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Sustaining ecosystems to deliver what people need and value, while mitigating and 
adapting to global climate change and extreme event impacts, presents a complex 
set of environmental, economic, and social challenges in ensuring resilient and 
sustainable food production. The Climate Smart Landscape (CSL) approach has 
emerged as an integrated management strategy to address the increasing pres-
sures on agricultural production, ecosystem conservation, rural livelihoods, climate 
change mitigation and adaptation. Deploying cheaper, more accurate, and efficient 
technology enables the harnessing of big data for use in solving sustainability chal-
lenges. With improved integrated analytical frameworks, statistical approaches, spa-
tially-explicit models and indices, the CSL approach can be further developed and 
applied for more resilient, productive, and sustainable ecosystems. This eBook brings 
together original research, review, hypothesis, theory, and technology report articles, 
involving 87 authors from 9 countries across Asia, Europe, and North America. These 
articles present new methodological and technological innovation, findings, and 
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insights across four themes: (1) landscape productivity and crop suitability, (2) variable 
crop requirements for water and nutrients, (3) crop health status, phenology, and 
phenotyping, and (4) crop disease assessment and prediction under 
integrated pest management (IPM).
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Editorial on the Research Topic

Building and Delivering Real-World, Integrated Sustainability Solutions: Insights, Methods

and Case-Study Applications

Sustaining ecosystems to deliver what people need and value, while mitigating and adapting
to global climate change and extreme event impacts, presents a complex set of environmental,
economic, and social challenges in ensuring resilient and sustainable food production (Fuhrer,
2007; Newlands, 2016; Whitfield et al., 2018). Regional climate trends drive variability in land
productivity, soil water and nutrient availability, crop calendars, and the prevalence of pests and
pathogens. Abrupt extreme events that defy clear prediction and attribution to climate trends cause
catastrophic crop damage through water-logging, soil erosion, nutrient leaching, heat waves and
drought. Sayer et al. (2013) proposed 10 core principles for an integrated landscape approach for
reconciling agriculture, conservation, and other competing land uses. Building on these principles,
the Climate Smart Landscape (CSL) approach has emerged as an integrated management strategy
to address the increasing pressures on agricultural production, ecosystem conservation, rural
livelihoods, and climate change mitigation/adaptation (Scheer et al., 2012; Salvini et al., 2018).
The CSL approach is strengthened by a broad array of different science-based indicators,
metrics, frameworks and modeling systems that enhance its capability to make more informed,
integrated decisions. This approach, however, needs to incorporate big data, statistical, and artificial
intelligence (AI) methodological improvements, new sensors, and remote-sensing technological
advancements (Lee et al., 2010; Wolfert et al., 2017; Willcock et al., 2018). Such improvements
offer more flexible monitoring, newer and/or higher-resolution data, better prediction methods,
and tools for decision support.

This Research Topic aims to showcase research, development and technology (RDT) work
toward devising and delivering integrated solutions that support and enhance the CSL-based
approach. This Research Topic comprises 13 articles, including 10 Original Research articles,
1 Review, 1 Hypothesis and Theory article, and 1 Technology Report. State-of-the-art
modeling approaches and sampling technologies are showcased. Contributed papers present
new methodological/technological innovation, findings, and/or insights across four themes: (1)
landscape productivity and crop suitability, (2) variable crop requirements for water and nutrients,
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(3) crop health status, phenology and phenotyping, (4)
crop disease assessment and prediction under integrated pest
management (IPM) and the CSL approach.

LANDSCAPE PRODUCTIVITY AND CROP

SUITABILITY

Bock et al. provide a technology report on a Canadian Land
Suitability Rating System (LSRS) is a rule-based algorithm
integrating soil, climate, and landscape factors from accessible
databases, calculating a classed suitability rating for a given
landscape. It is used to support commercial field crop production,
and as a spatial research tool for assessing climate change
impacts. Subramanian and Crowley present a spatial-based
reinforcement learning approach that uses satellite imagery to
increase the predictive power of spatial dynamic models that
predict, and learn better policies to manage and control spatially
spreading processes. They apply this methodology in wildfire
event prediction using Canadian data. Exploring landscape
gradients, Xu et al. assess how measuring plant community
assemblies along habitat severity gradients may improve our
ability to understand and monitor community dynamics and
species responses under future climate change.

VARIABLE CROP REQUIREMENTS FOR

WATER AND NUTRIENTS

Neilsen et al. showcase a landscape-based water demand model
for agricultural water use that regional water managers can
use to better manage water demand and supply in response
to climate change. This model considers high-resolution land
use, soil, elevation, historical/future climate scenario data, a
digital elevation model, sub-basins, aquifers, and socio-political
jurisdictional boundaries. They use this model to explore future
scenarios of climate change, and historical effects of crop
production systems on irrigation water demand. From water to
nutrient requirements, Guo et al. investigate aerially estimating
nitrogen update frommulti-angular hyperspectral data on winter
wheat to improve the efficiency of remotely-based techniques for
non-destructive, rapid detection of wheat nitrogen (N) nutrient
status. A novel, modified right-side peak area index (mRPA)
is benchmarked against other widely used indices, and shown
to have the highest predictive power. Using this index can
increase accuracy in assessing crop N status and management.
Martins et al. propose a novel methodology for tracking crop
micronutrient composition over time and demonstrate it for
predicting maize/corn maximum requirements under variation
in nutrient uptake rates, potential evapotranspiration, and
micronutrient partitioning over crop growth stages.

CROP HEALTH STATUS, PHENOLOGY,

AND PHENOTYPING

Watson et al. use time-lapsed “phenocam” cameras to track
the phenology and identify phenological variability of native
and exotic grasses across grassland areas in Australia. Their

findings indicate C3/C4 species dominance to be the primary
driver of phenological differences among grassland types,
with the proportion of non-photosynthetic vegetation, grazing
pressure, and species-dependent responses to rainfall and
temperature being important biophysical drivers of grassland
phenology. MODIS/Landsat satellite and field-based phenocam
data were found to be in good agreement. A primary benefit
of phenocam data is its higher temporal fidelity in capturing
vegetation changes (i.e., increases/decreases in greenness) over
periods of only 5 days, compared to coarser satellite or
field measurement techniques. Using high-resolution images
captured by unmanned aerial vehicles (UAVs), Guo et al.
propose a two-step machine-learning based image processing
method that can provide more reliable estimates of yield by
detecting and counting the number of heads, than manual
measurements in sorghum breeding trials, with potential for
broader application in field experiments, and field production
scouting operations. To better assess adaptation traits in large
small-plot breeding trials, Potgieter et al. evaluate the use of
a narrowband multi-spectral camera deployed on a UAV. Leaf
Area Index (LAI), Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), and Normalized
Difference Red Edge (NDRE) were evaluated. Despite variable
emergence, these indices tracked canopy cover and LAI well
over a large range of plant densities, with NDVI and EVI
strongly correlated with plant number per plot, canopy cover,
and LAI. NDRE (i.e., leaf chlorophyll content) was found
to be most useful in characterizing the leaf area dynamics
and senescence patterns in contrasting genotypes. In further
addressing practical constraints in genomics-assisted breeding,
Watanabe et al. demonstrate UAV remote sensing (with a RGB
or near-infrared green and blue (NIR-GB) camera) for measuring
sorghum plant height and nitrogen availability for faster and
more cost-effective throughput phenotyping. For phenotyping
based on root depth distributions, Wasson et al. propose a
state-of-the-art Bayesian hierarchical’ nonlinear mixed statistical
modeling approach to estimate root depth distributions for
wheat genotypes to enable breeders to select for whole root
system distributions appropriate for sustainable intensification.
This approach produces de-noised profiles that exhibit rigorously
discernible phenotypic traits.

CROP DISEASE ASSESSMENT,

PREDICTION UNDER IPM AND CSL

APPROACH

Pandey et al. provide a review of soil-borne and foliar
fungal diseases of mungbean (Vigna radiata var. radiata),
an important legume crop in South/Southeast Asia. They
review pathogen characterization, economic impacts, and
integrated management practices including host resistance,
fungicides, biocontrol agents, natural plant products, and cultural
practices. They highlight the need for longer-term studies to
validate biological methods for commercial application. For
wheat (yellow) stripe rust (Puccinia striiformis f.sp. tritici)
fungal disease, the greatest global pathogen threat to wheat
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production worldwide, Newlands explores the feasibility of
an integrated model-based framework for predicting and
controlling across large agricultural regions, using a novel
spatially-explicit complex model, climate reanalysis and weather
station network data.

Deploying cheaper, more accurate, and efficient
technology enables the harnessing big data for use in
solving sustainability challenges. With improved integrated
analytical frameworks, statistical approaches, spatially-
explicit models and indices, the CSL approach can be
further developed and applied for more resilient, productive,
and sustainable ecosystems. Smarter models will however
require sufficient training data and operational frameworks
assimilating data across a broad range of sampling platforms
and data types. Agri-business will likely play an increasing
role in sustainable landscape management by involving
stakeholders and monitoring progress and outcomes (Salvini
et al., 2018). Collectively, we can move faster to confront
such complex interplay involved in translating scientific

evidence into real-world operational or actionable solutions
(Lamontagne et al., 2019).
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The Land Suitability Rating System (LSRS) is a rule-based set of algorithms that integrate

soil, climate and landscape factors to calculate a classed suitability rating for a given

landscape to support commercial field crop production. The attributes used to define

each of the factors are based on their proven ability to affect crop growth, their ability to

be measured (or estimated by proxy) and their availability in accessible databases. The

LSRS was first published in 1995 by Agriculture and Agri-Food Canada as a site-specific,

manual calculator for spring-seeded small grains that incorporated sets of attribute point

deduction curves based on expert knowledge. Since that time the system has been

expanded to include additional crop modules and all data handling and calculations are

automated through a set of web-based applications. The current version of LSRS (version

5) is implemented in Ruby on Rails® software as a suite of web services. The system runs

against any soil map with standardized Canadian Soil Information Service soil data tables

to process soil attributes and calculate limitations to crop growth. A climate factor rating

is based on crop-specific agro-climatic indices and thresholds. Climatic indices have

historically been calculated from 30-year climate normal periods using monthly data but

LSRS can now also utilize daily data records which facilitate trend analyses within annual

historic records. The use of available gridded climate datasets enables direct overlay

and extraction of climate attributes to the spatial extent of soil map polygons. Lastly,

the system incorporates a landscape factor related to land erodibility and constraints to

management. Each of the three suitability factors is assigned a class rating between 1

(no limitations) and 7 (unsuitable) with the final overall rating being the most limiting of

the three factors. Recent improvements in the ability of the system to process multiple

climate datasets mean outputs from Global Circulation Models may also be useful for the

LSRS model in assessing possible impacts of climate change on crop suitability. LSRS

is used increasingly as a spatial research tool in assessing potential changes in crop

distributions at both national and regional scales.

Keywords: land suitability, climate change, soil maps, agro-climatic indices, Global Circulation Model, agricultural

capability
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INTRODUCTION

The identification of soil landscapes suitable for production
of food no doubt began with the dawn of arable agriculture.
“Pedology and soil science in general have their rudimentary
beginnings in attempts to group or classify soils on the basis
of productivity. Early agrarian civilizations must have had some
way to communicate differences and similarities among soils.”
Ahrens et al. (2002). In the early 1900’s, German agronomist A.
D. Thaer proposed a scale to describe the intrinsic fertility of
soil based on attributes such as soil texture, calcium carbonate
content and organic matter content (Feller et al., 2003). These
early assessments were very subjective and qualitative based on
general observations of features such as topography, stoniness,
wetness and tree cover.

As agriculture becamemoremechanized and intensified in the
twentieth century, there was a concomitant increase in scientific
research into the agronomic requirements of cultivated crops.
The evaluation of production potential became much more
specific and quantitative with assessments such as the Storie
Index Rating (Storie, 1933). This mathematical treatment of
individual parameters such as texture, organic matter and pH
was well accepted by the technical community of soil specialists.
Ratings based on his procedure were incorporated into numerous
soil reports produced as part of the National Cooperative Soil
Survey Program in theUnited States (see, for example, Goodman,
1955; Arroues and Anderson, 1986). In the province of Alberta,
Canada, soil survey reports from the late 1930s to the late 1950s
included an interpretive land class map derived primarily from
the physical characteristics of the study area. When compiling
the map, soil physical data (texture, surface color, pH, soil taxon,
mode of deposition, and degree of stoniness), landscape data
(topographic form and relief) and climate data (rainfall and
rainfall variability) were all taken into consideration (Wyatt et al.,
1939). Each of these factors was assigned a numeric value for
each soil area, and the multiplying together of these values gave
the final index rating of the soil area. Using available pasture
carrying capacity and wheat yield data, a seven-class productivity
grouping of these rated areas was created. Some of the later
soil survey reports produced through the end of the 1960s
incorporated a stocking rate and/or wheat yield range for each
group as an estimate of productivity (see, for example, Bowser
et al., 1951; Odynsky et al., 1952).

By the middle of the century with greater intensification
and further expansion into the less suitable fringe lands,
there was recognition that some of the agricultural practices
associated with the push for higher productivity were negatively
affecting environmental sustainability (Standing Committee on
Agriculture, Fisheries and Forestry, 1984). In Canada, this
discussion had started with the wind erosion concerns in the
1920s and 30s. There was increasing competition with other
land uses such as forestry, wildlife habitat, and recreation all
associated with a growing population. It was into this setting
that the broader concept of land capability, which included an
aspect of sustainability, was introduced both in the United States
(Klingebiel and Montgomery, 1961) and Canada (Agriculture
and Rural Development Act, 1965).

The Canada Land Inventory (CLI) was introduced in Canada
in the mid-1960s under the program of the federal Agriculture
and Rural Development Act. The system used a general
comparative capability approach based on severity of limitations
for broadly defined land uses, specifically, agriculture, forestry,
wildlife, and recreation. In the words of the authors of the first
CLI report, the new system “is designed primarily for planning
rather than for management. It is of a reconnaissance type, it
provides information essential for land development planning
at the municipal, provincial and federal levels of government.
It does not provide the detailed information required for
management of individual parcels of land, nor for land planning
in small watersheds, local government units, etc.” (Agriculture
and Rural Development Act, 1965) The capability ratings were
to be presented on maps at a scale of 1:250,000. At the
time of its development, the then relatively new profession
of land use planning was becoming important and quickly
embraced this new rating system as capability was an intuitive
and easily understandable concept. Municipal planners and
realtors particularly liked the approach. The classification system
incorporated seven classes with Class 1 being the best with no
limitation for the intended use, Class 4 being marginal for the
use and Class 7 being completely unsuitable. Under the umbrella
of a cooperative federal-provincial program, approximately 2.5
million hectares covering all regions of Canada with multiple
land use issues associated with agriculture were mapped from
1965 to 1980 using the CLI (Canada Land Inventory, 1998).

The CLI system worked very well for its intended regional
development objectives; however, these regional assessments,
while based on specific soil and land information still required
a significant amount of subjective interpretation, extrapolation
and amalgamation and climate was not considered in the ratings.
In addition, the capability classes were categorical and while
well-suited to land use planning functions they were less useful
for more detailed analysis such as assessing the productivity
function of soils (Mueller et al., 2010). Many land evaluators and
managers required a much more detailed assessment at scales
of 1:50,000 or larger (with units as small as several hectares),
but in many areas there simply was not a more detailed soil
database available. The CLI, however, was not intended for use
at detailed or site-specific scales (Alberta Energy and Natural
Resources, 1983). Attempts to extend the CLI approach to
address the more detailed requirements provided variable results.
Over the years, agencies in a number of jurisdictions either
modified the original CLI system or developed entirely new
systems of land capability classification for a variety of purposes.
In other instances, soils specialists with different agencies within
a province simply used two parallel systems following the CLI
and Storie-type approaches (Alberta Soils Advisory Committee,
1983). If one person or one closely correlated group was
providing the interpretations there was at least consistency
within a region; however, as more people and agencies became
involved, consistent evaluations became a problem (Alberta Soils
Advisory Committee, 1987).

The overall result was that by the mid-1980s there were
many agricultural rating systems being used across Canada.
These included the systems used in the Atlantic Region (Atlantic
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Advisory Committee on Soil Survey, 1988), Quebec (Mailloux
et al., 1984), the Ottawa area (Marshall et al., 1979), Ontario
(Brooke and Presant, 1986), Alberta (Alberta Soils Advisory
Committee, 1987), and British Columbia (Kenk and Cotic, 1983).
With different parameters and thresholds, the same crops could
have different absolute ratings under the different systems. The
original CLI was also not consistent across Canada as the ratings
were based on regionally important crops that differed from one
region to another. For example, an area rated as CLI Class 1 for
agriculture in Saskatchewan would be based on wheat and other
small grains while an area rated as CLI Class 1 for agriculture in
Ontario would have to grow corn.

The use of multiple capability classification systems as well
as the inconsistent manner in which the CLI was being applied
nationally resulted in confusion and disagreement. The topic was
raised at the meeting of the Canadian Expert Committee on Soil
Survey in 1986. Agriculture and Agri-Food Canada’s then Land
Resource Research Centre responded by creating an Agronomic
Interpretations Working Group (AIWG) in 1987 to pursue the
development of a national rating system for Canada. It was
asked to address several specific concerns related to the CLI-Soil
Capability for Agriculture, namely:

• The proliferation of modifications to the CLI by provincial
departments that had resulted in a variety of inconsistent
methods used in the classification of land capability for
agriculture across Canada;

• The inadequate consideration of the role of climate on land
suitability for crop production;

• The omission of organic soils in the CLI, and;
• The lack of specificity in definitions and applications which

lead to inconsistent ratings by those applying the system.

The result of the work was the publication in 1995 of
the technical bulletin “Land Suitability Rating System for
Agricultural Crops: 1. Spring-seeded small grains” (Agronomic
Interpretations Working Group, 1995). The spring-seeded small
grains report presented the details for the first module of LSRS.
While it was anticipated by the original working group that
additional crop modules would quickly follow, it would be a full
decade before these would be developed.

It is the purpose of this paper then to present the story
of the evolution of Canada’s Land Suitability Rating System
(LSRS) from its beginnings in the 1990’s up to 2017. Specifically,
the paper outlines the rationale associated with the initial
development of LSRS, describes the model’s structure and
methods of implementation, describes the chronology and nature
of upgrades (new versions, new modules) to the system, and
presents recent examples of its application at national and
regional scales.

SYSTEM BACKGROUND AND
DEVELOPMENT

In describing the approach andmethods used in the development
of LSRS, the differences and usages in the terms land evaluation,
land capability and land suitability warrant some discussion.

Capability assesses the nature of limitations and degree of
limitations imposed on cultivated agriculture by the physical
characteristics of a land unit. In the New Zealand Land Use
Capability classification system capability of land is defined as
“its suitability for productive use or uses after considering the
physical limitations of the land” (Lynn et al., 2009). The land
capability classification for agriculture in the UK developed by
theMacauley Land Research Institute described capability as “the
agricultural potential of land based on the degree of limitation
imposed by its biophysical properties” (Wright et al., 2006). Land
capability classification involves systematically categorizing units
of the landscape in a way that reflects the inherent ability to
produce sustainably into the future (Lynn et al., 2009). In Canada,
the Canada Land Inventory (CLI) series of capability maps have
been an important reference for assessing present and potential
land use activities and planning across Canada. However, in
terms of capability ratings there have been issues related to
specificity. The agricultural capability classification rates soils for
their ability to sustain production of common crops based on
their potentials and limitations. The underlying assumption is
that the better the capability rating (i.e., Class 1 vs. Class 4) a
wider variety of agricultural crops may be grown; however, the
number of crops successfully grown varies from one region of
Canada to another. For example, corn may be grown in the CLI
Class 1 or 2 areas in southern Ontario, but within the Prairie
region areas of equivalent capability cannot sustain equivalent
corn crops.

In comparison, the term “land suitability” is an estimate
of the fitness of a soil and its landscape for production
of a specific agricultural crop (FAO, 1976). As plants have
specific requirements related to the functional status of
soil, classifications based on production limitations and crop
productivity must have a certain stratification or orientation
specific to a single crop or groups of related crops (Mueller
et al., 2010). Early federal German systems used soil suitability
classification terms like “prime wheat soil,” “rye soil,” or “oats
soil” to describe the suitability of specific areas (Feller et al.,
2003). More recently, the Muencheberg Soil Quality Rating is
a soil suitability classification developed as a tool to assess the
capacity of land across all scales to produce small grains (Mueller
et al., 2007). Similarly, soil suitability rating systems have been
developed for a variety of specific land management practices
such as reduced tillage or direct drilling (Cannell et al., 1978),
irrigation (Alberta Agriculture Food and Rural Development,
2000), the spreading of animal manure (Eilers and Buckley,
2002) and carcass burial (Carcass Burial Site Selection Technical
Committee, 2004).

Modern land evaluation systems largely grew out of the
older agricultural land capability classification. However, land
evaluation is a much broader concept bringing into the
assessment aspects of environmental sustainability (Smyth and
Dumanski, 1995) and a range of economic and market factors
that can influence land use decisions (Rossiter, 1996). Land
suitability is typically one component of land evaluation.
Methods of land evaluation (including land suitability) have
becomemore sophisticated over time (Sonneveld et al., 2010) and
with increased availability of large geographic and production
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datasets and geographic information systems, evaluations have
become more quantitative and process oriented (Triantafilis
et al., 2001; Joss et al., 2008; Elsheikh et al., 2013).

Initial Concepts and Assumptions
Development of LSRS was based on an “expert system” approach
that made use of existing sources of data and the collective
knowledge and experience of professionals from the fields of land
and plant science and those familiar with the evaluation of land
suitability for crop production. The Agricultural Interpretations
Working Group that developed the first version of LSRS was
composed of soil surveyors, agronomists and agro-climatologists
from across Canada. They examined a number of systems that
were being used to rate land for the production of agricultural
crops, keeping in mind the need for national consistency and the
other concerns raised by the Expert Committee on Soil Survey.
Climatic stratifications such as those by Chapman and Brown
(1966), FAO (1976), and Williams (1983) were examined.

The initial assessment recommendations were:

1. Retain framework of the seven-class CLI system. It was well
established and accepted and formed the basis for land use
regulations in several provinces.

2. Rate separately elements of climate, soil and landscape, each
of which can independently control land suitability for crop
production.

3. Organic soils must be included and rated for suitability as is
done with mineral soils.

4. Use only a limited number of key parameters to optimize
the rating system (Huddleston, 1984). Using an expert system
approach, each should be individually defined and explicitly
rated (McCracken and Cate, 1986).

5. The individual parameter ratings should follow scientifically
proven relationships and be managed in a mathematical
setting leading to a composite index.

6. The system should be developed using the small seeded cereals
(wheat, oats and barley) with an emphasis on barley which is
the one crop with widespread production in all agricultural
regions of Canada.

7. The system must use data that is available across Canada.

The first recommendation provided the overall approach
that should be taken while the next four addressed the major
weaknesses that had been identified in the CLI approach.
The final two recommendations addressed the issue of
national consistency and provided further direction for
system development.

It may be noted that no mention was made of scale. The
reason was that the system was meant to be scale-independent–
that it should have the ability to be used at any scale appropriate
to the objectives of the project and available data (see section
Applications of the Rating System for description of how this
applies to the current use of LSRS). Preliminary discussion
identified the assumptions or guidelines that were required to
provide boundary conditions for the system:

• External economic factors such as distance to market,
availability of transportation and size of farm would not

be criteria. These are important for municipal property
assessments and taxation but would not be part of this natural
resource evaluation;

• One-time costs such as clearing of trees or drainage would
not be criteria but continuing annual costs. Stone removal
and erosion control should be considered in the sustainability
considerations;

• Exceptional skills or resources of the farm manager or specific
cultural practices would not be considered;

Structure of the Land Suitability Rating
System
Classes, Factors and Parameters
The basic structure of the LSRS rating output uses two
hierarchical categories–classes and subclasses. Each factor is
assigned a class rating. Classes are broad in scope and are
based on the degree of limitation of land for production
of the specified crop. Seven classes are recognized (Table 1).
Areas assigned to the same suitability class are similar only
with respect to the degree, and not the kind of limitation.
Different management may be required on lands of similar
class which can be composed of different soil, climate and
landscape.

In LSRS, the major rating factors are related to three of the
major elements that describe crop production suitability:

• Climate-controls the type and range of crops that can be grown
(flexibility of production);

• Soil-controls how well the crops grow (productivity), and;
• Landscape-controls the cost to manage environmental

constraints (sustainability).

LSRS assesses the climate, soil and landscape factors
independently with a precisely defined index procedure
that links the results to the seven-class system. This methodology
required the development of clear relationships and guidelines
for the assessment of the factors the lead to the assignment of
class rating.

LSRS is an interpretive assessment based on the limitations
controlling crop specific production. The rating factor that
is most limiting ultimately determines the suitability class

TABLE 1 | The characteristics and index ratings for LSRS classes.

Suitability

class

Limitation

level for

specified

crop

General

assessment

Index

point

rating

Comments

1 None to slight Excellent 100–80 Prime land

2 Slight Good 79–60

3 Moderate Fair 59–45

4 Severe Poor 44–30 Marginal land

5 Very severe Very poor 29–20

6 Extreme Unsuitable 19–10 Unsustainable or

unsuitable land

7 Non-arable Unsuitable 9–0
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rating. The components and measurable parameters identified to
evaluate the major rating factors were selected from those used in
earlier approaches (Huddleston, 1984) and acknowledged to be
critical in crop production (Table 2). The following criteria were
used in selecting the specific parameters used to characterize the
major rating factors used in the LSRS model:

• parameter is known to affect the ability to produce crops;
• parameter is known to affect the ability to respond to abiotic

stress (e.g., ability to withstand drought);
• parameter must be measurable or able to be estimated from

known relationships (i.e., pedo-transfer functions), and;
• parameter data must be commonly available.

Although it is recognized that there are many instances of overlap
and synergy between the major factors, there are advantages with
respect to simplicity, clarity and the ability to highlight specific
limitations by assessing each factor separately. Having built the
major climatic-soil interactions into the soil factor, any other
remaining discrepancies are considered small. This decision was
reasonable given the constraint of available data at that time
and the need for national coverage. This approach provided
the greatest flexibility to assess various environmental, crop and
climatic scenarios.

Each of the major factors is assessed a rating index
between 0 (most limiting) and 100 (least limiting). Initially,
each factor is assigned an index rating of 100. Limitations
are assessed using the specific parameters identified for each
factor and point values are deducted from the initial index
ratings. The final index rating (i.e., class) assigned is that
of the most limiting of the three factors. Subclasses identify
the parameters (Table 2) that have the greatest limiting

TABLE 2 | The factors, components and parameters used by LSRS to assess

land suitability.

Factor Component Measurable parametera

Climate Heat (energy) supply Growing degree days, growing

season length

Moisture supply Precipitation, evapotranspiration

Mineral Soils Moisture supply Texture, rooting depth, water table

Nutrient supply Organic matter content, soil reaction

Physical conditions Soil structure, soil bulk density

Chemical conditions Soil salinity, soil reaction

Drainage Depth to water table, drainage class

Organic Soils Moisture supply Fibre content, water table

Nutrient supply Fibre type, soil reaction

Physical conditions Soil structure, soil density

Chemical conditions Soil reaction, soil salinity

Drainage Depth to water table, climate

Landscape Erodibility potential Slope steepness, slope length,

climate

Management factors Stoniness, drainage, pattern

Flooding potential Wetness, duration of flooding,

landform position

asee Agronomic Interpretations Working Group (1995) for definitions.

influence on the final class rating. They reflect the kind of
climate, soil and landscape limitations that are present. The
subclass information is critical for determining conservation
and management practices and for land use planning. While
Classes are numbered, Subclass designations used in LSRS
are letters as follows: climate—temperature/aridity (H) and
moisture (A); mineral soil–water supplying ability (M), structure
and consistence (D), organic matter content (F), depth of
topsoil (E), reaction (V), salinity (N), sodicity (Y), organic
(peaty) surface (O), and drainage (W); organic soil—soil
temperature (Z), water supplying ability (M), degree of
decomposition (B), reaction and nutrient status (V), salinity
(N), and drainage (W), and; landscape—basic landform slope
(T), stoniness (P), wood content (J), landscape pattern (K), and
flooding (I).

A few examples of complete LSRS ratings would therefore
be: 2A–a landscape with only slight climatic moisture
limitation, or, 4N–a marginal landscape limited by severe
soil salinity, or, 6T–a landscape rendered unsuited for
crop production due to steep slopes. A class 1 rating
(landscape without limitation) would have no subclass
denoted.

Linkage of Deductions to the Suitability Class
As productivity is an important consideration in suitability
assessments, studies of the relationships of Canada Land
Inventory (CLI) classes to the yields of cereals in Alberta
(Peters, 1977; Peters and Pettapiece, 1981) and apples in
Ontario (van Vliet et al., 1979) provided the initial guidance
in developing an assessment of the limitations-based linkage
between the prescriptive numerical index ratings (0–100) and the
descriptive suitability class. These studies reported a reasonably
good correlation for the better classes with Class 1 (none to
slight limitation) generally yielding 80% to 100% of the crop
maximum. Class 3 areas (moderate limitation but still considered
“Good”) generally had yields about 50% of maximum or better.
It was also noted that with increasing limitations-particularly
landscape limitations, the yield relationships disappeared. That
is, landscape features may be difficult or costly to manage
but are not directly related to yield. Additional expert opinion
suggested that index rating of less than approximately 1/3
of maximum (33 out of 100 points) should be considered
a very severe limitation to the long-term sustainability of
production.

Using these considerations as a guide, a relationship
framework was formulated that provides the conceptual and
mathematical linkage between the factor index ratings and
LSRS classes. The calculation of LSRS class ratings required the
development of the individual parameter indices. Examples of
point deduction values for selected climate, soil and landscape
parameters as they relate to spring seeded small grains (wheat,
oats, barley) are given in Figure 1. The point deduction
values were selected through expert opinion designed around
class breaks. Originally depicted in tabular format for manual
calculation, these “parameter to deduction point” relations were
fit to curves to allow automated processing. Although each
factor is calculated separately, LSRS is ultimately a most limiting
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FIGURE 1 | Selected climate and soil parameter deduction curves for spring seeded small grains from Agronomic Interpretations Working Group (1995). Different

parameters are set to differing deduction point ranges. Effective growing degree days (EGDD > 5◦C) are a key determinant of climate suitability. A value of <900

would result in at least a 70-point deduction, enough to generate an unsuited class rating for grain production. Similarly, a soil pH > 9.0 alone would generate an

unsuitable soil rating but sub-optimal soil organic carbon or coarse fragment content deductions typically result in suitability class reductions.

function tool. The final class rating given to a parcel of land is the
lowest of the climate, soil or landscape rating.

Initially LSRS calculations were made site-specifically based
on field observed soil and landscape properties and climate data
from the closest weather station. Early calculations were based
on climate normal data (30-year averages for temperature and
precipitation). Early calibration was based on the period 1951–
1980, later updated to 1961–1990. To facilitate the calculation
of climate suitability over large areas, national scale maps
of growing degree days and climatic aridity (precipitation
minus potential evaporation) were constructed specifically for
use with LSRS. Details of initial parameter values and the
calculation of land suitability class and subclass are given in
Agronomic Interpretations Working Group (1995). Over the
years, validation efforts have led to many adjustments to the way
soil and climate factors are assessed and rated and details of these
validation efforts are given in the Supplemental Data.

Recent System Development
Over the last 20 years the LSRS has undergone developments in
all aspects of the system (Table 3). The principle enhancements
have been the introduction of additional crop modules in version
3, the transformation of the model platform to web-based
processing and output (version 4), and most recently, the ability
to integrate a range of gridded historic and future scenario

climate datasets and calculate climate indices internally within
LSRS (version 5). The requirement of the system to handle ever
larger climate and soil datasets has led to implementation of more
efficient data processing, storage and retrieval technologies and a
more effective architecture for developing web services. The key
major development areas are described below.

Multiple Crop Modules
Crop modules for corn, soybeans, forages (alfalfa, grasses),
and canola are part of the current system in addition to the
spring-seeded small grains module that was part of the original
system described in Agronomic Interpretations Working Group
(1995). The development process was similar for each module.
Agronomists with crop-specific expertise were consulted to help
define climate, soil and landscape parameter values for each
crop. The threshold values for class limits were tested against
published production figures and calculations were programmed
for user access and further testing. For each new crop module,
the bulk of the work lay in defining crop-specific climate indices
and thresholds (Table 4). For grains and forages, variations of
the widely used growing degree-days above 5◦C index with
adjustments for higher latitude growing areas (termed “effective”
growing degree-days) was used to stratify climate requirements.
For soybeans and corn, an adaptation of the corn heat unit
which we termed “crop” heat unit was used. Some development
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TABLE 3 | Outline of the version history of the land suitability rating system.

Version Date System Description

– 1995 Manual First report of the Agronomic Interpretation Working Group of AAFC. System designed for site-specific

work using manual input and calculations

1 1997 Dbase Provided an electronic access to the national soil database structures and content enabling automated

LSRS calculations. Developed as a Dbase application.

2 2002 Excel LSRS calculations developed for Alberta soil databases using spreadsheet technology (Excel). Enabled

users to view spatial data and derived ratings on an individual soil map polygon basis.

3 2006 Excel Modification of version 2 (Alberta prototype) to link national soil database information and provide the

ability to generate SLC map polygon ratings across Canada.

3.5 2007 Excel Expansion of the original LSRS program for corn, soybeans, canola and forage crops and alternate

climate and soil inputs.

4 2009 Ruby on Rails with MySQL This major revision provided the ability to run and store batch processes as a suite of web services,

calculate results for multiple crops simultaneously, use a range of soil map scales and formats and

accept gridded climate scenarios transmitted from other systems. Significant adjustments are made to

the original algorithms as the result of regional validation efforts across Canada. System runs internal to

AAFC.

4.5 2011 Ruby on Rails with MySQL Limited calculator functionality is made available to collaborators and the public via the Internet.

5 2017 Ruby on Rails with MySQL and Redis Addition of new climate calculator that validates climate data, calculates climate indices, and stores the

calculated indices in Redis. This version enhances data management and the ability to support raster

calculations

TABLE 4 | Heat indices and thresholds used in the LSRS crop modules.

Crop Heat Considerations

Index Thresholds

Spring-seeded small grains EGDD > 5◦C, Class 1–3:>1,050 Class 4:900–1,050

Class 5–7:<900

Calculated from date of first 5 consecutive days

of GDD accumulation to date of first killing frost

Alfalfa GDD > 5◦C Class 1:1,890 class 2–3:1,410–1,890

class 4: 930–1,410 class 5–7: <930

Calculated as total GDD accumulation between

April 1 and Oct 30. Threshold values based on

number of cuts possible per season

Brome GDD > 5◦C Class 1:1,840 class 2–3: 1,380–1,840

Class 4: 880–1,380 Class 5–7:<880

Calculated as total GDD accumulation between

April 1 and Oct 30. Threshold values based on

number of cuts possible per season

Corn and soybeans Crop Heat Units Class 1: >3,500 Class 2: 2,700–

3,500 Class 3–4:2,000–2,700 Class

5–7:<2,000

Crop heat units is a generic term as it applies

to multiple crops but is based on the corn heat

unit.

Canola EGDD >5◦C Class 1–3:>1,050 Class 4:900–1,050

Class 5–7:<900

Same threshold values as for small grains.

Added modification for number of days with

temperatures > 30◦C

concepts and improvisations around each of the crop modules
follows. Full documentation of crop module development and
testing are available as Supplemental Data.

Corn and soybeans
For both corn and soybeans, the heat index is based on crop
heat units (CHU). The average daily values of crop heat units are
calculated using the following formula:

Daily CHU = (Ymax+ Ymin)/2.0

Where Ymax and Ymin are the contributions to CHU
from average daily maximum (Tmax) and minimum
(Tmin) air temperatures respectively and are calculated as

Ymax = 3.33(Tmax− 10.0)− 0.084(Tmax− 10.0); if Tmax < 10.0,Ymax = 0.0;
Ymin = 1.8(Tmin− 4.44); if Tmin < 4.44,Ymin = 0.0

The growing season length and hence the starting and stopping
dates for accumulation of the CHU values are based on
temperature thresholds. The starting date is based on the average
mean daily temperature (Tmean). The stopping date is based
on the average mean daily minimum temperature (Tmin). Both
thresholds are calibrated to the average historic dates of planting
in spring and the probability of killing frost (−2◦C) in the fall
(Bootsma, 1991; Bootsma et al., 1999, 2005) and are presented
in Table 5. The seasonally accumulated CHU index determined
in this manner is called “CHUnorm.” The original method for
calculating CHUnorm used climate normal records, currently
we are making the calculation from 30 years of daily climate
data.
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With respect to the climatic moisture assessment,
the consensus was that precipitation minus potential
evapotranspiration (P-PE) was a reasonable and well accepted
index. Given the higher moisture demand to produce corn
than cereal grains, the class limits for corn were developed by
adjusting the values defined for small grains by about 100mm.

The corn module rates soil and landscape factors and their
point deductions in a similar way to that in the small grains
module.

The soybean module development considerations were
similar to those for corn. Both are considered warm season crops
so heat requirements can be assessed within a CHU framework.
Some soybean cultivars can withstand temperature limitations
of relatively short, cool growing seasons but temperature
requirements for soybeans are nonetheless very similar to those
for corn (OMAFRA, 2002). The minimum heat requirement for
the commercial production of soybeans is about 2,000 CHU.

Given the above, the agronomic consensus was that the CHU
scale be used to rate the heat requirements of the crop with
the same rankings as used for corn, and that P-PE should be
used to characterize the moisture limitations but with the point
deduction set slightly less than that for corn (Figure 2).

Most soil factors for soybean production are rated similarly
as those for corn and the spring-seeded small grains. The only

TABLE 5 | Definition of start and finish of the growing season for corn in eastern

Canada.

Region Spring planting

date based on

Date of 10% probability

of killing frost based on

Average mean

daily air temp

(◦C)

Average daily minimum

air temp in autumn (◦C)

Newfoundland 8.8 3.7

Maritime provinces 11.0 5.8

Quebec and Ontario 12.8 6.5

Prairie provinces 11.2 5.3

British Columbia (coastal) 12.7 4.6

FIGURE 2 | Point deduction scheme for climatic moisture deficit for corn (solid

line) and soybeans (dashed line).

exception being the susceptibility to emergence problems relating
to crusting. The soil factor therefore has an added deduction
related to surface soil structure calculated as a function of the
content of soil organic carbon and percentages of sand, silt and
clay. The landscape factors are rated the same for soybean as for
small grains as the erosion potentials and mechanical limitations
are assumed to be the same as for both crops.

Canola
In many respects, canola (Brassica spp.) falls within the general
climatic, soils and landscape parameters used to assess small
grain limitations. However, there were some refinements made
in consideration of requirements for particular Brassica species.

Effective growing degree days (i.e., GDD base 5◦C adjusted
for latitudes up to 60◦N) is used as the temperature index
using the same scale used for small grains. The long season,
higher yielding (Brassica napus) varieties perform best in the
areas with more than about 110 frost free days which correlates
with accumulations of greater than about 1,200 effective growing
degree days (EGDDs). Brassica rapa is a shorter season variety
that performs well down to about 1000 EGDDs. The baseline
temperature for Brassica is approximately 4.4◦C (Morrison et al.,
1989). This corresponds well with the 5◦C base temperature
used to calculate EGDDs. However, included was a special
consideration with respect to growing season heat. Flower
abortion associated with temperatures greater than about 30◦C is
a known phenomenon (Morrison and Stewart, 2002). To address
this, a heat index (HI) was calculated as the number of days where
daily maximum temperature >30◦C during the canola flowering
period defined as between the dates of accumulation of 600 and
1100 EGDDs.

As with soybeans, the module takes into consideration the
potential for soil crusting and additional deductions for soils with
this potential. Otherwise, all other soil and landscape factors were
rated the same for canola as for small grains.

Forages
Rating land for forage production has a fundamental difference
from ratings for annual grain and oilseed crops. Typically forage
crops are harvested multiple times during the growing season,
often referred to as “cuts.” Depending on the region of the
country, forages may be harvested up to four times in a single
season.

Two general types of forages (i.e., legumes and grasses) with
somewhat different climatic and soil requirements are recognized
within LSRS. A widely grown legume in Canada is alfalfa
(Medicago sativa L.) and was chosen as the perennial legume to
include in the system. As a perennial crop, there are no concerns
with determining dates for spring seeding or for frost damage as
with grain. As such, the forages have a longer growing season
than the annual crops in other LSRS modules. This extended
season is assumed to be the period with mean daily temperatures
above 5◦C (Bootsma and Boisvert, 1991).

The climatic rating for alfalfa is based on two factors, the
accumulated growing degree days >5◦C (GDD) and growing
season length. Bootsma and Boisvert (1991) estimated about
480 GDDs to produce a first cut of alfalfa with an additional
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450 GDDs for crop carryover requirements. Note that for the
grass forages, LSRS uses a straight GDD >5 index that is not
adjusted for high latitude day length as is the case with the
effective growing degree day (EGGD) index used for small grains.
Therefore, the minimum heat requirement for alfalfa is about
930 GDDs (480 GDD to obtain a harvest, 430 GDD to ensure
carryover for the following year) and was used to establish the
class 4-5 configuration point (Table 6). The climatic requirement
to produce three cuts per year was used to define the Class 1
configuration point. This translates into (3 x 480) + 450 = 1,890
GDDs. The ability to support two cuts per year, [(2 × 480) +
450 = 1,410 GDDs] was set as the Class 3 threshold. The ability
to produce one cut with no carry over (480 GDDs) was set as
representing the Class 5-6 boundary. The maximum deduction
was set at 90 points.

Length of season requirements were established using
monthly climatic data and the GDD requirements for one, two
and three cuts of alfalfa. Bootsma and Boisvert (1991) suggested
a minimum of 45 days between cuts, 65 days to accumulate
the heat to necessary to produce a first cut crop and 55 days
carry-over for the crop to store enough energy to survive the
winter. The relationship between growing season length and
accumulated heat varies across the country. For instance, in
coastal British Columbia there is a very long growing season but
often insufficient heat to produce more than 2 cuts of hay.

Several soil related parameters required specific modifications
for alfalfa. These include soil and subsoil pH. The most favorable
soil pH range for alfalfa is between 6.5 and 7.5 (Goplen et al.,
1987; Undersander et al., 1991). Therefore, a pH in this range
was taken as no limitation and assigned a zero-point deduction.
A pH of 5.0 is considered marginal for alfalfa and thus assigned
a deduction of 70 points. The class 2 configuration point (and
a deduction of 20 points) was set at pH 6.0. The class 3
configuration point (and a deduction of 40 points) was set at pH
5.5. A similar logic and set of deductions was developed for pH
above 7.5.

In addition, there were modification in the module to the
landscape factors of slope and stoniness. The continuous cover
of perennial crops means that the risk of soil erosion is much
reduced relative to annual crops. Because there is no annual
cultivation requirement, internal soil coarse fragment content is
not an issue from a landscape management perspective.

Climatic growth requirements and response is similar for
most cool season C3 grasses (Moser et al., 1996). In humid
eastern Canada, Timothy (Phleum pretense) is the most common

TABLE 6 | Point deductions assigned to GDDs and growing season length for

alfalfa.

GDD> 5 Growing season

length (days)

Class configuration

points

Point deduction

480 65 Class 5–6 boundary 80

930 120 Class 4–5 boundary 70

1410 165 Lower part of Class 3 50

1890 210 Bottom of Class 1 20

forage grass. The climate of the Great Plains of western Canada is
semi-arid and soils can be saline. Under these conditions smooth
bromegrass (Bromus inermis L.) is the preferred forage grass. As
with alfalfa, about 480 GDDs are required to produce a first cut
of timothy with an additional 400 GDDs or so for crop carryover
requirements. Carry over heat requirements for grasses are less
than for alfalfa but were included for the grass forage module.
The minimum heat requirement for grass forages was set at
approximately 880 GDDs and was set as the boundary threshold
for the class 4-5 boundary, the marginal category. Using the same
approach as used for alfalfa, the ability to support two cuts per
year of grass forage require 1360 GDDs and for three cuts 1840
GDDs. Point deductions for grass forage follow a similar logic as
was used for alfalfa.

Also important in rating land for forage grass production is
the growing season length. A literature review indicated that
about 65 days of temperatures averaging >5C are required to
mature the crop for cutting and another 55 days are required for
carryover into the following year. For two cuts to be achieved,
it would require 65 days of initial growth, followed by 55 days
of growth for the second cut and another 55 days to achieve the
carryover. These counts of days were then used to determine class
boundaries and deductions points. The most limiting of growing
season degree-day accumulation or growing season length is used
to calculate overall climatic heat suitability

Soil requirements for the brome-timothy forage model are the
same as for the small grains. This is reasonable considering that
these forages, like the small grains, are C3 grasses. The landscape
factor deductions are the same for brome-timothy as for alfalfa.

Enhanced Processing of Climate Data and Climate

Indices
The current LSRS version (version 5) carries forward all the
web-based processing functionality developed in version 4 and
adds to it a new climate indices calculator (Table 3). While
version 4 could accept climate indices calculated externally,
version 5 incorporates the calculation of climate indices and
supports raster data processing. Several major new features and
improvements are incorporated into this release. Key amongst
these is the use of Redis as a data store for climate data. Redis
is an open source in-memory data structure store, used as
a database, cache and message broker. The climate calculator
validates climate data, calculates climate indices, and stores the
calculated indices in Redis which simplifies access, and enhances
performance and output reliability. The calculator reads climate
indices directly from Redis to simplify use and to eliminate a
significant source of human errors.

As the map polygon is the unit of calculation for LSRS, it is
necessary to assign climate attributes (daily Tmax, Tmin, and
Precipitation) to each polygon. The basic conceptual approach
is the spatial union between the climate grids and soil map
polygons (Figure 3). Depending on the scale of the grids andmap
polygons, when several climate grid centroids fall into one soil
map polygon, these are averaged for the polygon.

The agro-climatic indices used in LSRS are calculated from
mean monthly or average mean daily data for each polygon.
The climate data are loaded into LSRS using a custom file
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FIGURE 3 | Allocation of gridded climate data to detailed soil survey (DSS) map polygons (adapted from Gasser et al., 2016, reproduced with the permission of the

copyright holder, NRC Research Press).

FIGURE 4 | Change in the July maximum temperature in eastern Canada between climate normal periods 1951–1980 (A) and 1981–2010 (B). Expansion of warmer

summer temperatures is visible in southern Ontario and Quebec, central New Brunswick and Newfoundland. Climate data were transposed from a national 10 km grid

to 1:1,000,000 soil polygons to facilitate subsequent LSRS rating.

format that incorporates both documentation and climate
data. The file is divided into two sections. The first section
contains the documentation in YAML format, and the second
section contains the data as a set of tab-separated values.
Index calculation methods are specific to each crop. The
climate indices calculator within LSRS version 5 generates
the following outputs: growing season start date, growing

season stop date, growing degree days >5C, crop heat unit
and P-PE.

Prior to version 5, climate indices had to be calculated outside
of LSRS and then imported into the system. Early versions of
the system were designed to work with monthly data. Indices
requiring daily time steps were calculated by deconstructing
monthly values through a curve fitting step (Bootsma and
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FIGURE 5 | National-scale map of land suitability classes for canola based on dominant soil types and the period 1981 to 2010. Highest suitability classes exist in

Prince Edward Island (Charlottetown), in southern Quebec and Ontario and along the northern agricultural region of the Prairie provinces. Lower suitability classes

result elsewhere in the country due to aridity in parts of western Canada and cool temperature in the Atlantic region.

FIGURE 6 | Shaded areas show the expansion of prime land (class 1 and 2) for spring seeded small grains based on the climate normal period 1951–1980 (A) and

1981-2010 (B).

Boisvert, 1991). To date we have not depicted results based on a
single year of data (although is this possible) but have stayed with
the original concept that LSRS rating are generated from climate
averages over multiple years.

Computational Upgrades
Major upgrading of the LSRS system began in 2009 with
the rewriting of the core LSRS calculator in Ruby as a
suite of web services. The program can run and store batch
processes compliant with Web Processing Services (WPS),
calculate results for multiple crops simultaneously and utilize

a range of map scales and data structures that exist for
Canadian soil maps. The complete details of each calculation
are visible as a web page (HTML) but data are also output
as CSV and GDAS formats, and the system can provide
thematic maps via WMS and KML. Significant adjustments
were made between 2011 and 2014 to the original crop ratings
algorithms as the result of regional validation efforts across
Canada.

For most calculations, Version 5 generates ratings

directly from class boundary (configuration) points instead
of curve formulas. This approach eliminates unintended
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effects that occurred in earlier version of LSRS at climate
extremes, helps to improve consistency with intended
class breaks, and simplifies the adjustment of deduction
curves.

The internal data access mechanism and LSRS calculation
requests are based on a REST (Representational State Transfer)
architectural approach to simplify operations and facilitate
interoperability with other systems. Our implementation creates
separate access for climate, soil and landscape ratings, and stores
calculation results in Redis so that the results can be reused
in subsequent routines to improve the performance of raster
calculations.

Finally, in order to simplify maintenance of the system,
version 5 drops XSLT in favor of plain HTML for most human-
readable outputs.

APPLICATIONS OF THE RATING SYSTEM

LSRS may be applied at scales based on the scale of the input
soil, landscape and climate information. The scale of output

FIGURE 7 | LSRS class ratings for spring-seeded small grains based on the

1981–2010 climate normal intersected and displayed on a:100,000 scale soil

map of the agricultural region of Alberta.

is controlled by the scale of the soil map used as input.
Ratings are calculated on soil profile attributes for each soil
type reported to occur in a map polygon. Typically, results
are depicted based on the dominant (spatially most common)
soil. Climate indices are calculated from data grids at a variety
of scales and intersected with the soil map polygons. LSRS
may also be used on-site with attribute data coming from
an observed profile, landscape parameters measured on-site
and climate data obtained from a near-by weather station.
In this case LSRS ratings would be site-specific. Examples of
national and regional assessments are presented in the following
sections.

National Scale Assessments
LSRS can map a variety of outputs on a soil map polygon basis
at regional and national scales. These include climate attributes,
agro-climatic indices, and for a particular crop, climate class
rating, soil class rating, landscape class rating and an overall
LSRS class and subclass suitability rating. This is achieved by
integrating climate data with the 1:1,000,000 Soil Landscapes of
Canada mapping to produce actual LSRS ratings (Schut et al.,
2011).

Outputs at the national scale help to explain historic and
future projected shifts in cropping patterns and can help to
interpret changes in agri-environmental performance in national
policy assessments). Climate change impacts using IPCC AR3
climate scenario data downscaled to a 10 km national climate grid
and linked to 1:1,000,000 Soil Landscapes of Canada polygons
were assessed for the 1971 to 2000 normal period and three
future 30-year periods for three regions of Canada–the Prairie
provinces, central Canada (southern Quebec and Ontario) and
Atlantic Canada (Chen et al., 2008). Based on suitability rating
changes over time the authors speculated that grain and canola
production would move onto climatically marginal crop land
that is currently under forage production or livestock grazing
and where aridity is not a limitation, corn and soybeans could
expand into areas now mostly dominated by grain and oilseed
production, especially in the northern regions of the Prairie
provinces. Perhaps more importantly, was the recognition that
seeding and maturity dates will shift earlier into the year as a
necessary adaptation to mid-season aridity in western Canada.

LSRS has been used to examine climatic shifts within the
agricultural region of the country. Figure 4 depicts slight changes
in July maximum temperatures in the agricultural portions of
the country between the climate normal periods 1951–1980 and
1981 to 2010. Even though the temperature ranges are depicted
at a scale of 1:1,000,000 the extent of July warming during the
historical period is obvious.

Integration of climatic data with the soil and landform
attributes contained with the databases linked to the Soil
Landscapes of Canada map product, enables crop ratings to be
depicted for the dominant soils on the landscape. Figure 5 shows
suitability ratings for canola based on climate normal data for
the period 1981–2010. Figure 6 illustrates the expansion of LSRS
class 2 lands for spring seeded small grains in western Canada for
two historical time periods. Due to slight climatic limitations for
grain production there is no class 1 in this region of Canada.
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FIGURE 8 | Trends in area of suitability classes 1 and 2 for corn production in the lower Fraser Valley of British Columbia. Six different global circulation models depict

a wide range of outcomes (adapter from Gasser et al., 2016, reproduced with the permission of the copyright holder, NRC Research Press).

FIGURE 9 | Comparison of future prime land extents in the Peace River district of northwestern Alberta for the period 2041–2070. Shown are results based on

climate outputs for RCP4.5 from the CanESM2 (A) and INM_CM4 (B) models intersected with 1:100,000 soil map polygons. The difference shown represents the

degree of spatial uncertainty that exists with respect to future land suitability for grain production in the region.

Regional Climate Change Assessments
LSRS has been used locally in many provinces to replace the older
CLI capability maps that were drawn based on mid-twentieth
century climate conditions. Regional LSRS spatial outputs utilize
regional detailed and semi-detailed soil maps as their base. In
Alberta, where much of the original LSRS validation work was
conducted, a provincial 1: 100,000 scale soil map is used as the

base for depicting provincial-scale crop ratings. The baseline for
making this comparison was the map for spring seeded small
grain (Figure 7). Spatial validation of this type of output was used
when designing the early versions of LSRS.

Gasser et al. (2016) examined the impact of a range of
IPCC AR4 SRES scenarios on future production of corn in
coastal British Columbia. In this instance, projected increasing
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growing season aridity (a subclass of the climate rating) indicated
the likely future requirement for the adoption of irrigation
much more widely than is currently the practice. In all our
climate change impact studies to date, a wide range of suitability
outcomes are projected as a function of the model scenarios
selected. This range is a measure of uncertainty. Mapped class
areas for each scenario are typically summed and plotted over
several time periods to see the spread in trends (Figure 8).

A recent application of LSRS has helped to evaluate climate
change impacts on northern agricultural regions of northwest
Canada. Downscaled data (Wang et al., 2016) from a subset
of five climate models were selected from the IPCC CMIP5
ensemble (Cannon, 2015) to span the range of projected
temperature and precipitation changes in the region. These were
then used to drive LSRS for the RCP4.5 and RCP8.5 scenarios.
One study area is the Peace River district of northwestern Alberta
where earlier national-scale assessments indicated considerable
potential change. Grain and oilseeds are the main crops in
the region. We analyzed climate over both historic and future
time periods. However, as with our work in British Columbia,
different model outputs projected vastly different outcomes
with respect to agricultural suitability by late century. Figure 9
compares the outputs for two models, the Canadian model
CanESM2 and the Russianmodel INM_CM4.While bothmodels
project increasing heat, CanESM2 projects significant aridity
such that the extent of prime land for spring seeded grains
(without irrigation) is greatly diminished relative to current
condition. However, INM_CM4 projects increased precipitation
along with the heating such that the extent of prime land is greatly
increased relative to the current condition. The LSRS output
mapping clearly demonstrates the spatial uncertainty of future
land suitabilities and the range of possible crop distribution
patterns.

DISCUSSION

LSRS classification remains a largely qualitative pursuit utilizing
parametric scores based on expert knowledge to calculate
deductions based on measurable climate, soil and landscape
attributes. The derived class ratings are relative rankings rather
than absolute measures. Rossiter (1996) termed this approach
as a “land index,” a simple rating of the goodness of fit of a
particular land activity (crop type) for a given land capability. The
principle purpose of agriculture land suitability assessment is to
predict the potential and limitations of the land for production
of a specific crop or crops. LSRS generates a measure of both
potential (as a class rating) and a limitation (as a subclass
modifier). LSRS contains a set of tools that allow the user to
calculate a suite of agro-climatic indices integrated to a soil
map to allow spatial assessment at a range of scales. LSRS has
evolved to be increasingly useful to climate change studies in that
it is able to depict spatially future land use possibilities. While
the LSRS modules currently cover only common annual crops
and some forages, the suitability concept of integrating climate,
soil and landscape attributes in a spatial framework has been
extended to examine climate change on potential future extent of

sweet cherries in the interior of British Columbia (Neilsen et al.,
2017).

Validation of the rating system remains a challenge. Two
obvious independent variables, crop yield and crop presence on
the landscape are two attributes against which to try to relate
to suitability. However, as both of these variables are very much
controlled by market/economic factors and management inputs,
neither of which are considered in the LSRS computations,
finding a strong correlation between an LSRS class rating and
crop yield remains elusive. The early development of the system
was driven by a need to have LSRS, specifically the spring seeded
small grains module, emulate the CLI agriculture capability
ratings. This objective was achieved but the LSRS is not a
crop yield model nor necessarily a predictor of crop presence.
Validation of the outputs remains an area of study.

A drawback of using a class rating structure is the inability
to often detect modest changes in point ratings that may be
obscured by the relatively wide range of points that constitute
any one class. We encountered this problem in our climate
change work in British Columbia (Gasser et al., 2016) where in
some cases small point changes generated class changes, in other
instances relatively large point changes did not generate any class
change at all. When analyzing change, it is often better to work
with point deduction values directly rather than class values.

The current version of the rating system utilizes web-
based technologies that optimize data handling and storage and
facilitates user access to the tools and calculators that make up the
system. The efficiency in generating agro-climatic indices from
both daily and monthly data makes LSRS well suited to climate
change studies in Canada where many existing crop production
systems are limited by climate (Campbell et al., 2014).
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images
Sriram Ganapathi Subramanian and Mark Crowley*

Machine Learning Laboratory, Electrical and Computer Engineering Department, University of Waterloo, Waterloo, ON, 
Canada

Machine learning algorithms have increased tremendously in power in recent years 
but have yet to be fully utilized in many ecology and sustainable resource manage-
ment domains such as wildlife reserve design, forest fire management, and invasive 
species spread. One thing these domains have in common is that they contain 
dynamics that can be characterized as a spatially spreading process (SSP), which 
requires many parameters to be set precisely to model the dynamics, spread rates, 
and directional biases of the elements which are spreading. We present related work 
in artificial intelligence and machine learning for SSP sustainability domains including 
forest wildfire prediction. We then introduce a novel approach for learning in SSP 
domains using reinforcement learning (RL) where fire is the agent at any cell in the 
landscape and the set of actions the fire can take from a location at any point in 
time includes spreading north, south, east, or west or not spreading. This approach 
inverts the usual RL setup since the dynamics of the corresponding Markov Decision 
Process (MDP) is a known function for immediate wildfir e spread. Meanwhile, we 
learn an agent policy for a predictive model of the dynamics of a complex spatial 
process. Rewards are provided for correctly classifying which cells are on fire or 
not compared with satellite and other related data. We examine the behavior of five 
RL algorithms on this problem: value iteration, policy iteration, Q-learning, Monte 
Carlo Tree Search, and Asynchronous Advantage Actor-Critic (A3C). We compare to 
a Gaussian process-based supervised learning approach and also discuss the rela-
tion of our approach to manually constructed, state-of-the-art methods from forest 
wildfire modeling. We validate our approach with satellite image data of two massive 
wildfire events in Northern Alberta, Canada; the Fort McMurray fire of 2016 and the 
Richardson fire of 2011. The results show that we can learn predictive, agent-based 
policies as models of spatial dynamics using RL on readily available satellite images 
that other methods and have many additional advantages in terms of generalizability 
and interpretability.

Keywords: reinforcement learning, machine learning, deep learning, a3c, forest wildfire management, 
sustainability, spatially spreading processes
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1. inTrODUcTiOn

There is a clear and growing need for advanced analytical and 
decision-making tools as demands for sustainable management 
increase and as the consequences of inadequate resources for 
decision-making become more profound. Artificial intelligence 
and machine learning methods provide ways to combine multiple 
modes of information such as spatial statistical ground data, 
weather data, and satellite imagery into a unified model for clas-
sification or prediction.

One high impact example of this potential is forest wildfire 
management. The risk, costs, and impacts of forest wildfires are 
a perennial and unavoidable concern in many parts of the world. 
A number of factors contribute to the increasing importance 
and difficulty of this domain in future years including climate 
change, growing urban sprawl into areas of high wildfire risk, and 
past fire management practices which focused on imme diate 
suppression at the cost of increased future fire risk (Montgomery, 
2014).

There are a wide range of challenging decision and optimization 
problems in the area of forest fire management (Martell, 2015), 
many of which would benefit from more responsive fire behavior 
models which could be run quickly and updated easily based on 
new data. For example, one simple decision problem is whether 
to allow a fire to burn or not, since burning is a natural form 
of fuel reduction treatment. Answering this question requires a 
great deal of expensive simulations to evaluate the policy options 
fully (Houtman et al., 2013).

These simulations are built by an active research community 
for forest and wildland fire behavior modeling. Data are collected 
using trials in real forest conditions, controlled lab burning 
experiments, physics-based fire modeling, and more (Finney 
et al., 2013). These hand crafted physics-based models’ simula-
tions have high accuracy but are expensive to create and update 
and computationally expensive to use. The question we ask is: 
Can we learn a dynamics model from readily available satellite 
image data and treating wildfire as an agent spreading across 
a landscape in response to neighborhood environmental and 
landscape parameters?

In this work, we provide evidence for an affirmative answer to 
this question by introducing a new approach for using reinforce-
ment learning (RL) (Sutton and Barto, 1998) to automatically 
learn wildfire spread dynamics models by treating fire as an agent 
on the landscape taking spatial actions in reaction to its environ-
ment (Subramanian and Crowley, 2017).

Forest wildfire spread as a specific case of a more general 
problem which we call spatially spreading processes (SSPs), 
which occur when local features are changed over time by some 
dynamic process which is a function of properties at different 
locations in space and their proximity to the target location. This 
is to be distinguished from mere prediction of impact of a physi-
cal object moving across space as the SSP can be active in many, 
or all, locations at once. This is also more than merely spatial 
auto-correlation that measures the degree to which features at 
two locations are similar based on their proximity. Spatial auto-
correlation can be an indicator of the presence of an SSP, but the 
dynamic changes over time between spatial locations may not 

result in values being similar or inversely correlated in a simple 
way. In many of these domains, the dynamics are often modeled 
by hand using agent-based models and geostatistics methods. 
In other areas, they are increasingly learned from data streams 
by being treated as videos. However, each of these approaches 
has their drawbacks. One of the goals of our research is to find 
novel representations of local dynamics for SSPs that can provide 
transparent and interpretative solutions to learning of dynamics 
models and decision-making across many domains. The approach 
proposed here offers the tantalizing possibility to represent and 
learn a causal agent-based policy representation using RL which 
would be a much easier model to interpret and analyze for human 
decision makers.

In this article, we carry out experiments on the accuracy of 
interpolation and forward prediction using five different RL 
algorithms in a new formulation of agent-based learning. We 
use easily accessible Landsat satellite data from the USGS satel-
lite data portal and provide a prediction accuracy of resulting 
policies learned with each algorithm upon comparison with the 
same. The dataset is a set of satellite photos of massive wild fires 
in Northern Alberta in 2011 and 2016. We show that Monte Carlo 
Tree search and the Deep RL algorithm A3C (Mnih et al., 2013) 
perform the best but have advantages in different situations in 
this domain. For comparison, we also implemented a Gaussian 
Process (GP) classifier (Rasmussen and Williams, 2006) as a 
supervised learn ing model on the dataset. This classifier places 
a Gaussian Process prior on a latent function, which is then 
squashed to the domain [0, 1] through a link function to obtain 
the probabilistic classification.

This approach has applications in forest wildfire management 
and opens up possibilities for interpretative dynamics models as 
well as providing new challenging data sets for RL research. Our 
approach promises to provide another source of validation for 
existing wildfire models as well as gives us the opportunity to 
perform faster and more accurate prediction by learning patterns 
in the raw data. Another application of our approach would be 
learning transferable models from one data-rich region or time 
period and applying it to another region or time period where 
less data are available if there is evidence that fires in both regions 
behave similarly.

In prior work (Houtman et al., 2013), we have used standard, 
physics-based simulators such as Farsite (Finney, 1998) to carry 
out automated planning of fire control policies using Monte 
Carlo simulations and optimization. These simulations took on 
the order of 1 h to run for 100-year simulations of forest fire 
futures, which present a challenge when thousands of simula-
tion trajectories are needed for statistical confidence. Thus, aug-
menting these detailed simulators with faster approximations 
learned from data could improve the ability to do automated 
planning.

2. reVieW OF liTeraTUre

We provide an overview of the relevant literature on the forest 
wildfire prediction and management problem in general and 
then on the previous use of machine learning algorithms for this 
domain.

26

https://www.frontiersin.org/ICT/
https://www.frontiersin.org
https://www.frontiersin.org/ICT/archive


Ganapathi Subramanian and Crowley Spatial RL for Fire Dynamics

Frontiers in ICT | www.frontiersin.org April 2018 | Volume 5 | Article 6

2.1. Machine learning on satellite imagery
Researchers have attempted to use machine learning in combina-
tion with satellite imagery in a series of ecological applications 
in the past. In Kubat et al. (1998), the authors use satellite radar 
images and machine learning for the detection of oil spills. 
Algorithms, such as C4.5 and 1-nearest neighbor, are used along 
with expert rules to train the classifier which the authors specify 
was hard and not completely accurate. Our work completely 
removes the need for such expert rules.

In Jean et al. (2016), satellite imagery and machine learning 
has been used to tackle the case of poverty. Convolutional neural 
nets and transfer learning have been used to derive models having 
good performances in terms of accuracy. This research demon-
strated how machine learning tools, which are typically suited 
for data-rich domains, can be used for data-scarce settings too.

Coral reef research is another aspect that has been studied 
using satellite images and machine learning (Knudby et al., 2010). 
In Knudby et al. (2010), a series of statistical and machine learn-
ing models have been used on the IKONOS satellite imagery to 
produce spatially explicit predictions of species richness, biomass, 
and diversity of fish community. This research motivates the 
exploration of importance of different variables in the predictive 
models by using permutations techniques.

2.2. Forest Wildfire Prediction and 
Management
Montgomery (2014) discusses the increased future fire risk at 
the consequence of fire management practices, which focused on 
immediate suppression. The three core themes of externalities, 
incentives, and risk-based decision analysis in the case of wild 
fire suppression are described. The goal is to determine how the 
core themes contribute to the evolution of an effective future fire 
policy. This problem is also enumerated in Houtman et al. (2013).

The standard for wildland fire behavior and forest fire modeling 
is described in Finney et al. (2013), which carried out exhaustive 
lab experiments, real forest condition simulations, and trials to 
build sound and coherent fire spread theory for model reliability. 
The resulting models are used by the US Forest Service but are 
very computationally expensive to run. The model accuracy 
also varies widely across wild fires in different regions. Cellular 
automaton models are also widely used to predict wildfire spread 
(Yongzhong et  al., 2004). Our approach is easier to apply than 
these methods and is shown to perform better than the same.

The work in Martell (2015) describes the need for a computa-
tionally simple and accurate model for wild fires. They highlight 
a number of challenging decision and optimization problems in 
the area of forest fire management and recent efforts to develop 
decision support tools to overcome them. The focus is on using 
methods of Operations Research to aid fire managers making 
complex decisions about fire suppression and resource allocation.

2.3. Machine learning in Forest Fire 
Management
In Castelli et al. (2015), the authors discuss the application of an 
intelligent system based on genetic programming for the predic-
tion of burned areas in a wild fire situation. They also compare the 

genetic programming methodology to state-of-the-art machine 
learning techniques in fire modeling and conclude that genetic 
programming techniques are better. The major machine learn-
ing techniques used are SVM with a polynomial kernel, random 
forests, radial basis function network, linear regression, isotonic 
regression, and neural networks.

Significant problems have arisen while dealing with large 
databases or long periods of observation (e.g., pattern recogni-
tion, geophysical monitoring, monitoring of rare events (natural 
hazards), etc.). The authors in Forsell et al. (2009) stipulate that 
the major problems in such cases are how to explore, analyze, and 
visualize the oceans of available information. Several important 
applications of machine learning algorithms for geospatial data 
are presented: regional classification of environmental data, 
mapping of continuous environmental data including automatic 
algorithms and optimization (design/redesign) of monitoring 
networks.

Machine learning algorithms use an automatic inductive 
approach to recognize patterns in data. Once learned, pattern 
relationships are applied to other similar data to generate predic-
tions for data-driven classification and regression problems. The 
work in Cracknell and Reading (2014) takes a task of supervised 
lithology classification (geological mapping) using airborne 
images and multispectral satellite data and compares the app-
lication of popular machine learning techniques to the same.  
A 10-fold cross validation was used to select the optimal param-
eters to be used in all the methods. These selected parameters 
were used to train the machine Learning classification models on 
the entire set of samples.

In Sehgal et  al. (2006), the authors use a machine learning 
approach for Geospatial Entity resolution which is the problem of 
consolidating data from diverse sources into a single data source 
referenced by location (in the form of coordinates). Several 
feature-based matching techniques like location name matching, 
coordinate matching, and location-type matching are introduced 
and evaluated. These feature-based matching techniques use each 
location feature independently. A new method integrating spatial 
and non-spatial features and learning a combined spatial similar-
ity measure is introduced.

Modeling forest areas is concentrated upon in Garzón et al. 
(2006). The environmental variables consisting of both topo-
graphic and climatic factors are considered in this work. A mod-
eling framework for habitat modeling is established to train, test, 
and validate the popular predictive machine learning methods. 
Neural Networks, Random Forests, and Tree-Based Classification 
are used as predictive models. A ROC curve (Specificity vs 
Sensitivity graph) analysis is done for parameter selection. 
Species distribution and habitat modeling are described to be 
complex problems much like the wild fire problem with many 
responsible factors and the authors admit that modeling all the 
factors are impossible with the current state of the art. Hence, 
having an agent-based approach that learns the relevant factors 
on its own seems to be the most suitable idea.

Machine learning is used for the spatial interpolation of 
environmental variables in Li et al. (2011). In this study, around 
23 methods are considered including popular machine learning 
methods and their combinations. Along with machine learning, 
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the considered methods were drawn from a large pool of catego-
ries including geostatistical methods, non geostatistical methods, 
statistical methods, and combined methods. The dataset consists 
of about 177 samples of sea bed mud content in the southwest 
of Australian Exclusive Economic Zone, and the problem is to 
determine the mud content in the other points by interpolation. 
Several primary and secondary variables are considered to influ-
ence this decision. Random forest seems to perform the best 
among the methods considered. RF performance was attributed 
to its relative robustness to outliers and noise, its nature of not 
over fitting with respect to the source data, and its ability to model 
complex interactions.

Recknagel (2001) discusses a summary of all the different 
ecological modeling applications of machine learning. Artificial 
Neural nets, Genetic Algorithm methods, and Adaptive Agents 
seem to perform the best, but they seem to have advantages for 
different problems. The conclusions are that Artificial Neural Nets 
perform well in problems of non-linear ordination, visualization, 
multiple regression, time series modeling, and image recogni-
tion and classification. Genetic algorithms are suitable to evolve 
causal rules, process equations, and optimize process parameters. 
Adaptive agents are suggested for providing a novel framework 
in the aid of the discovery and forecasting of emergent ecosystem 
structures and behaviors in response to environmental changes. 
This review demonstrates that while various classical AI and 
ML techniques have been applied to this domain in preliminary 
forms, there is a gap in the literature on attempting to use modern 
deep learning and RL techniques.

The existing state-of-the-art methods for building fire predic-
tion models directly satellite images include the Forest Fire risk 
prediction model used in China (Zhang et al., 2011), the Canadian 
systems like Forest Fire Weather Index (FWI) System, and the 
Forest Fire Behavior Prediction (FBP) System (Stocks et al., 1989; 
Zhang et al., 2011). These systems are still quite difficult to imple-
ment due to the requirement of large amount of heterogeneous 
sources of data such as fuel property and fire characteristics 
(Zhang et  al., 2011), which requires data from high resolution 
close-range sensors. The work by Alkhatib (2014) explains the 
advantages of the satellite-based fire prediction systems but 
specifies that the temporal resolution of available data serves as a 
serious impediment. Our work specifies a method to learn from 
available data and reliably interpolate to fill the missing spaces to 
get an acceptable overall performance.

We model the forest fire domain as a Markov Decision Process 
(MDP). This approach is becoming more common (Mcgregor 
et al., 2016), but these are usually focused on finding treatment 
actions to be taken to reduce or alter fire spread. We take the novel 
approach of modeling the fire itself as a decision agent attempting 
to minimize prediction error. This is related to work in Forsell 
et al. (2009), which investigated using the state variable to rep-
resent land vegetation cover and environmental characteristics 
but to use the action variable to represent interaction between 
characteristics of nearby locations. This was not on a domain as 
dynamic as forest fire, however, and our approach differs entirely 
in implementation.

Machine learning has also been used to detect and classify burn 
areas in Indian forests (Saranya and Hemalatha, 2012). Saranya 

and Hemalatha (2012) use spatial data mining to obtain useful 
information from a series of datasets and subsequently apply 
supervised algorithms such as Artificial Neural Nets (ANN) and 
Sequential minimal optimization (SMO) to quantify ignition 
risk of different regions and hence predict the occurrence of fires. 
Similarly, Sitanggang and Ismail (2011) use Decision Trees and a 
series of IF–THEN rules to develop a classification model for for-
est fires in Indonesia. We prove the superiority of RL techniques 
to such supervised methods in our work. For instance, the results 
in Sitanggang and Ismail (2011) show an accuracy of about 63%, 
whereas our best RL models perform much better than that in 
similar test cases. In addition, Angayarkkani and Radhakrishnan 
(2009) use fuzzy logic and fuzzy membership rules to make a 
forest fire detection system from satellite images. The methods 
outlined are only capable of predicting fires at the time of satellite 
image availability, and it is not possible to predict forward or in-
between as demonstrated in our work.

Our work also has similarities to the use of intelligent systems 
for predicting burned areas as suggested in Castelli et al. (2015). 
However, that work focused on burned area alone whereas we 
look at the more specific problem of prediction of actual fire 
spread location over the short term.

3. PrOBleM FOrMUlaTiOn

The problem is formulated as a Markov Decision Process (MDP) 
<S, A, P, R> where the set of states S describes any location on 
the landscape. A state s ∈ S corresponds to the state of a cell in 
the landscape (x, y, t, l, w, d, rh, r) where x and y are the location 
of the cell, t is the temperature at the particular time and location, 
and l is the land cover type of the cell, which could be one of 
water, vegetation, built up, bare land, and other (derived from 
satellite images), and w and d are wind speed and direction, rh is 
relative humidity, and r is amount of rainfall. The “agent” taking 
actions is a fire spreading across the landscape. The action a ∈ A 
indicates the direction the fire at a particular cell “chooses” to 
move: north, south, east, or west or to stay put. These variables 
are considered to be the most contributing to fires as they are the 
primary variables in the Canadian Forest fire weather index as 
specified in Cortez and Morais (2007).

The dynamics function for any particular cell P(s′|s, a) is a 
mapping from one state s to the next s′ given an action a. Note, 
unlike most RL domains where the unknown dynamics of the 
system can be very complex, in our formulation the dynamics are 
actually straightforward. Most properties of the cell state do not 
change quickly, or at all, in response to our actions. So the action 
of spreading a fire into a neighboring cell directly alters p in that 
cell, the probability that the neighboring cell in that direction will 
move to a burn state.

The reward function R maps a cell state to a continuous value 
in the range [−1, 1]. Rewards are based on the land-cover, for 
example, a cell predominantly filled with water has less chance 
catching fire compared with one filled with vegetation. Thus, 
there is a negative reward for choosing to spread fire to a cell 
with high percentage of water and a small positive reward for 
choosing to spread to a cell covered with vegetation. Other 
reward function components, are derived from the ground truth 
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FigUre 1 | Forest wildfire satellite data domain: a schematic of the wildfire 
motion domain at a particular state and timestep. The red (dark) cells are on 
fire, the green cells (light) are not on fire, and the dark circle indicates the 
current cell or agent being spread by the policy. The arrows around the dark 
circle indicate the action choices possible. The white circle indicates that 
other cells will be considered for spread. The arrows from the white circle 
indicate that there is a strong wind blowing toward north, and the north 
action is the most likely action choice for these cells (effect of wind).

FigUre 3 | Thermal image. Images obtained from USGS/NASA Landsat 
Program.

FigUre 2 | Raw color image. Images obtained from USGS/NASA Landsat 
Program.
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data for the training sets. Thus, in the training phase, the fire is 
given a positive reward for taking action choices similar to the 
actual scenario and negative rewards otherwise. These are applied 
for particular experiments and algorithms as explained in the 
experimental setup.

