basin using image elements as the evaluation object
based on multi-source remote sensing data. Therefore, we used a
comprehensive index built from Greenness, Wetness, Dryness,
and Heat based on the remote sensing ecological index (RSEI).
RSEI, as a quantitative measure of regional ecological quality,
can not only effectively avoid the subjective influence of human
beings in ecological vulnerability studies but also improve the
efficiency of evaluation (Hang et al., 2020; Jing et al., 2020; Jiang
et al., 2023). RSEI can also be visualized and compared at

various spatial and temporal dimensions. Additionally, prior
studies have confirmed the validity and credibility of this
indicator used in ecological research (Zhu Z. et al., 2015;
Kasimu et al., 2019).

As an open-access platform, Google Earth Engine (GEE)
significantly simplifies the use of remote sensing data in
various research, particularly in large-scale study areas
(Gorelick et al., 2017). GEE collects many datasets, such as
Landsat, MODIS, ASTER, etc. And GEE allows users to
develop interactively and test algorithms and acquire and
process shared data in an online or offline programmatic
manner, which is advantageous for using remote sensing data
in long-term and large-scale studies and dramatically improves
the effectiveness of processing remote sensing images
(Parastatidis et al., 2017; Ye et al., 2021). Compared to
traditional tools, the GEE platform offers significant
advantages in the efficiency and accuracy of calculations in
research (Kumar and Mutanga, 2018; Xu et al., 2022).

The Jianghan Plain in Hubei Province is a central part of the
Yangtze River Plain’s middle and lower reaches (Li X. et al., 2022).
Due to its unique geographical location and social functions, the
Jianghan Plain is one of the prominent carriers of human production
and life and assumes essential ecosystem service functions (Jiang
et al., 2022). However, as the Jianghan Plain’s population and
economic development have grown, the dual pressures of
increased food production and rapid urbanization have resulted
in increasingly serious ecological problems. How to accomplish a
win-win goal for socioeconomic growth and environmental
protection has come to be a major concern for the region. Thus,
long-term monitoring of changes in the Jianghan Plain’s ecological
vulnerability is required to provide a scientific rationale for future
sustainable development decisions. Considering the above facts, we
first effectively constructed the EVI using Landsat data on the GEE
platform. After that, we visualized the spatial and temporal variation
of ecological vulnerability in Jianghan Plain and analyzed the leading
impact indicators of changes to reveal the evolution patterns of
ecological vulnerability in the region. (Figure 1). The aim is to
provide full theoretical support and a scientific foundation for local
government to make decisions regarding sustainable development
and ecological management in the Jianghan Plain, as well as to offer
a workable and efficient method for assessing the regional ecological
vulnerability using GEE.

2 Materials and methods

2.1 Study area

The Jianghan Plain is situated in Hubei Province’s southernmost
region (29°26′-31°37′N, 111°14′-114°36′E). It forms a significant
portion of the middle and lower reaches of the Yangtze River
Plain, with Jingmen to the north, the Dongting Lake Plain to the
south, Wuhan to the east, and Yichang to the west (Figure 2). The
overall area is around 29,000 square kilometers and is primarily
comprised of 14 counties and cities: Danyang, Zhijiang, Songzi,
Jingzhou, Jiangling, Gongan, Shishou, Qianjiang, Jili, Tianmen,
Xiantao, Honghu, Yunmeng, Yingcheng, and Hanchuan (Huang
et al., 2020). The altitude decreases from the northwest to the
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southeast. Also, there is predominantly flat, with numerous lakes
and rivers. With average annual temperatures between 14 and 18°C
and yearly precipitation between 1,100 and 1,300 mm, it has a
typical subtropical monsoon climate. Rainfall and high
temperatures coincide, and 240 to 260 frost-free days per year
are optimal for growing food crops. (Wang et al., 2011). The
Jianghan Plain is a critical commodity food base for China
because of its advantageous position and food production. And
China’s food security is also influenced by the state of its ecological
ecosystem, which can have both good and adverse effects on the
quality of its agricultural output.

2.2 Data and processing

In this study, we employed data from Landsat 5 TM (2000,
2005, 2010) and Landsat 8 OLI/TIRS (2015 and 2020) provided

by Google Earth Engine (GEE) to map the spatial and temporal
distribution of EVI changes from 2000 to 2020 (Xiao et al.,
2019). Because these data have been pre-processed with
atmospheric correction, radiometric calibration, and
geometric correction, they are immediately usable on the
GEE platform (Kumar and Mutanga, 2018; Zhao et al., 2021).
To eliminate the effect of clouds, we mean-synthesized the
images of the target year and its preceding and following
years and applied the corresponding de-clouding algorithm
to obtain the required images (Tang et al., 2023). Then, the
Normalized Difference Soil Index (NDBSI), the Land Surface
Temperature (LST), the Normalized Difference Vegetation
Index (NDVI), and Wetness (WET) are calculated based on
the de-clouded images, and the specific formulas are shown in
Table 2. The processes mentioned above are executed on the
GEE platform, and Table 1 displays the image data utilized for
this study.

FIGURE 1
Workflow.
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2.3 Methodology

2.3.1 Construction of ecological vulnerability
Index (EVI)

Since Xu Qiuhan proposed a comprehensive evaluation of regional
ecological quality, researchers have regularly used the four indicators of
greenness, moisture, heat, and dryness in regional ecological studies (Xu,
2013a; 2013b). For this reason, we chose four indicators to build the
ecological vulnerability index (EVI), and these four indicators are
obtained through the standardization of NDVI, Wet, NDBSI, and
LST. We also used the modified normalized difference water index
(mNDWI) to remove bodies of water from the research region, which
further improved the accuracy of theWet calculation (Xu, 2005). Table 2
lists the relevant calculation equations.

The EVI was constructed using the first, second, and third principal
components (PC1, PC2, and PC3) obtained from the principal
component analysis (PCA) of four indicators. This is because the
combined participation rates of PCs 1, 2, and 3 are higher than 99%.
Before using PCAanalysis, indicators’ valuesmust be normalized because
they have various numerical ranges and units. Positive and negative
indicators can be distinguished among ecological vulnerability indicators.
According to relevant studies (Yao et al., 2016; Wang and Su, 2018),
dryness and heat have a detrimental effect on the ecological environment,
so they are normalized using Eq. 2. In contrast, greenness and wetness
have a beneficial effect, so they are normalized using Eq. 1.

SIi � Ii − I min

I max − I min
(1)

FIGURE 2
The location of the Jianghan Plain.

TABLE 1 Data source.

Data Source and data details resolution/m

Landsat5, Surface reflectance Product Google Earth Engine Platform (product identifier: LANDSAT/L05/C01/T1_SR, used bands:1,2,3,4,5,6) 30

Landsat8, Surface reflectance Product Google Earth Engine Platform (product identifier: LANDSAT/L08/C01/T1_SR, used bands:2,3,4,5,6,7,10) 30

Land cover Resources and Environmental Sciences 30
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SIi � I max − Ii
I max − I min

(2)

Where Ii denotes the standardized value of indicator i, with a value
range of [0, 1]; I min denotes the lowest value of indicator i; I max denotes
the highest value of indicator i. After normalization of all indicators, we
used PCA in Google Earth Engine to calculate PC1, PC2, and PC3. We
obtained the value of EVI using Eq. 3 based on the PCA results.

EVI � r1Y1 + r2Y2 + r3Y3 (3)
Where EVI represents the status and characteristics of the

ecological vulnerability; ri and Yi represent the ith principal
component and the contribution rate of the ith principal
component, respectively. We divided the EVI in Jianghan Plain
into five levels, each with a 0.2 increment, because the closer the
value is to 1, the more fragile the ecosystem is. Among them, Level Ⅰ
(Slight): 0–0.2; Level Ⅱ (Light): 0.2–0.4; LevelⅢ(Moderate): 0.4–0.6;
Level Ⅳ (Strong): 0.6–0.8; Level Ⅴ (Extreme): 0.8–1.0.

2.3.2 Geodetector
Geodetector is a quantitative approach to identifying spatial

heterogeneity and illuminating the main drivers behind the
phenomenon (Zhou X. et al., 2021; Guo et al., 2022). Since
Jinfeng Wang and others proposed geodetector in 2004, it has
been extensively employed in various fields, including land use,
ecology, soil, and regional economy, due to its superiority in being
able to be used for both numerical and typological data and immune
to covariance (Wang and Xu, 2017; Zhou et al., 2020; Zhou et al.,
2021 X.). In this study, using the factor detector, we explored the
influence of four indicators (Wet, LST, NDSBI, and NDVI) on EVI.

q � 1 − ∑l
i�1Niσ2

i

Nσ2
� 1 − SSW

SST
(4)

SSW � ∑l
i�1
Niσ

2
i (5)

SST � Nσ2 (6)
Where i = 1,2/l represents the classification or strata of the

factor; Ni and σ i are the number of units and variance at class or

strata i; N and σ are the sum of units and variance within the study
area; SST and SSW denote the total sum of squares and the within
sum of squares, respectively. Higher q values indicate more
explanatory power of independent factors on a dependent
variable, and the range for q is [0,1].

2.3.3 Spatial auto-correlation
Spatial auto-correlation reflects the degree of correlation

between a phenomenon in a region and the same phenomenon
in neighboring regional units, including global auto-correlation and
local auto-correlation (Fan and Cowley, 1985; Martin, 1996). It is a
vital index to test whether an element’s ecological vulnerability is
correlated with its adjacent space’s ecological vulnerability (Jing
et al., 2020). For spatial analysis, the main methods applied in
numerous studies are the local indicator of spatial association (Local
Moran’s I) and the global spatial auto-correlation (Global
Moran’s I).

The Global Moran’s I can disclose the regional clustering of
the spatial layout of ecological environment vulnerability. Its
value is between plus and minus 1. A value above zero denotes a
positive spatial correlation, a zero value denotes no spatial
correlation at all, and a value below zero denotes one
negative (Wan et al., 2011). The following is the calculation
formula:

Global Moran′s I � N∑N
i�1∑N

j�1wij xi − �x( ) xj − �x( )∑N
i�1∑N

j�1wij xi − �x( )2 (7a)

Where N is the total of elements;wij is the spatial weight matrix;
xi represents the ecological vulnerability value of position i; �x is the
average value of all ecological vulnerability values.

Local Moran’s I, also known as LISA (Local Indicators of Spatial
Association, is a valuable indicator of the geographic correlation of
each unit’s ecological vulnerability (Anselin, 2010). When the global
auto-correlation exits, LISA is able to analyze further whether there
is spatial heterogeneity. Therefore, it is necessary to calculate Local
Moran’s I. The calculation formula is shown in Eq. 8, and the
parameters in the formula are consistent with Eq. 7 (Lei et al., 2019;
Xiong et al., 2021).

TABLE 2 Calculation methods of indicators.

Indicators Formula Parameters and explanation

NDVI Bnir−Bred
Bnir+Bred

Bi indicates the bands of Landsat5 TM and Landsat8 OLI/TIRS bands; βi are the surface reflectance
of each band in different images; SI and IBI respectively denote soil index and building index. Crist.

(1985); Xu. (2008), Xu. (2010)

Wet β1Bblue + β2Bgreen + β3Bred + β4Bnir + β5Bswir1 + β6Bswir2

NDSBI

SI � (Bswir1+Bred )−(Bblue+Bnir )
(Bswir1+Bred )+(Bblue+Bnir )

IBI � ( 2Bswir1
Bswir1+Bred )−(

Bnir
Bnir+Bred −

Bgreen
Bgreen+Bswir1)

( 2Bswir1
Bswir1+Bred )+(

Bnir
Bnir+Bred −

Bgreen
Bgreen+Bswir1)

NDBSI � SI+IBI
2

LST γ × (φ1+Lsensor+φ2ε + φ3) + δ ε is the surface specific emissivity; γ is a constant; φi based on calculations by Jimenez-Munoz et al.
(2009); Lsensor is the radiation brightness measured by the sensor

mNDWI Bgreen−Bswir1

Bgreen+Bswir1
Bi indicates the bands of Landsat5 TM and Landsat8 OLI/TIRS bands Xu (2005)
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LocalMoran′s I � xi − �x( )∑N
j�1 xj − �x( )∑N

i�1 xi − �x( )2 (7b)

The LISA has five types of spatial aggregation, High-High (HH),
High-Low (HL), Low-High (LH), Low-Low (LL), and Not
significant (Jing et al., 2020). The HH represents that a region
with a high value is accompanied by other areas with a high value. In
contrast, the LL means that an area with a low value is accompanied
by other sites with a low value. LH denotes that the chosen area’s
value is low while the surrounding area’s value is high. HL denotes
that while the value of the selected location is high, the value of the

nearby area is low. HH and LL show high positive spatial
correlations and regional clustering and similarity.

2.3.4 Coupling coordinative degree model
The coupling coordination degree describes the degree of

interaction and coordination among systems or elements,
reflecting the strength of each system’s interconnectedness and
the good or bad coordination between systems. In recent years,
the coupling coordination degree model has been widely used to
describe the nonlinear interaction between multiple systems in
many disciplines, such as biology, geography, ecology, and
urbanization (Li et al., 2013; Liu et al., 2022). The coordination
coupling degree model (CCDM) is used to evaluate the degree of
coordination development between two or more subsystems, and its
calculation formula is shown as follows:

C � n
����������
X1X2 . . .Xn

√
X1 + X2 + . . . + Xn

T � α1X1 + α2X2 + . . . + αnXn

D � �����
C × T

√

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (8)

Where C denotes the coupling degree between systems, T
represents the coordination degree between systems, D denotes
the coordination coupling degree between systems, X1X2 . . .Xn

indicates the selected subsystem, α1α2 . . . αn represents the
coefficients to be determined and α1 + α2 + . . .+αn � 1. C and D
take values between 0 and 1.

3 Results

3.1 Overall characteristic of ecological
vulnerability

As demonstrated in Table 3, the sum contribution rates of the first,
second, and third principal components (PC1, PC2, PC3) were higher
than 99%, with 99.13% in 2000, 99.47% in 2005, 99.80% in 2010, 99.73%
in 2015, 99.77% in 2020, respectively. It indicated that PC1, PC2, and
PC3 concentrated the majority of traits of the four indicators.

Table 4 displays the results of descriptive statistics for the EVI and
all data variables used in this study. During the past 2 decades, NDVI
and Wet values in the Jianghan Plain have fluctuated upwards. Their
mean values increased from −0.096 and 0.445 in 2000 to −0.033 and
0.476 in 2020, with increases of 65.62% and 6.97%. It indicated that
water conservation capacity in the Jianghan Plain had improved, and
the vegetation cover had shown an increasing trend. The NDBSI had
decreased by 20.32 percent, with the average value falling
from −0.123 in 2000 to −0.148 in 2020, meaning a reduction in the
Jianghan Plain’s surface exposure.While the surface temperature, which
is strongly tied to water and plant, increased annually, with the average
value increasing from 21.226 in 2000 to 22.452 in 2020, a 5.75%
increase. It meant that the water-heat balance difference in the
Jianghan Plain had increased, which had a substantial impact on the
regional ecological vulnerability. Regarding the Minimum, four
indicators showed a decreasing and then increasing trend. The
turning year of NDVI and WET occurred in 2010, while the
turning year of LST and NDBSI was in 2010. And the maximum of
NDVI, LST,WET, andNDBSI peaked in 2020. The standard deviations

TABLE 3 PCA results in 2000,2005,2010,2015 and 2020.

Year Indicator PC1 PC2 PC3 PC4

2000

NDVI 0.758 −0.587 −0.162 0.232

WET 0.148 0.517 0.030 0.842

NDBSI 0.632 0.557 0.273 −0.464

LST 0.057 0.278 −0.947 −0.147

Eigenvalue 0.009 0.003 0.002 0.000

Percent eigenvalue 64.42% 20.48% 14.23% 0.87%

2005

NDVI 0.865 0.207 −0.419 −0.179

WET 0.060 −0.368 0.316 −0.72

NDBSI 0.480 −0.528 0.536 0.451

LST 0.131 −0.736 −0.661 0063

Eigenvalue 0.009 0.002 0.001 0.000

Percent eigenvalue 78.64% 14.17% 6.66% 0.53%

2010

NDVI 0.561 0.267 0.768 −0.156

WET 0.077 0.124 −0.291 −0.946

NDBSI 0.636 0.446 −0.562 0.283

LST 0.524 0.845 0.097 0.039

Eigenvalue 0.012 0.005 0.002 0.000

Percent eigenvalue 63.46% 28.12% 8.22% 0.20%

2015

NDVI 0.801 −0.575 −0.029 0.162

WET 0.101 0.396 0.003 0.912

NDBSI 0.589 0.709 0.105 −0.374

LST 0.039 0.093 −0.994 −0.041

Eigenvalue 0.015 0.003 0.002 0.000

Percent eigenvalue 75.22% 12.93% 11.59% 0.27%

2020

NDVI 0.813 −0.555 −0.112 0.136

WET 0.103 0.353 0.123 0.921

NDBSI 0.555 0.648 0.376 −0.361

LST 0.142 0.384 −0.912 −0.041

Eigenvalue 0.015 0.002 0.002 0.000

Percent eigenvalue 76.96% 12.12% 10.69% 0.23%
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of all four indicators except LST were less than 0.2, indicating that all
variables used in this study were discrete to a small extent in 2000,2005,
2010, 2015, and 2020. From 2000 to 2020, the average EVI values in the
Jianghan Plain were between 0.5 and 0.7. The ecological vulnerability
level of most areas in Jianghan Plain was mainly at Moderate or
Extreme levels. During 20 years, the mean EVI value showed a
trend of “down—up—down,” demonstrating that the ecological
vulnerability of Jianghan Plain fluctuated downward. Indirectly, it
also side reflected the movement toward enhancing the
environmental quality of Jianghan Plain. Moreover, the turning
years of the trends of the other three indicators are consistent with
the EVI except for LST.

Figure 3 illustrates the proportional change in each ecological
vulnerability level. From 2000 to 2020, the majority of ecological
vulnerability level was either Moderate or Strong. The proportion of
Slight and Light levels increased, whereas the percentage of the Slight
level was the lowest each year. Over 20 years, the proportion of
Moderate level fluctuating grew, with the highest rate occurring in
2020. The change in the Extreme level was the opposite of the
Moderate level, and it showed a fluctuating decrease, with the lowest
percentage of 29.06% in 2020. The rate of Extreme level was the
largest in 2010 with 9.29%, and only 0.86%, 0.02%, 0.34%, and 0.13%
in 2000, 2005, 2015, and 2020, respectively. The temporal changes of
the extreme level were generally consistent with the EVI trend in
study time.

Dark green, light green, yellow, orange, and brown represent
Mild, Light, Moderate, Strong, and Extreme ecological vulnerability,
respectively, in Figure 4. From 2000 to 2020, the spatial and
temporal patterns of ecological vulnerability in the Jianghan Plain
were highly variable and strongly tied to human agricultural
production, urban expansion, and some government policies over
20 years. The temporal and spatial patterns of ecological
vulnerability in the Jianghan Plain were highly variable from
2000 to 2020 and were deeply associated with human agricultural
activities, urbanization, and specific government policies. Ecological
vulnerability decreased from south to northwest in the Jianghan
Plain in 2000. The region with the lowest ecological vulnerability was
Zhongxiang, while Hanchuan was the most vulnerable. In 2005,
2010, 2015, and 2020, the ecological vulnerability decreased from
west to east in the Jianghan Plain. In 2010, the area of Extreme level
in the Jianghan Plain increased significantly and was mainly
distributed in Dongbao, Dangyang, Songzi, Gongan, Shihou, and
Jiangling. In 2015 and 2020, Anlu, Yunmeng, Hanchuan, Xiantao,
and Honghu in the eastern proportion of the Jianghan Plain and
Zhongxiang in the northern part of the Jianghan Plain had low
ecological vulnerability levels, while the regions with comparatively
high ecological vulnerability levels were primarily situated in the
central and northeastern proportion in the Jianghan Plain.

In terms of city scale, from 2000 to 2020, the EVI value of
Jingmen was low, which represented the ecological environment was
relatively good and the possibility of ecological degradation was
relatively low (Figure 5). The relatively high EVI values in Xiaogan
indicated high ecological vulnerability. Nonetheless, it displayed a
significant downward trend, meaning that the ecological
environment in Xiaogan has considerably improved from 2000 to
2020. Jingzhou and Yichang have higher EVI values, and in 2010 the
EVI of these two cities was the highest of all cities studied. It
suggested that the two cities were more vulnerable to
environmental threats. However, after 2010, the EVI values of the
two cities also decreased significantly, reflecting that the two cities’
ecological environment had become better and was trending in a
positive direction.

Regarding the district and county scales, the EVI values of each
district and county showed fluctuations and decreases. And in 2010,
all other Counties or Districts showed an increasing trend except
Honghu, Dongdao, Jingshan, Duodao, Shayang, Yingcheng,
Hanchuan, and Anlu. Most Counties or Districts had their
maximum values of EVI in 2010, while all Counties or Districts
had the lowest EVI values in 2020, which denoted that all counties or
districts had improved their ecological environment quality with
proper environmental protection measures in 2000–2020.

3.2 Dynamic changes in EVI

Based on the EVI level classification findings in 2000, 2005, 2010,
2015, and 2020, the spatial distributions were mapped in Figure 6, and
the area changes were listed in Table 5 to investigate further shifts of
ecological vulnerability in the Jianghan Plain over 20 years. We
determined the area changes for each EVI level and categorized the
results into four categories based on four time periods (2000–2005,
2005–2010, 2010–2015, and 2015–2020). They were, respectively,
Obvious Improvement (OI), Slight Improvement (SI), Invariability

TABLE 4 Statistics of four indicators and EVI.

Years Statistics NDVI WET LST NDBSI EVI

2000

Minimum −0.494 −0.703 −0.087 −0.490 0.000

Maximum 0.830 0.029 30.156 0.410 1.000

Mean 0.445 −0.096 21.226 −0.123 0.656

Std Dev 0.103 0.030 1.348 0.061 0.358

2005

Minimum −0.677 −0.849 −5.185 −0.905 0.000

Maximum 0.983 0.184 55.49 0.68 1.000

Mean 0.516 −0.092 21.512 −0.134 0.605

Std Dev 0.138 0.033 2.239 0.083 0.072

2010

Minimum −0.788 −0.929 3.235 −0.524 0.000

Maximum 0.861 0.213 35.142 0.483 1.000

Mean 0.467 −0.095 21.925 −0.125 0.627

Std Dev 0.035 0.035 2.720 0.081 0.099

2015

Minimum −0.226 −0.735 4.851 −0.610 0.000

Maximum 0.979 0.129 36.779 0.723 1.000

Mean 0.526 −0.050 22.343 −0.131 0.577

Std Dev 0.126 0.032 2.336 0.091 0.094

2020

Minimum −0.345 −0.807 5.153 −0.644 0.000

Maximum 0.996 0.162 44.597 0.943 1.000

Mean 0.476 −0.033 22.452 −0.148 0.546

Std Dev 0.146 0.037 1.678 0.093 0.091
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FIGURE 3
The proportion of ecological vulnerability index (EVI) in Jianghan Plain from 2000 to 2020.

FIGURE 4
Spatial distribution of ecological vulnerability index (EVI) in Jianghan Plain from 2000 to 2020.
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(IN), Slight Deterioration (SD), and Obvious Deterioration (OD). The
analysis revealed that ecological vulnerability remained stable in the
majority of the Jianghan Plain, with IN accounting for the largest
proportion in each period, at 52.04 percent, 53.65 percent,
55.44 percent, and 60.12 percent, respectively. It showed that the
construction of ecological civilization in the Jianghan Plain had
achieved remarkable achievements, the regional ecological
environment had been improving, and the ecological carrying
capacity and buffering capacity also had been increasing. The ratio
of OI and OD change was less than 0.1%, showing that from 2000 to
2020, there were fewer regions with significant ecological vulnerability
changes in the study area. Except for 2005–2010, the proportion of SI
was second only to IN, with 37.52%, 1.46%, 29.02%, and 27.53% in the
four periods, and the largest proportion in 2010–2015. And the
proportion of SD increased and then decreased between 2000 and
2020, with ratios of 10.44%, 44.90%, 14.62%, and 12.34%. Above, it was
demonstrated that the degree of ecological vulnerability fluctuated
downward in the Jianghan Plain.

Figure 7 illustrates the complex spatial variations in ecological
vulnerability levels between 2000 and 2020. From 2000 to 2010, the
ecological vulnerability of the Jianghan Plain mainly shifted from
levels III and IV to other levels. The areas where the classes remained
unchanged were all in the central regions of the Jianghan Plain.

From 2000 to 2005, the ecological vulnerability in the northern part
of the Jianghan Plain changed mainly from the level III to the level
IV and V, indicating a decrease in ecological vulnerability. The north
part of the Jianghan Plain is relatively high in elevation, and forests
dominate the land use. And China implemented the policy of
returning farmland to forest in 1999. The protection of forests
increased its area, which influenced the change in regional
ecological vulnerability from 2000 to 2005. In the southern
portion of the Jianghan Plain, ecological vulnerability decreased
from level IV to other levels, whereas ecological vulnerability
decreased from level IV to level III in the southeast and
southwest, indicating an improvement in ecological fragility.
From 2005 to 2010, the ecological vulnerability of the southwest
and northwest portions of the Jianghan Plain deteriorated,
manifesting a change from level III or IV to level V. However,
these deteriorated areas showed an improving trend during
2010–2015, with a shift from the Ⅴ level to other levels. Most
regions’ ecological vulnerability levels remain unchanged from
2015 to 2020. Some areas in the north mainly changed from Ⅱ to
Ⅲ level. The central part of Jianghan Palin showed areas where theⅢ
level became Ⅱ level orⅣ level, changed toⅢ level, which indicated a
decrease in ecological vulnerability level and an improvement in the
ecological environment.

FIGURE 5
The mean ecological vulnerability index (EVI) of each county in Jianghan Plain from 2000 to 2020.
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FIGURE 6
Scatter plots of the ecological vulnerability index (EVI) in Jianghan Plain from 2000 to 2020.

TABLE 5 Changes in EVI level from 2000 to 2020.

Year OI SI IN SD OD

2000–2005

Change level 4 3 2 1 0 −1 −2 −3 −4

Area/km2 0 0.41 317.05 16676.64 23570.87 4,728.81 0.43 0 0

Change area/km2 0.41 16993.69 23570.87 4,729.24 0

Percentage 0.00% 37.52% 52.04% 10.44% 0.00%

2005–2010

Change level 4 3 2 1 0 −1 −2 −3 −4

Area/km2 0 0.01 0.4 659.89 24298.41 19941.8 393.35 0.34 0

Change area/km2 0.01 660.29 24298.41 20335.15 0.34

Percentage 0.00% 1.46% 53.65% 44.90% 0.00%

2010–2015

Change level 4 3 2 1 0 −1 −2 −3 −4

Area/km2 0.02 32.15 216.07 13310.63 25112.2 6580.43 42.68 0.01 0

Change area/km2 32.17 13526.70 25112.20 6623.11 0.01

Percentage 0.07% 29.87% 55.44% 14.62% 0.00%

2015–2020

Change level 4 3 2 1 0 −1 −2 −3 −4

Area/km2 0.03 4.08 516.55 11952.73 27229.63 5377.11 213.5 0.58 0

Change area/km2 4.11 12469.28 27229.63 5590.61 0.58

Percentage 0.01% 27.53% 60.12% 12.34% 0.00%
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4 Discussion

4.1 Spatial auto-correlation analysis of EVI

Considering the actual situation of Jianghan Plain, a 3 km × 3
km grid was established to extract the image information in order to
ensure the completeness of the details within the scale and the
precision of calculation. In this study, we extracted 4,319, 4,337,
4,304, 4,323, and 4,261 sample points from the images of 2000, 2005,
2010, 2015, and 2020 due to the varying extent of water bodies in
each year. Moran’s I index and LISA were used to conduct a spatial
autocorrelation analysis of EVI in the Jianghan Plain using the
previously mentioned sample points. Figure 8 depicts the scatter plot
of Moran’s I for Jianghan Plain’s EVI. From 2000 to 2020, the scatter
points were primarily dispersed in the first and third quadrants,
indicating that the ecological vulnerability in Jianghan Plain had a
positive spatial correlation and a clustered instead of random

distribution. And the value of Moran’s I increased and decreased
over the past 2 decades, with values of 0.517, 0.579, 0.748, 0.462, and
0.397, respectively. In 2010, Moran’s I had its highest value, implying
a significantly positive spatial correlation.With a value of only 0.397,
the ecological vulnerability of Jianghan Plain was the weakest spatial
correlation in 2020.

