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Editorial on the Research Topic

Autoinflammatory Diseases: From Genes to Bedside

The year 2019 marked the 20th anniversary of the formal recognition of autoinflammatory diseases
as a distinct group of rheumatological conditions, following the identification of the gene mutated
in patients with a dominantly inherited periodic fever known as familial Hibernian fever (FHF) (1).
This nosological concept was introduced by one of the founders of the field, Dr. Daniel Kastner.
Prior to this time, the only recognized periodic fever disease was familial Mediterranean fever
(FMF) and patients presenting with similar symptoms, irrespective of inheritance pattern, were
suspected to have a variant FMF. Most patients, with exception for FMF, were treated with NSAID,
glucocorticoids alone, or in a combination with immunosuppressive agents. These chronic life-
long conditions negatively impacted patients’ quality of life and were associated with significant
morbidity and mortality, partially due to treatment-related side effects.

The early advances in the field of autoinflammation were driven by the ascertainment of
families with inflammatory phenotypes segregating either as a recessive (FMF) or dominantly
(FHF) inherited trait. This allowed for linkage mapping, positional cloning and candidate gene
screening even before the completion of human genome sequencing project in 2003. These
gene-hunting projects were laborious and time-consuming, but nonetheless successful and led to
identification of the first three genes associated with autoinflammatory diseases:MEFV, TNFRSF1A,
and CIAS1/NLRP3.

Familial Mediterranean fever was the first disease to be characterized at the molecular level.
FMF, being a common illness in multiple Mediterranean populations, was initially noted in the
literature by Galen in the second century AD. Although there were reports of cases with cyclic
fevers and pains in the nineteenth century, it remained a mysterious disease and its pathogenesis
was attributed to the phases of the moon and other environmental factors. Genetic etiology was not
suspected until 1958 whenDr. HarryHeller emphasized the genetic nature of the disease and coined
itsmodern name familialMediterranean fever (2). The first accurate clinical description of FMFwas
published in 1945 by Dr. Sheppard Siegal, who reported 10 patients suffering from recurrent bouts
of abdominal pain and fevers but who between attacks “may enjoy good health” (3). He named the
disease “benign paroxysmal peritonitis.” The next major break-through was in the early nineties,
when Drs. Daniel Kastner and Isabelle Touitou undertook finding the causal gene for FMF (4, 5).
Independently, they collected many families with FMF to launch genome-wide linkage mapping.
This was incredibly ambitious considering available techniques, Southern blot analysis of DNA by
restriction fragment length polymorphism (RLFP) markers not dense enough to cover the entire
human genome. Complete sequences of many expressed genes were not available. After 7 years
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of tedious labor, a poorly characterized transcript harboring
bi-allelic missense pathogenic mutations associated with FMF
was identified. This discovery was celebrated at the First
International Meeting on FMF in the summer of 1997 at
Jerusalem, which was organized by Dr. Mordechai Pras.

It was not until late nineties that the second periodic
fever disease came to attention. Although a five-generation
family of the European ancestry with dominantly inherited
fevers was described in 1957 by Drs. Bouroncle and Doan (6),
most physicians were not aware of the disease. In 1998, the
molecular basis of familial Hibernian fever was elucidated with
the identification of heterozygous mutations in the TNFRSF1A
gene (1). The disease was renamed tumor necrosis factor (TNF)
receptor-1 associated periodic syndrome (TRAPS) and the term
autoinflammation was coined to describe new diseases of the
innate immune system (1).

A new era of medical and genetic research in
autoinflammation had begun. In 2002, Drs. Hoffman and
Kolodner identified heterozygous mutations in the CIAS1 gene
in patients with dominantly inherited cold urticaria (FCAS)
and Muckle-Wells (MWS) syndromes, both diseases considered
cryopyrin-associated periodic syndromes (CAPS) (7). Another
remarkable discovery from this study was that pyrin (encoded
by MEFV) and the NLRP3 protein share the same N-terminal
∼92aa domain denoted as pyrin domain (PYD). This finding
suggested the existence of common pathways in the pathogenesis
of autoinflammation. Subsequently, a whole family of proteins
with the pyrin domain was identified by in silico analysis. Many
of these proteins function as intracellular sensing receptors
to recognize foreign or self-generated danger-associated
molecular patterns. They form a molecular complex known as
inflammasome that was discovered and characterized in 2002
by the team of late Dr. Jurg Tschopp (8). The initial observation
that gain-of-function mutations in the NLRP3 inflammasome
lead to increased production of IL-1β formed the basis for
genomically-informed therapies. Over time, numerous studies in
human cells and murine models showed that IL-1β plays a major
role in the pathogenesis of autoinflammatory diseases. These
three discoveries established the basis for an entirely new field
of investigation.

The next chapter began around 10 years ago with the
development of new genomic technologies, next-gene
sequencing (NGS), bioinformatics, and the completion of
human genome project. These strategies provided researchers
and clinicians a variety of tools for gene-hunting projects.
Genetic discoveries are now often made in a matter of months
if not weeks. The list of genes associated with monogenic
autoinflammatory diseases has grown rapidly and currently
includes more than 30 genes. Advanced sequencing technologies
revealed unusual inheritance patterns including somatic
mutations as the cause of adult-onset diseases and cases with
digenic inheritance. Digenic inheritance refers to presence
of pathogenic mutations in two interacting proteins as the
cause of a disease. High-throughput sequencing has brought to
light a number of variants with uncertain clinical significance
(VUS). Attempts to clarify the clinical implication of these
low frequency (1–5%) variants have been carried out through

international collaborations. Despite of major accomplishments
in dissecting the genetic basis of autoinflammatory conditions,
the genetic cause of disease for many patients remains unknown.
To complicate things, many of these patients are sporadic cases
and it may require orchestrated efforts between multiple research
groups to find causal genes.

The field of molecular diagnostics for autoinflammatory
diseases has seen substantial growth, providing physicians
with the specific information necessary to diagnose and treat
patients. There are close to 100 academic and commercial
laboratories across the world that perform genetic by testing
through single-gene or targeted gene panel analysis, or
whole exome sequencing. An international group of experts
has been convened in effort to standardize genetic reports
and develop consensus guidelines for interpretation of
genetic variants.

We have learned a great deal about a wide spectrum of
clinical manifestations in patients with autoinflammation. It
is likely, as is the case with most human traits, that these
phenotypic differences will be explained by modifying gene
alleles, epigenetics effects, and environmental factors. Deficiency
of adenosine deaminase 2 (DADA2) is case in point: patients
may present with fevers, rash, ischemic strokes or with a
sole manifestation of pure red cell aplasia. Mutations in the
same protein—often in different domains—may give rise to
distinct clinical features, therefore these phenotypes need to
be referred to in the context of mutant protein e.g., Pyrin-,
NOD2-, NLRP3-, or NLRC4-associated diseases. In contrast, a
distinct phenotype, such is the case with cold-induced urticaria,
could be caused by pathogenic mutations in different genes
(NLRP3, NLRC4, NLRP12, PLCG2, FXII). About a decade
ago an immunological continuum was proposed to designate
patients who present with features of autoinflammation and
autoimmunity (9). Recent studies described patients with cell-
specific features of autoinflammation and/or immunodeficiency.

Studies of molecular pathways in murine models have shed
light on broad aspects of the biology of inflammatory responses.
Mice deficient for inflammasome components have become
instrumental in dissecting signaling pathways that regulate
innate immune responses. Studies utilizing pyrin knock-out
mice, showed that the pyrin inflammasome has evolved as an
innate immune sensor to detect bacterial-induced modifications,
which is the first known example of the “guard mechanism” in
mammalian innate immunity (10).

A number of “biologicals” have been developed to treat
acute inflammation in patients with a broad spectrum of
systemic inflammatory diseases. Targeted cytokine therapies,
in particular anti-IL1 and anti-TNF, have been efficacious
and with minimal side effects in treating patients with
autoinflammation even without a known molecular cause
of disease. Non-biological drugs such as JAK-STAT inhibitors
have recently emerged and are promising in treating patients
with interferon-mediated disorders including CANDLE
(Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy
and Elevated Temperature) syndrome, STING-associated
vasculopathy with onset in infancy (SAVI) and Aicardi-Goutieres
syndrome (AGS).
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The term autoinflammation has spread beyond the
boundaries of internal medicine and rheumatology, and
is now used in disciplines of dermatology, immunology,
and neurology. Dysregulation of the innate immune
system is increasingly considered to have role in the
pathogenesis of many human conditions, including common
multifactorial cardiovascular, metabolic, neurodegenerative,
autoimmune diseases, and in particular in polygenic or
systemic inflammatory diseases, such as Behçet disease and
periodic fever, aphthous stomatitis, pharyngitis and cervical
adenitis (PFAPA) syndrome. A better understanding of the
molecular mechanisms underlying dysregulation of the innate
immune system will provide a foundation for developing
more affordable and effective treatments. Witnessing these
developments has been incredibly rewarding for those of
us in the field and it will be exciting to see where it goes
from here.

In the present issue of Frontiers in Immunology,
“Autoinflammatory diseases: from genes to bedside,” the
first monographic issue about autoinflammatory diseases, several
investigators have contributed with original and review articles
covering genetic, pathogenic, epigenetic, clinical and therapeutic
aspects of different autoinflammatory conditions.

The “genes” part of the topic explores relevant genetic,
pathogenic and epigenetic mechanisms implicated in
autoinflammatory diseases. Martorana et al.. review the most
common mutations and the evidences of genotype/phenotype
correlations of the main monogenic autoinflammatory diseases.
The role of NLRP3 and pyrin inflammasomes in the pathogenesis
of CAPS, and FMF and pyrin-associated autoinflammation with
neutrophilic dermatosis (PAAND), respectively, has been
addressed by de Torre-Minguela et al.. Aksentijevich and Zhou
describe the latest advances on the pathogenic mechanisms of
ubiquitinopathies, a new category of autoinflammatory diseases
involved in the NF-κB pathway, which include linear ubiquitin
chain assembly complex (LUBAC) and OTULIN deficiencies,
and haploinsufficiency of A20. Carta et al.. propose two
different pathways of inducing abnormal IL-1β production in
autoinflammatory diseases depending on the cell type affected, in
which the authors postulate that professional inflammatory cells
would cause a direct inflammatory response and non-immune
cells may participate indirectly in the inflammatory cascade by
releasing stress signals that trigger and propagate inflammation.
In the same sense, Gül reviews the concept of autoinflammation
and uses it for monogenic and polygenic autoinflammatory

diseases associated with seemingly unprovoked inflammatory
episodes mediated mainly by the innate immune system. In
addition, Gül also proposes and expands nomenclature by
using the concept of “hyperinflammatory” state for those
disorders characterized by episodes of exaggerated inflammatory
response only when triggered by certain factors or situations.
Álvarez-Errico et al.. review the recent advances on the
contribution of epigenetic mechanisms in the disease expression
of some autoinflammatory diseases.

The “bedside” part of the topic reviews important clinical
and translational research, and therapeutic contributions in
autoinflammatory diseases. Özen et al.. wrote a comprehensive
overview about what are still considered unsolved problems
in FMF, such as the involved mechanism of the disease,
inheritance patterns and treatment in colchicine resistant
patients. Ruiz-Ortiz et al.. make an original contribution in
characterizing clinical manifestations associated with the low-
penetrance R92Q variant in TNFRSF1A and differentiating
disease phenotypes between patients with pediatric and adult
onset. In an article about CANDLE syndrome, Torrelo et
al. reviews in depth all the pathophysiological, clinical, and
biologic features of this complex monogenic interferonopathy.
The cytokine signature in patients with Behçet disease is
explored by Lopalco et al., who suggest an increased signature
of IL-6, TNF-α, and Th17 in patients with mucocutaneous
and uveitis manifestations. Cantarini et al.. propose a set of
clinical diagnostic criteria for adult-onset PFAPA syndrome
with a high-predictive potential for identifying PFAPA patients
among subjects with fever of unknown origin. Finally, in
two review articles, Figueras-Nart et al.. analyze the most
remarkable dermatologic and dermatopathologic features of
monogenic autoinflammatory diseases by using a classification
based on the predominant cutaneous lesion, and Soriano et al.
describe the current treatment of the most frequent monogenic
autoinflammatory diseases and PFAPA syndrome based on the
best available evidence and also propose a practical guide to
their management.

This first monography entirely dedicated to autoinflammatory
diseases provides stimulating information on many of the past,
present and future advances and challenges in this field.
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The NLRP3 and Pyrin 
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in the Pathophysiology of 
Autoinflammatory Diseases
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Inflammasomes are multiprotein complexes that critically control different aspects of innate 
and adaptive immunity. Among them we could highlight the release of  pro-inflammatory 
cytokines that induce and maintain the inflammatory response. Usually, inflammasomes 
result from oligomerization of a nucleotide-binding domain-like receptor (NLR) after 
sensing different pathogenic or endogenous sterile dangerous signals; however, other 
proteins such as absent in melanoma 2, retinoic acid-inducible gene I, or pyrin could 
also form inflammasome platforms. Inflammasome oligomerization leads to caspase-1 
activation and the processing and release of the pro-inflammatory cytokines, such as 
interleukin (IL)-1β and IL-18. Mutations in different inflammasomes are causative for 
multiple periodic hereditary syndromes or autoinflammatory diseases, characterized by 
acute systemic inflammatory flares not associated with infections, tumors, or autoim-
munity. This review focuses on germline mutations that have been described in cryopy-
rin-associated periodic syndrome (CAPS) for NLRP3 or in familial Mediterranean fever 
(FMF) and pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) for 
MEFV. Besides the implication of inflammasomes in autoinflammatory syndromes, these 
molecular platforms are involved in the pathophysiology of different illnesses, including 
chronic inflammatory diseases, degenerative processes, fibrosis, or metabolic diseases. 
Therefore, drug development targeting inflammasome activation is a promising field in 
expansion.

Keywords: inflammation, NLRP3, pyrin, extracellular ATP, P2X7 receptor, cryopyrin-associated periodic syndrome, 
familial Mediterranean fever

DANGeR SiGNALS, iNFLAMMASOMeS, AND THe 
PHYSiOLOGiCAL SiGNiFiCANCe OF THe  
iNFLAMMATORY ReSPONSe

Inflammation is the response of the innate immune system to a noxious stimulus, including infec-
tions or tissue damage (1, 2). Characterization of inflammasomes represents a considerable advance 
in the understanding of the inflammatory molecular events that occur in response to infections, and 
importantly, to tissue damage in the absence of pathogens. Furthermore, inflammasome activation 
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has also been attributed to changes on physiological homeostatic 
parameters, such as changes in extracellular osmolarity (3, 4), 
and virtually, any perturbation in homeostasis could generate a 
local or systemic inflammatory response (1, 2). Tissue damage 
and alteration of the homeostatic parameters induce the release 
of danger signals from the cells that activate the inflammasome 
in innate immune cells (5). Danger signals are usually referred as 
danger or damage-associated molecular patterns (DAMPs). The 
dual use of the term “danger” or “damage” in the acronym DAMP 
denotes that danger signals are not only released after damaging 
conditions but also in response to dangerous situations, such as 
during cellular environment alterations. In homeostasis, cells in 
tissues are in a physiological “basal” state maintained by nutri-
ents, oxygen, growth factors, and adherence to other cells and 
the extracellular matrix. Changes in environmental parameters 
(temperature, osmolarity, oxygen, or pH) induce a cellular stress 
response and the subsequent release of DAMPs. Stress is then 
recognized by tissue-resident macrophages, activating different 
signaling pathways, including inflammasomes, and inducing 
an inflammatory response aimed to restore tissue functionality 
during noxious conditions. This inflammatory response was 
termed para-inflammation by Medzhitov (1). Deregulation of 
para-inflammation is intimately related with immunity and 
involved in the pathogenesis of immune-mediated diseases, 
being the base for the chronic low-level inflammation associ-
ated, for example, to type 2 diabetes (6). If homeostasis imbal-
ance continues or is complicated with infection, cells become 
necrotic inducing an acute inflammatory response that will 
damage the tissue (7).

Damage-associated molecular patterns are intracellular com-
ponents released to the extracellular milieu in response to cell 
stress or necrosis that activates different inflammatory pathways, 
such as inflammasomes. Inflammasomes are multimeric complex 
of innate immune receptors, activating caspase-1 and proteolytic 
mechanisms involved in pro-inflammatory cytokines [interleu-
kin (IL)-1β and IL-18] (8). During cell stress, plasma membrane 
becomes permeable to ions, such as K+, or to intracellular 
metabolites, such as the nucleotide adenosine triphosphate (ATP) 
or uric acid (1). One of the best characterized DAMP is ATP, since 
in physiological homeostatic conditions, ectonucleotidases main-
tain low extracellular ATP concentration, but during necrosis or 
inflammatory conditions, a high extracellular ATP concentra-
tion is reached, and the purinergic P2X7 receptor is activated in 
macrophages (9–12). P2X7 receptor is a potent activator of the 
inflammasome in macrophages and other innate immune cells 
(9). Leakage of cellular proteins with intracellular functions is 
another example of DAMPs; the release of these proteins usu-
ally follows secretory pathways independent of the endoplasmic 
reticulum (ER) and Golgi apparatus. Activation of caspase-1 
by inflammasomes controls the release of these intracellular 
proteins by activating different unconventional release pathways, 
including a particular type of cell death called pyroptosis (1, 13, 
14). Caspase-1 ultimately controls the release of inflammasome 
particles, a signal produced to amplify the release of DAMPs by 
activating caspase-1 in neighbor cells (11, 15). The high mobil-
ity group box 1 (HMGB1) nuclear protein is another example 
of DAMP released upon caspase-1 activation. HMGB1 presents 

histone-binding properties in the nucleus, and in the extracellular 
milieu, HMGB1 engages the advanced glycation end-product-
specific receptor in conjunction with toll-like receptors (TLR) 
to induce an inflammatory response (16). In conclusion, innate 
immunity mechanisms converge in producing an inflammatory 
response as a consequence of infection, tissue damage, or loss of 
homeostasis.

iNFLAMMASOMe SeNSOR PROTeiNS

The nucleotide-binding domain-like receptor (NLR) family forms 
the main group of proteins considered as inflammasome sensors. 
These proteins contain a pyrin domain (PYD) or a caspase activa-
tion and recruitment domain (CARD). The presence of one of 
these domains in the sensor protein is required to assemble the 
inflammasome. Additionally, other proteins with some of these 
structural domains can also form functional inflammasomes, 
like absent in melanoma 2 (AIM2) protein, interferon-inducible 
protein 16 (IFI-16), retinoic acid-inducible gene I (RIG-I), and 
pyrin (17) (Figure 1).

There are different inflammasome sensors dedicated to rec-
ognize the presence of cytosolic nucleic acids. AIM2 presents 
an N-terminal PYD and a C-terminal hematopoietic interferon 
(IFN)-inducible nuclear protein with 200-amino acid repeat 
(HIN-200) domain. AIM2 is critical to respond against the infec-
tion of different pathogens by forming an inflammasome after 
recognition of double-stranded DNA (dsDNA) in the cytoplasm 
by the HIN-200 domain (18–20). Interestingly, other nucleic 
acid sensor protein called IFI-16 has two C-terminal HIN-200 
domains and one N-terminal PYD. Upon detection of dsDNA, 
IFI-16 triggers the IFN response as a component of the signaling 
pathway (21) and can also induce the assembly of inflammasome 
with ulterior caspase-1 activation (22). RIG-I is also a sensor 
for viral RNA that contains two CARD domains and is able to 
assemble an inflammasome (23). However, it should be noted 
that additional studies are required to demonstrate that IFI-16 
and RIG-I can form an inflammasome.

The structure of the sensor protein family NLR presents a cen-
tral nucleotide-binding domain (NBD), and most of them have 
a C-terminal leucine-rich repeat (LRR) domain. The N-terminal 
protein domain is used to classify this group of proteins in NLRP 
if it contains a PYD domain or NLRC if it contains a CARD 
domain (24). Interestingly, the capacity for assembling inflam-
masome is a feature that has not been described for all members 
of the NLR family. These sensor proteins are also involved in 
other aspects of innate immune response by regulating diverse 
non-inflammasome pathways. Indeed, NLRP12 can play a role as 
a negative regulator of NF-κB signaling (25) or modulating IL-4 
production in T cells (26), and NLRP6 is a negative regulator of 
mucosal immunity in the gut (27, 28).

The first sensor protein identified to form inflammasome 
was NLRP1 (29). Interestingly, human NLRP1 contains two 
additional protein domains compared to the canonical domains 
of the NLR family, such as a function-to-bind domain and a 
C-terminal CARD. These domains seem to play a critical role to 
assemble functional inflammasomes, as proteolytic cleavage of 
their N-terminal by pathogen components of Bacillus anthracis 
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FiGuRe 1 | inflammasome sensors and activators. A wide variety of pathogenic ligands and intracellular mediators are involved in inflammasome assembly. 
NLRP1b responds to proteolytic cleavage on their N-terminal induced by lethal toxin of Bacillus anthracis. NLRP3 is a general sensor of cellular damage that 
responds to intracellular harm induced by pathogenic or sterile insults. NLRC4 recognizes bacterial proteins via NLR family-apoptosis inhibitory proteins (NAIPs) and 
can assemble inflammasomes with or without recruiting ASC, similar to NLRP1b. Absent in melanoma 2 (AIM2) and interferon-inducible protein 16 (IFI-16) sense 
dsDNA through their HIN-200 domains; meanwhile, RIG-1 activates caspase-1 through an inflammasome assembly after it detects ssRNA. Pyrin inflammasome is 
induced by bacterial toxins that modify RhoA GTPase. DAMPs, danger-associated molecular patterns; PAMPs, pathogen-associated molecular patterns; ssRNA, 
single strand RNA, dsDNA, double strand DNA.
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is required for their activation (30, 31). Furthermore, the pres-
ence of a CARD domain in the C-terminal allows the direct 
interaction and activation of caspase-1 without the presence of 
any other adaptor proteins like the apoptosis speck-like protein 
with a CARD domain (ASC), even though ASC incorporation to 
the platform enhances the processing of IL-1β (32), and in human 
THP-1 monocyte cell line, ASC is required for NLRP1 activation 
(33). In contrast, mouse NLRP1a could form an inflammasome 
independent of ASC (34).

A genetic study of families with vitiligo with or without 
other autoimmune diseases has revealed a link between these 
autoimmune disorders and the presence of polymorphisms in 
NLRP1 gene (35). Recently, a novel gain-of-function mutation 
in NLRP1 gene that predisposes to inflammasome activation has 
been associated with NLRP1-associated autoinflammation with 
arthritis and dyskeratosis autoinflammatory syndrome (36). This 
syndrome is characterized by diffuse skin dyskeratosis, autoin-
flammation, autoimmunity, arthritis, and elevated transitional 
B-cells (36) (Table 1). Furthermore, NLRP1 mutations have been 
implicated in non-fever inflammasome-related disorders, in par-
ticular with two overlapping skin disorders: multiple self-healing 
palmoplantar carcinoma and familial keratosis lichenoides 
chronica, demonstrating that NLRP1 has an important role 
controlling skin inflammation (33).

The most prominent member of NLR family in the study 
of hereditary autoinflammatory syndromes is NLRP3. Indeed, 

gain-of-function mutations on NLRP3 gene have been identified 
in patients with cryopyrin-associated periodic syndromes (CAPS, 
see below) (59, 60) (Table 1). NLRP3 contains the three canonical 
domains described in the NLRP family: PYD, NBD, and LRR, and 
it is able to assemble a functional inflammasome in response to a 
wide variety of triggers, suggesting that it could be a global sensor 
of cellular damage and different pathogens (5).

Besides NLRP3, formation of active inflammasomes triggered 
by a bacterial infection has only been described in vitro for other 
two members of NLRP family: NLRP7 (61) and NLRP12 (62). 
Interestingly, NLRP12 displays a sequence similar to NLRP3, 
and it is predominantly expressed in myeloid-monocytic cells 
(63). In some cases, genetic studies of symptomatic patients with 
CAPS-like syndrome without mutations in NLRP3 revealed the 
presence of mutations in NLRP12 gene (56, 57). In vitro study 
of these NLRP12 variants has shown an increase in the activity 
of caspase-1 and the secretion of IL-1β, suggesting the potential 
role of NLRP12 mutations in CAPS-like syndrome-associated 
inflammation (Table 1) (58, 64).

NLRC4 is another well-known member of the NLR family 
assembling functional inflammasomes in response to pathogens. 
NLRC4 is a component of a detection system for bacterial proteins 
such as flagellin and several components of the type III secretion 
system (65, 66). As a member of the NLRC subgroup, NLRC4 
contains a C-terminal CARD besides of NBD and LRR domains, 
but unlike other NLR sensor proteins, NLRC4 requires of sensors 
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TAbLe 1 | Molecular and clinical features of autoinflammatory diseases associated with mutations in inflammasome sensor proteins.

Disease Disease symptoms Clinical treatment inflammasome 
sensor

Gene Mutations 
detected 

(references)

Mouse model 
(references)

CAPS Systemic activation Anakinraa NLRP3 NLRP3 (37–40) (41–45)
Urticarial rash Rilonacepta

CNS: deafness, cephalea, meningitis Canakinumaba

Musculoskeletal
Amyloidosis

FMF Periodic fever Colchicinea Pyrin MEFV (39, 46–48) (49, 50)
Serositis/arthritis Anakinra
Myalgia Canakinumab
Erysipeloid rash
Amyloidosis

PAAND Fever Anakinrab Pyrin MEFV (51) –
Neutrophilic dermatosis
Myalgia/myositis

AIFEC Early onset recurrent macrophage activation syndrome Dexamethasoneb NLRC4 NLRC4 (52–54) (55)
High levels interleukin (IL)-18 Cyclosporineb

IL-18-binding proteinc

CAPS-like 
syndrome

Cold triggered NSAIDSb NLRP12 NLRP12 (56–58) –
Arthralgia–myalgia Anti-IL-1b

Fever
Urticarial rash

NAIAD Recurrent fever Acitretinb NLRP1 NLRP1 (36) –
Dyskeratosis Anti-IL-1b

Arthritis
Metaphyseal abnormalities

FKLC Symmetric hyperkeratotic lichenoid papules UVB phototherapyb NLRP1 NLRP1 (33) –

MSPC Multiple recurrent keratoacanthoma Surgeryb NLRP1 NLRP1 (33) –
Palmar-plantar-eye
Risk of squamous cell carcinoma

AIFEC, autoinflammation with infantile enterocolitis; CAPS, cryopyrin-associated periodic syndromes; FKLC, familial keratosis lichenoides chronica; FMF, familial Mediterranean fever; 
MSCP, multiple self-healing palmoplantar carcinoma; NAIAD, NLRP1-associated autoinflammation with arthritis and dyskeratosis; PAAND, pyrin-associated autoinflammation with 
neutrophilic dermatosis.
aApproved clinical treatment.
bClinical treatment approach.
cEmergency compassionate-use Investigational New Drug authorization.
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co-receptors, termed NLR family-apoptosis inhibitory proteins 
(NAIPs), that recognize the pathogen proteins in the cytoplasm 
and oligomerize NLRC4 (67, 68). Similar to NLRP1, NLRC4 
could interact directly with pro-caspase-1 through their CARD 
domain generating an inflammasome with a less efficient state 
of activation, and the association with the adaptor protein ASC 
is important to amplify the activation of caspase-1 (69). Gain-of-
function mutations in NLRC4 gene are associated with early onset 
autoinflammation with enterocolitis or recurrent macrophage 
activation syndrome depending on the mutation (Table 1) (52, 
54). These patients are characterized by mutations in the NBD 
region of NLRC4 and benefits from recombinant human IL-18-
binding protein therapy (53). The autoinflammatory-associated 
NLRC4 mutation H443P is able to constitutively activate cas-
pase-8 and induce apoptosis via interaction with the component 
of the 26S proteasome Suppressor of Gal 1 and with ubiquitinated 
cellular proteins (70).

All inflammasome sensor proteins are activated in response 
to different pathogen and danger signals, suggesting that each 
activator triggers the formation of its own particular inflam-
masome complex. Interestingly, a recent work describes the 
recruitment of two sensor proteins (NLRC4 and NLRP3) to 
the same inflammasome complex as a result of the recogni-
tion of different danger signals from the same pathogenic  
infection (71).

Pyrin is another important inflammasome-forming protein 
(72). This protein contains an N-terminal PYD domain that is 
responsible for their interaction with ASC and later activation of 
caspase-1, a central coiled-coil domain and a C-terminal B30.2/
SPRY domain that is not present in the mouse orthologous pro-
tein. The pyrin-inflammasome assembly could be triggered after 
sensing the activity of bacterial toxins from different species that 
covalently modify switch-I region of Rho family proteins (73). In 
addition, mutations in the gene that codify pyrin, MEFV gene, are 
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found in symptomatic patients with hereditary autoinflammatory 
disorders (see below and Table 1) (46).

iNFLAMMASOMe ADAPTOR AND 
eFFeCTOR PROTeiN ASSeMbLY

Inflammasome sensor proteins are involved in the recognition 
of particular danger stimulus and then initiate the assembly of 
inflammasome multimeric complex; in most inflammasomes, the 
interaction with an adaptor protein is required to enhance the 
activation of caspase-1. The protein ASC (also known as Pycard) 
is the ubiquitous adaptor for inflammasomes, and its interaction 
with the active inflammasome sensor protein induces a prion-like 
oligomerization process essential for the final structural confor-
mation of the inflammasome. ASC is composed by two death-fold 
domains, a N-terminus PYD and a C-terminus CARD (74, 75). 
For those inflammasome sensor proteins associated with autoin-
flammatory disorders, i.e., NLRP3 or pyrin, their PYD domain 
is responsible for ASC recruitment via PYD–PYD homotypic 
interactions inducing the formation of filamentous structures that 
assemble into a large protein aggregate (76). Caspase-1 activation 
occurs within this aggregate, and interestingly, the same process 
of polymerization for ASC and pro-caspase-1 has been shown 
independent of the inflammasome sensor protein activated (77).

Recent works have provided additional information about 
the interactions between the components of the inflammasome, 
suggesting an initial self-nucleation of the sensor protein (NLRP3 
or AIM2) promoting the assembly of helical ASC filaments via 
PYD homotypic interaction (78, 79). These ASC filaments, gen-
erated after multiple PYD interactions, expose CARD domains 
in the outer part of the filament and consolidate the inflamma-
some aggregation with an appropriated cross-linking between 
filaments via CARD–CARD interactions (80). The multiple 
oligomerization of pro-caspase-1 with the ASC filaments also 
occurs via CARD–CARD interactions and amplifies the danger 
signal started by the sensor protein (81).

NLRP3 iNFLAMMASOMe  
ACTivATiON PATHwAYS

The activation of NLRP3 inflammasome appears in response to 
infection and is amplified by danger signals triggered during the 
infection, or by tissue injury or alterations in tissue homeostasis 
without infection. As it was described before, the majority of 
inflammasome sensor proteins are able to recognize different 
pathogen-associated molecules (bacterial proteins, toxins, and 
nucleic acids) and therefore activate inflammasome assembly 
in response to a microbial or viral infection. NLRP3 sensor is 
particularly able to oligomerize in response to a wide variety of 
stimuli that include pathogen molecules such as bacterial cell wall 
components or pore-forming toxins (nigericin and maitotoxin), 
endogenous danger signals like extracellular ATP, amyloid-β 
aggregates, uric acid crystals, or metabolic dysfunction, and 
pollutant particles as silica, asbestos, or alum (5, 82). The direct 
interaction between this broad range of activators and NLRP3 
seems unlikely, and therefore it is suggested that NLRP3 is able 

to sense the cellular stress associated with the exposition to these 
agents. The precise molecular mechanism involved in the NLRP3 
inflammasome activation remains elusive although recent stud-
ies begin to uncover the molecules and the cellular machinery 
responsible for this process (17, 83, 84).

Maintenance of ion gradients between different cellular 
compartments and between the cytosol and the extracellular 
environment is a feature of all living cells. Any alteration of 
this homeostasis will induce molecular mechanisms to respond 
and adapt to this aggression. Significant decrease of intracel-
lular K+ is indeed detected during NLRP3 activation after the 
treatment with microbial pore-forming toxins or after P2X7 
receptor engagement by extracellular ATP (85), where the 
hemichannel pannexin-1 plays a critical role (86). Interestingly, 
decrease of intracellular K+ is also detected during the NLRP3 
inflammasome activation along with other sterile inductors as 
the decrease of osmolarity (3) or metabolic lipids (87), sug-
gesting that intracellular K+ concentrations could be one of the 
common mechanisms involved in the activation of the NLRP3 
inflammasome; however, its mechanism of function is not well 
understood (88–90).

In addition to the decrease of intracellular K+, a mobilization 
of Ca+2 in the cytosol is also detected in most of the stimulus that 
activates NLRP3. The ER is the main reservoir for intracellular 
Ca+2, and its mobilization as a consequence of the activation 
of inositol trisphosphate receptor has been observed during 
NLRP3 activation induced with different stimuli. The activa-
tion of P2X7 receptor also induces an influx of Ca+2 from the 
extracellular space; however, in this cellular context, the block-
age of extracellular Ca+2 influx does not inhibit NLRP3 inflam-
masome, and artificial mobilization of Ca+2 is not sufficient 
to trigger the NLRP3 inflammasome activation in absence of 
K+ depletion (12, 14, 91). Cell swelling after hypotonic shock 
activates transient receptor potential cation channels (TRPM7 
and TRPV2) involved in the modulation of intracellular Ca+2 
that is crucial for the transforming growth factor beta-activated 
kinase 1 activation. These molecular events are required in 
combination with K+ efflux for NLRP3 inflammasome assembly 
(3). In addition, several works show evidences that extracel-
lular Ca+2 can trigger mechanisms that activate inflammasome 
through G protein-coupled receptors (92, 93). The activation of 
these receptors leads to the mobilization of intracellular Ca+2 
via phospholipase C activation with a concomitant reduction of 
cyclic AMP (cAMP) (92). The effect of this reduction in cAMP 
will be discussed later in the context of the negative regulation 
mechanisms of NLRP3. Interestingly, elevated concentrations 
of extracellular Ca+2 have been detected at infection sites or in 
ischemic injury, suggesting that extracellular Ca+2 would play a 
role as a DAMP (93).

Alteration of lysosomal function after phagocytosis of 
molecular crystals has been described as an additional activation 
process of NLRP3 inflammasome, possibly as a consequence of 
the activity of released lysosomal proteases altering the integrity 
of cellular organelles (94). Furthermore, other cellular stress asso-
ciated with the intracellular ionic mobilization, as the induction 
of ER stress, is able to activate NLRP3 inflammasome in a K+ 
efflux-dependent manner. In this process, the endoribonuclease 
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inositol-requiring enzyme 1α, an unfolded protein sensor 
expressed in ER, is required to activate the NLRP3 inflammasome 
(95, 96). Taken together, these data show that changes in intracel-
lular ion concentration play a key role in the activation of NLRP3 
inflammasome, although their precise molecular mechanism 
remains unclear.

Besides ion fluxes, changes in the cellular oxidative state is a 
common process detected during NLRP3 inflammasome activa-
tion, being mitochondrial damage one of the main source of reac-
tive oxygen species (ROS) (97). Interestingly, several works link 
mitochondrial ROS production with changes in the intracellular 
concentration of K+ and Ca+2, which would induce depolarization 
of the mitochondrial membrane (91, 98). Mitochondrial ROS 
production has also been described as a novel NLRP3 activation 
mechanism involving a decrease of NADH levels after disruption 
of the glycolytic flux (82). Mitochondria have also been suggested 
as a cellular platform to assemble the NLRP3 inflammasome. The 
activation of NLRP3 induces its relocation from the ER to the 
proximity of the mitochondria in the perinuclear environment 
(97, 99). This recruitment requires the reorganization of the 
microtubule system (100). Moreover, the mitochondria may also 
release other molecules implicated in the activation of NLRP3 
inflammasome as cardiolipin (101) or oxidized mitochondrial 
DNA (102, 103), and it has been shown that mitochondrial 
antiviral-signaling protein interacts with the PYD of NLRP3, 
being essential for their activation after the stimulation with 
ATP or nigericin but not with crystals (99). All these data point 
out the essential role of mitochondria in NLRP3 inflammasome 
activation.

Finally, caspase-4, and its mouse orthologous caspase-11, acti-
vates NLRP3 after recognition of cytosolic LPS (104, 105). This 
signaling is known as the non-canonical NLRP3 inflammasome 
activation pathway, and although the mechanism of caspase-
4-inducing NLRP3 activation is not known, it is also dependent 
on the decrease of intracellular K+ (106–108).

ReGuLATORY MeCHANiSMS  
OF NLRP3 iNFLAMMASOMe

Several proteins have been described as positive or negative 
regulators of the NLRP3 inflammasome assembly (Figure  2). 
Guanylate-binding protein 5 binds via its GTPase domain to the 
PYD of NLRP3 during inflammasome activation by most of the 
stimuli except crystalline agents. This interaction promotes the 
oligomerization of NLRP3 with ASC (109). Furthermore, several 
works have described that, during ATP stimulation, NLRP3 
deubiquitination mediated by the Lys63-specific deubiquitinase 
BRCC3 is an early process essential for inflammasome activation 
(110–112).

Recent works have revealed a new NLRP3 inflammasome 
regulatory molecule, the never-in-mitosis A-related kinase 7 
(NEK7), a serine, and threonine kinase required for mitosis 
progression (113). This protein interacts with the LRR domain of 
NLRP3 upstream of NLRP3 inflammasome assembly independ-
ent of their kinase activity (114). This interaction is required 
for NLRP3 inflammasome oligomerization and introduces a 

new component of inflammasome regulation, the restriction of 
NLRP3 inflammasome formation to cells in interphase (115). 
Moreover, the absence of NEK7 in cellular models harboring 
frequent CAPS-associated mutations in NLRP3 reduces their 
ability to activate caspase-1, while the association between NEK7 
and mutant NLRP3 is stronger (114, 115). Further investigation 
is required to elucidate the role of NEK7 in the auto-activation of 
NLRP3 inflammasome in autoinflammatory syndromes.

Maintenance of low NLRP3 protein levels avoids the auto-
assembly of NLRP3 inflammasome in the absence of a danger 
stimulus; therefore, transcriptional regulation of NLRP3 is an 
additional control mechanism to avoid unexpected inflamma-
some activation. Transcriptional regulation of NLRP3 requires 
NF-κB activation by TLR or IL-1 receptor type I (IL-1RI) signal-
ing to increase NLRP3 protein concentration to certain level that 
can be activated after sensing a triggering stimulus (116, 117). 
Furthermore, the amount of NLRP3 mRNA is tightly regulated 
in myeloid cells through the microRNA miR-223, although this 
miRNA is not regulated by pro-inflammatory signals (118). In 
addition, under unstimulated conditions, NLRP3 is inhibited 
by posttranslational modifications with ubiquitin chains that 
also target NLRP3 for its degradation through proteasome or 
autophagy as will be described later (112). Other mechanism 
involved in the inhibition of the NLRP3 activity is the post-
translational modification of NLRP3 generated by the activation 
of inducible nitric oxide synthase. The increase of nitric oxide 
leads to the S-nitrosylation of NLRP3 impairing the assembly of 
the inflammasome, and this mechanism is suggested as a protec-
tive mechanism (119, 120). Therefore, the control of functional 
NLRP3 concentration within the cell is crucial for the activation 
of the inflammasome.

In addition to these negative regulatory mechanisms, two 
families of proteins containing CARD (COPs) or PYD (POPs) 
that could sequester either sensor proteins or effector proteins 
through PYD–PYD and CARD–CARD interactions have been 
described (121). In the absence of mutations, pyrin is also 
suggested to be a key regulator for the degradation of several 
inflammasome components (caspase-1, NLRP1, and NLRP3), 
preventing an excessive release of pro-inflammatory cytokines 
(122, 123). However, a recent work shows that the absence 
of pyrin in a mouse model leads to an increase in the release 
of IL-1β without affecting different inflammasome assembly 
(124). Therefore, the role of pyrin as an inflammasome inhibitor 
remains to be determined, and different domains among human 
and mouse pyrin proteins should be taken into account.

Cellular damage implicated in the activation of the NLRP3 
inflammasome also activates autophagy, a mechanism involved 
in the clearance of intracellular pathogens and damaged orga-
nelles (102, 125). Autophagy is a negative mechanism to control 
the induction of the inflammatory response given its involve-
ment in the degradation of damaged mitochondria, including 
molecular NLRP3 inflammasome inductors as mitochondrial 
DNA or ROS (102, 126, 127), the clearance of ASC specks (125), 
and pro-IL-1β (128). Ubiquitinated NLRP3 could be directed to 
the autophagosome for degradation by a complex with cAMP 
that recruits the E3 ubiquitin ligase MARCH7 (129, 130). This 
molecular mechanism can be triggered by activators of the 
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adenylate cyclase as the neurotransmitter dopamine (130). 
Furthermore, an alternative negative regulatory mechanism has 
been described for NLRP3 inflammasome involving cAMP. The 
increase of cAMP induced by prostaglandin E2 signaling via 
prostaglandin E2 receptor 4 activates protein kinase A that phos-
phorylates NLRP3 in their NBD domain reducing its ATPase 
activity and oligomerization (131). Interestingly, this negative 
regulation could be disrupted by certain CAPS-associated muta-
tions in the NBD of NLRP3 (114).

PYRiN iNFLAMMASOMe ACTivATiON 
PATHwAYS AND ReGuLATORY 
MeCHANiSMS

Recent data begin to unveil the mechanism involved in pyrin-
inflammasome activation, as well as a protective mechanism 
concerned in blocking pyrin-inflammasome assembly. The 
inactivation of the RhoA GTPase by bacterial modification 
induces the activation of the pyrin inflammasome (73), 
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suppressing a protective mechanism that avoids pyrin inflam-
masome activation through their downstream phosphoryla-
tion by serine/threonine-protein kinase N1 and N2 (132). This 
mechanism requires the phosphorylation of certain amino 
acids of pyrin (S208 and S242 in human) allowing their binding 
to regulatory protein 14-3-3 and blocking the formation of the 
pyrin inflammasome (51, 132). Pyrin inflammasome activation 
through bacterial toxins is detected in human and mice, indi-
cating that the C-terminal B30.2/SPRY domain, present only in 
human, is not required for their activation (133). Interestingly, 
this domain harbors most of the mutations detected in familial 
Mediterranean fever (FMF) patients, although some muta-
tions affect one of the serine, in other domain of the protein, 
described as a key amino acid in the protective mechanism 
against the uncontrolled activation of pyrin inflammasome 
(see below). The inhibition of microtubule polymerization by 
colchicine abolishes pyrin inflammasome assembly induced 
by bacterial toxins, without affecting pyrin dephosphoryla-
tion (133, 134). However, this control of pyrin inflammasome 
activation leaded by microtubules is not effective in FMF 
patients that harbor mutations in B30.2/SPRY domain (133), 
suggesting that these mutations may force a protein conforma-
tion that aids the assembly of pyrin inflammasome after their 
dephosphorylation.

iNFLAMMASOMe-ASSOCiATeD 
SeCReTOMe

The formation of inflammasome leads to the activation of 
caspase-1, and this protease triggers a broad number of cel-
lular events as a consequence of its catalytic activity, including 
the release of cytosolic proteins associated with a specific type 
of cell death termed pyroptosis. Specifically, the analysis of the 
secretome associated with caspase-1 has revealed the key role of 
this protease in the unconventional secretion of multiple essential 
molecules involved in the inflammatory process. From them, the 
cytokine IL-1β is one of the most prominent and critical products 
of inflammasome activation, since it is a key regulator of the 
inflammatory response and is the most important current target 
of therapeutic treatments for autoinflammatory syndromes. The 
synthesis of IL-1β mRNA and the production of the inactive pre-
cursor form of IL-1β are strongly induced by microbial products 
such as LPS signaling via TLR or by IL-1 itself signaling through 
the IL-1RI (135). Caspase-1 is able to process the inactive pre-
cursor form of IL-1β to its mature bioactive form and induce its 
release. Similarly, caspase-1 is also responsible to the maturation 
of the inactive IL-18 precursor, another IL-1 family cytokine, to 
its bioactive form (136).

Both IL-1β and IL-18 are the canonical cytokines signaling 
downstream inflammasome activation, but beyond these cas-
pase-1 substrates, caspase-1 also controls the unconventional 
release of other cytosolic proteins (FGF-2, thioredoxin, and 
annexins), lysosomal proteins (cathepsins and cystatins), or 
nuclear proteins (HMBG1, IL-1α) that are not direct substrates 
of the protease (13, 14). In addition, caspase-1 also controls the 
release of large complex protein aggregates as ASC inflammasome 

oligomers that are now able to spread caspase-1 activation to 
adjacent cells and maintain inflammasome signaling (11, 15).

Unconventional protein release induced by caspase-1 has 
been widely studied for IL-1β, a cytokine that does not follow 
the conventional route of protein secretion through ER or Golgi. 
Different mechanisms of unconventional secretion have been 
explored to explain this process including the release through 
exocytosis of secretory lysosomes (137) or extracellular vesicles 
released after NLRP3 inflammasomes activation (138, 139). 
Caspase-1-induced pyroptosis is associated with an increase in 
plasma membrane permeation that may help a passive release 
of IL-1β (140). The destabilization of cell membrane integrity 
during pyroptosis is induced by the cleavage of the cytosolic 
substrate gasdermin D by caspase-1 or caspase-4; gasdermin D 
N-terminus integrates into the plasma membrane forming pores 
(141–143). The application of membrane stabilizing agents, as the 
complex polyphenol punicalagin, prevents the execution phase of 
pyroptosis and release of mature IL-1β from macrophages after 
NLRP3 inflammasome activation, suggesting that loss of plasma 
membrane is involved in this secretion in parallel with cell death 
(144). Interestingly, the stabilization of the plasma membrane 
by punicalagin inhibits the release of IL-1β in neutrophils in the 
absence of cell death (144). Therefore, the secretion of bioactive 
form of IL-1β requires membrane permeation and may occur in 
secreting cells as neutrophils where NLRP3 inflammasome does 
not induce pyroptosis (145, 146). Initially, these mechanisms are 
not mutually exclusive and may participate in the secretion of 
IL-1β depending on the intensity of the stimulus and cell type. 
The release of other caspase-1-dependent secretome proteins is 
less studied, and the involvement of pyroptotic cell death in this 
process is not known, neither its contribution to the pathophysi-
ology of autoinflammatory syndromes.

iMPLiCATiONS OF NLRP3 
iNFLAMMASOMe iN CAPS

Cryopyrin-associated periodic syndromes are rare hereditary 
autosomal-dominant autoinflammatory diseases with an esti-
mated prevalence of 1–3 cases per million of inhabitants (147, 
148). They include familial cold urticaria syndrome (FCAS) (59), 
Muckle–Wells syndrome (MWS) (149), and chronic infantile 
neurological cutaneous and articular (CINCA) syndrome also 
known as neonatal onset multisystemic inflammatory disease 
(NOMID) (150). All three syndromes were independently 
described and latterly found to be caused by gain-of-function 
mutations in the NLRP3 gene, located in the short arm of chro-
mosome 1 (1q44) (37, 38). Mutant NLRP3 drives a constitutive 
hyperactivity of inflammasome, activation of caspase-1, and an 
excessive unregulated release of IL-1β, although systemic circu-
lating levels of IL-1β during inflammatory flares are in most cases 
undetectable (11, 147).

Clinical features of CAPS are related to systemic effects of 
IL-1β-inducing fever, malaise, fatigue, and chronic pain along 
with a blood serum rise of acute-phase reactants, such as 
C-reactive protein and serum amyloid A. CINCA/NOMID is 
characterized for an almost continuous early onset inflammatory 
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state with fever and non-pruritic migratory urticaria-like rash; 
central nervous system symptoms and arthropathy are common. 
MWS shows a moderate phenotype with latter onset of fever, 
rash, arthralgia, conjunctivitis, uveitis, sensorineural deafness, 
and potentially life-threatening amyloidosis. FCAS is a milder 
familial condition characterized by febrile urticarial rash with 
headache, arthralgia, and sometimes conjunctivitis but no 
central nervous system symptoms and is typically triggered by 
cold exposure. FCAS, MWS, and CINCA/NOMID are consid-
ered a clinical continuum than distinct diseases as intermediate 
phenotypes occur; being FCAS the mildest and CINCA/NOMID 
the most severe forms (151). Neurologic manifestations in CAPS 
are common including headache, sensorineural hearing loss, 
myalgia, chronic aseptic meningitis, increased intracranial pres-
sure, cerebral atrophy, seizures, and mental retardation (152). 
Musculoskeletal symptoms in CAPS are also very frequent; up 
to 86% may have any musculoskeletal manifestation during fol-
low up, 30% at onset. In a large cohort, these included arthralgia 
in 86% and arthritis in 58%; joint destruction and typical 
knee deformities appeared rarely (9% and 2%, respectively). 
Tendinopathies occurred in 21.5%, tender points in 16.5%, and 
myalgia in 33% of patients (153).

To date, a total of 177 variants of NLRP3 gene have been 
included in infevers database (39), most of them located in 
exons 3 or 4 and intron 4. Among them, the most frequent is 
R260W (40, 148) and are associated with a milder phenotype 
along with A439V. The variants, T348M and D303N, and low 
frequency mutations are associated with a severe phenotype; 
E311K accounts for a high rate of hearing loss. On the other hand, 
Q703K or V198M variants have little clinical significance and are 
considered a functional polymorphism and a low penetrance 
variant, respectively. Clinically affected patients with no germline 
mutations could have an NLRP3 somatic mosaicism (154–156). 
The highly heterogeneous phenotypes within identical genotypes 
show the need for advancing the underlying understanding of the 
pathophysiological mechanisms.

The relevance of NLRP3 mutations as key players in the induc-
tion of these autoinflammatory syndromes has been explored in 
animal models. Specifically, the development of knock-in mouse 
strains harboring some of the frequent mutations detected in 
CAPS syndrome has demonstrated the pivotal role of IL-1β 
and the innate immunity in the pathogenesis of this syndrome; 
meanwhile, the adaptive immune system seems not to be 
involved (41). These animal models exhibit an autoinflammatory 
disease similar to that in humans associated with an inflamma-
some hyperactivation and unregulated release of IL-1β (41–43). 
Humanized mice expressing CAPS-associated mutation D305N 
present an increased sensitivity to endotoxin and develop pro-
gressive and debilitating arthritis (44). Furthermore, the study 
of these knock-in animal models has revealed the critical role of 
microbiota as inducer of disease, and myeloid and mast cells as 
cellular sources of IL-1β in the development of the skin inflam-
mation (42). In addition, the study of these CAPS-like animals 
has revealed the key role of IL-18 in the early tissue inflammation 
and suggests the presence of other players beyond IL-1β and 
IL-18 that are involved in inflammatory activities associated 
with the pyroptosis and possible by the caspase-1-associated 

secretome (45). A recent study with blood monocytes from 
patients affected by CAPS detected a high level of cellular stress 
including elevated levels of ROS compared with healthy subjects 
(157). Interestingly, associated with this oxidative stress, there is 
a reduction in the production of the anti-inflammatory cytokine, 
IL-1 receptor antagonist (IL-1Ra) (158), as well as a decrease in 
the threshold of inflammasome activation of CAPS monocytes 
(159). The exposure of this monocyte to inflammatory stimuli 
such as LPS induces an increase in the release of ATP that pro-
duces an increase in the secretion of IL-1β, IL-18, and IL-1α 
(159). These data collectively suggest the involvement of genetic 
and environmental factors beyond a single mutation that needs 
to be explored to obtain a more accurate clinical picture of this 
disease.

THe PYRiN iNFLAMMASOMe  
AND iMPLiCATiONS iN FMF AND  
PYRiN-ASSOCiATeD 
AuTOiNFLAMMATiON wiTH 
NeuTROPHiLiC DeRMATOSiS (PAAND)

The inflammasome sensor protein pyrin is primarily expressed in 
myeloid cells, and wild-type pyrin negatively modulates NLRP3 
inflammasome-dependent IL-1β release (160). However, muta-
tions in the MEFV gene (that codify for pyrin) are associated 
with two clinically different autoinflammatory syndromes: FMF 
and PAAND (51); in both diseases, mutated pyrin associates with 
high serum IL-1β levels during febrile episodes.

Familial Mediterranean fever is the most common inherited 
monogenic autoinflammatory disease worldwide and is caused by 
loss-of-function mutations in MEFV gene, mostly affecting east-
ern Mediterranean population (161). Classically considered an 
autosomal recessive condition, it is actually discussed if it should 
be considered an autosomal-dominant disease with variable pen-
etrance, since heterozygosis mutations are associated with clinical 
autoinflammatory FMF manifestations (162). Nevertheless, 
homozygosis is associated with severe FMF phenotypes.

Familial Mediterranean fever patients typically show recur-
rent self-limited acute febrile attacks of 1–3  days of duration, 
accompanied by inflammation of serosa and/or synovial linings 
(90% abdominal pain, 40% arthritis, and 30% thoracic pain), 
myalgia (40%), and erysipeloid type rash (20%). Onset before the 
age of 18 is common and has been associated with higher rates 
of arthritis, arthralgia, myalgia, and erysipeloid-like rash (163). 
Pleuritis, pericarditis, scrotal pain, aseptic meningitis, thrombo-
sis, and vasculitis may appear during flares, but FMF can also be 
associated with many other disorders in a non-canonical manner 
(164). The most severe complication of FMF is amyloidosis as 
a result of chronically uncontrolled inflammation that occurs in 
undiagnosed or untreated patients; it is more likely to occur in 
patients with recurrent arthritis (165). Renal amyloidosis seldom 
occurs as the first clinical manifestation of FMF, and these indi-
viduals are referred as phenotype II patients (166). Homozygosis 
in serum amyloid A gene 1 (alpha/alpha) and male sex have 
shown influence on the risk of developing amyloidosis in FMF 
patients (167, 168).
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Over 300 MEFV gene variants have been described (39), but 
only 14 occur frequently in FMF (E148Q, E167D, T267I, P369S, 
F479L, I591T, M680I, I692del, M694I, M694V, K695R, V726A, 
A744S, and R761H). The majority of pathogenic mutations are 
located in exon 10, being M694V the most frequent MEFV muta-
tion encountered in FMF patients; its presence in homozygosis 
or compound heterozygosis is related to severe phenotype. In 
exon 2, E148Q is the most frequent MEFV variant in asympto-
matic carriers and in some population subsets, it may even be a 
benign polymorphism (47); it is present in FMF patients with a 
mild phenotype (48). Diagnosis of FMF is sometimes elusive and 
is made under clinical basis. Validated diagnostic criteria include 
typical clinical manifestations, family history, and response to 
colchicine therapy (169). Genetic testing leads to higher rates 
of diagnosis (170, 171), supporting but not excluding clinical 
diagnosis (172). Inconsistency among similar phenotypes may 
be explained by major histocompatibility class I chain-related 
gene A alleles, as shown in a study on homozygous M694V 
population (173).

Pyrin-associated autoinflammation with neutrophilic der-
matosis is an inherited autosomal-dominant autoinflammatory 
disease characterized by childhood onset. This autoinflam-
matory syndrome is characterized by recurrent episodes of 
neutrophilic dermatosis, fever, elevated acute-phase reactants, 
arthralgia, and myalgia or myositis (51). PAAND is caused 
by a loss in guard mechanism of pyrin due to S242R muta-
tion that leads to a non-phosphorylated pyrin in S242 (51). 
Dephosphorylated pyrin loses interaction with the protein 
14-3-3 and thus forming a constitutive active inflammasome 
by recruiting ASC (51). Mutations and clinics of PAAND are 
distinct from FMF because of a clearly dominant inheritance 
pattern and for its longer fever episodes (lasting weeks), more 
prominent cutaneous features, and absence of serositis or amy-
loidosis (51). Currently, it is not fully understood how muta-
tions in two regions of the same protein can induce different 
diseases. FMF-related mutations have recently been found to 
induce a pyrin-inflammasome that could be dephosphorylated 
by RhoA GTPase and not inhibited by colchicine, questioning 
the critical dependency on microtubules for ASC aggrega-
tion and inflammasome activation (133). PAAND-associated 
mutations in MEFV gene are associated with a reduction in 
the binding of pyrin to microtubules, decreasing the threshold 
to assemble pyrin inflammasome. It is not known if PAAND 
syndrome-associated pyrin inflammasome is dependent on 
microtubules, although the use of colchicine has shown partial 
clinical benefit in this patient (51). Cutaneous manifestations 
of PAAND resemble other autosomal-dominant monogenic 
autoinflammatory disease called pyogenic arthritis, pyoderma 
gangrenosum, and acne (PAPA) syndrome, in which arthritis is 
the distinct and prominent feature. PAPA is caused by mutations 
at proline–serine–threonine phosphatase-interacting protein 
1 gene (174). This protein is a cytoskeleton-associated adap-
tor protein that interestingly binds pyrin and regulates IL-1β 
production (175). The generation of knock-in mice with FMF-
associated pyrin mutation (harboring a human C-terminal 
B30.2/SPRY domain that is absent in mouse Mefv gene) has 
shown data supporting the activation of a pyrin-inflammasome 

and an increase of IL-1β in this animal model independent of 
NLRP3 (49). Furthermore, autoinflammation in this animal 
model is dependent on the ASC-caspase-1 axis and IL-1β, 
whereas IL-1α and caspase-8 are dispensable for the inflam-
mation observed in this FMF model (50).

CuRReNT THeRAPeuTiCS TARGeTiNG 
THe iNFLAMMASOMe PATHwAY

Inflammasomes are main drivers of autoinflammatory diseases as 
well as important regulators of innate immunity and inflamma-
tion. Although specific drugs that directly interfere with inflam-
masome activation are under development, current treatments 
used in clinic target upstream regulation process, in the case of 
colchicine, or downstream IL-1 signaling (176).

Colchicine is the classical mainstay treatment for FMF (177), 
decreasing attack frequency, improving quality of life, and pre-
venting amyloidosis (178, 179). Clinical response to colchicine 
is considered a supportive diagnostic criterion for FMF, but 
it shows no benefit in CAPS patients. Colchicine is known to 
directly recover activity of the GTPase RhoA and therefore 
suppresses pyrin oligomerization but is also able to interfere 
with neutrophil migration and adhesion by downregulating 
the expression and distribution of selectins on neutrophils 
and endothelial cells (180). Interestingly, pyrin associates with 
microtubules and colocalizes with actin filaments (181). Thus, 
colchicine treatment may also prevent cytoskeletal changes 
that favor pyrin inflammasome assembly. However, recent data 
have shown that microtubule polymerization is not a require-
ment for pyrin inflammasome activation in FMF patients in 
contrast with wild-type pyrin carriers, providing a new concept 
for understanding the molecular mechanisms present in the 
activation of pyrin inflammasome (133). Nevertheless, some 
FMF patients are resistant to colchicine, and in this subset of 
patients, IL-1 blocking agents have shown efficacy (182–184). 
Anakinra therapy was also effective in a patient diagnosed with 
PAAND (51).

As exposed above, IL-1β is one of the main products of inflam-
masome and caspase-1 activation and exerts its inflammatory 
action by binding to the IL-1RI (185), this binding is antagonized 
by the IL-1Ra, a protein that binds IL-1RI without agonistic activ-
ity preventing IL-1β binding and signaling (185).

Therapies blocking IL-1 are available for the treatment of 
CAPS and other autoinflammatory syndromes (i.e., colchicine-
unresponsive FMF patients). Anakinra is the recombinant form 
of IL-1Ra and was the first anti-IL1 agent clinically available. Due 
to its short half-life, it has to be administered by subcutaneous 
injection daily, and side effects are common at the site of injec-
tion; also liver enzymes need to be monitored regularly. There 
is a strong evidence of the effectiveness of anakinra for CAPS 
treatment (186, 187), with improvement of clinical features like 
hearing loss or amyloidosis with quick relapse of symptoms after 
withdrawal, demonstrating the requisite of daily injections in 
persistent and severe phenotypes. Despite its effectiveness, sore 
daily injections of anakinra are sometimes unpopular among 
patients, and in selected cases with mild phenotypes are possible 
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to use it on demand basis during inflammatory attacks as in other 
autoinflammatory diseases (188, 189).

Other anti-IL-1 agents have been developed with a better 
pharmacokinetic profile and are actually approved for the 
treatment of CAPS. Canakinumab is a humanized monoclonal 
antibody against IL-1β administered intravenously or subcutane-
ously at a dose of 2–4 mg/kg every 8 weeks, and it is licensed for 
treatment of CAPS patients over 4 years of age. It has shown a very 
rapid and sustained response with little side effects, mainly infec-
tions, with stabilization of the majority of sequelae and potential 
improvement in clinical manifestations such as sensory-neural 
hearing loss (190). Abnormal bone formation in CAPS patients 
is unaffected by IL-1 blockage (191), revealing that other path-
ways downstream NLRP3 inflammasome play important roles 
in the clinical manifestations. Canakinumab up-titration may 
be needed and is actually encouraged in partial responders and 
severe phenotypes, rising the dose and shortening administration 
up to 8 mg/kg every 4 weeks (192).

Rilonacept is an engineered IL-1 trap that neutralizes circulat-
ing IL-1β and IL-1α, and it is administered subcutaneously with a 
load dose of 320 mg followed by 160 mg weekly (185). After initial 
pilot study and phase III studies, rilonacept was the first drug 
approved for treatment of CAPS, including FCAS and MWS in 
children of 12 years and older, due to its safety and effectiveness 
(193, 194). Benefits were obtained within hours of its adminis-
tration with maximal effect within day 6 and 10, with mild or 
moderate adverse reactions.

Caspase-1 activation precedes IL-1β release after inflamma-
some activation; therefore, there have been advances in generat-
ing specific and clinical relevant caspase-1 inhibitors. The most 
developed caspase-1 inhibitor for therapeutic use is VX-765, an 
orally available pro-drug that is rapidly hydrolyzed by plasma and 
liver esterase into a potent and selective inhibitor of caspase-1 
(195). In fact, VX-765 was able to reduce the release of IL-1β and 
IL-18 in monocytes of patients with FCAS treated with LPS (196). 
However, its clinical use is still under investigation.

The standard goal to treat autoinflammatory syndromes, 
specially CAPS patients, will be to directly target NLRP3 inflam-
masome using small compounds, in this respect a compound 
developed by Pfizer (CP-456773 or CRID3, recently renamed 
as MCC950) has been proved to block IL-1β release in CAPS 
monocytes after LPS treatment, being able to reduce clinical 
symptoms in an animal model of CAPS (197, 198). Furthermore, 
this compound has been recently found to reduce inflammation 
in animal models of renal, dermal, and pulmonary inflammation 

(199, 200). Therefore, CP-456773 represents a promising drug for 
the treatment of autoinflammatory syndromes.

CONCLuSiON

Mutations in genes coding for inflammasome sensor proteins, 
such as NLRP3 or pyrin, accomplish for the development of dif-
ferent autoinflammatory diseases by uncontrolled activation of 
caspase-1 and the aberrant release of pro-inflammatory cytokines. 
In physiological conditions, the inflammasome pathway is acti-
vated in response to dangerous situations provoked by infections, 
tissue injury, or cellular stress, being the inflammasome formed 
by the sensor NLRP3 the most promiscuous inflammasome 
pathway activated in many different situations. Furthermore, 
non-mutated NLRP3 activation has been involved in different 
autoinflammatory syndromes, and, for example, patients with 
mutations in PLCG2 (autoinflammation and phospholipase 
Cγ2-associated antibody deficiency and immune dysregulation, 
APLAID syndrome) present an aberrant cytosolic Ca+2 signal-
ing leading to NLRP3 activation, or patients with mutations in 
the deubiquitinase OTULIN (otulipenia) result in aberrant IL-1 
production by NLRP3 activation (201, 202). NLRP3 has also been 
implicated as a key inflammasome sensor protein in different 
chronic diseases; in these circumstances, different endogenous 
danger signals activate NLRP3 and could contribute to the inflam-
matory response in metabolic and degenerative diseases, such 
as gout, type 2 diabetes, obesity atherosclerosis, or Alzheimer’s 
disease (6, 203, 204). Therefore, inflammasome is central in 
autoinflammatory diseases, and increasing our understanding on 
NLRP3 and pyrin activation may lead to development of more 
potent novel therapies for the treatment of not only autoinflam-
matory syndromes but also for chronic inflammatory, metabolic, 
and degenerative diseases.
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Behçet’s disease (BD) is a multi-systemic inflammatory disorder consisting of recurrent 
oral aphthosis, genital ulcers, and chronic relapsing bilateral uveitis; however, many other 
organs may be affected. Several pro-inflammatory cytokines, mainly derived from Th1 
and Th17 lymphocytes, seem to be involved in different pathogenic pathways leading to 
development of the clinical manifestations. On this basis, the primary aim of our study 
was to compare a core set of pro-inflammatory cytokines between patients with BD and 
healthy control (HC). The secondary goal was to evaluate potential correlations between 
these putative circulating biomarkers, the status of disease activity, and the specific 
organ involvement at the time of sample collection. Fifty-four serum samples were 
collected from 46 BD patients (17 males, 29 females, mean age 45.5 ± 11.3 years), 
and 19 HC (10 males, 9 females, mean age 43 ± 8.3 years). Twenty-five serum cyto-
kines (APRIL/TNFS13, BAFF/TNFSF13B, sCD30/TNFRSF8, sCD163, Chitinase3-like1, 
gp130/sIL-6Rb, IFNb, sIL-6Ra, IL-10, IL-11, IL-19, IL-20, IL-26, IL-27 (p28), IL-28A/
IFN-lambda2, IL-29/IFN-lambda1, IL-32, IL-34, IL-35, LIGHT/TNFSF-14, Pentraxin-3, 
sTNF-R1, sTNF-R2, TSLP, and TWEAK/TNFSF-12) were simultaneously quantified 
using a Bio-Rad cytokine bead arrays. Serum concentration of sTNF-R1 (p  <  0.01) 
and sTNF-R2 (p < 0.01) resulted higher in both active and inactive BD than HC, while 
Chitinase3-like1 (p < 0.05) and gp130/sIL-6Rb (p < 0.01) serum levels were significantly 
higher in inactive BD, and IL-26 (p < 0.01) in active BD than HC. No differences were 
observed between inactive and active BD group. In addition, we observed that gp130/
sIL-6Rb, sIL-6Ra, IL-35, and TSLP serum levels were significantly enhanced in patients 
with mucocutaneous manifestations plus ocular involvement (MO-BD) compared to 
subgroup with only mucocutaneous involvement (M-BD). Our findings may suggest a 
signature of IL-6, tumor necrosis factor-α as well as of Th17 response in BD patients 
due to increased levels of gp130/sIL-6Rb, sTNF-R1, sTNF-R2, IL-26, respectively. This 
evidence could contribute to improve the knowledge regarding the role of these citokines 
in the induction of specific BD clinical features.

Keywords: Behçet’s disease, cytokines, mucocutaneous involvement, ocular disease, signature
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TaBle 1 | Demographic, laboratory, and clinical characteristics of 
patients affected by Behçet’s disease (BD) recruited in our study.

 BD patients 
(n = 46)

hla-B51-positive 
patients (n = 24)

Males, n (%) 17 (37) 8 (33)
Disease onset (mean ± SD) in years 32.16 ± 10.56 33.47 ± 11.17
Disease duration (mean ± SD) in months 144.5 ± 91.83 106.9 ± 88.49
Patients fulfilled the International Study 
Group Criteria in %

100 100

Patients fulfilled the International Criteria 
for BD in %

100 100

Clinical features (%)
Uveitis 13/46 (28) 8/24 (33)
Oral aphthosis 29/46 (63) 15/24 (62)
Genital aphthosis 7/46 (15) 4/24 (17)
Cutaneous disease 24/46 (52) 12/24 (50)
Gastrointestinal involvement 10/46 (22) 5/24 (21)

2

Lopalco et al. Biomarkers in Behçet’s Disease

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 200

inTrODUcTiOn

Behçet’s disease (BD) is a rare multisystemic inflammatory 
disorder clinically characterized by the “triple symptom com-
plex,” consisting of recurrent oral aphthosis, genital ulcers, and 
relapsing bilateral uveitis. Besides this classical clinical pattern, 
also other organ engagements including gastrointestinal tract, 
musculoskeletal, cardiovascular, and central nervous system, are 
documented (1–3). The recent understandings on cellular and 
molecular biology seem to suggest that an abnormal activation 
of both innate and adaptive immunity would be able to gener-
ate an inflammatory process leading to a CD4+ T lymphocytes 
clonal expansion which in turn produces high concentrations 
of both pro-inflammatory cytokines and cytotoxic CD8+ cells 
(4–11). The link between innate and adaptive immunity in 
patients with BD has been further clarified demonstrating that T 
cell immune response is skewed toward Th1 and Th17 polariza-
tion with decreased activity of regulatory T cells (12–14). The 
Th17 cells, play a critical role in the pathogenesis of a variety of 
autoimmune inflammatory diseases leading to production of 
Th17 effector cytokines, namely IL-17, IL-22, and IL-26 (15). 
This latter cytokine, belonging to the IL-10 family proteins, acts 
on monocytes to produce other pro-inflammatory mediators, 
such as IL-1β, IL-6, and tumor necrosis factor (TNF)-α which 
enhance the generation of new Th17 cells (16). Although the con-
tribution of IL-26 to the development of autoimmune diseases is 
undoubted, its role in BD pathogenesis is still unclear. Additional 
cytokines involved in mechanisms known to play a critical role 
in BD pathogenesis were recently associated to disease activity. 
Indeed, molecules such as Chitinase3-like1 regulating monocytes 
differentiation, as well as antibacterial and type 17 responses, was 
observed to be upregulated in BD patients compared to healthy 
control (HC). Interestingly, this cytokine was also seen to be 
associated to disease activity in BD, correlating positively with 
elevated IL-6 serum levels (17–19).