Figure  1 shows a schematic representation of the domain 
where some cells are currently affected by fire and have a potential 
to spread fire to other cells nearby which is treated as the “deci-
sion” of an agent at that location. The task then is to learn a policy 
for this agent, which minimizes the total error at different future 
steps.

The initial state will come from satellite images that corre-
spond to the beginning of a fire. We are focusing on fire growth 
rather than ignition detection, so we set certain cells to have just 
ignited fire and assign these to the initial state. As it is impos-
sible to predict precisely from where a “fire starts,” these ignited 
cells are decided based on thermal image data, media reports, 
and approximations based on the burning areas in the first day 
on which the satellite image is available. Wind speed and wind 
direction are assumed to be a constant for a small area at a fixed 
point of time.

The goal is to learn a policy for this agent that recreates the 
spread of the fire observed in later satellite images by maximizing 
discounted rewards designed to reward high accuracy simula-
tion. Actions are constrained to not cross the boundary of the 
domain of study.

3.1. Data acquisition
The Richardson fire occurred in a region called Richardson 
Backcountry north of Fort McMurray in Northern Alberta in 
2011. Fort McMurray was also affected by forest fires in 2016 dur-
ing the massive Fort McMurray fires (Woo and Tait, 2016). The 
coordinates of Fort McMurray is (56°43′36″ N, 111°22′51″ W) 

and the coordinates of Richardson Backcountry is (57°22′02.3″ 
N, 111°19′27.1″ W). The satellite images are downloaded from 
the USGS Earth Explorer data portal1 for Alberta. The Landsat 
Enhanced Thematic Mapper Plus (ETM  +) sensor carried on 
Landsat 7 was the most important source of data. A summary 
(Kanevski et al., 2008) of the merits of various software packages 
and tools (such as GeoMISC, GeoKNN, GeoMLP, etc.) in relation 
to machine learning on geospatial data was useful in develop-
ing this work. Figure  2 shows an example where the smoke 
over burning areas can be seen. A series of visual and thermal 
images corresponding to the duration of occurrence of the Fort 
McMurray fire (approximately from April 2016 to September 
2016) and Richardson fire (approximately from May 2011 to 
October 2011) were collected for the corresponding regions of 
Alberta. All the images were corrected for missing values and 
outliers. Additional pre-processing steps were carried out as 
outlined in Cracknell and Reading (2014). These images gave a 
clear description of the ground scenario in case of fire and are a 
reliable source of burn areas. The pixels on fire are clearly at a far 
higher temperature corresponding to the pixels not on fire, and 
this can be easily delineated from the thermal images. Figure 3 
shows the areas in darker shades of black are on fire. The spatial 
resolution of the satellite images was 30 m. This means that a pixel 

1 https://earthexplorer.usgs.gov/ (Accessed: December 5, 2016).

29

https://www.frontiersin.org/ICT/
https://www.frontiersin.org
https://www.frontiersin.org/ICT/archive
https://earthexplorer.usgs.gov/


Ganapathi Subramanian and Crowley Spatial RL for Fire Dynamics

Frontiers in ICT | www.frontiersin.org April 2018 | Volume 5 | Article 6

in the satellite image corresponds to 30 m × 30 m on the ground. 
This also means that two objects, at least 30 m long or wide, sit-
ting side by side, can be separated (resolved) on a Landsat image. 
The temporal resolution of this satellite is 16 days. Thus a 16-day 
periodic information of a particular area during the course of the 
fires are available. The Landsat Enhanced Thematic Mapper Plus 
(ETM +) sensor is capable of sensing in 8 different spectral bands, 
which are made available in its datasets. Only the bands in the 
visible spectrum (red, blue, and green) and the thermal band are 
used in this work. Landsat 8 imagery has a radiometric resolution 
of 12-bits (16-bits when processed into Level-1 data products).

The land-cover value is obtained by processing the satellite 
images in an open source geoprocessing software (Multispec). 
Temperature is obtained from processing thermal images from 
the same data source. Wind speed, rain, and wind direction 
are obtained from the historical datasets present in the Canada 
Information Portal2 and World Clim datasets for the region of 
study. Relative humidity is obtained from processing satellite 
datasets from the USGS as explained in Peng et al. (2006).

The resolution for all the inputs was fixed to be 30 m in accord-
ance with the spatial resolution of the satellite images. As all the 
other information came from data sources that have lesser resolu-
tion that 30 m all the inputs were comfortably generalized to 30 m. 
For example, the initial state of the Richardson fire contained 
the following values for a particular spatial location (fixed x, y) 
and calendar day. Date = May 8, 2011, geographic coordinates  
(x, y) = (57°24′11.2″ N, 111°13′20.8″ W), temperature (t) = 10.1 C, 
land cover (l) = vegetation (black spruce), wind speed (w) = 8.05 
mph, wind direction (d) = NW, rainfall (r) = 35.1 mm, and rela-
tive humidity (rh) = 50%.

4. DeFiniTiOn OF algOriThMs

We compare five very different, widely used RL algorithms on this 
domain to see the range and application of the idea. We begin with 
three classic approaches for iteratively solving MDPs, value itera-
tion, policy iteration, and Q-learning. We then consider the recent 
and very different approaches of Monte Carlo Tree Search and A3C, 
a recent policy gradient RL algorithm that utilizes deep Learning for 
value function representation. These algorithms will be reviewed 
briefly with modifications needed for our problem highlighted.

For all of the following methods each cell in the target area 
that is visited has the resulting value estimate stored in a hash 
data structure so it expands only as new states are encountered.

4.1. asynchronous Value iteration (Vi)
The optimal value of the state V*(s) under the greedy fire spread 
policy is given by the following Bellman equation:

 
V s R s P s s a V sa

s

∗

′

∗= + ′ | , ′∑( ) ( ) ( ) ( )max γ
 

(1)

where s′ is the successor state and γ denotes the discount factor 
which we set to 0.9. States are randomly sampled to update the 

2 https://www.canada.ca/en/services/environment/weather.html (Accessed: December 5,  
2016).

value function according to equation (1) and updates are stopped 
when the change in value made by the successive iterations is less 
than 0.1. To provide a signal for training, a pixel in the center of 
the region of consideration that is currently burning in the next 
time step is given a high positive reward. This can be considered 
the goal state to reach for the burning cell as in a classic naviga-
tion problem using RL. This approach is utilized for training both 
value and policy iteration algorithms.

4.2. Policy iteration (Pi)
We begin with an initial random policy for acting in each state 
and iteratively improve it through alternating policy evaluation 2 
and improvement 3 steps defined as follows:
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The discount factor γ was fixed to be 0.9. For this algorithm, 
the value function Vπ(s) is an array of Net Policy Worth values 
for all states, which is the highest cumulative reward that could 
be obtained for an optimal policy passing through that state. This 
is required to maintain single-step dynamics since each cell could 
take more than one action at a time as fire spreads in multiple 
directions.

4.3. Q-learning (Ql)
This algorithm (Watkins, 1989) performs off-policy exploration 
and uses temporal differences to estimate the optimal policy. In 
Q-learning, the agent maintains a state-action value function 
Q(S,A) instead of a state value function. This is updated as follows:

 Q s a r Q s a^ ( ) ( (max ( ))), = + ′, ′γ  (4)

and

 Q s a Q s a Q s a Q s a( ) ( ) ( ( ) ( ))^
, = , + , − ,α  (5)

where α denotes the learning rate and γ denotes the relative value 
of delayed vs immediate rewards. S′ is the new state after action a. 
a and a′ are actions taken in states s and s′, respectively. maxa Q(s′, a′)  
denotes the estimate of maximum discounted future reward 
expected.

The learning rate for Q-learning was chosen to be 0.9 as we 
need the most recent information to have a higher impact in a 
continuous spatial environment like that of forest fire. There is 
a high positive spatial auto-correlation in spatial datasets cor-
responding to fire as the similar pixels(on fire or not fire) tend to 
cluster together. The Q-learning is made to exploit this property 
using the appropriate learning rate. The discount factor is deter-
mined to be 0.9 as the long-term rewards are more important 
than the short-term rewards in our model and we want the model 
to converge. Using a lower discount rate decreases the level of 
exploration and the risk of falling into a local optimum becomes 
high. Each state-action pair is considered as a step taken in the 
real world. For every valid state, the highest Q value (utility value) 
for the state is recorded. The burned area is determined to be all 
the states having utility values over the threshold. Further, for 
each successive time step in the real world, a suitable number of 
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steps taken by the fire are determined approximately using the 
difference between the total number of cells being burnt between 
successive time steps and is used to cap the total number of steps 
(state—action pairs analyzed) in the Q-learning implementation 
for the time step at which the learning is taking place. This is done 
to obtain a faster convergence.

4.4. Monte carlo Tree search (McTs)
These are a class of algorithms that perform approximate, but 
confidence-bounded, RL by performing short roll-outs of the 
current policy to obtain enough statistical information about a 
state to keep it or discard it as belonging to the optimal path.  
A good survey is provided in Browne et al. (2012).

In our implementation of MCTS, each node in the search 
tree is a valid cell state in the fire model. From each state, any 
possible action could be taken, which is modeled as branches 
in the tree. The nodes in the tree are made to be selected by 
the Upper Confidence Bound for trees (UCT) (Kocsis and 
Szepesvári, 2006) method to minimize the cumulative regret. 
Each “step” in the MCTS tree is defined as a possible action 
taken from any valid state. A correlation between number of 
steps a fire can take in a 16-day period has been worked out 
empirically to be about 1,000. So, the MCTS roll-out policy 
is forced to stop after taking 1,000 steps. Note that there is 
a stay action defined for every fire location. Thus, in this 
implementation, it is possible to go a few levels down the tree 
without that corresponding to any real action in the world. 
Rewards are given based at each step of the roll-out and 
when complete the combined reward is used to update the 
value for the initial state at the root of the roll-out tree. For 
computational simplicity, during the roll-out a simpler state 
representation is used which focuses only on number of cells 
burning.

4.5. Deep rl
The final comparison is using the Asynchronous Advantage 
Actor-Critic (A3C) algorithm (Mnih et al., 2016), which repre-
sents the state-action value function using a Deep Q-Network 
(DQN) (Mnih et al., 2013). This algorithm defines a global net-
work in addition to multiple worker agents with individual sets 
of parameters. The input to this global network was formalized 
as a grid of 100  ×  100 cells with each cell having state values, 
which is an average of the state values of several pixels derived 
from satellite images. For our problem, A3C has the advantage 
of defining multiple worker agents. Each separate instance of a 
fire (unconnected to other fires) in a neighborhood is given its 
environment as an input, and the fire is defined as an individual 
worker. In our data, there are 96 instances of fire (thus, 96 worker 
agents) considered for training and testing. Each worker would 
then update the global environment, and we have plotted the 
result obtained. The deep network used is based on the DQN 
network given in Mnih et al. (2013), which uses an input layer 
of 100 × 100 pixel windows from the satellite image for the start 
date. Then there is a convolution layer of 16, 8 × 8 filters with a 
stride of 4 followed by a rectifier nonlinear unit (ReLU) layer. The 
second hidden layer involves 32 4 × 4 filters using a stride of 2 also 
followed by a ReLU layer. The final fully connected layer uses 256 

ReLUs, which is output to a layer of threshold functions for the 
output of each of the five possible actions.

5. sUPerViseD classiFicaTiOn—
gaUssian PrOcess

In this supervised classification method of performing the 
experiments, the Gaussian process algorithm (Rasmussen and 
Williams, 2006) is used to estimate if a particular cell is burning 
or not based on the burning conditions of other cells in the scene. 
For each particular cell, the attributes of temperature, rain, rela-
tive humidity, land-cover type, wind speed, and wind direction 
are considered to influence the decision.

A distribution over function f can be specified by the Gaussian 
process as given by:

 p f GP f k x x( ) ( ( )),= | , , ′0  
where the mean function is 0, and the covariance is defined by 
some kernel function. We use the RBF kernel in our experiments 
because we have an assumption of 2D proximity of features being 
relevant in any direction.

The GP prior is a multivariate normal given by:

 p y Normal y K( ) ( ),= | ,0  
where K is a covariance matrix given by evaluating k(xn, xm) for 
each pair of inputs. The mean of the GP prior is assumed to be 0 
in accordance with the above equations.

To obtain a probability the output response is condensed into 
the range [0, 1], which is an appropriate choice for classification. 
The probability is given by the condensed value, and a Bernoulli 
distribution is used to determine the label.

The likelihood of an observation (xn, yn) is given by:

 p y z x Bernoulli y logit zn n n n( ) ( ( )).| , = | −1
 

Gaussian processes were chosen for this problem as they 
are known to work well for modeling non-linear relationships 
between variables especially in spatial domains. For the GP clas-
sifier, we use the logistic (sigmoid) function, whose integral is 
approximated for the binary case to map output to a probability. 
For the covariance function, we use an RBF kernel (stationary 
kernel) because we have an assumption of 2D proximity of fea-
tures being relevant in any direction. The hyper-parameters of the 
kernel are optimized by maximizing the log-marginal-likelihood 
of the optimizer. A Cholesky decomposition was used to decom-
pose the kernel matrix. The result is a binary output response, 
which can be used for classification.

6. eXPeriMenTal seTUP

To evaluate this idea of agent-based RL for SSP prediction, we 
performed a cross-comparison of five RL algorithms and a super-
vised spatial GP approach using a two-stage training process. In 
the first stage, we learn the cell-based fire spread policy directly 
using the satellite images from the start of the fire and the image 
at its next successive time step. This is the policy from the MDP, 
which describes spread of fire from one cell to another based on 
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TaBle 1 | AUC for all the methods.

Method aUc

VI 0.6806
PI 0.8983
QL 0.7138
MCTS 0.8256
A3C 0.9294

TaBle 2 | Average accuracy for each algorithm on the different test scenarios.

Method rich. fire (a) rich. fire (B)

GP 62.4% 50.8%
VI 72.2% 25.4%
PI 73.3% 38.2%
QL 67.2% 10.4%
MCTS 61.3% 60.2%
A3C 87.3% 53.2%

Bold font indicates the best performing algorithms in the corresponding experiments.
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local conditions. The training data images are spaced 16  days 
apart, so many successive calls to this policy are required to reach 
the fire spread for 16 days. Thus, the second stage of training is 
to choose a cap C for the number of calls to this policy to obtain 
the correct spread area. We use another future satellite image to 
choose this cap based on maximum number of cells the policy got 
correct. The cap is used to set the upper limit of the total number 
of moves in any experiment.

In experiment (A), we test the ability of the algorithms to learn 
the spread of fire in an intermediate time step if the previous and 
next time step are known. Thus, we optimize C based on the 
ground truth data for time step 3. Now, the learned policy and the 
cap are used to determine the fire spread at the intermediate step 
2 given that this is halfway between the state reached in step 3.

In experiment (B), we start with the initial state of the fire, we 
provide rewards based on the time step 2 of the fire, and we ask 
the algorithm to predict time step 3. This experiment is similar to 
asking the question: Where will the fire spread in the next 16 days, 
given its position currently? In this case, the cap value C is tuned 
for a 16-day duration.

In experiments (C)–(F), we apply the learned policy from the 
Richardson fire to the Fort McMurray fire over four 16-day time 
steps but tune the cap value C using the first transition in the 
Fort McMurray data. This was a fire that happened in Northern 
Alberta 5 years after the Richardson fire used for training. As the 
regions are similar and very near each other, the general proper-
ties that the model encapsulates should remain relevant. The 
initial state for the Fort McMurray fire is provided in a similar 
way to the Richardson fire.

After limiting the number of calls in any experiment based 
on the cap, we need a policy that determines if a fire should 
spread from one burning cell to a nearby non-burning cell. For 
the RL algorithms, this is done by applying a threshold to the 
value function to determine spread or non-spread. This threshold 
is determined for each algorithm to balance true positives and 
false positives based on the training data. For all the experiments, 
the result from the algorithms in the form of burned areas is 
compared against the actual scenario, using the satellite images 
corresponding to the predicted time step.

All experiments were run on an Intel core i7-6700 CPU with 
32GB RAM.

7. analYsis OF resUlTs

The task in these experiments is essentially to classify each cell at 
each time step correctly in terms of burning or not burning. So we 
can use the true positive rate and false positive rate to compute a 
receiver operating curve (ROC) and a corresponding area under 
the curve (AUC) metric. The AUC for experiment (A) is shown 
in Table 1 for all algorithms and shows that the A3C algorithm 
provides an excellent threshold while classic value iteration is the 
least favorable. This seems to augur well with the overall accuracy 
for experiment (A) seen in Table 2.

Figures 4 and 5 show the visualization of some of the results 
for the different experiments. For all the images, the red pixels 
correspond where fire was classified correctly, blue pixels rep-
resent those which were classified as burning but were not yet 

at that point. White pixels represent false negatives where the 
policy predicted no fire but fire was indeed present. Black pixels 
represent true negatives, the pixels that were not on fire and cor-
rectly classified.

From all the algorithms considered, A3C seems to be the best 
overall, which is not surprising as it has the most flexible state-
action value function representation. Policy Iteration in general 
comes second best in most tests. Q-learning a model free method 
of learning gives a lesser accuracy than model-based approaches 
like Value and Policy Iteration. In a spatial domain, the environ-
ment has a high influence on the spread of the agent. Thus, the 
strong consideration of the model of the spatial environment 
helps the model-based approaches.

The output images in Figures 5G,H show the two most suc-
cessful algorithms MCTS and A3C on the region on which they 
were trained, filling in fire predictions between the start state and 
the reward target. Looking at the output images in Figures 4E,F, 
we see these two algorithms applied to the Fort McMurray fire 
(similar region, different year, and not part of the training data) 
at the same number of days forward after the start state. We can 
see that the model trained on one set images applies quite well to 
a different start state it has never seen, but A3C has much fewer 
false positives than MCTS. Figure 5 visualizes the results of all the 
RL algorithms on predicting the next time step after the training 
data on the Richardson fire, here A3C clearly produces the most 
accurate prediction.

Somewhat surprisingly, MCTS outperforms A3C in experi-
ment (B) for forward prediction of the next 16-day period on 
the same location as the training data. It seems that the MCTS 
rollouts have fit a better model to the sense of real world “time” 
to predict the extent of a fire in the next time period. As can be 
seen for the results for (C) and (D) in Table 3, the A3C algorithm 
outperforms all others on prediction when the learned policy for 
one location is applied to another location in the same region. 
MCTS does significantly worse in this challenge, meaning its 
model is not as good at generalizing the essentials of the policy 
for transfer to a new location even though it seems to have a better 
model of dynamics.

32

https://www.frontiersin.org/ICT/
https://www.frontiersin.org
https://www.frontiersin.org/ICT/archive


A B

C D

E F

FigUre 4 | Results for experiments from the best two algorithms MCTS and A3C for filling in an (intermediary state) in the training region (A) and applying that 
policy in a different region (D). Red pixels were on fire and classified correctly (true positives), blue pixels were incorrectly classified as burning (FP), white pixels were 
incorrectly classified as not burning (FN), and black pixels were correctly classified as not burning (TN). (a) Satellite image of July 26—experiment (A). (B) MCTS for 
experiment (A). (c) A3C for experiment (A). (D) Satellite image of April 27—experiment (D). (e) MCTS for experiment (D). (F) A3C for experiment D. Images obtained 
from USGS/NASA Landsat Program.
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Note that the accuracy of all algorithms reduces with increas-
ing time after the start of a fire as can be see by looking at experi-
ments (C)–(F) in Table  3. This is unsurprising, as predicting 
multiple steps into the future is inherently harder. However, it 
is also partially due to the fact that later fires are larger, more 
intense, and spread faster, making learning more difficult. In the 
first time step, all algorithms do very well as it is easier to predict 
the first few moves of the fire. The accuracy goes down rapidly, 
and in the last time step it is only around 10%.

It is also interesting to note that even though MCTS starts of 
with a low accuracy compared with the other methods in the first 
time step, its cautious approach causes its accuracy to decrease 
much slower than other methods so that it seems tied with A3C 
when predicting three steps ahead. Similarly, the supervised GP 
method that loses out in most comparisons does far better for the 
hardest problem of predicting four time steps (about 2 months) 
ahead after all other methods have degraded. The GP approach is 

purely spatial pattern learning, with no element of dynamics. So 
one possible explanation is that, GP’s with only a spatial model 
and no notion of time loses out when changes over time are 
relevant, but once we are so far ahead after the start of the fire a 
notion of time actually proves to be detrimental as the behavior 
of a very intense fire is difficult to correlate with time and the GP’s 
more accurate spatial model wins out.

Turning our attention to the running times, we ran all experi-
ments on similar scale problems running with the same system 
resources and training took between 5 and 7.5 h for all algorithms. 
Q-learning was the fastest to finish execution and obtained rea-
sonably results even when even training time was subjected to 
a threshold cutoff. So Q-learning is a good candidate algorithm 
for fast approximations for testing purposes. One unique aspect 
of A3C is that it can exploit multithreading of CPU cores rather 
than GPU acceleration. Each fire in our dataset could be run as 
its own thread allowing A3C use similar training time to obtain 
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FigUre 5 | Results for experiment (B) from all algorithms showing performance on the prediction of the next state directly after the training data. (a) Satellite image 
of August 11. (B) Thermal image of August 11. (c) Gaussian processes. (D) Value iteration. (e) Policy iteration. (F) Q-learning. (g) MCTS. (h) A3C. Images obtained 
from USGS/NASA Landsat Program.
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this RL approach should be able to learn a reasonable policy in 
data-scarce scenarios by focusing on the reachable state-action 
space only.

8. challenges anD FUTUre WOrK

As expounded in Malarz et  al. (2002), forest fire prediction 
requires additional information consisting of firefighting inter-
vention (such as fire fighting strategy and time elapsed), which 
are not taken into consideration in this study, as we chose a study 
region having very minimal fire fighting. In future work, we aim 
to incorporate this kind of information as well as enriching the 
model by including more land characteristics such as moisture, 

superior results. MCTS was the slowest algorithm we tried since 
it is not multithreaded and requires extra roll-out simulations and 
back propagation at every iteration.

There are several reasons why the best RL algorithms are more 
suited to such domains than supervised learning algorithms. 
The first reason is that, RL can model the spatial dynamics along 
with time in such domains. This enables RL to predict action 
choices using a policy tuned to a particular time of fire spread 
test as compared with supervised learning which estimates a 
model based on inputs and outputs only. The second reason 
being RL prepares a policy for the agent that takes actions which 
model the underlying causal fire behavior. The supervised learn-
ing algorithms do not have such a state-action mapping. Thus 
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TaBle 3 | Average accuracy of each algorithm trained on the Richardson fire but 
applied on the Fort McMurray fire for different time durations.

Method (c) (D) (e) (F)

GP 60.5% 47.9% 45.3% 20.5%
V.I 88.5% 68.4% 30.1% 6.4%
P.I 89.3% 67.8% 35.8% 8.9%
Q.L 84.2% 61.4% 26.4% 5.3%
MCTS 65.3% 55.7% 49.7% 5.8%
A3C 90.1% 81.8% 50.8% 13.4%

They are the best performing algorithms in the corresponding experiments.
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slope, and directional aspect as state variables in individual cells. 
We will also perform a wider comparison against different existing 
wildfire models algorithms such as those in Castelli et al. (2015).

We also plan to investigate improvements to the structure of 
the Deep Neural Network policy representation to tailor it more 
closely to this kind of spatially spreading problem. For example, 
the relatively better behavior of the supervised GP approach on 
distance predictions where the dynamics approximation may be 
hindrance, suggest trying a hybrid approaches, learning a pair of 
models, one temporal and atemporal to achieve the best of both.

A severe challenge in the wildfire domain is the relative paucity 
of data compared with some other image analysis problems. While 
there are vast databases of satellite imagery, they are not all readily 
available and find the very small proportion which contains forest 
wildfires is not straightforward. This study has looked at a pair of 
fires in a well known region but future work will use data from 
more locales and automate the process of data collection. We will 
also look at flooding as a similar but more data-rich domains. This 
limited amount of image data is one reason, we chose to use a 
state feature extraction approach rather than learning on the entire 
image directly. There simply may not be enough images to learn 
effectively. However, a filter-based approach such as Convolutional 
Neural Networks (CNNs) applied directly to the images would 
be possible if we use small filters on the same scale as the local 
neighborhood we used in this study. We are currently trying this 
approach using a combination of CNNs and Recurrent Neural 
Networks to better encapsulate the effect of time on the fire.

9. cOnclUsiOn

In this work, we presented a novel approach for utilizing RL for 
learning forest wildfire spread dynamics directly from readily 
available satellite images. Our approach inverts the usual RL 

setup so that the dynamics of the MDP is a simple function of 
the fire spread actions being explored while the agent policy is a 
learned model of the dynamics of a complex spatially spreading 
process. Our results indicate that A3C is better at predicting 
spread dynamics at intermediate time steps and MCTS per-
forms better while predicting the future spread. As the test data 
diverge from the training data and temporal changes become 
less relevant, such as when the intensity of fire increases, the 
fully supervised Gaussian process approach performs better 
than the RL algorithms.

The intersection between the decision-making tools of 
Artificial Intelligence, the pattern recognition tools of machine 
learning, and the challenging datasets of sustainability domains 
offers a rich area for research. For the machine learning commu-
nity, our approach opens up new set of challenging and plentiful 
datasets for learning patterns of spatial change over time in the 
form of spatially spreading wildfires and a platform for experi-
menting with new Deep RL approaches on a challenging problem 
with high social impact.

We hope this can lead to development of a comprehensive 
way of integrating deep learning and RL approaches to support 
the tasks of prediction, dynamics model learning, and decision 
making in problems with SSP structure. This would also involve 
new representations for spatial data and policies, which can 
benefit theoretical as well as applied practitioners. Finally, the 
algorithmic approach demonstrated here could lead to more 
effective modeling and decision-making tools for domain prac-
titioners in forest wildfire management which we are exploring 
with collaborators.
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Species respond to changes in their environments. A core goal in ecology is to

understand the process of plant community assembly in response to a changing

climate. Examining the performance of functional traits and trait-based assembly patterns

across species among different growth forms is a useful way to explore the assembly

process. In this study, we constructed a habitat severity gradient including several

environment factors along a 2300m wide elevational range at Taibai Mountain, central

China. Then we assessed the shift on functional trait values and community assembly

patterns along this gradient across species among different growth forms. We found

that (1) although habitat-severity values closely covaried with elevation in this study,

an examined communities along a habitat severity gradient might reveal community

dynamics and species responses under future climate change. (2) the occurrence

of trait values along the habitat severity gradient across different growth forms were

similar, whereas the assembly pattern of herbaceous species was inconsistent with the

community and woody species. (3) the trait-trait relationships of herbaceous species

were dissimilar to those of the community and woody species. These results suggest that

(1) community would re-assemble along habitat severity gradient through environmental

filtering, regardless of any growth forms and that (2) different growth forms’ species

exhibiting similar trait values’ shift but different trait-trait relationship by different trait

combinations.

Keywords: functional traits, habitat severity, community assembly, climate change, functional structure, trait-trait

relationships, woody species, herbaceous species

INTRODUCTION

The climate acts as a filter for the species pool on a regional scale (Southwood, 1988), as it shifts the
interactions of plant species (Chapin et al., 1998), as well as the community assembly process. Plant
functional traits and their value’s distribution patterns have become proxies for examining the plant
community assembly process (Grabherr et al., 1994; Díaz et al., 1999, 2007;Mcgill et al., 2006; Vittoz
et al., 2008; Walther et al., 2009; Mason and de Bello, 2013; Yablon, 2013). Such approaches might
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reveal species responses to climate change (Weiher and Keddy,
1995; Woodward and Cramer, 1996; Díaz and Cabido, 1997;
Cornwell and Ackerly, 2009; Götzenberger et al., 2012; Mason
et al., 2012; Spasojevic and Suding, 2012; May et al., 2013).

Plant functional traits are the outcome of a history of species
adaptation (Southwood, 1988). They represent the primary
strategy that plants utilize to adapt to a changing environment
(Lamanna et al., 2014). Plants respond to variable habitat
conditions by adjusting their metabolism (Pappas et al., 2016)
and performance (Keddy, 1992). Meanwhile, habitats filter
species according their particular combination of traits (Keddy,
1992). Thus, plant functional traits, especially “response traits”
which are measurable characteristics of plants, are assumed to
reflect a plant’s response to changes in its habitat (McIntyre
et al., 1999; Lavorel et al., 2007; Meng et al., 2009; Borchardt
et al., 2013). Response traits also provide information on the
physiological adaptations of vegetation to various environmental
gradients (McIntyre et al., 1999; de Bello et al., 2005; May
et al., 2013; Purcell, 2016). These processes are believed to
shape the range of functional trait values within communities
(Cornwell and Ackerly, 2009) through habitat filtering or
interspecific competition. Convergence of a trait value suggests
co-occurring species often appeared in similar abiotic conditions,
leading to habitat filtering (Grime, 2006; Cornwell and Ackerly,
2009). In contrast, interspecific competition is expected to
exclude species with high trait similarity, resulting in trait
divergence (MacArthur and Wilson, 1967; Weiher and Keddy,
1998; Stubbs and Wilson, 2004; Kraft et al., 2009). These
functional traits distribution patterns can be described by using
standardized effect sizes (SES) of traits. The SES of traits observed
value to null expectation value (Kraft et al., 2009; Kraft and
Ackerly, 2010).

As communities’ functional trait values would change under
the assembly process, species’ trait value would change within
community. It is necessary to examine the relationship between
functional trait values and the associated biotic and abiotic
conditions where the plant community is established to predict
assembly patterns with climate change. Plant functional traits are
assumed to be adaptively differentiated with habitats differing
in some key factors (e.g., disturbance) or resource availability
(Brouillette et al., 2014). Previous studies have focused on the
trait-habitat relationships along various gradients in different
regions and scales (Díaz and Cabido, 1997; Fonseca et al., 2000;
Westoby and Wright, 2002; Wright et al., 2004; Fynn and
Kirkman, 2005; Lambrecht and Dawson, 2007; Cornwell and
Ackerly, 2009; Qi et al., 2009; Maharjan et al., 2011; Violle et al.,
2011; Lawson and Weir, 2014). However, since plant functional
traits vary among life forms (e.g., woody vs. herbaceous plants in
one community, Meng et al., 2015), the concept of plant growth
form is important for community dynamics (Meng et al., 2015).
Nevertheless, previous studies have largely focused on woody
species or particular species in forest communities (Cunningham
et al., 1999; Fonseca et al., 2000; Qi et al., 2009), rather than
herbaceous species (Oyarzabal et al., 2008). Studies on functional
trait values might reveal whether woody or herbaceous species
respond differently to environmental gradients (Yablon, 2013).
Moreover, analyzing the assembly process in woody/herbaceous

level and in community level separately is a useful way to detect
the actual community assembly mechanisms comprehensively.
These studiesmay be helpful to reveal themost focused ecological
question of plant community, while they are seldom to be
involved.

Examining different growth forms’ responses seems necessary
to explore the community assembly which respond to changes
in environmental gradients (Keddy, 1992; Westoby, 1998).
However, there are few studies examining the response of
functional trait/functional trait distribution to the combination
of these environment factors (Weiher and Keddy, 1995; de Bello
et al., 2006) or plant functional traits (Smith and Wilson, 1994).
We developed a habitat severity matrix representing the level
of environmental stress in the habitat. We measured functional
traits (leaf morphologic traits, leaf chemometrical traits, plant
height, and seed mass) of each species in the communities based
on the intrinsic dimensions theory (Laughlin, 2014; Laughlin and
Messier, 2015). Additionally, we assessed the functional traits
values and their distributions changes along the environmental
severity gradient across varying levels (community, woody
species, and herbaceous species) at Taibai Mountain, central
China.

We expected that (1) the community assembly pattern
would show convergence in more stressful habitat, and (2)
economic spectrum-related functional trait-trait relationships
and functional trait distributions would demonstrate different
patterns across different growth forms.

MATERIALS AND METHODS

Study Site
The study was carried on the Taibai Mountain Nature
Reserve, central China, located on 33◦59′45′′N−34◦05′12′′N,
107◦41′18′′E−107◦48′22′′E. This temperate zone is expected to
permit a wider range of trait combinations than the tropical
zone (Lamanna et al., 2014) since there are more heterogenous
micro niches. The elevations of the reserve region vary from 940
to 3,767m. In the present study, we selected the core area of
forest which elevations range from 1,140 to 3,481m. Such a wide-
range altitudinal gradient provides opportunities to study various
responses of plant species to changes in habitat conditions
(Cordell and Handley, 1999). The climate of the study site is
dominated by continental monsoon, mean annual temperature
(MAT) varies from 0.9 to 12.3◦C related to elevation, and annual
precipitation is 640–1,000mm (Tang and Fang, 2004). Forest
coverage is over 82%, with high species diversity. In our study
region, 389 woody species potentially exist which are recorded
in the literature; the vegetation distributes along zonal zone in
Taibai Mountain (Xu et al., 2017). The zonal vegetation of the
Taibai Mountain region is highly heterogeneous in the warm
temperate-zone deciduous broad-leaved forest and coniferous
forest resulting from differences in hydrothermal conditions
along such a wide-range altitudinal gradient (Zhu, 1981).

Plot Setup and Sampling
Along the altitudinal gradient, we established 39 plots; the area
of each plot is 20 × 30m. We selected more than 3 plots per
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200m elevation range, which were set as far as possible in order
to represent the whole study region integrally. These selected
plots commonly have different topographic factors or species
composition in order tomaximize variation in the environmental
factors (sampling maps see Appendix Figure 1). Main field work
was conducted in July 2014.

We collected soil samples dug from the 10–20-cm layer below
ground surface and litter at four corners of the plots.We collected
soil samples within same date for making sure the weather
condition’s consistency of samples. Soil samples were sealed in
plastic bags, and they were naturally dried with 3 weeks for
experimental analysis. In addition, we also recorded the habitat
information, including elevation, location (by HOLUX EZ-Tour
GPS recorder, HOLUX Technology Inc.), topographic slope (by a
specific compass), and canopy coverage.

All species within each plot were identified, the abundance
and coverage of the species in each plot were documented. The
abundance of woody species (DBH > 8 cm) was counted as
the number of stems. The abundance of herbaceous species was
calculated by its relative coverage via assignment: We established
eight 0.3 × 0.3m quadrats within each plot for recording the
abundance and coverage of each herbaceous species. Based on
these data, we estimated the total abundance of herbaceous
species within each plot (Marteinsdóttir and Eriksson, 2014).
We recorded plant height of each woody species individual.
For individuals <2m height, height was measured using a
tape, while individuals > 2m height were measured using
a height indicator; thereafter, the maximum plant height of
each woody species was determined. For herbaceous species,
the tallest individual was chosen to measure plant height.
Because leaves are most exposed to habitat conditions and the
changes in their traits have been interpreted as adaptations to
specific environments (Fahn and Cutler, 1992), we collected
18–20 fully expanded sun-exposed leaves at top of crown
from various directions of each mature species individuals
within each plot. For each species, we selected at least five
individuals if possible. The leaf samples were preserved in
moist filter paper until analysis (Pérez-Harguindeguy et al.,
2013).

Traits Measuring
Wemeasured eight functional traits. Apart from the highest plant
height (Hmax) mentioned above, we measured leaf morphologic
and chemometrical traits by using leaf samples we collected.
Leaf area (LA) is a trait determined by gradients in available
moisture and temperature (Meng et al., 2009), Specific leaf
area (SLA) is key trait reflecting species resource acquisition
strategies (Cheng et al., 2016). Leaf dry matter content (LDMC)
is another basic important leaf morphologic traits linking to
habitat conditions (Yan et al., 2012). These leaf morphologic traits
were measured following standard methods (Cornelissen et al.,
2003). We also measured leaf chemometrical traits. Leaf nitrogen
content (LNC), leaf carbon content (LCC) were measured by
elemental analyzer (EA3000, EuroVector Inc.), and the leaf
carbon-nitrogen ratio (C:N) was calculated afterwards. We also
obtained seed mass (SM) data by weighing seed specimen
preserved in the specimen museum. Missing data on seed mass

of some species were compensated by literature review or website
information (http://data.kew.org/sid/sidsearch.html). It is fine to
assess the community assembly patterns for using these traits, as
it would minimize the number of traits but maximize the number
of dimensions (Laughlin, 2014).

Although trait values are often weighted by its relative
abundance (Garnier et al., 2004; Violle et al., 2007) which
calculated by its abundance divided by the sum of total
abundance numbers within a community. In our study,
there were species belonging different growth forms, relative
abundance may not reflect the information of their actual
biomass. Here we weighted the trait values of each species
by its importance value (IV). The importance value of each
species in each community was calculated as the sum of
its relative abundance, relative height, and relative coverage
and then divided by 3 (Xu et al., 2017). Note that the
importance value of each species was calculated separately for
all species combined (community level), only canopy species
(woody species level), and only undergrowth herbaceous species
(herbaceous species level). We calculated the weighted mean trait
values of community, woody species and herbaceous species of
each plot afterwards (method see Díaz et al., 2007).

Environmental Factors
Traits are related to temperature, light, moisture availability, soil
pH and nutrients. (Landolt et al., 2010). Here we developed
a “habitat-severity value” as an agency of all these factors.
We measured the soil pH by the pH indicator (PB-100,
Sartorius Inc.). Soil fertility factors nitrate nitrogen content
(NN), ammonium nitrogen content (AN), total nitrogen content
(TN), and rapidly available phosphorus (RAP) were analyzed by
discontinuous chemical analyzer (CleverChem 2000, Dechem-
Tech Inc.). Soil water content (SWC) which calculated by the
ratio of watermass to total soil mass wasmeasured as an indicator
of moisture availability. We used woody species canopy coverage
degree (WCD) as habitat cover. Furthermore, topographical
slope was measured in our study, as it showed correlation with
species leaf traits and height (Ackerly and Cornwell, 2007). MAT
and air relative humidity (RH) were calculated by empirical
equations adapted to Taibai Mountain (Tang and Fang, 2004):

MAT = −0.0049× ALT + 17.9 (r2 = 0.99, P < 0.001) (1)

RH = 0.4× 10−6
× (ALT)2 − 0.0153× ALT

+ 83.7 (r2 = 0.95, P < 0.01) (2)

In the equations, ALT indicates elevation of plots.

Constructing Habitat Severity Matrix
As there are numerous traits, we used principal component
analysis (PCA) of all these traits for dimensionality reduction
(Shipley, 2015). The PC1 axis of community weighted mean trait
values captured 55.56% of the total variance of traits, while the
PC1 axes of woody species and herbaceous species weighted
mean trait values captured 52.09 and 36.89%, respectively. The
PC1 axes of community, woody species and herbaceous species
seemed to have statistical correlation with almost all the traits
(Appendix Table 1). We used the PC1 scores of three levels as the
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trait variables to perform variance decomposition. We input PC1
scores as dependent variables, while input environmental factors
as independent variables for variance decomposition, which was
performed in “hier.part” package of R 3.1.1 program. Variance
decomposition (Pappas et al., 2016) was used to identify the
relative roles in variance of traits in community level and in
woody or herbaceous species level. We obtained the relative roles
of factors in every habitat for trait variations in community,
woody species and herbaceous species level respectively. The
results of variance decomposition were in form as percentage
(Appendix Table 2).

Thereafter, we constructed the habitat-severity values for
above three levels. All the habitat factors were normalized to [0,
1], the more stressful for plant growth, the value is more nearby
1. Therefore, we used these scores as the habitat-severity values,
in other words, as habitat severity gradient.

Data Analysis
We performed linear regression between weighted mean traits
values and habitat-severity values in community, woody species
and herbaceous species levels. In addition, we assessed the
functional trait distribution of each plot in community, woody
species and herbaceous species level as well by using SES of traits.
The SESwhich describes functional trait distribution is the degree
of discrepancy of trait observed value to null expectation value
(Cornwell and Ackerly, 2009; Kraft et al., 2009; Kraft and Ackerly,
2010). Before calculating SES, mean functional distance (MFD)
within a community should be calculated (Webb, 2000). MFD
describes the mean difference between two species.

SES =
MFDobserved−MFDrandomized

sdMFDrandomized

In the equation, MFDobserved is actual MFD which calculated by
observed functional traits values; MFDrandomized is calculated by
null model approach which is run in R 3.1.1 program for 999
times; sd means standard deviation. If SES < 0, means functional
structure convergence; in contrast, SES > 0 indicates functional
structure divergence. Owing to convergence or divergence of
functional structures mirrored community assembly processes,
we could assess performances of woody or herbaceous species
comparing to community total species along habitat severity
gradient and understand more detailed assembly processes
(Figure 1).

We also showed the trait-trait relationships among above
levels in order to determine differentiation of trait-response
among different levels. We tested the Pearson correlation
coefficient of each trait in community, wood species, and
herbaceous level (Tables 2, 3) by using the weighted values, and
then compared with each other so that we could find out patterns
which were consistent or not among different components in
common community. As we found our habitat-severity values
was dominated by MAT and RH which calculated by elevation
(Appendix Table 2, Appendix Table 3), we also compared
the Pearson correlation coefficient of elevations/habitat-severity
values to weighted mean functional trait values in above three
levels for assessing the habitat severity matrix (Table 1).

RESULTS

Performances of Habitat-Severity Values
Habitat severity values (HV) were dominated by MAT and RH,
and MAT and RH were calculated using the elevations of plots.
The correlation analysis between HV and elevation confirmed
the notion that other environmental factors might correlate with
elevation, even across three different levels (Appendix Table 3).
We found nearly equal correlations between HV and traits and
elevation and traits, regardless of level (Table 1).

Functional Trait Distributions Vary along
Habitat Severity Gradient: Different
Patterns across Different Growth Forms
Functional trait distribution of community and woody species
exhibited almost complete similarity (no significant difference by
U-test). Without exception, the functional distributions of LA,
SLA, Hmax, and SM across community and woody species levels
showed convergent tendencies with higher habitat severity. For
herbaceous species, although there were convergent tendencies
on LA and SLA along habitat severity, the inflection points of
divergence-convergence were inconsistent with community and
woody species. The SES of herbaceous LNC showed a divergent
tendency at higher habitat severity. The SES of other traits did
not show significant correlation with the habitat severity gradient
(Figure 1).

Functional Traits Vary along Habitat
Severity Gradient
Variation of traits among the community, woody species, and
herbaceous species along habitat severity gradients displayed
similar patterns to each other (Figure 2). For Hmax and SM,
patterns among different levels were almost consistent; Hmax
and SM decreased along the habitat severity gradient, though
the slope of fit lines in herbaceous species were relatively flat.
Chemometrical traits among the community, woody species, and
herbaceous species exhibited interesting patterns; the LCC of
these levels were consistent with each other (increasing with
habitat severity), while LNC demonstrated a significant increase
in only herbaceous species. Due to the varying performances
of LNC, C:N showed similar patterns along habitat seventy.
For leaf morphological traits, the LA of community, woody
species, and herbaceous species exhibited decreased tendencies
along habitat severity gradient. SLA and LDMC of woody species
did not demonstrate significant relationships to habitat severity;
however, community and herbaceous species exhibited increased
patterns.

Trait-Trait Relationships Show Different
Patterns across Different Growth Forms
The Pearson correlation semi-matrices of woody species and
herbaceous species were compared with the semi-matrix of
community (Tables 2, 3). Trait-trait relationships of community
and woody species were similar, except for very few trait-
trait relationships, such as the relationships which involving
Hmax. However, there were relatively different trait-trait
patterns between the community and herbaceous species.
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FIGURE 1 | Standardized effect sizes (SES) of traits vary along habitat-severity values (HV) gradient. Graphs on left column represent woody species level, graphs on

right column represent herbaceous species level, and graphs on central column represent community level. Solid straight lines in graphs mean fit lines which p < 0.05;

dash lines in graphs mean fit lines which p > 0.05. Dot lines locate on 0-level represent patterns of null expectation. LA, leaf area; SLA, specific leaf area; LDMC, leaf

dry mass content; Hmax, the max plant height; LNC, leaf Nitrogen content; LCC, leaf Carbon content; C:N, leaf Carbon-Nitrogen ratio; SM, seed mass, same in below.
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TABLE 1 | The correlation coefficient of mean weighted trait values and elevation/habitat-severity values (HV).

Trait HV Elevation Trait HV Elevation Trait HV Elevation

C-LA −0.797 −0.822 W-LA −0.819 −0.839 H-LA −0.393 −0.459

C-SLA −0.513 −0.699 W-SLA −0.294 −0.589 H-SLA −0.675 −0.734

C-LDMC 0.464 0.534 W-LDMC 0.336 0.482 H-LDMC 0.479 0.429

C-Hmax −0.692 −0.622 W-Hmax −0.685 −0.597 H-Hmax −0.360 −0.342

C-LCC 0.652 0.672 W-LCC 0.438 0.464 H-LCC 0.594 0.592

C-LNC −0.113 −0.143 W-LNC −0.143 −0.287 H-LNC 0.392 0.505

C-C:N 0.460 0.444 W-C:N 0.463 0.536 H-C:N −0.114 −0.206

C-SM 0.888 −0.911 W-SM −0.854 −0.901 H-SM −0.333 -0.442

C-, W-, and H- trait represents mean weighted trait values of community, woody species, and herbaceous species. The Pearson correlation coefficient which has statistical significance

is highlighted in bold.

TABLE 2 | The trait-trait relationship semi-matrix of woody species.

LA SLA LDMC Hmax LCC LNC C:N SM

LA 0.522 −0.553 0.633 −0.651 0.135 −0.426 0.811

SLA 0.454 −0.658 0.386 −0.479 0.475 −0.520 0.572

LDMC −0.458 −0.653 −0.420 0.557 −0.355 0.490 −0.511

Hmax 0.629 0.155 −0.225 −0.632 0.179 −0.477 0.758

LCC −0.497 −0.397 0.555 −0.301 0.025 0.321 −0.720

LNC 0.191 0.563 −0.355 0.043 0.155 −0.814 0.100

C:N −0.466 −0.563 0.436 −0.289 0.152 −0.820 −0.490

s SM 0.841 0.455 −0.445 0.742 −0.466 0.199 −0.518

Mind that the semi-matrix at top right corner is the trait-trait relationship within community level. The Pearson correlation coefficient which has statistical significance is highlighted in

bold.

Although the patterns of traits in community and herbaceous
species levels along habitat severity gradient shifted in a
similar manner, the relationships between traits each other of
community was dissimilar to those relationships of herbaceous
species.

DISCUSSION

Habitat Severity Gradient Applications in
Plant Response to More Stressful
Condition
The plant responses to environmental gradients seems to be
a result of habitat severity, which links to the environmental
filtering effect (Díaz et al., 1999). In the past, ecological studies
elevations that varied in temperature, moisture availability,
and other environment factors (Guittar et al., 2016) for
community assembly processes. We developed habitat-severity
values (HV) to assess the severity of habitat conditions.
Our HV is strongly correlated with elevation (Appendix
Table 3), and the correlations between HV and traits are
similar to those between elevation and traits; this suggests
that elevation might replace habitat severity in regions with
a wide range of elevations but short geographic distances.
Some studies revealed that the filtering process occurred at
higher elevations (Pottier et al., 2012; Hulshof et al., 2013),
similar to the pattern observed at high habitat severity in our

study. However, even in regions without an obvious gradient,
we suggest applying this framework to explore the shift in
functional traits and their distributions. This framework could
reflect plant response to more stressful conditions in changing
world.

Assembly Processes Is Different across
Different Growth Forms
The process of community assembly is related to environmental
conditions. Generally speaking, plant traits tend to be clustered
under stressful conditions, suggesting the occurrence of
habitat filtering. Under less extreme environmental conditions,
plant traits exhibit high differentiation due to interspecific
competition (Kluge and Kessler, 2011). In our study, functional
trait distributions of community and woody species were
covariant in all examined traits along habitat severity gradient,
whereas the functional trait distribution of herbaceous species
showed dissimilar patterns. These results are consistent with
other studies (Cornwell and Ackerly, 2009; Yablon, 2013)
and suggest differing responses to habitat change across
different growth forms. However, it should be noted that the
robustness of HV for herbaceous plants is unclear, as the
PC1 of herbaceous species’ traits for structuring the HV only
explained 35% of the total variance in traits. These results
might be explained by environmental factors which were not
measured in our study, such as light availability or herbivore
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TABLE 3 | The trait-trait relationship semi-matrix of herbaceous species.

LA SLA LDMC Hmax LCC LNC C:N SM

LA 0.522 −0.553 0.633 −0.651 0.135 −0.426 0.811

SLA 0.340 −0.658 0.386 −0.479 0.475 −0.520 0.572

LDMC −0.375 −0.620 −0.420 0.557 −0.355 0.490 −0.511

Hmax −0.061 0.216 0.029 −0.632 0.179 −0.477 0.758

LCC −0.259 −0.520 0.542 −0.113 0.025 0.321 −0.720

LNC −0.024 −0.152 −0.297 −0.388 0.035 −0.814 0.100

C:N −0.074 −0.090 0.460 0.335 0.343 −0.874 −0.490

SM 0.278 0.435 −0.346 0.112 −0.265 −0.117 −0.058

Mind that the semi-matrix at top right corner is the trait-trait relationship within community level. The Pearson correlation coefficient which has statistical significance is highlighted in

bold.

activity. These factors might have a stronger influence on
herbaceous species than on woody species, potentially resulting
in inconsistency compared to the community and woody
species.

Community Assembly Pattern Changes
with Habitat
The functional trait-based approach is a good approach for
understanding plant community assembly patterns. Functional
trait distributions change along the habitat severity gradient in
this study and seems worthwhile to discuss. With increasingly
stressful environmental conditions, the functional distributions
of LA, SLA, Hmax, and SM of the community and woody
species showed convergent patterns. In other words, abiotic
filters restricted the range of viable strategies, thus creating
a similar suite of traits (Woodward and Diament, 1991;
Thuiller et al., 2004; de Bello et al., 2005; Fraser et al., 2016.
These results suggest the filtering effect of habitat severity
(Díaz et al., 1998; May et al., 2013). In fact, functional trait
distributions will change along several environmental gradients
which were included in our habitat severity matrix. For
example, SLA is restricted with temperature (Joshi, 2013) and
soil moisture (Cornwell and Ackerly, 2009); Hmax of shade-
tolerant species is filtered by WCD (Cornwell and Ackerly,
2009). It would be interesting to discuss the convergent
tendency of SM along the habitat severity gradient, as it
seldom exhibited this pattern (Garnier and Navas, 2012). Due
to the abundant species diversity in our study, highly-conserved
traits—such as seed mass (Cavender-Bares et al., 2006)—
would exhibit greater divergence at low to middle altitudinal
regions than at higher elevations. As a result, seed mass
demonstrated a convergent tendency along the habitat severity
gradient, which was closely related to elevation. Therefore,
the community assembly pattern would change as habitat
changed.

Functional Traits Vary along Habitat
Severity Gradient in Similar Pattern across
Different Growth Forms
Our results demonstrated similar patterns of trait-habitat
relationships among community, woody species, and herbaceous

species, suggesting species within a community respond to
environmental conditions similarly. Leaf traits, plant height,
and seed mass correlated with environment conditions (Díaz
et al., 1998; Cornelissen, 1999). Habitat filtering might cause
these shifts in mean weighted trait values along environmental
gradients (Ackerly and Cornwell, 2007; Cornwell and Ackerly,
2009; May et al., 2013). Species located in more arid sites had
significantly lower LA, confirming a functional trade-off between
stress tolerance and productivity in leaves (Thuiller et al., 2004).
SLA is lower at regions with low rainfall and/or temperature,
owing to thicker leaves and/or denser tissues (Tranquillini,

1964; Hadley and Smith, 1986; Westoby and Wright, 2002).
Such habitats lead to higher LDMC and LCC in species as
defense against stressful conditions (Oyarzabal et al., 2008). Plant

height was also strongly correlated with stress (usually decreased,
Lamanna et al., 2014), particularly when directly related to

resource competition (e.g., temperature and light availability;
Schwinning and Weiner, 1998). Smaller seed mass is often
observed in species from more stressful conditions (Cornelissen,
1999; Luo et al., 2014). Such adaptations might allow plants to
disperse to better environmental conditions (Körner, 1999). Our

findings are consistent with the previously mentioned studies.
In our study, higher habitat severity values mirrored lower

temperature, water availability, and poorer soil conditions. At
the community level, as habitat severity increased, community
mean weighted trait values of LA, SLA, Hmax, and SM decreased,
as well as findings in herbaceous’ level. However, SLA and
LDMC of woody species did not decrease along habitat severity
gradient significantly; this phenomenon might be caused by
the morphological differences between broad-leaved species and
needle-leaved species, which often appear at middle to high
elevations (middle to high HV in this study). We also observed
that LNC of herbaceous species increased with the habitat
severity gradient; this is consistent with a study in high-mountain
grasslands, representing a greater investment in photosynthetic
nitrogen (Díaz and Cabido, 1997).

It should be noted that we only focused on interspecific
trait differences, which are the primary source of variability in
trait values. The traits we selected for this study often show
low phenotypic plasticity (especially for leaf stoichiometry, SLA,
LDMC, and seed mass).
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FIGURE 2 | Mean weighted trait values vary along habitat-severity values (HV) gradient. Graphs on left column represent woody species level, graphs on right column

represent herbaceous species level, and graphs on central column represent community level. Solid straight lines in graphs mean fit lines which p < 0.05; dash lines in

graphs mean fit lines which p > 0.05.
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Trait-Trait Relationships of Herbaceous
Species Are Unique Compared to
Community
Analyses of intra-community trait-trait relationships can
reveal the functional trade-offs operating along gradients of
environmental stress. Dwyer and Laughlin (2017) proposed a
novel insight that, with habitat becoming more stressful, trait
covariance would become more significant. This phenomenon
could be inferred from the patterns observed in functional
distributions. In more stressful habitats, functional traits often
show convergent patterns. Thus, two traits are more likely
to exhibit significant covariance. For the community and
woody species in our study, LA, SLA, Hmax, and SM showed
significant tendencies to decrease along the habitat severity
gradient (Figure 1). Combining the patterns of these traits along
habitat severity (Figure 2), the more covariant relationship
among these traits each other would be inferred. However, as
herbaceous species did not demonstrate significant convergent
patterns for most traits at more stressful habitats (Figure 1,
right), we cannot infer the pattern that trait covariance might
present along habitat severity. Our Pearson analysis results
revealed the difference between the community and woody
species and herbaceous species. Significant correlations among
leaf morphological traits are not surprising. LA, SLA, and
LDMC are directly related to each other. We found dissimilar
patterns of trait-trait relationships between the community
and herbaceous species. However, the trait-trait relationships
between the community and woody species were very similar.
One study explored the relationship between SM and plant
height, concluding that plants with more biomass can afford to
allocate more energy to seed development, thus producing larger
seeds (Thuiller et al., 2004). These results illustrate that the SM
of herbaceous species is not covariant with Hmax, suggesting

that there are unique strategies of dispersal for herbaceous
species compared to the community and woody species. Other
trait-trait relations of herbaceous species comparing with
community further highlighted the specificity of herbaceous
species. Considering that (1) traits change similarly along a
habitat stress gradient across growth forms, and (2) trait-trait
relationships exhibit different patterns across growth forms, we
conclude that the differing community assembly mechanisms
between community and woody species and herbaceous species
are likely caused by different trait combinations that are filtered
by the environment.
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Regional water managers face challenges managing water demand and supply in

response to climate change. In British Columbia (BC), <5% of the total land surface is

suitable for cultivation and consequently, urban development and agriculture co-exist

on lower elevation sites and compete for water. Surface and ground water supply

all uses, affecting in-stream habitats and aquifer levels. To assess water needs, we

used a GIS-based water demand model for agricultural water use, with layers for

detailed land use, soils, a digital elevation model, sub-basins, aquifers, and socio-political

jurisdictional boundaries. The model was driven by gridded daily minimum and maximum

temperatures and precipitation at a 500m spatial resolution using historical data

(1961–2010) and downscaled climate scenarios (1961–2100) derived from five CMIP5

climate models under two greenhouse gas concentration scenarios (RCP4.5 and

RCP8.5). Two case studies were examined:

1. Changes in water use were determined for scenarios of climate change and expanded

cropping within the BC Agricultural Land Reserve for 17 agricultural regions. Potential

increases in irrigation water demand (IWD) in response to climate change ranged from

21 to 58 and 30 to 114% under low and high emissions scenarios respectively. Land

use change scenarios resulted in very large potential increases in water demand, up

to 2,400%. Output from this work forms the basis for a web-based agricultural water

license calculator.

2. Effects of crop production systems on IWD were examined in the Okanagan region.

Combinations of pasture and forage crops with inefficient irrigation systems were

most vulnerable to drought as indicated by two indices: relative vulnerability index

(IWD/ETo) and allocation vulnerability index (IWD/Maximum annual water allocation).

In drought years, up to 70% of the irrigated area was vulnerable. A comparison of

detailed land use surveys made in 2006 and 2014 indicated a large shift to highly

efficient irrigation systems in the horticultural sector from 38 to 68% of the irrigated
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acreage. Similar shifts for other agricultural sectors may require financial support.

On-going development of regional drought management will require collaborative

decision making by water suppliers and users.

Keywords: irrigation water demand (IWD), climate change, agricultural land reserve, water management tool, land

use

INTRODUCTION

Concerns about freshwater water availability and use have risen
in recent years as regions have experienced ongoing droughts and
water shortages. Notable droughts have occurred in California,
northern China, Australia, and the Canadian prairies. However,
water stress is not limited to these areas. It was estimated that
36% of the world population lived in water stressed areas in 2011
(Grebmer et al., 2012). These conditions are likely to persist, with
the proportion of the world population living in water stressed
areas predicted to increase to as much as 66% by 2025 (Kjellen
and McGranahan, 1997). This trend is being driven by continued
population growth, environmental degradation, and increasing
overall water demand (Arnell, 1999).

The challenges around water availability and use will be
further complicated by future climate change as variation in
temperature and precipitation, decease the reliability of water
resources (Jiménez Cisneros et al., 2014) and significantly affect
water use (Wang et al., 2014). Broadly speaking, there is a
consensus that some regions will receive greater precipitation
while others less, and long-term seasonal, or short-term water
shortages will likely result from greater variability of precipitation
and reduced snow and ice storage, but how these changes will
interact with demographic and economic factors is still unclear
(Jiménez Cisneros et al., 2014).

Changes to water availability are particularly important to
agriculture. Globally, agriculture is the largest user of water
and that which is required to satisfy irrigation requirements, or
irrigation water demand (IWD), accounts for ∼70% of global
water use (Raskin et al., 1997), and 90% of global consumptive
water use (Shiklomanov and Rodda, 2003). This demand is
projected to increase in response to population growth and
greater demand for agricultural production but at the same time,
research suggests that agriculture will face a disproportionate
level of water stress resulting from climate change compared
to other water uses (Wang et al., 2014). As precipitation
becomes more unreliable, rain-fed agricultural regions will
become more vulnerable to poor production, increasing the
need for irrigation. In general, irrigated systems are more
efficient than rain-fed systems as ∼40% of the world’s food
production is estimated to come from the 17% of agricultural
land that is irrigated (Postel, 2000). However, the poor quality
of some irrigation water may lead to problems with salination
both of soils and groundwater resources in some parts of the
world.

The far-reaching implications of climate change for

agriculture have led to a substantial body of research into
future IWD. Most notably, modeling efforts that employ Global
Climate Models (GCMs) and Earth Systems Models (ESMs)

have contributed significantly to our understanding of future

water demand. These studies examine a range of climate change
scenarios that vary in projected global warming. Assessments at
the global scale range from projections of a slight decrease of
IWD (Zhang and Cai, 2013), to no change (Konzmann et al.,
2013), to increases of 14–45% (Fischer et al., 2007; Wada et al.,
2013) by 2080. While this variation in projections highlights
substantial uncertainty at a global scale, the majority of scenarios
predict that certain regions will experience >20% increase in
IWD (Jiménez Cisneros et al., 2014). For example, there is high
confidence that IWD will increase in Europe, USA, and parts of
Asia, while other regions, such as India and Pakistan, will likely
experience decreases in IWD.

The interregional variation seen in global IWD models is
supported by studies at smaller spatial scales. Regional IWD
models based on GCMs and ESMs have projected a wider range
of future IWD. Annual IWD has been projected to increase by
9–24% by 2100 in the Arkansas River Basin (Elgaali et al., 2007),
by 54–645% by 2095 in Bhadra, India (Rehana and Mujumdar,
2013), and by 2,000% by 2080 in North Rhine-Westphalia,
Germany (Kreins et al., 2015), although current irrigation water
use is very low in this last region. The interregional variability
in projected IWD seen in global studies and supported by the
projections of regional studies highlights the significant influence
of localized climatic conditions on IWD. As a result, while global
and regional models offer insights into future IWD, they are often
of limited benefit to regional water management efforts outside
the area of study.

The Province of British Columbia (BC) has an abundance
of water resources but the amount of agricultural land (∼4.5%)
and access to water are limited by the complex, mountainous
terrain (Walker and Sydneysmith, 2008). Agricultural land in
the province is protected by an Agricultural Land Reserve
(ALR) which comprises 4.599m ha of which 53% falls
within agricultural capability class 1–4, considered suitable
for crop production (https://www.alc.gov.bc.ca.) Agricultural
water supply includes surface flows from rainfall, snowmelt,
glacier melt and groundwater. Annual precipitation ranges
from >3,000mm in coastal regions to <300mm in Interior
rain-shadow valleys. Summers are dry and low summer flows
restrict water availability for both withdrawals and ecological
requirements. British Columbia has experienced increasing stress
on its water resources in recent years with seasonal droughts
in 2003, 2009, 2015, and 2017 resulting in extremely low late
summer and fall stream flows in southern interior and coastal
regions. Additionally, many municipalities implement watering
restrictions for all outdoor uses in response to decreasing
water availability and increasing demand. Water stress in BC
is likely to worsen in response to climate change. Seasonal
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mean air temperatures at most observing stations in B.C. have
increased by at least +0.5 to +2.5◦C since 1950 (Bush et al.,
2014). Over B.C. as a whole, climate model projections indicate
further increases of +1.0 to +3.8◦C for the summer season
and +1.1 to +3.9◦C for the winter season by the middle of
the twenty-first century (ECCC, 2016). Accompanying regional
increases in air temperatures, changes in the intensity and
seasonal distribution of precipitation are also projected to occur,
although there is large uncertainty on the sign and magnitude
of changes by mid-century; over B.C., projected changes range
from −2.8% to +17.8% in summer and +1.5% to +17.9%
in winter precipitation. Southern and northern BC are likely
to experience greater rates of warming, while central BC is
likely to experience a greater increase in precipitation (Pacific
Climate Impacts Consortium, 2013). Taken together, changes in
temperature and precipitation are projected to affect regional
freshwater hydrologic regimes (Zwiers et al., 2011). In western
Canada, projections show that existing glaciers will shrink
60–80% in volume, with some disappearing by 2100 (Clarke
et al., 2015). Nivo-glacial hydrologic regimes will shift toward
pluvio-glacial, altering the timing and quantity of downstream
freshwater supply. Along the coast, minimum losses of 50% of
glacial volume are anticipated for even the lowest emissions
scenario. Snow-melt dominant regimes will shift to be rainfall-
dominant, leading to reductions to both winter snowpack and
late summer flows and increases in winter flooding and summer
drought, especially in the south (Merritt et al., 2006;Mantua et al.,
2010; Shrestha et al., 2012).

Withdrawals from groundwater and the limits to groundwater
supply are not well-recorded in the province. Until the advent
of the Water Sustainability Act in 2016 (https://www2.gov.
bc.ca/gov/content/environment/air-land-water/water/laws-
rules/water-sustainability-act), licensing of groundwater was
not required. Also under the Water Sustainability Act, there
is increased emphasis on maintaining adequate stream flows
to meet eco-system requirements which were not in place
when many agricultural water licenses were granted. Moreover,
there are additional pressures on water resources from fracking
operations within the province (Parfitt, 2017). In fact, there
is a lack of reliable information on water use data from
all sectors which greatly undermines management of water
resources (Parfitt et al, 2012). Adding to these challenges overall
water demand in southern BC is projected to increase as the
population is expected to grow by 1.4 million by 2025 (BC
Ministry of Environment, 2008).

The projected changes to water availability in BC will
have serious implications for agriculture. Currently, agriculture
accounts for 70% of consumptive water use in some areas of the
province.) Reduced water availability may lead to crop failures
and place an extreme financial burden on farmers (Crawford and
Beveridge, 2013). Similarly, changes in climate may necessitate
a transition to crops better suited to the climate, the costs
of which can be prohibitive. These challenges arise at a time
when the emphasis on BC agriculture has never been higher.
Approximately 50% of BC’s agricultural products are supplied
by local farmers and the importance placed on growing local
food is increasing. At the same time, agriculture faces pressures

from competing land uses and volatile international markets
(Crawford and Beveridge, 2013). There is an immediate need to
understand future water availability and water demand in order
to support BC agriculture, and the integration of climate science,
climate model projections and agricultural water management
has been recommended as an important step toward a resilient
agricultural sector (Crawford and McNair, 2012). It is clear then
that greater understanding of climate change and its impacts on
water demand is required to effectively manage BC’s agricultural
water resources for the future.

The most detailed studies on water supply and demand for
multiple uses have been undertaken in the Okanagan Basin in
S. British Columbia. Consequently, in this paper we examine
the Okanagan Basin in more detail. It is one of the few
watersheds that is not glacier fed and that also does not have
any major hydro-electricity developments. The Okanagan R.
is a tributary of the Columbia with 8,000 km2 of the basin
lying in Canada. The climate in the lower elevations is semi-
arid and crops require irrigation. The region has a mixture of
high–value horticultural crops (wine-grapes and tree fruits) and
beef and dairy production. There is a growing urban and rural-
residential population, and earlier studies have indicated that
outdoor water use through irrigation of agricultural and non-
agricultural lands will potentially increase in response to climate
change and urban development. Estimates for the period 1995–
2006 indicated that agricultural irrigation accounted for 54%,
non-agricultural irrigation for 24% of total water use and the
remaining 22% accounted for domestic, industrial, commercial
and institutional indoor use (Van der Gulik et al., 2010). Around
72% of irrigation water came from surface supplies, 23% from
groundwater and 5% from reclaimed water (Okanagan Basin
Water Board, 2011). Agricultural water use was predicted to
increase by 50% between 2010 and 2040 in response to climate
change and agricultural expansion and urban water use by 300%
in response to climate change and growth (http://obwb.ca/wsd/
wp-content/uploads/2014/07/OWSD_Phase3_Scenarios.pdf). In
addition, the Okanagan provides a large portion of the breeding
habitat for the Columbia River sockeye salmon population, and
there has been considerable effort by the Okanagan Nation
Alliance (ONA, www.syilx.org) and Partners to restore the
sockeye salmon run including the development of a decision
support system for managing Okanagan lake flows for fish (Hyatt
et al., 2015).

Supplying water to all of these needs plus those for other
ecosystem requirements is potentially conflict ridden considering
that supply is dependent on highly variable annual snowpack
(https://www2.gov.bc.ca/gov/content/environment/air-land-
water/water/water-science-data/water-data-tools/snow-survey-
data). Since the drought of 2003, there have been several
initiatives to avoid conflicts among water users (particularly
agricultural, domestic users and government departments
protecting environmental flow needs) and to plan for the future
through dialogue (Cohen et al., 2006; Melnychuk et al., 2016)
and scientific assessment of water resources (Merritt et al., 2006;
Neilsen et al., 2006; Okanagan Basin Water Board, 2011). Much
of the dialogue has been led by the Okanagan Basin Water Board
(OBWB) and its Stewardship Council, with a commitment to
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provide scientifically informed decision making (Melnychuk
et al., 2016). As a result there has been an increase in drought
planning, although the efforts are varied. Of the 19 major water
purveyors in the basin, 16% have a full sub-watershed plan taking
into account environmental flow requirements with staged water
restriction; 21% have a drought plan, water conservation plan
and staged water restrictions; 16% have a drought plan with
staged water restriction, 42% have stage water restriction and
5% have no plan at all. Staged water restrictions are frequently
imposed as a percentage water reduction to all users yet for
agricultural users vulnerabilities differ depending on crop, soil
and irrigation system type. However, there is some potential for
adaptation to water shortages by changes in crop and irrigation
practices.

The BC/Canada irrigation water demand model (IWDM)
addresses the need for greater information regarding climate
change and BC’s water resources. This model defines the spatial
boundaries of agricultural production taking into account the
physical landscape—soil and terrain characteristics, and the
managed landscape—agricultural land use. The IWDM was
initially developed to measure and predict agricultural IWD for
the Okanagan Basin and has since been extended, to incorporate
non-agricultural outdoor water use and indoor water use (Van
der Gulik et al., 2010). The results from the IWDM can be
generated for an entire study region or for any number of
sub-regions, for periods ranging from daily to annual. IWD
projections can be assembled for agencies such as municipal
governments and water purveyors, as well as geographic areas
such as watershed sub-basins. This allows for the monitoring of
future water demand over a range of spatial scales, acknowledges
and presents the influence of local climatic conditions, and
ultimately provides local decision-makers with site-specific IWD
projections. The success of the Okanagan Basin Water Supply
and Demand Study (OBWB, 2010 ) has lead to requests from
local governments for the IWDM to be run in other BC regions.
To date, the IWDM has been used to calculate current water
demand in a 17 regions across BC (The Partnership for Water
Sustainability in BC, 2015). With this information local water
managers and stakeholders are better able to plan strategically for
the future of BC’s water.

Given the need for a regional understanding of the
implications of climate change on future IWD, two case studies
are presented:

1. A comprehensive review of projected IWD in BC’s agricultural
regions from 2000 to 2100, including the uncertainty
surrounding projected IWD and the implications of
developing additional land for agricultural uses.

2. An analysis of vulnerabilities and adaptation in water use in
the Okanagan Basin in response to agricultural land use and
irrigation management.

METHODS

Study Areas
The study focuses on 17 regions in BC where agriculture is
prominent or has the potential to be prominent in the future

(Figure 1). The dimensions of the study regions examined
in this paper evolved through previous applications of the
IWDM. It was initially developed for the Okanagan Basin
and its successful application in the Okanagan Basin Water
Supply and Demand Study resulted in requests from other
municipalities and regional districts. The nature of subsequent
studies and the dimensions of the modeling regions were thus
defined by the requesting administrative or civic organization.
Thus some regions conform to regional district boundaries
and others to river basins (Figure 1; Table 1). The Cariboo
region as represented in the current study is just a small
fraction of the Cariboo Regional District area. Regardless of
the motivations behind their origins, the study regions are all
host to significant agricultural activity. The Agricultural Land
Reserve (ALR) in the study regions ranges between ∼2,200
ha (S. Gulf Islands) to ∼195,000 ha (S. Thompson) of which
only a small fraction is irrigate, between <1% (Cariboo) and
32% (Cowichan) (Table 1). Agricultural capability class (1–4)
land, considered suitable for crop cultivation, also varies among
regions. Generalized information (https://www.alc.gov.bc.ca)
indicates that, within the ALR, coastal regions have ∼74%,
and interior regions have ∼55–60% class (1–4) land, with the
exception of the Cariboo region which has around 37%. Much of
the remaining ALR area is in pasture and range. The source of
water for irrigation was identified by linking agricultural lots to
surface water licenses (Table 1). Lots not linked to surface water
licenses were, by default, assigned to groundwater sources, and
where possible specific aquifers. Details on specific subbasins
and aquifers sources are available in the IWDM reports for
specific regions (https://www2.gov.bc.ca/gov/content/industry/
agriculture-seafood/agricultural-land-and-environment/water/
water-management/agriculture-water-demand-model). The
Okanagan region also has a small supply ∼5% of reclaimed
water. However, it should be noted that the production of fresh
fruits and vegetables requires potable water, so reclaimed water
is only a possibility for non-food crops (https://www.canadagap.
ca/). The regions cover most of Southern British Columbia which
has a widely varied landscape, characterized by coastal valleys,
high mountain ranges and inter-montane plateaus and basins.
Climate is also highly variable resulting in vegetation types
ranging from coastal temperate rainforests to dry interior forests,
sage brush and grasslands. Growing season effective precipitation
(EP) (rainfall > 5mm) and potential evapotranspiration (ETo)
(Table 1) were derived from the climate data sets used to run the
IWDM (see below for details). Growing season mean EP ranged
between 59mm (N. Thompson) and 265mm (Fraser Valley) and
mean ETo between 400mm (Cariboo) and 634mm (Okanagan)
with the largest moisture deficits (ETo-EP) occurring in the
Okanagan region.

IWDM
The IWDM is driven by detailed land use data and gridded
precipitation and temperature data. Land use information
comprised of mapped crop type, irrigation system, and soil
type, was collected for all study regions and stored in a GIS
database (Van der Gulik et al., 2010). Land use was represented
as cadastral parcels that denoted property boundaries. These
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FIGURE 1 | Map of British Columbia regional districts and IWDM study regions.

TABLE 1 | Regional characteristics: agricultural land reserve (ALR), irrigation water source, mean growing season effective precipitation (EP) and potential

evapotranspiration (ETo).

Study region Region type ALR (Ha) Irrigated area (Ha) Water sourceZ

surface (%)

EPY (mm) EToY (mm) ETo-EPY

Mean (mm) Max (mm)

Bonaparte (I) BasinX 39,626 2,976 92 94 486 392 532

Cariboo (I) RDW 84,295 586 88 114 400 286 428

Comox (C) RD 22,626 1,691 43 164 557 393 553

Cowichan (C) RD 7,865 2,504 66 136 584 448 616

E. Kootenay (I) RD 91,517 5,770 73 116 528 412 574

Fraser Valley (C) RD 187,735 15,455 66 265 603 338 479

Kettle Valley (I) Basin 45,820 3,988 61 106 604 498 664

Lillooet (I) RD 17,360 1,369 89 77 546 469 618

Nicola (I) Basin 126,402 6,537 78 137 588 451 691

N. Okanagan (I) RD 68,676 14,966 52 117 580 463 667

N. Thompson (I) RD 64,863 6,639 82 59 485 426 596

Okanagan (I) Basin 81,671 20,548 75 107 634 526 706

Pemberton (C) RD 9,027 811 57 124 610 485 636

Salmon River (I) Basin 29,248 4,835 85 120 556 436 678

Similkameen (I) Basin 35,937 4,533 56 85 581 496 648

S. Gulf Is. (C) RD 2,213 108 11 91 491 400 506

S. Thompson (I) RD 194,743 6,911 71 90 582 493 679

ZWater supply was identified by linkage of agricultural lots to surface water licenses (private or water purveyor). With the exception of the Okanagan, which has 5% water supply from

reclaimed sources, remaining irrigation water is considered to be supplied from groundwater.
YCalculated for 1961–2000 for agricultural regions during the growing season (does not include non-agricultural and high elevation areas).
XArea defined as a watershed (I) interior or (C) coastal environments.
WArea defined as a Regional District; Cariboo sample area is only a small part of the Cariboo Regional District.
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parcels were divided into polygons according to crop, irrigation
and soil texture. The IWDM calculates IWD for each polygon
for each day within the modeling period (Van der Gulik
et al., 2010; Neilsen et al., 2015). Daily temperature data
were used to calculate potential evapotranspiration in each
climate grid cell using a modified Penman–Monteith method
(Allen et al., 1998). Daily crop water use was calculated
from potential ET modified by specific crop coefficients, crop
rooting depth and rooting efficiency. After accounting for
surface evaporation, available water stored in the soil and daily
effective precipitation (>5mm), IWD was calculated based
on the daily crop water use, modified by irrigation system
efficiency and losses to deep water percolation. Available water
storage capacity and surface evaporation were determined by
soil texture and losses to deep percolation by combinations of
soil texture and irrigation system type. Details of coefficients
used in the model are found in Van der Gulik et al. (2010).
The IWDM was validated using pump data from a major water
purveyor in the Okanagan Region, South East Kelowna Irrigation
District. Because both agricultural irrigation and all other out
water uses (domestic outdoor, parks and recreation outdoor,
domestic, commercial, industrial and institutional indoor), were
supplied through the same distribution system, output from
the full version of the water demand model, which accounts
for all of these uses (Van der Gulik et al., 2010), was used
in the validation (Supplementary Figure 1). Weekly modeled
and measured water use for the years 1995 to 2006 were
well-correlated (R2 = 0.91; p < 0.01).