By analyzing the local spatial correlation pattern based on the
LISA cluster map, we could determine the spatial distribution of
5 cluster types (No Significant, H-H, H-L, L-L, L-H) each year. As
depicted in Figure 8, the No Significance was most prevalent in
relatively low-elevation regions, including Qianjiang, Jianli, Shishou,
and Xiantao. From 2000 to 2020, L-L and H-H were more
concentrated and prominent, while HH and LH were more
dispersed and fewer. And the spatial spread of L-H and H-L was
more variable. In 2000, the H-H dominated the eastern and western
parts of the Jianghan Plain, whereas the L-L dominated these regions
in 2005 and 2010. In addition, the area of L-L decreased

FIGURE 7
Spatial and temporal pattern of ecological vulnerability index (EVI) in Jianghan Plain in four period (A2000-2005, B2005-2010, C2010-2015, D2015-
2020).
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continuously from 2010 to 2020, indicating that the environment
quality had enhanced and the degree of ecological vulnerability had
declined as a result of the promotion of the development of
ecological civilization (Zhu et al., 2022). In conjunction with the
preceding, the temporal tendencies of L-L and HH are consistent
with the EVI’s movements in the Jianghan Plain.

4.2 Driving forces analysis

The ecological vulnerability manifests in the degree of structural
and functional integrity of ecosystems. Natural attributes and
human activities influence regional ecological vulnerability and
lead to spatial and temporal changes (Abd El-Hamid et al.,
2020). Natural factors are the material basis for the existence and
continued positive role of regional ecosystems, and changes in the
natural environment usually affect the structure and function of
regional ecosystems, which in turn leads to the emergence of
ecological vulnerability problems. However, in contrast to the
long-term slow evolution of natural factors, the dramatic
disturbance of human activities is more likely to cause sudden
changes in the regional ecological environment and create
ecological vulnerability problems. It has been proved that
ecological vulnerability is directly related to the natural
conditions of the regional ecological background. Still, the natural

conditions only determine the potential existence of environmental
vulnerability. The main factors that cause the further transformation
of potential environmental vulnerability to actual ecological
vulnerability are the excessive production and living activities of
human beings, such as rapid urbanization, irrational exploitation of
resources, environmental pollution, and so on (Hou et al., 2016).

The four indicators of Heat, Greenness, Wetness, and Dryness
did not simply represent the natural environment but also reflected
the impact of human activities on the natural environment from the
side. Therefore, we quantified the explanatory power of the
indicators in the Geodetector to investigate the major driving
forces of the four indicators of changes in ecological vulnerability
in the Jianghan Plain. A 3 km × 3 km grid was created using ArcGIS
for sampling, and the values of the four indicators and EVI from
2000 to 2020 at the sample sites were extracted and imported into
the detector for calculation. As can be seen in Figure 9, the outcomes
of the factor detector for four indicators over 20 years demonstrated
that p = 0, suggesting that each indicator notably affected the change
in ecological vulnerability in Jianghan Plain. Every year, NDVI had
the highest q value and had the most effect on how ecologically
vulnerable the Jianghan Plain was. It was followed by NDBSI, which
also had a q value over 0.5. With the accelerating urbanization
process, especially from 2005 to 2010, the construction land in
Jianghan Plain increased by 18.30%, and the ecological land area
decreased sharply, resulting in a decreasing trend of EVI. As

FIGURE 8
Jianghan Plain ecological vulnerability index (EVI) cluster map from 2000 to 2020.
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confirmed by many studies, urban expansion and over-exploitation
of arable land have seriously affected the regional ecological
environment (Xie et al., 2013; Liou et al., 2017; Jiang et al.,
2022). The q values of Wet changed less over 20 years, remaining
between 0.1 and 0.3, indicating that the effect of wetness on the
variation in ecological vulnerability in Jianghan Plain was more
consistent. From 2000 to 2020, LST q values were lower, exhibiting a
first ascending and then descending trend. The effect of human
activities, such as environmental pollution and land use change, was
still the main driver of regional ecological vulnerability. In response,
the local government should improve the policy system, implement
the responsibilities of all parties, coordinate the balance between
ecological vulnerability management and economic development of
residents, and take correct and appropriate measures to halt the
deterioration of ecological vulnerability. These were crucial for
accelerating the ecological management of the Jianghan Plain,
consolidating the achievements of ecological management and
construction, and finally achieving the win-win goal of enhancing
the region’s ecological and economic environments. It is somewhat
related to the slight variation in temperature and humidity in the
Jianghan Plain over the past 20 years.

In addition, changes in ecological vulnerability are closely
related to government policies. Ecological vulnerability in the
Jianghan Plain became better from 2000 to 2005, deteriorated
from 2005 to 2010, and improved significantly after 2010. In
Hubei Province, implementing the policy of returning farmland
to the forest in 2000 achieved great ecological benefits, which
directly or indirectly caused the improvement of regional
ecological vulnerability (Zhao et al., 2023). However, with the
rapid development of urbanization, the ecological environment
became increasingly fragile from 2005 to 2010. In 2012, with the
implementation of the ecological civilization construction strategy
and various ecological protection policies, the regional ecological
environment was improved again. Therefore, governments at all
levels of the Jianghan Plain should give full play to their roles to

promote the improvement of the regional ecological environment
and the management of ecological problems and ultimately achieve
the win-win goal of enhancing the regional ecological and economic
environment.

4.2.1 Sustainable development and local
government suggestions

The 2030 Agenda for Sustainable Development sets out 17 goals
and 169 sub-goals comprising the Sustainable Development Goals
(United Nations, 2015). The development of these goals has placed
greater emphasis on integrating the intrinsic linkages between social
development, economic development, and environmental
protection, changing the previous failure to pay sufficient
attention to the ecological field and addressing the persistent
problems and emerging challenges facing humanity and the
planet. China has also been working toward sustainable
development goals. With the rapid urbanization of the Jianghan
Plain, the urban heat island is profoundly affecting the natural
environmental processes on the surface and the sustainable
development of human society. Clarifying the relationship
between carbon emissions and urban heat islands can inform
how to achieve low-carbon and decarbonized sustainable
development goals. (Wise et al., 2009). We divided the Jianghan
Plain into 4,903 cells using a 3 km × 3 km grid and determined the
urban heat island (UHI) area in 2000 and 2020 based on LST >
LSTave+0.5 × δ (LSTave denotes the mean value of LST in the
Jianghan Plain, and δ denotes the standard deviation of LST in
the Jianghan Plain) (Shahfahad et al., 2021). We determined carbon
emission coefficients for each land use type in the Jianghan Plain
based on the IPCC framework and some studies on carbon emission
coefficients (IPCC, 2007; Zhu Q. et al., 2015; Zhou S. et al., 2021).
Then, we used the coupling and coordination degree model
(CCDM) to measure the relationship between urban heat island
density (UHII) and carbon emissions after standardized data
(Naikoo et al., 2023). As shown in Figure 10, the UHI area of
the Jianghan Plain was mainly located in the central region in
2000 and shifted to the west in 2020, and the urban heat island
effect in the eastern part was mitigated. Based on the results of
CCDM, the spatial distribution patterns of the coupling and
coordination degrees of carbon emissions and urban heat island
density in the Jianghan Plain in 2000 and 2020 were generally
consistent. The region’s area with high coupling and coordination in
2020 increased significantly compared to 2000. In fact, the urban
heat island effect and carbon emissions showed high coupling and
high coordination in the central urban areas of each city, as has been
demonstrated by some scholars (Sharifi et al., 2020; Dewa and
Buchori, 2023). Extreme incoordination occurred mainly in the
northern part of the Jianghan Plain, which was at a higher elevation
and had a less significant urban heat island. The emergence of the
urban heat island phenomenon not only has specific effects on
human health but also has adverse effects on vegetation growth and
climate change. (Heaviside et al., 2017; Shahfahad et al., 2022).
Therefore, promoting the implementation of low-carbon emission
reduction is conducive to mitigating the negative impacts of the
urban heat island effect and reducing the fragility of the regional
ecology (Imam and Banerjee, 2016; Chen and You, 2020). This is
also the way to improve the ecological environment of Jianghan
Plain and achieve sustainable development.

FIGURE 9
The results of the Factor Detector.
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Ecological vulnerability monitoring and driving force analysis
provide decision-makers with suggestions for environmental
improvement to achieve sustainable development (Li F. et al.,
2022). In this study, we promoted the following suggestions
further to improve the sustainable development of the Jianghan
Plain and achieve the win-win goals of economy and ecology.

First, gradually change the urban development model to ensure
ecological land use. The rapid expansion of urban land in the
Jianghan Plain has led to increasing fragmentation of habitats.
Local governments should do reasonable urban planning,
especially in Yichang and Jingzhou, to ensure the regional
ecological environment is not degraded. They should effectively
reduce the inefficient use of urban land, promote urbanization from
incremental expansion to stock renewal, improve internal urban
greening, and ensure the quality and quantity of regional ecological
land. In addition, the governments should promote low-carbon
production and living, improve regional carbon emission
efficiency, and reduce regional carbon emission levels to enhance
environmental quality.

Second, protect arable land and vigorously develop green
agriculture. As the Jianghan Plain is a substantial food
production base in China, protecting the quality and quantity of
basic farmland is a must to protect the regional ecological

environment and an inevitable choice to ensure national food
security. From the factor results, vegetation cover is the main
factor affecting the ecological vulnerability of the Jianghan Plain,
so the local government should develop green agriculture and eco-
agricultural tourism, ensure the planting of crops and various trees,
prevent the emergence of “non-farming” and “non-grain,” and
improve regional vegetation cover (Zhang et al., 2019). In
addition, the government should strictly regulate the use of
fertilizers, designate an ecological compensation system to
prevent soil pollution, protect the region’s natural background
from deterioration, and improve the ecological environment’s
carrying capacity and buffering ability to cope with artificial
disturbances.

Third, develop resources rationally and improve their utilization
rate. The government should scientifically formulate resource
development plans for the Jianghan Plain, improve resource
utilization rates, eliminate resource waste, and maximize the
value of local ecological resources to achieve sustainable
economic development.

Fourth, improve the policy system and play a macro-control
role. The relevant departments need to provide reasonable
policies to guide local companies, groups, and individuals to
participate in ecological protection, such as strengthening

FIGURE 10
(A) Urban heat island in 2000; (B) coupling degree in 2000; (C) Coordination degree in 2000; (D) Urban heat island in 2020; (E) coupling degree in
2020; (F) Coordination degree in 2020.
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supervision and establishing a sound regulatory mechanism.
They also need to implement the responsibilities of all parties,
coordinate the balance between ecological vulnerability
management and residents’ economic development, take
correct and appropriate measures to stop the deterioration of
ecological vulnerability, and play a macro-regulatory role in the
rational use of resources and ecological protection.

4.2.2 Strength and limitation
Considering the ecological vulnerability assessment’s

complexity and ambiguity, the current methods could not
achieve a scientific, objective, and comprehensive evaluation.
Combined with previous studies, to avoid subjective
consciousness seriously affecting the research results (Li
et al., 2012), Due to the complexity and ambiguity of
ecological vulnerability assessment, the current
methodologies are incapable of producing an exhaustive,
scientific, and objective evaluation. This study chose the
index system of the RSEI established by Xu Hanqiu in
combination with earlier research in order to prevent
subjective consciousness from significantly influencing the
research findings (Xu, 2013a; Wang et al., 2016). Although
there was no further apparent correlation between the
indices, this system could correctly represent soil moisture,
surface temperature, vegetation, and exposed surface
conditions of the study region. We used 2020 as an example
to determine the covariance of each indicator in order to
confirm the correlation of the indicators further. There are
two leading commonly used covariance diagnostic indicators,
the variance inflation factor (VIF) and the tolerance level (TOL)
(Yao et al., 2016). When VIF>10 (i.e., TOL0.1), the
multicollinearity of the chosen index was more severe. A
3 km × 3 km grid was used to encompass the entire image in
ArcGIS 10.8, and 4,261 sample points were obtained by
excluding the sampling points from the water bodies. Then,
the values of the EVI and four indicators were extracted, and
SPSS 25.0 was utilized to get the VIF and TOL of each indicator
(Table 6). The results of the calculations revealed that the VIF of
each indicator was less than 10, and the TOL was greater than
0.1, demonstrating there was not any correlation among the
indicators. Therefore, selecting greenness, wetness, dryness and
heat as the assessment index system in this study was desirable.
In addition, we processed and employed the remote sensing data
to construct EVI using the Google Earth Engine. It has certain
advantages of multiple data sources, online processing, and fast
speed compared with traditional local computer download
processing, dramatically improving the efficiency and
accuracy of data processing in this study.

However, there were still some shortcomings in this study.
This study’s primary purpose was to explore a regional

ecological vulnerability assessment method using objective
models through the idea of a remote sensing index. Firstly,
there was still a need for further exploration of the intrinsic
mechanisms driving ecological vulnerability changes. Second,
multiple natural and human activities influenced regional
ecological vulnerability changes, and it was not easy to fully
characterize them with a few indicators. This study selected only
four indicators to measure regional ecological vulnerability.
Simultaneously, the arable land in the Jianghan Plain was
widely distributed, and the regional environment affected
various human activities. Therefore, further exploration and
research were needed to reflect the spatial and temporal changes
of ecological vulnerability in the Jianghan Plain more
scientifically and comprehensively.

5 Conclusion

This study considered greenness, wetness, dryness, and heat
to build an ecological vulnerability assessment index system and
then used the GEE platform and principal component analysis
to make a macro, objective, and rapid evaluation of the
ecological vulnerability in the Jianghan Plain, thereby
revealing the evolutionary dynamics of its ecological
vulnerability. It provided some reference value for the
ecological vulnerability management and food security of the
Jianghan Plain and some ideas for researching regional
ecological vulnerability. The following are this study’s main
conclusions.

1) The EVI of the Jianghan Plain showed a fluctuating decline
from 2000 to 2020, with an overall improvement in
ecological vulnerability and local degradation, especially
after 2010, when the ecological vulnerability improved
significantly.

2) The average value of EVI in the 20 years was between 0.5 and 0.7,
and most areas of the Jianghan Plain were mainly at Moderately
level or Strong level. Also, Jingmen City had a more light
ecological vulnerability, but the ecological vulnerability of
Xiaogan City needed improvement.

3) Most of the areas in Jianghan Plain had the same ecological
vulnerability level in each period, accounting for 52.04%,
53.65%, 55.44%, and 60.12%, respectively. The most serious
period of degradation was 2005–2010, with about 44.90% of
the areas showing degradation, and the period with the
highest percentage of improvement was 2000–2005, with
approximately 37.52% of the areas showing an
improvement.

4) From 2000 to 2020, Moran’s I in Jianghan Plain increased and
then decreased, with values of 0.517, 0.579, 0.748, 0.462, and
0.397 in 2000, 2005, 2020, 2015, and 2020, respectively. The
spatial distribution of ecological vulnerability showed a positive
correlation and aggregated distribution rather than random
distribution.

5) Regarding the evolutionary drivers, all four indicators
significantly affected ecological vulnerability in Jianghan Plain,
and greenness and wetness were the greatest driving force for
changes in Jianghan Plain.

TABLE 6 Results of multicollinearity diagnostics.

Indicators VIF TOL Indicators VIF TOL

Wet 7.185 0.139 NDVI 5.122 0.195

NDBSI 6.260 0.160 LST 1.325 0.755
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Exploring the seasonal
relationship between spatial and
temporal features of land surface
temperature and its potential
drivers: the case of Chengdu
metropolitan area, China

Chunguang Hu1,2†, Gaoliu Huang1,2† and Zhiyong Wang1,2*
1School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan,
China, 2Hubei Engineering and Technology Research Center of Urbanization, Wuhan, China

Global climate change and the process of urbanization have had a significant
impact on land surface temperature (LST). This study selects the Chengdu
metropolitan area in China as a typical research subject. Based on the seasonal
heterogeneity and spatial distribution characteristics of LST, different types of
potential influencing factors are selected for Principal Component Analysis (PCA)
to determine the categories of these factors. Subsequently, a multiple linear
regression analysis is conducted to explore the relationship between LST and
the identified potential influencing factors during different seasons. The findings of
this study suggest that the regions with high temperatures and secondary high
temperatures in the Chengdu metropolitan area are primarily concentrated in
Chengdu and its adjacent localities, exhibiting noticeable seasonal variations. In
the summer, high-temperature zone and second high-temperature zone of the
LST show a central aggregation pattern. In the transition season, the high-
temperature zone of the LST presents a “large dispersion, small aggregation”
pattern. In the winter, it presents a dispersed pattern. In terms of influencing
factors, elevation, slope, wind speed, humidity, and surface vegetation cover
related to natural geographical conditions have a significant impact on LST,
reaching a peak during the transition season. Factors associated with social
and economic conditions, such as population size, nighttime light index, and
road density, have a pronounced effect on LST during the summer season. During
winter, LST is mainly influenced by landscape pattern-related factors such as
Shannon Diversity Index, Edge Density, Largest Patch Index, and Patch Density.
This study not only assesses the seasonal and spatial characteristics of LST in the
Chengdu metropolitan area but also provides valuable insights for formulating
phased measures to mitigate the Urban Heat Island (UHI) in other regions.
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Chengdu metropolitan area, land surface temperature (LST), urban heat island (UHI),
correlation, multiple linear regression
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1 Introduction

With the ongoing global climate change and urbanization
process, the continuous development of cities worldwide and the
concentration of population in urban areas have had a significant
impact on the urban ecological environment. The advancing
urbanization exerts a strong force on climate change in cities and
their surrounding areas. Among these forces, the urban heat island
(UHI) effect plays a crucial role. (Grimm et al., 2008). This
phenomenon is identified by a considerable rise in air and land
surface temperature (LST) within urban regions, contrasting with
the adjacent rural surroundings (Thompson and Perry, 1997). The
Surface Urban Heat Island (SUHI) effect can be identified using
conventional thermal-infrared remote sensing techniques, which
can effectively interpret the land-surface energy flow characteristics
in terms of numerical values. The SUHI effect exhibits pronounced
spatial and temporal variations when compared to the UHI effect
described by air temperature. It is also more susceptible to variations
in land surface characteristics and human activity. Furthermore, the
rise in LST gives rise to an upward movement of air currents, which
can provide better insight into the underlying causes of UHI than air
temperature-based evaluations (Wang Z. et al., 2022; Hu and Li,
2022). SUHI effect exerts a significant force on human production
and living. In recent years, it has drawn attention from various
disciplines such as geography, ecology, meteorology, and urban
planning. Many scholars have begun to explore the
characteristics of LST changes and the mechanisms behind the
formation of SUHI(Zakšek and Oštir, 2012). They have been
investigating different approaches to mitigate the rise in surface
temperature and, consequently, alleviate the impact of UHI on
human production and living. Therefore, it is of vital importance
to scientifically investigate the spatial and temporal distribution of
UHI and its influencing factors to understand the functioning of the
urban heat island effect and find ways to mitigate its impact.

Currently, the conventional approach of identifying LST
through weather stations has no longer sufficient to meet
practical needs. Multivariate remote sensing data, such as
Landsat Thematic Mapper, Advanced Very High-Resolution
Radiometer (AVHRR) satellite data, Moderate Resolution
Imaging Spectroradiometer (Modis), and Advanced Spaceborne
Thermal Emission and Radiation (Aster), have revolutionized the
field of LST detection. Compared to traditional methods of
measuring LST, remote sensing technology has proven to be
more reliable and efficient in capturing the complex and dynamic
nature of LST variations over time and space (Imhoff et al., 2010). In
this study, MODIS11A2 data is utilized, which is captured by long-
term surface satellites and processed through techniques such as
stitching, projection conversion, and other image processing. This
method offers a more accurate and extended detection time range of
LST data (Wan, 2008).

Merely examining the spatial distribution of LST might not be
adequate in effectively mitigating UHI hazards; it is crucial to
investigate the probable factors behind LST changes. Numerous
statistical techniques have been utilized for examining the impacts of
LST including geographically-weighted regression models to explore
the connection between LST variation and its driving forces (Gao
et al., 2022), geographic detectors (Geo-detectors) for identifying the
impact of surface parameters on LST (Wang W. et al., 2021), and

spatial regression models to examine the influence of urban spatial
structure on UHI at the community level (Guo A. et al., 2020). The
above study explores the spatial characteristics and influencing
factors of urban heat islands from different perspectives,
providing valuable suggestions for mitigating the urban heat
island effect. However, there are several limitations. Firstly, from
a temporal perspective, many studies focus on the surface
temperature during the summer season, overlooking the seasonal
variations and making it difficult to assess the phased characteristics
of surface temperature. Secondly, from a spatial perspective,
numerous studies concentrate on individual cities or large urban
clusters, neglecting the closer connections within urban
agglomerations that encompass economic, social, and natural
aspects. Furthermore, many studies have focused on the impacts
of natural geographical features and human socio-economic
activities on urban heat islands (Ward et al., 2016). In recent
years, the influence of landscape patterns on urban heat islands
has also been gradually addressed. Several studies have indicated a
relationship between urban green spaces and urban heat islands (Li
et al., 2013). Common landscape indicators are often used to explore
the connection between urban thermal environments and landscape
pattern factors (Peng et al., 2016; Sun et al., 2022). However, many of
these studies overlook the interactions between multiple influencing
factors and the seasonal variations in these factors. To address this
gap, our research will consider multiple types of influencing factors,
emphasizing the elimination of interactions among these factors.
This approach allows for a more intuitive identification of the
dominant factors influencing urban heat islands at different
stages. Additionally, considering the seasonal variability of the
driving factors for surface temperature, we will propose tailored
mitigation measures. Nevertheless, there are still limitations in the
current research regarding this aspect.

Since China’s reform and opening-up, cities have developed
rapidly. The continuous advancement of urbanization has put
forward new requirements for the construction and development
of Chinese cities. Urban agglomerations and metropolitan areas
have become important models for the development of Chinese
cities. Nevertheless, metropolitan areas exhibit more proximate
material and spatial linkages compared to urban agglomerations.
Furthermore, they play a crucial role in the evolvement of urban
agglomerations (Fang, 2021; Wang Q. et al., 2022). In 2021, the
Chinese government released the Chengdu Metropolitan Area
Development Plan, designating the Chengdu metropolitan area as
a significant growth center in southwest China. However, due to its
location in the Sichuan Basin, the area faces challenges in heat
dissipation and is prone to forming a heat island. In recent years, the
UHI effect in Chengdu has had a stronger influence on people’s
production and life, and at the same time, it has posed challenges to
the sustainable development of the city (Guo J. et al., 2020; Wu et al.,
2021). Currently, there are multiple perspectives in the research on
surface temperature in the Chengdu region to explore the urban heat
island phenomenon and the driving factors influencing it. These
perspectives include examining the relationship between urban land
changes and the urban heat island effect (Zhigang et al., 2016; Yu
et al., 2022; Zhe et al., 2022), investigating the relationship between
the built environment in the Chengdu region and surface
temperature (Sun et al., 2022; Luo et al., 2023), exploring the
impact of changes in health indices of urban and rural residents
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in China on surface temperature (Ren et al., 2021), studying the
influence of landscape patterns on the intensity of the urban heat
island (Sun et al., 2022), and using remote sensing satellite products
to investigate the impact of meteorological factors on the intensity of
the urban heat island (Lai et al., 2018; Liao et al., 2022). However, the
current research on the Chengdu regionmostly focuses on the urban
heat island characteristics within the city itself, while there is
relatively little research on the urban heat island effect in the
Chengdu metropolitan area, lacking an exploration of the
characteristics of the urban heat island effect within the
metropolitan area that spans administrative boundaries and has
close interconnections among its elements.

Therefore, this study focuses on the Chengdu metropolitan area,
aiming to fill the research gap on urban heat islands in the Chengdu
metropolitan area and provide recommendations for mitigating the
urban heat island effect. In summary, although there are many
studies focusing on exploring the characteristics and influencing
factors of the urban heat island effect, this study has several key
innovations compared to previous research. Firstly, in terms of the
choice of research area, this study takes the perspective of the
metropolitan area and selects the Chengdu metropolitan area as
the research object. As the first approved metropolitan area in
Southwest China and an important growth pole in the region,
there is relatively limited research on the Chengdu metropolitan
area. Therefore, this study focuses on the Chengdu metropolitan
area, which has important theoretical value for mitigating the urban
heat island effect at the metropolitan scale. Secondly, in terms of
research methods, this study examines the characteristics of the
urban heat island in different seasons, conducts correlation analysis
to explore potential driving factors influencing surface temperature
in the Chengdu metropolitan area, and finally utilizes principal
component analysis and multiple linear regression to investigate the
relationships among the driving factors, thereby identifying the
main factors influencing surface temperature in different seasons
in the Chengdu metropolitan area. Thirdly, from a theoretical and
practical perspective, this study identifies the dominant factors
influencing surface temperature in different seasons and proposes
seasonal mitigation measures, providing reference and guidance for
local governments and urban planners to a certain extent. This study
is of theoretical significance and practical relevance to the
construction and development of the Chengdu metropolitan area.

2 Research region

The location of the Chengdu metropolitan area lies in the
northwestern vicinity of the Sichuan Basin, specifically positioned
within the southwestern boundaries of China’s Sichuan Province
(30°04′-31°42′N; 103°50′-105°27′E). The Chengdu metropolitan
area, with a total expanse of 33,100 square kilometers,
encompasses various counties and urban zones, including the
Jingyang District of Deyang City, Shifang City, and Guanghan
City, and is primarily centered around Chengdu City. The
topography of the region is predominantly flat, with ranges of
mountains situated towards the west. The bulk of the metropolitan
zone is located within the central subtropical belt (Liu et al., 2021a),
and its unique geographic location results in an average temperature
of 16.8°C in Chengdu City. The planning area is selected as the study

area (Figure 1) to provide a relevant reference for the planning and
construction of Chengdu metropolitan area.

This study is based on the climatic characteristics of the
Chengdu metropolitan area and previous research findings
(Wang Z. et al., 2022). We also take into account the
geographical environment of the Chengdu metropolitan area. On
one hand, we analyze the temperature and precipitation data for
each month. On the other hand, we consider the continuity of
human society’s seasonal division, resulting in the categorization of
the Chengdu metropolitan area into three seasons: summer,
transition season, and winter. The Chengdu metropolitan area
exhibits distinct subtropical monsoon humid climate
characteristics and is mainly situated in the central subtropical
region (Figure 2). During June to September, the average
temperatures are relatively high and exhibit a stable distribution.
The temperature fluctuations during these 4 months are minimal,
thus designating them as the summer season. In comparison, the
average temperatures from December to March are lower, especially
in January. Although the average temperature and precipitation in
March are slightly higher than in November, the seasonal
classification pattern considers the coherence in month-to-month
division. As a result, these 4 months are defined as the winter season.
The average temperatures in April-May and October-November are
relatively similar, as these months often serve as transitional periods
between summer and winter. Therefore, the study defined March,
April, May, and October as the transition seasons.

3 Data and methods

3.1 Data sources and processing

The data utilized in this study comprise LST data and potential
driving force that affect LST. These factors include a digital elevation
model, wind speed, humidity, slope, Shannon diversity index, edge
density, maximum patch area index, patch density, road density,
population density, night lighting, and vegetation cover, resulting in
a total of 12 potential driving force (Figure 3). Please refer to
(Table 1) for more details. To characterize the distribution
characteristics of various influencing factors, this study employed
the natural breakpoint method to reclassify the potential influencing
factors into five levels ranging from 1 to 5. A higher level indicates a
higher numerical value, and a more pronounced spatial expression
of the corresponding potential influencing factor.

The study utilizedMODIS11A2 data obtained from the Terra and
Aqua satellites, which are equippedwith the importantMODIS sensor.
ThesensorallowsfortheacquisitionofLSTdataat fourdaily intervals, it
was determined that MODIS11A2 data offers higher accuracy (Wan,
2008).Therefore, for this study, the2020MODIS11A2datawasutilized
toobtainprocessedLSTdata for theChengdumetropolitan area,which
was sourced from LAADS DAAC.

3.2 Research methodology

The logical framework for the research presented is illustrated in
the following (Figure 4). The main purpose is to summarize the LST
distribution characteristics of Chengdu metropolitan area by using
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LST characteristics in different seasons, and 12 potential driving
force are selected to analyze the potential factors affecting the spatial
distribution pattern of heat islands in Chengdu metropolitan area,
and to establish a season-al mathematical relationship model
affecting the LST of Chengdu metropolitan area by correlation
analysis, principal component analysis and multiple regression
analysis, and finally summarize the analysis results for discussion.

3.2.1 LST division
To investigate the seasonal fluctuations of Land Surface

Temperature (LST) throughout the Chengdu metropolitan area,
ArcGIS 10.8 was utilized to reclassify the LST data using the
mean−standard deviation technique (Table 2). Among them, Ts
represents the unit raster value of LST in Chengdu metropolitan
area, μ represents the mean value of LST in Chengdu metropolitan

FIGURE 1
(A) Extent of the research region (B) Research region land use (C) Administrative division of the research region.
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area in different seasons, and std represents the standard deviation
of LST in Chengdu metropolitan area in different seasons.
Combining with related studies (Hu et al., 2022a; Hu and Li,
2022), we define the mid-temperature zone, second high-
temperature zone and high-temperature zone as UHI regions
with high heat sources.