Tumor necrosis factor-α appears to be crucial in promot-
ing the development of the disease. This is documented by an 
overproduction of soluble TNF-α receptors and TNF-α sera levels 
spontaneously secreted by monocytes in active BD patients (20). 
Yet, elevated levels of TNF-α and soluble tumor necrosis factor 
receptors sTNFR1 and sTNFR2 have been found in BD patients. 
Moreover, increased systemic and synovial levels of sTNFRs 
in active BD strongly suggest a central role for the TNF/TNFR 
pathway in the pathogenesis of skin and joint involvement (21). 
Even though it is well documented that TNF blockade reduces the 
expression of different biological mediators and their receptors, 
the knowledge in BD regarding the role of the receptor gp130/
sIL-6Rb is still poor. This shared receptor is utilized by several 
related cytokines, including IL-6, IL-11, and IL-27, which in turn 
regulate cellular recruitment to local sites of inflammation, induce 
differentiation factor for Th17 cells, promote Th2 differentiation, 
and inhibit multiple T cell subsets (22).

Upregulation of TNF family members involved in T and 
B lymphocytes activation including APRIL/TNFSF13, BAFF/
TNFSF13B, sCD30/TNFRSF8 were also observed in BD patients 
underling a potential role of these cytokines in the immune 
response (23, 24).

Although literature data have proven that several cytokines are 
involved in BD pathogenesis, to date, biologic markers correlat-
ing with the disease activity have not yet been well recognized. 
Moreover, in the context of the same disease, it is difficult to 
identify a subset of disease signed by a specific cytokine pro-
file. Therefore, the purpose of this work was to investigate the 
potential role of specific circulating biomarkers of inflammation 
involved in adaptive and innate immune response in BD, in order 
to correlate their circulating levels with clinical manifestations 
and disease activity.

PaTienTs anD MeThODs

Patients
Fifty-four serum samples were routinely collected and ana-
lyzed from 46 consecutive BD patients (17 males, 29 females, 
mean age 45.5 ±  11.3  years), who met the International Study 
Group Criteria (ISGC) (25) and the International Criteria for 
BD (ICBD) (26) and from 19 HC (10 males, 9 females, mean 
age 43  ±  8.3  years) who attending the outpatient clinic at the 
Rheumatology Unit of the University of Bari and who are nega-
tive for BD criteria (ISGC and ICBD). These subjects underwent 
detailed clinical and laboratory workup, in order to rule out any 
inflammatory, metabolic, and neoplastic disorders (in particular, 
they all showed inflammatory markers within normal values). 
All patients and controls were Caucasians of Italian origin. For 
seven patients, more than one serum sample was obtained during 
an active phase of disease, resulting in a total of 54 BD samples. 
Moreover, the samples were collected every 3 to 4 months and 
in case of disease relapse. Table 1 summarizes the clinical and 
demographic characteristics of BD patients. The primary aim of 
the study was to compare a cytokine profile between BD patients 
and HC; the secondary aim was to evaluate potential correlations 
between these putative circulating biomarkers, the status of 
disease activity, and the specific organ involvement at the time of 
sample collection. According to several other studies correlating 
circulating biomarkers with disease activity, BD patients were 
included in active BD group when they had at least two of the fol-
lowing clinical findings: uveitis, oral aphthosis, genital aphthosis, 
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cutaneous disease, and gastrointestinal involvement (6, 9, 27–29). 
More specifically, anterior and posterior uveitis were observed 
in 4/13 and 9/13 patients, whereas gastrointestinal involvement 
was endoscopically characterized by the presence of typical oval 
ulcers mostly localized in the terminal ileum. Written informed 
consent was obtained both from patients and HC. The study 
protocol was reviewed and approved by the Ethical Committee 
of the Medical University of Bari. Demographic and clinical 
information was obtained through structured interview, review 
of medical records, physical examination, and laboratory tests.

Multiplex Bead analysis
A panel of 25 serum cytokines [APRIL/TNFS13, BAFF/
TNFSF13B, sCD30/TNFRSF8, sCD163, Chitinase3-like1, gp130/
sIL-6Rb, IFNb, sIL-6Ra, IL-10, IL-11, IL-19, IL-20, IL-26, IL-27 
(p28), IL-28A/IFN-lambda2, IL-29/IFN-lambda1, IL-32, IL-34, 
IL-35, LIGHT/TNFSF-14, Pentraxin-3, sTNF-R1, sTNF-R2, 
TSLP, TWEAK/TNFSF-12] were simultaneously quantified using 
a Bio-Rad cytokine bead arrays according to the manufacturers’ 
instructions. Data analysis was performed using the Bioplex 
manager software 6.0.

statistical analysis
Statistical analyses were performed using GraphPad Prism 5 soft-
ware. Two-tailed Mann–Whitney test (for two non-parametric 
groups) and Student’s t-test (for two parametric groups) were 
used for statistical comparisons between groups. Significance in 
multiple comparisons was by one-way analysis of variance with 
a Bonferroni correction or Kruskall–Wallis test with a Dunn’s 
multiple comparison correction. Correlations were calculated 
using Spearman’s correlation (two-tailed p-value) as well as 
Pearson’s correlation test when required. Significance was defined 
as p < 0.05.

resUlTs

clinical characteristics of BD Patients
Overall, 54 serum samples were obtained from 46 BD patients, 
and 31 of these (57%) were collected from patients with active 
disease. The main demographic and clinical characteristics of the 
subjects involved in this study are shown in Table 1. Moreover, 
27 serum samples were obtained from HLA-B51-positive BD 
patients (50%) and at the time of serum collection patients 
were receiving the following treatments: TNF inhibitors 21/54, 
DMARDs combined with corticosteroids 14/54, DMARDs alone 
10/54, corticosteroids 3/54, anti-IL-1 agents 3/54, and three 
patients were no treated.

elevated cytokine levels of chitinase3-
like1, gp130/sil-6rb, il-11, il-26, 
sTnF-r1, and sTnF-r2 in BD Patients in 
comparison to healthy controls
Circulating levels of 25 cytokines were measured in serum samples 
obtained from BD patients (n = 54) and HC (n = 19). Cytokine 
levels of IL-10, IL-27 (p28), IL-28A/IFN-lambda2, IL-29/IFN-
lambda1, IL-32, IL-34, and LIGHT/TNFSF-14 were found in less 

than 50% of samples collected; for this reason these cytokines were 
not included in the analysis. No differences between BD patients 
and HC, in serum levels of APRIL/TNFS13, BAFF/TNFSF13B, 
sCD30/TNFRSF8, sCD163, IFNb, sIL-6Ra, IL-19, IL-20, IL-35, 
Pentraxin-3, TSLP, and TWEAK/TNFSF-12 were observed. In 
contrast, serum levels of Chitinase3-like1 (p = 0.009), gp130/sIL-
6Rb (p = 0.002), IL-11 (p = 0.008), IL-26 (p < 0.001), sTNF-R1 
(p < 0.001), and sTNF-R2 (p < 0.001) were significantly higher 
in BD than HC (Figure 1). Correlation study revealed significant 
correlation between cytokines showed to be upregulated in serum 
from BD patients. Among these, strong correlation was found 
between gp130/sIL-6Rb and sTNF-R1 (r  =  0.706, p  <  0.001), 
sTNF-R2 (r = 0.783, p < 0.001), sCD163 (r = 0.775, p < 0.001), 
TWEAK/TNFSF-12 (r  =  0.775, p  <  0.001), and sIL-6Ra 
(r = 0.705, p < 0.001) serum levels. sTNF-R1 also correlated with 
TSLP (r = 0.730, p < 0.001) and sTNF-R2 (r = 0.739, p < 0.001). 
Moreover, sTNF-R2 serum levels positively correlated with TSLP 
(r = 0.772, p < 0.001) and sCD163 (r = 0.724, p < 0.001) (Table 
S1 in Supplementary Material).

serum cytokine Profiles and Their 
correlation with Disease activity and 
clinical Features
As shown in Figure 2, BD patients were divided into two sub-
groups based on the disease activity. In active BD group were 
included patients characterized by at least two of the following 
clinical findings: uveitis, oral aphthosis, genital aphthosis, cutane-
ous disease, gastrointestinal involvement. Twenty-three serum 
samples were collected from inactive BD patients (8 males, 15 
females, mean age 44.6 ± 11.01 years) and 31 from active patients 
(12 males, 19 females, mean age 46.1  ±  11.67  years). Serum 
levels of sTNF-R1 and sTNF-R2 resulted higher in both active 
BD (p  =  0.002 and p  =  0.002, respectively) and inactive BD 
(p = 0.0101 and p = 0.002, respectively) subgroup than HC, while 
Chitinase3-like1 (p  =  0.042) and gp130/sIL-6Rb (p  =  0.008) 
serum levels were significantly higher in inactive BD as well as 
IL-26 (p = 0.002) in active BD than HC (Figure 2). Interestingly, 
among significantly serum cytokines upregulated in inactive BD 
and active BD patients, gp130/sIL-6Rb strongly correlated with 
sTNF-R2 (r = 0.716, p < 0.001), TWEAK/TNFSF-12 (r = 0.821, 
p < 0.001), IL-26 (r = 0.773, p = 0.007) serum levels, and sTNF-
R1 was to correlate with sTNF-R2 (r = 0.877, p < 0.001), IL-26 
(r = 0.773, p = 0.007), and IL-20 (r = 0.709, p = 0.0018) serum 
levels. In contrast, active BD subgroup revealed sTNF-R1 and 
TSLP (r = 0.769, p < 0.001) serum levels strong positively cor-
relation. Moreover, sTNF-R2 serum levels positively correlated 
with TSLP (r  =  0.830, p  <  0.001), gp130/sIL-6Rb (r  =  0.818, 
p  <  0.001), and sCD163 (r  =  0.725, p  <  0.001) (Table S2 in 
Supplementary Material). To determine the relationship between 
clinical features and the circulating levels of inflammatory mark-
ers, we measured and compared cytokine levels in serum from 
patients who presented at the time of blood collection mucocu-
taneous manifestations with (MO-BD) or without (M-BD) ocular 
involvement (Figure  3). Results showed significant enhanced 
levels of Chitinase3-like1 (p = 0.039) in M-BD but no differences 
were identified in MO-BD subgroup (p = 0.1035) compared with 
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FigUre 1 | serum cytokine profile in patients with BD. BD patients (n = 54) showed upregulation of serum levels of Chitinase3-like1, gp130/sIL-6Rb, IL-11, 
IL-26, sTNF-R1, and sTNF-R2 compared with HC (n = 19). Mann–Whitney U-test and Student’s t-test were carried out to check for statistical significance between 
groups when required (***p < 0.001, **p < 0.01, *p < 0.05). The central line represents the distribution median, boxes span 25th to 75th percentiles, and error bars 
extend from 10th to 90th percentiles. Dots (°) are outlier values, higher than the 90th percentile. Abbreviations: HC, healthy controls; BD, Behçet’s disease.
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HC. Serum levels of sTNF-R1 and sTNF-R2 were higher in both 
M-BD (p  =  0.0155 and p  =  0.0066, respectively) and MO-BD 
(p  <  0.001 and p  <  0.001, respectively) than HC. In addition, 
elevated serum levels of gp130/sIL-6Rb (p  <  0.001), sIL-6Ra 
(p  =  0.005), IL-11 (p  =  0.027), IL-26 (p  =  0.002), and TSLP 
(p  =  0.0103) were also observed in MO-BD compared to HC. 
Interestingly, we observed that gp130/sIL-6Rb (p = 0.043), sIL-
6Ra (p = 0.029), IL-35 (p = 0.026), and TSLP (p = 0.013) serum 
levels were significantly enhanced in MO-BD compared to M-BD 
subgroup (Figure  3). Correlation analysis among all evaluated 
cytokines was also assessed. Notably, stronger significant correla-
tion was revealed in MO-BD compared with M-BD subgroup 
(Table S3 in Supplementary Material).

linear regression analysis between 
serum cytokine levels and Disease 
Duration
A linear regression analysis of cytokine serum levels in all patients 
as well as in disease activity and clinical features subgroups as 
a function of disease duration was assessed. No significant 
correlations were obtained in all patients and in active BD 
subgroup (Table S4 in Supplementary Material). In contrast, 
Chitinase3-like1 was found significant in inactive BD, M-BD, 
and MO-BD subgroup (rs = 0.277 p = 0.025, rs = 0.188 p = 0.011, 

rs =  0.274 p =  0.038, respectively) (Table S4 in Supplementary 
Material). Moreover, significant results were found in both M-BD 
and MO-BD subgroups for sCD163 (rs =  0.124 p =  0.041 and 
rs = 0.473 p = 0.003, respectively) and gp130/sIL-6Rb (rs = 0.162 
p = 0.018 and rs = 0.645 p < 0.001, respectively). In addition, sIL-
6Ra revealed significant correlation in M-BD (rs = 0.157 p = 0.02) 
while sTNF-R1 (rs  =  0.628 p  <  0.001), TWEAK/TNFSF-12 
(rs = 0.723 p < 0.001), and sCD30/TNFRSF8 (rs = 0.39 p = 0.010) 
were significantly correlated to disease duration in MO-BD sub-
group (Table S4 in Supplementary Material; Figure 4).

DiscUssiOn

Our study was aimed at investigating a core set of cytokines in a 
cohort of patients mainly affected by the most common clinical 
manifestations of BD, including mucosal, skin, and ocular involve-
ment, in order to assess any potential correlation between these 
circulating biomarkers, disease activity, and the specific clinical 
features of disease. First of all, we found elevated levels of several 
inflammatory markers in BD patients including Chitinase3-like1, 
gp130/sIL-6Rb, IL-11, IL-26, sTNF-R1, and sTNF-R2 compared 
with HC. Comparing HC with disease activity, we observed 
enhanced levels of sTNF-R1 and sTNF-R2 in both active BD 
and inactive BD subgroups, while Chitinase3-like1 and gp130/
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FigUre 2 | serum cytokine profile analysis in BD patients with different disease activity. Serum cytokine levels in inactive BD (n = 23), active BD (n = 31) 
patients, and HC (n = 19). Analysis of variance was used for data comparison (***p < 0.001, **p < 0.01, *p < 0.05). The central line represents the distribution 
median, boxes span 25th to 75th percentiles, and error bars extend from 10th to 90th percentiles. Dots (°) are outlier values, higher than the 90th percentile. 
Abbreviations: BD, Behçet’s disease; HC, healthy controls.
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sIL-6Rb serum levels were significantly higher in inactive BD as 
well as IL-26 in active BD than HC. Furthermore, M-BD patients 
showed enhanced levels of Chitinase3-like1, sTNF-R1, and 
sTNF-R2 compared with HC as well as increased levels of gp130/
sIL-6Rb, sIL-6Ra, IL-11, IL-26, IL-35, sTNF-R1, sTNF-R2, and 
TSLP were found in MO-BD compared with HC. Interestingly, 
enhanced levels of gp130/sIL-6Rb, sIL-6Ra, IL-35, and sTNF-R1 
between MO- and M-BD were also found.

Chitinase3-like1, an inflammatory biomarker of endothelial 
dysfunction without chitinase activity, is secreted from activated 
neutrophils and macrophages in several pathological conditions 
characterized by tissue injury and inflammation (30). In this 
regard, it has been demonstrated that Chitinase3-like1 corre-
lates with the severity of skin lesions in patients with psoriatic 
arthritis but not in those with psoriasis vulgaris alone (31), being, 
however, its serum levels increased in psoriasis vulgaris and in 
generalized pustular psoriasis (32). Chitinase3-like1 has recently 
received considerable attention as marker for inflammation in BD 
patients (33, 34). Indeed a Korean study on 112 patients with BD 
whose main clinical features were recurrent oral ulcers and skin 
lesions, has shown increased serum levels of Chitinase3-like1 and 
a positive correlation with disease activity (17). These results are 
in agreement with Bilen et al. that showed higher serum levels of 
Chitinase3-like1 in BD patients compared with HC, albeit they 

did not correlate with disease activity (35). Similarly, we found 
enhanced levels of Chitinase3-like1 in M-BD group, even if its 
values were higher in the inactive BD group. Besides Chitinase3-
like1, for the first time we observed the upregulation of IL-11 
in our BD patients. This pleiotropic gp130-signaling cytokine, is 
able to induce anti-inflammatory and mucosal protective effects 
in a variety of animal models of acute and chronic inflammation, 
such as mucositis and inflammatory bowel diseases. In particular, 
IL-11 may exert anti-inflammatory effects by reducing cytokines 
production by macrophages (36). In vitro studies suggest that 
recombinant human IL-11 inhibits TNF-α, IL-1β, IL-12, IL-6, 
and nitric oxide production from activated macrophages reduc-
ing inflammation and tissue damage and promoting mucosal 
repair (37). Data from our study suggest that IL-11 does not cor-
relate with disease activity and there are no significant differences 
between the active and inactive BD groups. Interestingly, we also 
found a higher level of IL-11 in the MO-BD group rather than in 
M-BD alone, even though it has been suggested that this cytokine 
is connected to repair processes of mucosal tissue damage (37).

Regarding gp130/sIL-6Rb, inactive BD showed higher values 
of this cytokine than HC. Gp130 also known as beta-subunit of 
the IL-6 receptor (sIL-6Rb) or CD130 is a ubiquitously expressed 
signal-transducing receptor that forms part of the receptor 
complex for several cytokines, including IL-6, IL-11, and IL-27 

30

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 3 | serum cytokine profile in mucocutaneous patients with (MO-BD) or without (M-BD) ocular involvement. Serum cytokine levels in M-BD 
(n = 35), MO-BD (n = 17) patients, and HC (n = 19). Analysis of variance was used for data comparison (***p < 0.001, **p < 0.01, *p < 0.05). The central line 
represents the distribution median, boxes span 25th to 75th percentiles, and error bars extend from 10th to 90th percentiles. Dots (°) are outlier values, higher than 
the 90th percentile. Abbreviations: HC, healthy controls; BD, Behçet’s disease; M-BD, mucocutaneous patients without ocular involvement; MO-BD, 
mucocutaneous patients with ocular involvement.
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FigUre 4 | linear regression analysis of serum cytokine levels versus disease duration. A positive strong correlation was found between gp130/sIL-6Rb, 
sTNF-R1, and TWEAK/TNFSF-12 circulating levels and disease duration in MO-BD (mucocutaneous patients with ocular involvement) subgroup.
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(38). Classically, IL-6 activates gp130 by binding a non-signaling 
cognate IL-6 receptor, which then leads to the initiation of JAK/
STAT signaling, a pathway that is often constitutively switched on 
in several inflammatory processes (39). However, IL-6 responses 
can also be elicited through IL-6 trans-signaling mediated via 
a naturally occurring soluble IL-6R (40). Several biological 
processes, including the switch from neutrophil to mononuclear 
cell recruitment during inflammation, the leukocyte trafficking, 
activation, and apoptosis (41, 42), are due to IL-6 trans-signaling 
which is inhibited by a soluble form of gp130, in turn able to 
effectively bind the IL-6/sIL-6R complex and to prevent activa-
tion of membrane-bound gp130, modulating the severity of 
inflammatory responses (43, 44). The ability of soluble gp130 to 
downregulate the severity of inflammation and joint destruction 
in murine antigen induced arthritis has been demonstrated by a 
significant reduction in inflammatory infiltrate within the affected 
joints (45). Convincing proofs regarding the inflammatory role of 
the IL-6/sIL-6R complex derive also from the study of Curnow 
et  al. aimed at proving an insufficient lymphocytes apoptosis 
in uveitis able to induce an inflammatory process through the 
trans-signaling pathway (46). In this regard, in our study, we 
found enhanced levels of gp130/sIL-6Rb, especially in MO-BD 
group than M-BD, although no correlation with disease activity 
was observed. Finally, a strong correlation between gp130/sIL-
6Rb circulating levels and disease duration in MO-BD subgroup 
was also observed.

To the best of our knowledge, no studies have focused on the 
role of IL-26 in BD. In our study, serum concentration of IL-26 
was significantly higher in BD, especially in active BD, than in 
HC. IL-26, a member of the IL-10 cytokine family, capable of 
inducing the production of several pro-inflammatory cytokines, 
such as IL-1β, IL-8 and TNF-α (16), is released in large amount 
in response to classic pro-inflammatory stimuli and enhances 
chemotaxis of neutrophils (47). Interestingly, this cytokine may 
impair the responsiveness to itself in certain structural cells 
such as colon epithelial cell line suggesting its pathogenic role 
in inflammatory bowel diseases. Indeed, increased infiltration 
of IL-26-positive Th17 cells was found in the colon of Crohn’s 
disease patients (48) and elevated expression of IL-26 mRNA was 
observed in the colon of pediatric-onset ulcerative colitis (49) 
as well as in tonsils and Payer’s patches in response to microbial 

stimuli, thus suggesting a pivotal role in mucosal immunity for this 
cytokine (50). Moreover, in some dermatological diseases, such as 
psoriasis, IL-26 has been found more highly expressed in lesions 
than in normal skin, proving an important function in regulating 
the innate immunity of epithelial cells (51). Despite this cytokine 
would seem more related to a mucocutaneous disease subset, in 
our experiment, IL-26 serum levels were found higher in MO-BD 
group than M-BD alone, consequently its increased values are not 
discriminating for the mucocutaneous involvement.

A reasonable explanation of this discrepancy may lie in the 
fact that IL-26 expression should be directly sought in the skin 
lesions rather than in the serum from BD patients since the major 
source of IL-26 is provided by infiltration of Th17 lymphocytes in 
inflamed tissue (52).

Tumor necrosis factor-α is the main cytokine involved in acute 
inflammatory responses and stimulates the release of other pro-
inflammatory mediators. Endogenous mechanisms mediated 
through two distinct TNF receptor types 1 and 2 which are shed 
from cell surface as soluble forms (sTNF-R1 and sTNF-R2) may 
limit the systemic inflammation (53). As previously reported, 
increased serum concentrations of the soluble forms of mem-
brane receptor for TNF-α, sTNF-R1, and sTNF-R2, have been 
found in active BD (54) and demonstrated in several rheumatic 
diseases (55–58), however, controversial are data regarding their 
putative role as markers of disease activity. In particular, Turan 
et al. reported that increased sTNF-R2 may serve as a marker of 
disease activity in BD, especially in those patients with arthritis, 
furthermore an increased TNF-R2 expression was found in 
mucosal and cutaneous ulcers where mast cells were identified 
as the major source for this receptor (21). On the contray, in line 
with our study, Düzgün et al. found significantly increased serum 
levels of sTNF-R1 in BD patients compared with HC, even though 
they did not reflect active disease (20). Interestingly, higher levels 
of sTNF-R were observed in our cohort of BD patients than in 
HC; however, no differences were observed between the patients 
with mucocutaneous plus ocular involvement and those with 
the sole mucocutaneous symptoms. More recently, Ke et al. have 
proven that sTNF-R1 released by skin-derived mesenchymal 
stem cells is critical for inhibiting the differentiation of Th17 
cells, which are the major contributor of experimental murine 
models of autoimmune disease leading to IL-17A, IL-17F, IL-21, 
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and IL-22 production (59). Similarly to what was observed for 
serum levels of gp130/sIL-6Rb, important results were obtained 
analyzing the values of sTNF-R1 and sTNF-R2 versus disease 
duration: in particular a positive strong correlation was found 
between sTNF-R1 circulating levels and disease duration in 
MO-BD subgroup, thus suggesting as previously reported that 
BD appears to have a less aggressive clinical course over time 
related to disease duration (60).

The main limitations of our study are represented by the 
sample size that did not allow us to ascertain the actual correla-
tion of specific cytokines with the different subsets of disease as 
well as the absence of a disease control group. Moreover, at the 
time of samples collection, all of the patients were already taking 
immunosuppressive agents, which might have affected cytokine 
serum levels. Finally, we believe that not evaluating disease activ-
ity with outcome measures, due to the incompleteness of data, 
could represent another limitation of our study.

In conclusion, our findings were in agreement with several 
studies that showed that the immune response in BD is skewed 
toward a Th1 as well as Th17 pathway (61). Moreover, we 
observed the upregulation of chitinase3-like1 and IL-11 in BD. 
These molecules are produced by innate immune cells and lead to 
monocytes dendritic cell maturation and inhibition of TNF-α and 
IL-6 signaling (62, 63). Finally, this IL-6, TNF and Th17 signature 

could discriminate mucocutaneous patients with ocular involve-
ment from mucocutaneous patients without ocular involvement, 
even if further studies in a larger cohort of patients as well as a 
comparison with disease group are necessary. Our preliminary 
data could contribute to improve the knowledge regarding the 
role of specific target for novel therapies or for a different and 
more suitable use of biologic drug currently available, suggesting 
a possible role of these cytokines in the induction of specific BD 
clinical manifestations.
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The concept of autoinflammation has evolved over the past 20 years, beginning with 
the discovery that mutations in the Mediterranean Fever (MEFV ) gene were causative 
of Familial Mediterranean Fever. Currently, autoinflammatory diseases comprise a wide 
range of disorders with the common features of recurrent fever attacks, prevalence of 
hyperreactive innate immune cells, and signs of inflammation that can be systemic or 
organ specific in the absence of pathogenic infection of autoimmunity. Innate immune 
cells from the myeloid compartment are the main effectors of uncontrolled inflammation 
that is caused in great extent by the overproduction of inflammatory cytokines such 
as IL-1β and IL-18. Defects in several signaling pathways that control innate immune 
defense, particularly the hyperreactivity of one or more inflammasomes, are at the core 
of pathologic autoinflammatory phenotypes. Although many of the autoinflammatory 
syndromes are known to be monogenic, some of them are genetically complex and 
are impacted by environmental factors. Recently, epigenetic dysregulation has surfaced 
as an additional contributor to pathogenesis. In the present review, we discuss data 
that are currently available to describe the contribution of epigenetic mechanisms in 
autoinflammatory diseases.

Keywords: autoinflammatory diseases, epigenetics, DnA methylation, non-genetic factors, cryopyrin-associated 
periodic syndromes, Familial Mediterranean Fever

inTRODUCTiOn

Autoinflammatory diseases are a growing group of debilitating and chronic conditions characterized 
by overt inflammation that is often systemic and manifests as recurrent fever episodes. Hyperreactive 
innate immune cells contribute largely to the pathogenesis of these diseases, and patients who 
display this pathology correlates with increased levels of acute-phase proteins and inflammatory 
cytokines in the plasma. Originally, the term autoinflammation was coined to describe the occur-
rence of apparently unprovoked episodes of inflammation in the absence of self-reactive T  cells 
and/or high titers of autoantibodies, as well as in the absence of any detectable infectious agent 
(1). Many of the autoinflammatory syndromes display systemic and/or organ-specific inflammatory 
features such as recurrent and episodic periodic fever, serositis, arthritis and/or cutaneous inflam-
mation, overproduction of IL-1β, and activation of innate immune cells, particularly monocytes (2). 
Albeit initially the term autoinflammatory diseases only applied to those prototypical hereditary 
monogenic periodic fever syndromes, such as cryopyrin-associated periodic syndromes (CAPS) and 
Familial Mediterranean Fever (FMF), the list has now expanded as a consequence of the application 
of emerging technologies, such as next-generation sequencing, and comprises an increasing number 
of newly described monogenic disorders caused by mutations of inflammation-related genes. There 
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TAble 1 | Autoinflammatory disorders and evidence of epigenetic 
contribution to pathogeny.

Mutated gene Disease effector 
cytokine

Data on 
epigenetic 
regulation

Hereditary monogenic periodic fever syndromes
MEFV Familial Mediterranean Fever IL-1β Yes (38)

TNFRSF1A TRAPS IL-1β No

MVK Hyper IgD syndrome IL-1β No

NLRP3 Cryopyrin-associated 
periodic syndromes [familial 
cold autoinflammatory 
syndrome (FCAS), 
Muckle–Wells syndrome, 
neonatal-onset multisystem 
inflammatory disease/CINCA]

IL-1β Yes (40)

NLRC4 NLRC4-MAS IL-1β/IL-18 No

PSTPIP1 PAPA IL-1β No

NLRP12 FCAS2 IL-1β No

Antagonist deficiencies
IL1RN DIRA IL-1β No

IL36RN DITRA IL-36 No

Complex autoinflammatory disorder
Behçet IL-6/IL-1β Yes (41, 48, 

49)
CRO/chronic recurrent 
multifocal osteomyelitis

IL-10/IL-1β Yes (42, 43)

Crohn IL-19/IL-3/IL-27 Yes (50, 51)
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is also increasing evidence that epigenetic dysregulation partici-
pates in the pathogenesis of these diseases [Table 1; reviewed by 
Stoffels and Kastner (3)]. In addition, autoinflammatory diseases 
also include a few multifactorial and complex diseases, such as 
Behçet’s disease and Crohn’s disease (CD), which not only involve 
the participation of multiple alleles but also a number of envi-
ronmental factors (2, 4). Also, it is now accepted that there is a 
continuum of disorders in the inflammatory spectrum that ranges 
from autoimmune diseases at one end to autoinflammatory at the 
other, with several mixed complex conditions that display both 
features of innate and adaptive immune dysregulation (5, 6). 
This growing spectrum of conditions indicates the existence of 
a highly complex etiology and pathophysiology of inflammatory 
diseases, even in the case of monogenic diseases, where addi-
tional agents, besides the causative gain-of-function mutations, 
may have a relevant impact on the clinical course of the disease. 
In autoinflammatory diseases, a failure in the regulation of the 
defense mechanisms of innate immune cells, which responds to 
pathogen-expressed molecules or molecules signaling cellular 
stress, and the orchestration of a response to such insults with 
the production of proinflammatory cytokines such as IL-1β or 
IL-18 (2) are central to pathology. Genetic inheritance in auto-
inflammatory disorders varies depending on the specific disease 
and has been a subject of controversy. FMF is mostly transmitted 
in an autosomal recessive manner, which requires mutations in 
both alleles of the Mediterranean Fever (MEFV) locus, encod-
ing the sensor protein pyrin that is expressed in neutrophils, 
eosinophils, and cytokine-activated monocytes (7). Interestingly, 

there have been reports of several cases of FMF patients that are 
heterozygous for the MEFV allele, with only one allele displaying 
a mutation or, in even rarer cases, no detectable mutation, and 
yet still associate with the development of disease (8–10). Several 
groups studying the FMF phenotype in MEFV mutation-negative 
patients found the phenotype to be milder, with a late disease 
onset and a lower rate of familiar history of FMF. However, the 
unequivocal existence of such mutation-free patients suggests the 
existence of additional causes for disease development including 
mutation in alternative genes, and perhaps the occurrence of 
epigenetic dysregulation. Identification of those alterations is 
essential for patient diagnosis and management.

In the case of CAPS, inherited dominant autosomal gain-of-
function mutations of NOD-like receptor, NLRP3 gene encoding 
cryopyrin, are responsible for the overactivation of the inflamma-
some (11–13). In fact, CAPS is a spectrum disorder that includes, 
in increasing order of severity, the familial cold autoinflammatory 
syndrome (FCAS), Muckle–Wells syndrome, and neonatal-onset 
multisystem inflammatory disease (NOMID), caused by sporadic  
de novo mutations in the same gene (otherwise termed chronic 
infantile neurologic cutaneous and articular syndrome/CINCA) 
(14). Several lines of evidence, including the existence of muta-
tions with different degrees of penetrance leading to a gradient of 
disease severity and heterogeneous phenotypes in terms of disease 
progression that arises from identical germline mutations, suggest 
that additional factors contribute to pathophysiology of hyperin-
flammation. Moreover, a great number of cases (as much as 40% 
in the case of NOMID/CINCA for conventional sequencing) are 
considered “genetic orphans,” i.e., patients without any identi-
fied associated mutations, which further supports this notion. 
In some of these cases, the existence of mosaicism restricted to 
the myeloid compartment has been reported; however, there 
is the possibility that, in some cases, non-genetic mechanisms 
could lead to autoinflammation. For example, it is plausible 
that, in addition to the occurrence of specific mutations, certain 
amplification loops establish vicious circles that increase IL-1β 
production and inflammation. The complexity of genome regula-
tion in autoinflammatory diseases is reflected in CAPS, where it is 
extensively agreed that the lack of genetic confirmation for some 
patients does not exclude their diagnosis (15). In the cases of 
complex autoinflammatory disorders where heritability models 
are not well established, it is entirely possible that, although there 
may be a genetic component that contributes to certain parts of 
disease, both genetic and environmental/epigenetic factors may 
define pathogenicity, and this applies to disorders like Behçet’s 
disease, inflammatory bowel disease (IBD), and chronic recurrent 
multifocal osteomyelitis (CRMO) among others. It has been long 
recognized that environmental factors contribute to the establish-
ment of pathological immune responses as well as the develop-
ment and severity of inflammatory immune disorders, and twin 
studies have been valuable to determine the extent of genetic and 
non-genetic contributions, such as in the case of IBD (16). Since 
epigenetic mechanisms establish a diversity of links between the 
environment and the regulation of the genome, understanding 
epigenetic control within the innate immune compartment is 
crucial to fully grasp the etiology of autoinflammatory disorders.
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FiGURe 1 | Control of innate immune cell function. Monocyte cell membrane receptors as TLR4 and IL-1R allow communication between the cell and the 
environment. Engagement of the receptors by their ligands (LPS or IL-1β) triggers cell signaling cascades, allowing transcription factors, particularly NF-κB 
translocation into the nucleus, where it recognizes specific regions of the DNA and recruits other transcription factors, as well as epigenetic enzymes, like TET2 
(protein involved in DNA demethylation in myeloid cells). Both the binding of transcription factors to the DNA and the epigenetic modifications of the DNA will 
increase the expression of inflammatory genes, like the inflammasome complex components. Posttranscriptional modifications of inflammasome proteins play a 
crucial role in the formation of the inflammasome complex, leading to the activation of caspase-1, which then is able to process the proinflammatory cytokines IL1-β 
and IL-18 into mature bioactive IL-1β and IL-18 cytokines that are secreted to the external media, creating an inflammatory microenvironment. Importantly, IL-1β is 
able to amplify its own signal through the binding to IL-1R.
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COnTROl OF innATe iMMUne Cell 
FUnCTiOn

The acquisition of full host protection requires proper orches-
tration and balance between resistance and tolerance, with the 
former being necessary to maximally reduce pathogen burden 
and the latter to minimize self-tissue damage by inflammation 
(17). Innate immune cells, including monocytes, macrophages, 
and neutrophils, are in the first line of defense and hence are 
equipped with very specialized molecular machinery aimed at 
sensing and destroying invading pathogens and restoring homeo-
stasis. Pattern-recognition receptors that recognize pathogen-
associated molecular patterns, and non-microbial stress signals, 
known as danger-associated molecular patterns, constitute the 
sensors that trigger upon recognition of their substrates during 
an inflammatory response. Many of these receptors, including the 
toll-like receptors and C-type lectin receptors, are located on the 
cell membrane in contact with the extracellular milieu, whereas 

others are cytoplasmic, such as the inflammasome-participating 
NOD (nucleotide-binding oligomerization domain)-like 
receptors and AIM2 (absent in melanoma) family of receptors 
(18). Inflammasomes are a key component of such defensive 
machinery that consist of multimeric cytoplasmic platforms that 
ensemble upon recognition of an insult and respond by activating 
pro-caspase-1, leading to proteolytic processing and release of 
IL-1β and IL-18, and pyroptosis (Figure 1) (19, 20).

Innate immune cells, in particular monocytes and mac-
rophages, rely on epigenetically controlled functional reprogram-
ming in order to coordinate a proper response once stimuli are 
detected. During the differentiation of monocytes to macrophages, 
whole transcriptome and epigenome studies have shown that 
substantial changes affect ~19 Mbp, which is equivalent to 0.6% 
of the human genome. Epigenetic changes affect the activity of 
promoters (H3K4me3/H3K27ac) and distal regulatory elements 
that are presumed enhancers (H3K4me1/H3K27ac) to a similar 
extent (21).
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FiGURe 2 | Genetics of autoinflammatory diseases. Different inflammasome complexes are activated by different stimulus recognized by specific sensor 
molecules. Mutations of genes coding inflammasome proteins have been identified in autoinflammatory disorders. Gain-of-function mutations in NLRP3 gene have 
been detected in cryopyrin-associated periodic syndromes (CAPS), and mutations in NLRC4 gene have been observed in macrophage activation syndrome (MAS). 
The mechanistic explanation of the exacerbated inflammatory response for patients with Familial Mediterranean Fever (FMF) has recently been described. Mutation 
of pyrin in FMF patients causes a decrease in pyrin phosphorylation and deregulation of the inflammasome assembly. Higher amounts of inflammasome complex in 
the different diseases are associated with increased production of mature IL-1β and IL-18 inflammatory cytokines.
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The acquisition of a trained or tolerant state in macrophages 
upon encounter with an external stimulus of microbial origin is 
associated with changes in around 0.12% of the entire monocyte/
macrophage epigenome. There is also around 12% difference in 
the expression of transcription factors, which dictates the specific 
antimicrobial response, which also results in an immunological 
memory coded in the chromatin that will have an impact on how 
the cell reacts to future challenges. Furthermore, transcriptomic 
analysis of the acquisition of functional memory by macrophages 
reveals that it relies on ~200 transcription factors, ~100 kinases, 
and ~20 epigenetic enzymes that are differentially expressed in 
differentiated macrophages compared to their monocytic precur-
sors [reviewed in Ref. (22)].

DYSReGUlATiOn in innATe iMMUne 
CellS

Inflammatory responses aiming at destroying invading pathogens 
consist of very potent effector mechanisms that, if not properly 

regulated, could potentially be harmful to the host, as illustrated 
by the appearance of autoinflammatory disorders. In order to 
provide specificity to the innate immune response, different 
inflammasomes are defined by the sensor protein that triggers the 
assembly, such as the NLRP1 that recognizes muramyl dipeptide 
and anthrax lethal toxin (mouse NLRP1b) (23), NLRP3 that is 
triggered by several stress-induced molecules including mono-
sodic urate crystals or ATP, NLRC4 that recognizes cytosolic 
flagellin inflammasomes (24), and the AIM2 inflammasome that 
assembles in response to cytoplasmic DNA (Figure 2) (25–28). 
All these cytoplasmic innate immune receptors signal through the 
adaptor ASC (apoptosis-associated speck-like protein containing 
a caspase recruitment domain) that recruits caspase-1, leading 
to the activation of IL-1β and the processing of IL-18 (20). The 
group of autoinflammatory disorders caused by dysregulation 
of the inflammasomes is referred to as “inflammasomopathies” 
(29). Gain-of-function mutations of NLRP3 leading to aberrant 
activation of such inflammasomes are the cause of the CAPS 
spectrum disorders (30). For example, ATP, which is a very well 
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known NLRP3 inflammasome activator and a signal of cellular 
stress, is released in great amounts by CAPS monocytes when 
exposed to minute concentrations of inflammatory stimuli that 
do not induce a reaction in healthy counterparts. CAPS mono-
cytes appear to be more sensitive and prone to generate a stronger 
reaction to same amounts of LPS compared to monocytes from 
healthy donors, hence producing an inflammatory feedback loop 
by secreting large amounts of ATP that will further activate the 
inflammasome and aberrantly augment the production IL-1β and 
IL-18 (31). Mutations in NLRC4 have been shown to cause life-
threatening autoinflammatory macrophage activation syndrome 
with systemic overproduction of IL1-β and IL-18 as well as 
uncontrolled macrophage activation (32, 33).

In the case of FMF, it was not until this year that a mecha-
nistic explanation of exacerbated IL-1β release by mutated 
pyrin (coded by MEFV) was reported by Park and colleagues. 
Although pyrin does not seem to bind directly to bacterial 
products, it is phosphorylated by PKN1 and PKN2 in a RhoA 
GTPase-dependent manner, leading to inactivation of the 
pyrin inflammasome formation in the absence of pathogen 
infection. By contrast, either the presence of several bacterial 
toxins or the mutation of pyrin in FMF patients results in lack 
or diminished pyrin phosphorylation, reduced regulation of 
inflammasome assembly and hyperproduction of cleaved 
IL-1β (34). Moreover, a molecular link between pyrin (but 
not NLRP3, AIM2, and NLRC4) inflammasome regulation 
and the mevalonate kinase pathway has also been recently 
reported. Mevalonate kinase deficiency generates systemic 
inflammation with recurrent fever and lymphadenopathy, 
namely, the hyper IgD syndrome (HIDS) and the more severe 
mevalonate aciduria. Mevalonate kinase contributes to the 
inhibition of pyrin expression in an NF-κB-dependent man-
ner through the production of geranyl pyrophosphate, which 
is necessary for repression of pyrin. As a consequence of 
absent mevalonate kinase pathways in HIDS patients, MEFV 
is overexpressed, and pyrin is abnormally activated leading to 
exacerbated inflammatory cytokine release and autoinflam-
mation (35).

ePiGeneTiCS OF AUTOinFlAMMATORY 
DiSORDeRS

Epigenetic is broadly defined as the mitotically heritable changes 
that affect gene expression without affecting genome DNA 
sequence. More specifically, epigenetics encompass mechanisms 
that register, mark or perpetuate gene activity states. It is accepted 
that, due to their upstream connections with transcription factors 
and signaling pathways, epigenetic factors sense and mediate 
interactions between environment (extracellular signals) and the 
genome. The main epigenetic mechanisms comprise DNA meth-
ylation, histone modifications, non-coding RNAs, and chromatin 
remodeling. DNA methylation occurs by the addition of a methyl 
group to the 5′ position of a cytosine followed by guanine (CpG 
dinucleotide). Subsequent demethylation results from the oxida-
tion of 5-methylcytosine catalyzed by ten–eleven translocation 
enzymes, which forms intermediates (5-hydroxymethylcytosine; 

5-formylcytosine; and 5-carboxylcytosine) to yield the final 
unmethylated cytosines; however, recently, it has been described 
that these oxidized intermediates may have independent func-
tional roles on their own merit. Posttranslational modifications 
of different histone amino acid residues are a vast group of epi-
genetic modifications. The functional role of all these epigenetic 
modifications depend on various factors including genomic 
location, and it can be very different in promoters, enhancers, 
and other genomic sites. Myeloid cells are very plastic, and they 
display vast changes in epigenetic modifications in response to a 
variety of environmental stimuli and under pathological inflam-
matory conditions (36).

In monogenic disorders, such as FMF, studies comparing 
patients with the same ancestry living in Turkey or in Germany 
have allowed the determination of the impact of the environment 
on the severity of FMF, in which environmental factors may 
contribute to as much as 12% of the phenotypic variation (37).  
In addition, it has been reported that gains of DNA methylation of 
the FMF causative gene MEFV lead to reduced MEFV expression 
in FMF peripheral leukocytes from 51 FMF patients compared to 
21 healthy controls (38).

In the case of other classical monogenic disorders, evidence 
of epigenetic dysregulation is also starting to emerge from recent 
studies. Analysis of skin biopsies from NOMID patients, compar-
ing skin lesions with both non-lesional skin and normal skin, is 
suggestive of epigenetic regulation, as genes that encode histones 
and enzymes that modify histones were differentially regulated 
in lesional skin. Moreover, two microRNAs, miR-29c and miR 
103-2, were significantly downregulated in lesions, whereas 
some other skin specific miRNAs including miRNAs miR 9-1, 
miR 199a-2, miR 203, and miR 320a, were upregulated (39). 
Nevertheless, a more cell-specific and systematic analysis of the 
contribution of epigenetics in NOMID pathology is required. 
Our group has recently described that activation of monocytes 
and macrophages by inflammatory stimuli, such as cytokines 
GM-CSF and IL-1β, drives TET2-mediated demethylation of 
several inflammasome-related molecules including PYCARD, 
AIM2, IL-1α, and IL-1β. These data led us to further investigate 
the methylation status of inflammasome genes in a cohort of 
CAPS and FMF patients. We found that demethylation of such 
genes is exacerbated in untreated CAPS patients and that this 
demethylation was reverted by anti-IL-1β treatment (40). We pro-
vided evidence for the first time that an epigenetic mechanism, in 
this case DNA methylation, may contribute the decrease in IL-1β 
production threshold in CAPS patients, and provide the basis for 
the discovery of novel biomarkers that could complement the 
diagnosis of autoinflammatory disorders (Figure  3). Evidence 
for epigenetic dysregulation has also been provided in the case 
of complex autoinflammatory disorders such as Behçet’s disease. 
Genome-wide DNA methylation studies in monocytes and 
CD4+ cells of BD patients, during flares and remission, compar-
ing to healthy counterparts have revealed significant differences 
in methylation levels throughout the genome. Moreover, BD 
monocytes displayed 383 differentially methylated CpGs in 228 
genes, whereas CD4+ showed 125 differential CpGs in 62 genes. 
Both hypermethylation and hypomethylation were represented 
in equivalent levels, and GO analysis of affected genes revealed 
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FiGURe 3 | epigenetics of autoinflammatory diseases. Epigenetic changes have been described in several autoinflammatory diseases. For example, in the 
case of chronic recurrent multifocal osteomyelitis (CRMO), a failure of histone H3 phosphorylation at serine residue 10 (H3S10p) in the promoter region impairs IL-19 
and IL-10 expression. Also, neonatal-onset multisystem inflammatory disease (NOMID) patients are associated with an increase of miR 9-1, miR 199a-2, miR 203, 
and miR 320a and a decrease of miR 29c and miR 103-2 in their skin. Finally, changes on DNA demethylation dynamics have been recently described in 
cryopyrin-associated periodic syndromes (CAPS) and Familial Mediterranean Fever (FMF).
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an overrepresentation of cytoskeletal remodeling genes in mono-
cytes and antigen processing and antigen presentation in CD4+ 
lymphocytes. Interestingly, BD patients in remission showed 
similar DNA methylation patterns as healthy controls, suggesting 
that changes in global DNA methylation patterns directly reflect 
disease pathology (41). In the case of CRMO, an autoinflamma-
tory disease affecting the bone, an imbalance of proinflammatory 
and regulatory signals has been described. In particular, decreased 
expression of IL10 has been shown to be directly attributed to 
epigenetic dysregulation. CRMO monocytes fail to produce 
IL-10, and related anti-inflammatory cytokine IL-19, upon LPS 
stimulation, which in turn leads to IL-1β overproduction and 
inflammation within the bone. IL10 repression is suggested to 
occur through impaired chromatin remodeling caused by altered 
histone H3 phosphorylation at serine residue 10 at the IL10 proxi-
mal promoter, which also encompasses the regulatory elements 
of the IL19 (CNS1) gene and partially the IL20 gene (CNS2). 
In addition, differential DNA methylation of the IL10 intronic 
enhancer element (I-SRE) and the IL19 CNS1 was also observed. 
This strongly suggests that epigenetic regulation contribute to 
the overall proinflammatory imbalance and pathophysiology in 

CRMO (42, 43). Another set of multifactorial, complex disorders 
are the group of IBDs, typically CD and ulcerative colitis (UC), 
in which genetic predisposition, environmental microbiota, 
and immune responses are the main contributing factors to its 
pathology. Regarding to genetic contribution, twin studies show 
a 50% concordance for monozygotic and 10% for dizygotic twins 
for disease development (16). Using methylation bead arrays to 
compare whole blood from 21 CD adults versus 19 sex-matched 
controls, as well as 16 CD pediatric patients, a specific methyla-
tion profile for CD was determined, which includes differential 
methylation in several immune related genes such as MAPK13, 
FASLG, PRF1, S100A13, RIPK3, and IL21R in patients compared 
to healthy controls (44). Interestingly, the DNA methyltransferase 
gene DNMT3A has been identified by GWAS as a CD susceptibil-
ity gene, which suggests that aberrant DNA methylation may be 
participating in CD etiology (45). Although specific profiles of 
miRNA expression in UC and CD have been described in both 
target tissues and blood, cell type-specific miRNA expression 
data to unambiguously assess causality are still lacking (46).

Altogether, epigenetic dysregulation is emerging as a relevant 
contributing factor of autoinflammatory development, and 
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further investigation would provide valuable insight into their 
pathogenesis that could hint for molecular-tailored treatment.

COnClUSiOn

The possibility of additional causative mechanisms leading to 
exacerbated autoinflammation in both mutated and non-mutated 
pathogenic genes increases the complexity of how autoinflamma-
tory diseases manifest and evolve. It is conceivable that different 
gene variants could behave in a differential manner depending on 
its association with non-genetic background, which in turn is able 
to shape disease presence and severity, ranging from being a true 
causative mutation, a functional polymorphisms or remaining 
silent (47). In this respect, in addition to more in-depth genetic 
studies using massively parallel sequencing techniques (such 
as whole-exome sequencing and targeted deep resequencing), 
epigenetic genome-wide profiling studies could be of great value 
as they would inform of non-genetic landscapes that contribute 
to pathogenicity. Moreover, current genetic diagnosis of a few 

candidate genes would expand potential biomarkers taking 
into account clinical and molecular traits other than described 
mutations. Overall, the identification of epigenetic dysregulation 
contributing to autoinflammation will allow us to address envi-
ronmental contribution to autoinflammatory syndromes.
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Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory 
disease (AID) affecting mainly the ethnic groups originating from Mediterranean basin. 
The disease is characterized by self-limited inflammatory attacks of fever and polysero-
sitis along with elevated acute phase reactants. FMF is inherited autosomal recessively; 
however, a significant proportion of heterozygotes also express the phenotype. FMF 
is caused by mutations in the MEFV gene coding for pyrin, which is a component of 
inflammasome functioning in inflammatory response and production of interleukin-1β 
(IL-1β). Recent studies have shown that pyrin recognizes bacterial modifications in Rho 
GTPases, which results in inflammasome activation and increase in IL-1β. Pyrin does not 
directly recognize Rho modification but probably affected by Rho effector kinase, which 
is a downstream event in the actin cytoskeleton pathway. Recently, an international group 
of experts has published the recommendations for the management of FMF. Colchicine 
is the mainstay of FMF treatment, and its regular use prevents attacks and controls 
subclinical inflammation in the majority of patients. Furthermore, it decreases the long-
term risk of amyloidosis. However, a minority of FMF patients fail to response or tolerate 
colchicine treatment. Anti-interleukin-1 drugs could be considered in these patients. One 
should keep in mind the possibility of non-compliance in colchicine-non-responders. 
Although FMF is a relatively well-described AID and almost 20 years has passed since 
the discovery of the MEFV gene, there are still a number of unsolved problems about 
it such as the exact mechanism of the disease, symptomatic heterozygotes and their 
treatment, and the optimal management of colchicine resistance.

Keywords: familial Mediterranean fever, MEFV, pyrin, colchicine, Rho GTPases

iNTRODUCTiON

Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease 
(AID) over the world. Its prevalence is very high among people from the eastern Mediterranean 
such as Jews, Turks, Armenians, and Arabs (1, 2). However, patients from different ethnicities (such 
as Japan) are being increasingly recognized (3, 4). Self-limited inflammatory attacks of fever and 
polyserositis along with high acute phase response are the typical phenotype expected in FMF 
(5). The most significant complication of FMF is amyloidosis, and it is responsible for long-term 
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Table 1 | Recommendations for familial Mediterranean fever (FMF) 
genetic diagnosis [adapted from Ref. (8)].

Recommendation Strength of 
evidence

1. FMF is a clinical diagnosis, which can be supported but not 
excluded by genetic testing

B

2. Consider patients homozygous for M694V at risk of 
developing, with very high probability, a severe phenotype

B

3. FMF patients carrying two of the common mutated alleles 
(homozygotes or compound heterozygotes), especially for 
M694V mutation or mutations at position 680–694 on exon 10, 
must be considered at risk of having a more severe disease

B

4. The E148Q variant is common, of unknown pathogenic 
significance, and as the only MEFV variant does not support 
the diagnosis of FMF

B

5. Patients homozygous for M694V mutation are at risk of early 
onset disease

C

6. Individuals homozygous for M694V who are not reporting 
symptoms should be evaluated and followed closely in order to 
consider therapy

A

7. For individuals with two pathogenic mutations for FMF 
who do not report symptoms, if there are risk factors for 
AA amyloidosis (such as the country, family history, and 
persistently elevated inflammatory markers, particularly serum 
amyloid A protein), close follow-up should be started and 
treatment considered

B

8. Consultation with an autoinflammatory disease specialist may 
be helpful in order to aid in the indication and interpretation of 
the genetic testing and diagnosis

C

2

Özen et al. Pathogenesis and Treatment of FMF

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 253

morbidity and mortality (6). Although it is known to be inherited 
autosomal recessively, a substantial number of heterozygotes are 
present expressing the phenotypic characteristics (7).

Since the definition of MEFV gene mutations underlying FMF 
in 1997, around 310 sequence variants in MEFV gene have been 
detected (8). MEFV gene, located on chromosome 16 encodes 
for pyrin protein (9, 10). Pyrin, exists mostly in neutrophils 
and macrophages, has a key role in apoptosis and inflammatory 
pathways (9, 11). Mutated pyrin causes an exaggerated inflamma-
tory response by uncontrolled interleukin-1 (IL-1) secretion (11). 
Recent studies have supplied information about the importance 
of the role of pyrin as a pattern recognition receptor (PRR), as 
well (12).

Colchicine is the mainstay of FMF treatment, and its regular 
use prevents attacks and suppresses chronic subclinical inflam-
mation (13–15). Anti-IL-1 drugs emerged as promising treatment 
options in patients who fail to response or tolerate colchicine. 
Compliance to this orally administered drug is a problem.  
In resistant cases, the clinicians should also keep in mind whether 
the patient is compliant to the therapy (16). Recently, a group 
of international experts has published the recommendations for 
the management of FMF to guide physicians taking care of these 
patients (17).

In this review, we will discuss the new findings in the patho-
genesis of FMF and the new recommendations for management.

GeNeTiCS OF FMF

In 1997, mutations in the MEFV gene, composed of 10 exons 
and located on chromosome 16 (16p13.3), were found to be 
associated with FMF (9, 10, 18). The gene encodes a 781 amino 
acid protein termed pyrin or marenostrin (9, 10, 18). Only a few 
mutations had been defined in selected families when the genetic 
association was first described (10, 19). Up to date, according to 
the INFEVERS database, more than 310 MEFV sequence variants 
have been reported (http://fmf.igh.cnrs.fr/infevers/). However, 
all variants are not associated with a disease phenotype and are 
termed “variants of uncertain significance.” With the description 
of new mutations, concerns emerged for the adequacy of check-
ing only the common mutations. Booty et  al. sequenced the 
MEFV gene in FMF patients and showed that screening the most 
common mutations instead of sequencing the whole gene appears 
sufficient to diagnose FMF in presence of clinical symptoms (20). 
In 2012, a group of clinical and molecular experts reached a 
consensus to test for a total of 14 MEFV variants if possible (21). 
These include nine clearly pathogenic variants (M694V, M694I, 
M680I, V726A, R761H, A744S, I692del, E167D, and T267I) and 
five variants of unknown significance (E148Q, K695R, P369S, 
F479L, and I591T) (21).

In the Eastern Mediterranean, the distribution of MEFV 
mutations is quite similar. M694V is the most common mutation 
in Turk (5), Armenian (22, 23), Arab (24), and Jewish popula-
tions (25); however, it is less common in Arabs (26). The second 
most common mutation is M680I in Turks (5); and V726A in 
Armenians (22, 23), Arabs (24), and Jews (25). M680I is the third 
most common mutation in Armenians (23). M694I is mostly seen 
in the Arabic population (24). On the other hand, in populations 

where FMF is a rare disease, the aforementioned mutations are 
less common, and other mutations are also seen. For example, in 
Japanese patients, E148Q is the most common variant followed 
by M694I and L110P (3). The clinical variability in FMF could 
be partly explained by genetic heterogeneity. For instance, most 
experts agreed that M694V was associated with a severe disease 
phenotype (8).

Recently, evidence-based recommendations have been devel-
oped for genetic diagnosis of FMF by the Single Hub and Access 
point for pediatric Rheumatology in Europe (SHARE) initiative 
(8). These recommendations are presented in Table 1. According 
to these, patients homozygous for M694V should be considered 
at higher risk of early disease onset and developing a severe 
phenotype (8). Furthermore, the patients carrying two mutated 
alleles in position 680–694 on exon 10 are also considered at risk 
of having a more severe disease (8).

Another area of debate is E148Q variant. E148Q, the most 
frequent sequence alteration in the MEFV gene (27), is the result 
of the substitution of glutamine for glutamic acid at codon 148 in 
exon 2 (28, 29). E148Q is a common variant in the general popula-
tion; however, the pathogenic role of E148Q is still uncertain (30).

In 2000, in a case–control study, Ben-Chetrit et  al. found a 
similar frequency for E148Q mutation both in patients and 
healthy controls and in patients and their asymptomatic relatives 
(27). Tchernitchko et  al. also demonstrated that E148Q allele 
frequency was comparable among patients and asymptomatic 
relatives and they concluded E148Q as a benign polymorphism 
(31). However, other studies (32, 33) showed that patients with 
homozygous E148Q variant might have an FMF-like phenotype 

45

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://fmf.igh.cnrs.fr/infevers/


3

Özen et al. Pathogenesis and Treatment of FMF

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 253

requiring colchicine treatment. In a recent study, it has been sug-
gested that the disease was less severe, the disease onset was later, 
and the ratio of patients responding completely to colchicine was 
higher in—at least a portion of—patients homozygous for E148Q 
when compared to the patients with exon 10 mutations (34).

Shinar et  al. defined E148Q as a variant of unknown sig-
nificance (21) and according to the SHARE recommendations, 
E148Q, as the only MEFV variant, does not support the diagnosis 
of FMF (8).

Although FMF is considered as an autosomal recessive disease, 
it was recognized that a significant portion of the patients had 
only one mutation in the MEFV gene (25, 35). Marek-Yagel et al. 
examined heterozygote FMF patients and performed haplotype 
studies in FMF families (36). They concluded that in some cases, 
the disease in heterozygotes could not be distinguished from that 
of homozygous patients, and FMF could be viewed as a dominant 
condition with low penetrance. Booty et al. searched for a second 
MEFV mutation in heterozygote patients who had a clinical 
diagnosis of FMF (20). However, re-sequencing the entire MEFV 
gene did not yield a second mutation in any of these cases (20). A 
recent study demonstrated that the frequency of FMF-like symp-
toms increased from patients carrying a single low penetrance 
mutation toward patients with two high-penetrance mutations 
suggesting a “dose effect” associated with mutations (37). One 
other explanation for heterozygote FMF patients may be the effect 
of the other modifier genes such as serum amyloid A (SAA) gene. 
SAA polymorphisms have been shown to contribute the severity 
of FMF phenotype inducing the expression of pro-interleukin-
1β (IL-1β) and activating NLRP3 inflammasome resulting in 
the secretion of active IL-1β (4, 38). In the same lines, recently, 
Atoyan et al. have shown that SAA1 α allele was strongly associ-
ated with amyloidosis in FMF patients (39). On the other hand, 
environmental factors also have effect on the disease phenotype. 
Touitou et al. examined the characteristics of 2,482 FMF patients 
(260 of whom had amyloidosis) from 14 different countries (40). 
They demonstrated that the country of recruitment (roughly 
the same as the country of residence) was the most important 
determinant of amyloidosis risk.

We had shown that Turkish children with FMF in Germany 
expressed a less severe disease phenotype in comparison with 
the ones living in eastern Mediterranean (41). In addition, when 
we examined the Eurofever registry, we have seen that patients 
with a European ancestry have a milder disease than the Eastern 
Mediterranean patients (41). Furthermore, patients living in 
eastern Mediterranean countries had a higher frequency of fever 
episodes per year, and more frequent arthritis, pericarditis, chest 
pain, abdominal pain, and vomiting compared to the patients 
living in Western Europe (41). It was noteworthy that Western 
European patients had less frequent abdominal pain, pericarditis, 
and arthritis than eastern Mediterraneans (41). All of the above 
studies suggest the effect of environment on the phenotype of this 
monogenic disease.

Another issue that deserves a mention is autosomal dominant 
FMF. Different mutations (H478Y, T577S, T577A, T577N, M694del, 
M694I, E148Q, and L110P) in MEFV have been reported to cause 
dominant FMF in patients from different populations; Spanish, 
Turkish, Dutch, British, Indian, and Japanese (18, 41–45). These 

reports have shown that FMF could also be inherited autosomal 
dominantly, and these patients may have different disease phe-
notypes. Rowczenio et al. reported that symptoms may develop 
later in life in autosomal dominant FMF with p.M694Vdel than in 
classical recessive FMF (45). Stoffels et al. have demonstrated that 
these patients may have different symptoms during attacks such as 
urticarial rash and conjunctivitis overlapping with other AID (18).

Although this is a monogenic disease, epigenetic factors and 
microbiota may play role in the pathogenesis of FMF or pheno-
typic expression. It is tempting to speculate that host–microbe 
interactions may be important in this innate immune system 
disease. Khachatryan et  al. demonstrated that the composition 
and divergence of microbiota were different during attack and 
attack-free periods as well as between FMF patients and healthy 
controls (46).

DiSeaSe PaTHOGeNeSiS

Pyrin, encoded by MEFV, has been suggested to interact with ASC 
(the inflammasome adaptor protein). The subsequent assembly of 
the inflammasome was suggested to activate caspase-1 leading to 
the cleavage and activation of IL-1β (47).

Until recently, it was a debate whether the disease-causing 
mutations in the MEFV gene were loss-of-function or gain-of-
function mutations. There were different results depending on the 
different experimental settings. Supporting the loss-of-function 
model, Papin et al. demonstrated an increase in caspase-1 activa-
tion and IL-1β secretion as a result of pyrin knockdown (48). 
Hesker et al. showed that in response to inflammatory stimuli in a 
mouse line lacking the MEFV gene, IL-1β release by macrophages 
was enhanced (49).

On the other hand, in compliance with the gain-of-function 
model, Booty et al. demonstrated a significant increase in pyrin 
expression in FMF patients compared to healthy controls (20). 
Yu et  al. have shown that activated pyrin forms a trimolecular 
complex by interacting with ASC and PTSPIP1, and this complex 
directly activates caspase-1 and leads to secretion of IL-1β (50). In 
2011, Chae et al. have demonstrated that homozygous knock-in 
mice with the mouse pyrin protein fused to the human B30.2 
domain containing FMF-associated mutations secrete large 
amounts of IL-1β in an NLRP3-independent manner (51). These 
data confirmed that the mutations associated with FMF were 
gain-of-function mutations and suggested that FMF was a pyrin 
inflammasomopathy (51).

Almost 20 years after defining the genetic basis of FMF and 
learning the role of pyrin in its pathogenesis, we now have some 
new data elaborating the role of pyrin in pathogenesis (12, 52). 
The detection of pathogenic microorganisms by PRRs triggers the 
formation of inflammasome (53). Recent data suggest that pyrin 
is also a PRR (12).

Two major virulence factors of Clostridium difficile, namely, 
TcdA and TcdB (54, 55) inactivate Rho GTPases via monogly-
cosylating a threonine residue in the GTPase switch I region of 
the protein (12). Recent studies have also shown that TcdB could 
trigger caspase-1 activation and IL-1β production; thus, it can 
activate the inflammasome (12, 56, 57). Furthermore, the C3 
toxin of Clostridium botulinum and type VI secretion system 
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(T6SS) of Burkholderia cenocepacia inactivate RHO by modifying 
the GTPase switch I region with different chemical groups and 
both trigger inflammasome activation (12). These results suggest 
that the bacterial toxins modifying RHO could trigger caspase-1 
activation and IL-1β production; thus induce the inflammasome 
(12). The inflammasome activation by these toxins (TcdB, C3, 
and T6SS) was independent of NLRP3 and NLRC4 but was 
decreased in ASC−/− and MEFV−/− bone marrow-derived mac-
rophages (12). In addition, small interference RNA knockdown 
of pyrin inhibited TcdB-induced caspase-1 activation (12). These 
results also support the “gain-of-function” model in the patho-
genesis of FMF. Since different inhibiting modifications in RHO 
proteins all result in caspase-1 activation, pyrin probably senses a 
downstream event in the actin cytoskeleton pathway (12).

The study by Park et  al. has enlightened these mechanisms 
further (52). They have demonstrated that staurosporine, a potent 
inhibitor of protein kinase C that is an effector of RhoA, induced 
IL-1β release independent of the NLRP3, NLRC4, or AIM2 
inflammasomes but dependent on the pyrin inflammasome (52). 
This shows that RhoA effector kinases suppress pyrin inflamma-
some activation. PKNs, RhoA effector kinases, bind to human 
pyrin and phosphorylate Ser208 and Ser242 units. The binding of 
PKN1 to the pyrin of FMF-knock-in mice (with B30.2 mutations; 
MefvM680I/M680I, MefvM694V/M694V, and MefvV726A/V726A) was substan-
tially decreased in comparison with the binding of PKN1 to wild 
type (Mefv+/+) mouse pyrin, which lacks a B30.2 orthologous 
domain (52). The binding of PKN1 to the pyrin of wild type B30.2 
domain knock-in mice (MefvB30.2/B30.2) was also decreased relative 
to wild-type mouse pyrin (but not as much as in FMF knock-in 
mice) (52). These suggest that the human B30.2 domain has a role 
in the regulation of PKN1 binding to pyrin. It was also shown 
that 14-3-3 protein binds to phospho-pyrin (phosphorylated 
from Ser208 and Ser242 units by PKNs) to inhibit inflammasome 
activation. Furthermore, the binding of 14-3-3 to mutant pyrin 
(M680I, M694V, and V726A) was decreased relative to wild-type 
human pyrin (52). All aforementioned results show that active 
RhoA signals through PKNs, which phosphorylate pyrin from 
Ser208 and Ser242 units. Then, 14-3-3 proteins bind to phospho-
pyrin and inhibit the activation of pyrin inflammasome. Pyrin is 
activated when dephosphorylated at Ser208/Ser242. The binding 
of PKN1 to pyrin is decreased with the B30.2 domain where most 
of the common and severe MEFV mutations are clustered.

These data enlighten the effect of mutations on pyrin function 
and the downstream event of RhoA inhibiting pyrin. Active pyrin 
promotes ASC oligomerization and forms a caspase-1 activat-
ing complex resulting in IL-1β production. Wild-type pyrin 
relies selectively on microtubules for inflammasome activation 
and microtubules control pyrin signaling downstream of pyrin 
dephosphorylation (52). Recently, Van Gorp et al. have observed 
that colchicine pretreatment augments the TcdA-induced IL-1β 
secretion from FMF peripheral blood mononuclear cells (58). 
The microtubule assembly inhibition with nocodazole also had 
the same effect. Thus, FMF-associated mutated pyrin does not 
require microtubules for ASC speck assembly. MEFV mutations 
in B30.2 domain probably remove the critical reliance on intact 
microtubules for pyrin-based nucleation of ASC specks and 
inflammasome signaling (58).

To make the story even more complex, in a recent study, 
Kimura et al. have demonstrated that pyrin (referred as TRIM20 
in the article) recognizes the inflammasome components, 
NLRP1, NLRP3, and procaspase-1 and leads to their autophagic 
degradation (59). Diminished autophagic degradation of NLRP3 
was shown in single (M694V), double (M680I and M694V), and 
triple (M680I, M694V, and V726A) mutants (59).

When we look at the cellular level, we know that neutrophilia 
and influx of neutrophils to the inflamed sites occur in FMF 
attacks (60). Gohar et  al. demonstrated that in  vitro, unstimu-
lated neutrophils from M694V positive patients spontaneously 
secreted more S100A12, IL-18, and caspase-1 compared to 
neutrophils from healthy controls (61). In another study, it has 
recently been shown that FMF attack is characterized by release 
of neutrophil extracellular traps (NET) including active IL-1β 
(60). These NET structures are observed in the first hours of FMF 
attacks, and subside as the inflammatory attack is resolved. They 
have demonstrated that NETs restrict their own generation by 
a negative feedback mechanism, which may be an explanation 
for the self-limited nature of FMF attacks. Of note, in this study, 
neutrophils from FMF patients in remission were resistant to 
induction of NET release. They have shown that reduced basal 
autophagy levels in these cells could be responsible for this since 
autophagy induction is needed for NET formation. Thus, lower 
basal autophagy levels of neutrophils may protect from attacks by 
attenuating the release of pro-inflammatory NETs.