IWDM Specifications
Agricultural Land Development
With a changing climate and a predicted increase in demand
for agricultural products in the future, there is the potential
for the expansion of land used for agricultural purposes.
Land currently regarded as unsuitable may become suitable
with warming temperatures and changing precipitation patterns
(Neilsen et al., 2017). Further, increased demand for agricultural
products may make agriculture more economically attractive.
Accordingly, land that was determined to be suitable for irrigated
agriculture was included in the simulations. Criteria included
slope, elevation, current use, distance to water source, and
presence in the Agricultural Land Reserve with an agricultural
capability class of 1–4 (Supplementary Table 1). Depending on
local factors, parcels of suitable land were assigned alfalfa or apple
as their crop type.

Seasonality of Irrigation Water Demand
Within the IWDM, the start and end of each crop’s growing
season are determined by internal temperature-based rules
driving crop phenology (Van der Gulik et al., 2010). This allows
the start, end, and length of the growing season to change
in relation to the influences of climate change. For example,
the growing season may begin earlier or end later as the
result of warmer temperatures. However, it must be noted that
this approach also potentially challenges the current legislated
irrigation season boundaries developed in response to previous
climate normals.

Climate Data
The IWDM was run with both historical and future climate
data. Observed daily historical climate data was based on the
300 arc second (∼10 km) gridded ANUSPLIN dataset (1961–
2010) (McKenney et al., 2011). To model past and project
future IWD for each region in BC, simulated temperature
and precipitation (1961–2100) from an ensemble of climate
models under historical and two future global socio economic
development scenarios were used as input to the IWDM.
Daily temperature and precipitation data were obtained from
archived Coupled Model Intercomparison Project Phase 5
(CMIP5) simulations by GCMs and ESMs driven by scenarios
representing potential future paths of global socio-economic
development. These scenarios, Representative Concentration
Pathways (RCPs), differ according to the concentration of
greenhouse gas emissions (GHG) that may result from different
development paths (Meinhausen et al., 2011). Four RCP
scenarios, 2.6, 4.5, 6.0, and 8.5 indicate possible radiative
forcing values (W·m−2) in 2100 relative to pre-industrial
values. For the purposes of this study, the RCP2.6 scenario
was excluded as it seemed unlikely that its assumptions
would be borne out. It assumes that global GHG emissions
will peak between 2010 and 2020, with emissions declining
after that. Additionally, RCP6.0 was omitted as it represents
a middle-ground between RCP4.5 and RCP8.5, and offered
comparatively less insight into the range of potential changes in
IWD.

Previous research has recommended using a multi-model
and multi-climate forcing approach to represent uncertainty in
IWD projections (Gosling et al., 2011). Accordingly, data from a
subset of five climate models (Table 2), selected from the CMIP5
ensemble to span the range of projected temperature and changes
in the region (Cannon, 2015), was used to drive the IWD for the
RCP4.5 and RCP8.5 scenarios, with outputs from each scenario
condensed into an ensemble mean. To complement the ensemble
mean, which reduces variability, smoothing out projected values,
the range, standard deviation, and coefficient of variation of
projected values were also calculated. This workflow is described
in Supplementary Figure 2.

Downscaling
To accommodate the effects of complex terrain in the region
on climate conditions, fine-scaled (500m) gridded datasets of

TABLE 2 | Global Climate Models (GCMs) and Earth System Models (ESMs) used

in this study.

Model name Abbreviated name Model type

Australian Community Climate and

Earth-System Simulator

ACCESS ESM

Canadian Earth System Model CanESM2 ESM

Centre National de Recherches

Meteorologiques Climate Model

CNRM-CM5 GCM

CSIRO Mk3.5 CSIRO Mk3.5 GCM

Institute of Numerical Mathematics

Climate Model

INMCM4 GCM
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FIGURE 2 | Boxplots of modeled annual IWD for 16 agricultural regions in British Columbia in response to greenhouse gas emissions (RCP 8.5) and historical climate

data for the period 1961–2010. Greenhouse gas emission scenarios data include output from five climate models ACCESS, CanESM2, CNRM-CM5, CSIRO Mk3.5,

INMCM4.

daily minimum, maximum temperature and precipitation were
downscaled from the historical ANUSPLIN and future GCM
climate data. The 300 arc second (∼10 km) historical ANUSPLIN
dataset for 1951–2010 (McKenney et al., 2011) was spatially-
disaggregated using a local lapse rate upsampling algorithm
(Wang et al., 2006) and then bias corrected so that climatological

monthly means matched the Pacific Climate Impact Consortium
PRISM climatology https://www.pacificclimate.org/data/prism-
climatology-and-monthly-timeseries-portal. This produced
historical daily climate surfaces for 1961–2010. GCM and
ESM outputs for British Columbia (Table 2) were statistically
downscaled onto the ANUSPLIN grid using the Bias-Corrected
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Constructed Analogs with Quantile mapping reordering
(BCCAQ) algorithm (Werner and Cannon, 2016) to produce
daily climate surfaces for 1961–2100. http://www.pacificclimate.
org/data/statistically-downscaled-climate-scenarios. Outputs
were then spatially disaggregated and bias corrected in the same
manner as the historical ANUSPLIN dataset.

Data Analysis
The ensemble means of projected IWD were summarized as
annual totals and presented for 2000–2100 for each region.
Simple linear regression using the least squares approach was
applied to the projected IWD to show the average rate of
increase over the study period for each region. Additionally,
the range of potential IWD-values for each year in each region
is presented. Uncertainty was captured through absolute and
relative uncertainty. Absolute uncertainty was calculated as the
standard deviation of the five model outputs for each year,
for each scenario. As with the IWD, simple linear regression
was applied to the standard deviation to show the trend in
standard deviation over the study period. Relative uncertainty
was represented as the coefficient of variation for the first
and last year of the study period for each region, and each
scenario. This illustrates the change in uncertainty over the study
period. Finally, IWD that may result from the development of
agricultural landwas also summarized annually and presented for
2010–2040.

Okanagan Basin Case Study
Two detailed land use data sets were assembled for the Okanagan
Basin, one surveyed in 2005–2006 (Van der Gulik et al., 2010) and
the second in 2013–2014 according to the same methodology.
Both land use datasets (labeled 2006 and 2014), were run
through the IWDM using the historical climate data allowing
comparisons of land use, irrigation system use and water use.
Thirty-two crop production systems were identified in 2006
and 40 in 2014. In each case there were 18 different types of
irrigation management system resulting in a potential 536 crop
× irrigation combinations in 2006 and 720 combinations in
2014. Because of the large number of combinations, results are
presented for grouped data: 6 crop classes reflecting rooting
depth and function; 5 soil texture classes reflecting available
water storage capacity and 4 irrigation system classes reflecting
efficiency (Supplementary Table 2). The region has the highest
in-season water deficits (ETo-EP) in Southern BC (Table 1).
Water shortages can occur because of (1) low spring mountain
snowpack (SWE) causing low reservoir storage; (2) low in-season
precipitation (EP) and (3) high in-season potential ET (ETo)
(Supplementary Figure 3) These do not necessarily coincide
with provincially declared hydrologic droughts associatedmainly
with low late summer flows in unregulated streams. Mountain
snow pack is highly variable, ranging between 212 and 775mm
in April and 13–775mm in May (Supplementary Figure 3A).
The most notable water shortages have occurred when low
in-season EP coincides with high in-season ETo as in 2003 for
example (Supplementary Figure 3B). These occurrences lead to
high in-season water deficits (707mm in 2003) and the low EP
also results in low stream flows and an increased dependence

on storage resulting in greater vulnerability for agriculture.
Two indices of vulnerability were created. The first index was a
ratio of IWD to potential evapotranspiration (IWD/ETo) which
indicated the relative vulnerability of crop/irrigation system/soil
combinations to water demand. The second index was a ratio of
IWD to the maximum allocations for selected water purveyors
which usually would be reduced in response to drought. In all
cases, the selected purveyors have water storage in high elevation
reservoirs which supply irrigation needs in the growing season.
Drought management tools are based on “trigger” graphs related
to reservoir levels throughout the year usually with five stages,
0–4. Restriction on agricultural producers vary and may call
for a reduction in water use in July and August to 50–70%
of maximum allocation for stage 3 to a complete restriction
of irrigation for stage 4. The water allocation vulnerability
index compared estimated water use with maximum allocation
values (550, 686, and 800 mm/yr respectively), for three
irrigation districts from the North, Central and South
Okanagan.

RESULTS

Irrigation Water Demand (IWD) in British
Columbia Agricultural Regions
Water use from 1961 to 2010 was calculated using both historical
climate data and the suite of downscaled climate models
(Table 2). Historical IWD varied widely among region, ranging
between median values of 0.6 MCM (m3 × 106) for the Southern
Gulf Islands region and 115 MCM for the Okanagan Region

TABLE 3 | Historical average IWD (1961–2000) and projected increase in demand

(2000–2100) in response to two greenhouse gas scenarios.

Region IWD

Historical

1961–2000

RCP 4.5 RCP 8.5

m3
× 106 m3

× 106 % m3
× 106 %

Bonaparte 17.30 7.71 45 12.02 69

Cariboo 2.06 1.40 68 2.25 109

Comox 7.38 2.26 31 3.34 45

Cowichan 12.46 3.81 31 4.53 36

E. Kootenay 31.16 11.13 36 24.60 79

Fraser Valley 103.65 35.59 34 51.49 50

Kettle Valley 33.50 12.86 38 19.49 58

Lillooet 9.49 3.95 42 6.06 64

Nicola 46.83 21.31 46 33.72 72

N. Okanagan 90.83 35.20 39 54.56 60

N. Thompson 46.13 17.34 38 27.52 60

Okanagan 116.52 42.43 36 63.50 54

Pemberton 5.57 1.60 29 2.34 42

Salmon River 28.06 11.75 42 18.59 66

Similkameen 26.74 10.28 38 15.29 57

S. Gulf Islands 0.68 0.16 23 0.23 33

S. Thompson 48.32 28.36 59 46.05 95
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TABLE 4 | Uncertainty in projected IWD 2000–2100.

Region RCP4.5 RCP8.5

2000 2100 2000 2100

σ (m3
× 106) CV σ (m3

× 106) CV σ (m3
× 106) CV σ (m3

× 106) CV

Bonaparte 3.30 0.18 5.00 0.19 2.55 0.13 6.73 0.22

Cariboo 0.57 0.23 0.84 0.22 0.50 0.2 1.16 0.25

Comox 1.49 0.18 2.11 0.2 1.43 0.17 2.59 0.22

Cowichan 2.75 0.2 3.63 0.2 2.64 0.18 3.91 0.2

Fraser Valley 27.09 0.24 31.96 0.22 25.52 0.23 34.49 0.21

Kettle Valley 5.39 0.17 7.67 0.17 4.58 0.14 9.07 0.17

Kootenays 16.61 0.19 19.27 0.16 13.78 0.17 26.94 0.19

Lillooet 1.58 0.15 2.56 0.18 1.30 0.12 3.26 0.19

Nicola 7.90 0.16 12.39 0.17 6.37 0.12 16.07 0.19

N. Okanagan 17.29 0.17 23.48 0.17 14.37 0.14 30.64 0.2

N. Thompson 7.77 0.16 10.26 0.15 5.54 0.11 14.68 0.19

Okanagan 22.26 0.19 28.46 0.18 19.67 0.16 33.76 0.18

Pemberton 0.83 0.16 1.09 0.16 0.70 0.14 1.39 0.19

Salmon River 5.46 0.2 7.61 0.19 4.23 0.15 10.15 0.22

Similkameen 4.15 0.13 5.77 0.14 3.56 0.11 6.85 0.14

S. Gulf Islands 0.13 0.17 0.15 0.17 0.12 0.16 0.16 0.16

S.Thompson 7.54 0.17 11.13 0.15 6.66 0.16 15.14 0.18

TABLE 5 | Current and potential (additional) land base and projected additional IWD in response to 100% increase in agricultural land development and two greenhouse

gas scenarios for BC agricultural regions by 2100.

Region Land base IWD

Current Potential Total Historical 1961–2000 RCP4.5 RCP8.5

Ha Ha %ALR m3
× 106 m3

× 106 % m3
× 106 %

Bonaparte 2,976 2,418 14 17.30 16.72 97 17.63 102

Cariboo 586 10,012 13 2.06 48.86 2371 51.04 2477

Comox 1,691 4,759 29 7.38 24.16 328 25.82 350

Cowichan 2,504 4,431 88 12.46 22.74 182 24.25 195

E. Kootenays 5,770 8,933 37 31.16 56.97 183 60.7 195

Fraser Valley 15,455 18,650 17 103.65 130.44 56 135.86 58

Kettle 3,988 3,843 8 33.50 32.01 96 34.13 102

Lillooet 1,369 191 9 9.49 1.66 17 13.98 147

Nicola 6,537 9,673 13 46.83 68.79 147 72.08 154

N. Okanagan 14,966 20,573 52 90.83 139.03 153 146.77 162

N, Thompson 6,639 18,365 39 46.13 127.1 276 131.65 285

Okanagan 20,548 5,800 32 116.52 35.33 30 38.04 33

Pemberton 811 2,423 36 5.57 15.51 278 16.39 294

Salmon River 4,835 6,779 40 28.06 38.88 139 41.36 147

Similkameen 4,533 1,827 18 26.74 2.68 10 11.53 43

S. Gulf Islands 108 460 4 48.32 9.55 20 9.78 20

S. Thompson 6,911 1,119 26 0.68 2.48 362 2.65 387

(Figure 2). In general, similar median results were found for
the climate model simulations over the historical time period
(1961–2010), although the range was greater for the ensemble
model outputs due to sampling multiple realizations of natural
climate variability by the five different CMIP5 climate models.

The inter-annual range for the historic data set falls within the
extreme values generated by the five CMIP5 models and within
the 95% confidence interval of the ensemble mean. There is a
slight upward trend in the ensemble mean that is not evident in
the historic data.
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Trends in IWD between 2000 and 2100 were derived from
linear regression lines fitted to the annual ensemble means. In
all study regions IWD was projected to increase between 2000
and 2100 (Table 3). For the RCP4.5 scenario increases in IWD
ranged from 21.3 to 63.7%, with 14 of the 17 regions expected to
see increases>30%. Under the RCP8.5 scenario, every region was
projected to have greater IWD relative to the RCP4.5 scenario.
Projected increases in IWD under RCP8.5 ranged from 29.8 to
114.1%, with 14 of the 17 regions experiencing >40% increase
in IWD. Increases in IWD were highly variable among regions.
In both scenarios the Cariboo and S. Thompson regions were
projected to see the greatest increases in IWD. Conversely, the
regions on or adjacent to Vancouver Island (Comox, Cowichan,
and S. Gulf Islands) were projected to see the smallest increases
in IWD. Increases in IWD were also highly variable among
scenarios in each region. The difference between the RCP4.5
and RCP8.5 scenarios was most pronounced for the Cariboo,
Kootenay, and S. Thompson regions. Those regions near the
south coast (Comox, Cowichan, S. Gulf Islands, Fraser Valley)
had the least variation between scenarios.

To clarify the reasons for the differences between coastal
and interior regional responses, changes in ETo and seasonal
water deficits (ETo-EP) were examined for CanESM2 RCP8.5
scenarios for the S. Gulf Islands and Cariboo regions. In the
coastal example, there was relatively little change in either ETo
or ETo-EP throughout the century (Supplementary Figure 4A).
The larger spread in ETo-EP than ETo was due to the range
in EP data. In the Interior example, both ETo and ETo-
EP increased linearly over time, and again the range in EP
data increased the spread for the water deficit calculation
(Supplementary Figure 4B). In both cases, there was no trend in
precipitation data.

Uncertainty
Absolute uncertainty (σ) increased over the study period (2000–
2100) for all regions in both scenarios (Table 4). It was also
greater in RCP8.5 than RCP4.5 scenarios in all regions at the end
of the study period. In some regions, the difference in absolute
uncertainty between the two scenarios in 2100 was substantial
(e.g., Kootenays, North Okanagan) while in others the difference
was minimal (Southern Gulf Islands).

A comparison of relative uncertainty (CV) at the beginning
and end of the study period shows that uncertainty in the RCP4.5
scenario was generally stable. Relative uncertainty remained the
same or slightly decreased in 12 of 17 regions in the RCP4.5
scenario. In contrast, relative uncertainty in the RCP8.5 scenario
increased in every region other than the Fraser Valley and S. Gulf
Islands. Comparing the two scenarios, RCP8.5 had lower relative
uncertainty in all 17 regions in 2000, but a slightly greater relative
uncertainty in 11 of 17 regions in 2100.

Agricultural Land Development
As would be expected, projected IWD increased as additional
agricultural land was developed (Table 5). Projected increases for
scenario RCP4.5 and RCP8.5 were nearly identical in response to
development relative to their respective baselines. Just as in the
non-development scenarios, interregional variation in IWD was

TABLE 6 | Areal distribution of grouped soil texture, irrigation system, and crop

rooting attributes for the Okanagan basin in 2006 and 2014.

Attribute % Total basin area

Soil texture V. coarse Coarse Medium Fine V. fine

2006 land

use data

0.07 10 56 18 16

2014 land

use data

0.05 10 58 18 15

Irrigation

system

Drip Micro Sprinkler Gun Flood

2006 land

use data

13 9 66 12

2014 land

use data

23 13 55 9 0.20

Crop rooting V. deep Deep Grape Medium Shallow V. Shallow

2006 land

use data

16 14 15 19 36 0.56

2014 land

use data

14 22 19 13 31 0.53

considerable, ranging from a projected ∼10–2,477% increase in
both scenarios. It is important to note that a region’s increased
IWD is dependent on the amount of potential agricultural land
available in conjunction with the effects of climate change. Thus,
in this case interregional variation was less influenced by local
climatic conditions and more by differences in the amount of
agricultural land available.

Okanagan Basin Case Study
Land Use Characteristics
Due to slight shifts in crop area and crop type, there were slight
differences in the texture of irrigated soils between the 2006 and
2014 surveys (Table 6) and over 50% of the irrigated area had
medium textured soils which were predominantly sandy loams
(Supplementary Table 2). Use of sprinkler irrigation systems
were dominant in both land use surveys but had decreased by
10% in 2014 with a concomitant increase in more efficient micro-
irrigation and drip systems. The area under grapes and other
deep rooted crops (primarily forage crops) increased in the 2014
survey while the area under medium and shallow rooted crops
decreased. Efficient irrigation systems (drip andmicro-irrigation)
were associated with horticultural production as they are best
adapted to crops grown in rows (Figure 3A). The choice of
irrigation systems is more limited for pasture and forage crops
although there was some evidence of change from less efficient
gun to sprinkler systems in 2014. Between 2006 and 2014 there
was a large shift to efficient irrigation systems in horticultural
crops with 68% of the horticultural area under drip and micro-
irrigation in 2014 compared with 38% in 2006 (Figure 3B).

Relative Vulnerability Index (IWD/ETo)
There was considerable annual variation in the overall relative
vulnerability index (Figure 4A) which was related to growing
season temperatures and precipitation. The magnitude of the
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FIGURE 3 | Areal distribution of (A) Okanagan Basin major cropping and irrigation systems and (B) horticultural irrigation systems in 2006 and 2014.

relative vulnerability index varied annually and was largest in
1998, 2002, and 2003 (hottest and driest years) and lowest in 1997
(coolest and wettest year). In hot dry years, between 60 and 70%
of the basin irrigated area had a relative vulnerability index>1.0
which fell to <5% in wet cool years (Figure 4B). Crops grown on
finer textured soils had lower relative vulnerability indices than
those grown on coarser soils, and in general shallow rooted crops
grown on coarse textured soils the highest relative vulnerability
indices (Figures 5A,B). Irrigation system also greatly affected the
relative vulnerability index with gun and flood irrigation giving
rise to high relative vulnerability indices, even for deep rooted
crops, and drip irrigation resulting in low relative vulnerability
indices (Figures 5C,D).

Water Allocation Vulnerability Index
(IWD/Maximum Water Allocation)
Estimated annual IWD was compared with maximum allocation
values (550, 686, and 800 mm/yr., respectively), for three

irrigation districts from the North, Central and South Okanagan.
All three regions had over 50% of their area in medium textured
soils, mainly sandy loams (Table 7). The Central Okanagan had
more coarse textured soils than the other two regions. The three
irrigation districts had different cropping profiles, with the N.
Okanagan dominated by pasture and forage crops, which can
be both deep and shallow rooted (Supplementary Table 2), and
inefficient irrigation systems, when compared to the Central
and S. Okanagan. Between 2006 and 2014, the area in wine
grapes had doubled in all three regions and the amount of
drip irrigation had increased five-fold in the Central Okanagan.
Maximum allocations were exceeded in all regions with the
area affected depending on year and region (Figure 6). There
were slight differences in vulnerability for the two land use
surveys. For the 1996 survey, between 1997 and 2010, allocations
were exceeded in more than 50% of the area in 11 years for
the N. Okanagan, in 5 years for the Central Okanagan and in
1 year for the S. Okanagan. For the 2014 survey, allocations
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were exceeded in more than 50% of the area in 8 years
(N. Okanagan), 4 years (Central Okanagan) and 0 years (S.
Okanagan) In 2003, one of the hottest, driest years, maximum
allocations for the 2006 land use data were exceeded for 93%),
84% () and 53% (of the irrigated area respectively North, Central
and South Okanagan districts and for the 2014 land use data
they were exceeded for 91, 85, and 47% of the irrigated area
for the three districts respectively. These results indicate an
imbalance between expected maximum irrigation requirements
and maximum allocation. The magnitude of the water allocation
vulnerability index ranged between 0.55 and 2.26 for the North
Okanagan, between 0.46 and 1.94 for the Central Okanagan and
between 0 and 1.38 for the South Okanagan. In all locations,
crops irrigated with inefficient systems (gun and sprinkler) were
most affected regardless of rooting depth and those irrigated
with drip and micro sprinklers were usually minimally affected.
Wine grape crops were rarely affected, mainly because the IWD
model accounts for the lower water requirements for their
production. The effects of crop production system, soil texture
and irrigation system on the magnitude of the water allocation
vulnerability index are illustrated for the North Okanagan in
2003 (Figure 7). Crops grown on very coarse or coarse textured
soils had the highest vulnerability indices regardless of rooting
depth (Figures 7A,B). Greatest vulnerability was associated with
crops grown with inefficient irrigation systems, flood and gun,
and least vulnerability was associated with crops grown with drip
and micro-irrigation (Figures 7C,D).

DISCUSSION

Irrigation Water Demand (IWD) in British
Columbia Agricultural Regions
The findings of this paper indicated that climate change alone
will likely lead to significant increases in IWD in BC. Under
the RCP4.5 scenario, which assumes emissions will peak around
2040 and decline thereafter, IWD in every region was projected to
increase>20%, while for the majority of regions a>30% increase
in IWD is expected. In the higher GHG emissions scenario
(RCP8.5) every region in BC was projected to experience a>30%
increase in IWD, while the majority will face a >40% increase.
These findings project significant increases in agricultural IWD
in BC, and align with previous research on the Okanagan Basin
(Neilsen et al., 2006). Past studies at the regional scale have
projected dramatic increases in IWD as a result of climate
change (Fischer et al., 2007; Rehana and Mujumdar, 2013;
Wada et al., 2013). The increases projected in IWD for BC
reiterate the need to enhance water infrastructure and decision-
making processes and the projections included in this paper can
be incorporated into future decision-making to address these
challenges. However, the uncertainty associated with future water
supply in the region (Merritt et al., 2006; Shrestha et al., 2012;
Clarke et al., 2015) highlights the need to integrate climate science
and future water demand with changes in water supply at the
basin and sub-basin scale in order to develop sound decisions.
This is currently of increasing importance as BC moves to
license groundwater. The results of these regional water demand

FIGURE 4 | Annual climatic effects on (A) the relative vulnerability index

(IWD/ETo) and (B) the area with IWD/ETo>1 in the Okanagan Basin for land

use data collected in 2006 and 2014.

model runs have been incorporated into a new web-based tool
which allows applicants for either groundwater or surface water
licenses to calculate the agricultural water demand for their
properties (http://www.bcagriculturewatercalculator.ca/), While
substantial in all regions, the projected increases in IWD were
not uniform across the province. Our findings illustrate that
the relationship between GHG emissions and IWD is unique to
each region. Interregional variation in projected IWD highlights
the significant influence of local climatic conditions. Under
both scenarios the range of projected increases was large
(RCP4.5∼20–60%, RCP8.5∼30–115%). Changes in temperature
affecting potential ETo appeared to be the major driver of
increased water demand, as there were no apparent trends in
precipitation data. These temperature effects were greater for
Interior than for Coastal regions. This stresses the need for a
localized and regional approach to water management in BC
(Cohen et al., 2006; Melnychuk et al., 2016) as the policies and
regulations put in place for one region may not work in another.

The course of global socio-economic development will also
have an uneven impact on BC’s IWD. Projected IWD did not
increase uniformly between the RCP4.5 and RCP8.5 scenarios
in all regions. This suggests that different regions have different
sensitivities to climate change drivers. In certain regions, a
future where GHG emissions grow exponentially may lead to
a near doubling of IWD relative to a future where emissions
decline after 2040. However, in other regions the trend in GHG
emissions has a limited effect on future IWD. Whether future
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FIGURE 5 | Relative vulnerability index (IWD/ETo) for Okanagan Basin cropping systems in 2003, in response to crop rooting depth and (A) soil texture for 2006

landuse data, (B) soil texture for 2014 land use data, (C) irrigation systems for 2006 land use data and (D) irrigation system for 2014 land use data.

GHG emissions follow a RCP4.5 or RCP8.5 path will have
serious implications for the climate sensitive regions in the
province. Accordingly, the integration of climate science and
water resource planning should be an ongoing process. Only
through continued research and reporting on rates of GHG
emissions and IWD will local decision-makers have access to
the most up-to-date information necessary for sound decision-
making.

Ongoing research into future water demand will also help
to address the uncertainty surrounding projected IWD. While
relative uncertainty can be regarded as low, absolute uncertainty
would be regarded as considerable for regional water purveyors.
In the majority of regions the absolute uncertainty surrounding
projected IWD in 2100 was comparable to the projected increase
in IWD. Further, the uncertainty grew when comparing RCP8.5
to RCP4.5. Uncertainty in projected IWD is related to the
level of understanding of our climate’s response to increasing
GHG emissions (Figure SPM.10 of https://www.ipcc.ch/pdf/
assessment-report/ar5/wg1/WG1AR5_SPM_FINAL.pdf; Figure
SPM.10 of https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/
WG1AR5_SPM_FINAL.pdf). As the climate moves away from
historical norms, our understanding of the climate’s response
becomes weaker, and uncertainty increases. This explains the
greater increase in both absolute and relative uncertainty found
in the RCP8.5 scenario.While we can say with relative confidence
that IWD will increase in the coming decades, the uncertainty of
projected IWD emphasizes the need for a flexible and adaptive
approach to water resource planning.

Similar to projected IWD, the contribution of agricultural
land development to IWD will vary region to region. For
some regions it could far exceed the increases brought by
climate change alone, while for others agricultural development
would contribute relatively little to increased IWD. This is
contingent on the level of development, the amount of land
available for development, and the region’s sensitivity to climate
change. Some regions, for example the Cariboo Region, have
a large potential for increases in irrigated agriculture as much
of the Agricultural Land Reserve is currently used for dry
land ranching. However, the region is very remote, sparsely
populated and poorly served by transportation networks, which
may provide a substantial barrier to development. On the other
hand, there may be increased opportunities for the production
of high value horticultural crops in this region, particularly as
minimum winter temperatures moderate. Neilsen et al. (2017),
using phenologymodeling and terrain analysis, showed that areas
of the S. Cariboo region, particularly in the terraces adjacent to
the Fraser R, would become suitable for sweet cherry production
by the 2040s. At the other extreme, a region such as the S. Gulf
Islands, has little potential available agricultural land and is also
constrained by ground-water availability. These relationships
have important implications for land use management: first,
they again highlight the unevenness of projected IWD and the
need for regional decision-making; second, they stressed that
the benefits that may be brought by expanding the agricultural
land base must be weighed against the potential costs and risks
associated with increasing IWD. These might include the costs of
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new infrastructure; the costs of monitoring and modeling surface
and groundwater source; environmental risks from reducing in-
stream flows and aquifer levels; risks to producers if planting
crops at their climatic limits etc. Accordingly, water resource
planning should be undertaken at a regional level and adopt a
long-term perspective.

Okanagan Basin Case Study
Considerable attention has been focused on incorporating
science based decision making into water resource planning
in the Okanagan Basin (Melnychuk et al., 2016) and there
is on-going interest in pursuing both basin-wide drought
and flood management strategies. The Okanagan water
stewardship council, which is a long-standing committee of
water professionals includes representives of As much of the
region is supplied by large water purveyors, who have storage
licenses for large upland reservoirs and/or withdrawal licenses
from large valley bottom lakes, drought management strategies
are largely aimed at retaining sufficient storage for winter
and early spring withdrawals for non-irrigation purposes and
instream flow requirements. Thus the likelihood of “drought”
under these circumstances is increased by a combination of
low winter snowpack, high in-season ET and low in-season
precipitation. This type of drought differs from a hydrologic
drought, declared by the Province, when low river flows threaten
environmental flow needs in un-regulated streams. Projected
increases in agricultural water demand due to climate change (up
to 54%), while likely within the licensed volume for agricultural
purposes (Neilsen et al., 2006) may not be met by future water
supply (Merritt et al., 2006). Moreover, the findings of this
study indicated that even within the recent historical climatic
range, allocation of water resources may not be adequate to meet
agricultural needs in some areas. In the N. Okanagan irrigation
district, the area potentially vulnerable to under-allocation was
>50% in all but the coolest and wettest years which was due to
both a low maximum allocation value and to the crop profile in
the region. Forage and pasture production systems which rely
on less efficient irrigation systems (sprinklers, irrigation guns
and flood irrigation) are the most vulnerable to under-allocation
and comprise 73% of the irrigated area in the N. Okanagan,
compared to around 50% in the basin as a whole. In contrast, the
irrigation district in the S. Okanagan which had a much lower
potential for under-allocation was characterized by a higher
allocation value and only around 25% of the irrigated area in
pasture and forage crops.

Unfortunately, the majority of irrigation districts and water
purveyors in the basin have not defined maximum water
allocations, so this type of analysis was not possible. However,
there was a strong relationship between the relative vulnerability
index (IWD/ETo) and the water allocation vulnerability index
(IWD/max water allocation) with R2-values varying between
0.82 and 0.92 for the three irrigation districts (n = 10,000–
124,722 land use polygons × 4 years). Taking this into
consideration, if maximum allocations are imposed across
the basin as drought planning continues, there is potential
for considerable vulnerability to insufficient water availability
for some production systems. That these vulnerabilities are

TABLE 7 | Areal distribution of soil texture groups, irrigation system groups and

crop rooting groups for three Okanagan irrigation districts (North, Central, South)

in 2006 and 2014.

Region % Irrigation district area

Soil texture

V. coarse Coarse Medium Fine V. fine

North 2006 0.1 0.3 54 25 21

North 2014 0.1 0.4 58 26 16

Central 2006 0.4 25 61 3 11

Central 2014 0.1 25 64 3 9

South 2006 0 8 65 27 0

South 2014 0.1 8 65 27 0

Irrigation system

Drip Micro Sprinkler Gun Flood

North 2006 11 3 57 29 0

North 2014 9 6 69 17 0.2

Central 2006 5 39 51 6 0

Central 2014 25 32 41 1 0

South 2006 25 12 62 0.4 0

South 2014 32 16 48 4 0

Crop rooting

V. deep Deep Grape Medium Shallow V. Shallow

North 2006 26 10 0.2 7 56 0.6

North 2014 35 22 0.6 13 29 0.2

Central 2006 6 28 7 31 28 0

Central 2014 2 26 15 19 38 0

South 2006 0.6 9 7 34 50 0

South 2014 4 11 16 28 41 0

already evident for historic climatic conditions before the 34–
54% increase projected in response to climate change, or
potential 30% potential increase in irrigable land, emphasizes
the need for adaptive measures both in water use and drought
planning.

Adaptation to potential shortfalls in water supply due to
current production methods can best be achieved through
changes in irrigation management. Conversion to low pressure
irrigation systems (drip, micro-sprinkler, LP-center pivot)
increases irrigation efficiency to 78% and greater. Such changes
are already underway in the horticultural sector in the region
where water was supplied to 38% of the irrigated area through
micro-sprinklers or drip in 2006 and to 68% of the irrigated
area in 2014. This provides a number of benefits to producers
including the ability to target water spatially and temporally
to meet plant demand; to produce plants which are tolerant
of partially dry soils and to allow maintenance of the same
irrigation practice under mild drought conditions if water use
is well below maximum allocations. There are also options to
increase efficiency within pasture and forage crops. Low pressure
center pivot irrigation has been widely adopted in many regions.
A recent study of Alberta irrigation districts indicated that 76%
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FIGURE 6 | Area of irrigated land where IWD exceeded annual allocations in three irrigation districts from the Okanagan basin in response to (A) 2006 and (B) 2014

land use data.

of the irrigated area was in the process of change to more efficient
management and that mostly was due to the use of LP-center
pivot systems (Wang et al., 2015). In the Okanagan basin, the
small area of pivot irrigation increased from 442 to 484 ha
between 2006 and 2014 with LP-center pivot from 1 to 67%.
The extent to which the size of land holdings and topography
limit the adoption of center pivot technology in this region is
unclear and requires further study. The use of sub-surface drip
(95% efficient) has also been adopted for forage corn, alfalfa and
grass pasture in regions with severe water shortages including
the US Great Plains (Lamm et al., 2012a) and Australia (Wood
and Finger, 2006) and is gaining in popularity due to improved
technology and crop production (Lamm et al., 2012b), despite
some concerns about the economics of installation (Heard et al.,
2012). There has been little adoption of this technology in the

Okanagan region with a decrease from 43 to 3.2 ha between 2006
and 2014.

Other irrigation adaptation strategies include the use of deficit
irrigation. In addition to the inherent efficiency found in deep-
rooted grape vines, water use for wine-grape production is
often controlled through planned deficits which reduce canopy
development and enhance fruit quality (Keller, 2010). Use of
small deficits, without detrimental effect has been reported for
tree fruits (Marsal et al., 2009, 2010; Neilsen et al., 2016), but there
is insufficient evidence for adoption as practical management tool
to enhance fruit value and further research is required.

Adaptation to water shortages may also be addressed by
drought planning, which requires the development of watershed
supply information and models in addition to water demand
modeling. Forecasting droughts on a seasonal basis is aided to
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FIGURE 7 | Allocation vulnerability index (IWD/Maximum water allocation) for cropping systems in 2003 in the North Okanagan, in response to crop rooting depth and

(A) soil texture for 2006 landuse data, (B) soil texture for 2014 land use data, (C) irrigation systems for 2006 land use data, and (D) irrigation system for2014 land use

data.

some degree in regulated watersheds by understanding the role
of storage, in particular the switch from stream to storage use
and the requirements until the next freshet. Early use of stored
water will often determine the imposition of watering restrictions
and with early warnings producers may have some options to
offset water shortages (Marsal et al., 2009, 2010; Neilsen et al.,
2016). Drought planning is frequently approached by universal
application of percentage reductions in water allocations in
response to declared drought stages and this is often interpreted
as a percentage reduction in current producer use. Cropping
systems which have a low vulnerability index are already using
less than the maximum allocation and likely have little room
for further reductions in water use. Similarly, some systems,
particularly in pasture/forage production may be chronically
under-supplied unless the most efficient irrigation technology is
adopted. Thus drought planning may need to take into account
both a realistic development of water allocation thresholds and
incentives for changes in irrigation management that go beyond
the use of water pricing as the major mechanism for change
(Melnychuk et al., 2016). A further option is the development of
more water storage if there is sufficient water supply to fill new
reservoirs.

In summary, future IWD will vary regionally across the
province and in response to different GHG emission scenarios.
These findings stress the importance of regional, adaptive
decision-making undertaken with a long-term perspective that
incorporates the latest climate science. A detailed analysis of
the Okanagan Region illustrates the complexity of drought
management issues. Vulnerability to a potential under-supply
of water has been identified, particularly for the pasture/forage
systems underpinning high value animal production which are

typical of many agricultural regions in the province and may
require economic support for farmers in the adoption of more
efficient irrigation systems. In addition more research is required
into the adoption of efficient water use practices by all water users
Boland et al. (2005) documented considerable resistance to new
irrigation practices in Australia for example, but the comparative
land use surveys in the Okanagan region documented in this
paper have shown widespread adoption of efficient irrigation
systems by some sectors.

The current paper deals only with changes in annual demands
in response to climate and expanded agricultural land use. To
add to our understanding of future IWD, the IWDM can be used
to track seasonal shifts in IWD as changes in the timing and
volume of water demand have been highlighted as important not
only to BC farmers, but also to the maintenance of stream flows
for ecological requirements. Additionally, the IWDM could be
used to examine the shifting composition of BC agriculture in
response to climate change. It is unlikely that this will remain
static over the coming decades as temperature and precipitation
patterns shift.

The scope of this study was restricted to current and future
agricultural IWD in relation to environmental changes brought
about by climate change. These cannot be separated from
climate change effects on water supply and other ecosystem
requirements. Any decision regarding water management will
also need to address requirements to provide ecosystem services
as well as economic, demographic, and social drivers of
water demand. Additionally, the impacts of non-agricultural
water demand for both outdoor irrigation and indoor uses
should also be factored into water management decisions. Such
discussions necessarily will require input from both stakeholders
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and decision makers. A successful model for collaborative
decision making is the Okanagan Water Stewardship Council
(Melnychuk et al., 2016), which has a membership of local,
regional, provincial, federal and First Nations planners and
technical experts. In addition there are members from academia,
professional associations and sector groups (forestry, agriculture,
tourism). The group provides technical support, develops policy
and participates in water science projects for the regional
Okanagan Basin Water Board, a regional political entity with
local government members. A recent collaborative project of
this group with the Okanagan Nation Alliance on environmental
flow needs highlights the importance of incorporating First
Nations knowledge in collaborative decision making. Beyond the
regions we have reported on in this paper, there is also major
competition for both agricultural land and water resources from
other industries. For example, the Peace River region in Northern
BC will lose land to hydro-electric power generation after the
construction of the site-C dam and considerable water resources
are also being used by the oil and gas industry.
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Remote sensing techniques can be efficient for non-destructive, rapid detection of wheat

nitrogen (N) nutrient status. In the paper, we examined the relationships of canopy

multi-angular data with aerial N uptake of winter wheat (Triticum aestivum L.) across

different growing seasons, locations, years, wheat varieties, and N application rates.

Seventeen vegetation indices (VIs) selected from the literature were measured for the

stability in estimating aerial N uptake of wheat under 13 view zenith angles (VZAs)

in the solar principal plane (SPP). In total, the back-scatter angles showed better VI

behavior than the forward-scatter angles. The correlation coefficient of VIs with aerial

N uptake increased with decreasing VZAs. The best linear relationship was integrated

with the optimized common indices DIDA and DDn to examine dynamic changes in

aerial N uptake; this led to coefficients of determination (R2) of 0.769 and 0.760 at

the −10◦ viewing angle. Our novel area index, designed the modified right-side peak

area index (mRPA), was developed in accordance with exploration of the spectral

area calculation and red-edge feature using the equation: mRPA = (R760/R600)
1/2 ×

(R760-R718). Investigating the predictive accuracy of mRPA for aerial N uptake across

VZAs demonstrated that the best performance was at −10◦ [R2 = 0.804, p < 0.001,

root mean square error (RMSE)= 3.615] and that the effect was relatively similar between

−20◦ to +10◦ (R2 = 0.782, p < 0.001, RMSE = 3.805). This leads us to construct

a simple model under wide-angle combinations so as to improve the field operation

simplicity and applicability. Fitting independent datasets to the models resulted in relative

error (RE, %) values of 12.6, 14.1, and 14.9% between estimated and measured aerial N

uptake for mRPA, DIDA, and DDn across the range of−20◦ to+10◦, respectively, further

confirming the superior test performance of the mRPA index. These results illustrate that

the novel index mRPA represents a more accurate assessment of plant N status, which

is beneficial for guiding N management in winter wheat.

Keywords: winter wheat, multi-angular hyperspectral, vegetation indices, aerial N uptake, monitoring model
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INTRODUCTION

Nitrogen (N) is a vital element for higher photosynthetic
functioning; N resource management is a major factor that can
enhance plant growth and influence the quality of plant crops
(Woodard and Bly, 1998; Smil, 2002). To ensure productivity,
crop producers commonly supply plants in the field with N
fertilizers. N supply generally appreciably surpasses plant N
uptake, leading to the loss of nitrate through soil leaching,
increased greenhouse gas (N2O) emission, and ground water
pollution (Sehy et al., 2003; Ju et al., 2006). To minimize
potential N losses, N fertilizer should be applied at the correct
time and according to the requirements of the crops. The
development, therefore, of techniques which insure higher
yield and good product while reducing ecological environment
pollution attributed to unsuitable N application is essential.

In currently, remote sensing technique is among the most
promising approach that has been shown to rapidly predict the
spatial-temporal variability of crops and monitor crop growth
status (Hansen and Schjoerring, 2003; Ecarnot et al., 2013).
Many indices have been constructed by extracting characteristic
spectral information for evaluating biochemical properties in
crop plants (Hatfield et al., 2008; Ecarnot et al., 2013). Several
researchers have demonstrated a close relationship between
NDVI- and RVI-like spectral indices and aboveground N uptake
(Mistele and Schmidhalter, 2008; Li et al., 2013), chlorophylls
and carotenoids (Blackburn, 1998), canopy leaf biomass (Le
Maire et al., 2008). An additional group of vegetation indices
are constructed by the forms of three band combination. For
instance, Wang et al. (2012) added the 2×R423 band to the
NDVI (R703, R924) and effectively improved the sensitivity of leaf
nitrogen concentration (LNC) estimation in rice and wheat. Feng
et al. (2015) showed that the three-band spectral index (R759-
1.8 × R419)/(R742-1.8 × R419) was a good indicator of above
ground N uptake in wheat. A third group vegetation indices were
developed by area-based algorithm. These include the triangle
vegetation index (TVI) and modified TVI for green leaf area
index (LAI) (Broge and Leblanc, 2000; Haboudane et al., 2004);
the red-edge reflectance curve area for green biomass (Ren et al.,
2011); and the adjusted TVI for aerial N uptake (Li et al., 2013).
Additionally, remote sensing technology was also applied in the

Abbreviations: ASD, Analytical Spectral Devices; CARI, Chlorophyll absorption

ratio index; Chl a, Chlorphyll a; CIred-edge3, Red-edge chlorophyll index-3;

DDn, New double difference index; DIDA, Double-peak areas; DVI, Difference

vegetation index; EVI, Enhanced Vegetation Index; LAI, Leaf area index; LNC,

Leaf N concentration; LSDR, Left-side peak area; MCARI-1, Modified chlorophyll

absorption in reflectance index; mRER, Modified red-edge ratio; mRPA, Modified

right-side peak area index; MSR, Modified simple ratio; mSR705, Modified red-

edge ratio; MTVI1, Modified triangular vegetation index; N, Nitrogen; NAOC,

Normalized area over reflectance curve index; NDDA, Normalized difference

of the double-peak areas; NDRE, Normalized difference red-edge index; NDVI,

Normalized Difference Vegetation Index; NIR, Near infrared region; PSSRb,

Pigment specific simple ratio chlorophyll b; R2, Coefficients of determination;

RDVI, Re-normalized difference vegetation index; RE, Relative error; REFCA, Red

edge reflectance curve area; RMSE, Root mean square error; RSDR, Right-side

peak area; SAVI, Soil-adjusted vegetation index; SPAD, Soil and Plant Analyzer

Development; SPP, Solar principal plane; TCI, Triangular chlorophyll index; TVI,

Triangle vegetation index; UAV, Unmanned Aerial Vehicle; VI, Vegetation index;

VIopt, Optimal vegetation index; VZA, View zenith angle.

field of phenotype. Rothamsted Research reported that the data
collecting from Unmanned Aerial Vehicle (UAV) based remote
sensing could rapidly and accurately measure the wheat plant
height and growth rate (Holman et al., 2016). Andradesanchez
et al. (2014) investigated that the tractor-based phenotyping
system could acquire and record data for canopy temperature,
height and reflectance of cotton plants at much higher rates.
However, the canopy spectral reflectance was sampled only from
the vertical observation angle in prior researches, and the nadir
observation were difficult to extract spatial structure from the
middle and lower layers of plants (Thenkabail et al., 2000; Erdle
et al., 2011).

Compared with the nadir observations, multi-angle
observations contain more detailed and reliable canopy
structure information that permits effective monitoring of crop
N status in the middle and lower layers and provides a novel
approach for quantitative remote sensing (Pocewicz et al., 2007;
Huang et al., 2011). To date, many studies have shown that
multi-angle measurements could improve the performance of
indices when estimating the structural characteristics of ground
objects (Shibayama and Wiegand, 1985; Diner et al., 1999).
For instance, Galvão et al. (2009) showed that the varieties
of soybean could be distinguished with the best predictive
ability in the backward scattering direction. Gemmell and
McDonald (2000) showed that the performance of indices under
off-nadir angle can effectively discriminate forest cover and LAI.
Furthermore, some studies have used to multi-angular datasets
to assess plant variables, particularly biochemical components
(Hasegawa et al., 2010; Huang et al., 2011). The effect of indices
in estimating agronomic parameters and yields changes with
the LAI and VZAs (Gemmell and McDonald, 2000; Inoue et al.,
2008). Stagakis et al. (2010) focused on using satellite spectral
data to estimate chlorphyll a (chl a), chl b, and carotenoids
of semi-deciduous shrubs by utilizing different viewing angles
and narrow-band indices. He et al. (2016) developed a multi-
angular VI to enhance the estimation stability and accuracy of
leaf nitrogen concentrations. No matter what the understory
vegetation was (green or senesced) the relationships between
canopy or total LAI and NDVI or Enhanced Vegetation Index
(EVI) varied little across VZAs in pine forests (Pocewicz et al.,
2007). However, only a few researches systematically tested the
ability of multi-angle spectral data for predicting aerialN uptake
of wheat. Taken together, these studies report the construction of
a range of novel indices that use multi-angle datasets to enhance
the precision and robustness of prediction indices for plant
biophysical traits.

The specific aims of the paper were: to (1) study the
performance of ground-based spectra and common indices to
detect the aerial N uptake of winter wheat under different VZAs;
(2) construct an improved, novelVI for aerialNuptakeprediction;
(3) compare the aerial N uptake predictive ability of the novel
model with published VIs; and (4) establish the best observation
angle and the best estimation model for aerial N uptake. The
results of this study provide technical knowledge and a theoretical
basis for monitoring N status by remote sensing technology; the
information obtained from these techniques can then be used to
help guide appropriate N fertilization application of wheat.
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MATERIALS AND METHODS

Experimental Fields
The field experiments were designed over a 4-year period in
Zhengzhou and Shangshui city, China. The different locations,
N fertilizer rates, wheat cultivars, and growth seasons were used
(Table 1). Urea as N sources was divided into two equal doses,
one administered before seeding and the rest at jointing period.
Before seeding, 150 kg ha−1 P2O5 [as Ca(H2PO4)2] and 90 kg
ha−1 K2O (as KCl) were used to all treatments. The N treatments
with triplicates were assigned as completely random blocks in
the experiment. The density of the seedlings was 3.0 × 106

plants ha−1.

Data Acquisition
Measurement of Canopy Multi-Angular Hyperspectral

Reflectance
Canopy reflectance spectra were obtained in a 1 m2 area in
each plot under sunny and windless conditions between11:00 to
13:00 using an ASD (Analytical Spectral Devices Inc., Boulder,
CO, USA) FieldSpec Handheld spectrometer. This spectrum
instrument was equipped with 25◦-field-of-view optics fiber,
sampling interval of 1.6 nm and spectral resolution of 3.5 nm
from 325 to 1,075 nm. The multi-angle data are obtained with

a Field Goniometer System, which was designed based on
the system developed by Sandmeier and Itten (1999). The
goniometer is a device used to position a sensor at these different
angles and azimuths (Figure 1). The observed azimuth was fixed
relative to the direction of the sun, and the measured plane was
defined as the SPP (Myneni et al., 1995). The VZA was divided
into backward direction (the observation direction same to the
sun, −) and the forward direction (the observation direction
against to the sun, +); the nadir position was defined as 0◦. The
VZA from backward to forward direction is−60,−50,−40,−30,
−20,−10, 0, 10, 20, 30, 40, 50, 60◦. The VZA become larger from
0◦ to ±60◦, regardless of the backward and forward direction.
The 10 sites were averaged to a single spectral sample of each
plot. The black and base-line reflectance was calculated by a 40
× 40 cm BaSO4.

Plant Measurements
The areas of 0.20 m2 of plant samplings were randomly uprooted
from each test area almost simultaneously with the canopy
spectral acquisition. The plant samples were weighed after
desiccation in an oven at 70◦C to a constant weight. The
ovendried plants were grinded into powder (1mm) for N content
analysis in laboratory. The aerial nitrogen concentration was

TABLE 1 | The experimental conditions, N fertilizer levels, and measured stages.

Exp. No. Season and site Cultivar Soil characteristics Treatments Stages

Exp. 1 2012–2013

Zhengzhou city

Yumai 49–198

Zhengmai9694

Type: fluvo-aquic soil, Organic-M: 17.47 kg−1,

Soil pH (CaCl2): 7.9, Total N: 0.84 g kg−1,

NO3-N: 8.1mg kg−1, Available N:78.4mg kg−1,

Available P: 18.83mg kg−1,

Available K: 252.56mg kg−1

N rate (kg ha−1): N0(0),

N1(120), N2(240), N3(360),

and 50% prior to seeding

and 50% at jointing

Jointing

Booting

Heading

Anthesis

Exp. 2 2013–2014

Zhengzhou city

Yumai 49–198

Zhengmai 9694

Type: fluvo-aquic soil, Organic-M: 16.8 g kg−1,

Soil pH (CaCl2): 7.8, Total N: 0.89 g kg−1,

NO3-N: 9.3mg kg−1,Available N:113.0mg kg−1,

Available P: 19.20mg kg−1,

Available K: 252.30mg kg−1

N rate (kg ha−1): N0(0),

N1(120), N2(240), N3(360),

and 50% prior to seeding

and 50% at jointing

Jointing

Booting

Heading

Anthesis

Exp. 3 2013–2014

Shangshui city

Zhoumai 27 Type: lime concretion black soil,

Organic-M: 20.8 g kg−1, Soil pH (CaCl2): 7.1,

Total N: 1.36 g kg−1, NO3-N:14.1mg kg−1,

Available N: 93.2mg kg−1,

Available P: 4.92mg kg−1,

Available K: 176.1mg kg−1

N rate (kg ha−1): N0(0),

N1(180), N2 (240), N3(300),

and 50% prior to seeding

and 50% at jointing

Jointing

Booting

Anthesis

Exp. 4 2014–2015

Zhengzhou city

Yumai 49–198

Zhengmai9694

Type: fluvo-aquic soil, Organic-M: 9.7 g kg−1,

Soil pH (CaCl2): 8.01, Total N: 0.71 g kg−1

NO3-N: 7.2mg kg−1, Available N: 64.6mg kg−1,

Available P: 28.8mg kg−1,

Available K: 101.7mg kg−1

N rate (kg ha−1): N0(0),

N1(120), N2 (240), N3(360),

N4(450), and 50% prior to

seeding and 50% at jointing

Jointing

Booting

Heading

Anthesis

Exp. 5 2014–2015

Shangshui city

Yumai 49–198 Type: lime concretion black soil, Organic-M: 21.7 g

kg−1, Soil pH (CaCl2): 8.06, Total N: 1.13 g kg−1,

NO3-N: 10.6mg kg−1, Available N: 85.7mg kg−1,

Available P: 13.1mg kg−1,

Available K: 111.3mg kg−1

N rate (kg ha−1): N0(0), N1

(120), N2 (240), N3(360),

and 50% prior to seeding

and 50% at jointing

Jointing

Booting

Anthesis

Exp. 6 2011–2012

Zhengzhou city

Yumai 49–198

Zhengmai9694

Type: fluvo-aquic soil, Organic-M: 10.6 g kg−1,

Soil pH (CaCl2): 7.9, Total N: 0.91 g kg−1,

NO3-N: 8.4mg kg−1, Available N: 82.0mg kg−1,

Available P: 25.6mg kg−1,

Available K: 124.5mg kg−1

N rate (kg ha−1): N0(0),

N1(120), N2 (240), N3(360),

and 50% prior to seeding

and 50% at jointing

Booting

Heading

Anthesis

Initial-

fillingMid-

filling
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FIGURE 1 | Dimensions and design of Field Goniometer System.

determined in line with the micro-Kjeldahl method (Isaac and
Johnson, 1976).

Construction of the New VI
The red edge is a region of steep variations in spectral reflectance,
and this value may provide some useful information on crop
growth and N status (Figure 2) (Sims and Gamon, 2002; Cho and
Skidmore, 2006; Hatfield et al., 2008; Feng et al., 2015). To date,
few area-based optimized indices have been constructed using
red-edge information for non-destructive, rapid assessment of
plant N status. Our preliminary research found that the double-
peak area parameters constructed based on analysis of the red-
edge double-peak characteristics could be effective for assessing
Leaf N concentration (LNC) (Feng et al., 2014). There are
several techniques to divide the red edge double-peak area
into the right-side peak area (RSDR) and the left-side peak
area (LSDR) (Figure 3). In this study, the datasets obtained
using a 0◦ observation angle in Exp. 1–5 were used to analyze
the relationship between LSDR, RSDR(from different splitting
methods), and aerial N uptake. The results showed that RSDR
(R760-R718) divided by characteristic wavelength method had
the best performance (R2 = 0.740, p < 0.001; Figure 4), which
suggested RSDR as potential indicator for estimating aerial N
uptake. The previous research showed that the ratios of two
or more bands (such as R801/R670, R801/R550) could increase
sensitivity to crop physiological traits and reduce variation
because of external influencial factors (Daughtry et al., 2000).
Haboudane et al. (2008) inserted the (R700/R670)

1/2 into the
TVI formula to decrease the combined impacts of the soil
background reflectance. We, therefore, inserted a coefficient [in
the form of (λ1/λ2)

1/2] into RSDR (R760-R718) to construct a
novel VI called the mRPA. The spectral region of the above λ1

and λ2 were located within 400 and 900 nm. Figure 5 gave a
comprehensive overview of the correlation coefficients for any
two band combinations (λ1, λ2), and this is valid for selecting
the sensitive bands of aerial N uptake. The wavebands λ1 and λ2

ranged between 750–900 and 550–650 nm, respectively. This area

FIGURE 2 | Schematic representation of red edge reflectance curve.

FIGURE 3 | The division of the whole red-edge double-peak area into left and

right single peak areas.

had the highest precision, with R2 values above 0.78, especially R2

performed best when λ1 = 760 nm, λ2 = 600 nm. Therefore, the
final formula of mRPA was:

mRPA = (R760/R600)
1/2

×(R760 − R718) (1)

Model Calibration and Validation
The datasets from Exp. 1–5 were used to construct the evaluating
models, and the dataset from Exp. 6 were used to validate these
aerial N uptake evaluating models. The correlation of aerial N
uptake and VIs was examined by MATLAB 7.0. In this study, 18
VIs were selected and summarized in Table 2. The quantitative
relationship between the optimal VI and aerial N uptake could
be established based on the highest R2. The model’s behavior was
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FIGURE 4 | The relationships of aerial N uptake to RSDR (A) and LSDR (B) at 0◦view zenith angle.

FIGURE 5 | Contour maps of coefficients of determination between aerial N uptake and the mRPA with formula (Rλ1/Rλ2)
1/2 × (R760-R718) (n = 155, p0.001 =

0.262).

evaluated by employing the R2, RMSE, and RE (%). Among the
indices, those with the highest R2 and the lowest RMSE and RE
were considered as the best. RMSE and RE were calculated from
actual and predicted values of samples according to Equations (2)
and (3), respectively:

RMSE =

√

√

√

√

1

n
×

n
∑

i=1

(Pi− Oi)2 (2)

RE(%) =

√

√

√

√

1

n
×

n
∑

i=1

(
Pi− Oi

Oi
)
2

× 100% (3)

Here, Pi, and Oi represented the estimated and measured values,
respectively, and n represented the sampling number. The
prediction was considered to be excellent if RE < 10%, good if
RE = 10–20%, fair if RE = 20–30%, and poor if RE > 30% (Feng
et al., 2014).
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TABLE 2 | Summary of selected vegetation indices published in the literature.

Spectral index Definition or equation Reference

TWO BANDS

Optimal vegetation index (VIopt) (1+0.45)×[(R800)
2+1)/(R670+0.45)] Reyniers et al., 2006

Difference vegetation index (DVI) R810− R560 Richardson and Wiegand, 1977

Re-normalized difference vegetation index (RDVI) (R800-R670)/(R800+R670 )
1/2 Roujean and Breon, 1995

Pigment specific simple ratio chlorophyll b (PSSRb) R800/R635 Blackburn, 1998

Modified simple ratio (MSR) [R800/R670-1]/[(R800/R670)
1/2 +1] Chen, 2014

Normalized difference red-edge index (NDRE) (R790-R720)/(R790+R720 ) Fitzgerald et al., 2006

Soil adjusted vegetation index (SAVI) (1-0.08)×(R825-R735)/(R825+ R735-0.08) Huete, 1988

Red-edge chlorophyll index-3 (CIred-edge3) R790/R720−1 Gitelson et al., 2005

THREE BANDS

Difference index of the double-peak areas (DIDA) (R755+R680-2×R718)/(R755-R680) Feng et al., 2014

New double difference index (DDn) 2×R710-R660-R760 Le Maire et al., 2008

Modified chlorophyll absorption in reflectance index (MCARI-1) 1.2×[(2.5×(R800-R670)−1.3×(R800-R550)] Haboudane et al., 2004

Modified triangular vegetation index (MTVI1) 1.2×[1.2×(R800-R550)−2.5×(R670-R550)] Haboudane et al., 2004

Modified red-edge ratio (mRER) (R759−1.8 × R419)/(R742−1.8 × R419) Feng et al., 2015

Modified red-edge ratio (mSR705) (R750-R455)/(R705-R445) Sims and Gamon, 2002

Modified right-side peak area index (mRPA) (R760/R600)
1/2×(R760-R718) This study

OVER THREE BANDS

SDr-SDb
∫ 760
680

dRλ
dλ

dλ −
∫ 530
490

dRλ
dλ

dλ Feng et al., 2008

Triangle vegetation index (TVI-3) 60 × (Rnir-Rgreen)−100×(Rred-Rgreen) Broge and Leblanc, 2000

Red-edge reflectance curve area (REFCA) SUM(Ri/R780) i = 680–780 Ren et al., 2011

R is the reflectance at a given wavelength. R800, R670, R635,...and R680 are the spectral reflectance values at 800, 670, 635..., and 680 nm, respectively. Rλ is the spectral reflectance

at wavelength λ.

RESULTS

Variability of Wheat Aerial N Uptake Under
Different Growth Stages
The datasets from Exp. 1 are shown in Figure 6 to illustrate
the general distribution of aerial N uptake. The aerial N uptake
of the two wheat cultivars increased in the vegetative period
because of increasing biomass. Across the different applied N
rates, the aerial N uptake of Yumai 49–198 ranged from 6.0–
23.5, 7.7–28.6, 8.1–32.2, and 8.9–35.1 g kg−1 in the jointing,
booting, heading, and anthesis stage, respectively. The aerial N
uptake of Zhengmai 9694 varied from 6.9–24.3, 9.3–25.1, 10.6–
27.1, and 13.4–31.2 g kg−1, respectively, in these stages. With
the progression of the growth stages, coefficients of variation for
aerial N uptake increased. Thus, it can be seen that the aerial
N uptake was significantly influenced by the different wheat
cultivars and growth period.

Relationship Between Canopy Reflectance
and Aerial N Uptake at Different VZAs
We plotted the correlation between canopy reflectance and aerial
N uptake under different VZAs with the data from Exp. 1–5
(Figure 7). In the 13 VZAs, a negative relationship was detected
between aerial N uptake and the reflectance in the 400–720 nm.
The minimum correlation coefficient was under 560–710 nm
(r<−0.57), caused by red valley and chlorophyll absorption.
The highest r-value was presented in the near infrared region
(NIR), and increased with decreasing VZA both in backward

and forward scattering. No matter in the backward and forward
scattering, the r sharply changed in the red band region (690–
760 nm), and it tended to 0 near 720 nm; this indicates that r from
this region was not sensitive to the VZA.

Relationship Between the Aerial N Uptake
and Spectral Indices at Different VZAs
Canopy spectral data of different VZAs were influenced by
numerous comprehensive factors including soil background,
meteorological conditions, leaves, stems, and spectral noise. In
this study, 18 spectral indices, including the new index and 17
published indices are presented in Table 2. Among them, the
common indices were chose in accordance with a comprehensive
literature investigation of red edge characteristics. To further
describe the ability of the spectral indices in assessing aerial N
uptake, we used the datasets from Exp. 1–5 to compare the
predictive ability. As shown in Table 3 the r from backward
scattering directions were higher than forward scattering
directions for most two-band indices (except for DVI and RDVI).
To the performance of 13 single VZAs, the relatively high
correlation coefficient within −40◦ to +30◦ was present. For
the well-performance VIs, the mRPA, DIDA, and DDn were
advantageous at a viewing angle of −10◦, with r scores of 0.896,
−0.877, and −0.872, respectively;CIred−edge3 and mSR705 were
most sensitive at the −20◦ viewing angle, with r scores of 0.776
and 0.771, respectively; PSSRb and MSR demonstrated the best
performance at the 0◦ viewing angle, with r scores of 0.808
and 0.789, respectively; SDr-SDb and TVI-3 had the higher
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FIGURE 6 | Variation in plant N uptake over jointing-anthesis growth stages in wheat cultivars of Yumai 49-198 (A) and Zhengmai 9694 (B).

FIGURE 7 | The correlation coefficient (r) between reflectance (Rx ) and aerial N uptake at 13 viewing zenith angles (A: backward scattering, B: forward scattering) (n =

155, p0.001 = 0.262).

correlations at the+10◦ viewing angle, with r scores of 0.814 and
0.809, respectively. Notably, eight of 18 indices produced the best
correlations at the −10◦ viewing angle. These results illustrate
that the around −10◦ VZA may be the most suitable for aerial
N uptake estimation.

The four indices [mRPA, the two best-performing common
indices (DIDA and DDn, and average (corresponding average
value of 18 VIs at different VZAs, shown as average)] based
on the R2 values of the correlations between VIs and aerial
N uptake were plotted in Figure 8. The results demonstrated
that R2 increased with decreasing VZA in both backward and
forward scattering directions, and the highest R2 were obtained
under −20◦ to +10◦ VZAs. DIDA, DDn, and mRPA had strong
correlations (R2 > 0.72) to aerial N uptake in this region.
Nevertheless, the average did not show any strong correlations
with aerial N uptake (R2 < 0.66). Compared with the average
from−20◦ to+10◦ VZAs, the R2 of mRPA, DIDA, and DDn was
increased by 21.3–23.9, 15.3–18.8, and 14.4–17.6%, respectively.

Suitable Combined Angles for Aerial N
Uptake Assessment Using VIs
To ascertain the suitable range of VIs to the mRPA, R2 and
RMSE were selected to compare different angle combinations.
As showed in Figure 9, the performance of the R2 and RMSE
in the back scattering direction (R2 = 0.426–0.804, p < 0.001)
were superior to those in the forward view angles (R2 = 0.337–
0.775, p < 0.001). Among the 13 VZAs, −20◦ to +10◦ VZAs
showed significantly higher predictive ability (high R2 and small
RMSE), and the most significant viewing angle was found to be
−10◦, with an R2 and RMSE of 0.804 and 3.615, respectively.
Figure 10 revealed that these combinations including large VZAs
combinations generated relatively poor correlations. There was
a dominant region in range of −10◦ to 0◦ (R2 = 0.796), and
the predictive ability of mRPA in −20◦ to +10◦ combination
was also relatively high (R2 = 0.782). When the VZA was out
of −40◦ to +20◦, the predictive accuracy was relatively low (R2

< 0.740). A comparison of VIs (Figure 11) demonstrated that
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TABLE 3 | The correlation coefficient (r) for the relationships of vegetation indices with aerial N uptake at different viewing zenith angles (n = 155, p0.001 = 0.262).

−60◦
−50◦

−40◦
−30◦

−20◦
−10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

TWO BANDS

VIopt 0.560 0.644 0.732 0.795 0.831 0.858 0.855 0.829 0.764 0.712 0.643 0.531 0.390

DVI (810,560) 0.548 0.627 0.711 0.779 0.806 0.832 0.828 0.823 0.811 0.791 0.719 0.624 0.493

RDVI (800,670) 0.535 0.591 0.672 0.743 0.781 0.827 0.825 0.808 0.803 0.763 0.694 0.599 0.475

PSSRb 0.490 0.641 0.715 0.765 0.795 0.802 0.808 0.753 0.710 0.679 0.624 0.539 0.412

MSR 0.460 0.571 0.655 0.718 0.761 0.787 0.789 0.752 0.685 0.627 0.540 0.423 0.306

NDRE 0.602 0.683 0.732 0.759 0.774 0.778 0.779 0.760 0.738 0.715 0.689 0.646 0.583

SAVI (825,735) 0.565 0.660 0.706 0.742 0.765 0.764 0.758 0.749 0.734 0.715 0.687 0.643 0.587

CIred-edge3 0.558 0.670 0.726 0.758 0.776 0.766 0.753 0.748 0.728 0.702 0.674 0.626 0.552

THREE BANDS

DIDA −0.699 −0.736 −0.792 −0.828 −0.853 −0.877 −0.871 −0.869 −0.842 −0.818 −0.789 −0.752 −0.672

DDn −0.656 −0.715 −0.786 −0.827 −0.850 −0.872 −0.867 −0.865 −0.838 −0.812 −0.784 −0.724 −0.614

MTVI1 0.411 0.484 0.577 0.671 0.722 0.756 0.781 0.785 0.771 0.724 0.635 0.519 0.387

mRER 0.592 0.601 0.603 0.632 0.705 0.780 0.777 0.775 0.712 0.679 0.674 0.616 0.558

mSR705 0.504 0.643 0.719 0.753 0.771 0.769 0.749 0.713 0.674 0.653 0.612 0.534 0.407

mRPA 0.653 0.738 0.816 0.857 0.879 0.896 0.893 0.880 0.853 0.823 0.783 0.711 0.578

OVER 3 BANDS

DD 0.656 0.689 0.759 0.807 0.835 0.868 0.862 0.857 0.847 0.821 0.772 0.701 0.588

SDr-SDb 0.486 0.573 0.661 0.740 0.775 0.787 0.798 0.814 0.802 0.762 0.678 0.570 0.434

TVI-3 0.457 0.546 0.637 0.723 0.761 0.789 0.808 0.809 0.800 0.761 0.676 0.565 0.426

REFCA −0.609 −0.655 −0.703 −0.736 −0.754 −0.750 −0.748 −0.741 −0.704 −0.695 −0.661 −0.621 −0.566

FIGURE 8 | Relationship between aerial N uptake and DIDA, DDn, mRPA, and

average (corresponding average value of 18 VIs at different VZAs, shown as

average) at different VZAs (n = 155, p0.001 = 0.262).

the mRPA (R2 = 0.782 and 0.734) at −20◦ to +10◦ and −30◦

to+20◦ VZAs were more sensitive than the two best-performing
published index DIDA (R2 = 0.740 and 0.712) and DDn (R2 =

0.726 and 0.701). Figure 12 showed the quantitative relationship

FIGURE 9 | Comparison of the prediction power of mRPA at 13 VZAs in terms

of aerial N uptake (n = 155, p0.001 = 0.262).

between aerial N uptake and mRPA. The R2 increased from 0.734
(from −30◦ to +20◦ combination) to 0.782 (from −20◦ to +10◦

combination). Compared to the −10◦ VZA having the highest
R2 value, mRPA in−20◦ to+10◦ combination only had a slightly
decreased R2 (2.7%) and an increased RMSE (5.2%). As a result,
the novel mRPA model is the most forceful index for assessing
aerial N uptake because of its insensitivity to VZAs of −20◦ to
+10◦, increasing the practicality of mRPA in actual production
process.
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FIGURE 10 | Comparison of the predictive ability (R2) of the indices within different view zenith angles combinations in terms of aerial N uptake.

Testing Aerial N Uptake Estimation Models
The relationship between aerial N uptake and the spectral
indices (across −20◦ to +10◦ VZAs) discussed above were
measured utilizing data from Exp. 6 using R2, RMSE, and RE
to evaluate the accuracy and applicability between observed
and predicted values. Data analysis was carried out on
the common best-performing VIs DIDA and DDn, and on
the novel index mRPA (Figure 13). The DIDA and DDn
showed acceptable performance in the tests, with R2 of 0.804,
RE of 14.1%, and a RMSE of 2.464 for DIDA and R2

of 0.792, RE of 14.9%, and a RMSE of 2.554 for DDn;
this also indicates that DIDA is a better indicator than
DDn. Compared with these two common indices, the mRPA
demonstrated the superior predictive ability of aerial N uptake,
with R2 of 0.825, RE of 12.1% and RMSE of 2.190. In
summary, mRPA seems to be the best index for predicting
aerial N uptake of winter wheat under different management
conditions.

DISCUSSION

Remote sensing technology is widely used in agricultural
production. It mainly includes the following aspects: crop growth
measuring (e.g., biomass, N content, and yield), agricultural
disaster monitoring (e.g., plant diseases and insect pests,
droughts and floods) and crop phenotyping (e.g., crop height,
leaf size, shape, and canopy longevity), and so on (Le Maire
et al., 2008; Cao et al., 2015; He et al., 2016; Holman et al.,
2016; Virlet et al., 2017), which could provide technical support
for production management. However, spectral reflectance has
previously been shown to be significantly affected by canopy
structure, planting density, the wind, the angle of the sun,
and various other factors (Rondeaux et al., 1996). To extract
exact information for different characteristics and improve the
detection precision, area calculations have been introduced to
reduce the background effects (Broge and Leblanc, 2000; Ren
et al., 2011; Li et al., 2013). Delegido et al. (2010) developed
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FIGURE 11 | Comparison of the predictive ability of the indices within five kinds of view zenith angles combinations in terms of aerial N uptake.

FIGURE 12 | Comparison of the prediction power of mRPA at different VZA combinations in terms of aerial N uptake. (A) −30◦ to +20◦ and (B) −20◦ to +10◦.

the normalized area over reflectance curve index (NAOC) and
this index showed a linear relation with chlorophyll content.
The normalized difference of the double-peak areas (NDDA)
was calculated and discovered to correlate strongly with LNC
(Feng et al., 2014). Broge and Leblanc (2000) found that the
TVI (constructed by the area under the concave curve of red
light absorption) could effectively assess the chlorophyll content
and LAI. The chlorophyll absorption integral infers chlorophyll
concentration through calculating the surrounding area between
a connecting line of 600 and 735 nm and the red edge (Oppelt
and Mauser, 2004). In this study, five of 17 VIs have previously
been constructed using the area-based algorithm. Among them,

DIDA, SDr-SDb, and TVI had significant correlations with
aerial N uptake, with r-values of −0.877, 0.814, and 0.809,
respectively, at their advantageous viewing angles (−10, 10, and
10◦, respectively). The best-performing common index DIDA
had strong correlations (R2 > 0.74) to aerial N uptake within
−20◦ to +10◦ VZAs. In addition, DIDA showed acceptable
performance in the tests, with R2 of 0.804, RE of 14.1% and
a RMSE of 2.464. The above results showed that the VIs
constructed by area algorithm could potentially be used to
precisely predict aerial N uptake.

Many vegetation indices have been also constructed, including
those NDVI-, RVI-, and DVI-like spectral indices, or other
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FIGURE 13 | Comparison between estimated and measured aerial N uptake based on DIDA (A), DDn (B), and mRPA (C) for −20◦ to +10◦ combinations (n = 252, p

< 0.001).

derived functions to enhance accuracy of estimating models
(Huete, 1988; Wang et al., 2012). Baret and Guyot (1991)
and Rondeaux et al. (1996) constructed the transformed soil-
adjusted vegetation index (TSAVI) and optimized SAVI (OSAVI)
by adding soil line parameters into NDVI to decrease the
sensitivity of the soil background reflectance at low LAI.
In order to reduce the combined influences of the canopy
non-photosynthetic materials and increase the sensitivity of
chlorophyll concentration determination, Daughtry et al. (2000)
added the R700/R670 to the chlorophyll absorption ratio index
(CARI) to obtain modified CARI. Haboudane et al. (2008)
brought the (R700/R670)

1/2 into the TVI to construct the
triangular chlorophyll index (TCI) to increase its sensitivity of
chlorophyll changes. These studies inspired us to develop a
novel index by adding a coefficient. We attempted to derive the
coefficient by combining different bands in a square root form.
Finally, R760 and R600 were selected from different combinations
of bands and changed into the form of (R760/R600)

1/2. This was
integrated with RSDR (760,718) to construct the mRPA, and
this novel VI had a high correlation coefficient within −20◦ to
+10◦ VZAs (R2 = 0.782).The mRPA makes the best of area
algorithms and red-edge information, and effectively improves
the monitoring accuracy of aerial N uptake.

The vegetation indices displayed anisotropy depending on the
canopy structural development, shadowing, the view angles of
the sensors, the inherent viewing geometry of sensors, and in
some respects the underlying soil (Kimes et al., 1985). Vegetation
indices merging into multiple VZAs had the potency to further
enhance anisotropy estimation. Pocewicz et al. (2007) took full
advantage of the hotspot effect in the backscatter direction to
improve quantitative estimation of LAI. Galvão et al. (2009)
highlighted that the back-scattering direction was suited to
predict the yield of soybean. He et al. (2016) showed that
the novel VI constructed by a four-band VI from two angles
(−20◦ and +10◦) was sensitive to the change of the LNC in
wheat. In this study, the back scattering direction improved
indices performance for aerial N uptake compared with the
forward scattering direction. The main reason may be that
back scattering observations contain more signals from sunlit

branches or leaves with higher reflectance values, while forward-
scatter observations derive mostly from shady branches/leaves
with lower reflectance values (Stagakis et al., 2010). In addition,
our results showed that the R2 increased with decreasing view
zenith angles in back and forward-scatter direction. This was
mainly because that the spectral data obtained at small angles
mainly includes the total plant characteristics (lower, middle, and
upper) of wheat. In general, sampling involving upper, middle,
and lower wheat leaf layers could determine the aerial N uptake
of the target region. In summary, further survey analysis on the
variations of relationships between canopy attributes and remote
sensing observations and on the availability off-nadir in fetching
information is recommended.

Multi-angular remote sensing is able to obtain three-
dimensional vegetation structure information, and thus it is
better than vertical measurement for monitoring the canopy
structural properties and the biochemical component of ground
objects (Pocewicz et al., 2007). Rautiainen et al. (2008)
demonstrated that high VZAs are the best fit for detecting
over-story LAI values because of the quite limited influence
of bottom layer on the whole signal. The value of canopy
chlorophyll inversion index(CCII) at ±50 and ±60◦, ±30 and
±40◦, and nadir,±20 and±30◦, VZAs were selected for inverting
the chlorophyll at the upright upper, middle and bottom layer
(Huang et al., 2011). Song et al. (2016) showed that −40◦ VZA
was suitable to effectively monitor the LNC of wheat. This study
showed that the R2 of mRPA changed strongly with VZAs,
which the highest R2 value was found at −10◦ VZA (R2 =

0.804). The mRPA within −10◦ could improve the monitoring
accuracy of aerial N uptake. However, it is not convenient to
accurately control measuring angle under off-nadir conditions in
the field operation. Our research found that mRPA was relatively
insensitive between−20◦ and+10◦ VZAs region for R2 changes.
A comparison among spectral parameters demonstrated that
performance of mRPA in −20◦ to +10◦ combined dataset was
superior to the two better published indices, with R2 of 0.782
for mRPA, 0.750 for DIDA, and 0.736 for DDn, respectively.
Compared to themost sensitive VZA (−10◦), mRPAwithin−20◦

to+10◦ VZAs only had a slightly reducedR2 (2.7%). This allowed
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us to construct a unified model in variable VZAs range to assess
aerial N uptake in wheat, which decrease the influence of the
VZAs and increase the field operation simplicity and applicability
in a wide-angle region using portable monitors. Therefore, it is
vital to select appropriate VI formulas and VZAs, which could
reduce the variance due to soil background and crop canopy
structure. In summary, the novel index plays an important role in
predicting aerial N uptake of wheat and could be utilized to more
precisely regulate N fertilization rate for different cultivation sites
and plant types.