3.2.2 Landscape pattern indices
Landscape pattern index is commonly employed to quantify

landscape characteristics and effectively depict the shape and
distribution features of various patches within a landscape. Based
on previous studies (McGarigal et al., 2012; Zhang et al., 2020),
landscape edge density (ED), maximum patch index (LPI), Shannon
diversity index (SHDI), and patch density (PD) were selected in this
study. And the optimal window size was selected to calculate the
landscape pattern index using Fragstats 4.2 software, and the specific
formula is shown in the table below (Table 3).

From Table 3, it can be observed that this study selects four
different landscape pattern factors to represent distinct meanings.
Among them, Edge Density (ED) is the ratio of the total perimeter
of all patches to the total landscape area, often used to indicate the
degree of landscape fragmentation by boundaries, reflecting the
degree of landscape element fragmentation. The Largest Patch
Index (LPI) is the ratio of the largest patch area to the total
landscape area. It is used to calculate the proportion of the
largest patch within the spatial unit, helping identify dominant
patch types within the landscape and assessing human disturbance
to the landscape. The Shannon Diversity Index (SHDI) is
commonly used to measure landscape diversity, reflecting the
uneven distribution of patches within the landscape. It can also
detect changes in diversity and heterogeneity of the same
landscape at different periods. In a landscape system, the more

diverse the land use types, the richer the patch types, and
correspondingly, the higher the SHDI value. Patch Density
(PD) is the ratio of the total number of patches to the total
landscape area. It characterizes the degree of landscape
fragmentation caused by segmentation and reflects the degree of
human disturbance to the landscape. A higher Patch Density index
indicates a greater degree of landscape fragmentation within the
landscape unit (Zheng et al., 2010; Li et al., 2012).

3.2.3 Standard deviation ellipse
The standard deviation ellipse is commonly used to study the

spatial distribution characteristics of geographical elements,
displaying their distribution patterns in space and identifying
variations in the center of the elements. The long semi-axis of
the ellipse represents the main direction of the element distribution,
while the size of the short semi-axis indicates the degree of spatial
aggregation. The larger the difference between the lengths of the
long and short axes, the more pronounced the directional
distribution of the element. The azimuth represents the angle in
a clockwise direction from the north to the direction of the long axis
of the ellipse, indicating the main direction of the element’s
distribution (Zhao et al., 2022). Therefore, in this study, the
standard deviation ellipse is used to quantitatively describe the
spatial distribution and evolutionary characteristics of surface
temperature in the Chengdu metropolitan area. The calculations
are as follows:

x′ � xi − xave, y′ � yi − yave (1)
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FIGURE 2
(A) The climate zone in which the study area is located (I. Northern Temperate Zone Ⅱ. Central Temperate Zone Ⅲ. Southern Temperate Zone Ⅳ.
Highland climate zone V. Northern Subtropical VI. Central subtropicsⅦ. Southern subtropics VIII. Northern subtropicsⅨ. Northern subtropics X. Central
tropics Ⅺ. Southern tropics Ⅻ. South Sea islands) (B) Average monthly temperature and precipitation in the central subtropics.
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δx �

������������������������∑n
i�1 wix′i cos θ − wiy′i sin θ( )2∑n

i�1w
2
i

√√
(3)

δy �

������������������������∑n
i�1 wix′i sin θ − wiy′i cos θ( )2∑n

i�1w
2
i

√√
(4)

In the equation, (xave, yave)is the average center of (xi, yi), wi is
the LST, and (x′, y′) represents the relative coordinates of each point
to the centroid of the study area, where tan θ can obtain the azimuth
angle, and δx and δy are the standard deviations of the X and Y-axes.

3.2.4 Correlation analysis
Correlation analysis is a statistical method used to assess the

strength and direction of the relationship between two variables. In

FIGURE 3
Potential driving force affecting LST change in the Chengdumetropolitan area (A) ROAD (B) LIGHT (C) POP (D)NDVI (E) SHDI (F) ED (G) PD (H) LPI (I)
HUM (J) DEM (K) SLOPE (L) WIND.
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this study, this method is used to determine the correlation among
various potential factors influencing surface temperature in the
Chengdu metropolitan area, with a focus on determining the
degree of correlation between surface temperature and factors

such as elevation, slope, and humidity. Specifically, a random
sampling tool in ArcGIS 10.8 was used to select 20,000 points
and obtain their attribute values. Pearson correlation analysis was
then conducted using SPSS software to calculate the Pearson

TABLE 1 Potential driving force of LST.

Potential driving
force

Abbreviations Explanations Literature basis Data sources

Digital Elevation
Model

DEM This data is the annual data of 2020 after
the calculation and processing of remote
sensing satellite data, reflecting the surface

elevation in unit space

Wang et al. (2018), Wang Z. et al.
(2021)

The geospatial data cloud platform
(https://www.gscloud.cn/#page1/1,

accessed 16 February 2023)

Slope SLOPE This data is the DEM data calculated and
processed for the year 2020, responding to

the slope value in the unit space

Wang et al. (2018), Wang Z. et al.
(2021)

Using DEM elevation data and the slope
analysis tool in ArcGIS 10.8, the slope

information was obtained

Wind speed WIND The data is synthesized by the algorithm for
the year 2020, responding to the monthly
average wind speed at the surface per unit

space

Zhao et al. (2020) The National Earth System Science Data
Center (http://www.nesdc.org.cn/,

accessed 3 March 2023)

Humidity HUM This data is synthesized by algorithm for
the year 2020 and reflects the monthly

average humidity value of the surface in the
unit space

Zhao et al. (2020) The National Earth System Science Data
Center (http://www.nesdc.org.cn/,

accessed 3 March 2023)

Shannon Diversity
Index

SHDI This number was calculated using
2020 land use data and reflects the richness

of landscape types

Ren et al. (2016), Peng et al. (2018),
Guo G. et al. (2020)

Based on the latest land-use data from the
research area, landscape pattern indices
were calculated using Fragstats software,
Land-use data from Globeland30 (http://
www.globallandcover.com/, accessed

3 March 2023)

Edge Density ED This number is calculated using 2020 land
use data and reflects the edge density of

landscape patches

Ren et al. (2016), Peng et al. (2018),
Guo G. et al. (2020)

Based on the latest land-use data from the
research area, landscape pattern indices
were calculated using Fragstats software,
Land-use data from Globeland30 (http://
www.globallandcover.com/, accessed

3 March 2023)

Largest Patch Index LPI This number is calculated using 2020 land
use data and reflects the maximum area

index of landscape patches

Ren et al. (2016), Peng et al. (2018),
Guo G. et al. (2020)

Based on the latest land-use data from the
research area, landscape pattern indices
were calculated using Fragstats software,
Land-use data from Globeland30 (http://
www.globallandcover.com/, accessed

3 March 2023)

Patch Density PD This number was calculated using
2020 land use data and reflects the density

of landscape patches

Ren et al. (2016), Peng et al. (2018),
Guo G. et al. (2020)

Based on the latest land-use data from the
research area, landscape pattern indices
were calculated using Fragstats software,
Land-use data from Globeland30 (http://
www.globallandcover.com/, accessed

3 March 2023)

Road density ROAD This data is obtained after kernel density
processing using 2020 road vector data,

pre-processed and corrected

Correa et al. (2012) The non-profit map service platform
Open Street Map (http://www.
openstreetmap.org/, ac-cessed

27 February 2023)

Population density POP This number is the algorithm synthesized
data for the year 2020, reflecting the
number of people in the unit space

Peng et al. (2018), Geng et al. (2023) Worldpop (https://www.worldpop.org/,
accessed 26 February 2023)

Night light LIGHT The data is synthesized by algorithm for the
year 2020, reflecting the value of nighttime
lighting in the unit space

Peng et al. (2018) The Resource and Environmental Science
and Data Center of the Institute of

Geographical Sciences and Resources,
Chinese Academy of Sciences (https://
www.resdc.cn/, accessed 25 February

2023)

NDVI NDVI This data is synthesized by the algorithm
for the year 2020 and reflects the amount of
vegetation cover per unit space

Yang et al. (2019) The national ecological data center
resource sharing service platform (http://
www.nesdc.org.cn/, February 26s, 2023)
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correlation coefficients between each factor and surface
temperature. Correlation analysis enables the identification of the
main factors influencing surface temperature in the Chengdu
metropolitan area and the assessment of the interrelationship
among potential influencing factors. The correlation coefficient
(R) can be expressed using the following formula:

R � ∑n
i�1 xi − �x( ) yi − �y( ))�����������∑n

i�1 xi − �x( )2
√ �����������∑n

i�1 yi − �y( )2√ (5)

In the formula, n represents the number of variables; xi represents
the independent variable (in this case, the potential influencing
factor); yi represents the dependent variable (in this case, the LST
value). The range of the correlation coefficient R is |R|≤1. When the
absolute value of R approaches 1, it indicates a stronger correlation
between the variables; otherwise, it indicates a weaker correlation.

3.2.5 Principal component analysis
Principal component analysis (PCA) is a statistical method used

for dimensionality reduction and data compression. Its main objective
is to transform the original variables into a set of uncorrelated principal
components to explain the variability in the data. In this study, PCA is
employed to identify the main components or factors that explain the
variations in surface temperature in the Chengdu metropolitan area.
By reducing the number of variables, PCA helps simplify the model
and better understand the underlying driving forces. Specifically, the
study conducts PCA using SPSS software to analyze the potential
influencing factors of surface temperature. The 16 potential influencing
factors are subjected to dimensionality reduction based on their
contribution rates, with values greater than 0.5 used as grouping
criteria to classify them into different categories. This process
eliminates the correlation among the factors and categorizes the

FIGURE 4
The framework for exploring the spatial and temporal distribution patterns of LST and the driving factors.

TABLE 2 Classification criteria for LST classes.

Temperature level Classification method

High-temperature zone Ts>μ+std

Second high-temperature zone μ+0.5std≤Ts≤μ+std

Mid-temperature zone μ-0.5std≤Ts≤μ+0.5std

Second low-temperature zone μ-std≤Ts≤μ-0.5std

Low-temperature zone Ts≤μ-std
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16 potential influencing factors into different groups of latent
influencing factors.The calculation proceeded as follows:

Assuming that the original variables have m samples, with each
sample having n observations, the matrix of the original variables is:

X �
x1n / x1m
..
.

1 ..
.

xm1 / xnm

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ (6)

In the formula, X represents the potential driving force, n
represents the number of potential driving force, and m
represents the number of samples.

After obtaining each principal component, the extraction of
principal components was performed according to Eq. 7:

αk � λk∑n
i�1λi

(7)

Where, αk is the variance contribution of the i-th principal
component, indicating the degree of explanation of each component
to the information of the original variables; λi is the characteristic
root of the correlation coefficient matrix.

Expressions for different categories of principal components:

F1 � a11x1 + a12x2 + . . . + a1nxn
F2 � a21x1 + a22x2 + . . . + a2nxn
F3 � a31x1 + a32x2 + . . . + a3nxn

⎧⎪⎨⎪⎩ (8)

Where, F1, F2 . . . Fn are the 1st principal component, 2nd
principal component . . . nth principal component; a11, a21 . . .

anm are the principal component coefficients.

3.2.6 Multiple linear regression
Multiple regression analysis is a statistical method used to

establish the relationship between a dependent variable and
multiple independent variables. In order to further investigate
whether different categories of potential influencing factors have
an impact on surface temperature, this study employs multiple
linear regression to determine the effects of different categories of
potential influencing factors on surface temperature. It identifies the
important role played by each category of factors in the seasonal
variation of surface temperature and their relative weights. This
helps determine how surface temperature is influenced by different
categories of potential influencing factors, and allows for targeted
solutions to be proposed.

Assuming that there are independent variables x1, x2, x3 . . . xn
and y is the dependent variable, then:

y � b0 + b1x1 + b2x2 + . . . bnxn (9)
And in this study y denotes the LST magnitude and x1, x2, x3...xn

denotes the potential impact factor.
The multiple regression coefficients obtained from the multiple

linear regression model need to undergo collinearity diagnosis to
determine the severity of collinearity in the multiple linear
regression model. The commonly used VIF values are used for
this purpose. The calculation formula is as follows:

VIF � 1
1 − R2

i

(10)

R2 is the coefficient of determination in linear regression, which
reflects the percentage of variation in the dependent variable
explained by the regression equation. It can be obtained by
squaring the multiple correlation coefficient between the
dependent variable and the independent variables. If all VIF values
are less than 10, it indicates that there is no multicollinearity problem
in the model and the model construction is good.

In summary, this study identified 12 potential factors that affect the
spatial distribution pattern of the urban heat island in the Chengdu
metropolitan area. Through correlation analysis, principal component
analysis (PCA), and multiple regression analysis, a seasonal
mathematical model was established to explain the influences on
surface temperature in the Chengdu metropolitan area. Specifically,
correlation analysis was used to determine the relationships between
factors, PCA was employed to reduce dimensionality and identify the
main components, and multiple regression analysis was utilized to
establish a mathematical model explaining the relationship between
the dependent and independent variables. Therefore, these three
research methods differ in analyzing the influencing factors of the
urban heat island’s spatial distribution pattern in the Chengdu
metropolitan area, and they complement each other. The
comprehensive use of these methods provides a comprehensive
understanding and modeling of the influencing factors of seasonal
variations in surface temperature in the Chengdu metropolitan area.

4 Results

4.1 Temporal-spatial characteristics of LST in
Chengdu metropolitan area

Figure 5 presents the annual LST patterns of Chengdu
metropolitan area, which were extracted from MOD11A2 data

TABLE 3 Calculation formulae for landscape indices and their ecological significance.

Indicators Meaning of indicators Calculation formula

ED The density of landscape patches within the spatial unit was measured (m/hm2). E is the total length of the boundary of all patches
in the landscape and A is the total area

ED � E
A10

6

LPI The proportion of the largest patches within the spatial unit was measured. aij is the area of patch ij and A is the total area LPI � max(aij )
A *100

SHDI Measurement of landscape diversity within a spatial unit. Pk is the ratio of the total area of category k to the window area
SHDI � −∑n

k�1
Pk ln(Pk)

PD The degree of patch fragmentation was measured, with a larger patch density index indicating a higher degree of landscape
fragmentation in that landscape unit. ni is the number of i patches in the landscape and A is the total landscape area

PD � ni
A
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and categorized into three phases: summer, transition season, and
winter. During summer, the monthly mean LST was 35.3°C, with a
maximum value of 46.5°C, a minimum of 19.4°C, and a standard
deviation of 3.66. In the transition season, the monthly average LST
reached 37.1°C, with a maximum value of 47.5°C, a minimum of

10.4°C, and a standard deviation of 5.09. As for winter, the monthly
average LST was 9.3°C, with a maximum value of 17.4°C, a minimum
of −8.1°C, and a standard deviation of 3.54.

In order to obtain different characteristics of temporal and
spatial changes of the UHI in the Chengdu metropolitan area,

FIGURE 5
Spatial pattern of LST in Chengdu metropolitan area in different
seasons: (A) summer (B) transition season (C) winter.

FIGURE 6
Spatial distribution of heat islands in Chengdu metropolitan area
in different seasons: (A) summer (B) transition season (C) winter.
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the study used themean−standard deviationmethod to reclassify the
LST into five zones: “high temperature zone, medium-high
temperature zone, medium temperature zone, medium-low
temperature zone, and low temperature zone” (Figure 6), in
order to investigate the changes in area and space of the LST in
different seasons.

Based on the level values of LST in Chengdu metropolitan
area after division, the area values of different temperature zones
in Chengdu metropolitan area during the transition season,
summer, and winter could be obtained. Based on the
classification criteria in Table 3, as shown in Table 4: it could
be found that the high-temperature zone and the second high-
temperature zone of the Chengdu metropolitan area in summer
have an area of 3328.25 km2 and 7778.57 km2 respectively,
accounting for 10.06% and 23.50% of the total area of the
Chengdu metropolitan area. Compared with the transition
season, the area of high-temperature zones in summer is
significantly higher, while compared with winter, the total area
of high-temperature zones and the second high-temperature
zones is significantly higher than in winter. From a seasonal
perspective, the temperature in the Chengdu metropolitan area is
generally high throughout the year, with relatively large areas of
high-temperature zones and the second high-temperature zones
in summer. In the transition season, the second high-temperature
zone reaches its peak, accounting for the highest proportion
(31.18%) among the three seasons; in winter, the high-
temperature zone reaches its peak, accounting for the highest
proportion (12.98%) among the three seasons (Figure 7).

In order to explore the spatial characteristics of surface
temperature variations in the Chengdu metropolitan area, a
standard deviation ellipse analysis was conducted. The analysis
results (see Figure 8) show significant differences in the length of
the major and minor axes of the ellipses for the three seasons. It
can be observed that the temperature variations in the Chengdu
metropolitan area exhibit a strong directional pattern in
different seasons. From the figure, it can be seen that the
temperature variations in the Chengdu metropolitan area
follow a northeast-southwest direction. In the summer
season, the length of the minor axis of the ellipse is
significantly smaller than that in the transitional and winter
seasons. The transitional season also shows a relatively smaller
value compared to the winter season. Therefore, it can be
inferred that the temperature variations in the summer
season exhibit the most significant clustering characteristics,
followed by the transitional and winter seasons. From winter to
transition season, the heat island center moved southeastward
by 49.3 km at a deviation angle of 7.5. From transition season to
summer, the heat island center shifted northwest by 22.4 km
with a deviation angle of 6.3°. Overall, the LST in Chengdu
metropolitan area changed significantly with the seasons. In
summer, the high-temperature zone was concentrated in the
central area. In the transition season, the dispersion of the high-
temperature zone caused the center of the heat island to move
towards the plain area. In winter, most areas were normal, with
low-temperature zones and second low temperature zones
located in the northern mountainous areas, causing the
center of the heat island to move towards the northern
mountainous areas.

4.2 Potential drivers of LST in the Chengdu
metropolitan area

To identify the factors influencing LST, the study considered various
potential drivers, including POP, LIGHT, DEM, SLOPE, HUM,WIND,
ROAD, ED, LPI, PD, SHDI, and NDVI. These factors were analyzed
using SPSS and ArcGIS 10.8 to determine their correlation with LST in
different seasons. The Spearman correlation analysis method was
employed to calculate correlation coefficients between the potential
factors and LST (Figure 9), and the results passed the significance
test. Specifically, LPI, NDVI, DEM, and SLOPE were negatively
correlated with LST in different seasons, indicating that they can
significantly reduce LST. On the other hand, ED, PD, SHDI, WIND,
HUM, ROAD, POP, and LIGHT were positively correlated with LST in
different seasons, indicating that they can significantly increase LST.
Meanwhile, the degree of influence on LST varies in different seasons,
with slight differences observed in different seasons.

In order to further explore the differences in the driving factors
of land surface temperature in different seasons, this study used
principal component analysis to further investigate them. Based on
the findings presented in Tables 5, 6, principal component analysis
(PCA) was employed to reduce the dimensionality of the twelve
potential factors. The PCA results revealed that the first three
principal components possessed eigenvalues greater than 1,
suggesting that they accurately captured the variations in LST.
Based on the component matrix after four iterations of rotation,
we identified the three main factors affecting LST changes in
Chengdu metropolitan area: landscape pattern, natural
geography, and human influence factors.

4.3 Seasonal relationship between LST and
potential drivers in Chengdu metropolitan
area

The study further explored the potential factors affecting LST
in Chengdu metropolitan area by using the three principal
components identified through principal component analysis,
and established regression equations based on seasonal LST.
From Tables 6, 7, it can be observed that the linear regression
coefficients (R2) between the independent variables and dependent
variables have different values in different seasons. When
analyzing the temperature data for summer, the R2 is 0.621,
indicating that the regression equation can explain 62.1% of the
sample data. When analyzing the temperature data for the
transitional season, the R2 is 0.746, indicating that the
regression equation can explain 74.6% of the sample data.
When analyzing the temperature data for winter, the R2 is
0.497, indicating that the regression equation can explain 49.7%
of the sample data. Furthermore, in the collinearity analysis, the
VIF (variance inflation factor) and TLR (tolerance limit ratio)
values of Principal Component 1 are 9.7408 and 0.1027,
respectively. For Principal Component 2, the VIF and TLR
values are 3.6464 and 0.2742, respectively. For Principal
Component 3, the VIF and TLR values are 7.2896 and 0.1372,
respectively. It can be seen that the VIF and TLR values of Principal
Component 2 (natural geography) are relatively good, indicating
that the regression equation does not have a serious collinearity
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problem. However, the VIF and TLR values of Principal
Component 1 (landscape pattern) and Principal Component 3
(socio-economics) are relatively poor. Based on the VIF and
Tolerance values, it can be concluded that the regression
equation does not have a serious collinearity problem.

Specifically, from Table 8, it can be seen that ED, PD, SHDI,
NDVI, DEM, and SLOPE are negatively correlated with land surface
temperature, while WIND, HUM, ROAD, POP, and LIGHT are
positively correlated with land surface temperature. Overall, natural
geographical factors such asWIND, HUM, DEM, and SLOPE have a
greater impact on land surface temperature, followed by social and
economic factors such as POP, LIGHT, NDVI, and ROAD.
Landscape pattern factors such as ED, LPI, PD, and SHDI have
the weakest impact on land surface temperature. In terms of
seasonality, POP (0.125) and LIGHT (0.16) reach their maximum
values in summer, while DEM (−0.857), SLOPE (−0.739), NDVI
(−0.203), HUM (0.747), WIND (0.453), and ROAD (0.298) reach
their maximum values in the transition season. ED (−0.08), LPI
(0.089), PD (−0.076), and SHDI (−0.08) reach their maximum
values in winter.

5 Discussion

5.1 Temporal-spatial characteristics of
seasonal LST in Chengdu metropolitan area

The study area is situated in a basin typical of its kind, bounded
by the Chengdu Plain to the east, the Minshan Mountains to the

north, and the Emei Mountains to the southwest. Results from the
analysis of LST reveal conspicuous spatial disparities in the UHI
effect across the Chengdu metropolitan area. Specifically, areas with
relatively low temperatures have formed in proximity to the
Minshan Mountains and the Emei Mountains, situated in the
north and southwest regions of the study area, respectively, while
regions with high temperatures have emerged in the central plain.
Collectively, these observations indicate that the thermal
environment of the Chengdu metropolitan area exhibits a
distinctive feature characterized by high temperatures in the
southeast and low temperatures in the northwest.

By considering the spatiotemporal characteristics, it is
observed that during summer, the regions with high and second
high temperatures are predominantly located in the Chengdu,
Deyang, Meishan, and Ziyang areas, with few other cities and
counties also exhibiting localized hotspots. Meanwhile, the areas
with low and second low temperatures are distributed mainly in
the northern mountainous regions of Dujiangyan and the
southwestern areas of the study region. In the transitional
season, high and second high temperature regions exhibit more
dispersed patterns with reduced regional coherence, whereas, low
and second low temperature areas have a more concentrated
distribution in the northwestern and southwestern sectors of
the Chengdu metropolitan area. In winter, the high-temperature
zone and the second high-temperature zone are mainly distributed
in the northeast of the Chengdu metropolitan area, and are divided
by the Longquan Mountains in a northeast-southwest direction.
The low-temperature zone and the second low-temperature zone
are distributed in the mountains in the northwest of the Chengdu

FIGURE 7
Seasonal urban heat island area in Chengdu metropolitan area.
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metropolitan area and the LongquanMountains in the southeast of
Chengdu city. These results are consistent with previous research
(Zhou et al., 2014).

Considering the distribution of cities, high-temperature
areas are mainly concentrated in cities such as Chengdu,
Deyang, Ziyang, Guanghan, and Meishan. These cities are
located in the plain area, with dense population, developed
economy, high level of urban construction, and compact
distribution of buildings, which cause the LST to rise (Zhao
et al., 2018; Hu et al., 2022b; Ren et al., 2022). And the study area
is located inside the Sichuan Basin, surrounded by high-altitude
mountains, which cannot disperse the heat airflow, resulting in
the accumulation of heat island in the basin area between the
mountains. This exacerbates the urban heat island effect (Wang
Z. et al., 2022). Concentrated regions of low temperature are
found primarily in the mountainous zones located in the
northwestern and southwestern sectors. These areas are
characterized by high-altitude mountainous terrain with
abundant water systems and lush vegetation. Water systems
and vegetation cover density can significantly contribute to
mitigating the UHI effect. Water systems can directly cool the
surface, while vegetation can reduce LST through transpiration
(Jin, 2012; Hu et al., 2022c).

5.2 Exploring the driving relationship of
seasonal LST in Chengdu metropolitan area

Based on the principal component analysis and judgment of the
content of potential influencing factors, the factors affecting surface
temperature in the Chengdu metropolitan area are categorized into
three groups: landscape pattern factors, natural geographic factors,
and socioeconomic factors. Current research indicates that
socioeconomic factors play a dominant role in the urban heat
island effect in plain areas (Zhou et al., 2016; Sun et al., 2019).
However, through the correlation coefficient analysis of multiple
linear regression, it is revealed that natural geographic factors have a
significant advantage in the formation process of the urban heat
island in the Chengdu metropolitan area. It is worth noting that the
current research findings may not be quantitatively refutable due to
differences in study design, data sources, and methods, which lead to
certain limitations. On the one hand, the selection of influencing
factors has a significant impact on research results. In this study,
typical driving factors were selected as independent variables in the
regression analysis, covering different aspects of variables as much as
possible. However, it is still challenging to fully consider all possible
factors. On the other hand, spatial and temporal scales also influence
research outcomes. The urban heat island effect exhibits different

FIGURE 8
Direction of heat island development in Chengdu metropolitan area.
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patterns at different spatial scales (such as within cities and
surrounding areas) and temporal scales (such as different seasons
and time periods).

The research findings of this study may be related to the
geographical environment of the study area, in which the
Chengdu plain in the Sichuan Basin is surrounded by large
mountains to the north and west. As a result, hot air is inhibited
from rising, leading to sinking and resulting in warmer temperatures
in the plain area. Moreover, in areas with higher elevations in the
study area, a large number of vegetation trees are planted, and the
increase in vegetation can effectively reduce the LST (Wang and
Akbari, 2016). Among the landscape pattern factors, ED, PD, and
SHDI are negatively correlated with LST, while only LPI has a

positive correlation with LST, which indicates that most landscape
pattern factors can reduce LST. Wind speed and humidity have a
positive correlation with LST, indicating that wind speed and
humidity can increase LST (Zhou et al., 2016). The location of
the Chengdu metropolitan area, situated within a basin
characterized by low wind speed and high humidity, is a
determining factor. Corroborating the positive correlation
between wind speed and LST, higher LST values are observed
when wind speed is low. In the plain areas within the basin, the
prevailing winds often come from inland regions. According to
previous research (Al-Obaidi et al., 2021), when the winds originate
from inland areas, they tend to generate a strong urban heat island
effect. The presence of water in the atmosphere is known to exert a

FIGURE 9
The Spearman’s rank correlation coefficient was utilized to analyze the influence of various potential factors on LST across diverse seasons.

TABLE 4 Size of heat island area in Chengdu metropolitan area in different seasons.

Season Low-temperature
area

Medium-low
temperature zone

Medium
temperature zone

Medium-high
temperature zone

High temperature
zone

Summer Area
(km2)

2228.07 1649.42 24,048.09 2611.91 2555.81

Ratio
(%)

6.73% 4.98% 72.67% 7.89% 7.72%

Transition Area
(km2)

3413.73 2195.63 20,845.96 3909.79 2728.19

Ratio
(%)

10.32% 6.63% 62.99% 11.81% 8.24%

Winter Area
(km2)

1560.97 3911.65 24,901.44 0.00 2719.25

Ratio
(%)

4.72% 11.82% 75.25% 0.00% 8.22%
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warming effect during periods of falling temperatures and a cooling
effect during periods of rising temperatures, which are referred to as
the “constant temperature effect,” ultimately leading to the
maintenance of the surrounding temperature. However, the
perpetual low wind speed in the Chengdu area impedes the
cooling effect, thereby causing the land surface temperature
(LST) to remain persistently high (Zong et al., 2019; Wu et al.,
2021). Furthermore, the positive correlation identified between
human-influenced factors and LST indicates that anthropogenic

activities have a notable enhancing impact on the urban heat island
phenomenon. Human construction activities will significantly affect
the changes in urban climate (Ren et al., 2022), and the continuous
expansion of cities and human energy consumption will generate a
large amount of heat, resulting in an increase in LST.

In addition to the overall impact of indicators related to human
activities leading to an increase in surface temperature, our further
research has revealed that human activities are influenced by
seasonal variations, showing varying degrees of impact on

TABLE 5 Total variance explained by principal components of potential influences.