Manukyan et al. have recently shown that the ex vivo spontane-
ous apoptotic rate of neutrophils from FMF patients in remission 
is significantly higher compared to control (62). The accelerated 
apoptosis of neutrophils in FMF may be important for successful 
resolution of inflammation and prevention of tissue damage. This 
may be another explanation for the self-limited nature of FMF 
attacks. Pyrin modulates the susceptibility to apoptosis; however, 
the effect of the mutant pyrin on apoptotic processes is poorly 
understood.

Although now we know more about the function of pyrin, the 
role of neutrophils, and the disease pathogenesis, there are still 
questions waiting to be answered such as the exact reason for the 
episodic and short-term nature of the inflammatory attacks and 
the phenotypic variability in FMF.

TReaTMeNT

Familial Mediterranean fever can be well controlled with opti-
mum standard management. Recently, with the international 
collaboration of experienced experts from different countries, the 
European League Against Rheumatism (EULAR) recommenda-
tion set for the management of FMF has been published supported 
by the best available evidence (17). These recommendations are 
presented in Table 2.

The EULAR recommendations emphasize that the aim of FMF 
treatment is obtaining the control of acute attacks, minimizing 
the chronic and subclinical inflammation, preventing complica-
tions, and providing an acceptable quality of life.

It is also emphasized that colchicine is the main treatment of 
FMF since 1972 (63). It is generally a safe and well-tolerated drug, 
but its mechanism of action in FMF has not been completely 
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Table 2 | The european league against Rheumatism recommendations 
for the management of FMF with grade of recommendation [adapted 
from Ref. (17)].

Recommendation Grade

01. Ideally, FMF should be diagnosed and initially treated by a physician 
with experience in FMF

D

02. The ultimate goal of treatment in FMF is to reach complete control 
of unprovoked attacks and minimizing subclinical inflammation in 
between attacks

C

03. Treatment with colchicine should start as soon as a clinical 
diagnosis is made

A

04. Dosing can be in single or divided doses, depending on tolerance 
and compliance

D

05. The persistence of attacks or of subclinical inflammation represents 
an indication to increase the colchicine dose

C

06. Compliant patients not responding to the maximum tolerated 
dose of colchicine can be considered non-respondent or resistant; 
alternative biological treatments are indicated in these patients

B

07. FMF treatment needs to be intensified in AA amyloidosis using 
the maximal tolerated dose of colchicine and supplemented with 
biologics as required

C

08. Periods of physical or emotional stress can trigger FMF attacks, and 
it may be appropriate to increase the dose of colchicine temporarily

D

09. Response, toxicity, and compliance should be monitored every 
6 months

D

10. Liver enzymes should be monitored regularly in patients with FMF 
treated with colchicine; if liver enzymes are elevated greater than 
twofold the upper limit of normal, colchicine should be reduced and 
the cause further investigated

D

11. In patients with decreased renal function, the risk of toxicity is very 
high, and therefore signs of colchicine toxicity, as well as CPK, should 
be carefully monitored and colchicine dose reduced accordingly

C

12. Colchicine toxicity is a serious complication and should be 
adequately suspected and prevented

C

13. When suspecting an attack, always consider other possible 
causes. During the attacks, continue the usual dose of colchicine 
and use NSAID

C

14. Colchicine should not be discontinued during conception, pregnancy, 
or lactation; current evidence does not justify amniocentesis

C

15. In general, men do not need to stop colchicine prior to conception; 
in the rare case of azoospermia or oligospermia proven to be 
related to colchicine, temporary dose reduction or discontinuation 
may be needed

C

16. Chronic arthritis in a patient with FMF might need additional 
medications, such as DMARDs, intra-articular steroid injections, or 
biologics

C

17. In protracted febrile myalgia, glucocorticoids lead to the resolution 
of symptoms; NSAID and IL-1-blockade might also be a treatment 
option; NSAIDs are suggested for the treatment of exertional leg pain

C

18. If a patient is stable with no attacks for more than 5 years and no 
elevated APR, dose reduction could be considered after expert 
consultation and with continued monitoring

D

APR, acute phase reactants; CPK, creatinine phosphokinase; DMARDs, disease-
modifying antirheumatic drugs; FMF, familial Mediterranean fever; IL-1, interleukin-1; 
NSAID, non-steroidal anti-inflammatory drugs.
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elucidated. However, we know that it prevents microtubule elon-
gation by binding to tubulin monomers and inhibiting polymer 
formation (64, 65). Thus, the link between pyrin and colchicine 
could be through the organization of actin cytoskeleton.

Previously, it was claimed that colchicine is an activator of 
RhoA (66). It binds to tubulin, depolymerizes microtubules and 

causes release of the RhoA activator guanine-nucleotide-exchange 
factor-H1, which is inactive when bound to microtubules (66). 
Park et al. demonstrated that colchicine inhibited the constitutive 
IL-1β release from bone-marrow-derived macrophages (BMDMs) 
of MefvV726A/V726A mice and C3-toxin-induced IL-1β release from 
primed BMDMs. In addition, colchicine inhibited IL-1β release 
from PBMCs of FMF patients (52). In the same lines, Van Gorp 
et al. demonstrated that microtubule-depolymerizing drugs selec-
tively inhibited the pyrin inflammasome (58). Thus, colchicine 
may be inhibiting pyrin inflammasome through RhoA activation 
by releasing RhoA activator from depolymerized microtubules.

Certain other pharmacological anti-inflammatory effects of 
colchicine have been enlightened such as preventing activation 
of neutrophils by forming β-tubulin–colchicine complexes and 
inhibiting the microtubule assembly and mitotic spindle forma-
tion, suppressing caspase-1 gene expression, and inhibiting the 
synthesis of tumor necrosis factor alpha (TNF-α) (65, 67–70).

It is suggested that colchicine should be started as soon as the 
patient is clinically diagnosed as having FMF. If the patient lacks 
clinical manifestations or subclinical inflammation, genetic diag-
nosis is not a precise indication to start treatment; however, these 
patients should be followed-up closely for clinical symptoms or 
signs of subclinical inflammation (17). In countries where amy-
loidosis has high frequency, the physician may consider treatment 
in these patients especially when the patient has homozygous 
M694V mutation, which is more frequently associated with the 
development of amyloidosis (9, 21, 71–77).

The optimal dosage of colchicine varies between studies and 
different clinical practices. The recommendation of the starting 
dose of colchicine in FMF is ≤0.5 mg/day for children <5 years of 
age; 0.5–1 mg/day for children 5–10 years of age; and 1–1.5 mg/day 
in children >10 years of age and in adults (in case tablet contains 
0.6 mg; ≤0.6 mg/day; 1.2 mg/day; and 1.8 mg/day, respectively) 
(17). Higher starting doses could be used in patients with high 
disease activity or disease complications such as amyloidosis (17). 
However, in most patients, it is started at the subtherapeutic dose of 
0.5 mg/day and adjusted according to disease activity and tolerance 
in the follow-up. While escalating colchicine dose in patients with 
active disease, monitoring C-reactive protein (CRP) and SAA, or 
both is required at least every 3 months (17). Both increase in attack 
frequency and presence of subclinical inflammation are indications 
to increase colchicine dose. The maximum dose is 2  mg/day in 
children and 3 mg/day in adults (14, 78). Dosing can be in single 
or divided doses. The dose can be divided to decrease side effects; 
however, a single daily dose may increase the compliance (17). 
Polat et al. have recently shown that using colchicine with either 
once- or twice-daily dosage provides similar clinical and laboratory 
improvement as well as the similar rate of drug side effect (79).

Colchicine treatment is lifelong in FMF. However, in EULAR 
recommendations, FMF experts recommend the consideration of 
colchicine dose reduction by an experienced center under certain 
circumstances with very careful and close follow-up (17).

Colchicine is a safe drug in the range of doses used for FMF 
treatment (80). The most common side effects of the drug and 
toxicity are also reviewed in the aforementioned recommenda-
tions. The most common side effect is gastrointestinal distur-
bance, which may be seen in up to 10% of patients during the 
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first month of the treatment (81, 82). It was shown that jejunal 
lactase, sucrase, and maltase activities decreased in patients on 
long-term colchicine treatment (83). In these patients, increased 
fecal excretion of starch, fat, and bile acids and decreased absorp-
tion of d-xylose and vitamin B12 occur, as well. These may be the 
explanation for diarrhea and lactose intolerance, and a sympto-
matic relief can be provided with a lactose-free diet (83, 84). Dose 
reduction may also improve the gastrointestinal symptoms (85). 
There are also some rare side effects of colchicine, such as vitamin 
B12 deficiency, reversible peripheral neuritis and myopathy, bone 
marrow suppression, and alopecia (86–89). In addition, some 
animal studies and case reports suggested its association with 
azoospermia (90, 91); however, this was only in very high doses. 
Thus, in general, men need not stop colchicine prior to concep-
tion (17). Colchicine use is safe during pregnancy and lactation, 
as well (92–94). However, it should be used cautiously in patients 
with impaired renal or hepatic functions (95).

Compliance with colchicine is very important for proper 
management of FMF. One study showed that proteinuria that 
is usually the first sign of renal amyloidosis, developed after a 
period of 9–11 years in 1.7% of 960 adult patients who properly 
used colchicine versus 49% in 54 patients who were not compli-
ant (96). There is a surprisingly high rate of incompliance with 
colchicine especially among adolescent patient (17). Thus, in 
the case of patients not responding to colchicine, the physician 
should keep in mind the possibility of incompliance. Overall, up 
to 5% of FMF patients may not respond to colchicine treatment 
and another 2–5% is colchicine intolerant (85).

Anti-IL-1 therapy seems to be a promising second-line therapy 
in refractory or intolerant patients. However, one should keep 
in mind that colchicine should be coadministered with biologic 
therapies since it may reduce the risk of amyloidosis (17). There 
are three types of anti-IL-1 agents in clinical use; anakinra, a 
recombinant homolog of the human IL-1 receptor (97); canaki-
numab, a fully human immunoglobulin G1 monoclonal antibody 
(98); and rilonacept, a dimeric Fc-fusion protein capturing IL-1 
(97); all administered subcutaneously.

The most recent systematic review of the literature (99) has 
yielded 24 case reports/series, 2 open-label prospective trials 
(100, 101), and 1 placebo-controlled prospective trial (102) on 
anti-IL-1 use in FMF. Eighteen reports were on treatment with 
anakinra (103–120), four on canakinumab (100, 101, 121, 122), 
four on patients treated with either anakinra or canakinumab 
(123–126), and the only placebo-controlled prospective trial 
was on treatment with rilonacept (102). A complete response 
to therapy was reported in 76.5% of patients on anakinra, and 
67.5% of patients on canakinumab treatment (99). In addition, 
IL-1 blockade can reverse proteinuria in patients with renal 
AA amyloidosis (99, 127). However, we do not know whether 
anti-IL-1 therapies could prevent amyloidosis. A new study on 
efficacy/safety of canakinumab in patients with hereditary peri-
odic fevers including FMF is also underway (http://ClinicalTrials.
gov identifier NCT02059291).

Anti-IL-1 drugs may be used “on demand” (starting at first 
symptom of attacks) in mevalonate kinase deficiency (128). We 
need further data on whether this would be an option for selected 
cases in FMF or on certain occasions.

Besides IL-1 blockade, FMF patients with chronic arthritis 
and/or sacroiliitis could benefit from disease-modifying anti-
rheumatic drugs or anti-TNF agents (129, 130).

Treatment of protracted febrile myalgia syndrome (PFMS) 
has also been addressed. PFMS is a very rare manifestation of 
FMF and is defined as severe, disabling myalgia of at least 5 days 
duration (108, 112). It is associated with fever, the presence of 
at least one M694V mutation, and elevated inflammatory mark-
ers while creatine kinase levels are usually normal (131, 132). 
Corticosteroid treatment is required to suppress symptoms (17, 
131, 133, 134). Non-steroidal anti-inflammatory drugs may also 
be beneficial (131). In addition, anakinra has been used success-
fully in two patients with PFMS associated with FMF (112).

Treatment in Heterozygotes
Familial Mediterranean fever is a clinical diagnosis, and we have 
many patients who are heterozygous for MEFV mutations. How 
patients with one mutation only can express the disease is still not 
clear (135). We give colchicine treatment to patients who express 
the typical FMF phenotype. However, some heterozygotes can 
sometimes “outgrow” the phenotype (30). Ben-Zvi et al. previ-
ously demonstrated that their patients (not using colchicine) 
experienced years of symptom-free interval where 22 out of these 
33 were heterozygotes (136).

The data on remission of the disease in heterozygotes are 
limited. Recently, we have reported our experience on heterozy-
gote patients with transient FMF clinic (7). We discontinued 
colchicine treatment in 22 heterozygote FMF patients who had 
an inflammation- and attack-free period for a long duration. The 
median follow-up after colchicine cessation was 22.5  months, 
and we restarted colchicine in only two patients because of the 
recurrence of attacks. However, after colchicine cessation, close 
follow-up is crucial every 3–6 months to evaluate whether they 
have recurrence of attacks or subclinical inflammation.

Refractory FMF and Outcome
There is no standard definition for refractory FMF patients. 
However, in the recent guideline, we stated that patients who 
continue to have ≥1 attacks per month despite receiving the 
maximally tolerated dose for ≥6  months might be considered 
non-responder or resistant to colchicine (17). Another issue is 
ongoing subclinical inflammation, which leaves the patients at 
risk of developing amyloidosis (17). In addition, in the case of 
AA amyloidosis, the FMF treatment should be intensified with 
biologics and maximal tolerated dose of colchicine (17).

There are mainly two tools to evaluate outcome and disease 
activity in FMF; FMF50 score and autoinflammatory disease 
activity index, respectively.

In FMF50, the items are percentage change in the frequency 
and duration of attacks, arthritis attacks, physician’s and patient’s/ 
parents’ global assessment of disease severity (0–10  cm visual 
analog scale; 10 the worst), and in ESR, CRP, or SAA level with the 
treatment (137). At least 50% improvement in five out of six cri-
teria by 3–6 months with no worsening in any one means FMF50 
response. It is noteworthy that compliance with the maximum 
dose of drug is essential for evaluating the patients with FMF50 
score.
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Autoinflammatory disease activity index is a disease activity 
assessment tool for AID including FMF, and it is composed of 
13 items: overall symptoms, nausea/vomiting, abdominal pain, 
diarrhea, chest pain, arthralgia or myalgia, swelling of the joints, 
headaches, eye manifestations, skin rash, and pain relief (138). 
Each item except pain relief is scored by the patients/parents for 
a total score of 0–34 in a single day and 0–1,054 in a month of 
31 days. A cutoff score of ≥9 discriminates active from inactive 
patients with a sensitivity of 89% and specificity of 92% (138).

There is also one recent tool for AID including FMF to quantify 
damage in patients and to compare disease outcomes in clinical 
studies; autoinflammatory disease damage index (ADDI) (139).

In ADDI, damage is defined as “persistent or irreversible change 
in structure or function that is present for at least 6 months” (139). 
ADDI contains 18 items, and these items are categorized by organ 
systems as follows: reproductive, renal/amyloidosis, develop-
mental, serosal, neurological, ears, ocular, and musculoskeletal. 
The renal/amyloidosis and neurological damage categories were 
assigned to have the highest number of points while serosal dam-
age got the lowest. This index provides a universal instrument to 
measure damage by chronic inflammation in FMF.

These tools could aid us to form a standard definition for 
refractory FMF patients and standardize the outcome measure-
ment in different studies.

UNSOlveD iSSUeS iN FMF

As we mentioned above in the relevant parts, there are still gaps 
in knowledge about the pathogenesis and treatment mechanisms 
in FMF. We need further research on the following:

 – the significance of the E148Q variant,
 – exact roles of modifier factors (microbiota, microRNAs, etc.) 

on disease pathogenesis, phenotypic expression, and severity 
of the disease,

 – the effects of mutant pyrin on apoptosis,
 – the exact reason for the self-limited and episodic nature of 

disease attacks,
 – whether anti-IL-1 treatment prevents amyloidosis,
 – the definition of colchicine resistance,
 – why certain rheumatic diseases are more common in 

heterozygotes, and why they sometimes express the disease 
phenotype,

 – the duration of treatment in heterozygous patients,
 – more biomarkers for secondary amyloidosis.

CONClUSiON

When the mutated protein for FMF was described 20  years 
ago, we thought that everything was resolved. However, this 
monogenic disease continues to be of interest to clinical and 
basic researchers. We still need to address the above questions 
and the cause of the phenotypic heterogeneity in this disease. On 
the other hand, the experts on FMF have worked on compiling 
recommendations to guide physicians in the diagnosis, manage-
ment, and treatment of FMF. It is hoped that these recommen-
dations may be of practical use while the work on solving the 
pathogenesis continue.
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Disease Phenotype and Outcome 
Depending on the age at Disease 
Onset in Patients carrying the r92Q 
low-Penetrance Variant in 
TNFRSF1A gene
Estíbaliz Ruiz-Ortiz1, Estíbaliz Iglesias2, Alessandra Soriano3,4, Segundo Buján-Rivas5,  
Marta Español-Rego1, Raul Castellanos-Moreira6, Adrià Tomé6, Jordi Yagüe1,  
Jordi Antón2 and José Hernández-Rodríguez6*

1 Department of Immunology-CDB, Hospital Clinic, IDIBAPS, Barcelona, Spain, 2 Pediatric Rheumatology Unit, Department of 
Pediatrics, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain, 3Rheumatology Unit, Department of 
Internal Medicine, Arcispedale Santa Maria Nuova – IRCCS, Reggio Emilia, Rome, Italy, 4Campus Bio-Medico University, 
Rome, Italy, 5 Autoimmune and Systemic Diseases Unit, Department of Internal Medicine, Hospital Vall d’Hebron, Barcelona, 
Spain, 6 Clinical Unit of Autoinflammatory Diseases and Vasculitis Research Unit, Department of Autoimmune Diseases, 
Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain

Background: Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) 
is an autosomal-dominant autoinflammatory disease caused by mutations in the 
TNFRSF1A gene. R92Q, a low-penetrance variant, is usually associated with a milder 
TRAPS phenotype than structural or pathogenic mutations. No studies differentiating 
R92Q-related disease in patients with pediatric and adult onset have been performed 
to date.

Objective: To analyze clinical features and disease outcomes in patients diagnosed with 
TRAPS associated with R92Q variant and to investigate differences between patients 
with pediatric and adult disease onset.

Methods: A retrospective review of patients with R92Q-related disease from four refer-
ence centers for autoinflammatory diseases was performed. Clinical and laboratory fea-
tures, family history of autoinflammatory diseases, treatments received, and outcomes 
during follow-up were recorded and separately analyzed in pediatric and adult patients. 
Our results were included in the analysis with other reported pediatric and adult R92Q-
related disease series.

results: Our series encompassed 18 patients (9 females and 9 males) with R92Q 
variant. In 61% of patients, disease onset occurred during infancy and in 39%, during 
adulthood, with a median diagnostic delay of 5 years and a follow-up of 5.4 years. A 
positive family history of autoinflammatory disease was detected in 28% of patients. All 
patients presented with febrile recurrent episodes. Other common symptoms included 
arthralgia/arthritis (61%), myalgia (39%), asthenia/fatigue (44%), abdominal pain (39%), 

Abbreviations: TNF, tumor necrosis factor; TRAPS, tumor necrosis factor receptor-associated periodic syndrome.
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inTrODUcTiOn

The term autoinflammatory diseases was first coined in 1999 
by Kastner et  al. to encompass a group of clinical syndromes 
characterized by an increased systemic inflammatory reaction, 
mediated predominantly by cells and molecules of the innate 
immune system, and caused by mutations in genes involved in the 
control of inflammatory pathways (1). Among autoinflammatory 
diseases, tumor necrosis factor receptor-associated periodic syn-
drome (TRAPS; OMIM 142680), described as familial Hibernian 
fever in 1982 (2), was defined as an autosomal-dominant disease 
caused by mutations in the TNFRSF1A gene (located on chromo-
some 12p13) in 1999 (1).

Although classically TRAPS affects mostly children below 
10 years of age, it can also occur in adult patients (3–9). No sex 
dominance has been reported (6–11). Clinical features of TRAPS 
include recurrent fever episodes associated with musculoskeletal 
symptoms, migratory rash, and ocular manifestations (5–14). 
Raised acute phase reactants during attacks are also typical (5, 8, 
10, 11). About 10–15% of patients with TRAPS may develop amy-
loidosis (6–8, 10, 11, 15). Psychological stress, physical exercise, 
infections, menstruation, or vaccinations have been occasionally 
identified as trigger factors of the attacks (5).

Most of the sequence variants identified in TRAPS patients 
are located in the exons 2–4 (see Infevers database in http://fmf.
igh.cnrs.fr/ISSAID/infevers) (16). Those missense substitutions 
disrupting structurally important cysteine–cysteine disulfide 
bonds in the extracellular domain and other mutations, such as 
T50M, are known as structural or pathogenic variants (5, 14). 
Moreover, two frequent variants, R92Q (the common name 
for p.Arg121Gln, located in exon 4) and P46L (also known as 
p.Pro75Leu, located in exon 3), are known by causing a variable 
TRAPS phenotype in some patients. In addition, these mutations 
can be observed in asymptomatic first-degree relatives and in 
healthy individuals (8, 14). For these reasons, R92Q and P46L 
have been recently classified as variants of uncertain significance 

(17). However, the potential pathogenic role of low-penetrance 
mutations causing TRAPS or TRAPS-like phenotypes still gener-
ates controversy among investigators (5, 6, 9, 12, 13).

Several studies have reported that patients carrying R92Q tend 
to present with milder disease phenotype and better long-term 
prognosis compared with those carrying structural or pathogenic 
TNFRSF1A mutations, who usually suffer from more severe 
manifestations and long-term complications (e.g., amyloidosis) 
(4–11, 18). While structural mutations are typically observed in 
children, those patients with adult onset of TRAPS more often 
carry the R92Q variant (4, 8).

Studies focused on R92Q-related disease are scarce. In 
addition, no studies on TRAPS associated with R92Q variant 
(or R92Q-related disease) differentiating disease phenotype, 
treatment requirements, and outcomes according to the age 
at disease onset (pediatric and adult) have been performed to 
date. Therefore, we aimed to investigate clinical and laboratory 
features, therapeutic approaches, and long-term outcomes in a 
cohort of pediatric and adult patients carrying the R92Q low-
penetrance variant in TNFRSF1A gene, with special interest in 
the analysis of differences between the two age groups. Previous 
pediatric and adult case series of patients with R92Q-related 
disease reported in the literature were also reviewed and used for 
final comparisons.

MaTerials anD MeThODs

Patients’ selection and Data collection
From January 2006 to June 2016, we retrospectively reviewed 
medical charts of pediatric and adult patients diagnosed with 
an autoinflammatory disease attributed to R92Q variant in 
TNFRSF1A gene, in four reference centers for autoinflamma-
tory diseases (Clinical Unit of Autoinflammatory Diseases, 
Departments of Autoimmune Diseases and Immunology, 
Hospital Clínic of Barcelona, Barcelona, Spain; Pediatric 

headache (33%), odynophagia (33%), skin rash (28%), and chest pain (22%). During 
attacks, 80% of patients increased acute phase reactants levels. No patient had devel-
oped amyloidosis during the study period. At the end of follow-up, 28% of patients were 
asymptomatic and treatment free, 50% were receiving non-steroidal anti-inflammatory 
drugs or glucocorticoids on demand, and 22% were being treated with biologic agents. 
When differences between pediatric and adult patients were globally analyzed, adults 
tended to have longer attacks duration and presented more frequently with chest pain 
and headache, while abdominal pain, vomiting, cervical adenitis, and pharyngitis pre-
dominated in pediatric patients. No differences in outcomes and treatment requirements 
were observed in both age groups.

conclusion: This study has contributed to characterize R92Q-related disease by iden-
tifying trends in disease phenotypes depending on the age at disease onset.

Keywords: tumor necrosis factor receptor-associated periodic syndrome, r92Q, low-penetrance variants, 
autoinflammatory diseases, pediatric onset, adult onset
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Rheumatology Unit, Department of Pediatrics, Hospital Sant 
Joan de Déu, Barcelona, Spain; Rheumatology Unit, Department 
of Internal Medicine, Arcispedale Santa Maria Nuova – IRCCS, 
Reggio Emilia, Italy; and Autoimmune and Systemic Diseases 
Unit, Department of Internal Medicine, Hospital Vall d’Hebron, 
Barcelona, Spain).

Patients were included if an autoinflammatory disease was 
suspected after ruling out autoimmune, infectious, or malignant 
causes, and R92Q low-penetrance variant in TNFRSF1A gene was 
found. Patients with structural variants in TNFRSF1A gene or 
with concomitant mutations in MEFV, MVK, and NLRP3 genes 
were excluded to avoid potential confounding factors for a more 
accurate diagnosis.

The recently published provisional Eurofever classification 
criteria for autoinflammatory diseases (9) were used to assess 
the level of agreement with TRAPS diagnosis in our patients. 
Variables (and their values) for TRAPS classification included: 
duration of episodes more than 6 days (19 points), presence of 
periorbital edema (21 points) or migratory rash (18 points), and 
also absence of vomiting (14 points) or oral aphthae (15 points). 
In patients with structural mutations, a cut-off value ≥43 was 
reported to yield 80% sensitivity and 91% specificity for TRAPS 
classification (9). Of note, in the same study, these criteria were 
associated with lower sensitivity and specificity (59 and 84%, 
respectively) for patients carrying the R92Q variant, although 
52% of them could be still classified as TRAPS (9).

Clinical features recorded included frequency and duration 
of attacks, and presence of fever, arthralgia/arthritis, myalgia, 
abdominal and chest pain, cutaneous rash, ocular symptoms, and 
other less frequent manifestations (Table 1). Type of medications 
used and response to them, at disease onset and during follow-up, 
as well as their continuous or on-demand administration, were 
also collected. Laboratory parameters included complete blood 
cell counts, C-reactive protein (CRP) and/or serum amyloid A 
(SAA) levels, erythrocyte sedimentation rate (ESR), urinalysis 
with proteinuria, and markers of autoimmunity, such as anti-
nuclear antibodies, rheumatoid factor, and complement levels. 
Genetic testing of the most common genes causing monogenic 
autoinflammatory diseases (TNFRSF1A for TRAPS, MEFV for 
familial Mediterranean fever, MVK for mevalonate kinase defi-
ciency, and NLRP3 for cryopyrin-associated periodic syndromes) 
was carried out.

This retrospective study was approved by the Research Ethics 
Committee of the Hospital Clínic of Barcelona. Patients’ informa-
tion was dissociated prior to analysis, and all procedures were 
performed in accordance with the ethical principles expressed in 
the 2013 Declaration of Helsinki.

groups Based on age at Disease Onset 
and review of the literature
Based on previous studies, patients aged <16 and ≥16 years at 
disease onset were considered to have pediatric and adult disease 
onset, respectively (4, 11, 13). In addition, those cohort series of 
patients with R92Q-related disease reported until 2016 (identi-
fied through PubMed search) with consistent data about clinical 
manifestations and outcomes during the follow-up, which also 
provided separate information with regard to the age of disease 

onset (pediatric and adult), were compared with our case series 
and used for global calculations.

statistical analysis
Results (in text and tables) are expressed as mean ± SD or median 
plus range, where applicable. Chi-square or Fisher’s exact tests 
were used for contingency tables. Quantitative differences 
between groups were analyzed by using Student’s unpaired t-test. 
Data were analyzed with the SPSS PC statistical package (ver-
sion 20.0). Differences with a value of p < 0.05 were considered 
statistically significant.

resUlTs

Overall characteristics of Patients of all 
ages with r92Q-related Disease
A total of 18 patients with R92Q variant in TNFRSF1A gene follow-
ing inclusion criteria were analyzed. Seven patients were excluded 
because of carrying the R92Q variant and other concomitant 
mutations in NLRP3 and MEFV genes, or they presented with a 
disease phenotype permitting a different definite diagnosis. None 
of the included patients met diagnostic criteria for periodic fever, 
aphthous stomatitis, pharyngitis, and adenitis syndrome (19).

When provisional Eurofever classification criteria for TRAPS 
(9) were applied in our patients, 10 (56%) of them reached the 
cut-off for TRAPS classification. Among these, four (36%) were 
children and six (86%) adult patients (p = 0.066).

Nine (50%) patients were female and nine (50%) were male. 
In 11 (61%) patients, disease onset occurred during infancy, at a 
mean age of 7.6 years (median 8 years; range 1–15 years); and in 
seven (39%) patients, symptoms started during adulthood, at a 
mean age of 25 years (median 23 years; range 16–43 years). Seven 
(39%) and 11 (61%) patients were diagnosed during pediatric and 
adult age, respectively. Overall, mean diagnostic delay was 5 years 
(median 3 years; range 4 months–25 years).

All patients presented with febrile recurrent episodes with 
disease-free intervals. A remarkable intersubject and intrasubject 
variability was observed with regard to duration and frequency 
of attacks (Table 1). The most common symptoms accompanying 
fever episodes were arthralgia/arthritis (61%), myalgia (39%), 
asthenia/fatigue (44%), abdominal pain (39%), headache (33%), 
odynophagia (33%), skin rash (29%), and chest pain (22%). Other 
less frequent manifestations included facial/periocular edema, 
oral aphthae, cervical adenitis, and conjunctivitis. A positive 
family history of an autoinflammatory (R92Q-related) disease 
was detected in five (28%) patients (four children and one adult).

During attacks, 80% of patients had increased CRP or SAA 
levels and 50% of them showed high ESR values. However, hemo-
globin levels and leukocyte and platelet counts were abnormal in 
less than half of patients during attacks. At the end of follow-up, 
proteinuria or other AA amyloidosis signs were not observed in 
any of our patients. With regard to genetic results, all patients 
included in the study carried R92Q low-penetrance variant in 
TNFRSF1A gene (16 of them as heterozygous mutations and 
two in homozygosity), and no other mutations were identified in 
MEFV (17 patients), MVK (16 patients), or NLRP3 (14 patients) 
genes.
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TaBle 1 | Demographic, clinical, and laboratory features of patients with r92Q variant in our study series.

a B c p Value (a vs. B)

r92Q patients with pediatric 
onset (n = 11)

r92Q patients with adult 
onset (n = 7)

all r92Q patients (n = 18)

Demographic data
Sex (female/male) 4/7 5/2 9/9 0.34
Age at symptoms onset (years) 7.6; 8 (1–15) 25; 23 (16–43) 14.3; 12 (1–43) 0.004
Age at diagnosis (years) 12; 12 (5–16) 31; 25 (16–48) 19; 16 (5–48) 0.015
Time from disease onset to diagnosis (years) 4.1; 4 (0.3–9) 5.8; 2 (0.3–25) 5; 3 (0.3–25) 0.65
Follow-up (years) 6.2; 6 (2–10) 4; 5 (1–8) 5.4; 5.5 (1–10) 0.18
Positive family history 4 (36) 1 (14) 5 (28) 0.60
TRAPS Eurofever classification criteriaa 4 (36) 6 (86) 10 (56) 0.066

clinical featuresb

Fever (≥38°C) 11 (100) 7 (100) 17 (100) 1
Asthenia/fatigue 6 (55) 2 (29) 8 (44) 0.37
Arthralgia/arthritis 6 (55) 5 (71) 11 (61) 0.64
Myalgia 4 (36) 3 (43) 7 (39) 1
Abdominal pain 5 (46) 2 (29) 7 (39) 0.63
Vomiting 1 (9) 0 (0) 1 (6) 1
Chest (pleuro-pericardial) pain 1 (9) 3 (43) 4 (22) 0.25
Skin rash 2 (18) 3 (43) 5 (28) 0.33
Headache 3 (27) 3 (43) 6 (33) 0.63
Conjunctivitis 2 (18) 1 (14) 3 (17) 1
Periorbital edema 1 (9) 1 (14) 2 (11) 1
Cervical adenitis 3 (27) 0 (0) 3 (17) 0.25
Pharyngitis/odynophagia 4 (36) 2 (29) 6 (33) 1
Oral aphthae 2 (18) 1 (14) 3 (17) 1

attacks characteristicsc

Duration (days) 22; 4 (2–160) 35; 21 (4–90) 27; 11 (2–160) 0.056
Frequency (per year) 12; 6 (1.5–50) 5; 6 (0.3–8) 9; 6 (0.3–50) 0.20

laboratory (during attacks)d

CRP >1.5 mg/dL and/or SAA >6.4 mg/dL 6/8 (75) 6/7 (86) 12/15 (80) 1
ESR >20 mm first hour 4/8 (50) 2/4 (50) 6/12 (50) 1
Leukocyte count >11,000/mm3 3/8 (38) 2/5 (40) 5/13 (38) 1
Hemoglobin <120 mg/L 2/8 (25) 0/5 (0) 2/13 (15) 0.5
Platelets count >350,000/mm3 0/7 (0) 2/5 (40) 2/12 (17) 0.15
Proteinuria (absence) at the end of follow-up 10/10 (100) 6/6 (100) 15/15 (100) 1

Other studied genes (negative/performed)
MEFV 11/11 (100) 6/6 (100) 17/17 (100) 1
MVK 9/9 (100) 7/7 (100) 16/16 (100) 1
NLRP3 8/8 (100) 6/6 (100) 14/14 (100) 1

CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; MEFV, Mediterranean fever gene; MVK, mevalonate kinase gene; NLRP3, nod-like receptor family pyrin domain 
containing 3 gene; TRAPS, tumor necrosis factor receptor-associated periodic syndrome.
Continuous values are given as mean; median (range).
aPatients achieving provisional Eurofever classification criteria for TRAPS (9).
bValues as total number of patients and %.
cBecause a remarkable intrasubject variability with regard to duration and frequency of attacks was found in the majority of patients, only the highest values were used for 
calculations.
dAbnormal values during attacks, later normalized (from available results).
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The main demographic, clinical, and laboratory features of 
all patients with R92Q variant from our patients are depicted in 
Table 1. Data from the main (all retrospective) series with mixed 
pediatric and adult results published to date are shown in Table 2.

Global results from series with patients of all ages with R92Q-
related disease (5, 8–10, 12), including ours, confirmed no sex 
preference and a family history of an autoinflammatory (R92Q-
related) disease was recorded in 7–28% of cases (5, 8, 12). The age 
at disease onset ranged from less than 1 year to the fourth to sixth 
decades. The mean/median of attacks duration varied between 
4.7 and 16 days (8, 10, 12) and the frequency of attacks between 6 
and 11 episodes per year (10) (with marked inter- and intra-study 

variability for both parameters). Fever was present in almost 100% 
of patients (5, 9, 10, 12), except in one study that showed lower 
prevalence (8). Arthralgia/arthritis was present in about half to 
two-thirds of patients, myalgia in 39–66%, abdominal pain in 
39–66% (5, 8–10, 12), vomiting in 6–40% (5, 9, 12), chest/pleuro-
pericardial pain in 22–33%, skin rash in 20–36%, headache in 
16–53%, conjunctivitis in 6–20%, periorbital edema in 7–19%, 
cervical adenitis or lymphadenopathy in 17–26%, odynophagia 
or pharyngitis in 12–33%, and oral aphthosis in 14–40% of cases 
(5, 8–10, 12). Of note, the study by Hull et  al. (10) reported a 
higher frequency of joint, muscular, skin, and ocular involvement 
than the other studies (Table 2). Between 80 and 100% of patients 
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TaBle 2 | Demographic, clinical, and laboratory features of the main series combining adult and pediatric patients with r92Q-related disease.

hull et al. 
(10)

ravet et al. (8) gattorno 
et al. (12)b

lachmann et al. (5)c Federici 
et al. (9)d

ruiz-Ortiz et al.  
(present series)

Demographic data
N 9 34 15 54 78 18
Sex (female/male) 3/6 17/17 – – 38/40 9/9
Age at symptoms onset (years)a 22 (<1–53) 19 58 ± 64 6 (0–53) 6 (3–19) 12 (1–43)
Age at diagnosis (years)a – – – – – 16 (5–48)
Time from disease onset to diagnosis (years)a – – – – 6.4 

(3.4–25.9)
3 (0.3–25)

Follow-up (years)a – – – – 13 5.5 (1–10)
Positive family history (%) – 21 7 19 – 28

clinical features (%)
Fever (≥38°C) 100 48 100 94 100 100
Asthenia/fatigue – – – – 72 44
Arthralgia/arthritis 89 48 17 66 65 61
Myalgia 89 48 53 66 28 39
Abdominal pain 56 39 60 66 59 39
Vomiting – – 40 26 26 6
Chest (pleuro-pericardial) pain 33 32 13 22 24 22
Skin rash 78 36 33 30 20 28
Headache – 16 53 39 5 33
Conjunctivitis 100 6 13 17 20 17
Periorbital edema 78 12 7 17 19 11
Cervical adenitis/lymphadenopathy – 19 60 25 26 17
Pharyngitis/odynophagia – 12 67 24 22 33
Oral aphthae – – 40 14 15 17

attacks characteristics
Duration (days) 16 (6–30) 7.4 4.7 ± 3.7 – – 11 (2–160)
Frequency (per year) 11 (9–>12) – – – – 6 (0.3–50)
increased inflammatory markers during 
attacks (%)

100 100 – – – 80

Other studied genes (negative/performed) – MEFV (some 
positive)

MEFV, MVK MEFV (22/22), MVK 
(11/11), NLRP3 (2/2)

– MEFV (17/17), MVK (16/16), 
NLRP3 (14/14)

amyloidosis development (%) 0 6.2 – 0 – 0

aContinuous results as mean or median, plus SD or range (when available).
bData from 15 patients with TNFRSF1A low-penetrance variants; among them, 13 (87%) patients carried R92Q (12).
cData from 59 patients with TNFRSF1A P46L and R92Q variants; among them, 54 (91.5%) patients carried R92Q (5).
dData from 78 patients with TNFRSF1A low-penetrance mutations, no mutations or genetic test not done or P46L and R92Q variants; among them, 57 (73%) patients carried R92Q (9).
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had elevated acute phase reactants (mainly CRP and/or SAA) 
during attacks (8, 10). Overall, results from our study group did 
not differ with those from the previously reported series.

Differences between Patients with 
Pediatric and adult Onset of r92Q-
related Disease
No statistically significant differences with regard to clinical and 
laboratory features at disease presentation were found in the 
present series between pediatric and adult patients (Table  1). 
However, when previous studies on R92Q-related disease 
including patients with pediatric (7, 11, 13) and adult onset 
(6, 7) were analyzed together with our results (Table 3), no sex 
predominance was observed and a positive family history of 
R92Q-related disease tended to be higher in pediatric (4–50%) 
than in adult patients (6–17%). The mean/median age at disease 
onset was of 3.6–8 years in children and 23–28.8 years in adults. 
Duration of attacks tended to be longer in adult patients (mean/
median from 7 to 21 days) than in children (from 4 to 9 days). 
Frequency of attacks was similarly heterogeneous in both groups. 
Among clinical features, fever was equally present in almost all 

patients, in all studies. Arthralgia/arthritis, myalgia, skin rash, 
ocular symptoms, and oral aphthae occurred in a similar pro-
portion in both groups. Chest pain was consistently reported in 
almost half of adult patients and less frequently in most pediatric 
studies. Headache was also observed in a higher proportion in 
adults (42–43%) than in children (20–30%). Conversely, abdomi-
nal pain was more often presented by children (40–67%) than 
by adults (25–33%). Vomiting was not reported in adult series 
but occurred in 9–30% of pediatric patients. Cervical adenitis 
or lymphadenopathy (27–65 vs. 0–19%) and pharyngitis or 
odynophagia (13–65 vs. 11–29%) were predominantly observed 
in children (6, 7, 11, 13).

Disease Outcomes and Therapeutic 
approaches during Disease course
Patients in our study were followed for a mean of 5.4 years (median 
5.5 years; range 1–10 years). Only two recent studies have also 
reported information from patients with R92Q-related disease 
after a long-term follow-up period (6, 11) (Table 3). Therapeutic 
strategies in ours and those previous studies similarly included 
the use of non-steroidal anti-inflammatory drugs (NSAIDs), 

59

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 3 | characteristics of patients with r92Q low-penetrance TNFRSF1A variants in studies including patients with pediatric and adult onset.

Pediatric-onset series adult-onset series

Dodé et al. 
(7)

lainka 
et al. (13)b

Pelagatti et al. 
(11)

ruiz-Ortiz 
et al. 

(present 
series)

Dodé et al. 
(7)

cantarini et al. 
(6)c

ruiz-Ortiz 
et al. 

(present 
series)

Demographic data
Patients (N) 6 15 20 11 6 25 7
Sex (female/male) 3/3 – 9/11 4/7 1/5 17/19 5/2
Age at symptoms onset (years)a 7.3 (2–15) 5 (1–14) 3.6 (0.6–13) 8 (1–15) 28.8 (22–36) 26.6 ± 15 23 (16–43)
Age at diagnosis (years)a – 7 (1–16) 6.1 (1.2–15) 12 (5–16) – – 25 (16–48)
Time from disease onset to diagnosis (years)a – – – 4 (0.3–9) – – 2 (0.3–25)
Follow-up (years)a – – 7.3 (1.7–14.3) 6 (2–10) – 12.7 ± 11.3 5 (1–8)
Positive family history (%) 50 – 4 36 17 6 14

clinical features (%)
Fever (≥38°C) 100 100 100 100 100 97 100
Asthenia/fatigue – – – 55 – – 29
Arthralgia/arthritis 17 53 40 55 17 55 71
Myalgia – 27 35 36 – 55 43
Abdominal pain 67 40 40 46 33 25 29
Vomiting – 20 30 9 – – 0
Chest (pleuro-pericardial) pain 50 20 4 9 50 50 43
Skin rash 50 33 20 18 17 19 43
Headache – 20 30 27 – 42 43
Conjunctivitis – 13 10 18 – 19d 14
Periorbital edema – – 0 9 – 19d 14
Cervical adenitis/lymphadenopathy – 40 65 27 – 19 0
Pharyngitis/odynophagia – 13 65 36 – 11 29
Oral aphthae – – 35 18 – 25 14

attacks characteristics
Duration (days) 6 (1–20) 9 (2–24) 5.9 (3–15) 4 (2–160) 7.5 (2–20) >7 (69%) 21 (4–90)
Frequency (per year) 20 (6–30) – 10.3 (3–20) 6 (1.5–50) 27.6 (6–48) 7 ± 3.9 6 (0.3–8)
increased inflammatory markers during 
attacks (%)

– 100 100 75 – 100e 86

Other studied genes (negative) MEFV MEFV, MVK MEFV, MVK MEFV, MVK, 
NLRP3

MEFV MEFV, MVK, 
NLRP3, NLRP12

MEFV, MVK, 
NLRP3

amyloidosis development (%) 17 – 0 0 0 0 0

aContinuous results as mean or median, plus SD or range (when available).
bData obtained from 15 patients with R92Q variants in TNFRSF1A gene (13).
cData from 36 patients with TNFRSF1A low-penetrance variants; among them, 25 (69%) patients carried R92Q (6).
dOverall value for ophthalmological abnormalities (which included the presence of conjunctivitis and/or periorbital edema) in this series was 19%.
eAll patients had high serum amyloid A values but normal C-reactive protein levels.
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colchicine, oral glucocorticoids (usually at a dose equivalent to 
≥0.5  mg/kg/day of prednisone), and biologic agents (anakinra 
and etanercept, as IL-1 and TNF blockers, respectively).

Medications used in our cohort are illustrated in Table 4. As 
starting treatment, NSAIDs on demand were used in 6 patients, 
colchicine in 2 patients, glucocorticoids in 11 patients (5 with 
continuous and 6 with on-demand administration), and etaner-
cept and anakinra, in 1 and 2 patients, respectively. At the end of 
follow-up, five (28%) patients were asymptomatic and treatment 
free (representing 18% of pediatric and 43% of adult patients), 
five (28%; 36% of pediatric and 14% of adult patients) continued 
receiving on-demand NSAIDs, four (22%; 27% of pediatric and 
14% of adult patients) were on glucocorticoids on demand, and 
four (22%; 18% of pediatric and 28% of adult patients) were 
treated with biologic agents (one with weekly etanercept, and 
two and one with anakinra, daily and on demand, respectively).

Previous data on disease outcomes and treatment used at 
the end of follow-up in a series of pediatric patients with R92Q-
related disease revealed that 25% of cases had shown spontaneous 

resolution of symptoms, 12 and 44% were being treated with 
NSAIDs and glucocorticoids on demand, respectively, and 18% 
with continuous glucocorticoids or biologic agents (11). In a 
previous adult series, at the end of the study, about 8% of cases 
were receiving only NSAIDs, 46% glucocorticoids on demand, 
23% continuous glucocorticoids, 3% colchicine, and 19% were 
being treated with cytokine blockers (6).

Although these studies analyzed small number of patients, all 
of them showed similar trends regarding disease outcomes and 
therapeutic strategies utilized, without clear differences between 
pediatric and adult patients.

DiscUssiOn

R92Q has been recently classified by a panel of expert clini-
cians and geneticists in autoinflammatory diseases as a variant 
of uncertain significance because its common presence in the 
general population and by the fact that this variant does not 
segregate with the phenotype in members of the same family 
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TaBle 4 | Treatment characteristics at baseline and at the end of 
follow-up.

r92Q patients 
with pediatric 
onset (n = 11)

r92Q patients 
with adult onset 

(n = 7)

all r92Q 
patients (n = 18)

initial treatment
NSAIDs 3 (OD) 3 (OD) 6 (OD)
Colchicine 1 (C) 1 (C)c,d 2 (C)
Glucocorticoids 5 (OD); 2 (C)a,b 1 (OD); 3 (C)c,d,e 6 (OD); 5 (C)
Biological agents 1 AN (C)a; 1 ET (C)b 1 ET/AN (C)d 1 AN (C); 1 ET (C); 

1 ET/AN (C)

Treatment at the end of follow-up
No treatment 2 3 5
NSAIDs 4 (OD) 1 (OD) 5 (OD)
Colchicine 0 0 0
Glucocorticoids 3 (OD) 1 (OD) 4 (OD)
Biological agents 1 AN (OD)a;  

1 ET (C)b
1 AN (OD)d;  
1 AN (C)e

3 AN (2 OD, 1 C); 
1 ET (C)

AN, anakinra; C, continuous; ET, etanercept; OD, on demand; NSAIDs, non-steroidal 
anti-inflammatory drugs.
Patients a and b initially received glucocorticoids and a biological agent; and at the end 
of follow-up, patient a is receiving anakinra on demand and patient b, etanercept 50 mg/
week. Patient c received colchicine and glucocorticoid therapy. Patient d was treated 
with colchicine, prednisone, etanercept, and finally, anakinra (on an initial continuous 
administration, which could be switched to on demand during the disease course). 
Patient e started with continuous glucocorticoids and was later switched to anakinra.
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(17). Compared to patients with TNFRSF1A structural or patho-
genic mutations, patients carrying the R92Q variant exhibit 
milder disease presentation and disease outcome, shorter febrile 
episodes, lower intensity and frequency of typical symptoms, a 
considerably lower or inexistent risk for developing amyloidosis, 
and a later (even during adulthood) disease onset (4, 6, 8, 10, 11, 
14). Despite of this milder phenotype, almost all patients with 
R92Q variant are usually treated with (on demand or continuous) 
NSAIDs or glucocorticoids, and a remarkable proportion (up to 
20%) of them may also require biologic therapy (4, 6, 11, 13). In 
addition, R92Q variant has been found in a higher proportion of 
patients with autoinflammatory symptoms than in several control 
populations (6, 7, 13–15). For these reasons, many expert clini-
cians still consider R92Q a low-penetrance mutation rather than 
a polymorphism (4, 6–8, 10, 12–15).

Definite diagnosis of TRAPS usually relies on the presence of 
suggestive clinical features supported by the existence of func-
tional mutations in the TNFRSF1A gene. In this regard, the recent 
TRAPS provisional Eurofever classification criteria for patients 
with structural or pathogenic mutations yielded reasonable 
sensitivity and specificity (9). The same validation study showed 
a remarkable lower sensitivity and specificity for patients carrying 
the R92Q variant, but at least 52% of R92Q patients reached the 
cut-off for TRAPS classification (9). Similarly, 56% of our patients 
with R92Q-related disease could be also classified as having 
TRAPS. Interestingly, this proportion was considerably higher 
for our adult patients (86%) and lower for our children (30%). 
The good concordance with the original TRAPS validation study 
for our patients carrying R92Q makes our results reliable, par-
ticularly for those patients with adult disease onset.

Clinical and laboratory features from previous series includ-
ing R92Q patients of all ages (5, 8–10, 12) are equivalent to those 

found in our series. When patients with R92Q-related disease 
are compared with those carrying structural TNFRSF1A muta-
tions, a family history of an autoinflammatory (R92Q-related) 
disease and the presence of myalgia, abdominal pain, and ocular 
symptoms are more frequently observed in the group with struc-
tural variants, and pharyngitis/odynophagia and oral aphthosis 
predominate in patients with R92Q variant (5, 9). The remaining 
symptoms are similarly presented by patients with structural and 
R92Q variants (5, 9). While a variable proportion of patients 
carrying structural variants may develop amyloidosis over time, 
those carrying R92Q are at a very low (or absent) risk for develop-
ing this complication (5).

When patients with R92Q-related disease with onset dur-
ing childhood (7, 11, 13) are compared with those initiating 
symptoms during adulthood (6, 7), a positive family history of 
an autoinflammatory disease seems to predominate in pediatric 
patients. No sex dominance exists. Although the age at disease 
onset shows wide dispersion, most children usually present with 
disease-related symptoms at 3–7 years of age, and among adults, 
symptoms often start during the second decade of life. Duration 
of attacks seems to be longer in adults, but heterogeneity in dura-
tion and frequency of attacks is equally observed in both groups. 
With regard to clinical manifestations, fever is shared by almost 
all patients; and musculoskeletal, cutaneous, and ocular symp-
toms are common features similarly present in both age groups; 
oral aphthosis occurs in a lower proportion, with no differences 
between children and adults. However, pleuro-pericardial/chest 
pain and headache are more frequently observed in adult patients 
than in children. Conversely, other features, such as abdominal 
pain, vomiting, cervical adenitis/lymphadenopathy, and pharyn-
gitis/odynophagia, seem to be predominant in pediatric patients 
(6, 7, 11, 13).

Although no treatment guidelines for autoinflammatory 
diseases have been elaborated yet, therapeutic approaches for all 
these conditions aim to control symptoms and prevent attacks 
and long-term complications. Previous investigations have docu-
mented differences in disease outcomes and treatments used in 
TRAPS patients carrying structural variants compared to those 
carrying R92Q (or other low-penetrance mutations) (6, 11). 
While patients with structural mutations usually have a chronic 
and relapsing course, with an increased risk for developing amy-
loidosis, and the majority of them also require biologic therapy 
(mainly IL-1 and TNF blockers) (6, 11), most patients with R92Q-
related disease can be treated with NSAIDs or glucocorticoids on 
demand only (6, 11), and in about 25% of patients (pediatric and 
adults), symptoms may evolve to spontaneous resolution during 
the course of the disease, without requiring any treatment (11). 
However, continuous or on-demand administration of biologic 
agents can be indicated in about 20% of cases (6, 11).

The molecular mechanisms responsible for clinical pheno-
types of TRAPS and the role of structural or pathogenic muta-
tions and those low-penetrance variants, such as R92Q, still 
remain to be completely elucidated. While forms of TNFRSF1A 
cysteine mutations clearly destabilize the protein structure and 
produce defects in cell surface expression and TNF binding, 
R92Q mutants, which share structural similarities with the 
wild-type protein, also share similar mechanisms of action with 
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wild-type TNFRSF1A (20). In this sense, structural mutations 
have also shown to produce deeper disturbances in T-cell 
function than R92Q and other low-penetrance variants (21). 
However, recent investigations have demonstrated a constitu-
tive activity of R92Q mutants associated with TRAPS, which 
might be explained by configurational changes induced after 
ligand binding that can act as the trigger for TNFR1 signaling. 
Indeed, these structural changes are not present in wild-type 
receptors (22). Other data, in patients with multiple sclerosis, 
point toward the enhancement of the interaction between the 
receptor and its ligand by the R92Q variant, resulting in the 
potentiation of TNF-mediated pathways (23). In addition, sev-
eral authors have postulated a potential role of low-penetrance 
TNFRSF1A variants (including R92Q, P46L, and other recently 
reported, such as V95M, D12E, and R104Q) in causing different 
autoinflammatory phenotypes (6, 21). These low-penetrance 
variants might also contribute, as a possible susceptibility factor 
in the development of multifactorial polygenic inflammatory 
or autoimmune conditions, such as idiopathic recurrent acute 
pericarditis, Behçet’s disease, juvenile idiopathic arthritis, and 
other autoinflammatory diseases (6, 14, 24–27).

This study has several limitations that include (a) the present 
study and all the previous series on TRAPS and R92Q-related 
disease published to date are retrospective and included a 
relatively small number of patients; (b) very few of them dif-
ferentiated patients with pediatric or adult disease onset; (c) 
most TRAPS series studied patients with R92Q together with 
other low-penetrance variants, thus providing mixed results; (d) 
the small number of patients analyzed, and the heterogeneity in 
some variables and results, make comparisons mainly estima-
tive between patients carrying structural and low-penetrance 
mutations and between R92Q carriers of different ages; and 
(e) pharmacological treatments used in all the studies were 
guided by personal experience, and since no evidence-based 
therapeutic protocols have been elaborated yet, no strong 
recommendations can be made in this regard. However, we 
consider that the present study also has several strengths: (a) 
our results were in concordance with general R92Q-related 
disease series including patients of all ages, and with those 
studies focused in patients with pediatric and adult onset; (b) 
our R92Q patients achieved criteria for TRAPS classification 
in a similar proportion than the R92Q patients included in 
the original Eurofever validation study (9), which was also 
comparable with TRAPS caused by structural mutations for 
our adult patients with R92Q variant.

In summary, this study has contributed to characterize TRAPS 
associated with R92Q variant, particularly in differentiating 
clinical phenotypes according to the age at disease onset. Adult 
patients tend to have longer duration of attacks and exhibit more 
frequently chest pain and headache, than pediatric patients. 
Abdominal pain, vomiting, cervical adenitis/lymphadenopathy, 
pharyngitis/odynophagia, and a family history of an autoinflam-
matory disease seem to predominate in pediatric patients. With 
independence of the age at disease onset, most patients with 
R92Q-related disease usually receive on demand NSAIDs and 
glucocorticoids, and about a quarter part of them may have a 
resolution of symptoms over time, without requiring treatment. 
However, up to 20% of patients may still need biologic agents 
(IL-1 or TNF blockers) at the end of follow-up to control disease 
activity.

The present results evidence the level of clinical and genetic 
complexity of TRAPS phenotype caused by the R92Q variant 
and also lead to emphasize the core importance of interpreting 
genetic results in an appropriate clinical context. In order to cor-
roborate these findings and to achieve a better understanding of 
TRAPS spectrum, further studies including a large number of 
patients with TRAPS, caused by structural mutations, and also 
by R92Q and other low-penetrance TNFRSF1A variants, are 
granted. In addition, whether or not this subset of patients should 
undergo whole exome sequencing to search for concomitant 
disease-causing mutations in unknown genes may be a matter 
of discussion.
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Autoinflammatory diseases (AIDs) are a genetically heterogeneous group of diseases 
caused by mutations of genes encoding proteins, which play a pivotal role in the 
regulation of the inflammatory response. In the pathogenesis of AIDs, the role of the 
genetic background is triggered by environmental factors through the modulation of the 
innate immune system. Monogenic AIDs are characterized by Mendelian inheritance and 
are caused by highly penetrant genetic variants in single genes. During the last years, 
remarkable progress has been made in the identification of disease-associated genes 
by using new technologies, such as next-generation sequencing, which has allowed 
the genetic characterization in undiagnosed patients and in sporadic cases by means 
of targeted resequencing of a gene panel and whole exome sequencing. In this review, 
we delineate the genetics of the monogenic AIDs, report the role of the most common 
gene mutations, and describe the evidences of the most sound genotype/phenotype 
correlations in AID.

Keywords: autoinflammatory diseases, hereditary periodic fevers, familial Mediterranean fever, mevalonate-kinase 
deficiency, tumor necrosis factor receptor-associated periodic syndrome, cryopyrinopathies, inflammasome, 
whole exome sequencing

iNTRODUCTiON

The term autoinflammatory disease (AID) was proposed in 1999 to describe a group of disorders of 
the innate immune system characterized by recurrent episodes of inflammation without a known 
origin (1). AIDs are frequently caused by genetic mutations in genes encoding proteins involved 
in the pathways of the inflammasome, with a crucial role of proinflammatory interleukin-1 (IL-1), 
which is an important cytokine of the systemic inflammatory response.

Autoinflammatory diseases have in the most of cases a genetic background, with highly penetrant 
mutations of single genes, but in some cases are polygenic, with a strong environmental influence 
that can modulate the phenotype (2).

The first AID described was the familial Mediterranean fever (FMF), which is also the most 
prevalent AID in the world. After FMF, other two AIDs were described: TNF-receptor associated 
periodic syndrome (TRAPS) (1) and hyperimmunoglobulinemia D with periodic fever syndrome 
[hyper-IgD syndrome (HIDS)/mevalonate kinase (MVK)] (3–5). These three forms of AID were 
grouped in the hereditary periodic fever syndromes, because they share fever episodes. After these, 
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TABLe 1 | Classification of monogenic autoinflammatory diseases (AiDs).

Disorder (abbreviation) #OMiM Gene (Locus) Protein involved inheritance

Familial Mediterranean fever 249100 MEFV (16p13.3) Pyrin (marenostrin) Autosomal recessive

Hyper-IgD syndrome 260920 MVK (12q24.11) Mevalonate kinase Autosomal recessive

Mevalonate kinase deficiency 260920 MVK (12q24) Mevalonate kinase Autosomal recessive

Tumor necrosis factor receptor-associated periodic syndrome 142680 TNFRSF1A (12p13) Tumor necrosis factor receptor type-1 Autosomal dominant

Familial cold autoinflammatory syndrome (FCAS) 120100 NLRP3 (1q44) Cryopyrin Autosomal dominant

Muckle–Wells syndrome 191900 NLRP3 (1q44) Cryopyrin Autosomal dominant

Neonatal onset multisystem inflammatory disease 607115 NLRP3 (1q44) Cryopyrin Autosomal dominant

Deficiency of interleukin (IL)-1 receptor antagonist 612852 IL1RN (2q) IL-1 receptor antagonist Autosomal recessive

Blau syndrome 186580 NOD2/CARD15 
(16q12.1-13)

Nucleotide-binding oligomerization 
domain-containing protein 2

Autosomal dominant

Deficiency of the IL-36 receptor antagonist 614204 IL36RN (2q14) IL-36 receptor antagonist Autosomal recessive

Chronic atypical neutrophilic dermatosis with lipodystrophy and 
elevated temperature syndrome

256040 PSMB8 (6p21) Inducible subunit β of the proteasome Autosomal recessive

Majeed syndrome 609628 LPIN2 (18p11.31) Lipin 2 Autosomal recessive

CARD14-mediated pustular psoriasis 177900 CARD14 (17q25.3) Caspase recruitment domain family 
member 14

Autosomal dominant

NLRP12-autoinflammatory disease 609648 NLRP12 (19q13.42) Monarch 1 Autosomal dominant

Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome 604416 PSTPIP1 (15q24-25) CD2 antigen-binding protein 1 Autosomal dominant

Deficiency of adenosine deaminase 2 615688 CECR1 (22q11.1) Adenosine deaminase 2 Autosomal recessive

STING-associated vasculopathy 615934 TMEM173 (5q31.2) Transmembrane protein 173 Autosomal dominant

TNFRSF11A-associated disease 603499 TNFRSF11A (18q21.33) Tumor necrosis factor receptor 11A Autosomal dominant

NLRC4-associated diseases (NLRC4-MAS, SCAN4, NLRC4-FCAS) 606831 NLRC4 (2p22.3) NLR family CARD domain-containing 
Protein 4

Autosomal dominant

Sideroblastic anemia, B-cell immunodeficiency, periodic fevers, 
developmental delay

616084 TRNT1 (3p26.2) CCA-adding enzyme Autosomal recessive

Monogenic form of systemic juvenile idiopathic arthritis 613409 LACC1 (13q14.11) Laccase (multicopper oxidoreductase) 
domain containing 1

Autosomal recessive
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other AIDs were identified, such as familial cold autoinflamma-
tory syndrome (FCAS), Muckle–Wells syndrome (MWS), and 
neonatal onset multisystem inflammatory disease (NOMID), 
also known as chronic infantile neurologic cutaneous and articu-
lar (CINCA) syndrome, then grouped in the cryopyrinopathies. 
These disorders are also known as cryopyrin-associated periodic 
syndromes (CAPS).

Recently, mutations in single genes involved in IL-1 processing 
have been demonstrated in the deficiency of IL-1 receptor antago-
nist (DIRA) (6). After this, evidences of drugs able to block IL-1 
in the Majeed syndrome (MS), an AID bone disease with clinical 
similarities to DIRA, demonstrated the pivotal role of IL-1 in 
this disorder (7). The same drug was used for cryopyrinopathies 
and DIRA, further expanding its use to other monogenic AID 
disorders. Other granulomatous disorders are characterized by 
typical granulomatous formations: Blau syndrome (familial juve-
nile systemic granulomatosis) is characterized by granulomatous 
inflammation of joint, skin, and uvea.

In this review, we will focus only on monogenic AIDs, which 
are mostly represented by early-onset conditions and a clear 
pattern of autosomal dominant or recessive transmission, at least 
in some of the families (Table 1) and the clinical significance of 
exonic variants according with pathogenic criteria (Table 2). The 
review will analyze the evidences about the mutations in the genes 
involved in the pathogenesis of the disease and the genotype/
phenotype correlations (8).

Familial Mediterranean Fever
Familial Mediterranean fever is the most common AID, which is 
inherited as autosomal recessive disease, although features of auto-
somal dominant pattern of transmission have been demonstrated 
in several families (9). This different pattern might have conferred 
an evolutionary advantage in the resistance to an endemic patho-
gen; in fact, Clostridium, Yersinia, Vibrio parahaemolyticus VopS, 
Histophilus somni IbpA, Burkholderia, and other microbes that 
modify RhoGTPases are able to stimulate pyrin inflammasome. 
Pyrin play a role in sensing pathogen modification and inactiva-
tion of Rho GTPases (10,11). Furthermore, in some populations, 
as Sephardic Jews, Turks, Arabs, and Armenians, the carrier rate 
for a mutant MEFV allele is high, ranging from 1/3 to 1/6; this 
represents the highest carrier rates reported for an autosomal 
recessive disorder.

To estimate prevalence in FMF is difficult, because of the 
wide range of differences in areas of diffusion of the disease. In 
particular, the most affected patients belong to Middle Eastern 
living around the Mediterranean Sea areas.

The causing gene, MEFV, was identified in 1997 by two 
International Consortia, who named the encoded protein pyrin/
marenostrin (11, 12), an intracellular regulator of IL-1 produc-
tion (13, 14). The disease-causing mutations spread all over the 
gene, even if the exon 10 carries the most typical and severe 
mutation; in fact, this exon encodes for the B30.2/SPRY domain 
at the C-terminal end of pyrin, which is demonstrated to interact 
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TABLe 2 | Clinical significance of exonic variants according with the pathogenic criteria of Clinvar database (https://www.ncbi.nlm.nih.gov/clinvar/) for 
genes MEFV, MVK, TNFRSF1A, and NLRP3.

Gene Clinical significance

Conflicting interpretation Benign Likely benign Uncertain significance Likely pathogenic Pathogenic

MEFV Leu110Pro Leu110Pro Glu148Gln Ser6Arg Gly304Arg Glu148Gln
Glu148Gln Glu148Gln Arg202Gln Val33Leu Pro369Ser Glu148Val
Glu148Val Gly196Trp Gly304Arg Arg42Trp Arg408Gln Glu167Asp
Gly196Trp Arg202Gln Arg408Gln Asn78Ile Met680Ile Pro180Gln
Gly304Arg Pro369Ser Ile591Thr Asn78Ser Lys695Arg Thr267Ile
Pro369Ser Arg408Gln Glu84Gln Ala744Ser Glu276Ter
Arg408Gln Glu93Gln Leu367Val
Ile591Thr Gln97Ter Pro369Ser
Lys695Arg Asp103His His404Arg

Ser108Arg Thr577Asn
Leu110Pro Arg478Gln
Pro115Thr His478Tyr
Asp122Gly Phe479Leu
Gly136Glu Ile591Thr
Gln146Ter Arg653His
Pro147Ala Met680Ile
Glu148Gln Gly687Asp
Glu148Alafs Tyr688Ter
Glu148Val Ile692del
Arg151Thr Met694Val
Glu163Gln Met694del
Ala171Thr Lys695Arg
Gln172Pro Val726Ala
Pro183Thr Ala744Ser
Ala193Thr Arg761His
Gly196Trp
Glu230Lys
Lys266Glu
Gly304Arg
Thr309Met
Ala311Val
Arg314His
Gly320Ala
Arg329His
Ser339Phe
Arg348His
Gln356Glu
Pro369Ser
Pro383Arg
Arg480Gln
Gln440Glu
Glu446Ala
Lys447Asn
Ala457Val
Arg461Gln
Val469Ala
Asp505Tyr
Arg579His
Ile591Thr
Asn599Asp
Lys625Gln
Pro630Alafs
Arg653Cys
Gly678Glu
Lys695Arg
Pro714Leu
Lys716Glu
Phe743Leu
Ile772Val
Pro780Thr

MVK Val80Ile Arg19His Arg19Gln Pro11Leu Ile268Val Met1Thr

(Continued )
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Gene Clinical significance

Conflicting interpretation Benign Likely benign Uncertain significance Likely pathogenic Pathogenic

Ser52Asn Ser52Asn Val15Ala Leu6Glyfs
Val180Ile Cys21Ser His20Pro

Leu27Phe Gly25Trpfs
Val80Ile Leu41Pro
Cys101Tyr Tyr116His
Arg106His Gly140Argfs
Ala111Thr Ala141Glyfs
Pro200Ser Ala148Thr
Pro286Leu Pro165Leu
Gln302Ter Pro167Leu
Arg388Gln Trp188Ter

Gly202Arg
Val203Ala
Arg215Ter
Leu255Pro
Ile268Thr
Asn301Thr
Val310Met
Ala334Thr
Phe365Ser
Val377Ile
Arg388Ter

TNFRSF1A Arg121Gln None Pro75Leu Leu96Pro Asp41Glu Cys59Arg
Val112Met Phe89Leu Cys59Ser
Arg121Gln Asn94Lys Cys62Gly
Val124Met Arg106Gln Cys62Tyr
Asn145Ser Thr79Met
Glu178Lys Cys81Phe
Ile199Thr Cys99Ser
Pro269Arg Cys99Arg
Pro275Ser Cys117Arg
Pro412Ala Cys117Tyr
Ser452Arg Arg121Pro

Arg121Gln
NLRP3 Val198Met Gln705Lys Met70Thr Ala67Glu Leu305Pro Val198Met

Pro315Leu Val72Met Ala77Glu Arg488Lys Arg206Trp
Arg488Lys Ser196Asn Ala77Val Gln602Arg Asp303Asn
Gln705Lys Val198Met Arg100Cys Glu304Lys
Ser728Gly Pro315Leu Lys131Arg Phe309Ser
Thr954Met Arg488Lys Arg137His Thr348Met

His713Leu Asn165Ser Ala352Val
Ser728Gly Thr195Met Leu353Pro
Thr954Met Val198Met Thr405Pro

Asp212Asn Ala439Val
Ala225Val Gly569Arg
Gln250Arg Gly571Arg
Pro315Leu Phe573Ser
Lys357Arg Glu627Gly
Thr435Ala Tyr859Cys
Leu447Phe
Gly456Glu
Lys615Asn
Gln705Lys
Ser728Gly
Gly769Ser
Leu800Met
Gly811Ser
Leu832Ile
Ala848Pro
Ala873Thr
Lys880Glu
Thr915Met

TABLe 2 | Continued

(Continued )
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Gene Clinical significance

Conflicting interpretation Benign Likely benign Uncertain significance Likely pathogenic Pathogenic

Thr923Ala
Lys930Asn
Thr954Met
Cys990Ser
Cys998Ser
Lys1015Glu

TABLe 2 | Continued
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with the protein caspase 1 (15). Although five mutations repre-
sent more than 85% of all disease-associated mutations, many 
other mutations with different clinical penetrances have been 
reported so far (in the Infevers website more than 300 mutations 
are described) (16). Genetic test can support clinical diagnosis, 
confirming the presence of two mutations in the MEFV gene, 
although patients with a heterozygous mutation can show clinical 
pictures of FMF, even if with an incomplete phenotype (17).