In this study, the novel index mRPA had the higher predictive
ability with range of −20◦ to +10◦. This can not only provide
optimized parameters for the development of the portable
monitor, but also offer dynamic information for guiding precise
N budgeting. In order to obtain higher yield and avoid wasting
resources, it is important to consider crop-N demand as well
as soil-N supply to optimum N fertilizer strategy (Ju et al.,
2009; Hartmann et al., 2015). The N fertilizer requirement was
calculated using the following formula: Nreq = (Ntarget –Nuptake –
Nsoil)/fNUE, where Ntarget is the total crop-N demand for a target
yield and grain protein, calculated according to Angus (2001),
Nuptake is the aerial N uptake, Nsoil is the potential soil-N supply
for the rest of the growing period, and fNUE is the fertilizer-N
use efficiency. The mRPA model developed in this study could
effectively estimate Nuptake, which will contribute to managing
the N application in winter wheat. The prediction power of VIs
was affected by cultivation factors. Only if the VI was seldom
influenced by the factors of cultivation, the applicability of the
model was strong. We synthesized dataset from the vegetative
growth stages to develop a unified model that could be easily
used to assess the N status. However, this research was designed
only on winter wheat in Henan province, the dependability and
adaptability of this novel model ought to be tested in other crops
and areas.

CONCLUSIONS

Timely assessment of aerial N uptake is important to
diagnose crop N status, maximizing yields and minimizing
disadvantageous environmental impacts. In this study, we
compared the use of 18 VIs, including 17 common VIs and
a novel index constructed in this study, to estimate aerial N
uptake of wheat. The results demonstrated that back scattering

observation angles improved the ability to predict aerial N
uptake compared with forward-scatter viewing angles VZAs.
To decrease the restrictions on the environmental conditions
and to further explore the superiority of spectral information,
we combined the advantages of red-edge characteristics and
area-based algorithms to construct a novel index mRPA to
illuminate dynamic changes in aerial N uptake. The novel VI
have the characteristic of simplicity and reliability and could be
developed according to the formula: mRPA = (R760/R600)

1/2

× (R760-R718). Compared with the best-performing traditional
indices DIDA and DDn, the predictive ability of mRPA at
−10◦ view angle was effectively enhanced by 4.6–5.8%. Further
systematic analysis of VZA combinations showed that mRPA
had the best forecasting ability when compared with the
traditional indices, with small difference between combinations
of −20◦ to +10◦. This has guided us in the development of
a unified model for forecasting the aerial N uptake of wheat
across a wide angle range; this will increase the precision of N
predictions under a range of angles using portable monitors.
The integrated index mRPA was shown to be practical and
exact for aerial N uptake evaluation of winter wheat. This
result will be also beneficial for choosing appropriate VZA
and for the construction of more precise sensors for ecosystem
monitoring. Nonetheless, it is also need to further validate
the reliability and stability of the novel VI and to examine
its effectiveness under the condition of different cultivation
environment.
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The improvement of agronomic practices and the use of high technology in field crops

contributes for significant increases in maize productivity, and may have altered the

dynamics of nutrient uptake and partition by the plant. Official recommendations for

fertilizer applications to the maize crop in Brazil and in many countries are based on

critical soil nutrient contents and are relatively outdated. Since the factors that interact

in an agricultural production system are dynamic, mathematical modeling of the growth

process turns out to be an appropriate tool for these studies. Agricultural modeling can

expand our knowledge about the interactions prevailing in the soil-plant-atmosphere

system. The objective of this study is to propose a methodology for characterizing

the micronutrient composition of different organs and their extraction, and export

during maize crop development, based on modeling nutrient uptake, crop potential

evapotranspiration and micronutrient partitioning in the plant, considering the production

environment. This preliminary characterization study (experimental growth analysis)

considers the temporal variation of the micronutrient uptake rate in the aboveground

organs, which defines crop needs and the critical nutrient content of the soil solution.

The methodology allowed verifying that, initially, the highest fraction of dry matter, among

aboveground organs, was assigned to the leaves. After the R1 growth stage, the largest

part of dry matter was partitioned to the stalk, which in this growth stage is the main

storage organ of the maize plant. During the reproductive phase, the highest fraction

of dry matter was conferred to the reproductive organs, due to the high demand for

carbohydrates for grain filling. The micronutrient (B, Cu, Fe, Mn, and Zn) content follows

a power model, with higher values for the initial growth stages of development and

leveling off to minimum values at the R6 growth stage. The proposed model allows

to verify that fertilizer recommendations should be related to the temporal variability

of micronutrient absorption rates, in contrast to the classic recommendation based
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on the critical soil micronutrient content. The maximum micronutrient absorption rates

occur between the reproductive R4 and R5 growth stages. These evaluations allowed to

predict the maximum micronutrient requirements, considered equal to respective stalk

sap concentrations.

Keywords: Zea mays, micronutrient content, micronutrient partition, productivity, agricultural modeling

INTRODUCTION

Maize (Zea mays L.) is the most cultivated cereal worldwide,
mainly because of the different ways of consumption, as human
food and animal feed, as well as many byproducts for the high
technology industry (Edwards, 2009). Brazil is the world’s third
largest maize producer, behind the United States and China. In
Brazil, maize is general grown in two cropping seasons, and
covered an area of 15,627,300 ha in the 2014/2015 season. The
national average yield triplicated from 1,632 kg ha−1 to 5,382 kg
ha−1 over the last 40 years (CONAB, 2015). Such increases
in productivity are due to the development of agriculture in
relation to the breeding of plants and management practices,
including the correction and fertilization of soils (Bender et al.,
2013; Ciampitti et al., 2013). However, the application of
micronutrients also played an important role, although the
information on their absorption and partition by the maize plant
rely on older literature as stated by Ciampitti et al. (2013).
The most recent studies on the subject have been carried out
mainly in the United States. Few studies were performed on the
absorption and nutrient partitioning in modern maize hybrids
used in Brazil (Von Pinho et al., 2009). The Brazilian lime and
fertilizer recommendations are mainly based on 15–20-year-old
studies such as van Raij et al. (1996), Ribeiro et al. (1999), Oliveira
(2003), SBCS (2004) and Cantarutti et al. (2007).

In addition, agricultural production systems have also
changed, with higher plant densities, reduced seed spacing, use of
agrochemicals for crop protection and use of transgenic hybrids
(Bender et al., 2013).

The use of increasingly growing high-tech crops may have
changed the dynamics of absorption and partition of nutrients
by the maize crop. Therefore, studies on the current absorption
patterns and partition of micronutrients are welcome to update
official fertilizer recommendations, which are still based on
soil chemical analyses. This is essentially a static approach,
whereas processes during crop development are dynamic. For
example, using only soil chemical analyses does not allow to
consider variations of the critical micronutrient content among
phenological growth stages, expected productivity and soil and
climatic interactions.

The proposed model will be useful for the improvement of
the traditional fertilizer methodology based on soil analysis,
giving emphasis to the plant as a nutrient extractor. The model
considers that the fertilizer recommendation should be based
on the temporal variability of the nutrient absorption rate, in
comparison to the classic recommendation based on the critical
soil nutrient content.

This study is based on the following hypotheses: (i) the
maximum micronutrient concentration in the sap depends on

productivity and transpiration, (ii) the micronutrient content
in the different organs is characterized by a power function
and does not depend on productivity, and (iii) the nutrient
with concentration in the sap equal to the required critical
concentration of the crop, limits productivity (Liebig Law).

This preliminary study aims to propose a methodology
for characterizing the composition of different organs and
extraction, distribution and export of the micronutrients boron
(B), copper (Cu), iron (Fe), manganese (Mn), and zinc
(Zn) during maize plant development. Based on modeling
micronutrient uptake, crop potential evapotranspiration and
micronutrient partition in the plant, taking into account the
micronutrient uptake rate in a given production system, it
contributes to an improvement in the recommendation of these
micronutrients.

MATERIALS AND METHODS

Environmental Conditions
A field experiment with maize was carried out in Piracicaba,
state of São Paulo, Brazil (22◦ 41′ S; 47◦ 38′ W, 546m above sea
level) to characterize the temporal variation of above ground dry
matter accumulation and micronutrient contents from sowing
until physiologic maturity.

The climate is of the Köppen Cwa type (Alvares et al.,
2013), with a rainy summer and dry winter, annual average
air temperature 21.4◦C and yearly rainfall 1,257 mm. The
reference evapotranspiration (ETo, mm d−1) was calculated by
the Penman-Monteith method (Allen et al., 1998), and the water
balance was established according to Thornthwaite and Mather
(1955).

The soil was classified as a typical Hapludox as defined
by the USDA Soil Taxonomy (Soil Survey Staff, 1975). The
micronutrients B (determined in hot-water-soluble method
developed by Berger and Truog, 1940), Cu, Fe, Mn and Zn
(determined in DTPA pH 7.3 method developed by Lindsay and
Norvell, 1978) concentrations in the soil were, respectively, 0.32,
4.0, 15.0, 16.8, and 2.5mg dm−3.

Cropping System Characterization
Maize was sown on 26 March 2013, using a population of
65,000 plants ha−1 (spacing between rows of 0.45 m). The
maize simple hybrid DKB 390 VT PROTM 2 was chosen
due to its favorable features, specifically: (i) high potential
productivity, (ii) YieldGard technology (tolerance to Spodoptera
frugiperda,Helicoverpa zea, andDiatraea saccharalis) and (iii) RR
technology (tolerance to the glyphosate herbicide).

For dry matter composition characterization, a homogeneous
single plot of 5,000 m2 was sown and managed in the same way
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applying nitrogen (30 kg ha−1 of N), phosphorus (80 kg ha−1

of P2O5) and potassium (40 kg ha−1 of K2O). An additional
of 90 kg ha−1 of N was applied at the V4 phenological
stage.

The seed treatment consisted of insecticide and fungicide
applications (Fipronil, Pyraclostrobin and Thiophanate-methyl
at a rate of 200mL per 100 kg of seeds).

Sampling Description
The plot was subdivided into 315 parcels used for sampling of the
above ground plant parts. Each parcel of 12.6m2 consisted of four
maize lines 7m long, the central ones used for plant sampling.
With this large number of parcels, it was possible to randomly
sample only two plants per parcel during the complete cycle of
the crop.

Samplings consisted of plant collection at times according to
the growth stages defined by Ritchie et al. (1996), as follows:
V2, V4, V6, V8, and V10, which occurred at 14, 21, 28, 35, and
42 days after seeding (t, d), respectively (Table 1). Sixty plants
were collected at each sampling date, two per plot, one of each
central line, using 30 parcels chosen randomly over the whole
plot. The 60 sampled plants were subdivided, also randomly, into
six replicates (composed samples) of 10 plants each for drymatter
and chemical analyses.

At V12, V15, R1, R2, R2, R3, R4, R4, R5, R5, and R6, which
occurred at 50, 56, 70, 77, 84, 91, 104, 111, 118, 127, and
139 days, respectively (Table 1), the number of harvested plants
was reduced to 30 plants per sampling. Therefore, the resulting
composed samples consisted of five plants.

In this way, during the experimental period, 630 plants were
sampled, corresponding to 1.93% of all plants. To determine the
crop development growth stage, phenological characterization
was performed every 2 days during the crop cycle, according to
Ritchie et al. (1996).

Plant organ samples were dried at 65◦C to characterize
leaf, stalk, tassel, ear, straw, style-stigma and total dry matter.
Subsamples were used for micronutrient analyses.

The leaf area was evaluated with a LI-COR R© sensor (model
Li-3100C, Lincoln, Nebraska, USA) allowing leaf area index
(LAI, m2 m−2) estimation during crop development. LAI was
determined in all growth stages, with six replicates, using the
same leaves for dry matter and chemical analyses.

Harvest was performed at physiologic maturity (R6 growth
stage), collecting all plants of the central two lines of 7m,
discarding 0.5m at each border. Grain yield was estimated from
the weight of 1,000 seeds at 13% water content.

Basic Hypothesis of the Micronutrient
Absorption Model
Considering that at a given time t (d) within the crop cycle, plants
have accumulated a mass of dry matter per area D (kg ha−1),
with a nutrient content N (mg kg−1), the cumulative nutrient
absorption A (kg ha−1) is given by the product of D and N.

Using observed data for parameterization, D (sigmoid
function) and N (power function) were modeled as a function
of time (t) using the following empirical equations:

D = k1 +
k2k4

2

k4
2
+
(

t − k3
)2

(1)

N = k5.t
k6 (2)

in which k1 (kg ha−1), k2 (kg ha−1), k3 (d), k4 (d), k5 (mg kg−1

d −k6 ) and k6 are empirical fitting parameters calibrated from
experimental data of D and N by minimizing the sum of square
errors.

The development of the general model is based on the growth
curve of the maize plant given by the accumulation of the total
dry matter, the sigmoidal Equation (1). For the temporal changes
of the micronutrient content in the plant, the power function 2
was chosen.

Based on the dry matter production curve D and
micronutrient content N of the above ground plant, a model was

TABLE 1 | Description of sampling (S) date (D), growth stages (GS), accumulated degree-days (DD, oCd) and relative development (Rd, %) based on DD of the maize

crop (hybrid DKB 390 VT PRO 2), during vegetative and reproductive phases, as a function of time (t, d), from March 26 to August 12, 2013.

S Vegetative phase S Reproductive phase

t D GSa DDb Rd t D GSa DDb Rd

– 0 March 26 Seeding – – 8 70 June 4 R1 863 54.1

– 7 April 2 VE 0 0.0 9 77 June 11 R2 943 59.1

1 14 April 9 V2 215 13.5 10 84 June 18 R2/R3 1,021 64.0

2 21 April 16 V4 307 19.2 11 91 June 25 R3 1,097 68.7

3 28 April 23 V6 385 24.1 12 104 July 8 R4 1,249 78.3

4 35 April 30 V8 474 29.7 13 111 July 15 R4/R5 1,325 83.0

5 42 May 7 V10 567 35.5 14 118 July 22 R5 1,411 88.4

6 50 May 15 V12 653 40.9 15 127 July 31 R5/R6 1,462 91.6

7 56 May 21 V15 728 45.6 16 139 August 12 R6 1,596 100.0

aRitchie et al. (1996).
bDD: 10◦C as the lower base temperature and 35◦C as the upper base temperature.
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proposed to characterize the nutrient absorption A:

A = D.N = k1k5.t
k6 +

k2k4
2k5.t

k6

k4
2
+
(

t − k3
)2

(3)

The shape of the sigmoidal curve represents a positive increase in
dry matter accumulation with increasing rates in the vegetative
growth stages and with decreasing rates in the reproductive
growth stages.

Application of the Proposed Model
To calibrate the absorption rate curve (λ, mg ha−1 d−1)
(Figure 1) for each of the micronutrients, the following equation
was used:

λ =
dA

dt
= k1k5.k6t

k6−1 (4)

+ k2k4
2k5











k6t
k6−1

[

k4
2
+
(

t − k3
)2
] −

2tk6
(

t − k3
)

[

k4
2
+
(

t − k3
)2
]2











Starting from the first derivative of the absorption rate of a
micronutrient λ (or the second derivative of the absorption
march – A, Equation 3):

f (t) =
dλ

dt
=

d2A

dt2
(5)

The maximum micronutrient absorption rate (λmax) can be
determined according to f (t) = 0. It is assumed to be related
to the critical micronutrient content in the soil solution. The
maximum absorption rate λmax (maximum maize crop demand
at t = tmax = ti+1) can be found at time t, in the iteration “i+1”
(Figure 1), minimizing the sum of square errors, corresponding
to d2A/dt2 = 0 using the iterative Newton-Raphson method:

ti+1 = ti −
f (ti)

f ′ (ti)
(6)

f (t) = C1t
k6−2

+ C2t
k6−2

{

k6

T2
−

2t2T1

T2
2

}

(7)

+
C2

(

k6 − 1
)

{

(

−2k6 − 4t
)

T1 − 2t2

T2
2

−
8t2T2

2

T2
3

}

tk6−1

where C1 [C1 = k1k5k6
(

k6 − 1
)

], C2 [C2 = k2k4
2k5

(

k6 − 1
)

],

T1 [T1 = t − k3] and T2 [T2 = k4
2
+
(

t − k3
)2
] are auxiliary

variables.

f ′(t) = C1

(

k6 − 2
)

tk6−3
+ C2

(

k6 − 2
)

tk6−3

(

k6
T2
−

2t2T1
T2

2

)

(8)

+ C2t
k6−2







−2k6T1
T2

2 −

(4tT1 + 2t2)T22 − 8t2T1
2T2

T2
4







+ C2t
k6−2







(−2k6 − 4t)T1−2t2

T2
2 −

8t2T1
2

T2
3







+
C2

(

k6 − 1
) tk6−1



















2
[

−2T1 − k6 − 2t − t2
]

T2 +

8
(

k6 + 2t
)

T1
2
+ 8t2T1

T2i
3 −

16
[

tT1
2
+ t2T1

]

T2 − 48t2T1
3

T2
4



















If
∣

∣f (ti+1)
∣

∣ < ε then tmax = ti+1, where ε is the maximum
allowed error (10−7). The maximum absorption rate λmax

corresponds to the soil supplying capacity (λs, mg ha−1 d−1)
that meets themicronutrient demand during the entire crop cycle
(Figure 1), so that:

λmax = λ (tmax) = λs = k1k5.k6tmax
k6−1 (9)

+ k2k4
2k5











k6tmax
k6−1

k4
2
+
(

tmax − k3
)2

−
2tmax

k6
(

tmax − k3
)

[

k4
2
+
(

tmax − k3
)2
]2











To estimate the maximum concentration Cc of a micronutrient
in the maize stalk sap at time t (t = ti+1) of λmax (when λ = λs),
first the water flow rate absorbed by the roots is taken equal to the
sum of the actual transpiration (Ta, mm d−1) and the absorbed
water needed for daily plant growth (α, mm d−1).

Since micronutrient flux, here considered as λmax for each
micronutrient, is the product of the water flux and the maximum
sap concentration (Cc, mg L−1), we have:

Cc =
λmax

104(Ta+ α)
(10)

where α is the daily absorbed water by the plant to form dry
matter and the daily water retained by the plant (kg m−2 d−1).

FIGURE 1 | Micronutrient absorption rate (λ, mgha−1d−1) as a function of time (t, d), for the determination of the maximum absorption rate (λmax, mgha−1d−1)

corresponding to the rate of the soil supplying capacity (λs, mgha−1d−1), considered sufficient during the crop cycle for a given productivity.
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The maximum sap concentration (Cc∗) can also be expressed in
mmol L−1 dividing the term λmax/[10

4(Ta+α)] by M, where M
is the molecular mass (g mol−1) of the considered micronutrient
(B, Cu, Fe, Mn, and Zn).

Statistical Analyses
All statistical analyses (regressions, model fitting) in this study
were performed using the software Table Curve 2D, version 5.01
(Systat Software, 2000).

RESULTS

Field Experiment
From March 26 to August 12, 2013, total precipitation was 409.6
mm (Figure 2). From seeding until the growth stage V4, there
was no significant drought and fromV4 to V15 growth stages (20–
56 days) a drought period occurred. The grain productivity of the
maize crop was 10,335 kg ha−1 (13% of seed water content).

Climatic Conditions and Soil Water Storage
During the crop cycle, minimum (Tn), average (Td), and
maximum (Tx) air temperatures oscillated, respectively, between
6.1 and 21.7◦C (mean value: 14.6◦C), 11.2 and 26.3◦C (mean
value: 20.7◦C) and 14.6 and 35.7◦C (mean value: 28.4◦C). The
actual evapotranspiration (ETa) varied between 0.1 and 1.9 mm
d−1 most of the time (mean value: 0.96 mm d−1) (Figure 2).

During the dry spell, soil water storage reduced from 46.4
mm (soil water holding capacity—SWHC) to about 12.0 mm
(Figure 2). From visual field observations, it was concluded that
the crop water stress was not severe. Between 57 and 121 days,
water supply by rain allowed a normal development of the crop
(V15 to R5 growth stage, Figure 2). After 121 days, there was no
more rain until maturity (R6 growth stage) and the harvest could
be performed under excellent conditions.

Leaf Area Index and Dry Matter
Accumulation
Positive increments of dry matter were observed from the onset
of growth and development until the end of the vegetative phase
(R1 growth stage) (Table 1), when the total dry matter reached
7.3·103 kg ha−1 (Table 2).

In relation to leaf area index (LAI, m2 m−2), at the start of the
crop cycle (day 14, V2 growth stage), its value was 0.06m2 m−2

and at 70 days (R1 growth stage), it expanded to 3.98 m2 m−2.
After this, at flowering, the leaf area index continued practically
constant until 127 days (R5/R6 growth stage), with a significant
drop at 139 days (R6 growth stage) presenting 2.90m2 m−2

(Table 2).
Total dry matter D increased until the physiologic maturity

(R6 growth stage), at 139 days with 23,069 kg ha−1 (354.9 g
plant−1) for a population of 65,000 plants ha−1 (Table 2). The

FIGURE 2 | Minimum (Tn), average (Td) and maximum (Tx) air temperatures (◦C), rainfall (R, mm d−1), potential (ETc, mm d−1), and actual (ETa, mm d−1)

evapotranspiration, soil water holding capacity (SWHC, mm), and soil water storage (SWS, mm) as a function of time (t, d), from March 26 to August 12, 2013 (Time

zero corresponds to sowing).
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TABLE 2 | Average values of leaf area index (LAI, m2m−2 ) and dry matter (kgha−1) of leaf, stalk, tassel, ear, style-stigma, straw and total of the maize crop (hybrid DKB

390 VT PRO 2) as a function of time (t, d).

t LAI Dry matter (kg ha−1)

Leaf Stalk Tassel Ear Style-stigma Straw Total

14 0.06 18.2 7.8 . . . . 26.0

21 0.28 100.1 59.2 . . . . 159.3

28 0.75 286.0 203.5 . . . . 489.5

35 1.56 655.2 1,007.5 . . . . 1,662.7

42 2.47 1,302.6 1,106.3 . . . . 2,408.9

50 3.35 2,031.9 2,779.4 . . . . 4,811.3

56 3.93 2,782.0 3,773.3 . . . . 6,555.3

70 3.98 2,429.7 4,153.5 418.0 37.1 22.8 234.0 7,295.0

77 3.86 2,329.6 4,982.9 226.9 133.9 65.0 535.6 8,273.9

84 3.85 2,302.3 5,635.5 158.6 468.7 96.2 969.2 9,630.4

91 3.69 2,191.8 4,961.5 152.8 1,120.0 122.2 1,253.9 9,802.0

104 3.47 2,103.4 4,828.9 146.3 3,396.9 65.7 1,494.4 12,035.4

111 3.86 2,374.5 6,926.4 169.7 6,019.7 252.9 1,996.8 17,739.8

118 3.59 2,589.6 6,630.7 153.4 8,457.2 85.2 2,148.9 20,064.9

127 3.79 2,810.6 6,496.1 145.6 10,030.2 55.3 2,217.2 21,754.9

139 2.90 2,555.8 6,479.9 152.8 11,659.1 152.8 2,069.0 23,069.2

fit of total dry matter accumulation to the growth model resulted
in an R2 of 0.97.

The Pearson correlation coefficient value (0.985) was larger
than the critical value, at 10% of significance level, for the dry
matter sigmoid model of the maize crop (hybrid DKB 390 VT
PRO 2) as a function of time (t, d). The empirical parameters are
k1 =−5,776.147 kg ha−1, k2 = 30,474.954 kg ha−1, k3 = 151,749
days and k4 = 68.397 days.

Micronutrient Content
Observed micronutrient contents (B, Cu, Fe, Mn, and Zn)
in leaf and stalk were initially high, decreasing to a stable
value near the end of the cycle (Figure 3A). In most cases,
nutrient contents in the leaf were higher than in the stalk,
except for Mn, which showed a higher concentration in the
stalk until day 112 (between R4/R5 and R5 growth stages).
The concentration of Zn was slightly lower in leaves at the
very early stages, but from 60 days (between V15 and R1

growth stages), its concentration in leaf and stalk decreased
continuously.

In the stalk, Mn contents practically did not vary over time.
Iron was the micronutrient with highest contents in the leaf and
in the stalk, being higher in leaf.

For the tassel and style-stigma, in general, all micronutrients
presented a concentration increase over time, except B in
the style-stigma. In the straw, B, Cu, and Zn concentrations
decreased over time, and Fe and Mn increased over time
(Figure 3B).

The Mn content in straw was constant. Concentrations of
Cu, Fe, Mn, and Zn in the tassel were higher during the final
growth stages of the crop. B followed by Cu are the nutrients that
present highest contents in the style-stigma. Furthermore, when
comparing the three organs, one can observe greater contents

of B and Cu in the style-stigma and of Fe and Mn in the tassel
(Figure 3B).

In relation to the tassel, the micronutrient contents are lower
at beginning and increase with crop development, with highest
levels between days 111 and 118 (between R4/R5 and R5 growth
stages).

In relation to the straw, the Fe and Mn contents are constant
during the time of collection and, the Zn contents are lower in
the final development growth stages of maize plant (Figure 3B).
When comparing the three organs, higher micronutrient
contents in the style-stigma and tassel in comparison to straw are
observed (Figure 3B).

From 104 days on (R4 growth stage), it was observed that the
micronutrient contents are higher in the ear when compared to
contents in the grain (Figure 3C).

The mineral elements in the ear (cob + grain) were analyzed
from 70 (R1 growth stage) to 91 days (R3 growth stage)
(Figure 3C).

At 104 days (R4 growth stage), the analysis was made in
separate for the cob and the grain (Figure 3C). The content
of micronutrients is higher in the early ear development and
decreases until the end of the evaluation period, 91 days (R3

growth stage).
As in the case of the ear, the levels of micronutrients in

the cobs and grain decrease toward the end of the crop cycle
(Figure 3C). However, the Fe and Mn levels are constant in
cob and the levels of Fe and Zn are also fairly constant for the
grain.

After the R4 growth stage, at 104 days, the Fe contents
were higher in the grain when compared to the cob
(Figure 3C).

At the R1 growth stage (70 days), higher B, Fe, and Mn
contents were found in the ear.
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FIGURE 3 | B, Cu, Fe, Mn, and Zn contents (N, mgkg−1 ) in (A) leaf ( ), stalk ( ), (B) tassel ( ), style-stigma ( ), straw ( ), (C) ear ( ), cob ( ), and grain ( ) of maize

plants (hybrid DKB390VTPRO2) as a function of time (t, d).

In grain, there are higher levels of B, Cu, and Mn at 104
(R4 growth stage) and Fe and Zn at 140 days (R6 growth stage)
(Figure 3C).

In 31 out of 45 cases, the Pearson correlation coefficient values
were larger than the critical values (69%) (leaf: 80%, stalk: 80%,
tassel: 60%, style-stigma: 60%, straw: 60%, ear: 80%, cob: 60%,
grain: 40%, and plant: 100%), at 10% of significance level, for
micronutrient content power model (Table 3).

Micronutrient Absorption A and Absorption
Rate λ for the Above Ground Plant
The total micronutrient absorption increased with crop growth
and development. At 14 days, the Cu, Fe, Mn, and Zn absorptions
were, respectively, 3, 430, 10, and 10 g ha−1, and at the end of the
cycle at 139 days, 180, 1,040, 930 and 430 g ha−1. The absorption
rate was lower at the beginning of the cycle, 14 days (V2 growth

stage) it was, respectively for Cu, Fe, Mn, and Zn, 1, 20, 3, and 3 g
ha−1 d−1, the absorption peak was observed at 111 days (R4/R5

growth stage) with a value of 2, 90, 12, and 5 g ha−1 d−1 (Table 4).
Equation (1) fitted well for all micronutrients except Cu

(Figure 4A). The absorption rate increased for all nutrients from
14 to 111 days. N is described as a decreasing power function for
all micronutrients, resulting in absorption rate functions whose
shape differs from the sigmoid function D.

The total B uptake at the R1 growth stage (70 days) was 80 g
ha−1 and at the end of the crop cycle, R6 growth stage (139 days)
110 g ha−1. The B absorption rate presents a maximum value
λmax on 112 days (R4/R5 growth stage) (Figure 4A) with 6 g ha

−1

d−1. Thereafter the rate decreases to the end of the crop cycle.
Cu had a similar behavior to Mn and Zn, but with a slightly

worse fit. Nevertheless, the power model for Cu content was
chosen, in the same way as for the contents of Mn. The total
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TABLE 3 | Empirical parameter values (k5, mgkg−1d −k6 and k6) and Pearson correlation coefficient (r) for micronutrient (m) content (N, mg kg−1) power model, for B,

Cu, Fe, Mn, and Zn in leaf, stalk, tassel, style-stigma, straw, ear, cob, grain, and above ground maize plant (hybrid DKB390VTPRO2).

m Leaf Stalk Tassel Style-stigma Straw Ear Cob Grain Plant

EMPIRICAL PARAMETER VALUES (k5, mgkg−1d −k6 )

B 93.693 336.03 16.258 95.93 3,593.6 1.0E+13 336,647 4.0E+06 4,828.994

Cu 8.408 21.183 0.2974 7.2660 12.275 55.104 63,469 17.101 0.251

Fe 2,213.2 38,302 0.0535 0.0015 4.1593 2.0E+06 0.2858 0.0323 112,537.98

Mn 75,824 33,114 0.0631 0.0183 19.722 292,534 353.59 103.96 71.34

Zn 38,335 370.12 20.272 8.2008 1,083.9 2,431.2 206,959 0.0153 111.305

EMPIRICAL PARAMETER VALUES (k6)

B −0.395 −0.807 0.1481 −0.165 −1.209 −6.254 −2.45 −2.959 −1.4147

Cu 0.093 −0.253 0.7613 0.1234 −0.107 −0.382 −1.877 −0.29 −0.2397

Fe −0.489 −1.383 1.7164 2.4275 0.5916 −2.514 1.0133 1.3793 −1.5903

Mn −0.142 0.089 1.4705 1.4864 0.0127 −2.158 −0.751 −0.65 −0.1207

Zn −0.115 −0.666 0.7936 0.3853 −0.868 −0.913 −1.84 1.5549 −0.3687

PEARSON CORRELATION COEFFICIENT (r)

B 0.604* 0.914* 0.203 0.075 0.602* 0.950* 0.785* 0.917* 0.869*

Cu 0.303 0.728* 0.771* 0.115 0.087 0.338 0.766* 0.149 0.741*

Fe 0.538* 0.876* 0.715* 0.629* 0.626* 0.877* 0.341 0.355 0.965*

Mn 0.582* 0.353 0.860* 0.762* 0.014 0.921* 0.633 0.360 0.742*

Zn 0.554* 0.894* 0.464 0.561* 0.808* 0.978* 0.979* 0.811* 0.945*

*Significant at level of 10% for micronutrient content power model by the critical Pearson correlation coefficient test.

TABLE 4 | Mean values of nutrient content (N, mgkg−1 ), absorption (A, gha−1) and absorption rate (λ, gha−1d−1) of B, Cu, Fe, Mn and Zn in maize crop (hybrid

DKB390VTPRO2) in relation to time after sowing (t, d).

t Nutrient content (N) Absorption (A) Absorption rate (λ)

B Cu Fe Mn Zn B Cu Fe Mn Zn B Cu Fe Mn Zn

14 – 13 1,693 52 42 – 3 430 10 10 – 1 20 3 3

21 65 12 888 49 36 50 10 690 40 30 2 1 20 3 2

28 43 11 562 48 33 60 20 760 60 40 2 1 30 4 2

42 24 10 295 45 28 70 30 810 120 80 2 1 30 4 2

50 19 10 224 44 26 70 40 830 170 100 3 1 40 5 3

56 16 10 187 44 25 70 40 840 200 110 3 1 40 6 3

70 12 9 131 43 23 80 60 890 290 160 4 1 50 7 3

77 10 9 113 42 22 80 70 910 340 180 4 2 60 8 4

84 9 9 98 42 22 90 80 940 400 210 4 2 70 9 4

91 8 9 86 41 21 90 100 970 470 240 5 2 70 10 4

104 7 8 70 41 20 100 120 1,030 600 300 6 2 80 11 5

111 6 8 63 40 20 100 140 1,050 680 330 6 2 90 12 5

118 6 8 57 40 19 110 150 1,070 750 360 6 2 90 11 4

127 5 8 51 40 19 110 170 1,080 840 400 5 2 80 10 4

139 4 8 44 39 18 110 180 1,040 930 430 3 1 50 6 2

absorption of Cu also increased during the crop development.
At day 14, the absorption of Cu was 3 g ha−1, at the end of
the vegetative growth stage (day 56, V15 growth stage), the
absorption was 40 g ha−1 and at the end of the cycle, it increased
to 180 g ha−1. With respect to the absorption rate, the behavior
of Cu was similar to Zn, being high at the first sampling (14
days), decreasing until 38 days (V8 growth stage) and then
increasing up to the maximum value at 109 days (between R4 and

R4/R5 growth stages) of 2 g ha−1 d−1 (Figure 4A). Thereafter it
decreases continuously until the end of the crop cycle.

The total absorption of Fe increased throughout the
development of the crop, at 14 days (V2 growth stage) showing
a value of 430 g ha−1. At R1 growth stage (70 days), the Fe uptake
was 890 g ha−1 and at the end of the cycle 1,040 g ha−1. With
respect to the absorption rate of Fe, it was high initially, at the
V2 growth stage (14 days) with a value of 20 g ha−1 d−1. The
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FIGURE 4 | (A) micronutrient contents of the above ground maize plant (N, mgkg−1), and (B) total absorption (A, gha−1) and absorption rate (λ, gha−1d−1) for B,

Cu, Fe, Mn, and Zn in the maize (hybrid DKB390VTPRO2) crop (weighted average of all above ground organs) as a function of the number of days after sowing (t, d).

nutrient absorption rate of Fe increased to the maximum value
of 90 g ha−1 d−1 at 112 days. The Fe rate decreases thereafter to
the end of the cycle (Figure 4B).

Mn behaved similarly to Cu. The total absorption increased
during crop development from 290 g ha−1 at the R1 growth

stage (70 days) to 930 g ha−1 at the end of the cycle (R6

growth stage, 139 days). At 14 days, the absorption rate was
low, increasing thereafter continuously until 112 days. From
this period, increasing values were observed, and the maximum
absorption rate (λmax) occurred at 112 days (between R4/R5 and
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R5 growth stages) (Figure 4B), with a value of 12 g ha−1 d−1.
Then, the Mn absorption rate decreased until harvest.

Zn total absorption was equal to10 g ha−1 at 14 days and 430 g
ha−1at the end of the cycle. The absorption rate peak was 5 g
ha−1 d−1 at 107 days (between R4 and R4/R5 growth stages)
(Figure 4A), thereafter decreasing until harvest.

The Pearson correlation coefficient values (0.869, 0.741, 0.965,
0.742, and 0.945) (Table 4) for micronutrient (B, Cu, Fe, Mn, and
Zn) contentmodel (Figure 4A) were larger than the critical value,
at the 10% of significance level.

Micronutrient Content in Stalk Sap
The values for B, Cu, Fe, Mn, and Zn contents (N), total
absorption (A) and the maximum absorption rates for each
micronutrient (λmax), and maximum concentrations (CC) are
shown in Table 5.

The maximum absorption rate (λmax, g ha−1 d−1) of the
micronutrients occurred between 107 and 112 days, i.e., during
the R4 (50% of the plants exh0ibiting farinaceous grains) and
R5 (50% of the plants exhibiting hard farinaceous grains) growth
stages (Ritchie et al., 1996). These growth stages are therefore the
most important with respect to the nutritional needs of the maize
crop. At these growth stages, the starch accumulation in the
maize grain increases featuring a period of grain filling, resulting
in greater dry mass of grain.

The ETa values in the corresponding days of λmax are relatively
small because the period coincides with the local winter season,
due to cloudy days. Estimates of the maximum concentration
(CC, mg L−1) in the gross plant sap were highest for Fe, followed
by Mn (Table 5).

DISCUSSION

Evapotranspiration
Water absorption refers to the sum of the transpiration, the
amount of water retained by the maize crop and the amount
of water required to produce the total dry matter. Maize crop
productivity depends fundamentally on the water absorption and
the carbon dioxide assimilation, since carbon and oxygen (from
CO2), and hydrogen (from H2O) represent about 96% of the dry
matter.

The maize crop potential evapotranspiration (water
requirement) during the whole cycle was 180 mm. The
total actual evapotranspiration was 135 mm. There was a water
deficit of 45 mm. A mild water stress occurred during 38 days of
crop establishment, from April 14 to May 21.

Water Deficit
Effects of water deficit vary according to the development
growth stage of the crop, and when occurring in the vegetative
period, plant height was reduced, leaves become smaller, and
consequently present a lower leaf area. However, the stress is
mainly harmful to grain productivity when it occurs at the
beginning of the tassel development up to grain filling. The
demand for water increases rapidly about 2 weeks before the
development of the tassel, and reaches a maximum at the
flowering peak, continuing high for about two more weeks when
it decreases rapidly.

Crop Cycle
The cropping period was from March to August, a season
that is called “second maize harvest” in Brazil, nowadays more

TABLE 5 | Maximum concentration (CC, mgL−1 or Cc*, µM, as function of the molecular weight M, gmol−1) of each micronutrient (m) in crude sap (xylem) of maize crop

(hybrid DKB390VTPRO2) at t days after sowing, corresponding to the growth stage (GS), above ground plant content (N, mgkg−1 ), nutrient absorption (A, gha−1),

maximum absorption rate (λmax, gha
−1d−1), actual evapotranspiration (ETa, mmd−1 ), evaporation (E, mmd−1), absorbed water by the plant to form dry matter, the

water retained by the plant (α, kg m−2 d−1), total dry matter stored on the day of calculation (1D/∆t, kgm−2d−1) and relative difference (1C, %) of Cc values estimated

by equations 12 (Cc12) and 14 (Cc14).

m M t N A λmax ETa Ea
∆
b

g mol−1 das mg kg−1 g ha−1 g ha−1 d−1 mm d−1 mm d−1 kg m−2 d−1

B 11 112 5.8 103.6 6.1 1.2 0.060 0.1717

Cu 64 109 8.1 131.5 2.1 1.5 0.075 0.1711

Fe 56 112 62 1,054.6 86.8 1.2 0.060 0.1717

Mn 55 112 40.4 686.4 11.6 1.2 0.060 0.1717

Zn 65 107 19.9 309.3 4.6 1.5 0.075 0.1699

m GS t 1D/∆t Cc12 Cc12* Cc14 Cc14* ∆C3

das kg ha−1 d−1 mg L−1
µM mg L−1

µM %

B R4/R5 112 289 0.47 42.3 0.51 46.2 −9.31

Cu R4/R5 109 288 0.13 2.1 0.14 2.2 −6.40

Fe R4/R5 112 289 6.62 118.2 7.23 129.2 −9.31

Mn R4/R5 112 289 0.88 16.1 0.97 17.6 −9.31

Zn R4/R5 107 286 0.29 4.4 0.31 4.7 −6.33

aE = 0.05ETa.
bu = 0.9 kg kg-1 (plant water content) and TH = 0.06 kg kg-1 (hydrogen content in the dry matter of maize crop).
c∆C = 100(Cc12-Cc14 )/Cc14.
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important than the “main maize harvest,” from September to
March. The crop cycle had a duration of 139 days. The vegetative
phase ended 70 days (R1 growth stage), accumulating 863◦Cdays,
and the reproductive phase extended from 70 to 139 days (R6

growth stage), with a total of 733◦C days (Table 1).

Crop Growth and Development
At the end of the vegetative phase, the maize plant gives
priority to the development of the tassel and ear, which causes
a remobilization of the photo-assimilates and nutrients from the
leaf to the production and dispersion of pollen and to grain filling.
It is also possible to observe a slight reduction of stalk dry matter
during 91–104 days (R3 and R4 growth stages) (Table 2).

During the reproductive phase, the ear is a significant
physiological drain. The plant redistributes photo-assimilates
and nutrients to the grain, for filling. Therefore, the closer
to physiologic maturity, the more leaves and stalk enter in
senescence.

The accumulation and mobilization of dry matter in maize
crop has a characteristic sequence over the growth cycle. For the
maize crop, some authors report senescence as a process that
encompasses the above ground plant, besides being caused by
internal and external factors and mediated by a genetic program.

At 112 days, the values of the growth rate continue to be
positive (dY/dt), but with decreasing daily gains (d2Y/dt2), i.e.,
the maize plant reduces its rate of dry matter accumulation
because of the senescence process.

Micronutrient Content
The demand for micronutrients depends mainly on the crop
productivity (production of total dry matter mass per unit area)
(Bray, 1948), and the variation of dry matter composition of
genotypes of the species of interest (least significant component).

Studies of Ciampitti et al. (2013), evaluating the contents of
B, Cu, Fe, Mn, and Zn in maize plants, showed similar results as
those found in this study. Thesemicronutrient contents are larger
at the beginning of the development of the maize crop, and then
decrease up to physiological maturity.

During the initial growth, as there is a low production of plant
dry matter, a high concentration of micronutrients was found
coming from the soil or being remobilized from other parts of
the plant.

The absorption of micronutrients depends on the water
absorption and the effective content of the micronutrient in
the soil solution. Transpiration depends on the difference
between water potential in the leaf and in the atmosphere. The
absorption of water and nutrients depends on the elements of
the climate (such as temperature, relative humidity and wind
speed), crop (such as root system architecture, leaf area index and
productivity) and soil (water and micronutrients content).

With crop growth, which usually follows a sigmoidal model,
the dry matter accumulation is more expressive than the capacity
of the plant to absorb and concentrate micronutrients. Therefore,
we have a dilution effect due to the maize crop growth.
Furthermore, it is known that higher concentrations of Fe and
B, for example, are related to leaf and stalk. Over time, other

structures gain greater proportion in the share of total dry matter
thus contributing to part of this dilution effect.

Micronutrient Content in Stalk Sap
Due to complex factors related to the interaction between
genotype and environment (climate and soil), the determination
of the critical content in the xylem solution is the proposed
procedure to evaluate soil fertility. Among the different
factors, we highlight: phenological stage, effective depth of the
root system corresponding to at least 90% of the potential
evapotranspiration of the crop, distribution of the root system
in the soil profile, soil water flow density, root trapping, mass
flow and diffusion of micronutrients in soil, pH, temperature
and content of the different micronutrients in soil solution and
evapotranspiration, mainly.

During photosynthesis, the produced carbohydrate (CH2O)
molecules are composed of carbon (C) and oxygen (O) atoms
from atmospheric CO2, whereas the hydrogen (H) originates
from water molecules from the soil. The produced O2 returning
to the atmosphere also originates from the soil water molecule
(Taiz and Zeiger, 2006):

(11)

This reaction is endothermic, requiring energy that, in the
photosynthesis process, is provided by solar radiation, where
(i) 6 carbon and 6 oxygen atoms of the produced carbohydrate
molecule are derived from the enzymatic breakdown of
atmospheric carbon dioxide by RuBisCO (Ribulose-1,5-
bisphosphate carboxylase/oxygenase); (ii) 12 atoms of hydrogen
of the produced carbohydrate molecule are derived from the
extracted water from the soil and broken by the light in the leaf,
process known as water photolysis; (iii) the other 12 atoms of
hydrogen with 6 atoms of oxygen will build 6 molecules of water;
and (iv) the 12 atoms of oxygen of the molecule of oxygen (O2),
that return as gas to the atmosphere, are derived from water
molecule: reaction proven by Robin Hill in the years 1960 using
labeled oxygen (18O). Then, the absorbed water responsible
for the total dry matter produced during the day of calculation

can be estimated as 9TH
dD
dt

and the water retained by the plant

can be estimated as 9TH
dD
dt

/ (1− u), so that the maximum

concentration of a micronutrient in the stalk sap (Cc, mg L−1) is:

Cc =
λmax

104
[

ETa− E+ 9
(

2−u
1−u

)

TH
dD
dt

] (12)

where ETa is the actual evapotranspiration (mm d−1), here
calculated using the simple Thornthwaite and Mather (1955)
water balance, E the soil surface evaporation (mm d−1), u the
plant water content (kg kg−1), TH the hydrogen content in the
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dry matter of maize crop (0.06 kg kg−1) and dD/dt the total dry
matter stored on the day of calculation (kg m−2 d−1):

dD

dt
=

−2k2k4
2 (t − k3

)

[

k4
2
+
(

t − k3
)2
]2

(13)

Cc represents the critical concentration λs (mg L−1) in the soil
solution. In this way, knowingCc, it should be possible to develop
a methodology for characterizing soil fertility and to recommend
fertilization optimized to reach the maximum productivity as a
function of the limiting nutrient.

With the aim of estimating the micronutrient maximum
concentrations (Cc, mg L−1) in the maize stalk sap at the time
of maximum absorption, Equation (12) was simplified to:

Cc =
λmax

104.ETa
(14)

The elimination of the term [−E + 9
(

2−u
1−u

)

TH
dD
dt
] results in

an underestimation of 6.33% (Zn) to 9.31% (B, Fe, and Mn)
(Table 5).

Experiments carried out with the aim of evaluating the
absorption of nutrients by a maize crop also report that the
increased absorption of nutrients B, Cu, Fe, Mn, and Zn occurred
during reproductive phase, between R4 and R5 growth stages
(Ciampitti et al., 2013).

The maximum concentration (CC, mg L−1) of each nutrient
in the xylem sap is here assumed to be related to the soil
solution absorbed by plant roots (Table 4). Based on the analysis
of the results obtained in this research, it is suggested that
future studies should be conducted in more than one growing
season, with replicates of several years or even at different
times. Such experiments may include different genotypes, as
well as different regions, varying the population of plants in
the experimental area, and simulate high, medium and low
technology managements.

It is not possible to separate the effect of lack of water
from the lack of micronutrients in the loss of maize crop
productivity. The critical micronutrient content (Cc) is related
to the transpiration and productivity (related to the maximum
maize crop demand λmax). Theoretically, the micronutrient with
lowest content in the stalk sap (related to the lowest soil offer λs)
defines productivity. On the other hand, the limiting maximum
micronutrient absorption rate (λmax) corresponding to the lower
productivity defines the attainable productivity limited by water
and micronutrient (Liebig’s minimum law).

Water and Nutrients Absorption by Plants
In nature, water and nutrient absorption occurs simultaneously
(with and without energy expenditure), because the solute
movement in the soil occurs by the combined processes of
diffusion and mass flow, which in both cases are related to
dynamics of water in the natural system composed by soil, plant
and atmosphere phases.

From the thermodynamic point of view, the soil chemical
fertility depends on the physical process related to the water
movement in nature. The transpiration depends, among other

factors, on the water potential difference between vapor in the
atmosphere and liquid water in the leaf.

The water potential (ψ, atm) in the atmosphere phase defines
the magnitude order of transpiration, which depends on air
temperature (T, K) and relative humidity (�, kPa kPa−1):

9 = 55.5.R.T. ln(�) (15)

which depend on other climate elements such as solar radiation,
rainfall and wind, for example.

Maximum Micronutrient Concentration in
the Sap, Productivity and Transpiration
The water absorption by a crop is given by the sum of
transpiration and constitutional water dependent on dry matter
production. Absorption of nutrients is dependent on water
absorption (or transpiration if we neglect constitutional water)
and nutrient concentration on the absorbed solution. Therefore,
high nutrient concentration in the soil solution (higher chemical
fertility in the current classical model, since it does not reach
salinization levels) is correlated with high concentration in the
plant xylem solution, greater nutrient absorption, high drymatter
production (of the different organs) and greater productivity
(yield).

Therefore, this approach (preliminary studies to characterize
the temporal variation of micronutrient composition of the
above ground organs of maize and correlated uptake rates)
allows developing a new concept to change the classic criteria
of fertilization recommendation taking into account the reality
of the facts (high dependence of micronutrients absorption
to water absorption). The experimental data are used merely
to give an example of application and to show the order of
magnitude of the micronutrients contents in different organs and
the micronutrients concentrations in the sap.

Figure 5 shows the micronutrient (B, Cu, Fe, Mn, and Zn)
maximum concentrations in the maize stalk sap at the time
tmax estimated by Equations (12) and (14) for the maize crop
as a function of low (lower than 10,000 kg ha−1) and high
(higher than 10,000 kg ha−1) yield and actual evapotranspiration.
It is observed that the maximum concentration Cc presents
high variation as a function of productivity in an environment
of low evapotranspiration, which does not occur under high
evapotranspiration. It was also observed that the simplified
equation (Equation 14) presents smaller errors under the
condition of high evapotranspiration.

Final Considerations
This preliminary study may serve as a basis for other researchers
to develop an alternative methodology to the current procedure
using chemical soil extractors. This alternative may vary from
the measurement of the micronutrient content in the xylem in
the indicator plant, which may be the species of interest at the
point of maximum growth rate as described in this work, or even
through the correlation of this value with the value measured in
seedlings of the same species or using a native species present in
the area (Cate and Nelson, 1965).

Chlorine, molybdenum and nickel were not considered in the
present study due to the low amounts of these micronutrients
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FIGURE 5 | B, Cu, Fe, Mn, and Zn maximum concentrations (Cc, mgL−1) in the maize stalk sap estimated by complete (Equation 12) and simplified (Equation 14)

equations for the maize crop as a function of yield (lower and higher than 10tha−1) and actual evapotranspiration (ETa, mmd−1 ).
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used in maize fertilization programs, in general, for the following
reasons: (i) chlorine is supplied when potassium is applied
as KCl (about 40 kg ha−1 of K2O), (ii) molybdenum is most
frequently used in soybean cultivation due to the symbiosis with
Bradyrhizobium sp. and (iii) nickel presents few research results
because its essentiality was found only recently.

The next steps of this preliminary study would be including
roots and validating the model under different environmental
conditions and with different genotypes. In this way, the model
is able to take into account the effect of the environment and of
the genotype that were not considered in this initial work, as well
as to characterize the chlorine, molybdenum and nickel contents
of different organs and their respective extractions.

CONCLUSIONS

We proposed a methodology that can be used for characterizing
the micronutrient absorption rate of crops and tested it for a
maize growing scenario. Results show that: (i) the micronutrient
content variation in time follows a power model, with higher
values for the initial growth stages of development and leveling
off to minimum values at the R6 growth stage, (ii) the maximum

micronutrient absorption rates occur in the reproductive growth
stages, and (iii) these evaluations allowed to predict the
maximum need for micronutrients, considered equal to their
concentration in the stalk sap. The proposed methodology can
be used as a basis for further improvement in micronutrient
fertilization of maize and other crops.
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Grasslands of the Australian Southern Tablelands represent a patchwork of native and

exotic systems, occupying a continuum of C3-dominated to C4-dominated grasslands

where composition depends on disturbance factors (e.g., grazing) and climate. Managing

these complex landscapes is both challenging and critical for maintaining the security

of Australia’s pasture industries, and for protecting the biodiversity of native remnants.

Differentiating C3 from C4 vegetation has been a prominent theme in remote sensing

research due to distinct C3/C4 seasonal productivity patterns (phenology) and high

uncertainty about how C3/C4 vegetation will respond to a changing climate. Phenology

is used in northern hemisphere ecosystems for a range of purposes but has not

been widely adopted in Australia, where dynamic climate often results in non-repetitive

seasonal vegetation patterns. We employed time-lapse cameras (phenocams) to study

the phenology of twelve grassland areas dominated by cool season (C3) and warm

season (C4), native or exotic grasses near Canberra, Australia. Our aims were to assess

phenological characteristics of the functional types and to determine the drivers of

phenological variability. We compared the fine-scale phenocam seasonal profiles with

field sampling and MODIS/Landsat satellite products to assess paddock-to-landscape

functioning. We found C3/C4 species dominance to be the primary driver of phenological

differences among grassland types, with C3 grasslands demonstrating peak greenness

in spring, and senescing rapidly in response to high summer temperatures. In contrast,

C4 grasslands showed peak activity in Austral summer and autumn (January-March).

Some sites displayed primary and secondary peaks dependent on rainfall and species

composition. We found that the proportion of dead vegetation is an important biophysical

driver of grassland phenology, as were grazing pressures and species-dependent

responses to rainfall and temperature. The satellite and field datasets were in general

agreement with the phenocam results. However, the higher temporal fidelity of the

cameras captured changes in vegetation not observed in the coarser satellite or field
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results. Our phenocam data shows consistent periods of increasing and decreasing

greenness over as little as 5 days. Applications for management of grasslands in

temperate Australia include the identification of remnant native grasslands, tracking

biosecurity issues, and assessing productivity responses to climate variability.

Keywords: phenology, phenocam, grassland, vegetation dynamics, remote sensing

INTRODUCTION

Grasslands represent one of the most dynamic and widespread
biomes on Earth are the dominant ecosystems in a variety of
climatic conditions (Scurlock and Hall, 1998). However, despite
their importance in grazing systems and their acknowledged
provision of ecosystem services, historical, and ongoing land
management practices have degraded grasslands throughout
the world (Ceballos et al., 2010). This is particularly true
for temperate grasslands, which are facing many threats to
their sustainable future, including modification for agriculture,
habitat fragmentation, weed invasions, and changes in species
composition due to a changing climate (Peart, 2008).

In Australia’s temperate Southern Tablelands region,
grasslands support both unique native flora and an important
grazing industry. Grazing favors a community shift from tall
perennial grasses to short grasses, and fertilization favors exotic
annuals over native perennials (Moore and Biddiscombe, 1964;
Gott et al., 2015). Historical land use of the Southern Tablelands
therefore drives a patchwork of grasslands dominated by a
variety of native grasses, exotic pasture grasses, invasive weeds,
or a continuum of intermediate states. These grasslands differ
greatly in their composition, structure, and functional attributes
(Benson, 1994). Many native temperate grassland communities
are only present as remnants and occupy a small fraction
of their pre-European range (Groves, 1979; Benson, 1994).
Their conservation and restoration is recognized as a priority,
however there is an acute need to integrate conservation and
agricultural values to ensure success (Wong and Dorrough,
2015). Classification of grasslands based on these attributes is the
first step in being able to determine appropriate ecological and
agricultural management.

Data for effective classification can be provided through field
surveys, however these can be labor-intensive and impractical
on a large scale. As an alternative, remote sensing has been
explored as a potential approach to identify grassland types and
condition. Efforts to discriminate grassland communities have
had some success both worldwide (e.g., Price et al., 2002) and
within Australia (Hill et al., 1999; Agrecon, 2004; Lymburner
et al., 2011), though the classification groupings can be broad.
Achieving finer-scale classification of temperate grasslands
remains challenging due to their dynamic, heterogeneous nature
(Hill, 2013), habit of retaining dead material on the plant
(Tremont and McIntyre, 1994; Morgan and Lunt, 1999), unique
shading issues (Shimada et al., 2012), and the continuum between
disturbed and undisturbed conditions (Psomas, 2008).

While many factors can be used to classify grassland
vegetation, the distinction between C3 (cool season) or C4 (warm

season) photosynthetic types is fundamental (Epstein et al.,
1997; Still et al., 2003; Adjorlolo et al., 2012). The nature of C3

or C4 dominance dictates patterns of growth and productivity
during different times of the year; C3 species are more
productive in cooler, mesic climates, whereas C4 species have
a greater advantage in warmer and drier regions (Wand et al.,
1999; Baldocchi, 2011). In the Australian Southern Tablelands,
a continuum occurs from C3-dominated to C4-dominated
grasslands without any defined spatial distribution. Much of
the grassland composition depends as much on disturbance
factors (e.g., grazing) as climate (Wimbush and Costin, 1979;
Benson, 1994). There is a high uncertainty about how C3 and
C4 vegetation will respond to increased CO2 concentration and
temperature and to modified moisture regimes predicted in a
changing climate (Baldocchi, 2011; IPCC, 2014), in particular
how this will impact agricultural productivity (Winslow et al.,
2003; Howden et al., 2008; Cullen et al., 2009; Pau et al., 2013).
Rising temperatures and lower available moisture are expected to
favor C4 grasses, while higher CO2 concentrations should favor
C3 grasses (Morgan et al., 2011).

Differentiating C3-dominant from C4-dominant grasslands
has been a prominent theme in remote sensing research due
to distinct C3/C4 seasonal productivity patterns (Wang et al.,
2013; Dye et al., 2016). Satellite data products characterize
“land surface phenology” of vegetation types across landscape
to global spatial scales (de Beurs and Henebry, 2004; Broich
et al., 2015). These typically use a time-series of vegetation
indices calculated from measured spectral reflectance, which can
reliably estimate biophysical parameters such as biomass and
vegetation cover for a diverse range of vegetation types (Weiser
et al., 1986; Huete et al., 2002). Several satellite-based phenology
studies include grasslands (Justice and Hiernaux, 1986; Fontana
et al., 2008; Cui et al., 2012; Horion et al., 2013; Wang
et al., 2013), though the majority of these focus on northern
hemisphere grasslands where phenology is strongly driven by
temperature. One notable study from southeastern Australia
provided a classification of pastures types using Advanced Very
High Resolution Radiometer (AVHRR) time-series data (Hill
et al., 1999). This study successfully grouped broad land use types
(e.g., native pastures, sown pastures, mixed pastures/cropping,
and forest) based on similar time-series phenology profiles.
More recent landscape-scale phenological research in Australia
focuses on arid and semi-arid regions where vegetation dynamics
are primarily driven by rainfall (Ma et al., 2013; Petus et al.,
2013). The unique vegetation dynamics in many Australian
environments (e.g., missing an annual growing season or having
multiple greening periods) result in non-seasonal behavior and
requires the development of different phenological approaches
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than those used in typical northern hemisphere systems (Zhang
X. et al., 2006; Broich et al., 2015).

Satellite remote sensing has the advantage of capturing large
areas consistently, but its usefulness in phenological studies is
constrained by temporal (i.e., time of satellite revisit) and spatial
resolution (i.e., size of pixel) limitations. In contrast, time-lapse
fixed cameras (termed “phenocams”) have no such constraints
and have shown great promise in capturing phenological
information in a wide range of biomes (Brown et al., 2016),
including northern hemisphere broadleaf forest (Ahrends et al.,
2008; Richardson et al., 2009; Nagai et al., 2011; Mizunuma
et al., 2013), Brazilian cerrado (Alberton et al., 2014), European
alpine grasslands (Migliavacca et al., 2011; Julitta et al., 2014),
Malaysian tropical forest (Nagai et al., 2016), and grasslands
in Japan (Inoue et al., 2015). In Australia, Moore et al. (2016)
provided an overview of phenocam imagery captured across the
continent at different ecosystems including a tropical rainforest,
a tropical savannah and a temperate evergreen forest. Generally,
phenocams sample a smaller area than satellites and lack
the spectral resolution of modern satellite sensors. However,
they have the advantage of capturing high frequency (sub-
daily) imagery, they can be positioned to directly monitor the
vegetation of interest, atmospheric effects have less impact,
and users can visually examine imagery to explain observed
data patterns or anomalies. Phenocam imagery is typically
converted to a vegetation index such as the Excess Green (e.g.,
Woebbecke et al., 1995) or the Green Chromatic Coordinate
(gCC) (Gillespie et al., 1987; Sonnentag et al., 2012) through
manipulation of the red, green, and blue brightness values.
Phenocam-based phenology has shown a good correspondence
of phenophase timing when compared with eddy-covariance
towers, satellite imagery, and field observations (Richardson
et al., 2007; Migliavacca et al., 2011; Nagai et al., 2011; Mizunuma
et al., 2013; Toomey et al., 2015; Moore et al., 2017), albeit with
quantifiable time lags or restrictions to certain times of year
(e.g., remotely sensed observations can be unavailable during the
wet-cloudy season).

Remote sensing data is often validated through field
biophysical observations (Mutanga and Skidmore, 2004; Zhang
Q. et al., 2006; Shen et al., 2008; Liang et al., 2011; Psomas et al.,
2011), with some agencies in Australia providing substantial
investment and support to this aim (Muir et al., 2011). Some
research has shown successful scaling from field measures to
remote sensing (e.g., Fisher and Mustard, 2007; Studer et al.,
2007). However, others have highlighted the sometimes weak
relationship between in situ and satellite observations (Badeck
et al., 2004; Ahl et al., 2006; Soudani et al., 2012). One of
the more pressing challenges in phenological research is to
understand the sources of variability between spatial scales
(Friedl et al., 1994; Reed et al., 2009). This is particularly
relevant for heterogeneous grasslands, where variability in spatial
scales of field measurements can be problematic (Klimeš,
2003).

Given the importance of grasslands for food security and
ecosystem preservation and the need for a better understanding
of remote sensing-derived phenology over pastures and
grasslands, this research aims to:

a) Assess the variability in phenology among of C3/C4 temperate
grassland types with the use of phenocams;

b) Identify the biophysical drivers that cause changes to
grassland land surface phenology;

c) Evaluate the utility of phenocams for capturing temperate
grassland phenology; and

d) Compare scales of phenocam phenology data with field
measurements and satellite phenology products.

MATERIALS AND METHODS

Study Sites
The study area is located in the Southern Tablelands region of
New South Wales (NSW) and the Australian Capital Territory
(ACT), and is part of the South Eastern Highlands bioregion
(Environment Australia, 2000). The study area is approximately
bounded by the towns of Bungendore (35.2500◦S, 149.4500◦E),
Gungahlin (35.1831◦S, 149.1330◦E), and Bredbo (35.9420◦S,
149.2009◦E) (Figure 1). The region has distinct seasonal
temperature values (mean monthly ranging from 0 to 30◦C)
and contains several types of native and exotic grasslands
co-occurring within a similar climatic envelope. The climate
is characterized by warm summers (December–February)
with maximum daily temperatures frequently reaching 35◦C.
Winters (June–August) are cold, with frequent daily minimum
temperatures below 0◦C. Rainfall is relatively consistent
throughout the year, with a mean of between 30 and 90mm per
month, and an annual average of 650mm, although rainfall in
the region is impacted by elevation, latitude, and aspect and may
be spatially sporadic.

Modeled temperature and rainfall data generated from
MODIS Terra Global Land Surface Temperature and Tropical
Rainfall Measuring Mission version 7 (data product 3B43-v7)
are presented to compare the monthly rainfall and temperature
of the study period with the 1998–2017 average (Figures 2A,B).
The study period (May 2014–April 2015) had temperatures that
were generally consistent with the mean, though the period of
December 2014–April 2015 was cooler than average (Figure 2A).
Precipitation during the study period was more sporadic; a
few months (June December, January and April) had unusually
heavy rainfall and many months had lower than average rainfall
(Figure 2B).

Three replicate areas of four distinct perennial grassland
types common to the area were selected. Elevation of the study
locations is between 550 and 750m above sea level. Sites were
grouped based on the C3/C4 and the native/exotic status of the
dominant perennial grass species (summarized in Table 1). Site
groups were selected based on important grassland types in the
region, including those that are used for conservation purposes,
and those that are used for grazing agriculture. Sites within each
category were not required to have the same dominant species
per se, but rather be dominated by the same functional group
(e.g., native C4 grass). This dominance was designated by the
terminology used throughout this text as: C4 Native, C4 Exotic,
C3 Native, and C3 Exotic. C4 Native sites were dominated by
the common native grass Themeda triandra, a typical indicator
species of low disturbance. C4 Exotic sites were dominated
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FIGURE 1 | Location of study area, south east of the continent, near the city of Canberra, Australia. Background vegetation mapping refers to the Dynamic Land

Cover Dataset (Lymburner et al., 2011). Inset shows the location of individual study sites.

FIGURE 2 | Study site satellite derived climatic variables sampled at

Mullunggari Nature Reserve (center pixel) (A) temperature from MODIS Terra

Global Land Surface Temperature (LST; ◦C) (MOD11A2) mean (black line) and

standard deviation 1998–2017 (gray area) and this study period (May

2014–April 2015; red line) (B) precipitation (P; mm month-1) from the version 7

Tropical Rainfall Measuring Mission (TRMM) data product (3B43-v7) (0.25 deg)

mean (black line) and standard deviation 1998–2017 (gray area) and this study

period (May 2014–April 2015; blue bars).

by the invasive agricultural weed Eragrostis curvula. C3 Native
sites contained a mixture of Austrostipa and Rytidosperma C3

species typical of grazed native pastures in the region. C3

Exotic sites were dominated by exotic pasture grasses, typically
Phalaris aquatica, Dactylis glomerata, and Festuca arundinaceae.
All grassland types contained secondary components of species
outside the dominant functional group. For example, C4 Native
sites contained a small fraction of C3 native grasses and exotic
species. C3 forbs occurred at most site at low vegetative cover.

All sites met the following criteria: homogenous cover of the
selected grassland type; consistent land management throughout
the study period; and the grassland area being >20 hectares,
with adequate coverage in all dimensions to incorporate satellite
pixels. None of the field sites were artificially irrigated.

Time-Lapse Digital Photography
Time-lapse RGB WingscapesTM cameras (phenocams) in
weatherproof housing were installed at each site to capture
vegetation changes at a high temporal capacity. The phenocam
was mounted 2.3m above ground level and angled downward
∼15◦ from horizontal. The field-of-view included the horizon
in the image but only a small quantity of sky, i.e., most of the
scene was the target grassland. This field-of-view captured an
area between 2 and 4 hectares. Each camera was positioned
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TABLE 1 | Characteristics of study sites by grassland functional type.

Grassland

functional type

Site name Code Location

(Dec.Degrees)

Grazing

pressure

Dominant

genera

Area

(ha)

Floristic composition Tenure

C3 Native Mullunggari Nature Reserve MGAR −35.17377,

149.15075

Moderate

(kangaroos)

Rytidosperma,

Austrostipa

48 Native/exotic forbs and

grasses

Nature

Reserve

C3 Native Gungaderra Reserve (native

paddock)

GUNN −35.20961,

149.13885

Moderate

(kangaroos)

Rytidosperma,

Austrostipa

35 Native and exotic forbs

(particularly

Hypochaeris); native

grasses

Nature

Reserve

C3 Native Mulloon Creek Natural

Farms (native paddock)

MULN −35.27538,

149.57024

Light (cattle) Rytidosperma,

Austrostipa

24.1 Very diverse mix of

native and exotic forbs

and grasses

Private

Land

C4 Native Gidleigh Traveling Stock

Reserve

GIDL −35.29711,

149.45078

Light (horses,

sheep)

Themeda 15.5 Very diverse in native

forbs; few exotics

Traveling

Stock

Reserve

C4 Native Turallo Nature Reserve TURA −35.2983,

149.47868

Light (sheep) Themeda 23.4 Very diverse in native

forbs

Nature

Reserve

C4 Native Millpost Farm (native

paddock)

MPON −35.29873,

149.36943

Heavy (sheep) Themeda 17.5 Extremely diverse in

native forbs; few

exotics

Private

Land

C3 Exotic Mulloon Creek Natural

Farms (exotic paddock)

MULE −35.27643,

149.59981

Heavy (cattle) Phalaris,

Festuca,

Dactylis

26.3 Exotic pasture grasses

with some exotic

legumes.

Private

Land

C3 Exotic Gungaderra Reserve (exotic

paddock)

GUNE −35.20252,

149.10452

Light

(kangaroos,

wallabies)

Phalaris 25 Exotic pasture grasses

and sedges

Nature

Reserve

C3 Exotic Millpost Farm (exotic

paddock)

MPOE −35.3126,

149.33973

Heavy (sheep,

rabbits)

Phalaris

Festuca,

Dactylis,

12.4 Mostly exotic

grass/legumes with

some native grass

species

Private

Land

C4 Exotic Scottsdale Bush Heritage

Reserve

SCOT −35.90046,

149.1482

Light

(kangaroos)

Eragrostis 46 Exotic grass, scattered

exotic annual forbs with

some areas of native

forbs

Nature

Reserve

C4 Exotic Ingelara Farm INGE −35.82609,

149.15601

Heavy (cattle) Eragrostis 14.3 Exotic perennial grass

with annual exotic forbs

and grasses

Private

Land

C4 Exotic Ingelara Paddock 17 IN17 −35.84286,

149.13597

Moderate

(cattle/kangaroos)

Eragrostis 26.6 Exotic perennial grass

with annual exotic forbs

and grasses

Private

Land

to face south to minimize the impacts of sun glint on the
images. We collected one image at hourly intervals between 9:00
and 15:00 Australian Eastern Standard Time (UTC +10). No
standardization of color was used through the use of reference
cards as can be found in similar studies (Ahrends et al., 2008;
Richardson et al., 2009; Sonnentag et al., 2012). Color balance

drift has been reported in a study using phenocams (Ide and
Oguma, 2010) however this only became apparent after 2 years
of use. As such, no significant color balance drift is assumed for
this study.

The Green Chromatic Coordinate index (gCC; Equation 1)
was used as a surrogate of greenness as it represents the relative
brightness of the green fraction compared to the sum of the green,

red, and blue bands (Gillespie et al., 1987; Sonnentag et al., 2012).
It is a unitless index that pilot studies suggest ranges between

0.25 (no green vegetation) and 0.5 (abundant green vegetation) in
the subject grasslands. A variety of phenocam-based studies have

preferentially used this index because of its dynamic response
to changes in plant biophysical variables and robustness to
variations in image brightness due to sky conditions, time of
day, or shadowing (Ide and Oguma, 2010; Sonnentag et al., 2012;
Julitta et al., 2014).

gCC =
G

R+ G+ B
(1)

Images were manually filtered and viable images were processed
with ImageJ software (Abràmoff et al., 2004) to extract RGB
values and calculate gCC. The mean gCC across the target area
of the image was used for each hourly data point and was used
to establish a daily time-series, known as a phenology profile.
For some phenocam profiles, we fitted a non-parametric Locally
Weighted Scatterplot Smoothing (LOESS) curve to improve
visualization and the identification of trends (Cleveland, 1979).
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Field Measurements and Floristic Surveys
Monthly biometric measurements included pasture height
and vegetation cover using non-destructive methods, and
aboveground biomass using destructive harvesting.

• Percent vegetation cover was taken using a point-transect
method (NSW Catchment Management Authority, 2005).
One 100m transect was established across a representative part
of the study site with cover noted at 1m intervals. Vegetation
cover was classified as: green vegetation (photosynthetic
vegetation, PV), dead vegetation (non-photosynthetic
vegetation, NPV), and background (bare soil and substrate,
BS).

• Average pasture height was measured using a falling plate
method (Rayburn and Rayburn, 1998). A standard acrylic
plate was mounted on a ruler and allowed to fall on the
vegetation at the sample point. The mean value of 20 points
was taken.

• Total biomass was harvested within six replicates of 1 m2

quadrats to ∼1 cm above ground level. The location of
each quadrat was randomly selected at each monthly visit
without replication. Biomass samples were stored in a plastic
bag in a cool environment (a cooler in the field and a
refrigerator in the laboratory) prior to processing to prevent
degradation. Vegetation was separated into “grasses,” and
“forbs” (including pasture legumes, native forbs, and exotic
weeds), then further separated into photosynthetic (“green”)
and non-photosynthetic (“dead”). Samples were placed in
paper bags, oven-dried at 60◦C for 72 h and results converted
to kg/ha.

Floristic surveys were conducted at each location (three 20 ×

20mplots) eachmonth tomonitor species composition.Monthly
floristic data is not presented.

Satellite Data Sources
Satellite data were obtained from three sources that represent
typical sources of land surface phenology data: the Moderate
Resolution Imaging Spectrometer (MODIS) sensor aboard the
Terra satellite, the Operational Land Imager (OLI) sensor aboard
Landsat 8, and the Enhanced Thematic Mapper Plus (ETM+)
sensor on Landsat 7.

The Terra MODIS 16-day composite NDVI (MOD13Q1) at
250m spatial resolution was downloaded from the NASA Land
Processes Distributed Active Archive Center (http://e4ftl01.cr.
usgs.gov/) over the period May 1, 2014 to April 30, 2015. The
NDVI provided by this product was calculated using the bands
specified in Table 2. The data were filtered based on the quality
assurance flags provided in the quality control layers of the
product, with periods of clouds, high aerosol loads, and low
quality were removed. The 16-day composite data reduces impact
of cloud cover on long-term data sets, though at the expense of
higher temporal resolution. Due to the relatively small size of
most of our grassland sites, one pixel (250 × 250m) was used
for analysis.

Landsat data (OLI and ETM+) was obtained from the Climate
Data Record surface reflectance from the Science Processing
Architecture System of USGS Earth Resources Observation

TABLE 2 | Satellite sensor spectral bands used in the calculation of NDVI.

Sensor Satellite Red (RED) Near infrared (NIR)

MODIS Terra Band 1 (620–670 nm) Band 2 (841–876 nm)

OLI Landsat 8 Band 4 (640–670 nm) Band 5: (850–880 nm)

ETM+ Landsat 7 Band 3 (630–690 nm) Band 4 (770–900 nm)

and Science Center (http://espa.cr.usgs.gov/), corrected for
atmospheric effects and BRDF. We subsequently calculated
NDVI from reflectance data as per Equation 2 using the red and
near infra-red (NIR) bands specified in Table 2. Landsat 7 and
Landsat 8 data were combined into one NDVI time-series as the
data have been shown to be equivalent (Li et al., 2014; Ahmadian
et al., 2016). The Landsat 7 and 8 data are collected at a nominal
16-day frequency; however this is subject to effects of clouds that
can reduce or eliminate the usability of parts of an image. As
such, temporal resolution frequently extends beyond 16 days. To
capture a similar area as MODIS data sources, we used a 5 × 5
grid of 30× 30m Landsat pixels resulting in a total area of 150×
150m.

NDVI =
(NIR− RED)

(NIR+ RED)
(2)

On average, there were 19.2 of a possible 23 MODIS 16-day
temporal data points for each site (range: 18–20) over the annual
study period, and 17.3 Landsat OLI/ETM+ 16-day data points
(range: 15–19) of a possible 23. Some large gaps, due primarily
to cloud obstruction, were evident in the temporal satellite data
which can impact phenology studies, with a maximum 126 day
gap for Landsat data and a 48 day gap for MODIS data.

Data processing, including graphical analysis and statistical
analysis, was conducted with the R software package (R Core
Team, 2013). For quantitative comparison between methods, it
was necessary to match data as closely as possible in time. As field
sampling was the least frequent data type (monthly), we selected
12 data points from satellite and phenocam time-series that were
closest to the 12 field sampling dates (number of days before or
after). Pearson’s correlations were conducted across all sites using
this matched data.

RESULTS

Phenocam Imagery
The phenocam derived gCC profiles (Figure 3) showed C3 sites
having maximum greenness as a distinct peak in October-
November, whereas C4 sites peaked later (January-February) and
showed a broader peak. All sites started greening after August as
temperatures warmed which is indicative of the presence of C3

species (albeit as a secondary component in C4-dominated sites).
C3 vegetation had a second greening period in late February in
response to increased rainfall. Fine-scale vegetation dynamics are
observed at all sites as small but rapid increases and decreases in
gCC.

C3 Exotic grassland sites showed peak greenness in October-
November (Figure 3A). However, these sites were variable: one
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FIGURE 3 | Annual combined gCC phenology profiles for all sites, grouped by functional type, (A) C3 Exotic, (B) C3 Native, (C) C4 Exotic, (D) C4 Native. Gray dots

represent hourly data points. Blue lines represent individual sites. The thick black line of each panel is a LOESS fitted curve (span = 0.1) for each functional type. Panel

(E) represents the monthly mean maximum temperature (◦C; dashed line; Tuggeranong Bureau of Meteorology station) and the monthly rainfall (mm; solid bars;

Australian National Botanic Gardens Bureau of Meteorology station) for the study period.

site showed an almost unimodal profile, increasing in gCC from
September, reaching a peak in November, and steadily decreasing
to the baseline in January. At the second site we observed
green-up steadily climbing to a peak in late October, before
decreasing in December. Multiple small increases in gCC occur
until February, followed by a steady decline through March.
The third site had two equally dominant peaks in October and
February.

The C3 Native profiles demonstrated a gradual decline of
gCC from May through to August and a characteristic greening
pattern commencing in August and reaching a maximum
in October-November (Figure 3B). The gCC then abruptly
decreased in November. Patterns changed slightly between the
sites from this point; some showed periods of greening and
browning through the summer, whereas others had only one
small greening period. Two sites showed steady decline in gCC
through February to a minimum in March, whereas the other
demonstrated an influence from secondary C4 species (a lowwide
peak from December and reaching a minimum in late March).