Component Initial eigenvalues Extracted square sum of loads

Total Percentage of variance % Cumulative% Total Percentage of variance % Cumulative%

1 3.870 32.246 32.246 3.870 32.246 32.246

2 2.832 23.597 55.843 2.832 23.597 55.843

3 2.001 16.678 72.521 2.001 16.678 72.521

4 0.908 7.567 80.088

5 0.804 6.699 86.787

6 0.539 4.491 91.278

7 0.427 3.559 94.837

8 0.274 2.280 97.117

9 0.141 1.175 98.292

10 0.114 0.948 99.239

11 0.061 0.511 99.750

12 0.030 0.250 100.000

The higher the coefficients of the principal components, the more original variables are included in the components. Dimensionality reduction through filtering of principal component

coefficients enables the examination of principal component composition under varying circumstances. The first major component reflected the influence of landscape pattern index on LST,

including ED, LPI, PD, and SHDI., The second major component reflected the influence of natural geographical factors on LST, including WIND, HUM, DEM, and SLOPE., The third major

component reflected the influence of human factors on LST, including ROAD, NDVI, POP, and LIGHT. NDVI, was easily influenced by human activities and could be reasonably explained as

belonging to human factors along with POP, LIGHT, and ROAD (Liu et al., 2021b).

TABLE 6 Contribution of potential driving force affecting the magnitude of LST in Chengdu metropolitan area.

Potential driving force Principal component 1 Principal component 2 Principal component 3

ED 0.975 −0.057 −0.021

LPI −0.968 0.041 −0.016

PD 0.958 −0.059 −0.023

SHDI 0.986 −0.057 0.008

WIND 0.080 −0.522 −0.037

HUM 0.050 −0.841 −0.016

ROAD −0.011 −0.149 0.846

NDVI −0.004 0.094 −0.618

POP −0.022 0.017 0.709

LIGHT 0.015 0.008 0.867

DEM −0.065 0.935 −0.124

SLOPE 0.048 0.768 −0.222
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surface temperature. The effects of potential influencing factors on
surface temperature also vary across different seasons. Specifically,
during the summer season, social-economic factors such as
population (POP) and nighttime light (LIGHT) exert a strong
influence on surface temperature, which is more significant than
during the transitional and winter seasons. On the other hand,
road density (ROAD) shows a lower impact during the transitional
season compared to the winter season. Additionally, there is a
positive correlation between road density, nighttime light,
population, and surface temperature, indicating that human
activities have a more pronounced effect on surface temperature
during the summer, leading to an increase in surface temperature.
In the transitional season, natural geographical factors (WIND,
HUM, DEM, SLOPE) have a greater impact on surface
temperature compared to the summer and winter seasons,

suggesting that natural geographical factors have a more
significant influence on surface temperature during the
transitional season. Moreover, the normalized difference
vegetation index (NDVI) exhibits a more pronounced impact
on surface temperature during the transitional season.

At the same time, besides human activities and natural factors,
this study also considers other potential factors that may influence
surface temperature, including landscape pattern indices. On one
hand, changes in surface temperature can be influenced by the
combined effects of multiple potential driving factors. On the other
hand, the study of the aforementioned factors reveals that
landscape pattern factors have a greater impact on surface
temperature during the winter season compared to the
transitional and summer seasons, indicating that landscape
pattern factors have a more pronounced effect on surface
temperature during the winter season. In summary, different
categories of potential influencing factors have significant
differences in their effects on surface temperature. Social-
economic factors have the most significant impact during the
summer season, natural geographical factors have the most
significant impact during the transitional season, and landscape
pattern factors have the most significant impact during the winter
season.

5.3 Seasonal guidance strategies to mitigate
urban heat island phenomenon in Chengdu
metropolitan area

By examining the determinants of UHI, it becomes evident that
both human activities and natural geographical characteristics
exhibit seasonally-specific influences on UHI intensity in built
environments. In light of these findings, several potential
strategies may be recommended to mitigate the adverse
consequences of UHI phenomena: 1) During the summer season,
a key focus is placed on the significant impact of socio-economic
factors, particularly in the urban development process. Adjusting
urban land-use patterns is emphasized to alleviate population

TABLE 7 Results of regression analysis of potential driving force.

Unstandardized
coefficients

Standardization
coefficients

t Significance Relevance Collinearity statistics

B Standard
error

Beta Tolerances VIF

Principal
component 1

Summer −0.0032 0.0006 −0.0717 −5.2733 0.0000 0.1669 0.1027 9.7408

Transition −0.0068 0.0007 −0.1096 −9.8496 0.0000 0.2758 0.1027 9.7408

Winter −0.1245 0.0007 −0.1096 −9.8496 0.0000 0.2758 0.1027 9.7408

Principal
component 2

Summer −0.0051 0.0001 −0.7782 −93.5535 0.0000 −0.7468 0.2742 3.6464

Transition −0.0083 0.0001 −0.8987 −131.9637 0.0000 −0.8456 0.2742 3.6464

Winter −0.7510 0.0001 −0.8987 −131.9637 0.0000 −0.8456 0.2742 3.6464

Principal
component 3

Summer 0.0003 0.0000 0.1922 16.3434 0.0000 0.2674 0.1372 7.2896

Transition 0.0002 0.0000 0.0832 8.6406 0.0000 0.1913 0.1372 7.2896

Winter 0.0410 0.0000 0.0832 8.6406 0.0000 0.1913 0.1372 7.2896

TABLE 8 Regression coefficients of potential influencing factors.

Potential
driving
force

Principal
component 1

Principal
component 2

Principal
component 3

ED 0.975 −0.057 −0.021

LPI −0.968 0.041 −0.016

PD 0.958 −0.059 −0.023

SHDI 0.986 −0.057 0.008

WIND 0.080 −0.522 −0.037

HUM 0.050 −0.841 −0.016

ROAD −0.011 −0.149 0.846

NDVI −0.004 0.094 −0.618

POP −0.022 0.017 0.709

LIGHT 0.015 0.008 0.867

DEM −0.065 0.935 −0.124

SLOPE 0.048 0.768 −0.222
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concentration. This entails optimizing and enhancing Chengdu’s
role as the central urban area, leading to the development of
surrounding small towns. It also involves extending the reach of
public service facilities to the periphery, and rational control of
development intensity and population density within the
metropolitan area. These measures aim to mitigate the rise in
surface temperature caused by population agglomeration.
Furthermore, aligning with the direction of urban wind corridors,
adjustments are made to the arrangement of buildings and road
networks. This aims to prevent blockages in the urban wind
corridors due to issues with urban road and building layouts.
The goal is to ensure the ventilation pathways in the city are
unobstructed, effectively mitigating the urban heat island effect
during the summer season (Gedzelman et al., 2003; Ngarambe
et al., 2021). 2) During the transitional season, a focus is placed
on the critical influence of natural geographical factors. This
involves establishing an urban ecological engineering network
and an urban park green space system to enhance the city’s
green environment. The primary framework of this ecological
network is centered around the Chengdu Tianfu Greenway,
creating an ecological network system. Additionally, the Chengdu
Urban Ecological Zone is developed, accompanied by the
optimization of the city’s landscape spatial structure. This
optimization aims to interconnect the city’s lake water systems
and vegetation green spaces, thereby enhancing the overall
continuity of the urban landscape. Emphasis is placed on the
ecological protection and restoration of rivers, lakes, and water
systems, as well as mountainous vegetation within the
metropolitan area. This effort extends to promoting ecological
conservation and restoration in river basins like the Min River
Basin, as well as strengthening ecological development in regions
such as the Min Mountains and Qionglai Mountains. Through these
initiatives, adjustments are made to the internal ecological and
climatic features of the metropolitan area, aiming to optimize the
Humidity (HUM) and Wind (WIND) patterns within the
metropolitan area. This strategy contributes to alleviating the rise
in urban surface temperature (Das et al., 2020; Hu et al., 2022a; Ren
et al., 2022). 3) During the winter season, a key emphasis should be
placed on the influence of landscape pattern factors. On one hand, it
involves establishing comprehensive landscape elements to ensure
the integrity of the urban ecological spaces. This includes advancing
the ecological protection and restoration of Longquan Mountain,
located at the central position of the metropolitan area, and
increasing the edge density of landscapes within the urban spatial
scope. This is to prevent human-induced disruptions to urban
landscape spaces. Simultaneously, attention should be given to
the arrangement of various types of landscape elements,
enhancing the preservation of ecological diversity within the
metropolitan area, diversifying landscape patches, and increasing
the Spatial Heterogeneity Diversity Index (SHDI) value. These
efforts aim to alleviate urban surface temperatures (Yu et al.,
2019; Han et al., 2022). On the other hand, it involves
constructing a network of urban ecological corridors, with
mountain formations like Longquan Mountain, Longmen
Mountain, and Qionglai Mountain serving as ecological barriers,
and river systems such as the Minjiang River and Tuojiang River
serving as green ecological corridors. This aims to establish an
interconnected ecological system pattern. Through ecosystem

restoration and optimization of various branch nodes, the goal is
to link landscape nodes into a network, integrate fragmented
landscape spaces, and form extensive ecological landscape
patches. This approach also aims to reduce the Maximum Patch
Area Index of landscapes within the urban spatial scope.
Furthermore, it involves proposing corresponding network
structure optimization strategies based on evaluating the potential
ecological benefits of nodes and corridors within the network
structure (Hu et al., 2022a; 2022c).

It is worth noting that the diverse guiding strategies mentioned
above are based on an analysis of seasonal driving relationships.
They inherently allow for the simultaneous implementation of
various measures. However, emphasizing phased measures can
accurately and effectively reduce urban surface temperatures, thus
establishing a scientific and feasible theoretical basis for the
formulation of relevant phased policies.

5.4 The limitations of the study

The limitations of this study are as follows: Firstly, the division of
seasons in this study was based onmonthly average temperature and
precipitation, which may not accurately reflect the seasonal
variations. Using alternative data sources for season delineation
could improve the accuracy of seasonal changes. Secondly, the study
employed multiple linear regression analysis to identify the impact
of different factors on surface temperature, but incorporating other
methods such as geographic detectors, random forests, and
geographically weighted regression models could enhance the
model construction and analysis process. Additionally, the study
only collected data on 12 influencing factors on surface temperature.
Collecting data on additional factors such as floor area ratio,
building density, building height, haze pollution, and coastal
wind circulation would contribute to a more comprehensive and
scientifically grounded study. Lastly, the research primarily focused
on the seasonal and spatial variations of surface temperature in the
study area in 2020 due to the feasibility of obtaining corresponding
data on influencing factors for that specific year. However, for
studying the cross-year seasonal and spatial variations of surface
temperature, acquiring data on influencing factors for different years
poses challenges. Therefore, future research should explore the
characteristics of cross-year variations in surface temperature and
differences in driving factors, taking into consideration the
feasibility of data acquisition.

6 Conclusion

Since the Industrial Revolution, human society has
undergone rapid development, and the rate of urbanization
has also increased significantly. However, as a result, there has
been a significant increase in global LST. This rise in temperature
has already had a huge impact on human production and life.
Therefore, how to mitigate the increase in LST has become an
important topic that urgently needs to be explored across various
disciplines. The investigation of the Chengdu metropolitan area
revealed a distinct spatial pattern of LST, characterized by a
concentration of high temperatures in the central regions and
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lower temperatures in the western regions. Both natural
geographical factors and human activities factors play a
greater role in the size of LST. Among these variables, DEM
and SLOPE exhibit an inverse relationship with LST, whereas
WIND and HUM demonstrate a positive association with LST. In
terms of human activities factors, POP, LIGHT, and ROAD are
positively correlated with LST, while the impact of landscape
pattern factors on LST is relatively small. Simultaneously, the
influence of potential driving force on LST shows marked
seasonal variation. In summer, the impact of POP, ROAD,
and LIGHT on LST is significantly higher than in other
seasons, while in the transitional season, the impact of WIND,
HUM, DEM, SLOPE, and NDVI on LST is significantly higher
than in other seasons. In winter, the impact of landscape pattern
factors on LST is relatively large. Therefore, seasonal guidance
strategies need to be adopted to effectively alleviate the rise in
urban LST, including the rational use of terrain and topography,
the increase of green vegetation within the city, and the
regulation of human activities. It is hoped that this study can
provide valuable reference and guidance for the future urban
planning, design, and operational management of the research
area, and lay a research basis for guiding other regions to develop
phased measures to alleviate UHI.
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The quantitative effects of climate
change and human activity on the
vegetation growth in the Yangtze
River Basin
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Vegetation has changed dramatically in recent years as a result of various
disturbances, but the factors influencing vegetation growth vary
geographically. We looked into the impact of climate change and human
activity on vegetation growth in the Yangtze River Basin (YRB). We
characterized vegetation growth in the YRB using gross primary production
(GPP) and the leaf area index (LAI), analyzed the relationship between
vegetation growth and climate change using the standardized precipitation
evapotranspiration index (SPEI), and quantified the relative contribution rate of
climate change and human activity to vegetation growth in the YRB by using
residual trend method. The findings revealed that: 1) From 2000 to 2018, the YRB
showed an increasing trend of temperature (0.03°C yr−1) and precipitation
(4.02 mm yr−1) and that the entire area was gradually becoming warmer and
wetter; 2) Vegetation growth in the YRB showed a significant increasing trend
(GPP: 7.83 g Cm−2 yr−2, LAI: 0.02 years-1). Among them, 87.40% of the YRB showed
an increasing trend, primarily in the northern, eastern, and southern parts, while
decreasing areas were primarily found in the Yangtze River Delta (YRD) and the
YRB’s west region. 3) Vegetation had a significant positive correlation with SPEI in
most areas of the YRB, and it wasmore sensitive to SPEI over a long time scale. The
effects of climate change and human activity on vegetation growth in the YRB
were spatially heterogeneous, and climate change was the primary driving factors
of vegetation change in the YRB (accounting for 61.28%). A large number of grass
were converted into forest, crop and urban. Overall, climate change and human
activity promoted the growth of vegetation in the middle and upper reaches of
YRB (MUYRB) while inhibited the growth of vegetation in the YRD. The findings of
this studywill contribute to a better understanding of the effects of climate change
and human activity on vegetation growth in the YRB, as well as provide a scientific
foundation for future ecological restoration in humid and semi-humid areas.

KEYWORDS

climate change, human activity, gross primary production, leaf area index, remote
sensing, Yangtze River Basin
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1 Introduction

Research focusing on long-term changes in large-scale terrestrial
vegetation has demonstrated that vegetation serves as an accurate
indicator of the impacts caused by various disturbance factors on
regional terrestrial ecosystems. Moreover, it plays a crucial role as an
ecological indicator in response to global changes (Forkel et al.,
2016). In large-scale terrestrial ecological research, the intricate
dynamics of vegetation development are significantly influenced
by a combination of climate and human factors (Suzuki et al., 2007;
Metcalfe et al., 2010). With the deepening of global change research,
it is becoming more and more important to accurately quantify the
effects of climate change and human activity on vegetation growth
(Liu et al., 2015; Piao et al., 2020).

The impacts of climate change on terrestrial ecosystems are
expected to alter the temperature, light availability, and water
conditions necessary for vegetation growth. Consequently, these
changes will have implications for the stability of terrestrial
ecosystems, particularly manifested through variations in
vegetation leaf area and productivity (Piao et al., 2020). Many
studies have shown that vegetation growth under different
temperature and humidity conditions has different sensitivity to
meteorological conditions (Jiao et al., 2019; Rahmani and Fattahi,
2021). In the middle and high latitudes of the northern hemisphere,
increasing temperatures have been found to promote vegetation
growth (Mao et al., 2012). In arid regions, vegetation has a
significant correlation with precipitation (Li et al., 2015), while in
most other areas, it has a high correlation with temperature (Piao
et al., 2015). In humid regions, vegetation growth is highly
responsive to temperature fluctuations (Ma et al., 2019). Changes
in temperature can influence various physiological processes within
plants, such as photosynthesis and transpiration, ultimately affecting
the overall productivity and health of vegetation in humid
environments (Mathur et al., 2014). The responsiveness of
vegetation to temperature fluctuations highlights the intricate
relationship between climate conditions and the dynamic nature
of plant ecosystems in humid regions. It should be noted that the
growth of vegetation is also affected by a variety of meteorological
factors, including light, humidity, etc., so multiple factors need to be
considered comprehensively in research and monitoring. It is worth
noting human activity is an important contributor to both climate
change and the growth of vegetation (Li et al., 2022). China and
India are crucial to the greening of the world’s terrestrial vegetation,
which is greatly impacted by human activity through afforestation
projects and increased agricultural efficiency (Chen et al., 2019).
Urbanization brought by human activity will lead to a sizable
portion of crop and grass being taken up by urban land, and
vegetation coverage will decrease significantly (Jin et al., 2018).
With the implementation of the carbon neutral strategy, regional
vegetation growth will benefit from initiatives like converting crop
back to grass and forest (Zhao et al., 2018). Therefore, regional and
even global vegetation growth processes will be strongly affected by
human activity and climate change (Liu et al., 2015).

Many studies have quantified the effects of climate change and
human activity on vegetation at a regional scale. It is found that the
warm and wet climate in North China has a significant positive
correlation with regional greening, in which climate change has a
more significant impact on vegetation cover than human activity

(Cao et al., 2021). The trend of warm and humid climate was
favorable to grass growth, in which the relatively dry and
warm climate had a more significant effect on vegetation growth
(Han et al., 2018). However, Economic development and population
growth had hampered grass growth (Han et al., 2018). In the Loess
Plateau, long-term water availability is the dominant climate factor
influencing vegetation growth, with the long-term NDVI trend
being more sensitive to climate change compared to the short-
term trend (Shi et al., 2021). Moreover, in areas experiencing
vegetation degradation, human activity has a significantly greater
impact on vegetation compared to climate change (Shi et al., 2021).
However, studies mainly focus on arid and semi-arid areas, while
there are few analyses on humid and semi-humid areas, and most
studies only focus on the effects of precipitation and temperature on
vegetation growth, which may be insufficient.

The Yangtze River Basin (YRB) is the third largest basin in the
world and the main humid and semi-humid region in China. The
vegetation in the YRB is very important to maintain the regional
carbon and water balance (Qu et al., 2018). In addition, the YRB is
one of China’s representative regions with a thriving economy and
dense population (Yang et al., 2022). The YRB’s terrestrial ecosystem
has been severely hampered in recent years by environmental issues
brought on by population increase, climate change, and economic
growth (Zhang et al., 2020). It is crucial to understand the
characteristics of vegetation change in the YRB and to separate
and estimate the relative contributions of climate change and human
activity to vegetation growth in light of the dual impacts of climate
change and human activity.

This study used meteorological data, GPP, LAI, and SPEI to
examine the effects of climate change and human activity on
vegetation in the YRB from 2000 to 2018. To be more precise, it
mostly consists of three contents: 1) To determine the characteristics
of climate change in the YRB by analyzing changes in temperature,
precipitation, radiation and SPEI; 2) To determine the
characteristics of vegetation change in the YRB by analyzing the
state of vegetation growth and the transfer of land cover; and 3) To
distinguish between the effects of climate change and human activity
on vegetation growth by residual trend method and to quantify the
relative contributions.

2 Data and methods

2.1 Study area

The YRB covers an area of approximately 1.8 million square
kilometers. It is located between approximately 24°N and 37°N
latitude and 90°E and 122°E longitude. The YRB benefits from a
subtropical monsoon climate, characterized by a wet and hot season
that creates favorable conditions for vegetation growth (Qu et al.,
2018). As shown in Figure 1A, the YRB has a variety of land cover
types, with forest predominating in the basin’s southwest, southeast,
and north. The Sichuan Basin and the middle and lower reaches of
the YRB (MLYRB) are the primary regions where most crops are
cultivated. The central, western, and southern regions of the YRB,
along with the high-altitude regions of the Qinghai-Tibet Plateau,
are predominantly covered by grass. The Yangtze River Delta (YRD)
and the MLYRB contain the majority of China’s urban land. The
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YRB’s topography is uneven, and it has a stepped distribution as the
elevation gradually drops from west to east (Figure 1B). With its
elevated western regions and lower eastern areas, the Yangtze River
gracefully meanders from west to east, eventually emptying into the
Pacific Ocean.

2.2 Meteorological data

China Meteorological Forcing Dataset (CMFD) datasets
combine multiple sets of reanalysis data and site-level data, and
has undergone strict quality control and calibration, with high data
quality and accuracy (Yang et al., 2010; He et al., 2020). In order to
study the climatic change in the YRB, we picked the monthly
temperature, precipitation and downward shortwave radiation
data with a spatial resolution of 0.1°.

2.3 Vegetation data

GPP is usually used to characterize the photosynthetic capacity
of an ecosystem (Anav et al., 2015). LAI is an index to measure
vegetation density and coverage degree, which can reflect the
number and distribution of plant leaves, and is usually used to
represent the inter-annual dynamic changes of vegetation (Sun and
Qin, 2016). In order to study the change of vegetation in the YRB,
LAI dataset of GEOV2 and GPP dataset based on NIRv vegetation
index were used (Vickers et al., 2016; Wang et al., 2021). The spatial
resolutions of GEOV2_LAI and NIRv_GPP are 1 km and 0.05°,
respectively, and the temporal resolutions are 10 days and monthly,
respectively. We uniformly converted GPP and LAI data into 0.1°,
month-scale spatio-temporal resolution to match meteorological
data, and analyzed vegetation change in the YRB.

2.4 Drought index

SPEI is useful for identifying how variations in wet and dry
conditions affect vegetation (Vicente-Serrano et al., 2010). To study
the dry and wet fluctuations in the YRB, SPEI is typically utilized as
the drought index (Wang et al., 2020). The SPEI dataset (Global

SPEI database) we used has a spatiotemporal resolution of 0.5° and
monthly scales (Beguería et al., 2010; Beguería et al., 2014). When
examining how various vegetation types respond to drought, the
time scale of the drought index is crucial. SPEI at various time scales
is a representation of the cumulative water balance over time. SPEI
of 1–2 month-scales is often used to characterize agricultural
drought (Mishra and Desai, 2005), and SPEI of 3–6 month-scales
is often used to study soil water loss (Ji and Peters, 2003; Lotsch et al.,
2003; Hirschi et al., 2011). In order to assess the dry and wet changes
in the YRB, we employed SPEI with time scales of 1, 6, and
12 months, labeling them as SPEI01, SPEI06, and SPEI12,
respectively. We converted 0.5° SPEI data to 0.1° for dry and wet
analysis to match the spatial resolution of meteorological data.

2.5 Land cover data

The MCD12Q1 and MCD12C1 Version 6 dataset are derived
using a supervised classification of MODIS Terra and Aqua
reflectance, which are then subjected to additional post-
processing, incorporating prior knowledge and auxiliary
information to further refine a particular category. Therefore, we
usedMCD12Q1 data with a spatial resolution of 500 m from 2001 to
2018 to describe the land cover change of YRB. Additionally, we
employed MCD12C1 to quantify the impacts of climate change and
human activity on various vegetation types (Friedl and Sulla-
Menashe, 2015). Land cover was categorized using the
International Geosphere Biosphere Programme (IGBP) guidelines
(Friedl et al., 2010). Land cover was categorized into water, forest,
grass, crop, and urban by merging the primary vegetation types in
the YRB. SinceMCD12Q1 andMCD12C1 lack 2000 land cover data,
we used 2001 land cover data instead for land cover conversion
analysis.

2.6 Residual trend analysis and relative
contribution calculation

We separated and measured the effects of human activity and
climate change on vegetation using the residual trend method
(Evans and Geerken, 2004; Jiang et al., 2017). The residual trend

FIGURE 1
Regional overview of the YRB. (A)Land cover types in 2018 (water, forest, grass, crop, and urban). (B) Elevation.
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method was divided into three steps: 1) Combined with the idea of
binary linear regression, temperature and precipitation were
considered the independent variables, and vegetation was chosen
as the dependent variable, and linear regression parameters are
calculated by establishing regression models; 2) The estimated
vegetation (VBcc), which represented how the vegetation would
be affected by climate change, was derived based on the regression
model’s parameters; 3) In order to get vegetation residual (VBha),
which may be utilized to reflect the impact of human activity on
vegetation, the difference between remote sensing vegetation data
and VBcc was calculated. The specific calculation formula is as
follows:

VBcc � a × T + b × P + c × R + d (1)
VBha � VBrs − VBcc (2)

Estimated vegetation and remote sensing vegetation data were
denoted in the formula by the lettersVBcc andVBrs, respectively. T,
P and R stand for temperature, precipitation and radiation,
measured in °C, millimeters and Wm−2, respectively. VBha was
the residual, representing the effect of human activity on vegetation.
The use of residual has certain conditions of use, requiring the
goodness of fit R2 between the independent variable and the
dependent variable to be greater than 0.3 and the significance
p-value to be less than 0.05. Only regions that meet this
requirement can effectively separate human activity from climate
change for subsequent analysis.

Utilizing the residual trend approach, we distinguished between
the effects of climate change and human activity on vegetation, and
then, using the following formula in combination (Table 1), we
computed the relative contribution rates of climate change and
human activity on vegetation (Shi et al., 2021).

2.7 Land cover transfer matrix

The land cover transfer matrix shows the alterations and
directions of all types of land cover in the research region before
and after conversion, as well as the area where each type of land
cover will be converted (Wang and Bao, 1999). The expression is as
follows:

Sij �
S11 / S1n
..
.

1 ..
.

Sn1 / Snn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

The land cover types at the start and end of the study,
respectively, were represented by i and j in the formula; n
represented the overall number; Sij was the total area before and
after the transition of the study period.

3 Results

3.1 Climate change

With high temperatures in the east and low temperatures in the
west, as well as high temperatures in the south and low temperatures
in the north, the spatial distribution of air temperature in the YRB

displayed a spatial heterogeneity pattern (Figure 2A). As a whole, the
temperature increasing rate in the west was higher than that in the
east, and the rate of increase in the south was faster than in the north.
The fastest-growing and significant regions were located in the
middle and upper reaches of YRB (MUYRB) and YRD (Figures
2B, C). In the YRB, the yearly precipitation variation trend showed a
sizable geographical disparity. The YRB’s eastern, middle, and
southern regions experienced about 1,500 mm of precipitation,
compared to barely 500 mm in the western and the Yangtze
River Source region (YRS) (Figure 2D). The southern and
northern regions of China experienced a drop in annual
precipitation. The YRS exhibited the largest decreasing trend,
reaching −40 mm yr−1. Precipitation in the eastern coastal areas
showed an obvious increasing trend, and some areas showed inter-
annual variation of precipitation greater than 40 mm yr−1

(Figures 2E, F). Contrary to the distribution of precipitation and
temperature, the radiation distribution in the west is higher than
that in the east (Figure 2G). As shown in Figures 2H, I, the spatial
variation of radiation is high in the west and low in the east. On the
whole, the temperature in most areas of the YRB showed a
significant upward trend, the precipitation increased in the east
and decreased in the west, and the radiation variation was
relatively low.

The YRB’s average annual temperature from 2000 to 2018 was
12.41°C, and it increased at a significant rate of 0.03°C yr−1 (p < 0.05)
(Figure 3A). The YRB experienced strong summer and low winter
temperature variations, with the peak temperature reaching 22.28°C
in July (Figure 3D). The YRB’s average annual precipitation from
2000 to 2018 was 1,052.16 mm, with a 4.02 mm yr−1 overall increase,
however this trend was not statistically significant (p = 0.33)
(Figure 3B). The maximum precipitation (1,204.54 mm) occurred
in 2016, while the minimum precipitation (892.03 mm) occurred in
2011. Consistent with temperature, the monthly precipitation
showed obvious seasonal changes in Figure 3E, with little
precipitation in winter and more precipitation in summer, and
the peak value appeared in June (170.04 mm). In Figure 3C, the
inter-annual variation of radiation was low, showing a decreasing
trend of −1.08 kWh yr−1 (p = 0.40). On the monthly scale, the overall
change is similar to temperature and precipitation, but it is worth
mentioning that there is a decline of about 20 kWh in June
(Figure 3F). Therefore, climate change in the YRB was observed
to present a trend of warming and wetting.

Figure 4 shows that the SPEI in the northern and southwestern
parts of the YRB is less than 0, showing a slight drought. The SPEI in
the YRB displayed a more significant spatial variation trend as time
scale increased, and the SPEI in the majority of locations displayed
an increasing trend. By averaging SPEI of different time scales, it
could be found that 69.76% of the grid points were positive and
30.24% of the grid points were negative, indicating that the majority
of the YRB became wetter. The YRB’s central and eastern regions
had an increase in SPEI, indicating a tendency toward a progressive
wetness with an increase in precipitation. The SPEI displayed a
decreasing tendency in the western and northern regions of the YRB,
which was consistent with the local temperature’s upward and
downward trends. It was clear that the SPEI could accurately
capture the impact of temperature and precipitation together.

Overall, through the calculation of the SPEI in the YRB, we
observed a consistent and increasing trend in the inter-annual
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FIGURE 2
Temperature, precipitation and radiation distributions in the YRB from 2000 to 2018. (A,D,G) Annual mean value, respectively. (B,E,H) Annual trend,
respectively. (C,F,I) Significance p-value (p < 0.05), respectively.