In fact, there are evidences that the mutation in the second 
allele is not demonstrated in 20–25% of the patients with the 
clinical picture of FMF and a positive response to colchicine 
therapy (18). The reduced diagnostic accuracy of the genetic tests 
in terms of mutation finding is common to most of the genes 
studied for diagnostic purposes, since the diagnostic yield of the 
tests is never complete, due to factors like genetic heterogeneity, 
incorrect diagnosis, or phenocopies. When a heterozygous is 
found, the most obvious hypothesis is that the second disease 
allele lies in other genic regions not explored by the test (i.e., deep 
intronic regions); however, the second mutation has not been 
found also in studies analyzing the promoter and intron regions 
of the MEFV gene. In FMF, however, the evidence of autosomal 
dominant transmission, segregating a heterozygous mutation 
(17), or a complex allele (personal data) is consistent with a 
dosage effect, which is dependent on the type of the mutation, 
in analogy to models already described in other disease genes 
(i.e., GJB2, in which biallelic mutations cause autosomic reces-
sive nonsyndromic deafness and dominant mutations in specific 
domains of the gene cause syndromic forms of deafness with pal-
moplantar keratoderma). Another possible pathogenetic model 
for the dominant forms could involve the interaction of genetic 
and environmental factors in the pathogenesis of the disease, in 
analogy with hemochromatosis, in which heterozygotes for the 
C282Y in the HFE gene are bona fide healthy carriers unless 
other factors like alcohol or viral infections induce the onset of 
the clinical phenotype by contributing to the accumulation of 
iron in the liver. In a genomic study of 22 Belgian individuals, 12 
of whom had clinical pictures of AID, the pattern of Mendelian 
inheritance was autosomal dominant. The phenotype, different 
from FMF, was characterized by childhood-onset recurrent 
episodes of neutrophilic dermatosis, fever, elevated acute-phase 
reactants, arthralgia, and myalgia/myositis. The disease was 
named pyrin-associated autoinflammation with neutrophilic 
dermatosis (PAAND). Genomic analysis revealed a mutation in 
the MEFV gene, S242R. This mutation causes a loss of a binding 
motif in the pyrin protein different from the B30.2/SPRY domain. 

Interestingly, the loss of the S242 domain was observed in bac-
terial effectors able to activate the pyrin inflammasome, such 
as Clostridium difficile toxin B (TcdB). As a result, the S242R 
mutation has the same effect of pathogen sensing, acting as a 
trigger of the inflammasome activation and IL-1b production. 
Based on this fact, the affected patients were successfully treated 
with therapy targeted on IL-1b, resolving autoinflammation and 
neutrophilic dermatosis (19).

Another intriguing aspect in FMF and, more in general AID, 
is the different influences of certain mutations or polymorphisms 
on the phenotype. For example, an E148Q mutation is sometimes 
referred to as a functional polymorphism because of the high 
carrier rate (more than 10%) and the lack of phenotype in some 
homozygous patients. However, some patients may have severe 
disease expression as well. Thus, the suggestions put forward for 
the carrier state may apply to these states as well.

Environmental factors have been investigated in relation with 
disease severity in FMF (19). The strongest association correlated 
with amyloidosis was with the country of origin, not with the 
genotype. Another interesting study showed that Turkish children 
who are born and live in Turkey have a higher disease severity 
score compared with Turkish children living in Germany (20); 
this study demonstrated that the different patterns of infections 
influence the expression of the phenotype acting as a trigger of the 
weak innate immune pathway via pathogen-recognition factors.

In order to search for possible mutation in the MEFV gene, 
a multiplex ligation-dependent probe amplification was setup in 
216 FMF patients (21). No copy number variants were identified, 
suggesting that deletion/duplication is not a mutational mecha-
nism in MEFV. The possible functional explanation relies on the 
pyrin function, which is crucial in the immune surveillance, even 
if with genetic variants such as point mutations and functional 
polymorphisms able to modulate its function.

An interesting study aimed at investigating pyrin function 
during primate evolution analyzed the domain which contains 
the most MEFV mutations, named ret finger protein domain. 
Amino acids involved in MEFV mutations (653, 680, 681, 726, 
744, and 761 residues) in human are frequently present as wild 
type in other primates. In some cases, the mutant may be consid-
ered the reappearance of an ancestral amino acid state. As a result, 
an episodic positive selection was postulated. These changes in 
pyrin sequence could be caused by selective pressures driven 
from environmental agents (22).

Regarding the therapy, both a single mutation and two muta-
tions, supported by clinical pictures of FMF, support the use of 
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colchicine (23). Amyloidosis type AA is frequently correlated 
with the MEFV mutation M694V and the SAA1.1/SAA1.1 
genotype (24).

In analogy with most of the disorders with pleiotropic expres-
sion, also for FMF, strict clinical criteria have been proposed for 
the diagnosis (25), taking into account the phenotypic manifes-
tations (the recurrence of fever with serositis), the histological 
picture (idiopathic AA amyloidosis), and the response to therapy  
(in typical FMF, the colchicine test results in a favorable 
response). Two major criteria are necessary for a definite 
diagnosis of FMF. Recurrent fever without serosal involvement, 
cutaneous, erysipelas-like manifestations, and a positive family 
history for the disease in a first-degree relative are considered 
minor criteria for the lower specificity of the features and take 
part in the algorithm for diagnosis only if a major criterion is 
present. The presence of two mutations in MEFV gene is gener-
ally achieved in patients fulfilling the clinical criteria, but also, 
to a much lesser extent, also in subjects with atypical phenotypic 
features, whereas also heterozygous mutation carriers can suffer 
from an incomplete and even typical disease (17). For all these 
reasons, the detection of a single heterozygous mutation, in the 
presence of clear clinical symptoms, appears to be a sufficient 
prerequisite for a colchicine trial (23).

HiDS/Mevalonate Kinase Deficiency 
(MKD)
Periodic fever associated with MKD was originally identified 
in 1984 in patients of Dutch ancestry; they reported recurrent 
attacks of fever of unknown origin and a high serum IgD level 
(26). After this first description, the disease was named Dutch 
fever or HIDS. After the first report, MKD was then described in 
other European countries around the Mediterranean basin (27) 
and Asia (28).

Because of the low sensitivity and specificity of the raised IgD 
serum levels, the term HIDS has been replaced by periodic fever 
associated with MKD after the discovery of the causing muta-
tions in the MVK gene (OMIM *251170) located on chromosome 
12q24 (29).

Mevalonate kinase deficiency, also known as hyperimmuno-
globulinemia D syndrome (OMIM 260920) is characterized by 
an autosomal recessive Mendelian inheritance pattern (5) and 
is allelic to another disorder, mevalonic aciduria (MA, OMIM 
610377), characterized by a very low activity of the enzyme MVK.

As in other AIDs, the carrier rate of 1/350 in normal popula-
tion allowed to hypothesize a selective advantage for heterozy-
gous carriers; a possible explanation postulates that countries 
with a diet at high consumption of saturated animal fats rich in 
cholesterol could have selected heterozygous carriers of the most 
frequent MVK mutations (30); nevertheless, this theory has not 
been demonstrated and other possible explanations are possible.

So far more than 130 substitutions or deletions of the MVK 
gene have been reported (16), even if a small number of muta-
tions (V377I, I268T, H20P, and P167L) represent the 71.5% of the 
whole mutation spectrum in MKD patients (29).

Several genotype–phenotype associations have been 
described. The most common mutation is the V377I variant, 

which is associated with a mild phenotype of MKD and some 
residual MVK activity. V377I is frequently found in a compound 
heterozygous state in most MKD patients (5, 31). At the opposite 
hand, some variants (i.e., V310M, A334T) are closely associated 
with a severe MA phenotype and severely impaired cellular MVK 
activity (32).

Interestingly, the H20P and I268T mutations have been 
described in intermediate phenotype, either with MA and 
MKD clinical signs, such as fever attacks associated with some 
neurological manifestations (mental retardation, cerebellar 
ataxia) of variable severity (33), leading to the hypothesis that 
the two diseases may represent the two extremities of the phe-
notypic spectrum which depends on the type (truncating vs 
non-truncating) of the mutations or the degree of impairment 
of the MVK enzyme activity. For example, mutations resulting 
into a MKD phenotype are exclusively missense, associated with 
a mild reduction of the enzymatic activity whereas in the MA 
phenotypes, frameshift and nonsense mutations are commonly 
reported (16), which completely inactivate the gene function. In 
fact, the MVK gene encodes the enzyme MVK, involved in the 
ATP-dependent phosphorylation of mevalonic acid into 5-phos-
phomevalonate. Mutations affecting this gene alter the MVK 
activity, with an overproduction of proinflammatory isoprenoids, 
reduced synthesis of cholesterol, and accumulation of mevalonic 
acid in plasma and urine. Fever rushes may be caused by high 
release of IL-1β as a consequence of insufficient geranylgeranyl 
pyrophosphate generation (32). The development of fever may 
be caused by a dysregulation of the MVK pathway, but the patho-
genetic mechanisms leading to the autoinflammation remain to 
be clarified.

Tumor Necrosis Factor Receptor-
Associated Periodic Syndrome
Tumor necrosis factor receptor-associated periodic syndrome 
(OMIM 142680) is the most common autosomal dominant AID 
in Europe; it was initially named “familial Hibernian fever” from 
the ancient Latin name “Hibernia” given to Ireland. In fact, in 
1982, a large family from Scotland and Ireland was described 
with a new disorder, characterized by recurrent fevers, skin 
rashes, monocytic fasciitis, and abdominal pain (2). Since the 
first description, several cases have been identified in many other 
populations, such as Black Americans, Japanese, and patients of 
Mediterranean ancestry (34).

In 1998, the genetic basis of this condition was discovered and 
the name became TRAPS due to its relationship with the p551A 
receptor of TNF (TNFR1), encoded by the TNF super family 
receptor 1A (TNFRSF1A) gene (1, 2), whose mutations cause 
the disease. The TNFRSF1A gene is composed of 10 exons with 
the disease causing mutations, all missense and heterozygous, all 
concentrated into exons 2, 3, 4, and 6 (2). Based on the mutation 
position, they can be distinguished as high- or low-penetrance 
missense mutations. The high-penetrance mutations are located 
in cysteine-rich N-terminal domains, which are important 
for the assembly of the receptor’s three-dimensional structure  
(35, 36); furthermore, they cause an early disease onset and more 
severe clinical manifestations; the substitutions result in single 
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amino acid substitutions in the cysteine rich domains (CRDs) 
1, 2, or 3 of the ectodomain of the mature TNFR protein (37). 
These CRDs are involved in disulfide bond formation and in 
the folding of the extracellular portion of the protein. On the 
other hand, the TNFRSF1A low-penetrance mutations, such 
as R92Q and P46L, are associated with lower risk of amyloi-
dosis and adult-onset, milder and/or atypical clinical features  
(16, 38–40); for instance, the P46L substitution occurs in up to 
20% of clinically asymptomatic West African individuals, which 
suggests that it represents a polymorphism rather than a disease-
causing mutation, whereas the R92Q substitution, relatively 
common in the Caucasian population, is a low-penetrance vari-
ant, which could have a weak contribution to disease expression. 
Moreover, TNFRSF1A mutations affecting TNF receptor shed-
ding from cell membranes might potentially generate a selective 
advantage related to an increased antibacterial capacity (41). More 
in general, it can be assumed that, on the contrary to other fully 
penetrant autosomal dominant disorders, like neurofibromatosis 
type I (OMIM #162200), in which the new cases of the disease 
are all caused by new mutations in the NF1 gene, the new cases 
of TRAPS belong to families in which the mutation segregates 
through the generations without giving manifest signs of disease. 
For this reason, in each proband, a careful family history for the 
cardinal signs of recurrent fevers, fasciitis, and cutaneous rash 
should always be collected.

Based on the difficulties with a clinical diagnosis of AID, 
a genetic test is useful in case of patients with clinical TRAPS 
phenotype, and a genetic diagnosis of TRAPS can be performed 
in the presence of a mutation in TNFSRF1A. Routine diagnos-
tic analysis is limited to the exons 2, 3, 4, and 6, whereas the 
expansion of the analysis to the remaining coding regions of the 
gene is recommended only for cases with extremely suggestive 
phenotypes yet without a definitive diagnosis. In the absence of a 
family history and with borderline phenotypes, the probability of 
mutation finding with the extension of the genetic analysis to the 
whole gene remains very low and the decision should be carefully 
discussed with the clinician.

At pathogenic level, several mechanisms may be responsible 
for the disease onset, such as impaired TNF receptor shedding, 
defective intracellular TNF receptor trafficking to the cell surface, 
and subverted TNF-independent cell activation with increased 
production of IL-1 and IL-6, altered NF-κB pathway, increased 
activation of mitogen-activated protein kinases, and upregulated 
production of reactive oxygen species (42, 43).

The molecular link between TRAPS and IL-1 is not clear: the 
pathogenesis may vary with each mutation, but it is possible that 
IL-1 might act as a proinflammatory mediator downstream of 
TNF, or that aggregates of misfolded TNF receptors stimulate 
intracellular signals resulting in enhanced production of IL-1 and 
other chemokines (44).

Cryopyrinopathies (FCAS, MwS, and 
NOMiD)
Familial cold autoinflammatory syndrome (OMIM 120100), 
MWS (OMIM 191900), and CINCA syndrome (OMIM 607115), 
also known as neonatal onset multisystem inflammatory disease 

(NOMID), are autosomal dominant disorders (45–47) caused 
by mutations in the NLRP3 (NOD-like receptor 3, cold-induced 
autoinflammatory syndrome 1, also named CIAS1) gene, encod-
ing for the cryopyrin protein, an important inflammasome pro-
tein that directly activates IL-1β (48). Until 2001, these diseases 
were considered as three different diseases. Since 2001, mutations 
in the NACHT domain of the NLPR3/CIAS1 gene were linked to 
FCAS and MWS (49, 50), whereas mutations in the same gene 
were identified in 2002 in sporadic cases with NOMID/CINCA 
(48, 51); after these evidences, the three disorders were grouped 
under the family of CAPS. FCAS and MWS are usually familial 
(49), while NOMID/CINCA is sporadic (52, 53).

Cryopyrin-associated periodic syndromes are rare diseases, 
with an estimated prevalence of approximately 1–2 patients per 
1,000,000 people in Europe and in the USA (54).

Familial cold autoinflammatory syndrome, MWS, and 
NOMID/CINCA share a significant symptom overlap (55), with 
the latter described across the world as the most severe expression 
of CAPS (56).

In Infevers database, 175 different nucleotide variants and 
more than 90 heterozygous mutations on the NLRP3 gene have 
been described to date (16, 57). Mutations in NLRP3 gene are 
described in approximately 60% of CAPS patients, causing the 
constitutive activation of the inflammasome and dysregulation 
with IL-1 overproduction; excessive IL-1 signaling appears to be 
a constant feature in the background of CAPS, driven by gain-of-
function NLRP3 mutations, even in the absence of a second signal 
(58). As in all the AIDs, genetic testing is confirmatory, even if the 
diagnosis needs to be made on clinical symptoms.

More than 40% of NOMID/CINCA patients and a less percent-
age of FCAS and MWS patients do not carry germ-line mutations 
in NLRP3. In those patients, somatic mosaicism occurring during 
fetal development may explain the variation in disease onset (59); 
this mechanism can only be demonstrated by cell cloning and 
next-generation sequencing (NGS).

Genotype–phenotype correlations were demonstrated in 
CAPS, with some mutations associated only with a mild clinical 
phenotype, and others with severe clinical pictures. However, 
several cases were reported in which patients with the same 
mutations present different phenotypes (60, 61). Furthermore, 
some NLRP3 mutations are described in healthy subjects with 
no signs of CAPS, such as V198M and Q703K genetic variants, 
even if there is no apparent selective advantage demonstrated for 
CAPS (62). Nevertheless, when patients who carry these poly-
morphisms show CAPS symptoms, the IL-1β-inhibition response 
is diminished. As in the other AIDs, functional polymorphisms 
may be considered low penetrance mutations, able to influence 
the activity of the gene product (58, 63).

In conclusion, CAPS onset may be influenced by environ-
mental factors and genetic determinants, which are also able to 
modulate the disease phenotype.

Deficiency of interleukin-1 Receptor 
Antagonist
Deficiency of IL-1 receptor antagonist is a recently described 
autosomal recessive disease due to mutations of IL1RN that 
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lead to non-expression of the encoded protein, IL-1 RA, causing 
unopposed IL-1 receptor activation and increased response to 
IL-1α and IL-1β stimulation (64).

The disease was first described in 2009 in nine patients 
presented with sterile multifocal osteomyelitis, periostitis, and 
pustulosis since the neonatal period, without fever. IL1RN gene 
was sequenced in those DIRA patients (6): either homozygous 
for mutations in IL1RN or heterozygous parents were identi-
fied. A patient was homozygous for two nucleotides deletion 
(c.156_157delCA) that caused a frame-shift mutation named 
N52KfsX25, followed by the incorporation of 24 aberrant amino 
acids and a termination codon. Both parents were heterozygous 
carriers of the same mutation. In other patients, three were 
homozygous for a nonsense variant affecting the amino acid 
residue at position 77 (c.229G>T; p.E77X). Patients from a con-
sanguineous Lebanese family were homozygous for a nonsense 
mutation (c.160C>T, p.Q54X). Patient 9, from Puerto Rico, was 
homozygous for a deletion of approximately 175 kb on chromo-
some 2q that includes six genes from a cluster of IL-1-related genes: 
IL1RN and the genes encoding IL-1 family, members 9 (IL1F9), 
6 (IL1F6), 8 (IL1F8), 5 (IL1F5), and 10 (IL1F10). The IL1RN 
mutations are present in founder populations in Newfoundland, 
the Netherlands, Puerto Rico, and possibly Lebanon and further 
founder mutations have since been found in other populations 
(65). None of these mutations were found in DNA specimens 
obtained from a panel of 364 controls from the New York Cancer 
Project.

In 2011, two unrelated Brazilian patients whose clinical phe-
notype was consistent with the DIRA syndrome were described 
(66). Both were homozygous for the same 15-bp (in-frame) 
deletion on IL1RN. This novel mutation of IL1RN produces 
a protein that does not bind the IL-1 receptor, and thus lacks 
functional activity. The authors hypothesize that this variant 
is likely to be a possible founder mutation in the Brazilian 
population.

In 2012, a novel nonsense mutation (p.Q119X) in IL1RN 
gene was identified in two Turkish patients with consanguineous 
parents (67).

Blau Syndrome (BS)
Blau syndrome is an autosomal dominant granulomatous inflam-
matory disease caused by mutations in the NOD2/CARD15 
gene. This gene is located on chromosome 16q12 and encodes 
the three domain cytosolic protein of almost 1000 amino acids, 
the nucleotide-binding oligomerization domain containing 2 
(NOD2). The protein contains two N-terminal CARDs for down-
stream signaling through CARD–CARD interactions, a central 
nucleotide binding and oligomerization domain (NACHT) 
with ATPase activity, and nine C-terminal LRRs for pathogen-
associated molecular patterns (68).

Mutations in the NOD2/CARD15 gene cause alteration in 
single amino acids in the NOD2 protein, resulting in an overac-
tive version, which may lead to abnormal inflammatory reaction.

More details on the pathogenic aspects of BS were obtained 
from the identification in four European families of three mis-
sense mutations in 2001. Two of these families shared the same 
mutation, encoding an amino acid substitution of arginine to 

tryptophan in position 334 (R334Q), one family had an R334W 
and another L469F substitution (69).

The following year, another study on the genetic analysis of 
NOD2 coding regions based on 10 families with BS was published 
(70). In five of the families, two sequence variants at position 
334 of the gene product (R334W and R334Q) were identified. 
Affected family members from the original BS kindred, included 
in this study, were heterozygous for the R334W missense muta-
tion; mutations at the same position were also observed in several 
unrelated BS families, some of whose phenotypes included large-
vessel arteritis and cranial neuropathy. The missense mutations 
were segregated with the disease phenotype in the families and 
were not identified in 104 healthy controls.

To date, on a total amount of almost 220 patients with BS 
carrying CARD15/NOD2 mutations, missense substitutions of 
R334Q/R334W account for more than 80%, causing a genetic hot 
spot for mutations in codon 334. E383K has been found in almost 
5% of patients, whereas other mutations have been described 
most rarely (71).

The number of NOD2 variants associated with BS has 
expanded greatly. In fact, up to 2016, the number of sequence 
variants of NOD2 gene is 144 (140 substitutions, 3 deletions, and 
1 insertion) (16). There are no known mutations involving the 
untranslated and the intronic regions of the gene, even though 
this has not been extensively studied.

Despite the striking clinical similarities between them, for 
many years BS was considered a distinct entity from early onset 
sarcoidosis (EOS). Genetic analyses showed that many patients 
with EOS carry mutations in CARD15/NOD2 gene; hereafter, 
some authors proposed that BS and EOS are the familial and spo-
radic forms of the same disease (71). Moreover, CARD15/NOD2 
gene mutations described in BS and EOS are mainly located in the 
NACHT domain of the protein. The discovery of CARD15 muta-
tions in BS families encouraged to investigate similar CARD15 
mutations in EOS patients.

Among 10 EOS cases retrospectively collected in Japan, 
heterozygous missense mutations were found in nine cases; 
four showed a c.1000C>T (p.R334W in amino acid change) 
that has been reported in BS, four showed novel c.1487A>T 
(p.H496L), c.1538T>C (p.M513T), c.1813A>C (p.T605P), and 
c.2010C>A (p.N670K), and one case showed double c.1146C>G 
(p.D382E)/c.1834G>A (p.A612T) mutations on different alleles. 
The study concluded that EOS is closely related with CARD15 
mutations causing constitutive NF-B activation and shares the 
common genetic etiology with BS (72).

Deficiency of the iL-36 Receptor 
Antagonist (DiTRA)
Deficiency of the IL-36 receptor antagonist is a recently described 
autosomal recessive autoinflammatory syndrome caused by 
mutations in the IL36RN gene, characterized clinically by recur-
rent episodes of generalized skin pustulation, fever, systemic 
inflammation, and leukocytosis. Other phenotypes of the IL36RN 
mutation include related pustular disorders, palmoplantar 
pustulosis, acrodermatitis continua of Hallopeau (ACH), and 
acute generalized exanthematous pustulosis. Histology shows 
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spongiform pustules, acanthosis, and parakeratosis and an abun-
dance of CD3+ and CD8+ T cells and macrophages (73).

This gene encodes IL-36 receptor antagonist (IL-36Ra), a 
protein belonging to the IL-1 cytokine family responsible for the 
tight regulation of IL-36 signaling. The IL-36 pathway is activated 
after binding of one of the three IL-36 agonists (IL-36b α, β, 
and γ) to a common specific receptor IL-1Rrp2, leading to the 
recruitment of the co-receptor IL-1 receptor accessory protein 
(IL-1RacP) and subsequent activation of intracellular NF-κB and 
mitogen activated protein kinase pathways (74).

Several mutations were highlighted in IL36RN gene with 
different effects. All IL36RN null mutations, such as c.28C>T 
(p.Arg10X), c.41C>A (p.Ser14X), c.80T>C (p.Leu27Pro), 
c.227C>T (p.Pro76Leu), c.280G>T (p.Glu94X), c.368C>G 
(p.Thr123Arg), c.368C>T (p.Thr123Met), and c.420_426del 
(p.Gly141MetfsX29) were totally unable to antagonize the IL-36 
mediated activation of the NF-κB signaling pathway (75–83).

Among the most frequent genetic alterations is one 
Tunisian founder missense mutation: c.80C>T (p.Leu27Pro1); 
one European recurrent missense mutation: c.338C>T 
(p.Ser113Leu2); and one Japanese founder nonsense mutation: 
c.28C>T (p. Arg10*3).

The mutations c.95A>G (p.His32Arg), c.142C>T (p.Arg48-
Trp), and c.308C>T (p.Ser113Leu) only partly reduced the 
expression level of the corresponding IL-36Ra and consequently 
the capacity to repress the IL-36 mediated NF-κB signaling 
cascade. The detection of c.104A>G (p.Lys35Arg) and c.304C>T 
(p.Arg102Trp) mutations do not produce evident alterations in 
either protein expression and function, raising doubt about the 
actual pathogenic contribution of these genetic variants. They 
are classified as damaging by the pathogenicity prediction tools, 
such as SIFT and/or PolyPhen. For these mutations, additional 
functional studies are warranted to understand whether these 
variants truly have an effect on disease development or if they 
are polymorphisms (74).

Recently, Cordoro et  al. showed a homozygous mutation 
within the IL36RN gene at position c.115+6T>C in a male ado-
lescent with generalized pustular psoriasis (GPP) since infancy. 
This mutation has been shown to lead to a splicing defect result-
ing in exon skipping and a premature stop codon, leading to a 
truncated IL36Ra protein (81).

In summary, the c.28C>T (p.Arg10X) and c.115+6T>C 
(p.Arg10ArgfsX1) transitions are known to be founder muta-
tions in cases reported in Japan (84). The c.115+6T>C transition 
is also recurrently found in Chinese and Malaysian patients  
(81, 85). The c.80C>T (p.Leu27Pro) transition is a recurrent 
mutation in Africa, and the c.338C>T (p.Ser113Leu) transi-
tion is a recurrent mutation in Europe (79–81). In contrast, the 
c.368C>T and c.368C>G transitions have been reported in one 
case in Japan (75, 76), the c.104A>G (p.Lys35Arg), c.142C>T 
(p.Arg48Trp), and c.304C>T (p.Arg102Trp) have been reported 
in one and two cases in Europe, respectively.

More in general, the null mutations are consistently associated 
with the more severe phenotypes of GPP and acute exanthema-
tous generalized pustulosis (86, 87), whereas the hypomorphic 
alleles usually show a milder phenotypic expression featured by 
localized variants of palmoplantar pustular psoriasis (PPP) and 

ACH, although generalized pustular phenotypes can be observed 
as well in carriers of mild variants. The detection of the same gene 
variants in generalized and localized pustular phenotypes sug-
gests the pathophysiological contribution of other factors such as 
disease-modifying genes, environmental factors, and epigenetic 
events, which may all influence disease onset, expression, and 
severity.

Chronic Atypical Neutrophilic Dermatosis 
with Lipodystrophy and elevated 
Temperature (CANDLe) Syndrome
Chronic atypical neutrophilic dermatosis with lipodystrophy and 
elevated temperature syndrome is a rare autosomal recessive AID, 
with less than 100 cases described worldwide (88).

The CANDLE syndrome is caused, in the majority of cases, 
by homozygous mutations in PSMB8 gene, which encodes for a 
proteasome protein (89). There are evidences that an increase of 
modified and oxidated proteins occurring in fat and tissue cells, 
due to mutations of PSMB8 lead to an augmentation of cellular 
stress and apoptosis (88).

In 2012, a genome-wide analysis of nine CANDLE syndrome 
affected patients in eight families suggested that mutations in 
PSMB8 gene may cause the CANDLE syndrome. In this cohort, 
four patients were homozygous and two were heterozygous for 
a missense mutation (p.T75M), two patients were homozygous 
for a nonsense mutation (p.C135X), and one patient showed no 
mutations. None of these gene variants were observed in 750 
healthy controls. Furthermore, only two of the four patients 
with the same mutation shared the same haplotype, indicating a 
possible mutational hot spot (90). Later, in 2015, a diagnosis of 
CANDLE syndrome was performed by targeted sequencing of 
one 3-year-old CANDLE syndrome Hispanic male patient, born 
to consanguineous healthy parents. A homozygous c.280G>C, 
p.A94P mutation in PSMB8 gene was not observed in any public 
genetic databases and was predicted to be pathogenic by several 
prediction tools (91).

Recently, it was demonstrated that CANDLE syndrome can 
also be caused by mutations in genes that encode other protea-
some subunits, such as PSMB4, PSMB9, and PSMA3 (92); these 
mutations affect transcription, protein expression, protein fold-
ing, proteasome assembly, and, eventually, proteasome activity.

Majeed Syndrome
Majeed syndrome is a congenital predisposition to develop early-
onset multifocal osteomyelitis (CRMO), congenital dyserythro-
poietic anemia (CDA), congenital anemia, and inflammatory 
dermatosis, resulting from the infiltration of neutrophils into 
the dermis (93). It is transmitted with an autosomal recessive 
pattern of inheritance and is caused by mutations in the LPIN2 
gene, which maps on chromosome 18p. The genomic sequence of 
LPIN2 is approximately 95 kb and comprises 20 exons, of which 
exon 1 and the majority of exon 20 are non-coding (5ʹ and 3ʹ 
untranslated regions). The mRNA is approximately 6245 bp and 
encodes a protein of 896 amino acids, which is expressed in almost 
all tissues (94). LIPIN2 derives its name from its highly conserved 
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N-terminal and C-terminal LIP domains. LIPIN-1, -2, and -3 
are phosphatidate phosphatases (PAPs), which are important 
in glycerolipid biosynthesis and as transcription co-activators 
regulating lipid metabolism genes (95). In addition, lipin-2 regu-
lates increased IL-1β formation in primary human and mouse 
macrophages by several mechanisms, including activation of the 
inflammasome NLRP3. In macrophages, reduced levels of lipin-2 
cause a decrease of cell cholesterol levels. In conclusion, lipin-2 is 
able to down-regulate NLRP3 inflammasome (91).

Several mutations have been identified in LPIN2 gene. One 
of them, the c.540-541delAT (p.Cys181Ter), is a frameshift 
mutation that produces a premature stop codon producing 
a truncated protein that is 180 amino acids long; a second 
variant, the c. 2201C>T (p. Ser734Leu), is a missense mutation 
that replaces a highly conserved serine with a leucine (96). 
Al-Mosawi et  al. report a third unique mutation in LPIN2 in 
an Arabic female with CRMO and CDA. The c. 2327+1G>C 
(p.Arg776SerfsTer66) nucleotide change affects a highly con-
served nucleotide residue at the 5ʹ (donor) splice site of exon 17 
and it is predicted to introduce a frameshift mutation resulting in 
a premature stop codon being encountered in intron 17, which 
would be predicted to produce a truncated message (97). A novel 
homozygous 2  bp deletion (c.1312_1313delCT) resulting in a 
premature stop codon (p.Leu438fs+16Ter) and consequently 
in a truncated LIPIN2 protein was recently described in two 
Turkish brothers with MS who were treated successfully with 
IL-1 inhibitors (7).

LPIN2 shares homology with LPIN1, which has been shown 
to play a role in murine lipodystrophy (98). The role of LPIN2 
mutations in producing the inflammatory phenotype of MS is 
not clear and does not appear to involve a disturbance in lipid 
metabolism. LPIN2 has an amino-terminal lipin domain, a Lipin/
Ned1/Smp2 domain, and a putative nuclear localization signal. 
Lipin2 also has PAP type-1 activity and may play a role in lipid 
biology (99).

Although the number of individuals reported with MS is too 
small to study genotype–phenotype correlations, the affected 
individuals with a frameshift variant appear to have a more severe 
course and complications than individuals with other classes of 
pathogenic variants (100). More recent observations, however, 
have indicated that an affected individual with a splice site 
variant (97) and two affected Turkish brothers with a frameshift 
variant (7), who were all diagnosed and treated early, had a less 
complicated course. It is unclear whether their milder clinical 
course is attributable to the earlier detection and treatment.

CARD14-Mediated Pustular Psoriasis 
(CAMPS)
CARD14 encodes caspase recruitment domain family member 14 
(CARD14). It is known to be specifically expressed in the skin and 
to be localized mainly to keratinocytes. CARD14 is a scaffolding 
protein that regulates NF-κB activation. The NF-κB family of 
transcription factors plays a crucial role in cell activation, sur-
vival, and proliferation and results in cancer, immunodeficiency, 
or autoimmune disorders (e.g., psoriasis). Hence, the presence 
of the CARD14 mutations may result in greater amplitude of 

inflammatory response upon epidermal activation. The skin 
disease in patients with CARD14 mutations can be limited or 
generalized. Autosomal dominant or sporadic gain-of-function 
mutations in the CARD14 gene cause GPP (101), familial 
pityriasis rubra pilaris (PRP) (102), psoriatic arthritis (PA) (103), 
PPP (104), and even pustular psoriasis suggesting a large disease 
severity spectrum. Fever and other systemic manifestations are 
generally not present but can occur with superinfections of the 
skin.

Three variants, c.349G>A (p.Gly117Ser), c.205C>T (p.Arg69 
Trp), and c.589G>A (p.Glu197Lys), affect the N-terminal  region  
of the protein harboring its caspase recruitment domain or 
coiled-coil domain but with different effects. The c.589G>A 
(p.Glu197Lys) and c.349G>A (p.Gly117Ser) lead to upregulation 
of NF-κB activity, whereas the c.205C>T (p.Arg69Trp) leads 
to a sevenfold downregulation. In particular, the c.349G>A 
(p.Gly117Ser) variant described in a family of European descent 
altered the splicing between CARD14 exons 3 and 4. One Tunisian 
patient was reported with a c.1356+5G>A splice alteration which 
is predicted to lead to the skipping of exon 9, which encodes part 
of the coiled-coil domain (105). Mutations in CARD14, includ-
ing p.Glu138del and p.Leu156Pro, have been associated with 
autosomal-dominant pityriasis rubra pilaris, which is phenotypi-
cally related to psoriasis (102).

Several gain-of-function variants/mutations in CARD14 have 
been reported to be a predisposing factor for psoriasis vulgaris 
(PV) in a large family with PV and PA. Jordan et al. identified the 
rare de novo CARD14 gain-of-function variant p.Glu138Ala in a 
child with severe early-onset GPP. They also found rare CARD14 
gain-of-function variants in large PV cohorts by the NF-κB assay, 
which revealed that compared to the wild-type CARD14, the 
p.Gly117Ser, p.Glu138Ala, and p.Asp176His variants were associ-
ated with increased levels of the luciferase reporter. Additional 
rare variants within CARD14 are c.424G>A (p.Glu142Lys), 
c.511C>A (p.His171Asn), c.536G>A (p.Arg179His), and 
c.571G>T (p.Val191Leu) (106).

In conclusion, the above-reported data concur to reach the 
following conclusions: (1) differences in the genetic background 
among different geographic populations account for significant 
variances observed in psoriasis populations, both in terms 
of frequency and of severity (localized palmoplantar versus 
generalized forms) of pustular psoriasis (107, 108), (2) despite 
the dramatic in  vitro effects of some CARD14 variants on the 
keratinocytes, there is a wide range of phenotypes, even among 
individuals who carry the same substitution, suggesting that in 
many instances, the variable phenotypes are likely to multiple 
other factors besides the genetic background.

NLRP12-AiD
NLRP12 is an NLR encoded by NLRP12 (also known as NALP12, 
Monarch-1, or PYPAF7) and functions as a negative regulator of 
NF-κB activation (109). NLRP12 interacts via its pyrin domain 
with the pyrin domain of apoptosis-associated speck-like (ASC) 
protein (110) leading to the formation of an intracellular aggregate 
called speck to active IL-1B (111). Sequencing of NLRP12 revealed 
a heterozygous nonsense mutation c.850C>T (p.Arg284X) in 
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identical twin brothers presenting with symptoms overlapping 
FCAS and MWS. A second NLRP12 mutation (c.2072+3insT) 
was identified in a patient presenting with a periodic fever syn-
drome, including clinical manifestation of FCAS. This mutation, 
affecting the donor splice site of intron 3, activates a cryptic 
splice site located upstream in exon 3 and results in a frameshift, 
followed by a premature stop codon (112). These two mutations 
were demonstrated to be functionally associated with high levels 
of NF-κB activity, thus accounting for the autoinflammatory 
phenotype. Jèru et al. identified a missense mutation c.1054C_T 
(p.Arg352Cys) within the NBS domain of the protein in two 
unrelated patients. This missense mutation is associated with a 
gain of function of caspase 1 processing (110). The c.882C>G 
(p.Asp294Glu) mutation was found to mostly segregate with a 
particular sensitivity to cold exposure (especially arthralgias 
and myalgia), even in the absence of urticarial rash, fever, or 
elevation in the levels of acute-phase reactants. In any case, the 
clinical manifestations presented by the carriers were generally 
mild, although quality of life was affected, especially during the 
winter season (112–114). Several reports identified the NLRP12 
variant F402L (c.1206 C>G) (115–117).

Pyogenic Arthritis, Pyoderma 
Gangrenosum, and Acne (PAPA) Syndrome
Pyogenic sterile arthritis, pyoderma gangrenosum, and acne 
syndrome is an autosomal dominant AID caused by mutations 
in the PSTPIP1 gene, which is located in chromosomal position 
15q24–q25.1. Pyrin protein is a cytosolic receptor for PSTPIP1. 
Ligation between pyrin and PSTPIP1 induces pyrin to interact 
with ASC protein, inducing the creation of an active ASC 
pyroptosome. A possible explanation of PAPA syndrome is a 
constitutive ligation and consequent activation of pyrin with the 
mutated PSTPIP1 proteins (112). The disease is extremely rare, 
with less than 10 families described worldwide. The first case 
of PAPA syndrome was reported in 1975 (118) and in 1997, in 
the same family, PAPA syndrome was described as a heritable 
disease (119).

In 2000, 93 genomic loci were investigated in patients with a 
pleiotropic inflammatory syndrome characterized by pyoderma 
gangrenosum, cystic acne, and erosive arthritis, demonstrating 
PAPA syndrome maps in chromosomal position 15q (120).

There are two hot-spots mutations, c.688G>A (p.A230T) 
and c.748G>C (p.E250Q), which occur in exons 10 and 11 and 
have been found in many familial (121–126) and sporadic cases  
(127, 128). Mutations are thought to disrupt the binding of 
PSTPIP-1 with protein tyrosine phosphatase–PEST, a regula-
tory phosphatase, increasing its avidity for pyrin in the cytosol, 
thereby causing dysregulation of IL-1β production (129).

Until 2016, a total of 27 genetic variants were reported for 
PSTPIP1 gene (23 substitutions, 1 insertion, 2 deletions, and 1 
duplication), 17 of which are PAPA phenotype associated (16).

Deficiency of Adenosine Deaminase 2
Searching for mutations in systemic inflammation and vasculop-
athy and/or necrotizing vasculitis polyarteritis nodosa patients, 
CECR1 (cat eye syndrome chromosome region, candidate 1) gene 

mutations were discovered by two independent groups. Pattern 
of inheritance was autosomal recessive. Subsequent studies 
described another case with a fatal vasculopathy (130). Common 
clinical signs are early onset recurrent stroke, neurologic manifes-
tations, and fever. Being the CECR1 gene highly polymorphic, as 
other AID causative genes, the correlation between clinical signs 
and familial ancestry is important. The CECR1 gene encodes 
the adenosine deaminase 2 (ADA2) protein, which has partial 
homology with ADA1 protein. Both ADA1 and ADA2 act as 
intracellular enzymes that regulate the purinergic signaling path-
way. Mutations in ADA1 are known to cause severe combined 
immunodeficiency disease, characterized by a defect in T- and 
B-lymphocytes. ADA2 mutations, conversely, cause only mild 
hypogammaglobulinemia due to a defect in terminal differentia-
tion of B-cells (131).

NLRC4-Associated inflammatory Diseases 
(SCAN4, NLRC4-MAS, and NLRC4-FCAS)
Patients with macrophage activation syndrome or a milder 
phenotype like FCAS may carry gain of function mutations in 
the NLRC4 (IPAF; CARD12) gene (132–134). Two novel causal 
mutations, p.T337S and p.V341A, have been diagnosed by whole 
exome sequencing (WES) in two sporadic patients (trios); the 
reported clinical symptoms were early onset fever, failure to 
thrive, rash, joint pain, and elevated inflammatory markers, 
including hyperferritinemia (133). The two mutations map in a 
highly conserved HD1 region of the NLRC4 nucleotide-binding 
domain and may decrease the function of NLRC4 to maintain 
itself in an auto-inhibited state. A third mutation, p.H443P, was 
identified in a Japanese family with milder symptoms including 
cold induced rash, fever, and arthralgia, even if the patient has 
a different phenotype from those other two previously patients 
reported. Mutations are supposed to regulate the mutant 
proteins into a constitutively active state, with the influence of 
environmental factors such as cold and stress which act as trigger, 
causing inflammasome activation. Further studies are necessary 
to explore full spectrum of monogenic inflammasome-related 
diseases. Interestingly, the NLRC4 gene (IPAF, CARD12) is sup-
posed to initiate inflammation in response to bacterial ligands, 
such as flagellin (135, 136).

Stimulator of interferon Genes (STiNG)-
Associated vasculopathy with Onset in 
infancy
In a trio with a patient affected by early onset symptoms of systemic 
inflammation, cutaneous rash, and pulmonary manifestations, 
and his unaffected parents, WES was performed, identifying a de 
novo mutation, p.N154S, in the TMEM173 gene; this gene encodes 
for a STING (138). Extending the analysis to other five sporadic 
cases of different ancestries but with similar phenotype led to 
the identification of missense mutations in the TMEM173 gene. 
Functional studies showed that a particular missense mutation, 
p.V155M, has been previously associated with a phenotypically 
different disease like systemic lupus erythematosus (139). Most of 
the mutations are located in the exon 5 of TMEM173 gene, which 
encodes for a domain important for the STING dimerization site. 
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The second study highlights that in families with dominantly 
inherited traits, the possibility of reduced penetrance should not 
be ignored. Sting knockout mice are prone to viral infections, 
because of the lacking of the ability to upregulate IFN-beta (137). 
As a result, all these data support the evidence that TMEM173-
associated mutations are gain of function (138, 139).

TNFRSF11A-Associated Hereditary Fever 
Disease
Patients with this disease have a phenotype similar to those 
affected by TRAPS. In a single patient with complex phenotype 
including neonatal onset of systemic inflammation and congeni-
tal abnormalities, a de novo genomic duplication containing the 
TNFRSF11A gene was identified (140). The TNFRSF11A gene is 
one of the 30 genes in the 10-Mb genomic duplication. Another 
study, using a different approach based on candidate gene screen-
ing, identified two other patients (mother and daughter) with a 
novel heterozygous 1-bp deletion (p.Met416Cysfs*110) in exon 9 
of TNFRSF11A gene. The resulting protein lacks the C-terminal 
intracellular domain. As TNFRSF1A, also TNFRSF11A gene 
encodes for a protein member of the TNF-receptor superfamily. 
TNFRSF11A (RANK, PDB, ODFR) gene encodes a signaling 
receptor that functions in osteoclast differentiation and bone 
remodeling (141, 142). RANK-ligand (RANKL) mediates essen-
tial signal for osteclastogenesis (143).

Rank-deficient mice present osteopetrosis caused from a block 
in osteoclast differentiation and the lack of peripheral lymph 
nodes (144). The pathogenesis of this disorder is unclear; in fact, 
the TNFRSF11A gene duplication suggests a gain of function 
mutation, while the heterozygous deletion is more consistent 
with a haploinsufficiency or a dominant negative effect.

TRNT1 Deficiency
Patients presenting with a variable phenotype of congenital side-
roblastic anemia, B cell immunodeficiency, and developmental 
delay have been termed SIFD (145). SIFD is characterized by an 
early onset, with frequently associated neurological symptoms, 
and metabolic abnormalities. SIFD has been associated to AID 
because it is characterized with a pediatric onset with periodic 
fevers and gastrointestinal involvement with sideroblastic ane-
mia. Genetic cause of SIFD has been found in the TRNT1 gene 
in an autosomal recessive inheritance (146, 147). The TRNT1 
gene encodes the ubiquitously expressed CCA-adding enzyme, 
essential for template-independent maturation of nuclear 
and mitochondrial transfer RNAs (148). Functional studies 
in yeast showed deficiency of TRNT1 homolog causes partial 
loss of function of TRNT1 affecting variable degrees of enzyme 
activity (146). Knock-out yeast for TRNT1 was fully restored 
with human TRNT1 and partially rescued by human mutant 
proteins.

Monogenic Form of Systemic Juvenile 
idiopathic Arthritis
Systemic-onset juvenile idiopathic arthritis is a polygenic inflam-
matory disease characterized by fever, rash, and symmetrical 

polyarthritis, with persistent systemic inflammation that seems 
to be linked to altered innate immune system (149, 150). 
Mendelian inheritance is autosomal recessive. Studying five 
consanguineous families with 13 affected patients from the 
Saudi Arabia with several genomic approaches, such as linkage 
analysis, homozygosity mapping, and WES, a homozygous mis-
sense mutation, p.C284R, located in exon 4 of the laccase domain 
containing 1 (LACC1) gene was identified (151). This private 
mutation is highly conserved during evolutionary scale and was 
not described in more than 2,000 Arab controls, suggesting its 
role in the pathogenesis.

Laccase domain containing 1 gene belongs to a family of 
Laccases, multi-copper oxidoreductases able to catalyze the 
oxidation of a variety of phenolic and non-phenolic compounds. 
Protein function is largely unknown, even if may regulate the 
innate immune responses. In a recent study, the gene product of 
LACC1 gene has been named FAMIN (fatty acid metabolism–
immunity nexus), important for the synthesis of endogenous 
fatty acids and their mitochondrial oxidation, controlling the 
glycolytic activity and ATP regeneration (145).

Genetic variants in the LACC1 gene have been previously 
associated with susceptibility to leprosy (152–154). LACC1 gene 
belongs to a family of Laccases, multi-copper oxidoreductases 
able to catalyze the oxidation of a variety of phenolic and non-
phenolic compounds. Protein function is largely unknown, even 
if may regulate the innate immune responses.

GeNeTiC DiAGNOSiS wiTH New 
TeCHNOLOGieS

In recent years, with the increased use of instruments for NGS, 
it has become feasible to analyze several genes in a single experi-
ment. This method is of great interest for AID, because of the 
increasing number of genes associated with the different forms 
of AID. In some cases, it is difficult to differentiate the different 
diseases, in particular, in those patients with intermediate phe-
notypes or a difficult clinical diagnosis. The analysis of a panel 
of several candidate genes is feasible with targeted sequencing 
investigating causative mutations, rare variants, or regions associ-
ated with the disease.

With the large number of genetic variants found with NGS, it 
is extremely important to find information about their possible 
role in the development of a specific disease. Several softwares 
have been developed in recent years and most of them have been 
based on the assumption that protein sequences derived from 
living organisms have survived a natural selection. The goal is 
to find if a genetic variant is a causative mutation or a common 
polymorphism.

There is also the possibility to analyze all the 18,000 genes of 
the human genome. WES is a recent strategy designed to sequence 
only the coding regions of the genome (which represents 1% of 
the human genome, about 30 megabases); this is an effective 
method alternative to whole genome sequencing, cheaper and 
less complicated in the bioinformatical/statistical analysis. Exons 
are generally short, functional sequences of DNA which represent 
the portion of the genome translated in protein. The WES has 
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the potential to identify the coding variants responsible for both 
Mendelian and common diseases.

In recent years, with the use of WES, several undiagnosed 
Mendelian genetic conditions have been investigated in order to 
search the involved gene (155, 156). WES has been applied to 
the study of trios (unaffected parents and the sporadic case) and 
unrelated patients with phenotypic similarities. Identification of 
causal gene in a single sporadic patient can then be confirmed 
in other patients with similar phenotypes. The potential of such 
strategies is high in polygenic human disorders such as AID. The 
emerging genetic technologies complemented by the develop-
ment of public databases of human variation can allow discovery 
of disease causal genes in sporadic and unrelated patients.

Whole genome sequencing allows to sequencing the entire 
genomic DNA, both chromosomal and mitochondrial. Unlike 
WES, this method allows the sequencing of both exons and 
introns, for a total amount of 3 Gigabases.

In a single center study (157), more than 2,000 diagnostic 
patients have been analyzed with Sanger sequencing for the 
NLRP3, MVK and TNFRSF1A genes, and other AID gene 
portions, failing to find mutations in 86% of samples. Possible 
explanations of this high failure are the restricted number of 
tested genes, clinical misdiagnosis, genetic heterogeneity, and/or 
a complex mode of inheritance. In order to improve the sensitivity 
of the genetic tests, 50 patients were re-analyzed with a gene panel 
of 10 genes for NGS procedure. The 10 genes were MEFV, MVK, 
TNFRSF1A, NLRP3, NLRP12, NOD2, PSTPIP1, IL1RN, LPIN2, 
and PSMB8 (157). In order to better understand the possible role 
of the detected variants, allele frequencies have been compared 
with those of 1,000 Genomes Project, and searching for a possible 
genotype–phenotype correlation. Some genes, such as NOD2, 
LPIN2, and NLRP12, showed a high frequency of genetic variants, 
which in theory may alter the clinical phenotype with mild or 
atypical symptoms. In the next future, NGS data combined with 
clinical information may help diagnosis for those patients with 
intermediate phenotype (156); in fact, the interaction between 
geneticists and physicians will allow to improve the diagnosis of 
AID patients (157).

CONCLUSiON

In AID, genetic and environmental factors act modulating the 
clinical presentation of a specific disorder. The knowledge of 
the biological pathways at the basis of different AIDs is very 
important; the elucidation of these novel factors may have clinical 
relevance, because it may be included in genetic-risk modeling 
approaches. The genetic variants previously identified as playing 
a role in the same pathway represent new potential therapeutic 
targets. The new age of the -omics has allowed the improvement 
of the knowledge of AID. By means of genetic fine mapping, 
targeted sequencing, transcriptomics, proteomics, and metabo-
lomics, physicians may improve treatment and therapy tailored 
on the single patient.
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Infectious and sterile inflammation is induced by activation of innate immune cells. 
Triggering of toll-like receptors by pathogen-associated molecular pattern or dam-
age-associated molecular pattern (PAMP or DAMP) molecules generates reactive 
oxygen species that in turn induce production and activation of pro-inflammatory 
cytokines such as IL-1β. Recent evidence indicates that cell stress due to common 
events, like starvation, enhanced metabolic demand, cold or heat, not only potenti-
ates inflammation but may also directly trigger it in the absence of PAMPs or DAMPs. 
Stress-mediated inflammation is also a common feature of many hereditary disorders, 
due to the proteotoxic effects of mutant proteins. We propose that harmful mutant 
proteins can induce dysregulated IL-1β production and inflammation through differ-
ent pathways depending on the cell type involved. When expressed in professional 
inflammatory cells, stress induced by the mutant protein activates in a cell-autonomous 
way the onset of inflammation and mediates its aberrant development, resulting in 
the explosive responses that hallmark autoinflammatory diseases. When expressed 
in non-immune cells, the mutant protein may cause the release of transcellular stress 
signals that trigger and propagate inflammation.

Keywords: autoinflammatory syndromes, endoplasmic reticulum stress, iL-1β, inflammation, monocytes, NLrP3 
inflammasome, oxidative stress, toll-like receptor

iNtrODUctiON

The term “autoinflammation” (1) groups syndromes with different etiologies characterized by sys-
temic inflammation in the absence of detectable infections and/or autoimmunity. Autoinflammatory 
diseases are disorders of the innate immune system, sharing recurrent episodes of fever, rash, 
joint pain, neutrophilia, and increased inflammatory markers. Most of them are monogenic, and 
the causative gene relates to the innate immune system. Examples are MEFV/pyrin in familial 
Mediterranean fever (FMF), TNFRSF1A/TNF receptor type 1 in TNF receptor-associated periodic 
syndrome (TRAPS), and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-
containing 3 (NLRP3) in cryopyrin-associated periodic syndromes (CAPS) (2).

Abbreviations: CAPS, cryopyrin-associated periodic syndromes; DAMPs, damage-associated molecular patterns; ER, 
endoplasmic reticulum; IL, interleukin; NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-
containing 3; NOX, NADPH oxidases; PAMPs, pathogen-associated molecular patterns; ROS, reactive oxygen species; TLRs, 
toll-like receptors; TRAPS, TNFRSF1A/TNF receptor type 1 in TNF receptor-associated periodic syndrome; UPR, unfolded 
protein response.
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The reversal of clinical symptoms in CAPS patients upon 
treatment with recombinant IL-1 receptor antagonist (Anakinra) 
or with IL-1β blocking agents (e.g., Canakinumab, a neutralizing 
antibody) provided compelling ex adjuvantibus evidence for the 
key role of IL-1β (3). The efficacy of anti-IL-1 drugs suggested 
that “gain-of-function” mutations in NLRP3, a central compo-
nent of the inflammasome, cause uncontrolled IL-1β production, 
in turn responsible for the severe inflammatory symptoms (4, 5). 
Less expectedly, the same drugs displayed strong therapeutic 
effects also in autoinflammatory diseases, where the causative 
gene is not directly involved in IL-1β production and regulation 
(2, 3). A representative case is TRAPS, a disease characterized 
by recurrent episodes of long-lasting fever, pain, and fasciitis. 
Despite TRAPS is caused by mutations in p55 TNF receptor type 
I, patients showed no or modest response to TNFα inhibition 
(6), whereas IL-1β-blocking agents have high efficacy (7). These 
observations suggest that the presence of a mutated protein in 
inflammatory cells, independently from its function, activates 
mechanisms converging on dysregulated IL-1β secretion.

In this perspective article, we propose a pro-inflammatory 
role for cell stress and the responses it elicits in some hereditary 
diseases, and suggest that stress is a central player in the patho-
physiology of autoinflammatory disorders, due to its presence in 
innate immune cells.

stress AND iNFLAMMAtiON

Inflammation is traditionally defined as a reaction to infectious 
or sterile injuries, aimed at recruiting molecules and cells of the 
immune system to the tissue where the damage is taking place 
and restoring homeostasis. Inflammation is initiated by activa-
tion of pattern recognition receptors on inflammatory cells, by 
two subclasses of ligands responsible for infectious and sterile 
inflammation, respectively (8, 9): pathogen-associated molecular 
patterns and damage-associated molecular patterns (PAMPs and 
DAMPs). The former are part of pathogens, while the latter are 
components of cells or extracellular matrix released or degraded 
upon cell and tissue damage. Additional factors concur in 
determining the onset, duration, and intensity of inflammatory 
responses. Among these, particularly important is cell stress due 
to starvation, enhanced metabolic demand, cold or heat, altered 
proteostasis. The most common and well studied cell stresses are 
endoplasmic reticulum (ER) stress and oxidative stress that are 
counteracted by highly conserved responses. These responses 
share common traits, for example, eIF2α phosphorylation, with 
transient translational inhibition and transcriptional activation of 
chaperones and antioxidants (10). This integrated stress response 
prevents the toxicity caused by misfolded proteins [named “pro-
teotoxicity” (10)] and limits reactive oxygen species (ROS)-based 
vicious circles. If excessive or prolonged, however, virtually all 
stress responses become maladaptive and induce inflammation 
due to activation of chemokine genes or, in case of cell damage, 
release of DAMPs that recruit inflammatory cells (11).

Oxidative stress is due to excessive production and/or defi-
cient detoxification of ROS. These can be abundantly generated 
by mitochondria during oxidative phosphorylation (12) and by 
flavoenzymes like NADPH oxidases (NOX) (13). In cells of the 

innate immune system, phagocytosis and toll-like receptor (TLR) 
triggering activate NOX to produce abundant H2O2 (14). H2O2 is 
released into phagosomes to clear microorganisms and induces 
pro-inflammatory cytokines and inflammation: however, it may 
generate oxidative stress (13, 14). ROS are also produced in the 
ER as a by-product of oxidative protein folding, particularly in 
conditions of ER stress, which elicit the unfolded protein response 
(UPR) (15, 16). ER stress occurs when misfolded proteins accu-
mulate in the secretory pathway, and also during infections, lipid 
unbalance, and other metabolic defects (15). UPR, a complex 
set of intracellular signaling pathways, has evolved to respond 
to protein misfolding and restore ER homeostasis. In addition, 
UPR signaling has a recognized role in immunity and inflam-
mation (16). Oxidative and ER stresses are intimately linked: the 
former can induce misfolding of secretory proteins impacting 
disulfide bond formation. On the other hand, ER stress leads to 
ROS production (17). In concert with ROS, a prolonged UPR 
can induce NF-κB-mediated chemokine production and recruit 
inflammatory cells. In turn, PAMP or DAMP can potentiate the 
UPR (16).

These vicious circuits are evident in many chronic disorders 
such as type 2 diabetes (18), obesity (19), lung respiratory disease 
(20), inflammatory bowel disease (21), non-alcoholic fatty liver 
disease (22), and cancer (23).

Also in many hereditary diseases, the mutant protein may alter 
proteostasis: if this occurs, stress and inflammation are induced. 
For example, in cystic fibrosis, different mechanisms contribute 
to the inflammatory lung disease that is the major cause of 
morbidity and mortality in patients affected by this disease. 
Firstly, the mutated cystic fibrosis transmembrane conductance 
regulator (CFTR) protein cannot fold properly into the ER lumen, 
causing accumulation of misfolded CFTR aggregates, ER stress, 
and UPR. In turn, UPR activates NF-κB inducing production of 
chemokines, such as IL-8, that recruit polymorphonuclear leu-
kocytes (PMN). PMN increase the oxidative burden in the lung, 
with generation of ROS that amplify the production of IL-8 thus 
locally increasing PMNs (24). Moreover, upregulation of ROS 
inhibits autophagy with consequent accumulation of protein 
aggregates and lung inflammation (25). Finally, the mutant CFTR 
transporter is unable to channel antioxidants into the airways: 
oxidative stress is worsened and concurs to the hyperinflamma-
tory phenotype (24).

In Duchenne muscle dystrophy, due to the defect of dystro-
phin, oxidative stress and UPR-activated NF-κB interactively 
promote fiber necrosis. Recruited macrophages generate 
inflammatory cytokines and ROS, thereby triggering vicious 
inflammatory waves (26, 27).

Differently from autoinflammatory disorders, in these cases, 
the mutant protein, being synthesized by epithelia or muscle, 
determines the release of stress signals that recruit leukocytes 
ultimately causing inflammation. These signals include small 
molecules like ROS and antioxidants, and proteins such as 
thioredoxin (28) and chemokines (as described above for cystic 
fibrosis, 24), which induce inflammation transcellularly, i.e., by 
recruiting and activating other cells (Figure 1A). When instead 
it is a professional inflammatory cell that produces a proteotoxic 
mutant, inflammation is generated in a cell-autonomous way and 
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FigUre 1 | Mutant proteins induce more severe inflammation when expressed in professional inflammatory cells. (A) Non-inflammatory cells 
(e.g., epithelia or muscle), which express mutant proteins that undergo aberrant folding in the ER, exhibit ER stress and increased ROS, and promote NF-κB-
mediated chemokine induction. The release of chemokines recruits inflammatory cells that secrete pro-inflammatory cytokines, ultimately causing inflammation. 
(B) Inflammatory cells from cryopyrin-associated periodic syndrome patients, which express mutated NLRP3, display cell stress with high reactive oxygen species 
(ROS) and antioxidant levels resulting in a precarious redox equilibrium that is deranged by toll-like receptor (TLR) stimulation. The high ROS levels facilitate autocrine 
ATP secretion, with increased and accelerated IL-1β secretion. When the antioxidant responses collapse, oxidative stress occurs with inhibition of protein synthesis 
responsible for the decrease of IL-1Ra secretion. Dysregulated cytokine production results in explosive inflammation. ROS are released in both conditions, triggering 
loops of amplification of stress and inflammation.
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the onset, development, and outcome of it will be much worse for 
the host (Figure 1B).

stress iN cAPs MONOcYtes

This hypothesis is supported by the observation that monocytes 
from CAPS patients, which express mutated NLRP3 molecules, 
display redox distress even before PAMP stimulation. Why 
mutant NLRP3 causes stress is unclear. A possible explanation 
is that it changes the affinity for the other components of the 
inflammasome complex (4), causing a disruption of the cyto-
solic homeostasis with induction of stress and integrated stress 
responses (10). Whatever the reason of NLRP3-induced stress, 
CAPS monocytes have higher basal ROS levels than monocytes 
from healthy donors but also higher expression of antioxidant 
systems (29–31) that allow them to maintain the redox homeo-
stasis despite their stressed state. This equilibrium is, however, 
precarious, and CAPS monocytes can easily be induced to 
overreact, through pathways that largely depend on extracellular 
ATP, the most common inflammasome-activating signal (32). 
ATP is released by injured tissues, activated platelets, and other 
cells through pathways that are still ill defined (32). Unlike other 
pro-inflammatory cells, however, human monocytes do not need 

ATP from external sources. The accumulation of ROS upon TLR 
triggering (33) induces them to secrete ATP (34) that autocrinally 
or paracrinally stimulates cognate purinergic receptors (P2X7R) 
at the cell surface (32, 34). The ensuing lower intracellular [K+] 
induces inflammasome assembly and IL-1β secretion (35). The 
higher ROS levels in CAPS monocytes following TLR triggering 
facilitate ATP release that increases and accelerates IL-1β secre-
tion (31) (Figure 1B).

Cell stress also decreases the threshold for IL-1β processing 
and secretion: minute amounts of TLR agonists, that in healthy 
monocytes are sufficient to trigger pro-IL-1β synthesis but not 
its processing and secretion, drive large amounts of IL-1β release 
in CAPS monocytes (31). Probably owing to their “pre-activated 
state,” small doses of TLR agonists increase ROS, inducing 
abundant ATP release, and IL-1β processing and secretion (31). 
This circuit explains why small traumas or infections that go 
undetected in healthy subjects can cause severe inflammatory 
manifestations in CAPS patients.

The effects described above occur soon after TLR stimula-
tion. In later phases, the precarious redox equilibrium of CAPS 
monocytes is broken as antioxidant responses collapse. CAPS 
monocytes display damaged mitochondria (30), a further 
indication of the presence of oxidative stress [(12), Figure 2]. 
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FigUre 2 | A model for stress-mediated cytokine secretion in cryopyrin-associated periodic syndromes (cAPs) monocytes. (A) In healthy monocytes, 
toll-like receptor (TLR) stimulation induces the production of low amounts of reactive oxygen species (ROS), rapidly neutralized by the antioxidant response. The 
ROS-induced ATP release is low, resulting in processing and secretion of little amounts of IL-1β through secretory lysosomes. The anti-inflammatory cytokine IL-1Ra 
is produced, contributing to switch off the inflammatory response. (B) In CAPS monocytes, small doses of TLR agonists induce a strong increase of ROS resulting in 
release of large amounts of endogenous ATP and IL-1β. The state of stress may trigger pyroptotic secretion of IL-1β through activation of caspase-11/4 that cleaves 
gasdermin D (GSDMD) generating a toxin-like N-terminal peptide that forms pores on the plasma membrane. Mature IL-1β, cleaved by the NLRP3 inflammasome, 
will be released through gasdermin D-formed pores. Later, failure of antioxidant response and mitochondria dysfunctions lead to severe oxidative stress, with 
impaired production of IL-1Ra. NLRP3*, mutated NLRP3.
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Interestingly, mitochondria are normal in CAPS lymphocytes, 
which do not express NLRP3, and in monocytes from healthy 
donors, which express wild-type NLRP3 (30), suggesting that 
mutant NLRP3 is indeed the causative agent of the oxidative 
stress. In this crucial phase, stress impacts also the produc-
tion of IL-1Ra, normally secreted by activated monocytes a 
few hours after IL-1β to limit inflammation [(30), Figure  1]. 
Thus, deficient IL-1Ra production likely concurs in increas-
ing the severity of the disease. Highlighting the dangerous 
stress-inflammation liaisons, insufficient IL-1Ra production 
may depend on eIF2α phosphorylation. Indeed, TLR-activated 
monocytes from CAPS patients, but not from healthy donors, 
display attenuated protein translation (30). Thus, IL-1ra mRNA 
is transcribed but stress prevents translation. Once more, oxida-
tive and ER stress appear to be linked because IL-1Ra secretion 
is restored by antioxidants.

HYPer-stiMULAteD HeALtHY 
MONOcYtes recAPitULAte tHe 
BeHAviOr OF cAPs MONOcYtes

The above observations suggest that the increased IL-1β/IL-1Ra 
ratio in CAPS depends on the synergistic effects of NLRP3 muta-
tions and stress. Combinations of PAMPs that stimulate surface 
and intracellular TLRs (LPS, R848, zymosan) were then used to 
induce a CAPS-like stress state in healthy monocytes (36). When 
given alone, each TLR agonist triggered the secretion of IL-1β and 
IL-1Ra by healthy monocytes. When provided simultaneously, 

however, they induced a superstimulation resulting in enhanced 
secretion of IL-1β but impaired release of IL-1Ra (36). The 
underlying molecular mechanisms are similar to those described 
in CAPS monocytes (29–31): super-stimulation induces ROS 
accumulation, responsible of the massive ATP release and IL-1β 
secretion, and of the consequent oxidative stress leading to inhibi-
tion of IL-1Ra production, despite normal IL-1Ra mRNA levels. 
Antioxidants restore IL-1Ra release by super-stimulated healthy 
monocytes, confirming the role of oxidative stress and recapitu-
lating the phenotype of CAPS monocytes (36). However, the latter 
are constitutively stressed by the mutation (37) so that stimulation 
with low doses of a single TLR agonist strongly increases stress 
that drives prompt and abundant IL-1β secretion and, in a second 
phase, lowers IL-1Ra (30, 31). In healthy monocytes with balanced 
basal redox state (29, 36), instead, multiple TLR co-stimulation 
is needed to cause cell stress and derange the normal cytokine 
network (36). These observations may suggest that, in CAPS, 
mutations in NLRP3 are more important indirectly, triggering 
and enduring stress, than directly activating inflammasome.

DiFFereNt MecHANisMs FOr iL-1β 
secretiON: DOes stress DeterMiNe 
tHe PAtHWAYs OF secretiON?

Since IL-1β is a potent and potentially dangerous mediator of 
inflammation, its production is tightly controlled virtually at all 
levels, including post-translationally (38, 39). IL-1β is synthesized 
as an inactive precursor, pro-IL-1β, and processed mainly by 
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caspase-1, which in turn must be activated by the inflammasome. 
Only mature, 17  kDa IL-1β is then secreted. The underlying 
mechanisms are still poorly understood. Indeed, IL-1β secretion 
has been a problem for cell biologists, since it was shown that the 
cytokine lacks a secretory signal sequence (40). Initially, a popular 
view was that the cytokine was released by dying cells. However, 
further studies demonstrated that secretion of mature IL-1β is an 
active process, requires living cells, avoids the ER-Golgi route, 
and involves secretory lysosomes (41–44). In addition to this 
pathway, recent studies revealed another route for IL-1β release, 
involving pyroptosis. This is a highly inflammatory form of pro-
grammed cell death, which has been proposed to mediate IL-1β 
secretion under condition of strong stimulation such as infection 
with intracellular pathogens (45–48). According to this model of 
secretion, stressful stimuli (e.g., intracellular LPS) activate cas-
pase-11 (the mouse homologous of human caspase-4). In turn, 
caspase-11 cleaves gasdermin D, generating toxin-like peptides 
that form pores on the plasma membrane, which allow secre-
tion of mature IL-1β, but not of the 33 kDa precursor (48, 49). 
It remains to be determined how the pores guarantee transport 
selectivity.

The two pathways are not mutually exclusive, and the choice 
of lysosomal or pyroptotic secretion may depend on the strength 
of pro-inflammatory signals (Figure 2). Mild stimuli, such as 
low amounts of PAMPs triggering surface bound TLRs, would 
induce the less efficient but more regulated lysosomal pathway. 
Accordingly, low doses of LPS induce pro-IL-1β synthesis, but 
not ATP secretion (31): in the absence of a second trigger, 
therefore, pro-IL-1β is degraded by lysosomal proteases (31, 
42) preventing unnecessary inflammation. Stronger stimuli, 
such as intracellular infections with gram-negative bacteria 
(45) could instead induce pyroptosis, causing massive release 
of IL-1β and possibly DAMPs, and dysregulated cytokine 
production (36).

Support to this hypothesis comes from our preliminary obser-
vations that human monocytes display more IL-1β-containing 
lysosomes when stimulated with LPS alone than with three 
agonists simultaneously triggering extra- and intracellular TLRs 
(unpublished results). Moreover, only in monocytes stimulated 
with extracellular LPS alone, do drugs interfering with lysoso-
mal function modulate IL-1β secretion. Conversely, caspase-4 
inhibitors block IL-1β release only in super-stimulated monocytes 
(unpublished results).