The C4 Exotic profiles show consistency in summer peak
greenness (January-February) (Figure 3C). The gCC values were
all very low through the winter months, and shared identical
timing of the characteristic broad summer peak. The individual
sites showed different patterns during spring. One site had
a distinctive peak of C3 vegetation resulting from a flush of
spring pasture grasses. Another showed a delayed but very rapid
increase in gCC, commencing in November and lagging biomass-
measured greening by 2 months.

The C4 Native grasslands show a consistent group of profiles
(Figure 3D). All sites have low gCC from May to August,
with an indistinct inflection point in late August marking the
start of a gradual greening. High gCC is maintained through
January-February followed by a characteristic drop in March as
temperatures start to decrease.

Vegetation Cover
All groups showed distinct seasonal changes in cover throughout
the year, with the mean time-series presented as Figure 4. The C4
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FIGURE 4 | Monthly mean green cover (% ± s.d., n = 3), presented by grassland functional type, (A) C3 Exotic, (B) C3 Native, (C) C4 Exotic, (D) C4 Native.

Native sites demonstrate particularly distinctive and predictable
patterns, with low green cover during the winter months, rapid
greening in October, and a peak of 75% green cover maintained
from December to February. After March, the green cover at
C4 Native sites decreased quickly to 20%. The seasonal green
cover variation between C4 Native sites was low. The C4 Exotic
grasslands display a similar seasonal pattern, though with greater
variation between sites: low green cover (∼10%) through winter,
green-up starting in August with a steady increase to November,
and a rapid rise to a peak of 75% in February. C3 Native sites
show a high variability throughout the year, with a peak of
80% green cover in October. Minima in November and March
correspond with high temperatures and low rainfall. C3 Exotic
peak green cover is in November (76%) though high green cover
is maintained from September through January. The minimum
green cover occurs in March for both C3 Exotic and C3 Native
groups.

Biomass Sampling
Green and dead biomass varied considerably between sites and
seasonally at the same location (Figure 5). Exotic groups tended
to have the greater quantity of mean green biomass, where we
observed the maximum value at a single site of (2,769 kg/ha).
The mean green biomass for C4 Native sites did not exceed 1,000
kg/ha, and C3 Native sites did not exceed 500 kg/ha. The C4

Exotic sites had higher green biomass during the summermonths
than the winter months. By contrast, C3 Exotic sites fluctuated
throughout the year in response to grazing pressures and seasonal

drivers, particularly periods of low rainfall. In general, sites
that were dominated by C4 species had low quantities of green
biomass during the winter months, though notably still >0.
The key features of the C3 biomass pattern are an increase
in September which reaches a peak in November (mean green
biomass 1,536 kg/ha for exotic; 586 kg/ha for native). The
C4 sites commenced green-up a month later, in October, and
reached a peak in December which was sustained through the
summer (1,438 kg/ha exotic; 922 kg/ha native). At two of the
three C4 Exotic sites, we observed an additional peak in late
summer (February; mean live biomass 2,026 kg/ha) and hence
the associated standard deviation is large.

Dead biomass was greatest in C4-dominated sites, with a
mean maximum of 5,810 kg/ha at exotic C4 sites and 4,689 at
native C4 sites. This accumulation of dead material was driven by
minimal grazing or disturbance at these sites. C4-dominated sites
tended to have a higher biomass during the winter months but
exhibited a very high variability between sites and replicates. All
C3 Native sites had a more consistent quantity of dead biomass
throughout the year; however, variability was higher between C3

Exotic sites, hence higher monthly standard deviation. At C4-
dominated sites the dead biomass was much greater than green
biomass throughout the year. Forbs contributed a very minor
proportion of the overall biomass.

Satellite Data
Satellite phenology profiles are presented as individual sites to
allow visualization and comparison of the phenology trends

Frontiers in Environmental Science | www.frontiersin.org February 2019 | Volume 7 | Article 14101

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Watson et al. Multi-Scale Grassland Phenology

FIGURE 5 | Mean monthly green (solid line) and dead (broken line) biomass (kg/ha ± s.d.; n = 18) by grassland functional type, (A) C3 Exotic, (B) C3 Native, (C) C4

Exotic, (D) C4 Native.

of different satellite greenness products (Figure 6). While the
satellite data shows substantial fluctuation, the timing of the
maximum NDVI at each site corresponds with the C3/C4

functional group.
Landsat and MODIS data at C4 Native sites (Figure 6A) show

similar trends though they deviate substantially in magnitude.
The paucity of Landsat data beyond January 2015 due to cloud
contamination hindered meaningful comparison. The temporal
resolution of C4 Native seasonal pattern is less clear in satellite
data than in other data sources. Two sites (GIDL and TURA) both
show a consistently low NDVI below 0.5 throughout the autumn
and winter months until green up. After a peak in October,
satellite data shows a decrease in greenness toward late November
that is not apparent in other data sources. The NDVI increases
throughout the remainder of the summer months to a maximum
of 0.62 and then slowly tails off toward the winter baseline.
By contrast, at the third site (MPON), NDVI is more variable
throughout the measurement period, with two peaks evident in
October and January.

At C4 Exotic sites (Figure 6B), Landsat data exhibited smooth
trends whereas MODIS fluctuated. Site IN17 showed the most
consistency between the two satellite data sources. From a
typically low greenness during winter, NDVI started to increase
in August to an October peak of 0.6. After a small browning
period, NDVI remained relatively high during the summer and
decreased to 0.49 by late August. Landsat data for INGE showed
a prominent peak in October (NDVI = 0.65), whereas the
MODIS peak was apparent in February. Landsat data at SCOT

showed a long, gradual increase in NDVI from late August to
late December which contrasts with the rapid increase in gCC
observed in the phenocam data. MODIS data at SCOT showed a
much more variable signal, with the only clear peak occurring in
October and a highNDVI beingmaintained throughout summer.

The MODIS and Landsat NDVI values for C3 Native sites
(Figure 6C) were comparable, both in magnitude and trend.
Most inconsistent data points can be attributed to data gaps. The
MODIS data shows consistent temporal patterns with phenocam
and biomass trends at all three sites.

Trends of Landsat and MODIS NDVI corresponded well for
C3 Exotic sites (Figure 6D), though deviations in magnitude
were particularly evident at one site (GUNE). Like other
functional groups, the paucity of Landsat data beyond January
2015 made comparisons difficult. In general, patterns consistent
with C3 characteristics were shown by the satellite data. All three
sites showed greening commencing in July–August with a peak
in October, and multiple additional peaks in February and April.
Two of the C3 Exotic sites had very high NDVI values, with peak
NDVI exceeding 0.8.

Relationship Between Remotely-Sensed
and Biophysical Variables
Variables were identified that were expected to be related
to the quantity and quality of green vegetation: green grass
biomass, green biomass (i.e., grass + forbs), total biomass,
green vegetation cover, dead vegetation cover, pasture height,
phenocam gCC, MODIS NDVI, and Landsat NDVI (Figure 7).
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FIGURE 6 | Terra MODIS (N) and Landsat OLI/ETM+ (•) NDVI data for 1 May 2014–30 April 2015 at (A) C4 Native sites, (B) C4 Exotic sites, (C) C3 Native sites, (D)

C3 Exotic sites.

Correlations are presented across all sites as separation of
grassland functional types yielded only minor differences when
tested. Longitudinal graphical comparisons of all parameters are
presented as Figures 8, 9 for sites GIDL (C4 Native) and MULN
(C3 Native). These figures are examples of the comparison
between phenology variables measured at individual sites.

Across all sites, green biomass was strongly and significantly
correlated with green grass biomass (r = 0.99, p < 0.001). This
demonstrates that the biomass was dominated by the influence
of grass rather than forbs. Green biomass was poorly-correlated
with total biomass (r = 0.25), indicating that the contribution of
the dead biomass component has a strong influence on the overall
biomass. Green biomass was only weakly correlated with satellite
estimates of NDVI (MODIS NDVI r = 0.17; Landsat NDVI r =
0.26). Height was not significantly correlated with green cover,
dead cover or phenocam gCC, and only weakly correlated with
satellite and biomass variables.

Phenocam gCC has a stronger relationship to the fraction of
green cover (r= 0.7) than its relationship with any of the biomass

variables (green biomass r = 0.41; green grass biomass r = 0.38).
A similar strength of correlation is present between green cover
and NDVI (Landsat: r = 0.71, MODIS: r = 0.73), with satellite
data also having a stronger correlation to green cover than to
green biomass (Figure 7). MODIS and Landsat NDVI values are
strongly and significantly correlated with one another (r = 0.88,
p < 0.001). The correlation between phenocam gCC and Landsat
NDVI (r= 0.69) was stronger than that between gCC andMODIS
NDVI (r = 0.59).

DISCUSSION

Assessment of Phenocams for Monitoring
Temperate Grasslands
This research found that the sub-daily image capture available
through phenocams allowed for the detection of fine-resolution
changes in greenness that were not observed in other methods.
Temperate grasslands of the Australian Southern Tablelands
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FIGURE 7 | Pearson’s correlation of variables across all sites that are relative

to quality and quantity of green vegetation. Shaded values represent significant

correlation at p = 0.05. Values are Pearson’s correlation coefficient (r).

Negative values (red) indicate a negative correlation; positive values (blue)

indicate a positive correlation.

show fluctuations in gCC that represent rapid responses to
climatic and environmental change, and phenocams add value
for interpreting the dynamics of this vegetation. Changes in
phenology due to climate trends typically report differences in
scales of days per decade (Parmesan and Yohe, 2003; Badeck
et al., 2004; Graham et al., 2009). In many cases, data collected
coarser than daily frequency (i.e., satellite and biomass data
here presented) will render changes under a certain threshold
undetectable. Sampling data at daily frequency also has the
capacity to resolve very subtle trends driven by community
composition and environmental drivers that are not possible to
resolve using other means.

We found the gCC to be a consistent and repeatable vegetation
index for capturing the dynamics of temperate grasslands in the
subject region. Similar to other studies (Sonnentag et al., 2012)
this index was found to be relatively invariant to changes in
illumination. Differences in relative angle between the camera
and the target have rarely been explored in the phenocam
literature and have the potential to be more confounding on RGB
digital numbers and greenness indices than errors associated
with illumination effects. Standardization of sensor-target angle
is recommended for future studies of groundcover vegetation
types.

Phenocams currently lack the spectral resolution shown
by many satellites and cannot match their spatial coverage.
However, phenocams have enormous potential as tools to
support ecological monitoring at an intermediate scale that can
reliably estimate biophysical variables at sub-daily frequency.
Phenocams may provide advantage to the agricultural sector in

determining appropriate times for pasture stocking, mowing,
or other management actions. On a larger scale, a network of
phenocams could be used to track weed invasions, or report
on drought impacts—items that are particularly important to
Australian agriculture. As this field develops further, there is a
growing need to conduct further testing and analysis in novel
biomes, quantify illumination, and camera angle effects on RGB
indices, and to promote the standardization of methodology to
enable cross-continental phenological comparisons (Brown et al.,
2016). These is also significant scope for advances in statistical
methods to characterize and analyse time-series imagery (Gray
and Song, 2013).

C3/C4 Phenological Response
We found C3/C4 species composition to be the primary driver
of phenology patterns in temperate grasslands of the Australian
Southern Tablelands, with several key phenological features
identified for C3- and C4-dominated grasslands. Some of these
features are most prominent in the higher temporal frequency
methods (e.g., phenocam gCC) and are partially obscured by
coarser data sources (e.g., MODIS NDVI). Generally in this
region C3-dominated grasslands showed a steady decline in
green signal from May to August (austral late autumn/winter).
A relatively sharp greening commenced in late August, reaching
a peak in late October to early November as C3 green leaf
expansion was at its maximum. Elevated temperatures and low
rainfall in November caused a decline in C3 greenness until
secondary greening occurred in late January driven by higher
rainfall. In contrast, C4-dominated grasslands demonstrated a
consistently low quantity of green vegetation from May to
August. Green-up commenced in September (early spring)
and green-up rates tended to be slower than those observed
for C3-dominated vegetation. Major C4 vegetation greening in
October resulted in either a single peak in December (early
summer) or consistently high greenness from December through
February with a steady return to low green signal in April.
The C4 grasslands exhibited only minor senescence during
spring/summer when higher temperatures and low rainfall
promoted browning in C3-dominated systems. The observed
patterns were less variable in C4 than in C3 grasslands, which
may be attributed to a consistent dominant species in the two C4

grasslands groups.

Comparison of Field and Remotely Sensed
Methods
The relationship between phenocam, field, and satellite
phenology variables was analyzed using linear correlation, a
similar approach to other researchers (e.g., Zhang et al., 2003).
We found that green biomass was not-well correlated with total
biomass. This stems from the proportionally high contribution
of standing litter in some of the subject temperate grasslands,
particularly C4 grasslands that typically retain standing litter
throughout the year (Tremont and McIntyre, 1994). The very
strong correlation of green biomass to green grass highlights
the importance of the grass component for remote sensing:
although forbs contribute most to ecosystem species richness in
Australian temperate grasslands (Wimbush and Costin, 1979;
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FIGURE 8 | Multi-scale phenology from 1 May 2014 to 30 April 2015 at site GIDL (C4 Native). From top to bottom panel: (A) total green biomass (•) and green grass

biomass (N) in kg/ha; (B) green cover (%); (C) phenocam 13:00 daily gCC; (D)Terra MODIS (N) and Landsat OLI/ETM+ (•) NDVI; (E) monthly mean maximum

temperature (◦C; dashed line; Tuggeranong Bureau of Meteorology station) and the monthly rainfall (mm; solid bars; Australian National Botanic Gardens Bureau of

Meteorology station).

Tremont and McIntyre, 1994), they contribute a small fraction of
total biomass. Green cover was only moderately correlated with
green biomass (r = 0.43) but was negatively correlated with total
biomass, again stressing the influence of standing litter. This
influence of litter may confound attempts to use remote sensing
for the classification, management, and monitoring of grasslands
in the study region.

Like other grassland studies (e.g., Paruelo et al., 2000;
Migliavacca et al., 2011; Inoue et al., 2015), we found a statistically
significant relationship between (a) phenocam indices and green
biomass and (b) between phenocam indices and satellite NDVI.
However, phenocam gCC was more strongly correlated with
green cover than with green biomass and suggests that phenocam
data may be more appropriate for estimating cover rather than
biomass for Southern Tableland temperate grasslands. Similar

research on temperate grasslands in the USA (Vanamburg et al.,
2006) suggests that digital camera-based estimates of biomass are
poor. However, in European alpine grasslands, Migliavacca et al.
(2011) found that their Greenness Index (equivalent to gCC) was
significantly correlated with green biomass and visual greenness
estimates. Such inconsistencies between temperate grasslands
communities suggest differences the biophysical characteristics
of different grassland types and indicate that the more complex
the grassland structure, the lower the likely correlation between
gCC and green biomass. As such, results from this study should
not be assumed to apply to functionally different temperate
grasslands systems, even within Australia.

Green biomass was only weakly correlated with satellite
NDVI, contrary to some grassland studies in northern
hemisphere biomes (Migliavacca et al., 2011). The abundant
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FIGURE 9 | Multi-scale phenology from 1 May 2014 to 30 April 2015 at site MULN (C3 Native). From top to bottom panel: (A) total green biomass (•) and green grass

biomass (N) in kg/ha; (B) green cover (%); (C) phenocam 13:00 daily gCC; (D) Terra MODIS (N) and Landsat OLI/ETM+ (•) NDVI; (E) monthly mean maximum

temperature (◦C; dashed line; Tuggeranong Bureau of Meteorology station) and the monthly rainfall (mm; solid bars; Australian National Botanic Gardens Bureau of

Meteorology station).

standing litter we observed not only obscures green vegetation,
but it reflects more light in the red wavelengths, reducing
the NDVI signal (Watson et al., 2013). The relatively weak
correlation between satellite and ground variables may also
be due to data gaps in the satellite time-series and temporal
registration between field and satellite data. Overall, we found
phenocam gCC to be better correlated with Landsat NDVI than
MODIS NDVI. This may be due to the smaller Landsat footprint
and highlights the importance of sampling equivalent size plots
for remote sensing comparisons (Rienke and Jones, 2006).

Despite the reasonable correlation between phenocam,
satellite and field data, we suggest that a 16-day temporal
resolution is too coarse to quantify fine changes that occur in
dynamic grassland systems in our study region, particularly given
that cloud cover impacts often lengthens this period (Stow et al.,

2004). Our phenocamdata shows consistent periods of increasing
and decreasing greenness over as little as 5 days. Other studies
have indicated that an effective 16-day revisit time is insufficient
to detect key phenological dates (Westergaard-Nielsen et al.,
2013). Daily data products from MODIS are available that can
be used to generate finer-scale phenology products (Narasimhan
and Stow, 2010), but the temporal resolution comes at a trade-off
with data quality (e.g., cloud contamination).

Scale transferability when estimating phenology remains a
major challenge (Friedl et al., 1994; Eisfelder et al., 2016). While
some studies have reported success in this regard (e.g., Fisher
et al., 2006; Fisher andMustard, 2007), other authors caution that
there are still major challenges in scaling biophysical measures
to satellites (Huete et al., 2002; Soudani et al., 2012). Some
researchers in this field (e.g., Hufkens et al., 2012) suggest that
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issues of scale and representation (i.e., what is being sampled)
strongly influence the relationship between near-surface and
satellite remote sensing measures of phenology. This concern is
particularly relevant in temperate grasslands within our study
region that often have heterogeneous composition in time as well
as space. Another fundamental difficulty in comparing different
methods is that no method provides a single point of truth. It
should be recognized that each method provides subtly different
information, uncertainty and errors (Hill et al., 2006).

Sources of Variability and Divergence
The C4 Native grasslands within this study show the most
consistent pattern within the functional groups. This group has
the most homogenous composition, dominated by one climax
species, Themeda triandra, and sites have comparable levels of
grazing and other external disturbances. Within other groups,
variations from the typical profiles were mostly due to changes
in species composition throughout the year. For example, the
site INGE was dominated by the C4 exotic grass Eragrostis
curvula. However, high winter rainfall resulted in a flush of C3

annual pasture grasses and forbs that produces a green peak
in early spring, atypical of a C4-dominated system. The C3

Native site MULN was found to have a secondary composition
of C4 grasses in the summer, hence exhibited a higher and more
consistent greenness through summer months than other C3-
dominated locations. This heterogeneity is difficult to control in
natural dynamic systems. Exotic pasture grasses are ubiquitous
in low numbers in native pastures (Moore and Perry, 1970),
but can flourish if conditions are optimal. This makes grassland
ecosystems a challenge for classification—species groups can be
abundant 1 year, and rare the next (Vivian and Baines, 2014).
Periodic assessment of species composition should be a crucial
part of remotely-sensed phenology studies in dynamic systems.

Forbs had low contribution to biomass in the subject
grasslands but may be under-represented because common
prostrate herbs (e.g., Trifolium spp., Hypochaeris radicata,
Solenogyne dominii) are not as readily collected during sampling.
However, the canopy architecture and leaf morphology of
planophile forbs intercept and reflect more light than erectophile
grasses (Jackson and Pinter, 1986) and they have a low proportion
of dead vegetation. As such forbs may contribute proportionally
more to measures of vegetation cover and remotely-sensed
vegetation indices which may diverge from biomass data.
Furthermore, planophile forbs may not be detected by oblique-
viewing phenocams, however they are more evident to nadir-
viewing satellite remote sensing.

At some sites, the vegetation was trampled by domestic stock
during grazing. This changes the canopy architecture, which
in turn impacts the spectral reflectance properties and satellite
VIs (Mutanga et al., 2005). As the phenocam gCC was more
responsive to changes in green cover rather than green biomass,
this may represent a cause of divergence in responses between
near-surface and satellite methods.

Significant attention has been given to the impact that
standing litter has on vegetation indices and phenology estimates
(van Leeuwen and Huete, 1996; Nagler et al., 2000; Watson et al.,
2013). From the perspective of phenocams, satellites and cover

estimates, the growth of new green leaves takes longer to emerge
through the standing litter than at a site with no litter. This was
demonstrated by our data: live biomass data was recorded even
when the phenology curve was at its lowest and green cover data
was nil; however, in the case of phenocams, the oblique angles of
the cameras further suppress detection of emergent green leaves.
The timing of greening estimated from phenocams is likely to be
delayed at grasslands when high quantities of standing litter are
present. This influencemay be further explored in future research
by utilizing the MODIS and Landsat fractional cover products
that estimate the cover of green vegetation, dead vegetation and
background across Australia (Guerschman et al., 2009, 2015).

Study Limitations
The effects of grazing were noted throughout the study but were
not controlled. Grazing reduces biomass and has been shown
to decrease vegetation index scores (Wylie et al., 2002; Yang
and Guo, 2011). Our sites show a variety of grazing pressures
from known grazers—notably domestic stock and conspicuous
native grazing animals (kangaroos)—but also will have grazing
effects from other herbivores (e.g., rabbits, invertebrates). As
such, grazing is a difficult variable to control on a large scale.
However, phenocam gCC showed that, within the same functional
group, sites with higher grazing pressures have similar phenology
curves to less heavily grazed sites. Since we have shown gCC
to be more closely correlated with cover than biomass in these
temperate grasslands, grazing may have less of an effect on gCC
than it does on other indices.

Unlike similar studies that have compared radiometric
properties of vegetation at field vs. remote scales (Westergaard-
Nielsen et al., 2013; Inoue et al., 2015), the current study aimed
to use commonly measured field biophysical parameters as the
basis for ground-scale comparison. However, adding a field
level spectral assessment would increase the detail of inter-scale
comparability (Garrity et al., 2011; Hmimina et al., 2013).

The conclusions of this research have been drawn from 1 year
of monitoring, as well as historical research on phenology in
this region (Hill et al., 1999). This annual window precludes any
investigation of temporal climatic factors on phenology profiles.
Given the inter-annual variability of Southern Tablelands climate,
further years of study would be necessary to disentangle
the influence of temperature/rainfall seasonal differences on
temperate grassland phenology.

CONCLUSION

In the Australian Southern Tablelands, temperate grasslands
represent a continuum from highly productive exotic pastures
to diverse native grasslands. Given the significance of grazing
agriculture in this region, there is a need to classify and
manage different grassland types to integrate conservation and
agricultural values under a changing climate. Remote sensing
offers the capability to conduct this using land surface phenology
of different grassland types, but an understanding of the
biophysical and ecological principles underpinning phenology
drivers is essential.
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The primary driver of phenology in this study was found
to be C3/C4 species composition. The C3 grasslands of this
study showed moderate greenness in autumn and winter, rapidly
increasing to a peak greenness in mid-spring, with secondary
peaks following late summer rains. They senesced rapidly when
high temperatures and low rainfall coincided. The C4 grasslands
exhibited very low green levels in the winter, began steadily
greening from early spring to a summer peak and maintained
relatively high values until autumn. C4 grassland phenology
was influenced by the large quantities of standing litter that
most sites contained. Previous work to classify vegetation in this
region based on phenological profiles successfully distinguished
native pastures from sown pastures and forests (Hill et al.,
1999). Our distinction of C3/C4 dominant functional type adds
an extra dimension to the classification process and—coupled
with ground truthing—may guide finer-scale discrimination of
grasslands communities.

Phenocams were found to be useful for monitoring temperate
grassland dynamics as they capture dynamic changes in greening
and browning trends over as little as 5 days. High temporal
frequency allows for greater resolution than satellite data sources
can provide, particularly for regions that have high cloud cover
for all or part of the year. Satellite data collection is far superior
over larger areas (region to continental scale) but the accuracy
of phenology metrics may suffer from decreased temporal
collection. Phenocams may assist with agricultural management
of temperate grasslands by informing optimal timing for grazing,
destocking, and other management actions.

Correlations between phenocam greenness, biomass
estimates, and satellite vegetation indices were significant
across the data set and fall within the range of agreement found
in similar cross-scalar studies. The significance and strength
of these relationships was found to differ between grassland
functional types. Imperfect correlations between measured

variables occur due to different structural, spatial, and spectral
differences in the variables being measured.

In temperate grasslands in the Australian Southern
Tablelands, phenocams were more effective at estimating
green vegetation cover than green biomass. Phenocams showed
similar effectiveness as commonly-used satellite products at
predicting green cover, however they had the advantage of
eliciting immediate greening and browning events. Scaling
phenology estimates between field and satellite level is dependent
on understanding the underlying biophysical variables being
measured.
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Sorghum (Sorghum bicolor L. Moench) is a C4 tropical grass that plays an essential
role in providing nutrition to humans and livestock, particularly in marginal rainfall
environments. The timing of head development and the number of heads per unit
area are key adaptation traits to consider in agronomy and breeding but are time
consuming and labor intensive to measure. We propose a two-step machine-based
image processing method to detect and count the number of heads from high-
resolution images captured by unmanned aerial vehicles (UAVs) in a breeding trial.
To demonstrate the performance of the proposed method, 52 images were manually
labeled; the precision and recall of head detection were 0.87 and 0.98, respectively, and
the coefficient of determination (R2) between the manual and new methods of counting
was 0.84. To verify the utility of the method in breeding programs, a geolocation-
based plot segmentation method was applied to pre-processed ortho-mosaic images
to extract >1000 plots from original RGB images. Forty of these plots were randomly
selected and labeled manually; the precision and recall of detection were 0.82 and
0.98, respectively, and the coefficient of determination between manual and algorithm
counting was 0.56, with the major source of error being related to the morphology
of plants resulting in heads being displayed both within and outside the plot in which
the plants were sown, i.e., being allocated to a neighboring plot. Finally, the potential
applications in yield estimation from UAV-based imagery from agronomy experiments
and scouting of production fields are also discussed.

Keywords: high-throughput phenotyping, UAV remote sensing, sorghum head detecting and counting, breeding
field, image analysis
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INTRODUCTION

The grain yield of cereal crops is determined by accumulated
processes of resource capture (e.g., radiation, water, and
nutrients) that support net photosynthesis across the growing
season (i.e., the carbohydrate source) and the utilization of this
source, especially in the critical period around the reproductive
stage which allows establishment of a potential sink (grain
number) and, later in the crop, to fill those grains. These
processes and their complex interrelationships form the basis of
physiological models of crop growth and the development of
crops such as sorghum (Sorghum bicolor L. Moench) (Hammer
et al., 2010). Plant breeders and agronomists work collectively
to modify these processes via genetics and management to
develop cropping systems that optimize adaptation to different
environments, particularly those associated with drought and
heat (Lobell et al., 2015; Potgieter et al., 2016).

On an area basis, the final grain yield of cereal crops in
a plot can be described as the product of average values of
plant population, fertile head number per plant (i.e., main stem
plus tillers), seeds per head, and individual seed mass. Insights
into the changes in these component traits through the season
and their final values at harvest provide researchers with a
better understanding of crop adaptation, and potentially allow
breeders to select for different combinations of these traits
in different environments. The process of tillering provides a
flexible or “plastic” response to challenging environments such
as drought, and the trait of fertile head number per plant is
under strong genetic control in both sorghum (Lafarge et al.,
2002) and wheat (Triticum aestivum) (Mitchell et al., 2013;
Dreccer et al., 2014). Although all of these component traits can
be measured through labor-intensive hand-sampling methods,
plant breeders and agronomists doing large trials will typically
only use measures of yield (via plot harvester) and individual
seed mass (via sample of grains from each plot). Together with
estimates of plant population, which can be done by counting
the emerged plants using ground and aerial images (Gnädinger
and Schmidhalter, 2017; Jin et al., 2017; Liu et al., 2017), rapid
and precise estimates of fertile head number per unit area would
allow researchers to estimate the fertile head number per plant as
an indicator of “tillering propensity.”

The aim of the research presented here was to develop a
method that can detect and count the heads of sorghum from
unmanned aerial vehicle (UAV) images, and then apply the
method to specific plots to meet the needs of breeding programs.
Machine-based image algorithms for detecting and counting an
agriculture product with the use of harvesting robots and ground
monitoring vehicles have been applied to imagery of grapes,
tomato, apple, mango, and citrus fruits (Nuske et al., 2011;
Payne et al., 2014; Sengupta et al., 2014; Yamamoto et al., 2014;
Linker and Kelman, 2015; Gongal et al., 2016; Qureshi et al.,
2016). However, these algorithms were designed to handle high-
resolution images that do not include targets with large shape
variations. Therefore, they are not suited for use with either
the images or target object taken by UAVs in a breeding field
of sorghum where different genotypes have heads that vary in
color and shape, with these differences potentially changing with

environment. In this paper, we propose a two-step machine-
learning-based method that can detect and count sorghum heads
from aerial images. To the best of our knowledge, this is the first
report of research of this type.

MATERIALS AND METHODS

Field Experiments and Image Acquisition
The field experiments were part of multi-environment advanced
yield-testing trials in a sorghum pre-breeding program. The trial
was sown on 22 December 2015 at Hermitage, QLD, Australia
(latitude: 28.21◦ S, longitude: 152.10◦ E, altitude: 459 m above sea
level) during the 2015–2016 summer growing season. The target
plant density was 115,000 plants/ha, with genotypes planted in
plots comprising two 5-m-long rows. The plants were sown in
plots within columns, and the trial used a solid row configuration,
with a row spacing of 0.76 m between the two rows and a distance
between two neighboring plots of 1 m as shown in Figure 1.
In this trial, 1440 plots (laid out as 36 columns × 40 double-
row plots; hereafter, we refer to double-row plots as rows, i.e.,
36 columns × 40 rows) were sown, with several columns (216
plots in total) being “filler plots” to allow access for spraying.
The trial comprised 22 check hybrids and 903 test-cross hybrids
derived from crossing between a range of elite male parents and
two female testers in the breeding program. The check hybrids
were replicated at least four times, whereas 220 of the 903 test
hybrids were replicated twice, with no replication at this site
for the remaining 683 hybrids. The trial field was rain-fed and
managed according to local management practices.

A UAV (Modified 3DR X8, Skywalker Technology Co., Ltd.,
China) was flown over the field with a pre-designed flight plan
controlled with Mission Planner (open-source flight planning
software for Pix Hawk autopilot1). The path included substantial
overlap (i.e., 70% front-overlap and 80% side-overlap) at flight
heights of 20 m and a flight speed of 3 m/s. The total flight
time was approximately 50 min (five 10-min flights to cover
the whole field). A commercial RGB camera (Sony Cyber-
shot DSC-RX100M3, Tokyo, Japan) was mounted on the UAV
in a landscape format. The resolution of the camera was set
to 5472 × 3648 pixels, which resulted in an average ground
sampling distance of 0.45 cm at 20 m height with a footprint of
20 m. The image sets were captured at 1-s intervals during the
flights, so that about 2000 images were produced for the target
field (about 35 GB+) per flight.

Data Preparation
Flight data obtained on 24 March 2016 were chosen for this
study because almost all of the genotypes were heading stages
at this time, so that the widest diversity of heads in terms of
color and shape could be found in these images and the dataset
would be large and balanced enough for later processing. We
believe, however, that the image processing algorithm conducted
on this dataset has the general capabilities to be used on the
whole dataset, including images taken at different times of the

1http://planner.ardupilot.com/
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FIGURE 1 | Experimental field layout.

FIGURE 2 | An example of image preparation for algorithm development: (A) original image, (B) cropped image, and (C) manually labeled cropped image, the points
represent the heads (dataset 1).

growth season. From the 2109 original images obtained on 24
March 2016 when most of the plants in the experiment had
produced heads (on average, this date was about one to 2 weeks
after anthesis), 52 images were randomly selected following an
uniform distribution to develop and test the head detecting and
counting algorithm. To minimize the influence of camera lens
distortion, all of the images were cropped so that about 10% of
image was used (Figure 2). The original image of 5472 × 3648
pixels was cropped to a central region of 1154 × 1731 pixels,
which corresponded to an area of 2.3 m× 3.5 m which contained
three to five plots. All of 52 cropped images were carefully hand
labeled with points in Adobe Photoshop (Adobe Systems Inc.,
San Jose, CA, United States) as shown in Figure 2C. These images
were grouped as Dataset 1.

Sorghum Head Detection
The main challenges of creating an image-based solution in a real
breeding field are: (1) changing light conditions within a single
flight (images vary in color; Figure 3A); (2) complex background
(Figure 3B); and (3) head variations in color, size, and shape

caused by light conditions, genotype, heading stage, source of
head (main stem or tillers), angle of head stands, and overlapping
of heads (Figures 3C,D).

To overcome the first challenge, in our previous work
(Potgieter et al., 2015; Guo et al., 2016), we proposed a two-
step machine-learning, voting-based method. The method uses
colors (RGB, HSV [hue, saturation, and value], Lab from related
color space, ExG [excess green], and ExR [excess red]) introduced
by Meyer and Neto (2008); texture features (average gray
level, average contrast, measure of smoothness, third moment,
measure of uniformity, and entropy) from gray-scale imagery
introduced by Gonzalez et al. (2010); and contrast, correlation,
energy, and homogeneity from the gray-level co-occurrence
matrix introduced by Haralick et al. (1973) to train several
decision-tree-based pixel segmentation models (DTSM) (Guo
et al., 2013). These DTSM models are then used to segment
the images to sorghum and non-sorghum head regions. Based
on the segmented regions created in the last step, a bag of
visual words approach, modified from Guo et al. (2015), is
applied to the test images again to gain a new segmentation
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FIGURE 3 | Challenges of head detection in a real field. (A) Changing light conditions within one flight: (1) images taken under sunny conditions; (2) images taken
under cloudy conditions. (B) Complex background: (1) soil/ground (shadowed partially/fully), (2) dead leaves, (3) green leaves, (4) shadowed leaves, and (5) grass.
(C) The sorghum heads vary in color: (1) white, (2) green, (3) brown, and (4) orange. (D) The sorghum heads vary in size and shape: (1) heads from main stem, (2)
heads from tillers, and (3) overlapping heads; note that the shape of the heads is compact in 1 and 2 but is expanded in 3.

image with misclassifications removed from the previous step.
Finally, a voting process is used for all the segmented images
to acquire the most reliably detected region of the sorghum
heads. With only 20 test images cropped from a GoProTM Hero4
camera (GoPro, Inc., San Mateo, CA, United States), the method
showed good accuracy for sorghum head detection; the precision
(the proportion of correctly detected head region inside true
head region) and recall (the proportion of correctly detected
head region inside detected head region) were 0.95 and 0.96,
respectively (Guo et al., 2016). However, since this method used
texture feature and sliding window, the computation time and
cost was substantial for processing of high resolution images and
did not suit practical use.

Using the knowledge gained from our previous studies
(Potgieter et al., 2015; Guo et al., 2016), here we only used
color features to train a pixel-based segmentation model. First,
seven classes – (1) background soil, (2) background shadow, (3)
background dead leaves, (4) leaves, (5) green heads, (6) orange
heads, and (7) white heads – were defined. For each class, a
series of nine color features (r, g, b; H, S, V; L∗, a∗, and b∗)
from three standard color spaces were carefully collected from
17 images (Figure 4, Dataset 0) that were selected from the
entire image dataset of 2109 images, considering the diversity
of lighting conditions and head colors. Using these features, we
trained a DTSM model and applied it to all of the test images to
classify their pixels into the seven classes. DTSM is a supervised
machine learning approach based on the decision tree (DT)
(Guo et al., 2013, 2017). This approach generates a decision tree

model using the selected color features and corresponded classes,
then a constructed tree model is applied to segment test images,
such that each pixel becomes assigned to one of the classes
(Figures 5A,B). After this, the head-related pixels (green heads,
orange heads, and white heads) were selected and integrated
together into “head regions,” as shown in Figure 5C.

Sorghum Head Counting
To count the number of detected regions (Figure 5D) from the
first step with a reliable model, we randomly separated Dataset 1
into six sets, each set being eight or nine images. The images from
five of the sets were used to train the model with fivefold cross
validation, and the last set was used to estimate the performance
of the model. In detail, hand-labeled images were used to extract
the 11 morphology features of all of the candidate head regions
and the corresponding head numbers (Figures 5C,D):

(1) Area: actual number of pixels in each candidate head
region.

(2) Eccentricity: eccentricity of the ellipse that has the same
second-moments as the candidate head region.

(3) Extent: ratio of pixels in the candidate head region to pixels
in the total bounding box.

(4) Perimeter: total number of pixels around the boundary of
the candidate head region.

(5) Major axis length: length of the major axis of the ellipse
that has the same normalized second central moments as
the candidate head region.
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FIGURE 4 | Dataset 0 comprised 17 images for training data collection of pixel-based segmentation model. The images were selected considering light condition,
head color, head shape, and background.

FIGURE 5 | The work flow of the proposed method of detecting and counting sorghum heads. (A) Original image. (B) Pseudo-color image demonstrating pixel
classification result by DTSM: white head, yellow; soil, gray; shadows, black; dead leaves, off-white; leaves, green; orange heads, dark orange; and green heads,
light orange. (C) Detected head regions (left) and overlapped with manually pointed head image (right). The black dots indicate heads pointed manually with
Photoshop. (D) The head regions cropped from original images based on (C). (E) Detected head regions and number of heads counted. The numbers shown in the
image indicate the number of the sorghum heads; 0 means incorrect detection..

(6) Minor axis length, length of the minor axis of the ellipse
that has the same normalized second central moments as
the candidate head region.

(7) ConvexArea, number of pixels in smallest convex polygon
that can contain the candidate head region.

(8) FilledArea: number of pixels in each candidate head region
with all holes filled in.

(9) EquivDiameter: diameter of a circle with the same area as
the candidate head region.

(10) Solidity: proportion of the pixels in the convex hull that are
also in the candidate head region.

(11) Roundness: circularity of candidate head region.

These features of each candidate head region were then used
as predictors with corresponded head numbers as the response,
in order to train a Quadratic-SVM (Support Vector Machine)
classifier with fivefold cross validation. Support Vector Machine
is a supervised machine learning algorithm which has become
commonly used to solve classification problems. SVMs are based

on the idea of finding a hyperplane that best divides a dataset into
two classes. In this paper, a quadratic kernel is used, as it is less
computationally intensive but has been show to perform as well
as previous work (Guo et al., 2016).

Then model was applied to all of the candidate regions
from step 1 to count the numbers of heads in each image
(Figure 5E). The training data and a guidance is also provided in
Supplementary Materials, which can support opportunities for
readers to test other classifiers (such as Decision Trees, Random
Forest, SVMs with different kernel functions) using the MATLAB
“Classification Learner” application.

Application of Method to Count Heads
Within Individual Plots
In total, 2109 original images were also processed by the
Pix4Dmapper software package (Pix4D, SA, Lausanne,
Switzerland) to generate 3D point cloud and ortho-mosaic
images of the whole experimental field. The ortho-mosaic images
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FIGURE 6 | An example of plot segmentation and identification from original images. (A) A plot is selected from a set of ortho-mosaic images. (B) The selected plot
appears in several original images but in different locations. (C) The plots images are grouped and one is selected based on its distance from the central part of the
image. (D) The selected plot is cropped from the corresponding original image. (E) The selected plot is rotated based the corner detection and orientation
calculations of (D).

FIGURE 7 | An example of head detection. Images contain (A) white heads, (B) green heads, and (C) brown heads. All of the images contain orange heads. The
upper panels show the original images and the lower ones show the detected head regions (blue) and hand-labeled head centers (black dots). Almost all of the
heads of the different colors were detected by the proposed model.

were segmented into individual plots and projected back to the
corresponding original images to segment the original pixels
(cf. mosaic) following our previously reported method (Duan
et al., 2016). In total, 28,825 individual plot images (i.e., many
replications of each of the 1440 plots) were segmented from
the dataset. The process of plot segmentation and identification
from the original images is shown in Figure 6. Any given plot
can appear in several original images but in different locations

(Figures 6A,B); the plot with the shortest Euclidean distance to
the central part of the image was selected as the candidate plot
image and cropped from the original image and rotated with
calculated orientation (Figures 6C,D). Each plot was thereby
generated from 1440 images, and 40 of them were randomly
selected for this study. To validate the accuracy of the proposed
detection and counting method, each plot image was also
carefully hand labeled by two scientists (Dataset 2).
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RESULTS AND DISCUSSION

Datasets 1 and 2 were both used to evaluate the head detecting
and counting capabilities of the proposed method.

Figure 7 shows head detection results from dataset 1. Almost
all of the heads of different colors, shapes, and sizes were
successfully detected. Table 1 presents an evaluation of the
detection results in terms of precision and recall based on the
definitions of Davis and Goadrich (2006). Precision indicates
that for the total number of head regions, which proportion
were correctly detected (with a ratio of 1.0 being perfect) while
recall indicates for all detected regions, how many are correctly
detected (perfect = 1.0). The algorithm was able to accurately
detect 87% of sorghum heads for dataset 1 and 82% for dataset
2, and the accuracy rates were high (recall = 0.98) for both
datasets.

TABLE 1 | Evaluation of the detection results.

Dataset TP FP FN Precision Recall F-measure

1 (52 images) 15,773 2434 314 0.87 0.98 0.92

2 (40 plots) 2762 587 44 0.82 0.98 0.89

Images from datasets (1 and 2) had not been used to train the detection model.
TP (True Positive): head region correctly detected.
FP (False Positive): non-head region erroneously detected as a head.
FN (False Negative): head region undetected.
Precision = TP/(TP + FP). Recall = TP/(TP + FN).
F-measure = (2 × precision × recall)/(precision + recall).

Figure 8 shows the counting accuracy of the proposed
method. First, the total number of sorghum heads in each image
from both datasets was counted and double checked carefully by
two researchers. Then, the test part of dataset 1, all of dataset 1,
and all of dataset 2 were tested by the model, and the coefficients
of determination (R2) were 0.85, 0.88, and 0.56, respectively.

The R2 of the head counting at the image level (Dataset 1)
was relatively high, however, it was observed to be decreased
substantially when applying the model to single plot images
(Dataset 2). The main reason for this is likely related to
the application of the plot segmentation algorithm in this
experiment. In our case, there were only two rows in each
plot, and hence it was common to cut out parts of the
heads (which overlapped “plot” boundaries) during segmentation
(Figure 9A). Plot segmentation accuracy could be improved
either by redesigning the field experiment to enlarge plot size or
by using drones with a better positioning system and a higher-
resolution camera. Alternatively, we could try applying methods
to the rows of heads in a multi-plot image to try to better delineate
the boundaries between the plots (i.e., tracing around the heads
at edges of plot).

For both of the datasets, challenges remain in dealing with
the large variability among genotypes, growth stages, and growth
position (main stem or tillers) of heads, all of which contribute to
large differences in the morphological features of detected head
regions. As shown in Figure 9B, detected regions may comprise
multiple overlapping heads while other heads may be obscured by
leaves, neither feature of which has been trained in the counting

FIGURE 8 | Accuracy of head number determined by the proposed method as compared with that done by manual counting: (A) dataset 1 test, (B) dataset 1 (all),
and (C) dataset 2 (all).

FIGURE 9 | Reasons for incorrect counting: (A) the plot segmentation was not perfect, so parts of some heads were cut out (upper red oval); (B) some regions
included multiple overlapping heads (left red circle), and some heads were covered by leaves (right red circle). The upper panels show the original images and the
lower ones show the detected head regions (blue) and hand-labeled head centers (black dots).
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model. The model capabilities could therefore be improved with
additional training data and exploring more efficient features.

With the rapid development of GPU technology in recent
years, the size of electrical infrastructure has been decreased
significantly without loss in performance. These types of
embedded platforms allow for onboard real-time image
processing, so that the proposed or other methods could be
applied with real-time image input. By integrating such system
with UAVs, scouting of production fields could be completed by
the end of the flight.

CONCLUSION

We proposed a simple two-step machine-learning-based image
processing method to detect and count the number of sorghum
heads from high-resolution images captured by UAVs in a
breeding field. This introduces realistic challenges given that
sorghum has various genotypes with different growth stages, and
the heads can have different colors, shapes, and sizes. Using
carefully selected training data, the precision and recall of head
detection were 0.87 and 0.98, respectively, for dataset 1 and
0.82 and 0.98 for dataset 2. The coefficients of determination
(R2) for head counting were 0.88 and 0.56 for datasets 1 and 2,
respectively.

Head number per unit area is an important component of the
yield of cereal crops. As well as being useful to agronomists and
breeders, the method described here has utility in production
agriculture, e.g., by using UAVs to survey a field to estimate
head number, and then manually sampling a range of head sizes
in order to estimate yield as product of weighted average head
size (grain weight per head) and head number. Counting can
also be used to characterize spatial variability in the field, as
well as non-uniformity of development or head size over time
(multiple monitoring flights). In a research context, the ability of
this method to count heads of contrasting genotypes in diverse
measurement conditions provides a better capability to estimate
head number in plant breeding trials. The main limitation at
present in being able to correctly delineate the boundaries of plots
and we are investigating ways of doing this, e.g., by defining plots
early in the season and tracking the head positions relative to
original plant positions.

The application of machine-learning-based image analysis
technologies is become increasingly important in field-based
plant phenotyping tasks. By using these rapidly improving
techniques, we believe the accuracy of phenotyping will increase
while the computational cost will decrease, both of which will
help researchers reach the goal of real-time phenotyping (Fuentes
et al., 2017; Naik et al., 2017). However, key techniques such as

training data preparation, model selection, and feature definition
still rely on highly specialized knowledge in both plant science
and computer science (Singh et al., 2016). Deep learning is
a possible solution to reduce the difficulties, but generating
ground-truth data (image annotation) to train the models is still
very labor intensive (Sa et al., 2016, 2017; Ghosal et al., 2018).
A method is needed to automatically generate reliable training
data, and the detection feature of the proposed method could
be used as a semi-automatic tool to provide candidate training
datasets. We encourage the plant research community to share
the existing annotated dataset to accelerate plant-phenotyping
community growth in a similar way that ImageNet is used
(Russakovsky et al., 2015). To aid in this growth, datasets 1 and 2
along with the manual labeling used in this study are available in
the Supplementary Materials.
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Genetic improvement in sorghum breeding programs requires the assessment of

adaptation traits in small-plot breeding trials across multiple environments. Many of these

phenotypic assessments are made by manual measurement or visual scoring, both

of which are time consuming and expensive. This limits trial size and the potential for

genetic gain. In addition, these methods are typically restricted to point estimates of

particular traits, such as leaf senescence or flowering and do not capture the dynamic

nature of crop growth. In water-limited environments in particular, information on leaf area

development over time would provide valuable insight into water use and adaptation to

water scarcity during specific phenological stages of crop development. Current methods

to estimate plant leaf area index (LAI) involve destructive sampling and are not practical

in breeding. Unmanned aerial vehicles (UAV) and proximal-sensing technologies open

new opportunities to assess these traits multiple times in large small-plot trials. We

analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral

camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes

randomized within 3 blocks). Due to variable emergence we were able to assess the utility

of these vegetation indices to estimate canopy cover and LAI over a large range of plant

densities. We found good correlations between the Normalized Difference Vegetation

Index (NDVI) and the Enhanced Vegetation Index (EVI) with plant number per plot, canopy

cover and LAI both during the vegetative growth phase (pre-anthesis) and at maximum

canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data

to assess the senescence pattern of sorghum genotypes known as fast (senescent)

or slow senescing (stay-green) types. The Normalized Difference Red Edge (NDRE)

index which estimates leaf chlorophyll content was most useful in characterizing the
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leaf area dynamics/senescence patterns of contrasting genotypes. These methods to

monitor dynamics of green and senesced leaf area are suitable for out-scaling to enhance

phenotyping of additional crop canopy characteristics and likely crop yield responses

among genotypes across large fields and multiple dates.

Keywords: crop cover, mosaics, UAV, leaf area dynamics, water use, sorghum breeding

INTRODUCTION

Sorghum is the dominant dry-land summer crop in the north-
eastern Australian grain belt. The growing environments of this
area are characterized by high temperatures and variable rainfall,
although many of the soils have sufficient water-holding capacity
to allow crops to grow on stored sub-soil moisture (Pratley,
2003). As sub-soil moisture is depleted, mild or severe drought
stress frequently develops toward the end of the growing season
(Chapman et al., 2002), reducing crop yield. In the next decades,
this situation is expected to occur even more frequently with
increasing climate variability and weather patterns becoming
more extreme (Lobell et al., 2015a) as was seen during the last
two decades globally as well as in Australia (IPCC, 2014).

With changes in climate, quantitative breeding for specific
traits that enhance yield in water-limited environments, will
become even more important. One such trait is leaf area
index (LAI), as the size of the crop canopy has important
consequences for water use (Borrell et al., 2014a,b). Being able
to accurately characterize leaf area would greatly enhance the
selection of sorghum genotypes that are well adapted to water-
limited environments. For example, in environments with mild
to severe terminal drought stress, crops with smaller leaf area per
plant have been found to have a yield advantage, as their reduced
water use before flowering conserves sub-soil moisture that can
be accessed during the critical grain-filling period (He et al.,
2016). The stay-green trait in sorghum, which is associated with
reduced leaf senescence and yield benefits under post-anthesis
drought is thought to operate via this mechanism by conferring
reduced tillering and smaller plant leaf areas before flowering
(Borrell et al., 2014a,b). Stay-green has been an important trait
in Australia’s sorghum breeding programs, which has partly
contributed to significant increases in sorghum yield trends in
dry environments compared to moderate and wet environments
over the last three decades (Potgieter et al., 2016). Up to now,
breeders have positively selected for stay-green by visually rating
leaf senescence after flowering. However, this only works in trials
in which the right drought conditions develop for the trait to be
expressed.

Apart from these links to evapotranspiration (George-Jaeggli
et al., 2017), LAI is also useful to evaluate the fraction of
absorbed photosynthetically active radiation, which is required to
model canopy photosynthesis (Weiss et al., 2004). Being able to
measure leaf area development over time would therefore allow
the estimation not only of the water use pattern of a genotype, but
also its likely photosynthetic output.

While visual scores of stay-green during grain-filling can be
reasonably accurate when assessed at the right time and under
the right level of water limitation, it is difficult to estimate plant

leaf area or leaf area index (LAI) earlier in the season, and actual
measurements of leaf area are time-consuming. Measurement of
leaf area on thousands of plots at one time point, let alone several
time points throughout the growing season is impractical. A low-
cost high-throughput method for phenotyping canopy size of
sorghum genotypes is needed.

The first application of remotely-sensed multi-spectral
imagery and the development of vegetation indices to monitor
crops goes back to the first NASA LANDSAT series in
the 1970’s (Tucker, 1979). The application of remote-sensing
technology, in particular, hyperspectral imaging (Goetz, 2009),
in vegetation mapping and yield forecasting has been steadily
developing since then, and many different indices using specific
wavelengths have been developed that can be used to assess
plant growth parameters (Beeri and Peled, 2006; White et al.,
2012). More recently this has been extended to predicting crop
and vegetation biophysical attributes like net primary production
(NPP), fraction of absorbed photosynthetically active radiation
and LAI. This was done through the use of spectral indices (e.g.,
NDVI, EVI) derived from visible and near infrared reflectance
spectra at moderate to high spatial resolutions across large scales
(Huete et al., 2002; Hanes, 2014).

While the use of a digital camera attached to an Unmanned
Aerial Device Unmanned aerial vehicles (UAV) was first
proposed as a cost-effective way to monitor small wheat plots
nearly a decade ago (Lelong et al., 2008) it was not until very
recently that cheap, but highly precise positioning and digital
imaging technologies and unmanned aerial device technology
have become mainstream so that their use has become practical
for farmers and research programs alike (Haboudane et al., 2004;
Chapman et al., 2014; Candiago et al., 2015). The combination
of these technologies provides the potential for high-throughput
phenotyping to allow plant breeding programs to undertake
quantitative screens of large breeding populations.

This paper presents results from a pilot study using a multi-
rotor UAV fitted with a narrow-band multispectral camera
(five bands of 10–40 nm width) to capture images of sorghum
breeding lines with diverse canopy attributes across seven dates.
We evaluated three narrow-band vegetation indices i.e., the
normalized difference vegetation index (NDVI), the enhanced
vegetation index (EVI) and the normalized difference red edge
index (NDRE) to estimate traits, such as canopy cover, leaf area
index and leaf chlorophyll content that are of particular interest
to sorghum breeders in the northern grain belt of Australia.

Previous studies have demonstrated the utility of such
vegetation indices to estimate LAI in soybean and maize (Viña
et al., 2011) and wheat (Haghighattalab et al., 2016), but no such
studies previously existed for sorghum. The objective of our study
was to assess the suitability of vegetation indices calculated from
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spectral data captured with a multi-spectral camera mounted on
a UAV to estimate canopy cover, leaf area and leaf chlorophyll
content of a diverse set of sorghum genotypes grown in breeding
plots. We also discuss the utility of such an approach to assess
sorghum breeding lines for differences in canopy size and leaf
chlorophyll content during critical crop stages, such as around
flowering and during grain fill.

MATERIALS AND METHODS

Experiment and Genotypes
An experiment was conducted to test the ability of multi-spectral
sensing technologies on-board a UAV platform to calculate
various vegetation indices to estimate canopy characteristics,
such as plant cover, leaf area, leaf greenness or chlorophyll
content and biomass of single plots sown to different sorghum
genotypes. This paper only focuses on the outcomes related to
plant cover, LAI and chlorophyll content.

Ten grain sorghum genotypes known for differences in
canopy traits, such as plant height, leaf angle and leaf area were
selected, including 4 genotypes with contrasting senescence type
(i.e., rapid senescence after flowering = senescent type, or slow
senescence= stay-green type).

The 10 sorghum genotypes were arranged in a randomized
complete block design with 3 blocks (10 genotypes × 3 rows),
resulting in 30 plots (Figure 1). Plots were 4 rows wide with
0.76m row spacing by 10 meters long (i.e., 30.4 m2) and planted
in an east-west direction.

The study site was located at the Hermitage Research Facility
(28◦12′ S, 152◦06′ E; 480m above sea level) in north-eastern
Queensland. The soil of the trial area was conditioned 6 months
prior to planting via incorporation of 3.5 t ha−1 of Gypsum,
350 kg ha−1 of NatraMin (AgSolutions, Australia) and 6 t ha−1

feedlot manure. One month prior to planting the trial area was
fertilized with 220 kg ha−1 of GRAN-AM (20% Nitrogen, 24%
Sulfur, Incitec Pivot, Australia) and 100 kg ha−1 of Urea (46%
Nitrogen). The plots were sown with a precision planter on the
19th of November 2015. The trial was planted on a near-level
site on a self-mulching alluvial clay with a high montmorillonite
clay content (McKeown, 1978) that had a full sub-soil moisture
profile at sowing. The trial was not irrigated, but regular in-crop
rainfall and the sub-soil reserves prevented the development of
significant water limitation. Crop establishment was variable due
to surface flooding just after sowing. However, data are compared
at the sample quadrat level (see details below) so that 30 sample

quadrats at each harvest can essentially be considered as samples
of potential leaf area for a diverse set of genotypes.

Data Capturing Missions
At sowing time, accurate ground control points (GCP) were
collected using a 1 cm resolution handheld GPS (Global
Positioning System) unit (Trimble XT, Trimble, Sunnyvale
California). Each of these GCPs was marked with a square
concrete paver painted with blue triangles so that they were easily
identifiable from above.

Data capturing missions were conducted at different critical
times during the crop growth period (Table 1). Sample quadrat
cuts of evenly established areas of two central rows (1 lineal
meter from each) were taken within each plot at two different
stages: pre-anthesis (ca. 8 weeks after sowing, or 3 weeks prior to
anthesis) and at or within 1 week of anthesis.

To reduce effects of ambient light condition, we limited data
capturing missions to clear and cloudless days and conducted
them around the middle of the morning.

UAV Platform
The UAV platform used was a 3D Robotics X8+ multi-rotor
(Berkeley, California). The X8+ has the advantage of being able
to fly at very low altitudes and at low speeds, which is critical for

TABLE 1 | Experiment details, dates and variables collected.

Experimental design 10 genotypes × 3 replicates (blocks),

randomized complete block design

Genotypes R55637 (senescent), MR Buster (senescent),

R931945-2-2 (stay-green), R931945-2-2TM

(stay-green), 84G22, 85G56, FF_B963676,

A1*F_B010054/F9_R04377-31,

A1*F_B02055-9/R986087-2-4-1, R974443-1-2

UAV flights (2016) 12 January, 26 January, 3 February, 10 February, 16

February, 25 February, 31 March

Crop stages Sowing—19 November 2015; Flowering—9

February 2016; Final Harvest—11 May 2016

Leaf area index (LAI)

quadrat cuts

Pre-Anthesis (13 January) and Anthesis (9 February)

Number of culms per

m2
Total number of culms (main stems and tillers

together) at anthesis

MR Buster and the two A1 genotypes are hybrids while the remaining genotypes are

inbred lines.

FIGURE 1 | Experimental layout of plots at the Hermitage site as shown in aerial photo mosaic taken on 3 February. Plots were arranged in three rows and ten

columns per row. Numbers in figure refer to the Column-Row position of each plot. Rows were treated as blocks and genotypes were completely randomized within

each block (row).
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creating accurate and high-resolution mosaics (Corrigan, 2015).
Flight altitudes for each flight were set at 20m resulting in a
ground sampling distance (GSD) or pixel size of∼0.5 cm.

Multi-Spectral Camera
A RedEdgeTM narrow-band multispectral camera (MicaSense,
Seattle, Washington) (http://www.micasense.com/rededge/)
simultaneously capturing 5 bands at specific nanometre (nm)
wavelength peaks was fitted to the UAV platform. The bands
captured were Blue (B: 475 nm center wavelength, 20 nm
bandwidth), Green (G: 560 nm, 20 nm), Red (R: 668 nm, 10 nm),
Red Edge (RE: 717 nm, 10 nm), and Near Infrared (NIR: 840
nm, 40 nm) (Figure 2). The camera captured the images and
GPS information to a local digital card in 16-bit raw GeoTIFF
files. This allowed for post geo-rectification and mosaicking. The
horizontal field of view was 47.2 degrees with a 5.5 mm focal
length producing an image resolution of 1,280× 960 pixels.

The RedEdge camera includes factory calibration coefficients
in each image for optics chain properties, such as lens
distortion and optical vignetting. Atlas uses a CMOS sensor
(Complementary metal–oxide–semiconductor) model along
with extracted regions from images of a calibrated Lambertian
reflectance panel to convert raw image digital number (DN)
to reflectance units. These images are then linearly combined
through a photogrammetry process to estimate the surface
reflectance of each pixel in the final reflectance map.

Mosaicking, Ortho Rectification and
Reflectance
After each flight, images for each of the five wavelengths were
uploaded to the ATLAS cloud (MicaSense, Seattle, Washington)
(http://www.micasense.com/atlas/). The cloud service uses
the Pix4d software (PIX4d, Lausanne, Switzerland) (www.
pix4d.com) and proprietary algorithms to stitch images together
to create a geo-referenced multi-layer ortho-mosaic of the flight
for each date. Stitched GEOTIFF format images for each band
were downloaded from ATLAS and imported into ArcGIS

(https://www.arcgis.com/home/index.html) for layer stacking
and geo-rectification to GCP for each date.

To be able to convert DNs into reflectance, an image of a
white reflectance panel was taken at the start and end of each
flight and was uploaded with the images prior to the cloud
processing. During the mosaicking process, the reflectance of
the reference panel was used so that each of the 5 downloaded
GeoTIFF files was a calibrated reflectance map for the respective
band. The pixel values are proportional to % reflectance, with
a pixel value of 32,768 being equal to 100% reflectance (65,535
is equal to 200% reflectance). Once the 5 bands had been layer
stacked for a single flight date, data from each date was geo-
rectified to high-precision GCP. Pixel values were then converted
to reflectance values between 0 and 1 by dividing each pixel by the
max reflectance value of 32,768. Pixels with specular reflectance
(e.g., bright mirror like reflectance) and missing values from the
mosaics were omitted in the analysis by masking.

After adjustment of pixel reflectance, indices per plot and per
quadrat cut from each mosaic were generated in ArcGIS software
and extracted and saved into an ASCII file format for comparison
with measured data. The reflectance of areas of the quadrat
cuts for any single flight could be determined by examining a
subsequent flight (after cutting) to exactly identify where the cuts
were made.

Narrowband Vegetation Indices and
Percent Cover
Two spectral indices were calculated from the reflectance

measured by the RedEdge
TM

sensor. These indices relate to
canopy health and canopy architecture (i.e., leaf area and
biomass). The most widely used vegetation index is the
Normalized Difference Vegetation Index (NDVI). NDVI is a
simple normalized ratio between the NIR and Rwavebands and is
therefore a comparable metric between dates (Rouse et al., 1974):

NDVI = (NIR− R)/(NIR+ R) (1)

FIGURE 2 | Multispectral bands of the MicasenseTM camera across the spectrum of visible and infrared light. Peaks for each band’s transmissivity are shown across

the electromagnetic spectrum at specific nanometer (nm) wavelengths. Blue (B: 475 nm center wavelength, 20 nm bandwidth), Green (G: 560 nm, 20 nm), Red

(R: 668 nm, 10 nm), Red Edge (RE: 717 nm, 10 nm), and Near Infrared (NIR: 840 nm, 40 nm). Source: http://www.micasense.com.
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We used a NDVI threshold of > 0.5 to capture reflectance from
green leaves only and exclude soil background reflectance. This
threshold has the greatest effect when plants are small i.e., at the
time of the pre-anthesis measurement.

The enhanced vegetation index (EVI), which relates to canopy
architecture was computed as follows (Huete et al., 2002):

EVI = 2.5∗[
NIR-R

NIR+ 6∗R− 7.5∗B+ 1
] (2)

NDVI and EVI pixel values were aggregated to generate
individual plot index metrics for each 30.4 m2 sorghum plot
at each flight date. Maximum (NDVImax, EVImax) and average
(NDVIavg, EVIavg) values for each index were derived from this
time series.

In order to assess the degree of crop establishment (i.e.,
number of plants visible after emergence) we calculated the crop
cover (CC, %) for each plot. An RGB image was generated from
the Micasense mosaics. CC was then derived as the proportion
of green pixels per plot. We defined pixels as “green” if their hue
was between 70 and 140 degrees.

Plant Counts and Leaf Area Index
Total number of plants per entire plot area (i.e., 30.4 m2)
were counted 26 days after sowing (DAS). Leaf area (LAI) was
measured destructively (sample quadrats) on the ground during
the vegetative period (pre-anthesis, 54 DAS) and 2 weeks after
the last genotype started flowering (anthesis, 83 DAS). At each
sampling time, all plants within a 1.52 m2 sampling quadrat
(2 × 1m from the middle 2 rows of each 4-row plot), were cut
at ground level and brought up to the laboratory for processing.
Plants were separated into stems, leaves and panicles, main
stems and tillers separately, and dried in a forced draft oven at
80◦C until dry weight reached a minimum and then weighed.
During the anthesis sample, culm numbers (main stem and tillers
together) were recorded.

Crop Senescence
To analyze differences in rate of senescence between genotypes,
we calculated the normalized difference red edge index (NDRE)
(Gitelson and Merzlyak, 1994; Sims and Gamon, 2002):

NDRE = (NIR-RE)/(NIR+RE) (3)

The NDRE index is highly correlated with chlorophyll content
within plants and therefore is a good surrogate for photosynthetic
capacity (Gitelson and Merzlyak, 1994; Sims and Gamon, 2002;
Gitelson et al., 2003). The difference between NDRE at maximum
(peak) canopy cover and the NDRE at maturity (final flight date)
was used as a simple metric for the rate of senescence (RSNDRE).
To test whether this index was useful to differentiate between
genotypes that were known to be senescent (tendency to senesce
rapidly after flowering) or stay-green (tendency to senesce slowly
after flowering), we grouped a subset of 4 genotypes into 2 groups
(Senescent and Stay-green).

Statistical Validation Metrics
All analyses and graphs were done using R (R Core Team, 2016).

We used simple linear regressions or logarithmic functions
depending on best fit between vegetation indices (i.e., NDVI and
EVI) and measured data at sample quadrat levels.

To test for significant genotype or group effects on individual
vegetation indices we used linear mixed models in the lme4
package in R (Bates et al., 2015).

The general form of the mixed models used was:

Y = Xβ + Zµ + ε (4)

where the response (vector y) is modeled by a set of fixed effects
(vector β) and random effects (vector µ) and ε is the random
error term. The design matrices X and Z assign the fixed and
random effects, respectively to the observations.

For the time series of NDVI or NDRE vs. days after sowing
(DAS) for individual genotypes, the mixedmodel included vector
β comprising Genotype (factor with 10 levels) and DAS (factor
with 7 levels) (fixed effects) and vector µ comprising Block
(3 levels) within plot and vector ε comprising error (random
effects).

To test whether Group (senescent or stay-green) had a
significant effect on the difference between NDRE at maximum
canopy cover and NDRE at maturity, we first tested a mixed
model with vector β comprising Genotype (factor with 4 levels)
and Group (factor with 2 levels), µ comprising Block (3 levels)
and vector ε comprising error, but as Genotype had no significant
effect, we only included Group in vector β in the final model.
Assumptions of normality were tested with a quantile-quantile
plot and seemed to have been met. Analysis of covariance was
conducted with Group as variable to test whether the slopes of
the relationship of NDRE vs. days after sowing during the post-
anthesis period were significantly different between the senescent
and stay-green genotypes.

RESULTS

Vegetation Indices Aggregated at Entire
Plot Level
Averaged across all plots, NDVI (>0.5) and EVI values
aggregated over the entire 30.4 m2 plot areas were 0.75 and 0.37,
respectively, at the first flight date (Figure 3). Maximum values
for NDVI occurred between 68 and 83 DAS and ranged from 0.72
to 0.86, depending on genotype. After this time, NDVI decreased
due to crop senescence and reached values of between 0.62 and
0.67 by the end of the experiment (133 DAS) (Figure 3). Average
EVI values remained relatively consistent for all, but the last flight
date, when EVI was significantly lower (Figure 3).

Percent Cover at Plot Level
Due to surface flooding in the first week after sowing affecting
emergence, crop cover varied from as low as 7 and 18% to as
high as 57 and 77% 54 days after sowing (DAS) (12 January)
and 76 DAS (3 February), respectively (Figure 4). Actual plant
counts ranged from 36 to 204 plants per plot (30.4 m2). This
variability gave us an opportunity to test the validity of using
NDVI to estimate crop cover across a broad range of plant covers.
When aggregated over the entire plot area, NDVI (>0.5) was
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FIGURE 3 | Boxplots showing NDVI (—) and EVI (—) values aggregated over

entire 30.4 m2 plot areas and averaged across all 30 plots at seven flight

dates. Flight dates were: 12 January or 54 days after sowing (DAS), 26

January (68 DAS), 3 February (76 DAS), 10 February (83 DAS), 16 February

(89 DAS), 25 February (98 DAS), 31 March 2016 (133 DAS).

significantly and strongly correlated with plants per plot (R2 =

0.58, RMSE= 0.03, Figure 5).
Maximum crop cover at entire plot level was mostly >30

and 50% at the pre-anthesis (January image) and anthesis stages
(February image), respectively (Figure 4).

Correlation of Vegetation Indices with LAI
Measured by Sampling Quadrats
Leaf area index (LAI) values derived from the quadrat cut
sampling areas ranged from 0.71 to 4.01 (m2/m2) at pre-
flowering and increased to between 1.31 and 4.71 2 weeks after
flowering in all plots.

Vegetation indices derived from pixels aggregated over the
entire plot area at both the pre-flowering and the anthesis
sampling dates were strongly linearly correlated with LAI from
quadrat cuts (Table 2). The correlations were better for NDVI
than for EVI as can be seen from greater regression coefficients
(R2) and smaller root mean square errors (RMSE). NDVImax also
correlated well with LAI at the anthesis sampling date.

When just aggregating the pixels over the actual sample
quadrat areas the vegetation indices explained more of the
variation in LAI as indicated by larger R2, but the RMSE did not
always improve (Table 2).

When leaf area index data from quadrat cuts and NDVI
aggregated over the entire plots was combined for both pre-
anthesis and anthesis sampling dates (60 samples in total)
a logarithmic function fitted the data slightly better than a
linear one (RMSE of 0.038 vs. 0.041 for logarithmic and linear,
respectively) (Figure 6).

Temporal Dynamics of NDVI and NDRE
Normalized Difference Vegetation Index (NDVI) (aggregated
over the entire plot) gradually increased and reached maximum

values (>0.9; blue colored) by the anthesis sampling date
(83 DAS or 10th February) (Figure 7). After this date, NDVI
values decreased to around 0.5 (light green) due to progressive
senescence of leaves as genotypes approached maturity.

NDRE values were much lower, but showed a similar pattern
of slowly increasing up to about 2 weeks after flowering (83 DAS)
and then decreasing as NDVI (Figure 8). As NDRE is related
to chlorophyll, differences in NDRE values from peak canopy
NDVI (i.e., NDVImax) to maturity (last flight date) are associated
with the rate of senescence. The trial included genotypes that
are known to senesce quickly (senescent genotypes; MR Buster
and R955637) and others that have the stay-green trait meaning
they have a slower rate or senescence and retain more green leaf
area during grain fill compared with senescent types, particularly
when water is limited (stay-green genotypes; R931945-2-2 and
R931945-2-2TM) (Figure 8).

When these genotypes were grouped (i.e., stay-green group:
R931945-2-2 and R931945-2-2TM and senescent group: MR
Buster and R955637), RS NDRE (the difference between NDRE
at maximum canopy cover and NDRE at harvest maturity),
was significantly greater for the senescent group (0.19 vs. 0.13,
p < 0.05, n = 12), indicating that these genotypes senesced at
a faster rate compared with genotypes classified as stay-green
genotypes. Consistent with this, the slope of the relationship
between NDRE and DAS from maximum NDRE until maturity,
was significantly steeper (−0.003 units per day) for the senescent
group, compared with the stay-green group (−0.002 units per
day) p < 0.01, indicating that the senescent genotypes lost
chlorophyll significantly faster than the stay-green genotypes
(Figure 9).

DISCUSSION

Due to variable plant numbers among plots in this pilot study,
we were able to test the suitability of the vegetation indices
to estimate percent cover and LAI over a range of densities.
Actual plant counts per 30.4m plot ranged from 36 to 204
plants. Correlations between actual plant number and percent
cover estimated using NDVI were significant and moderately
strong. The goodness of fit increased when masking was applied
and pixels with NDVI lower than 0.5 (i.e., soil and non-living
materials) were disregarded.

Correlations between vegetation indices and quadrat-
estimated LAI improved when index values were aggregated
over the sample quadrat area only rather than the entire plot
area. Aggregating over the quadrat area alone provided a
more direct correlation between the index and LAI, avoiding
heterogeneity in canopy cover across the plot, associated with
variable establishment. Sample cuts were selected where plant
cover was more homogenous and therefore plot-level cover and
derived vegetation index values differed from values derived
from just sampling cut areas. Hence it is reasonable to assume
that in more uniform trials, the expected relationship should
be similar to that found for the quadrat comparisons (Table 2).
Further experiments are being undertaken to confirm these
relationships.
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FIGURE 4 | Aggregated crop cover calculated for entire plots super-imposed on a visible (narrow band RGB) image of the sorghum breeding experiment taken

pre-anthesis (upper image) or a week before anthesis (lower). PC ranged from low (light green) to high (dark green).

TABLE 2 | Relationships between NDVI (>0.5) and EVI aggregated over entire plots (plot; 30.4 m2) or only the quadrat sampling areas (quadrat; 1.5 m2) with leaf area

index (LAI) at 54 (pre-anthesis) and 83 (anthesis) days after sowing.

Stage Pixel aggregation level Formula R2 RMSE P-value

Pre-anthesis NDVI_plot NDVI = 0.025 * LAI + 0.703 0.55 0.019 <0.001

NDVI_quadrat NDVI = 0.034 * LAI + 0.690 0.85 0.011 <0.001

EVI_plot EVI = 0.027 * LAI + 0.316 0.19 0.045 <0.05

EVI_quad EVI = 0.139 * LAI + 0.138 0.81 0.056 <0.001

Anthesis NDVI_plot NDVI = 0.037 * LAI + 0.679 0.59 0.024 <0.001

NDVImax_plot NDVI = 0.035 * LAI + 0.685 0.56 0.025 <0.001

NDVI_quadrat NDVI = 0.050 * LAI + 0.664 0.66 0.053 <0.001

EVI_plot EVI = 0.089 * LAI + 0.153 0.33 0.099 <0.001

EVI_quadrat EVI = 0.110* LAI + 0.360 0.70 0.247 <0.001

R2, Regression Coefficient; RMSE, Root Mean Square Error.

FIGURE 5 | Aggregated NDVI for entire plots at anthesis against total plant

number for each 30.4 m2 plot. Linear function: EVI = 0.0006*Plants + 0.71;

R2: regression coefficient; RMSE, root mean square error; p, statistical

significance level. Solid line is the fitted linear function through the sampling

points (open circles).

Likely limitations could exist when out-scaling this approach
to other locations and crops. For example, the threshold used
showed significant improvement in statistical analysis, similar
to that of the EVI metric, but its utility requires further

FIGURE 6 | Aggregated NDVI for entire plots vs. LAI from quadrat cuts within

each plot at both the pre-anthesis and anthesis sampling dates combined.

Logarithmic function NDVI = 0.15 ln (x) + 0.71; R2: regression coefficient;

RMSE, root mean square error; p, statistical significance level. Solid line is the

fitted function through the sampling points (open circles).

investigation. In addition, capturing data multiple times during
the pilot study demonstrates the potential of these methods to
study canopy dynamics. A likely constraint of comparing indices
from different dates is that ambient light conditions may vary
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FIGURE 7 | Normalized difference vegetation index (NDVI) for each date across the study area during the main growing period. Black dividing lines indicate plot

boundaries, while white mask-out areas represent the areas where sample quadrat cuts were taken.

between flights. This was limited here by flying only on clear
days with no clouds and during the middle of the morning.
Furthermore, NDVI is less sensitive to such changes since it is
a ratio index.

Previous studies have reported a saturation of NDVI at higher
LAI values (i.e., LAI > 4) and thus in dense vegetation canopies
using EVI might be preferable to NDVI (Huete et al., 2002;
Myneni et al., 2002). Our experimental plots were all planted
at a target population density of 5 plants per square meter and
LAI at anthesis ranged from 1.3 to 4.7. When combining pre-
anthesis and anthesis data we also observed a slight improvement
in prediction power when fitting a logarithmic instead of a linear
function (Figure 6). To assess LAI in sorghum breeding plots
with higher LAI, it might also be better to use EVI instead of
NDVI.

Peak NDVI values varied from 0.72 to 0.86 and end NDVI
values from 0.62 to 0.67. In this trial, the end values were not
greatly lower than maximum values, given that drought stress
was not substantial, with plot yields in the uniform plots being
over 9 t ha−1. Lines with the stay-green trait, R931945-2-2 and
R931945-2-2TM, had a slower decline in NDRE after anthesis,
compared with the two senescent genotypes, MR Buster and
R955637. The stay-green trait has been associated with increased
yield under post-anthesis drought (Borrell et al., 1999, 2000;
Jordan et al., 2012) and due to the frequency of post-anthesis
drought in sorghum growing areas, it has been actively selected

for in Australian sorghum breeding programs. Being able to
monitor senescence over time will assist breeders in selecting for
stay-green under drought.

Breeding for yield under water-limitation has been the focus
of sorghum breeding activities in Australia for the last three
decades. This may well explain why sorghum yield advances in
dry environments are currently more than double those in wet
environments (Potgieter et al., 2016). However, there is potential
to further improve yields in water-limited environments by
improving the matching of leaf area and water-use dynamics to
the temporal characteristics of drought (Chapman et al., 2000).
The approach presented here offers the opportunity to monitor
LAI of different genotypes throughout the crop-growing season,
thus providing breeders with information on canopy dynamics.
This will support the accelerated development and release of
commercial hybrids that are matched to specific environments
types.

In addition to plant breeders, agronomists and growers will
also benefit from having access to information on crop canopy
dynamics as it will allow them to estimate water use and expected
yields for their sorghum crops as the season unfolds. Besides
directly affecting crop water use (George-Jaeggli et al., 2017),
LAI also relates to the fraction of absorbed photosynthetically
active radiation (PAR) and therefore is one of the most important
canopy attributes (Weiss et al., 2004; Sadras and McDonald,
2012; Sibley et al., 2014; Sadras and Calderini, 2015). LAI is
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FIGURE 8 | NDVIavg (A) and NDREavg (B) aggregated over entire plot area from flowering to maturity for four sorghum genotypes contrasting in stay-green

characteristics. MR Buster (brown) and R955637 (yellow) are both senescent types, while R931945-2-2 (light blue) and R931945-2-2TM (dark blue) are lines with the

stay-green trait. Points are least squares means for NDVI and NDRE, respectively, predicted by the linear mixed model. Black vertical bars represent standard errors

for three replicates at each time point.