FIGURE 3
Temperature and precipitation changes in the YRB from 2000 to 2018. (A,D) Temperature annual and monthly changes, respectively. (B,E)
Precipitation annual and monthly changes, respectively. (C,F) Radiation annual and monthly changes, respectively.
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variation of SPEI at the 1, 6, and 12 month-scales (0.01 years−1). This
trend indicates that the YRB has been experiencing a progressive
increase in moisture levels over time, as depicted in Figure 5. The
consistent pattern observed across the 1, 6, and 12 month-scales
implies a sustained influence of climate factors on the basin’s
hydrological conditions.

3.2 Vegetation and land cover change

As shown in Figure 6A, GPP value was higher in the eastern and
southern parts of the YRB, with an annual mean value of around
2,000 g C m−2 yr−1. However, only about 500 g C m-2 yr-1 of GPP was
produced on average annually in the YRD and the YRS. Figure 6B
demonstrated that the GPP in the middle of the YRB increased at a
rate of around 10 g C m−2 yr−2 while decreasing at a rate of about
10 g C m−2 yr−2 in the YRD and the MLYRB. The YRS remained
largely constant and shown a decreasing tendency in some parts,
while the MUYRB and northern regions of the YRB showed an
increasing trend. Figure 6C showed a similar regional distribution of
multi-year LAI mean values in the YRB as Figure 6A, indicating that

LAI values in the YRS and the YRD were low. In Figure 6D, LAI
decreasing regions were mostly found in the YRD and the MLYRB.
It is important to note that while LAI in the majority of the western
regions showed little change, LAI in the north, south, and southeast
of the YRB exhibited an increasing trend of more than 0.06 years−1.
In the western YRB, GPP showed a decreasing trend, while LAI did
not change significantly. Overall, from 2000 to 2018, the increasing
trend in GPP accounted for 83.78% and the increasing trend in LAI
accounted for 91.02%. Only 16.22% of the GPP and 8.98% of the LAI
showed a declining trend in the YRB. From 2000 to 2018, most
vegetation in the YRB showed continuous greening.

By calculating the total amount of vegetation in the YRB, we
could find the inter-annual variation trend of GPP in the YRB
increased significantly, reaching 7.83 g Cm−2 yr−2 (p < 0.01)
(Figure 7A). The annual average GPP increased by 115.92 g C
m−2 yr−1 from 804.20 g C m−2 yr−1 in 2000 to 920.12 g C m−2 yr−1

in 2018. The monthly pattern of vegetation growth shown by GPP
peaked at 162.93 g C m−2 yr−1 in July (Figure 7B). The LAI inter-
annual trend was 0.02 years-1 (p < 0.01), the same as the GPP inter-
annual trend (Figure 7C). With a growth rate of 0.02 years-1 (p <
0.01), the monthly mean LAI values in the YRB increased from 1.38

FIGURE 4
SPEI (1, 6, and 12 month-scales) spatial distribution in the YRB from 2000 to 2018. (A–C) Annual mean value, respectively. (D–F) Annual trend,
respectively.

FIGURE 5
Changes of SPEI in the YRB from 2000 to 2018. (A–C) Annual trends of SPEI in 1, 6, and 12 month-scales, respectively.
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in 2000 to 1.74 in 2018, and peaked in July, consistent with the
monthly variation pattern of GPP (Figure 7D). Therefore, we could
find that the overall vegetation in the YRB is gradually turning green.

As shown in Table 2, significant spatial changes had taken place
in land cover during 2001–2018. A total of 287,842 pixels of grass
were converted into forest, making up 90.28% of the total gain in
forest, which resulted in a net increase of 58,050 pixels in forest. Next
came the contribution from crop, with 30,974 converted pixels,

comprising 9.71% of the area increase overall. In the YRB, forest had
the largest vegetation increase, with a net increase of 58,050 pixels,
comprising 38.95% of the research region’s total increasing area. The
grass decreased by 149,041 pixels net, accounting for 1.75% of the
basin’s total area, and was primarily converted to forest, urban and
crop. It could be seen that the mutual conversion of grass, forest and
crop is the main mode of vegetation conversion in the YRB. The net
increase of 1,857 pixels in the water represented the gradual

FIGURE 6
GPP and LAI spatial distribution in the YRB from 2000 to 2018. (A,C) Annual mean value, respectively. (B,D) Annual trend, respectively.

FIGURE 7
Changes of GPP and LAI in the YRB from 2000 to 2018. (A,C) GPP and LAI annual trends, respectively. (B,D) GPP and LAI monthly changes,
respectively.
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expansion of the river and lake area in the humid state of the YRB.
The urban expanded by 55,428 pixels, of which crop and grass
contributed 98.88%. As a result of the YRB’s ongoing urbanization, a
large amount of crop and grass has been converted into urban.

3.3 Relative contributions of climate change
and human activity to vegetation growth

In Figure 8, the correlation coefficient and time scale between
vegetation and SPEI respectively represented the vegetation’s
response and sensitivity to climate change. The spatial
distribution of the maximum correlation between vegetation and
SPEI01, SPEI06, and SPEI12 was depicted in Figures 8A, E,
respectively. The majority of the YRB (79.93%) showed a positive
correlation between climate change and vegetation growth, and
48.33% of those areas showed a significant positive correlation.
This was particularly true in the central and southern regions of the
YRB, where the correlation coefficient was greater than 0.5,
demonstrating that climate change was a significant factor
influencing YRB vegetation growth. The negative correlation was
mainly concentrated in the YRS, western and northern part of the
YRB, which were the main artificial ecological construction
protection areas of the YRB, while the YRD was a rapidly
developing area of urbanization (Figure 1A). According to

Figures 8B, F, vegetation was most sensitive to SPEI12 (41.39%),
which wasmostly dispersed in the eastern and central portions of the
YRB and the YRS. SPEI06 (30.50%) and SPEI01 (28.11%) were the
next two most sensitive SPEIs to vegetation. Through the
classification analysis of different vegetation can be found that
the mean correlation of different vegetation types and time scales
is positive (Figures 8C, G). In addition, there was a significant
positive correlation between forest (0.31) and crop (0.28). Grass had
the lowest sensitivity to SPEI, with an average correlation coefficient
of 0.20 and a standard deviation of 0.28. The mean correlations of
forest and crop were similar, but they were dispersed differently. The
correlation standard deviations for forest and crop were 0.23 and
0.25, respectively, indicating that forest responded to climate change
more evenly than crop. In descending order, the average correlation
between SPEI and vegetation at different time periods was 0.21 for
vegetation at 12 month-scale, 0.20 for vegetation at 6 month-scale,
and 0.18 for vegetation at 1 month-scale, demonstrating that long-
term climate change had a higher impact on vegetation growth
(Figures 8D, H).

The findings of residual trend analysis demonstrated the significant
regional variability of the effects of human activity and climate change
on vegetation in the YRB (Figure 9). We could find that not all regions
meet the use conditions of residual analysis (R2 > 0.3, p < 0.05).
Therefore, we analyzed the regions that meet the criteria. Most
frequently seen in the northern and southern regions of the YRB,

TABLE 1 Calculation table of the rate at which climate change and human activity contribute to vegetation.

Remote sensing
data trend

Climate
change trend

Human
activity trend

Relative contribution
of climate change

Relative contribution
of human activity

Explanation

Increasing

>0 >0 slopecc
slopers

× 100 slopeha
slopers

× 100 Climate change and human activity
together promoted vegetation growth

>0 <0 100 0 Climate change promoted vegetation
growth

<0 >0 0 100 Human activity promoted vegetation
growth

Decreasing

<0 <0 slopecc
slopers

× 100 slopeha
slopers

× 100 Climate change and human activity
together inhibited vegetation growth

<0 >0 100 0 Climate change inhibited vegetation
growth

>0 <0 0 100 Human activity inhibited vegetation
growth

Note: In the formula, slopers , slopecc and slopeha depicted the varying trends in the remote sensing data, climate change and human activity, respectively.

TABLE 2 The YRB’s land cover transfer matrix from 2000 to 2018.

Water Forest Grass Crop Urban

Water 107,910 4 886 0 0

Forest 19 3,761,405 239,958 20,174 619

Grass 2,397 287,842 3,208,230 311,427 29,950

Crop 331 30,974 241,731 1,304,603 24,859

Urban 0 0 0 0 131,728

Change 1857 58,050 −149041 33,706 55,428

Note: The unit is 0.25 square kilometer (one pixel). The vertical axis is 2,000 and the horizontal axis is 2018.
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roughly 92.01% of the regions in the YRB demonstrated that climate
change contributed to the rise in GPP. The region where climatic
change prevented an increase in GPP accounted for 7.99% of the total
area, and was primarily spread in the YRD (Figure 9A). Compared with
GPP, LAI showed a similar spatial distribution of climate change
impacts, in which 86.13% of the regions showed that climate change
promoted the increase of GPP, while 13.87% of the regions showed that
climate change inhibited vegetation growth (Figure 9E). Figure 9B
shows that approximately 90.49% of GPP growth is influenced by
human activity. The region where climate change increased GPP
increased by 1.52% when compared to the impact of human
activity, primarily in the central and northern regions of the YRB.
The inhibition of human activity on the growth of GPP accounted for
9.51% of the total area, mainly concentrated in the YRD. The spatial
area of LAI influenced by human activity and climate change was larger
than that of GPP, but the distribution pattern was similar to that of GPP
(Figures 9E, F).

By comparing the proportional rates of climate change and
human activity, it was discovered that climate change contributed up
to 61.28% of the YRB’s vegetation growth, while human activity
contributed 38.72%. Only 26.87% of the YRB’s vegetative area was
less impacted by climate change than by human activity, and it was
primarily concentrated in the region’s center and southern (Figures
9C, D, G, H). It was evident that vegetation growth in the YRB was
mainly driven by climate change, and human activity was mainly
auxiliary.

Additionally, the contribution rates of climate change and
human activity to various vegetation types varied (Table 3). The
average relative contribution of human activity to crops reached the
highest value (43.62%), while that of climate change reached the
lowest value (56.38%). Climate change and human activity each
contributed on average 60.71% and 39.29% of forest, respectively. In
grass, climate change and human activity had contributed 63.66%
and 36.34%, respectively. Therefore, in all vegetation, climate change
dominated the vegetation growth process, and human activity
contributed more to crop growth than other vegetation.

4 Discussion

For the investigation and measurement of the natural drivers
of ecosystems, the vegetation is sensitive to the influence of
climate (Knapp and Smith, 2001; Piao et al., 2020). From
2000 to 2018, the YRB showed a climate change characteristic
of warming and wetting (Figure 2; Figure 3). As a typical humid
and semi-humid region, temperature has the greatest effect on
vegetation growth (Zhang et al., 2020). Since vegetation growth
in the YRB was easily affected by temperature change, the
correlation between SPEI and vegetation was mostly positive
(Figure 8), which is consistent with other research results in the
YRB (Chen et al., 2018; Shi et al., 2022). The negative correlation
accounted for only 20.07% of the YRB area and was concentrated
in northern crop, the urban of the YRD and the western alpine
grass (Figure 8). In these areas, the radiation amount is large and
the temperature is high (Figure 2), resulting in low precipitation
and large surface evapotranspiration, which makes SPEI show a
downward trend and show the characteristics of gradual drought
(Pan et al., 2015).

Human activity has transformed vast amounts of grass into
urban, crop and forest in the YRB (Table 2). Since crop growth is still
mainly affected by climate change and is more affected by human
land management than other vegetation types, the contribution rate
of human activity to crop growth is relatively high (Table 3),
resulting in a decrease in the sensitivity of crop growth to
climate change (Xin et al., 2008; Piao et al., 2010). The climate in
the high altitude area changes with the increase of altitude, the
radiation increases, and the temperature and precipitation decreased
gradually. Due to the high sensitivity of grass to climate change, the
growth of western alpine grass was limited (Nemani et al., 2003;
Páscoa et al., 2018; Gao et al., 2019), thus shrinking the grass area in
the western YRB (Table 2). With the gradual decrease of altitude,
temperature and precipitation gradually increased as controlling
factors influencing vegetation growth, and the change rate of
temperature and precipitation would also gradually increase

FIGURE 8
Correlation between SPEI and vegetation. (A,E) The maximum correlation between GPP, LAI, and SPEI, respectively. (B,F) The time scale
corresponding to SPEI, respectively. (C,G) Correlation of different land cover types, respectively. (D,H) Correlation of different SPEI time scales,
respectively.
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(Figure 2). However, long-term climate change had a higher impact
on vegetation than short-term climate change (Figure 8), which is in
line with other research findings (Wu et al., 2015; Chen et al., 2020).

The climate of the YRB had become warmer and wetter (Figure 3),
which effectively promoted the growth of vegetation. However, the
direct and indirect influences of human activity on vegetation growth
should also be considered (Piao et al., 2015; Piao et al., 2020). Both
climate change and human activity were discovered to have an impact
on vegetation change in the YRB, but the relative proportions were very
different. As shown in Figure 9, climate change and human activity
mainly promoted vegetation growth, and there were few areas that
inhibited vegetation growth. Among them, the YRD is the main area
where human activity inhibited vegetation growth. A large amount of
crop and forest around urban was converted into urban to meet the
needs of urban development, leading to a significant reduction of
vegetation around urban land (Table 2). It could be seen that
urbanization progress is an important cause of vegetation
degradation (Fu et al., 2018). The MUYRB is an important
ecological area in China, as well as key area for the implementation
of the project of returning crop to forest and the construction of
artificial forests. Human activity had shown that they promote
vegetation growth and increase forest (Table 2). In Figure 9, It
could be seen that the project of returning crop to forest effectively
improved the human-land relationship and promoted the growth of
vegetation in the MUYRB (Wang et al., 2015). Although human

activity were important drivers of crop cultivation (Chen et al.,
2019; Wang et al., 2023), but some vegetation in the YRD still
showed negative growth (Figure 9), which was caused by the
conversion of a large number of grass areas into crop and urban
(Table 2), which reduced the vegetation coverage area and weakened
the carbon sequestration ability of vegetation, thus showing the
inhibition effect of human activity on vegetation growth (Yang
et al., 2022).

By comparing relative contribution rates, it could be found that
human activity was an important influence on vegetation growth in
the YRB, but climate change lead vegetation change in all vegetation
types (Figure 9; Table 3). Therefore, studying the interaction
between YRB vegetation and climate change and understanding
the response of ecosystem to human activity will provide an
important reference for the future construction of YRB ecological
conservation projects.

At present, the use of residual analysis method to study the
typical humid and semi-humid YRB has certain limitations in the
quantitative assessment of the impacts of climate change and human
activity on vegetation. The residual analysis method relies on reliable
remote sensing data and climate data. However, the widely used
CMFD data sets in China have low spatial resolution. Therefore,
obtaining high-quality, high spatio-temporal resolution data
remains a challenge. The residual analysis method mainly focuses
on the modeling and analysis of linear relationships, while the
response of vegetation to climate change and human activity may
have nonlinear characteristics. Therefore, it is of great significance to
further study the mechanism and method of vegetation nonlinear
response for more accurate interpretation of vegetation dynamic
change.

In general, the use of residual analysis method to study the
impact of vegetation on the typical humid and semi-humid YRB has
limitations in data availability, model complexity, research
comprehensiveness and nonlinear response challenges. The future
development direction should focus on improving the quality and
availability of data, improving the accuracy of the model,

FIGURE 9
Effects of human activity and climate change on vegetation growth. (A,B) Trends of climate change and human activity impact onGPP. (C,D) Relative
contributions of climate change and human activity impact on GPP. (E,F) Trends of climate change and human activity impact on LAI. (G,H) Relative
contributions of climate change and human activity impact on LAI.

TABLE 3 Different vegetation types’ relative contributions from human activity
and climate change.

Forest (%) Grass (%) Crop (%)

GPP (climate change) 61.12 62.48 57.75

GPP (human activity) 38.88 37.52 42.25

LAI (climate change) 60.30 64.83 55.01

LAI (human activity) 39.70 35.17 44.99
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considering the influence of multiple factors, and deeply studying
the nonlinear response. This will help to evaluate the driving
mechanism of dynamic vegetation change in the YRB more
comprehensively and accurately, and predict the future vegetation
change trend.

5 Conclusion

This study looked at how climate change and human activity
affected vegetation growth from 2000 to 2018. The SPEI was used to
examine how vegetation responded to climate change in the YRB.
Additionally, the relative contribution rate was calculated to
examine the effects of climate change and human activity on
vegetation growth. Quantitative analysis of the effects of climate
change and human activity on vegetation change in humid and sub-
humid areas is novel in this study.

The YRB experienced an annual average temperature warming
rate of 0.03°C yr−1 and an increase in precipitation of 4.02 mm yr−1,
presenting a gradually warm and wet state. There was a significant
positive correlation between vegetation and SPEI in most areas of the
YRB (79.93%), indicating that climate change has significantly
affected vegetation growth. Vegetation in the YRB was more
susceptible to SPEI over a long time scale. The forest cover has
significantly increased during 2000–2018, on the YRB. The vegetation
of the YRB showed a significant increasing trend (7.83 g C m−2 yr−2).
With the continuous development of urbanization, a large number of
crop and grass were converted into urban. It reduced the area covered
by vegetation and weakened the carbon sequestration ability of
vegetation. Climate change and human activity were both driving
factors affecting vegetation changes. Among all vegetation changes in
the YRB, the relative effect of climate change accounted for 61.28%,
and the relative effect of human activity accounted for 38.72%, among
which crops were most affected by human activity and the average
relative contribution rate of human activity reached the maximum
(43.62%), indicating that agricultural management was the important
driving factor of crop change. Human activity not only promoted the
growth of crop, but also inhibited YRD vegetation growth.
Nevertheless, human activity has played a crucial role in
promoting vegetation growth in the YRB, with the extent of
promotion covering approximately 90.49% of the area. In general,
vegetation growth in the YRB is positively influenced by both climate
change and human activity, with climate change playing a prominent
role. Therefore, coordinating climate change with reducing intensive
human activity was a reasonable way to restore the ecosystem in
the YRB.
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Research on the impact of land use change on regional habitat quality, in various

future scenarios, can effectively aid planning and decision-making for sustainable

development at a regional level. The study conducted its research in the Gansu-

Qinghai Yellow River section and used ArcGIS and a land use transfer matrix to

analyze the spatiotemporal pattern of land use and land cover changes. The

study assessed the changes in habitat quality in the Gansu-Qinghai Yellow River

region between 1990 and 2020, using the Integrated Valuation of Ecosystem

Services and Trade-offs (InVEST) model, by evaluating the gains and losses.

Simultaneously, 15 elements of the natural economy were chosen and examined

for their temporal and spatial impact on habitat quality using the random forest

model and spatially weighted regression model. To forecast land use changes in

the Gansu-Qinghai Yellow River section for 2030, the Future Land Use

Simulation Model (FLUS) model was utilized and a series of four scenarios

(cultivated land protection scenario, ecological protection scenario, natural

development scenario, and rapid development scenario) were employed. The

research results indicate that over 70% of the Gansu-Qinghai Yellow River is

occupied by grasslands, and only a small portion of the area, about 0.22%, is

developed for construction purposes. The quality of the habitat in the Gansu-

Qinghai Yellow River had a minor drop between 1990 and 2020, followed by an

improvement. Habitat quality changes are primarily attributed to improvements,

with variations across different areas, i.e., enhanced in the east and reduced in the

central and western parts. The habitat quality of the Gansu-Qinghai Yellow River

has improved in all four scenarios compared to 2020, as evidenced by the

decrease in low-value habitats and increase in high-value areas. The ecological

protection scenario has the highest average habitat quality value. These research

results can be used to support policy development and ecological restoration

initiatives in the Gansu-Qinghai Yellow River.

KEYWORDS

Gansu-Qinghai section of the Yellow River Basin, habitat quality, land use change,
multi-scenario, FLUS-InVEST model
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1 Introduction

Human survival and development are guaranteed by

biodiversity, which also serves as a major engine for ecosystem

services (Zhang et al., 2022). The quality of habitat represents the

ecosystem’s ability to provide suitable conditions for the survival of

individuals and populations. Land use change is a major threat to

habitat quality, and biodiversity is declining at an alarming rate,

according to Bongaarts, (2019).Such as rapid urbanization and

large-scale agricultural development activities, have exacerbated

species extinction, habitat fragmentation, and habitat degradation,

as biodiversity has been destroyed to varying degrees, thereby

changing the habitat distribution pattern of habitats. The

connectivity of habitat patches is increasingly reduced and

fragmented, altering the habitats’ structure and composition will

ultimately have an impact on how energy and materials move

between various ecological fragments (Liu et al., 2014; Wilson et al.,

2016). Thoroughly researching the impacts of changes in land use

on habitats is crucial for developing effective policies that protect

biodiversity and promote coordinated development between

humans and ecology, according to Yohannes et al. (2021).

The Maxent model (Wu et al., 2016), Artificial intelligence for

ecosystem services (ARIES) model (Vigerstol and Aukema, 2011),

Social values for ecosystem services (SoLVES) model (Wang et al.,

2016), Habitat suitability index (HSI) model (Liu et al., 2017), and

InVEST model are just a few of the current methods for evaluating

ecosystem services. The InVEST model is frequently used in habitat

quality assessments because of its ease of use, minimal data

requirements, and potent spatial expression capabilities (Karimi

et al., 2018). Yohannes et al. (2021) explored the habitat quality of

Beresa Basin in Ethiopia.Gomes et al. (2021) investigated

Lithuania’s habitat quality using the InVEST model and

examined the effects of various scenarios on land use change.

Based on simulating various scenarios during a certain

historical period, land use and regional habitat quality evaluation

can obtain the evolution laws of habitat quality over a long time.

The evaluation of future habitat quality can better propose

ecological environment protection strategies and has extremely

important significance for the construction of ecological

civilization. Because land use changes are affected by human

activities, which are crucial when evaluating habitat quality. The

most widely used simulation models, including the Cellular

Automata (CA) model, are previously employed to imitate or

replicate spatial layout both domestically and internationally

(Tang et al., 2022), Markov Model (Liang et al., 2021), Artificial

Neural Network (ANN) model, Multi-Agent-System (MAS) model

(Gao et al., 2022), system simulation (System Dynamics, SD) model,

and effects of changing land use Model (CLUE-S: Conversion of

Land Use and its Effects at Small Region Extent) (Bai et al., 2019),

but there are certain deficiencies in many of these models. Among

them, the system simulation (SD) model does not reflect the spatial

elements. Emphasis on the impact of economic benefits and the

selection of network structure of the neural network model is

different. the influence of various macro factors of the cellular

automaton (CA) model on the simulation results is insufficient. The

multi-scenario model overemphasizes the impact of actions carried
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out by humans on the simulation results and ignores the influence

of natural elements, although there is still a significant dissimilarity

between the outcomes obtained through simulation and those

obtained in reality (Yu et al., 2014; Bai et al., 2019).

The FLUS model uses a combination of the CA model and

ANN algorithm to demonstrate the spatial paths of different land

use categories in different situations while considering both natural

environmental and human-related impacts. It incorporates adaptive

inertia and competition mechanisms and performs better in model

simulations. Future land use patterns have been simulated in several

studies using the FLUS model.

The Gansu-Qinghai Yellow River region is unique. It is located

in the middle and upper sections of the Yellow River Basin. It is

dominated by mountains and has large terrain fluctuations. The

Qinghai-Tibet and Loess Plateaus meet in the Gansu-Qinghai

Yellow River region. It is also one of the areas that are relatively

vulnerable to climate change on a global scale. The special

geographical location makes it a key area for ecological

restoration (Yang et al., 2020). There are ecological and

environmental issues in this region, such as soil erosion,

biodiversity loss, a reduction in the area of wetlands, and

degradation of grasslands, due to the interplay between elements

of nature and actions taken by humans. Huge pressure is put on

quality. To analyze the spatiotemporal pattern of land use change in

the watershed. Exploring the spatiotemporal changes of habitat

quality in the region and predicting future trends can provide

important references for regional sustainable development and

habitat protection.

This study used the InVEST (Integrated Valuation of Ecosystem

Services and Trade-offs) model to evaluate the habitat quality of the

Gansu-Qinghai Yellow River basin from 1990 to 2020. The impact

of each factor on habitat quality was analyzed using both random

forest models, taking into account temporal and spatial changes. A

total of 15 factors were selected for analysis, such as the natural

economy; and used the FLUS model, four set scenarios of cultivated

land protection scenario, natural development scenario, rapid

development scenario, and predicted the habitat quality of the

above four scenarios.
2 Materials and methods

2.1 The study area

The Gansu-Qinghai Yellow River section can be found in the

upper reaches of the Yellow River Basin (Figure 1), with a total area

of 29.31 × 104 km2, accounting for 39.0% of the total area of the

Yellow River Basin. The total area of the Gansu section is 14.30 ×

104 km2 and includes Lanzhou City, Wuwei City, Baiyin City,

Dingxi City, Linxia Prefecture, Longnan City, Gannan Prefecture,

Qingyang City, Tianshui City, Pingliang City and other 10 cities

(prefectures). While the total area of the Qinghai section is 15.01 ×

104 km2, including Xining City, Haibei, Haidong area, Huangnan,

Guoluo, Hainan, Yushu, Haixi Mongolian and 5 Tibetan

autonomous prefectures, and Tibetan Autonomous Prefecture

and other 8 cities (prefectures). The altitude of the Gansu-
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Qinghai Yellow River section is 3 000~5 000m, the terrain is high in

the west and low in the east across the Qinghai-Tibet Plateau and

Loess Plateau, belonging to the continental climate area.

D010100: Heyuan to Maqu D010200: Maqu to Longyangxia

D020100: Above the Xiangtang of Datong River D020200:

Huangshui D020300: Daxia River and Taohe River D020400:

Main stream section of Longyangxia to Lanzhou D030100:

Lanzhou to the Xiaheyan D030200: Qingshui River and Kushui

River D050200: Above the Zhuangtou of Beiluo River D050300:

Above the Zhangjiashan of Jinghe River D050400: Above the Baoji

Gorge of Weihe River.
2.2 Data sources

The first annual China Land Cover Dataset (CLCD) from

Landsat (Yang and Huang, 2021), created by Professors Yang and

Huang of Wuhan University on the GEE platform, was used to

obtain the land use data for the years 1990 to 2020. It covered

30 continuous years. The 30 m × 30 m represented the

spatial resolution.

Selected normalized different indices were, vegetation,

precipitation, temperature, elevation, slope, aspect, terrain relief,

topographic position index, distance from the river, soil type, gross

domestic product, population density, distance from railway, and

road. The distance from the government residence and the

nighttime light index included 10 natural factors and 6

socioeconomic factors as the driving factors of habitat quality and

the factor data of the model simulation. For the data sources of

specific factors, refer to Table 1. The data on China’s nature reserves

came from the Environment Data Sharing Center of the Chinese

Academy of Sciences (http://www.resdc.cn/) and Resource.
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2.3 Methods

2.3.1 Habitat quality analysis
This study assessed the habitat quality index using the InVEST

model’s Habitat Quality module. This module is a map that was

created by combining different land use types with threats to

biodiversity in the habitat with the degree of habitat degradation

and habitat quality in a given area. According to this model, habitat

quality is a continuous variable that can be anywhere between low

and high (Hall et al., 1997). In general, habitat quality is influenced

by how close it is to human land use, whereas habitat degradation is

influenced by how intense nearby land use is (Nellemann, 2001).

The more severe the danger to the natural environment posed by

the threat factor and the greater the degree of habitat degradation,

the higher the score. Calculated as follows:

oR
r=1oyr

y=1
wr

oR
r=1Wr

 !
ryirxybxSjr (1)

In the formula, D xj, R, w x, Y r and ry represent the habitat

degradation degree, (degradation risk index), the number of stress

factors, the weight of stress factor r, and the weight of stress factor

and the number of grids and the value of the stress factor on the

grid, respectively; the distance between the habitat and the source of

danger, as well as the effect of the danger on the environment, are

represented by the variable “i rxy”. Meanwhile, the mitigating effect

of protective measures on the impact of the threat on the habitat is

indicated by the factor “b x” (that is, legal degree of protection, the

range is 0–1, 1 is complete accessibility); the measure of howmuch a

particular stress factor r affects the habitat type j is indicated by Sjr.

irxy = 1 −
dxy
drmax

� �
(linear decay) (2)
FIGURE 1

The location of the research area.
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irxy = exp
−2:99dxy
drmax

� �
(exponential decay) (3)

The equation involves the measurement of dxy, which

represents the straight-line distance between the x and y

coordinates on the grid. Additionally, the maximum distance of

potential danger from the threat source r is referred to as drmax.