It is possible that the secretory lysosome-mediated mecha-
nism is more active in low pathogen load or small trauma, as 
a way to restore the homeostasis. Differently, the pyroptosis-
mediated secretion would intervene in severe inflammatory 
responses, characterized by strong or multiple stimuli such as 
it may occur in sepsis (50), diabetes (51) or cancer (52).

The ongoing stress could also determine the route of 
IL-1β secretion. Owing to the high ROS levels that favor ATP 
release, we predict that CAPS monocytes utilize preferentially 
the pyroptotic pathway. Accordingly, caspase-4 inhibition 
blocks IL-1β secretion by CAPS monocytes stimulated with a 
single TLR agonist, a condition that neither involves caspase-4 
nor induces pyroptosis in healthy monocytes (unpublished) 
(Figure 2).

ceLL-AUtONOMOUs PrOteOtOXic 
stress iN MONOcYtes iNcreAses 
iL-1β secretiON iN 
AUtOiNFLAMMAtOrY DiseAses

Increased IL-1β secretion has been reported in vitro by mono-
cytes from other autoinflammatory diseases, including FMF 
(53), TRAPS (54) hyperimmunoglobulinemia D syndrome (55), 
pyogenic sterile arthritis, pyoderma gangrenosum and acne 
(PAPA) (56), and also in the milder NLRP-12-associated periodic 
syndrome (57). As introduced above, anti-IL-1β therapies are the 
standard of care in these syndromes (58), suggesting that IL-1β 
is a key culprit. Nonetheless, the links between the mutated gene 
and IL-1β secretion are elusive. Remarkably, in these diseases, 
the mutant genes are expressed by monocytes that are under 
stress (53, 57, 59–61). It is tempting to speculate that stress and 
the ensuing responses converge to induce excessive IL-1β secre-
tion, possibly switching from lysosomal to pyroptotic secretion 
(Figure 2). The consequences on disease severity are many, since 
pyroptosis-mediated secretion would alter the networks of pro- 
and anti-inflammatory cytokine production.

Stress-induced hyperinflammatory response may occur in 
other inherited diseases that are not (yet) classified as autoin-
flammatory diseases. This is the case of chronic granulomatous 
disease (CGD), a disorder linked to mutations in NOX2. 
Because of these mutations, phagocytes of CGD patients fail to 
produce ROS with consequent deficiency in bactericidal activ-
ity and increased susceptibility to infections (62). In addition, 
and consistent with the evidence that CGD is associated with 
increased inflammasome activation (63–65), patients often 
develop hyperinflammatory traits. Moreover, Anakinra induced 
significant clinical improvement in two cases with colitis (66). 
Thus, CGD was defined as a potentially lethal combination of 
immunodeficiency and excess inflammation (67), most likely 
due to cell-autonomous stress responses. Likewise, evidence is 
accumulating for a role of stress and inflammation in the patho-
genesis of Gaucher disease, the inherited deficiency of lysosomal 
glucocerebrosidase (68). Monocyte/macrophages from these 
patients display increased secretion of IL-1β that depends on 
increased inflammasome activation, in turn due to the impaired 
autophagy secondary to the lysosomal enzyme deficiency (68). 
A further example is mucopolysaccharidosis type I, where, in 
innate immune cells, stress induced by lysosomal storage defects 
can upregulate immunity-related genes. In turn, these may be 
responsible for the severe inflammation-dependent pathologies 
observed in patients (69).

cONcLUsiON AND PersPectives

In essence, we propose that stress hallmarks monocytes from 
patients affected by autoinflammatory syndromes (and pos-
sibly other inherited diseases) that express mutant proteins not 
necessarily directly involved in IL-1β production. Stress induces 
inflammation and is, therefore, a key pathogenetic factor in these 
diseases. The stress levels contribute to determine the severity 
of the disease, and so do individual differences in resistance to 
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oxidative stress, as proposed for chronic inflammation-mediated 
diseases such as diabetes (70). Accordingly, we showed clear cor-
relations among basal stress, ongoing antioxidant responses, and 
disease severity in two CAPS patients sharing the same NLRP3 
mutation (31). Extending these concepts, we suggest that a simi-
lar stress-related mechanism may be operative in other genetic 
diseases, where the mutant protein is present in monocytes and 
inflammation participates to disease progression. Considering 
that individual tolerance plays a major role (71), improving the 
responses to stress represents a promising therapeutic opportu-
nity for these serious diseases.
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Autoinflammatory diseases are caused by defects in genes that regulate the innate 
immunity. Recently, the scope of autoinflammation has been broadened to include 
diseases that result from dysregulations in protein modifications by the highly conserved 
ubiquitin (Ub) peptides. Thus far these diseases consist of linear ubiquitin chain assem-
bly complex (LUBAC) and OTULIN deficiencies, and haploinsufficiency of A20. The 
LUBAC is critical for linear ubiquitination of key signaling molecules in immune response 
pathways, while deubiquitinase enzymes, OTULIN and TNFAIP3/A20, reverse the effects 
of ubiquitination by hydrolyzing linear (Met1) and Lys63 (K63) Ub moieties, respectively, 
from conjugated proteins. Consequently, OTULIN or A20-deficient cells have an excess 
of Met1 or K63 Ub chains on NEMO, RIPK1, and other target substrates, which lead 
to constitutive activation of the NF-kB pathway. Mutant cells produce elevated levels 
of many proinflammatory cytokines and respond to therapy with cytokine inhibitors. 
Patients with an impairment in LUBAC stability have compromised NF-kB responses 
in non-immune cells such as fibroblasts, while their monocytes are hyperresponsive to 
IL-1β. Discoveries of germline mutations in enzymes that regulate protein modifications 
by Ub define a new category of autoinflammatory diseases caused by upregulations in 
the NF-kB signaling. The primary aim of this review is to summarize the latest develop-
ments in our understanding of the etiology of autoinflammation.

Keywords: TNFAiP3/A20, linear ubiquitin chain assembly complex, OTULiN, haploinsufficiency of A20, LUBAC 
deficiency, otulipenia/otulin-related autoinflammatory syndrome

iNTRODUCTiON

Autoinflammatory diseases are a diverse group of inherited conditions characterized by early-onset 
systemic inflammation and are accompanied by a range of organ-specific manifestations. The genetic 
etiology involves abnormalities in molecules such as inflammasomes, cytokine inhibitors, cytokine 
receptors, enzymes, and proteasome complex. The excessive secretion of proinflammatory cytokines 
can lead to chronic morbidity and may be life-threatening. Therapies with cytokine inhibitors are 
efficacious in most patients; however, considering the high cost of biologics there is a need to develop 
more affordable treatment options for these lifelong conditions. The discovery of germline mutations 
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linked to autoinflammation offer an opportunity to search for 
new therapeutic targets.

UBiQUiTiN (Ub) PATHwAY

Posttranslational protein modification by ubiquitination (also 
known as ubiquitylation) is critical for the regulation of many 
biological processes including DNA repair, endocytosis, 
transcription, protein degradation, and preservation of cel-
lular homeostasis. Ubiquitination involves the attachment of 
evolutionarily conserved 76-aa Ub molecules to target proteins 
in the form of a monomer or polymers (Ub chains). The type 
of conjugation determines the fate of the modified protein by 
directing protein localization and regulating protein interactions, 
activity, and degradation (1).

The ubiquitination process is initiated by the attachment of 
a single Ub molecule to a target protein through a three-step 
enzymatic pathway that includes Ub-activating enzymes (E1), 
Ub-conjugating enzymes (E2), and Ub-ligating enzymes (E3) 
(2). Ub chains are generated by the sequential addition of Ub 
monomers through one of seven lysine residues that serve as 
a linker, thus there are seven types of Ub Lys-linkages. Ub can 
be also conjugated through an N-terminal methionine residue 
(Met1 linkage; linear linkage). Lys11-, Lys48-, Lys63-, and Met1-
linked chains are the best known and most studied. Significance 
of four other Ub chains Lys6-, Lys27-, Lys29-, and Lys33- is poorly 
understood. In addition, there is increasing evidence that more 
than one linkage type can exist on modified proteins either in the 
form of mixed (hybrid) Ub chains or branched Ub chains, and 
this may provide a new layer of complexity to the Ub-mediated 
modifications (2, 3). Ub proteins are also subject to modifica-
tions by acetylation, phosphorylation, and ubiquitin-like (UBL) 
molecules (SUMO or NEDD8) (4). Ub-conjugated proteins are 
recognized by Ub sensors, Ub-binding proteins (Ub receptors) 
that can translate each linkage type of Ub modifications into spe-
cific functional outcomes. For example, proteins conjugated with 
Lys (K11) or Lys48 (K48) Ub chains are targeted for proteosomal 
degradation via the ubiquitin–proteasome system (UPS) (5). In 
addition, Lys11 Ub chains have a role in cell cycle control and may 
have other functions in the context of mixed Ub chains (6). Lys63 
(K63) Ub chains are involved in cell signaling and are essential 
for DNA damage response (7). Linear (Met1) Ub chains regulate a 
wide range of immune signaling pathways (8–10). Ubiquitination 
is a highly dynamic and reversible process whereby Ub chains are 
removed from modified substrates by a class of enzymes known 
as deubiqutylases or deubiquitinases (DUBs) (11). There are close 
to 100 proteases that have DUB activity with different degrees 
of specificity for Ub linkages. Several DUBs, including A20, 
OTULIN, CYLD, and Cezanne, function as negative regulators 
of NF-kB signaling (12).

Alterations in various components of the Ub–proteasome 
machinery have been linked to many human conditions includ-
ing immune diseases. Recently, deregulations in the UPS were 
reported in patients with autoinflammatory disorders including 
chronic atypical neutrophilic dermatosis with lipodystrophy 
and elevated temperature (13), linear ubiquitin chain assembly 
complex (LUBAC) deficiency (14, 15), haploinsufficiency of A20 

(HA20) (16), and otulipenia/otulin-related autoinflammatory 
syndrome (ORAS) (17, 18). This review will primarily focus on 
two diseases caused by malfunction in DUB enzymes, TNFAIP3/
A20 and OTULIN, which are known to hydrolyze Lys63- and 
Met1-linked Ub chains, respectively. In both conditions, HA20 
and otulipenia/ORAS, a defect in DUB activity results in excessive 
ubiquitination and increased activity of key signaling molecules in 
the canonical NF-kB pathway. LUBAC-associated diseases will be 
briefly discussed in the context of LUBAC–OTULIN interactions.

LiNeAR Ub CHAiNS iN iMMUNe 
SiGNALiNG

Linear ubiquitin chain assembly complex (LUBAC)-mediated 
Met1 ubiquitination has emerged pivotal for regulation of innate 
and adaptive immune responses and regulation of cell death (9, 
19). The E3 ligase complex, LUBAC, has been shown to maintain 
the stability of the TNF receptor 1 (TNFR1), TLRs, IL-1R, CD40, 
RLR, and inflammasome receptor signaling complexes (RSCs). 
Upon stimulation with proinflammatory signals, LUBAC is 
recruited to attach linear Ub chains to target substrates such as 
IKK (NEMO), RIPK1, RIPK2, IRAKs, MyD88, and ASC (8, 20, 
21). Attachment of linear Ub chains is critical for the assembly of 
RSCs. LUBAC depletion leads to attenuation of NF-kB and the 
mitogen-activated protein kinases (MAPK)-mediated signaling 
and increases cell death.

Linear ubiquitin chain assembly complex consists of HOIP 
(HOIL-1 interacting protein; RNF31) and two accessory proteins: 
HOIL-1 (heme-oxidized IRP2 ubiquitin ligase 1; RBCK1) and 
SHARPIN (SHANK-interacting protein like 1; SIPL1) (Figure 1). 
The catalytic subunit HOIP is auto-inhibited until the complex 
is fully assembled. Depletion of any subunits greatly reduces the 
stability of LUBAC in cells (14, 15). As the immune responses 
must be tightly regulated to avoid chronic inflammation, LUBAC 
activity is counter-regulated by the specific DUB OTULIN (also 
known as gumby; FAM105B).

OTULIN is a highly conserved protease with a specific activ-
ity to hydrolize linear (Met1)-linked Ub chains (22) (Figure 1). 
OTULIN interacts with the N-terminal PUB domain of HOIP 
via an evolutionarily conserved PUB-interacting motif (23). Loss 
of HOIP–OTULIN interaction reduces OTULIN capacity to 
restrict LUBAC-induced NF-kB activation (24). A recent study 
showed that the activity of LUBAC is also negatively regulated 
by its interaction with tumor necrosis factor receptor-associated 
factor 1 (TRAF1). TRAF1 directly interacts with LUBAC to 
interfere with the activation of IKK/NEMO. Reduced expression 
of TRAF1 could explain the association of susceptibility alleles in 
TRAF1 with rheumatoid arthritis (RA) and other autoimmune 
diseases (25).

The importance of the linear ubiquitination in regulation 
of inflammatory pathways has been demonstrated in murine 
models. Genetic ablation of the catalytic HOIP subunit results in 
embryonic lethality at day 10.5 due to TNF-mediated endothelial 
cell death and vascular abnormalities (26). Mice deficient for 
non-catalytic subunits have variable degrees of inflammation 
manifesting with chronic proliferative dermatitis in the case 
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FiGURe 1 | Proposed mechanisms of pathogenesis in haploinsufficiency of A20 (HA20), otulipenia/otulin-related autoinflammatory syndrome 
(ORAS), and linear ubiquitin chain assembly complex (LUBAC) deficiencies. The canonical NF-κB pathway is regulated both by K63 (Lys63)-linked and linear 
(Met1)-linked ubiquitin (Ub) chains. RIPK1 is the central adaptor for assembly of the TNFR1 receptor signaling complex and is a predominant target for ubiquitination 
by K63 and linear Ub chains. Polyubiquitylated RIPK1 mediates recruitment of IKK complex that is also target for ubiquitination. The activated IKK complex 
phosphorylates inhibitor of kappa B (IκBα) and targets IκBα for proteasome-mediated degradation. Linear Ub chains are added to RIPK1 and IKKγ by LUBAC. A20 
and OTULIN negatively regulate the NF-κB pathway by cleaving K63 and linear Ub chains from target molecules, RIPK1 and IKKγ. In addition, A20 through its E3 
ligase activity adds K48 Ub chains to IKKγ (and TRAF6, not shown in the figure) targeting them for proteasomal degradation. Decreased expression of A20 in 
patients with HA20 or OTULIN in patients with otulipenia/ORAS will lead to activation of the NF-κB pathway, increased expression of proinflammatory transcripts in 
immune cells, and systemic inflammation. Decreased expression of LUBAC complex subunits, in patients who carry mutations in HOIP or HOIL-1, results in 
inhibition of the NF-κB pathway in fibroblasts and B-cells causing immunodeficiency. However, their monocytes hyperproduce proinflammatory cytokines. TNFR1, 
TNF receptor 1; TRADD, TNFR1-associated death domain protein; RIPK1, the death domain-containing protein kinase receptor-interacting protein1; IKKγ/NEMO, 
inhibitor of nuclear factor kappa B kinase subunit gamma.
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of SHARPIN-deficient mice (cpdm) (27, 28) or with no overt 
inflammation in mice lacking HOIL-1 (21). Skin inflammation 
in Sharpin-KO mice is largely dependent on the TNFR1-induced 
apoptosis (19, 29, 30). LUBAC activity is also important for 
proper B and T cell development, activation, and maintenance 
of adaptive immune responses (31, 32). Genetic loss of Otulin 
(gumby/gumby) causes embryonic lethality (E12.5–E14) due to 
compromised angiogenesis and defects in neuronal development 
(33). Tamoxifen-induced Otulin deficiency in immune cells 
results in an acute severe multiorgan inflammatory phenotype 
(18). Targeted ablation of Otulin in myeloid cells leads to chronic 

inflammation with features of autoimmunity, while Otulin defi-
ciency in adaptive immune cells does not produce overt phenotype 
(18). Together, these data show critical and cell-specific function 
of OTULIN in the maintenance of immune homeostasis.

LUBAC DeFiCieNCieS

Patients with defects in the LUBAC components develop immu-
nodeficiency, autoinflammation, muscular amylopectinosis, and 
die in early childhood (Tables 1 and 2). HOIL-1 and HOIP defi-
ciencies are recessively inherited diseases caused by mutations 

91

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 1 | Comparison of genetics and mechanisms of disease in otulipenia, haploinsufficiency of A20 (HA20), and linear ubiquitin chain assembly 
complex (LUBAC) deficiencies.

Otulipenia/ORAS HA20

Gene Gene name OTULIN (FAM105B) TNFAIP3
Exons 7 exons 9 exons
Chromosome Chr.5 Chr.6

Protein Protein name OTULIN A20
Protein length 352aa 790aa
Protein domains PUB-interacting motif domain, ovarian tumor (OTU) domain OTU domain, 7 ZnF domains
Protein function Met1 linear deubiquitinase (DUB) K63 DUB
Involved pathway NF-κB NF-κB, NLRP3
Substrate molecules NEMO, TNF receptor 1 (TNFR1), RIPK1, ASC NEMO, RIPK1, TRAF6, pro IL-1β

Genetics Inheritance Recessive Dominant
Type of mutations Loss-of-function mutations (missense, INDELS) Loss-of-function mutations (stop gain mutation, missense, 

INDELS)
Frequency of mutant alleles Rare or novel Novel
Location of the mutations OTU domain (linear DUB activity) OTU domain (k63 DUB activity) or ZnF4 domain
Number of mutations Biallelic (compound heterozygous or homozygous) Heterozygous

Mechanisms Mechanism Loss-of-function (reduced protein expression) Haploinsufficiency (50% decrease in protein expression)
Protein Interactions Instability of LUBAC Decreased association with TNFR1, TRAF2, and RIPK1
Effect of mutant proteins Impaired linear deubiquitination of NEMO, TNFR1, RIPK1, 

ASC
Impaired K63 deubiquitination of NEMO, RIPK1, and TRAF6

Involved pathway Increased signaling in NF-κB and mitogen-activated protein 
kinases (MAPK) pathways

Increased activity of NF-κB, MAPKs, and NLRP3

Cytokines IL-1β, TNF, IL-6, IL-12, IL-18, IFNγ IL-1β, TNF, IL-6, IL-9, IL-17, IL-18, IFNγ

HOiL-1 deficiency HOiP deficiency

Gene Gene name RBCK1 RNF31
Exons 12 exons 21 exons
Chromosome Chr.20 Chr.14

Protein Protein name HOIL-1 HOIP
Protein length 510aa 1,072aa
Protein domains Ubiquitin-like (UBL), novel zinc finger (NZF), RING1, IBR, 

RING2
PUB, ZnF, NZF1, NZF2, UBA, RING1, IBR, RING2, LDD

Protein function Subunit of the LUBAC Catalytic subunit of the LUBAC
Involved pathway NF-κB signaling pathway NF-κB signaling pathway

Mutations Type of mutations Loss-of-function mutations (stop gain mutation, INDELS) Loss-of-function mutations (missense)
Frequency of mutant alleles Rare or novel Novel
Location of the mutations UBL domain (interacts with HOIP UBA domain), NZF domain 

(ubiquitin binding)
PUB domain (interacts with OTULIN)

Number of mutations Biallelic (compound heterozygous or homozygous) Biallelic (homozygous)

Mechanisms Inheritance Recessive Recessive
Mechanism Loss-of-function (decreased protein expression, instability of 

LUBAC, impaired linear ubiquitination)
Loss-of-function (decreased protein expression, instability of 
LUBAC, impaired linear ubiquitination)

Effect of mutant proteins Defect in linear ubiquitination NEMO, RIPK1, IRAK-1 Defect in linear ubiquitination
Involved pathway Impaired NF-κB activation in fibroblasts, increased NF-κB 

activity in monocytes
Impaired NF-κB activation in fibroblasts and CD40L 
stimulated B cells, increased NF-κB activity in monocytes

Cytokines Impaired expression of IL-6 in fibroblasts upon IL-1β and TNF 
stimulation; hyperproduction of IL-6 upon in IL-1β stimulated 
monocytes; high serum IL-1, IL-6

Hyperproduction of IL-6 in IL-1β stimulated monocytes
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that either create truncating proteins or affect a highly conserved 
PUB domain of HOIP (14, 15) (Figure 2). Pathogenic mutations 
in one subunit destabilize the expression of the entire LUBAC 
complex. As LUBAC is important for activation of immune sign-
aling, stimulated patient fibroblasts and B cells fail to upregulate 
NF-kB activity, which manifests in recurrent bacterial infections. 
In contrast to immunodeficient fibroblasts, peripheral blood 
mononuclear cells (PBMCs) of HOIP and HOIL-1-deficient 

patients are highly responsive to IL-1 stimulation and produce 
high levels of proinflammatory cytokines IL-6 and MIP-1α. 
One patient was noted to have severe T  cell lymphopenia and 
impaired antibody production. Muscular amylopectinosis/myo-
pathy appear to be unrelated to a defect of linear ubiquitination 
in immune cells and its mechanism remains to be investigated. 
Abnormalities in the lymphatic system have been observed in the 
HOIP-deficient patient and HOIP-deficient mice, which suggests 
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TABLe 2 | Clinical manifestations in patients with otulipenia, haploinsufficiency of A20 (HA20), and linear ubiquitin chain assembly complex deficiencies.

Clinical manifestations Otulipenia (17) HA20 (16, 35–37) HOiL-1 deficiency (14) HOiP deficiency (15)

Yes or no Patients 
(n = 3)

Yes or no Patients 
(16) 

(n = 11)

Patients 
(37) 

(n = 6)

Patients 
(36) 

(n = 3)

Patients 
(35) 

(n = 1)

Yes or no Patients 
(n = 3)

Yes or no (n = 1)

Early age onset Yes (1–4.5 months) 3/3 Yes (7 months–16 years) 11/11 6/6 3/3 1/1 Yes 3/3 Yes

Fevers Yes (fever lasting 
2–3 weeks)

3/3 Yes 2/11 3/6 1/3 1/1 Yes 3/3 Yes

Skin rash Yes (erythematous 
with skin nodules, 
pustular rash)

3/3 Yes (erythematous papules, 
folliculitis, skin abscesses)

4/11 6/6 0/3 1/1 Yes (eczema; 
erythroderma, 
desquamative dermatitis)

1/3; 1/3 No

CNS No 1/3 Yes (CNS vasculitis, chorea, 
migraine)

2/11 / / 0/1 No 0/3 No

GI Yes (abdominal pain, 
diarrhea)

1/3 Yes (colitis) 4/11 1/6 1/3 0/1 Yes (abdominal pain, 
diarrhea, vomiting, blood 
and mucus in the stools)

3/3 Yes (recurrent episodes 
of fatty diarrhea, intestinal 
lymphangiectasia)

Arthritis Yes (arthralgias, 
myalgias)

3/3 Yes (arthralgia, polyarthritis) 6/11 / 2/3 0/1 No 0/3 Yes
Arthralgias
Myalgias

Elevated CRP, ESR Yes 3/3 Yes 6/6 1/1 / 1/1 Yes 3/3 Yes

Immunodeficiency No obvious primary 
immunodeficiency

2/3 Yes (IgG2 and 4 subclass 
deficiency, low anti-
polysaccharide antibodies 
lymphopenia)

2/11 / / 1/1 Yes (recurrent bacterial 
infections, memory B-cell 
deficiency, and hyper-IgA 
syndrome)

3/3 Yes (recurrent viral and 
bacterial infections, 
lymphopenia, 
antibody deficiency, 
hypogammaglobulinemia)

Oral ulcers No 0/3 Yes 11/11 6/6 2/3 0/1 Yes 1/3 Yes

Genital ulcers No 0/3 Yes 10/11 6/6 1/3 0/1 No 0/3 No

Ophtho No 0/3 Yes (uveitis, retinal vasculitis) 3/11 / 1/3 / No 0/3 No

Pathergy No 0/3 Yes 3/11 / / / No 0/3 No

Autoantibodies No 0/3 Yes (RNP, ANA, lupus 
anticoagulant)

5/11 / / 1/1 No 0/3 No

Panniculitis Yes 3/3 No 0/11 0/6 0/3 0/1 No 0/3 No

Failure to thrive Yes 3/3 No 0/11 0/6 0/3 0/1 Yes 3/3 Yes

Lipodystrophy Yes 3/3 No 0/11 0/6 0/3 0/1 No 0/3 No

Lymphadenopathy Yes 2/3 Yes 0/11 0/6 0/3 1/1 Yes 2/3 Yes

Systemic lymphangiectasia No 0/3 No 0/11 0/6 0/3 0/1 No 0/3 Yes

(Continued )
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that HOIP, independently of other LUBAC components, may 
have a function in the regulation of angiogenesis. LUBAC appears 
to be important for toll-like receptor 3 (TLR3)-mediated innate 
immune responses to influenza A virus infection, by enabling 
TLR3-mediated activation of NF-kB, MAPK, and IRF3 (34).

In summary, the identification of patients with LUBAC 
deficiencies showed the critical role of LUBAC in regulation of 
immune responses.

OTULiPeNiA/ORAS

Recessively inherited loss-of-function mutations in the linear 
(Met1)-specific DUB OTULIN have been linked to the early-
onset severe inflammatory disease, named otulipenia/ORAS 
(Table  1) (17, 18). Patients present with prolonged recurrent 
fevers, joint swelling, GI inflammation/diarrhea, and failure to 
thrive (Table 2; Figure 3). The cutaneous manifestations include 
painful erythematous rash with skin nodules, lipodystrophy, 
and episodes of pustular rash in one patient (Figure 3B). Skin 
biopsy showed evidence for neutrophilic dermatitis, mixed 
type panniculitis, and vasculitis of small and medium-sized 
blood vessels (Figure 3C) (17). In contrast to patients with the 
LUBAC deficiency, OTULIN-deficient patients have no obvi-
ous immunodeficiency, although some of them suffered from 
iatrogenic infections induced by immunosuppressive therapies. 
Initial analyses showed adequate specific antibody responses to 
vaccines, adequate T and B cell proliferative responses, normal 
levels of immunoglobulins, and normal T, B, and NK cell counts.

The four patients identified carry novel homozygous muta-
tions in the FAM105B gene that encodes OTULIN. Heterozygote 
carriers are asymptomatic, which suggests that reduced protein 
expression of OTULIN may not be critical for maintenance of 
immune homeostasis. OTULIN is a 352-residue protein that 
consists of N-terminal LUBAC-binding domain and C-terminal 
ovarian tumor (OTU) domain. Disease-associated mutations 
affect the OTU domain and binding of OTULIN to linear Ub 
chains (Figure 2).

OTULIN functions as a negative regulator of the canonical 
NF-kB pathway and as such is essential for resolving inflamma-
tion (Table 1; Figure 1). Mutant OTULIN proteins cannot restrict 
the accumulation of Met1 Ub chains on target substrates IKK/
NEMO, RIPK1, and ASC. Patients’ mononuclear leukocytes and 
fibroblasts have a strong inflammatory signature as evidenced by 
increased degradation of IkBα and increased phosphorylation 
of IKKα/IKKβ and IkBα, the hallmarks of the activated NF-kB 
pathway. Mutant cells overproduce many proinflammatory 
cytokines, including cytokines associated with activation of 
adaptive immune cells, and therapy with TNF inhibitors is very 
effective in controlling disease activity. Tamoxifen-induced 
Otulin ablation in murine immune cells (CreERT2-OtulinLacZ/flox 
chimeras) resembles the phenotype described in patients with 
otulipenia/ORAS including responsiveness to therapy with TNF 
inhibitors (18).

In summary, combined data from human and murine stud-
ies suggest that deficiency of the linear DUB, OTULIN, leads to 
amplification of the Met1 Ub regulated signaling in the canonical 
NF-kB pathway, most notably in myeloid cells.
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FiGURe 2 | Schematic of the domains and locations of mutations in respective proteins HOiL-1, HOiP, OTULiN, and TNFAiP3/A20. The domains 
identified are depicted as boxes. The locations of the mutations are indicated with red arrows. (A) HOIL-1 contains the ubiquitin-like (UBL), NPL4 zinc-fingers (NZF) 
domain, really interesting new gene (RING) domain, and in-between RING (IBR) domain. The mutations are located in UBL and NZF domains. The UBL domain is 
required for linear ubiquitin chain assembly complex (LUBAC) formation and linear ubiquitination. (B) HOIP has PNGase/UBA or UBX (PUB), zinc finger (ZnF), NZF, 
ubiquitin-associated (UBA), RING domain, and IBR domain. The homozygous disease-associated mutation is located in the PUB domain that is critical for 
interaction with OTULIN and stability of LUBAC. (C) OTULIN consists of N-terminal LUBAC-binding PUB-interacting motif (PIM) and C-terminal ovarian tumor (OTU) 
domain that mediates deubiquitinase (DUB) activity of OTULIN (79–352aa). All three mutations are located in the OTU domain. (D) The DUB activity of A20 is 
mediated by the OTU domain, and the ZnF domains mediate A20 ubiquitin (Ub) E3 ligase activity, binding to Lys63-linked Ub chains and dimerization. Mutations 
reported by Zhou at al. are shown on the top of the diagram, while three mutations reported in Japanese patients are shown bellow the diagram. To stay consistent 
with the Human Genome Variation Society nomenclature the reported p.Gln415fs (35) should be described as p.Lys417Serfs*4. The four nucleotide deletion in the 
repeat sequence (reported as c.1245_1248del) should be assigned as the most 3′ position in the repeat, i.e., c.1249_1252del; therefore, the proposed 
nomenclature for the mutation is p.Lys417Serfs*4.
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FiGURe 3 | Clinical manifestations of the patients with haploinsufficiency of A20 (HA20) and otulipenia/otulin-related autoinflammatory syndrome. 
(A) Prominent fat loss (lipodystrophy) and (B) erythematous skin lesions and subcutaneous nodules in a patient with otulipenia. (C) Skin biopsy showed dense 
inflammatory infiltrate throughout the subcutaneous lobules (right upper corner of the image) and subcutaneous lobular atrophy or lipodystrophy (similar findings 
have been reported in chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature patients) on the left lower corner of the image. The 
middle part of the image showed vasculitis affecting a medium-sized artery, characterized by dense intramural and perivascular inflammation with endothelial 
proliferation and vascular occlusion. Adjacent the affected artery is a medium-sized vein (left lower) showing mild inflammation of the vessel wall. (D) Dermal 
abscesses in a patient with HA20. (e) Recurrent aphthous (oral) ulcers in a patient with HA20.
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Lys63-LiNKeD Ub CHAiNS iN iMMUNe 
SiGNALiNG

Lys(K)63-Ub modification was first described as a mechanism 
for the activation of the canonical NF-κB pathway (38). K63-
linked Ub chains are generated following cell stimulation with 
inflammatory cytokines, and they function as a scaffold for the 
formation of receptor signaling complexes. Molecules such as 
NEMO/IKK, TRAF6, and RIPK1 are ubiquitinated both by linear 
and K63 Ub chains, which suggest a substantial regulatory redun-
dancy in immune signaling (39–42). TNFAIP3/A20 restricts 
inflammatory responses via its dual yet synergistic functions: 
its deubiquitinase activity by hydrolyzing K63 linkages and its 
E3 ligase activity by conjugating substrates with K48 Ub chains 
to target them for proteasomal degradation (43, 44) (Figure 1). 
A20 is also subject to regulations as it undergoes posttranslational 
phosphorylation (45) and is cleaved by mucosa-associated lym-
phoid tissue lymphoma translocation protein 1 (46). In tumor 
cells, A20 acts as a tumor-suppressor gene and is frequently 
inactivated by somatic mutations and deletions in diffuse large 
B-cell and Hodgkin lymphomas (47, 48).

The TNFAIP3 gene is highly conserved and intolerant to 
genetic variations, in particular to loss-of-function mutations. 
Common low-penetrance mostly non-coding variants in 
TNFAIP3 have been associated with many autoimmune diseases 
including systemic lupus erythematosus (SLE) (49–51), RA (52), 
psoriasis (53), type 1 diabetes (54), celiac disease (55), coronary 
artery disease (56), inflammatory bowel disease (57), and more 
recently with protection to allergy and asthma (58, 59). Given 
the potent anti-inflammatory function of A20, these susceptibil-
ity alleles are predicted to decrease A20 expression and function, 
although that has been experimentally demonstrated only for a 
single non-coding variant associated with SLE. The dinucleotide 
functional variant downstream of TNFAIP3, TT > A, likely alters 
the binding of transcription factors in response to proinflamma-
tory signals (51, 60).

Genetic ablation of A20 leads to spontaneous inflammation 
in mice with a range of cell-specific phenotypes. A20-deficient 
(A20−/−) mice exhibit multiorgan inflammation, cachexia, and 
early lethality (61). Although A20 was initially described as 
required for termination of TNF-induced signals, the excessive 
inflammation observed in double-deficient mice, A20-TNF or 
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A20-TNFR1, suggested that A20 might be critical for the regula-
tion of TNF-independent signals including the termination of 
TLR-induced activity of NF-kB (62). Cell-specific deletions of 
A20 resemble human autoimmune diseases, from a mild auto-
immune phenotype in Tnfaip3 Cd19 (B-cell) KO mice to severe 
spontaneous inflammation in mice with A20-deficient dendritic 
cells. Loss of A20 in macrophages mimics human RA, although 
the phenotype appears to be TNF-independent. Deficiency of 
A20 in keratinocytes leads to hyperkeratosis, while loss of A20 
in intestinal epithelial cells causes DSS-induced TNF-dependent 
colitis (63). Aging heterozygous mice (A20+/−) develop spontane-
ous autoantibodies. In summary, multiple murine models with 
cell-specific ablation of A20 demonstrate closer approximation of 
human diseases than the complete knock-out mice.

This past year, Zhou et  al. reported 11 patients from 6 
families with a new dominantly inherited autoinflammatory 
disease, termed haploinsufficiency of A20, characterized by 
childhood-onset episodic fevers, arthralgia/arthritis, oral and/or  
genital ulcers, skin pathergy, GI, and ocular inflammation (16) 
(Table  2; Figures  3D,E). These symptoms resemble Behcet’s 
disease (BD). One patient was initially diagnosed with SLE and 
presented with CNS vasculitis and idiopathic thrombocyto-
penic purpura. Subsequently, two families of Japanese ancestry 
diagnosed with entero-BD and one Japanese patient diagnosed 
with autoimmune lymphoproliferative syndrome (ALPS) were 
reported to carry novel LOF mutations in the gene (Figure 2) 
(35–37). A patient with ALPS presented with fevers, bilateral 
cervical lymphadenopathy, extensive skin rash, and mas-
sive hepatosplenomegaly. The patient’s immunophenotyping 
revealed an increased percentage of DNT cells and a decreased 
number of IgM memory B cells, which is characteristic of ALPS. 
However, unlike in ALPS the patient’s central memory (TCM), 
naïve, TEMRA, and effector memory (TEM) subpopulations of 
CD3+CD8+ cells were normal (35).

TNFAIP3/A20 is a 790-residue protein that consists of an 
amino-terminal OTU followed by seven zinc finger (ZnF) 
domains. HA20-associated mutations create truncated mutant 
proteins, and most of them are located in the OTU domain 
(Figure 2). In addition to its OTU domain-mediated DUB activ-
ity, A20 can downregulate IKK activation by blocking IKK phos-
phorylation (64). Two pathogenic mutations have been identified 
in the ZnF domains 1 and 4. The ZnF4 domain is essential for A20 
E3 ligase activity and dimerization (65).

Similar to patients with otulipenia/ORAS, mutant A20 cells 
have enhanced NF-kB activity as demonstrated by increased 
phosphorylation of IKKα/β and increased degradation of IkBα. 
Stimulated patient PBMCs and fibroblasts failed to hydrolyze 
K63 Ub chains from NEMO/IKK, RIPK1, and TNFR1 (16). 
Accumulation of K63 Ub proteins on these molecules triggers 
activity of the NF-kB and the MAPK pathways (Table 1; Figure 1). 
In murine models, A20/Tnfaip3 was shown to downregulate the 
activity of NLRP3 inflammasome (40, 66). Zhou et al. demon-
strated constitutive NLRP3 activity in PBMCs of HA20 patients. 
Stimulated PBMCs and serum samples of HA20 patients have 
highly elevated levels of many proinflammatory cytokines 
produced by myeloid cells (IL-1, TNF, IL-6, IL-18, and IP-10) 

and T  cells (IL-9, IL-17, and IFNγ). Therapies with cytokine 
inhibitors, anti-TNF, or anti-IL-1, have been very efficient in 
suppressing systemic inflammation.

Taken together, human genetic studies and murine models 
of A20 deficiency provide strong evidence that the reduced 
expression of A20 is associated with a range of inflammatory 
phenotypes.

CONCLUSiON

Maintenance of immune homeostasis is a highly balanced act that 
requires coordinated action of many proteins to allow optimal 
and efficient immune responses. Discovery of otulipenia/ORAS, 
HA20, and LUBAC-associated diseases has reiterated the impor-
tance of ubiquitination in regulation of immune signaling and 
revealed cell-specific functions of these proteins.

Despite similar function of OTULIN and A20 in restrict-
ing immune responses, the DUB activity of A20 appears to be 
less critical than the one of OTULIN (22). This may explain a 
milder inflammatory phenotype in HA20 than in patients with 
otulipenia. In addition, patients with otulipenia have more pro-
found protein deficiency (less than 50%) than the patients with 
HA20 who retain one functional allele of the gene (50% protein 
deficiency).

Given the importance of the ubiquitination in cellular physiol-
ogy, the UPS system has elicited a significant interest for drug 
development. The list of human diseases related to abnormalities 
in UPS has been steadily increasing and includes neurodegenera-
tive diseases, cancer, and immune diseases. Ub-mediated protein 
degradation is critical for homeostasis in aging neuronal cells 
(67). Deficiency of A20 has been linked to lymphomas, and its 
most aggressive subtype is associated with constitutive activation 
of NF-kB. Reconstitution of A20 in mutant cell lines induced 
apoptosis and suppressed tumor growth (47). In immune dis-
eases, A20 and OTULIN might be new therapeutic targets for 
development of immunomodulatory drugs that can potentially 
increase or stabilize their expression.

A key challenge for finding effective drugs will be in develop-
ing cell-based therapies. The ubiquitination process is regulated 
at multiple levels: generation, recognition, and removal. Targeting 
more components of the Ub–proteasome pathway may provide 
new opportunities for therapeutic exploitation and drug discov-
ery (68, 69).
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CANDLe Syndrome As a Paradigm  
of Proteasome-Related 
Autoinflammation
Antonio Torrelo*

Department of Dermatology, Hospital Infantil del Niño Jesús, Madrid, Spain

CANDLE syndrome (Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy and 
Elevated temperature) is a rare, genetic autoinflammatory disease due to abnormal 
functioning of the multicatalytic system proteasome–immunoproteasome. Several 
recessive mutations in different protein subunits of this system, located in one single 
subunit (monogenic, homozygous, or compound heterozygous) or in two different 
ones (digenic and compound heterozygous), cause variable defects in catalytic activity 
of the proteasome–immunoproteasome. The final result is a sustained production of 
type 1 interferons (IFNs) that can be very much increased by banal triggers such as 
cold, stress, or viral infections. Patients start very early in infancy with recurrent or even 
daily fevers, characteristic skin lesions, wasting, and a typical fat loss, all conferring the 
patients a unique and unmistakable phenotype. So far, no treatment has been effective 
for the treatment of CANDLE syndrome; the JAK inhibitor baricitinib seems to be partially 
helpful. In this article, a review in depth all the pathophysiological, clinical, and laboratory 
features of CANDLE syndrome is provided.

Keywords: CANDLe, neutrophilic dermatosis, proteasome, immunoproteasome, interferonopathy, autoinflammation

DeFiNiTiON

CANDLE is an acronym standing for Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy 
and Elevated temperature (1–3). CANDLE syndrome is an autoinflammatory disease (AID) char-
acterized by the appearance of recurrent fever in the first months of life, along with characteristic 
skin lesions, lipodystrophy, and manifestations of multisystem inflammation. Mutations in different 
genes encoding protein subunits of the proteasome–immunoproteasome system are the cause of 
CANDLE syndrome.

HiSTORY

CANDLE syndrome was described in 2010 by Torrelo et al. (1). They reported on four children col-
lected in two centers in Madrid and Chicago, two of whom were siblings, who showed striking skin 
lesions which on histopathology displayed an infiltration of immature, myeloid, mononuclear cells, 
resembling leukemia cutis. Because in many parts of the skin biopsies there was some maturation 
into polymorphonuclears and karyorrhexis, a type of yet undescribed “neutrophilic dermatosis” 
was suspected. The skin lesions had appeared very early in infancy, in attacks that occurred after 
common triggers (especially cold and viral infections), but some degree of skin involvement was 
present all the time. Furthermore, the patients had recurrent, almost daily, fevers or temperature 
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elevations below 38.3°C, also since very early in life. The disease 
seemed to cause some general growth delay, and after more than 
10 years of follow-up most patients looked wasted, with a strik-
ing loss of fat. With all these features, the chronic eruption with 
skin neutrophilic and mononuclear immature infiltration, the 
fevers and the lipodystrophy, an acronym was coined. The der-
matological aspects were emphasized in this description, because 
they had been the most constant features, but it was recorded 
that the patients had suffered unexplained inflammatory attacks 
in many different organs of the body, such as the central nervous 
system (CNS), cartilage, joints, testes, and many others. One of 
the patients died of an attack of “carditis,” but autopsy was not 
performed.

Also, in 2010, Garg et al. (4) reported three adult patients with 
a disease they named JMP (Joint Contractures, Muscle atrophy, 
microcytic anemia, and Panniculitis-induced lipodystrophy 
syndrome). The authors emphasized the lipodystrophic features 
that were related to panniculitis, and the joint features, but did 
not mention on the skin manifestations of the disease. However, 
they anticipated that their patients would suffer a disease of the 
innate immune system.

A similar constellation of signs had been reported in the 
Japanese literature. It had been reported by Nakajo in 1939 and 
Nishimura in 1950, under the names “secondary hypertrophic 
osteoperiostosis with pernio,” a syndrome with nodular erythema, 
elongated and thickened fingers, and emaciation, and “hereditary 
lipomuscular atrophy with joint contracture, skin eruptions 
and hyper-γ-globulinemia” (5). An eponym for the syndrome 
was proposed by the Japanese authors as “Nakajo–Nishimura 
syndrome.” Overall, patients described started in early infancy 
with a pernio-like rash, periodic high fever, nodular erythema-
like eruptions, and myositis. Lipoatrophy and joint contractures 
occurred progressively in life, mainly on the upper part of the 
body, leading to a very characteristic facial appearance.

After the description of CANDLE and JMP, and the appear-
ance of new cases from Japan, a number of cases from different 
parts of the world were published. It was later disclosed that most 
patients described under these descriptions had homozygous or 
compound heterozygous mutations in the gene PSMB8, encod-
ing the subunit β5i of the immunoproteasome (2, 6–8). However, 
some patients with CANDLE syndrome did not bear mutations 
in PSMB8 (2). Further genetic studies disclosed that some 
patients have homozygous and compound heterozygous muta-
tions in other subunits of the proteasome–immunoproteasome, 
as well as digenic heterozygous mutations in two different genes 
encoding subunits (9). Finally, mutations in the proteasome 
maturation protein (POMP) gene have also been reported in a 
patient of Lebanese origin that had been reported by Mégarbané 
et al. (9, 10) in 2002 under the name “unknown autoinflamma-
tory syndrome associated with short stature and dysmorphic 
features.”

Several terms have been proposed to encompass the three 
denominations, such as PRAAS (proteasome-associated autoin-
flammatory syndrome) (11) or ALDD (autoinflammation, lipod-
ystrophy, and dermatitis) (12). However, all of them represent the 
same entity, and it seems that the most accepted nomenclature is 
CANDLE syndrome. The general appearance of consumption in 

the patients, like a burntout candle, emphasizes the name of the 
syndrome.

PATHOPHYSiOLOGY

Overall, proteasome–immunoproteasome dysfuntion causes 
a continuous state of inflammation with exacerbations in 
CANDLE syndrome. Proteasome–immunoproteasome dysfunc-
tion leads to constitutional hypersecretion of type 1 Interferons 
(IFNs), which by several mechanisms will lead to accumulation 
of waste proteins within the cells (13). Thus, further proteasome– 
immunoproteasome activity is required, which cannot be 
achieved. Accumulation of waste proteins within the cell causes 
cellular stress, which in turn stimulates type 1 IFN, and finally 
closes the circle of inflammation. Common triggers, such as 
cold, physical or psychical stress, banal infections or others cause 
stimulation of type 1 IFN secretion, and thus provoke severe 
inflammatory attacks that can occur in any organ of the body.

The Proteasome–immunoproteasome 
System
The proteasome is a multiprotein structure present both in the 
nucleus and the cytoplasm of all eukaryotic cells (Figure 1) (14). 
It is constitutively expressed, and has multicatalytic activity. It 
has a cylindrical shape, and there are several types. All of them 
contain at least two different complexes: the 20S or core complex, 
which contains the proteolytic activity, and the 19S or regulatory 
complex, responsible for recognizing ubiquitinated proteins 
and transporting them into the 20S complex. The 20S complex 
is composed of two α-rings flanking two β-rings; each ring is 
composed of seven different protein subunits, named α-1 to α-7 
and β-1 to β-7.

The immunoproteasome is very similar to the constitutive 
proteasome (Figure  1). The 19S complex of the proteasome is 
replaced with the PA289 (or 9S) complex, and the β1, β2, and 
β5 subunits in the beta rings are substituted by specialized units, 
named β1i, β2i, and β5i (i = inducible) (14). The β1 subunits have 
caspase-like activity, β2 subunits have trypsin-like activity, and β5 
subunits have chemotrypsin-like activity (9). Immunoproteasome 
formation is mainly induced by IFNs, to account for an increased 
demand of catalytic activity within the cell.

The assembly and maturation of proteasome and immuno-
proteasomes are governed by facilitating proteins. POMP is 
essential for proteasome formation and is strongly involved in 
the incorporation of the β5i subunit into the immunoproteasome. 
Proteasomal β subunits but β3 and β4, are synthesized as preforms 
that require autocatalytic cleavage during assembly to liberate the 
active-site threonines (9, 15, 16).

The proteasome is mostly involved in the removal of waste 
intracellular proteins. The immunoproteasome is also responsible 
for the degradation of foreign proteins. Whereas the proteasome 
is constitutively expressed in every cell, only proinflammatory 
cytokines and mostly type 1 IFNs induce the immunoproteasome 
formation. However, immunoproteasomes are constitutively 
expressed in hematopoietic cells (17, 18). The catalytic activity 
of the proteasome and the immunoproteasome cleaves protein 
substrates to generate smaller peptides that can be easily removed 
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FiGuRe 2 | Normal function of the proteasome. (A) A waste protein fated to 
elimination is marked with ubiquitin. (B) The 19S complex recognizes the 
ubiquitinated protein. (C) The ubiquitinated waste protein is entered into the 
proteasome. (D) The catalytic activity of the 20S complex renders small 
products, easy to remove from the cell.

FiGuRe 1 | Structure of proteasomes. (A) Assembly of α and β subunits to form the 20S (core) complex of the constitutive protesome. (B) Assembly of the 
inducible β subunits to form the 20S (core) of the immunoproteasome. (C) 26S proteasome with the 20S core particle and the 19S regulatory complex. (D) 20S 
(core) immunoproteasome.
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from the cell or may act as antigens that can be presented through 
the MHC type I molecules to the adaptive immune system. In 
this way, more specifically the immunoproteasome acts as a link 
between innate and adaptive immunity.

Normal Functioning of the Proteasome–
immunoproteasome System
Cellular proteins destined for degradation or cleavage should be 
first marked with ubiquitin. Ubiquitinization allows for recogni-
tion by the 19S complex. The ubiquitinized protein is entered into 
the 20S particle, which degrades the protein through enzymatic 
proteolysis (Figure  2). The small peptides resulting from deg-
radation can thus be easily removed or enter the endoplasmic 
reticulum to be eventually presented to T lymphocytes by means 
of the MCH type I on the cell surface (19, 20).

Viral infections or other triggers such as cellular stress or 
cold can induce secretion of type 1 (α or β) IFNs. When IFNs are 
recognized by their cell surface receptor, transphosphorylation 
of JAK1 and TYK2 occurs (21), as the first step of JAK/STAT 
signaling pathway activation. As a result of activated JAKs, 
the STAT proteins STAT1 and STAT2 dimerize and enter the 
nucleus, leading to transcription of type 1 IFN genes (Figure 3A).  
On the other hand, danger signals such as an irritant or infection 
provoke inflammation, which is associated with the production 
by immune cells of microbiocidal reactive oxygen and reac-
tive nitrogen species during the innate immune response (22).  
Such increased oxidative stress conditions have profound conse-
quences for the functional integrity of proteins.

During JAK/STAT pathway activation and increased oxidative 
stress, many waste proteins are generated, as well as many irreversibly 
oxidant-damaged and potentially toxic proteins. All these require 
increased proteolytic degradation machinery for their degradation 
to preserve cell viability and basic cellular functions (22, 23). The 
constitutive proteasome may not be sufficient to accomplish this 
extra effort, and hence the immunoproteasomes are recruited and 
assembled, mainly induced by type 1 IFNs themselves.

Proteasome Dysfunction and  
CANDLe Syndrome
In CANDLE syndrome (Figure 3B), proteasome system dysfunc-
tion leads to an inability of the cell to get rid of waste proteins. This 
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FiGuRe 3 | Pathophysiology of CANDLE syndrome. (A) Normal state. After viral infection, type 1 interferons (IFNs) are released by the infected cell. IFNs are 
recognized by their receptor, with activation of JAK/STAT pathway and subsequent dimerization of STAT proteins. The STAT dimers enter the nucleus and stimulate 
transcription of type 1 IFNs. JAK/STAT activation produces reactive oxygen and nitrogen species that are damaging to cell proteins. These damaged proteins, and 
others generated by cell catabolism, are removed by the proteasome and the immunoproteasome; the latter is stimulated by type 1 IFNs. (B) CANDLE syndrome. 
After IFN activation, cells with mutated proteasome–immunoproteasome will not be able to remove all waste proteins, which will accumulate and be poly-
ubiquitinized. As a result, cellular stress occurs, leading to increased type 1 IFNs production. The high levels of secreted type I IFNs recruit inflammatory  
cells that will cause tissue damage.
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situation may lead to a weak or moderate state of proinflamma-
tion in the absence of triggers, but under situations of stress, such 
as cold, viral infections, or physical stress, higher requirements of 
removing waste proteins are not met.

When a cell is infected by a virus, viral genetic material is 
sensed in the cytoplasm and activation of the central protein 
STING (stimulator of interferon genes) ensues. As a result, type 
1 IFN genes are transcripted, and IFNs are released (24, 25). As 
stated above, when the IFN receptor is activated by IFNs, many 
waste proteins are produced, which must be removed by the 
proteasome and the IFN-induced immunoproteasome. On the 
other hand, cells infected by viruses produce viral proteins that 
are also a substrate for the proteasome system for their removal. 
Other triggers causing cellular stress also produce type 1 IFN 
release. If the proteasome system does not work properly, waste 
proteins accumulate in the cell and are also further marked with 

more ubiquitin (poly-ubiquitinization) (7, 8). The accumulation 
of poly-ubiquitinized proteins causes further cellular stress and 
more type 1 IFN production, thus feeding a vicious cycle of 
inflammation (2, 7–9).

Type 1 IFNs are virtually produced by every cell in the body, 
but the plasmacytoid dendritic cells are the most potent produc-
ers of type 1 IFNs and are involved in the pathophysiology of 
CANDLE (26). Type 1 IFNs exert many different actions (27). 
They increase release of proinflammatory substances and recruit 
inflammatory cells, including neutrophils and myeloid cells (28). 
Due to the enhanced and continuous type 1 IFN release, myeloid 
cells are rapidly mobilized from the bone marrow, and thus 
“atypical” or immature cells reach the target organs, contributing 
to the “atypical” skin infiltrate (26).

The IFN signature is very strong in CANDLE syndrome. 
Microarray analyses have shown an intense expression of IFN 
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signature genes, and the serum of patients with CANDLE contains 
high levels of proteins of the IFN pathway such as IFN-derived 
protein 10 (2).

GeNeTiC BACKGROuND

The first gene mutations detected in patients with CANDLE 
syndrome were located in the gene PSMB8 (proteasome 
subunit, beta-type, 8) in chromosome 6p21.32, encoding for 
the β5i (i  =  inducible) subunit of the immunoproteasome  
(2, 6–8). Mutations in PSMB8 were responsible for CANDLE, 
JMP, and Nakajo–Nishimura syndromes. However, mutations 
in other genes, encoding other proteasome–immunoprotea-
some subunits or the regulatory protein POMP, were later 
discovered in patients with CANDLE syndrome, thus expand-
ing the CANDLE genotype (9). All mutations were located in 
highly conserved sites in vertebrates and were thus predicted 
to be pathogenetic. It was proven that CANDLE syndrome is 
a disease of proteasome–immunoproteasome dysfunction, 
which could be inherited as a recessive homozygous, compound 
heterozygous or digenic trait, or less commonly in a dominant 
fashion (9). The following mutations have been so far identified 
in patients with CANDLE (9):

•	 PSMB4 mutations. The gene PSMB4 (proteasome subunit, 
beta-type, 4), located in chromosome 1q21, encodes for the 
β7 subunit of the proteasome. It seems to be important for 
proteasome assembly and stabilization.

The c.-9G>A mutation originates a β7 subunit protein with 
lower expression than that of wild type, which is therefore less 
incorporated into proteasome complexes than the wild-type 
counterpart. It is also possible that this mutant β7 subunit also 
impairs propeptide cleavage of the β5i subunit. A deletion of 
three aminoacids in β7, p.D212-V214, affects the N terminus of 
an α-helix forming an intramolecular hydrogen-bonding net-
work that stabilizes its C-terminal extension. The C-terminal 
extension is essential for proteasome assembly (29). Two other 
mutations affect the C-terminal extension: (1) the c.44insG 
insertion, which causes a frameshift mutation (p.P16Sfs*45) 
and leads to non-expression of the mutant allele; and (2) the 
missense p.Y222X, which causes the loss of the C-terminal 
extension of the β7 subunit; although β7 subunit is expressed, it 
fails to incorporate into the 20S or 26S proteasome complexes.

Finally, the deletion causing the p.D212_V214del mutant of 
β7 leads to a poor maturation of the β7 subunit. Although the 
mutant protein is detected in proteasome assembly interme-
diates, it is poorly incorporated into 20S or 26S proteasomes.

•	 PSMA3 mutations. The gene PSMA3 (proteasome subunit, 
alpha-type, 3), located in chromosome 14q23.1, encodes for 
the α7 subunit of the proteasome.

Two mutations in PSMA3 have been reported in 
patients with CANDLE syndrome. A p.R233del deletion (c. 
696_698delAAG) most likely affects the subunit folding and 
prevents incorporation of the subunit to the mature protea-
somes. Overall reduced proteasome content is thus resulting 
(9). On the other hand, a c.404+2T>C mutation affects a splice 
site and causes an unstable transcript due to exon 5 skipping.

•	 PSMB8 mutations. The gene PSMB8 (proteasome subunit, beta-
type, 8), located in chromosome 6p21.32, encodes for the β5i 
subunit of the immunoproteasome. Incorporation of β5i sub-
unit to the maturing immunoproteasome requires proteolytic 
removal of a prosequence by proteolytically active subunits. 
The β5i subunit has chemotrypsin-like activity, crucial for the 
immunoproteasome function.

Mutations in PSMB8 in CANDLE syndrome may affect the 
chemotrypsin activity or impair immunoproteasome assembly 
or maturation. The most common mutation in CANDLE syn-
drome is T75M; when found in homozygosis, it causes selective 
impairment in chemotryptic-like activity. The A92T mutation 
produces a similar effect, as well as the mutations K105Q and 
M117V.

The K105Q mutation is also associated with defects in 
incorporation and/or maturation of proteasome subunits and 
with inability to completely trim the β5i propeptide (9). The 
common T75M and the G201V mutations also cause decreased 
proteasome assembly (7, 8). Finally, the C135X mutation leads 
to truncation and non-expression of the protein (2, 9); when 
found in homozygosis, the subunit β5i is absent in all immu-
noproteasomes and most likely impairs immunoproteasome 
assembly, thus showing reduction in all three proteasome activ-
ities (trypsin-like, caspase-like, and chemotrypsin-like) (9).

•	 PSMB9 mutations. The gene PSMB9 (proteasome subunit, 
beta-type, 3), located in chromosome 6p21.32, encodes for the 
β1i subunit of the immunoproteasome. The β1i subunit has a 
caspase-like proteolytic activity.

The only β1i variant described so far is a missense muta-
tion, p.G165D, located in a loop interconnecting 2 α-helices 
that define the position of a β1i/caspase-like activity conferred 
by threonine (9).

•	 POMP mutations. The gene POMP, located in chromosome 
13q12.3, encodes for the POMP, which is key for the matura-
tion and assembly of the proteasome subunits. POMP asso-
ciates specifically with proteasome precursor intermediates 
and facilitates the sequential assembly of β subunits onto the 
preformed α subunit rings (15).

A single patient with CANDLE has been found to bear 
no mutations in proteasome subunit genes, but a heterozy-
gous, dominant, insertion in POMP causing a frameshift, 
p.E115Dfs*20 (c.344_345insTTTGA) and a truncated protein, 
which is likely unstable. POMP insufficiency causes protea-
some precursor accumulation, reduced mature proteasome 
formation, and reduced overall proteasome activity (9).

Patients with CANDLE have shown variable combinations of 
these mutations (9). Most frequently, patients are homozygous 
or compound heterozygous for PSMB8 mutations, but others 
are compound heterozygous for PSMB4, or are heterozygous 
for combinations such as PSMA3/PSMB8, PSMB9/PSMB4, or 
PSMB8/PSMB4. In the latter situation, a digenic inheritance is 
suggested causing additive proteasome defects. Patients with 
digenic inheritance have variable proteolytic defects. For exam-
ple, a combination of PSMB8/PSMA3 causes impairment in all 
three proteolytic activities, somewhat similar to patients’ com-
pound heterozygous for PSMB4 in whom proteasome assembly 
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FiGuRe 6 | CANDLE hands: skin lesions and swollen joints.

FiGuRe 5 | Annular, purpuric plaques of CANDLE syndrome.

FiGuRe 4 | Periorbital erythema and edema and flat nose in a patient with 
CANDLE.
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is severely impaired. Patients with combined PSMB9/PSMB4 
mutations have reduced caspase-like activity, which is conferred 
by subunit β1i. Finally, patients with double PSMB8 mutations 
experience a severe decrease in chemotrypsin-like activity.

CLiNiCAL FeATuReS

Onset and Course
CANDLE syndrome usually starts in the first months of life  
(1, 30). The most common presenting sign is fever or temperature 
elevations below 38.3°C. These appear daily or almost daily, but 
the general state is minimally affected or even normal. Sometimes, 
cold exposure can trigger temperature elevation and skin lesions. 
Skin lesions are the first clinical sign to appear in CANDLE, 
and usually are present all along the disease course, although they 
may be less conspicuous after puberty. Lipodystrophy usually 
starts in early childhood and is usually well established before 
puberty. Finally, disabling joint manifestations usually occur 
in the long term. During patients’ life, different acute attacks 
of disease may ensue, spontaneously or after common triggers, 
which may affect virtually every organ in the body.

Skin Manifestations of CANDLe
The skin lesions of CANDLE syndrome are very characteristic 
and should raise the diagnosis. The combination of fever, typical 
skin lesions, and classic histopathologic features should allow for 
a rapid diagnosis of CANDLE (Figures 4–6). The skin lesions in 
CANDLE are of three types (1):

 1. Acral, perniotic lesions. These usually appear in newborns and 
infants and are not regularly seen in childhood or later. They 
consist of intense, red or purplish, edematous plaques mostly 
located on the nose, ears, fingers, or toes. Cold may be a trigger 
for these lesions, but often there is no history of cold exposure.

 2. Annular plaques. These lesions usually start in infancy or 
childhood and consist of erythematous or purpuric edema-
tous lesions, often with annular shape with raised borders and 
a flat, purpuric center. They may appear in crops or individu-
ally and tend to fade within days or weeks, leaving a purpuric 

macule. New, active lesions coexist all over time with residual, 
purpuric macules, which confers a very typical appearance to 
the patients. These lesions are very conspicuous during child-
hood, but in adult life they may be less visible and may be 
absent in long-standing disease.

 3. Perioral and periocular edema. Patients with CANDLE 
develop in infancy or childhood a persistent erythematous to 
violaceous edema affecting the periorbital and less commonly 
the perioral area. It may be less visible after puberty and in 
long-standing disease.

The histological features of the skin lesions in CANDLE are 
very characteristic and may permit a diagnosis in early stages of 
the disease (1, 27). The papillary and reticular dermis contains a 
perivascular and interstitial infiltrate of varying intensity, extend-
ing to the subcutaneous fat as lobar panniculitis. The infiltrate is 
predominantly composed of mononuclear cells, many of which 
have large, irregularly shaped nuclei; the atypical appearance  
of the infiltrate may lead to a diagnosis of skin malignancy.  
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The infiltrate also contains mature neutrophils, some 
eosinophils, and a few mature lymphocytes. Leukocytoclasia 
is often seen, without fibrinoid necrosis of the vessels (1, 27). 
Immunohistochemistry shows that the infiltrate is mixed, with 
an important presence of myeloid cells (positive for myeloperoxi-
dase) and a prominent cell population of macrophages (positive 
for CD163 and CD68/PMG1) (27). CD123-positive plasmacytoid 
dendritic cells are seen in clusters (27).

Lipodystrophy
Fat loss is a key manifestation of CANDLE (1, 3, 30–32). It can 
be seen in most patients before the age of two, but it is progres-
sive and may take some years to become fully developed. The 
loss of subcutaneous fat usually starts on the face and progresses 
to the trunk and upper limbs. The lower limbs are usually less 
affected. The cause of lipodystrophy is not well known, but it 
can be related to chronic inflammation involving the fatty tissue 
(33, 34). Alternatively, increased expression of proinflammatory 
cytokines in adipose tissue and reduced secretion of adiponectin 
and leptin may be involved (35, 36). An intense type 1 IFN sig-
nature is believed to be associated with fat loss in children with 
lipoatrophic panniculitis (37), which reinforces the role of IFN 
in CANDLE syndrome. Type 1 IFNs may be toxic to adipocytes, 
as is suggested by the development of lobar panniculitis with 
lipophagia and lipoatrophy in patients treated with intramuscular 
injections of IFN-β (38, 39).

Lipodystrophy and the typical skin lesions confer to CANDLE 
patients a unique phenotype. On the face, the loss of fat on the 
cheeks and the periorbital and periocular edemas are pathogno-
monic (1). In adulthood, the eyelids and the lips are retracted, 
causing a false proptosis and exposure of the teeth; coupled 
with the severe fat loss, these features cause an unmistakable 
appearance (4). On the limbs, a progressive fat loss, coupled with 
muscle wasting (see later), is seen. A prominent abdomen may 
be related to increased visceral fat, which remains the only fat 
storage capability of the patient. An increased distance between 
nipples is also typical in CANDLE (1). Metabolic disturbance due 
to absence of body fat can also impair hydrocarbon metabolism 
and lead to acanthosis nigricans and hirsutism.

General examination
Patients with CANDLE have a mild to moderate growth delay 
and show low weight and height (1, 30–32). Chronic inflam-
mation may explain this physical delay, but muscle wasting and 
lipoatrophy are also major contributors. However, most patents 
with CANDLE do not show mental retardation.

CANDLE patients show variable degrees of hepatomegaly, 
which can be related to a secondary metabolic disturbance due 
to extensive lipoatrophy. Splenomegaly and generalized lym-
phadenopathy are common findings, reflecting the persistent 
autoinflammatory activity.

Musculoskeletal Signs
Arthralgias are very common in children with CANDLE, but 
patients do not show radiologic features of arthritis. Some joint 
swelling can appear in the interphalangeal joints, but the absence of 
overt arthritis distinguishes CANDLE from rheumatoid arthritis 

or juvenile idiopathic arthritis (1, 30–32). With time, hyperexten-
sibility of interphalangeal joints can occur, and during adulthood, 
most patients will develop variable degrees of joint contractures 
on the hands and feet, which are often severely disabling (4).

Cartilage inflammation has been reported in CANDLE 
patients (1). Recurrent and also chronic chondritis of the ears 
and nose causes partial loss of auricles and a flat, saddle-like nose. 
Because both ears and nose are usually exposed, a role of trigger-
ing by cold has been suspected.

Muscle involvement is also a feature of CANDLE (4). Acute 
attacks of inflammatory myositis have been reported that can be 
demonstrated by MRI. Possibly, there is also a role for chronic 
muscle inflammation in the development of severe muscular 
wasting.

Nervous System
As stated above, mental delay is not a common feature in 
CANDLE (1). However, patients may suffer attacks of aseptic 
meningitis, meningoencephalitis, and possibly some degree of 
chronic inflammation in the CNS. Basal ganglia calcifications 
have been reported (1), most likely as a result of encephalitis; 
these are similar to those present in Aicardi–Goutières syndrome, 
which also features a high type 1 IFN production.

Other Organ involvement
Episodes of inflammation may occur in any organ, as well as 
some degree of persistent generalized inflammation. Attacks of 
acute sterile epididymitis, conjunctivitis and nodular episcleritis, 
parotitis, pneumonitis, nephritis, carditis, and otitis have been 
reported. The clinical manifestations are related to the organs 
involved. Some of these complications have been reported to be 
fatal (1).

LABORATORY iNveSTiGATiONS

As is the case with other AIDs, laboratory findings are not very 
striking (1, 3, 32). The most common features are elevation of 
acute phase reactants (ESR, CRP, and thrombocytosis) and 
a chronic, hypochromic anemia. Liver enzymes are usually 
moderately elevated, but this may be caused by lipodystrophy 
itself; also, increased triglyceride levels can occur in relation to 
metabolic disturbance by lipodystrophy. Less frequently, elevated 
muscle enzymes (CPK and aldolase) reveal chronic muscle 
involvement (1). Studies for autoimmunity and autoantibodies 
are usually negative, but some patients show increased levels of 
antinuclear antibodies. Serum levels of immunoglobulins are 
regularly normal. Bone marrow and lymph node biopsies have 
been unconspicuous, revealing only reactive changes.

Other laboratory and imaging anomalies are seen during 
acute inflammatory attacks; these are dependent on the organs 
affected by inflammation.

DiAGNOSiS AND DiFFeReNTiAL 
DiAGNOSiS

The diagnosis of CANDLE is suspected by the early onset of 
fevers, skin lesions, and lipodystrophy. A skin biopsy with 
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immunohistochemistry studies can be characteristic enough 
to permit an accurate diagnosis. The genetic study of the genes 
involved establishes a confirmation diagnosis.

Other AIDs may share some features with CANDLE syndrome, 
including NOMID syndrome, TRAPS, or hyper-IgD syndrome. 
Lipodystrophy in CANDLE syndrome is a very characteristic 
feature of the disease, but other causes of loss of fat must be con-
sidered, including generalized congenital lipodystrophy, partial 
familial lipodystrophy, leprechaunism, or acquired partial lipo-
dystrophy of Barraquer–Simons. Aicardi–Goutières syndrome 
and other type 1 interferonopathies (such as SAVI syndrome, 
familial chilblain lupus, or C1q deficiency) may show features 
similar to CANDLE syndrome (28, 40, 41). Sweet syndrome in 
infants may present with violaceous ring lesions reminiscent of 
CANDLE syndrome, and histology may be misleading in some 
cases. Fat loss and skin lesions are clinical manifestations of a 
recently described autoinflammatory syndrome named otulipe-
nia, due to loss-of-function mutations in OTULIN, encoding a 
deubiquitinase that cleaves Met1-linked chains (42).

PROGNOSiS AND FOLLOw-uP

CANDLE patients have a variable outcome. Some patients have 
had a lethal course due to acute attacks of inflammation in 
important organs of the body. In other patients, a long survival is 
possible, with variable degrees of disability (1, 3, 4).

Regular clinical follow-up is mandatory. A protocol has not 
been established, but attention must be paid to identify inflam-
matory attacks as early as possible. Regular skin, eye, and joint 
exams are recommended. Endocrinologist consultation is man-
datory for diet and metabolic control because of lipodystrophy. 
Basic laboratory follow-up must include CBC (with special atten-
tion to anemia, leukocytosis with increased neutrophil count, 
and thrombocytosis), ESR, CRP, serum liver enzymes, muscle 
enzymes, and metabolic profile (including glucose, triglyceride, 
and cholesterol levels). Ultrasound may be helpful in detecting 
enlarged liver, spleen, or lymph nodes. Specific tests for organ 
involvement must be considered in patients with abnormal clini-
cal examination.