FIGURE 9 | NDREavg aggregated over entire plot from maximum canopy cover to maturity (final flight) for senescent (MR Buster and R955637; A) and stay-green

genotypes (R931945-2-2 and R931945-2-2TM; B). Points are values for individual plots. Solid lines are the fitted functions through the sampling points (open circles).

an important input variable for crop models, such as APSIM
(Keating et al., 2003) that are used for yield predictions at field
and regional scales (Lobell et al., 2015b). An improvement in
this methodology would be to be able to monitor the LAI as it
increases toward amaximum value, and by accurately accounting
for heads, soil and senescing leaves, to estimate the LAI as

it changes during grain filling. A full-season measurement of
LAI would allow use of these crop models in the estimation of
seasonal crop growth and potential water use.

Apart from the capacity to scale phenotyping up from a few
to thousands of breeders’ plots, the approach presented here will
facilitate the scaling-out of phenotyping from plant to plot to field
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scales and thus enabling industry to maximize yield potential at
both the genetic and the agronomic level.
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Genomics-assisted breeding methods have been rapidly developed with novel
technologies such as next-generation sequencing, genomic selection and genome-
wide association study. However, phenotyping is still time consuming and is a serious
bottleneck in genomics-assisted breeding. In this study, we established a high-
throughput phenotyping system for sorghum plant height and its response to nitrogen
availability; this system relies on the use of unmanned aerial vehicle (UAV) remote sensing
with either an RGB or near-infrared, green and blue (NIR-GB) camera. We evaluated the
potential of remote sensing to provide phenotype training data in a genomic prediction
model. UAV remote sensing with the NIR-GB camera and the 50th percentile of
digital surface model, which is an indicator of height, performed well. The correlation
coefficient between plant height measured by UAV remote sensing (PHUAV) and plant
height measured with a ruler (PHR) was 0.523. Because PHUAV was overestimated
(probably because of the presence of taller plants on adjacent plots), the correlation
coefficient between PHUAV and PHR was increased to 0.678 by using one of the two
replications (that with the lower PHUAV value). Genomic prediction modeling performed
well under the low-fertilization condition, probably because PHUAV overestimation was
smaller under this condition due to a lower plant height. The predicted values of PHUAV

and PHR were highly correlated with each other (r = 0.842). This result suggests that
the genomic prediction models generated with PHUAV were almost identical and that
the performance of UAV remote sensing was similar to that of traditional measurements
in genomic prediction modeling. UAV remote sensing has a high potential to increase
the throughput of phenotyping and decrease its cost. UAV remote sensing will be an
important and indispensable tool for high-throughput genomics-assisted plant breeding.

Keywords: genomic prediction, high-throughput phenotyping, near-infrared (NIR), sorghum plant height, UAV
remote sensing
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INTRODUCTION

Improving the throughput of phenotyping in the field is
a big challenge in plant genetics, physiology, and breeding.
The emergence of the next-generation sequencing technologies
enables us to obtain genome-wide DNA polymorphism data for a
large number of samples easily and rapidly (Mardis, 2007; Davey
et al., 2011). Statistical methods, such as genome-wide association
study (GWAS; Brachi et al., 2011; Korte and Farlow, 2013;
Huang and Han, 2014) and genomic selection (GS; Meuwissen
et al., 2001; Jannink et al., 2010) allow us to associate DNA
polymorphism data, which is extremely high-dimensional, to
phenotypic variations in agronomic traits. Boosted by these
technological developments, the efficiency of plant breeding is
expected to improve rapidly (Huang and Han, 2014). However,
phenotyping is still time consuming and labor intensive, and may
be more costly than genotyping. Thus, phenotyping has become a
serious bottleneck in the acceleration of plant breeding (Furbank
and Tester, 2011). Field experiments at multiple plant breeding
stations over a large geographic area are indispensable to evaluate
the adaptability of new candidate genotypes and to examine the
pattern of genotype-environment interaction (Chapman et al.,
2014). At each breeding station, a large number of genotypes
are tested in the field. Most of the measurements conducted in
the field are destructive and labor- and time-intensive, and thus
cannot be repeated frequently in the course of plant growth.
Because phenotypic data is necessary for genomics-assisted
breeding, it is the first priority to develop a high-throughput
phenotyping method.

Remote sensing using a low-altitude unmanned aerial
vehicle (UAV), such as radio-controlled multicopter, can solve
the problem described above. Besides low-altitude UAVs,
measurements using satellites (Inoue, 1997) and ground-based
vehicles (Lee and Searcy, 1999) have been applied for remote
sensing of growth conditions of crop plants (Sugiura et al.,
2005). However, satellites have low resolution, poor sensitivity
under cloudy conditions, and slow data transmission (Sugiura
et al., 2005; Zhang and Kovacs, 2012), and ground-based vehicles
cannot enter fields with tall crops or muddy soil (Sugiura
et al., 2005; Chapman et al., 2014). Low-altitude UAVs have
no such disadvantages and can be used without expert skills
(Merz and Chapman, 2011). Most low-altitude UAVs have an
autopilot function to fly automatically along a route designed
by mission planning software (Berni et al., 2009; Chapman
et al., 2014; Zarco-Tejada et al., 2014; Díaz-Varela et al., 2015).
Another widespread remote sensing technology is light detection
and ranging (LiDAR). However, this technology has some
shortcomings, e.g., high cost of data acquisition and processing
(Díaz-Varela et al., 2015). The emergence of computer-vision
technologies, such as the structure-from-motion and multi-view-
stereo algorithms, enables reconstruction of accurate 3D-models
from a series of images with a considerable overlap between
adjacent images. These technologies are attractive alternatives to
LiDAR, due to their high performance, flexibility, and relatively
low cost (Díaz-Varela et al., 2015). For remote sensing of plants,
near-infrared (NIR) cameras have been used in many studies
(Lee and Searcy, 1999; Sugiura et al., 2005; Berger et al., 2010;

Cabrera-Bosquet et al., 2011; van Maarschalkerweerd et al., 2013;
Colomina and Molina, 2014; Díaz-Varela et al., 2015; Torres-
Sánchez et al., 2015), because plant leaves (or chlorophylls)
strongly reflect NIR light (Knipling, 1970; Tucker, 1979; Fahlgren
et al., 2015) and some indices based on NIR reflectance rate,
such as normalized difference vegetation index (NDVI; Rouse
et al., 1974), are useful for identifying plants and assessing
their growing conditions via remote sensing. Some studies have
indicated that NIR sensors have advantages over standard RGB
sensors in plant monitoring (Nijland et al., 2014; Zhang et al.,
2016). Nevertheless, NIR cameras are less common, and often
more expensive than RGB cameras (or extra cost is needed to
modify RGB cameras into NIR cameras). Because remote sensing
is a promising tool for phenotyping, we compared the advantages
of RGB and NIR cameras in phenotyping and genomic prediction
modeling.

Genomic selection is a novel breeding method that allows
selection of complex traits with genome-wide markers. Because
the selection is performed on the basis of the genetic potential
predicted from these markers, GS requires building an accurate
prediction model based on a dataset of individuals or lines
that have been genotyped and phenotyped (Meuwissen et al.,
2001; Jannink et al., 2010). A large dataset is needed to build
an accurate prediction model. As mentioned above, however,
phenotyping is time consuming and labor intensive, and is a
serious bottleneck in building an accurate model. If UAV remote
sensing can streamline the collection of phenotypic data, it will
greatly enhance the potential of GS.

Using image-processing software for photogrammetry, we can
obtain ortho-mosaic and a digital surface model (DSM) from
UAV images (Gini et al., 2013). Ortho-mosaic is a distortion-
corrected image. DSM provides information on the altitude. In
plant science, DSM information has been applied to estimate
biomass and plant height of barley (Bendig et al., 2014), and
plant height, volume, and canopy size of olive trees (Zarco-Tejada
et al., 2014; Díaz-Varela et al., 2015; Torres-Sánchez et al., 2015).
Currently, we are using genomics-assisted breeding to develop a
sorghum [Sorghum bicolor (L.) Moench] variety that can be used
for high bioethanol production for biofuel. Plant height is one
of the most important traits affecting bioethanol yield. Because
some sorghum accessions may be taller than 4 m, they are usually
cut for measurements, which are labor intensive, whereas GS
requires phenotypic data and marker genotype data for a large
number of accessions.

The objectives of this study are the validation of the usefulness
of UAV remote sensing for measurement of sorghum plant height
and for genomic prediction modeling. First, we confirmed the
accuracy of plant height estimates from UAV images under the
conditions of small plot size. Next, we examined the accuracy
of genomic prediction of plant height trained by UAV remote
sensing data and data manually measured with a ruler. To
evaluate the robustness of this method to plant height variation
related to environmental differences such as nutrition level,
sorghum plants were grown at two levels of nitrogen availability.
We also compared the measurement and prediction accuracy of
different cameras and different procedures of remote sensing data
analysis.
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MATERIALS AND METHODS

Field Experiment
In this study, we used 172 accessions from sorghum germplasm
collections (Supplementary Table 1). Of these, 78 accessions
were from the world core collection of NIAS (National Institute
of Agrobiological Science, Ibaraki, Japan; integrated into the
National Agriculture and Food Research Organization from
April 1, 2016), 91 were from the sorghum mini core collection
of ICRISAT (International Crops Research Institute for the
Semi-Arid Tropics, Patancheru, India) and 3 were original
cultivars developed by EARTHNOTE Co., Ltd. (Okinawa, Japan).
Seeds were sown on 200-cell plug trays on May 8, 2014.
Seedlings were transplanted to a field of the Institute for
Sustainable Agro-ecosystem Services, the University of Tokyo
(Tokyo, Japan; 35◦44′09.1′′N, 139◦32′23.7′′E, 60 m above the
sea level) on June 9, 2014. An outline of the field design is
shown in Figure 1. To investigate the effect of fertilization on
plant growth, we used normal (N-P-K: 1.2-1.8-1.6 kg/a) and
low (N-P-K: 0.6-1.8-1.6 kg/a) fertilization in two replications
per treatment per accession (172 × 4 = 688 plots in total).
Five plants were grown in each plot (inter-plant spacing,
0.3 m; inter-row spacing, 0.72 m). On October 2 and 3,
two plants per plot were harvested and their height was
measured with a ruler. In total, 688 × 2 = 1,376 plants were
measured.

Remote Sensing Experiment
The radio-controlled quadcopter USM-S1 (Air4D Co., Ltd.,
Tokyo, Japan; Figure 2A), was used as a UAV for remote sensing.
Two digital cameras, Canon PowerShot ELPH 110HS (Canon
Inc., Tokyo, Japan), were installed on the UAV (resolution, ca.
16.1 million pixels; sensor size, 6.2 mm × 4.7 mm; focal length,
4.3–21.5 mm). One was a normal RGB camera, and the other one
was modified to capture NIR, green and blue (NIR-GB). The NIR-
GB camera was purchased at MaxMax Inc. (Carlstadt, NJ, USA).
The focal length was set at 4.3 mm. The focus was adjusted by

the camera auto-focus function. On the ground at each corner
of the field, we installed a white acrylic disk (27 cm in diameter)
as a ground control point (GCP) (Figure 2C). The positions of
GCPs in the World Geodetic System were measured by using GPS
(Geo7X, Trimble Inc., Sunnyvale, CA, USA) and used in image
processing.

To compare plant height measured with the UAV (PHUAV)
and plant height measured with rulers (PHR), we performed
a remote-sensing experiment on the first day of harvest
(October 2). The weather on that day was cloudy. ISO sensitivity,
which is an indicator of light sensitivity provided by the
International Organization for Standardization (Vernier, Geneva,
Switzerland), was set at 320 and shutter speed at 1/1,250 s for
the RGB camera; ISO sensitivity was 800 and shutter speed
was 1/800 s for the NIR-GB camera. The UAV was controlled
by an autopilot system with GPS to fly along a pre-defined
course designed by the PC Ground Station software (DJI Co.,
Ltd., Shenzheng, China). The outline of the flight course is
shown in Figure 2B. The course was designed so that the
vertical overlap of images was 70% and horizontal overlap was
30%. Photographs were taken at an altitude of 40 m, total
flight time was about 10 min, and 30 photographs were taken.
From an altitude of 40 m, the resolution was ca. 13 mm per
pixel. A preliminary remote sensing experiment was performed
on July 23 with the RGB camera NEX-7 (Sony Corporation,
Tokyo, Japan; resolution, ca. 24 million pixels; sensor size,
23.5 mm × 15.6 mm) with a lens of focal length 20 mm. The
following parameters were used in the preliminary experiment:
ISO sensitivity, 100; shutter speed, 1/800 s; altitude, 50 m; 78
photographs were taken. From an altitude of 50 m, the resolution
was ca. 10 mm per pixel. Because plants were still small on
June 23, we used the data collected on July 23 to obtain DSM
data on the ground surface of the field. Although NEX-7 has
higher resolution than PowerShot ELPH 110HS, it is heavier
and thus we could not mount two types of cameras (RGB and
NIR) simultaneously on the UAV. At an altitude of 40 m, the
resolution of PowerShot ELPH 110HS was similar to that of

FIGURE 1 | Field design in this study.
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FIGURE 2 | Unmanned aerial vehicle used. (A) Images of UAV used in the study, (B) An image taken in this study, (C) Outline of the flight course and (D) The size
of one plot and one divided block. Positions of GCPs in the World Geodetic System were measured by using GPS.

NEX-7. Therefore, we used PowerShot ELPH 110HS for remote
sensing.

Image Processing
Both RGB and NIR-GB images were analyzed in the same way.
By using the in-house structure-from-motion software Nadir-
metry (Air4D Co., Ltd., Tokyo, Japan), ortho-mosaic images and
DSM data were constructed from images taken by the UAV with
the geographic coordinates of GCPs. Although the structure-
from-motion algorithm of Nadir-metry is similar to that in
other software, it has some advantages in feature point matching
and generating point clouds. In the algorithm of Nadir-metry,
feature point matching is performed by taking into account
the correspondence between overlapping images estimated from
their geographic coordinates. As a result, spatial skew hardly
occurs. In the generation of point clouds, all pixels were analyzed
to detect matching points. This decreased the number of missing
matches and prevented point clouds from being sparse. Because
DSM values were calculated based on the World Geodetic System
1984 and they did not directly reflect the ground height of objects,
we estimated the height of sorghum plants by subtracting the
DSM values of the ground surface of the field on July 23 from
the DSM values on October 2, as in Bendig et al. (2013). From

the location of each plot determined on the ortho-mosaic image,
we obtained PHUAV for each plot from the DSM data. Because
adjacent plots were close to each other, DSMs of plot boundaries
were contaminated with data originated from adjacent plots, and
might have higher error than those inside a plot. To exclude
marginal areas, we divided each plot into 9 blocks (3 × 3)
and analyzed only the central block. That is, the plot size was
0.72 m × 1.8 m and corresponded to ca. 55 × 138 pixels
(Figure 2D) at a resolution of 13 mm per pixel in DSM. The size
of the central block was 0.24 m × 0.6 m, corresponding to ca.
18 × 46 pixels of DSM (Figure 2D). Each pixel had a DSM value
that was construed as the altitude of the location. We calculated
the 50th (median), 75th, 90th, and 99th percentiles of DSM values
of the central block as the representative values of PHUAV for the
plot. We evaluated the accuracy of PHUAV from its correlation
coefficients with PHR and also from root mean square difference
(RMSD):

RMSD =

√√√√ 1
688

688∑
i=1

(PHUAV,i − PHR,i)2,

where PHUAV, i and PHR, i are the PHUAV value and the PHR
value of the ith plot, respectively.
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Treatment of Unexpected Values
We assumed that if a plot of a tall accession and that of a
small accession were adjacent in the field, the plants of the small
accession might be overlapped by those of the tall accession on
images, and DSMs of the small accession might be overestimated
because they were strongly contaminated by data originated from
the tall accession. To confirm this, we compared the correlation
between PHUAV and PHR under three conditions: (1) using data
of the replication with higher PHUAV value for each accession;
(2) using data of the replication with lower PHUAV value for
each accession; (3) using average PHUAV value of two replications
for each accession. As described later, the result using the lower
PHUAV was better than others, and the replication with lower
PHUAV value for each accession was used in the following
analysis.

Genomic Prediction Modeling
We built genomic prediction models for both PHUAV and
PHR, and compared the predicted values. To obtain DNA
polymorphism data, we used restriction site-associated DNA
sequencing (RAD-Seq; Baird et al., 2008); which is cheaper
than whole genome sequencing especially for analysis of DNA
polymorphism of large number of accessions. We obtained
the data for 66,132 SNPs in 151 accessions (Supplementary
Table 1). Genomic best linear unbiased prediction (G-BLUP)
using rrBLUP (Endelman, 2011) was used for the modeling. To
calculate predicted values for the 151 accessions and compare
them for PHUAV and PHR, we performed leave-one-out cross-
validation. In cross-validation, a model built with the PHUAV or
PHR data of 150 of the 151 accessions was used to predict the
PHUAV or PHR values of the remaining accession from its DNA
polymorphism data. By comparing the observed and predicted
values of both PHUAV and PHR, we evaluated whether manual
measurements (PHR) can be replaced with the measurements
using UAV remote sensing (PHUAV) in the collection of data for
building a model.

RESULTS

Image Processing and Measurement of
Plant Height via UAV Remote Sensing
For both RGB and NIR-GB cameras, ortho-mosaic images
and DSM heat maps of the experimental field before harvest
were constructed by using 30 remote-sensing images taken on
October 2 (Figure 3).

To assess the accuracy of plant height measurements, we
compared the correlation between PHUAV and PHR obtained
with the two cameras at the 50th, 75th, 90th, and 99th percentiles
of DSM values (Figure 4). Although there was no significance
between two correlation coefficients (RGB vs. NIR-GB) at any
combinations, correlation coefficients were higher for the NIR-
GB than for RGB camera: 0.523 vs. 0.518 (50th percentile), 0.507
vs. 0.504 (75th), and 0.496 vs. 0.491 (90th). However, correlation
coefficients were higher for RGB (0.475) than for NIR-GB (0.473)
at the 99th percentile. RMSD between PHUAV and PHR was

lower for the NIR-GB than RGB camera: (0.649 vs. 0.883 (50th
percentile), 0.626 vs. 0.827 (75th), 0.628 vs. 0.792 (90th), and
0.665 vs. 0.759 (99th). PHUAV obtained from the RGB camera
underestimated PHR because the points were distributed below
the y = x line in Figure 4. PHUAV obtained from the NIR-GB
camera estimated PHR more accurately, especially at the 90th and
99th percentiles, as evidenced by smaller RMSD in RGB than in
NIR-GB.

The relationship between PHUAV and PHR suggested that
PHUAV was overestimated at PHR values of <2.0 m (Figure 4).
To assess whether the presence of taller plants on adjacent plots
resulted in overestimation, we calculated two types of ratio for
each plot as follows:

r1 =
max{PHR,i,k|k = 1, 2, ...,N}

PHR,i
, r2 =

PHUAV,i

PHR,i

where PHR, i and PHUAV, i are the PHR and PHUAV values of
the ith plot, respectively, and N = 8 in this case. PHR, i, k is the
PHR value of the kth (1–8) plot adjacent to the ith plot. The ratio
r1 represents the degree of height difference among the plants
on adjacent plots. The ratio r2 represents the degree of over-
or under- estimation of PHUAV against PHR. A scatter plot of
these ratios for one combination (NIR-GB camera and the 50th
percentile of DSM values) is shown in Supplementary Figure 1A;
the results for other combinations were similar. Theoretically,
the PHUAV/PHR ratio is expected to be approximately constant
if UAV measurements are accurate, because both PHUAV and
PHR are expected to be the true values of plant height (with
measurement errors). If we regarded PHR as the true plant
height, the PHUAV/PHR ratio became large, i.e., the PHUAV was
overestimated against PHR (Supplementary Figure 1A) when
PHR on adjacent plots was 1.5 times that on the central plot. This
result suggests that the presence of taller plants on an adjacent
plot prevents accurate construction of the DSM of the target plot
because of the overlapping effect.

We analyzed the relationships between PHUAV and PHR for all
the combinations of the two cameras and four percentile values
separately for each of two replications (one with the lower PHUAV
value, the other one with the higher PHUAV value) and the average
(Figure 5). For all combinations, the correlation coefficients were
highest (around 0.65) for the replications with lower PHUAV
values and lowest (around 0.40) for the replications with higher
PHUAV values. Correlation coefficients with lower PHUAV were
significantly higher than those with mean PHUAV at significant
level of 10% at all combinations. This result suggested that the
lower PHUAV values were more reliable.

Genomic Prediction Modeling
To evaluate the accuracy of genomic prediction for PHUAV
and PHR and the agreement between their predicted values,
we obtained these values via leave-one-out cross- validation
for all sorghum accessions cultivated under normal and
low fertilization conditions. The relationships between
the observed and predicted PHUAV and PHR values are
shown in Figure 6. If the combination of two cameras
and four representative values is different, the combination
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FIGURE 3 | Ortho-mosaic and DSM heat map of October 2. Upper images were originated from the standard RGB cameras and lower images were originated
from the NIR-GB (near-infrared, green, blue) camera. DSM provides information of the altitude. The resolution was ca. 13 mm per pixel. The sizes of both the
ortho-mosaic and DSM were 10,701 × 8,061 pixels in RGB and 10,749 × 8,041 in NIR-GB; the ortho-mosaic and DSM were built from 30 images (4,608 × 3,456
pixels each).

FIGURE 4 | Accuracy under different cameras and different percentiles of DSM. The diagonal line indicates y = x; r, correlation coefficient; RMSD, root mean
square difference. PHUAV is the plant height measured with the UAV and PHR is that with rulers. PHUAV values were calculated as 50th, 75th, 90th, and 99th
percentile of DSM values in each plot.

of selected replications for each fertilization condition is
also different. For example, we consider two combinations:
(i) (PHUAV of replication 1) < (PHUAV of replication 2)
for accession A and (PHUAV of replication 1) < (PHUAV

of replication 2) for accession B in a combination of two
cameras and four percentiles of DSM values (combination 1),
and (ii) (PHUAV of replication 1) < (PHUAV of replication 2)
for accession A and (PHUAV of replication 1) > (PHUAV
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FIGURE 5 | Comparison of lower, high and average PHUAV from two replications. (A) RGB camera and (B) NIR-GB camera. The diagonal line indicates
y = x; r, correlation coefficient; RMSD, root mean square difference.

of replication 2) for accession B in another combination
(combination 2). Then, for accession A, replication 1 is selected
as the plot with the lower PHUAV value in both combinations,
whereas for accession B replication 1 is selected in combination
1 and replication 2 is selected in combination 2 as the plot with
lower PHUAV value. The same combinations of replications were

also used for PHR. However, the combinations of replications
were almost the same between different combinations of two
cameras and four percentiles. Because of this, the results of
PHR prediction with different cameras and different percentiles
were similar to each other. The combinations with the highest
and the lowest correlation coefficients are shown in Figure 6
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FIGURE 6 | Relationships between observed and predicted PHUAV and PHR values in genomic prediction under normal and low fertilization
conditions. (A) Normal fertilization and (B) Low fertilization. r, correlation coefficient. For PHR, only the combinations the highest and lowest correlation coefficients
are shown.

for PHR prediction. Under normal fertilization, correlation
coefficients between observed and predicted PHUAV were
less than 0.5 (range, 0.448–0.492) for all combinations of the
type of cameras and the percentiles of DSM, whereas those
for PHR ranged from 0.629 to 0.675. Correlation coefficients
for PHUAV were higher under low fertilization than under
normal fertilization in all combinations. Although almost all
combinations had lower correlation coefficients for PHUAV
than for PHR, the correlation coefficient for PHUAV in the
combination of NIR-GB and 50th percentile was as high as
that for PHR (Figure 6). Predicted PHUAV and predicted
PHR highly correlated with each other in all combination,
(correlation coefficients ≥ 0.66 under low fertilization and
≥0.78 under normal fertilization except for one combination;
Figure 7).

DISCUSSION

We introduced UAV remote sensing for high-throughput
measurement of sorghum plant height, and applied it to
genomic prediction modeling. The results of this study

suggest the potential of UAV remote sensing for the high-
throughput phenotyping of plant height in sorghum. Some
sorghum genotypes are too tall to measure the height of
the plants without harvesting them. Our approach would not
only decrease labor cost but would also allow observation
of plant growth over time. Traditionally, all accessions are
measured only once, although their growth stages at the
measurement time may differ. Our remote sensing approach
would allow comparison of accessions at the same growth
stage.

Using UAV remote sensing, we could not measure sorghum
plant height as accurately as that of barley (which is smaller than
sorghum) measured by Bendig et al. (2014). One reason may
be that tall sorghum plants overlap (Supplementary Figure 1).
Another reason may be low plant density: 3.9 plants/m2 vs. 300
plants/m2 in Bendig et al. (2014); we can see the sparseness
of plants in a plot in Figure 1. If plant density is high
enough to form a continuous canopy, most of the matched
points are captured from the canopy and DSM reflects plant
height precisely. However, because of the sparseness, matched
points included not only the top of canopy but also the
ground or lower parts of plants. This could cause errors on
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FIGURE 7 | Relationships between predicted PHR and predicted PHUAV under normal fertilization and low fertilization condition. (A) Normal fertilization
and (B) Low fertilization. r, correlation coefficient.

DSM in plant height measurement. Increasing plot size and
plant density may improve the measurement accuracy. We can
easily measure plant height multiple times with UAV remote
sensing, which would probably also reduce measurement error.
An important point is that the predicted PHUAV values were
highly correlated with the predicted values of PHR, even though
the correlation between the observed values of PHUAV and
PHR was not high. This is because the observed values of
PHUAV and PHR had different types of errors (e.g., errors
from manual measurements and UAV measurements). Higher
correlation between the predicted values suggests that they were
less affected by errors than observed values. If we can reduce
the measurement errors of UAV remote sensing by improving
technologies or by repeating measurements, UAV remote sensing
will perform better than manual measurements for genomics-
assisted breeding.

We also found that using the lower value of PHUAV of
the two replications for each association seemed to reduce the
overlapping effect (Figure 5). For the replications with the lower
value PHUAV values, the correlation coefficients of PHUAV and
PHR were not largely different for the RGB and NIR-GB cameras.
The RGB camera underestimated PHUAV and the RMSD value
of this camera was higher than that of the NIR-GB camera.
For genomic prediction modeling, the correlation coefficients
between observed and predicted values were higher for NIR-GB
than RGB (Figures 6, 7), indicating that NIR-GB was slightly
superior for this purpose. Only the combination of NIR-GB and
50th percentile under low fertilization resulted in a correlation
coefficient between observed and predicted values for PHUAV
close to that for PHR (Figure 6). Prediction of plant height was
less accurate under normal than under low fertilization. This
may suggest that the overlapping effect was stronger when plants
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were larger. NIR-GB was better than RGB under both fertilization
conditions. Like in crop identification (Zhang et al., 2016) and in
monitoring of plant condition (Nijland et al., 2014), a NIR sensor
may perform better than a standard RGB sensor for remote
sensing in plant breeding.

In the case of the NIR-GB camera, the correlation coefficient
was the highest at the 50th percentile of DSM values, whereas
the RMSD value was the lowest at the 99th percentile. At the
99th percentile, PHUAV was almost the same as PHR. RMSD
became higher, but the number of outliers also increased, which
reduced the correlation coefficient. At the 50th percentile, the
number of outliers was low in PHUAV measurements and the
correlation coefficient became higher, but the difference between
the PHUAV and PHR values increased and RMSD became
lower. There is probably a trade-off between the correlation
coefficient and RMSD. If accurate plant height measurements
are required, PHUAV at the 99th percentile of DSM will perform
well. In this study, PHUAV at the 50th percentile of DSM was
better than at other percentile values regarding the accuracy
of both plant height measurements and genomic prediction
modelings.

The collection of PHUAV data required 3 people × 10 min,
while collection of PHR data required over 10 people × 2 days.
Because GS and GWAS require phenotyping of a large number of
accessions or plants, UAV remote sensing will be an important
and indispensable tool for high-throughput genomic-assisted
plant breeding.

Using digital cameras, we can measure canopy cover from
images taken right above the plants (Purcell, 2000) and relate it
to plant density, early vigor, leaf size, and radiation interception
(Liebisch et al., 2015). Using NIR sensors, we can measure NDVI
of the canopy and relate it to canopy biomass and nitrogen status
(Hansen and Schjoerring, 2003). Using thermal sensors, we can
measure canopy temperature (Berni et al., 2009) and relate it to
water stress (Jackson et al., 1981).

Not all of the studies used UAV remote sensing. However, by
attaching appropriate sensors to an UAV, we can obtain various
types of information from plants grown in the field and measure
important target trait-related characteristics. Combination of

machine learning and image analysis enables the evaluation of
complex traits, such as flowering date (Guo et al., 2015). In the
future, various kinds of plant phenotyping data will be measured
in parallel and in a high-throughput manner by UAV remote
sensing.
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Ensuring future food security for a growing population while climate change and urban

sprawl put pressure on agricultural land will require sustainable intensification of current

farming practices. For the crop breeder this means producing higher crop yields with

less resources due to greater environmental stresses. While easy gains in crop yield have

been made mostly “above ground,” little progress has been made “below ground”; and

yet it is these root system traits that can improve productivity and resistance to drought

stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root

architecture traits, with data collected on rooting density for hundreds of genotypes in

small increments of depth. The measured densities are both large datasets and highly

variable even within the same genotype, hence, any rigorous, comprehensive statistical

analysis of such complex field data would be technically challenging. Traditionally, most

attributes of the field data are therefore discarded in favor of simple numerical summary

descriptors which retain much of the high variability exhibited by the raw data. This

poses practical challenges: although plant scientists have established that root traits do

drive resource capture in crops, traits that are more randomly (rather than genetically)

determined are difficult to breed for. In this paper we develop a hierarchical nonlinear

mixed modeling approach that utilizes the complete field data for wheat genotypes to

fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root

distribution over depth. Our approach was used to determine heritability: how much

of the variation between field samples was purely random vs. being mechanistically

driven by the plant genetics? Based on the genotypic intensity functions, the overall

heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71).

Despite root count profiles that were statistically very noisy, our approach led to denoised

profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits

could be representative of a genotype, and thus, used as a quantitative tool to associate

phenotypic traits with specific genotypes. This would allow breeders to select for whole

root system distributions appropriate for sustainable intensification, and inform policy for

mitigating crop yield risk and food insecurity.

Keywords: generalized linear mixed models, heritability, hierarchical modeling, root architecture, wheat

phenotyping
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1. INTRODUCTION

Meeting the food production requirements of a growing human
population who are encroaching on arable land and generating
a changing climate will require an intensification of agriculture,
where greater yields are obtained from crops on existing farms
with sustainable inputs of water and fertilizer (Gregory et al.,
2013). This will involve identifying the constraints on yield in
agricultural systems, many of which are to be found below
ground in the root systems of crops. There are calls for a “second
Green Revolution” (Lynch, 2007) focused on breeding crops
with “ideotypic” (Donald, 1968) root systems (i.e., possessing
desirable root system traits) that can overcome these constraints.
This approach, called physiological breeding, is to be contrasted
with breeding for increased yield alone, an approach which is
no longer keeping pace with growing demands (Fischer and
Edmeades, 2010; Richards et al., 2010; Hall and Richards, 2013).

However, identifying ideotypic root systems for crops is
fraught with difficulty. Root traits which can be identified in
the laboratory are often difficult to translate to the field (Watt
et al., 2013) because they are devoid of the developmental
context of the soil. The soil environment is complex, and has
a dominant effect on root system development (Rich and Watt,
2013). Furthermore, crop physiological models—which are used
to formulate strategies for plant breeding and crop yield risk
mitigation, and even to develop government policy—are often
inadequate in addressing the spatial heterogeneity of root systems
and soil properties (Holzworth et al., 2014). It is also difficult
to sample roots in soil in the field, and the data obtained are
complex to interpret. Nevertheless, it is in the field where the
effects of soil, climate, and agronomy are integrated with the
developmental genetics of the plants growing together as a crop,
and hence it is also in the field where measuring root traits,
identifying crop ideotypes, and modeling root development are
most valuable. Selecting for root ideotypes in the field may
speed up the identification of the best germplasm for breeding
programs (Wasson et al., 2012; Rich and Watt, 2013).

Therefore, integrating improved measures of root
distribution/development into crop physiological models
will improve farm management decision making and crop
yield risk mitigation. Yet, indirect measurements of crop root
systems are problematic, and most direct measurements are
destructive, time-consuming and/or labor intensive (e.g., root
washing, minirhizotrons) (Wasson et al., 2012). Hence the
core-break method was developed as a method of rapidly
observing and quantifying the presence of roots as a function
of depth (Drew and Saker, 1980; van Noordwijk et al., 2001); a
soil core sample is taken from the crop and broken at regular
intervals (corresponding to increasing depth) and the exposed
roots are counted. The counts correlate with the root length
in the corresponding volume of soil. This technique has been
used to phenotype root count distributions in 43 genotypes
(Wasson et al., 2014) and efforts have been made to automate
the root count process (Wasson et al., 2016) to reduce the
labor requirements. However, root counts from the core-break
method are subject to a high degree of variation between samples
(van Noordwijk et al., 2001), which makes it challenging to

identify genotype-specific traits from root counts or to associate
genotypes with discernible properties of root count profiles.

Similar types of experimental field data may have been
analyzed by statistical linear models (Faraway, 2014) under an
analysis-of-variance (ANOVA) framework (Wasson et al., 2014).
However, a major limitation of linear models is their assumption
of Gaussian (normally distributed) response data, whereas
root counts are discrete, bounded below by zero, and with a
distribution whose substantial right-skewness may not be easily
removed by variable transformation. Indeed, root count data
are more appropriately modeled as Poisson distributed, although
a phenomenon known as overdispersion (McCulloch, 2008),
commonly encountered in count data from field experiments,
must be handled with care. More specifically, the Poisson
distribution is characterized by a single parameter that represents
the distributionmean as well as its variance. However, in practice,
the count variable of concern often has a recognizably larger
variance than its mean (hence, “overdispersion”), although the
overall distribution still resembles Poisson in other respects.

Therefore, linear models applied to field data thus far have
focused on analyzing core-level summary metrics, such as
maximum rooting depth, which, after variable transformation
if necessary, can approximately behave as Gaussian (Wasson
et al., 2014). However, such summary metrics by definition
cannot reflect root structure over depth, discarding valuable
information contained at the level of individual core segments,
and consequently resulting in an undesirable loss of statistical
power.

To better facilitate our scientific objective of associating
genotypes with discernible properties of root count profiles, in
this paper we scrutinize themany facets of the inherent variability
of the root count profile produced based on a field trial (Figure 1)
that involved twenty genotypes (nG = 20), each generating
four replicated soil cores (nC = 4) extracted in situ from each
of four replicated plots or blocks (nB = 4). Growing in a
plot, as they would in a farmer’s field, the plants’ root systems
interact and respond to each other. Their development is driven
by the exploration of cracks and pores (White and Kirkegaard,
2010), which are randomly distributed. Likewise, variation in
soil chemistry and nutrients, which can be patchy and vary with
depth, drives the branching of roots. In contrast, impenetrable
material and compaction can inhibit growth. As each soil core
only captures a comparatively small piece of variation due to the
various sources, results found in adjacent replicated cores can
differ substantially.

Moreover, we note that many of the profiles of the average
root count depicted in Figure 6 of Wasson et al. (2014) are
consistent with random observations whose mean follows a
functional form that roughly resembles the density function of
the gamma probability distribution. Based on this observation,
in this paper we develop a statistical modeling approach that
can rigorously handle the non-standard nature of our root count
data. Specifically, root counts at the observed depths (denoted
by t) within a core are formally related through a nonlinear
parametric expression θ(t) to reflect the one-dimensional spatial
nature of individual soil cores. The parametric expression
(with a small number of unknown parameters) is the common
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FIGURE 1 | Schematics of the field experiment. (A) Surface layout of the field experiment involving twenty genotypes (indexed by i) randomized within four blocks

(indexed by j) of twenty ranges of plots. (B) Cartoon depicting the sampling in each plot. Four soil cores (indexed by k) were sampled from each plot in a steel tube.

Each core was broken into 10 cm increments. The root count (y) at each 10 cm depth increment (indexed by t) is the sum of the counts on the lower face of the upper

fragment and the upper face of the lower fragment. Thus, each root count, yijkt, has four unique index values. The cartoon further depicts the variability that might be

encountered by sampling soil cores in a single plot, e.g., contrast cores k = 1 and k = 4.

denominator that unifies this spatial behavior among all cores.
Obviously, an appropriate parametric structure imposed on the
root counts within a core would lead to much greater statistical
power when compared to, say, an oversimplified ANOVA
approach that regards depth as a mere design feature in a factorial
experiment.

We also note that our field experimental setup was such that
the randomness in our data exhibits a hierarchical structure
(Gelman and Hill, 2006) that comprises layers of mean and
variance functions. In particular, the complex, non-standard
experimental design features inherent in our data require
hierarchical nonlinear mixed modeling (HNLMM), an approach
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which addresses our need to model overdispersed, Poisson
distributed data (McCulloch, 2008) via a hierarchy of nonlinear
mean functions and associated variance components due to the
formulation of θ(t).

Therefore, our approach in this paper is distinguished from
existing studies particularly because of (a) our scrutiny of the
root count profiles themselves, rather than the relationship
between the counts and the root length density, and (b) our
hierarchical modeling approach that integrates all identified
facets of variability among all observed root count profiles
in a comprehensive and collective manner. Additionally, our
modeling framework gives rise to new heritability metrics that
describe spatial and overall root architectural traits, the latter at
the overall genotypic level.

The remainder of our paper is structured as follows.
Under the section Materials and Methods, we provide
some details of the field sampling procedure that gave rise
to our root count profile data, some data visualizations,
a primer on the specification of our HNLMM under a
Bayesian framework (Gelman et al., 2013), and biological
interpretations of model parameters and their use in defining
novel multiresolution heritability measures. Statistical inference
results and corresponding key biological insights appear in the
Results section, followed by the section Model Validation
which briefly discusses the rigor and adequacy of our
approach (Technical details that supplement these sections
appear in Appendices A–F and the online Supplementary
Material). Our paper concludes with an in-depth Discussion
section on the biological and practical implications of
our integrative modeling approach in the general context
of facilitating effective wheat breeding programs via root
phenotyping.

2. MATERIALS AND METHODS

2.1. Data and Modeling Framework
Each soil core sampled was partitioned in the field into five-
centimeter segments from which the number of roots, y, was
determined every 10 cm up to 180 cm using a fluorescence
imaging system (Wasson et al., 2016). Each value of y at
Depth t(= 1, ..., nD where nD = 18) is the sum of the
count imaged from the bottom face of the segment above
t and that from the top face of the segment below t (See
Appendix A for details on data collection). Let yijkt denote the
total number of imaged live roots of Core k at Depth t for
Genotype i in Block j. Thus, each ith genotype is associated
with 288 (= nBnCnD) observations of y in total. Equivalently,
each tth depth is associated with 320 (= nBnCnG) observed
counts.

Data visualizations for Genotype G18 (Figure 2) and other
genotypes (not shown) suggest that our observed root counts,
y, perceivably follow a smooth nonlinear trend over core
depth, but subject to substantive noise from the effects of
soil physical and chemical properties described above, plus
sampling and handling errors. These sources of noise culminate
in the profile plots (Figures 2A,B) and associated boxplots
(Figure 2A) for y. Therefore, a modeling framework comprising

the following main model statements was developed to capture
the complex noise structure around an idealized smooth
trend:

yijkt ∼ Poisson(θij(t)),

θij(t) = ψij • γαiβi (t) • e
φijt ,

ψij = eψ0+κjeτi

where θij(t) denotes the underlying plot-specific Poisson
intensity curve over depth, i.e., the modeled mean root count
at Depth t (= 1, 2, ..., 18) from the {i, j}th plot (for
Genotype i (= 1, 2, ..., 20) observed in Block j (= 1,
2, 3, 4)).

Intensity θij(t) itself is decomposed into fixed and random
effects (shaded nodes in Figure 3). Specifically, θij(t) comprises
a smooth genotype-specific “kernel function,” γαiβi (t), and two
sources of multiplicative Gaussian errors: genotype-specific
deviation τi and core segment-specific deviation φijt . The
intensity function’s proportionality multiplier ψij, on the
logarithmic scale, represents the plot-specific intercept of the
{i, j}th intensity function. The intercept can be regarded as the
modeled mean count (log scale) of the root system just below
the soil surface. Therefore, τi corresponds to the genotypic
random effect on this near-surface mean count. As such, ψij

itself is random. It is modeled as log-linear, where its mean
can be expressed as a study-wide constant ψ0 plus a non-
random block-specific shift κj (both taken to be fixed effects) (see
Appendix B).

2.2. The Root System’s Bulk and
Exploration Parameters
The idealized function γi(t) = γαiβi (t) = tαi−1e−βit has two
genotype-specific parameters, αi and βi, respectively representing
the non-negative shape and rate of the gamma probability density
function. Holding βi constant and increasing αi causes the ith
kernel function to (a) peak at a lower depth and (b) exhibit more
spread around the peak (Figure 4A). Thus, αi corresponds to
both the depth at which the root system is most dense and its
tendency to explore spatially around this depth. Henceforth, we
refer to αi as the “bulk parameter.”

Similarly, holding αi constant and increasing βi causes the ith
kernel function’s tail to taper off more quickly, i.e., to exhibit a
more slender tail (Figure 4B). Thus, βi roughly corresponds to
the decline rate of the root system’s downward exploration. In
other words, the less slender (i.e., fatter) the kernel function’s tail,
the slower the decline of the root system’s downward exploration
(or, the bigger the tendency for the root system to explore
downwards). Henceforth, we refer to βi as the “exploration
parameter.”

For each ith genotype, parameters αi and βi are modeled as
bivariate log-normal random variables (i.e., they are bivariate
Gaussian on the logarithmic scale with unknown correlation ρ).
These parameters and the noise terms τi and φijt are each
modeled to have a mean that is constant across the study (i.e., not
indexed by i, j, k, or t), and similarly for all the (co)variance
parameters in the model (See Appendix B). A visualization of the
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FIGURE 2 | Data visualizations. (A) Boxplots of root counts, by depth for genotype G18, pooled across replicate plots (4) and depth-specific core segments (4 per

plot). The horizontal axis is depth from 10 cm to 180 cm, at 10 cm intervals. The blue line is the empirical mean root count profile over depth, which, along with the

corresponding mean profiles for other genotypes, resembles those in Figure 6 of Wasson et al. (2014). (B) Root count profiles (in thin black) over depth, by block

(replicate plot, shown as panel label), for genotype G18. Superimposed in bold blue within each block is the within-block empirical mean root count profile.

overall hierarchical structure of our modeling approach appears
in Figure 3.

Finally, under the Bayesian inference framework, we specify
reasonably non-informative prior distributions to reflect our
lack of knowledge, in the absence of data, about the model
parameters (see Appendix B). Collectively, the HNLMM and
prior distributions as specified above are referred to as
Model 1. Details on the implementation of Model 1 appear in
Appendix C.

2.3. Novel Heritability Measures
The general notion of heritability is the proportion of phenotypic
variation that can be attributed to genetics. Loosely, we have

Phenotype = Genotype+ Environment,

heritability = Var(G)/Var(P).

This definition of heritability assumes that genotypic and
environmental variables are independent, linear components of
the phenotypic response variable of interest. In practice, the
biological notions of phenotype, genotype, and environment are
abstract, and their quantifications that can be measured in an
experiment may exhibit a complex co-dependence in a nonlinear
fashion. Indeed, Moran (1973) pointed out that a quantification
of heritability that purely stems from a linear decomposition
of the phenotypic response can be nonsensical in practical
settings.

In the case that the measurable quantities and experimental
design can be reasonably described using Poisson regression,
Foulley et al. (1987) adapts the linear (Gaussian) model-based
definition of heritability to the scale of the linear predictor in a
Poisson regression model, rather than the scale of the phenotypic
response. Recently, this definition was extended to a longitudinal
Poisson mixed model (Mair et al., 2015). We further extend
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these ideas to define heritability measures based on segment-level
count data.

Our adaptations below emphasize the challenge of detecting
trends in root architecture from root count data that are
both highly noisy and highly non-Gaussian, and that
deviate substantially from a simple Poisson model; while
considering data at a reasonably high spatial resolution may
mitigate the challenge due to noise, it necessarily requires
additional model complexity to address the non-standard
statistical behavior of the data, and consequently, a novel
quantification of heritability based on our new modeling
paradigm.

The formulation ofModel 1 as presented in Appendix B gives
rise to a mean number of roots that is nonlinear in its parameters,
even on the logarithmic scale. Hence, this mean is not a linear
predictor in the usual context of generalized linear models.
Nevertheless, at each tth depth, we decompose the variability of

FIGURE 3 | Hierarchical structure of our modeling framework. Boxes

denote data, and ovals denote model parameters (unobservable). Shaded

nodes collectively determine the modeled Poisson intensity, θ .

log θ(t) into σ 2
log θ

(t) and σ 2
genes(t) both of which are spatial in

nature.
Here, we must address various aspects of complexity that are

non-standard in heritability studies: (1) our analog of Var(G),
namely, σ 2

genes(t), is attributable to the variability of the trio
of genotypic parameters τi,αi, and βi; and (2) it is a spatial
function. Thus, it is reasonable to further decompose this Var(G)
analog into τ -, α-, and β-specific components, as each of the
trio pertains to different root architectural features; and the α-
and β-specific components are also functions of t and are co-
dependent except in the naïve case. In Appendix D, we present
the four mathematical definitions of heritability (corresponding
to σ 2

genes, τ ,α, and β) to handle such complexity.
Finally, we pool depth-specific values by taking the

harmonic mean across depths, thus defining a quantity
at the genotypic level that summarizes the particular
architectural feature across all depths (see Appendix D).
The pooling of spatial elements to form an overall heritability
measure gives rise to the multiresolution nature of our
approach.

3. RESULTS

We discuss three major biological insights that arise from the
Bayesian inference, i.e., the joint posterior distribution among the
parameters ofModel 1.

3.1. Root Intensity Profiles Are Statistically
Distinguishable among Genotypes
Posterior inference allows us to examine the intensity profiles
θij(t) and their idealized (denoised) counterparts ψijγi(t) for any

FIGURE 4 | An illustration of the effect of changing the parameters αi and βi on the shape of the genotype-specific kernel function (γαiβi
(t)) which is

proportional to the probability density function of the gamma distribution. The vertical axis is the idealized relative root count (a dimensionless value). (A)

Increasing αi while fixing βi (= 1) causes the idealized function’s peak to be located deeper under the soil surface and to be less concentrated. Thus, αi is a “bulk

parameter” that reflects the depth and density of the “bulk” of the root system. (B) The effect of increasing βi while fixing αi (= 7) causes an increased skewness in the

tail of the idealized function, and consequently decreases the depth of the function’s peak from the soil surface and increases its concentration. Hence, βi is an

“exploration parameter.”
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given replicate block j. Aψijγi(t) profile is effectively the intensity
profile θij(t) but ignoring the random genotype-block interaction
φijt . Note that ψij is log-linear in τi and κj without an interaction
term. Thus, the behavior among the 20 idealized profiles within
any jth block is necessarily consistent across all four blocks but for
an intercept shift κj. Hence, Figure 5 focuses on j = 1 to represent
the study-wide behavior of the idealized profiles.

All posterior means (Bayesian estimates) of the 20
genotypic idealized profiles ψijγi(t) are visually distinguishable
(Figure 5A); and the study-wide statistical power is very
high in determining that the genotypes do not all exhibit the
same idealized profile (Figure 5B): 95% credible bands (Bayesian
confidence bands) around themaximum andminimum idealized
profiles (G12 and G18, respectively) are clearly non-overlapping.
(It is analogous to rejecting the null hypothesis in a classical
ANOVA at a very low significance level.) This lack of overlap at
such a high credible level indicates that, among the 20 genotypes,
at least G12 and G18 are highly statistically discernible with
respect to their idealized intensity profiles.

While ψijγi(t) necessarily behaves similarly across all j, the
genotype-block interaction intrinsic in the plot-specific intensity
profile θij(t) induces variability in the 20 profiles’ collective
behavior across j, as is evident in Figure 6: in each block, this
variability reduces the statistical distinguishability among the 20
genotypes, although in each of Blocks 2, 3, and 4, at least two
intensity profiles are highly discernible. Specifically, despite the
noisy nature of θij(t), Figure 6 shows that in each of Blocks 2–4,
at least two intensity profiles θij(t) (respectively, (i =){G2,G17}
in Block (j =)2, {G6, G13} in Block 3, and {G6, G15} in Block 4)

are highly statistically discernible due to the general lack of
overlap between the pair of block-specific 95% credible bands
around θij(t).

3.2. Root Intensity Profiles Are
Substantially Heritable
Each of our four genotypic heritability measures is a model
parameter that exhibits a posterior distribution, shown in black
in Figure 7; three of these are pooled measures, each comprising
18 depth-specific components (Appendix D), shown in color.

Focusing on the genotypic level (Figure 7 in black;
Figure 8A), the Bayesian estimate and 95% credible interval for
heritability of the intensity function are, respectively, 0.65 and
(0.52, 0.75); for that of the near-surface mean count they are 0.14
and (0.03, 0.26); the “bulk” parameter, 0.62 and (0.35, 0.82); and
the “exploration” parameter, 0.19 and (0.05, 0.37).

Note in Figure 7 that (i) the depth-specific components
of each of h2

h
, h2
α(−β)

, and h2
β(−α)

tend to increase as depth

increases, and (ii) the near-surface intensity of root count has
low heritability (h2τ ). These features of our results indicate
that root count features at deeper depths are more heritable
than those at shallower depths. In other words, our results
provide quantitative rigor for three ideas: the heritability of
root architectural traits varies substantively across depth; traits
that are associated with a deeper spatial location tend to be
more informative about plant genetics; and the depth at which
the root system develops its bulk is negatively associated with
its tendency to explore deeper. The third notion is further

FIGURE 5 | Inference for root distribution. (A) Posterior mean (Bayesian estimate) of idealized intensity profile ψ γ (t) for replicate block j = 1 for all 20 genotypes.

Other blocks appear similarly, differing only in the intercept due to the block-specific fixed effect κ in which logψ is linear. (B) Posterior means for Genotypes G12 and

G18 (from panel A) which are respectively the maximum and minimum curves, each surrounded by a 95% credible band (Bayesian confidence band). Note that

credible bands are constructed from depth-wise 95% credible intervals of ψijγi (t); thus, the lower band limit is constructed by connecting, across the 18 values of t,

the 2.5th percentiles of the ψijγi (t) posterior distribution; similarly, the upper band is constructed by connecting the corresponding 97.5th posterior percentiles.
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FIGURE 6 | Posterior mean of intensity profile θ (t) for all 20 genotypes, coupled with those genotypes with the maximum and minimum curves and

their 95% credible intervals for j = 1 (A,B), j = 2 (C,D), j = 3 (E,F), and j = 4 (G,H).

evidenced by another feature of Model 1, which is discussed in
the next subsection. It is also interesting to note that, although
overall heritability h2

h
is constituted from h2

h
, h2
α(−β)

, and h2
β(−α)

,

Figure 8A (which summarizes the genotypic aspects of Figure 7)
suggests that each of the latter three tends to be less than h2

h
itself, thus root architecture on the whole tends to be more
heritable than any of these standalone features of the root
system.

3.3. Linkage Exists between Near-Surface
Root Density Development and Downward
Exploration
The modeled correlation, ρ, between the bulk and exploration
parameters (both on the log scale), is estimated to be 0.64,
with 95% credible interval = (−0.85, 0.90) (see Figure 8B). Due
to skewness, the posterior probability for ρ to be positive is
0.88, substantiating that the root system’s bulk and downward
exploration are generally positively associated architectural
features. Specifically, a shallower and more concentrated bulk
(small α) is associated with a larger tendency for the root
system to explore deeper (small β). This phenomenon may
be regarded as “a small β canceling out a large α,” or,
the tendency of exploring downwards to exhibit the effect
of negating the tendency to develop root density further

away from the surface. We elaborate on this discovery under
Discussion.

4. MODEL VALIDATION

Details of model validation procedures appear in Appendix E.
In summary, residual analyses suggest only minor statistical
inadequacies ofModel 1.With respective to themodel’s predictive
performance as measured by the Watanabe-Akaike information
criterion (WAIC) (Gelman et al., 2013), its hierarchical structure
is essential. Specifically, ignoring the hierarchical structure
between the root count intensity function and its various random
components that are specific to genotypes, plots, and depths
leads to a naïve model that agrees poorly with the empirical
behavior of our root count data. Employing the hierarchical
structure, the model’s predictive performance remains effectively
unaffected whether a priori dependence between the bulk and
exploration parameters is considered; however, we regard this
extra dependency as a key biological feature because (a) it
improves the interpretability of the model by providing an
explicit assessment of the interplay between the bulk and
exploration parameters, and (b) this interplay is shown to be
substantive based on our field data (as indicated by a smaller
effective number of parameters for Model 1 despite its extra
complexity due to the a priori dependency).
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FIGURE 7 | Posterior distributions of pooled measures of heritability (black), pertaining to (A) overall root architecture, (B) the near-surface intensity, (C) the

root bulk’s location (and size), and (D) the root system’s decline of penetration; the middle vertical line marks the posterior median (a Bayesian estimate), and the outer

lines delimit the 95% credible interval. In (A,C,D), pooling corresponds to integrating depth-dependent heritability over all 18 depths via the harmonic mean of the 18

depth-specific heritability values; the posterior distribution of the unpooled heritability at a given depth is shown in shades of “burnt grass,” where more burnt

corresponds to greater depth.

5. DISCUSSION

The development of roots in response to the extreme
heterogeneity of the soil results in a lack of discernible root
system characteristics that can be measured in the field and
integrated into crop breeding programs. The inability to
breed on the root development of crops and the inadequacy
of conventional crop physiological models in addressing the
spatial heterogeneity of root systems and soil properties are
barriers to the sustainable intensification of agriculture, where
root traits are known to be critical to resource-use efficiency
and resistance to climatic extremes. Consequently, they are
barriers to effective crop yield risk mitigation and food security.
Crop physiological models with better predictive ability are
much sought after, and novel statistical models can facilitate
this pursuit by effectively teasing apart root system physiology
from severe heterogeneity. In this paper, we have addressed this
knowledge gap by scrutinizing root counts observed using a
core-break count method, and by developing a novel modeling
approach that accounts for all root count data holistically. Our
approach gave rise to new multiresolution heritability metrics,
each describing a specific feature of the root count distribution
spatially and at the overall genotypic level, which we showed
to be substantially heritable. Our integrative approach can
allow selective pre-breeding programs for root distribution and

may facilitate the identification of genetic markers from field
data.

The holistic nature of our approach is an inherent advantage
of hierarchical modeling. For model inference, we employed
the Bayesian paradigm, which is intrinsically hierarchical in
structure. It also has the potential of being greatly flexible:
as long as the model is mathematically sound and sufficient
computational resources and algorithms are used to implement
the model, rigorous statistical inference can be straightforward
even for a model with highly complex nonlinear parameters
and random quantities that follow non-standard probability
distributions. In contrast, classical statistical inference can be too
impractical when models or data structures deviate from well-
studied scenarios. In our case, the experimental setup and the
notion of root architecture together led to a highly non-standard
scenario that, under a classical paradigm, would have been much
less straightforward to model and subsequently draw inference
from. Not only was y (the response variable of interest) strictly
non-Gaussian, the data were also three-dimensionally spatial
in nature, where replicate plots were arranged in a certain 2-
dimensional structure (indexed by {i, j}), and in turn each plot
generating numerous 1-dimensional spatial observations of y
(indexed by t).

Irrespective of the inference paradigm, a caveat of
hierarchical modeling is that model complexity in the
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FIGURE 8 | (A) 95% credible intervals and posterior medians for the four heritability measures (1 = root architecture; 2 = near-surface mean count, log scale;

3 = bulk parameter; 4 = exploration parameter). (B) Posterior distribution of ρ, with vertical lines indicating the 2.5, 50, and 97.5% quantiles.

form of highly nonlinear functional forms and/or intricate
hierarchical dependence structures can render the inference so
computationally challenging that determining the posterior
distribution (for Bayesian inference) or the sampling
distributions of estimators and test statistics (for classical
inference) would require novel numerical algorithms
that are yet to be developed. However, for Bayesian
inference in our case, model implementation and model
diagnosis/validation were reasonably straightforward to
conduct. The satisfactory predictive performance of our
Model 1 (Appendix E) suggests that Model 1 is scientifically
sensible and has yielded biological insights that are superior
to what could have been drawn from previous linear models
applied to core-level metrics (from collapsing segment-level
data).

Although Model 1 does not account for potential within-
core spatial dependency among segment-level root count data
(see Appendix F), the biological implications of this model
nonetheless will help to define root traits for breeding. The
canonical model of root distribution with depth is that of a
negative exponential function (Gerwitz and Page, 1974). Gale
and Grigal (1987) describe a nonlinear function Y = 1 −

βd where Y is the cumulative root fraction from the surface
to the depth (d cm), and the coefficient β is genotypically
determined. This model was later employed by Jackson et al.
(1996) to model root distributions across a range of terrestrial
biomes.

However, this 1-dimensional model takes no account of the
horizontal distance from the base of the plant. It has been
observed that root distribution is 1-dimensional with depth
in grassland, 2-dimensional in crops planted densely in rows,
and 3-dimensional where plants are widely spaced (Bengough
et al., 2000). The simulation studies by Grabarnik et al. (1998)
showed that root length density—typically the length of root
per volume of soil (cm/cm3)—for maize decreased nonlinearly
with horizontal distance from the stem in the top 40 cm,
but below that depth they were homogeneously distributed
with horizontal distribution from the plant. Grabarnik et al.
(1998) also showed that the roots were subject to clustering
at all depths, and that whilst there was no preferential
growth in a horizontal plane, the orientation of root growth
deviated from the uniform distribution with increasing depth.
Similar findings were generated in the simulation study by
Bengough et al. (1992), and both studies drew attention
to the likely effect of soil structure to further perturb
the uniform directional distribution of root development
parameters.

The similarity between the model by Gale and Grigal (1987)
and the special case of our gamma kernel function where α = 1
should be noted (Figure 4A). Rather than root length density,
our model accounts for root counts that are random with respect
to sampling position by row in a crop. The model is designed
to explain the distribution of root counts with depth at the crop
level (and not the plant level). However, the sampling position is
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likely to have a strong influence on the surface root counts, which
explains the low heritability of τ in our model.

Interpreting the biological meaning of the “bulk” and
“exploration” parameters (α and β , respectively) is also
interesting. In the gamma kernel function, β also affects
the depth and intensity of the peak otherwise defined by α
(Figure 4). Indeed, our data analysis implicated that α and
β were positively correlated (Figure 8B). For our HNLMMs,
predictive performance remained largely unaffected whether
a priori dependence between α and β is considered; however,
including this extra dependency improved the interpretability of
the model by providing an explicit assessment of the interplay
between the root system’s tendencies to branch beneath the
surface and to explore vertically, deep below the surface.

An explanation for this effect may be found in the structure of
the soil; root growth in deeper layers is perceivably constrained
to networks of cracks and pores (Gao et al., 2016). White
and Kirkegaard (2010) show that in a dense, structured
subsoil 85–100% of roots below 60 cm were clumped in
pores and cracks in the soil (compared to 30–40% above
60 cm), and 44% of the roots were clumped in pores
with more than three other roots. Exploration of the soil
for cracks and pores may define the exploitation of the
soil by a root system. It has been suggested that plants
have evolved randomness and instability in their root system
development (Forde, 2009), which may facilitate exploration.
The exploration of the shallow layers for cracks and pores
may be what determines the eventual depth; our model implies
that more branching near the surface gives better access to the
subsoil.

The primary purpose of our modeling approach was to
distinguish genotypes from root count data that are statistically
noisy. The inference for heritability based on the intensity
functions suggests that our approach can be used to identify
genetic markers of root system distribution in field data;
identified markers then could be integrated into breeding
programs. The high heritability of the “bulk” parameter also
suggests that a breeding program could successfully alter the
depth at which a root system proliferates.

Notwithstanding, residual plots (Appendix E and
Supplementary Material: Supplementary Figures) suggest
some minor statistical inadequacies of Model 1. Therefore,
it may be advantageous to (1) explicitly model gene-
environment interactions (which are implicitly modeled
by our current HNLMM due to the marginal dependence
among genotypic terms indexed by i and environmental terms
indexed by j and/or t); (2) formally model the within-core

spatial dependence (possibly at a higher spatial resolution
of core depths than the current 10 cm intervals); and (3)
also incorporate an additional two-dimensional spatial
correlation structure among field plots. In Appendix F, we
suggest a possible decomposition at Level 1 of the model
hierarchy to address (1), and discuss practical implications
of modeling the 3-dimensional spatial dependence to address
(2) and (3).

Finally, it may also be of benefit to develop a new quantitative
framework to predict root length density from the posteriormean

root count profiles while accounting for trials in different soil
and climate conditions, under which the response of the intensity
functions and their underlying parameters to subsoil constraints
could be rigorously exploited.
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APPENDIX A

Data Collection
The field trial was conducted at Ginninderra Experiment Station
in Canberra, Australia (35◦12′29.0′′S 149◦04′59.0′′E), from late
May to late December 2013 (the typical wheat growing season
for the region) in alluvial cracking clay plots that were 1.3 m
long. Twenty spring wheat genotypes (anonymized in this
paper) were drawn from a collection of standard cultivars and
from a multigenic mapping population on the basis of prior
experimentation on root distributions in the field; each was sown
with a tractor-drawn plot seeder in ten rows spaced 18 cm apart
in a randomized block design with four replicated blocks of plots
(Figure 1A). A seed was sown roughly 3 cm apart in each row; the
final sowing density was ∼150 plants/m2. A fertilizer (N:P:K:S
= 14:12.7:0:11) was applied at 120 kg/ha at sowing, with urea
added for additional N during the growing season. Prophylactic
fungicide and herbicide treatments were applied to the trial to
suppress weeds and prevent disease. In early January 2014 after
the trial had matured and been harvested, four soil cores of ∼1.8
m in length were collected from each plot using 2 m long, 42 mm
diameter stainless steel coring tubes driven into the soil vertically
with a tractor-mounted hydraulic push press (Wasson et al.,
2014). Our field sampling technique ensured that within each plot
the cores were reasonably independent of each other (Figure 1B).
Each core was broken into segments rather than sliced, so that
the roots traversing the plane of the break would emerge intact
from one of the two broken faces; the same root could not be
visibly intact on both faces simultaneously. (Slicing the roots
would have left only the cross sectional area on the face: 50–
150 microns in diameter and difficult to detect.) Hence, the root
counts on the adjoining faces can be regarded as independent
values which, when combined to form y, represent the number
of roots traversing the break plane at that depth. The fluorescence
imaging system generates root counts (Wasson et al., 2016) which
necessarily differ from an observer’s manual counts, although
both are subject to measurement error. The raw imaging data
were processed (available from Supplementary Material: Dataset)
and visualizations produced with the statistical programming
language R (R Core Team, 2015) using the packages “dplyr”
(Wickham and Francois, 2015) and “ggplot2” (Wickham, 2009).

APPENDIX B

Formulation of Model 1 and Variants
Recall that yijkt denotes an observed root count, where {i, j, k, t}
indexes {genotype, block, core, depth}, for i ∈ {1, 2, ..., 20}, j ∈

{1, 2, 3, 4}, k ∈ {1, 2, 3, 4}, and t ∈ {1, 2, ..., 18}. Taking
γi(t) = tαi−1e−βit which is the kernel of the gamma probability
density function and letting “N” and “BVN,” respectively denote
“normal” and “bivariate normal,” our model statements can be
rewritten as follows:

Level 1 :

{ [

yijkt
∣

∣θijt
]

∼ Poisson(mean = θijt),

log θijt = ψ0 + κj + (αi − 1) log t − βit + (τi + φijt);

Level 2 :











[logαi, logβi]
′ | µ,6 ∼ BVN(µ,6),

[

φijt

∣

∣

∣
σ 2
φ

]

∼ N(mean = 0, var = σ 2
φ ),

[

τi
∣

∣σ 2
τ

]

∼ N(0, σ 2
τ )

where

µ =

[

µα
µβ

]

, 6 =

[

σ 2
α ρσασβ

ρσασβ σ 2
β

]

;

and κjs are fixed effects that require a linear constraint to ensure
model identifiability: we take κ4 = 0. (See Figure 3 for a
schematic of the two levels of our HNLMM.)

For Bayesian inference, prior distributions are required for
all fixed-effects parameters κjs, ψ0,µα ,µβ , and (co)variance
parameters ρ, σ 2

α , σ
2
β , σ

2
τ , and σ

2
φ . To reflect our lack of a priori

insight (in the absence of data) into the likely values of these
parameters, each was given a standard diffuse prior: the Fisher-
transformation arctanh(ρ) and fixed effects were all assumed to
be independent zero-mean Gaussians with a variance of 104, and
the variance parameters were assumed to follow independent
and identical inverse-gamma distributions with values 1 and 0.1,
respectively, for the shape and rate parameters. The resulting
Markov chains of posterior draws exhibited very poor mixing
for Model 1 (as well as Model 2, obtained by prespecifying
ρ = 0) when a smaller rate parameter value, namely, 0.01 or
10−4, was used. As smaller rate parameter values correspond to
more diffuse inverse-gamma priors, the poor mixing suggests
mildly weak identifiability (even for the smaller Model 2). This
also suggests that to improve inferential power for and the
identifiability of Model 1, one could conduct a future field study
that consists of a larger number of plots and/or depths, and/or
employ stronger priors based on the inference we have presented
in this current article.

For model validation (Appendix E), we also considered
smaller models: Model 2 by prespecifying ρ = 0 in Model 1; and
Model 3 by taking all Model 2 parameters (including those that
are genotype-specific) to be fixed effects.

Remarks. Note that alternative parametrizations of
depth are possible. Under Supplementary Material: Model
Parametrization, we discuss the so-called canonical scale
for depth, on which the statistical inference is invariant to
certain reparametrizations including the conventional t scale
(i.e. 1, ..., nD) in this paper. This invariance is similar to that
of Chiu and Lockhart (2010), where the rigor of the statistical
inference is developed on the canonical scale rather than the
conventional scale.

APPENDIX C

Implementation of Model 1 and Variants
Bayesian inference requires the derivation of the joint posterior
distribution of all model parameters. In our case, this distribution
is intractable and Markov chain Monte Carlo (MCMC) was
used to approximate it. For this, we used the RStan MCMC
software (R Core Team, 2015; Stan Development Team, 2016)
to fit Model 1 and its variants for model refinement purposes
(see Supplementary Material: Computer Code). Of the 320 cores
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sampled, nine were ignored as they failed to yield root count
data. While missing data can be imputed under extra model
assumptions, the Stan framework did not yet readily allow
simulation of discrete parameters, and thus imputation of the
missing root counts was not performed.

APPENDIX D

Multiresolution Heritability under Model 1
To handle the non-linearity—even on the logarithmic scale—
of the mean number of roots θ in Model 1, we decompose the
variability of log θ(t) into

σ 2
log θ(t) = σ 2

genes(t)+ σ
2
φ

where

σ 2
genes(t) = σ 2

τ + (log t)2(eσ
2
α − 1)e2µα+σ

2
α + t2(e

σ 2β − 1)e
2µβ+σ

2
β

− (t log t)(eρσασβ − 1)e
µα+µβ+(σ 2α+σ

2
β )/2

is attributable to the variability of the trio of genotypic
parameters τi,αi, and βi, while the study-wide parameter σ 2

φ

is attributable to the pure noise term φijt . Note that the
parameters σ 2

τ , σ
2
α , σ

2
β ,µα ,µβ , and ρ stipulate the collective

statistical behavior, a priori, of τ ,α, and β .
As such, we define four different measures of heritability,

namely, h2
h
, h2
α(−β)

, h2
β(−α)

, and h2τ , each at the genotypic level, by

letting

h2h(t) =
σ 2
genes(t)

σ 2
genes(t)+ σ

2
φ

= depth-specific heritability of intensity function at t,

h2h = heritability of overall architecture

= harmonic mean of h2h(t) = T

/

T
∑

t=1

(

1+
σ 2
φ

σ 2
genes(t)

)

;

h2α(−β) = heritability of root bulk’s location (and size) on log

scale, ignoring its relation with penetration rate

= harmonic mean of
{

(log t)2(eσ
2
α − 1)e2µα+σ

2
α

(log t)2(eσ
2
α − 1)e2µα+σ

2
α + σ 2

φ

for t > 1

}

;

h2β(−α) = heritability of root’s decline rate of penetration on log

scale, ignoring its relation with bulk location

= harmonic mean of







t2(e
σ 2β − 1)e

2µβ+σ
2
β

t2(e
σ 2β − 1)e

2µβ+σ
2
β + σ 2

φ







;

h2τ =
σ 2
τ

σ 2
τ + σ 2

φ

= heritability of intensity function’s intercept

on log scale.

Note that each of h2
h
, h2
α(−β)

, and h2
β(−α)

comprises depth-specific

heritability components, but h2τ does not (and thus, its definition
does not require the use of the harmonic mean).

APPENDIX E

Validating Model 1
(a) Predictive Performance
Although more complex models typically follow the data more
closely, they may have poorer predictive performance due to
potential overfitting. We consider the predictive performance
of Model 1 by comparing its value of the WAIC to those for
the simpler Models 2 and 3, both nested within Model 1. The
WAIC is a measure of a model’s predictive accuracy, and it is
asymptotically equivalent to the leave-one-out cross-validation
method, the latter of which addresses the notion of the mean
squared error but requires substantive computational effort for
a dataset as large as ours (Vehtari and Gelman, 2014). In
contrast, theWAIC can be easily computed as part of the MCMC
implementation of the Bayesian inference (see Supplementary
Material: Computer Code).

As mentioned in Appendix B, the modeled correlation
between the bulk and the exploration parameters on the log scale
was prespecified as ρ = 0 inModel 2;Model 3 considers all model
parameters (including those that are genotype-specific) as fixed
effects by naïvely prespecifying

σ 2
φ = τ20 = κ4 = µα = µβ = ρ = 0,

prior Var(ψ0) = σ 2
τ = σ 2

κ = 25,

σ 2
α = σ 2

β = 3.

Note, that the values 3 and 25 for the prior variance of
ψ0, τi, κj,αi, or βj constitute informative prior distributions for
these fixed effects. Before considering 3 or 25, we had specified
103 or 104 for diffuseness. However, in either case,Model 3 failed
to converge due to a weakly identifiable α8. Consequently, we
decided to employ the more restrictive (but defensibly so) prior
variances of 3 and 25 according to the following argument.

Based onWeaver (1926), we deduce that for a wheat plant, the
total number of roots at any given depth has a magnitude that
is o(100), and thus a generous approximation for the standard
deviation (SD) of θijt is 100, or for SD(log θijt) is log 100. For
Model 3, note that

E(log θijt) = ψ0 + τi + κj + (αi − 1) log t − βit

where the sets {τi}, {αi}, {βi}, and {κj} each follows a linear
constraint. Thus, for the priors of the fixed effects, heuristically
we let

(
√
25 >) log 100 = SD(ψ0) = SD(τi) = SD(κj)

(
√
3 >) log log 100 = SD(logαi) = SD(logβi)

for all i 6= 20 and j 6= 4.
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For each of Models 1–3, we computed the WAIC based
on Vehtari and Gelman (2014) (see Supplementary Material:
Computer Code); they appear in Table A1. There, one can
see that predictive performance improved drastically (WAIC
decreased from> 46000 to< 35000) from the naïve fixed-effects
Model 3 to the mixed-effects Models 1 and 2, both of which are
muchmore complex. Between the two complex models, although
Model 1 is slightly larger thanModel 2 (by a single parameter that
represents a priori dependence between the bulk and exploration
parameters), effectively they perform equally well in predictive
power, as suggested by a merely nominal difference (=3) in
WAIC values.

In addition to a mere nominal difference in WAIC values
between Models 1 and 2, we also observed that the approximate
values for the effective number of parameters, pWAIC (used in
the computation of WAIC), increased from 4011 for Model 1
to 4014 for Model 2. Importantly, although model complexity
was increased from Model 2 to Model 1 by correlating the
genotypic bulk and exploration parameters through a study-wide
parameter, the additional parameter reduced the models overall
amount of unknownness. Thus, these values of pWAIC, along
with those of the WAIC and the substantively large posterior
probability that ρ > 0, suggest the merit of retaining ρ as an
unknown parameter in the HNLMM.

(b) Residual Plots

Next, we inspect violin plots produced by the R package “vioplot”
(Adler, 2005) for residuals that correspond to the Level 1 noise
terms τi and φijt in Model 1. Non-noise-like patterns in these
residual plots would suggest the statistical inadequacy of Model
1 for our data.

Figure S1 is based on the posterior distribution of φijt
(posterior median shown as black dot), plotted against the
posterior mean of log θijt rather than the log-transformed ȳij+t =
∑

k yijkt/4. This is because ȳij+t = 0 for 181 out of all 1440
combinations of {i, j, t} (see Section Discussion for possible
implications). Figure S1 shows that φijt has a (a) slight tendency
to increase with log θijt , and (b) a distinctive non-random
relationship with log θijt especially when the latter is small (which
is typically at lower depths). We break down this relationship by
the residual violin plots in Figures S2–S6.

Overall, we observe the following minor anomalies:

• τi vs. ȳi++t (Figure S3): at many depths t, the random effect τi
has a slight tendency to be negative for small observed values
of ȳi++t , and positive for large observed values of ȳi++t ;

TABLE A1 | Values of the Watanabe-Akaike information criterion (WAIC) as a measure of predictive performance by our Bayesian HNLMMs.

Model Description WAIC

1 Most sophisticated among our models, as presented in this paper 34198

2 Same as Model 1, but with a prespecified ρ = 0 34195

3 Naïve preliminary model: same as Model 2, except with φijt term missing and all of ψ0, τi ,αi ,βi , and κj taken as fixed effects 46627

A smaller WAIC value suggests better model performance.

• φijt vs. i (Figure S4): at t = 160, 170, or 180 cm, the residual φijt
for a small number of plots ({i, j} combinations) has a tendency
to be highly positive;

• φijt vs. t (Figure S5): for the 3rd replicate block (j = 3), many
genotypes (e.g., i = 2, 12, 14, etc.) at the deepest six depths are
associated with φijt that increases with depth systematically;
the same applies to j = 4 and i = 8, 9, 11, etc.; additionally,
the plot {i, j} = {5, 3} shows that φijt has a tendency to be all
positive;

• φijt vs. j (Figure S6): the same conclusion as for Figure S4 for
t = 160, 170, or 180 cm; additionally, φijt for a small number
of plots has a slight tendency to be positive at t = 30 or 100
cm.

Altogether, the residual violin plots suggest that the statistical
inadequacy of Model 1 lies in the modeled behavior of θijt
across the deeper depths for specific combinations of {i, j}. Under
Section Discussion, we provide an overview of possible directions
that may be taken to improve the adequacy of our HNLMM.

APPENDIX F

Some Limitations and Possible Extensions
Note, that while 5 cm segments were produced in the field,
the first, third, fifth, etc. depths were ignored in the statistical
modeling; only imaged counts at depths in 10 cm increments
from the surface were considered. This implies that within
the same core, the resulting counts y were less spatially
autocorrelated due to a lower spatial resolution of the data from
omitting alternate segments from consideration. With segment-
level counts y thus produced, we considered for statistical
modeling 18 (= nD) depth values from each core, from depth
10 cm to depth 180 cm.

We now discuss possible extensions to Model 1. Although
the hierarchical structure of our HNLMM already addresses
some over- or under-dispersion in the raw root counts, an
abundance (181/1440> 12%) of observed zero-mean root counts
(averaged over four replicate cores) suggests a potential need to
include a formal zero-inflation component in a future improved
model (e.g., via a mixture model). Furthermore, at present
our HNLMM does not include formal (a) gene-environment
interactions or (b) spatial statistical modeling (Gelfand et al.,
2010) of within-core spatial dependency among segment-level
root count data at a 10 cm spatial resolution. For (a), it is
possible to further decompose φijt = φ∗ij + φ∗∗it + φ∗∗∗ijt , whereby

φ∗ij and φ
∗∗
it are explicit gene-environment interaction terms at
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Level 1 of the model hierarchy, and φ∗∗∗ijt is the pure noise term.