Therefore, the habitat quality in grid cell x in land use type j is:

Qxj = Hj 1 −
Dz
xj

Dz
xj + k2

 ! !
          (4)

The equation uses various parameters. Qxj represents the quality

of the habitat in a specific location and land use, while Hj is the

suitability of the habitat type, ranging from 0 to 1. The half-

saturation constant, denoted as k, is typically equal to half of the

highest possible habitat value. Another parameter, z, is a

normalization constant and is usually set to 2.5.
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In this paper, the parameters of the model are set by referring to

the InVEST model User Guide manual (Sharp et al., 2015) and

existing literature (Zhang et al., 2020; Zhang et al., 2020), including

land use type map and threat source factors (based on the actual

land cover situation in the study area, construction land is the most

disturbed type by human activities, and cultivated land is the type

with more concentrated human activities.

The unused land is basically uncovered by vegetation and has a

bad ecological environment. Therefore, the three categories are

defined as threat sources and threat factor weights (Table 2) and

sensitivity index (Table 3).

2.3.2 Scenario simulation of land use pattern
In 2017, the FLUS model was introduced by Liu et al. (2017).

This model is founded on the Geo-SOS theory and utilizes data on

land use and its determinants to forecast the future spatial

arrangement of land utilization, taking into account both natural
TABLE 2 The weight and the maximum influence distance of the threat source.

Threat factor
Longest threat
distance (km)

Weight Spatial decay type

Cultivated land 8 0.7 linear

Construction land 10 0.9 exponential

Unused land 5 0.2 exponential
TABLE 1 Driving factors of habitat quality.

Driving factor Data sources

Natural factor

NDVI
Normalized Difference Vegetation

Index
National Qinghai-Tibet Plateau Scientific Data Center (https://data.tpdc.ac.cn)

PRE Precipitation NASA Dataset (https://appeears.earthdatacloud.nasa.gov/)

TEM Temperature NASA Dataset (https://appeears.earthdatacloud.nasa.gov/)

DEM Elevation
Resource and Environmental Data Sharing Center of Chinese Academy of Sciences (http://

www.resdc.cn/)

Slope Slope Elevation data was obtained after slope processing in GIS

PX Aspect Elevation data was obtained after slope processing in GIS

TR Terrain relief Elevation data was obtained after slope processing in GIS

TI Topographic index Elevation and slope data were obtained after slope processing in GIS

DFR Distance from river
Resource and Environmental Data Sharing Center of Chinese Academy of Sciences (http://

www.resdc.cn/)

ST Soil type
Resource and Environmental Data Sharing Center of Chinese Academy of Sciences (http://

www.resdc.cn/)

Socioeconomic
factors

GDP Gross domestic product
Resource and Environmental Data Sharing Center of Chinese Academy of Sciences (http://

www.resdc.cn/)

POP Population density
Resource and Environmental Data Sharing Center of Chinese Academy of Sciences (http://

www.resdc.cn/)

DFRO Distance from road Openstreetmap dataset (https://www.openstreetmap.org)

DFR Distance from railway Openstreetmap dataset (https://www.openstreetmap.org)

OLS DMSP-OLS night light data
Resource and Environmental Data Sharing Center of Chinese Academy of Sciences (http://

www.resdc.cn/)
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and human factors. This approach has been further explored by

Liang et al. (2018) and by Liu et al. (2017). The driving factors

selected in this paper include normalized difference vegetation

index, precipitation, temperature, elevation, slope, aspect, terrain

relief, distance from river, soil type, GDP, population density,

distance from road, and railway. There are 15 natural economic

factors in total, including distance, distance from the government

residence, and night light index. The simulation process primarily

entails scenario setting, adaptive inertia coefficient calculation,

model testing, neighborhood factor setting, comprehensive

probability calculation, and suitability probability calculation

as follows.

2.3.2.1 Suitability probability calculation

Neural networks are the foundation for suitability probability

calculations. The probability of a k-type land use type occurring on

a particular grid p at time t is calculated using an artificial neural

network (ANN) with multiple input and output neurons as p(p,k,t)

(Liu et al., 2017):

p(p, k, t) =ojwj,k �
1

1 + e−netj (p, t)
         (5)

The suitability probability of land use type k on grid p at time t

is given by the formula: p(p,k,t). The adaptive weight between the

output layer and hidden layer is given by the formula: w j,k. The

signal that neuron j receives from all of the input neurons on grid

cell p at time t in the hidden layer is given by the formula: net j(p,t).

The neural network-based probability-of-occurrence

calculation module was used to determine the driving force

behind land use change. Using this module, the probability of

each type of land use in every pixel of the study area was calculated

through the neural network algorithm (ANN). The suitability

probability calculation module was selected based on the neural

network by the startup model. This study used a uniform sampling

strategy as its sampling method. The multi-layer feedforward neural

network algorithm’s hidden layer count was set to 12, and the

sampling parameter’s value was 20. Then import the variables that

may affect changes, like the terrain and the location of traffic, and
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determine the likelihood of various events occurring in each pixel of

the Gansu-Qinghai Yellow River region. and the root mean square

error (RMSE) of this model training is 0.153201.

Different colors were selected to represent the probability of

occurrence. When the color of suitability probability is closer to

blue, it means that the probability of occurrence is higher.

Consequently, cultivated land is suitable for distribution in low-

slope areas, forest land is suitable for distribution in high-lying

mountainous areas, shrub land is suitable for distribution in

middle-level terrain and interspersed with grassland, grassland is

suitable for distribution in flat areas, and construction land is

suitable for distribution in flat terrain and close to the river zone,

water areas are suitable for distribution in low-lying areas, unused

land is suitable for distribution in soil desertification desert areas,

and wetlands are suitable for distribution near water sources. From

the adaptive probability distribution, it can be seen that it is

consistent with the natural conditions of the Gansu-Qinghai

Yellow River, and the result is more reasonable.

The change of land use type is easily affected by many aspects

such as nature, society and economy. Generally speaking, the

factors affected by the outside world can be classified into three

types, namely, natural factors, socioeconomic factors and

accessibility factors. Natural factors represent the impact of the

natural environment on land use types; socioeconomic factors

represent the impact of social and economic development on land

use type changes; and accessibility factors refer to the impact of

traffic location factors on land use type changes. For urban form and

its development, this paper selects 15 driving factors, as shown

in Figure 2.

2.3.2.2 Neighborhood factor setting and model testing

The simulation accuracy is evaluated by the kappa coefficient.

Closer to 1 signifies higher consistency. The predictions are

regarded as credible when the kappa coefficient exceeds 0.75. The

neighborhood factor’s parameters range from 0 to 1, and a value

that is closer to 1 indicates that the land type has a greater capacity

for expansion. According to the findings of previous studies, water

area, forest land, shrubs, grassland, and cultivated land had the
TABLE 3 Sensitivity index of land use type to habitat threat factors .

Land use type Habitat adaptability

Sensitivity index

Urban land Rural land
Construction

land
Cultivated

land
Unused
land

Cultivated
Land

0.4 0 0.7 0.5 0.4 0

Forest land 1 0.8 0.5 0.2 1 0.8

Shrub 1 0.6 0.6 0.3 1 0.6

Grassland 0.8 0.5 0.6 0.4 0.8 0.5

Water 1 0.7 0.9 0.1 1 0.7

Unused land 0 0 0 0 0 0

Construction land 0 0 0 0 0 0

Wetland 0.9 0.5 0.8 0.2 0.9 0.5
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greatest potential for expansion. The unused land, construction

land, and wetland neighborhood factors are set at 0.7, 0.7, 0.6, 0.4,

0.6, 0.5, 0.8, and 0.7. The outcomes of the simulation regarding the

utilization of land in 2020 using the neighborhood factor simulation

had a Kappa coefficient of 84.88%.

2.3.2.3 Calculation of adaptive inertia coefficient

The inertia coefficient, which is capable of adapting to changes,

modifies itself throughout the iterative process. Its purpose is to

minimize the difference between the actual supply and expected

demand for each type of land use. Consequently, it increases the

quantity of land use towards the target value and facilitates the

simulation of spatial changes in land use. The equation reads as follows:

Interiatk

  Interiat� 1
k     jDt� 2

k j ≤ Dt−1
k

�� ��
Interiat−1k � Dt−2

kj j
Dt−1

kj j   0 > Dt−2
k

�� �� > Dt−1
k

�� ��
  Interiat−1k � Dt−1

kj j
Dt−2

kj j    D
t−1
k

�� �� > Dt−2
k

�� �� > 0

8>>>>><
>>>>>:

(6)
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In the formula: Interiatk is the inertia coefficient t of type k land

during iteration; at iteration t−1, Dt−1
k denotes the discrepancy

between the requested land quantity for a specific type of land (k)

and the actual amount of that land available.

2.3.2.4 Scenario setting

The Gansu-Qinghai Yellow River section has diverse natural

conditions, as well as economic and social development, which has

led to different control modes for various development and

utilization. To simulate the future land under various scenarios

based on the traits of each scenario model, we use the scenario

analysis method using the present state of social progress as a

reference point.

Changes in utilization: Four scenarios were created for land use

change simulation in this research based on various development

objectives and potential disturbance scenarios in the watershed.

These scenarios include rapid development, cultivated land

protection, ecological protection, and natural development.

Additionally, this setup was created to give managers a guide for
FIGURE 2

Driving factors of land use types in the Gansu-Qinghai section of the Yellow River Basin in 2010.
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determining the equilibrium of sensible utilization of land in these

situations. Here are the 4 possible scenarios for changing land use:

Natural development scenario (NADS): The Markov model is

utilized to simulate the land demand, and all land types are

convertible to each other, under the assumption that the future

land change rate is consistent with the change from 2000 to 2015

and that the natural conditions and economic development

conditions of the study area remain unaltered.

Cultivated land protection scenario (COPS): Focusing on the

protection of basic farmland, it is strictly forbidden to transfer out

cultivated land, except for construction land, which can be used as

agricultural land.

Ecological protection scenario (ECPS): sort according to the

ecological benefits of various types of land; water area, forest land,

wetland, shrub land, cultivated land, construction land, grassland,

and unused land.

Rapid development scenario (RADS): Sorted according to

development needs; water area, construction, shrub, cultivated,

forest land, grassland, wetland, unused land, the conversion

principle is not to allow the change of land categories with a high

ranking to low ranking.

2.3.2.5 Comprehensive probability calculation

The overall conversion probability of units occupied by the

specified land type is estimated using the aforementioned factors,

including suitability probability, neighborhood influence factor,

suitability matrix, and inertia coefficient, and the formula is as

follows:

TPt
p,k = Pt

p,k �W t
p,k � Itk � (1 − scc→k)                 (7)

In the formula: TPt
p,k represents the comprehensive probability

that element p changes from initial land use type to land use type k

at time t; Pt
p,k represents the suitability probability of converting

pixel p to land type k at time W t
p,kt; The conversion of cell p to land

type k is affected by the neighborhood factor. The inertia coefficient

of type k at time t is denoted by I. The conversion cost from land

type c to land type k is represented by SCc→k. The land use data for

different scenarios is obtained by calculating the probability of each

iteration, and the accuracy is verified to finalize the results.

2.3.3 Random forest model
Multiple decision trees are used in the Random Forest (RF) classifier,

and themajority of the individual output categories determine the output

category (Liu et al., 2020). To classify or regress through repeated binary

data in the 1980s, Breiman and others used the classification tree

algorithm, which significantly decreased the amount of calculation.

According to Mansoor et al. (2013), Breiman combined the

classification tree into a random forest in 2001. The technique entails

creating multiple classification trees randomly from data rows and

variables columns, followed by summarizing the outcomes.

Typically, a random forest creates hundreds to thousands of

classification trees at random before choosing the tree with the

highest level of repetition as the outcome. The random forest

algorithm evaluates the impact of each variable on the dependent

variable by measuring the increase in the mean square error as a
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percentage at every level (% Inc MSE). Consequently, greater value

implies greater importance of the variable. First, construct the ntree

decision tree model and estimate the OBB mean square error of

random replacement (ntree out-of-bag data composed of

unsampled samples), and construct the following matrix:

MSE11 MSE12 ⋯ MSE1ntree

MSE21 MSE22 … MSE1ntree

⋮ ⋮ ⋮ ⋮

MSEm1 MSEm2 … MSEmntree

2
666664

3
777775           (8)

Then calculate the importance score using the following

formula:

scoreXj = S−1E
ontree

r=1MSEr −MSEpr
ntree

,   (1 ≤ p ≤ mÞ (9)

The formula involves two variables, namely m which represents

the number of variables, and n which represents the number of

original data samples.
3 Results and analysis

3.1 Spatiotemporal changes of land use
from 1990 to 2020

Grassland dominates the land use in the Gansu-Qinghai Yellow

River region, making up more than 70% of the total area. Figure 3

shows that during the 30 years (1990–2020), the variation trend of

different regions in the Ganqing section of the Yellow River Basin is

shown in Figure 3. The cultivated land increases first and then

decreases. In 2000, the cultivated land area is the largest, 434.35 ×

104 km2, and in 2017, the area is the least, 358.44 × 104 km2. The area

of forest land increased steadily in the past 30 years, with a total increase

of 40.03 × 104 km2. The overall shrub land showed a trend of

fluctuation decline, the largest in 1990, and the least in 2016 was

29.97 × 104 km2. The area of grassland fluctuated and then decreased

significantly. In 2017, the area of grassland was the largest (2281.58 ×

104 km2), and in 2000, the area of grassland was the smallest

(2233.12 × 104 km2). During the past 30 years, the water area has

shown a fluctuating upward trend. In 2020, the area was the largest at

25.01 × 104 km2, and in 1997 the area was the smallest at

20.13 × 104 km2. Unused land showed a fluctuating upward trend.

The amount of unutilized land was the greatest in the year 2020,

measuring 56.71 × 104 km2, and the area was the lowest in 1992 at

39.43 × 104 km2. The area of water has increased by 17.27 × 104 km2 in

30 years. From 1990 to 2020, construction land increased year by year.

In 2020, the largest area was 6.43 × 104 km2, and the lowest area was

2.74 × 104 km2 in 1990, for 30 years, there was a net growth of

3.68 × 104 km2. The area of wetlands fluctuated first and then increased.

In 1993, the area of wetlands was the largest at 1.98 × 104 km2. In 2015,

the area of wetlands was the smallest at 0.22 × 104 km2. In 2000, the

area of wetlands decreased the most at 0.63 × 104 km2.

As shown in Figure 4, the main transfer direction and types of land

use categories between years are depicted in the Sangki diagram. The
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area of land use types moved outward by a total of 2.45 × 104 km2

between 1990 and 2000 (Figure 4A), making up 8.36% of the total area.

With a total transfer area of 9.19 × 103 km2, the conversion of grassland

into agricultural land was the most significant in terms of size. The

conversion of farmland to a grassy area came after that, with a total

transfer area of 6.08 × 103 km2. The transfer from wetland to forest

land had the smallest total transfer area, at 0.08 km2. From 2000 to

2010 (Figure 4B), a total of 1.89 × 104 km2 of various types of land were

transferred outward, accounting for 6.46% of the total area, and the

largest transferred area was still uncultivated land transferred to

grassland, with a total transfer of 8.73 × 103 km2, and the transfer
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area from water to wetland was the smallest, with a total transfer of

0.04 km2. From 2010 to 2020 (Figure 4C), a total of 2.22 × 104 km2 was

transferred outward, accounting for 7.57% of the total area. This

showed that grassland area transferred from cultivated land was the

largest, with a total transfer of 8.18 × 103 km2, then the process of

transforming a grassy terrain into an area suitable for agriculture, with

a total transfer of 6.88 × 103 km2, and the conversion of land from

construction to forest was the least significant, with a total transfer of

0.04 km2.

Between 1990 and 2020 (Figure 4D), there was a transfer of

different types of land use amounting to 3.36 × 104 km2, which is
A B

DC

FIGURE 4

Sangki map of land use transfer in the Gansu-Qinghai section of the Yellow River Basin from 1990 to 2020 (A. land use transfer of 1990–2000;
B. land use transfer of 2000–2010; C. land use transfer of 2010–2020; D. land use transfer of 1990–2020).
FIGURE 3

Area of land use types in the Gansu-Qinghai section of the Yellow River Basin from 1990 to 2020.
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equivalent to 11.48% of the total area. The largest area that was

transferred was cultivated land, measuring 1.14 × 104 km2, while the

smallest area was undeveloped land converted to construction land,

which was only 0.04 km2.

According to Figure 5, the Gan-Qing section of the Yellow River

Basin is divided by the Qinghai-Tibet Plateau and the Loess Plateau

excess zone. The main land use type in the west is forest and grass

land, and the main land use type in the east is cultivated land and

construction land. From 1990 to 2020, the construction land

exhibited a point-line expansion trend, mainly concentrated in in

Lanzhou and Xining, the provincial capitals of Gansu and Qinghai

provinces The cultivated land is mainly distributed in the Loess

Plateau area of Gansu Province. It is concentrated in the Above the

Baoji Gorge of Weihe River basin and Above the Zhangjiashan of

Jinghe River and the east area of Daxia River and Taohe River. In

the past 30 years, the cultivated land showed a decreasing trend, this

was because urban construction land was rapidly expanding,

causing a substantial amount of cultivated land to be occupied,

and significant changes in land use patterns. The main land use type

in the Ganqing section of the Yellow River Basin is grassland. It is

widely distributed in Heyuan to Maqu basin, Maqu to Longyangxia

basin, Above the Xiangtang of Datong River basin, Huangshui River

basin, Daxia River and Taohe River basin The River basin. The

forest land is distributed in the form of sheet or line. It is mainly

located in the Above the Xiangtang of Datong River basin,

Huangshui River basin, Daxia River and Taohe River basin, and

the Main stream section of the transitional zone between the

Qinghai-Tibet Plateau and the Loess Plateau Longyangxia to
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Lanzhou and Above the Zhuangtou of Beiluo River basin, mainly

distributed in Heyuan to Maqu Basin and Maqu to Longyangxia

Basin, Qinghai Province. It mainly includes Qinghai Lake, Zhaling

Lake, Eling Lake, Longyangxia Reservoir and Liujiaxia Reservoir.

The unused land is mainly distributed in the Maqu to

Longyangxia basin.
3.2 Temporal and spatial changes of
habitat quality in the Ganqing section of
the Yellow River Basin from 1990 to 2020

The average values of habitat quality from 1990 to 2020 were

obtained by using the weighted average, which was 0.745, 0.744,

0.741, 0.743, 0.747, 0.748, and 0.747 (Table 4). This result showed

that the overall habitat quality in the Gansu-Qinghai Yellow River is

constantly increasing, and the changing trend is initially decreasing,

then increasing, and subsequently decreasing. According to

research, the habitat quality in various years is categorized into

five grades based on the InVEST model: higher (0.8–1), high (0.6–

0.8), medium (0.4–0.6), low (0.2–0.4), and lower (0–0.2). The

overall habitat quality in the Ganqing section of the Yellow River

Basin was in a higher grade (> 0.7). From 1990 to 2020, the ratios of

lower, low, and high-grade habitat quality in the Gansu-Qinghai

Yellow River have been increasing, with an increase of 0.579%,

2.615%, and 2.105%, respectively, in the past 30 years. The ratios of

medium and high grades of habitat quality decreased continuously,

by 3.568% and 1.740%, respectively. Among them, the areas with
A B
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FIGURE 5

Land use types in the Gansu-Qinghai section of the Yellow River Basin from 1990 to 2020.(A. land use type of 1990–2000; B. land use of type of
2000–2010; C. land use type of 2010–2020; D. land use type of 1990–2020).
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low habitat quality continue to increase, indicating that with the

intensification of urbanization, the habitat quality in some areas

continues to deteriorate. In addition, the continuous increase of

higher-level areas shows that China’s conversion of farmland to

forests and grassland projects and other ecological restoration

projects have achieved significant results.

In terms of time (Figure 6), the general habitat quality of the

Gansu-Qinghai Yellow River showed a fluctuating upward

movement from 1990 to 2020, with the lowest habitat quality in

2000 at 0.741 and the highest in 2017 at 0.751. Within the tertiary

river systems of the Yellow River Basin (as depicted in Figures 6B–

D), the watershed with the highest habitat quality is above the

Beiluo River Zhuangtou, with a habitat quality of around 0.9,

whereas the watershed with the lowest habitat quality is the
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watershed above the Baoji Gorge of the Weihe River, with habitat

quality around 0.6. The watersheds of Qingshui River and Kushui

River had obvious habitat quality modifications that occurred 30

years ago, and the transformation pattern was fluctuating initially

and then increased with an obvious rising trend. The habitat quality

of the watershed from Lanzhou to Xiaheyan and the watershed

above Zhangjiashan of the Jinghe River showed a fluctuating

upward trend, while the habitat quality of the other sub-basins

did not change much in the past 30 years.

In terms of space, the overall habitat quality of the study area

presents a spatial feature of high in the west and low in the east, with

the transitional zone between the Qinghai-Tibet Plateau and the

Loess Plateau as the dividing line. The overall habitat quality of the

east region is lower, while that of the west region is higher
A

B
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C

FIGURE 6

Habitat quality in the Gansu-Qinghai section of the Yellow River Basin from 1990 to 2020 (A) and habitat quality changes in different sub-basins (B–E).
TABLE 4 Ratio of Habitat quality Grade in Gansu-Qinghai Reach of the Yellow River Basin from 1990 to 2020 (%).

Grade Domain
1990 1995 2000 2005 2010 2015 2020

ratio/% ratio/% ratio/% ratio/% ratio/% ratio/% ratio/%

Low 0–0.2 1.56 1.51 1.61 1.62 1.66 1.82 2.14

Lower 0.2–0.4 6.97 7.69 7.78 8.11 8.63 8.93 9.59

Medium 0.4–0.6 6.71 6.37 6.93 5.76 4.64 3.80 3.14

Higher 0.6–0.8 45.30 44.75 44.96 44.87 45.10 46.13 47.40

High 0.8–1 38.79 39.00 38.04 38.96 39.29 38.63 37.05

Mean 0.745 0.744 0.741 0.743 0.747 0.748 0.746
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(Figure 7), which is basically consistent with the spatial

characteristics of land use type. The low grade habitat quality

areas were concentrated in Lanzhou City of Gansu Province and

Xining City of Qinghai Province. This region is the capital city of

Gansu Province and Qinghai Province, with high population and

economic density, frequent human activities, large construction

land area, and poor habitat quality. The lower grade and medium

grade habitat quality areas were concentrated in the northeast of the

study area. Including the Above the Zhangjiashan of Jinghe basin,

the Above the Baoji Gorge of Weihe River basin and the area east of

the Daxia River and Taohe River, The overall level of economic

development in this region is relatively high, the main land type is

cultivated land, and human activities have a great disturbance to the

habitat. The regions with high habitat quality are mainly distributed

in the Heyuan to Maqu and Maqu to Longyangxi basins in the

upper reaches of the Yellow River Basin, and the distribution is

relatively concentrated. In the Maqu to Longyangxia Basin, there

are scattered areas with lower grade habitat quality. The ecological

fragility in this region makes the habitat quality easily disturbed and

destroyed, especially the distribution of unused land in this region,

which is the main reason for the low habitat quality. In this region,

the quality of habitat changed from higher grade to high grade and

from lower grade to middle and high grade.

From 1990 to 2020, habitat quality change in the Gansu-Qinghai

Yellow River section showed that the gain area was slightly

smaller than the loss area. The gain area was 12.55 × 104 km2
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and the loss area was 16.76 × 104 km2. There is a lot of spatial

heterogeneity as evidenced by the alteration in the quality of the

living environment. While the quality of habitat in the central and

western regions is declining, it has improved significantly in the east

(Figure 8D). the areas with significant loss of habitat quality were

mainly distributed in the Daxia River and Taohe River basins and

Above the Baoji Gorge of Weihe River basins, which were the areas

with faster urbanization. Loss predominated the alteration in the

quality of the living environment between 1990 and 2000

(Figure 8A), with the loss area reaching 20.27 × 104 km2 or

75.31% of the total area. It was concentrated in Gansu Province

in space, including the southern part of the Lanzhou to the

Xiaheyan Basin, the eastern part of the Daxia River and Taohe

River basin, and most of the Above the Baoji Gorge of Weihe River

basin. The gain area is scattered., with a total area of 9.04 × 104 km2.

Habitat quality increased significantly between 2000 and 2010

(Figure 8B), with a gain area of 20.38 × 104 km2 compared to a

loss area of 8.93 × 104 km2. It is distributed in the upper reaches of

the Yellow River basin, Huangshui Basin, Above the Baoji Gorge

of Weihe River basin and other river basins. From 2010 to 2020

(Figure 8C), the habitat quality declined significantly, with the

gain area reaching 10.41 × 104 km2 and the loss area reaching

18.90 × 104 km2. From a spatial point of view, the western portion of

the study region’s overall habitat quality is declining, but the degree

of loss is not high, as the loss in the central area is relatively high and

mainly concentrated in the surrounding cities of Lanzhou City,
A B
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FIGURE 7

Spatial distribution of habitat quality in Gansu-Qinghai section of theYellow River Basin from 1990 to 2020 (A. spatial distribution of habitat quality
1990–2000; B. spatial distribution of habitat quality 2000–2010; C. spatial distribution of habitat quality 2010–2020; D. spatial distribution of habitat
quality 1990–2020)
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Gansu Province. Areas with obvious gains include Tianshui City

and the eastern part of Qinghai Province.
3.3 Simulation of land use change in the
Gansu-Qinghai section of the Yellow River
Basin under multiple scenarios

The simulation effect of land use change in the Gansu-Qinghai

Yellow River section in 2020 was enhanced. As a result, the spatial

distribution pattern of land use in Gansu-Qinghai Yellow River in

2030 was simulated using the land use types in the Gansu-Qinghai

Yellow River in 2020.

Therefore, construct natural development scenarios (NADS),

cultivated land protection scenarios (COPS), ecological protection

scenarios (ECPS), and rapid development scenarios (RADS),

respectively set up different transition matrices, and combine the

land use type files of the Gansu-Qinghai Yellow River in 2020 to

conduct cellular automaton analysis, and then predict 2030 Spatial

pattern of land use in the Gansu-Qinghai Yellow River.

Based on the settings of the above four development scenarios,

the land use distribution in the Gansu-Qinghai Yellow River in 2030

was simulated, and the land use structure in 2030 and the difference

between the land use area in 2020 and the land use area in 2020

under the four scenarios were obtained through the spatial module

of ArcGIS. It can be seen from Table 5 that under the natural

development scenario, the area of simulated grassland, shrubland,
Frontiers in Ecology and Evolution 12160
and unused land in 2030 decreased by 1321.72 km2, 254.62 km2,

and 256.23 km2 compared to 2020; the area of construction land

decreased by 99.72 km2, and the wetland area decreased by

1.08 km2. The areas of water area, forest land, and cultivated land

increased by 1171.30 km2, and 82.81 km2, 679.26 km2, respectively,

and the condition of the ecosystem in the river basin appeared to

have been enhanced.

According to the scenario of protecting cultivated land, the area

of cultivated land increased by 679.34 km2, with a corresponding

increase in its proportion by 1.80%. Moreover, there were increases

in the areas of forest and water by 82.81 km2 and 1097.63 km2

respectively. However, the area of construction land only slightly

increased by 28.49 km2. Grassland, water area, wetland, and

shrubland all saw decreases in the area of 822.88 km2,

1321.72 km2, 310.68 km2, and 1.27 km2, respectively.

In the scenario of ecological protection, the protection of

ecological land (that is, forest land, water area, grassland, and

wetland) is the most important goal, thus the simulated forest

land area in 2030 increased by 1675.83 km2, and grassland, water

area, and wetland increased by 448.32 km2, 82.81 km 2, and

3.25 km2, and in total, there was a reduction of 257.08 km2 in the

amount of land designated for construction. The primary reason for

the expansion of ecological land was the transfer of farmland and

undeveloped land, which decreased by 1358.55 km2 and

546.67 km2, respectively.

Under the scenario of rapid development, the extension of

construction land is the basic symbol of rapid economic
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FIGURE 8

Spatial distribution of habitat quality changes in the Gansu-Qinghai section of the Yellow River Basin from 1990 to 2020. (A. habitat quality change of
1990–2000; B. habitat quality change of 2000–2010; C. habitat quality change of 2010–2020; D. habitat quality change of 1990–2020).
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development. Construction land now covers a larger area of

13.83 km2. The arable land area increased by 679.35 km2, while the

shrub land area shrank by 254.60 km2. Wetland area and undeveloped

land area both fell by 546.68 km2 and 1.53 km2, respectively.

The Gansu-Qinghai Yellow River’s land use simulation results

for 2030 under each of the four scenarios revealed an increase in the

area of ecologically beneficial land, such as water area, forest land,

and wetland, while a decrease in the area of economically beneficial

land, such as cultivated land and unused land. The river basin’s

ecological environment is steadily improving into a healthy state.
3.4 Characteristics of habitat quality
changes in the Gansu-Qinghai section of
the Yellow River Basin under multiple
scenarios

With regards to the process of growth that occurs without

human intervention, the mean values of habitat quality in 1990,

2020, and 2030 are 0.745, 0.747, and 0.748, showing a rising trend.