TReATMeNT

So far, no individual treatment has been consistently effective in 
CANDLE syndrome. Oral corticosteroids and methotrexate can 
provide some improvement. Methotrexate can be considered the 
first line therapy. NSAIDs may provide partial control of fevers. 
Dapsone or colchicine has been ineffective. Cyclosporine, azathi-
oprine, or intravenous immunoglobulins have achieved minimal 
improvements, if any. Anti-TNF drugs such as etanercept have 
not been helpful and have even been the cause of disease exacer-
bations (1). Acute attacks may need systemic corticosteroids as 
well as organ-specific therapy.

A compassionate use treatment protocol has been started 
for CANDLE syndrome with the selective JAK1/2 kinase 
inhibitor baricitinib. Oral baricitinib was used in patients 
who failed to achieve control or required high doses of 
corticosteroids. Eight patients treated with this drug showed 
clinical and analytical improvement (43), but these results 
still await confirmation.

Finally, physical therapy to prevent joint contractures and 
specific organ therapy must be provided.

CONCLuDiNG ReMARKS

CANDLE syndrome is an AID due to gene mutations leading 
to protesome–immunoproteasome dysfunction. CANDLE syn-
drome can be diagnosed very early in life because the skin signs  
and their histopathology are very characteristic. Genetic 
confirmation is necessary. Early therapy to prevent disabling 
manifestations is desirable, but still no agent has been truly effec-
tive. Prevention and treatment of acute inflammatory attacks  
will permit longer life expectancy in these patients.
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Objective: To identify a set of variables that could discriminate patients with adult-onset 
periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome 
from subjects with fever of unknown origin (FUO).

Methods: We enrolled 74 adults diagnosed with PFAPA syndrome according to 
the currently used pediatric diagnostic criteria and 62 additional patients with FUO. 
After having collected clinical and laboratory data from both groups, univariate and 
multivariate analyses were performed to identify the variables associated with PFAPA 
diagnosis. Odds ratio (OR) values, their statistical significance, and corresponding 95% 
confidence interval (CI) were evaluated for each diagnostic factor both at the  univariate 
and multivariate analyses. Diagnostic accuracy was evaluated by the area under 
receiver operating characteristic (ROC) curve, while the leave-one-out cross-validation 
procedure was used to ensure that the model maintains the same diagnostic power 
when applied to new data.

results: According to the multivariate analysis, the clinical variables that discriminated 
PFAPA patients were: fever episodes associated with cervical lymphadenitis (OR = 92; 
p  <  0.0001), fever attacks associated with erythematous pharyngitis (OR  =  231; 
p < 0.0001), increased inflammatory markers during fever attacks (OR = 588; p = 0.001), 
and the lack of clinical and laboratory signs of inflammation between flares (OR = 1202; 
p < 0.0001). These variables were considered for a diagnostic model which accounted 
for their OR values. The diagnostic accuracy of the proposed set of criteria corresponded 
to an area under ROC curve of 0.978 (95% CI 0.958–0.998), with a model sensitivity 
and specificity equal to 93.4% (95% CI 87.5–96.5%) and 91.7% (95% CI 82.8–96.7%), 
respectively.

109

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.01018&domain=pdf&date_stamp=2017-08-24
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.01018
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:cantariniluca@hotmail.com
https://doi.org/10.3389/fimmu.2017.01018
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01018/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01018/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01018/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01018/abstract
http://loop.frontiersin.org/people/80476
http://loop.frontiersin.org/people/379114
http://loop.frontiersin.org/people/452830
http://loop.frontiersin.org/people/374330
http://loop.frontiersin.org/people/374154
http://loop.frontiersin.org/people/89436


2

Cantarini et al. PFAPA Syndrome in Adults

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 1018

conclusion: we have provided herein a set of clinical diagnostic criteria for adult-onset 
PFAPA syndrome. Our criteria represent an easy-to-use diagnostic tool aimed at identify-
ing PFAPA patients among subjects with FUO with a high-predictive potential, as shown 
by its very high sensitivity and specificity.

Keywords: PFaPa syndrome, autoinflammatory disease, differential diagnosis, diagnostic criteria, adults, fever 
of unknown origin

inTrODUcTiOn

Periodic fever, aphthous stomatitis, pharyngitis, and cervical 
adenitis (PFAPA) syndrome belongs to the spectrum of multi-
factorial autoinflammatory diseases (AIDs) and is characterized 
by spontaneous flares of systemic inflammation characterized by 
fever and other clinical manifestations, especially cardinal signs 
described by the PFAPA acronym (1).

To date, the pathogenesis of this syndrome remains still 
obscure, but studies aimed at assessing immunological mecha-
nisms, also supported by therapeutic evidences (2, 3), have high-
lighted an abnormal interleukin-1 release in response to many 
environmental triggers, which associates PFAPA syndrome to 
other hereditary periodic fever disorders (4, 5). However, unlike 
other AIDs characterized by recurrent fever attacks, no genetic 
mutations have been clearly associated with PFAPA syndrome 
(6, 7).

In addition to fever (often achieving and overcoming 40°C), 
aphthous stomatitis, pharyngitis, and cervical adenitis, many 
other clinical manifestations may enrich the clinical framework 
of PFAPA patients, including abdominal pain, headache, nausea, 
skin manifestations, and arthralgia (1, 8–10). Inflammatory 
flares arise every 3–8 weeks with no premonitory symptoms and 
generally last 3–6  days. Patients are typically healthy between 
febrile episodes and the overall growth of children affected by 
this syndrome is not stunted (11, 12). Although during the last 
decades diagnosis of PFAPA syndrome has been relegated to chil-
dren aged under 5 years, increasing evidence has recently shown 
that the disease can also arise in older children as well as during 
adulthood (2, 3, 9, 10, 13–18). The treatment of PFAPA patients 
is based on intermittent corticosteroid administration, as patients 
are generally responsive to a single dose of a corticosteroid given 
at the onset of febrile flares (1, 12, 14, 19, 20).

No laboratory or instrumental tools are available to support 
the diagnosis of PFAPA syndrome, which is currently based on 
the fulfillment of clinical diagnostic criteria. In particular, to date, 
clinical criteria proposed by Marshall et al. in 1986 (21) and later 
modified by Thomas et al. in 1999 (11) represent the most used 
set of criteria in the clinical practice. However, these criteria are 
tailored on pediatric patients and their application on adults is 
categorically excluded by the first item that requires the presence 
of recurrent fever in patients under 5 years of age. In addition, the 
fifth item imposes the lack of normal growth and development for 
patients affected, which is not applicable to adult-onset PFAPA 
patients. In this context, Padeh et al. employed a further set of 
inclusion criteria valid for both children and adult patients (8). 
This set included the presence of monthly fever attacks, exudative 
tonsillitis, possibly oral ulcers, cervical lymph node enlargement, 

negative throat cultures, and failure of antibiotic treatment dur-
ing the acute episodes or as prophylactic treatment, while normal 
growth/development and a rapid response to a single corticos-
teroid administration were later added as further items (8, 22). 
However, to the best of our knowledge, no statistical procedures 
were employed to identify variables useful in discriminating 
PFAPA patients among subjects presenting with recurrent fever 
attacks. In addition, recent evidences have proved that erythema-
tous pharyngitis is more typical than sterile exudative pharyngitis 
in adult-onset PFAPA patients (10). Therefore, the need for a 
new set of diagnostic criteria for patients experiencing PFAPA 
syndrome during adulthood has prompted our group to evaluate 
a set of variables on both clinical and statistical basis that could 
discriminate such patients from subjects with fever of unknown 
origin (FUO).

MaTerials anD MeThODs

Patients
Seventy-four consecutive adult patients who had been referred 
to our Units from September 2007 to December 2016 because 
of recurrent fever attacks and other clinical manifestations con-
sistent with PFAPA syndrome were classified as suffering from 
adult-onset PFAPA syndrome (PFAPA group) according to the 
Marshall criteria modified by Thomas et al. (11, 21), which are 
the most frequently used diagnostic tool in the clinical practice. 
As this set of criteria is tapered on pediatric patients, the item 
requiring a disease onset before the age of 5 was neglected, while 
the item requiring a normal growth and development was retro-
spectively applied, as previously made in other studies (9, 10, 13). 
Two patients out of 74 were included in the PFAPA group despite 
the lack of symptom-free intervals. In both cases, the patients 
showed the resolution of fever and of cardinal symptoms as well 
as the normalization of acute phase reactants. Conversely, the sole 
arthralgia and myalgia persisted in both cases and were attributed 
to the presence of concomitant degenerative, not inflammatory 
musculoskeletal diseases.

Sixty-two additional adult subjects admitted in our Units 
between September 2016 and March 2017 for recurrent FUO 
were consecutively enrolled in the study as control group (con-
trol group). FUO diagnosis was based on the currently available 
diagnostic criteria (23). As for patients with adult-onset PFAPA 
syndrome, any specific disease related to fever or inflammatory 
manifestations had been ruled out at the time of enrollment 
in this study. The control group was included into a follow-up 
protocol aimed at early identify any sign or symptom potentially 
useful for a prompt specific diagnosis; patients were treated with 
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non-steroidal anti-inflammatory drugs or low-to-high dosage 
corticosteroids.

assessment Parameters
Each patient’s medical record was reviewed for demographic 
and clinical data. In particular, we looked for the age at disease 
onset, characteristics of the febrile pattern (peak temperature, 
duration of flares, frequency of fever episodes per year), clinical 
manifestations accompanying fever (oral and/or genital aphtho-
sis, exudative and/or erythematous pharyngitis, cervical and/or 
widespread lymphadenitis, abdominal pain, vomiting, diarrhea, 
thoracic pain, arthralgia, arthritis, myalgia, urticarial-like rash, 
maculopapular rash, erysipelas-like rash, erythematous rash, 
periorbital edema, conjunctivitis, asthenia, and headache), any 
increase of inflammatory markers (erythrocyte sedimentation 
rate and/or C-reactive protein and/or serum amyloid A) during 
attacks and the presence or absence of clinical manifestations 
and positive laboratory inflammatory markers during fever-free 
intervals.

None of the patients with adult-onset PFAPA syndrome showed 
upper respiratory infections, while the throat swab was negative 
in all cases presenting with pharyngitis or cervical lymphadeni-
tis. Both PFAPA group and control group patients underwent 
detailed laboratory and instrumental screening tests to rule out 
potential underlying diseases, such as infections, autoimmune 
diseases, and malignancies. In all patients enrolled, previous 
antibiotic therapies administered during flares did not change 
the progression of clinical manifestations. Monogenic periodic 
fever syndromes were ruled out by performing molecular analysis 
of MEFV, MVK, TNFRSF1A, and NLRP3 genes, respectively 
responsible for familial Mediterranean fever (FMF), mevalonate 
kinase deficiency, tumor necrosis factor receptor-associated 
periodic syndrome, and cryopyrin-associated periodic syndrome 
(CAPS). Moreover, neither PFAPA patients nor subjects included 
in the control group fulfilled clinical diagnostic criteria for FMF 
or CAPS as well as for Still’s disease, Schnitzler’s syndrome, and 
Behçet’s disease (24–33).

The study was approved by the local Ethics Committee of 
Azienda Ospedaliera Universitaria Senese, Siena (Italy) and each 
patient provided a written consent for both genetic testing and 
clinical data processing, in accordance with the Declaration of 
Helsinki.

statistical analysis
Descriptive statistics are expressed as mean and SD for quantita-
tive variables as well as frequency counts and percentages for 
quantitative binary variables.

Multivariate stepwise logistic regression analysis was per-
formed to identify, among all possible diagnostic factors (pre-
dictive variables), a statistically significant minimum subset of 
factors with the highest possible accuracy to establish a diagnosis 
of PFAFA syndrome. In the stepwise process, one independent 
variable was added to or removed from the discriminant model 
at each step, on the basis of maximum likelihood-ratio statistics. 
The process stops when no statistical significant variables can 
be more entered or removed. We used the leave-one-out (LOO) 
cross-validation procedure to ensure that the model maintains 

the same diagnostic power when applied to new data. LOO uses 
all available data to train and test model: it executes a number of 
training sessions equal to the sample size (N) and in each of them 
it classifies each patient (LOO testing case) in turn by using all 
other patients as training set.

Diagnostic accuracy was evaluated by the area under receiver 
operating characteristic (ROC) curve (AUC) along with its 95% 
confidence interval (95% CI). Model sensitivity and specificity 
together with their 95% CIs were also estimated by selecting a 
probability threshold giving comparable sensitivity and specific-
ity values, along with their 95% CIs. The Hosmer–Lemeshow 
goodness-of-fit test was used to evaluate model calibration, that 
is its prognostic ability.

Finally, the odds ratio (OR), its statistical significance, and 
corresponding 95% CI were evaluated for each diagnostic factor, 
taken singularly (univariate analysis), and for the model selected 
factors, taken together (multivariate analysis). The SPSS software, 
version 10, was used for all statistical computations, always con-
sidering a significance level of 95% (p value < 0.05).

resUlTs

Both patients with adult-onset PFAPA syndrome and subjects 
belonging to the control group experienced a disease onset over 
the age of 16. Specifically, the mean age at disease onset was 
26.55  ±  10.03  years for PFAPA patients and 27.94  ±  17.67 for 
those with FUO. Table 1 summarizes demographic and clinical 
features of patients enrolled.

Univariate analysis performed on patients with PFAPA 
syndrome and subjects with FUO recognized clinical variables 
positively or negatively associated with PFAPA syndrome by an 
OR significantly different from 1, i.e., with a 95% CI not including 
1.0. The results of univariate analysis are summarized in Table 2.

As reported in Table  3, according to multivariate analysis 
performed on the two groups of patients, clinical variables that 
showed a statistical significant (p < 0.05) discriminant power to 
identify PFAPA patients were: recurrent fever accompanied by 
cervical lymphadenitis (OR = 92), recurrent fever with concomi-
tant erythematous pharyngitis (OR  =  231), increased inflam-
matory markers during attacks (OR = 588), and symptom-free 
intervals corresponding to the lack of clinical manifestations and 
laboratory abnormalities between flares (OR = 1,202). These vari-
ables were then considered for a diagnostic model that accounts 
for their OR values. In particular, the occurrence of symptom-
free intervals and the increase of inflammatory markers during 
attacks, which have higher OR values, represent mandatory items 
in the proposed diagnostic model. Conversely, on the basis of 
their lower OR values, only one between fever associated with 
erythematous pharyngitis and fever with cervical lymphadenitis 
is required for the diagnosis of PFAPA syndrome. Table 4 shows 
the resulting set of criteria proposed in this study.

The diagnostic accuracy of the proposed diagnostic criteria 
corresponded to an AUC of 0.978 (95% CI 0.958–0.998), with 
sensitivity and specificity equal to 93.4% (95% CI 87.5–96.5%) 
and 91.7% (95% CI 82.8–96.7%), respectively. Figure 1 represents 
the ROC curve assessing the performance of the criteria for our 
PFAPA patients and the control group with FUO.
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TaBle 1 | Demographic and clinical features of patients diagnosed with periodic 
fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome 
(PFAPA group) and patients with fever of unknown origin (control group).

PFaPa group control group

Age (years) 34.00 ± 11.86 40.56 ± 16.45
Males (%)/females (%) 48 (64.9)/26 (35.1) 23 (37.1)/39 (62.9)
Age at disease onset (years) 26.55 ± 10.03 27.94 ± 17.67
Mean temperature at attacks (°C) 39.31 ± 0.92 38.9 ± 1.02
Attacks per year 15.2 ± 8.44 9.45 ± 7.03

Duration of flares
≤2 days 2 (2.7%) 14 (22.6%)
3–5 days 46 (62.2%) 12 (18.2%)
6–9 days 9 (12.2%) 8 (12.9%)
≥10 days 11 (14.9%) 22 (35.5%)

PFaPa cardinal symptoms during attacks
Pharyngitis 70 (94.6%) 39 (62.9%)
Cervical lymphadenitis 61 (82.4%) 14 (22.6%)
Oral aphthosis 48 (64.9%) 21 (33.9%)

Other associated symptoms during attacks
Generalized lymphadenitis 4 (5.4%) 14 (22.6%)
Asthenia 62 (83.8%) 51 (82.3%)
Abdominal pain 33 (44.6%) 20 (32.3%)
Diarrhea and/or vomiting 16 (21.6%) 13 (21%)
Thoracic pain 13 (17.6%) 24 (38.7%)
Arthralgia 53 (71.6%) 42 (67.7%)
Arthritis 11 (14.9%) 16 (25.8%)
Myalgia 47 (63.5%) 37 (59.7%)
Urticaria-like rash 4 (5.4%) 10 (16.1%)
Erythematous rash 9 (12.2%) 0 (0.0%)
Erysipelas-like rash 0 (0.0%) 3 (4.8%)
Maculo-papular rash 3 (4.1%) 9 (14.5%)
Periorbital edema 6 (8.1%) 5 (8.1%)
Conjunctivitis 8 (10.8%) 18 (29%)
Headache 43 (58.1%) 37 (59.7%)
Genital aphthosis 3 (4.1%) 2 (3.2%)

increased inflammatory 
markers during attacks

72 (97.3%) 46 (74.2%)

symptom-free intervals 72 (97.3%) 33 (53.2%)

Quantitative data are referred as mean ± SD values; qualitative data are reported as 
frequency counts and percentages.
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DiscUssiOn

Despite the increasing evidence on the possible delayed onset of 
PFAPA syndrome during adulthood, current diagnostic criteria 
are tailored on pediatric patients (34) and their application on 
adults requires specific adjustments not yet validated. On this 
basis, we looked for clinical variables that can identify patients 
with adult-onset PFAPA syndrome among patients presenting 
with FUO. Therefore, we analyzed the occurrence of inflamma-
tory features in patients with a clinical picture consistent with 
adult-onset PFAPA syndrome, being excluded all the known 
causes of recurrent fever, as well as in patients consecutively 
visited in our Units because of FUO during a 6-month period. 
Multivariate analysis allowed to identify a set of clinical variables 
capable of discriminating adult-onset PFAPA patients. These 
variables were then rearranged into a diagnostic model in which 
items with a higher OR were considered mandatory for the 
diagnosis of PFAPA, while just one out of the two variables with 
a lower OR value had to be fulfilled.

Noteworthy, these proposed diagnostic criteria should be 
applied after having ruled out the known causes of fever in terms 
of infective, autoimmune, and neoplastic diseases. Monogenic 
AIDs should be also excluded on the basis of clinical presenta-
tion, as required by the clinical classification criteria recently 
proposed by Federici et al. to drive genetic analysis for patients 
with periodic fevers (35). According to Federici et al., we have also 
reported that the diagnosis of monogenic AIDs in adulthood is 
not unworkable when patients’ symptoms are carefully classified 
(36, 37). Therefore, a correct evaluation of the patients’ clinical 
picture integrated by familiar and laboratory data may allow the 
identification of adult-onset monogenic AIDs by specifically 
performing genetic testing. In addition to this, specific clinical 
diagnostic and classification criteria, when available, should also 
be applied to preventively recognize both monogenic (i.e., FMF 
and CAPS) and multifactorial AIDs (i.e., Behçet’s disease, Still’s 
disease, and Schnitzler’s disease) (24–33). Moreover, our present 
criteria should not be applied in patients with positive throat swab 
during fever episodes and in patients responsive to antibiotics, as 
for previous diagnostic and classification criteria (11, 22).

Among the cardinal signs of PFAPA syndrome, the occurrence 
of recurrent fever with erythematous pharyngitis represented 
the variable most strongly associated with diagnosis of PFAPA 
syndrome in adulthood, while exudative pharyngitis and oral 
aphthosis during attacks were not included in the model. 
Accordingly, we had previously found that the exudative form 
of pharyngitis is almost rare in patients with a delayed onset of 
PFAPA syndrome (9, 10), while univariate analysis performed in 
this study even highlights a protective role of exudative pharyngi-
tis against the diagnosis of PFAPA syndrome, further remarking 
a less important role of this clinical manifestation in adults. In 
relation to lymph node involvement, the specific observation 
of cervical lymphadenitis was strongly correlated to PFAPA 
syndrome both when considered individually and at the overall 
multivariate assessment. Conversely, at the univariate analysis, 
generalized lymphadenitis represented a variable tending to 
exclude the diagnosis of PFAPA syndrome in adults.

Regarding oral aphthosis, although significantly discriminant 
when considered singularly, it was not included into the multivari-
ate model as its diagnostic information resulted to be absorbed 
by “recurrent fever accompanied by erythematous pharyngitis” 
and “symptom-free intervals.” Therefore, most patients with oral 
aphthosis also presented at least one out of these two variables 
included in the model, thus minimizing the diagnostic value 
of oral aphthosis as an additional item. Interestingly, according 
with our results, Padeh had already suggested oral ulcers just 
as “possible” among the classification items proposed in 2005 
(22). Furthermore, other authors have also highlighted that oral 
aphthosis is less frequently encountered in adult-onset PFAPA 
patients than among children (9, 11, 14). These observations seem 
to corroborate that aphthous stomatitis, although important for 
clinical evaluation, does not necessarily have to be included for 
diagnostic purposes in adults.

In relation to non-cardinal symptoms, beyond generalized lym-
phadenitis, also thoracic pain, conjunctivitis, maculopapular, and 
urticarial-like skin rash appeared to be protective factors against 
PFAPA diagnosis when considered individually. Consequently, the 
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TaBle 4 | Clinical diagnostic criteria resulting from the multivariate analysis.

Diagnostic criteria for adult-onset periodic fever, aphthous stomatitis, 
pharyngitis, and cervical adenitis (PFaPa) syndrome

Recurrent fever accompanied by

 (a) Erythematous pharyngitis  
and/or

 (b) Cervical lymphadenitis

Increased inflammatory markers during attacks
Symptom-free intervals

Diagnostic items accounted for their odds ratio (OR) values: variables with a higher 
OR value (increased inflammatory markers during attacks and symptom-free intervals) 
were established as mandatory in the final diagnostic model; conversely, on the basis 
of a lower OR value, only one item between erythematous pharyngitis during fever and 
cervical lymphadenitis during fever is required for the diagnosis of PFAPA syndrome. 
These diagnostic criteria should be applied on patients aged at least 16 years and after 
having excluded infective, autoimmune, and neoplastic diseases as well as monogenic 
autoinflammatory diseases (AIDs) and febrile polygenic AIDs. In addition, throat swab 
performed during fever have to be negative and antibiotic therapy ineffective.

TaBle 3 | Estimations derived from multivariate logistic regression analysis 
performed on adult periodic fever, aphthous stomatitis, pharyngitis, and cervical 
adenitis (PFAPA) patients and patients with fever of unknown origin, representing 
the control group.

clinical variable p-Value Or 95% ci

Erythematous pharyngitis <0.0001 231 14.463–3,715.288
Cervical lymphadenitis <0.0001 92 8.865–953.279
Increased inflammatory markers 
during attacks

0.001 588 3,534.3–40,879.463

Symptom-free intervals <0.0001 1202 12.631–27,937.885

CI, confidence interval; OR, odds ratio.

TaBle 2 | Results of univariate logistic regression analysis performed on adult-onset periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) 
patients and subjects with fever of unknown origin by evaluating clinical manifestations described in both groups.

clinical variable p-Value sensitivity (%) specificity (%) Or 95% ci

Age 0.010 47.5 81.1 0.968 0.944–0.992
Age at onset 0.591 1.7 98.6 0.994 0.971–1.017
Frequency of flares 0.001 51.1 81.2 1.108 1.046–1.174
Duration of flares
≤2 days 0.003 23.0 97.1 0.099 0.021–0.455
3–5 days <0.0001 80.0 65.7 7.667 3.437–17.102
6–9 days 0.936 0.0 100 0.959 0.345–2.664
≥10 days 0.006 37.3 84.3 0.314 0.136–0.721
Increased inflammatory markers during attacks 0.065 11.5 97.3 4.696 0.909–24.268
Symptom-free intervals <0.0001 45.9 97.3 30.545 6.867–135.878
Oral aphthosis 0.001 65.6 64.9 3.516 1.726–7.166
Pharyngitis 0.010 64.5 86.5 1.943 1.169–3.229
Erythematous pharyngitis <0.0001 91.9 78.4 41.325 14.194–120.315
Exudative pharyngitis 0.005 27.4 91.9 0.234 0.086–0.637
Laterocervical lymphadenitis <0.0001 76.3 82.4 15.082 6.463–35.199
Generalized lymphadenitis 0.006 22.6 94.6 0.196 0.061–0.631
Asthenia 0.813 0.0 100 1.114 0.454–2.736
Abdominal pain 0.163 67.2 44.6 1.650 0.816–3.337
Diarrhea/vomiting 0.965 0.0 100 1.019 0.446–2.326
Thoracic pain 0.006 39.3 82.4 0.329 0.149–0.723
Arthralgia 0.624 0.0 100 1.202 0.577–2.504
Arthritis 0.104 26.2 85.1 0.491 0.208–1.158
Myalgia 0.647 0.0 100 1.176 0.588–2.354
Skin rash 0.531 0.0 100 0.776 0.350–1.718
Urticaria-like rash 0.047 16.4 94.6 0.291 0.087–0.982
Erythematous rash 0.999 0.0 100 NE 0.000–NE
Maculo-papular rash 0.041 14.8 95.9 0.244 0.063–0.946
Erysipelas-like rash 0.999 4.9 100 0.000 0.000–NE
Periorbital edema 0.993 0.0 100 1.006 0.292–3.469
Conjunctivitis 0.009 29.0 89.2 0.296 0.119–0.741
Headache 0.764 0.0 100 0.900 0.451–1.795
Genital aphthosis 0.787 0.0 100 1.286 0.208–7.952

NE, not evaluable; CI, confidence interval; OR, odds ratio.

5

Cantarini et al. PFAPA Syndrome in Adults

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 1018

observation of these manifestations in patients with a suspected 
PFAPA syndrome should call for caution before assigning the diag-
nosis. In addition, univariate analysis shows that PFAPA syndrome 
is mostly connected with a fever duration ranging between 2 and 
5 days, while fever attacks lasting less than 48 h and longer than 
10 days should point to other diagnoses than PFAPA syndrome.

Although results obtained by univariate analysis are clinically 
interesting and potentially useful to identify or exclude adult-
onset PFAPA syndrome, we aimed at creating a set of diagnostic 
criteria easy to be applied in the clinical practice and reproducible 
for further studies. Therefore, we deliberately avoided a longer 
list of diagnostic items as well as concomitant exclusion criteria, 

without decreasing the predictive potential of the model. Indeed, 
as demonstrated by the very high level of sensitivity and specific-
ity obtained at ROC analysis, 93.4% of all patients fulfilling the 
diagnostic criteria would be correctly identified as having PFAPA 
syndrome and only 8.3% (100% −  specificity) would be incor-
rectly classified as PFAPA patients.
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FigUre 1 | Receiver operating characteristic (ROC) curve obtained for adult 
periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) 
patients and subjects with fever of unknown origin as control group. The area 
under curve is of 0.978 (95% CI 0.958–0.998), corresponding to sensitivity of 
93.4% (95% CI 87.5–96.5%) and specificity of 91.7% (95% CI 82.8–96.7%) 
for the proposed diagnostic model.
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In our casuistry, a male preponderance was observed among 
patients with adult-onset PFAPA syndrome, while the number of 
females was higher in the control group. Looking at the past data 
on adult-onset PFAPA syndrome, a gender imbalance was not 
clearly observed as the male/female ratio was 1 according to a 
review evaluating all the cases published until 2015 (38). However, 
more recently, we have already reported 30 patients characterized 
by a male preponderance (9). As this trend has been confirmed 
again in this study, the male preponderance could represent a 
non-random finding. Nevertheless, future observational studies 
are required to clarify whether the higher number of males is a 
stochastic event related to the consecutive enrollment of patients 
or a specific feature of the disease.

Of note, we did not take into account the complete response 
to a single dose of corticosteroid as a possible diagnostic item 
to provide a set of criteria immediately applicable at the first 
clinical assessment, also in patients never treated with steroids. 
In addition, the complete resolution of flares after a single-steroid 
administration has proved to be less pronounced in adults than 

among pediatric patients. In this regard, we have recently high-
lighted that 98.8% of 85 pediatric PFAPA patients and only 88.2% 
out of 17 adult patients with PFAPA syndrome experienced total 
resolution of flares after a single-corticosteroid administration 
(10). Since this is probably explained by inadequate corticoster-
oid dosages in adults, ad hoc dosage trials should be conducted 
on late-onset PFAPA patients before including this variable as an 
additional diagnostic item.

Although we performed genetic testing in all patients to 
exclude subjects carrying mutations in genes related to the 
most frequent monogenic AIDs, we did not perform a testing 
for myeloid restricted somatic mutations that have recently been 
described in adult patients and could explain autoinflammatory 
manifestations in some cases (39–41). This represents a potential 
limit of the genetic screening strategy adopted in our cohort of 
patients. Also, the sample size of our study is relatively small due 
to the rarity of adult-onset PFAPA syndrome. Nevertheless, we 
have reported herein the largest cohort of patients ever described, 
adequate for performing a reliable statistic computation aimed at 
creating diagnostic criteria.

Our diagnostic criteria have been tested on adult patients 
and should be applied only to subjects aged at least 16  years. 
Their ability in differentiating adult-onset PFAPA patients from 
patients with late-onset monogenic AIDs could be tested in 
future studies.

In conclusion, we provide a set of clinical diagnostic criteria 
focused on adult patients presenting with suspected adult-onset 
PFAPA syndrome. They have been designed as an easy-to-use 
diagnostic tool aimed at identifying PFAPA patients from sub-
jects with FUO with a high-predictive potential as shown by its 
very high sensitivity and specificity.
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Autoinflammatory diseases were originally defined as a group of monogenic disorders

associated with seemingly unprovoked inflammatory episodes mediated mainly by the

innate immune system and without direct involvement of adaptive immunity. The renewed

concept encompasses a larger group of disorders including multifactorial diseases,

which share the same inflammatory and clinical features with the monogenic disorders.

Coining of the “auto” prefix to these inflammatory diseases suggests a constitutively

active and self-augmenting innate immune response, but only a subgroup of them

including cryopyrin-associated periodic syndrome (CAPS), associated with dominantly

inherited gain-of-functionNLRP3 variants, fits well with the definition of the “autonomous”

inflammatory conditions. However, the “autoinflammation” concept also includes another

group of disorders characterized by episodes of exaggerated inflammatory response

only when challenged by certain triggers. The dynamics of this latter group can be

better defined as a “hyperinflammatory” state, which shares similar characteristics

with the innate memory or trained immunity. Differentiation of “autonomous” and

“hyperinflammatory” states of autoinflammatory disorders can provide additional insights

to understand their pathogenesis and develop better management strategies since both

conditions may have different inflammatory dynamics affecting the severity and frequency

of clinical findings and treatment responses.

Keywords: inflammation, autoimmunity, autoinflammatory disorders, innate immunity, hyperinflammatory

response, autonomous inflammation, trained immunity, innate tolerance

“Heat not a furnace for your foe so hot
That it do singe yourself.”
Henry VIII
William Shakespeare

INTRODUCTION

Inflammation is a physiologic process aiming to protect the integrity of organisms against
exogenous or endogenous dangerous insults (1–3). This process involves the recognition of
pathogen—or danger associated molecular patterns by relevant receptors, which leads to the
development of a response involving different cells and mediators to eliminate or limit the threat;
and this response resolves with the repair of damages to restore the homeostasis.
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Gül Autonomous and Hyper-Inflammatory States

The inflammatory response is well regulated to ensure a
controlled reaction limited only to the pathogens or dangerous
insults. During the turn of the twentieth century, Paul Ehrlich
used the “horror autotoxicus” term to describe organisms’ ability
to recognize the self and not develop a harmful response against
self-tissues (4). Although the regulatory mechanisms involved
in inflammatory response work perfectly well in general, the
problems in these mechanisms are considered to be responsible
for the development of so-called “inflammatory” disorders (5).
Autoimmune diseases are the most widely known examples of
the “autotoxic” inflammatory disorders, and they do develop
as a result of failures in the immune tolerance mechanisms
causing the persistent activity of pathogenic self-reactive T and
B cells.

On the other hand, regulatory problems in the innate
immune response have been identified as the underlying
pathology of another subset of inflammatory disorders,
and uncontrolled or disproportionate innate inflammatory
response triggered by the recognition of pathogen—or
danger-associated molecular patterns has been shown to
be responsible for the clinical and pathologic findings (6).
Hereditary periodic fever syndromes constitute the best
examples of this subgroup, and these conditions have been
named as “autoinflammatory disorders” to differentiate them
from “autoimmune diseases”, following the identification
of genetic basis of familial Mediterranean fever (FMF) and
tumor necrosis factor receptor associated periodic syndrome
(TRAPS). Autoinflammatory disorders have originally been
described as pathological conditions associated with seemingly
unprovoked episodes of inflammatory response mainly
involving the innate immune system with excessive production
of proinflammatory cytokines and chemokines and without
direct role of pathogenic autoantibodies or cellular immunity
against self-antigens (6–8). An updated definition of this
group encompasses a larger spectrum of disorders including
multifactorial diseases, which share the same inflammatory
characteristics and clinical features with the monogenic
disorders (8, 9).

Following the identification of several new members of the
autoinflammatory disorders, different approaches have been used
to classify them. Classification attempts have mainly been based
on the mechanisms affecting the regulation of innate immune
response or the types of over-produced cytokines/inflammatory
mediators involved in their pathogenesis (6, 8). Regulatory
defects may rely on the constitutive activation of intracellular
pathogen—or danger-associated signal sensing, intracellular
accumulation of signals triggering innate sensors, loss of the
negative regulatory function of innate response proteins, or
up-regulation of post-receptor signaling mechanisms in innate
immunity (8). Depending on the dysregulated pathways, inborn
errors result in increased production of particular cytokines, such
as interleukin 1 beta (IL-1β) or type 1 interferon, or up-regulated
secretion of several proinflammatory cytokines and chemokines
in a more complex way (6, 8).

This review aims to discuss the dynamics of inflammatory
response during the course of the autoinflammatory disorders
within the context of trained immunity.

AUTONOMOUS VS.

HYPERINFLAMMATORY STATES IN

AUTOINFLAMMATORY DISORDERS

In monogenic autoinflammatory disorders, increased
inflammatory response develops as a result of gain-of-function
or loss-of-function mutations in the genes involved in the innate
immune response (8). Cryopyrin-associated periodic syndromes
(CAPS) typically represent the autoinflammatory mechanisms
associated with gain-of-function mutations in the NLRP3 gene,
which result in increased constitutive activity of the intracellular
sensor protein (10). Mutation-dependent conformational
changes in the NLRP3 protein result in increased production
of IL-1β and a clinical spectrum ranging from the self-limited
inflammatory episodes to the persistent severe inflammation
(10, 11). In the mildest end of the spectrum, CAPS patients
develop a “hyperinflammatory” response only when they are
exposed to cold (Table 1). However, in the severe end, which was
previously called as Neonatal Onset Multisystem Inflammatory
Disorder (NOMID), patients start to have an “autonomously”
increased IL-1β production starting within the first year of life
(Table 1). Somatic mosaicism in myeloid cell lineages for the
NLRP3 gene mutations may be enough for the development
of disease manifestations associated with moderate to severe
inflammation, and expansion of the mutated clone with the
passage of time may be the cause of the late onset of clinical
findings in some patients (12–17).

On the other hand, Familial Mediterranean Fever (FMF),
the most common form of the autoinflammatory disorders,
is associated with autosomal recessively inherited variants
in exon 10 of the MEFV gene, which encodes the pyrin
protein. Pyrin has been linked to different roles in the
regulation of the inflammasome complex, and monocytes of
FMF patients produce increased amount of IL-1β depending
on the number of penetrant exon 10 mutations, only when

TABLE 1 | Possible contributions of autonomous and hyperinflammatory states to

the clinical findings of common monogenic autoinflammatory disorders with

putative scores based on the characteristics of clinical findings.

Disease Gene Hyperinflammatory

state

Autonomous

inflammatory state

CAPS (FCAS) NLRP3 ++ +

CAPS (NOMID) NLRP3 ++ ++++

FMF MEFV +++ +

crFMF MEFV + +++

PAAND MEFV + ++++

Blau syndrome NOD2 + +++

Crohn disease NOD2 +++ +

MKD MVK ++ +++

TRAPS TNFRSF1A +++ ++

Abbreviations. CAPS, Cryopyrin associated periodic syndrome; FCAS, Familial cold

autoinflammatory syndrome; NOMID, Neonatal-onset multisystem inflammatory disease;

FMF, Familial Mediterranean fever; crFMF, colchicine refractory-familial Mediterranean

fever; PAAND, Pyrin-associated autoinflammation with neutrophilic dermatosis; MKD,

Mevalonate kinase deficiency; TRAPS, TNF receptor associated periodic syndrome.
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stimulated with proinflammatory environmental triggers such as
lipopolysaccharide (18). The variants associated with increased
IL-1β production do not interfere with the production of
regulatory natural antagonist protein IL-1Ra, which help limit
the inflammatory episode within 2–3 days (18). Most of the
FMF patients do not have constitutively enhanced autonomous
production of IL-1β, and it is usually not possible to detect
ongoing inflammation in between these “hyperinflammatory”
episodes.

However, patients carrying dominantly inherited p.Ser242Arg
mutation in exon 2 of the MEFV gene develop a different
inflammatory phenotype, which is related to the constitutively
active pyrin-inflammasome and continuously elevated IL-1β-
driven acute phase response (19). The clinical picture associated
with this MEFV variant has been named as pyrin-associated
autoinflammation with neutrophilic dermatosis (PAAND); and
it is characterized by fever lasting several weeks rather than days,
neutrophilic dermatosis, arthralgia, myalgia, cardiomyopathy,
anemia, pyogenic arthritis, and serositis (19). Phosphorylation
of serine at position 242 of the pyrin protein is critical for
the binding of its negative regulator 14-3-3 protein; and this
regulatory mechanism is linked to the guard function of pyrin
protein as a sensor of RhoA-mediated changes within the
cytoplasm. Various bacterial toxins affecting the functions of
Rho GTPases, such as TcdB toxin of Clostridium difficile and
ADP-ribosylating C3 toxin of Clostridium botulinum, can induce
pyrin-inflammasome through the decreased downstream activity
of RhoA protein, which affects the binding of 14-3-3 to pyrin (19–
21). Missense changes in the one of the phosphorylation sites
of pyrin can mimic the intracellular changes induced by these
bacterial toxins and result in autonomous activation of pyrin-
inflammasome with more persistent inflammatory dynamics
different from the characteristics of FMF.

Similarly, variants in the NOD2 (CARD15) gene are
linked to both autonomous and hyperinflammatory disorders.
Dominantly inherited gain-of-functionmutations in the NACHT
domain of the NOD2 gene lead to the increased basal
activity of NF-κB. This autonomous inflammatory response
is associated with Blau syndrome, which is characterized by
early-onset granulomatous uveitis, dermatitis, and arthritis with
camptodactily deformities (22, 23). On the other hand, loss-
of-function variants in the leucine-rich repeat (LRR) region of
the NOD2 gene are associated with the multifactorial Crohn
disease; and these mutations are thought to be associated with
dysregulated interaction between host and dysbiotic intestinal
microbiota leading to hyperinflammatory responses (23–26).

To prevent the confusion associated with the
“hyperinflammatory” state, it is necessary to note that a
group of heterogeneous disorders have been grouped under
the term of “hyperinflammatory syndromes,” because of
a common immunopathology associated with a cytokine
storm or hypercytokinemia; which includes one of the
hereditary autoinflammatory disorders, familial hemophagocytic
lymphohistiocytosis (27). The hyperinflammatory response
constitutes the shared pathogenic mechanism between
hemophagocytic lymphohistiocytosis and macrophage activation
syndromes, and the latter condition can develop in various

autoinflammatory and autoimmune settings ranging from
systemic onset juvenile idiopathic arthritis, Kawasaki disease
to systemic lupus erythematosus (27). The hyperinflammatory
syndromes associated with dysregulated cytokine production
or cytotoxicity defects can also be seen in association with
infections, malignancies, and immunodeficiency syndromes
such as Chédiak Higashi, Griscelli 2, Hermansky Pudlak 2
syndromes (27). Infections are usually considered as the main
triggers of hyperinflammation, which may be an example of
maladaptive “trained immunity” response.

TRAINED IMMUNITY AND INNATE

TOLERANCE

It has long been suggested that one of the critical differences
between adaptive and innate immunity is that adaptive immune
response can build immunological memory but innate immunity
cannot (28). However, several recent studies have demonstrated
that an innate version of immunological memory can be induced
after infections or vaccinations, which results in a stronger
inflammatory response with broader specificity following a
secondary stimulation with different pathogens (Figures 1i) (28–
30). This weeks or months-lasting memory is named as “trained
immunity,” and it is mainly associated with epigenetic re-
programming of innate immune cells, especially of the cells
of myeloid lineage (30). This stronger inflammatory response
to various microbial triggers following the initial infections or
vaccinations involves both histone modifications (i.e., H3K4me1,
H3K4me3, H2K27Ac, H3K9me2), and metabolic changes (i.e.,
increased aerobic glycolysis through the mTOR pathway and
increased production of mevalonate) in those cells (30, 31).

However, maladaptive conditions associated with
inappropriate activation of trained immunity may result in
immunodeficiency states or hyperinflammatory responses
(28, 32). Inappropriate exposure of innate immune cells to
bacterial endotoxins such as lipopolysaccharide (LPS) may result
in a refractory state to subsequent challenges of LPS, which
is known as “endotoxin tolerance,” and it contributes to the
immune paralysis observed in patients with sepsis (33, 34).
Although several findings suggest changes in the polarization
and cytokine production pattern of inflammatory cells, exact
mechanism of the endotoxin tolerance has yet to be clarified
(33, 35).

In the other end of the maladaptive conditions,
hyperinflammatory responses due to induction of trained
immunity may contribute to the pathogenesis and course of
monogenic autoinflammatory disorders as well as several other
inflammatory conditions (32), which may show variability in the
expression and severity depending on the environmental factors
(36, 37).

TRAINED IMMUNITY AND

AUTOINFLAMMATORY DISORDERS

Non-specific hyperinflammatory response to a broad spectrum
of triggers was first described as the “pathergy” reaction in 1933
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IL-1 Blockade 
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FIGURE 1 | The features of inflammatory responses developing in the trained immunity (i) and autoinflammatory disorders (ii and iii), in regard to the intensity and

frequency of episodes and their resolution to the baseline. In trained immunity (i), after the resolution of the inflammatory response following an infection or vaccination

(1st trigger), a following stimulation with different pathogens (2nd trigger) results in a stronger inflammatory response (28). In autoinflammatory disorders, triggering

factors (arrows) may either induce a hyperinflammatory state (ii-a), defined as an enhanced inflammatory response developing after a stimulation, or an autonomous

inflammatory state (iii-a) associated with gain of function mutations, which lead to the continuous production of IL-1β and ongoing inflammatory activity in between

attacks. However, in autoinflammatory disorders associated with the hyperinflammatory dynamics, some patients may experience “autonomous” inflammatory states

(ii-b), which require a therapeutic intervention to reset the inflammatory dynamics. On the other hand, in some autoinflammatory disorders associated with

autonomous inflammatory characteristics, disease course may be very mild and obvious inflammatory findings could only be detected when the patients are exposed

to triggering factors such as cold (iii-b).

by Rössle, and his definition corresponds well with the current
understanding of the trained immunity associated with sustained
changes in the expression of proinflammatory cytokines due
to epigenetic modifications (38, 39). Therefore, long-standing
observations on the pathergic response and trained immunity
regarding the intensity of inflammatory response to various
triggers may also have a potential to analyze the variability of
clinical findings in the course of the autoinflammatory disorders,
which cannot be explained by only genotype (32).

Investigation of pathogenic mechanisms associated with
autosomal recessively inherited Mevalonate Kinase Deficiency
(MKD) may provide the most direct clues for the role of trained
immunity in autoinflammatory disorders. Recently, it has been
shown that activation of the cholesterol synthesis pathway, but
not the synthesis of cholesterol molecule itself, is involved in
the stimulation of trained immunity, and mevalonate is the
critical molecule of this pathway in the induction of epigenetic
changes, such as the H3K4me3 change at the promoter regions of
proinflammatory TNFA and IL6 genes (31).

Retention of intracellular mevalonate in the monocytes
of MKD patients due to decreased mevalonate kinase
enzyme activity has also been shown to be associated with
the same trained immunity phenotype, which leads to the
autoinflammatory response (31). Prenylation defects associated
mevalonate kinase enzyme defects has also been linked to the
decreased RhoA-associated phosphorylation of pyrin protein
and activation of the pyrin inflammasome (21). In addition
to the mutation-specific conformational changes affecting
the mevalonate kinase enzyme activity, the extent of epigenetic
changes are expected to contribute to the variability in the clinical
spectrum, ranging from the hyperinflammatory response due to
temporary increases in the mevalonate concentration following
stimuli such as vaccination in the mild end to the autonomous
hyperinflammatory response resulting from constitutively
increased production of mevalonate due to severely defective
activity of the enzyme leading to the sustained changes (8, 40).

Similar to the MVK gene variants leading to MKD,
the rare genetic variants responsible for other hereditary
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autoinflammatory disorders can also be assumed to be associated
with a much stronger and durable “trained immunity” response
leading to maladaptive conditions (Figure 1). For example,
country-dependent environmental factors affecting the risk of
infections and infant mortality rate show an association with the
risk of amyloidosis in FMF patients (37). In addition to the rare
variants, even some common polymorphisms associated with
multifactorial autoinflammatory disorders such as the NOD2
variants in Crohn disease may be involved in “hyperreactive”
innate response and maladaptive trained immunity following an
infection or associated with dysbiotic microbiota.

It may also be helpful to note that in the autoimmunity end
of the inflammatory disease spectrum, more than half of the
disease associated non-coding variants have been mapped to
enhancer-like elements in immune cells, especially lymphocytes,
possibly altering non-canonical regulatory sequences and causing
context-dependent autoimmune responses (41).

IMPLICATIONS OF DEFINING

HYPER-VERSUS AUTONOMOUS

INFLAMMATORY STATES

Identification of molecular basis of several autoinflammatory
disorders has led to development of targeted treatments
with successful results such as IL-1 blocking agents in
inflammasomopathies; and their classification according
to underlying inflammatory pathways proved to be useful
in explaining both the pathogenesis of clinical findings
and variability in the treatment responses. On the other
hand, addition of another dimension to the classification, by
considering the dynamics of inflammatory response associated
with hyperreactive or autonomously active innate immune cells
may provide further benefits in the interpretation of clinical
findings and developing better management strategies with
the optimum use of available treatment options in individual
patients (Table 1).

Bozkurt et al. developed a unifying mathematical model to
understand the dynamics of recurrent nature of inflammation
in FMF and CAPS, in the form of coupled nonlinear ordinary
differential equations (42). Comprehensive bifurcation analyses
of the model revealed that the concentration of active caspase 1
enzyme is the most critical parameter determining the healthy
state as well as the inflammatory features of FMF and CAPS
patients (42). In FMF patients, a self-limited inflammatory
episode develops only when the system is triggered by an insult,
compatible with the “hyperinflammatory” state (Figures 1ii-a).
On the other hand, gain-of-function mutations in CAPS
patients result in constitutively active caspase 1 leading to an
autonomous periodicity with episodes developing even when
there is no trigger (Figures 1iii-a) (42). In patients with low-
penetrance variants periodicity of the attacks may decrease,
but when the variants are penetrant and triggers are present,
patientsmay develop a non-oscillatory, continuous inflammation
representing themost severe end of the CAPS spectrum, NOMID
(Table 1) (42).

In clinical practice, the inflammatory characteristics of a
subgroup of FMF patients with inadequate response to colchicine

treatment (also named as colchicine refractory-FMF patients)
can be classified as an “autonomous” state due to genetic and/or
environmental factors affecting the duration and sustainability
of caspase 1 activity (Table 1). In some of the FMF patients,
this autonomous inflammatory state may be temporary due
to intervening stressful conditions resulting in a vicious circle
characterized by continuous production of pro-inflammatory
cytokines, which causes either unexpectedly long episodes or
very frequently recurring attacks despite highest tolerable doses
of colchicine along with an elevated acute phase response in
between attacks (43). In this setting, blocking the activity of IL-1
by biologic agents may reset the autonomous production of IL-
1β, and some of these colchicine refractory-FMF patients may
experience a stable disease course with regained good response
to colchicine (Figures 1ii-b) (44).

Within the same context, some patients with an
autoinflammatory disorder characterized by gain-of-function
mutations and associated with autonomous production of IL-1
may run a milder disease course with very rare inflammatory
episodes (Table 1). In this situation, despite autonomous
production of IL-1 at low level, inflammatory clinical findings
can only be triggered following strong stimuli such as cold
exposure, infections, or vaccinations, and they may not need
continuous blockade of IL-1 to control inflammatory episodes
(Figures 1iii–b).

Similarly, inhibition of IL-1 activity with potent drugs
may reset the IL-1β-dependent vicious circle and cytokine-
driven pathologies in patients with higher constitutive caspase
1 activity; and following a single high-dose administration of
anti-IL-1β monoclonal antibody, some CAPS patients may not
require additional treatment for months due to inhibition of
IL-1β-dependent production of IL-1, which may be increased
up-to-5-fold compared to healthy controls (10). Also, DNA
methylation status of CAPS patients may become similar to that
of healthy controls when they are using anti-IL-1 treatments,
which suggests sustained improvements in the epigenetic
programming (45).

CONCLUSIONS

In conclusion, adding the “hyper” or “autonomous” as well
as the trained immunity dimensions to the concept of
autoinflammation could provide further benefits for both
understanding of the immunopathogenesis of the variable disease
course in these conditions and developing better strategies for
the management of inflammatory findings in regard to the
timing, dosage, and administration intervals of IL-1 blocking
agents.
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Autoinflammatory diseases include disorders with a monogenic cause and also

complex conditions associated to polygenic or multifactorial factors. An increased

number of both monogenic and polygenic autoinflammatory conditions have been

identified during the last years. Although skin manifestations are often predominant

in monogenic autoinflammatory diseases, clinical and histopathological information

regarding their dermatological involvement is still scarce. Monogenic autoinflammatory

diseases with cutaneous expression can be classified based on the predominant

lesion: (1) maculopapular rashes or inflammatory plaques; (2) urticarial rashes; (3)

pustular, pyogenic or neutrophilic dermatosis-like rashes; (4) panniculitis or subcutaneous

nodules; (5) vasculitis or vasculopathy; (6) hyperkeratotic lesions; (7) hyperpigmented

lesions; (8) bullous lesions; and (9) aphthous lesions. By using this classification, this

review intends to provide clinical and histopathological knowledge about cutaneous

involvement in monogenic autoinflammatory diseases.

Keywords: monogenic autoinflammatory diseases, autoinflammatory diseases, clinical dermatology,

maculopapular rash, urticarial rash, dermatopathology, classification

INTRODUCTION

The term “autoinflammatory diseases” was first used in 1999 to describe a group of rare diseases
of the innate immunity presenting with recurrent episodes of uncontrolled systemic inflammation
(1). Since then, the number of monogenic autoinflammatory conditions and other complex and
polygenic disorders driven by autoinflammatory mechanisms have been in continuous expansion
(2, 3). In addition, several autoimmune diseases and primary immunodeficiencies have been found
to share pathogenic features with autoinflammatory diseases (4, 5).

The most frequent and well-known autoinflammatory mechanism is mediated by the
inflammasomes, intracellular protein complexes acting as innate immune system receptors
with an important role in the sensing of intracellular pathogen- and danger-associated
molecular patterns. They are involved in the susceptibility to infection, autoinflammation,
and tumorigenesis. Inflammasomes consist of a sensor part (the NOD-like-receptor), an
adaptor protein (ASC), and caspase-1 as the downstream effector. Upon stimulation,
inflammasome assembles and activates caspase-1 which cleaves pro-IL-1β and pro-IL-18 into
IL-1β and IL-18. NRLP3 and pyrin inflammasomes are responsible for cryopyrin-associated
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periodic syndromes (CAPS) and familial Mediterranean fever
(FMF), respectively, and other inflammasomopathies (6, 7).
Other relevant inflammasomes include NLRP1 andNLRP4 (8, 9).

Other pathogenic mechanisms causing autoinflammatory
disorders include those related with the activation of NF-κB
transcription factor and type I interferon (IFN) (6, 10). The
transcription factor NF-κB is involved in processes related to
inflammation, cellular differentiation, metabolism, cell survival,
and acquired immune responses (6). In its inactive form, NF-
κB is tied to inhibitors of kBs (IkBs). NF-κB can be activated by
two mechanisms: the canonical pathway, induced by cytokines
and toll-like receptors (TLR), and the non-canonical pathway,
triggered by TNF-receptor family proteins. Both are controlled
by the ubiquitin system. The canonical mechanism is regulated
by K63 and linearMet1 ubiquitin chains. Both proteins are linked
to their substrates (RIPK-1, which is one of the adaptor proteins
on the TNF receptor 1, and IKKγ, part of the IKK complex)
by LUBAC complex (composed by the proteins HOIP, HOIL-1,
and SHARPIN), which increases NF-κB activity. Proteins A20
and OTULIN cleave K63 and Met1 from their substrates, which
physiologically downregulate NF-κB signaling. Little is known
about its exact role in the non-canonical pathway (10–12).

Type I interferons (IFNα and IFNβ) are the major effector
cytokines against virus and intracellular pathogens. They induce
the transcription of certain IFN stimulated genes with the
subsequent viral clearance. Among the two IFN activating
mechanisms, one is mediated by TLRs that detect viral nucleic

Abbreviations: AIKD, Autoinflammatory keratinization diseases; ANA,
Antinuclear antibodies; ANCA, Antineutrophil cytoplasmic antibodies; AGS,
Aicardi-Goutières syndrome; APLAID, Autoinflammation and PLCγ2-associated
antibody deficiency and immune dysregulation; CAIN, C/EBPε-associated
autoinflammation and immune impairment of neutrophils; CANDLE, Chronic
atypical neutrophilic dermatitis with lipodystrophy and elevated temperature
syndrome; CAPS, Cryopyrin-associated periodic syndrome; CINCA, Chronic
infantile, neurologic, cutaneous and articular; CPR, C-reactive protein; CRMO,
Chronic recurrent multifocal sterile osteomyelitis; DADA2, Deficiency of
adenosine deaminase 2; DIRA, Deficiency of IL-1 receptor antagonist; DITRA,
Deficiency of IL-36 receptor antagonist; EMA, European Medicines Agency;
ESR, Erythrocyte sedimentation rate; FANF, Familial autoinflammatory
necrotizing fasciitis; FCAS, Familial cold autoinflammatory syndrome; FDA,
Food and Drug Administration; FMF, Familial Mediterranean fever; HA20,
Haploinsufficiency of A20; HIDS, Hyper-IgD syndrome; Ig, Immunoglobulin;
IL, Interleukin; IBD, Inflammatory bowel disease; IFN, Interferon; LUBAC,
Linear ubiquitination chain assembly complex; MA, Mevalonic aciduria; MAS,
Macrophage activation syndrome; MAVS, Mitochondrial antiviral signal; MKD,
Mevalonate kinase deficiency; MVK, Mevalonate kinase; MWS, Muckle-Wells
syndrome; NAIAD, NLRP-1 associated disease; NLRC4-AD, NLRC4-associated
autoinflammatory diseases; NOMID, Neonatal-onset multisystem inflammatory
disease; NSAID, Non-steroidal anti-inflammatory drugs; ORAS, OTULIN-related
autoinflammatory syndrome; PAAND, Pyrin-associated autoinflammation with
neutrophilic dermatosis; PAPA, Pyogenic sterile arthritis, pyoderma gangrenosum
and acne; PFAPA, Periodic fever, aphthous stomatitis, pharyngitis and cervical
adenitis; PFIT, Autoinflammatory periodic fever, immunodeficiency, and
thrombocytopenia; PLAID, PLCγ2-associated antibody deficiency and immune
dysregulation; SAA, Serum amyloid protein; SAPHO, Synovitis, acne, pustulosis,
hyperostosis and osteitis; SAVI, STING-associated vasculopathy with onset in
infancy; STING, Stimulator of IFN genes; SMS, Singleton–Merten syndrome; sJIA,
Systemic juvenile idiopathic arthritis; SPENCDI, Spodyloenchondrodysplasia
with immune dysregulation; TNF, Tumor necrosis factor; TACE, TNF-α
converting enzyme;TRAPS, TNF receptor-associated periodic syndrome; TLR,
toll-like receptors.

acids within endosomes and induce proinflammatory cytokines
and IFNα, and the other is mediated by cytosolic DNA and RNA
sensors. DNA sensing is carried out by nucleotidyl transferase
cyclic GMP-AMP synthase (cGAS), which produces cGAMP
that binds to STING (stimulator of IFN genes) and induces
transcription of IFNβ genes. RNA sensing is mediated by
RIG-1-like helicase, RIG-1, and MDA-5 with the subsequently
recruitment of MAVS (mitochondrial antiviral signal) and
activation of NF-κB. IFN interacts with its surface receptor IFN-α
and induces the STAT pathway, which induces the transcription
of IFN genes and promotes antiviral activity. In addition,
proteins regulating the synthesis or degradation of nucleic acids
such as TREX1, SAMHDI, and RNase H2 play an important
role in IFN genes activation. Immunoproteasomes are protein
complexes that degrade ubiquitinated intracellular proteins and
are implicated in cellular stress responses, as well as activating
IFN (11, 13).

IL-1-mediated and IFN type I-mediated autoinflammatory
diseases and their main genetic and pathogenic aspects are
illustrated in Figure 1.

Over time, different classifications of monogenic
autoinflammatory diseases have been proposed according
to molecular and etiopathogenic mechanisms involved (11, 15),
type of inheritance (16), genetic background and clinical
presentation (17, 18). Apart from FMF and CAPS, other well-
characterized monogenic inflammasomopathies comprise TNF
receptor-associated periodic syndrome (TRAPS), hyper-IgD
syndrome (HIDS), pediatric granulomatous arthritis (Blau
syndrome and early onset sarcoidosis), pyogenic arthritis,
pyoderma gangrenosum, and acne (PAPA), deficiency of IL-1
receptor antagonist (DIRA) and deficiency of interkeukin-
36 receptor antagonist (DITRA). All the monogenic
autoinflammatory diseases covered in this review classified
according to the major pathogenic mechanism are listed
in Table 1.

Polygenic or multifactorial autoinflammatory diseases
are defined as complex systemic disorders sharing an
autoinflammatory and sometimes autoimmune background,
with an unknown genetic cause. The most prevalent polygenic
conditions include Behçet disease, Schnitzler syndrome, periodic
fever with aphthous stomatitis, pharyngitis, and cervical adenitis
(PFAPA), systemic juvenile idiopathic arthritis (sJIA), adult
onset Still disease (AOSD), Crohn disease and synovitis, acne,
pustulosis, hyperostosis, and osteitis (SAPHO) (19).

Clinical features in autoinflammatory diseases are variable,
heterogeneous and nonspecific, since most of the symptoms are
often shared by different conditions. Common inflammatory
manifestations include recurrent fever, musculoskeletal
symptoms, abdominal and thoracic serositis, headache, ocular
inflammation, and mucosal and skin lesions (11).

Dermatologic involvement is common in monogenic
autoinflammatory diseases and may represent the predominant
and the initial event in some of them. Among all the cutaneous
lesions present in monogenic autoinflammatory diseases,
maculopapular, and urticarial rashes are by far the most
prevalent manifestations. However, the identification of skin
lesions as part of an autoinflammatory disease is often difficult
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FIGURE 1 | Principal genetic and pathogenic mechanisms in IL-1 (A) and IFN type 1 (B) mediated autoinflammatory diseases [From Shwin et al. (14), with permission].

AGS, Aicardi–Goutières syndrome; CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature; CAPS, cryopyrin-associated

periodic syndrome (FCAS, familial cold autoinflammatory syndrome; MWS, Muckle–Wells syndrome; NOMID, neonatal-onset multisystem inflammatory disease);

DIRA, deficiency of interleukin-1 receptor antagonist; FMF, familial Mediterranean fever; MKD/HIDS, mevalonate kinase deficiency/hyperimmunoglobulinemia D and

periodic fever syndrome; NLRC4-MAS, NLRC4-associated macrophage activation syndrome; PRAAS, proteasome-associated autoinflammatory syndrome; PRR,

Pattern recognition receptor; SAVI, STING-associated vasculopathy with onset in infancy; SMS, Singleton–Merten syndrome; SPENCDI, Spodyloenchondrodysplasia

with immune dysregulation; TLRs, toll-like receptors; TRAPS, TNF receptor-associated periodic syndrome.

because of the potential wide spectrum of skin manifestations
in these conditions, and also because the severity or extension
of the cutaneous lesions may differ among patients with the
same disease. In addition, some patients may exhibit overlapping
skin manifestations. Consequently, differential diagnosis
of dermatologic findings may be difficult, even for trained
professionals. For instance, with regard to urticarial lesions,
differential diagnosis should include all CAPS forms and other
monogenic diseases in which urticariform features are the most
characteristic cutaneous findings, but it must also comprise other
monogenic autoinflammatory diseases presenting less frequently
with urticarial rashes (e.g., TRAPS and HIDS), and several
polygenic autoinflammatory diseases (e.g., Schnitzler syndrome,
sJIA, and adult onset Still disease) (20). Moreover, clinical and
histopathological data about dermatological involvement in
monogenic autoinflammatory diseases are still scarce (14).

CLASSIFICATION OF MONOGENIC

AUTOINFLAMMATORY DISEASES

ACCORDING TO THE CUTANEOUS

INVOLVEMENT

Several classifications based on clinical and histopathological
features of cutaneous manifestations have been proposed
for autoinflammatory diseases (6, 11, 15, 16, 21, 22). In

2017, Shwin et al. (14) divided monogenic autoinflammatory
diseases into seven categories according to the predominant
cutaneous lesion and the most clinically relevant aspect:
(1) Nonspecific maculopapular rashes with recurrent
episodic fever and abdominal pain; (2) Neutrophilic
urticaria; (3) Pustular skin rashes and episodic fevers;
(4) Vasculopathy and panniculitis/lipoatrophy syndromes;
(5) Vasculopathy and/or vasculitis with livedo reticularis
syndromes; (6) Autoinflammatory disorders with
granulomatous skin diseases; and (7) Other autoinflammatory
syndromes (14).

Because other cutaneous and mucosal lesions have been
described to occur in monogenic autoinflammatory diseases, the
current review propose a new classification that includes nine
dermatologic categories:

1) Maculopapular rashes or inflammatory plaques;
2) Urticarial rashes;
3) Pustular, pyogenic, or neutrophilic dermatosis-like rashes;
4) Panniculitis or subcutaneous nodules;
5) Vasculitis or vasculopathy;
6) Hyperkeratotic lesions;
7) Hyperpigmented lesions;
8) Bullous lesions;
9) Aphthous lesions.

The main monogenic autoinflammatory diseases are divided
in these nine groups and depicted in Table 2. By using this
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TABLE 1 | Classification of autoinflammatory diseases based on the major pathogenic mechanism.

Groups based on

pathogenic

mechanism

Autoinflammatory

disease

Gene/Locus Inheritance

pattern

Protein involved GOF/LOF

mutation

Inflammasomopathies FMF MEFV AR Pyrin GOF

TRAPS TNFRSF1A AD TNF receptor 1 LOF

HIDS/MKD MVK AR Mevalonate kinase LOF

CAPS NLRP3 AD NLRP3/cryopirin GOF

NLRC4-AD

(FCAS4)

NLRC4 AD NLRC4 GOF

PAPA PSTPIP1 AD CD2BP1 GOF

DIRA IL1RN AR IL-1 receptor antagonist LOF

Majeed syndrome LPIN2 AR Lipin-2 LOF

PAAND MEFV AD Pyrin GOF

NAIAD NLRC1 AR/AD NLRP1 LOF

PFIT WDR1 AR WD40 repeat protein LOF

CAIN CEBPE AR C/EBPε GOF

NF-κB related diseases Blau syndrome/Early-onset

sarcoidosis

NOD2/CARD15 AD NOD2 GOF

NLRP12-AD

(FCAS2)

NLRP12 AD Monarch1 LOF

Otulipenia/ORAS

(Ubiquinopathy)

OTULIN AR Otulin LOF

HA20

(Ubiquinopathy)

TNFAIP3 AD A20 LOF

HOIL-1 deficiency

(Ubiquinopathy)

HOIL1 AR HOIL1 LOF

CARD-14 psoriasis CARD14 AD CARD14 GOF

NFKB1-AD NFKB1 AD p50/p105 LOF

RELA haploinsufficiency RELA AD RelA LOF

ADAM17 deficiency ADAM17 AR TACE LOF

Interferonopathies CANDLE/PRAAS syndrome PSMB8 AR β5i subunit of the

proteasome

LOF

SAVI TMEM173 AD STING GOF

Familial chilblain lupus TREX1

SAMHD1

TMEM173

AD 3-prime repair exonuclease

1 enzyme

dNTPs

STING

LOF

LOF

GOF

AGS TREX1,

RNASEH2A,

RNASEH2B,

RNASEH2C and

SAMHD1

AR Proteins involved in

intracellular degradation or

sensing of nucleic acids

LOF > GOF

ADAR1

IFIH1 and DDX58

AD

SPENCDI ACP5 AR TRAP LOF

SMS IFIH1 and DDX58 AD MDA5 and RIG-1 GOF

Other DADA2 CECR1 AR ADA2 LOF

cytokine-signaling DITRA IL36RN AR IL-36 receptor antagonist LOF

diseases H syndrome SLC29A3 AR hENT3 LOF

PLAID (FCAS3) / APLAID PLCγ2 AD PLCγ2 GOF

Vibratory Urticaria ADGRE2 AD ADGRE2 LOF

AP1S3 and

autoinflammatory psoriasis

AP1S3 Not clear AP1S3 LOF

(Continued)
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TABLE 1 | Continued

Groups based on

pathogenic

mechanism

Autoinflammatory

disease

Gene/Locus Inheritance

pattern

Protein involved GOF/LOF

mutation

Monogenic forms of

inflammatory bowel disease

(IL-10 signaling defects)

IL10RA, IL10RB

and IL10

AR IL10 and IL10 receptor LOF

AGS, Aicardi-Goutières syndrome; APLAID, autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation; CAIN, C/EBPε-associated autoinflammation

and immune impairment of neutrophils; CANDLE, chronic atypical neutrophilic dermatitis with lipodystrophy and elevated temperature syndrome; CAPS, cryopyrin-associated

periodic syndrome; DADA2 deficiency of adenosine deaminase 2; DIRA, deficiency of IL-1 receptor antagonist; DITRA, deficiency of the IL-36 receptor antagonist; dNTPs,

deoxynucleoside triphosphate; FMF, familial Mediterranean fever; GOF, gain-of-function; HA20, haploinsufficiency of A20; HIDS/MKD, hyper-IgD syndrome/Mevalonate kinase

deficiency; IL-10, interleukin 10; LOF, loss-of-function; MDA-5, melanoma differentiation-associated gene 5; NFKB1-AD, NFKB1-associated autoinflammatory diseases; NLRC4-

AD, NLRC4-associated autoinflammatory diseases; NLRP12-AD= NLRP12-associated autoinflammatory disease; ORAS= OTULIN-related autoinflammatory syndrome; PAAND,

pyrin-associated autoinflammation with neutrophilic dermatosis; PAPA syndrome, pyogenic sterile arthritis, pyoderma gangrenosum and acne syndrome; PFAPA, periodic fever,

aphthous stomatitis, pharyngitis and cervical adenitis; PFIT, Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia; PLAID, PLCγ2-associated antibody deficiency

and immune dysregulation; RIG-1, retinoic-acid-inducible gene; SAVI, STING-associated vasculopathy with onset in infancy; SMS= Singleton-Merten syndrome; SPENCDI,

Spondyloenchondrodysplasia with immune dysregulation; TRAPS, TNF receptor-associated periodic syndrome.

dermatologic classification, this review intends to focus on
dermatological and dermatopathologic aspects of monogenic
autoinflammatory diseases.

Maculopapular Rashes or Inflammatory

Plaques
Familial Mediterranean Fever (FMF)
FMF is the most frequent monogenic autoinflammatory disease
caused by mutations in the MEFV gene, which encodes pyrin.
Such mutations produce a constitutive activation of pyrin and
lead to an uncontrolled release of IL-1β and IL-18 (23). FMF
is classically inherited with an autosomal recessive fashion.
However, an autosomal dominant pattern has also been described
(24, 25). The most relevant pathogenic mutations, such as
M694V, M694I, M680I, and V726A, are commonly placed in the
exon 10 ofMEFV gene (26).