For (b), spatial statistical modeling would impose substantial
complexity to the statistical inference and computational burden.
However, the residual plots perhaps suggest that formal spatial
modeling could be a valuable additional component for our

HNLMM, especially with data at the 5 cm resolution. A possible
spatial structure could be an autoregressive dependence over
depth, and/or a nearest-neighbor dependence (among field
plots) that constitutes a Markov random field (Gelfand et al.,
2010).
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Mungbean (Vigna radiata var. radiata) is a key legume crop grown predominantly in

South and Southeast Asia. Biotic and abiotic stresses cause significant yield reduction

in mungbean, and among these, fungal diseases are particularly important. Although

disease management practices, including physical, chemical, and biological methods

have been researched and described in the literature, few of these are available or

have been used by growers. Here we review the economic impact, and sustainable

management options for the soil-borne and foliar fungal diseases of mungbean as well

as major challenges to manage these diseases. Potential use of all possible components

of integrated management practices including host resistance, fungicides, biocontrol

agents, natural plant products, and cultural practices etc. are discussed. Major diseases

include powdery mildew, anthracnose, Cercospora leaf spot, Fusarium wilt, Rhizoctonia

root rot and web blight, Macrophomina charcoal rot/dry root rot and blight. Review of

the literature indicated an absence of resistance to Rhizoctonia root rot, little sources

of resistance for dry root rot and anthracnose. Major resistant genes (R genes) and

quantitative trait loci (QTL) were identified for powdery mildew and Cercospora leaf

spot, which may be potentially used in Marker assisted selection (MAS). Although

the mechanisms of induced systemic resistance (ISR) by biocontrol agents have been

studied with Macrophomina blight, there is little information on the mechanisms and use

of systemic acquired resistance (SAR) in managing fungal diseases of mungbean. Several

studies targeted exploiting biological control for soil-borne root rot diseases. Botanical

products, such as plant extracts, are also found effective to manage root and foliar

diseases. However, many of these studies were limited to laboratory and/or green house

experiments. Thus, long-term field studies are required for further exploitation of biological

methods and commercial applications.

Keywords: mungbean, fungal diseases, quantitative trait loci, host resistance, disease management
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INTRODUCTION

Mungbean (Vigna radiata (L.) R. Wilczek var. radiata) is one of
the important pulse crops in South and Southeast Asia. About
90% of global production is in South Asia, where India is the
largest producer (Nair et al., 2012). India produces about 1.5–
2.0 million tons of mungbean annually from about 3–4 million
hectares (2014–2015), with an average productivity of 0.5 t ha−1

(Jadhav et al., 2016). Mungbean is also grown in China (Zhang
et al., 2011), Australia (Clarry, 2016), and United States of
America (Fery, 2002). In Australia, acreage of mungbean has
increased substantially with 125,000 ha planted in 2015–2016
compared to only 1,000 ha in 1970s (Clarry, 2016). Average yield
of mungbean is 0.4 t ha−1 in Asia but yields up to 2.5 t ha−1

may be attained with selected varieties and good management
(AVRDC, 2012). Mungbean seeds is a good source of dietary
protein for humans including marginal people, and people who
live in areas with less access to meat or where people are mostly
vegetarian (AVRDC, 2012). Mungbean sprouts and green pods
contain high level of vitamins and minerals (Keatinge et al., 2011;
Nair et al., 2015).

Abiotic and biotic stresses caused significant decline in legume
yield in South Asia and South East Asia. Among biotic stresses,
fungal diseases are responsible for reducing yield up to 40–
60% in mungbean (Kaur et al., 2011). Fungal pathogens can
infect mungbean plants at different stages, such as during
emergence, seedling, vegetative and reproductive stages and
cause substantial damage leading to yield loss or complete failure
of production. Species of the genera Fusarium (wilt), Rhizoctonia
(wet root rot), and Macrophomina (dry root rot) infect
mungbean plants during seed/seedlings stages (seed-borne or soil
borne), while species of the genera Colletotrichum (anthracnose),
Alternaria and Cercospora (leaf spot), Erysiphe/Podospheara
(Sphaerotheca) (powdery mildew) affect plants during vegetative
and reproductive stages (Figure 1; Ryley et al., 2010). Singh et al.
(2013a) reviewed the status of web blight in mungbean and
recently, Naimuddin and Singh (2016) published a review on
yellow mosaic in mungbean and urdbean from India. However,
reviews on fungal diseases of mungbean, their economic impact
and major management practices have not been compiled. This
manuscript reviews the economic impact of major fungal diseases
in the mungbean growing areas of South and Southeast Asia and
other areas in world as well as options available for sustainable
management of these diseases. The review will also cover efforts
in resistant breeding or pre-breeding activities including disease
evaluation techniques.

ECONOMIC IMPACT OF MUNGBEAN
FUNGAL DISEASES

Mungbean mainly is grown in rain-fed climates and variability
in climate such as elevated temperature and CO2 within the
rain-fed ecologies leads to varying intensities of biotic stress
(Chakraborty et al., 2000; Sharma et al., 2007) which cause
significant loss in production. Foliar and root rot fungal diseases
are major production constraints in South Asia and South East

Asia. Charcoal rot/dry root rot (Figures 1a–c) (Macrophomina
phaseolina) and Rhizoctonia root rot (Figure 1d) (Rhizoctonia
solani) are economically important soil-borne vascular diseases,
causing wilt and root rot complex (Alam et al., 1985; Iqbal
and Mukhtar, 2014). Among major soil-borne vascular diseases,
dry root rot and wilt is a major concern since the pathogen
affects the plant during all growth stages and subsequently causes
significant yield loss. Yield loss due to dry root rot was reported
to be 11% in Northern India (Kaushik et al., 1987) and up to
44% in Pakistan (Bashir and Malik, 1988). Dry root rot was
also reported first time in Shanxi province of China in 2010
(Zhang et al., 2011). Mungbean plants with wilt and root rot
symptoms, with incidence of 80–90% in susceptible genotypes,
was also reported in 1979 in southwest Ontario (Anderson,
1985).

Anthracnose (Colletotrichum lindemuthianum or C.
truncatum or C. gloeosporioides) (Figure 1f; Shen et al.,
2010), Cercospora leaf spot (Figure 1g) (Cercospora cruenta or C.
canescens or C. kikuchii or C. caracallae) (Joshi et al., 2006), and
powdery mildew (Figure 1h) (Erysiphe polygoni or Podosphaera
fusca) (Ryley et al., 2010), Macrophomina blight (M. phaseolina)
and web blight (Figure 1e) (R. solani) (Alam et al., 1985; Iqbal
and Mukhtar, 2014) are the major foliar diseases of mungbean
as causing yield loss ranging 20–60% in different continents.
A wide range of yield losses (23–96%) due to Cercospora leaf
spot was reported from field trials conducted at different states
of India (Kaur, 2007; Chand et al., 2012; Bhat et al., 2014) and
up to 61% from Pakistan (Iqbal et al., 1995). The impact of
powdery mildew on mungbean also was reported from different
countries. Yield loss due to powdery mildew was reported up to
21% in the Philippines (Quebral and Cowell, 1978), up to 40%
in Australia (Kelly et al., 2017), and from 20 to 100% in different
regions of India. Yield losses from powdery mildew was reported
35% from Gujarat, western India (Khunti et al., 2002), 20–40%
from Chhattisgarh, central-eastern India (Khare et al., 1998) and
20–40% in Maharashtra, western-central India (Mandhare and
Suryawanshi, 2008), and from 9 to 50% in Uttarakhand and Uttar
Pradesh of Northern India (Pandey et al., 2009). Reddy et al.
(1994b) also reported 100% loss from Maharashtra State, India
due to powderymildew diseases at seedling stage. A wide range of
yield losses (24–67%) due to anthracnose disease was estimated
from several mungbean growing areas in India (Deeksha and
Tripathi, 2002; Kulkarni, 2009; Shukla et al., 2014). Alternaria
leaf spot (Alternaria alternata) is also reported in South Asia,
but economic impact is minor i.e., only 10% loss reported from
Jammu and Kashmir, India (Maheshwari and Krishna, 2013).
Web blight has been a problem for several decades in Pakistan
(Alam et al., 1985) and in India, where it was reported from
diverse geographical areas including Kanpur and Uttar Pradesh,
northern India (Dwivedi and Saksena, 1974), Punjab, northwest
India (Bains et al., 1988), Madhya Pradesh, central India (Tiwari
and Khare, 1998), Rajasthan (south India), Bihar, Haryana,
and Himanchal Pradesh (northern India) (Anonymous, 2014).
About 30–40% of yield loss due to web blight was reported from
Rajasthan (Anonymous, 2000) and 20–40% seedling mortality
due to Rhizoctonia infection was reported from Jabalpur, central
India (Tiwari, 1993).
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FIGURE 1 | Symptoms of fungal diseases of mungbean at World Vegetable Center, South Asia Hyderabad field, (a). Wilted plant with dry root rot symptom

(Macrophomina phaseolina), (b,c). Root & stem infected with M. phaseolina, (d). Roots showing wet root rot (Rhizoctonia solani), (e). Leaf showing web blight (R.

solani), (f). Leaf showing anthracnose (Colletotrichum spp.), (g). Leaf showing Cercospora leaf spot (Cercospora spp.), (h). Leaves showing powdery mildew.

There is a little information available regarding the dynamics

in the prevalence and incidence of diseases in mungbean at
temporal and spatial scale. Fusarium wilt caused by Fusarium

oxysporum and/or F. solani was a minor disease of mungbean

in Australia. However, the incidence and severity of the disease
has increased substantially in recent years and yield losses of
up to 80% were reported in the susceptible mungbean cultivars

(Kelly, 2017). Outbreaks and spread of diseases were reported
in other legume crops, such as soybean (Sconyers et al., 2006)
and chickpea (Sharma and Ghosh, 2017). For example, Asian
soybean rust (Phakospora pachyrhizi) was a problem in Asia and

South America, but then spread rapidly across eight states of
southeastern United States within a few years of first detection
in Louisiana in 2004 (Sconyers et al., 2006). It was speculated

that an extreme weather event (hurricane) was responsible for the
introduction and spread of the Asian soybean rust. Sharma et al.
(2015) also reviewed dry root rot (Macrophomina phaseolina)

as an emerging disease of chickpea in semiarid tropic region
and disease intensity has been increased in a past decade. They
further speculated that changes in weather pattern, such as high
temperature and drought stress during reproductive stages of the
chickpea increased the dry root rot intensity. Climate change
could have positive or negative or neutral impact on the dynamics
of crop diseases depending on the types of crops, diseases or
geographical regions (Luck et al., 2011). Climate change would
increase average global temperature, CO2 level, and cause more
extreme rain/drought events (Meehl et al., 2005). Severity of some
diseases, such as brown spot of soybean (Septoria glycines) and
sheath blight of rice (Rhizoctonia solani) increased with elevated

levels of CO2 (Kobayashi et al., 2006; Eastburn et al., 2010),
whereas variable results were reported for powdery mildew
of wheat and barley (Thompson et al., 1993; Hibberd et al.,
1996). In South Asia, spot blotch in wheat (Cochliobolus sativus)
has increased substantially in recent years and it is speculated
that elevated night temperatures due to climate change has
contributed to this (Sharma et al., 2007). In Australia, root and
crown rot of wheat (Fusarium pseudograminearum) is expected
to increase due to climate change as the disease was high with
elevated CO2, temperature, and drought (Melloy et al., 2010).
There is no information available on the impact of climate
change on the dynamics of mungbean diseases. However, based
on knowledge of similar pathogens/diseases in other crops, we
can speculate that the pressure of soil-borne diseases caused by
Fusarium, Macrophomina, and Rhizoctonia in mungbean may
increase due to climate change. It is difficult to predict the effect
of climate change on foliar diseases since they are influenced by
the combination of temperature, rainfall and relative humidity,
which can’t be precisely predicted in most situations of climate
change.

PERSPECTIVES FOR SUSTAINABLE
DISEASE MANAGEMENT

The options for sustainable management of fungal diseases of
mungbean include cultural and physical methods, exploitation
of host resistance, use of synthetic fungicides, use of natural
products such as botanical extracts, bio-fungicides, and use of
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bio-stimulants or defense activators, and these are discussed
below.

Cultural and Physical Practices
Use of different cultural practices and physical methods to
eliminate seed-borne pathogens were found effective to reduce
the foliar and root rot diseases of mungbean in fields. Field
sanitation, crop rotation, removal of crop debris and weed hosts
in the vicinity of the crop reduced the Cercospora foliar blight
in mungbean (as reviewed in Sharma et al., 2011). Removing
root rot infected mungbean plants reduced sclerotia loads in the
field and delayed sowing and maintaining wider spacing between
the plants reduced powdery mildew incidence (as reviewed in
Satyagopal et al., 2014). Plastic mulching increased sclerotial
mortality of M. phaseolina and reduced pathogen infection
(Yaqub and Shahzad, 2009). Mungbean seed treatment with
gamma rays (60Cobalt) for 0–4min and 90 days of storage
had a suppressive effect on root rot fungi (Ikram et al., 2010).
Hot water emersion treatments (55–65◦C) were effective to
eliminate seed-borne infection with Colletotrichum acutatum
and C. gloeosporioides of mungbean (Lee et al., 2007). In South
Asia, mungbean is commonly rotated with rice and wheat. It is
reported anecdotally that root rot diseases in mungbean have
been increased in South Asia and other Asian countries due to
continuous rotation with rice. Several soil-borne pathogens, such
as Rhizoctonia, Fusarium etc. are common problem in rice and
wheat (Kobayashi et al., 2006; Melloy et al., 2010). These fungal
genera also infect mungbean, but more studies are required to
determine if the same species and strains also infect mungbean.
If it is practical, adding diversity in the crop rotations would
help for the sustainable management of these soil-borne diseases
in mungbean. Crop diversification and use of diverse cultural
practices, such as crop rotation, plant residue management,
adjusting the planting dates etc., are recommended as effective
strategies for managing crop diseases in conditions of climate
change (Juroszek and von Tiedemann, 2011).

Exploitation of Host Resistance
Use of host–resistance is an effective, economical, and eco-
friendly method for managing mungbean fungal diseases. In
this section, we synthesize the available information regarding
the identification of sources of resistance, available methods for
efficient and reliable disease reaction phenotyping, identification
of molecular markers associated with disease resistance genes
and their potential use to improve disease resistance traits in
mungbean.

Resistant Sources for Major Fungal Diseases of

Mungbean
Reliable and efficient methods are available to screen for reaction
to foliar diseases of mungbean including Cercospora leaf spot,
powdery mildew, and anthracnose. Screening of these foliar
diseases can be successful in natural field conditions where
disease pressure is high, or if artificial inoculation with pathogen
spores is available (Iqbal et al., 2004; Yadav et al., 2014a,b).
For other foliar diseases caused by hemibiotrophic (Cercospora
spp.) or necrotrophic pathogens, disease can also be evaluated

in the greenhouse with artificial inoculation. Several disease
rating scales/systems were developed to assess foliar diseases
of mungbean (Wongpiyasatid et al., 1999; Khunti et al., 2005;
Suryawanshi et al., 2009). Mungbean germplasm accessions can
be screened by inoculating with the pathogen in the controlled
environments. Reliable and efficient methods were developed
for screening mungbean seedlings against powdery mildew in
the greenhouse (Wongpiyasatid et al., 1999; Kasettranan et al.,
2010); and in the laboratory using a detached leaf assay (Reddy
et al., 1987). For the assessment of foliar diseases, both qualitative
and quantitative rating scales were used (Reddy et al., 1994b;
Wongpiyasatid et al., 1999; Khunti et al., 2005; Marappa, 2008;
Suryawanshi et al., 2009). Root rot and wilt diseases are sporadic
and highly variables due to genotypes × environment (G × E)
interaction, therefore it is very difficult to get consistent results
while screening in natural fields. Therefore, host genotypes are
usually screened by inoculation at seedling stages in controlled
environment for soil-borne diseases (M. phaseolina, R. solani,
and F. solani). Different methods such as paper towel (Khan
and Shuaib, 2007) and sick pot/field inoculation methods by
inoculating the fungus grown in sorghum ormaize grains (Dubey
et al., 2009; Choudhary et al., 2011) were used for the evaluation
of root rot disease.

Sources of resistance against powdery mildew, Cercospora
leaf spot, anthracnose, Macrophomina blight and dry root rot
have been identified (Table 1). The majority of studies targeted
resistance to Cercospora leaf spot and powdery mildews and
were conducted in the field. There have been fewer studies to
identify root rot and anthracnose resistance sources, and these
were conducted in both lab/glasshouse and field experiments.
Most of the identified resistant materials were derived from
cultivars/recombinant lines /breeding lines/land races; however,
some were from wild relatives (Marappa, 2008) and mutant lines
(Wongpiyasatid et al., 1999). Since screening trials for resistance
against Alternaria leaf spot, anthracnose, and root rot diseases are
limited, more attention is required on these. These resistant lines
from difference sources can be utilized as donors for developing
resistant varieties.

Identification of Major Genes and Quantitative Trait

Loci (QTL) Linked to Major Diseases
The success of developing varieties resistant to biotic stresses
depends on the availability of good sources of resistance
materials as well as identification of markers associated with
disease resistance major genes or QTL, which can also be
used in marker assisted selection (MAS) breeding program
to accelerate the resistant screening for large population. In
mungbean, exploitation of host resistance and identification
of molecular markers associated with major genes or QTL
were mainly targeted for powdery mildew and Cercospora leaf
spot (Kasettranan et al., 2010), however, no QTL or associated
molecular markers were reported for other major fungal diseases
including dry root rot and anthracnose. The commercial
breeding for powdery mildew and Cercospora leaf spot disease
resistance in mungbean mostly utilized major Resistant (R)
genes based on the classical gene-for-gene system (Kasettranan
et al., 2009). To our knowledge, use of MAS has not been used

Frontiers in Environmental Science | www.frontiersin.org June 2018 | Volume 6 | Article 53162

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Pandey et al. Review of Mungbean Fungal Diseases

TABLE 1 | Resistant genotypes of mungbean against fungal diseases†.

Diseases Country where

screening conducted

No. of genotypes‡

evaluated

Resistant genotypes (R, Resistant; HR, highly resistant)

Powdery mildew Taiwan 4000 R: V2159, V4189, V4207, V4574, V4668, V4990

R/HR: V3912, V4186

HR: V1104, V4631, V4658, V4662, V4717, V4883 (Hartman et al.,

1993)

Thailand 27 R:M5-10 and M5-25 (Wongpiyasatid et al., 1999)

India 82 R:BPMR-145, Vaibhav, TARM-18, Phule M-2002-13, Phule

M-2001-3, Phule M-2003-3, Phule M-2002-17, and Phule

M-2001-5 (Mandhare and Suryawanshi, 2008)

India 12 R:TARM-18 (Sujatha et al., 2011)

India 60 R:LGG-460 (Yadav et al., 2014a)

India 374 R:116 resistant lines;

HR: BL 849, LM1668, BL 865, AKM 8803, PBM, PMB 63

(Ramakrishnan and Savithramma, 2014)

India - HR: KGS 83, MH 96-1, Pusa 572, GS 33-5, AKM 99-4, GS 21-5,

COGG 936, ML 1299, TMB 47, HUM 1, MH 429, MH 429 and

MH 530 (Akhtar et al., 2014)

India 63 HR: KMP-36,39 and 41

R: KMP−2,3,5,19,20,24,30,34,38,42,47,52 and MLGG-8

(Bhaskar, 2017)

India 146 HR: F4: C1-34-23, F5: C1-15-10, C1-15A-11, C1-21A-17,

C1-25-19, C1-28-20, C1-32-22, C1-37-23, C1-38-27, C1-41-28,

C1-44-31, C1-175-111, C1-236-152, C1-246-159, C1-275-177

(Kumar et al., 2017)

Cercospora leaf spot (CLS) Taiwan 4000 R: V1471, V2757, V2773, V4718, V5036 (Hartman et al., 1993)

Thailand. 27 R: M5-22 and M5-25 (Wongpiyasatid et al., 1999)

Pakistan 58 R: NCM 255-2, NCM 257-6, ML-267, NCM 251-1, NCM 259-2,

NCM 251-13, NCM 257-2, NM-92, NCM 251-12, VC-3960-A88

NCM 257-10, NCM-209, Mung-6 C1/94-4-19, VC 3960-A89

HR: BRM-188, NM-98, C2/94-4-42, 98-cmg-003, NM-2, NM-1,

98cmg-018, Basanti, CO-3, PDM-11, VC3960-88, BARIMung-2

(Iqbal et al., 2004)

India 696 R: ML5, 443, 453, 515, 610, 611, 613, 682, 688, 713, 728,

735,746, 759 and 769 (Singh et al., 2004)

India 170 No infection: Vigna aconitifolia, V. glabrascence, V. sublobata, V.

umbellata and a mutant PBM.

R: 90 genotypes including PANT M103, PANT M3, PUSA 105, ML

613, PANT M2, ML 173, ML 347, ML 561, PANT M4, PDM 11

(Marappa, 2008)

India 65 R: GM-02-08, GM-02-13, GM-03-03

HR: LGG-460 (Yadav et al., 2014b)

India 113 R: ML-5, ML-4, HUM-9, HUM-4, HUM-1, SM-9-124, LGG-450,

and SM-9-107 (Singh and Singh, 2014)

India 136 R: 52 genotypes

HR: 1224-52 and 12404 (Zhimo et al., 2013)

India - R: AKM 9910, IPM 02-5, ML 1299 and SML 668 (Akhtar et al.,

2014)

India 63 MR: KMP-13 (Bhaskar, 2017)

CLS, anthracnose, Macrophomina blight India 56 R: ML1486, ML1464, ML1194 and ML1349 (Kaur et al., 2011)

Dry root rot India 25 R: MSJ 118, KM 4-44 and KM 4-59 (Choudhary et al., 2011)

Pakistan 29 R: 40504, NCM 257-5, 40457, NCM 251-4, 6368-64-72

HR: NCM 252-10 and 40536 (Khan and Shuaib, 2007)

†
All the trials were conducted in the field except dry root rot screening work by Khan and Shuaib (2007), which was conducted in the greenhouse.

‡Genotypes include cultivars, landraces, wild relatives, breeding lines, mutant lines, and germplasms.
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for mungbean breeding programs targeted for fungal disease
resistance in developing countries. However, identification of
molecular markers associated with disease resistant major
genes and QTL shows the potential application of MAS in
mungbean disease resistance. Genetic studies using different
sources of resistance revealed both monogenic (qualitative) and
quantitative modes of inheritance in mungbean for powdery
mildew resistance (Reddy et al., 1994a; Kasettranan et al., 2009).
Gawande and Patil (2003) reported that both additive and
dominant gene actions were important in inheritance of powdery
mildew resistance including non-allelic interactions. Several
earlier studies reported monogenic inheritance of powdery
mildew resistance controlled by single dominant genes and
studies were conducted using mungbean varieties ML3 and ML5
(AVRDC, 1979), and breeding lines VC 1560A (AVRDC, 1981),
ATF 3640 (Humphry et al., 2003) and RUM (Reddy et al.,
1994a). Using restriction fragment length polymorphism (RFLP)
markers, Chaitieng et al. (2002) and Humphry et al. (2003)
revealed single major locus conferring the resistance against
powdery mildew with 65 and 80% R2, respectively. Khajudparn
et al. (2007) found non-allelic dominant gene for powdery
mildew in F2 populations developed from resistant lines V4718,
V4758, and V4785 (obtained from World Vegetable Center)
and susceptible line CN72. Reddy (2009) studied the inheritance
of Pm3 gene (different from earlier identified resistant genes,
Pm1 and Pm2), a new gene responsible for powdery mildew
by using local mungbean cultivar Mulmarada from Maharashtra
(India). He found that F1, F2, and F3 families exhibited complete
resistance to powdery mildew is controlled by single dominant
gene.

Several researchers reported quantitative mode of inheritance
for powdery mildew resistance (Young et al., 1993; Sorajjapinun
et al., 2005). Sorajjapinun et al. (2005) reported that additive
gene action was found to play a major role in controlling
powdery mildew (E. polygoni) resistance in the population of
crosses developed between moderately resistant KPS 2 and
resistant VC 6468-11-1A (sourced from the World Vegetable
Center). Using mapping population developed from advanced
mungbean breeding line VC3890 (fromWorld Vegetable Center)
as a resistance parent, Young et al. (1993) identified three
QTL associated with powdery mildew (E. polygoni) resistance.
These QTL explained 17 to 28 and 58% of phenotypic variation
(R2) individually and together, respectively. Using SSR markers,
Kasettranan et al. (2010) identified two major QTL (qPMR-1
and qPMR-2) associated with powdery mildew resistance, which
explained R2 of 20 and 58%, respectively. They used 190 F7
recombinant inbred line (RIL) population developed from the
crosses between a susceptible cultivar, Kamphaeng Saen 1 and
a resistant line, VC6468-11-1A (sourced from World Vegetable
Center). SSRmarkers flanking and closely associated with qPMR-
1 (CEDG282 and CEDG191) and qPMR-2 (MB-SSR238 and
CEDG166) can be useful for MAS powdery mildew resistant
breeding program of mungbean. Chankaew et al. (2013) also
identified a major QTL associated powdery mildew resistance
on linkage group (LG) 9 and two minor QTL on LG4 in V4718
(sourced from World Vegetable Center). They also detected two
major QTL on LG6 and LG9 and one minor QTL on LG4 in

the mapping populations developed using mungbean genotype
RUM5 (Chankaew et al., 2013).

In Cercospora leaf spot, genetic inheritance studies using
different resistant sources revealed that the resistance is
controlled by either a single dominant gene (Lee, 1980), a
single recessive gene (Mishra et al., 1988) or quantitative genes
(AVRDC, 1980; Chankaew et al., 2011). Although the above
information is useful for breeders in developing the resistant
varieties, progress in selecting CLS-resistant genotypes in large
breeding programs is still limited. First QTL mapping for
resistance to Cercospora leaf spot in mungbean was carried out
in Thailand (Chankaew et al., 2011). Using F2 (CLS susceptible
cultivar Kamphaeng Saen1, KPS1 × CLS-resistance mungbean
line, V4718) and BC1F1 [(KPS1 × V4718) × KPS1] populations,
they identified one major QTL (qCLS) on LG3 located between
the markers CEDG 117 and VR 393, which explained 66–81%
phenotypic variation. Their study further confirmed that SSR
markers flanking qCLS will facilitate transfer of CLS resistance
allele from V4718 into elite mungbean cultivars.

Protection With Synthetic Fungicides
Applications of fungicides are the most common approach
of managing fungal diseases of crops. The traditional ways
of disease management in mungbean include use of broad
spectrum fungicides as a seed treatment chemicals and foliar
spray. Efficacies of different mode of fungicides evaluated to
reduce the major fungal diseases of mungbean are summarized
in Table 2. Fungicides were evaluated mostly in the field trials
as seed treatment and/or foliar sprays. Majority of trials were
targeted for Cercospora leaf spot, anthracnose and powdery
mildew and few trials were on Macrophomina blight, web
blight and dry root rot (Table 2). Most of these studies assessed
fungicide efficacies in reducing disease incidence and/or severity
and yield benefit; however missed the economic analyses
of the fungicide applications, which is critical component
to recommend for farmers. The major group of effective
fungicides to control foliar diseases including powdery mildew,
Cercospora leaf spot, web blight, and Macrophomina blight
were DMI, and MBC. Application of mancozeb (dithocarbmate)
was not effective for powdery mildew; however, was effective
for Cercospora leaf spot and Macrophomina blight. Dinocap
(QiL) and tridemorph (amines groups) were effective for
powdery mildew. Carbendazim and benomyl (MBC) were
effective for anthracnose. Most of the foliar spray was applied
immediately after the appearance of disease symptoms followed
by 2nd and 3rd spray after 15–20 days of first spray
for anthracnose, powdery mildew and Cercospora leaf spot
as given in the Table 2. Seed treatment is applied mainly
against wet and dry root rot, anthracnose and Alternaria
leaf spot diseases before sowing. For dry and wet root
rot disease, carbendazim was found to be most effective
fungicides (Rathore, 2006). The other effective fungicides for
wet root rot were flutolanil and tolclofos-methyl (SDHI),
carbendazim (MBC) and pencycllron (Phenylureas) (Kumari
et al., 2012).

To our knowledge, disease outbreak due to break down of
fungicides has not yet been reported in mungbean. However,
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TABLE 2 | Efficacy of fungicides for the control of fungal diseases in mungbean.

Diseases FRAC code and

Fungicide groups†
Effective fungicides Method and frequency of

application

Efficacy Impact (Disease reduction

and yield)

FOLIAR DISEASES

Powdery mildew *M02-(inorganic) Wettable Sulfur (0.4%) Twice foliar spray Highest cost benefit ratio (3.3) was noticed

(Das and Narain, 1990)

3-DMI Hexaconazole 5 EC

(0.005%),

First foliar spray when disease

appeared, repeated after 15 days

59% with 779 kg/ha yield in treatment,

while 395 kg/ha in check (Khunti et al.,

2005)

29-QiI Dinocap 48 EC

(Dinitrophenyl

crotonate)

73% with 1425 kg/ha (Suryawanshi et al.,

2009)

5-Amines Tridemorph (0.05%) First foliar spray when disease

appeared, repeated after 7 days

69% and 532 kg/ha yield, while 326 kg/ha

in check (Rakhonde et al., 2011)

3-DMI Propiconazole (0.10%), Single foliar spray after first disease

appearance

100% with 908 kg/ha yield, while 746

kg/ha in check (Akhtar et al., 2014)

Cercospora leaf spot 3-DMI Hexaconazole 5 EC

(0.005%),

First foliar spray when disease

appeared, repeated after 15 days

59 and 779 kg/ha yield, while 395 kg/ha in

check (Khunti et al., 2005)

3-DMI Difenconazole (25%

EC) (0.0125 %)

Foliar spray after disease initiation,

repeated twice at 15 DAS

61% (Kapadiya and Dhruj, 1999)

1-MBC Carbendazim (0.10%) First foliar spray when disease

appeared, repeated after 15 days

61% and 690 kg/ha yield at 70 DAS (Khan

et al., 2005)

3-DMI Hexaconazole (0.1%) Single foliar spray when disease

appeared

81% with 752 kg/ha yield, while 525 kg/ha

in check (Veena et al., 2013)

1-MBC Carbendazim (0.1 %), Single foliar spray when disease

appeared

77% (Singh et al., 2013b)

4-PA Metalaxyl (1.2 kg ha−1) Foliar spray after 50 days of sowing

before disease appearance

55% (Shahbaz et al., 2014)

3-DMI Propiconazole (0.10%), Foliar spray after first disease

appearance

86% with 908 kg/ha yield, while 746 kg/ha

in check (Akhtar et al., 2014)

1-MBC + 3-DMI Carbendazim (0.1%) +

Difenconazole (0.02 %),

First foliar spray when disease

appeared, repeated after 15 DAS

82 and 72% leaf infection and 76 and 96%

pod infection with 825 and 808 g/9 m2

yield during 2009 and 2010, respectively,

while in check yields were 691 and 680 g

9 m−2 (Bhat et al., 2015)

1-MBC +

M03-dithiocarbamates

and relatives

Carbendazim (12%) +

Mancozeb (63%) 75%

WP

First foliar spray when disease

appeared, repeated after 15 DAS

70 and 990 kg/ha yield, while decreased

in check (570 kg/ha) (Yadav et al., 2014b)

Anthracnose 1-MBC Carbendazim (0.10%), First foliar spray when disease

appeared, repeated after 15 DAS

38% with 690 kg/ha yield at 70 DAS (Khan

et al., 2005)

1-MBC Carbendazim (0.1%) First foliar spray when disease

appeared, repeated after 15 DAS

65% with increase in grain (1090 kg/ha)

and stalk yield (1470 kg/ha) than untreated

plots of resistant cultivar (UPM-98) (Shukla

et al., 2014)

1-MBC Benomyl 50% (WP), Single foliar spray @ 1.13 kg (a.i.)/ha

per 1136 L of water at 10 days

interval of disease

79 and 32 % in 6,601 and M-19-19

varieties with 587 and 669 kg/ha yield,

respectively, while in untreated plots yields

were 327 and 90 kg/ha (Bashir et al.,

1985)

Web blight 3-DMI Propiconazole (0.10%), Foliar spray after first disease

appearence

78% with 908 kg/ha yield, while 746 kg/ha

in check (Akhtar et al., 2014)

1-MBC Carbendazim 50% WP

(0.1%)

First foliar spray when disease

appeared, repeated after 15 DAS

59% and 620 kg/ha yield, while it was

reduced to 360 kg/ha in check (Jhamaria

and Sharma, 2002)

Macrophomina blight M03-Dithiocarbamates

and relatives

Mancozeb (0.2%) Single foliar spray after 7 days of

pathogen inoculation

80% and 15 g/plant yield (Murugapriya

et al., 2011)

(Continued)
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TABLE 2 | Continued

Diseases FRAC code and

Fungicide groups†
Effective fungicides Method and frequency of

application

Efficacy Impact (Disease reduction

and yield)

1-MBC,

M03-dithiocarbamates

and relatives

Carbendazim (0.1%),

mancozeb (0.2%)

Foliar spray after appearance of

disease

94 and 88% due to mancozeb and

carbendazim with 14 and 13.5 g

yield/plant, while 5 g/plant yield in check

(Rana et al., 2014)

Alternaria leaf spot 3-DMI Hexaconazole (0.03) First spray immediately after disease

appearance and 2nd and 3rd spray

were done at 10 days of interval

85% and yield 868 kg/ha, while yield

decreased in control to 432 kg/ha

(Maheshwari and Krishna, 2013)

ROOT ROT DISEASES

Dry root rot 1-MBC Carbendazim Seed treatment @ 2g kg seeds−1 Reduced 54% disease incidence in

pre-emergence and 66% at

post-emergence (Kumari et al., 2012)

Damping off/wet root rot 7-SDHI, 14–AH, 1

MBC, 20-Phenylureas

Flutolanil (1 um a.i.

ml−1), tolclofos-methyl

and carbendazim (5 urn

a.i. ml−1 ), pencycuron

(50 urn a.i. ml−1)

Seed dressing (2×3 g ai kg−1 seed)

or as soil drench (200 and 300 p.g

ml−1 ) of all the fungicides

Flutolanil, tolclofos-methyl, carbendazim

and pencycllron were most effective

completely (100%) inhibited growth of R.

solani and also reduced disease incidence

(Reddy et al., 1992)

*The bold values indicate the FRAC (Fungicide Resistance Action Committee) code designated to the fungicide group.
†
DMI, De Methylation Inhibitors; QiI, Quinone inside Inhibitors;

MBC, Methyl Benzimidazole Carbamates; PA, Phenyl Amides; SDHI, Succinatedehydrogenase inhibitors; AH, Aromatic Hydrocarbons (Chlorophenyls, nitroanilines); DAS, Day after

spray.

disease management failures in legume crops associated with
fungicide resistance have been reported from several countries
(Chang et al., 2007; Lonergan et al., 2015; Price et al.,
2015). For example, Price et al. (2015) reported that isolates
of C. kikuchii (Cercospora leaf spot) from soybean fields
in Louisiana State, USA were insensitive to thiophanate
methyl. Isolates of Ascochyta rabiei (ascochyta blight of
chickpea) from Canada and USA showed insensitivity with
fungicides pyraclostrobin, chlorothalonil, fluxapyroxad, and
prothioconazole (Chang et al., 2007; Lonergan et al., 2015).
More than 90% mungbean are produced in developing countries
where strict regulations for fungicides are lacking and poor
extension services to educate farmers to apply fungicides
properly. This may lead in future the disease outbreak due to
fungicide resistance problems. Therefore, fungicide resistance
management strategies, such as rotation of fungicides with
different mode of actions, tank mix of broad spectrum and
selective fungicides, and integrate the fungicide spray programs
with other components of disease management practices, should
be implemented at regional and national level as recommended
by Fungicide Resistance Action Committee (FRAC). Use of
next generation fungicides derived from active constituents of
natural products, which are ecologically safe and effective at
lower doses, would also be beneficial (Sierotzki and Scalliet,
2013).

Biological Methods
Biological Control Agents
Very limited information is available on the biological methods
to manage mungbean foliar diseases including powdery
mildews, Cercospora leaf spot, and anthracnose. However,
more information is available for the management of root
rot pathogens. Most of these studies were conducted in
the laboratories to evaluate the effects of bio-control agents

(Trichoderma species, Pseudomonas, Bacillus etc.) to inhibit
growth of root rot pathogens, Rhizoctonia and Macrophomina.
Few studies were also conducted in the greenhouse to study
the impact of seed or soil applications of the biocontrol agents
to reduce the root rot; however, only very few studies were
conducted in fields.

Sharma et al. (2017) recommended that application of
biocontrol agents is more effective to suppress the soil-borne
diseases as effective chemical protectants are either not available
or not economical. Integrated applications of biocontrol agent
with organic amendments were recommended to reduce root
of mungbean in fields (Raghuchander et al., 1993; Ehteshamul-
Haque et al., 1995). Dubey and Patel (2002) reported that soil
application of T. viride (8 g/kg) multiplied in pulse bran and
saw dust in the greenhouse experiment showed 75% reduction
in root rot disease caused by R. solani and also promoted
plant growth. A 76% reduction in Rhizoctonia root rot was
reported when Gliocladium virens (Trichoderma virens) applied
as seed treatment @ 106 spores/ml/10 g seeds (Dubey, 2003).
Bioproducts Pusa 5SD (T. viride) showed 72% root rot reduction
and 978 kg ha−1, Pusa 5SD (T. harzianum) showed 71% disease
reduction and 940 kg ha−1 yield in sick field (Dubey et al., 2011).
Similarly, T. harzianum, and T. viride reduced about 54–73%
Rhizoctonia root rot incidences (Singh et al., 2008; Maheshwari
and Krishna, 2013) in green house and field experiments,
respectively.

Seed dressing and soil drenching with bacterial strains
of Pseudomonas aeruginosa and Bacillus subtilis significantly
reduced 42% Macrophomina root rot, 39% Fusarium root
rot and 70% Rhizocotnia root rot incidences in mungbean
(Siddiqui et al., 2001). Bacterial strain TNAU-1 (Burkholderia
spp.) inhibited mycelial growth of M. phaseolina in in vitro dual
culture and also reduced root rot incidence up to three-fold
when applied as a seed treatment and soil application with talc
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based formulations (Satya et al., 2011). Trichoderma viride and
T. harzianum were found to be reduced M. phaseolina growth
(respective 42–33 and 42–25mm) in dual culture (Ebenezar
and Yesuraja, 2000). In the field study, Kumari et al. (2012)
found that mixed application of vermicompost (10%) + bavistin
(0.1%) + T. harzianum (4%) exhibited 100% reduction of
Macrophomina root rot. Bacillus subtilis and T. longibrachyatum
against M. phaseolina exhibited 64 and 63% antagonistic
activity, respectively (Tandel et al., 2014). In greenhouse study,
application of 4 g kg−1 seeds of T. harzianum with 25 g kg−1

of phosphate solubilizing bacteria as seed dresser reduced 26%
incidence of Macrophomina root rot (Deshmukh et al., 2016).

The compatibility of different bioagents against root rot
pathogens has also been studied. Application of plant growth
promoting rhizobacteria, Pseudomonas aeruginosa, with a
medicinal plant Launaea nudicaulis @ 0.5% as soil amendment
reduced 51% of Macrophomina root rot, while combined
application of L. nudicaulis (0.1% W/W) + P. aeruginosa and L.
nudicaulis (1.0% w/w)+ P. lilacinus gave 0% infection reduced of
Rhizoctonia and Fusarium root rot, respectively (Mansoor et al.,
2007). In the green house and field trials (Thilagavathi et al.,
2007), soil application of Pseudomonas fluorescens strain Pf1+
Trichoderma viride strain Tv1 controlled 86% Macrophomina
root rot in pot culture and 59% in field conditions with 833 kg
ha−1 yield. The authors also found that T. viride strain is not
compatible with B. subtilis (Bs16), but P. fluorescens strain is
compatible with B. subtilis andT. viride in themanagement of dry
root rot. Yadav et al. (2017) reported that T. viride, T. harzianum,
and Pseudomonas fluorescens were effective to reduce powdery
mildew of mungbean (∼80–84% reduction).

Botanical Fungicides and Bio-Stimulants
The plant products, particularly plant extract and essential
oils, showed prominent toxicity to the diverse genera of plant
pathogenic fungi, bacteria, insects and nematodes (Pandey
and Tripathi, 2011). Plants synthesize aromatic secondary
metabolites in the form of terpenes, like phenols (carvacrol,
eugenol, and thymol), phenolic acids, quinones, flavones,
flavonoids, flavonols, tannins and coumarins (Cowan, 1999),
these groups of compounds show fungicidal effect and serves as
plant defense mechanisms against fungal pathogens (Slusarenko
et al., 2008; Das et al., 2010). For mungbean diseases, most of
studies were preliminary and different kinds of plant extracts
or their products have been evaluated against mungbean fungal
pathogens (Javaid and Amin, 2009; Murugapriya et al., 2011).
Foliar spray of neem extract (1:4 w/v) was reduced 65% of
Cercospora leaf spot and increased 25% yield in mungbean
(Uddin et al., 2013). Leaves extracts behada (Terminali belerica),
tapioca (Manihot utilissimum), and sadafuli (Vinca rosea)
reduced 60–66% of conidial germination of powdery mildew
fungus E. polygoni (Rakhonde et al., 2011). Similarly, in vitro
evaluation of leaf extracts of Adenocalymma alliaceum and
Allium spp. reduced about 75–77% mycelia growth of M.
phaseolina, Macrophomina blight incidences in greenhouse
experiments (Murugapriya et al., 2011; Rana et al., 2014). In the
greenhouse experiments, combined applications of 10% extract
of Allium spp., mancozeb (0.2%), and 10% extract of Allium

spp. with zinc sulfate (0.5%) reduced about 88–94% incidence
of Macrophomina root rot (Sundaramoorthy et al., 2013). Javaid
and Saddique (2011) found that amendment of dry leaf manure
of Datura metel (1.5% w/w) in the soil reduced 80% plant
mortality caused by M. phaseolina. Similarly, soil application
of L. nudicaulis (1% w/w) extract also reduced dry root rot
(62%), wet root rot (75%) and Fusarium wilt (100%) incidences
(Mansoor et al., 2007) in glasshouse. Mungbean seeds dressing
with 2% concentration of palmarosa (Cymbopogon martinii)
oil gave complete inhibition of M. phaseolina mycelial growth
(100%) in poison food testing and also caused 72.33% reduction
in dry root rot in the greenhouse trials (Kumari et al., 2012).

Induced systemic resistance (ISR) and systemic acquired
resistance (SAR) are both important phenomenon in the
interactions of plant-pathosystems. Both ISR and SAR increased
productions of proteins (defense enzymes) like peroxidase (PO),
pathogenesis related (PR), phenylalanine ammonia lyase (PAL),
polyphenol oxidase (PPO), phenols etc. (Jones and Dangl, 2006;
Walters et al., 2009), which showed positive associations with
resistance for several fungal diseases of vegetable and legume
crops (Vallad and Goodman, 2004; Abdel-Kader et al., 2013). In
mungbean, limited studies have been conducted to understand
the mechanism of ISR and SAR. Similar to other crops, increase
production of plant defense enzymes were reported when
mungbean plants were treated with bioagents and plant products
and also challenged with plant pathogens. Application of 10%
aqueous leaf extracts of Allium alliaceum and other Allium sp.
exhibited increase in PO, PPO, PAL and total phenol contents
in mungbean plants inoculated with Macrophomina phaseolina
(Sundaramoorthy et al., 2013). Treatment of M. phaseolina pre-
inoculated mungbean plants with Pf1 (Pseudomonas fluorescens)
formulation amended with chitin increased the accumulation of
PAL, PO, PPO, chitinase, β-1,3-glucanse and phenolics indicating
that the PGPR strains amended with chitin bioformulation
induced defense-related enzymes and pathogenesis related (PR)
proteins (Saravanakumar et al., 2007). Higher levels of PO and
PPO activity was observed in M. phaseolina infection treated
with the bioformulation combination of plant growth promoting
bacteria (P. fluorescens) and biocontrol agents (Trichoderma or
Bacillus) than the plants treated with single biocontrol agent
(Thilagavathi et al., 2007). Mechanism of SAR were studied for
bacterial (Dutta et al., 2005; Farahani and Taghavi, 2016) and viral
diseases (Rashid et al., 2004) of mungbean, but study regarding
fungal diseases are still meager. Thus, more investigations are
required to understand the SAR and ISR mechanisms in the
interactions between mungbean and fungal diseases.

CHALLENGES FOR THE SUSTAINBLE
DISEASE MANAGEMENT

More than 90% of mungbean are cultivated in the developing
countries, where small farmers do not have proper knowledge
on integrated pest management and several challenges exist
in the implementation of integrated management options. For
example, use of gamma rays for seed treatment is a good
option to eliminate seed-borne pathogen from seed, but it is
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not viable for the small holder farmers since they produce seeds
in their farm in a small scale. Several developing countries
in south Asia do not have strong national breeding programs
in mungbean to exploit host resistance for multiple diseases.
Disease resistant genotypes identified in several studies were
evaluated in few locations or seasons. Variability in pathogen
populations exists among diverse geography; therefore, screening
trials should be conducted multi-locations and years while
developing breeding lines for disease resistance. Instability and
breakdown of disease resistance in mungbean cultivars is a
major challenge in breeding programs due to monogenic host
resistance and high pathogenic variability (Nair et al., 2017).
Integration of disease resistance traits without compromising
valuable agronomic traits is a key challenge for mungbean
breeders as linkage drags inhibit the proper use of genetic
diversity from wild germplasm into the commercial cultivars
(Acosta-Gallegos et al., 2008; Keneni et al., 2011). Further,
undesired and desired traits co-inheritance may affect on seed
quality.

In developing countries including India, fungicides are
registered by CIBRC (Central Insecticide Board and Registration
Committee) with their effective dose and label claim which
provides guideline to the growers. However, where fungicides
are not registered, agriculture officers or fungicide retailers
provide fungicides spray guidelines to the growers. Several
growers do not apply fungicides with appropriate doses and
timing, although majority of fungicides used are preventative
(broad-spectrum), which require applying prior to pathogen
infection or prior to first symptoms appearance. In addition,
farmers do not commonly rotate fungicides with different
mode of actions due to poor knowledge and extension on
IPM. As fungicides resistance is a big concern for legume
industry in several countries (Chang et al., 2007; Lonergan
et al., 2015; Price et al., 2015), the problem may arise in
mungbean industry. Fungicide resistance could be significant
challenge for the mungbean farmers in future to manage
diseases effectively. Fungicide resistance management strategies
recommended by FRAC, which we have described in the
section “Protection With Synthetic Fungicide,” have not been
deployed at regional or national levels in several developing
countries.

Additionally, attempts have been made to produce and
apply biopesticide commercially in the developing countries.
Challenges also exist for the commercial use of biopesticides
in mungbean. Most of biopesticides only suppress the diseases
and are not effective as chemical fungicides, therefore growers
are reluctant to use the products (Flexner and Belnavis,
2000; Felde et al., 2006). Due to poor extension, growers
do not apply the biopesticides as a component of integrated
approach. In addition, several abiotic and biotic factors make
the biopesticides less effective in field (Meyer and Roberts,
2002; Sharma et al., 2017). Sharma et al. (2017) speculated
that there could be risk of developing biocontrol agents
as crop pests and therefore, careful attentions are required
while developing/evaluating biocontrol agents. However, we
did not find any reports in the literature showing the
evidences of biocontrol agents shifted to crop pathogens. Few

researchers suggested that application of biocontrol agent is
effective when mixed with other biocontrol agents; however,
other investigators reported that such combinations may not
be always advantageous as antagonism can occur among
biocontrol agents (Viaene and Abawi, 2000). Most of studies
to exploit botanicals and other bio-based products were
evaluated in laboratory or controlled environments and their
efficacy has not been evaluated in fields. This shows future
potentiality of these products for the sustainable management of
diseases, however, growers do not have current access of these
products.

Mungbean farmers in the developing countries are not well
educated about the impact of global climate change in the
disease management. Global climate change would influence
the emergence of new diseases, biology of the plant pathogens,
disease development and their management practices in different
geographical regions (Chakraborty et al., 2000; Juroszek and
von Tiedemann, 2011; Luck et al., 2011). Global rise in
temperature and CO2 due to climate change may modify
aggressiveness and fecundity of the plant pathogens, increase
host susceptibility, and change host architecture and host-
pathogen interaction (Chakraborty et al., 2000; Luck et al., 2011).
The mungbean breeding programs in the developing countries
does not have enough resources and strategies for developing
resistant varieties for biotic and abiotic stresses associated with
climate change elevation in temperature, CO2, and moisture
stress due to climate change may also affect the efficacies and
the durability of plant protection chemicals and biocontrol
agents (reviewed in Juroszek and von Tiedemann, 2011), which
could be also key challenge to manage mungbean diseases in
future.

CONCLUSIONS AND FUTURE
PROSPECTS

The present review identified that root rot complex and
wilt caused by soil-borne pathogens and foliar diseases are
major fungal diseases impacting mungbean production in
South Asia and South East Asia. Fusarium wilt and root rot
and powdery mildew are problematic in Australia. For the
management of these diseases potential options such as chemical
and non-chemical (cultural, physical, host-plant resistance,
biological) have been investigated by the researchers. Although
several field trials were conducted to evaluate fungicides and
other non-chemical management options by researchers from
universities and governments, very little information has been
transferred to the mungbean growers in South and Southeast
Asia due to the poor linkage between research and extension
activities. Deployment of Integrated Disease Management (IDM)
to manage mungbean diseases in a coordinated approach
requires good collaborations among academia, national and
international research institutes, national extension agencies and
growers.

Use of resistant varieties (if available) in combination with
other components of management is a most effective option
to combat with these fungal diseases. Described literature
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revealed that sources of resistant genotypes have been identified
for Cercospora leaf spot, powdery mildew, and anthracnose
diseases and few for dry root rot by screening mungbean
germplasms in natural field/artificial conditions in few specific
locations. The identified sources for resistance in these diseases
could be region specific as they were tested in a few specific
locations. For example, V4718 mungbean accession from the
WorldVeg gene bank has been used as a source of resistance
to powdery mildew in Thailand and India. Breeding lines
developed from the above source through cross breeding,
and selections have been shared to the partners in the
ACIAR funded International Mungbean Improvement Network
project. Therefore, evaluation of resistant genotypes for these
diseases at multi-locations in a coordinated approach would
help in deploying host resistance at a larger scale. Compared
to foliar diseases, few resistant genotypes of mungbean are
available for root rot diseases. This may be due to the less
priority given to the screening of these diseases in the past.
However, the incidence of dry root rot in mungbean grown
as part of rice based farming system in eastern part of India
(Odisha state) and in Myanmar has triggered the need for
identification of sources of resistance. Sharma and Ghosh (2017)
reported that chickpea genotype which showed a good level
of resistance to Fusarium wilt at 24◦C were susceptible at
27◦C. Therefore, breeding programs should consider potential
impact of climate change in the new and existing biotic stresses.
Attention should be given to develop climate resilient cultivars
(such as cultivars can show a good level of resistance at
higher temperature) with greater diversity and incorporating
traits for multiple disease resistance. Literature evidenced that
molecular markers are available for powdery mildew and
Cercospora leaf spot, however, there is need to validate them
in breeding programs. More attention is required to develop
the molecular markers for root rot and anthracnose diseases.
Currently, as a part of the network, we are screening 296
mini-core accessions of mungbean (Schafleitner et al., 2015)
for resistance to anthracnose, dry root rot, powdery mildew
and Cercospora leaf spot diseases. The resistant accessions
identified will be shared among the project partners for cultivar
development.

Application of synthetic fungicides is a common practice
to control fungal diseases of mungbean, and growers also
integrate other cultural methods with chemical sprays. Efficacies
of several fungicides (Table 2) were evaluated in fields and
controlled environments at universities and research institutions,
however, there is a knowledge gap regarding how much of these
evaluated fungicides are currently used by mungbean growers.
In addition, additional research are required for fungicide
efficacy trials including rotating and tank mixing with different
modes of actions, different rates as well as volume of water
for spray coverage. Attentions should also be given to develop
and evaluate new generation fungicides. Fungicide resistance
problem has not yet been reported in mungbean growing
areas, which could also be due to research gap to investigate
fungicide sensitivity against mungbean pathogens. In literature,
baseline sensitivity data are not available for any fungicides and
pathogens. Therefore, future research is recommended for in

vitro fungicide sensitivity test using large numbers of pathogen
isolates from diverse areas. Fungicide resistance management
strategies (such as integrating chemical fungicides with other
management practices, judicial use of fungicides, rotation and
tank mix of different groups of fungicides) should be deployed
at regional and national level to reduce the risk of developing
fungicide resistance fungal population. Future impact of climate
change on diseases of other crops such as wheat, soybean,
and potatoes etc. were studied (reviewed in Luck et al., 2011).
Climate change could make crop disease management more
challenging in the developing countries. To our knowledge,
no studies have been conducted to understand the effect(s)
of climate change on mungbean diseases, and thus future
research should address this. Induced resistance due to bio-
stimulants has been explored for a few diseases including
Macrophomina blight and therefore, additional research is
required to exploit induced resistance to manage anthracnose,
powdery mildew, Cercospora leaf spot and root rot diseases.
Regarding biological control, investigation has been focused for
root rot pathogens using strains of Trichoderma, Pseudomonas,
and Bacillus as seed dresser and soil application. Biocontrol
agents were more effective in reducing diseases in controlled
environments than in fields. Plant-based products as described
understory have been extensively researched for the control
of seed/soil borne and foliar pathogens, but few have yet
reached the market due to lack of their large scale trials
at field level. Use of genomics tools has opened avenue to
understand the mode of actions of biocontrol agents and
genes associated with it (Sharma et al., 2017), however, more
research is required in this area. Coordinated approaches from
researchers from the universities, private sectors, national and
international research centers are required to evaluate promising
biocontrol agents, biostimulants, and botanical products in
fields at multilocations and commercialize these products.
Compatibility between different products including fungicides
and these bioagents should be also evaluated. Persistent efforts
are required for refinement, validation, transfer and adoption of
the integrated disease management modules by the mungbean
growers.

AUTHOR CONTRIBUTIONS

AP lead author in reviewing the literature, compiling the
information preparing the reveiw draft and revising the
manuscript. RB substantial contribution in writing the
manuscript from the begining of the manuscript draft. Guided
lead author to outline the sections and compile the manuscript.
Critically reviewed and revised the manuscript, resturctured
the entire manuscript with signifcant contribution to shape
the manuscript for the final version. LK crtically reviewed the
manuscript and contributed to rewrite and restructure the
manuscript. Substanital contribution to revise the all sections
of manuscript including abstract, prospects and conclusion.
RN guided lead author to compile the manuscript, Significant
contribution to revise the manuscript and contributed to write
the Host Resistance section of the manuscript.

Frontiers in Environmental Science | www.frontiersin.org June 2018 | Volume 6 | Article 53169

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Pandey et al. Review of Mungbean Fungal Diseases

ACKNOWLEDGMENTS

Funding for this review was provided by core donors
to the World Vegetable Center: Republic of China
(Taiwan), UK aid, United States Agency for International

Development (USAID), Australian Centre for International
Agricultural Research (ACIAR) through ACIAR Project
on International Mungbean Improvement Network (CIM-
2014-079), Germany, Thailand, Philippines, Korea, and
Japan.

REFERENCES

Abdel-Kader, M. M., El-Mougy, N. S., and Lashin, S. M. (2013). Biological and

chemical resistance inducers approaches for controlling foliar diseases of some

vegetables under protected cultivation system. J. Plant Pathol. Microb. 4:200.

doi: 10.4172/2157-7471.1000200

Acosta-Gallegos, J. A., Kelly, J. D., and Gepts, P. (2008). Prebreeding in common

bean and use of genetic diversity from wild germplasm. Crop Sci. 48, 3–16.

doi: 10.2135/cropsci2007.04.0008IPBS

Akhtar, J., Lal, H. C., Kumar, Y., Singh, P. K., Ghosh, J., Khan, Z., et al.

(2014). Multiple disease resistant in greengram and blackgram germplasm and

management through chemicals under rain-fed conditions. Legume Res. 37,

101–109. doi: 10.5958/j.0976-0571.37.1.016

Alam, S. S., Qureshi, S. H., and Bashir, M. (1985). A report on web blight of

mungbean in Pakistan. Pakistan J. Bot. 17:165.

Anderson, T. R. (1985). Root rot and wilt of mungbean in Ontario. Can. Plant Dis.

Surv. 65, 3–6.

Anonymous (2014). Project Coordinator’s Report (mungbean and urdbean), All

India Coordinated Research Project on MULLaRP. Indian Institute of Pulses

Research. Kanpur, 2013–2014.

Anonymous (2000). Annual Report-AICRP on Pulses. Jaipur: Rajasthan

Agricultural Research Institute (Sri Karan Narendra Agriculture University,

Jobner), 1–23.

AVRDC (1979). Asian Vegetable Research and Development Centre. Mungbean

report for 1975, (Tianan). 18.

AVRDC (1980). Asian Vegetable Research and Development Center. AVRDC

Progress Report 1980, (Shanhua).

AVRDC (1981). Asian Vegetable Research and Development Center. AVRDC

Progress Report 1981 (Shanhua).

AVRDC (2012). Asian Vegetable Research and Development Center, Mungbean,

AVRDC Progress Report 2012, (Shanhua).

Bains, S. S., Dhaliwal, H. S., and Basandrai, A. K. (1988). A new blight of mung and

mash in Punjab. Ann. Biol. Ludhiana 4, 113–114.

Bashir, M., Alam, S. S., Qureshi, S. H., and Malik, B. A. (1985). Control of

mungbean anthracnose by foliar fungicides. Pakistan J. Agric. Res. 6, 173–175.

Bashir, M., and Malik, B. A. (1988). Diseases of major pulse crops in Pakistan—

a review. Trop. Pest Manage. 34, 309–314. doi: 10.1080/096708788093

71262

Bhaskar, A. V. (2017). Genotypes against major diseases in green gram and black

gram under natural field conditions, A. Vijaya Bhaskar. Int. J. Curr. Microbiol.

App. Sci. 6, 832–843. doi: 10.20546/ijcmas.2017.606.098

Bhat, F. A., Bhat, G. N., Anwar, A., and Mohiddin, F. A. (2015). Cost effective

strategies for the management of fungal leaf spot of greengram caused by

Cercospora canescens Ell. & Mart. under temperate condition of Jammu and

Kashmir. Legume Res. 38, 109–114. doi: 10.5958/0976-0571.2015.00018.1

Bhat, F. A., Mohiddin, F. A., and Bhat, H. A. (2014). Reaction of green gram

(Vigna radiata) to Cercospora canascens (ELL.) and Mart. Indian J. Agric. Res.

48, 140–144. doi: 10.5958/j.0976-058X.48.2.023

Chaitieng, B., Kaga, A., Han, O. K., Wang, X., Wongkaew, S., Laosuwan, P., et al.

(2002). Mapping a new source of resistance to powdery mildew in mungbean.

Plant Breed. 121, 521–525. doi: 10.1046/j.1439-0523.2002.00751.x

Chakraborty, S., Tiedemann, A. V., and Teng, P. S. (2000). Climate change:

potential impact on plant diseases. Environ. Pollut. 108, 317–326.

doi: 10.1016/S0269-7491(99)00210-9

Chand, R., Singh, V., Pal, C., Kumar, P., and Kumar, M. (2012). First report of a

new pathogenic variant of Cercospora canescens on mungbean (Vigna radiata)

from India. New Dis. Rep. 26:6. doi: 10.5197/j.2044-0588.2012.026.006

Chang, K. F., Ahmed, H. U., Hwang, S. F., Gossen, B. D., Strelkov, S. E.,

Blade, S. F., et al. (2007). Sensitivity of field populations of Ascochyta rabiei

to chlorothalonil, mancozeb, and pyraclostrobin fungicides, and effects of

strobilurin fungicides on the progress of ascochyta blight of chickpea. Can. J.

Plant Sci. 87, 937–944. doi: 10.4141/CJPS07019

Chankaew, S., Somta, P., Isemura, T., Tomooka, N., Kaga, A., Vaughan, D.

A., et al. (2013). Quantitative trait locus mapping reveals conservation of

major and minor loci for powdery mildew resistance in four sources of

resistance in mungbean [Vigna radiata(L.) Wilczek]. Mol. Breed. 32, 121–130.

doi: 10.1007/s11032-013-9856-6

Chankaew, S., Somta, P., Sorajjapinun, W., and Srinives, P. (2011). Quantitative

trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna

radiata (L.) Wilczek. Mol. Breed. 28, 255–264 doi: 10.1007/s11032-010-

9478-1

Choudhary, S., Choudhary, A. K., and Sharma, O. P. (2011). Screening of

mungbean (Vigna radiata) genotypes to identify source of resistant to dry root

rot. J. Food Leg. 24, 117–119.

Clarry, S. (2016). The Rise and Rise of Mungbeans. In GroundCoverTM

Supplement Issue 125 November-December. Grains Research and Development

Corporation, 15. Available online at: https://grdc.com.au/resources-and-

publications/groundcover/ground-cover-supplements/ground-cover-issue-

125-pulse-breeding-advances/the-rise-and-rise-of-mungbeans. (Accessed

Apr 4, 2018).

Cowan, M. M. (1999). Plant products as antimicrobial agents. Clin. Microbiol. Rev.

12, 564–582.

Das, K., Tiwari, R. K. S., and Shrivastava, D. K. (2010). Techniques for evaluation

of medicinal plant products as antimicrobial agent: current methods and future

trends. J. Med. Plants Res. 4, 104–111. doi: 10.5897/JMPR09.030

Das, S. R., and Narain, A. (1990). Management of powdery mildew of mungbean

with fungicides. Indian Phytopath. 43, 100–101.

Deeksha, J., and Tripathi, H. S. (2002). Cultural, biological and chemical control of

anthracnose of urdbean. J. Mycol. Plant Pathol. 32, 52–55.

Deshmukh, M. A., Gade, R. M., Belkar, Y. K., and Koche, M. D. (2016). Efficacy of

bioagents, biofertilizers and soil amendments to manage root rot in greengram.

Legume Res. 39, 140–144. doi: 10.18805/lr.v0iOF.6772

Dubey, S. C. (2003). Integrated management of web blight of urd/mung bean by

bio-seed treatment Indian Phytopath.56, 34–38.

Dubey, S. C., Bhavani, R., and Singh, B. (2009). Development of Pusa 5SD

for seed dressing and Pusa Biopellet 10G for soil application formulations

of Trichoderma harzianum and their evaluation for integrated management

of dry root rot of mungbean (Vigna radiata). Bio. Contr. 50, 231–242.

doi: 10.1016/j.biocontrol.2009.04.008

Dubey, S. C., Bhavani, R., and Singh, B. (2011). Integration of soil application

and seed treatment formulations of Trichoderma species for management of

wet root rot of mungbean caused by Rhizoctonia solani. Pest Manag. Sci. 67,

1163–1168. doi: 10.1002/ps.2168

Dubey, S. C., and Patel, B. (2002). Mass multiplication of antagonists and

standardization of effective dose for management of web blight of urd and

mung bean. Indian Phytopath. 55, 338–341.

Dutta, S., Singh, R. P., and Jindal, J. K. (2005). Effect of antagonistic bacteria and

plant defence activators on management of bacterial leaf spot of mungbean.

Indian Phytopath. 58, 269–275.

Dwivedi, R. P., and Saksena, H. K. (1974). Occurrence of web blight caused by

Thanatephorus cucumeris on mungbean. Int. J. Farm Sci. 2:100.

Eastburn, D., Degennaro, M., Delucia, E., Dermody, O., and McElrone,

A. (2010). Elevated atmospheric carbon dioxide and ozone alter

soybean diseases at SoyFACE. Global Change Biol. 16, 320–330.

doi: 10.1111/j.1365-2486.2009.01978.x

Ebenezar, E. G., and Yesuraja, I. (2000). Effect of fungal and bacterial antagonist on

Macrophomina phaseolina (Tassi) Goid causing root rot in green gram. J. Trop.

Agric. 38, 73–76.

Frontiers in Environmental Science | www.frontiersin.org June 2018 | Volume 6 | Article 53170

https://doi.org/10.4172/2157-7471.1000200
https://doi.org/10.2135/cropsci2007.04.0008IPBS
https://doi.org/10.5958/j.0976-0571.37.1.016
https://doi.org/10.1080/09670878809371262
https://doi.org/10.20546/ijcmas.2017.606.098
https://doi.org/10.5958/0976-0571.2015.00018.1
https://doi.org/10.5958/j.0976-058X.48.2.023
https://doi.org/10.1046/j.1439-0523.2002.00751.x
https://doi.org/10.1016/S0269-7491(99)00210-9
https://doi.org/10.5197/j.2044-0588.2012.026.006
https://doi.org/10.4141/CJPS07019
https://doi.org/10.1007/s11032-013-9856-6
https://doi.org/10.1007/s11032-010-9478-1
https://grdc.com.au/resources-and-publications/groundcover/ground-cover-supplements/ground-cover-issue-125-pulse-breeding-advances/the-rise-and-rise-of-mungbeans
https://grdc.com.au/resources-and-publications/groundcover/ground-cover-supplements/ground-cover-issue-125-pulse-breeding-advances/the-rise-and-rise-of-mungbeans
https://grdc.com.au/resources-and-publications/groundcover/ground-cover-supplements/ground-cover-issue-125-pulse-breeding-advances/the-rise-and-rise-of-mungbeans
https://doi.org/10.5897/JMPR09.030
https://doi.org/10.18805/lr.v0iOF.6772
https://doi.org/10.1016/j.biocontrol.2009.04.008
https://doi.org/10.1002/ps.2168
https://doi.org/10.1111/j.1365-2486.2009.01978.x
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Pandey et al. Review of Mungbean Fungal Diseases

Ehteshamul-Haque, S., Abid, M., and Ghaffar, A. (1995). Efficacy of

Bradyrhizobium sp., and Paecilomyces lilacinus with oil cakes in the control of

root rot of mungbean. Trop. Sci. 35, 294–299.

Farahani, A. S., and Taghavi, M. (2016). Changes of antioxidant enzymes of mung

bean [Vigna radiata (L.) R.Wilczek] in response to host and non-host bacterial

pathogens. J. Plant Prot. Res. 56, 95–99. doi: 10.1515/jppr-2016-0016

Felde, Z. A., Pocasangre, L. E., Carnizares Monteros, C. A., Sikora, R. A., Rosales,

F. E., and Riveros, A. S. (2006). Effect of combined inoculations of endophytic

fungi on the biocontrol of Radopholus similis. Info-Musa 15, 12–18.

Fery, F. L. (2002). “New opportunities in Vigna,” in Trends in New Crops and New

Uses, eds J. Janick and A. Whipkey (Alexandria: ASHS Press), 424–428.

Flexner, J. L., and Belnavis, D. L. (2000). “Microbial Insectcides,” in Biological and

Biotechnological Control of Insect Pests, eds J. E. Rechcigl and N. A. Rechcigl

(Boca Raton, FL: CRC Press; Lewis Publishers), 35–56.

Gawande, V. L., and Patil, J. V. (2003). Genetics of powdery mildew (Erysiphe

polygoniD.C.) resistance in Mungbean (Vigna radiata (L.) Wilczek). Crop Prot.

22, 567–571. doi: 10.1016/S0261-2194(02)00202-8

Hartman, G. L., Wang, T. C., and Kim, D. (1993). Field evaluation of mungbeans

for resistance to Cercospora leaf spot and powdery mildew. Int. J. Pest Manag.

39, 418–421. doi: 10.1080/09670879309371833

Hibberd, J.,Whitbread, R., and Farrar, J. (1996). Effect of 700µmolmol−1 CO2 and

infection by powdery mildew on the growth and carbon partitioning of barley.

New Phytol. 134, 309–315. doi: 10.1111/j.1469-8137.1996.tb04635.x

Humphry, S. M. E, Magner, T., McIntyre, C. L., Aitken, E. A., and Liu, C. L.

(2003). Identification of major locus conferring resistance to powdery mildew

(Erysiphe polygoni D.C.) in mungbean (Vigna radiata L. Wiczek) by QTL

analysis. Genome 46, 738–744. doi: 10.1139/g03-057

Ikram, N., Dawar, S., Abbas, Z., and Zaki, M. J. (2010). Effect of (60Co) gamma rays

on growth and root rot diseases in mungbean (Vigna radiata L.). Pakistan J. Bot.

42, 2165–2170.

Iqbal, S. M., Ghafoor, A., Bashir, M., and Malik, B. A. (1995). Estimation of

losses in yield components of mugbean due to Cercospora leaf spot. Pakistan

J. Phytopath. 7, 80–81.

Iqbal, S. M., and Zubair, M., and Haqqani, A. M. (2004). Resistant in Mungbean to

Cercospora leaf spot disease. Int. J. Agric. Biol. 6, 792–793.

Iqbal, U., and Mukhtar, T. (2014). Morphological and pathogenic variability

among Macrophomina phaseolina isolates associated with mungbean

(Vigna radiata L.) Wilczek from Pakistan. Sci. World J. 2014:950175.

doi: 10.1155/2014/950175

Jadhav, M. L., Taur, N., Sapkal, S., Tathe, S., and Quadri, F. (2016). Study on effect

of caffeine on growth of Vigna radiata L. Int. J. Adv. Res. 4, 596–602.

Javaid, A., and Amin, M. (2009). Antifungal activity of methanol and n-hexane

extracts of three Chenopodium species against Macrophomina phaseolina. Nat.

Prod. Res. 23, 1120–1127. doi: 10.1080/14786410802617433

Javaid, A., and Saddique, A. (2011). Management of Macrophomina root rot of

mungbean using dry leaves manure ofDaturametel as soil amendment. Spanish

J. Agric. Res. 9, 901–905. doi: 10.5424/sjar/20110903-394-10

Jhamaria, S. L., and Sharma, O. P. (2002). Management of web blight of mungbean

through chemicals and plant product. Indian Phytopath. 55, 526.

Jones, J. D., and Dangl, J. L. (2006). The plant immune system. Nature 444,

323–329. doi: 10.1038/nature05286

Joshi, A., Souframanien, J., Chand, R., and Pawar, S. E. (2006). Genetic

diversity study of Cercospora canescens (Ellis & Martin) isolates, the pathogen

of Cercospora leaf spot in legumes. Curr. Sci. 90, 564–568.

Juroszek, P., and von Tiedemann, A. (2011). Potential strategies and future

requirements for plant disease management under a changing climate. Plant

Pathol. 60, 100–112. doi: 10.1111/j.1365-3059.2010.02410.x

Kapadiya, H. J., and Dhruj, L. U. (1999). Management of mungbean Cercospora

leaf spot through fungicides. Indian Phytopath. 52, 96–97.

Kasettranan, W., Somta, P., and Srinives, P. (2009). Genetics of the resistance to

powdery mildew disease in mungbean (Vigna radiata (L.) Wilczek). J. Crop Sci.

Biotechnol. 12, 37–42. doi: 10.1007/s12892-008-0074-4

Kasettranan, W., Somta, P., and Srinives, P. (2010). Mapping of quantitative trait

loci controlling powdery mildew resistance in mungbean (Vigna radiata (L.)

Wilczek). J. Crop Sci. Biotechnol. 13, 155–161 doi: 10.1007/s12892-010-0052-z

Kaur, L. (2007). Multiple disease resistant sources of mungbean. Act Hort. 752,

423–426. doi: 10.17660/ActaHortic.2007.752.76

Kaur, L., Singh, P., and Sirari, A. (2011). Biplot analysis for locatingmultiple disease

resistant diversity in mungbean germplasm. Disease Res. 26, 55–60.

Kaushik, C. D., Chand, J. N., and Saryavir (1987). Seedborne nature of Rhizoctonia

bataticola causing leaf blight of mungbean. J. Mycol. Plant Pathol. 17, 154–157.

Keatinge, J. D. H., Easdown, W. J., Yang, R. Y., Chadha, M. L., and

Shanmugasundaram, S. (2011). Overcoming chronic malnutrition in a future

warming world: the key importance of mungbean and vegetable soybean.

Euphytica 180, 129–141. doi: 10.1007/s10681-011-0401-6

Kelly, L. (2017). Fusarium Species Associated With Grain Sorghum and Mungbean

in Queensland. MS thesis, The University of Queensland.

Kelly, L, White, J., Sharman, M., Brier, H., Williams, L., Grams, R., et al. (2017).

Mungbean and Sorghum Disease Update. Grains Research and Development

Corporation (GRDC) update paper. Available online at: https://grdc.com.au/

resources-and-publications/grdc-update-papers/tab-content/grdc-update-

papers/2017/07/mungbean-and-sorghum-disease-update. (Assessed Apr 4,

2018).

Keneni, G., Bekele, E., Getu, E., Imtiaz, M., Damte, T., and Mulatu, B. (2011).

Breeding food legumes for resistance to storage insect pests: potential and

limitations. Sustainability 3, 1399–1415. doi: 10.3390/su3091399

Khajudparn, P., Wongkaew, S., and Thipyapong, P. (2007). Mungbean powdery

resistant identification of genes for resistant to powdery mildew in mungbean.

Afr. Crop Sci. Conf. Proc. 8, 743–745.

Khan, A. A., Khan, R. U., and Singh, R. (2005). Management of Cercospora leaf

spot and anthracnose diseases of mungbean by fungicides. Ann. Plant Prot. Sci.

13, 465–529.

Khan, K. S. H., and Shuaib, M. (2007). Identification of sources of resistant in

mungbean (Vigna radiata L.) against charcoal rot Macrophomina phaseolina

(Tassi) Goid. Afr. Crop Sci. Conf. Proc. 8, 2101–2102

Khare, N., Lankpale, N., and Agarwal, K. C. (1998). Epidemiology of powdery

mildew ofmungbean in Chhattisgarh region ofMadhya Pradesh. J. Mycol. Plant

Pathol. 28, 5–10.

Khunti, J. P., Bhoraniya, M. E., and Vora, V. D. (2005). Management of powdery

mildew and Cercospora leaf spot of mungbean by some systemic fungicides.

Legume Res. 28, 65–67.

Khunti, J. P., Bhoraniya, M. F., and Vora, V. D. (2002). Management of Powdery

mildew and Cercospora leaf spot of mungbean by some Systemic Fungicides. J.

Mycol. Pl. Pathol. 32:103.

Kobayashi, T., Ishiguro, K., Nakajima, T., Kim, H. Y., Okada, M., and

Kobayashi, K. (2006). Effects of elevated atmospheric CO2 concentration on

the infection of rice blast and sheath blight. Phytopathology 96, 425–431.

doi: 10.1094/PHYTO-96-0425

Kulkarni, S. A. (2009). Epidemiology and Integrated Management of Anthracnose of

Green Gram. M.Sc. thesis, University of Agricultural Sciences, Dharwad.

Kumar, A., Adarsha, H. S., Shanthala, J., and Savithramma, D. L. (2017).

Differential response of F4 and F5 green gram [Vigna radiata (L.)

Wilczek] recombinant inbred lines (RILs) to powdery mildew infection. J.

Pharmacognosy Phytochem. 6, 1147–1153.

Kumari, R., Shekhawati, K. S., Gupta, R., and Khokhar, M. K. (2012). Integrated

management against root rot of mungbean (Vigna radiata L. Wilczek)

incited by Macrophomina phaseolina. J. Plant Pathol. Microbiol. 3, 1–5.

doi: 10.4172/2157-7471.1000136

Lee, J. H., Han, K. S., Kim, T. H., Bae, D. W., Kim, D. K., Kang, J. H., et al.

(2007). Effective heat treatment techniques for control of mungbean sprout rot,

incorporable into commercial mass production. Plant Pathol. J. 23, 174–179.

doi: 10.5423/PPJ.2007.23.3.174

Lee, Y. B. (1980). Inheritance Study on Resistance to Cercospora Leaf Spot in

Mungbean. Shanhua: Asian Vegetable Research and Development Center.

Lonergan, E., Pasche, J., Skoglund, L., and Burrows, M. (2015). Sensitivity

of Ascochyta Species Infecting Pea, Lentil, and Chickpea to Boscalid,

Fluxapyroxad, and Prothioconazole. Plant Dis. 99, 1254–1260.

doi: 10.1094/PDIS-06-14-0620-RE

Luck, J., Spackman, M., Freeman, A., Tre bicki, P., Griffiths, W., Finlay, K., et al.