Compared with 2020 (Table 6), the ratios of lower, low, and high

grades of habitat quality in the Gansu-Qinghai Yellow River section

have been decreasing and then increased by 0.27%, 0.10%, and

2.00% respectively in the past 10 years. The ratios of medium and
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high grades increased continuously, increasing by 0.49% and 2.56%

respectively. The area with low habitat quality has increased,

suggesting that the natural environment in the majority of the

watershed’s locations tends to be better as time goes by, indicating

that various ecological restoration projects in China will achieve

significant results in the study area. Compared with 1990, the ratios

of low, lower, higher, and high grades are all increasing by 0.31%,

2.52%, 0.10%, and 0.82%, respectively. The proportion of the

middle class is decreasing, by 3.08% in 40 years.

The average habitat quality values for the three scenarios—

cultivated land protection, ecological protection, and rapid

development—were, in that order, 0.748, 0.753, and 0.748. On

average, the ecological protection scenario had the best quality of

habitat, whereas the rapid development and cultivated land protection

scenarios had the lower average quality of habitat. The mean value of

habitat quality under the protection of cultivated land scenario and the

rapid development scenario is not significantly different because, under

the rapid development scenario, the demand for cultivated land is

second only to that of construction land, and the area of construction

land in the study area is small. According to the ecological protection

scenario, only 9.01% of the watershed’s total area is made up of low

and lower grades in the study area, while 39.53% of the watershed’s

total area is made up of high grades. Under the ecological protection

scenario, the watershed has a high level of habitat quality.
TABLE 6 Ratio of habitat quality levels (%) in Gansu-Qinghai section of the Yellow River Basin under four scenarios.

Grade Domain
1990 2020 NADS COPS ECPS RAPS

ratio/% ratio/% ratio/% ratio/% ratio/% ratio/%

Low 0–0.2 1.56 2.14 1.87 1.9 1.72 1.89

Lower 0.2–0.4 6.97 9.59 9.49 9.91 7.29 9.85

Medium 0.4–0.6 6.71 3.14 3.63 3.21 5.13 3.29

Higher 0.6–0.8 45.3 47.4 45.4 45.46 46.11 45.47

High 0.8–1 38.79 37.05 39.61 39.53 39.75 39.5

Mean 0.74503 0.7468 0.74829 0.74802 0.75287 0.74817
TABLE 5 Land use area under four scenarios in the Gansu-Qinghai section of the Yellow River Basin in 2030 and the difference between land use area
in 1990 and 2020/km 2.

Land use type
NADS COPS ECPS RAPS

2030 2020–2030 2030 2020–2030 2030 2020–2030 2030 2020–2030

Cultivated land 38465 679.26 38465.12 679.34 36427.23 −1358.55 38465.13 679.35

Forest land 19543.1 1171.3 19469.44 1097.63 20047.64 1675.83 19791.63 1419.82

Shrub 3029.44 −254.62 3029.46 −254.6 3236.16 −47.9 3029.46 −254.6

Grassland 223944 −1321.72 223943.84 −1321.72 225713.88 448.32 223943.77 −1321.78

Water 2626.11 82.81 2626.11 82.81 2626.11 82.81 2554.89 11.6

Unused 4934.94 −256.23 4880.48 −310.68 4644.49 −546.67 4644.48 −546.68

Construction land 550.74 −99.72 678.95 28.49 393.38 −257.08 664.3 13.83

Wetland 87.8 −1.08 87.62 −1.27 92.14 3.25 87.35 −1.53
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Under the four scenarios from 2020 to 2030, habitat quality

changes in the Gansu-Qinghai Yellow River section showed that the

gain area is greater than the loss area. In the NADS (Figure 9A), the

gain area occupies 57.23% of the entire watershed area, totaling

16.77 × 104 km2, while the loss area accounts for 42.77% of the

watershed area, amounting to 12.54 × 104 km2. Significant spatial

heterogeneity in habitat quality was evident. While it decreased in

the western and central regions, habitat quality in the northeast was

noticeably improved. The habitat quality of Above the Baoji Gorge

of Weihe River basin, Daxia River and Taohe River basin have

significant loss. This area is a densely populated area in Gansu and

Qinghai provinces, and the increase of construction land is

relatively obvious, which reduces the quality of habitat. In the

COPS (Figure 9B), the change in habitat quality was dominated

by gain, and the gain area accounts for 53.49% of the total area. The

change in habitat quality under the ECPS (Figure 9C) was a result of

all gains. In terms of space, the areas with a higher degree of gain is

the Loess Plateau region. Including Lanzhou to the Xiaheyan Basin,

Above the Baoji Gorge of Weihe River basin, Above the

Zhangjiashan of Jinghe basin, Huangshui basin. During the fast

development period depicted in Figure 9D, 80.27% of the entire

watershed area experienced an improvement in habitat quality,

while the remaining 19.73% suffered a decline in habitat quality.

From a spatial point of view, although most regions within the

examined territory are experiencing growth, the degree of gaining is

not high. The areas with the most obvious gains is in the northern

part of Lanzhou to the Xiaheyan Basin.
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4 Discussion

4.1 Analysis of influencing factors of
habitat quality

In this paper, 10 natural factors and 6 socioeconomic factors

were selected, and the influence degree of 16 factors on habitat

quality was explored through a random forest model, and the spatial

resolution of each factor and habitat quality was unified as 100 m ×

100 m. According to Figure 10, the Gansu-Qinghai Yellow River

region is more affected by natural factors than socioeconomic ones

when it comes to habitat quality. The most significant factor that

affects habitat quality is NDVI, and its impact is significantly greater

than other factors. In addition to NDVI, the higher degree of impact

on habitat quality was as follows: PRE, DEM, DFG, TEM, POP, TR,

DFRL, DFRO, GDP, TI, ST, Slope, and the degree of influence was

not much different. Factors with low impact on habitat quality are

slope, PX and OLS.
4.2 Comparative analysis of the results of
related studies

To solve the ecological problems of the Gansu-Qinghai Yellow

River section, China has introduced many policies and renovation

projects. For example, in 2005, the State Council approved the

implementation of the “Overall Plan for Ecological Protection and
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FIGURE 9

Changes in habitat quality in Gansu-Qinghai section of the Yellow River Basin from 2020 to 2030. (A. habitat quality of Natural development
scenario; B. habitat quality of Ecological protection scenario; C. habitat quality of Ecological protection scenario; D. habitat quality of Rapid
development scenario).
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Construction of the Sanjiangyuan Nature Reserve in Qinghai” to

rectify the ecological problems in the Sanjiangyuan area. The

implementation of the “Three North Project” on the Loess

Plateau (LP) has improved the natural environment of the LP

area, increased forest coverage, and solved ecological problems such

as soil erosion on the LP. It is precise because of the implementation

of these renovation projects and the continuous strengthening of

human protection of the ecological environment that the habitat

quality of the Gansu-Qinghai Yellow River section has been

significantly improved, which is the lowest inflection point of

habitat quality in 2000 in this study. This is consistent with the

improved results and also reflects the significant achievements

China has made in the governance of the region. The findings are

comparable to the study conducted by Zhang et al. (2021) that

examined the changes in the ecological conditions within the

Yellow River Basin.

According to the results of this investigation, it was observed

that there was a noteworthy reduction in the standard of living in

the research zone during 2017 and that the change in habitat quality

from 1990 to 2020 generally showed that the area of the degraded

area was greater than that of the gaining area, and the area of the

habitat degraded area was higher than that of the optimized area.

This research result is similar to the result that Ren et al. (2022)

pointed out that the habitat quality will decline from 2015 to 2020 in

the study of ecosystem services in the Yellow River Basin’s middle

reaches. The reason for this phenomenon may be that although

projects such as returning farmland to grasslands and forests have

played a crucial part in enhancing the ecological environment’s
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quality in the early stage, as time goes by, some disadvantages will

also occur. Excessive vegetation restoration may not bring

continuous optimization of the ecological environment but will

cause unfavorable competition among various vegetation types,

resulting in the death of a large number of understory vegetation

and the reduction of habitat quality according to Lin et al. (2020).

This study also confirmed that ecological environmental problems

may occur in the long-term project of converting farmland to grass

(forest). As a result, it’s crucial to develop a sensible plan for land

use that is founded on the utilization of land, to enhance the quality

of the Gansu-Qinghai Yellow River’s habitat, reduce the damage to

natural landscapes such as grassland, forest land, and lake

wetlands, increase investment in wetland restoration, and form a

scientific effective ecological protection mechanism, but at the same

time, it is necessary to eliminate the negative effects caused by

over-protection.

The habitat quality level in 2030 under the four scenarios of

the Gansu-Qinghai Yellow River section will be ECPS > NADS >

RADS > COPS. The variation in land use within the study area

could be responsible for the slightly higher average habitat quality

in the fast-paced development scenario compared to the scenario

where land is protected for cultivation. Conversely, 0.22% of the

Yellow River Basin’s total area is made up of construction land in

the Gansu-Qinghai section, while 10% of the basin’s total area is

made up of cultivated land. Thus, the expansion of the RADS is

not strong. Judging from the coupling results of habitat quality

and land use change in various simulated scenarios, the ECPS has

the best coupling and coordination improvement effect. The

RADS can be selected for the development model of the stage,

but the conversion of different land uses must be strictly

implemented according to the conversion principle matrix

established in the simulation scenario; if the future policy

guidance of the basin focuses on ecological benefits, the ECPS

can be selected.
4.3 The limitations of this research

This study has shortcomings. First of all, it is the first attempt to

estimate the habitat quality based on the annual China Land Cover

Dataset (CLCD) produced by two professors Yang and Huang of

Wuhan University on the GEE platform. The determination of the

sensitivity coefficient of the threat source is obtained by referring to

several works of literature, and it is not a specific coefficient

obtained for this research area. Additionally, the intricate

procedure of altering the purpose of the land is impacted by

various natural and socio-economic factors that propel it forward.

Even though a variety of land use types are affected significantly by

these factors, in this study, a total of 15 natural socio-economic

factors were chosen as the driving factors for simulating the future

land use pattern. The final simulation result is highly accurate and

the land use type has a good fitting effect, but it ignores the influence

of policy factors like the ecological protection red line, the

permanent basic farmland boundary, and the urban development

boundary on land use change.
FIGURE 10

Extent of impact of habitat quality drivers.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1228558
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yang et al. 10.3389/fevo.2023.1228558
5 Conclusions

This study investigates the characteristics of land use change

and spatial and temporal patterns of habitat quality in ecologically

fragile areas on a long-term scale. At the same time, 15 factors such

as natural society are selected to influence the habitat quality, and

finally explore the features of future land use and habitat quality

changes in the study area from four perspectives: cultivated land

protection scenario, natural development scenario, rapid

development scenario, and ecological protection scenario. The

main conclusions obtained were:

(1) Grassland is the main land use type in the Ganqing section

of the Yellow River Basin, accounting for over 70% of the total area.

Cultivated land and forest land respectively account for about 13%

and 6% of the basin. From 1990 to 2020, the area of construction

land and forest land showed an increasing trend year by year, while

the area of unused land and water area showed a fluctuating

increasing trend. The overall area of cultivated land, wetlands,

grasslands, and shrublands showed a fluctuating decreasing trend.

The Ganqing section of the Yellow River Basin is roughly divided by

the transitional zone between the Qinghai Tibet Plateau and the

Loess Plateau in space. The main land use types to the west are

forests and grasslands, and to the east are farmland and

construction land.

(2) The habitat quality of forests, grasslands, and water bodies in

the Ganqing section of the Yellow River Basin is high, while the

habitat quality of cultivated land and construction land is low. From

1990 to 2020, the habitat quality of the Ganqing section of the

Yellow River Basin decreased slightly and then increased. Over the

past 30 years, the change in habitat quality showed that the gain

area was slightly smaller than the loss area, and the overall habitat

quality improved, showing spatial heterogeneity of “enhanced in the

east and weakened in the central and western regions”.

(3) Compared to 2020, under the four scenarios, the area of

arable land, forest land, and water area significantly increased in

2030, while the area of grassland and unused land decreased.

Among them, the increase in construction land was significant

under the scenarios of arable land protection and rapid

development. Under the four scenarios, the habitat quality of the

Ganqing section of the Yellow River Basin continues to improve,

manifested as a decrease in the area of low value areas and a

significant increase in the area of high value areas. Among them, the
Frontiers in Ecology and Evolution 16164
average habitat quality is the highest under the ECPS, while it is

relatively low under the COPS and the RAPS.
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Irrigated crops have experienced a significant global expansion. The biophysical

response of climate change to irrigated crop expansion in different regions,

particularly in terms of monitoring the influence mechanism of nighttime land

surface temperature (LST) change, however, remains insufficiently explored.

Taking the three northeastern provinces of China as our study area, we apply

window analysis, partial correlation analysis, and geographical detector to

quantitatively characterize the spatial and temporal distribution pattern of

daytime and nighttime LST (diurnal LST) and biophysical parameters, and the

main driving mechanism of diurnal LST change. The results showed that irrigated

crop expansion led to asymmetric changes in daytime (−2.11 ± 0.2°C, 97.4%) and

nighttime (0.64 ± 0.2°C, 79.9%) LST. DLSTDT had a negative correlation with DLE
(63%), but a positive correlation with DSSR and DH (91% and 77%). This revealed

that the cooling effect caused by the superposition of the output latent heat flux

and the absorbed solar shortwave radiation was greater than its heating effect.

DLSTNT and DLE had a positive connection across 69% of the region. DLSTNT

demonstrated a negative correlation with DSSR and DH in 82% and 75% of the

regions, respectively. At this time, the superposition of latent heat flux and

heating potential term produces a greater heating effect. The explanatory

power of the single factor (the mean of q<0.50) of biophysical parameters for

diurnal LST variation was significantly smaller than that of the interaction factor

(the mean of q>0.50, p<0.01). This study shows more detailed dynamic

information of diurnal LST and biophysical parameters from 8day scale. The

findings highlighted the critical role of asymmetric changes in the diurnal surface

thermal environment caused by irrigated crop expansion in the global climate

from a land surface hydrothermal energy balance perspective.

KEYWORDS

biophysical parameters, water thermal energy balance, regional climate change, land
use and cover, geo-detector model
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1 Introduction

By 2050, the world population is expected to reach 9.2 billion,

increasing the food demand by 70–110% (Bajželj et al., 2014; van

Dijk et al., 2021). To ensure an adequate food supply in the future,

intensive irrigated agriculture has been developing rapidly. The

Food and Agriculture Organization of the United Nations (FAO)

reports that as of 2017, there are approximately 167 million hectares

of irrigated crops globally, of which more than 90% are located in

Northeast Asia (Delzeit et al., 2017; FAO, 2018). The expansion of

irrigated crops fundamentally alters the biogeochemical and

biophysical (albedo, sensible heat flux, and latent heat flux)

processes between the atmosphere and the land surface. It

indirectly alters the seasonal cycle of carbon–water–energy of the

land–atmosphere interface and plays a critical role in regulating the

regional and global climate (Feddema et al., 2005; Windisch et al.,

2021). Among these changes, the influence of biophysical processes

on climate is more prominent at regional and short-time series

scales (Arora and Montenegro, 2011; Zhang et al., 2014a), and these

persistent changes in regional climates will threaten future grain

yield (Liang et al., 2018; Gaupp et al., 2020). Therefore,

understanding the regional climate effects of irrigated crop

expansion from a mechanism perspective will provide a scientific

basis for sustainable regional agriculture and food development.

Currently, observation data and model simulation are used

mainly to study the influence of irrigated crop expansion on

climate (Zhao et al., 2012; Zhu et al., 2012). Observational data,

the most reliable in situ measurement method, are used to quantify

the climate’s response to irrigated crop expansion by comparing

temperature differences between irrigated and rainfed crops or the

differences before and after the conversion of rainfed crops to

irrigated crops. However, the data essentially provide point

information (Christy et al., 2006). Because of the complex land

surface coverage conditions and significant terrain differences, point

information cannot fully represent the large-scale situation of a

region. In addition, the background information (e.g., the

characteristics of the surrounding features) of irrigated crops of

different sites is different. Therefore, it is difficult to distinguish

temperature differences caused by a combination of irrigated crop

expansion and other surrounding instabilities. Model research has

compared the differences between the simulation results of different

models (coupled or uncoupled) and the results of control

experiments (Huang et al., 2009; Wei et al., 2016). Therefore,

accurately simulating each sector of irrigation experiments is a

crucial step toward achieving effective results. For example, the use

of a climate-coupled model to simulate the response of temperature

to global irrigation indicated that the intensity of irrigation cooling

varied considerably regionally, which may have been caused by

factors such as irrigation range and irrigation amount (Lobell et al.,

2009). However, the quantitative description of the location, time,

method, and number of irrigated crops remains uncertain.

Therefore, we used the window-searching strategy proposed by

previous studies to eliminate issues like inconsistent background

information of climate observation data and uncertainties in the

attribution of temperature changes caused by model simulations (Li

et al., 2016). Within the same moving window, pairs can be used to
Frontiers in Ecology and Evolution 02167
calculate differences in land surface parameters between the study

object and its surrounding land cover types. It is possible to ensure

the consistency of climate background, environment, and

topography of different land use and cover types within the

window by setting up appropriately sized moving windows

(Malyshev et al., 2015; Schultz et al., 2016; Winckler et al., 2017).

This method, as a complementary method for investigating

temperature change, is used to identify the effects of irrigated

crop expansion on local land surface temperature (LST).

Previous studies have simulated the effect of irrigated crop

expansion on contemporary climate using models and have

concluded that the effect of irrigated crop expansion is negligible

on a global average scale (Sacks et al., 2009). However, the effect of

irrigated crop expansion has been significant on a regional scale,

with varying results. In the humid tropics, for example, the

expansion of irrigated crops has caused thermal effects both

during the day and at night, whereas it is a source of cold during

the day and a source of warmth during the night in arid and semi-

arid areas, especially during the dry season (Adegoke et al., 2003;

Yang et al., 2020). However, the relative magnitude of daytime

cooling and nighttime warming varies by region(Zhu et al., 2011).

In the North China Plain, the nighttime warming effect of irrigated

crops is greater than the daytime cooling effect, which has increase

the regional temperature (Chen and Jeong, 2018). Conversely, in

Northeast China, the expansion of irrigated crops has led to more

significant daytime cooling effect than the nighttime warming effect

during the growing season, resulting in a cooler local region (Liu

et al., 2018; Yu and Liu, 2019).

Current research focuses on the influence mechanism of LST

change from two aspects: biogeochemical processes and biophysical

parameters (Bonan et al., 1992). The former emits or absorbs

greenhouse gases, such as carbon dioxide, methane, and nitrous

oxide, directly affecting carbon emissions and sequestration in the

atmosphere (Pongratz et al., 2010). Studies have revealed that the

expansion of irrigated crops has increased greenhouse gas

concentrations in the atmosphere, eventually leading to a rise in the

average temperature during the growing season (Chen et al., 2013; Sun

et al., 2017). The latter directly disturbs the surface energy and water

balance by changing the surface albedo, evapotranspiration, roughness,

and specific emissivity (Moon et al., 2020). The study of the response of

biophysical parameters to irrigated crop expansion, however, remains

limited, which is reflected mainly in the trade-off effect between the

degree of influence of radiative and nonradiative processes during

different growing seasons. It is generally accepted that albedo, latent

heat flux, and sensible heat flux are the dominant factors of LST

variation (Du et al., 2017; He et al., 2020). Daytime LST decreases

during the early growing season (May–June), and this is mainly

because the cooling effect of latent heat flux is greater than the

warming effect of albedo. Daytime LST variation in July–September

is influenced by the synergistic effect of albedo and latent heat flux (Liu

et al., 2018; Liu et al., 2019b; Pan et al., 2020; Liu et al., 2022). Through

temperature response models, it has been found that local nonradiative

processes (i.e., evapotranspiration and sensible heat) dominate the

daytime cooling of irrigated crops and that radiation processes (i.e.,

albedo) play a secondary role (Zhang et al., 2022). The contribution of

nonradiative processes to the daytime LST variation had seasonal
frontiersin.org
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characteristics. However, previous studies have only made a qualitative

comparison of the relative contributions of radiative and nonradiative

mechanisms to LST changes and the seasonal response of LST changes

to energy factors remains controversial (Xin et al., 2020). Meanwhile,

these studies have ignored the influence of superposition of energy

factors (e.g., latent heat flux, solar incident shortwave radiation) on

LST. Furthermore, the influence mechanism of nighttime LST change

is more complex (Chen et al., 2022; Lian et al., 2022), and it has not

been thoroughly discussed in prior research. We assessed the potential

influencing factors of nighttime LST increase in terms of thermal

inertia generated by net surface energy during the day and atmospheric

inverse radiation at night caused by latent heat flux in this study.

The three eastern provinces of China are located in the

hinterland of Northeast Asia, characterized by flat topography

and abundant water and soil resources. Since the economic

reforms in 1978, a large area of wetlands has been reclaimed to

ensure the supply of national food production and to meet the

demands of local economic development (Dong et al., 2016). A

combination of these factors provided a natural experimental site

for studying the mechanisms of climate change caused by the

expansion of irrigated crops. In this study, we used the window-

searching strategy to calculate the differences in surface parameters

between irrigated crop and non irrigated crop to remove the

influence of climatic background and topographic factors on LST

changes. Then, we portrayed the spatial–temporal responses of

daytime and nighttime land surface temperature (diurnal LST)
Frontiers in Ecology and Evolution 03168
changes to surface radiant energy (e.g., incident radiant energy,

outgoing radiant energy, and net effect) quantitatively and

comprehensively, from the perspective of surface energy

superposition. This information has enriched the research system

on the mechanism of the climate impact of irrigated crop

expansion. Specifically, we examined the following: (1) How do

latent heat flux, solar shortwave radiation energy, and heating

potential term lead to the decrease of average daytime LST during

the growing season? (2) What are the main controlling factors of the

increase in nighttime LST? Are they direct effects on the nighttime

LST increase? (3) On the spatial scale, which of the interaction

effects of single-energy factor (first order) and double-energy factor

(second order) has a higher degree of explanation for LST changes?
2 Materials and methods

2.1 Study area

The study area is located in high-latitudes of Northeast Asia,

which cover Heilongjiang, Jilin, and Liaoning provinces (38.7–53.5°N,

121.1–123.6°E) (Figures 1A, B), with a total area of about 7.9×105 km2.

This region is at the junction of the cold temperate zone, mid-

temperate zone, humid and semi-humid climate. This area is cold-

dry in winter and warm-humid in summer. The annual average

temperature is −3–10°C. The maximum temperature decreases each
A

B

C

D

FIGURE 1

(A, B) Geographic location and elevation of Northeast China. (C) Climate situation of Northeast China since 2001. (D) Spatial distribution map of
Irrigated crops expansion from 2015 to 2020.
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year, while the minimum temperature increases during the period

2000–2020 (Figure 1C). The annual precipitation ranges between 400

and 1100 mm, with the majority falling between July and September.

Its vast plains, fertile soil and sufficient water-heat state provide

excellent natural conditions for the growth of single-season rice.

The expansion rate of rice area during 2015–2020 is as high as

1.76×103 km2/a (Figure 1D). The rapid development of intensive

irrigated agriculture has made it an important commercial grain base

in China.
2.2 Data and data processing

Land surface temperature (LST) data from the 8-day 1-km

Terra/MODIS products (MOD11A2). As Terra/MODIS overpasses

at around 10:30 and 22:30, which are close to the time of daily

maximum and minimum air temperatures, so MOD11A2 LSTs at

10:30 and 22:30 were defined daytime LST (LSTDT) and nighttime

LST (LSTNT), accordingly (Wan et al., 2015).

Latent heat flux (LE) is the flux of heat from the Earth’s surface

to the atmosphere that is associated with evaporation of water at the

surface, and is estimated by Terra/MODIS Evapotranspiration/

Latent Heat Flux product (MOD16A2) that includes 500 m 8-day

Evapotranspiration (ET), Latent Heat Flux (LE), Potential ET (PET)

and Potential LE (PLE). MOD16A2 calculates global LE based on

the Penman-Monteith (PM) equation, and its mean absolute bias is

within 0.31–0.33 mm day−1 (Mu et al., 2011).

Albedo data are derived from 500 m daily albedo Model dataset

(MCD43A3). The data include white-sky (directional hemispherical

reflectance) and black-sky (dual hemispherical reflectance) albedos

for seven MODIS individual bands and three broad bands (0.3–

0.7 mm, 0.7–5.0 mm, and 0.3–5.0 mm) (Schaaf et al., 2002). As black-

sky and white-sky albedo are highly correlated and have small

difference, this study simply chooses white-sky albedo for 0.3–

5.0 mm to indicate the total energy reflected by the earth surface.

Downward Shortwave Radiation (DSR) from Global Land

Surface Satellite (GLASS), which is the world’s first high spatial-

temporal resolution radiation product (daily, 0.05°). It mainly uses

multiple polar orbits and geostationary satellite data to establish
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cloudy and cloudless radiative transfer models based on the look-up

table algorithm. Using MODIS band data and cloud products, the

inversion results of two MODIS observation sensors are combined.

The measured coefficient is good 0.83 and the root mean square

error is 115.0 W m−2 (Zhang et al., 2014b).

The land use/cover data from 2015 to 2020 are derived from the

China Cropping Pattern Map. This data is based on GlobeLand30

global cultivated land data, which use mapping algorithm of

phenological and threshold of pixel purity, the first planting map

of three major crops (rice, maize and wheat) in China based on 500

m MODIS was obtained. The overall classification accuracy was

89%, the kappa coefficient was 0.85, the rice producer accuracy was

93%, and the dryland was 83%–90% (Qiu et al., 2022). We mainly

selected irrigated and rainfed crops by the following criteria, as

described in the literature (Abera et al., 2019). Assuming six layers

for 2015–2020, the dominant land cover type was assigned to each

pixel through an automatic selection method, i.e., the ones in the six

500 m pixels should all belong to the same category, or else removed

from our analysis. Ultimately, pixels with rice in all six layers for

2015–2020 were defined as irrigated crops, and pixels with corn in a

single pixel in all six layers, wheat, or a pixel with both corn and

wheat were defined as rainfed crops. Eventually, all products’

temporal and spatial resolutions were unified to 1 km and 8-day

scales, respectively. Additionally, the projection was unified to

match the original projection of MODIS data to facilitate the

calculation between products. See Table 1 for details of

data products.
2.3 Methodology

This paper is mostly based on data from multiple remote

sensing sources. Window-searching strategy is used to find

irrigated crops and rainfed crops that have the same climate

setting. On the basis of this, the spatial and temporal

characteristics of diurnal land surface temperature and land

surface biophysical parameters of rainfed crops and irrigated

crops are examined. Lastly, by combining the pearson partial

correlation analysis and the geo-detector model, the main
TABLE 1 Datasets summery and quality control.

Datasets Description Quality control Resolution Time

MOD11A2
Land surface temperature (LST at 10:30 and

22:30 local time)

Mandatory QA = 0, indicating good quality;
Emiserror = 0, indicating average

emissivity error ≤ 0.01;
LST error=0, indicating average LST error ≤1K

1 km, 8-day 2015–2020

MOD16A2 Evapotranspiration (ET) Quality control = 0, indicating good quality 500 m, 8-day 2015–2020

MCD43A1 Shortwave white sky Albedo
Mandatory QA = 0, indicating good quality with full

BRDF inversions
500 m, Daily 2015–2020

GLASS DSR
Overall coefficient of determination = 0.83
Bias = −6.5W m−2, RMSE = 115.0W m−2 0.05°, Daily 2015–2020

Maps of cropping patterns
in China

Land use and cover
Overall accuracy = 89%

Accuracy of paddy field = 93%
Accuracy of rainfed crops = 83%–90%

500 m, year 2015–2020
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biophysical mechanisms that cause the diurnal land surface

temperature to change were studied on both the spatial and

temporal scales. The exact process is shown in Figure 2.
2.3.1 Quantization impacts of irrigated crop
expansion on land surface parameters

Land surface temperature: We assessed the biophysical impact

on LST changes through hypothetical irrigated crop expansion,

which does not happen in reality. This methodology was developed

by evaluating the temperature change induced by afforestation and

deforestation (Li et al., 2015). The potential impact of irrigated

crops on LST was expressed as the LST difference between irrigated

crops and nearby rainfed crops in 2015–2020:

DLSTi = LSTIC − LSTRC (1)

DLSTi = LSTIC − LSTRC (2)

dLST = DLSTIC − DLSTRC (3)

where i represents daytime (DT) or nighttime (NT); DLSTi  

(DLSTi) represents DLSTDT (DLSTDT ) or DLSTNT (DLSTNT ); LSTIC

and LSTRC represent average daytime and nighttime LSTs in
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2015–2020 for irrigated crops and rainfed crops, respectively

(8 days in growing season); LSTIC and LSTRC represent monthly

average (mean of DLSTi from May to October) daytime and

nighttime LST in 2015–2020, respectively, and DLSTIC and DLS
TRC represent the diurnal LST difference in irrigated crops and

the diurnal LST difference in rainfed crops, respectively.