FMF is clinically characterized by recurrent and self-
limited inflammatory attacks lasting for 48–72 h with a
variable periodicity (27). High fever (38–40◦C) and serositis
as abdominal and chest pain are constantly present. Large
joints involvement and erysipeloid rash affecting the limbs are
also quite common. Febrile protracted myalgia, pericarditis,
scrotal pain, and lymphocytic meningitis may also occur. During
attacks, acute phase reactants such as C-reactive protein (CPR),
serum amyloid protein (SAA), erythrocyte sedimentation rate
(ESR), and fibrinogen are significantly increased and tend to
normalize during asymptomatic periods. Secondary amyloidosis,
usually involving the kidneys, is the most common long-term
complication, which is usually associated with a more severe
disease or colchicine-resistant disease (14, 26).

Colchicine is the treatment of choice to control disease
activity and to prevent the attacks. Colchicine also prevents the
development of amyloidosis. In cases of proved intolerance or
resistance to colchicine, anti-IL-1 agents have demonstrated
efficacy in controlling disease activity and amyloidosis
development. While canakinumab has been recently approved
by the US Food and Drug Administration (FDA) and
European Medicines Agency (EMA) (28), anakinra has also

been proved to be useful, either with a continuous or on demand
administration (29).

Dermatologic manifestations
Erysipeloid-like erythema is considered the pathognomonic
lesion of FMF and consists of an uni- or bilateral well-defined,
tender, erythematous, and edematous plaque, usually smaller
than 15 centimeters, localized below the knee and on the dorsal
aspect of the feet (Figure 2). Recurrences tend to occur in the
same place, usually after long walking distances, and tend to
subside within 24–48 h. It is common among Turks and Jews
patients and those carrying the M694V mutation, with a variable
frequency, ranging between 3 and 46% of FMF patients (30).

Other cutaneous lesions include diffuse palmoplantar
erythema and purpuric papules involving the face, trunk, and
extremities (31). FMF patients have an increased incidence of
associated systemic vasculitis, such as IgA vasculitis (Henoch-
Schönlein purpura), polyarteritis nodosa and Behçet disease
(31, 32).

Cutaneous histopathology
Erysipeloid-like plaques are histologically characterized by
slight edema of the superficial dermis and sparse perivascular
infiltrates with lymphocytes, neutrophils, histiocytes, and nuclear
dust. Blurring of the capillary walls is frequent. Direct
immunofluorescence shows deposits of IgM, C3, and fibrinogen
in the capillary walls of the papillary dermis (30). Slight changes
of acanthosis and hyperkeratosis in the epidermis have also been
described (33).

TNF Receptor-Associated Periodic Syndrome

(TRAPS)
TRAPS is the most frequent autosomal dominant
autoinflammatory disease. Mutations in the TNFRSF1A
gene, encoding TNF receptor 1, induce an overproduction of
IL-1β (11). T50M and cysteine mutations are associated with
an earlier and more severe disease presentation and long-term
development of complications, such as amyloidosis. Variants
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TABLE 2 | Classification of monogenic autoinflammatory diseases based on the

main cutaneous manifestation.

1 Maculopapular rashes or

inflammatory plaques

Familial Mediterranean Fever (FMF)

TNF receptor-associated periodic syndrome

(TRAPS)

Hyper-IgD syndrome/Mevalonate kinase deficiency

(HIDS/MKD)

Otulipenia/OTULIN-related autoinflammatory

syndrome (ORAS)

HOIL-1 deficiency

2 Urticarial rashes Cryopyrin-associated periodic syndromes (CAPS)

NLRP12-associated autoinflammatory disease

(NLRP12-AD)

PLCγ2-associated antibody deficiency and immune

dysregulation (PLAID)

NLRC4-associated autoinflammatory diseases

(NRLC4-AD)

Vibratory Urticaria

3 Pustular, pyogenic or

neutrophilic

dermatosis-like rashes

Pyogenic sterile arthritis, pyoderma gangrenosum

and acne (PAPA)

Syndromic forms of pyoderma gangrenosum

Deficiency of IL-1 receptor antagonist (DIRA)

Deficiency of IL-36 receptor antagonist (DITRA)

CARD-14 mediated psoriasis (CAMPS)

Majeed syndrome

Pyrin-associated autoinflammation with neutrophilic

dermatosis (PAAND)

Singleton-Merten syndrome (SMS)

ADAM17 deficiency

AP1S3 and autoinflammatory psoriasis

NFKB1-associated sterile familial autoinflammatory

necrotizing fasciitis (FANF)

4 Panniculitis or

subcutaneous nodules

Blau syndrome / Early-onset sarcoidosis

Chronic atypical neutrophilic dermatitis with

lipodystrophy and elevated temperature (CANDLE)

5 Vasculitis or

vasculopathy

Deficiency of adenosine deaminase 2 (DADA2)

STING-associated vasculopathy with onset in

infancy (SAVI)

Familial chilblain lupus

Aicardi-Goutières syndrome (AGS) 1-7

Spodyloenchondrodysplasia with immune

dysregulation (SPENCDI)

6 Hyperkeratotic lesions NLRP-1 associated disease (NAIAD)

7 Hyperpigmented lesions H syndrome

8 Bullous lesions Autoinflammation and PLCγ2-associated antibody

deficiency and immune dysregulation (APLAID)

9 Aphthous lesions Haploinsufficiency of A20 (HA20)

Autoinflammatory periodic fever, immunodeficiency

and thrombocytopenia (PFIT)

C/EBPε-associated autoinflammation and immune

impairment of neutrophils (CAIN)

NFKB1-associated Behcet-like disease

RELA haploinsufficiency

Monogenic forms of inflammatory bowel disease

(IL-10 signaling defects)

such as R92Q and P46L generally lead to a milder disease with a
later onset (2).

TRAPS usually occurs in children as recurrent and irregular
febrile episodes with generalized myalgia, arthralgia, abdominal

FIGURE 2 | Erysipeloid lesion in a leg of a patient with FMF. Written informed

consent was obtained from the patient for the publication of this image.

pain, ocular lesions (conjunctivitis, uveitis, and periorbital
edema) and skin involvement (16, 34). Attacks may be
spontaneous or triggered by infections and other stress
situations (35).

Acute phase reactants, including CRP, ESR, and ferritin,
are usually increased during attacks and subside after them.
Secondary amyloidosis may occur in 25% of patients, mostly in
those untreated (14, 34).

On demand use of non-steroidal anti-inflammatory drugs
(NSAID) and glucocorticoids during attacks may improve
symptoms in 40% of patients. With regard to anti-TNF agents,
etanercept is the only proving efficacy in controlling attacks, since
infliximab, and adalimumab have been associated with severe
paradoxical reactions. IL-6 blockade with tocilizumab may also
be of benefit in some cases. IL-1 inhibition seems to be the
treatment of choice in TRAPS patients (36, 37). Anakinra is
effective in most cases, administered either continuously or on
demand (38), and canakinumab has been recently approved by
the FDA and the EMA as first line therapy (28).

Dermatologic manifestations
About 80% of patients present with skin lesions. The most
frequent is the painful erythema that consists of a migratory,
centrifugal, erythematous, tender, non-purpuric, and well-
demarcated plaque overlying migratory myalgia. The differential
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diagnostic of these erythematous lesions comprises cellulitis
plaque or panniculitis of the limbs (14–16). Other manifestations
include (16) urticaria-like plaques, generalized serpiginous
plaques, and small-sized vessel vasculitis (16, 32, 39, 40).

Cutaneous histopathology
Histological specimens of TRAPS are characterized by a mild to
massive perivascular and interstitial lymphocytic and monocytic
infiltrate (CD3+, CD4+, CD8+, CD68+, CD79a–, and CD20–)
in edematous areas of the superficial and deep dermis, with no
evidence of multinucleated macrophages nor granulomatous or
leukocytoclastic vasculitis. Direct immunofluorescence reveals
deposits of IgM and C3 at the dermal-epidermal junction or
diffuse interstitial deposits of IgA, G, and C3. Perivascular C3 and
C4 deposition in the dermis is also described (14, 16, 34, 39, 41).

Hyper-IgD Syndrome (HIDS)
HIDS and mevalonic aciduria (MA) represent parts of the
spectrum of the mevalonate kinase (MVK) deficiency (MKD)
(2, 42). Both diseases are inherited with an autosomal recessive
pattern and caused by mutations in the MVK gene, which
encodes MVK, an enzyme involved in the synthesis of non-
steroidal isoprenoids and also in the caspase activation pathway
(14, 43–45). The amount of residual enzymatic activity correlates
inversely with phenotype severity. V377I and I268T are the
most frequent pathogenic mutations. Most HIDS patients
are heterozygous for two different variants. The presence of
homozygous I268T mutations is associated with MA, the most
severe phenotype (42).

MA has a neonatal onset with repeated attacks of fever
accompanied with severe ocular and neurologic involvement,
musculoskeletal abnormalities associated with growth
retardation and dysmorphic features, hepatosplenomegaly,
lymphadenopathy, and cutaneous lesions (46). HIDS is clinically
characterized by an early onset of monthly or bimonthly
recurrent febrile attacks lasting from 3 to 7 days. Other typical
features include cervical or generalized lymphadenopathies,
prominent oral aphthae, arthralgia or non-erosive arthritis of
large joints, abdominal pain, and hepatosplenomegaly. Attacks
of systemic and cutaneous symptoms are occasionally triggered
by infections, vaccines, or trauma (47).

Acute phase reactants, IgD and IgA levels are usually
elevated during attacks. An increase of urinary mevalonic
acid levels during attacks is considered a specific marker for
MKD. Secondary amyloidosis has been found in about 3% of
patients (47).

Glucocorticoids at high doses are useful to control attacks
in some patients, but most of them will require biologic
therapy to avoid glucocorticoid adverse events. Among biologics,
etanercept may improve symptoms in more than 50% of patients.
However, IL-1 blockers are effective in the majority of cases (37).
Anakinra has been proved to be useful in continuous or on
demand administration (48) and canakinumab has been recently
approved by the FDA and the EMA for HIDS treatment (28).
Tocilizumab has been reported effective in some cases refractory
to previous treatments (49).

Dermatologic manifestations
Skin involvement occurs in about 70% of MKD patients
(47). Cutaneous lesions are heterogeneous and typically consist
of non-specific maculopapular or morbilliform rashes. Small
erythematous macules, papules, nodules, or cellulitis-like plaques
are also frequent. Erythema nodosum and urticarial lesions
have also been described, as well as petechiae or purpura
resembling IgA vasculitis, erythema elevatum diutinum, and
Sweet’s syndrome (16, 31, 32, 50). Bipolar aphthae are present in
almost 50% of patients (47).

Cutaneous histopathology
MKD cutaneous lesions are histologically variable. Endothelial
swelling and perivascular inflammatory infiltrate are the main
changes in a skin biopsy. In addition, signs of leukocytoclastic
or necrotizing vasculitis, Sweet-like lesions, erythema elevatum
diutinum, or erythema nodosum may also be observed. Direct
immunofluorescence may show perivascular and linear deposits
of IgD and C3 along the basal membrane (14, 51).

Otulipenia
Otulipenia, also known as OTULIN-related autoinflammatory
syndrome (ORAS), is an autosomal recessive autoinflammatory
disease due to mutations in the FAM105B gene, which encodes
OTULIN, a Met-1 specific deubiquitinase that acts as a negative
regulator of the NF-κB signaling pathway (10).

Clinically these patients present with an early-onset of
prolonged recurrent episodes of fever, erythematous skin
rash with nodules, arthralgia, abdominal pain, diarrhea,
lymphadenopathy, and elevated acute phase reactants (10).

Treatment with TNF inhibitors is very effective in controlling
disease activity (10).

Dermatologic manifestations
A painful erythematous rash with skin nodules is the most
frequent cutaneous manifestation. Other features include
pustular rash, lipoatrophy, and panniculitis (10, 52).

Cutaneous histopathology
Skin biopsies show different types of panniculitis and
neutrophilic dermatosis. Small and medium-sized vessel
vasculitis have also been reported (10, 52).

HOIL-1 Deficiency
HOIL-1 deficiency is an autosomal recessive disease caused
by mutations in the HOIL1 gene, which encodes HOIL1,
a component of the linear ubiquitination chain assembly
complex (LUBAC). These mutations result in destabilization of
LUBAC complex with an impairment of the IL-1β dependent
NF-κB activation in fibroblasts. However, myeloid cells, in
particular monocytes, are hyperreactive to IL-1β. Therefore, the
consequences of human HOIL-1 and LUBAC deficiencies for
IL-1β responses differ between cell types (10).

HOIL-1 deficiency is clinically characterized by an early-onset
of recurrent episodes of fever with gastrointestinal symptoms,
such as abdominal pain, vomiting, and diarrhea with blood and
mucus, and also lymphadenopathy, respiratory distress, failure
to thrive, and muscular amylopectinosis (storage of abnormal
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glycogen that leads to intracellular glycogen inclusions), which
is complicated by myopathy and cardiomyopathy. Recurrent
bacterial infections secondary to immunodeficiency features,
including hyper-IgA syndrome and memory B-cell defects
with antibody production deficiency and impaired response
to vaccines have been reported. Inflammatory symptoms are
accompanied by elevated acute phase reactants during flares
(10, 53).

Dermatologic manifestations
Eczematous lesions, erythroderma, and exfoliative dermatitis
occurred in different patients with HOIL-1 deficiency.
Vaccination-induced subcutaneous inflammatory lesions
have also been described (10, 53).

Cutaneous histopathology
No data regarding HOIL1 deficiency and cutaneous histology
is available.

Urticarial Rashes
Cryopyrin-Associated Periodic Syndromes (CAPS)
CAPS or cryopirinopathies comprise three autosomal dominant
conditions with different disease severity. The mildest form
is familial cold autoinflammatory syndrome (FCAS), the
intermediate phenotype is Muckle-Wells syndrome (MWS),
and the most severe form is neonatal-onset multisystem
inflammatory disease (NOMID), also known as chronic infantile,
neurologic, cutaneous and articular (CINCA) (54). All CAPS
are caused by mutations in the NLRP3 gene, which encodes
NLRP3 protein or cryopyrin and lead to constitutive activation
of NLRP3 inflammasome and IL-1β overproduction. However,
more than half of CINCA/NOMID cases are produced
by de novo mutations. While the presence of pathogenic
mutations predicts a more severe phenotype with neurologic
complications and sensorineural hearing loss, low penetrance or
uncertain significance variants are associated with milder disease
phenotypes (11, 54).

Common clinical features to all CAPS forms include an
early disease onset with fever or low-grade fever episodes,
fatigue, urticarial rash, musculoskeletal symptoms, and ocular
involvement as conjunctivitis and uveitis. During attacks, acute
phase reactants tend to be elevated (14, 17). In FCAS, attacks
are typically triggered by cold exposure and self-limited in
<24 h. In MWS, attacks usually last 1–2 days and sensorineural
hearing loss and amyloidosis are frequently developed, mostly
in undiagnosed or untreated patients. CINCA/NOMID is
characterized by a sustained systemic inflammatory response
that included persistent fever, diffuse urticarial lesions and
severe osteoarticular, ocular and neurologic involvement, usually
leading to deforming and irreversible sequelae.Without a prompt
directed treatment, CINCA/NOMID becomes a disabling and
lethal disease.

Anti-IL-1 agents are considered the treatment of choice
for CAPS (39, 55, 56) since anakinra and canakinumab are
approved by the FDA and the EMA for CAPS treatment.
While IL-1 blockade does not appear to influence established
joint and bone damage, its early administration seems to

FIGURE 3 | Generalized urticarial rash with erythematous flat wheals without

surrounding flare on the left arm (A) and trunk (B) in a patient with

Muckle-Wells syndrome. Written informed consent was obtained from the

patient for the publication of this image.

reduce the risk of developing (or improve them when
developed) amyloidosis, hearing loss, and neurologic
complications (57).

Dermatologic manifestations
A non-pruritic, somewhat symmetrical and evanescent urticarial
rash involving the trunk and extremities, usually sparing the
head, is the most frequent cutaneous event in CAPS (Figure 3)
(20, 31, 58). As for CAPS, in other monogenic autoinflammatory
diseases with urticarial lesions, hives are usually more flattened,
painful or burning, and last longer than those of chronic
spontaneous urticaria. In addition, they may also appear
as erythematous patches or even solid lesions. Angioedema
is not usually present. Although FCAS attacks are usually
triggered by cold exposure, contact with cold objects does not
cause a disease attack, and therefore, the ice cube test is
negative (20).

Cutaneous histopathology
Neutrophilic urticarial dermatosis is the clinicopathological term
used to describe dermatologic and histological findings in CAPS,
which are different from those observed in ordinary neutrophilic
urticaria. CAPS skin biopsies usually show no edema or mild
dermal edema of the papillary dermis with a perivascular
and neutrophilic infiltrates with limited leukocytoclasia (32)
(Figure 4). The presence of neutrophilic epitheliotropism
(neutrophils around or within eccrine glands or ducts, or inside
the epidermis) is rather characteristic although it can be seen in
other entities (Figure 5) (59). Interstitial neutrophilic infiltrates
have also been described (14, 60, 61).
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FIGURE 4 | Histopathology of a wheal from a patient with Muckle-Wells syndrome (MWS). (A) Dermal interstitial and perivascular infiltrates composed of lymphocytes

and neutrophils consistent with neutrophilic urticaria. (B) Perivascular infiltrate in detail.

FIGURE 5 | Skin biopsy in a patient with familial cold autoinflammatory

syndrome (FCAS) due to a somatic mutation in the NLRP3 gene. There are

dermal neutrophilic infiltrates between the collagen bundles and around blood

vessels with presence (inset) of neutrophils around and within eccrine glands.

NLRP12-Associated Autoinflammatory Disease

(NLRP12-AD)
NLRP12-AD, also known as FCAS2, is an autosomal dominant
autoinflammatory disease caused by mutations in the NLRP12
gene, which encodes Monarch-1 (31) and play a role in the
activation of NF-κB and caspase 1 signaling pathways (62).

Similarly, to FCAS, patients with NLRP12-AD present with
recurrent episodes of high fever triggered by cold exposure,
lasting for 2–10 days, every 3–4 weeks. Fever is commonly
accompanied by arthralgia, myalgia, abdominal pain, headache,
lymphadenopathy, oral aphthae, and skin rash. Sensorineural
hearing loss is the most common long-term complication. Acute
phase reactants are elevated during attacks (63, 64).

Glucocorticoids, antihistamines, and NSAIDs may be useful
in mild cases. Severe cases seem to respond to anakinra and also
to anti-IL-6 and anti-TNFα agents (64, 65).

Dermatologic manifestations
Cold exposure usually induces the attack and cutaneous
manifestations consisting of an evanescent urticarial rash
involving the trunk, extremities and face. An erythematous malar
rash (64) and cutis laxa (66) have also been described to occur.
Contrary to FCAS, FCAS2 rashes tend to be itchy. The ice cube
test is consistently negative (63, 64).

Cutaneous histopathology
No data about NLRP12-AD cutaneous histology is available.
However, histopathological findings are expected to be similar to
those described in CAPS.

PLCγ2-Associated Antibody Deficiency and Immune

Dysregulation (PLAID)
PLAID, also known as FCAS3, is an autosomal dominant
autoinflammatory disease due to mutations in the PLCγ 2 gene,
encoding phospholipase Cγ2 (PLCγ2), a transmembrane
signaling enzyme with phospholipase activity. Cellular
dysregulation is produced by a signaling reduction on
pathways depending of PLCγ2, which are enhanced at low
temperatures. B cells, NK cells, and mast cells are involved in the
inflammatory dysregulation (67). De novo mutations have been
also reported (68).

Clinical manifestations include an early onset of recurrent
cutaneous lesions triggered by cold exposure and immunological
abnormalities, such as the presence of antinuclear antibodies
(ANA), immunoglobulin deficiencies (mostly IgM and IgA),
elevated IgE levels, and decreased amounts of switched memory
B-cells resembling a primary immunodeficiency, which leads to
an increased susceptibility to infections (68).

Avoiding cold temperatures is the main preventive therapy.
Depending on the history of repeated infections, intravenous
immunoglobulins and prophylactic antibiotics can be used (69).
Directed therapies with PLCγ2 inhibitors are not available
yet (70).

Dermatologic manifestations
The main cutaneous manifestation of PLAID is a recurrent
itchy cold-induced evaporative urticaria, since it appears in
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cold-sensitive regions of the body after generalized exposure to
cold air or evaporative cooling, but not after contact with cold
objects. Lesions subside with an increase in temperature (69, 70).
Other less common features include a neonatal ulceration of
the nasal tip, which may show spontaneous regression or have
a progressive and destructive course, and small papules and
erosions on the fingers and toes that tend to resolve without
sequelae. Granulomatous-like inflammatory lesions, usually
presenting as red-brown, indurated and scaly plaques and
nodules of the skin sparing warm regions, such as flexural
surfaces and skinfolds (69), and infantile epidermolysis-bullosa-
like eruption, initially generalized and later evolving to recurrent
erythematous plaques and vesiculopustular photosensitive
lesions (71) have also been reported.

Cutaneous histopathology
Urticarial lesions show an increased number of perivascular
and interstitial mast cells, which appear degranulated after
cold exposure (72). Biopsies of granulomatous lesions
reveal well-delineated, non-necrotizing, non-caseating, or
sarcoid-type granulomas, but also diffuse, poorly-defined
granulomatous inflammation, particularly in the superficial
dermis. Granulomatous infiltrates are composed by nodular
foci of CD68+ epithelial histiocytes and multinucleated
giant cells surrounded by a mild CD4/CD8+ lymphocytic
infiltrate and scattered eosinophils. Perineural and lymph nodes
granulomatous inflammation may also be observed (69).

NLRC4-Associated Autoinflammatory Diseases

(NLRC4-AD)
NLRC4-associated macrophage activation syndrome (NLRC4-
MAS) and familial cold autoinflammatory syndrome 4
(FCAS4) are part of NLRC4-AD (73). Both phenotypes are
autosomal dominant diseases caused by mutations in the NLRC4
gene, encoding NLRC4, which lead to a constitutive NLRC4
inflammasome activation resulting in an increased secretion
of IL-1β and IL-18. IL-18 is found at extremely high levels in
patients with NLRC4-MAS and may persist elevated, even in the
absence of clinical activity (74, 75).

The most severe clinical phenotype (NLRC4-MAS) is
dominated by a multisystemic inflammation starting in the
first year of life with symptoms of chronic inflammatory
bowel disease, MAS, or symptoms resembling CINCA/NOMID.
Enterocolitis tends to subside over time (74). The mildest
phenotype (FCAS4) usually starts at age of three with attacks
after exposure to cold stimuli of urticaria, arthralgia, ocular
inflammation, and fever in half of cases, in absence of visceral
involvement. Although CRP levels are elevated, in severe cases,
ESR values tend to decrease as the disease progresses.

Glucocorticoids and anakinra may be useful in most mild
cases (76). IL-18 inhibitors and anti-interferon-gamma inhibitors
have shown good response in severe cases (73, 75).

Dermatologic manifestations
Skin manifestations range from an unspecific rash to cold
urticaria, evanescent urticarial, or linear erythematous lesions
(74). While children commonly present with urticarial

rash alone, in adult patients, urticarial lesions, and painful
erythematous nodules on lower extremities are the most frequent
signs (77, 78).

Cutaneous histopathology
NLRC4-AD histopathological findings are scarce. Nodular
lesions show deep dermal and subcutaneous lymphohistiocytic
infiltrates with septal and lobular panniculitis. Perivascular
lymphocytic infiltrates without vasculitic changes have also been
described. Direct immunofluorescence has not detected IL-1β
staining (77).

Vibratory Urticaria
Vibratory urticaria is an autosomal dominant autoinflammatory
disease caused by mutations in the ADGRE2 gene, which
encodes ADGRE2, a member of the epidermal growth factor
seven transmembrane that acts as a cell surface receptor
with two subunits, the extracellular α subunit and the
transmembrane β subunit. It is predominantly expressed in
leukocytes, especially in neutrophils and macrophages, but also
in mast cells. The endogenous ligand of ADGRE2 is dermatan
sulfate, which is the predominant glycosaminoglycan of the
skin. The mutated ADGRE2 receptor undergoes autocatalytic
cleavage, producing an extracellular subunit that non-covalently
binds a transmembrane subunit with destabilization of the
autoinhibitory subunit interaction and sensitization of mast cells
to IgE-independent vibration-induced degranulation. Therefore,
transitory high histamine serum levels seem to be responsible for
the clinical manifestations in these patients (79).

Localized pruritic hives after repetitive vibratory or friction
stimuli are the principal manifestations of the disease.
Occasionally, cutaneous lesions may be accompanied by
systemic symptoms (79).

Dermatologic manifestations
Skin lesions consist of localized pruritic hives, angioedema,
erythema, and pruritus caused by repetitive physical stimulation.
Cutaneous changes may appear from a few minutes to an hour
after the vibratory stimulus. In prolonged or intense mechanical
expositions, urticarial lesions may be associated with a more
severe angioedema or systemic symptoms, such as headache,
fatigue, facial flushing, and metallic taste. While dermographism
is not present in patients with vibratory urticaria, urticarial rash
can be provoked by stimulating the forearm with a laboratory
vortex (79).

Cutaneous histopathology
Skin biopsies of vibration-induced lesions show a significant
release of mast cell granular content in cases samples compared
to controls (79).

Pustular, Pyogenic, or Neutrophilic

Dermatosis-Like Rashes
Pyogenic Arthritis, Pyoderma Gangrenosum, and

Acne Syndrome (PAPA)
PAPA is an autosomal dominant autoinflammatory disease
caused by mutations in the PSTPIP1 gene, encoding
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TABLE 3 | Characteristics of the pyoderma gangrenosum-associated autoinflammatory syndromes.

PASH syndrome

(86–89)

PAPASH

syndrome

(83, 90)

PsAPASH

syndrome

(91)

PASS syndrome

(92)

Complete

name/Clinical

manifestations

Pyoderma

gangrenosum, acne,

and hidradenitis

suppurativa

Pyogenic/

psoriasis arthritis, pyoderma

gangrenosum, acne,

hidradenitis suppurativa

Psoriatic arthritis, pyoderma

gangrenosum, acne,

hidradenitis suppurativa

Pyoderma gangrenosum,

acne, hidradenitis

suppurativa, seropositive

spondyloarthropathy

Year of description 2012 2013 2015 2012

Mutated genes NCSTN, PSMB8,

NOD2, MEFV, IL1RN,

NLRP3, PSTIP1

PSTPIP1 (E277D) Unknown Unknown

Treatment reported Dapsone, cyclosporine,

IL-1 blockers,

infliximab, adalimumab

Glucocorticoids,

cyclosporine, anakinra,

adalimumab, infliximab,

secukinumab

Glucocorticoids,

cyclosporine, anakinra,

adalimumab, infliximab

Infliximab

CD2BP1 or PSTPIP1 (80). Although the pathogenesis is
not completely understood, PSTPIP1 seems to play a role in
inflammasome activation and overproduction of IL-1β and
IL-18 (81).

Clinical manifestations start at pediatric age with recurrent
flares of erosive, sterile, and deforming arthritis of the elbows,
ankles, and knees, leading to early joint destruction. Skin
ulcers and severe acne occur during adolescence. Fever is rare
and frequency of flares tends to decrease with age. Increased
acute phase reactants and leukocytosis are observed during
attacks (82).

Glucocorticoids, IL-1 blockers, and anti-TNF agents may be
useful in treating arthritis and pyoderma gangrenosum (83).

After PAPA description in 1997 by Lindor et al. (84),
other pyoderma gangrenosum-associated syndromes (85) with
autoinflammatory background and a late-onset have been
described. Those include PASH (86–89), PAPASH (83, 90),
PsAPASH (91), and PASS (92). These PAPA-like syndromes are
summarized in Table 3.

Dermatologic manifestations
Skin involvement includes pyoderma gangrenosum and
severe cystic acne, which gets worse with puberty. Pyoderma
gangrenosum may occur spontaneously or be triggered
by trauma (pathergy) and starts as a violaceous tender
papule, nodule or a sterile pustule that rapidly expands
with necrosis of the surrounding tissue, and finally results in
a poor-healing and painful ulcer with undermined borders
(Figure 6). Granulation tissue, necrosis or purulent discharge
is common in the middle of the ulcer. Cribriform scarring is a
hallmark of the disease and may help with the diagnostic (93).
Psoriasiform lesions and rosacea-like eruptions have also been
reported (94).

Cutaneous histopathology
The typical histological feature consists of central sterile
neutrophilic infiltrates in the dermis that becomes with mixed
cellularity in the peripheral areas (Figure 7) (14, 93).

Deficiency of IL-1 Receptor Antagonist (DIRA)
DIRA is an autosomal recessive autoinflammatory disease caused
by mutations in the IL1RN gene, encoding IL-1 receptor
antagonist (IL-1RA) (95). This mutations lead to the absence of
IL-1RA and produce an overactivity of IL-1 (57).

DIRA is clinically characterized by a neonatal-onset of
chronic-recurrent flares with cutaneous pustulosis, joint swelling,
and bone pain due to painful multifocal aseptic osteomyelitis,
long bone periostitis, epiphyseal overgrowth, and secondary
skeletal malformations. Interstitial lung disease, vasculitis of the
central nervous system, thrombosis, and respiratory distress are
much less frequent manifestations (96, 97). Although fever is
usually absent, acute phase reactants are constantly elevated
during attacks. If untreated, the disease tends to evolve to
multiorgan failure with a high mortality rate (57, 96).

Anakinra at doses of 1–5 mg/kg/day remains the treatment of
choice for DIRA since it produces a fast and complete clinical and
biological resolution in the majority of patients (98).

Dermatologic manifestations
Newborn children present with localized or generalized
erythematous plaques and overlying sterile pustules sparing
palms and soles. These plaques may evolve to diffuse
desquamation resembling ichthyosiform lesions. Nail changes
with pitting and onychomadesis, similar to those experiencing in
psoriasis, are frequent. Oral lesions such as ulcers and vesicular
stomatitis may also occur (97).

Cutaneous histopathology
Histological findings resemble those of pustular psoriasis
and skin biopsies show acanthosis and hyperkeratosis of the
epidermis with extensive epidermal and dermal neutrophilic
infiltrates developing pustules around hair shafts. Vasculitis in
subcutaneous tissue adjacent to the bone have also been described
(96, 99).

Deficiency of IL-36 Receptor Antagonist (DITRA)
DITRA is an autosomal recessive autoinflammatory disease
caused by mutations in the IL36RN gene, which encodes IL-36
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FIGURE 6 | Different stages of pyoderma gangrenosum in PAPA. (A) Initial lesion with an erythematous and tender plaque with a central sterile pustule; (B) Ulceration

with necrotic borders; and (C) Poor-healing and painful ulcer with undermined borders and cribriform scarring. Written informed consent was obtained from the

patients for the publication of these images.

FIGURE 7 | Histopathology of pyoderma gangrenosum in a PAPA patient. (A) Dense neutrophilic infiltrate with upper dermis edema. (B) Neutrophilic infiltrate in detail.

receptor antagonist (IL36Ra) (100). Thesemutations are involved
in NF-κB activation and overproduction of proinflammatory
cytokines such as IL-36 and IL-8 (100, 101). In recent years, late-
onset cases have been described in patients carrying heterozygous
mutations (101).

DITRA is clinically included in generalized pustular psoriasis.
These patients may have a pediatric and adult onset consisting of
irregular episodes of high-grade fever, generalized pustulosis, and
asthenia, with elevated acute phase reactants and leukocytosis.
Attacks have been reported to be triggered by infections,
pregnancy, and menstruation (100). Several authors have
suggested that patients with early-onset generalized pustular
psoriasis without concomitant psoriasis vulgaris are often
diagnosed with DITRA (102).

DITRA is currently included in the group of
autoinflammatory keratinization diseases (AIKD), a term
first used in 2017 to cluster those disorders characterized
by keratinized lesions caused by an autoinflammatory
mechanism (103).

Conventional topical and systemic therapies used for
psoriasis may also be useful in DITRA patients (16). Anakinra
(anti-IL-1), adalimumab, infliximab (anti-TNFα), ustekinumab

(anti-IL-12/23), and secukinumab (anti-IL-17) have shown
efficacy in isolated cases (104–106). Recently, a phase 1 clinical
trial in patients with generalized pustular psoriasis treated with a
single intravenous dose of a monoclonal antibody against the IL-
36 receptor has shown promising results by reducing the severity
of the disease over a 20-week period, regardless of the presence of
the IL36RN mutation (107).

Dermatologic manifestations
Cutaneous lesions resemble those of generalized pustular
psoriasis and consist of a diffuse erythematous skin eruption
that tends to be rapidly covered by pustules with subsequent
desquamation (Figure 8). Skin eruptions may mimic all forms
of psoriasis ranging from psoriasis vulgaris to acrodermatitis
continua (100, 108).

Cutaneous histopathology
Histological features are indistinguishable from classical pustular
psoriasis and include epidermal hyperplasia with acanthosis,
irregular papillomatosis, subcorneal spongiform pustules,
compact orthokeratosis, or parakeratosis and neutrophilic
infiltration (Figure 9). Immunohistochemistry of the dermis
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shows superficial perivascular infiltrates of CD8 and CD3T cells,
macrophages and neutrophils (100, 108).

CARD-14 Mediated Psoriasis (CAMPS)
CAMPS is an autosomal dominant inherited disease due to
mutations in the CARD14 gene encoding CARD14. Such
mutations produce an overactivation of NF-κB pathway (109).
Keratinocytes show high levels of CARD14 (110). CAMPS is
currently classified as AIKD (103).

Disease presentation may vary among monogenic psoriasis,
pustular psoriasis, psoriatic arthritis, or pityriasis rubra
pilaris. Features of systemic inflammation are usually absent.
Therapeutic options are mainly the same as those used for
treating psoriasis and DITRA (111–113).

Dermatologic manifestations
Clinical manifestations are mostly cutaneous presenting as a
plaque and pustular psoriasis. Other diseases, such as pityriasis

FIGURE 8 | Clinical features of a patient with DITRA with a heterozygous

mutation in the IL36RN gene. The clinical picture started in adulthood with

flares of diffuse erythematous plaques covered with pustules that often

involved the whole body (A,B). The episodes were often triggered by bacterial

infections. Written informed consent was obtained from the patient for the

publication of this image.

rubra pilaris or acute generalized exanthematous pustulosis, have
also been associated with CARD14 mutations. Disease extension
may vary from localized to generalized, as well as severity, which
may range from mild to severe (111, 113–115).

Cutaneous histopathology
Skin biopsies show histopathological features of psoriasis or
pityriasis rubra pilaris (116).

Majeed Syndrome
Majeed syndrome is an autosomal recessive autoinflammatory
disease caused by mutations in the LPIN2 gene, which encodes
phosphatase lpin2 (117). Mutated LPIN-2 induces NLRP3
activation with the consequent IL-1β overproduction (118).

The clinical triad is characterized by the early onset of chronic
recurrent multifocal sterile osteomyelitis (CRMO), congenital
dyserythropoietic anemia and neutrophilic skin lesions (119).
Other manifestations during attacks include fever and swelling
of large joints. Growth retardation and permanent flexion
contractures are long-term complications in untreated patients
(120). Abnormal laboratory tests include raised acute phase
reactants levels, anemia, and variable leukocytosis.

Treatment with NSAIDs and glucocorticoids may be
useful in controlling CRMO-related pain. Anti-TNF agents,
bisphosphonates, and interferon gamma show variable success
rates. IL-1 blockers have been useful in controlling inflammatory
manifestations (121–123).

Dermatologic manifestations
Inflammatory dermatoses are the most frequent cutaneous
symptoms, and may occur as neutrophilic dermatoses and
erythematous and scaly plaques. The prototypic findings are
Sweet syndrome-like lesions, seen as erythematous plaques,
pseudovesiculous or target lesions (120, 124). CRMO has
also been associated with generalized pustulosis, palmoplantar
psoriasis, pyoderma gangrenosum, acne, recurrent subcutaneous
abscesses, and SAPHO syndrome (31, 120, 125–128).

FIGURE 9 | Histology of DITRA shows epidermal acantosis with edema and dilated blood vessels in the papillary dermis. There is epidermal spongiosis with the

presence of neutrophils migrating through the epidermis (A,B). In the most superficial part of the epidermis (inset-B) there is a subcorneal pustule that is formed

through the aggregation of neutrophilic spongiform pustules.
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Cutaneous histopathology
Skin histopathology displays edema of the papillary dermis with
dense dermic neutrophilic infiltrates. A bone biopsy usually
shows subacute and chronic inflammatory changes (129).

Pyrin-Associated Autoinflammation With

Neutrophilic Dermatosis (PAAND)
PAAND is an autoinflammatory disease caused by mutations in
the MEFV gene, the same gene responsible for FMF. However,
contrarily to the autosomal recessive but inconstant pattern
observed in FMF patients, PAAND has an autosomal dominant
inheritance with complete penetrance. PAAND mutations
(S242R and E244K) are associated with pyrin inflammasome
activation (130).

PAAND has a childhood-onset characterized by recurrent
febrile episodes lasting for several weeks accompanied with
arthralgia, myalgia and cutaneous inflammatory lesions. During
attacks, acute phase reactants and circulating proinflammatory
cytokines (IL-1β, IL-6, TNF-α, and IL-1Ra) levels are normally
increased (130).

Treatment with IL-1 blockers has shown a rapid control
of clinical and laboratory abnormalities. Infliximab and
adalimumab have been used with success in anakinra-resistant
patients (130).

Dermatologic manifestations
Severe neutrophilic dermatoses in PAAND have a wide
spectrum of presentation, including pustular acne, pyoderma
gangrenosum, sterile skin abscesses, neutrophilic small vessel
vasculitis, severe hidradenitis suppurativa, and neutrophilic
panniculitis (32, 130, 131).

Cutaneous histopathology
Histopathology reveals an spared epidermis and dense dermal
neutrophilic infiltrates both interstitial and perivascular (131).

Other Novel Psoriasiform Monogenic

Autoinflammatory Diseases

Singleton-merten syndrome (SMS)
SMS is an autosomal dominant transmitted disease caused by
mutations in IFIH1 or DDX58 genes. The resulting proteins
(melanoma differentiation associated protein 5 [MDA5] and
retinoic-acid-inducible gene I [RIG-I], respectively) are involved
in type I interferon induction pathways (132).

Clinical manifestations occur after childbirth and are
characterized by dental dysplasia, tendon rupture, osteoporosis,
arthropathy, neurologic abnormalities, aortic calcification, and
glaucoma. Cutaneous involvement as localized or generalized
psoriasis is present in the majority of patients (132).

As in other type I interferonopathies, the use of a Janus kinase
(JAK) inhibitor has been useful in a SMS patient (132).

ADAM17 deficiency
ADAM17 deficiency is considered an autoinflammatory disease
(6) caused by autosomal recessive mutations in the ADAM17
gene, encoding TNF-α converting enzyme (TACE), which is
necessary for the cleavage and secretion of TNF-α, epidermal

growth factor, transforming growth factor alpha (TGF-α), and
some desmogleins (6, 133).

Clinical features were described in two consanguineous
siblings with neonatal-onset of pustular psoriasis followed by
chronic bloody diarrhea and cardiomyopathy. Skin lesions
were characterized by perioral and perianal erythema with
fissuring and a generalized pustular rash that evolved to
psoriasiform erythroderma, with flares of erythema, scaling, and
widespread pustules. Cutaneous infections were frequent. Other
dermatologic manifestations included hair abnormalities (short
or fragile hair and wiry eyelashes and eyebrows), and thickened
nails with frequent episodes of paronychia. Dermatopathology
revealed infiltrates of T cells in the epidermis. CD3+ T cells
were located around the skin follicles and in the epithelium,
CD4+ T cells in the perifollicular region and CD8+ T cells
in the epithelium at the neck of the follicle. B cells (CD20+),
natural killer cells (CD56+), or neutrophils were scarce within
the infiltrates (133).

Treatment with acitretin, ciclosporin, methotrexate, and
adalimumab has not been useful in patients with ADAM17
deficiency. However, anti-IL1 and anti-IL6 therapy may be
potential agents since peripheral-blood mononuclear cells from
patients overproduced IL-1β and IL-6 after lipopolysaccharide
stimulation (133).

AP1S3 and autoinflammatory psoriasis
Pustular psoriasis may be caused by mutations in the AP1S3
gene encoding AP1S3, a protein implicated in autophagosome
formation, which is elevated in keratinocytes. Its deficiency
disrupts keratinocyte autophagy and causes abnormal
accumulation of p62, an adaptor protein mediating NF-kB
activation, with subsequent up-regulation of IL-1 signaling and
overexpression of IL-36. The inheritance pattern is not clear
since patients with de novo mutations and with a mutated allele
from an unaffected parent have been reported. Treatment with
IL-36 blockade has demonstrated to reverse skin lesions (134).

Although inflammatory symptoms such as arthritis may be
present, pustular psoriasis is the most prominent clinical feature.
This may be localized to the palms and soles (palmar plantar
pustulosis) or to the toes and fingertips (acrodermatitis continua
of Hallopeau), but it may also be generalized (134).

Panniculitis or Subcutaneous Nodules
Blau Syndrome and Early-Onset Sarcoidosis
Blau syndrome and early-onset sarcoidosis are the two forms
of pediatric granulomatous arthritis caused by mutations in the
NOD2/CARD15 gene encoding NOD2. While Blau syndrome
is inherited in an autosomal dominant manner, early-onset
sarcoidosis is the spontaneous form, caused by the novo
mutations (135).

In both disorders, symptoms onset occurs during the
first decade of life with the sequential, but not constant,
triad of maculopapular rash, non-erosive arthritis of wrists,
hands, elbows and ankles, and uveitis. Other less frequent
manifestations include fever, large and small vessel vasculitis,
interstitial lung disease, cranial neuropathies, and granulomatous
involvement of salivary glands, kidneys, spleen, and liver
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(136, 137). Laboratory studies are typically normal, although
elevated ESR and angiotensin-converting enzyme levels and
hypergammaglobulinemia have been reported (137).

With regard to treatment, high-dose glucocorticoids may be
useful for inflammatory symptoms. Limited reports have shown
effectiveness with thalidomide, methotrexate, cyclosporine and
other conventional immunosuppressants, together with anti-IL-
1 and anti-IL-6 agents. However, anti-TNF blockers (infliximab
and adalimumab) seem to be the drugs associated with better
responses (15, 135–137).

Dermatologic manifestations
Skin involvement is the most prominent and the earliest
expression of the disease, which is manifested as an erythematous
maculopapular fine scaly rash on the trunk and extremities,
resembling an ichthyosiform exanthema. Progressively it
becomes tan-colored with lichenoid characteristics and dirty
scaly appearance. This later stage tends to last longer (22, 138).
Erythema nodosum-like lesions, pityriasis lichenoides, leg
ulcers, and leukocytoclastic vasculitis have also been observed
(136, 139).

Cutaneous histopathology
Histopathology of the cutaneous lesions shows non-caseating,
sarcoid-type granulomas in the subpapilar dermis with a variable
number of lymphocytes and eosinophils (138). Biopsies from
purpuric lesions display vasculitis, and leg ulcers can show
both, granulomatous infiltrates and chronic granulation with
mononuclear infiltration in the fat tissue (139).

Chronic Atypical Neutrophilic Dermatitis With

Lipodystrophy and Elevated Temperature Syndrome

(CANDLE)
CANDLE syndrome, also called proteasome associated
autoinflammatory syndrome (PRAAS), is an autosomal
recessive autoinflammatory disease caused by mutations
in the PSMB8 gene, which encodes the β5i subunit of the
immunoproteasome (5, 11). PSMB9, PSMA3, PSMB4, and
POMP are other proteasome genes recently identified as also
causing CANDLE/PRAAS (140). This condition is considered
an interferonopathy since mutant genes cause defective
proteasome/immunoproteasome assembly and accumulation
of ubiquitinated proteins that induce intracellular stress and
increased IFN-1 production through JAK signaling pathway
(141, 142).

Classical manifestations include neonatal onset of recurrent
or persistent high-fever, cutaneous lesions, and facial and
generalized lipodystrophy. Arthralgia, muscle atrophy,
hepatosplenomegaly, lymphadenopathy, and inflammatory
involvement of other territories, such as ocular, meningeal,
epididymis and parotids, are also common (143). Raised acute
phase reactants are constant and muscle and hepatic enzymes
are frequently elevated. Positive ANA and antineutrophil
cytoplasmic antibodies (ANCA) may be present without
pathogenic significance (144).

Glucocorticoids, conventional immunosuppressive drugs, and
biologic agents, such as anti-TNF, anti-IL-1, or anti-IL-6 have

been used without complete response (143, 144). Baricitinib,
a JAK inhibitor that prevents the expression of IFN-induced
genes and the autoinflammatory loop, has shown efficacy in
CANDLE/PRAAS patients (145).

Dermatologic manifestations
Perinatal-onset fever attacks are accompanied by annular
erythemato-violaceous edematous plaques on trunk and
extremities, and stable violaceous erythemas on the perioral and
periorbital areas. Most of these lesions resolve within few days
or weeks leaving purpuric pigmentation, but recurrences are
common. Other less frequent manifestations include violaceous
nodules, hirsutism, and acanthosis nigricans. The development
of progressive lipoatrophy of the face, extremities, and trunk
occurs in the late phase of the disease (22, 143, 144).

Cutaneous histopathology
Histopathology of cutaneous lesions is characterized by dense
interstitial and perivascular atypical-looking (because of the
presence of mitotic figures) mononuclear infiltrates with
karyorrhexis in the deep dermis and fat tissue. Neutrophils
and eosinophils may also be observed within the infiltrates.
Immunohistochemistry shows strong and diffuse positivity for
myeloperoxidase, lysozyme, CD68, and CD45, which confirms
the myeloid lineage of the infiltrate by revealing the presence of
macrophages and histiocytes. T cells and B cells, identified by
positivity for CD3, CD45RO, and CD20, are also present to a
lesser extent (143, 144).

Vasculitis or Vasculopathy
Deficiency of Adenosine Deaminase 2 (DADA2)
DADA2 is an autosomal recessive autoinflammatory disease
caused by mutations in the CECR1 gene, encoding ADA2 (146,
147). ADA2 acts as a growth factor in the myeloid lineage
promoting differentiation into anti-inflammatory macrophages,
and has also a role in the development and maintenance of
endothelial cells. Mutant ADA2 promotes vascular damage by
affecting endothelial cells and inducing neutrophil-driven cell
damage (146, 147).

DADA2 patients commonly exhibit persistent or recurrent
fever, skin lesions (mostly livedo reticularis or racemosa and
subcutaneous nodules), peripheral neuropathy and vascular
lesions secondary to distal ischemia or hemorrhage of the affected
territories, especially involving the brain. Disease phenotype
is frequently indistinguishable from polyarteritis nodosa. Oral
aphthae, arthralgia and hepatosplenomegaly are also frequent.
Acute phase reactants are increased during attacks and the
presence of variable peripheral blood cytopenias and low
immunoglobulin levels contribute to develop a certain degree
of immunodeficiency. Although disease typically occurs in early
childhood, later-onset cases have also been described (146, 147).

Although high-dose glucocorticoids can be effective
in some patients, low-dose glucocorticoids, conventional
immunosuppressive drugs, anti-CD20 therapy and anti-IL-1 and
anti-IL6 blockers do not seem to provide a clear benefit. However,
anti-TNF agents, in particular etanercept, have demonstrated to
control systemic inflammatory manifestations and progression
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FIGURE 10 | Livedo racemosa on the lower limbs in a patient with DADA2.

Written informed consent was obtained from the patient for the publication of

this image.

of vascular disease, in the absence of normalization of ADA2
enzyme activity. To date, allogeneic hematopoietic stem cell
transplantation is the only therapy that has demonstrated to cure
the disease (146–148).

Dermatologic manifestations
The most frequent cutaneous lesions are livedo reticularis or
racemosa (Figure 10) and subcutaneous nodules. Pediatric and
adult presentations may have a phenotype resembling cutaneous
arteritis or polyarteritis nodosa refractory to conventional
immunosuppressive therapy. Raynaud syndrome, digital
necrosis, ulcers, and erythema nodosum may also occur
(146, 147, 149).

Cutaneous histopathology
Skin biopsies are characterized by dermal interstitial neutrophilic
infiltrates which stain positive for myeloperoxidase and CD68
confirming the existence of macrophages and a perivascular
lymphocytic infiltrate. Livedo and nodular lesions may display
non-granulomatous necrotizing medium-sized vessels vasculitis.
However, leukocytoclastic vasculitis or panniculitis have also
been reported (32, 146, 147, 149).

STING-Associated Vasculopathy With Onset in

Infancy (SAVI)
SAVI is an autosomal dominant autoinflammatory disease caused
by mutations in the TMEM173 gene encoding STING, an
indirect sensor of cytosolic DNA that activates IRF3 and induces
transcription of IFN-1 related genes. Mutant STING results in
overactivation of IRF3 and transcription of IFNβ (150).

SAVI is clinically characterized by a neonatal-onset of
recurrent febrile attacks with cutaneous rash, small-vessel
vasculitis, and interstitial lung disease. During flares, acute phase
reactants are elevated and low-titer autoantibodies, such as ANA,
ANCA, and antiphospholipid antibodies, are frequent (150, 151).

As in other interferonopathies, IFN-1 pathway blockade with
JAK inhibitors, in particular baricitinib, seems to be effective in
SAVI, since glucocorticoids, conventional immunosuppressive,
and anti-cytokines agents have not demonstrated efficacy (145).

Dermatologic manifestations
Skin is the initial territory involved in SAVI. Lesions are caused
by vasculitic changes with subsequent tissue damage and are
manifested as violaceous, scaly and atrophic plaques affecting
hands, cold-induced ulcerative distal lesions and erythemato-
violaceous nodules on the cheeks, ears and nose, nail dystrophy,
distal digital gangrene, and nasal septum perforation. Other
cutaneous lesions such as telangiectasia, pustules, blisters,
erythematous plaques may also occur, mostly on acral sites (14).

Cutaneous histopathology
Dermatopathology shows medium and small-vessel vasculitis
with dense neutrophilic infiltrates and karyorrhexis in the vessel
wall, as well as fibrin endovascular microthrombi (32, 151).
Biopsies of telangiectatic plaques show perivascular infiltration
by lymphocytes and neutrophils with leukocytoclasia, without
involvement of the vessel walls (14).

Familial Chilblain Lupus
Familial chilblain lupus or TREX1-associated systemic lupus
erythematosus is an autosomal dominant autoinflammatory
disease caused by either loss-of-function mutations in
TREX1 and SAMHD1 genes or gain-of-function mutations
in the TMEM173 gene, both leading to type I IFN
overproduction (152–154).

Clinical manifestations consist of early-onset of
mucocutaneous lesions and arthralgia, with occasional periodic
fever and infrequent increased inflammatory markers. Low-titer
autoantibodies, including ANA and anti-C1q-autoantibodies are
usually present. Successful treatment with JAK inhibitors has
been described (153, 155).

Dermatologic manifestations
Patients present with cold-induced chilblain lesions at acral
locations (fingers, toes, nose, and ears) with subsequent ischemia
and ulceration of these regions. Nails can show dystrophy
or onychomadesis. Nailfold capillaroscopy may appear with
irregular capillary loops and tortuous appearance. Livedo
reticularis, malar rash, photosensitivity, and oral and nasal ulcers
have also been described (152–154).

Cutaneous histopathology
Histological examination of skin reveals perivascular
lymphohistiocytic infiltrates along with expression of the
type I IFN-induced myxovirus resistance protein A within the
endothelial cells (153).
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Aicardi-Goutières Syndrome (AGS)
AGS comprise a group of seven monogenic autoinflammatory
diseases, most of which are inherited with an autosomal recessive
pattern, caused by mutations in several genes encoding proteins
involved in intracellular degradation or sensing of nucleic
acids. TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1,
ADAR1, IFIH1, and DDX58 are the genes involved in AGS.
Mutations in these genes induce high levels of IFNα, both
in blood and cerebrospinal fluid, which are thought to be
responsible for systemic and cerebral tissue damage (156). In
addition, dyschromatosis symmetrica hereditaria is an autosomal
dominant skin disease caused by mutations in the ADAR1
gene consisting of hyper- and hypo-pigmented macules on the
dorsal aspects of the extremities. Patients with homozygous
or compound heterozygous ADAR1 mutations may present
with a combination of AGS6 and dyschromatosis symmetrica
hereditaria (157).

All forms of AGS share several features in common,
such as a neonatal-onset encephalopathy consisting in
basal ganglia calcifications, spasticity, dystonia, progressive
cerebral atrophy, and microcephaly, as well as fever and
hepatosplenomegaly (14). Abnormal laboratory results include
lymphocytosis and elevated IFNα levels in cerebrospinal fluid.
Patients may develop some autoimmunity features resembling
systemic lupus erythematosus, such as arthritis, lymphopenia,
thrombocytopenia, and ANA positivity (156).

No traditional treatment options, including glucocorticoids
and conventional immunosuppressants and anti-cytokines
agents, are useful. As for previous interferonopathies, JAK
inhibitors seem also to control AGS activity (145, 156, 158, 159).

Dermatologic manifestations
Skin involvement comprises chilblain lesions on the feet, hands,
and ears, digital vasculitis, generalized skinmottling, lipoatrophy,
panniculitis, and acral necrotic lesions (14, 156, 160).

Cutaneous histopathology
No data regarding cutaneous histopathology is available in AGS.

Spondyloenchondrodysplasia With Immune

Dysregulation (SPENCDI)
SPENCDI is an autosomal recessive autoinflammatory disease
caused mutations in the ACP5 gene encoding tartrate-resistant
phosphatase. The lack of activity of this enzyme leads to a
constitutive gain-of-function of osteopontin, a multifunctional
protein involved in bone remodeling and immune regulation
causing autoimmunity through a type I interferon expression
signature (161).

SPENCDI is clinically characterized by bone dysplasia with
subsequent growth retardation, and neurologic manifestations,
such as cerebral atrophy, intracranial calcifications, seizures, and
spastic paraparesis. Systemic and organ-specific autoimmune
diseases are commonly present. These include systemic lupus
erythematosus, antiphospholipid syndrome, Sjögren syndrome,
Raynaud’s disease, inflammatory myositis, arthritis, vitiligo,
hypothyroidism, hemolytic anemia, and thrombocytopenia.
Consequently, autoimmune markers are also frequently

present, including positive ANA, anti-DNA antibodies, and
hypocomplementemia (161).

Glucocorticoids, chloroquine, and other additional
immunosuppressive agents, such as cyclophosphamide,
azathioprine, mycophenolate mofetil, and rituximab have
been used with good results (161).

Dermatologic manifestations
Cutaneous manifestations include severe eczema, Raynaud’s
phenomenon, distal sclerodermatous/acrocyanotic changes, and
leukocytoclastic vasculitis presenting with purpuric lesions.
Livedo reticularis and occlusive vasculitis leading to digital auto-
amputation have also been described. Capillaroscopy may reveal
edema and sludging or disappearance of parallel loops of some
dilated capillaries (161).

Cutaneous histopathology
The skin biopsy from a patient with SPENCDI confirmed a non-
specific leukocytoclastic vasculitis with perivascular neutrophilic
infiltrate, without deposition of complement or immunoglobulin
at direct immunofluorescence (161).

Hyperkeratotic Lesions
NLRP-1 Associated Disease (NAIAD)
NAIAD is an autoinflammatory disease inherited with a
recessive or dominant pattern due to mutations in the NLRP1
gene, which encodes NLRP1 protein. NLRP1 is the central
inflammasome in the skin. Mutations in PYRIN or LRR
domains lead to constitutive NLRP1 inflammasome activation
and IL-18 production (138). NAIAD is currently categorized as
AIKD (103).

Patients present with infantile-onset attacks of recurrent
fever lasting 3–4 days, accompanied by hyperkeratotic lesions,
polyarticular arthritis and chronic relapsing infections. Blood
tests show high CRP levels during flares, low-titer of ANA,
vitamin A deficiency, and raised transitional B cells (162).
Treatment with vitamin A and acitretin has been associated with
clinical improvement.

Dermatologic manifestations
Most patients show disseminated erythematous follicular
hyperkeratosis. Cases of familial keratosis lichenoides chronica
(also considered an AIKD), associated with multiple self-
healing palmoplantar carcinoma, as well as larynx involvement
resembling human papillomavirus infection have been reported
in NAIAD patients (162, 163).

Cutaneous histopathology
Skin biopsy shows orthokeratotic hyperkeratosis with
papillomatosis, acanthosis and hypergranulosis. Numerous
dyskeratotic cells sparse throughout the epidermis, without
involving the basal layer, have been observed (162).

Hyperpigmented Lesions
H Syndrome
H syndrome is an autosomal recessive autoinflammatory disease
caused by mutations in the SLC29A3 gene encoding ENT3 (164).
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This syndrome is referred to as “H syndrome” to
describe some of the disease hallmarks: hyperpigmentation,
hypertrichosis, hepatosplenomegaly, heart anomalies, hearing
loss, and hypogonadism. Therefore, the disease is clinically
characterized by progressive sclerotic skin lesions, cardiac
anomalies, short stature, and childhood-onset sensorineural
hearing loss. Other manifestations include scrotal masses,
azoospermia, hepatosplenomegaly, micropenis, dilated scleral
vessels, exophthalmos, facial telangiectasia, and camptodactyly
(164, 165). Laboratory tests reveal high ESR values and growth
hormone deficiency (164).

Most treatments, including glucocorticoids, colchicine,
cytotoxic immunosuppressants, IFNα, anakinra, canakinumab,
adalimumab, and radiotherapy, are associated with an inadequate
response (164).

Dermatologic manifestations
Cutaneous involvement starts with progressive sclerotic,
hyperpigmented plaques on the lower limbs with hypertrichosis,
and less frequently with ichthyotic desquamation. These lesions
usually appear on the inner aspect of the thighs and progress to
the abdomen, genitalia, ankles and feet, with sparing of the knees
and buttocks. The presence of plaques in axillae and trunk is
infrequent (164, 165).

Cutaneous histopathology
Dermatopathology is characterized by an increase of melanocytes
with acanthosis in the basal layer and sclerodermiform changes
with interstitial macrophagic infiltrates in the dermis and fat
tissue. Perivascular infiltrates of lymphocytes, mast cells and
plasma cells are also noted. Emperipolesis (cell engulfment
phenomena) may be occasionally observed (22, 165).

Bullous Lesions
Autoinflammation and PLCγ2-Associated Antibody

Deficiency and Immune Dysregulation (APLAID)
APLAID is an autosomal dominant autoinflammatory disease
caused by two missense mutations (S707Y and L848P) in the
PLCγ 2 gene. Despite being produced by the same gene that
PLAID, mutants in APLAID result in hyperactivation of PLCγ2
signaling pathway and are associated with a different disease
phenotype (71, 166).

APLAID patients present with early-onset recurrent
attacks of blistering skin lesions, eye inflammation with
ocular hypertension, inflammatory bowel disease, arthralgia,
and sinopulmonary infections caused by a mild humoral
immunodeficiency. Acute phase reactants tend to be normal and
switched memory B-cells are almost absent. Contrary to PLAID,
APLAID is not characterized by cold-induced urticaria and the
presence of circulating autoantibodies (71).

While TNF-blockers have not shown efficacy, high-dose
glucocorticoids, and anakinra have been reported to control
inflammatory symptoms (71).

Dermatologic manifestations
Early-onset recurrent blistering lesions resembling
epidermolysis-bullosa is the most common picture. Later

in life, these lesions tend to evolve to recurrent erythematous
plaques and vesiculopustular lesions that get worse with sun and
heat exposure. Cellulitis-like plaques and granulomata, as well as
cutis laxa, have also been described (70, 71, 166). More recently,
three cases with different presentation have been reported: a
newborn patient with generalized erythematous papules evolving
to vesicles, pustules, and crusts involving face, gluteal region, and
extremities (167) and two patients of 6 and 14 years-old with a
papulovesicular skin rash with granuloma formation and cutis
laxa (168).

Cutaneous histopathology
A biopsy from a plaque lesion showed a dense dermal interstitial
and perivascular mixed inflammatory infiltrate composed of
lymphocytes, histiocytes, eosinophils, and karyorrhectic nuclear
debris (71).

Aphthous Lesions
Haploinsufficiency of A20 (HA20)
HA20, also known as monogenic Behçet-like disease, is
an autosomal dominant autoinflammatory disease caused by
mutations in the TNFAIP3 gene encoding protein A20.
Mutated A20 results in increased NF-κB signaling and NLRP3
hyperactivity (11, 169).

The clinical picture of HA20 is characterized by the
triad of orogenital ulcers, ocular inflammation and non-
deforming polyarthritis (170). Abdominal pain, pharyngitis,
pericarditis, retinal vasculitis, and central nervous system
vasculitis are also frequent manifestations (32, 171). Several
organ-specific and systemic autoimmune diseases have been
associated with HA20. Some of them include Hashimoto
thyroiditis, type 1 diabetes mellitus, neutrophilic dermatosis,
erythema nodosum, pseudofolliculitis, central nervous system
vasculitis, Kawasaki disease, IgA vasculitis, nephrotic syndrome,
idiopathic thrombocytopenic purpura, or interstitial lung disease.
Acute phase reactants are increased during flares and low-
titer autoantibodies may be present in cases with autoimmune
diseases (171).

Treatment with colchicine, glucocorticoids, methotrexate and
thalidomide may be useful. Refractory cases to previous drugs
have been reported to respond to anti-TNFα, anti-IL-1, and
anti-IL-6 agents (170, 171).

Dermatologic manifestations
Oral, genital, and gastrointestinal non-scarring ulcers are the
most frequent manifestations (Figure 11). Skin involvement
is characterized by pustular or vesicular rashes, acne, dermal
abscesses, mild desquamation, and hyperkeratosis. Pathergy test
can be positive in some patients (170, 171).

Cutaneous histopathology
Histological data of the skin is limited. The presence of
an epidermal infiltrate of lymphocytes and neutrophils
with extensive intradermal mucin accumulation and scarce
inflammatory infiltrates has been reported (171).
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FIGURE 11 | Oral aphtous lesion in a patient with HA20. Written informed

consent was obtained from the patient for the publication of this image.

Autoinflammatory Periodic Fever, Immunodeficiency,

and Thrombocytopenia (PFIT)
PFIT is an autoinflammatory disease caused by a homozygous
missense mutation in the actin regulatory gene WDR1,
which encodes WDR1. Mutant WDR1 is thought to facilitate
assembly of pyrin inflammasome, leading to excessive IL-18
production (172).

PFIT clinical features include recurrent fever attacks, lasting
from 3 to 7 days and with 6–12 weeks periodicity. Fever is
accompanied by oral ulcers, intermittent thrombocytopenia and
cellular immunodeficiency, increasing the rate of infections.
Raised acute phase reactants, leukocytosis, hyperferritinemia,
and thrombocytopenia are observed during attacks (172).

Glucocorticoids, colchicine, conventional
immunosuppressive drugs, and anakinra have been associated
with poor responses. A case treated with an allogeneic
hematopoietic stem cell transplantation has been reported
with success (172).

Dermatologic manifestations
The most critical skin manifestation is the presence of
severe oral ulcers and inflammation that cause scarring and
microstomia (172).

Cutaneous histopathology
There are no reports regarding histopathological features in PFIT
skin lesions.

C/EBPε-Associated Autoinflammation and Immune

Impairment of Neutrophils (CAIN)
CAIN is an autosomal dominant autoinflammatory disease
caused by mutations in the CEBPE gene encoding the
transcription factor C/EBPε, which regulates both the
inflammasome and the interferome.

CAIN is characterized by a combination of autoinflammation,
immunodeficiency and neutrophil dysfunction. Disease onset has
been reported during adolescence and tends to subside after
menopause. The clinical presentation consists of periodic attacks
of abdominal pain and high fever during 4–5 days, every 2–4

weeks. Other manifestations during attacks include oral ulcers,
cutaneous abscesses, pyoderma gangrenosum, intra-abdominal
granulomas, and upper respiratory tract infections.Mild bleeding
diathesis with frequent nosebleeds and hematomas after needle
sticks and surgical procedures have also been described. ESR
elevation is frequent.

In CAIN patients, blockade of IL-1β and anti–IL-18 are
candidate therapies, still untested (173).

Dermatologic manifestations
Crater-like buccal ulcers are the most frequent mucocutaneous
features. Severe recurrent tongue, gluteal, submandibular
abscesses, purulent paronychia, pyoderma gangrenosum, and
wounds with delayed healing have also been described.

Cutaneous histopathology
No information about dermatopathologic features in CAIN
lesions has been reported.

NFKB1-Associated Autoinflammatory Diseases

(NFKB1-AD)
NFKB1-AD comprise a group of three different autosomal
dominant diseases due to mutations in the NFKB1 gene. These
mutations affect the NK-κB subunits p50 and p105, resulting in
an increased expression of IL-1β and TNF in some cases (174).

Initial descriptions of patients with NFKB1 gene mutations
were associated with an immunodeficiency phenotype
consisting of recurrent respiratory tract infections leading
to chronic lung disease with bronchiectasis, diarrhea,
lymphadenopathy, splenomegaly, recurrent autoimmune
phenomena (hemolytic anemia, thrombocytopenia, and
leukopenia), hypogammaglobulinemia, deficient production of
specific antibodies, and decreased class-switched and memory B
cells (175, 176).

Subsequently, two additional autoinflammatory phenotypes
associated to different mutations in the NFKB1 gene have been
described in two families (177). The first autoinflammatory
phenotype is NFKB1-associated Behçet-like disease, which has
been associated with the non-truncating mutation H67R in the
NFKB1 gene. It was described in six individuals within the
same family presenting with clinical manifestations similar to
those observed in Behçet disease (mucosal ulcers, arthritis, and
abdominal pain) (177). Notably, mutations in NFKB1 affect
the same pathway as in HA20. However, Behçet-like disease
associated with NFKB1 mutations was also associated with
IgG-hypogammaglobulinemia, depletion of switched memory B
cells and increased susceptibility to respiratory tract infections,
thus overlapping somewhat with the immunodeficiency and
autoimmunity phenotype described first for NFKB1-associated
disease (175, 176). Behçet-like phenotype seems not to cause
canonical inflammasome overactivation in vitro, thus targeting
IL-1β and TNF might not be useful (177).

The second autoinflammatory phenotype is NFKB1-
associated sterile familial autoinflammatory necrotizing fasciitis
(FANF), which is caused by the truncating mutation R157X in
the NFKB1 gene. It was described in two brothers who presented
with recurrent, sterile, isolated necrotizing inflammation
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after tissue trauma caused by minor surgery, and rapidly
extending into muscle fasciae, thus corresponding to necrotizing
fasciitis. Patients had no other organ or systemic involvement
nor any obvious manifestations of immunodeficiency (177).
This mutation caused increased inflammasome activation in
vitro, suggesting that agents targeting IL-1β or TNF might
be useful in such autoinflammatory necrotizing fasciitis
patients (174).

Dermatologic manifestations
The most common cutaneous lesions in patients with NFKB1-
associated Behçet-like disease are mucosal aphthae affecting
oral mucosa, esophagus, and genitalia. Lesions consisting of
postoperative deep necrotizing fasciitis have been described in
two patients of the same family with FANF (177). Of note,
NFKB1-associated FANF lesions have been included in the
section of pustular, pyogenic or neutrophilic dermatosis-like
rashes in Table 2.

Cutaneous histopathology
Information about genital aphthae biopsy displayed a small vessel
vasculitis, similar to that seen in Behçet’s patients (177).

RELA Haploinsufficiency
RELA haploinsufficiency is an autosomal dominant
autoinflammatory disease caused by mutations in the RELA
gene, which encodes RelA, a subunit of NF-κB. The heterodimer
RelA/NF-κB1 constitutes the predominant form of NF-κB,
critical for cell survival. A biallelic requirement for RelA in
order to maintain the normal cell function in stromal and
epithelial cells, which is essential for mucosal integrity, has
been reported. However, lymphocyte function is preserved
in mice with RELA haploinsufficiency. This would explain
why these patients with an impaired NF-κB signaling and an
increased sensitivity to TNF have mucosal abnormalities without
immunodeficiency (178).

Clinically these patients present with mucosal ulcers and
gastrointestinal symptoms, such as abdominal pain, vomiting,
and diarrhea, which can resemble an inflammatory bowel disease.
Fever and elevated acute phase reactants are also present.

Treatment with glucocorticoids and TNF-α inhibitors have
shown efficacy (178).

Dermatologic manifestations
Oral and/or genital ulcers are the most common
mucocutaneous feature described in patients with RELA
haploinsufficiency (178).