(2011). Climate change and diseases of food crops. Plant Pathol. 60, 113–121.

doi: 10.1111/j.1365-3059.2010.02414.x

Maheshwari, S. K., and Krishna, H. (2013). Field efficacy of fungicides and bio-

agents against Alternaria leaf spot of mungbean. Ann. Plant Prot. Sci. 21,

364–367.

Frontiers in Environmental Science | www.frontiersin.org June 2018 | Volume 6 | Article 53171

https://doi.org/10.1515/jppr-2016-0016
https://doi.org/10.1016/S0261-2194(02)00202-8
https://doi.org/10.1080/09670879309371833
https://doi.org/10.1111/j.1469-8137.1996.tb04635.x
https://doi.org/10.1139/g03-057
https://doi.org/10.1155/2014/950175
https://doi.org/10.1080/14786410802617433
https://doi.org/10.5424/sjar/20110903-394-10
https://doi.org/10.1038/nature05286
https://doi.org/10.1111/j.1365-3059.2010.02410.x
https://doi.org/10.1007/s12892-008-0074-4
https://doi.org/10.1007/s12892-010-0052-z
https://doi.org/10.17660/ActaHortic.2007.752.76
https://doi.org/10.1007/s10681-011-0401-6
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2017/07/mungbean-and-sorghum-disease-update
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2017/07/mungbean-and-sorghum-disease-update
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2017/07/mungbean-and-sorghum-disease-update
https://doi.org/10.3390/su3091399
https://doi.org/10.1094/PHYTO-96-0425
https://doi.org/10.4172/2157-7471.1000136
https://doi.org/10.5423/PPJ.2007.23.3.174
https://doi.org/10.1094/PDIS-06-14-0620-RE
https://doi.org/10.1111/j.1365-3059.2010.02414.x
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Pandey et al. Review of Mungbean Fungal Diseases

Mandhare, V. K., and Suryawanshi, A. V. (2008). Dual resistant against powdery

mildew and yellow mosaic virus in greengram. Agric. Sci. Digest 28, 39–41.

Mansoor, F., Sultana, V., and Ehteshamul-Haque, S. (2007). Enhancement of

biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus

against root rot of mungbean by a medicinal plant Launaea nudicaulis L.

Pakistan J. Bot. 39, 2113–2119.

Marappa, N. (2008). Screening of mungbean genotypes and its wild relatives for

resistant sources to Cercospora leaf spot disease. Asian J. BioScience 3, 324–326.

Meehl, G. A., Washington, W. M., Collins, W. D., Arblaster, J. M., Hu, A., Buja,

L. E., et al. (2005). How much more global warming and sea level rise? Science

307, 1769–1772. doi: 10.1126/science.1106663

Melloy, P., Hollaway, G., Luck, J., Norton, R., and Aitken, E. S. C.

(2010). Production and fitness of Fusarium pseudograminearum inoculum

at elevated carbon dioxide in FACE. Global Change Biol. 16, 3363–3373.

doi: 10.1111/j.1365-2486.2010.02178.x

Meyer, S. L. F., and Roberts, D. P. (2002). Combinations of biocontrol agents

for management of plant-parasitic nematodes and soil borne plant-pathogenic

fungi. J. Nematol. 34, 1–8.

Mishra, S. P., Asthana, A. N., and Yadav, L. (1988). Inheritance of Cercospora

leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Plant Breed. 100,

228–229. doi: 10.1111/j.1439-0523.1988.tb00245.x

Murugapriya, E., Alice, D., and Jayamani, P. (2011). Antifungal activity of

botanicals andmicro-nutrients againstMacrophomina leaf blight inmungbean.

J. Food Leg. 24, 113–116.

Naimuddin, A. M., and Singh, N. P. (2016). Yellow mosaic of mungbean and

urdbean: current status and future strategies. J. Food Leg. 29, 77–93.

Nair, R. M., Götz, M., Winter, S., Giri, R. R., Boddepalli, V. N., Sirari, A., et al.

(2017). Identification of mungbean lines with tolerance or resistance to yellow

mosaic in fields in India where different begomovirus species and different

Bemisia tabaci cryptic species predominate. Eur. J. Plant Pathol. 149, 349–365.

doi: 10.1007/s10658-017-1187-8

Nair, R. M., Schalfleitner, R., Kenyon, L., Srinivasan, R., Easdown, W., Ebert, A.,

et al. (2012). Genetic improvement of mungbean. SABRAO J. Breed. Gen. 44,

177–190.

Nair, R. M., Thavarajah, D., Thavarajah, P., Giri, R. R., Ledesma, D., Yang, R. Y.,

et al. (2015). Mineral and phenolic concentrations of mungbean [Vigna radiata

(L.) R.Wilczek var. radiata] grown in semi-arid tropical India. J. Food Compost.

Anal. 39, 23–32. doi: 10.1016/j.jfca.2014.10.009

Pandey, A. K., and Tripathi, N. N. (2011). Aromatic plants of gorakhpur division:

their anti-mycotic properties and medicinal value. Int. J. Pharm. Sci. Rev. Res.

7, 142–147.

Pandey, S., Sharma, M., Kumari, S., Gaur, P. M., Chen, W., Kaur, L., et al.

(2009). “Integrated foliar diseases management of legumes,” in International

Conference on Grain Legumes: Quality Improvement, Value Addition and Trade

(Kanpur: Indian Society of Pulses Research and Development, Indian Institute

of Pulses Research), 143–161.

Price, P. P., Purvis, M. A., Cai, G., Padgett, G. B., Robertson, C. L.,

Schneider, R. W., et al. (2015). Fungicide resistance in Cercospora kikuchii,

a soybean pathogen. Plant Dis. 99, 1596–1603. doi: 10.1094/PDIS-07-14-0

782-RE

Quebral, F. C., and Cowell, R. (1978). “Powdery mildew and Cercospora leaf spot

of green gram in philippines,” in First International Greengram Symposium, ed

R. A. Cowell (Taiwan: The office of the Information Services), 147–148.

Raghuchander, T., Samiyappan, R., and Arjunan, G. (1993). Biocontrol of

Macrophomina root rot of mungbean. Indian Phytopath. 46, 379–382.

Rakhonde, P. N., Koche, M. D., and Harne, A. D. (2011). Management of powdery

mildew of green gram. J. Food Leg. 24, 120–122.

Ramakrishnan, C. K. D., and Savithramma, D. L. (2014). Screening of mungbean

germplasm for powdery mildew disease Resistant. Int. J. Agronomy Agric. Res.

4, 16–21

Rana, M., Ashiq, R., and Virender, A. (2014). Systemic opposition of green gram

against leaf blight caused by Macrophomina phaseolina. Int. J. Mycol. Plant

Pathol. 1, 72–77.

Rashid, A., Harris, D., Hollington, P., and Ali, S. (2004). On-farm seed priming

reduces yield losses of mungbean (Vigna radiata) associated with mungbean

yellowmosaic virus in the NorthWest Frontier Province of Pakistan.Crop Prot.

23, 1119–1124. doi: 10.1016/j.cropro.2004.04.002

Rathore, B. S. (2006). Management of diseases of greengram with fungicides.

Indian J. Mycol. Plant Pathol. 36, 138–141.

Reddy, K. S. (2009). Identification and inheritance of a new gene for powdery

mildew resistance in mungbean (Vigna radiata L. Wilczek). Plant Breed. 128,

521–523. doi: 10.1111/j.1439-0523.2008.01609.x

Reddy, K. S., Kao, K. C., and Reddy, M. S. (1992). Evaluation of some new

fungicides against Rhizoctonia solani Kühn, the incident of damping-off in

mungbean. Indian J. Plant Protect. 20, 37–42.

Reddy, K. S., Pawar, S. E., and Bhatia, C. R. (1987). Screening for powdery mildew

(Erysiphe polygoniDC) resistance in mungbean (Vigna radiata L.Wilzek) using

excised leaves. Proc. Indian Acad. Sci. U.S.A. 97, 365–369.

Reddy, K. S., Pawar, S. E., and Bhatia, C. R. (1994a). Inheritance of powderymildew

(Erysiphe polygoni D.C.) resistance in mungbean (Vigna radiata L. Wilczek).

Theor. Appl. Gent. 88, 945–948.

Reddy, K. S., Pawar, S. E., Wanjari, K. B., and Bhatia, C. R. (1994b). “Development

of powdery mildews resistant and high yielding varieties of mungbean,” in:

International Symposium on Pulses Research (New Delhi), 146–147.

Ryley, M., Toowoomba, and Tatnell, J. (2010). Management of the Major Foliar

Diseases of Mungbeans and Peanuts in Australia. Kingaroy: Agri-Science Qld ©

The State of Queensland, Department of Employment, Economic Development

and Innovation.

Saravanakumar, D., Harish, S., Loganathan, M., Vivekananthan, R., Rajendran, L.,

Raguchander, T., et al. (2007). Rhizobacterial bioformulation for the effective

management ofMacrophomina root rot in mungbean. Arch. Phytopathol. Plant

Prot. 40, 323–337. doi: 10.1080/03235400600587326

Satya, V. K., Vijayasamundeeswari, A., Paranidharan, V., and Velazhahan, R.

(2011). Burkholderia sp. Strain tnau-1 for biological control of root rot in

mungbean (Vigna radiata l.) caused byMacrophomina phaseolina. J. Plant Prot.

Res. 51, 273–278. doi: 10.2478/v10045-011-0045-5

Satyagopal, K., Sushil, S. N., Jeyakumar, P., Shankar, G., Sharma, O. P., et al. (2014).

AESA based IPM package for Blackgram and Greengram.Hyderabad. 43.

Schafleitner, R., Nair, R. M., Rathore, A., Wang, Y., Lin, C., Chu, S.,

et al. (2015). The AVRDC – The World Vegetable Center mungbean

(Vigna radiata) core and minicore collections. BMC Genomics 16:344.

doi: 10.1186/s12864-015-1556-7

Sconyers, L. E., Kemerait, R. C., , Brock, J., Phillips, D. V., Jost, P. H., Sikora, E. J.,

et al. (2006). Asian Soybean Rust Development in 2005: A Perspective from the

Southeastern United States. APSnet Features.

Shahbaz, M. U., Iqbal, M. A., Rafiq, M., Batool, A., and Kamran, M. (2014). Efficacy

of different protective fungicides against Cercospora leaf spot of mungbean

(Vigna radiata l. Wilczek). Pakistan J. Phytopathol. 26, 187–191.

Sharma, M., and Ghosh, R. (2017). “Heat and soil moisture stress differentially

impact chickpea plant infection with fungal pathogens,” in Plant Tolerance

to Individual and Concurrent Stresses, ed M. Senthil-Kumar (New Delhi:

Springer), 47–57.

Sharma, M., Ghosh, R., and Pande, S. (2015). Dry root rot (Rhizoctonia bataticola

(Taub.) Butler): an emerging disease of chickpea – where do we stand? Arch.

Phytopathol. Plant Prot.48, 797–812. doi: 10.1080/03235408.2016.1140564

Sharma, M., Tarafdar, A., Ghosh, R., and Gopalakrishanan, S. (2017). “Biological

control as a tool for eco-friendly management of plant pathogens,” in Advances

in Soil Microbiology: Recent Trends and Future Prospects, Microorganisms for

Sustainability, eds T. K. Adhya, B. B. Mishra, K. Annapurna, D. K. Verma, and

U. Kumar (Springer), 153–186.

Sharma, O. P., Bambawale, O.M., Gopali, J. B., Bhagat, S., Yelshetty, S., Singh, S. K.,

et al. (2011). Field Guide Mungbean and Urdbean. New Delhi: National Centre

for Integrated Pest Management. M/s Royal Offset Printers A-89/1, Naraina

Industrial Area, Phase-I. 40.

Sharma, R., Duveiller, E., and Ortiz-Ferrara, G. (2007). Progress and challenge

towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of

South Asia: is climate change already taking its toll? Field Crops Res. 103,

109–118. doi: 10.1016/j.fcr.2007.05.004

Shen, Y. M., Liu, H. L., Chang, S. T., and Chao, C. H. (2010). First report

of anthracnose caused by Colletotrichum acutatum on mungbean sprouts in

Taiwan. Plant Dis. 94:131. doi: 10.1094/PDIS-94-1-0131C

Shukla, V., Baghel, S., Maravi, K., and Singh, S. K. (2014). Yield loss assessment in

mungbean [Vigna radiata (L.) Wilczek] caused by anthracnose [Colletotrichum

truncatum (schw.) Andrus and moore]. Bioscan 9, 1233–1235.

Frontiers in Environmental Science | www.frontiersin.org June 2018 | Volume 6 | Article 53172

https://doi.org/10.1126/science.1106663
https://doi.org/10.1111/j.1365-2486.2010.02178.x
https://doi.org/10.1111/j.1439-0523.1988.tb00245.x
https://doi.org/10.1007/s10658-017-1187-8
https://doi.org/10.1016/j.jfca.2014.10.009
https://doi.org/10.1094/PDIS-07-14-0782-RE
https://doi.org/10.1016/j.cropro.2004.04.002
https://doi.org/10.1111/j.1439-0523.2008.01609.x
https://doi.org/10.1080/03235400600587326
https://doi.org/10.2478/v10045-011-0045-5
https://doi.org/10.1186/s12864-015-1556-7
https://doi.org/10.1080/03235408.2016.1140564
https://doi.org/10.1016/j.fcr.2007.05.004
https://doi.org/10.1094/PDIS-94-1-0131C
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Pandey et al. Review of Mungbean Fungal Diseases

Siddiqui, A., Ehetshamul-Haque, E., and Shaukat, S. S. (2001). Use of Rhizobacteria

in the control of root rot–root knot disease complex of mungbean. J.

Phytopathol. 149, 337–346. doi: 10.1046/j.1439-0434.2001.00630.x

Sierotzki, H., and Scalliet, G. (2013). A review of current knowledge of

resistance aspects for the next-generation succinate dehydrogenase inhibitor

fungicides. Phytopathology 103, 880–887. doi: 10.1094/PHYTO-01-13-00

09-RVW

Singh, G., Sharma, Y. R., Shanmugasundaram, S., Shih, S. L., and Green, S. K.

(2004). “Improving income and nutrition by incorporating mungbean in cereal

fallows in the Indo-Gangetic Plains of South Asia DFID Mungbean Project

for 2002-2004,” in Proceedings of the Final Workshop and Planning Meeting,

Status ofMung Bean YellowMosaic Virus Resistance Breeding. Ludhiana: Punjab

Agricultural University, 27-31 May 2004, 204–213.

Singh, J., Mishra, K. K., and Singh, A. K. (2013a). Current status of web blight of

mungbean. Asian J. Soil Sci. 8, 495–504.

Singh, S., Chand, H., and Varma, P. K. (2008). Screening of bioagents against root

rot of mungbean caused by Rhizoctonia solani. Legume Res. 31, 75–76.

Singh, S. P., and Singh, S. K. (2014). Sources of resistant in mungbean for

Cercospora leaf spot diseases. Ann. Agric. Biosci. Res. 2, 280–281.

Singh, S. P., Singh, S. K., and Shukla, V. (2013b). Fungicidal management of

Cercospora leaf spot of mungbean (Vigna radiata). Trends Biosciences 6,

861–863.

Slusarenko, A. J., Patel, A., and Portz, D. (2008). Control of plant diseases by

natural products: allicin from garlic as a case study. Eur. J. Plant Pathol. 121,

313–322. doi: 10.1007/s10658-007-9232-7

Sorajjapinun, W., Rewthongchum, S., Koizumi, M., and Srinives, P. (2005).

Quantitative inheritance of resistance to powdery mildew disease in mungbean

(Vigna radiata (L.) Wilczek). SABRAO J. Breed. Gent. 37, 91–96.

Sujatha, K., Kajjidoni, S. T., Patil, P. V., and Somashekhar, G. (2011). Heterosis

for productivity related traits involving diverse parents for powdery mildew

reaction in mungbean. J. Food Legumes. 24, 101–105.

Sundaramoorthy, S., Murugapriya, E., Maharaja, L. G. J., and Alice, D. (2013).

Induction of systemic resistant in green gram against leaf blight caused by

Macrophomina phaseolina (Tassi.) Goid. Afr. J. Microbiol. Res. 7, 3976–3982.

doi: 10.5897/AJMR2013.5719

Suryawanshi, A. P., Wadje, A. G., Gawade, D. B., Kadam, T. S., and Pawar, A. K.

(2009). Field evaluation of fungicides and botanicals against powdery mildew

of mungbean. Agric. Sci. Digest 29, 209–211.

Tandel, D. H., Sabalpara, A. N., Patel, R. C., Prajapati, V. R., and Patel, V. R. (2014).

Antagonistic effect on growth and sclerotial formation of Macrophomina

phaseolina (Tassi) goid. causing green gram leaf blight. J Life Sci. 11,

89–91

Thilagavathi, R., Saravanakumar, D., Ragupathi, N., and Samiyappan, R. (2007).

A combination of biocontrol agents improves the management of dry root

rot (Macrophomina phaseolina) in greengram. Phytopathol. Mediterranea 46,

157–167. doi: 10.14601/Phytopathol_Mediterr-2147

Thompson, G. B., Brown, J. K. M, and Woodward, F. I. (1993). The effects

of host carbon dioxide, nitrogen and water supply on the infection of

wheat by powdery mildew and aphids. Plant Cell Environ. 16, 687–694.

doi: 10.1111/j.1365-3040.1993.tb00487.x

Tiwari, A. (1993). Studies on the Diseases Caused by Rhizoctonia Solani Kuhn

in Green Gram (Phaseolus aureus Roxb). Ph.D. thesis, Rani Durgavati

Vishwavidyalaya (Jabalpur), 338.

Tiwari, A., and Khare, M. N. (1998). Variability among isolates of Rhizoctonia

solani infecting mungbean. Indian Phytopath. 51, 334–337.

Uddin, M. N., Bakr, M. A., Islam, M. R., Hossain, M. I., and Hossain, A.

(2013). Bioefficacy of plant extracts to control Cercospora leaf spot of

mungbean (Vigna radiata). Int. J. Agric. Res. Innov. Technol. 3, 60–65.

doi: 10.3329/ijarit.v3i1.16094

Vallad, G. E., and Goodman, R. M. (2004). Systemic acquired resistance

and induced systemic resistance in conventional agriculture: review

and interpretation. Crop Sci. 44, 1920–1934. doi: 10.2135/cropsci200

4.1920

Veena, Y. R. H., Math, G., and Kumar, A. G. V. (2013). Bioefficacy of fungicides

against Cercospora canescens causing leaf spot of greengram. Crop Res. 46,

74–78.

Viaene, N. M., and Abawi, G. S. (2000). Hirsutella rhossiliensis and Verticillium

chlamydospdoiorium as biocontrol agents of the root-knot nematode

Meloidogyne hapla on lettuce. J. Nematol. 32, 85–100.

Walters, D. R., Paterson, L., Walsh, D. J., and Havis, N. D. (2009). Priming for plant

defense in barley provides benefits only under high disease pressure. Physiol.

Mol. Plant Pathol. 73, 95–100. doi: 10.1016/j.pmpp.2009.03.002

Wongpiyasatid, A., Chotechuen, S., Hormchan, P., and Srihuttagum, M. (1999).

Evaluation of yield and resistance to powdery mildew, Cercospora leaf spot and

cowpea weevil in mungbean mutant lines. Kasetsart J. 33, 204–215.

Yadav, D. L., Jaisani, P., and Pandey, R. N. (2014a). Identification of sources of

resistant in mungbean genotypes and influence of fungicidal application to

powdery mildew epidemics. Int. J. Current Microbiol. Appl. Sci. 3, 513–519.

Yadav, D. L., Pandey, R. N., Jaisani, P., and Gohel, N. M. (2014b). Sources

of resistant in mungbean genotypes to Cercospora leaf spot disease and its

management. African, J. Agric. Res. 9, 3111–3114.

Yadav, R. J., Kakraliya, S. S., Bajiya, M. R., and Abrol, S. (2017). Eco-Friendly

management of powdery mildew of green gram (Vigna radiata L.). Int. J. Curr.

Microbiol. App. Sci. 6, 435–439 doi: 10.20546/ijcmas.2017.607.052

Yaqub, F., and Shahzad, S. (2009). Effect of solar heating by polyethylene mulching

on sclerotial viability and pathogenicity of Sclerotium rolfsii on mungbean and

sunflower. Pakistan J. Bot. 41, 3199–3205.

Young, N. D., Danesh, D., Menancio-Hautea, D., and Kumar, L. (1993). Mapping

oligogenic resistance to powderymildew inmungbeanwith RFLPs.Theor. Appl.

Gent. 87, 243–249. doi: 10.1007/BF00223772

Zhang, J. Q., Zhu, Z. D., Duan, C. X., Wang, X. M., and Li, H. J. (2011). First report

of charcoal rot caused by Macrophomina phaseolina on mungbean in China.

Plant Dis. 95:872. doi: 10.1094/PDIS-01-11-0010

Zhimo, V. Y., Panja, B. N., Saha, J., and Nath, R. (2013). Evaluation of mungbean

genotypes for resistance against Cercospora leaf spot and YellowMosaic disease

under field condition. J. Mycopathol. Res. 51, 273–278.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer RR and handling editor declared their shared affiliation

Copyright © 2018 Pandey, Burlakoti, Kenyon and Nair. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Environmental Science | www.frontiersin.org June 2018 | Volume 6 | Article 53173

https://doi.org/10.1046/j.1439-0434.2001.00630.x
https://doi.org/10.1094/PHYTO-01-13-0009-RVW
https://doi.org/10.1007/s10658-007-9232-7
https://doi.org/10.5897/AJMR2013.5719
https://doi.org/10.14601/Phytopathol_Mediterr-2147
https://doi.org/10.1111/j.1365-3040.1993.tb00487.x
https://doi.org/10.3329/ijarit.v3i1.16094
https://doi.org/10.2135/cropsci2004.1920
https://doi.org/10.1016/j.pmpp.2009.03.002
https://doi.org/10.20546/ijcmas.2017.607.052
https://doi.org/10.1007/BF00223772
https://doi.org/10.1094/PDIS-01-11-0010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


ORIGINAL RESEARCH
published: 27 June 2018

doi: 10.3389/fenvs.2018.00063

Frontiers in Environmental Science | www.frontiersin.org June 2018 | Volume 6 | Article 63

Edited by:

Rob Swart,

Wageningen Environmental Research,

Netherlands

Reviewed by:

Xander Wang,

University of Prince Edward Island,

Canada

Robert Faggian,

School of Life and Environmental

Sciences, Deakin University, Australia

*Correspondence:

Nathaniel K. Newlands

nathaniel.newlands@canada.ca

Specialty section:

This article was submitted to

Interdisciplinary Climate Studies,

a section of the journal

Frontiers in Environmental Science

Received: 28 January 2018

Accepted: 07 June 2018

Published: 27 June 2018

Citation:

Newlands NK (2018) Model-Based

Forecasting of Agricultural Crop

Disease Risk at the Regional Scale,

Integrating Airborne Inoculum,

Environmental, and Satellite-Based

Monitoring Data.

Front. Environ. Sci. 6:63.

doi: 10.3389/fenvs.2018.00063

Model-Based Forecasting of
Agricultural Crop Disease Risk at the
Regional Scale, Integrating Airborne
Inoculum, Environmental, and
Satellite-Based Monitoring Data

Nathaniel K. Newlands 1,2*

1 Agriculture and Agri-Food Canada, Science and Technology Branch, Summerland Research and Development Centre,
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Crop diseases have the potential to cause devastating epidemics that threaten the

world’s food supply and vary widely in their dispersal pattern, prevalence, and severity. It

remains unclear what the impact disease will have on sustainable crop yields in the future.

Agricultural stakeholders are increasingly under pressure to adapt their decision-making

to make more informed and efficient use of irrigation water, fertilizers, and pesticides.

They also face increasing uncertainty in how best to respond to competing health,

environment, and (sustainable) development impacts and risks. Disease dynamics

involves a complex interaction between a host, a pathogen, and their environment,

representing one of the largest risks facing the long-term sustainability of agriculture. New

airborne inoculum, weather, and satellite-based technology provide new opportunities

for combining disease monitoring data and predictive models—but this requires a

robust analytical framework. Integrated model-based forecasting frameworks have the

potential to improve the timeliness, effectiveness, and foresight for controlling crop

diseases, while minimizing economic costs and environmental impacts, and yield losses.

The feasibility of this approach is investigated involving model and data selection.

It is tested against available disease data collected for wheat stripe (yellow) rust

(Puccinia striiformis f.sp. tritici) (Pst) fungal disease within southern Alberta, Canada.

Two candidate, stochastic models are evaluated; a simpler, site-specific model, and

a more complex, spatially-explicit transmission model. The ability of these models

to reproduce an observed infection pattern is tested using two climate datasets

with different spatial resolution—a reanalysis dataset (∼55 km) and weather station

network township-aggregated data (∼10 km). The complex spatially-explicit model using

weather station network data had the highest forecast accuracy. A multi-scale airborne

surveillance design that provides data would further improve disease risk forecast

accuracy under heterogeneous modeling assumptions. In the future, a model-based

forecasting approach, if supported with an airborne surveillance monitoring plan, could

be made operational to provide agricultural stakeholders with reliable, cost-effective, and

near-real-time information for protecting and sustaining crop production against multiple

disease threats.

Keywords: agriculture, Canada, disease, forecasting, modeling, risk, wheat stripe rust
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INTRODUCTION

Crop diseases have the potential to cause devastating epidemics
that threaten the world’s food supply and vary widely in their
dispersal pattern, prevalence, and severity (Chakraborty and
Newton, 2011). Diseases like stripe rust (Puccinia striiformis f. sp.
tritici) (Pst) and fusarium head blight (Fusarium graminearum)
(FHB) on wheat, and powdery mildew (Erysiphe necator) on
grapes, to highlight just a few, cause major crop losses globally
(Hovmøller, 2001; Carisse et al., 2009; Haran et al., 2010;
Newberry et al., 2016). Plant breeding to increase host resistance
remains the primary approach for managing diseases and to help

sustainable agricultural yields, as crop breeding networks that
deploy resistance genes decrease the likelihood that pathogens
will overcome resistance (Ojiambo et al., 2017). Nonetheless,
despite the introduction of crop cultivars/varieties with higher
resistance, new disease races, with increased virulence, continue
to emerge. Environmental conditions affect resistance gene
performance, but the basis for this is poorly understood (Bryant
et al., 2014). Moreover, environmental drivers and pressures are
increasing in their influence over agroecosystems; climate change
and variability is raising temperatures and lengthening growing
seasons, especially in northern climates (Canada) or temperate
zones (Australia), producing more days without frost, and more
intense heatwave and rainfall events. Disease dynamics itself
involves a complex interaction between a host, a pathogen, and
their environment, representing one of the largest integrated
risks facing the long-term sustainability of agriculture. Genetic

factors (e.g., emergence of new diseases and of new races),
environmental-driven influence (e.g., global climate change
impacts on disease spread), and management-intervention
driven agroecosystem interactions (e.g., crop breeding and
monitoring technologies) are all important considerations in
disease risk mitigation.

The cost of pesticides (e.g., fungicides, insecticides, herbicides)
is a substantial burden for growers—with substantial uncertainty
involved in deciding when and howmuch to apply to commercial
fields, especially as multiple diseases often affect crops at the
same time. Currently, when monitoring their fields for disease,
growers often rely on simple, visual identification, assessing
severity using standard area diagrams (SADs), disease progress

(AUDPC) curves, and weather/forecast conditions (Contreras-
Medina et al., 2009; Nopsa and Pfender, 2014; Ojiambo et al.,
2017). Pesticides are then applied either preventatively, or even
if no disease is detected, on a calendar-based schedule, based on
perceived risk (Carisse et al., 2009). This approach is, however,
limited in its ability to detect and control disease. Pesticide
application must generally occur during the early stages of
epidemics, and at sufficient rates. Over-application is costly
and creates added selection pressure for more pesticide tolerant
strains, while under-application may also be cost-prohibitive in
regions where expected yield is lower (Chen, 2007). Moreover,
high pesticide concentrations are not only costly, but are also
associated with detrimental environmental and human health
impacts (Newlands, 2016). Reducing pesticide use is a major
focus of global agricultural sustainability efforts (Nicolopoulou-
Stamati et al., 2016). The effectiveness of applications are also

highly dependent on timing, stage of disease progression, and
the strength and directionality of micro- and meso-scale wind
currents (Meyer M. et al., 2017).

Integrated Pest Management (IPM) is the deployment of a
variety of methods of pest control designed to complement,
reduce, or replace the application of synthetic pesticides.
It involves regular monitoring, use of decision thresholds,
combining approaches for targeted pesticide management and
substitution to broader agroecosystem considerations (Pretty and
Bharucha, 2015). For a comprehensive global overview of the
history, programs, and adoption of IPM programs around the
world, readers are referred to Peshin et al. (2009). They highlight
problems with assessing the adoption and success of IPM
programs and how pesticide use has not consistently decreased
in the majority of programs, despite reduction of pesticide use
being one of their primary goals. Here predictive models may
not only enable better program assessment and adoption, but
also help to identify how to optimize changes in the timing and
application of pesticides (e.g., fungicides) in time and space to
reduce pesticide use where predicted disease risk is sufficiently
low. Disease prediction models using advanced statistical
methods (e.g., artificial neural networks) integrating weather and
aerobiological monitoring data have been successfully developed
and validated for Ganoderma spp. and white blister on Brassica
crops (Brassica spotTM) (Minchinton et al., 2013; Sadyś et al.,
2016). Such prediction models need to be adapted and extended
for other crop diseases and then integrated into operational
IPM programs. For many IPM programs, there is a crucial
need to develop and involve a more reliable and effective
approach (i.e., analytical framework) for managing disease risk
that establish relationships between the amount of airborne
inoculum and disease development, combined use of models
that integrate theoretical knowledge on crop (host) growth,
disease (pathogen) development, and environmental influences;
alongside data from disease monitoring, climate/weather, and
other explanatory variables for assessing and predicting disease
(Juroszek and von Tiedemann, 2013; Ojiambo et al., 2017). Past
efforts have been hindered by sparse spatial data, limited use of
field monitoring technology, and a need for greater integration
and quantification. Past efforts have also concentrated mainly on
understanding the physical and biological mechanisms of plant
(crop) pathogen spore dispersal linked disease development,
outbreaks and spatial epidemic patterning and spread. Improved
detection of new airborne inoculum, weather, and satellite-based
technology, however, provide new opportunities for combining
disease monitoring data with predictive models. This has the
potential to improve the timeliness, effectiveness and foresight
for controlling crop diseases, while minimizing crop loss (Isard
et al., 2011; Devadas et al., 2015; West and Kimber, 2015;
Mahlein, 2016).

In a recent review of modeling the impact of climate on
crop disease, improvements in measuring the uncertainty of
climate change projected impacts using multi-model ensembles
are highlighted. This synthesis identifies the need to explore
other sources of uncertainty inherent in disease models that
still remain unexplored and unreported (Newberry et al., 2016).
They articulate the crucial need to investigate crop disease
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dynamics at the landscape spatial scale, across a broader range
of crops and pathogens. This study also identifies the need
for new frameworks and models to improve the ability of
models to predict impacts of climate change on crop diseases
for guiding the planning of climate change adaptation strategies
to ensure future food security. Because disease patterns can
change in unintended ways when interventions take place
across spatially heterogeneous landscapes, Newberry et al.
(2016) articulate five key challenges for advancing models: (1)
flexibility and accuracy, (2) interaction and contact assumptions
and statistical representation, (3) how to define and estimate
a critical threshold of transmissibility, while recognizing a
mixture of infection types under changing susceptibility, (4)
how to model disease dynamics that depends on long-distance
interaction (e.g., air transmission via wind trajectories with
deposition via rainfall events), and, (5) identifying the natural
scale (i.e., operational resolution) for modeling (and forecasting)
transmission and interaction, and how this relates to the
scale at which intervention is most effective, recognizing that
different sources of data are typically available at different scales
(Riley et al., 2015).

Model uncertainty and reliability remain two major issues
challenging the development of more robust and effective
quantitative approaches for disease management. To address
these aspects requires an integrated model-based framework
and statistical approach that can integrate new types of
data, model spatial and temporal dependence and interaction,
quantify uncertainties, evaluate multiple scenarios, and bridge
empirical-theory knowledge gaps (Held et al., 2004; Contreras-
Medina et al., 2009; Haran et al., 2010; Savage and Renton,
2014; Kouadio and Newlands, 2015; Riley et al., 2015;
Newlands, 2016; Höhle et al.,, 2017; Ojiambo et al., 2017).
Dennis (1987) derived a simple, multivariate regression-based
model of Pst disease infection based on air temperature and
surface wetness period. Incorporating Monte-Carlo simulation
to model uncertainty, El Jarroudi et al. (2017) further
incorporated the Dennis disease infection model into a
threshold-based weather model to guide fungicide applications
for Pst. They show that an optimal combination of high humidity
(>92%), temperature (4–16oC) for at least 4 consecutive
hours was sufficient to cause an epidemic. Audsley et al.
(2005) developed a simulation model integrating it within the
Decision Support System for Arable Crops (DESSAC) system
that uses a genetic algorithm for the selection of fungicide
spray plans (Parsons and Te Beest, 2004; Audsley et al., 2005),
integrating major risk variables for pathogen (i.e., inoculum
source and transfer), host (cultivar-specific resistance, leaf
age, nitrogen uptake), and weather conditions (temperature,
rain, humidity, wind), Using the simple, multiple regression
modeling approach, Kuang et al. (2013) demonstrated a model-
based, operational prediction system for wheat stripe rust that
integrates geospatial and internet/networking technology to
enable multiple users to interact, share data, automate, and
update model design, combining regional predictions and testing
statistical significance. The inter-comparison of assumptions
(models), spatial resolution and uncertainty (climate datasets),
spatial correlation/dependence of host-pathogen-environmental

interaction, and its effect on model performance and forecast
accuracy is lacking.

In this paper, an integrated modeling framework to forecast
disease risk is proposed. The feasibility of model-based,
operational disease risk forecasting is investigated, using data
available for wheat stripe (yellow) rust (Puccinia striiformis f.sp.
tritici) (hereafter, Pst) fungal disease within southern Alberta,
Canada. Two candidate, stochastic models are evaluated; a
simpler, site-specific model, and a more complex, transmission
model. These models are calibrated using airborne inoculum
data by a Burkard cyclone spore collector, for the first time. In
addition, satellite measurements of major disease risk variables
(i.e., canopy temperature and liquid water on the canopy
surface) are integrated. The ability of these models to reproduce
an observed infection pattern is tested using two climate
datasets with different spatial resolution—a reanalysis dataset
(∼55 km) and a weather station network township-aggregated
data (∼10 km).

MATERIALS AND METHODS

Integrated Modeling Approach
The integrated framework was designed to take into account
major aspects and considerations involved in operational
model-based forecasting of crop disease at the regional-scale
(Figure 1). This approach combines data on host, pathogen
and environment, and models to capture different aspects of
disease dynamics under different assumptions. In this figure,
starting and end points are shownwith respect to seasonal disease
progression. Boxes represent model components—dashed boxes
are disease aspects not considered in the current modeling. Full
boxes are those that are currently considered. This design is a
prototype, and while not exhaustive of all general and pathogen-
specific aspects, is based on published scientific studies, evidence,
and in consultation with several expert AAFC/Canadian
pathologists. This design supports feasibility testing, involving
the evaluation of different models, datasets, and forecast
metrics. The framework integrates threshold-based infection and
multivariate spatial assumptions, extending previous approaches
to include a broader, more representative set of disease dynamic
parameters, climate covariates, and assumptions on disease-
climate interaction and spatial dependence. Its component-
wide structure permits scaling-up from homogeneous to
heterogeneous assumptions, whereby a region is divided into
smaller subregions, with transmission assumed to occur between
them and a calibrated model used to capture their specific disease
dynamics, susceptibility, incidence, and risk. Further details
of the model input and output parameters and variables are
provided for a non-spatial/site-specific (CLR) and spatial model
(hhh4) formulation in this section.

Wheat Stripe Rust Disease
Stripe (yellow) rust (Pst) is a prevalent fungal disease in all
wheat (Triticum aestivum) growing regions around the world,
occurring in most production zones having cool and moist
weather conditions during the growing season (Chen et al.,
2014). This disease has the potential to cause devastating
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FIGURE 1 | A prototype integrated, model-based framework for forecasting disease risk. Risk components for the major disease progression stages (i.e.,

immigration, deposition, germination, infection, incubation/residency, multiplication, re-dispersal, perennation) are included, alongside major risk variables, e.g.,

weather trigger events and conditions, host exposure and susceptibility, pathogen survival, residency, latency, endemic infection, cycling, epidemic transmission and

dispersal, and evolved virulence associated with the risk of resistance breakdown in the field (i.e., finer subregions compared to the ROI). Full boxes are components

of the framework that are considered in the current disease risk modeling, while dashed boxes will be considered in future extended modeling.

outbreaks/severe epidemics that threaten the world’s wheat
supply and, in turn, global food security, as 88% of the world’s
wheat production of 760 million metric tons (∼$185 USD/mt
or $140.6 billion USD in 2017/18) is susceptible (World Bank
Group, 2017; Food and Agriculture Organization of the United
Nations (FAO), 2018). This fungus (a wind-dispersed, obligate
biotroph that only infects and survives in a living host) has
yellow urediniospores during its asexual infection cycle and
is able to disperse over long distances across continents. It
is also adapting and overcoming resistance genes via rapid
stepwise evolution (Lei et al., 2017; Schwessinger, 2017). There
are different types of resistance depending on host wheat plant
growth stages and environment (laboratory or field), such that
stripe rust resistances can be separated into all-stage (also
called seedling) resistance (ASR) verses adult-plant resistance
(APR); greenhouse resistance and field resistance; temperature
insensitive resistance verses temperature sensitive resistance; and
non-durable resistance vs. durable resistance (Wang and Chen,
2017). With the constant evolution of new rust strains, and
their adaptation to higher temperatures, consistent and durable
disease resistance is a key challenge. The dual/split application
of fungicide, with half rates applied early and later, can reduce
disease intensity (AUDPC metric) close to that of a single,
full application, based on field trials of fungicide effectiveness
(Braithwaite, 1998). Crop rotation likely does not prevent the

spread of Pst, given its rate of spread is so fast across large
areas (Xi et al., 2015). Nonetheless, delayed planting, reduced
irrigation, avoidance of excessive nitrogen use, and elimination
of volunteer and grass plants can reduce stripe rust severities—
but these cultural practices are often not profitable, conflict
with conservation farming, and/or reduce yield potential (Chen,
2007). A consideration of host resistance, pathogen survival
and dynamics, alongside best management or cultural practices,
enabling farmers to use fungicides more judicially, is a long-term,
ultimate need and goal to minimize the risk of this disease (Xi
et al., 2015).

Most areas of the United States are not suitable for Pst
survival in both summer and winter, and only the Pacific Rim
states (California, Oregon, and Washington) have favorable
areas where the disease survives in summer and winter (i.e.,
oversummering and overwintering), based on summer/winter
survival indices linked to climate conditions (Sharma-Poudyal,
2012; Sharma-Poudyal et al., 2014). The major source of stripe
rust inoculum for Alberta (Western Canada) is considered to
be from this Pacific Northwest region (hereafter PNW) (Xi
et al., 2015). Pst occurrence is generally associated with higher
elevations, northern latitudes or cooler years (Newberry et al.,
2016). For regions north of latitude 40◦N, it infects both
winter wheat and spring wheat (winter wheat is generally more
susceptible than spring wheat), surviving in cool summers, with
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hot summers substantially decreasing the chance of its survival,
and severe winters preventing its survival (Xi et al., 2015). Pst
development becomes dormant for longer durations (slower
cycle time) as night-time temperatures cool. In this way, indices
based on average daily mean temperatures may overestimate
infection risk, especially in early spring and late summer,
when cooler nights are more frequent. Because different races
can infect different wheat varieties/cultivars having different
resistance to the pathogen, the reaction of different resistance
genes on selected host varieties/cultivars (differentials) is used to
determine the “race spectrum” for a given pathogen population
(e.g., within a single field). As with most other wheat-growing
regions, urediniopores (asexual cycle) are the only inoculum
source for the initial and recurrent infection of wheat, with an
infection cycle time that varies through the growing season.
New and older rust isolates (i.e., pathogen isolated in field
samples that are geographically or location specific) within
Western Canada have similar urediniospore rates of germination,
occurring between 2 and 20◦C, and highest/optimal close to 5◦C,
with cooler temperatures favoring spore germination (Tran and
Kutcher, 2015). While Pst outbreaks have been documented in
Alberta since 1925, the variable virulence of Pst has enabled it
to overcome the resistance of wheat cultivars, with increasing
epidemics occurring in the 1990s, whereby the older population
of races (i.e., pathotypes) in the United States have been replaced
by a new population since 2000 with germination occurring at
higher temperatures between (16–18◦C) and being more tolerant
of higher summer temperatures (Chen, 2010; Xi et al., 2015).

Warm chinook winds create milder winter weather conditions
across southern Alberta and change snow cover. Snow cover is
beneficial to urediniospore survival during the winter, whereby
areas in the vicinity of Olds are more conducive for spore survival
than areas near Lethbridge. This enables Pst to overwinter in this
region, and cause outbreaks in early spring when the weather
is cool and wet (Conner et al., 1988; Phillips and Newlands,
2011; Xi et al., 2015). Significant snow cover (>7.6 cm) has
an insulative effect, enabling Pst to infect wheat within 4–6 h
and survive at temperatures down to −10◦C. With no snow
cover and with temperatures less than −5◦C, Pst goes dormant
(Sharma-Poudyal et al., 2014). Newer isolates have thus adapted
to warmer temperatures and have higher germination rates
at higher temperatures than older isolates. The definition of
latent period is the approximate time taken for an infection
to result in new spores and is temperature-dependent; within
an optimal temperature range between 12 and 20◦C. Latent
period is 10–14 days (Anonymous, 2018) and is cultivar-
dependent; a susceptible cultivar AC Bellatrix of red winter wheat
(first released by AAFC in Lethbridge in 1999) was shorter
at higher temperature for new isolates, with a higher disease
intensity over time for new isolates, compared to older ones
(i.e., measured as the area under the disease progress curve or
AUDPC) (Tran and Kutcher, 2015). This evidence supports the
hypothesis that new stripe rust populations continue to adapt
to warming temperatures, with increased aggressiveness and
explains its expansion into Alberta, including other Canadian
Prairie Provinces (i.e., Western Saskatchewan). For Eastern
Saskatchewan and Manitoba the source of Pst is from the

Mississippi Valley, recent field surveys conducted during July,
August, and September 2016 on winter and spring wheat indicate
that Pst is found with varying levels of infection depending on
spatial location. Winter wheat lines, depending on location and
cultivar, can have upwards of 70% infection (2016 Cereal Disease
Situation Report, Western Committee on Plant Disease, WCPD.
Unpubl.). A recent global analysis of Pst outbreaks involving
887 genetically diverse isolates across 35 countries (2009–2005)
reveals that a few, highly divergent genetic races are driving
its epidemics and that its populations are being largely shaped
by invasion across geographical areas (Ali et al., 2017). With
such high epidemic potential, there is greater urgent need for
improved predictability of its emergence and dynamics.

Study Region (Southern Alberta, Canada)
The region of interest (hereafter, ROI) is southern Alberta (within
Western Canada), a major area of agricultural production with a
growing season of about 123 days (May-August). Wheat is the
largest crop, followed by barley and canola. Crops are irrigated
in this region due to reduced rainfall (semi-arid conditions:
300–450 mm/year). In 2015, adverse weather conditions (i.e.,
dry spring, low night-time temperatures and frost in fields, hot
summer with limited moisture) led to poor growing conditions
with yields being lower than long term averages. It first affects
winter wheat fields before spreading into spring wheat, as winter
wheat (e.g., AC Bellatrix and Radiant varieties) is direct-seeded
in early September and harvested several weeks earlier than
spring wheat the next year. Pst immigrates into this region
from the south (i.e., PNW and areas in the vicinity of Portland,
Oregon), as well as, from the north where it overwinters in central
Alberta. Backward, diagnostic trajectories (5-day time frames)
using analyzed wind fields, indicate that Pst within the NWR
of the United States is the main Pst source region for southern
Alberta, Canada (AAFC Cereal Rust/Wind Trajectory Event
Update Report (Summer 2015) by Turkington et al. Unpubl.).
Also, forward, prognostic trajectories using NOAA’s HYSPLIT
model (April-May, 1995) and forecast wind fields (discrete fields
700–850 hPa) having starting points within the PNW region
(vicinity of Portland, Oregon USA) show an immigration zone
for high potential for spore dispersion into southern Alberta (not
included here for brevity, Newlands unpubl.). These simulations
use archived (2-hourly) weather data from Regional Analysis
and Forecast System (RAFS)’s Nested Grid Model (NGM) (US
National Centers for Environmental Prediction, NCEP). The
atmospheric deposition of spores onto the ground still needs to
be accounted for, using models such as the one developed by
Chamecki et al. (2012) to know more accurately where and when
they fall.

Airborne inoculum sample data (weekly, June-October) was
obtained for 2015 at Lethbridge (Fairfield site: N 49◦ 42.493/ W
112◦ 41.738) from the first year of sampling (Figure 2) with sticky
microscope slides placed on a Burkard cyclone spore collector.
This is considered a passive method of spore trapping/collection,
instead of active sampling of the air. The slides were attached
on the cap of the Burkard cyclone instrument, just below the
collection orifice, so that the slide was always facing the prevailing
wind (i.e., 180◦ incidence angle). Double-sided adhesive tape (#M
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FIGURE 2 | The southern Alberta, Canada region of interest (ROI): The Lethbridge site (located within township TW008R21W4) is indicated; areas where wheat

(winter, spring) are grown are indicated (brown) superimposed on a grid of Alberta townships (∼10 km). A sub-region of 40 municipalities was selected surrounding the

Lethbridge site for model computations (upper inset).

Scotch R© Removable Poster Tape 3/4′ (199mm) wide, clear) was
used. The adhesive tape covered almost the whole translucid
surface of the slide, covering an area of 19 × 50mm. The slides
were kept inside a slide box at room temperature for a few
days until they were analyzed under a light microscope (Laroche
et al., 2018). While it could have been located anywhere in the
study region for the entire growing season, it was fixed in its
location in an agricultural field (Fairfield) located in Lethbridge,
given the high Pst visual occurrence historically detected in fields
near this site. Microscopy, Polymerase chain reaction (PCR), and
multiplex qPCR molecular techniques were used to identify Pst
urediniospores and quantify the concentration of spores collected
by the cyclone collector instrument (Araujo et al., 2016) (PCR is a
technique tomakemany copies of a specific DNA region in vitro).

Satellite measurements of major disease risk variables
(i.e., canopy temperature and liquid water on the canopy
surface) (Laroche et al., 2018), regional-scale climate reanalysis
(Kobayashi et al., 2015), and quality-controlled weather
station network data (hourly scale), spatially-interpolated
to the regional municipality scale were provided by the
Alberta Climate Information Service (ACIS) (1961-2016)1. The
ACIS interpolation method linearly weights station-based air
temperature estimates of up to 8 closest neighboring stations
by inverse-distance, within a correlation radius of 60 km.
Precipitation is inversely-weighted by distance (i.e., cube of the
inverse distance within a correlation radius of 200 km), with
the inverse distance monthly totals redistributed proportionally,
relative to the nearest station with a complete monthly record.
The JRA-Year Reanalysis (JRA-55) high-resolution, climate

1Alberta Climate Information Service (ACIS): https://agriculture.alberta.ca/acis/.

reanalysis dataset was used, being among the most sophisticated
reanalyses currently available. It also includes pathology-relevant
variables with a spatial resolution of 0.55◦ × 0.55◦ (∼55 km) and
3-hourly (and 6-hourly) temporal resolution for years 1990-2015
(Bebber et al., 2016). Figure 3 compares the distribution of
potential disease risk based simply on climate variables (i.e.,
thresholds in mean daily temperature and humidity range)
illustrating how the importance of finer resolution in revealing
spatial trends and correlation patterns, and the need to model
such spatial impacts to predict disease risk rather than relying on
climate threshold-based information alone. Simple thresholds
are typically assumed in many current operational, weather-
based disease risk forecasting systems, avoiding the use of models
with assumptions of pathogen-host-environmental interaction
that adds additional uncertainty to risk forecasts. The finer-scale
pattern of potential Pst pathogen infection risk revealed across
the townships (∼10 km) varies considerably from the host (i.e.,
wheat) distribution pattern, pointing to the need and importance
of disease risk modeling to explain and better predict differences
in host and pathogen distribution and variability in relation
to environmental (e.g., climate) uncertainty (Figure 2). Also,
information on fungicide efficacy in relation to spray timing
and varietal response for stripe rust control is limited in central
Alberta, contributing additional uncertainty (Xi et al., 2015).

Hourly leaf wetness duration (LWD) and canopy temperature
(Tc) data was obtained from the JRA-55 reanalysis dataset.
Canopymoisture (kg m−2) and temperature (◦C) was converted2

from the JRA-55 variables named “moisture storage on canopy”
(code 223) (m) and “canopy temperature” (code 114) (K) from

2Water weight to water column: 1 kg m−2 = 1mm = 0.001m, T(◦C) = T(K) −

273.15.
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FIGURE 3 | Spatial distribution of potential Pst infection risk between June 17 and Sept 1 in 2015 (in units of total number of growing season days having conditions

favorable to infection). The total number of growing season days was based on threshold range of mean daily temperature 3–25oC, average humidity >57% (ACIS)

and hourly canopy moisture >0 (wet days) (JRA-55), illustrating the effect of spatial resolution and importance of capturing spatial dependence (in finer-scale climate

data) for improving model-based disease prediction. (ESRI ArcGIS 10.4, Canada Albers Equal Area Conic Projection).

the ground/land surface forecast fields (fcst_land125) produced
every 3 h (at 00, 03, 06, 09, 12, 15, 18, and 21UTC) (Figure 4).
Leaf wetness duration (LWD) is highly skewed, with many dry
days (Figure 4A). Leaf wetness is the presence of free water
on the surface of a crop canopy comprising canopy-intercepted
rainfall/fog, irrigation, and dew (dewfall/dew-rise) that forms
on leaves where water vapor condenses on a surface; it is
triggered when the temperature of a canopy surface drops below
the dew point temperature of the surrounding air (Rolandson
et al., 2015). In June-Oct of 2015, coinciding with the airborne
sampling measurement, the majority of wetness events were
below 0.001m (or 0.10 kg m−2) early in the season (June), but
increases through the season reaching 0.30–0.35 kg m−2 at end-
of-season (August-Oct) (Figure 4B). There were 54 days with
rainfall (of 77 total of airborne sampling in 2015). Canopy
temperature showed considerable variability through the 2015
growing season (Figure 4C).

CLR Model (Site-Specific)
A site-specific model was first evaluated in predicting Pst
disease. This model has previously been used to predict disease
risk and a historical 2008-2011 outbreak of Coffee Leaf Rust
(CLR, Hemileia vastatrix) in Colombia (Bebber et al., 2016)
(hereafter, CLR model). The CLR model assumes infection by
germinated fungal spores occurring on leaves that are wet for
longer than a critical leaf wetness duration (Wcrit or LWDcrit)
and specifies a temperature response function [(Yan and Hunt,
1999) Type] of germination and infection based on pathogen-
specific minimum, maximum and optimum temperature (θmin,
θopt, θmax). Sensitivity analysis of a generic fungal model for
Pst using these variables lends further support for their use
in predicting Pst disease dynamics (Bregaglio et al., 2012).
The model assumes: temperature is assumed constant over
each hourly interval, an equal size of new spore cohorts that
being germinating at the start of each wet hour, and no
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FIGURE 4 | (A) Growing season wetness duration (h) distribution, (B) canopy wetness (m), and (C) temperature (oC) within the modeled ROI comprising 40

townships within the 2015 growing season, surrounding the Lethbridge site.

germination during dry periods, with no neighbor infections.
The process of spore germination and appressoria formation
(i.e., infection) over time is modeled as a Weibull-distributed
survival process. This generates a cumulative hazard function
having germination and infection processes that are time-
varying and random, with rates that are greatest at θopt and
decline to zero outside of the temperature range (θmin, θmax).
Disease development is thus assumed to be dormant until the
temperature moves back within the required range. The CLR
model was implemented using validated R code [(Bebber et al.,
2016; R Core Team, 2017) (includes supplement and example
R code)] with the critical wetness, temperature-response, and
germination/infection process (Weibull-distribution) parameters
estimated for Pst, using the JRA-55 reanalysis 3-hourly climate
data.

hhh4 Model (Spatial)
The hhh4 spatio-temporal endemic-epidemic model having
spatial dependence assumptions was selected to compare with
the CLR site-specific model predictions. This model has been
implemented in the surveillance R package (Held and Paul,
2012; Paul and Meyer, 2016; Meyer S. et al., 2017). Separate

runs of the model using JRA-55 reanalysis (∼55 km), ACIS
station-based township (∼10 km) climate data as input, and both
datasets combined, were performed to benchmark the effect of
the spatial resolution of input climate data on disease model
accuracy. The hhh4 model is a multivariate time-series model
for disease incidence, Yit involving multiple, geographical sub-
regions (e.g., units of townships or fields), i = (1,. . . ,I), across
multiple time periods t=(1,. . . ,T). It assumes a negative-binomial
(i.e., clustered) distribution of spore counts, with an additive
mean (Meyer S. et al., 2017),

µit = eit νit + λitYi,t−1 + φit

∑

j 6= i
wjiYj,t−1 (1)

and the over-dispersion parameter, ψi. The additive mean
µit consists of an endemic (eit νit) and epidemic (λitYi,t−1 +

φit
∑

j 6= i wjiYj,t−1) component, where eit is the expected counts

(i.e., a multiplicative offset to the endemic mean νit). The
epidemic component consists of two autoregressive spatial
effects, namely: disease reproduction within region i, and a
neighborhood or spatial-temporal interaction effect involving
spore transmission to other region j. The disease endemic and
epidemic contributions can be assumed identical across regions,
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vary within each region, random, or correlated between regions,
by representing them as log-linear functions having intercept, αi
and associated predictor variables, whereby,

log (νit) = α
(ν)
i + β

(ν)Tz
(ν)
it , (2)

log (λit) = α
(λ)
i + β

(ν)Tz
(λ)
it , (3)

log (φit) = α
(φ)
i + β

(ν)Tz
(φ)
it , (4)

where T denotes the transpose of a weight vector β
(ν) for

covariate vector z
(ν)
it .If the epidemic parameters, λ = exp(α(λ))

and φ = exp(α(φ)) are assumed homogeneous across all sub-
regions, and constant over time (i.e., λit = λ, = φ, ∀i,t),
an underlying, seasonal temporal trend effecting all regions
equally at time t with annual frequency, ω = 2π/52. Infection
transmission is assumed to occur only between directly adjacent
townships (wji = I), where I is the identity matrix, then Equation
(1) and its component log-linear predictor (Equation 2), becomes
(Meyer S. et al., 2017),

µit = eit νit + λYi,t−1 + φ

∑

j 6= i
wjiYj,t−1 (5)

log (νt) = α
(ν)
+ βtt + γ sin (ωt)+ δcos (ωt) (6)

For this homogeneous version of the hhh4 model,
weather/climate variables are used to determine the initial
infection profile in each township (Equation 5) and then
scaling adjustments to these township profiles are made as the
model simulation proceeds, whereas the heterogeneous model
inputs the weather/climate variables in the covariate vector
of the log-linear equations (Equations 2–4). A susceptibility
correction to this homogeneous version of the hhh4 model was
considered that assumes a township-specific proportion (1 − νi)
as a proxy for the susceptible population. Model simulations
(i.e., independent runs) were performed with and without a
susceptibility correction (i.e., a specific percentage or population
susceptible to disease) to gauge how susceptibility assumptions
affect model accuracy. This susceptible proportion can be
accounted for either as an offset to the endemic population
i.e., (1 − νi) (i.e., resulting in a form of the model having a
multiplicative offset and log-linear covariates), or as an offset
to the autoregressive component of the model (i.e., resulting
in a model form that has endemic and/or autoregressive
effects). Susceptibility modifies the endemic effect through the
substitution of this component with this offset (refer to Equation
1), whereby,

eit νit ← (1− νi)
βsei (7)

Alternatively, it can be considered as an offset to the epidemic
component (i.e., an autoregressive/covariate effect),

λitYi,t−1 ← exp(α(λ) + βs log(1− νi))Yi,t−1

= exp(α(λ)) (1− νi)
βsYi,t−1 (8)

where, βs ≥ 1 is a power effect of high proportion of susceptible
populations in sub-region iwhich boost new infections (Meyer S.

et al., 2017). The arrow in Equations (7, 8) indicates replacement
of the left side terms by the right side terms when susceptibility
is considered as a model parameter. Both of these candidate
models were evaluated in accounting for wheat cultivar/host
susceptibility for Pst in the ROI, with the best-performing model
(same dataset) selected bymaximizing the likelihood/minimizing
the Akaike Information Criterion (AIC) that corrects for variance
due to the total estimated number of model parameters.
The hhh4 model (homogeneous) has the seven parameters:
(λ, φ, ν, exp(βt), A,ϕ, ψi), where the two sinusoidal terms
of the seasonality-adjustment in Equation (6) are combined
into a sinusoidal wave of amplitude A and phase shift ϕ.
Considering susceptibility adds one more model parameter,
whether included as an offset (βs = 1), or as a covariate (βs
estimated).

The Akaike Information Criterion (AIC) was used in
measuring model accuracy and performance (e.g., best and worst
cases) of the hhh4 model (R stats library). Infection within each
township was modified both by changes in the hhh4 model
parameters and subregion climate variability. Five competing
cases were evaluated:

Case 1 (JRA hourly reanalysis climate)
Case 2 (ACIS daily station-based climate input)
Case 3 (combined JRA and ACIS)
Case 4 (Case 3 with susceptibility offset correction)
Case 5 (Case 3 with susceptibility covariate correction)

The climate variables selected to drive the model differed
depending in each of the cases above, depending onwhich dataset
was used (JRA coarse-scale and/or ACIS fine-scale) and whether
the climate variables was hourly or daily. For case 1, JRA hourly
mean, minimum and maximum canopy temperature, and leaf
wetness duration (LWD) were used to drive the model, For
case 2, ACIS daily mean, minimum and maximum temperature
and daily relative humidity were used. For case 3, JRA hourly
mean, minimum and maximum canopy temperature and leaf
wetness duration were used to determine the infection profile
for a given township using the temperature response function
and assumptions of the CLR site-specific model. This was in
addition to ACIS daily mean temperature and humidity for
determining initial infection profiles in each township before
the model was simulated and dynamical scaling adjustments
made. As the JRA data was hourly and ACIS data was daily,
this model case after initialization was then simulated at a
common (i.e., weekly) aggregation scale, with the two datasets
combined using simple, non-weighted averaging to avoid
introducing any aggregation bias. Cases 4 and 5 used the same
climate variables as in case 3, but with additional susceptibility
corrections [i.e., case 4 with susceptibility correction as an offset
(Equation 7) and case 5, with it introduced as an additional
covariate (Equation 8)]. For the models and their various
cases, Table 1 provides a summary of input datasets, variable
inputs, fixed parameters, data, and model spatial and temporal
resolutions.

For the best-case, One-Step-Ahead forecasting was performed
to approximate forecast error covariance. This was performed
assuming a lead-time of a partial (1–4 weeks) and full season
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TABLE 1 | A summary of input datasets, climate variable inputs, fixed parameters, data and model spatial, and temporal resolutions.

Model Cases Resolutions Dataset Variables Parameters

CLR

(non-spatial)

– Hourly, 55 km Jra Canopy temperature

(Tc)

leaf wetness duration

(LWD)

Temperature

(θmin, θopt, θmax)

Wcrit, scale (α) and shape (γ)

hhh4 (spatial)

(homogeneous)

1 hourly, 55 km JRA Tc, LWD λ, φ, ν, exp(βt ), A,ϕ, ψi, no

susceptibility offset/covariate

2 daily, township ACIS air temperature, relative

humidity

(as above)

3 hourly, 55 km JRA +

ACIS

Tc, LWD,

air temperature, relative

humidity

(as above)

4 daily, township (as above) (as above) λ, φ, ν, exp(βt ), A,ϕ, ψi ,βs

offset

5 (as above) (as above) (as above) λ, φ, ν, exp(βt ), A,ϕ, ψi ,βs

covariate

(1–11 weeks) time-window. The partial time-window could
apply when forecasting disease within a growing season, while
the longer time-window could apply when using data from a
previous season in forecasting a future season. Four different
statistical metrics or “scores” were evaluated in measuring the
discrepancy between amodel’s predictive (i.e., “future” prediction
is also termed a “forecast”) distribution, µP, and future observed
value, y, namely: squared-error score (ses), logarithmic score
(logs), Dawid-Sebastian (dss), and ranked-probability score (rps),
given by,

ses : (y− µP)
2

logs :

(y− µP)

σ 2
p

2

+ 2 log σp

dss :

(y− µP)

2σ 2
p

2

+ 2 log σp +
1

2
log 2π

rps : Ecdf ,P
∣

∣Y − y
∣

∣−
1

2
Ecdf ,P

∣

∣

∣
Y − Y

′
∣

∣

∣
(9)

Y and Y ′ are independent random variables associated with the
distribution function p, y is a future “observed” or measured
value, and µP and σ

2
p are the mean and variance of the predictive

(i.e., forecast) distribution, p. Both the location and spread of
the forecast distribution are taken into account by the logs, dss
and rps scores in judging how close the distribution is to the
observed value. The rps score uses the predictive cumulative
density function (cdf) and reduces to absolute error if p is a
point-forecast rather than a distribution-forecast. It measures
howwell probability distribution-based forecasts match observed
outcomes. These scores are summary measures of the predictive
performance that allow for the joint assessment of calibration
and sharpness are reviewed by Gneiting and Katzfuss (2014) and
were computed using the surveillance R library package (Meyer
S. et al., 2017). Lower scores indicate a model that has better

predictive power, with mean scores used to identify a model with
the best (i.e., minimal) forecast accuracy.

RESULTS

Temperature response function parameters (θmin, θopt, θmax) for
germination and appressorium formation (i.e., infection) were
estimated using data, as (5.91, 15.41, 33.94) for germination,
and (5.57, 15.57, 32.11) for infection (de Vallavieille-Pope
et al., 1995). This optimal germination temperature range lies
within the reported range (i.e., 16–18◦C) of post-2000 Pst
survival/occurrence at warmer temperatures (Chen, 2005; Xi
et al., 2015) and previous reported estimates of (2.6,8.5,18)
(Bregaglio et al., 2011). Critical wetness duration (Wcrit) was
set at 4 h, as a lower bound to the Pst reported range of 5–
8 h (Bregaglio et al., 2011; Rolandson et al., 2015). The 4 h
wetness duration estimate coincides with the timing of a rapid
increase in infection for Pst, confirmed by experimental data
under controlled conditions (de Vallavieille-Pope et al., 1995).
This estimate also is close to observed mean wetness duration
distribution peak for the ROI (Figure 4C). Risk distribution
parameters (i.e., Weibull-distribution) of scale (α) and shape
(γ) were estimated (α, γ), for germination as (13.36, 1.29)
and for infection as (19.1, 2.14). The CLR (site-specific) model
predictions (Figure 5) (scaled) are compared to observed Pst
spore profile, collected at the Lethbridge site (Fairfield) during
the 2015 wheat growing season [AIC = −749.47, root-mean-
squared-error (RMSE)= 312.92].

Best-fit estimates (and associated Standard Error) of the
spatial model parameters are summarized for the 5 cases
considered (Table 2). AIC values are provided under each
case number in brackets. The predicted Pst spore population
(for township region that contains the Lethbridge sampling
site) through June-October for the 2015 growing season is
shown against the observed Pst/airborne inoculum profile
collected at the Lethbridge site (Figure 6A). Variability in these
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model predictions (case 3) for neighboring regions surrounding
the Lethbridge township is shown for this particular season
(2015) and subregion, to be strongly endemic, with low
autoregressive and transmission contributions from neighboring
regions (Figure 6B). Estimates forecast scores obtained from
one-step-ahead model forecasting are summarized in b. The two
different lead-times assume: (i) only Pst population information
for the first few weeks (i.e., weeks 1–4 occurring before the main
infection peak) is available, and (ii) full data for the entire season
is available.

DISCUSSION

The site-specific model (CLR) with the coarser JRA reanalysis
input was able to reproduce the general shape of the observed
Pst detection (2015 at Lethbridge) based on the assumptions
of critical thresholds of wetness and temperature-response,
and independent, Weibull-distributed germination/infection
processes (Figure 5). The model predicts the rate of infection
(slope of mid-season peak) well, but predicts a narrower peak
width (timing of main infection peak rise and fall) and predicts

FIGURE 5 | CLR model site-specific predicted Pst disease incidence (scaled

0–1), compared to the observed Pst airborne inoculum counts/profile

collected at Lethbridge during the 2015 wheat growing season.

peak infection a week earlier than it occurred. Predictions of
the model are more variable during the early- and late-season,
which is attributed to higher variability in the weather conditions
(i.e., fluctuations in canopy wetness and temperature shown in
Figures 4B,C). Using the same coarse JRA climate input data,
the spatial hhh4 model with spatial transmission assumptions
(case 1), while not the best fit obtained to the observed infection
curve, like the CLR site-specific model, does also predict a
narrow peak. However, the hhh4 model predictions are less
variable in early/late season and it predicts peak infection time
correctly (Figure 6). This indicates that assumptions on how
Pst immigrates, overwinters and moves between subregions, are
important for accurately determining both infection variability
in early/late season as well as the timing of peak infection.
Changing the spatial resolution of climate input data (i.e., from
JRA regional-scale in case 1 to finer ACIS township-scale in case
2), improved the prediction of width of the infection peak, which
is especially crucial, as it is at this time that disease dynamics
can switch from an endemic, to an epidemic disease occurrence
pattern.

Finer scale climate input improved the ability of the spatial
hhh4 model to predict Pst disease dynamics (case 2 vs. case 1)
(Figure 6). The best-performing model (hhh4 case 3 with lowest
AIC) (Table 2) had the strongest endemic contribution (initial
deposition followed by weak transmission of Pst through the
growing season, measured at the Lethbridge site). Comparing
AIC values for the various cases of the hhh4 model (see
Table 2) in terms of relative gain in accuracy [i.e., (|AICold-
AICnew|/|AICold|) x100%, where AICold denotes the model with
the higher AIC, and AICnew the improved model with the
lower AIC] provides quantification of the various improvements
(spatial and temporal resolution, and inclusion of a susceptibility
correction as an offset or covariate). Changing spatial resolution
(55 km to township/10 km) and temporal resolution (hourly
to daily) led to a relative improvement in accuracy (relative
reduction in AIC) of 64% (case 2 vs. case 1). A further relative
accuracy gain of 89% was achieved by combining information at
different spatial and temporal scale (i.e., hourly and daily, 55 km
and township/10 km) (multi-scale case 3 vs. case 2). Correcting
for susceptibility as an offset led to a relative accuracy gain
of <1% , and no change as a covariate, but these quantified
changes are more unreliable due to associated increases in the

TABLE 2 | Best-fit estimates of the hhh4 homogeneous model parameters (Equations 5, 6) and associated Standard Errors (SE) for endemic, ν, and epidemic [i.e.,

autoregressive, λ = exp(α(λ)) , and spatio-temporal, φ = exp(α(φ)) ] contributions are shown for each of the cases considered: case 1—JRA reanalysis only (∼55 km),

case 2—ACIS climate only (∼10 km), and case 3—multiscale with both JRA and ACIS, and two susceptibility corrections of the best-fitting homogeneous model i.e., case

3 (indicated by *) (case 4—offset type, case 5—covariate type).

Model (AIC) λ φ ν exp(βt) A ϕ ψi βs

Case 1 (10106) 0.291 ± 0.051 0.010 ± 0.009 1.06 × 106 ± 2.41 × 105 1.08 ± 0.047 2.98 ± 0.022 −0.839 ± 0.033 0.263 ± 0.017

Case 2 (6160) <0.001 ± 0.000 1.02 ± 0.471 74.8 (error > 100%) 9.49 ± 4.18 10.3 ± 1.46 −4.26 ± 0.068 32.4 ± 2.64

Case 3* (667.22) <0.001 ± 0.000 <0.001 ± 0.000 0.003 ± 0.093 3.82 ± 1.84 7.20 ± 1.20 −0.786 ± 0.146 20.2 ± 3.84

Case 4 (667.94) <0.001 ± 0.000 <0.001 ± 0.000 0.003 ± 20.9 3.79 ± 1.62 5.03 ± 1.19 −5.12 ± 1.08 20.4 ± 3.88 1.000 ± 0.000

Case 5 (669.22) <0.001 ± 0.000 <0.001 ± 0.000 0.003 ± 20.6 3.82 ± 1.62 5.09 ± 1.18 −5.10 ± 1.08 20.2 ± 3.84 0.039 (error > 100%)

Estimated AIC associated with each model simulation run is provided in brackets.
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FIGURE 6 | (A) Spatial model predictions of the hhh4 model for cases 1–3 with different climate input data are shown compared to observed at the Lethbridge

collection site, (B) Predicted Pst disease incidence (scaled 0–1) within the Lethbridge township (TW008R21W4) and its neighboring townships for the best-fitting

model (case 3) vs. number of weeks. Variability in the endemic, autoregressive, and spatio-temporal contributions are shown driven by climate variability across the

regions.

standard error of model parameters. Overall all cases, the best
case (Case 3) was identified or defined as the model case that
had the lowest AIC value or highest forecast accuracy) used
multi-scale JRA and ACIS data and assumed no correction for
susceptibility. The worst-case (Case 1) was identified as the

model case that had the highest AIC value or lowest forecast
accuracy using only JRA data and assuming no correction for
sustainability. Case 3 not only obtained the lowest AIC, but also
produced more accurate estimates of the endemic parameter
(smaller standard error). This case explains the data the best
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(with the lowest AIC) as having weak epidemic components,
but strong endemic component, even though the standard
error in some model parameters relative to their estimated
value increased. Case 3, with the lowest AIC value (best case
model), when compared to the highest AIC value (Case 1
worst case model) has a relative overall gain of 93.4% in model
accuracy.

The small accuracy improvement offered by a susceptibility
correction could be, in part, due to the homogeneous modeling
assumptions. Accounting for susceptibility in the best-fit model
(case 3), reduced model accuracy only slightly. More observed
airborne inoculum sampling data would considerably reduce
the high standard error (SE) of the intercept and susceptibility

coefficient parameters (α(ν),βs). Considering susceptibility as an
endemic offset, rather than an epidemic autoregressive/covariate
effect, produced a model with slightly higher accuracy.
This was largely determined, however, by weather variability.
Accounting for susceptibility increased the uncertainty in the
endemic parameter considerably, pointing to the need for
heterogeneous assumptions, alongside a larger data from Pst
airborne surveillance in the region to reduce it. This also indicates
that the susceptibility parameter is a useful metric for gauging
disease risk and determining where to optimally monitor for Pst
across the entire ROI. Additional susceptibility effects could be
considered if heterogeneous assumptions were considered in the
hhh4 model, whereby a multi-variate, “susceptibility function”
could be defined (i.e., that further modifies Equations 7, 8).
This function could integrate specific-cultivar attributes and/or
fungicide control/spray data, and potential canopy changes due
to disease detected from available vegetation index satellite data
(Davidson, 2015; Devadas et al., 2015). More complex forms
of the hhh4 spatial model with spatial-interaction assumptions,
heterogeneity driven by long-range transmission, and higher-
order neighbors/transmission across sub-regions (power law or
second-order model) could be considered. Also, independent
random effects uncertainty could be included that typically
results from unobserved heterogeneity due to under-reporting
of disease occurrence. The hhh3 case 3 model (relying on multi-
resolution climate data and spatial dependence assumptions) had
reasonable ranges of the predictive assessment scores (Table 3).
Based on a test period of 4 weeks (i.e., in June-July in advance
of peak infection) the best-fit model is able to forecast with 50%
accuracy (using the full window of 11 weeks as a benchmark).
This forecast accuracy was achieved using airborne inoculum
data for a single site and season, alongside disease, environment
and susceptibility assumptions. A larger dataset of Pst infection
data would enable a more reliable determination of the forecast
accuracy of this model and reliable attribution of forecast error
to environmental (i.e., climate/weather) variability, and/or host-
pathogen disease dynamics.

In summary, the integrated framework proposed offers a
feasible way to combine diverse datasets and models with
a wide range of assumptions to explain variability and
uncertainty in observed disease incidence patterns and to
forecast risk. Current findings show that the more complex,
stochastic model (hhh4) using weather station network data
with susceptibility correction provides sufficient accuracy and

TABLE 3 | Performance of model-based forecasting (4 scores) for Pst disease

(i.e., disease risk) within southern Alberta in 2015 for a partial and complete

season lead-time, using the best training case (case 3) of the hhh4 model.

Test period ses logs dss rps

Partial (weeks 1–4) 2155 1.666 −0.414 16.87

Full (All weeks) 1097 0.8851 3.191 7.815

Estimates for squared-error (ses), logarithmic (logs), Dawid-Sebastian (dss), and ranked-

probability (rps) are provided (rounded).

reliability. Machine-learning may further improve model-based
disease risk forecasting under highly unpredictable weather or
management regimes (Liao and Ji, 2009; Wen et al., 2017).
Testing the feasibility of this framework and modeling approach
relied on limited airborne inoculum data for Pst (i.e., available
and high-quality controlled data from the recent 2015 season
at Lethbridge) and homogeneous assumptions. Nonetheless,
this is the first time such data has been collected for Pst
in this region of interest. Current findings are supported by
the integration of knowledge, parameter estimates, multiple
evidence sources (i.e., published empirical data on Pst, included
latest available, quality-controlled climate, satellite and airborne
inoculum).

An expanded evaluation of model-based forecast accuracy
will require a large, seasonal airborne surveillance program
and heterogeneous assumptions. Heterogeneous assumptions
would help to fine-scale incidence and risk variability based
on measured changes in endemic-epidemic transition time,
maximum infection potential, infection peak timing, and width
between regions. The most accurate, efficient, and cost-effective
airborne surveillance monitoring plan may be a multi-resolution
sampling design that could sample disease across the full extent
of a large ROI at a coarser resolution, while sampling denser,
at a finer resolution within known disease hotspots. This is
supported by the current findings; the spatial model (case 1)
using coarser climate input predicted an underlying pattern of
Pst occurrence that is under-dispersed (ψi < 1), while cases 2
and 3 indicated it is over-dispersed (ψi > 1). Given case 3 fit
the observed data better, a more clumped, concentrated pattern is
inferred for Pst based within the 2015 growing season. Hotspots
could be identified as townships or subregions where a disease
overwinters/oversummers across a sufficient number of sampling
seasons, or higher risk clusters of townships within which
Pst disease is first or early-detected. Susceptibility offsets and
covariation provides an important spatial-based sustainability
metric for gauging subregions where disease risk may be highest
and where to more intensively sample (Kouadio and Newlands,
2015). Extensions of the spatial model could also include viability
of inoculum (i.e., variability in the different isolates that are
present into a “natural” inoculum). In laboratory studies, often
a single isolate is used. Field studies can involve both a single
or composite inoculum; when a composite, one can consider
a number of different characterized isolates or assume that a
field isolate that was present in a previous growing season has
been amplified (multiplied) and is re-inoculating. Also, in further
expanded modeling and with the availability of spore data for
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2016-2018, the models could be run for the 2019 growing season
to predict disease risk, using hourly/daily climate data across all
past 4 years where spore data was being collected (i.e., 2015-
2018). The 2016-18 time period could be then used to provide
training/calibration data for the models, and uncertainty in the
model fixed parameters and current season disease risk could be
compared to an uncertainty range estimated using all past climate
information. This would also provide a historical prediction
range to compare against a current-season prediction range. A
multi-scale airborne surveillance design that provides data to
support operational model-based disease risk forecasting, may,
in the future, enable more reliable, timely and cost-effective
decisions in sustaining crop yields against multiple disease
threats. Developing an integrated understanding of disease risks,
impacts, consequences (whether anticipated or unanticipated),
alongside decision trade-offs, could provide crucial, cornerstone
insights to controlling crop disease, and increasing crop yields
sustainably.
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