Negative DLSTi (DLSTi) indicated the cooling effect of irrigated

crops; otherwise, it indicated a warming effect. A negative dLST
suggested that the diurnal LST difference was smaller in the

irrigated crops compared to non-irrigated crops, and vice versa.

Intrinsic biophysical mechanics: We calculated the biophysical

differences in solar shortwave radiation (SSR), latent heat flux (LE),

and heating potential term (DH) between irrigated crops and nearby

non-irrigated crops in the same way as the previous calculation. To

directly compare the relative effects of surface radiant energy changes

on DLSTi, which were caused by the difference between albedo and

latent heat flux, we introduced the downward shortwave radiation

(DSR). The solar shortwave radiation energy SSR (SSR = DSR

(1-Albedo)), which was absorbed by the land surface, was calculated

by DSR and albedo (Schultz et al., 2017).We refer to (Li et al., 2015) for

the definition of a heating potential term as the difference in absorbed

solar shortwave radiation and latent heat fluxes between irrigated crops

and nearby non-irrigated crops in 2015–2020 is given by
FIGURE 2

Flowchart of this study. IC, irrigated crops; RC, rainfed crops; LE, latent heat flux; SSR, solar shortwave radiation; H, heating potential term.
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DH = DSSR − DLE (4)

DH = DSSR − DLE (5)

where DSSR and DLE represent the difference in solar shortwave

radiation energy and latent heat flux on the 8-day scale for irrigated

crops and rainfed crops in 2015–2020, respectively; DSSR and DLE
represent the monthly average (mean of DSSR and DLE fromMay to

October) solar shortwave radiation energy and latent heat flux for

irrigated crops and rainfed crops in 2015–2020, respectively.

Negative DH (DH) indicated that the heating potential term

absorbed and released by the irrigated crops was greater than that

of the surrounding non-irrigated crops, and vice versa.
2.3.2 Window-searching strategy
Because the 1-km spatial resolution of MODIS products is

relatively coarse, it might cause “mixed pixels” and add

uncertainties of land surface parameters. To extract relatively

pure MODIS pixels, we aggregated the 500-m land use and cover

data with the 1-km MODIS LST resolution by calculating the area

percentage of irrigated crops and rainfed crops within 1 km × 1 km

grids and chose “pure” grids with an area percentage of 100% for

irrigated crops (46,163 grids) and rainfed crops (34,797 grids).

We used the “window-searching strategy” to identify the

relationship between surface energy parameters of irrigated crops

and rainfed crops over a valid geospatial space range (Li et al., 2016;

Shen et al., 2019). We defined a 10 km × 10 km moving window

covering 100 1 km × 1 km pixels. If both the paddy field and rainfed

crop pixels were located within one moving window, this was

defined as a valid comparison sample, within which we could

calculate the average DLSTDT , DLSTNT , DLE, DSSR, and DH.

For the potential impact of irrigated crop expansion, the total

number of valid windows was 802 (Figure 1C). The window-

searching strategy guaranteed that irrigated crop and rainfed crop

pixels within the surrounding neighborhood were under similar

climate forcing and minimized the uncertainties of local

environment backgrounds (e.g., terrain, elevation wind, MODIS

viewing zenith angle).

2.3.3 Spatio-temporal correlation analysis
Pearson partial correlation analysis: The variation of land surface

biophysical parameters was the main factor affecting the variation of

diurnal LST at the local scale. We used the Pearson partial correlation

analysis method to explore the individual effects of latent heat flux,

solar shortwave radiation energy, and heating potential term changes
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on diurnal LST changes on the temporal scale during the growing

season. These results revealed the essential characteristics of diurnal

LST warming and cooling changes (Umair et al., 2020).

Geo-detector model: Geo-detector is a statistical method used to

reveal the driving factors behind by spatial heterogeneity. In this

study, our core idea was that the spatial distribution of the two

factors with correlation would be similar and mainly runs the model

in R studio environment. We used the factor detector and the

interactive detector to judge the spatial effect of the change of a

single-surface energy factor and the interaction of the change of

two-surface energy factors on the diurnal LST changes (Zhu et al.,

2020). This degree of explanation is measured by the q-value, and

the statistical model is as follows:

q = 1 −om
n=1Nns

2
n=om

n=1Nns
2
n , (6)

where n = 1, …, m indicates the subregions (irrigated crops

(46163 grids) and rainfed crops (34797 grids)) of variable DLSTDT

 (DLSTNT ) or DLE (DSSR and DH); Nnwas the number of moving

windows for the entire region (802);  s2
n and  s2 indicate the

variances of n of subregions and the whole area, respectively.

Larger q-values indicate a stronger explanatory power of driver

variation on diurnal LST variations, while the opposite indicates

that the explanatory power is weaker; q = 1 indicates that the change

of driving factors completely controls the spatial distribution of

diurnal LST variations, and the explanatory power reaches 100%.

The factor detector determined the main controlling factor of

LST changes mainly by judging the relative magnitude of q-values of

multiple single factors. The interaction detector compared the relative

magnitudes of q-values of two single factors (e.g., DLE, DSSR) and
two single-factor interactions (e.g., DLE∩DSSR) to determine the type

of interaction (divided into five categories) Table 2.
3 Results

3.1 Temporal response of LST and
biophysical parameters to irrigation
crop expansion

We identified the differences between irrigated crops and rainfed

crops in the process when the underlying surface releases latent heat

flux and absorbs solar shortwave radiation energy. To reflect the

change in the surface energy signal of the prospective growth of

irrigated crops, we quantitatively assessed the differences in diurnal

LST, latent heat flux, net solar shortwave radiation energy, and
TABLE 2 Interaction detector classifications.

q Value comparison Interaction Defined of interaction

q(X1∩X2) <Min(q(X1), (X2)) Non-linear weakening NLW

Min(q(X1), (X2)) <q(X1∩X2) <Max(q(X1), (X2)) Single-factor nonlinear attenuation SFNA

Max(q(X1), (X2)) <q(X1∩X2) Two-factor enhancement TFE

q(X1∩X2) =q(X1) + (X2) Independent IE

q(X1) + (X2) <q(X1∩X2) Non-linear enhancement NIE
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heating potential term of irrigated crops and rainfed crops in 2015–

2020. During the growing season, the daytime (10:30) and nighttime

(22:30) LST differences showed asymmetry (Figures 3A, B). Among

these differences, the daytime LST average decreased by 2.11 ±

0.21°C, whereas it increased by 0.64 ± 0.19°C at nighttime, and the

daytime cooling range was significantly bigger than the nightly

warming range (1.47°C). The order of DLSTDT was as follows: the

early growing season (−3.56 ± 0.27°C) > the mid-growing season

(−1.35 ± 0.21°C) > the late-growing season (−1.34 ± 0.16°C). The

temporal variation characteristics of DLSTNTwere consistent with

those of DLSTDT , which reached the maximum value (1.98 ± 0.25°C)

in the early growing season and the minimum value (−0.76 ± 0.15°C)

in the late-growing season. The average values of DLSTIC and DLSTRC

were 9.03°C and 11.78°C, respectively, and the average value of d LST
was −2.75 ± 0.23°C. The main reason for the decrease in DLSTIC was

that irrigated crops were subjected to both daytime cooling and

nighttime warming (Figure 3C).
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The average difference of latent heat fluxes was 4.05 ±

1.01 W m−2 (Figure 3D). This reached its maximum during the

mid-growing season (10.35 ± 1.02 W m−2), and the sign of

average values of the early growing season (6.01 ± 0.78W m−2)

and late-growing season (−3.50 ± 0.92 W m−2) were opposite. The

average difference of solar shortwave radiation energy was 2.49 ±

3.12 W m−2. The maximum difference (11.23 ± 3.44 W m−2) in the

early growing season was significantly larger than the average value

of the entire growing season, whereas the average difference in other

months was −2.18 ± 3.02 W m−2. The mean value of the difference

of SSR during the whole growing season was greater than zero

(Figure 3E). The average difference in heating potential term for

DOY = 121–177, was 5.22 ± 2.17 W m−2. The difference of surface

heating potential term was the smallest in the late-growing season

(0.01 ± 2.94 W m−2; Figure 3F), because the absorbed solar

shortwave radiation and the latent heat flux that was released by

the surface were similar.
A B

D

E F

C

FIGURE 3

Mean 8-day cycle of land surface parameters of irrigated crops and the adjacent rainfed crops, and their differences during the growing season of
2015–2020. (A) Daytime LST, (B) nighttime LST, (C) diurnal LST, (D) latent heat flux (LE), (E) solar shortwave radiation (SSR), (F) heating potential term
(H). Grey shadows represent standard deviation.
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3.2 Spatial response of LST and biophysical
parameters to irrigation crop expansion

We observed significant spatial differences in multiyear mean

daytime and nighttime LST of irrigated and rainfed crops in 2015–

2020. DLSTDT showed an overall high in the west and low in the east

(Figure 4A), with a mean value of −2.11°C, which was concentrated

in the range of −3°C to 1°C (Figure 4B). In more than 62% of the

regions, the DLSTDTwas between −2°C and −5°C. Compared with

low latitudes, the daytime LST of irrigated crops decreased

significantly at high latitudes. The DLSTNT in the eastern region

was slightly lower than that in the western region (Figure 4C), with

a mean value of 0.64°C, which was concentrated in the range of

−2°C to 2°C. In more than 77% of the regions, the DLSTNT was

between 0°C and 1°C (Figure 4D). Similarly, DLSTNTwas bigger in

the high latitudes than that in the low latitudes, which mainly

showed a warming effect. Because of the low temperature at high

latitudes, the non-irrigated crops entered the growing season late.
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Low latitudes, on the other hand, are close to the ocean, and heavy

rainfall during the growing season reduces the surface heat

difference between paddy fields and drylands.

From May to October, the DLSTDT showed a gradual decrease

(Table 3), with a maximum difference (−3.7±0.3) in May (the early

irrigation period) and a minimum difference (−0.9±0.3) in August

(the vegetation bloom period). The DLSTNT trended upward and

then downward, with the greatest difference in June and the smallest

difference in September.

We also observed differences in the spatial distribution of DLE ,

DSSR, and D �H of irrigated crops and rainfed crops in 2015–2020

(Figures 5A, C, E). The change patterns of DLE, DSSR and D �H were

similar, and all showed a weak decreasing trend with an increase in

latitude. DLE was more than zero in 70.2% of the locations, and

DSSR was more than zero in 80.6% of the areas. During the entire

growing season, irrigated crops released and absorbed less heating

potential term than rainfed crops, and the percentage of heating

potential term reduction regions was 53.2% (Figures 5B, D, F).
A B

DC

FIGURE 4

The land surface temperature differences of spatial patterns, latitudinal distributions, and frequency histograms of irrigated crops and the adjacent

rainfed crops during the growing season of 2015–2020. (A, B) The spatial distribution map and the histogram of DLSTDT . (C, D) The spatial

distribution map and the histogram of DLSTNT . Grids with crosses indicate that the differences are significant at 95% by t-test, grey shadows
represent standard deviation.
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The extreme values of DLE and DSSR appeared in opposite

months (Table 4). DLE reached the maximum in July (12.7±

0.9 W m−2) and the minimum in October (0.2±0.9 W m−2). The

value of DSSR reached its highest point in June (11.4±4.2 W m−2)

and its lowest point in July (−1±2.4 W m−2). The heating potential

term difference was determined by a combination of latent heat flux

and solar shortwave radiation energy.
3.3 Biophysical spatiotemporal driving
mechanism of diurnal LST change

3.3.1 Temporal effect of biophysical changes on
diurnal LST change

We used latent heat flux and solar shortwave radiation energy

and their summation to directly determine the change

characteristics of LST. On the seasonal scale, DLE was negatively

correlated with DLSTDT , which accounted for 63% of the area

(Figure 6A); furthermore, 15% of the regions had highly significant

negative correlation. This research demonstrated that when DLE
between irrigated and rainfed crops grew, so did DLSTDT . In May–

August, the latent heat flux released by irrigated crops was much

greater than that released by rainfed crops (DLE> 0), resulting in a

cool effect, while DLE< 0 from September to October. Finally, the

average daytime LST of irrigated crops was lower than that of

rainfed crops during the growing season. Thus, it indicates that the

strong cooling effect of latent heat flux in May–August offsets the

weak heating effect in September–October. We observed a positive

correlation between DSSR and DLSTDT , which accounted for 91% of

the area (Figure 6B), and indicated that the greater the difference in

solar shortwave radiation energy, the greater the difference in

daytime LST. Compared with rainfed crops, irrigated crops

absorbed more solar shortwave radiation energy in May–June,

and less in July–October. However, the DLSTDT was still less than

zero, indicating that the cooling effect of high latent heat flux offset

the weak warming effect of low solar shortwave radiant energy. DH
was positively correlated with DLSTDT (Figure 6C), which accounted

for 77% of the area. The DH  < 0 in entire growing season,

eventually produced a cooling effect. This finding revealed that

there was a lag effect in the impact of land surface energy.

On the seasonal scale, DLE was positively correlated with DLS
TNT , and its area accounted for 69% of the total (Figure 6D). Highly

significant positive correlation and substantial positive correlation

accounted for 44.6% and 24.4% of the total. This result indicated

that with an increase in DLE, its DLSTNT gradually increased. DSSR
and DLSTNT were inversely associated, as were DH and DLSTNT ,

and their regions accounted for 82% and 75%, respectively

(Figures 6E, F). Thus, as DSSR and DH increased, the DLSTNT  

decreased steadily. From May to October, irrigated crops had a
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higher average latent heat flux and a lower average cumulative

heating potential term throughout the day than rainfed crops.

Finally, irrigated crops provided nighttime warmth. This result

showed that the warming effect of latent heat flux was greater

than the cooling effect of daytime-accumulated heating potential

term. Therefore, the asymmetry of daytime and nighttime LST

variation was caused mainly by the different controlling factors of

land surface energy.

3.3.2 Spatial effect of biophysical changes on
diurnal LST change

The physical energy of surface components and surrounding

ground types underwent lateral exchange. Changes in latent heat

flux, solar shortwave radiant energy, and heating potential term

factor and their interactions on spatial scales directly determined

the spatial distribution patterns of daytime LST changes. As shown

in Table 5, the single-factor DLE and DSSR had the strongest

explanatory power for the spatial distribution of DLSTDT in

September (q=0.57, p<0.01) and October (q=0.43, p<0.01),

respectively, whereas DH had significant explanatory power in all

of May–October; the mean of the q-value was 0.45.

The latent heat flux, solar shortwave radiant energy, and heating

potential term were superimposed, and their interaction also

determined DLSTDT . The effect of interaction factors was

significantly greater than the single factor effect (Table 5,

Figure 7A), and their q-values were all greater than 0.5. Overall,

DLE∩DH had a more significant effect on DLSTDT than DLE∩DSSR,
whereas DSSR∩DH had the slightest impact. The trends of the

monthly variation of the explanatory power of interaction factors

on DLSTDT were consistent, and all of them peaked in August

(q=0.92, 0.85, and 0.84). Among these factors, DLE∩DSSR had non-

linear enhancement throughout the growing season, whereas both

DLE∩DH and DSSR∩DH had two-factor and non-linear

enhancements over the growing season (Figure 7B).

Corresponding to the time scale, at the spatial scale, changes in

the land surface energy factor affected the DLSTNT to a lesser extent

than the DLSTDT , due to the cumulative transfer in time weakened

the effects of land surface energy factor. The explanatory power of

the single components DLE, DSSR, and DH for the nighttime LST

rise was best in August (q = 0.39, 0.3, and 0.56) and poorest in

September, all with a q-value of 0.1. (Table 6). The DH at the surface

was also the primary determining element for nighttime irrigated

crop warming.

The explanatory power of the interaction factor on the DLSTNT

was significantly greater than the single-factor effect (Table 6,

Figure 8A). Consistent with the influence mechanism of the DLS
TDT , DLE∩DH had a greater degree of action on DLSTNT than DLE
∩ DSSR. The explanatory power of the interaction factors was the

strongest in August (q=0.71, 0.82, and 0.80) and the weakest in June
TABLE 3 The monthly average of DLSTDT and DLSTNT (±SD°C).

May June July August September October

DLSTDT −3.7±0.3 −3.4±0.3 −1.8±0.1 −0.9±0.3 −1.2±0.2 −1.5±0.1

DLSTNT 2.1±0.3 1.9±0.2 0.9±0.1 0.1±0.3 −0.9±0.2 −0.6±0.1
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FIGURE 5

The land surface radiation energy differences of spatial patterns, latitudinal distributions, and frequency histograms of irrigated crops and the

adjacent rainfed crops during the growing season of 2015–2020. (A, B) The spatial distribution map and the histogram of DLE. (C, D) The spatial

distribution map and the histogram of DSSR. (E, F) The spatial distribution map and the histogram of D�H. Grids with crosses indicate that the
differences are significant at 95% by t-test, grey shadows represent standard deviation.
TABLE 4 The monthly average of DLE, DSSR and DH (±SD W m−2).

May June July August September October

DLE 5.2 ±0.9 6.8 ±1.0 12.7 ±0.9 3.2 ±1.1 −4.7 ±0.9 0.2 ±0.9

DSSR 11.1 ±2.7 11.4 ±4.2 −1 ±2.4 −2.6 ±4.3 −3.5 ±3.0 −1.4 ±2.3

DH 5.9 ±2.8 4.6 ±3.7 −13.7 ±2.9 −5.8 ±2.3 1.2 ±3.2 −1.6 ±2.6
F
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FIGURE 6

Spatial distribution of time scale correlation and their frequency histograms between diurnal LST change and biophysical parameters change during
growing seasons. (A–C) Correlation between DLSTDT and DLE, DSSR, DH. (D–F) Correlation between DLSTNT and DLE, DSSR, DH.
TABLE 5 The q-value of the single effects for different driving mechanism on DLSTDT, *representing p<0.05, **representing p<0.01.

May June July August September October

DLEvs. DLSTDT 0.18 0.10 0.48** 0.24 0.57** 0.10

DSSRvs. DLSTDT 0.25* 0.17 0.1 0.38* 0.10 0.43*

DHvs. DLSTDT 0.29* 0.22* 0.47** 0.41* 0.81** 0.51**
F
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FIGURE 7

The spatial correlation between DLE (DSSR and DH) and DLSTDT from May to October. (A) Interaction detection results (q-value). (B) Interaction
detector classifications. *representing p<0.05, **representing p<0.01.
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(q<0.5). The interaction effects of DLE∩DH and DSSR∩DH were

non-linear enhancements, except for August (two-factor

enhancement), but DLE∩DSSR was all non-linear enhancements

throughout the growing season (Figure 8B).
4 Discussion

4.1 Analysis of the time variation of LST
and biophysical parameters

The effect of the expansion of irrigated crops on land surface

temperature in cold regions China has attracted widespread

attention. It is generally believed that during the growing season,

the change range of LST is between 1.3°C and 2.0°C during daytime

and between 0.8°C and 1.1°C during nighttime (Liu et al., 2018; Liu

et al., 2019a; Yu and Liu, 2019; Liu et al., 2022). Previous researches

have explored the state of surface temperature variation on a

seasonal or interannual scale. This work, we gathered more

detailed dynamic information through a fine time scale in 8 day

(Figures 9A, B). In addition, we averaged the time series

information over nearly 5 years to prevent extreme climate

disturbances, such as extreme heat, heat waves, and droughts.

Previous studies analyzing the response mechanisms of land

surface temperature changes have divided the growing season

into different stages (e.g., early growing season, late-growing

season) on a monthly scale, and thus, the details of LST time

series changes were weakened. Because of the high sensitivity of

land surface temperature, the inconsistency of surrounding features

(urban, farmland) and climatic conditions (wind speed, wind

direction) significantly affected the regional scale LST (Li et al.,

2013; Ma et al., 2022). Therefore, when exploring the influence

mechanism of LST changes in different process frameworks as well

as different research areas, the growing season should be accurately
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divided according to the crop farming time in the study area. To

effectively capture the response mechanism’s temporal dynamic

characteristics (Figures 9C–F).
4.2 Analysis of the spatial variation of LST
and biophysical parameters

We found significant spatial heterogeneity in the diurnal LST

differences from May to October. Among these distinctions was the

irrigation time for paddy fields in early May, when the water

content of the subsurface was much higher than that of non-

irrigated crops (Figures 10A, 11B). During the day, irrigation

crops had a high evapotranspiration capacity, but at night, the

specific heat capacity of water was greater than that of bare soil,

which played a role in heat preservation (Jin et al., 2016). The paddy

fields were tillered in mid-June, when the surrounding crops were

cultivated, and the difference in surface water-heat energy between

low vegetation and bare soil was large (Figures 10B, 11B), which

eventually led to a significant variation in LST between the irrigated

and non-irrigated crops (Dong et al., 2014). July–August was the

booting period of irrigated crops, when the land surfaces of irrigated

and non-irrigated crops were covered with a large amount of

vegetation at the same time. The land surface evapotranspiration

capacity, water consumption-renewal capacity, and solar shortwave

radiation absorption capacity of irrigated crops were comparable to

non-irrigated crops (Figures 10C, D, 11C, D) (Gorguner and

Kavvas, 2020; Jiang et al., 2021). September–October was the crop

harvesting period, when bare soil was the major land surface cover

type and the soil moisture content of irrigated and non-irrigated

crops was similar (Cierniewski and Ceglarek, 2018; Rojas et al.,

2020), and eventually, the difference in harvesting time-points led to

heterogeneity in their diurnal LST differences on a spatial scale

(Figures 10E, F, 11E, F). Moreover, the cold regions of China had a
TABLE 6 The q-value of the single effects for different driving mechanism on DLSTNT. *representing p<0.05, **representing p<0.01.

May June July August September October

DLEvs DLSTNT 0.27 0.15 0.28 0.39* 0.1 0.23

DSSRvs DLSTNT 0.16 0.1 0.1 0.3 0.10 0.12

DHvs DLSTNT 0.29 0.12 0.18 0.65** 0.1 0.1
A B

FIGURE 8

The spatial correlation between DLE (DSSR and DH) and DLSTNT from May to October. (A) Interaction detection results (q-value). (B) Interaction
detector classifications. *representing p<0.05, **representing p<0.01.
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vast north–south span, and the distribution of solar shortwave

radiation varied substantially across latitudes, resulting in a climate

with significant latitudinal zonality. As a result, the study area is

spatially split based on crop harvest time points and climate

variances to investigate the interpretation of surface water-heat

energy balance to surface temperature changes in different regions

and at different harvesting time points.
4.3 Exploring the effect mechanism of
diurnal LST change

Numerous studies have found that irrigation crop expansion

influence the spatial–temporal distribution of regional and even

global climate primarily through biogeochemical processes and

biophysical parameters. Among them, biophysical parameters play

a larger role at regional scales than biogeochemical processes, such as

the high latitudes of the Northern Hemisphere (Brovkin et al., 2006;
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Alkama and Cescatti, 2016). Many studies have investigated the

effects of land use/cover changes (wetland to cropland or dryland

to artificial wetland) on LST in the high-latitude regions, and most of

them have explored the main influencing mechanisms of daytime on

irrigated farmland changes from the perspectives of non-radiative

mechanisms (evapotranspiration) and radiative mechanisms (albedo)

(Liu et al., 2018; Liu et al., 2019a; Yu and Liu, 2019). In contrast, our

study focuses on analyzing how the heating potential term responds

to diurnal LST variations and finds that the LST variations are mainly

due to the relative magnitudes of the surface energy income term

(solar incident shortwave radiation), and the surface energy

expenditure term (latent heat flux). Among them, irrigated crops

ultimately lead to a decrease in the heating potential term during the

growing season due to more latent heat flux exported from the

surface and less solar shortwave radiation absorbed, which is

consistent with the findings of the existing studies that there is a

cooling effect on irrigated crops (Zhu et al., 2011; Yang et al., 2020;

Zhang et al., 2022).
A B

D

E F

C

FIGURE 9

Temporal variation of land surface parameters of irrigated crops and the adjacent rainfed crops, and their differences from 2015 to 2020
(DOY=121–297). (A) Daytime LST, (B) nighttime LST, (C) diurnal LST, (D) latent heat flux, (E) solar shortwave radiation, (F) heating potential term.
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FIGURE 10

Monthly spatial variation of mean daytime land surface temperature from 2015 to 2020. (A) Daytime LST in May, (B) daytime LST in June, (C) daytime
LST in July, (D) daytime LST in August, (E) daytime LST in September, (F) daytime LST in October.
A B

D E F

C

FIGURE 11

Monthly spatial variation of mean daytime land surface temperature from 2015 to 2020. (A) Nighttime LST in May, (B) nighttime LST in June,
(C) nighttime LST in July, (D) nighttime LST in August, (E) nighttime LST in September, (F) nighttime LST in October.
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As the influencing factors of nighttime LST were complex, the

results of current studies on the influencing mechanism of

nighttime LST change have not been fully proved (Yuan et al.,

2022). Therefore, it remains challenging to explore the main

influencing mechanism of nighttime LST, which is an issue for

both afforestation and deforestation. (Peng et al., 2014; Li et al.,

2016; Shen et al., 2019; Yuan et al., 2022). Existing studies have

found that land use/cover changes in northeastern China enhance

atmospheric water vapor mainly through evapotranspiration, which

enhances downward atmospheric longwave radiation and

strengthens the nighttime greenhouse warming effect through

measured data (Li et al., 2017). We focused on the effect of the

interaction between nighttime atmospheric inverse radiation as well

as daytime thermal inertia on nighttime LST changes. However, it

has also been suggested that the magnitude of the specific heat

capacity of surface components is also a major mechanism

influencing the nighttime LST, especially between regions with

large differences in surface water content (Cao et al., 2019; Shen

et al., 2022). Therefore, to accurately evaluate the main controlling

factors of nighttime LST warming, we should comprehensively

analyze the potential impact mechanism of warming from the

multifactor perspective.
4.4 Uncertainties and future work

In this work, we assumed that irrigated crop expansion

occurred in the region during 2015–2020. We emphasized the

biophysical effects of “potential” changes in irrigated crops

(paired comparison with surrounding non-irrigated crops) on

diurnal LST change to accurately obtain more valid window

samples and remove the climate background differences caused

by long time series and large spans. Another concept that

corresponds to “potential” change, namely the application of

“actual” change, was reflected in a typical land use and cover

changes (afforestation or deforestation.) study. They found that

the effects of “potential” and “actual” changes in deforestation

(afforestation) on diurnal LST were similar in most regions. So

whether the impacts of potential and actual changes in irrigated

crops on diurnal LST are consistent. We also wondered how the

biophysical mechanisms affected the diurnal LST in the actual

changes of irrigated crops. This study showed that the expansion

of irrigated crops produced a cooling effect during the daytime and

whether its effect could offset global warming caused by long-term

human activities. In addition, the cooling effect of irrigated crops

with different planting patterns was different, which raised the

question of whether or not the cooling effect of high-density

irrigated crops lasted longer than low-density. These issues

require further exploration.

Because the input parameters of the observed MODIS LST

products were not refined between irrigated and non-irrigated

crops, they did not consider the species specificity between

different crops. As a result, the differences in LST between crops
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were underestimated. Furthermore, the current thermal infrared

remote-sensing satellites are characterized by mutually exclusive

spatial–temporal resolutions, and it is difficult for a single remote-

sensing sensor to obtain LST data with high spatial–temporal

resolutions. Following that, we used a multisource data fusion

approach to obtain an all-weather, high-spatial-resolution LST

dataset to meet the needs for fine monitoring of LST.
5 Conclusions

The expansion of irrigated crops in the Northeast China

significantly altered regional climate, as revealed by our synergetic

investigation based on multi-source remote sensing satellite data

and the pairwise comparison method. We found an asymmetric

variation in diurnal LST, with daytime LST varying more than

nighttime LST. The daytime cooling and nighttime warming effects

were mainly due to the fact that latent heat fluxes released from

irrigated crops is greater than the solar shortwave radiation

absorbed, resulting in less heating potential term. The variation in

the average land surface parameters had spatial heterogeneity

during the growing season. The diurnal LST variation was

affected by different energy factors, and its response to land

surface energy was accompanied by a lag effect. DLSTDT followed

a decreasing trend as DLE increased, but it followed an increasing

trend as DSSR and DH increased. This result indicated that the

decrease in LSTDT was mainly due to the cooling effect of thermal

energy of output and input of irrigated crops to offset the warming

effect. DLSTNT showed an increasing trend with increasing DLE
and a decreasing trend with increasing DSSR and DH. This result

demonstrated that the increase in the LSTNT was due to the fact that

the latent heat flux of irrigated crops and the accumulated daytime

heating potential term had a greater warming effect than the cooling

effect at night from May to October. The degree of influence of the

interaction factor on the difference of diurnal LST was significantly

greater than the single factor effect. Our study provided a new

perspective for comprehending how human activities have an

impact on regional, and even global climate change by revealing

the spatiotemporal pattern of the biophysical effects of irrigated

crop expansion.
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