Cutaneous histopathology
No information regarding cutaneous histopathological features
in RELA haploinsufficiency has been reported yet.

Monogenic Forms of Inflammatory Bowel Disease
Crohn’s disease and ulcerative colitis are considered
inflammatory bowel diseases (IBD), diseases with a polygenic
or multifactorial etiology, in which complex interactions
between genetic and environmental factors play an important
role. Although over 150 genetic loci are associated with IBD,

the genetic contribution toward heritability of the majority
of those loci is low. However, recent studies have reported
an increasing spectrum of human monogenic diseases that
can present with IBD-like intestinal inflammation. Most of
patients with those genetic defects present with very early
onset IBD (during early childhood). However, as occur in
polygenic IBD, in the monogenic forms, a variable penetrance
of the clinical phenotype has been similarly described, also
suggesting a role for modifier genes and/or gene–environmental
interactions (179).

Oral aphthae may occur in polygenic and monogenic forms
of IBD. With regard to monogenic forms, IL-10 signaling defects
associated with very early onset IBD is an autosomal recessive
monogenic autoinflammatory disease caused by mutations in
genes encoding IL-10 and IL-10-receptor. Clinical manifestations
start within the first 3 months of life and include bloody
diarrhea, abscesses, perianal fistula, folliculitis, oral aphthous
lesions and arthritis. The intermittent course of colitis with
deep ulcerations is also indistinguishable from that of Crohn
disease (179).

CONCLUSIONS

Cutaneous inflammatory lesions are commonly present
in most of monogenic autoinflammatory diseases. Among
them, non-specific maculopapular rashes and urticarial
lesions are the most frequent manifestations, which have
some differential traits regarding similar lesions without an
autoinflammatory cause. While the evidence of systemic
involvement will draw the attention toward an autoinflammatory
origin, a genetic test showing pathogenic mutations in
causal genes will confirm the diagnosis of a monogenic
autoinflammatory disease.

Because the information regarding skin manifestations is still
scarce, this review analyzes the most relevant histopathological
and clinical features of cutaneous involvement in monogenic
autoinflammatory diseases and groups the diseases based on
the predominant cutaneous lesions, which were divided in: (1)
maculopapular rashes or inflammatory plaques; (2) urticarial
rashes; (3) pustular, pyogenic, or neutrophilic dermatosis-like
rashes; (4) panniculitis or subcutaneous nodules; (5) vasculitis
or vasculopathy; (6) hyperkeratotic lesions; (7) hyperpigmented
lesions; (8) bullous lesions; and (9) aphthous lesions.

Therefore, the classification based on the predominant skin
lesion in patients in whom a monogenic autoinflammatory
disease is suspected may be a supporting tool to guide
final diagnosis.
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Monogenic autoinflammatory diseases are rare conditions caused by genetic

abnormalities affecting the innate immunity. Previous therapeutic strategies had been

mainly based on results from retrospective studies and physicians’ experience. However,

during the last years, the significant improvement in their genetic and pathogenic

knowledge has been accompanied by a remarkable progress in their management. The

relatively recent identification of the inflammasome as the crucial pathogenic mechanism

causing an aberrant production of interleukin 1β (IL-1β) in the most frequent monogenic

autoinflammatory diseases led to the introduction of anti–IL-1 agents and other biologic

drugs as part of the previously limited therapeutic armamentarium available. Advances in

the treatment of autoinflammatory diseases have been favored by the use of new biologic

agents and the performance of a notable number of randomized clinical trials exploring

the efficacy and safety of these agents. Clinical trials have contributed to increase the

level of evidence and provided more robust therapeutic recommendations. This review

analyzes the treatment of the most frequent monogenic autoinflammatory diseases,

namely, familial Mediterranean fever, tumor necrosis factor receptor–associated periodic

fever syndrome, hyperimmunoglobulin D syndrome/mevalonate kinase deficiency, and

cryopyrin-associated periodic syndromes, together with periodic fever with aphthous

stomatitis, pharyngitis, and cervical adenitis syndrome, which is the most common

polygenic autoinflammatory disease in children, also occurring in adult patients. Finally,

based on the available expert consensus recommendations and the highest level of

evidence of the published studies, a practical evidence-based guideline for the treatment

of these autoinflammatory diseases is proposed.

Keywords: monogenic autoinflammatory diseases, PFAPA syndrome, colchicine, anakinra, canakinumab, anti-

TNF agents, tocilizumab, Janus kinase (JAK) inhibitors
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INTRODUCTION

Over the past 20 years, pathogenic insights into the mechanisms
of autoinflammation completely changed treatment and
prognosis of many inherited autoinflammatory diseases, also
known as “hereditary periodic fever syndromes,” a group
of rare diseases characterized by difficult diagnostic and
therapeutic approaches. The most extensively studied and
better pathogenically defined monogenic autoinflammatory
conditions have been familial Mediterranean fever (FMF),
tumor necrosis factor (TNF) receptor–associated periodic
fever syndrome (TRAPS), hyperimmunoglobulin D
syndrome/mevalonate kinase deficiency (HIDS/MKD), and
cryopyrin-associated periodic syndromes (CAPS), which
comprise three disorders with the same genetic background,
and different phenotypes and outcomes. The CAPS spectrum
includes familial cold autoinflammatory syndrome (FCAS),
the mildest form; Muckle-Wells syndrome (MWS), the
intermediate presentation; and chronic infantile neurological,
cutaneous, and articular syndrome (CINCA) or neonatal-onset
multisystem inflammatory disorder (NOMID), the most severe
disease (1).

Until the late 1990s, traditional drugs, such as colchicine and
glucocorticoids, had been used to treat autoinflammatory
diseases. The pathogenic and therapeutic revolution
started when NLRP3, one of the NOD-like receptors
(NLRs) and part of the NLRP3 inflammasome, was
discovered as the main actor in the activation of caspase
1 and the subsequent production of active interleukin
1β (IL-1β) (2). Mutations of genes involved in the
inflammasome function or its related pathways were
then identified as responsible for most of the monogenic
autoinflammatory disorders recognized so far, also known as
inflammasomopathies (3).

The discovery of the aberrant production of IL-1β as the
final cause of all inflammasomopathies led to the introduction
of anti–IL-1 agents and other biologic drugs to the very limited
therapeutic armamentarium available for such diseases until
then (4). In addition, the more recent knowledge of other
autoinflammatory mechanisms, such as the activation of nuclear
factor κB (NF-κB) and type I interferon (IFN) pathways, also
provided new therapeutic options, such as anti-TNF and Janus
kinase (JAK) inhibitors agents, directed to the specific blockade
of cytokines and molecules involved in these novel inflammatory
mechanisms (5–9).

Because monogenic autoinflammatory diseases are rare
conditions, therapeutic strategies had been mainly based
on results from retrospective studies and expert physicians’
experience. Nevertheless, during the last years, the vast
improvement in their genetic and pathogenic knowledge
has been accompanied by a great effort in improving their
management. In this sense, a remarkable number of randomized
clinical trials exploring the efficacy and safety of new biologic
agents in autoinflammatory diseases have been conducted, and
therefore, therapeutic recommendations can be based now on
higher evidence levels.

OBJECTIVES AND METHODOLOGY OF

THE REVIEW

This review intends to analyze the use of conventional
and biologic agents in the most prevalent monogenic
autoinflammatory diseases (FMF, TRAPS, HIDS/MKD, and
CAPS) and periodic fever syndrome, aphthous stomatitis,
pharyngitis, and cervical adenitis (PFAPA) syndrome. Although
PFAPA syndrome is a polygenic or multifactorial disease with
an unidentified genetic background, its treatment is reviewed
because PFAPA syndrome is themost frequent autoinflammatory
condition in childhood and has to be frequently considered part
of the differential diagnosis of some monogenic disorders in
children and adults (10).

Evidence-based recommendations for the management of
FMF, TRAPS, HIDS/MKD, and CAPS have been provided
from previous consensus studies using the European League
Against Rheumatism (EULAR) standard operating procedures
for developing best practice (Table 1) (11, 12), such as the
EULAR recommendations for the management of FMF (13),
and the European SHARE (Single Hub and Access point
for pediatric Rheumatology in Europe) recommendations for
the management of CAPS, TRAPS, and MKD (14). For all
the autoinflammatory diseases, results of new clinical trials,
international multicenter collaborative studies and registries, and
retrospective data preferably from referral centers, have also
been used to generate levels of evidence. The most relevant
international multicenter initiatives and registries include the
PRINTO Registry (a secured web-based registry hosted at the
Pediatric Rheumatology International Trial Organization website
- PRINTO, http://www.printo.it) and EUROFEVER Registry
(an international registry for autoinflammatory diseases, https://
www.printo.it/eurofever/) (15).

Because, by definition, the strength of recommendation
has to be based on a combination of data extracted from
systematic literature review (providing levels of evidence)
and consensus expert opinion (providing homogeneous and
measurable information to generate the recommendations), in
those conditions or situations for which any new therapeutic
information has been reported but no opinion of the experts has
been issued yet, only the level of evidence is mentioned (11, 12).

TRADITIONAL DRUGS

Colchicine
Colchicine is an alkaloid extracted from two plants of the Lily
family: Colchicum autumnale and Gloriosa superba. Historically,
the therapeutic role of colchicine was for the first time raised
up for the treatment of gout in the sixth century (16). More
recently, colchicine use has been extended to other diseases
such as primary biliary cirrhosis, Behçet disease, recurrent
pericarditis, alcohol induced hepatitis, psoriasis, scleroderma,
Sweet syndrome, amyloidosis, sarcoidosis and, in lesser extent,
to inflammatory disorders prone to fibrosis (17–19).

In 1972, the efficacy of colchicine was first described in
five FMF patients who experienced a dramatic reduction of
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TABLE 1 | Categorization of the level of clinical evidence and strength of

recommendation based on the EULAR standardized operating procedures for

EULAR-endorsed recommendations (11, 12).

Category Evidence from

LEVELS OF EVIDENCE

1A Meta-analysis of randomized controlled trials

1B At least one randomized controlled trial

2A At least one controlled study without randomization

2B At least one type of quasi-experimental study

3 Descriptive studies, such as comparative studies, correlation

studies, or case–control studies

4 Expert committee reports or opinions and/or clinical experience of

respected authorities

Grade Directly based on

STRENGTH OF RECOMMENDATION

A Category 1 evidence

B Category 2 evidence or extrapolated recommendation from

category 2 evidence

C Category 3 evidence or extrapolated recommendation from

category 1 or 2 evidence

D Category 4 evidence or extrapolated recommendation from

category 2 or 3 evidence

the number of attacks (20). Since then, colchicine has become
the basis of FMF treatment, and later on, several clinical trials
definitively established its efficacy in preventing attacks and
developing amyloidosis (21–23).

Colchicine was officially approved in 2009 by the US Food
and Drug Administration (FDA) for the acute flares of gout
and FMF, as a single-ingredient oral formulation (Colcrys R©)
(24). Nowadays, according to 2016 EULAR recommendations
for the management of FMF, colchicine represents the first-line
treatment in FMF, with a level of evidence 1B and grade of
recommendation A (13).

Among other biological functions, colchicine has anti-
inflammatory properties based on the inhibition of leukocyte
chemotaxis, which is caused by its interaction with tubulin
and the resulting dysfunction of microtubules. Microtubules,
composed by α- and β-tubulin heterodimers, are involved
in cell division, signal transduction, migration, secretion, and
regulation of gene expression (25). Colchicine has the ability to
bind in a poorly reversible manner to soluble non-polymerized
tubulin in the cells, with the formation of a tubulin–colchicine
complex (26, 27), and the subsequent movement inhibition of
intracellular granules (28).

The predominant effect of colchicine on leukocytes, and
more specific on granulocytes, has been correlated with the
high concentrations of the drug in neutrophils compared to
lymphocytes and monocytes. In this regard, defects in the
efflux pumps with low activity of the P-glycoprotein 1 (PGY-1)
efflux pump of granulocytes might explain the accumulation of
colchicine in their cytoplasm (29, 30).

Other anti-inflammatory effects of colchicine include the
reduction of TNF-α production by macrophages and TNF-α

receptors on endothelial cells and the abrogation of neutrophil
binding to adhesion molecules on vascular endothelium.
Colchicine also decreases phospholipase A2 activity, release of
lysosomal enzymes, and phagocytosis (31–33).

After the discovery of theMEFV gene as the gene encoding for
pyrin and responsible for FMF,MEFV was found fully expressed
in neutrophils, and some authors evidenced a colchicine-
related cytosolic modulation of pyrin expression (34–36). Finally,
colchicine has been shown to suppress the activation of caspase
1, the enzymatic component of NLRP3 inflammasome, with the
subsequent inability to convert pro–IL-1β to active IL-1β (37).

Pharmacokinetic properties of colchicine include a narrow
therapeutic range because the half-life after oral ingestion ranges
between 7 and 9 h. The drug is absorbed in the jejunum and
ileum and is metabolized in the liver by the cytochrome P
(CYP) 450 3A4 and PGY-1. It is finally excreted mainly by
the biliary, intestinal, and renal systems. Colchicine use in
pregnant or nursing patients is considered relatively safe as
long as hepatic and renal functions are intact. In this regard,
because colchicine is metabolized via CYP3A4, its concomitant
administration with agents that inhibit this isoenzyme (e.g.,
macrolide antibiotics, azole antifungals, statins) may produce
elevated colchicine plasma concentrations, resulting in severe,
and sometimes fatal complications. Colchicine intoxication
may be also induced in patients with renal and/or liver
disorders (38, 39).

Colchicine in Autoinflammatory Diseases

Familial Mediterranean Fever
Therapeutic doses of colchicine to treat FMF should be adjusted
to the body weight, with a mean optimal dose of 0.03 ±

0.02 mg/kg per day. Total doses usually range from 0.5 to 2
mg/d in children and from 1 to 3 mg/d in adults (40, 41).
Colchicine usually reduces severity, duration, and frequency of
the attacks in the majority of FMF patients. Among them, ∼30–
40% of individuals experience a partial response (42). After ruling
out any colchicine-associated gastrointestinal intolerance, other
adverse effect, or poor patient compliance, only 5–10% of FMF
cases can be finally considered colchicine-resistant FMF (crFMF)
patients (15, 43).

Intravenous colchicine has shown efficacy in some patients
unresponsive or with partial response to the oral formulation
(43–45). An adjunctive weekly infusion of (1mg) colchicine
in FMF patients with frequent attacks despite a maximum
tolerated oral dosage of 2–3 mg/d was associated with 50%
reduction in frequency of attacks after 6 months (45). However,
because of the potential risk of toxicity, intravenous colchicine is
currently not recommended in FMF patients unresponsive to the
oral formulation.

Other Autoinflammatory Diseases
Colchicine has not demonstrated effectiveness in HIDS/MKD
and CAPS (14, 15). However, it has shown to be somehow
effective in TRAPS and PFAPA syndrome. In the Eurofever
Registry, colchicine was used in 39 TRAPS patients, with
complete and partial response in 3 (8%) and 18 (46%) individuals,
respectively (15). In a recent study of 24 patients with TRAPS,
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colchicine resulted to be of some help in 71% of cases, with a
complete response in 12.5% of them. No differences in colchicine
response were observed with regard to age at disease onset
(pediatric vs. adult), type of variant (low vs. high penetrance),
and colchine daily doses (1mg vs. higher doses) (46). In 303
PFAPA patients from a tertiary Turkish center, colchicine was
used as regular prophylactic treatment with high rate of response
in terms of reduction of the frequency of episodes. Interestingly,
heterozygous mutations in the MEFV gene were found in 25%
of PFAPA subjects, who obtained even better results in terms
of reduction of attacks. The potential modifier role of MEFV
mutations in PFAPA patients seems associated with attenuated
disease severity and higher response rate to colchicine compared
to non-carriers ofMEFV variants (47–49).

Non-steroidal Anti-inflammatory Drugs
The main therapeutic effects of non-steroidal anti-inflammatory
drugs (NSAIDs) are determined by the inhibition of
cyclooxygenases, enzymes that convert arachidonic acid in
prostaglandins, and thromboxanes. Some of these eicosanoids
participate in different pathways involved in the inflammatory
response. However, because NSAIDs do not inhibit the
biosynthetic cascade originating arachidonic acid, these drugs do
not usually influence the underlying cause of the disease.

NSAIDs in Autoinflammatory Diseases
NSAIDs have been used in monogenic autoinflammatory
diseases as symptomatic treatment, alone or in addition to
the baseline therapy. Although a complete response has been
reported in a minority of patients with autoinflammatory
conditions in the Eurofever Registry (8% of FMF and TRAPS,
13% of HIDS/MKD, 6% of CAPS, and 4% of PFAPA patients),
NSAIDs, alone or in combination with glucocorticoids, appear to
be of some help in 70–80% of all cases (15).

In some FMF patients with exertional leg pain and protracted
febrile myalgia, similarly to glucocorticoids, NSAIDs seem to
be also effective (50). Protracted febrile myalgia is a condition
characterized by prolonged episodes of muscle pain affecting
limbs with marked systemic inflammatory response in the
absence of rhabdomyolysis. The EULAR recommendations for
treating this complication with NSAIDs have a level of evidence
2B and grade of recommendation C (13).

Patients with TRAPS associated with R92Q mutations have
been reported to respond better to the combination of colchicine
and NSAIDs than those carrying clearly pathogenic TNFRSF1A
mutations (15, 51). However, in TRAPS, HIDS/MKD, and CAPS
patients, the use of NSAIDs as pain relievers during inflammatory
attacks is recommended with a level of evidence 3 and strength of
recommendation D (for TRAPS) and C (for HIDS/MKD, CAPS,
and PFAPA syndrome) (14, 15).

Glucocorticoids
Glucocorticoids suppress the production and effects of
several proinflammatory mediators, induce the inhibition
of leukocytes migration to the inflammatory foci, and
interfere with the function of fibroblasts and endothelial
cells, thereby exerting a powerful anti-inflammatory action,

both on acute manifestations (i.e., pain, edema) and on late
inflammatory stages (including reparative processes, such as cell
proliferation and fibrosis). Glucocorticoids bind to a specific
intracytoplasmic receptor, a ligand-activated transcription factor
with both positive and negative effects on the regulation of
gene expression. Consequently, the activated glucocorticoid
receptor–glucocorticoid complex up-regulates the expression
of anti-inflammatory proteins and suppresses the transcription
of proinflammatory cytokines and chemokines by blocking the
NF-κB signaling pathway (52).

Glucocorticoids in Autoinflammatory Diseases

Familial Mediterranean Fever
In FMF patients, when colchicine becomes insufficient to control
the disease activity, glucocorticoids (always in combination with
colchicine) have shown positive effects with variable response
in 83% of the 47 cases recruited from the Eurofever Registry
(15). The use of intravenous methylprednisolone (40mg) on
demand has also demonstrated efficacy in decreasing fever and
abdominal and pleuritic pain during attacks in a study of 31 FMF
patients (53).

FMF patients with protracted febrile myalgia may be
controlled with intravenous and/or oral administration of high-
dose glucocorticoids (54). In fact, glucocorticoids have been
recommended for treating this complication with a level of
evidence 2B and grade of recommendation C (13). A recent study
on eight FMF patients with protracted febrile myalgia has shown
good response with the use of intravenous methylprednisolone
pulses, at a dose of 10 mg/kg per day, for 3 days, followed by
oral glucocorticoids, at initial doses of 1–2 mg/kg and gradual
tapering down over 6 weeks (55). A small comparative study on
15 FMF patients with protracted febrile myalgia suggested similar
efficacy of oral glucocorticoids and NSAIDs (50).

Tumor Necrosis Factor Receptor–Associated Periodic Fever

Syndrome
In TRAPS patients, prednisone (or equivalent) may be useful
on demand, administered during the attacks at a dose of 1
mg/kg per day, usually with rapid tapering and cessation in the
following days (51, 56, 57). In the Eurofever Registry, short-
term glucocorticoids, with or without concomitant NSAIDs, were
considered effective for controlling inflammatory attacks in 91%
of TRAPS patients, with complete response in 41% of them (15).
Glucocorticoids do not seem to have any significant effect in
preventing amyloidosis, and its intermittent use does not reduce
either the frequency of attacks or subclinical inflammation
between them. Glucocorticoids in TRAPS are recommended
either as short-term courses or as maintenance treatment with
a level of evidence 3 and strength of recommendation C (14).

As in other monogenic autoinflammatory disorders, some
TRAPS patients may require long-term glucocorticoid therapy.
In these glucocorticoid-dependent situations, a biological agent
is often warranted in order to avoid steroid side effects.
Indeed, almost 80% of TRAPS patients initially treated
with glucocorticoids may finally receive biologic agents as
maintenance therapy to control symptoms (14, 58).
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Hyperimmunoglobulin D Syndrome/Mevalonate Kinase

Deficiency
Similarly to TRAPS patients, in HIDS/MKD, high-dose
glucocorticoids may be useful during the attacks with some
benefit in 73% of cases. However, complete improvement is
achieved by only 9% of patients, and glucocorticoids do not
decrease neither the intensity nor the frequency of the acute
episodes (15). Short-term glucocorticoids, with or without
NSAIDs, may be effective for alleviating inflammatory attacks
and are recommended with a level of evidence 3 and strength of
recommendation C (14).

Cryopyrin-Associated Periodic Syndromes
In CAPS patients, glucocorticoids, mostly used on demand,
resulted in some benefit in 80% of patients included in the
Eurofever Registry. However, glucocorticoids do not control
the underlying inflammatory process or decrease the frequency
of the attacks (15, 59). Anyway, for symptomatic adjunctive
therapy, short courses of NSAIDs and glucocorticoids may be
used, with a level of evidence 3 and strength of recommendation
C (14). However, they should not be used for primary
maintenance therapy (level of evidence 4 and grade of
recommendation D) (14).

PFAPA Syndrome
Glucocorticoids are the treatment of choice in PFAPA syndrome,
because their prompt administration is able to discontinue the
attacks rapidly and completely in the majority of patients. Such
dramatic response is usually considered a peculiar diagnostic
feature in pediatric and adult patients (15, 60–63). The
conventional dosage from 0.5 to 2 mg/kg of prednisone (or
equivalent) in a single dose at the time of fever onset has been
proved useful in a randomized clinical trial (64), and therefore,
glucocorticoids can be recommended in PFAPA patients with
a level of evidence 2B (15). However, additional doses of
glucocorticoids may be occasionally necessary. Their use does
not prevent further attacks and may even be associated with an
increased frequency of the attacks in 25–50% of cases (15, 60).

Of note, the evidence for the effectiveness of tonsillectomy
in children with PFAPA syndrome is based on a systematic
review that included two small randomized controlled trials
studying the effects of tonsillectomy compared to no surgery.
Tonsillectomy was associated with immediate and complete
clinical resolution and significant reduction in the frequency
and severity of symptoms (65). Although these results have to
be interpreted considering the clinical severity, the previous
response to a single dose of prednisone, and the surgical risk in
every individual situation, tonsillectomy as a therapy for PFAPA
syndrome can be recommended with a level of evidence 1A (15).

Other Conventional Agents
Thalidomide
Thalidomide exerts its immunomodulatory and anti-
inflammatory actions through inhibiting TNF-α and
IFN-γ synthesis, leukocyte chemotaxis, and angiogenesis.
Teratogenicity and polyneuropathy are known as the most
feared thalidomide-related serious adverse events. Thalidomide

is an accepted treatment for dermatological diseases (such as
leprous erythema nodosum, severe mucosal ulcers, cutaneous
lupus erythematosus, and chronic graft-vs.-host disease),
refractory multiple myeloma, and other systemic autoimmune or
inflammatory conditions. Evidence on the efficacy of thalidomide
in autoinflammatory diseases is limited to sporadic case reports
and series. In three crFMF patients treated with thalidomide
in addition to colchicine, the combination did not show clear
benefit (66). Similarly, thalidomide failed to demonstrate any
biological or clinical effect in six patients with HIDS/MKD (67).

Dapsone
Dapsone is an antibacterial sulfonamide drug with anti-
inflammatory properties due to the inhibition of function and
chemotaxis of neutrophils and blockade of the inflammatory
effects of multiple prostaglandins and leukotrienes. Dapsone
is currently used for the treatment of different infectious and
immune-mediated systemic and dermatologic conditions (68). In
monogenic autoinflammatory diseases, dapsone has been used in
a case series of 10 crFMF patients with control of attacks in half of
them. The authors postulated that dapsone might be considered
as an alternative therapy in selected FMF cases not responding to
colchicine (68).

Interferon α

The use of IFN-α in patients with FMF resistant to colchicine
has been reported with controversial results. While in several
crFMF cases IFN-α seemed to induce a marked decrease
in both severity and frequency of the attacks, alone or in
combinationwith colchicine (69–72), a double-blind randomized
clinical trial of 22 FMF patients comparing IFN-α with placebo
(without concomitant colchicine) did not demonstrate clear
efficacy of IFN-α in reducing severity of attacks or inflammatory
markers (73).

Other Drugs
Other anti-inflammatory, immune-modulatory, or
immunosuppressive agents, such as azathioprine, methotrexate,
cyclosporine, leflunomide, mycophenolate mofetil, sulfasalazine,
statins, cimetidine, and antihistamines, have been historically
used in monogenic autoinflammatory diseases mostly with
unclear or unsatisfactory results (15, 51).

BIOLOGIC AGENTS

Interleukin 1 Blockers
It is well-known that IL-1 production has strong impact on
initiation and maintenance of inflammatory process. Both IL-
1α and IL-1β bind to the IL-1 receptor type, which is expressed
by nearly every human cell and is responsible for triggering the
cascade of inflammatory processes (74). IL-1 inhibitory molecule
was first described over 30 years ago in the urine from patients
with fever and monocytic leukemia (75, 76). This molecule was
later cloned and identified as IL-1 receptor antagonist (IL-1Ra)
(77), and subsequently, it was hypothesized that the inhibition
of IL-1 with IL-1Ra could be a potential therapeutic option for
treating inflammatory diseases (78).
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TABLE 2 | Anti-IL-1 agents, types of studies supporting the maximum evidence level for their use, and common pediatric and adult doses given in the main monogenic

autoinflammatory diseases (crFMF, TRAPS, HIDS/MKD, and CAPS) and PFAPA syndrome.

Anti-IL-1

agent

Disease Type of

study

EMA/FDA

approval

Doses

(children)

Doses

(adults)

References

Anakinra crFMF RCT, RCS No/No 50–300 mg/day 50–100 mg/day (80, 81)

TRAPS OLS, CS No/No 1.5 mg/kg/day 100 mg/day (82, 83)

HIDS/MKD OLS No / No 1 mg/kg/day* 100 mg/day* (84)

CAPS OLS, RCS,

CS

Yes/Yes** 1–1.5 mg/kg/day,

1–2 mg/kg/day,

1.5–8 mg/kg/day

100 mg/day,

1–2 mg/kg/day,

1.5–8 mg/kg/day

(85–92)

PFAPA CS, CR No/No 1 mg/kg/day* 100 mg/day* (93, 94)

Canakinumab crFMF RCT, OLS Yes/Yes 2 mg/Kg q4w or q8w 150–300mg q4w or q8w (95–97)

TRAPS RCT, OLS Yes/Yes 2 mg/Kg q4w or q8w 150–300mg q4w or q8w (95, 98)

HIDS/MKD RCT, OLS Yes/Yes 2 mg/Kg q4w or q8w 150–300mg q4w or q8w (95, 99)

CAPS RCT, OLS Yes/Yes 2–10 mg/Kg q4w or q8w 150–300mg q4w or q8w (100–104)

PFAPA CR No/No 2 mg/kg q8w 150mg q8w (105, 106)

Rilonacept crFMF RCT No/No 2.2 mg/Kg qw 160mg qw (107)

CAPS RCT, OLS No/No 4.4 mg/Kg followed by

2.2 mg/Kg qw

320mg followed by

160mg qw

(108, 109)

*In some cases, on demand administration at the beginning of the febrile episode may also be used.

**Only for CINCA/NOMID cases.

CAPS, cryopyrin-associated periodic syndromes; CINCA/NOMID, chronic infantile neurological, cutaneous and articular syndrome/neonatal onset multisystem inflammatory disorder;

CR, case report; CS, case series; crFMF, colchicine-resistant familial Mediterranean fever; EMA, European Medicines Agency; FDA, Food and Drug Administration; HIDS/MKD,

hyperimmunoglobulin D and periodic fever syndrome/mevalonate kinase deficiency; OLS, open-label study; PFAPA, periodic fever with aphthous stomatitis, pharyngitis and cervical

adenitis; RCS, retrospective cohort study; RCT, randomized controlled trial; TRAPS, TNF-receptor associated periodic fever syndrome.

With regard to inflammasome-mediated autoinflammatory
diseases, such as FMF, TRAPS, HIDS/MKD, and CAPS, IL-1
blockade has become the most specific and useful treatment,
as first-line therapy or when previous conventional anti-
inflammatory or immunosuppressive agents are not useful.
Although several IL-1 blockers are currently under development
(79), the three biologic agents targeting IL-1 with special interest
in autoinflammatory diseases, commercially available nowadays,
are anakinra, canakinumab, and rilonacept.

Table 2 illustrates the most relevant studies supporting the
maximum evidence level for the use of IL-1 blockers in the
main monogenic autoinflammatory diseases (crFMF, TRAPS,
HIDS/MKD, and CAPS) and PFAPA syndrome and includes the
doses used in pediatric and adult patients.

Anakinra
Anakinra is a recombinant non-glycosylated form of the human
IL-1 receptor antagonist (rhIL-1Ra) that binds to IL-1 receptor
type I (IL-1RI) and acts as competitive inhibitor with IL-1α
and IL-1β, in a way that mimics the activity of endogenous
IL-1Ra (110). Anakinra has been approved by the FDA and
EuropeanMedicines Agency (EMA) for rheumatoid arthritis and
by the EMA for the treatment of Still disease, including systemic
juvenile idiopathic arthritis and adult-onset Still disease. In 2012,
anakinra was approved for the treatment of CINCA/NOMID in
theUnited States. In the EuropeanUnion, anakinra was approved
by the EMA for all types of CAPS in 2013.

The recommended initial dose of anakinra is 100 mg/d
subcutaneously in adults and 0.5–2 mg/kg per day in children,

who may require increasing dosage up to 5–8 mg/kg per day to
maintain remission. The need of higher requirements of anakinra
in pediatric patients might be related to pharmacokinetics of
the drug whose effective steady-state concentration in young
children seems to be higher than in adults (14, 111). Anakinra
terminal half-life ranges from 4 to 6 h, and ∼80% of the drug
is excreted by renal clearance (112). Consequently, the mean
plasma clearance of the drug strongly depends on normal
kidney function, and anakinra removal from plasma is minimally
feasible through dialysis (113).

An animal study showed that up to two-thirds of serum
IL-1Ra are able to cross blood–brain barrier. On clinical
grounds, anakinra administration has determined improvement
of memory and cognitive functions in CAPS patients (85, 114).

Safety data on anakinra comes from rheumatoid arthritis
randomized controlled trials and long-term observational
studies, in which good safety profiles have been observed with
no increase of opportunistic infections or malignancies (141,
142). Data from the British Society of Rheumatology Biologic
Register reported higher rates of serious infections of the skin and
respiratory tract in subjects with more severe disease and higher
exposure to glucocorticoids (143). The increased susceptibility
to respiratory infections in patients treated with anti–IL-1 might
be explained by the fact that IL-1β seems to play a role in the
resistance to Streptococcus pneumoniae infection (144). Although
the most frequent adverse event by far of anakinra is the
injection site skin reaction, which is observed in up to 70% of
patients, this local reaction tends to decline over time without the
need of treatment discontinuation (145). Anakinra use during
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pregnancy has not been associated with an increased rate of
miscarriages or congenital malformations, neither in a registry
of 40 patients (146) nor in small series of FMF and CAPS
patients (147, 148).

Canakinumab
Canakinumab is a fully humanized IgG1 monoclonal antibody
that acts specifically against IL-1β. In 2009, canakinumab
received the FDA approval for CAPS treatment, specifically for
FCAS and MWS, and EMA approval for children older than 2
years and adults with all forms of CAPS. More recently, in 2016,
the FDA and EMA approved canakinumab for the treatment of
crFMF, TRAPS, and MKD, based on the results of the phase
3 Canakinumab Pivotal Umbrella Study in Three Hereditary
Periodic Fevers (CLUSTER) trial (95). Additional indications
of canakinumab include systemic juvenile idiopathic arthritis
(by the FDA) and Still disease (systemic juvenile idiopathic
arthritis and adult-onset Still disease) and gouty arthritis
(by the EMA).

Given its long half-life of 26 days, canakinumab
administration is recommended subcutaneously at 2–4 mg/kg
in children and at a minimal dose of 150mg in adults, every
4–8 weeks in both age groups. Patients with more severe
phenotypes may require dose escalation. For instance, patients
with CINCA/NOMID (the most severe CAPS phenotype) may
require up to 8 mg/kg dosage every 4 weeks to control symptoms
(100, 101). Similarly, in crFMF, TRAPS, and MKD patients, the
recommended starting dose is usually 150mg or 2 mg/kg (in
children with body weight between 7.5 and 49 kg) every 4 weeks,
with the possibility to increase up to 300mg every 4 weeks (or
4 mg/kg in children), which is more often required by MKD
patients (95).

Its penetrance of the blood–brain barrier seems incomplete
because canakinumab does not normalize intrathecal
inflammatory markers, as demonstrated in two case series
of CINCA/NOMID patients (149, 150). Renal function does not
influence the pharmacokinetics of canakinumab (151). Data on
pregnancy and breastfeeding are still scarce. However, seven of
eight pregnancies of patients on canakinumab were reported
uneventful, and no developmental abnormalities were reported
in four breastfed infants while mothers were on canakinumab
treatment (152).

Mild infections, involving mostly the urinary tract and upper
airway, represent the most frequent canakinumab-associated
adverse events. However, serious infections have been reported
in 5.4/100 patients-years in 285 patients included in the long-
term CAPS registry (153) and in 7.4/100 patients-years of
FMF, TRAPS, and MKD patients treated with higher doses of
canakinumab in the CLUSTER trial (95).

Additional data on safety can be extrapolated from
the randomized, double-blind, placebo controlled trial of
canakinumab in patients with atherosclerotic disease, with more
than 10,000 individuals and ∼30% of them receiving placebo
(154). Neutropenia and thrombocytopenia were observed in the
treatment group, with more deaths attributed to infections or
sepsis, however, with no statistically significant differences in the
overall rates of adverse events compared with placebo (154).

Rilonacept
Rilonacept is a dimeric fusion glycoprotein consisting of the
Fc portion of human IgG1 and the human IL-1 receptor
extracellular domains that binds IL-1α and IL-1β. In 2008,
rilonacept was the first agent approved by the FDA for the
treatment of FCAS and MWS in patients older than 12 years,
based on two sequential phase III clinical studies, which
demonstrated rilonacept safety and effectiveness in adult patients
with CAPS (108). Rilonacept obtained a marketing authorization
only in the United States.

Initial dose in adults is recommended at 320mg
subcutaneously, followed by a weekly dose of 160mg. In
children older than 11 years and adolescents, the dose has to be
adjusted at 4.4 mg/kg (maximum of 320mg) and then 2.2 mg/kg
(maximum of 160mg) once weekly. The circulating half-life may
vary from 6 to 9 days (155, 156). Being a large molecule, it is
expected not to cross the blood–brain barrier and to be cleared
primarily by the reticuloendothelial system rather than by the
kidney. Therefore, a dose adjustment in patients with renal
disease is not required (157).

Injection site reactions, headache, and upper respiratory
tract and urinary infections have been described as the most
common adverse events in CAPS patients treated with rilonacept
(109). Data from studies and trials on gout and gouty arthritis
suggest also that several laboratory changes may occur, including
transient neutropenia and a small increase in liver transaminases,
triglycerides, and creatine phosphokinase (158).

IL-1 Blockers in Autoinflammatory Diseases

Familial Mediterranean Fever
IL-1 blockade with anakinra is currently recommended for FMF
in case of true colchicine resistance, with a level of evidence 2B
and strength of recommendation B, and as an optional treatment
for protracted febrile myalgia, with a level of agreement 2B and
grade of recommendation C (13).

Although in 2011 the Eurofever Registry included only
three FMF patients treated with anakinra with complete
response (15), a 2013 literature review identified 30 FMF cases
resistant or intolerant to colchicine treated with anakinra, and
four with canakinumab, with good clinical and laboratory
outcomes (110). A 2015 systematic review reported 64 patients
treated with anakinra and 40 with canakinumab. A complete
response without attacks occurred in 76.5 and 67.5% of
patients on anakinra and canakinumab, respectively. In patients
with established type AA amyloidosis, both anti–IL-1 agents
demonstrated to reverse proteinuria (159). Anakinra has been
administered on demand with efficacy to some selected crFMF
patients, mainly those with prominent prodromal manifestations
or recognizable triggers of the attacks (160).

Ben-Zvi et al. (80) enrolled 25 adult patients with crFMF
in the first double-blind randomized placebo-controlled trial,
aiming to assess efficacy and safety of anakinra at a dose of
100 mg/d during 4 months of treatment. Adult FMF patients
experiencing at least one attack per month despite the maximum
tolerated dose of colchicine (up to 3mg/d) were enrolled. Patients
treated with anakinra had an attack rate of 1.7 per month,
whereas those receiving placebo suffered 3.5 attacks per month.
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In addition, anakinra was associated with better quality of life,
and no differences in the development of adverse effects were
found. Interestingly, the best results with anakinra were observed
in terms of amelioration of joint manifestations (80). In a Turkish
multicenter retrospective study of 172 crFMF patients, in whom
151 were treated with anakinra and 21 with canakinumab, both
drugs reduced the yearly attack frequency from 16.8 to 2.4 (p
< 0.001). Forty-two percent of crFMF patients were attack-free,
and proteinuria was significantly reduced in those patients with
amyloidosis (81).

Canakinumab has proved effective in several retrospective
FMF reviews (161–163) and two open-label phase II studies
with nine and seven crFMF patients (96, 97). Both phase II
trials established the efficacy of canakinumab in reducing the
frequency of FMF attacks and maintaining low levels of acute
phase reactants, with no unexpected adverse events (96, 97). The
recent FDA and EMA approval of canakinumab for patients with
FMF resistant or intolerant to colchicine has been based on data
from the CLUSTER trial (95).

A total of 63 patients with crFMF were randomized to receive
canakinumab 150mg or placebo every 4 weeks. At week 16,
canakinumab compared with placebo produced a significantly
higher response rate by day 15 (61 vs. 6%), higher rates of
physician global assessment of disease activity (minimal/none)
(65 vs. 9%), and higher C-reactive protein (CRP) levels≤10mg/L
(68 vs. 6%) and serum amyloid A (SAA) levels ≤10 mg/L (65 vs.
9%) (95). Canakinumab also demonstrated a rapid and sustained
disease control assessed with the Autoinflammatory Disease
Activity Index (AIDAI) over 16 weeks, and approximately half of
crFMF patients had inactive disease after the same period (164).
In the open-label phase from weeks 16–40, all FMF patients with
a previous complete response to canakinumab 150mg every 4
weeksmaintained the absence of flares with canakinumab 150mg
every 8 weeks. After that period, the same dose interval of every
8 weeks was sufficient to maintain disease control in 46% of
patients. An increase in the dose to 300mg every 4 weeks was
required by 10% of crFMF patients (95).

Adverse events and serious adverse events were more frequent
in canakinumab-treated patients than in those receiving placebo.
Overall, the most frequently reported adverse events were
infections (mostly those affecting the respiratory tract), headache,
abdominal pain, and injection-site reactions. Rates of infections
and serious infections were of 173.3 and 6.6 per 100 patient-years
of treatment, respectively (95).

With regard to rilonacept, this agent was administered
to 14 FMF patients with one or more attacks per month
in a randomized double-blind, single-participant alternating
treatment study, with a significant reduction in the number of
FMF attacks. Injection site reactions were the only adverse events
associated to rilonacept administration (107).

Tumor Necrosis Factor Receptor–Associated Periodic Fever

Syndrome
Anti–IL-1 agents have demonstrated efficacy in the majority of
TRAPS patients. Anakinra seems to be superior to etanercept
in retrospective TRAPS studies (15). In the Eurofever Registry,
anakinra provided some benefit in ∼90% of TRAPS patients,

with a complete remission in 67% of them (15). Anakinra
has shown to be effective, both in continuous and on-demand
administration (14, 15, 57, 82, 83, 165), and is recommended
in TRAPS patients with a level of evidence 2B and strength of
recommendation B (14).

Canakinumab induced a complete response in 19 of 20 TRAPS
patients in an open-label, phase II study (98), but it has been
recently labeled by the FDA and EMA for TRAPS patients based
on data from the CLUSTER trial (95). In such trial, among the
46 TRAPS patients randomized to receive canakinumab 150mg
or placebo every 4 weeks, at week 16, canakinumab, compared
to placebo, was associated with a higher response rate by day
15 (45 vs. 8%), higher rates of (minimal/none) physician global
assessment of disease activity (45 vs. 4%), and higher CRP levels
≤10 mg/L (36 vs. 8%) and SAA levels ≤10 mg/L (27 vs. 0%)
at week 16. Canakinumab also produced a rapid and sustained
disease control assessed with AIDAI over 16 weeks, and about
half of TRAPS patients had inactive disease after the same period
(164). In the open-label phase from week 16–40, 83% of TRAPS
patients with a previous complete response to canakinumab
150mg every 4 weeks maintained the absence of flares with
canakinumab 150mg every 8 weeks. After that period, the same
dose interval of every 8 weeks was sufficient to maintain disease
control in 53% of patients. An increase in the dose to 300mg
every 4 weeks was required by 8% of TRAPS patients (95).

Similarly to FMF patients of the CLUSTER study, TRAPS
patients treated with canakinumab developed more frequently
adverse events and serious adverse events than patients receiving
placebo. The rate of infections was of 148 per 100 patient-years of
treatment, and no serious infections were observed (95).

Hyperimmunoglobulin D Syndrome/Mevalonate Kinase

Deficiency
In HIDS/MKD, anakinra, and canakinumab may control or
attenuate the intensity of attacks in most of patients. In the
Eurofever Registry, among the 62 HIDS/MKD patients treated
with anakinra, 84% obtained a positive response, which was
complete in only 29% of them (15). On-demand administration
of anakinra in HIDS/MKD patients decreases the duration
and severity of symptoms attacks when started within 24 h
after the onset of symptoms. However, on-demand regimen
does not influence the frequency of attacks (84). Anakinra is
recommended for treating HIDS/MKD patients with a level of
evidence 2B and strength of recommendation C (14).

Efficacy and safety of canakinumab have been recently
investigated in an open-label phase II study in nine patients (six
pediatric and three adults) with HIDS, using a predefined dosage
of 300mg or 4 mg/kg for patients ≤40 kg (higher than the usual
dose of 150mg used in CAPS), with an interval administration
of every 6 weeks (99). A significant reduction of attacks
frequency and complete clinical response with normalization of
inflammatory markers within the first month of treatment were
noted in all patients (99).

As for crFMF and TRAPS, canakinumab has also been recently
approved by the FDA and EMA for HIDS/MKD treatment,
based on the data derived from the CLUSTER trial (95). Among
the 72 HIDS/MKD patients included in the study (treated with
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canakinumab 150mg or placebo every 4 weeks), those receiving
canakinumab experienced better response rate by day 15 (35 vs.
6%), higher rates of (minimal/none) physician global assessment
of disease activity (46 vs. 6%), and higher CRP levels ≤10
mg/L (41 vs. 6%) and SAA levels ≤10 mg/L (41 vs. 6%) at
week 16. Canakinumab was also associated with a rapid and
sustained disease control assessed with AIDAI over 16 weeks,
and 40% of HIDS/MKD patients had inactive disease after the
same period (164). In the open-label phase from week 16–40,
82% of HIDS/MKD patients with a previous complete response
to canakinumab 150mg every 4 weeks maintained the absence
of flares with canakinumab 150mg every 8 weeks (95). After
that period, the same dose interval of every 8 weeks maintained
the disease controlled in only 23% of patients. An increase
in the dose to 300mg every 4 weeks was required by 29%
of patients (95).

Similarly to FMF and TRAPS patients, in HIDS/MKD patients
of the CLUSTER study, adverse events and serious adverse
events were more frequent in patients treated with canakinumab
than with placebo. Rates of infections and serious infections
in HIDS/MKD were of 313.5 and 13.7 per 100 patient-years
of treatment, which were higher than for FMF and TRAPS
patients (95).

Cryopyrin-Associated Periodic Syndromes
Anakinra, canakinumab, and rilonacept are approved by the
FDA and EMA for CAPS treatment. All the three anti–IL-
1 agents are currently recommended as first-line therapy in
CAPS patients of any age, with a level of evidence 1B for
canakinumab and rilonacept, and 2A for anakinra, and a strength
of recommendation A and B, respectively (14).

Anakinra has demonstrated to control clinical and biological
activity in CAPS. FDA approval of anakinra was based
on a long-term, open-label, and uncontrolled study of 18
CINCA/NOMID patients, in whom symptoms and inflammatory
markers improved in all of them (86). This study provided
relevant information about dosage variability of anakinra to
control CAPS activity. Patients were treated with an initial dose
of 1–2.4 mg/kg body weight and an average maintenance dose
of 3–4 mg/kg per day (with a maximum dose administered
of 7.6 mg/kg per day). Although most of individuals received
a single daily dose, some of them achieved better control of
disease by splitting the dose into two daily administrations. Upon
withdrawal of treatment, disease flare occurred after a median
time of 5 days (86).

Several open-label and prospective studies (85–90) and
retrospective series (91, 92) supported EMA approval of anakinra
in adults and pediatric patients 8 months or older with a body
weight of 10 kg or greater, diagnosed with any type of CAPS
[CINCA/NOMID (85, 86, 91, 92), MWS (85, 87, 88), and
FCAS (88–90)].

Although anakinra does not seem to control the progression
of osteoarticular deformities in CINCA/NOMID patients (166,
167), it improves leptomeningeal and cochlear involvement,
due to its ability to penetrate the blood–brain barrier (15, 168,
169). Therefore, anakinra appears to be more effective than
canakinumab in the intrathecal compartment (149).

Anakinra efficacy and safety were analyzed in a prospective,
open-label, single-center clinical cohort study, including 43
severe CAPS patients followed during a mean of 5 years (170).
Anakinra was safe and well-tolerated both in pediatric and adult
patients, with most adverse events emerging during the first
months after treatment initiation. The most frequent adverse
events included headache, arthralgia, and injection site reactions.
Infections, such as pneumonia and gastroenteritis, occurred
in ∼25% of patients, but they did not require permanent
discontinuation of treatment. Interestingly, an increase of
anakinra dose was required in two cases during an infectious
event with a concomitant disease flare (170).

Canakinumab induced clinical and biological remission in
75–90% of CAPS patients in the Eurofever Registry (15). The
approval of canakinumab for CAPS was based on a 48-week,
double-blind, placebo-controlled trial of 35 patients with CAPS
(mainly MWS patients) treated with 150mg every 8 weeks, in
which 97% of patients had a complete response to canakinumab
during the study period (102). In addition, another randomized
controlled trial (103) and two observational studies on CAPS
patients including all disease phenotypes similarly showed good
results (100, 104).

A prospective study comparing the efficacy and safety of
canakinumab and anakinra in 26 MWS patients concluded
that both agents equally controlled disease activity and
inflammatory markers and that canakinumab may be
effective in some patients not responding to anakinra (104).
Occasionally, patients receiving anakinra and those treated
with canakinumab (mainly CINCA/NOMID patients) may
require an increase of dose or frequency of administration of the
drug (101, 104).

Rilonacept showed efficacy in 47 adult patients with CAPS (44
with FCAS and 3 with MWS) in a randomized controlled trial
and in an extended open-label study of up to 96 weeks including
101 patients with favorable safety and tolerability profile in adult
and pediatric patients (108, 109).

PFAPA Syndrome
Although genetic and pathogenic mechanisms of PFAPA
syndrome are unknown, in a case report and a small cohort of five
PFAPApatients resistant to glucocorticoids, the administration of
anakinra has been effective in suppressing disease flares during
the long-term follow-up (93, 94). Similarly, a pediatric case and
an adult case of PFAPA syndrome have been reported to respond
to canakinumab at a dose of 2 mg/kg and 150mg every 8 weeks,
respectively (105, 106).

TNF Blockers
Anti-TNF agents, mainly etanercept (a dimeric human TNF
receptor p75-Fc fusion protein), infliximab (a chimeric
monoclonal antibody against TNF-α), and adalimumab
(a fully human monoclonal antibody against TNF-α),
have been used in different monogenic autoinflammatory
inflammasomopathies, generally with poorer efficacy than
IL-1 blockers. These biologic agents have been approved for
several autoimmune/inflammatory conditions. Etanercept has
FDA and EMA indications for rheumatoid arthritis, juvenile
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idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis,
and plaque psoriasis; infliximab was approved by the FDA
and EMA for rheumatoid arthritis, ankylosing spondylitis,
psoriatic arthritis, plaque psoriasis, Crohn disease, and
ulcerative colitis, and adalimumab is indicated by the FDA
and EMA for all the previous diseases (approved for etanercept
and infliximab) plus non-infectious uveitis. In addition,
the FDA approved adalimumab as therapy for hidradenitis
suppurativa (acne inversa). None of the anti-TNF drugs have
been approved by either the FDA or EMA for any of the
monogenic autoinflammatory diseases.

TNF Blockers in Autoinflammatory Diseases

Familial Mediterranean Fever
In FMF, the experience with anti-TNF agents has been overall
scarce and unclear. Two small series of 10 and 14 patients
with crFMF and concomitant inflammatory conditions (chronic
arthritis, ankylosing spondylitis, juvenile idiopathic arthritis,
psoriasis, or Crohn disease) treated with all the three TNF
blockers resulted in good control of FMF and the associated
disease (115, 116). Retrospective data included in the Eurofever
Registry showed complete and partial response with etanercept
(in seven and nine cases, respectively), infliximab (seven with
complete and eight with partial response), and adalimumab
(three with complete and two with partial response) (15).
Similarly to the previous series, in this registry, anti-TNF agents
seemed also to exert more benefit in cases with predominant
arthritis (15). In a multicenter international retrospective study
including 27 FMF patients treated with biologic agents, two
patients received adalimumab and two etanercept as first
agent. While one patient experienced a complete response, the
remaining three had to discontinue the drug due to lack of
efficacy after a mean duration of therapy of 9.3 months (117).
The level of evidence of the efficacy of anti-TNF agents in crFMF,
especially in those with articular involvement, is 3, but no grade
of recommendation has been provided (13).

Tumor Necrosis Factor Receptor–Associated Periodic Fever

Syndrome
In TRAPS, etanercept is the anti-TNF agent with the best
reported results, because it has shown to prevent or reduce the
intensity of attacks and the dose of glucocorticoids previously
controlling disease activity (15, 117). However, it is relatively
common that etanercept has to be discontinued because of lack
of efficacy (15, 117), which has been reported after a period
of 3.3 years (118). Although SHARE consensus recommends
etanercept in some patients with a level of evidence 2B and grade
of recommendation C, the experts also inform that the effect
might decline over time (14).

In the Eurofever Registry, among 121 TRAPS patients treated
with etanercept, 88% experienced a satisfactory response, which
was complete in 26% of them (15). A multicenter international
retrospective study including 47 TRAPS patients, 41 with
pathogenic mutations and 6 with the R92Q variant, analyzed
20 and 4 patients treated with etanercept in each group,
respectively. Among TRAPS caused by pathogenic mutations,
∼50% of those receiving etanercept could achieve a complete

clinical response. In addition, a total of 13 of 20 (65%) TRAPS
patients discontinued anti-TNF, mostly due to a lack of efficacy.
Compared to patients receiving anakinra, those treated with
etanercept experienced less frequently a complete response and
higher drug discontinuation rates (117). With regard to the four
R92Q-TRAPS patients receiving etanercept as first-line therapy,
only one (25%) had a complete response (117). Etanercept has
also been reported effective in isolated TRAPS patients carrying
the R92Q variant (57).

The use of infliximab and adalimumab has been associated
with severe paradoxical reactions, and therefore, they are
currently not recommended in TRAPS. While etanercept is a
receptor fusion protein, infliximab, and adalimumab are TNF
monoclonal antibodies. One of the proposed mechanisms by
which infliximab is involved in a hyperinflammatory response is
related to the failure in shedding infliximab-bound receptor from
the cell surface, with the subsequent activation of antiapoptotic
mechanisms and a widespread inflammatory response (171).

Hyperimmunoglobulin D Syndrome/Mevalonate Kinase

Deficiency
In HIDS/MKD, anti-TNF therapy can improve frequency and
intensity of attacks. However, because anti–IL-1 agents can be
considered the first-line therapy for HIDS/MKDpatients (14, 95),
TNF blockers are recommended as a second option (together
with IL-6 blockade) in case of IL-1 blockers are ineffective
or not tolerated, with a level of evidence 4 and grade of
recommendation D (14).

In the Eurofever Registry, etanercept was the most frequently
used anti-TNF drug, providing any improvement in 26 of
44 (59%) of HIDS/MKD patients, which was complete in
seven (16%) of them (15). A multicenter retrospective study
of eight HIDS/MKD patients treated with etanercept showed
higher complete response rates (88%). However, etanercept was
discontinued in four patients (50%) due to lack of efficacy (117).

Cryopyrin-Associated Periodic Syndromes
No evidence of efficacy of biological therapy (including anti-
TNF agents) other than IL-1 blockade in CAPS patients is
available (119).

PFAPA Syndrome
To date, no PFAPA cases treated with anti-TNF agents have
been reported.

Anti–IL-6 Agents: Tocilizumab
Tocilizumab is a humanized monoclonal anti–IL-6 receptor
antibody currently labeled by the FDA and EMA for rheumatoid
arthritis, systemic and polyarticular juvenile idiopathic arthritis,
giant cell arteritis and for the treatment of chimeric antigen
receptor T cell–induced severe or life-threatening cytokine
release syndrome. Tocilizumab has not been approved for
any of the monogenic autoinflammatory diseases because the
experience of its use, usually in patients unresponsive to other
biologic agents, is still occasional.
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TABLE 3 | Biological agents (other than IL-1 blockers), types of studies supporting the maximum evidence level, and response to treatment of the main monogenic

autoinflammatory diseases (crFMF, TRAPS, HIDS/MKD, and CAPS)*.

Drug Disease Type of

study

Response References

Anti-TNF

Etanercept

Infliximab

Adalimumab

crFMF RCS Partial or complete response in few patients. Better efficacy in patients with

articular involvement

(15, 115, 116)

TRAPS** RCS Good response in 88% of patients, complete in 25–50% of them (15, 117, 118)

HIDS/MKD RCS Good response in 59–88% of patients, complete in 16% of them

Lack of efficacy over time

(15, 117)

CAPS CR No response (119)

Anti- IL-6

Tocilizumab

crFMF RCS, CS, CR Good response in patients resistant to colchicine, anti-IL-1, and anti-TNF agents (120–128)

TRAPS CR Good response in patients refractory to anti-TNF and anti-IL-1 agents (129–131)

HIDS/MKD CR Good response in patients refractory to anti-TNF and anti-IL-1 agents (132–136)

CAPS CR No response (119, 137)

JAK-inhibitors

Tofacitinib

crFMF CR, CS Good response in patients refractory to anti-TNF, anti-IL-1, and anti-IL-6 agents (138–140)

*No evidence about the use of these drugs in PFAPA syndrome.

**Infliximab and adalimumab are not recommended in TRAPS since their use has been associated with severe paradoxical reactions.

CAPS, cryopyrin-associated periodic syndromes; CR, case report; CS, case series; crFMF, colchicine-resistant familial Mediterranean fever; HIDS/MKD, hyperimmunoglobulin D and

periodic fever syndrome/mevalonate kinase deficiency; IL, interleukin, JAK, Janus kinase; PFAPA, periodic fever with aphthous stomatitis, pharyngitis and cervical adenitis; RCS,

retrospective cohort study; TNF, tumor necrosis factor; TRAPS, TNF-receptor associated periodic fever syndrome.

Tocilizumab in Autoinflammatory Diseases

Familial Mediterranean Fever
Tocilizumab has been successful in controlling disease activity in
the majority of patients with crFMF reported as single cases, with
good control of secondary amyloidosis in some of them (120–
125). Tocilizumab effects over proteinuria in FMF-associated
amyloidosis has been analyzed in two series of 11 and 12
patients resistant to colchicine, anti–IL-1, or anti-TNF agents, in
whom the previous colchicine therapy wasmaintained (126, 127).
Proteinuria improvement in any degree was achieved by 7 of 11
patients (64%) and 9 of 12 patients (75%), respectively (126, 127).
In two of the responder patients, tocilizumab was discontinued,
and proteinuria returned, with good control after restarting IL-6
blockade (128).

Other Autoinflammatory Diseases
Tocilizumab has been successfully used in three patients with
TRAPS (129–131) and in seven HIDS/MKD cases (132–136)
in whom anti-TNF and/or anti–IL-1 agents had previously
failed. Negative results have been reported in two CAPS
(CINCA/NOMID) patients treated with tocilizumab (119, 137).
No evidence on the use of tocilizumab in PFAPA syndrome is
currently reported.

JAK Inhibitors
JAK inhibition suppresses the constitutive phosphorylation of
the transcription factor STAT-1, which blocks the induction of
IFN-stimulated genes and subsequently leads to the regulation
of the uncontrolled IFN production, causing inflammatory
manifestations. Janus kinase inhibitors, such as tofacitinib,
baricitinib, and ruxolitinib, are currently approved by the FDA
and EMA for rheumatoid arthritis, psoriatic arthritis, and
ulcerative colitis (tofacitinib), rheumatoid arthritis (baricitinib),
and myelofibrosis and polycythemia vera (ruxolitinib, also

approved for steroid-refractory acute graft-vs.-host disease by
the FDA).

JAK inhibitors have demonstrated positive effects in several
monogenic autoinflammatory diseases mediated by type
I IFN (also named interferonopathies), including chronic
atypical neutrophilic dermatosis with lipodystrophy and
elevated temperature/proteasome-associated autoinflammatory
syndrome, STING-associated vasculopathy with onset in
infancy, familial chilblain lupus, and Aicardi–Goutières
syndrome (172–175).

Because the pathogenic mechanism of the diseases included
in this review consists mainly in the abnormal function of
the inflammasome, as expected, the use of JAK inhibitors in
monogenic inflammasomopathies remains anecdotal and limited
to six crFMF patients previously failing to IL-1, TNF, and IL-
6 blockers. However, interestingly, these cases were successfully
treated with tofacitinib (138–140).

Table 3 summarizes all the biological agents (other than IL-1
blockers) used in themainmonogenic autoinflammatory diseases
and PFAPA syndrome, and types of studies supporting the
maximum evidence level for their use.

PROPOSAL OF A PRACTICAL GUIDE FOR

TREATING THE MAIN MONOGENIC

AUTOINFLAMMATORY DISEASES AND

PFAPA SYNDROME

Based on the maximum level of evidence and grade of
recommendation for FMF, CAPS, TRAPS, HIDS/MKD,
and PFAPA syndrome, a proposed practical scheme for
the treatment of these conditions is illustrated in Figure 1.
Evidence-based recommendations for the treatment of the
main monogenic autoinflammatory diseases have been
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FIGURE 1 | Proposed approach for the treatment of the main monogenic autoinflammatory diseases and PFAPA syndrome, based on the maximum level of evidence

and grade of recommendation (when available) for each drug and disease.

No strength of recommendation is provided when expert opinion consensus still does not exist.

Thalidomide and dapsone have also been reported of benefit in some colchicine-resistant FMF patients (data within the text).

*This drug has been proved effective with continuous and on demand administration.

**This drug is recommended mostly in short courses (on demand) during attacks.

¦Colchicine in PFAPA patients has been reported more effective in carriers of heterozygous variants in the MEFV gene.

§Anti-TNF agents (etanercept, infliximab, and adalimumab) have been shown more useful in FMF patients with prominent articular manifestations.

#Tocilizumab has been used with efficacy in few patients with FMF, TRAPS, and HIDS/MKD who failed to anti–IL-1 and/or anti-TNF agents.

#Tofacitinib has shown good response in few patients with colchicine-resistant FMF who also failed to IL-1, TNF, and IL-6 blockers.

CAPS, cryopyrin-associated periodic syndrome; FMF, familial Mediterranean fever; HIDS/MKD, hyperimmunoglobulin D and periodic fever syndrome/mevalonate

kinase deficiency; PFAPA, periodic fever with aphthous stomatitis, pharyngitis and cervical adenitis; TRAPS, TNF receptor–associated periodic syndrome.

extracted from previous consensus studies, such as the
EULAR recommendations for the management of FMF
(13) and the European SHARE recommendations for the
management of TRAPS, HIDS/MKD, and CAPS (14).
Additional information used to generate levels of evidence
has been incorporated mostly from results of new clinical
trials, international multicenter registries, and retrospective
data mainly from referral centers. According to the EULAR
standard operating procedures for developing best practice
to endorse recommendations, only the level of evidence is
provided in those diseases with new therapeutic information
but without recommendations issued by consensus expert
opinion (11, 12).

The proposed therapeutic approach includes three different
levels or situations: (a) first-line treatment (at the time of
disease diagnosis or when symptomatic treatment used formilder
situations is not effective); (b) milder cases or special clinical
situations (including severe serositis or protracted febrile myalgia
in case of FMF, or symptomatic treatment inmilder presentations
for the remaining conditions); and (c) second-line treatment

(in case of patients not responding to first-line drugs or other
biologic agents).

STILL UNSOLVED AND OPEN QUESTIONS

Despite the great efforts and progresses achieved during the last
years in the treatment of monogenic autoinflammatory diseases,
several questions remain still pending to be answered:

• how to define resistance or failure to any biologic drug?
• how to demonstrate the effect of biologic agents in preventing

secondary amyloidosis?
• which is the right therapeutic window to initiate or switch to a

biologic agent?
• which biological agent should be used as first?
• when it is time to switch to another biologic agent, and

which biologic?
• how to identify the right moment to start on-demand

treatment and when changing from continuous to on demand
administration is appropriate?
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• how to establish, if possible, reduction and discontinuation of
any treatment used?

NEW TREATMENT STRATEGIES IN

AUTOINFLAMMATORY DISEASES

It is of crucial importance to maintain and boost the
international collaboration with patients’ registries for all the
autoinflammatory diseases and also to promote initiatives that
allow the generation of genetic, clinical, and therapeutic research.
The latter should include drug development in preclinical
(phases I and II) trials, whereas phase III trials (evaluating
safety) should be now focused on testing new drugs and also
on performing head-to-head comparisons between the current
biologic agents, respectively.

With regard to preclinical trials, because the abnormal
activation of the NLRP3 inflammasome seems to be
implicated in conditions other than autoinflammatory diseases,
such as diabetes, atherosclerosis, and cardiovascular and
neurodegenerative diseases, several in vitro and in vivo studies
are exploring the potential role of different pharmacological
inhibitors of the NLRP3 inflammasome in NLRP3-associated
diseases (176). While some of these new agents are small
molecule inhibitors directly acting on the NLRP3 protein,
others are targeting different components and products of the
inflammasome. These new agents include glyburide, 16673-34-0,
JC124, FC11A-2, parthenolide, VX-740, VX-765, Bay 11-7082,
BHB, MNS, CY-09, OLT1177, oridonin, MCC950, and tranilast
(176). Among them, tranilast and other small molecules, such
as IZD174 and IZD334 (related to MCC950), are being used in
patients with CAPS, in phases I and II clinical trials.

Currently, the efficacy and safety of alternative biologic drugs
and small molecules are being studied or pending of results in
several ongoing clinical trials, including:

1) Tocilizumab for the treatment of FMF—a randomized,
double-blind, phase II proof-of-concept study
(ClinicalTrials.gov identifier: NCT03446209). This trial
will analyze the efficacy of tocilizumab in adult patients with
crFMF, also failing to other biologic agents.

2) A randomized, double-blind, parallel-group comparison trial
of tocilizumab for colchicine-resistant FMF (UMIN-CTR
Clinical Trial ID: UMIN000028010). This (phase III) trial will
analyze the efficacy of tocilizumab in patients from 12 to 75
years with crFMF (177).

3) An open-label continuation trial of tocilizumab for FMF with
colchicine ineffective or intolerance (UMIN-CTR Clinical
Trial ID: UMIN000032557). This trial is expected to obtain
evidence regarding the long-term safety of tocilizumab in
crFMF patients (178).

4) Safety and tolerability, pharmacokinetic, and
pharmacodynamic study with IZD334 (ClinicalTrials.gov
identifier: NCT04086602). This is the first-in-human,
single-center, double-blind, randomized, crossover (phase I)
study of IZD334 (a small molecule inhibitor of the NLRP3
inflammasome) conducted in healthy adults as well as an
open-label cohort in adult patients with CAPS.

5) Safety and tolerability, pharmacokinetic, and
pharmacodynamic study with inzomelid (ClinicalTrials.gov
identifier: NCT04015076). A phase I, randomized,
double-blind, placebo-controlled, single- and multiple-
ascending-dose study to determine the safety, tolerability,
pharmacokinetics, pharmacodynamics, and food effect
of inzomelid (or IZD174, a small molecule inhibitor of
the NLRP3 inflammasome) in healthy adult participants,
as well as an open-label cohort to confirm the safety,
pharmacokinetics, and pharmacodynamics of inzomelid in
adult patients with CAPS.

6) A clinical study of tranilast in the treatment of CAPS
(ClinicalTrials.gov identifier: NCT03923140). A single-arm
prospective cohort (phase II) study designed to observe the
efficacy and safety of tranilast (a small molecule inhibitor of
the NLRP3 inflammasome) in CAPS patients.

7) Ilaris R© (canakinumab) in PFAPA patients (ClinicalTrials.gov
identifier: NCT02775994). This single-arm open-label pilot
study will analyze the efficacy of canakinumab during the first
2 months of treatment in 10 children with PFAPA syndrome
experiencing frequent flares.

CONCLUDING REMARKS

• Colchicine, used at therapeutic doses, is the criterion-standard
treatment for FMF and of some help in PFAPA patients, mostly
in those carrying heterozygousMEFV gene mutations.

• NSAIDs improve symptoms in most patients with any
autoinflammatory disease, but they are usually insufficient to
control symptoms and do not influence the underlying cause
of the disease in any of them.

• Glucocorticoids, generally used at medium or high doses,
may be effective when administered on demand (in short
courses) inmost of themonogenic conditions. In some TRAPS
patients, continuous administration of glucocorticoids may
be also useful. Anyway, because most patients will require a
biologic agent to control the disease activity, glucocorticoids
may be reserved as initial treatment to prove response or
may be also administered in a continuous or on-demand
modality for mild/non-severe cases. Glucocorticoids have
demonstrated special utility in FMF patients experiencing
protracted febrile myalgia and severe serositis (in a short
course at high doses) and in PFAPA patients (in a single high-
dose administration), representing the treatment of choice in
PFAPA syndrome.

• Among biologic agents, IL-1 blockers are the most
relevant and useful drugs in the treatment of the main
monogenic autoinflammatory diseases, especially in those
considered inflammasomopathies.

• Anakinra and canakinumab have FDA and EMA approval
as first-line treatment for CAPS patients, whereas rilonacept
has been approved only by the FDA. Both anakinra and
canakinumab are of clear utility in crFMF, TRAPS, and
HIDS/MKD patients, and canakinumab has been recently
approved by the FDA and EMA for these three conditions.
Anakinra has been used with success on demand in patients
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with all monogenic diseases and PFAPA syndrome and
therefore may be reserved for selected patients, mainly
for those presenting with prominent manifestations or
recognizable triggers preceding the attacks.

• Information regarding other alternative biologic agents is
scarce and extracted from small case series and case reports
including patients who did not respond to other biologics.

• Anti-TNF agents, and in particular, etanercept, seem to
exert some benefit in FMF patients with prominent articular
manifestations and also in TRAPS and HIDS/MKD patients.

• Tocilizumab (anti–IL-6 agent) has been successful in
controlling disease activity and improving proteinuria in
patients with FMF-associated amyloidosis and also in few
TRAPS and HIDS/MKD patients resistant to anti-TNF and/or
anti–IL-1 agents.

• The use of JAK inhibitors inmonogenic inflammasomopathies
is limited to the use of tofacitinib with good response in

few crFMF patients previously failing to IL-1, TNF, and IL-
6 blockers.

• The knowledge of genetic and pathogenesis of these
autoinflammatory diseases has to be encouraged in order
to discover new potential molecular targets leading to new
specific drugs.

• Further randomized clinical trials proving the efficacy
and safety of the currently promising biologic drugs
and the new potential agents and small molecules are
still needed.
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